
Tal Malkin
Chris Peikert (Eds.)

LN
CS

 1
28

25

41st Annual International Cryptology Conference, CRYPTO 2021
Virtual Event, August 16–20, 2021
Proceedings, Part I

Advances in Cryptology –
CRYPTO 2021

Lecture Notes in Computer Science 12825

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0001-8816-2693

More information about this subseries at http://www.springer.com/series/7410

http://www.springer.com/series/7410

Tal Malkin • Chris Peikert (Eds.)

Advances in Cryptology –

CRYPTO 2021
41st Annual International Cryptology Conference, CRYPTO 2021
Virtual Event, August 16–20, 2021
Proceedings, Part I

123

Editors
Tal Malkin
Columbia University
New York City, NY, USA

Chris Peikert
University of Michigan
Ann Arbor, MI, USA

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-84241-3 ISBN 978-3-030-84242-0 (eBook)
https://doi.org/10.1007/978-3-030-84242-0

LNCS Sublibrary: SL4 – Security and Cryptology

© International Association for Cryptologic Research 2021
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0003-3533-6156
https://orcid.org/0000-0003-0419-7501
https://doi.org/10.1007/978-3-030-84242-0

Preface

The 41st International Cryptology Conference (Crypto 2021), sponsored by the
International Association of Cryptologic Research (IACR), was held during August
16–20, 2021. Due to the ongoing COVID-19 pandemic, and for the second consecutive
year, Crypto was held as an online-only virtual conference, instead of at its usual venue
of the University of California, Santa Barbara. In addition, six affiliated workshop
events took place during the days immediately prior to the conference.

The Crypto conference continues its substantial growth pattern: this year’s offering
received a record-high 430 submissions for consideration, of which 103 (also a record)
were accepted to appear in the program. The two program chairs were not allowed to
submit a paper, and Program Committee (PC) members were limited to two submis-
sions each. Review and extensive discussion occurred from late February through
mid-May, in a double-blind, two-stage process that included an author rebuttal phase
(following the initial reviews) and extensive discussion by reviewers. We thank the
58-person PC and the 390 external reviewers for their efforts to ensure that, during the
continuing COVID-19 pandemic and unusual work and life circumstances, we nev-
ertheless were able to perform a high-quality review process.

The PC selected four papers to receive recognition via awards, along with invita-
tions to the Journal of Cryptology, via a voting-based process that took into account
conflicts of interest (the program chairs did not vote).

– The Best Paper Award went to “On the Possibility of Basing Cryptography on EXP
≠ BPP” by Yanyi Liu and Rafael Pass.

– The Best Paper by Early Career Researchers Award, along with an Honorable
Mention for Best Paper, went to “Linear Cryptanalysis of FF3-1 and FEA” by Tim
Beyne.

– Honorable Mentions for Best Paper also went to “Efficient Key Recovery for all
HFE Signature Variants” by Chengdong Tao, Albrecht Petzoldt, and Jintai Ding;
and “Three Halves Make a Whole? Beating the Half-Gates Lower Bound for
Garbled Circuits” by Mike Rosulek and Lawrence Roy.

In addition to the regular program, Crypto 2021 included two invited talks, by
Vanessa Teague on “Which e-voting problems do we need to solve?” and Jens Groth
on “A world of SNARKs.” The conference also carried forward the long-standing
tradition of having a rump session, organized in a virtual format.

The chairs would also like to thank the many other people whose hard work helped
ensure that Crypto 2021 was a success:

– Vladimir Kolesnikov (Georgia Institute of Technology)—Crypto 2021 general
chair.

– Daniele Micciancio (University of California, San Diego), Thomas Ristenpart
(Cornell Tech), Yevgeniy Dodis (New York University), and Thomas Shrimpton
(University of Florida)—Crypto 2021 Advisory Committee.

– Carmit Hazay (Bar Ilan University)—Crypto 2021 workshop chair.
– Bertram Poettering and Antigoni Polychroniadou—Crypto 2021 rump session

chairs.
– Kevin McCurley, for his critical assistance in setting up and managing the HotCRP

paper submission and review system, conference website, and other technology.
– Kevin McCurley, Kay McKelly, and members of the IACR’s emergency pandemic

team for their work in designing and running the virtual format.
– Anna Kramer and her colleagues at Springer.

July 2021 Tal Malkin
Chris Peikert

vi Preface

Organization

General Chair

Vladimir Kolesnikov Georgia Institute of Technology, USA

Program Committee Chairs

Tal Malkin Columbia University, USA
Chris Peikert University of Michigan and Algorand, Inc., USA

Program Committee

Abhi Shelat Northeastern University, USA
Andrej Bogdanov Chinese University of Hong Kong, Hong Kong
Antigoni Polychroniadou JP Morgan AI Research, USA
Brice Minaud Inria and École Normale Supérieure, France
Chaya Ganesh Indian Institute of Science, India
Chris Peikert University of Michigan and Algorand, Inc., USA
Claudio Orlandi Aarhus University, Denmark
Daniele Venturi Sapienza University of Rome, Italy
David Cash University of Chicago, USA
David Wu University of Virginia, USA
Dennis Hofheinz ETH Zurich, Switzerland
Divesh Aggarwal National University of Singapore, Singapore
Dominique Unruh University of Tartu, Estonia
Elena Andreeva Technical University of Vienna, Austria
Elena Kirshanova Immanuel Kant Baltic Federal University, Russia
Fabrice Benhamouda Algorand Foundation, USA
Fang Song Portland State University, USA
Frederik Vercauteren KU Leuven, Belgium
Ghada Almashaqbeh University of Connecticut, USA
Itai Dinur Ben-Gurion University, Israel
Jean-Pierre Tillich Inria, France
Jeremiah Blocki Purdue University, USA
John Schanck University of Waterloo, Canada
Jonathan Bootle IBM Research, Switzerland
Joseph Jaeger University of Washington, USA
Junqing Gong East China Normal University, China
Lisa Kohl CWI Amsterdam, The Netherlands
Manoj Prabhakaran IIT Bombay, India
Marcel Keller CSIRO’s Data61, Australia
Mariana Raykova Google, USA

Mike Rosulek Oregon State University, USA
Mor Weiss Bar-Ilan University, Israel
Muthuramakrishnan

Venkitasubramaniam
University of Rochester, USA

Ni Trieu Arizona State University, USA
Nir Bitansky Tel Aviv University, Israel
Nuttapong Attrapadung AIST, Japan
Omer Paneth Tel Aviv University, Israel
Paul Grubbs NYU, Cornell Tech and University of Michigan, USA
Peihan Miao University of Illinois at Chicago, USA
Peter Schwabe Max Planck Institute for Security and Privacy,

Germany, and Radboud University, The Netherlands
Ran Canetti BU, USA, and Tel Aviv University, Israel
Romain Gay IBM Research, Switzerland
Ron Steinfeld Monash University, Australia
Rosario Gennaro City University of New York, USA
Ryo Nishimaki NTT Secure Platform Laboratories, Japan
Sandro Coretti IOHK, Switzerland
Sikhar Patranabis Visa Research, USA
Sina Shiehian UC Berkeley and Stony Brook University, USA
Siyao Guo NYU Shanghai, China
Stanislaw Jarecki University of California, Irvine, USA
Tal Malkin Columbia University, USA
Tarik Moataz Aroki Systems, USA
Thomas Peters UC Louvain, Belgium
Thomas Peyrin Nanyang Technological University, Singapore
Tianren Liu University of Washington, USA
Viet Tung Hoang Florida State University, USA
Xavier Bonnetain University of Waterloo, Canada
Yu Yu Shanghai Jiao Tong University, China

Additional Reviewers

Aaram Yun
Aarushi Goel
Aayush Jain
Abhishek Jain
Adrien Benamira
Agnes Kiss
Aishwarya Thiruvengadam
Ajith Suresh
Akin Ünal
Akinori Kawachi
Akira Takahashi
Akshay Degwekar

Akshayaram Srinivasan
Akshima
Alain Passelègue
Alex Bienstock
Alex Lombardi
Alexander Golovnev
Alexander Hoover
Alexander May
Alexandre Wallet
Alexandru Cojocaru
Alice Pellet-Mary
Alin Tomescu

viii Organization

Amin Sakzad
Amit Singh Bhati
Amitabh Trehan
Amos Beimel
Anat Paskin-Cherniavsky
Anca Nitulescu
André Chailloux
Andre Esser
André Schrottenloher
Andrea Coladangelo
Andreas Hülsing
Antonin Leroux
Antonio Florez-Gutierrez
Archita Agarwal
Ariel Hamlin
Arka Rai Choudhuri
Arnab Roy
Ashrujit Ghoshal
Ashutosh Kumar
Ashwin Jha
Atsushi Takayasu
Aurore Guillevic
Avijit Dutta
Avishay Yanay
Baiyu Li
Balazs Udvarhelyi
Balthazar Bauer
Bart Mennink
Ben Smith
Benjamin Diamond
Benjamin Fuller
Benny Applebaum
Benoît Cogliati
Benoit Libert
Bertram Poettering
Binyi Chen
Bo-Yin Yang
Bogdan Ursu
Bruno Freitas dos Santos
Bryan Parno
Byeonghak Lee
Carl Bootland
Carles Padro
Carmit Hazay
Carsten Baum
Cecilia Boschini

Chan Nam Ngo
Charles Momin
Charlotte Bonte
Chen Qian
Chen-Da Liu-Zhang
Chenkai Weng
Chethan Kamath
Chris Brzuska
Christian Badertscher
Christian Janson
Christian Majenz
Christian Matt
Christina Boura
Christof Paar
Christoph Egger
Cody Freitag
Dahmun Goudarzi
Dakshita Khurana
Damian Vizar
Damiano Abram
Damien Stehlé
Damien Vergnaud
Daniel Escudero
Daniel Jost
Daniel Masny
Daniel Tschudi
Daniel Wichs
Dario Catalano
Dario Fiore
David Gerault
David Heath
Debbie Leung
Dean Doron
Debapriya Basu Roy
Dima Kogan
Dimitrios Papadopoulos
Divya Gupta
Divya Ravi
Dominique Schröder
Eduardo Soria-Vazquez
Eldon Chung
Emmanuela Orsini
Eran Lambooij
Eran Omri
Eshan Chattopadhyay
Estuardo Alpirez Bock

Organization ix

Evgenios Kornaropoulos
Eysa Lee
Fabio Banfi
Felix Engelmann
Felix Günther
Ferdinand Sibleyras
Fermi Ma
Fernando Virdia
Francesco Berti
François-Xavier Standaert
Fuyuki Kitagawa
Gaëtan Cassiers
Gaëtan Leurent
Gayathri Annapurna Garimella
Geoffroy Couteau
Georg Fuchsbauer
Ghous Amjad
Gildas Avoine
Giorgos Panagiotakos
Giorgos Zirdelis
Giulio Malavolta
Guy Rothblum
Hamidreza Khoshakhlagh
Hamza Abusalah
Hanjun Li
Hannah Davis
Haoyang Wang
Hart Montgomery
Henry Corrigan-Gibbs
Hila Dahari
Huijia Lin
Ian McQuoid
Ignacio Cascudo
Igors Stepanovs
Ilan Komargodski
Ilia Iliashenko
Ingrid Verbauwhede
Itamar Levi
Ittai Abraham
Ivan Damgård
Jack Doerner
Jacob Schuldt
James Bartusek
Jan Czajkowski
Jan-Pieter D’Anvers
Jaspal Singh

Jean Paul Degabriele
Jesper Buus Nielsen
Jesús-Javier Chi-Domínguez
Ji Luo
Jian Guo
Jiaxin Pan
Jiayu Xu
Joanne Adams-Woodage
João Ribeiro
Joël Alwen
Julia Hesse
Julia Len
Julian Loss
Junichi Tomida
Justin Holmgren
Justin Thaler
Kai-Min Chung
Katerina Sotiraki
Katharina Boudgoust
Kathrin Hövelmanns
Katsuyuki Takashima
Kazuhiko Minematsu
Keita Xagawa
Kevin Yeo
Kewen Wu
Khoa Nguyen
Koji Nuida
Kristina Hostáková
Laasya Bangalore
Lars Knudsen
Lawrence Roy
Lejla Batina
Lennart Braun
Léo Colisson
Leo de Castro
Léo Ducas
Léo Perrin
Lin Lyu
Ling Song
Luca De Feo
Luca Nizzardo
Lucjan Hanzlik
Luisa Siniscalchi
Łukasz Chmielewski
Maciej Obremski
Madalina Bolboceanu

x Organization

Mahimna Kelkar
Maria Eichlseder
María Naya-Plasencia
Marilyn George
Marios Georgiou
Mark Abspoel
Mark Simkin
Mark Zhandry
Markulf Kohlweiss
Marshall Ball
Marta Mularczyk
Martin Albrecht
Martin Hirt
Mary Wooters
Masayuki Abe
Matteo Campanelli
Matthias Fitzi
Mia Filic
Michael Reichle
Michael Rosenberg
Michael Walter
Michele Orru
Miguel Ambrona
Mingyuan Wang
Miran Kim
Miruna Rosca
Miyako Ohkubo
Mohammad Hajiabadi
Mohammad Hossein Faghihi Sereshgi
Monosij Maitra
Morgan Shirley
Mridul Nandi
Muhammed F. Esgin
Mustafa Khairallah
Naomi Ephraim
Nathan Manohar
Naty Peter
Navid Alamati
Ngoc Khanh Nguyen
Nicholas Spooner
Nicholas-Philip Brandt
Nico Döttling
Nicolas Resch
Nicolas Sendrier
Nikolaos Makriyannis
Nikolas Melissaris

Nils Fleischhacker
Nina Bindel
Nirvan Tyagi
Niv Gilboa
Noah Stephens-Davidowitz
Olivier Blazy
Olivier Bronchain
Omri Shmueli
Orfeas Stefanos Thyfronitis Litos
Orr Dunkelman
Oxana Poburinnaya
Patrick Derbez
Patrick Longa
Patrick Towa
Paul Rösler
Paul Zimmermann
Peter Gazi
Peter Rindal
Philippe Langevin
Pierre Briaud
Pierre Meyer
Pierrick Gaudry
Pierrick Mèaux
Po-Chu Hsu
Prabhanjan Ananth
Prashant Vasudeval
Pratik Sarkar
Pratik Soni
Pratyay Mukherjee
Pratyush Mishra
Qian Li
Qiang Tang
Qipeng Liu
Quan Quan Tan
Rachit Garg
Radu Titiu
Rajeev Raghunath
Rajendra Kumar
Ran Cohen
Raymond K. Zhao
Riad Wahby
Rishab Goyal
Rishabh Bhadauria
Rishiraj Bhattacharyya
Ritam Bhaumik
Robi Pedersen

Organization xi

Rohit Chatterjee
Rolando La Placa
Roman Langrehr
Rongmao Chen
Rupeng Yang
Ruth Ng
Saba Eskandarian
Sabine Oechsner
Sahar Mazloom
Saikrishna Badrinarayanan
Sam Kim
Samir Hodzic
Sanjam Garg
Sayandeep Saha
Schuyler Rosefield
Semyon Novoselov
Serge Fehr
Shai Halevi
Shashank Agrawal
Sherman S. M. Chow
Shi Bai
Shifeng Sun
Shivam Bhasin
Shota Yamada
Shuai Han
Shuichi Katsumata
Siang Meng Sim
Somitra Sanadhya
Sonia Belaïd
Sophia Yakoubov
Srinivas Vivek
Srinivasan Raghuraman
Sruthi Sekar
Stefano Tessaro
Steve Lu
Steven Galbraith
Stjepan Picek
Sumegha Garg
Susumu Kiyoshima
Sven Maier
Takahiro Matsuda
Takashi Yamakawa
Tal Moran
Tamer Mour
Thom Wiggers

Thomas Agrikola
Thomas Attema
Thomas Debris-Alazard
Thomas Decru
Tiancheng Xie
Tim Beyne
Titouan Tanguy
Tommaso Gagliardoni
Varun Maram
Vassilis Zikas
Venkata Koppula
Vincent Zucca
Virginie Lallemand
Ward Beullens
Wei Dai
Willy Quach
Wouter Castryck
Xiao Liang
Xiao Wang
Xiong Fan
Yael Kalai
Yan Bo Ti
Yann Rotella
Yannick Seurin
Yaobin Shen
Yashvanth Kondi
Yfke Dulek
Yiannis Tselekounis
Yifan Song
Yilei Chen
Yixin Shen
Yongsoo Song
Yu Long Chen
Yu Sa
Yue Guo
Yuncong Hu
Yupeng Zhang
Yuriy Polyakov
Yuval Ishai
Zahra Jafargholi
Zeyong Li
Zhengfeng Ji
Zichen Gui
Zuoxia Yu
Zvika Brakerski

xii Organization

Contents – Part I

Invited Talk

Which E-Voting Problems Do We Need to Solve? 3
Vanessa Teague

Award Papers

On the Possibility of Basing Cryptography on EXP 6¼ BPP 11
Yanyi Liu and Rafael Pass

Linear Cryptanalysis of FF3-1 and FEA. 41
Tim Beyne

Efficient Key Recovery for All HFE Signature Variants. 70
Chengdong Tao, Albrecht Petzoldt, and Jintai Ding

Three Halves Make a Whole? Beating the Half-Gates Lower Bound
for Garbled Circuits. 94

Mike Rosulek and Lawrence Roy

Signatures

Threshold Schnorr with Stateless Deterministic Signing from Standard
Assumptions. 127

François Garillot, Yashvanth Kondi, Payman Mohassel,
and Valeria Nikolaenko

Two-Round Trip Schnorr Multi-signatures via Delinearized Witnesses 157
Handan Kılınç Alper and Jeffrey Burdges

MuSig2: Simple Two-Round Schnorr Multi-signatures. 189
Jonas Nick, Tim Ruffing, and Yannick Seurin

Tighter Security for Schnorr Identification and Signatures:
A High-Moment Forking Lemma for R-Protocols . 222

Lior Rotem and Gil Segev

DualRing: Generic Construction of Ring Signatures
with Efficient Instantiations . 251

Tsz Hon Yuen, Muhammed F. Esgin, Joseph K. Liu, Man Ho Au,
and Zhimin Ding

Compact Ring Signatures from Learning with Errors 282
Rohit Chatterjee, Sanjam Garg, Mohammad Hajiabadi,
Dakshita Khurana, Xiao Liang, Giulio Malavolta, Omkant Pandey,
and Sina Shiehian

Quantum Cryptography

A Black-Box Approach to Post-Quantum Zero-Knowledge in Constant
Rounds . 315

Nai-Hui Chia, Kai-Min Chung, and Takashi Yamakawa

On the Concurrent Composition of Quantum Zero-Knowledge 346
Prabhanjan Ananth, Kai-Min Chung, and Rolando L. La Placa

Multi-theorem Designated-Verifier NIZK for QMA 375
Omri Shmueli

On the Round Complexity of Secure Quantum Computation 406
James Bartusek, Andrea Coladangelo, Dakshita Khurana,
and Fermi Ma

Round Efficient Secure Multiparty Quantum Computation with Identifiable
Abort. 436

Bar Alon, Hao Chung, Kai-Min Chung, Mi-Ying Huang, Yi Lee,
and Yu-Ching Shen

One-Way Functions Imply Secure Computation in a Quantum World 467
James Bartusek, Andrea Coladangelo, Dakshita Khurana,
and Fermi Ma

Impossibility of Quantum Virtual Black-Box Obfuscation
of Classical Circuits . 497

Gorjan Alagic, Zvika Brakerski, Yfke Dulek, and Christian Schaffner

New Approaches for Quantum Copy-Protection . 526
Scott Aaronson, Jiahui Liu, Qipeng Liu, Mark Zhandry,
and Ruizhe Zhang

Hidden Cosets and Applications to Unclonable Cryptography 556
Andrea Coladangelo, Jiahui Liu, Qipeng Liu, and Mark Zhandry

On Tight Quantum Security of HMAC and NMAC in the Quantum
Random Oracle Model. 585

Akinori Hosoyamada and Tetsu Iwata

Quantum Collision Attacks on Reduced SHA-256 and SHA-512 616
Akinori Hosoyamada and Yu Sasaki

xiv Contents – Part I

Succinct Arguments

Halo Infinite: Proof-Carrying Data from Additive Polynomial
Commitments . 649

Dan Boneh, Justin Drake, Ben Fisch, and Ariel Gabizon

Proof-Carrying Data Without Succinct Arguments . 681
Benedikt Bünz, Alessandro Chiesa, William Lin, Pratyush Mishra,
and Nicholas Spooner

Subquadratic SNARGs in the Random Oracle Model. 711
Alessandro Chiesa and Eylon Yogev

Sumcheck Arguments and Their Applications . 742
Jonathan Bootle, Alessandro Chiesa, and Katerina Sotiraki

An Algebraic Framework for Universal and Updatable SNARKs 774
Carla Ràfols and Arantxa Zapico

Author Index . 805

Contents – Part I xv

Invited Talk

Which E-Voting Problems Do We Need
to Solve?

Vanessa Teague1,2(B)

1 Thinking Cybersecurity Pty. Ltd., Melbourne, Australia
vanessa.teague@anu.edu.au

2 The Australian National University, Canberra, Australia

Secure e-voting sounds like a cryptography problem. There are private inputs,
complex computations to be done on them, things to be verified, and authorities
to be partially trusted. The cryptography literature is full of mathematically
beautiful schemes for efficiently running electronic elections under various trust
models and with various verifiability and privacy properties.

But nearly thirty years after the first voting-specific cryptography papers
were written, some parts of the problem are solved while others seem as unachiev-
able as ever. The more we learn about voting as a practical problem in security,
the harder it seems.

First, we discovered that there are specific properties just for voting: receipt
freeness [BT94]—the impossibility of proving your inputs even if you want to—is
different from privacy, and necessary to avoid vote-buying and coercion. Forced-
randomisation is a specific attack that makes sense in some voting systems,
and could have a political impact if deployed against politically-biased classes of
voters. Elections also need public verifiability, in which not only the participants,
but any observer, can verify the accuracy of the computation without trusting
authorities. Voting is not just a class of specific functions to be computed by
(standard) MPC.

Second, decades after Ken Thompson’s “Reflections on Trusting Trust” Tur-
ing Award lecture, we are still not good at checking what a computer is actually
doing (oddly enough). For voting, this really matters: can we run a trustworthy
electoral process using an unscrutinisable voting device? (Honestly, I wonder
why this doesn’t matter more in other contexts too.) There are surprising and
clever techniques for allowing real humans to challenge and verify computations
done by a computer [Ben06,RBH+09,AN06]. There is useful work on formalis-
ing the process in which a human can verify an electronic computation [KZZ17].
However, they are both practically and intellectually difficult for even the most
diligent real human. Most practical systems use something simpler such as code
voting, which has much stronger trust assumptions but is much easier to use—
some even have multiple steps to allow voters to signal whether their verification
succeeded [ZCC+13]. Also, important practical studies [KHRV19] demonstrate
that the accuracy of fraud detection is much higher for simple schemes that peo-
ple can easily understand. Nevertheless cast-as-intended verification, in which
a voter verifies that their electronic vote matches their intention, is probably
the hardest part of the voting problem. People do not even check plain-paper
printouts well enough to give decent confidence [BMM+20]. Cryptographic veri-
c© International Association for Cryptologic Research 2021
T. Malkin and C. Peikert (Eds.): CRYPTO 2021, LNCS 12825, pp. 3–7, 2021.
https://doi.org/10.1007/978-3-030-84242-0_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-84242-0_1&domain=pdf
https://doi.org/10.1007/978-3-030-84242-0_1

4 V. Teague

fication is harder—if people are deliberately deceived in their verification instruc-
tions, or just confused, then their verification is unsound. So practical, usable,
cast-as-intended verification is likely to remain an active area of research.

Third, incentives really matter: not only, “Who has an incentive to conduct a
challenge properly?” but also, “Which administrator has an incentive to imple-
ment a truly transparent and verifiable election system, when they are more
likely to keep their job by sweeping problems under the rug?” In the vVote
end-to-end verifiable pollsite voting project I worked on [CRST15], the electoral
authorities in Victoria were reluctant to give voters any cast-as-intended veri-
fication instructions at all —the cast-as-intended protocol existed, but it only
slowed the process down and ran the risk of exposing problems in a system
that would otherwise be trusted. Unless this incentive is reversed, by requiring
election outcomes to be supported by evidence, this behaviour will not change.

Fourth, there is no particular correlation between trustworthiness and trust,
for electronic processes. Many criticisms of end-to-end verifiability in the research
literature highlight the problem that people may not trust something they do
not understand. That is a valid criticism and a genuine problem, but so is the
opposite problem: too much trust in things that do not deserve it. Arguably
the long US history of trusting the untrustworthy, particularly paperless DREs
(direct-recording electronic voting machines), has caused a situation in which
trust has completely broken down due to a historical lack of evidence supporting
election results. Although most US jurisdictions have now returned to using
paper, trust has not returned as quickly as improved processes. A little bit of
healthy skepticism—and quicker scrapping of untrustworthy machines—might
have been a better way of building long-term trust.

Fifth (at last we get to something related to cryptography), precise secu-
rity definitions and implementation correctness really matter. The two cryp-
tographic errors in the Swisspost/iVote/Scytl e-voting system [HLPT20] were
misalignments of a primitive’s properties with its protocol assumptions. In the
case of the shuffle proof, a trapdoor commitment scheme was used in a proto-
col that was proven secure only under the assumption that the trapdoor was
not known to the prover. In the case of the noninteractive ZKPs for equality
of discrete logs, the problem was adaptive vs static security—a statically secure
primitive was used in a protocol in which the adversary could adapt the input.
It might be tempting to dismiss these errors as a consequence of inadequately
reviewed software, and hence irrelevant to the research community, but the same
problem had been identified earlier in Helios (by its designers: [BPW12]). The
Civitas system [CCM08], based on Juels, Catalano and Jakobsson [JCJ10], had
an equivalent problem: the use of plaintext equivalence tests (with distributed
trust) in a context where Plaintext Equivalence proofs (with public verifiability)
were required [MPT20]. There is no mistake in the JCJ proof, nor is there a
mistake in the security proof of the PETs they refer to, but there is a misalign-
ment between the property that is proven of the primitive, and the property that
is assumed by the protocol proof. This misalignment breaks the main security
goals of the system, as well as several followup works. It is hard to see how for-

Which E-Voting Problems Do We Need to Solve? 5

mal methods—even very sophisticated ones—could catch this kind of problem
without a human looking very closely. Of course, this could happen in any sys-
tem (not just in voting), but it is frightening how long things that completely
undermined the core security properties went undetected, even in good quality
systems that had been open for years. It is hard to see how a system based on
cryptography alone could be robust against these kinds of mistakes.

Sixth, every democratic country is different (which is lucky for some of us). In
Australia, participation is compulsory; in Switzerland, it is important to main-
tain privacy over who participated. Some countries take the secret ballot very
seriously, others not so much. Some countries have a tolerable public key infras-
tructure, others don’t. And elections may consist of numerous referenda very
frequently, detailed preferences to be expressed every few years, or something
else. A technical solution that works well in one country may not even meet the
basic requirements elsewhere.

It is humbling that probably the best advance in recent times has come not
from cryptography but from statistics—Risk Limiting Audits (RLAs) [LS12]
use random sampling of paper ballots to guarantee an upper bound on the
probability of accepting a wrong election result (this probability is called the
risk limit). Ballots keep being sampled until either the risk limit is reached or
the administrators decide to conduct a full hand count. The precise statistics
are no easier for ordinary people to understand than cryptography is, but a
lot of people see value in randomly selecting some ballots and observing the
error rate. However, there are serious details related to cryptography here too.
For example, random ballot samples require publicly verifiable pseudorandom
number generation—if it is predictable, the audit is completely meaningless. This
is a problem cryptographers can help with: the idea of an RLA as a publicly-
verifiable computational process has yet to be adequately formalised and proven
secure.

There is Practical Progress in (Some Parts of) the World

The Swiss Internet Voting Rethink. I would not say that the Swiss Internet
voting system is a great example, but that the Swiss Federal Chancellery’s pro-
cess of engaging a large number of experts in an open, public analysis in order to
help rewrite their regulations, is a great example other countries could follow.1

I have no idea what their conclusion will be. Perhaps Internet voting will be
discontinued, or further restricted, or replaced with verifiable pollsite e-voting.
Perhaps Swiss Internet voting will remain in a perpetual state of experimenta-
tion, analysis and limited trust (perhaps that would be a fine outcome), but the
decision will be based on evidence.

Open Source Commercial Projects such as Microsoft’s ElectionGuard
and VotingWorks. Do not underestimate the impact of a supported, open,
1 CoI statement: I have received money from this process. Nevertheless the fact that

they pay people like us to help them improve their legislation indicates that they
are making decisions in a better way than most other authorities.

6 V. Teague

library that everyone can easily use. The ideas have been in the literature for a
long time, but they are being produced for the first time in a way that adminis-
trators can easily buy and incorporate into transparent elections. These projects
focus on the pollsite e-voting case where there are good practical solutions.

Research Challenges for Cryptographers

We do not have an end-to-end verifiable system with receipt freeness for
remote voting, even one ‘usable’ to the standards appropriate for the IACR.
Cast-as-intended verification can use a Benaloh-challenge (like Helios) or plain
ciphertext-opening (like the Estonian e-voting system). Coercion-resistance can
be achieved with JCJ-style fake-able voting tokens. However, we still don’t have
a good solution that provides both cast-as-intended verification and receipt free-
ness in a remote setting, except with the introduction of some much stronger
trust assumptions. Nor can we add privacy from the client without greatly com-
plicating the voting process. The fact that we haven’t even solved this problem,
in principle, for highly sophisticated users, shows how far we have to go to make
online voting practical, without substantially stronger trust assumptions than I
would want in my democracy.

I think the interesting practical research advances are to be made in paper-
based cast-as-intended verification enhanced with some cryptography to allow
voters to verify what happened to the paper after they submitted it, either in a
polling place or by post. There are some interesting early designs in this space,
but anyone who can design a system with three or more of: privacy from the vot-
ing device, usable verification, receipt freeness, and intuitive public verifiability
(to a reasonable risk-limit), will make a substantial contribution to democracy.

Acknowledgement. I would like to thank all my coauthors over the years for making
voting research so interesting and rewarding.

References

[AN06] Adida, B., Neff, C.A.: Ballot casting assurance. Proc. Electron. Voting
Technol. Workshop (EVT) 6, 7 (2006)

[Ben06] Benaloh, J.: Simple verifiable elections. EVT 6, 1–10 (2006)
[BMM+20] Bernhard, M., et al.: Can voters detect malicious manipulation of ballot

marking devices? In: 2020 IEEE Symposium on Security and Privacy (SP),
pp. 679–694. IEEE (2020)

[BPW12] Bernhard, D., Pereira, O., Warinschi, B.: How not to prove yourself: pitfalls
of the fiat-shamir heuristic and applications to helios. In: Wang, X., Sako,
K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 626–643. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-34961-4 38

[BT94] Benaloh, J., Tuinstra, D.: Receipt-free secret-ballot elections. In: Proceed-
ings of the Twenty-Sixth Annual ACM Symposium on Theory of Comput-
ing, pp. 544–553 (1994)

https://doi.org/10.1007/978-3-642-34961-4_38

Which E-Voting Problems Do We Need to Solve? 7

[CCM08] Clarkson, M.R., Chong, S., Myers, A.C.: Civitas: toward a secure voting
system. In: 2008 IEEE Symposium on Security and Privacy (sp 2008), pp.
354–368. IEEE (2008)

[CRST15] Culnane, C., Ryan, P.Y.A., Schneider, S., Teague, V.: vVote: a verifiable
voting system. ACM Trans. Inf. Syst. Secur. (TISSEC) 18(1), 1–30 (2015)

[HLPT20] Haines, T., Lewis, S.J., Pereira, O., Teague, V.: How not to prove your
election outcome. In: 2020 IEEE Symposium on Security and Privacy (SP),
pp. 644–660. IEEE (2020)

[JCJ10] Juels, A., Catalano, D., Jakobsson, M.: Coercion-resistant electronic elec-
tions. In: Chaum, D., et al. (eds.) Towards Trustworthy Elections. LNCS,
vol. 6000, pp. 37–63. Springer, Heidelberg (2010). https://doi.org/10.1007/
978-3-642-12980-3 2

[KHRV19] Kulyk, O., Henzel, J., Renaud, K., Volkamer, M.: Comparing challenge-
based and code-based internet voting verification implementations. In:
Lamas, D., Loizides, F., Nacke, L., Petrie, H., Winckler, M., Zaphiris, P.
(eds.) INTERACT 2019. LNCS, vol. 11746, pp. 519–538. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-29381-9 32

[KZZ17] Kiayias, A., Zacharias, T., Zhang, B.: Ceremonies for end-to-end ver-
ifiable elections. In: Fehr, S. (ed.) PKC 2017. LNCS, vol. 10175, pp.
305–334. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-
54388-7 11

[LS12] Lindeman, M., Stark, P.B.: A gentle introduction to risk-limiting audits.
IEEE Secur. Priv. 10(5), 42–49 (2012)

[MPT20] McMurtry, E., Pereira, O., Teague, V.: When is a test not a proof? In:
Chen, L., Li, N., Liang, K., Schneider, S. (eds.) ESORICS 2020. LNCS,
vol. 12309, pp. 23–41. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-59013-0 2

[RBH+09] Ryan, P.Y.A., Bismark, D., Heather, J., Schneider, S., Xia, Z.: Prêt à voter:
a voter-verifiable voting system. IEEE Trans. Inf. Forensics Secur. 4(4),
662–673 (2009)

[ZCC+13] Zagórski, F., Carback, R.T., Chaum, D., Clark, J., Essex, A., Vora, P.L.:
Remotegrity: design and use of an end-to-end verifiable remote voting
system. In: Jacobson, M., Locasto, M., Mohassel, P., Safavi-Naini, R. (eds.)
ACNS 2013. LNCS, vol. 7954, pp. 441–457. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-38980-1 28

https://doi.org/10.1007/978-3-642-12980-3_2
https://doi.org/10.1007/978-3-642-12980-3_2
https://doi.org/10.1007/978-3-030-29381-9_32
https://doi.org/10.1007/978-3-662-54388-7_11
https://doi.org/10.1007/978-3-662-54388-7_11
https://doi.org/10.1007/978-3-030-59013-0_2
https://doi.org/10.1007/978-3-030-59013-0_2
https://doi.org/10.1007/978-3-642-38980-1_28

Award Papers

On the Possibility of Basing
Cryptography on EXP �= BPP

Yanyi Liu1(B) and Rafael Pass2

1 Cornell University, Ithaca, USA
yl2866@cornell.edu

2 Cornell Tech, New York, USA
rafael@cs.cornell.edu

Abstract. Liu and Pass (FOCS’20) recently demonstrated an equiv-
alence between the existence of one-way functions (OWFs) and mild
average-case hardness of the time-bounded Kolmogorov complexity prob-
lem. In this work, we establish a similar equivalence but to a different
form of time-bounded Kolmogorov Complexity—namely, Levin’s notion
of Kolmogorov Complexity—whose hardness is closely related to the
problem of whether EXP �= BPP. In more detail, let Kt(x) denote
the Levin-Kolmogorov Complexity of the string x; that is, Kt(x) =
minΠ∈{0,1}∗,t∈N{|Π| + �log t� : U(Π, 1t) = x}, where U is a universal
Turing machine, and U(Π, 1t) denotes the output of the program Π
after t steps, and let MKtP denote the language of pairs (x, k) having
the property that Kt(x) ≤ k. We demonstrate that:

– MKtP /∈ HeurnegBPP (i.e., MKtP is infinitely-often two-sided error
mildly average-case hard) iff infinitely-often OWFs exist.

– MKtP /∈ AvgnegBPP (i.e., MKtP is infinitely-often errorless mildly
average-case hard) iff EXP �= BPP.

Thus, the only “gap” towards getting (infinitely-often) OWFs from the
assumption that EXP �= BPP is the seemingly “minor” technical gap
between two-sided error and errorless average-case hardness of the MKtP
problem.

As a corollary of this result, we additionally demonstrate that any
reduction from errorless to two-sided error average-case hardness for
MKtP implies (unconditionally) that NP �= P.

We finally consider other alternative notions of Kolmogorov
complexity—including space-bounded Kolmogorov complexity and con-
ditional Kolmogorov complexity—and show how average-case hardness
of problems related to them characterize log-space computable OWFs,
or OWFs in NC0.

R. Pass—Supported in part by NSF Award SATC-1704788, NSF Award RI-1703846,
AFOSR Award FA9550-18-1-0267, and a JP Morgan Faculty Award. This material is
based upon work supported by DARPA under Agreement No. HR00110C0086. Any
opinions, findings and conclusions or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the views of the United States
Government or DARPA.

c© International Association for Cryptologic Research 2021
T. Malkin and C. Peikert (Eds.): CRYPTO 2021, LNCS 12825, pp. 11–40, 2021.
https://doi.org/10.1007/978-3-030-84242-0_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-84242-0_2&domain=pdf
https://doi.org/10.1007/978-3-030-84242-0_2

12 Y. Liu and R. Pass

1 Introduction

A one-way function [DH76] (OWF) is a function f that can be efficiently com-
puted (in polynomial time), yet no probabilistic polynomial-time (PPT) algo-
rithm can invert f with inverse polynomial probability for infinitely many input
lengths n. Whether one-way functions exist is unequivocally the most impor-
tant open problem in Cryptography (and arguably the most important open
problem in the theory of computation, see e.g., [Lev03]): OWFs are both neces-
sary [IL89] and sufficient for many of the most central cryptographic primitives
and protocols (e.g., pseudorandom generators [BM88,HILL99], pseudorandom
functions [GGM84], private-key encryption [GM84], digital signatures [Rom90],
commitment schemes [Nao91], identification protocols [FS90], coin-flipping pro-
tocols [Blu82], and more). These primitives and protocols are often referred to
as private-key primitives, or “Minicrypt” primitives [Imp95] as they exclude the
notable task of public-key encryption [DH76,RSA83]. Additionally, as observed
by Impagliazzo [Gur89,Imp95], the existence of a OWF is equivalent to the exis-
tence of polynomial-time method for sampling hard solved instances for an NP
language (i.e., hard instances together with their witnesses).

While many candidate constructions of OWFs are known—most notably
based on factoring [RSA83], the discrete logarithm problem [DH76], or the hard-
ness of lattice problems [Ajt96]—the question of whether OWFs can be based on
some “standard” complexity-theoretic assumption is mostly wide open. Indeed,
a central open problem, originating in the seminal work of Diffie and Hellman
[DH76] is whether the existence of OWFs can be based on the assumptions that
NP �= P or NP �= BPP. Arguably, this is the most important open problem in
the foundations of Cryptography. So far, however, most results in the litera-
ture have been negative. Notably, starting with the work by Brassard [Bra83] in
1983, a long sequence of works have shown various types of black-box separations
between restricted types of OWF (e.g., one-way permutations) and NP-hardness
(see e.g., [Bra83,BT03,AGGM06,GWXY10,Liv10,HMX10,BB15]). We empha-
size, however, that these results only show limited separations: they either con-
sider restricted types of one-way functions, or restricted classes of black-box
reductions.1

In this work, our goal is to address an even more basic (and ambitious)
problem: can we base Cryptography on the “super-weak” assumption that
EXP �= BPP:

Can the existence of OWFs be based on the assumption that EXP �= BPP?

While we (obviously) are not able to provide a full positive answer to this problem
(which as we shall see later on, would imply that NP �= P), we are able to
show that the task of basing OWFs on the assumption that EXP �= BPP boils

1 We highlight that a recent result by Pass and Venkitasubramaniam [PV20] takes a
step towards a positive results, showing that to prove the existence of OWFs from
average-case hardness of NP, it suffices to prove that average-case hardness of TFNP
(rather than NP) implies the existence of OWFs.

On the Possibility of Basing Cryptography on EXP �= BPP 13

down to (more precisely, is equivalent to) a seemingly minor technical problem
regarding different notions of average-case w.r.t. Levin’s notion of Kolmogorov
Complexity [Lev73]. Towards explaining our main result, let us first review some
recent connections between Cryptography and Kolmogorov Complexity.

1.1 Connections Between OWFs and Kolmogorov Complexity

What makes the string 12121212121212121 less random than 6048485066
8340357492? The notion of Kolmogorov complexity (K-complexity), introduced
by Solomonoff [Sol64], Kolmogorov [Kol68] and Chaitin [Cha69], provides an ele-
gant method for measuring the amount of “randomness” in individual strings:
The K-complexity of a string is the length of the shortest program (to be run
on some fixed universal Turing machine U) that outputs the string x. From
a computational point of view, however, this notion is unappealing as there is
no efficiency requirement on the program. The notion of t(·)-time-bounded Kol-
mogorov Complexity (Kt-complexity) overcomes this issue: Kt(x) is defined as
the length of the shortest program that outputs the string x within time t(|x|).
As surveyed by Trakhtenbrot [Tra84], the problem of efficiently determining the
Kt-complexity for t(n) = poly(n) predates the theory of NP-completeness and
was studied in the Soviet Union since the 60s as a candidate for a problem that
requires “brute-force search”. The modern complexity-theoretic study of this
problem goes back to Sipser [Sip83], Ko [Ko86] and Hartmanis [Har83].

A very recent result by Liu and Pass [LP20] shows that “mild” average-case
hardness2 of the time-bounded Kolmogorov complexity problem (when the time-
bound is some polynomial) is equivalent to the existence of OWFs. While the
time-bounded Kolmogorov complexity problem is in NP (when the time-bound
is a polynomial), it is not known whether this problem is average-case complete
for NP, thus their result falls short of basing OWFs on the assumption that NP is
average-case hard (i.e., that there exists some problem in NP that is average-case
hard w.r.t. some sampleable distribution over instances).

In this work, we will extend their work to consider other variants of the notion
of “resource-bounded” Kolmogorov complexity [Kol68]. The central advantage of
doing so will be that we will be able to base OWFs on the average-case hardness
of some problem that is average-case complete for EXP! The only reason that this
result falls short of basing OWF on EXP �= BPP is that the notion of average-case
hardness in the EXP-completeness result is slightly different from the notion of
average-case hardness for the “OWF-completeness” result. However, “morally”,
this result can be interpreted as an indication that the existence of OWFs is
equivalent to EXP �= BPP.

2 By “mild” average-case hardness, we here mean that no PPT algorithm is able to
solve the problem with probability 1− 1

p(n)
on inputs of length n, for all polynomials

p(·)

14 Y. Liu and R. Pass

1.2 Characterizing Average-Case Hardness of Levin-Kolmogorov
Complexity

While the definition of time-bounded Kolmogorov complexity, Kt, is simple and
clean, as noted by Leonid Levin [Lev73] in 1973, an annoying aspect of this notion
is that it needs to be parametrized by the time-bound t. To overcome this issue,
Levin proposed an elegant “non-parametrized” version of Kolmogorov complex-
ity that directly incorporates the running time as a cost. To capture the idea
that polynomial-time computations are “cheap”, Levin’s definition only charges
logarithmically for running time. More precisely, let the Levin-Kolmogorov Com-
plexity of the string, Kt(x), be defined as follows:

Kt(x) = min
Π∈{0,1}∗,t∈N

{|Π| + �log t� : U(Π, 1t) = x},

where U is a universal Turing machine, and we let U(Π, 1t) denote the output
of the program Π after t steps. Note that, just like the standard notion of
Kolmogorov complexity, Kt(x) is bounded by |x|+O(1)—we can simply consider
a program that has the string x hard-coded and directly halts.

Let MKtP denote the decisional Levin-Kolmogorov complexity problem;
namely, the language of pairs (x, k) where k ∈ {0, 1}�log |x|� having the property
that Kt(x) ≤ k. MKtP is no longer seems to be in NP, as there may be strings
x that can be described by a short program Π (with description size e.g., n/10)
but a “largish” running time (e.g., 2n/10); the resulting string x thus would have
small Kt-complexity (n/5), yet verifying that the witness program Π indeed
outputs x would require executing it which would take exponential time. In
fact, Allender et al. [ABK+06] show that MKtP actually is EXP-complete w.r.t.
P/poly reductions; in other words, MKtP ∈ P/poly if and only if EXP ⊆ P/poly.

We will be studying (mild) average-case hardness of the MKtP problem, and
consider two standard (see e.g. [BT08]) notions of average-case tractability for
a language L with respect to the uniform distribution over instances:

– 2-sided error average-case heuristics: We say that L ∈ HeurnegBPP if
for every polynomial p(·), there exists some PPT heuristic H that decides L
(w.r.t. uniform n-bit strings) with probability 1 − 1

p(n) .
– errorless average-case heuristics: We say that L ∈ AvgnegBPP if for every

polynomial p(·), there exists some PPT heuristic H such that (a) for every
instance x, with probability 0.9, H(x) either outputs L(x) or ⊥, and (b), H(x)
outputs ⊥ with probability at most 1

p(n) given uniform n-bits strings x.

In other words, the difference between an errorless and a 2-sided error heuris-
tic H is that an errorless heuristic needs to (with probability 0.9 over its own
randomness but not the instance x) output either ⊥ (for “I don’t know”) or the
correct answer L(x), whereas a 2-sided error heuristic may simply make mistakes
without “knowing it”.

To better understand the class AvgnegBPP, it may be useful to compare it to
the class AvgnegP (languages solvable by deterministic errorless heuristics): L ∈

On the Possibility of Basing Cryptography on EXP �= BPP 15

AvgnegP if for every polynomial p(·), there exists some deterministic polynomial-
time heuristic H such that (a) for every input x, H(x) outputs either L(x) or
⊥, and (b) the probability over uniform n-bit inputs x that H outputs ⊥ is
bounded by 1

p(n) . In other words, the only way an errorless heuristic may make
a “mistake” is by saying ⊥ (“I don’t know”); if it ever outputs a non-⊥ response,
this response needs to be correct. (Compare this to a 2-sided error heuristic that
only makes mistakes with a small probability, but we do not know when they
happen). AvgnegBPP is simply the natural “BPP-analog” of AvgnegP where the
heuristic is allowed to be randomized.

2-Sided Error Average-Case Hardness of MKtP and OWFs. Our first
main result shows that the characterization of [LP20] can be extended to work
also w.r.t. MKtP. More precisely,

Theorem 1. MKtP /∈ HeurnegBPP iff infinitely-often OWFs exist.

We highlight that whereas [LP20] characterized “standard” OWF, the above
theorem only characterizes infinitely-often OWFs—i.e., functions that are hard
to invert for infinitely many inputs lengths (as opposed to all input lengths).
The reason for this is that [LP20] considered an “almost-everywhere” notion of
average-case hardness of Kt, whereas the statement MKtP /∈ HeurnegBPP only
considers an infinitely-often notion of average-case hardness. (As we demon-
strate in the full paper, we can also obtain a characterization of standard
“almost-everywhere” OWFs by assuming that MKtP is “almost-everywhere”
mildly average-case hard, but for simplicity, in the main body of the paper,
we focus our attention on the more standard complexity-theoretic setting of
infinitely-often hardness).

On a high-level, the proof of Theorem1 follows the same structure as the
characterization of [LP20]. The key obstacle to deal with is that since MKtP is
not known to be in NP, there may not exists some polynomial time-bound that
bounds the running-time of a program Π that “witnesses” the Kt-complexity
of a string x; this is a serious issue as the OWF construction in [LP20] requires
knowing such a running-time bound (and indeed, the running-time of the OWF
depends on it). To overcome this issue, we rely on a new insight about Levin-
Kolmogorov Complexity.

We say that the program Π is a Kt-witness for the string x if Π generates x
within t steps while minimizing |Π|+log t among all other programs (i.e., Π is a
witness for the Kt-complexity of x). The crucial observation (see Fact 31) is that
for every 0 < ε < 1, except for an ε fraction of n-bit strings x, x has a Kt-witness
Π that runs in time O(1ε). That is, “most” strings have a Kt-witness that has
a “short” running time. To see this, recall that as mentioned above, for every
string x, Kt(x) ≤ |x|+O(1); thus, every string x ∈ {0, 1}n with a Kt-witnesses Π
with running time exceeding O(1ε), must satisfy that |Π| + log O(1ε) ≤ Kt(x) ≤
n + O(1), so |Π| ≤ n + O(1) − log(O(1)

ε) = n + O(1) + log ε. Since the length of
Π is bounded by n + O(1) + log ε, it follows that we can have at most O(ε)2n

strings x where the Kt-witness for x has a “long” running time.

16 Y. Liu and R. Pass

We can next use this observation to consider a more computationally
tractable version of Kt-complexity where we cut off the machine’s running time
after 1

ε steps (where ε is selected as an appropriate polynomial), and next follow
a similar paradigm as in [LP20].

Errorless Average-Case Hardness of MKtP and EXP �= BPP. We next
show how to extend the result of Allender et al. [ABK+06] to show that MKtP
is not just EXP-complete in the worst-case, but also EXP-average-case complete;
furthermore, we are able to show completeness w.r.t. BPP (as opposed to P/poly)
reductions. We highlight, however, that completeness is shown in a “non-black-
box” way (whereas [ABK+06] present a P/poly truthtable reduction). By non-
black-box we here mean that we are not able to show how to use any algorithm
that solves MKtP (on average) as an oracle (i.e., as a black-box) to decide EXP
(in probabilistic polynomial time); rather, we directly show that if MKtP ∈
AvgnegBPP, then EXP ⊆ BPP.3

Theorem 2. MKtP /∈ AvgnegBPP iff EXP �= BPP.

Theorem 2 follows a similar structure as the EXP-completeness results of
[ABK+06]. Roughly speaking, Allender et al. observe that by the result of
Nisan and Wigderson [NW94], the assumption that EXP �⊆ P/poly implies the
existence of a (subexponential-time computable) pseudorandom generator that
fools polynomial-size circuits. But using a Kt-oracle, it is easy to break the
PRG (as outputs of the PRG have small Kt-complexity since its running time
is “small”). We first observe that the same approach can be extended to show
that MKtP is (errorless) average-case hard w.r.t. polynomial-size circuits (under
the assumption that EXP �⊆ P/poly). We next show that if we instead rely on a
PRG construction of Impagliazzo and Wigderson [IW98], it suffices to rely on
the assumption that EXP �= BPP to show average-case hardness of MKtP w.r.t.
PPT algorithms.

Interpreting the Combination of Theorem 1 and Theorem 2. By com-
bining Theorem 1 and Theorem 2, we get that the only “gap” towards getting
(infinitely-often) one-way functions from the assumption that EXP �= BPP is the
seemingly “minor” technical gap between two-sided error and errorless average-
case hardness of the MKtP problem (i.e., proving MKtP /∈ AvgnegBPP =⇒
MKtP /∈ HeurnegBPP). Furthermore, note that this “gap” fully characterizes the
possibility of basing (infinitely-often) OWFs on the assumption that EXP �= BPP:
Any proof that EXP �= BPP implies infinitely-often OWFs also shows the impli-
cation MKtP /∈ AvgnegBPP =⇒ MKtP /∈ HeurnegBPP.

As a corollary of Theorem 1 and Theorem 2, we next demonstrate that the
implication MKtP /∈ AvgnegBPP =⇒ MKtP /∈ HeurnegBPP implies that NP �= P
(in fact, even average-case hardness of NP).

Theorem 3. If MKtP /∈ AvgnegBPP =⇒ MKtP /∈ HeurnegBPP, then NP �= P.

3 This non-black box aspect of our results stems from its use of [IW98].

On the Possibility of Basing Cryptography on EXP �= BPP 17

This results can be interpreted in two ways. The pessimistic way is that closing
this gap between 2-sided error, and errorless, heuristics will be very hard. The
optimistic way, however, is to view it as a new and algorithmic approach towards
proving that NP �= P: To demonstrate that NP �= P, it suffices to demonstrate
that MKtP can be solved by an errorless heuristic, given access to a two-sided
error heuristic for the same problem.

1.3 Space-Bounded Notions of Kolmogorov Complexity

We additionally consider other alternative notions of resource-bounded Kol-
mogorov complexity. In more detail, we consider a space-bounded notion of
Kolmogorov complexity Ks and a space-bounded notion of conditional Kol-
mogorov complexity, and show that these notions, respectively, characterize log-
space computable one-way functions, or one-way functions in NC0.

Characterizing OWFs in Log-Space. The s-space bounded Kolmogorov
complexity, Ks(x), of a string x ∈ {0, 1}∗ is defined as

Ks(x) = min
Π∈{0,1}∗

{|Π| :∀i ∈ [|x|], U(Π(i), 12
s(|x|)

) = xi

and Π(i) uses at most s(|x|) space}

(Since we will be limiting the amount of space, we consider a notion of Kol-
mogorov complexity where the program Π needs to output just bit xi of the
string x, given the index i as input.) Given some function s(·), define MKSP[s]
analogously to MKtP. We will be interested in the regime where s(n) = O(log n).
Using a proof that closely follows [LP20] (and observing that the components
needed in this proof can be computed in log space), we obtain the following
characterization of log-space computable OWFs.

Theorem 4. Infinitely-often one-way functions in log-space exist if and only if
MKSP[O(log n)] /∈ HeurnegBPP.

(We can also get a characterization of “standard” (i.e., almost-everywhere)
OWFs in log-space if we assume that MKSP[s] is almost-everywhere average-
case hard; see the full paper for more details.)

We remark that by the results of [AIK06], the existence of a log-space com-
putable OWF implies a OWF that is uniform NC0 computable; in fact, as
observed by [RS21] (see Remark 31), by a slight tweak of the construction of
[AIK06], one actually gets a OWF that is log-space uniform NC0 computable.
In other words, the existence of log-space computable OWFs is equivalent to
the existence of log-space uniform NC0-computable OWFs. Theorem 4 thus also
characterizes OWFs computable in log-space uniform NC0.4

Characterizing OWF in Uniform NC0. We finally turn to consider the ques-
tion of characterizing OWF in just uniform (as opposed to log-space uniform)

4 We remark that this observation was added after becoming aware of [RS21].

18 Y. Liu and R. Pass

NC0. To do this, we consider generalization of space-bounded Kolmogorov com-
plexity which considers a conditional notion of Kolmogorov complexity.

The conditional Kolmogorov complexity [ZL70,Lev73,Tra84,LM91] of a
string x given the string str is the length of the shortest program Π that given
the “auxiliary input” str outputs x. We here consider a variant of MKSP[s], which
considers conditional Kolmogorov complexity instead of the (unconditional) ver-
sion, and where the “auxiliary input” str is generated by some deterministic
polynomial-time machine F . More precisely, given some Turing machine F ,
define the F -conditional s(·)-space bounded Kolmogorov complexity, cKF,s(x),
as follows:

cKF,s(x) = min
Π∈{0,1}∗

{|Π| :∀i ∈ [|x|], U(Π(i, str), 12
s(|x|)

) = xi

and Π(i, str) uses at most s(|x|) space}

where str = F (1|x|). We next define a decisional version, McKSP[F, s], analo-
gously to MKSP[s], and get the following theorem by appropriately generalizing
the proof of Theorem4 and leveraging the result of [AIK06]:

Theorem 5. Infinitely-often OWFs in uniform NC0 exist iff there exists some
polynomial-time Turing machine F such that McKSP[F,O(log n)] /∈ HeurnegBPP.

(As before, we can also get a characterization of “standard” (i.e., almost-
everywhere) OWFs in uniform NC0 if we assume that McKSP is almost-
everywhere average-case hard; see the full paper for more details.)

1.4 Concurrent Works

A concurrent and independent work by Hanlin and Santhanam [RS21] presents
related but orthogonal characterizations of MKtP and OWFs in NC0. W.r.t.,
MKtP, both works essentially show an equivalence between mild average-case
hardness of MKtP and the existence of OWFs; we next show that errorless
average-case hardness of MKtP is equivalent to EXP �= BPP, whereas they instead
consider an incomparable notion of two-sided error hardness with a “tiny”
error and show that such average-case hardness of MKtP w.r.t. non-uniform
polynomial-time adversaries is equivalent to the assumption that EXP /∈ P/poly.
W.r.t. OWF in NC0, [RS21] shows that, surprisingly, an alternative notion
of time-bounded Kolmogorov complexity, KT , [ABK+06] which charges for
running-time (as opposed to bounding it) characterizes OWFs in log-space uni-
form NC0. In contrast, we present a characterization in terms of space-bounded
Kolmogorov complexity (and also of uniform NC0-computable OWFs).

Resource bounded notions of conditional Kolmogorov complexity are use-
ful also in other (related) contexts. In a companion paper to the current work
[LP21a], we rely on a notion of time-bounded conditional Kolmogorov complexity
to characterize OWFs; the advantage of using this notion is that [LP21a] shows
that the time-bounded conditional Kolmogorov complexity problem, McKTP, is
NP-complete. Taken together, the current work and [LP21a], demonstrate that

On the Possibility of Basing Cryptography on EXP �= BPP 19

the existence of OWFs can be characterized through the average-case hardness
of (essentially) EXP-complete (this work) and NP-complete [LP21a] languages.

We additionally note the concurrent and independent work of [ACM+21]
which bases OWFs on average-case hardness of different conditional Kolmogorov
complexity style problem. Their conditional Kolmogorov complexity problem—
which they show is NP-complete—instead considers a conditional variant of the
KT notion of [ABK+06,ACM+21], however, they only show a one-directional
implication between average-case hardness of their problem and OWFs (and only
a weak converse in the other direction).

1.5 Outline

In this extended abstract, we provide the formalizations and proofs of The-
orems 1, 2, 3 and 4. We refer the reader to the full version [LP21b] for the
remaining content.

2 Preliminaries

We assume familiarity with basic concepts and computational classes such
as Turing machines, polynomial-time algorithms, probabilistic polynomial-time
(PPT) algorithms, NP, EXP, BPP, log-space (or alternatively L), and P/poly.
In this work, following [AIK06], we mostly consider polynomial-time uniform
versions of NC0 and L/poly: we let uniform NC0 be the class of functions5 that
admit polynomial-time uniform NC0 circuits, and uniform L/poly be the class
of functions computed by log-space Turing machines with a polynomial-time
computable advice. A function μ is said to be negligible if for every polynomial
p(·) there exists some n0 such that for all n > n0, μ(n) ≤ 1

p(n) . A probability
ensemble is a sequence of random variables A = {An}n∈N. We let Un denote the
uniform distribution over {0, 1}n. Given a string x, we let [x]j denote the first j
bits of x.

2.1 One-Way Functions

We recall the definition of one-way functions [DH76]. Roughly speaking, a func-
tion f is one-way if it is polynomial-time computable, but hard to invert for PPT
attackers. The standard cryptographic definition of a one-way function (see e.g.,
[Gol01]) requires that for every PPT attacker A, there exists some negligible func-
tion μ(·) such that A only succeeds in inverting the function with probability
μ(n) for all input lengths n. (That is, hardness holds “almost-everywhere”.) We
will also consider a weaker notion of an infinitely-often one-way function [OW93],
which only requires that the success probability is bounded by μ(n) for infinitely
many inputs lengths n. (That is, hardness only holds “infinitely-often”.)

5 We abuse the notation and say that a function f is in a class C if each bit on the
output of f is computable in C.

20 Y. Liu and R. Pass

Definition 1. Let f : {0, 1}∗ → {0, 1}∗ be a polynomial-time computable func-
tion. f is said to be a one-way function (OWF) if for every PPT algorithm A,
there exists a negligible function μ such that for all n ∈ N,

Pr[x ← {0, 1}n; y = f(x) : A(1n, y) ∈ f−1(f(x))] ≤ μ(n)

f is said to be an infinitely-often one-way function (ioOWF) if the above condi-
tion holds for infinitely many n ∈ N (as opposed to all).

We may also consider a weaker notion of a weak one-way function [Yao82],
where we only require all PPT attackers to fail with probability noticeably
bounded away from 1:

Definition 2. Let f : {0, 1}∗ → {0, 1}∗ be a polynomial-time computable func-
tion. f is said to be a α-weak one-way function (α-weak OWF) if for every PPT
algorithm A, for all sufficiently large n ∈ N ,

Pr[x ← {0, 1}n; y = f(x) : A(1n, y) ∈ f−1(f(x))] < 1 − α(n)

We say that f is simply a weak one-way function (weak OWF) if there exists
some polynomial q > 0 such that f is a 1

q(·) -weak OWF. f is said to be an weak
infinitely-often one-way function (weak ioOWF) if the above condition holds for
infinitely many n ∈ N (as opposed to all).

Yao’s hardness amplification theorem [Yao82] shows that any weak (io) OWF
can be turned into a “strong” (io) OWF.

Theorem 6 ([Yao82]). Assume there exists a weak one-way function (resp.
infinitely-often one-way function). Then there exists a one-way functions (resp.
infinitely-often one-way function).

We observe that Yao’s construction remains in log-space (resp uniform L/poly) if
the weak one-way function it takes is in log-space (resp uniform L/poly) [AIK06,
Gol01].

2.2 Levin’s Notion of Kolmogorov Complexity

Let U be some fixed Universal Turing machine that can emulate any Turing
machine M with polynomial overhead. Given a description Π ∈ {0, 1}∗ which
encodes a pair (M,w) where M is a (single-tape) Turing machine and w ∈ {0, 1}∗

is an input, let U(Π, 1t) denote the output of M(w) when emulated on U for t
steps. Note that (by assumption that U only has polynomial overhead) U(Π, 1t)
can be computed in time poly(|Π|, t). We turn to defining Levin’s notion of
Kolmogorov complexity [Lev73]:

Kt(x) = min
Π∈{0,1}∗,t∈N

{|Π| + �log t� : U(Π, 1t) = x}.

Its decisional variant, the Minimum Kt Complexity Problem MKtP, is defined
as follows:

On the Possibility of Basing Cryptography on EXP �= BPP 21

– Input: A string x ∈ {0, 1}n and a size parameter k ∈ {0, 1}�log n�.
– Decide: Does (x, k) satisfy Kt(x) ≤ k?

As is well known, we can always produce a string by hardwiring the string in (the
tape of) a machine that does nothing and just halts, which yields the following
central fact about (Levin)-Kolmogorov complexity.

Fact 21 ([Sip96]). There exists a constant c such that for every x ∈ {0, 1}∗ it
holds that Kt(x) ≤ |x| + c.

2.3 Average-Case Complexity

We will consider average-case complexity of languages L with respect to the
uniform distribution of instances. Let HeurnegBPP denote the class of languages
that can be decided by PPT heuristics that only make mistakes on a inverse
polynomial fraction of instances. More formally:

Definition 3 (HeurnegBPP). For a decision problem L ⊂ {0, 1}∗, we say that
L ∈ HeurnegBPP if for all polynomial p(·), there exists a probabilistic polynomial-
time heuristic H, such that for all sufficiently large n,

Pr[x ← {0, 1}n : H(x) = L(x)] ≥ 1 − 1
p(n)

.

We will refer to languages in HeurnegBPP as languages that admit 2-sided error
heuristics. We will also consider a more restrictive type of errorless heuristics
H: for every instance x, with probability 0.9 (over the randomness of only H),
H(x) either outputs L(x) or ⊥ (for ‘I don’t know’). More formally,

Definition 4 (AvgnegBPP). For a decision problem L ⊂ {0, 1}∗, we say that
L ∈ AvgnegBPP if for all polynomial p(·), there exists a probabilistic polynomial-
time heuristic H, such that for all sufficiently large n, for every x ∈ {0, 1}n,6

Pr[H(x) ∈ {L(x),⊥}] ≥ 0.9,

and
Pr[x ← {0, 1}n : H(x) = ⊥] ≤ 1

p(n)
.

We will refer to languages in AvgnegBPP as languages that admit errorless heuris-
tics. As explained in the introduction, to better understand the class AvgnegBPP,
it may be useful to compare it to the class AvgnegP (languages solvable by deter-
ministic errorless heuristics): L ∈ AvgnegP if for every polynomial p(·), there
exists some deterministic polynomial-time heuristic H such that (a) for every
input x, H(x) outputs either L(x) or ⊥, and (b) the probability over uniform n-
bit inputs x that H outputs ⊥ is bounded by 1

p(n) . In other words, the only way

6 We remark that the constant 0.9 can be made arbitrarily small—any constants
bounded away from 2

3
works as we can amplify it using a standard Chernoff-type

argument.

22 Y. Liu and R. Pass

an errorless heuristic may make a “mistake” is by saying ⊥ (“I don’t know”),
whereas for a 2-sided error heuristic we do not know when mistakes happen.
AvgnegBPP is simply the natural “BPP-analog” of AvgnegP where the heuristic
is allowed to be randomized.

2.4 Computational Indistinguishability

We recall the definition of (computational) indistinguishability [GM84] along
with its infinitely-often variant.

Definition 5. Two ensembles {An}n∈N and {Bn}n∈N are said to be ε(·)-
indistinguishable, if for every PPT machine D (the “distinguisher”) whose run-
ning time is polynomial in the length of its first input, there exists some n0 ∈ N

so that for every n ≥ n0:

|Pr[D(1n, An) = 1] − Pr[D(1n, Bn) = 1]| < ε(n)

We say that {An}n∈N and {Bn}n∈N are infinitely-often ε(·)-indistinguishable
(io-ε-indistinguishable) if the above condition holds for infinitely many n ∈ N

(as opposed to all sufficiently large ones).

2.5 Pseudorandom Generators

We recall the standard definition of pseuodrandom generators (PRGs) and its
infinitely-often variant.

Definition 6. Let g : {0, 1}n → {0, 1}m(n) be a polynomial-time computable
function. g is said to be a ε(·)-pseudorandom generator (ε-PRG) if for any PPT
algorithm A (whose running time is polynomial in the length of its first input),
for all sufficiently large n,

|Pr[x ← {0, 1}n : A(1n, g(x)) = 1] − Pr[y ← {0, 1}m(n) : A(1n, y) = 1]| < ε(n).

g is said to be an infinitely-often ε(·)-pseudorandom generator (io-ε-PRG) if the
above condition holds for infinitely many n ∈ N (as opposed to all).

Although the standard cryptographic definition of a PRG g requires that g runs
in polynomial time, when used for the other purposes (e.g., for derandomizing
BPP), we allow the PRG g to have an exponential running time [TV02]. We refer
to such PRGs (resp ioPRGs) as inefficient PRGs (resp inefficient ioPRGs).

2.6 Conditionally Entropy-Preserving PRGs

Liu and Pass [LP20] introduced variant of a PRG referred to as an entropy-
preserving pseudorandom generator (EP-PRG). Roughly speaking, an EP-PRG
is a pseudorandom generator that expands n-bits to n + O(log n) bits, hav-
ing the property that the output of the PRG is not only pseudorandom, but

On the Possibility of Basing Cryptography on EXP �= BPP 23

also preserves the entropy of the input (i.e., the seed): The Shannon-entropy
of the output is n − O(log n). [LP20] did not manage to construct an EP-
PRG from OWFs, but rather constructed a relaxed form of an EP-PRG, called
a conditionally-secure entropy-preserving PRG (condEP-PRG), which relaxes
both the pseudorandomness, and entropy-preserving properties of the PRG, to
hold only conditioned on some event E. We will here consider also an infinitely-
often variant:

Definition 7. An efficiently computable function G : {0, 1}n → {0, 1}n+γ log n

is a μ(·)-conditionally secure entropy-preserving pseudorandom generator (μ-
condEP-PRG) if there exist a sequence of events = {En}n∈N and a constant α
(referred to as the entropy-loss constant) such that the following conditions hold:

– (pseudorandomness): {G(Un | En)}n∈N and {Un+γ log n}n∈N are μ(n)-
indistinguishable;

– (entropy-preserving): For all sufficiently large n ∈ N, H(G(Un | En)) ≥
n − α log n.

G is referred to as an μ(·)-conditionally secure entropy-preserving infinitely-often
pseudorandom generator (μ-condEP-ioPRG) if it satisfies the above definition
except that we replace μ(n)-indistinguishability with io-μ(n)-indistinguishability.

We say that G has rate-1 efficiency if its running time on inputs of length n is
bounded by n + O(nε) for some constant ε < 1. We recall that the existence of
rate-1 efficient condEP-PRGs can be based on the existence of OWFs, and that
the same theorem holds in the infinitely-often setting.

Theorem 7 ([LP20]). Assume that OWFs (resp. ioOWFs) exist. Then, for
every γ > 1, there exists a rate-1 efficient μ-condEP-PRG (resp. μ-condEP-
ioPRG) Gγ : {0, 1}n → {0, 1}n+γ log n, where μ = 1

n2 .

3 2-Sided Error Average-Case Hardness of MKtP and
OWFs

In this section, we prove our main characterization of OWFs through 2-sided
error average-case hardness of MKtP.

Theorem 8. MKtP /∈ HeurnegBPP iff infinitely-often OWFs exist.

We remark that in the full paper [LP21b], we also characterize “standard” (as
opposed to infinitely-often) OWFs through (almost-everywhere) mild average-
case hardness of MKtP.

Theorem 8 follows directly from Theorem 9 (which is proven in Sect. 3.1) and
Theorem 10 (which is proven in Sect. 3.2).

24 Y. Liu and R. Pass

3.1 OWFs from Two-Sided Error Avg-Case Hardness of MKtP

In this section, we show that if weak ioOWFs do not exists, then we can compute
the Kt-complexity of random strings with high probability (and thus MKtP is
in HeurnegBPP). On a high-level, we will be using the same proof approach as
in [LP20]. One immediate obstacle to relying on the proof in [LP20] is that
it relies on the fact that the program Π (which we refer to as the “witness”)
that certifies the time-bounded Kolmogorov complexity Kt of a string x, has
some a-priori polynomial running time, namely t(·); this polynomial bound gets
translated into the running time of the constructed OWF. Unfortunately, this
fact no longer holds when it comes to Kt-complexity: We say that the program Π
is a Kt-witness for the string x if Π generates x within t steps while minimizing
|Π| + log t among all other programs (i.e., Π is a witness for the Kt-complexity
of x). Note that given a Kt-witness of a string x, there is no a-priori polynomial
time-bound on the running time of Π, since only the logarithm of the running
time gets included in the complexity measure. For instance, it could be that the
Kt-witness is a program Π of length n/10 that requires running time 2n/10, for
a total Kt-complexity of n/5. Nevertheless, the crucial observation we make is
that for most strings x, the running-time of the Kt-witness actually is small: For
every 0 < ε < 1, except for an ε fraction of n-bit strings x, x has a Kt-witness
Π that runs in time O(1ε).

More formally:

Fact 31. For all n ∈ N, 0 < ε < 1, there exists 1 − ε fraction of strings x ∈
{0, 1}n such that there exist a Turing machine Πx and a running time parameter
tx satisfying U(Πx, 1tx) = x, |Πx| + �log tx� = Kt(x), and tx ≤ 2c/ε (where c is
as in Fact 21).

Proof: Consider some n ∈ N, 0 < ε < 1, and some set S ⊂ {0, 1}n such that
|S| > ε2n. For any string x ∈ {0, 1}n, let (Πx, tx) be a pair of strings such that
U(Πx, 1tx) = x and |Πx| + �log tx� = Kt(x); that is, (Πx, tx) is the optimal
compression for x. Note that for any x ∈ {0, 1}n, such (Πx, tx) always exists due
to Fact 21.7 Let c be the constant from Fact 21.

We assume for contradiction that for any x ∈ S, tx > 2c/ε. Note that
by Fact 21, it holds that Kt(x) ≤ |x| + c. Thus, |Πx| = Kt(x) − �log tx� ≤
n + c − �log 2c/ε� ≤ n − log 1/ε. Consider the set Z = {Πx : x ∈ S} of all
(descriptions of) Turing machines Πx. Since |Πx| ≤ n − log 1/ε, it follows that
|Z| ≤ 2n−log 1/ε = ε2n. However, for each machine Π in Z, it could produce only
a single string in S. So |Z| ≥ |S| > ε2n, which is a contradiction. �

We now show how to adapt the proof in [LP20] by relying on the above fact.

Theorem 9. If MKtP /∈ HeurnegBPP, then there exists a weak ioOWF (and thus
also an ioOWF).

7 We note that the choice of (Πx, tx) for some x is not unique. Our argument holds if
any such (Πx, tx) is chosen.

On the Possibility of Basing Cryptography on EXP �= BPP 25

Proof: We start with the assumption that MKtP /∈ HeurnegBPP; that is, there
exists a polynomial p(·) such that for all PPT heuristics H′ and infinitely many
n,

Pr[x ← {0, 1}n, k ← {0, 1}�log n� : H′(x, k) = MKtP(x, k)] < 1 − 1
p(n)

.

Let c be the constant from Fact 21. Consider the function f :
{0, 1}n+c+�log(n+c)� → {0, 1}∗, which given an input �||Π ′ where |�| = �log(n +
c)� and |Π ′| = n + c, outputs � + �log t�||U(Π, 1t) where Π is the �-bit prefix of
Π ′, t is the (smallest) integer ≤ 2c+2p(n) such that Π (when interpreted as a
Turing machine) halts in step t. (If Π does not halt in 2c+2p(n) steps, f picks
t = 2c+2p(n).) That is,

f(�||Π ′) = � + �log t�||U(Π, 1t).

Observe that f is only defined over some input lengths, but by an easy padding
trick, it can be transformed into a function f ′ defined over all input lengths, such
that if f is (weakly) one-way (over the restricted input lengths), then f ′ will be
(weakly) one-way (over all input lengths): f ′(x′) simply truncates its input x′

(as little as possible) so that the (truncated) input x now becomes of length
m = n + c + �log(n + c)� for some n and outputs f(x).

We now show that f is a 1
q(·) -weak ioOWF where q(n) = 22c+4np(n)2, which

concludes the proof of the theorem. Assume for contradiction that f is not a
1

q(·) -weak ioOWF; that is, there exists some PPT attacker A that inverts f with
probability at least 1 − 1

q(n) ≤ 1 − 1
q(m) for all sufficiently large input lengths

m = n + c + �log(n + c)�. We first claim that we can use A to construct a PPT
heuristic H∗ such that

Pr[x ← {0, 1}n : H∗(x) = Kt(x)] ≥ 1 − 1
p(n)

.

If this is true, consider the heuristic H which given a string x ∈ {0, 1}n and a
size parameter k ∈ {0, 1}�log n�, outputs 1 if H∗(x) ≤ k, and outputs 0 otherwise.
Note that if H∗ succeeds on some string x, H will also succeed. Thus,

Pr[x ← {0, 1}n, k ← {0, 1}�log n� : H(x, k) = MKtP(x, k)] ≥ 1 − 1
p(n)

,

which is a contradiction.
It remains to construct the heuristic H∗ that computes Kt(x) with high

probability over random inputs x ∈ {0, 1}n, using A. By an averaging argument,
except for a fraction 1

2p(n) of random tapes r for A, the deterministic machine
Ar (i.e., machine A with randomness fixed to r) fails to invert f with probability
at most 2p(n)

q(n) . Consider some such “good” randomness r for which Ar succeeds

to invert f with probability 1 − 2p(n)
q(n) .

On input x ∈ {0, 1}n, our heuristic H∗
r runs Ar(i||x) for all i ∈ [n + c]

where i is represented as a �log(n + c)�-bit string, and outputs the smallest

26 Y. Liu and R. Pass

i where the inversion on (i||x) succeeds. Let ε = 1
4p(n) , and S be the set of

strings x ∈ {0, 1}n for which H∗
r(x) fails to compute Kt(x) and x satisfies the

requirements in Fact 31. Note that the probability that a random x ∈ {0, 1}n

does not satisfy the requirements in Fact 31 is at most ε. Thus, H∗
r fails with

probability at most (by a union bound)

failr ≤ ε +
|S|
2n

.

Consider any string x ∈ S and let w = Kt(x) be its Kt-complexity. Note that x
satisfies the requirements in Fact 31; that is, there exist a Turing machine Πx and
a running time parameter tx such that U(Πx, 1tx) = x, |Πx| + �log tx� = Kt(x),
and tx ≤ 2c/ε = 2c+2p(n). By Fact 21, we have that |Πx| ≤ w ≤ n + c. Thus,
for all strings (�||Π ′) ∈ {0, 1}n+c+�log(n+c)� such that � = |Πx|, [Π ′]|�| = Πx,
it holds that f(�||Π ′) = (w||x). Since H∗

r(x) fails to compute Kt(x), Ar must
fail to invert (w||x). But, since |Πx| ≤ n + c, the output (w||x) is sampled with
probability at least

1
n + c

· 1
2|Πx| ≥ 1

n + c

1
2n+c

≥ 1
n22c+1

· 1
2n

in the one-way function experiment, so Ar must fail with probability at least

|S| · 1
n22c+1

· 1
2n

=
1

n22c+1
· |S|

2n
≥ failr − ε

n22c+1

which by assumption (that Ar is a good inverter) is at most that 2p(n)
q(n) . We thus

conclude that

failr ≤ 22c+2np(n)
q(n)

+ ε

Finally, by a union bound, we have that H∗ (using a uniform random tape r)
fails in computing Kt with probability at most

1
2p(n)

+
22c+2np(n)

q(n)
+ ε =

1
2p(n)

+
22c+2np(n)
22c+4np(n)2

+
1

4p(n)
=

1
p(n)

.

Thus, H∗ computes Kt with probability 1 − 1
p(n) for all sufficiently large n ∈ N,

which is a contradiction. �

3.2 Two-Sided Error Avg-Case Hardness of MKtP from ioOWFs

In this section, we will prove the following theorem:

Theorem 10. If ioOWFs exist, then MKtP �∈ HeurnegBPP.

Proof: The theorem follows immediately from Theorem 7 and Theorem 11 that
will be stated and proved below. �

On the Possibility of Basing Cryptography on EXP �= BPP 27

Recall that Theorem 7 shows that ioOWFs imply the existence of rate-1 effi-
cient condEP-ioPRGs. Theorem11 below will show that the existence of rate-1
efficient condEP-ioPRGs implies that MKtP �∈ HeurnegBPP. We remark that the
proof of this theorem closely follows the proof in [LP20] and relying with only
relatively minor modifications to observe that the properties used of the time-
bounded Kolmogorov complexity function actually also hold for Kt—namely
that random strings have “high” Kt-complexity, whereas outputs of a PRG
have “low” Kt-complexity.8

Theorem 11. Assume that for some γ ≥ 4, there exists a rate-1 efficient μ-
condEP-ioPRG G : {0, 1}n → {0, 1}n+γ log n where μ(n) = 1/n2. Then, MKtP /∈
HeurnegBPP.

Proof: Let G : {0, 1}n → {0, 1}m(n) where m(n) = n + γ log n be a rate-1
efficient 1

n2 -condEP-ioPRG with entropy loss constant α. Let p(n) = 2n2(α+γ+2).
We assume for contradiction that MKtP ∈ HeurnegBPP; that is, there exists some
PPT H that decides MKtP with probability at least 1 − 1

p(m′) where m′(m) =
m + �log m� (on input length m′) for all sufficiently large n, m(n), and m′(m).
Recall that G is associated with a sequence of events {En}n∈N.

We show that H can be used to break the condEP-ioPRG G. Towards this,
recall that a random string has high Kt-complexity with high probability: for
m = m(n), we have,

Pr
x∈{0,1}m

[Kt(x) > m − γ

2
log n] ≥ 2m − 2m− γ

2 log n

2m
= 1 − 1

nγ/2
, (1)

since the total number of Turing machines with length smaller than m − γ
2 log n

is only 2m− γ
2 log n. However, any string output by G, must have “low” Kt com-

plexity: For every sufficiently large n,m = m(n), we have that,

Pr
z∈{0,1}n

[Kt(G(z)) > m − γ

2
log n] = 0, (2)

since G(z) can be represented by combining a seed z of length n with the code
of G (of constant length), and the running time of G(z) is bounded by 1.1n for
all sufficiently large n (since G is rate-1 efficient), so Kt(G(z)) = n + O(1) +
�log(1.1n)� = (m − γ log n) + O(1) + �log(1.1n)� ≤ m − γ/2 log n for sufficiently
large n (since recall that γ ≥ 4).

Based on these observations, we now construct a PPT distinguisher A break-
ing G. On input 1n, x, where x ∈ {0, 1}m(n), A(1n, x) lets k = m − γ

2 log n and
outputs 1 if H(x, k) outputs 1 and 0 otherwise. Consider some sufficiently large
n, m(n), and m′(n). The following two claims conclude that A distinguishes
Um(n) and G(Un | En) with probability at least 1

n2 .
8 There are also some other minor differences due to the fact that the proof in [LP20]

considered the hardness of computing (or approximating) Kt, whereas we here con-
sider a decisional problem with a random threshold k, but the proof in [LP20]
extends in a relatively straightforward way to deal also with decisional problems
with a random threshold k.

28 Y. Liu and R. Pass

Claim 1. A(1n,Um) outputs 0 with probability at least 1 − 2
nγ/2 .

Proof: Note that A(1n, x) will output 0 if x is a string with Kt-complexity
larger than m − γ/2 log n and H succeeds on input (x, k). Thus,

Pr[A(1n, x) = 0]
≥ Pr[Kt(x) > m − γ/2 log n ∧ H succeeds on (x, k)]
≥ 1 − Pr[Kt(x) ≤ m − γ/2 log n] − Pr[H fails on (x, k)]

≥ 1 − 1
nγ/2

− 1
p(m′)

≥ 1 − 2
nγ/2

.

where the probability is over a random x ← Um, k ← �log m� and the random-
ness of A and H. �

Claim 2. A(1n, G(Un | En)) outputs 0 with probability at most 1 − 1
n + 2

n2

Proof: Recall that by assumption, H(x, k) fails to decide whether (x, k) ∈ MKtP
for a random x ∈ {0, 1}m, k ∈ {0, 1}�log m� with probability at most 1

p(m′) (where
m′ = m + �log m�). By an averaging argument, for at least a 1 − 1

n2 fraction
of random tapes r for H, the deterministic machine Hr fails to decide MKtP

with probability at most n2

p(m′) . Fix some “good” randomness r such that Hr

decides MKtP with probability at least 1 − n2

p(m′) . We next analyze the success
probability of Ar. Assume for contradiction that Ar outputs 1 with probability
at least 1 − 1

n + 1
nα+γ on input G(Un | En). Recall that (1) the entropy of

G(Un | En) is at least n − α log n and (2) the quantity − log Pr[G(Un | En) = y]
is upper bounded by n for all y ∈ G(Un | En). By an averaging argument, with
probability at least 1

n , a random y ∈ G(Un | En) will satisfy

− log Pr[G(Un | En) = y] ≥ (n − α log n) − 1.

We refer to an output y satisfying the above condition as being “good” and other
y’s as being “bad”. Let S = {y ∈ G(Un | En) : Ar(1n, y) = 0 ∧ y is good}, and
let S′ = {y ∈ G(Un | En) : Ar(1n, y) = 0 ∧ y is bad}. Since

Pr[Ar(1n, G(Un | En)) = 0] = Pr[G(Un | En) ∈ S] + Pr[G(Un | En) ∈ S′],

and Pr[G(Un | En) ∈ S′] is at most the probability that G(Un | En) is “bad”
(which as argued above is at most 1 − 1

n), we have that

Pr[G(Un | En) ∈ S] ≥
(

1 − 1
n

+
1

nα+γ

)
−

(
1 − 1

n

)
=

1
nα+γ

.

Furthermore, since for every y ∈ S, Pr[G(Un | En) = y] ≤ 2−n+α log n+1, we also
have,

Pr[G(Un | En) ∈ S] ≤ |S|2−n+α log n+1

On the Possibility of Basing Cryptography on EXP �= BPP 29

So,

|S| ≥ 2n−α log n−1

nα+γ
= 2n−(2α+γ) log n−1

However, for any y ∈ G(Un | En), if Ar(1n, y) outputs 0, then by Eq. 2, Kt(y) ≤
m − γ/2 log n = k, so Hr fails to decide MKtP on input (y, k).

Thus, the probability that Hr fails (to decide MKtP) on a random input
(y, k) ∈ {0, 1}m′

is at least

|S|/2m′
=

2n−(2α+γ) log n−1

2n+γ log n+�log m� ≥ 2−(2α+2γ) log n−1

2�log m� ≥ 2−2(α+γ+1) log n−1 =
1

2n2(α+γ+1)

which contradicts the fact that Hr fails to decide MKtP with probability at most
n2

p(m′) < 1
2n2(α+γ+1) (since n < m′).

We conclude that for every good randomness r, Ar outputs 0 with probability
at most 1 − 1

n + 1
nα+γ . Finally, by union bound (and since a random tape is bad

with probability ≤ 1
n2), we have that the probability that A(G(Un | En)) outputs

1 is at most
1
n2

+
(

1 − 1
n

+
1

nα+γ

)
≤ 1 − 1

n
+

2
n2

,

since γ ≥ 2. �

We conclude, recalling that γ ≥ 4, that A distinguishes Um and G(Un | En) with
probability of at least(

1 − 2
nγ/2

)
−

(
1 − 1

n
+

2
n2

)
≥

(
1 − 2

n2

)
−

(
1 − 1

n
+

2
n2

)
=

1
n

− 4
n2

≥ 1
n2

for all sufficiently large n ∈ N.
�

4 Errorless Avg-Case Hardness of MKtP and EXP �= BPP

In this section, we will prove the following theorem:

Theorem 12. EXP �= BPP if and only if MKtP /∈ AvgnegBPP.

Roughly speaking, the above theorem is proved in two steps:

– We first observe that, assuming EXP �= BPP, there exists an (inefficient,
infinitely-often) pseudorandom generator [IW98] that maps a nε-bit seed to
a n-bit string in time O(2nγ

) (for some 0 < ε, γ < 1).
– We will next show that an errorless heuristic for MKtP can be used to break

such PRGs (since the Kt-complexity of the output of the PRG is at most
nε + nγ + O(1) ≤ n − 1), which is a contradiction and concludes the proof.

Recall that Impagliazzo and Wigderson [IW98] showed that BPP can be deran-
domized (on average) in subexponential time by assuming EXP �= BPP. The
central technical contribution in their work can be stated as proving the exis-
tence of an inefficient PRG assuming EXP �= BPP :

30 Y. Liu and R. Pass

Theorem 13 (implicit in [IW98], explicitly stated in e.g., [TV02, The-
orem 3.9]). Assume that EXP �= BPP. Then, for all ε > 0, there exists an
inefficient io- 1

10 -PRG G : {0, 1}nε → {0, 1}n that runs in time 2O(nε).

We note that the proof in [IW98], is non black-box. In particular, it does not
show how to solve EXP in probabilistic polynomial-time having black-box access
to an attacker that breaks the PRG.

It remains to show that if there exists an (inefficient) ioPRG G : {0, 1}nε →
{0, 1}n with running time O(2nγ

) (for some 0 < ε, γ < 1), then MKtP /∈
AvgnegBPP. We recall that a string’s Kt-complexity is the minimal sum of (1)
the description length of a Turing machine that prints the string and (2) the
logarithm of its running time. Note that the output of G could be printed by a
machine with the code of G (of constant length) and the seed (of length nε) hard-
wired in it within O(2nγ

) time. Thus, strings output by G have Kt-complexity
less than or equal to O(1)+nε +nγ ≤ n− 1. On the other hand, random strings
have high Kt-complexity (e.g., > n − 1) with high probability (e.g., ≥ 1

2). It
follows that an errorless heuristic for MKtP can be used to break G. Let us high-
light why it is important that we have an errorless heuristic (as opposed to a
2-sided error heuristic): while a 2-sided error heuristic would still work well on
random strings, we do not have any guarantees on its success probability given
pseudorandom strings (as they are sparse); an errorless heuristics, however, will
either correctly decide those strings, or output ⊥ (in which case, we can also
guess that the string is pseudorandom).

We proceed to a formal statement of the theorem, and its proof.

Theorem 14. Assume that there exist constants 0 < ε, γ < 1 and an inefficient
io- 1

10 -PRG G : {0, 1}nε → {0, 1}n with running time O(2nγ

). Then, MKtP /∈
AvgnegBPP.

Proof: We assume for contradiction that MKtP ∈ AvgnegBPP, which in turn
implies that there exists an errorless PPT heuristic H such that for all sufficiently
large n, every x ∈ {0, 1}n and k ∈ {0, 1}�log n�,

Pr[H(x, k) ∈ {MKtP(x, k),⊥}] ≥ 0.9, (3)

and
Pr[x ← {0, 1}n, k ← {0, 1}�log n� : H(x, k) = ⊥] ≤ 1

2n2
.

Fix some sufficiently large n, and let k = n − 1. It follows by an averaging
argument that

Pr[x ← {0, 1}n : H(x, n − 1) = ⊥] ≤ 1
2n2

· 2�log n� ≤ 1
n

. (4)

We next show that we can use H to break the PRG G. On input x ∈ {0, 1}n,
our distinguisher A(1nε

, x) outputs 1 if H(x, n − 1) = 1 or H(x, n − 1) = ⊥. A
outputs 0 if and only if H(x, n − 1) = 0. The following two claims conclude that
A distinguishes Un and G(Unε) with probability at least 0.2.

On the Possibility of Basing Cryptography on EXP �= BPP 31

Claim 1. A(1nε

,Un) will output 0 with probability at least 0.4 − 1
n .

Proof: Note that the probability that a random string x ∈ {0, 1}n is of Kt-
complexity at most n−1 is at most 2n−1

2n = 1
2 (since the total number of machines

with description length ≤ n − 1 is 2n−1). And the probability that H(x, n − 1)
outputs ⊥ is at most 1

n (over random x ∈ {0, 1}n) by Eq. 4. In addition, the
probability that H(x, n−1) fails to output either MKtP(x, n−1) or ⊥ is at most
0.1 by Eq. 3. Thus, by a union bound,

Pr[A(1nε

,Un) = 0]
≥ 1 − Pr[Kt(Un) ≤ n − 1] − Pr[H(Un, n − 1) = ⊥] − Pr[H(Un, n − 1) fails]

≥ 1 − 1
2

− 1
n

− 0.1

= 0.4 − 1
n

.

�

Claim 2. A(1nε

, G(Unε)) will output 0 with probability at most 0.1.

Proof. We first show that for all z ∈ {0, 1}nε

, Kt(G(z)) ≤ nε + nγ + O(1) ≤
n − 1 = s. Note that the string G(z) could be produced by a machine with the
code of G (of length O(1)) and the seed z (of length nε) in time O(2nγ

) (which
adds log O(2nγ

) = nγ + O(1) to its Kt-complexity). In addition, recall that H
is a probabilistic errorless heuristics. Thus, H(G(z), n − 1) will output 0 with
probability at most 0.1 (by Eq. 3), and the claim follows. �

This conclude the proof of Theorem14. �
We are now ready to conclude the proof of Theorem12.

Proof (of Theorem 12): We show each direction separately:

– To show that EXP �= BPP =⇒ MKtP �∈ AvgnegBPP, assume that EXP �=
BPP and let ε = 1

3 , and γ = 1
2 . By Theorem 13, there exists an io- 1

10 -PRG
G : {0, 1}nε → {0, 1}n with running time 2O(nε) ≤ O(2nγ

). We conclude by
Theorem 14 that MKtP �∈ AvgnegBPP.

– To show that MKtP �∈ AvgnegBPP =⇒ EXP �= BPP, assume that MKtP �∈
AvgnegBPP; this trivially implies that MKtP �∈ BPP. We observe that MKtP ∈
EXP as by Fact 21, Kt(x) ≤ |x| + O(1) and thus the running-time for a
Kt-witness, Π, for x is bounded by 2|x|+O(1). Thus, EXP �⊆ BPP, which in
particular means that EXP �= BPP.

�

32 Y. Liu and R. Pass

5 On the Implication MKtP �∈ AvgnegBPP =⇒ MKtP �∈
HeurnegBPP

Recall that in Theorem 12, we showed that if one assumes an (extremely)
weak lowerbound (namely, EXP �= BPP), then the problem MKtP is hard on
average for errorless heuristics. Furthermore, in Theorem9, we showed that
if the problem MKtP is hard-on-average for 2-sided error heuristics that only
make a small number of mistakes, then (infinitely-often) one-way functions
exist. Combining the two theorems together, we have that the implication
MKtP �∈ AvgnegBPP =⇒ MKtP �∈ HeurnegBPP fully characterizes when we
can base the existence of (infinitely-often) one-way functions on EXP �= BPP.
Formally,

Theorem 15. MKtP �∈ AvgnegBPP ⇒ MKtP �∈ HeurnegBPP holds iff EXP �=
BPP ⇒ the existence of ioOWFs.

Proof: The proof immediately follows from Theorem12 and Theorem 9. �

Perhaps surprisingly, we observe that the implication itself (without any
assumptions) implies that NP �= P. The pessimistic way to interpret this is
that closing the gap between 2-sided error, and errorless, heuristics will be very
hard (as it requires proving that NP �= P). The optimistic way to interpret it,
however, is as a new and algorithmic approach towards proving that NP �= P: To
demonstrate that NP �= P, it suffices to demonstrate that MKtP can be solved
by an errorless heuristic, given access to a two-sided error heuristic for the same
problem. (As we shall point out shortly, this approach also does not “overshoot”
the NP vs P problem by too much: any proof of the existence of infinitely often
one-way functions, needs to show this implication.)

Theorem 16. If it holds that MKtP �∈ AvgnegBPP ⇒ MKtP �∈ HeurnegBPP, then
NP �= P.

Proof: Assume for contradiction that MKtP �∈ AvgnegBPP ⇒ MKtP �∈
HeurnegBPP holds, yet NP = P. Recall that BPP ⊆ NPNP [Sip83,Lau83], so
it follows that P = BPP, and thus by the time-hierarchy Theorem [HS65],
EXP �= BPP. Then, by Theorem12, MKtP �∈ AvgnegBPP. It follows from our
assumption that MKtP �∈ AvgnegBPP ⇒ MKtP �∈ HeurnegBPP and from Theo-
rem 15 that ioOWFs exist, which contradicts the assumption that NP = P. �

We remark that the above theorem could be strengthened to show even that NP
is average-case hard (w.r.t. deterministic errorless heuristics), since Buhrman,
Fortnow, and Pavan [BFP03] have showed that unless this is the case, P = BPP,
which suffices to complete the rest of the proof.

Finally, we remark that the implication MKtP �∈ AvgnegBPP ⇒ MKtP �∈
HeurnegBPP must be true if infinitely-often one-way functions exist since by
Theorem 10, the existence of ioOWFs implies MKtP �∈ HeurnegBPP, which in
turn implies that the implication trivially holds.

On the Possibility of Basing Cryptography on EXP �= BPP 33

6 Characterizing Cryptography in Log-Space

In this section, we show how to characterize the existence of OWFs that are
computable in log-space through a notion of resource-bounded Kolmogorov com-
plexity. In more detail, we will consider an appropriate notion of space-bounded
Kolmogorov complexity.

6.1 Space-Bounded Kolmogorov Complexity

We consider a space-bounded variant of Kolmogorov complexity [Kol68]. We
here let U be a fixed universal Turing machine that emulates any Turing machine
with polynomial overhead in time and constant multiplicative overhead in space.
The s-space bounded Kolmogorov complexity, Ks(x), of a string x ∈ {0, 1}∗ is
defined as

Ks(x) = min
Π∈{0,1}∗{|Π| : ∀i ∈ [|x|], U(Π(i), 12

s(|x|)
) = xi and Π(i) uses at most s(|x|) space}

where Π(i) denotes M(w, i) and Π = (M,w). Its decisional variant, the mini-
mum Ks-complexity problem MKSP[s], for some function s, is defined as follows:

– Input: A string x ∈ {0, 1}n and a size parameter k ∈ {0, 1}�log n�.
– Decide: Does (x, k) satisfy Ks(x) ≤ k?

Whenever the space-bound is logarithmic or more, Ks(x) ≤ |x| + O(1).

Fact 61. There exists a constant c such that for every s(n) ≥ log n and every
x ∈ {0, 1}∗, Ks(x) ≤ |x| + c.

Proof: Consider a machine Πx = (M,x) where M is a Turing machine (of
constant size) such that M(y, i) outputs yi for any string y and any index i. It
follows that for all i ∈ [|x|], Πx(i) = M(x, i) will output xi using at most log n
space. Note that Πx can be encoded in |x| + c bits, and the fact follows. �

6.2 The Characterization

We are now ready to state the main theorem of this section:

Theorem 17. The following are equivalent:

(a) The existence of infinitely-often one-way functions computable in log-space.
(b) The existence of a constant δ ≥ 1 such that MKSP[δ log(n)] �∈ HeurnegBPP.
(c) For all δ ≥ 1, MKSP[δ log(n)] �∈ HeurnegBPP.

Proof:

(b) =⇒ (a) follows from Theorem 18, which will be proven in Sect. 6.3;

34 Y. Liu and R. Pass

(a) =⇒ (c) follows from Theorem 19 and Theorem 20, which will be proven in
Sect. 6.4;

(c) =⇒ (b) trivially follows.

�

We remark that by the results of [AIK06], the existence of a log-space computable
OWF implies a OWF that is uniform NC0 computable; in fact, as observed by
[RS21] (see Remark 31), by a slight tweak of the construction of [AIK06], one
actually gets a OWF that is log-space uniform NC0 computable. In other words,
the existence of log-space computable OWFs is equivalent to the existence of log-
space uniform NC0-computable OWFs. Theorem 4 thus also characterizes OWFs
computable in log-space uniform NC0.9

6.3 Log-Space Computable ioOWFs from Avg-Case Hardness of
MKSP[O(logn))]

We here show how to get a log-space computable OWF assuming
MKSP[O(log n))] /∈ HeurnegBPP. The proof very closely follows [LP20], while
making minor adjustments to account for log-space computability.

Theorem 18. If there exists a constant δ ≥ 1 such that MKSP[δ log n] /∈
HeurnegBPP, then there exists a weak ioOWF (and thus also a ioOWF) that
is computable in log-space.

Proof: Assume that there exists some constant δ ≥ 1 such that MKSP[δ log n] /∈
HeurnegBPP; that is, there exists a polynomial p(·) such that for all PPT heuristics
H′ and infinitely many n,

Pr[x ← {0, 1}n, k ← {0, 1}�log n� : H′(x, k) = MKSP[s](x, k)] < 1 − 1
p(n)

,

where s(n) = δ log n. Let c be the constant from Fact 61. Consider the function
f : {0, 1}n+c+�log(n+c)� → {0, 1}�log n�+n, which given an input �||Π ′ where
|�| = �log(n + c)� and |Π ′| = n + c, outputs �||U(Π(1), 1t)|| . . . ||U(Π(n), 1t)
where Π is the �-bit prefix of Π ′ and t = 2s(n). Furthermore, f will just abort if
in the execution of Π(i), the program consumes more than s(n) bits of memory.
That is,

f(�||Π ′) = �||U(Π(1), 1t)||U(Π(2), 1t)|| . . . ||U(Π(n), 1t).

Note that f is computable in log-space (since the universal Turing machine U
is assumed to have constant multiplicative overhead in terms of space). Observe
that f is only defined over some input lengths, but by the same padding trick as
in the proof of Theorem 9, it can be transformed into a function f ′ defined over
all input lengths that preserves weak onewayness of f .
9 This observation was added after becoming aware of [RS21].

On the Possibility of Basing Cryptography on EXP �= BPP 35

We now show that f is a 1
q(·) -weak ioOWF function where q(n) =

22c+3np(n)2, which concludes the proof of the theorem. This claim essentially
follows from the proof [LP20]; we provide a formal proof here for the reader’s
convenience.

Assume for contradiction that f is not a 1
q(·) -weak ioOWF; that is, there exists

some PPT attacker A that inverts f with probability at least 1− 1
q(n) ≤ 1− 1

q(m)

for all sufficiently large m = n + c + �log(n + c)�. We first claim that we can use
A to construct a PPT heuristic H∗ such that

Pr[x ← {0, 1}n : H∗(x) = Ks(x)] ≥ 1 − 1
p(n)

.

If this is true, consider the heuristic H which given a string x ∈ {0, 1}n and a
size parameter k ∈ {0, 1}�log n�, outputs 1 if H∗(x) ≤ k, and outputs 0 otherwise.
Note that if H∗ succeeds on some string x, H will also succeed. Thus,

Pr[x ← {0, 1}n, k ← {0, 1}�log n� : H(x, k) = MKSP[s](x, k)] ≥ 1 − 1
p(n)

,

which is a contradiction.
It remains to construct the heuristic H∗ that computes Ks(x) with high

probability over random inputs x ∈ {0, 1}n, using A. By an averaging argument,
except for a fraction 1

2p(n) of random tapes r for A, the deterministic machine
Ar (i.e., machine A with randomness fixed to r) fails to invert f with probability
at most 2p(n)

q(n) . Consider some such “good” randomness r for which Ar succeeds

to invert f with probability 1 − 2p(n)
q(n) .

On input x ∈ {0, 1}n, our heuristic H∗
r runs Ar(i||x) for all i ∈ [n + c] where

i is represented as a �log(n+ c)�-bit string, and outputs the smallest i where the
inversion on (i||x) succeeds; that is, the inverter Ar(i||x) outputs a program Π
that prints each bit of x within s(n) space. Let S be the set of strings x ∈ {0, 1}n

for which H∗
r(x) fails to compute Ks(x). Thus, H∗

r fails with probability at most

failr ≤ |S|
2n

.

Consider any string x ∈ S and let w = Ks(x) be its Ks-complexity. It follows
that there exists a Turing machine Πx such that |Πx| = w and Πx(i) outputs
xi in space s(n) (for all i ∈ [n]). Since H∗

r(x) fails to compute Ks(x), Ar must
fail to invert (w||x). But, since |Πx| ≤ w ≤ n + c, the output (w||x) is sampled
with probability at least

1
n + c

· 1
2w

≥ 1
n + c

1
2n+c

≥ 1
n22c+1

· 1
2n

in the one-way function experiment, so Ar must fail with probability at least

|S| · 1
n22c+1

· 1
2n

=
1

n22c+1
· |S|

2n
≥ failr

n22c+1

36 Y. Liu and R. Pass

which by assumption (that Ar is a good inverter) is at most that 2p(n)
q(n) . We thus

conclude that

failr ≤ 22c+2np(n)
q(n)

Finally, by a union bound, we have that H∗ (using a uniform random tape r)
fails in computing Ks with probability at most

1
2p(n)

+
22c+2np(n)

q(n)
=

1
2p(n)

+
22c+2np(n)
22c+3np(n)2

=
1

p(n)
.

Thus, H∗ computes Ks with probability 1 − 1
p(n) for all sufficiently large n ∈ N.

�

6.4 Average-Case Hardness of MKSP[O(logn)] from ioOWFs in
Log-Space

To show that MKSP[O(log n)] is average-case hard for PPT heuristics, we first
build a condEP-ioPRG G that is computable in log-space from a log-space com-
putable ioOWF. Then, we will show that a heuristic for MKSP[O(log n)] can be
used to break G.

Recall that Liu and Pass [LP20] constructed a condEP-PRG G from a stan-
dard OWF. At a high level, their construction follows the construction of a PRG
from a regular OWF [GKL93], which applies universal hash functions (param-
eterized according to the regularity of the OWF) to both the input and the
output of the OWF to extract the randomness in the input and the output, and
finally outputs several Goldreich-Levin hardcore bits (to make the PRG stretch
its input). When the regularity of the function is unknown, a random guess of
the regularity is sampled (and the universal hash functions are thus paramemter-
ized by this guess). They prove that the construction is both entropy-preserving
and pseudorandom conditioned on the event that the guess matches the regu-
larity of the function (on the input string). We observe that this construction
is computable in log-space if the OWF is log-space computable since both the
universal hash functions and Goldreich-Levin hardcore bits can be implemented
in log-space [AIK06]. In addition, by a padding argument, we can transform any
PRG that is computable in O(log n) space into a PRG computable in log(n)
space.

Theorem 19 (essentially implicit in [LP20], relying on observations
from [AIK06]). Assume the existence of an ioOWF that is computable in log-
space. Then, for every γ > 1, there exists a μ-condEP-ioPRG Gγ : {0, 1}n →
{0, 1}m(n)=n+γ log n that is computable in space log(m(n)), where μ = 1

n2 .

We next show that a heuristic for MKSP[O(log n)] can distinguish the output
of a condEP-ioPRG G from a random string. The proof follows the structure of
the proof in [LP20] and Theorem 11 (relying on the observations that (a) random
strings have high Ks-complexity, whereas (b) outputs of the PRGs have small
Ks-complexity, where s(n) = O(log n).

On the Possibility of Basing Cryptography on EXP �= BPP 37

Theorem 20. Assume that for some γ ≥ 4, there exists a μ-condEP-ioPRG
G : {0, 1}n → {0, 1}m(n)=n+γ log n that is computable in space log(m(n)), where
μ(n) = 1/n2. Then, for all δ ≥ 1, MKSP[δ log n] /∈ HeurnegBPP.

Proof: Let G : {0, 1}n → {0, 1}m(n) where m(n) = n + γ log n be a 1
n2 -

condEP-ioPRG, computable in space log(m(n)), with entropy loss constant α.
Let p(n) = 2n2(α+γ+2). Consider any δ ≥ 1 and function s(n) = δ log(n).
Assume for contradiction that MKSP[s] ∈ HeurnegBPP; that is, there exists
some PPT H that decides MKSP[s] with probability at least 1 − 1

p(m′) where
m′(m) = m+ �log m� (on input length m′) for all sufficiently large n, m(n), and
m′(m). Recall that G is associated with a sequence of events {En}n∈N.

We next show that H can be used to break the condEP-ioPRG G. Towards
this, recall that a random string has high Ks-complexity with high probability:
for m = m(n), we have,

Pr
x∈{0,1}m

[Ks(x) > m − γ

2
log n] ≥ 2m − 2m− γ

2 log n

2m
= 1 − 1

nγ/2
, (5)

since the total number of Turing machines with length smaller than m − γ
2 log n

is only 2m− γ
2 log n. However, any string output by G, must have “low” Ks com-

plexity: For every sufficiently large n,m = m(n), we have that,

Pr
z∈{0,1}n

[Ks(G(z)) > m − γ

2
log n] = 0, (6)

since G(z) can be represented by combining a seed z of length n with the code of
G (of constant length), and the space of G(z) is bounded by log(m(n)) ≤ s(m)
for all sufficiently large n.

Based on these observations, we now construct a PPT distinguisher A break-
ing G. On input 1n, x, where x ∈ {0, 1}m(n), A(1n, x) lets k = m − γ

2 log n
and outputs 1 if H(x, k) outputs 1 and 0 otherwise. It follows from Claim1 and
Claim 2 (by replacing Kt-complexity with Ks-complexity, MKtP with MKSP[s])
in the proof of Theorem 11 that A distinguishes Um(n) and G(Un | En) with
probability at least 1

n2 , which concludes the proof. �

Acknowledgments. We are very grateful to Salil Vadhan for helpful discussions
about the PRG construction of [IW98]. The first author also wishes to thank Han-
lin Ren for helpful discussions about Levin’s notion of Kolmogorov Complexity.

References

[ABK+06] Allender, E., Buhrman, H., Kouckỳ, M., Van Melkebeek, D., Ronneburger,
D.: Power from random strings. SIAM J. Comput. 35(6), 1467–1493 (2006)

[ACM+21] Allender, E., Cheraghchi, M., Myrisiotis, D., Tirumala, H., Volkovich, I.:
One-way functions and a conditional variant of MKTP (2021). Manuscript

[AGGM06] Akavia, A., Goldreich, O., Goldwasser, S., Moshkovitz, D.: On basing one-
way functions on NP-hardness. In: STOC 2006, pp. 701–710 (2006)

38 Y. Liu and R. Pass

[AIK06] Applebaum, B., Ishai, Y., Kushilevitz, E.: Cryptography in nc0. SIAM J.
Comput. 36(4), 845–888 (2006)

[Ajt96] Ajtai, M.: Generating hard instances of lattice problems (extended
abstract). In: Miller, G.L. (ed.) Proceedings of the 28th Annual ACM Sym-
posium on the Theory of Computing, Philadelphia, Pennsylvania, USA,
22–24 May 1996, pp. 99–108. ACM (1996)

[BB15] Bogdanov, A., Brzuska, C.: On basing size-verifiable one-way functions on
NP-hardness. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol.
9014, pp. 1–6. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-46494-6 1

[BFP03] Buhrman, H., Fortnow, L., Pavan, A.: Some results on derandomization.
In: Alt, H., Habib, M. (eds.) STACS 2003. LNCS, vol. 2607, pp. 212–222.
Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36494-3 20

[Blu82] Blum, M.: Coin flipping by telephone - a protocol for solving impossi-
ble problems. In: 24th IEEE Computer Society International Conference,
COMPCON 1982, Digest of Papers, San Francisco, California, USA, 22–25
February 1982, pp. 133–137. IEEE Computer Society (1982)

[BM88] Babai, L., Moran, S.: Arthur-Merlin games: a randomized proof system,
and a hierarchy of complexity classes. J. Comput. Syst. Sci. 36(2), 254–276
(1988)

[Bra83] Brassard, G.: Relativized cryptography. IEEE Trans. Inf. Theor. 29(6),
877–893 (1983)

[BT03] Bogdanov, A., Trevisan, L.: On worst-case to average-case reductions for
NP problems. In: FOCS 2003, pp. 308–317 (2003)

[BT08] Bogdanov, A., Trevisan, L.: Average-case complexity (2008). Manuscript.
http://arxiv.org/abs/cs.CC/0606037

[Cha69] Chaitin, G.J.: On the simplicity and speed of programs for computing
infinite sets of natural numbers. J. ACM 16(3), 407–422 (1969)

[DH76] Diffie, W., Hellman, M.: New directions in cryptography. IEEE Trans. Inf.
Theor. 22(6), 644–654 (1976)

[FS90] Feige, U., Shamir, A.: Witness indistinguishable and witness hiding pro-
tocols. In: STOC 1990, pp. 416–426 (1990)

[GGM84] Goldreich, O., Goldwasser, S., Micali, S.: On the cryptographic applica-
tions of random functions (extended abstract). In: Blakley, G.R., Chaum,
D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 276–288. Springer, Heidel-
berg (1985). https://doi.org/10.1007/3-540-39568-7 22

[GKL93] Goldreich, O., Krawczyk, H., Luby, M.: On the existence of pseudorandom
generators. SIAM J. Comput. 22(6), 1163–1175 (1993)

[GM84] Goldwasser, S., Micali, S.: Probabilistic encryption. J. Comput. Syst. Sci.
28(2), 270–299 (1984)

[Gol01] Goldreich, O.: Foundations of Cryptography – Basic Tools. Cambridge
University Press (2001)

[Gur89] Gurevich, Yuri: The challenger-solver game: variations on the theme of P
= ?NP. In: Logic in Computer Science Column. The Bulletin of EATCS
(1989)

[GWXY10] Gordon, S.D., Wee, H., Xiao, D., Yerukhimovich, A.: On the round com-
plexity of zero-knowledge proofs based on one-way permutations. In:
Abdalla, M., Barreto, P.S.L.M. (eds.) LATINCRYPT 2010. LNCS, vol.
6212, pp. 189–204. Springer, Heidelberg (2010). https://doi.org/10.1007/
978-3-642-14712-8 12

https://doi.org/10.1007/978-3-662-46494-6_1
https://doi.org/10.1007/978-3-662-46494-6_1
https://doi.org/10.1007/3-540-36494-3_20
http://arxiv.org/abs/cs.CC/0606037
https://doi.org/10.1007/3-540-39568-7_22
https://doi.org/10.1007/978-3-642-14712-8_12
https://doi.org/10.1007/978-3-642-14712-8_12

On the Possibility of Basing Cryptography on EXP �= BPP 39

[Har83] Hartmanis, J.: Generalized Kolmogorov complexity and the structure of
feasible computations. In: 24th Annual Symposium on Foundations of
Computer Science, SFCS 1983, November 1983, pp. 439–445 (1993)

[HILL99] H̊astad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom gen-
erator from any one-way function. SIAM J. Comput. 28(4), 1364–1396
(1999)

[HMX10] Haitner, I., Mahmoody, M., Xiao, D.: A new sampling protocol and appli-
cations to basing cryptographic primitives on the hardness of NP. In: IEEE
Conference on Computational Complexity, pp. 76–87 (2010)

[HS65] Hartmanis, J., Stearns, R.E.: On the computational complexity of algo-
rithms. Trans. Am. Math. Soc. 117, 285–306 (1965)

[IL89] Impagliazzo, R., Luby, M.: One-way functions are essential for complex-
ity based cryptography (extended abstract). In: 30th Annual Symposium
on Foundations of Computer Science, Research Triangle Park, North Car-
olina, USA, 30 October–1 November 1989, pp. 230–235 (1989)

[Imp95] Impagliazzo, R.: A personal view of average-case complexity. In: Structure
in Complexity Theory 1995, pp. 134–147 (1995)

[IW98] Impagliazzo, R., Wigderson, A.: Randomness vs. time: de-randomization
under a uniform assumption. In: Proceedings 39th Annual Symposium on
Foundations of Computer Science (Cat. No. 98CB36280), pp. 734–743.
IEEE (1998)

[Ko86] Ko, K.-I.: On the notion of infinite pseudorandom sequences. Theor. Com-
put. Sci. 48(3), 9–33 (1986)

[Kol68] Kolmogorov, A.N.: Three approaches to the quantitative definition of infor-
mation. Int. J. Comput. Math. 2(1–4), 157–168 (1968)

[Lau83] Lautemann, C.: BPP and the polynomial hierarchy. Inf. Process. Lett.
17(4), 215–217 (1983)

[Lev73] Levin, L.A.: Universal search problems (Russian). Probl. Inf. Transm. 9(3),
265–266 (1973). Translated into English by B.A. Trakhtenbrot in [Tra84]

[Lev03] Levin, L.A.: The tale of one-way functions. Probl. Inf. Transm. 39(1),
92–103 (2003)

[Liv10] Livne, N.: On the construction of one-way functions from average case
hardness. In: ICS, pp. 301–309. Citeseer (2010)

[LM91] Longpré, L., Mocas, S.: Symmetry of information and one-way functions.
In: Hsu, W.-L., Lee, R.C.T. (eds.) ISA 1991. LNCS, vol. 557, pp. 308–315.
Springer, Heidelberg (1991). https://doi.org/10.1007/3-540-54945-5 75

[LP20] Liu, Y., Pass, R.: On one-way functions and kolmogorov complexity.
In: 61st IEEE Annual Symposium on Foundations of Computer Science,
FOCS 2020, Durham, NC, USA, 16–19 November 2020, pp. 1243–1254.
IEEE (2020)

[LP21a] Liu, Y., Pass, R.: On one-way functions from NP-complete problems. Elec-
tron. Colloquium Comput. Complex. 28, 59 (2021)

[LP21b] Liu, Y., Pass, R.: On the possibility of basing cryptography on $ \exp \neq
\bpp$. Electron. Colloquium Comput. Complex. 28, 56 (2021). Kindly
check and confrim that Ref. [LP21b] is correct. Amend if necessary

[Nao91] Naor, M.: Bit commitment using pseudorandomness. J. Cryptol. 4(2), 151–
158 (1991)

[NW94] Nisan, N., Wigderson, A.: Hardness vs randomness. J. Comput. Syst. Sci.
49(2), 149–167 (1994)

[OW93] Ostrovsky, R., Wigderson, A.: One-way fuctions are essential for non-trivial
zero-knowledge. In: ISTCS, pp. 3–17 (1993)

https://doi.org/10.1007/3-540-54945-5_75

40 Y. Liu and R. Pass

[PV20] Pass, R., Venkitasubramaniam, M.: Is it easier to prove theorems that
are guaranteed to be true? In: 2020 IEEE 61st Annual Symposium on
Foundations of Computer Science (FOCS), pp. 1255–1267. IEEE (2020)

[Rom90] Rompel, J.: One-way functions are necessary and sufficient for secure sig-
natures. In: STOC, pp. 387–394 (1990)

[RS21] Ren, H., Santhanam, R.: Hardness of KT characterizes parallel cryptogra-
phy. Electron. Colloquium Comput. Complex. 28, 57 (2021)

[RSA83] Rivest, R.L., Shamir, A., Adleman, L.M.: A method for obtaining digital
signatures and public-key cryptosystems (reprint). Commun. ACM 26(1),
96–99 (1983)

[Sip83] Sipser, M.: A complexity theoretic approach to randomness. In: Proceed-
ings of the 15th Annual ACM Symposium on Theory of Computing,
Boston, Massachusetts, USA, 25–27 April 1983, pp. 330–335. ACM (1983)

[Sip96] Sipser, M.: Introduction to the theory of computation. ACM SIGACT
News 27(1), 27–29 (1996)

[Sol64] Solomonoff, R.J.: A formal theory of inductive inference. Part i. Inf. Con-
trol 7(1), 1–22 (1964)

[Tra84] Trakhtenbrot, B.A.: A survey of Russian approaches to perebor (brute-
force searches) algorithms. Ann. Hist. Comput. 6(4), 384–400 (1984)

[TV02] Trevisan, L., Vadhan, S.: Pseudorandomness and average-case complexity
via uniform reductions. In: Proceedings 17th IEEE Annual Conference on
Computational Complexity, p. 0129. IEEE Computer Society (2002)

[Yao82] Yao, A.C.-C.: Theory and applications of trapdoor functions (extended
abstract). In: 23rd Annual Symposium on Foundations of Computer Sci-
ence, Chicago, Illinois, USA, 3–5 November 1982, pp. 80–91 (1982)

[ZL70] Zvonkin, A.K., Levin, L.A.: The complexity of finite objects and the devel-
opment of the concepts of information and randomness by means of the
theory of algorithms. Russ. Math. Surv. 25(6), 83–124 (1970)

Linear Cryptanalysis of FF3-1 and FEA

Tim Beyne(B)

imec-COSIC, KU Leuven, Leuven, Belgium
tim.beyne@esat.kuleuven.be

Abstract. Improved attacks on generic small-domain Feistel ciphers
with alternating round tweaks are obtained using linear cryptanalysis.
This results in practical distinguishing and message-recovery attacks on
the United States format-preserving encryption standard FF3-1 and the
South-Korean standards FEA-1 and FEA-2. The data complexity of the
proposed attacks on FF3-1 and FEA-1 is ˜O(Nr/2−1.5), where N2 is the
domain size and r is the number of rounds. For example, FF3-1 with
N = 103 can be distinguished from an ideal tweakable block cipher with
advantage ≥ 1/10 using 223 encryption queries. Recovering the left half
of a message with similar advantage requires 224 data. The analysis of
FF3-1 serves as an interesting real-world application of (generalized) lin-
ear cryptanalysis over the group Z/NZ.

Keywords: Linear cryptanalysis · FF3-1 · FEA-1 · FEA-2 ·
Format-preserving encryption

1 Introduction

Format-preserving encryption enables the encryption of plaintext with a specific
format, while ensuring that the ciphertext has the same format. For example, in
some applications it is convenient to be able to encrypt nine-digit integers (such
as social security numbers) to nine-digit integers.

Several generic techniques such as cycle walking [5,7] can be used to trans-
form (tweakable) block ciphers into format-preserving ciphers. However, these
techniques are inefficient when there is a significant size difference between the
domain of the underlying block cipher and the target domain. Consequently,
a number of dedicated constructions based on small-domain tweakable Feistel
ciphers were introduced. The best known examples are the United States stan-
dards FF1 and FF3-1 [12] (NIST SP800-38G rev. 1). The South-Korean stan-
dards FEA-1 and FEA-2 [16] (TTAK.KO-12.0275) follow a similar design but
with lighter round functions.

Small-domain Feistel ciphers are known to be vulnerable to a number of
generic attacks. In a series of papers, Patarin [18–20] analyzed the security of
r-round Feistel ciphers with uniform random round functions. In particular,
Patarin [20, Sect. 8] describes a distinguisher with data and time complexity
˜O(Nr−4) for Feistel ciphers with domain size N2. At CCS 2016, Bellare, Hoang
c© International Association for Cryptologic Research 2021
T. Malkin and C. Peikert (Eds.): CRYPTO 2021, LNCS 12825, pp. 41–69, 2021.
https://doi.org/10.1007/978-3-030-84242-0_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-84242-0_3&domain=pdf
https://doi.org/10.1007/978-3-030-84242-0_3

42 T. Beyne

and Tessaro [4] presented a message-recovery attack with a data complexity of
˜O(Nr−2) or ˜O(Nr−3) (to recover the left half of the message) queries. Subsequent
improvements were obtained by Hoang, Tessaro and Trieu [15].

The applicability of these attacks to FF3 in part motivated the US National
Institute of Standards and Technology (NIST) to revise the FF3 standard [12].
In particular, the revised standard FF3-1 includes the requirement that the
domain size must be at least one million, i.e. N ≥ 103. Furthermore, the revision
decreased the size of the tweak from 64 to 56 bits. This change was introduced to
prevent a powerful slide-type attack presented by Durak and Vaudenay [11] at
CRYPTO 2017 that was subsequently improved by Hoang et al. [14] and Amon
et al. [1]. These attacks were the consequence of a weakness in the tweak-schedule
of FF3 that is resolved by the changes in FF3-1.

Recently, Dunkelman et al. [10] have proposed new distinguishers for FEA,
FF1 and FF3-1. The data complexity of these attacks is ˜O(Nr−4), which is
comparable to the attack of Patarin [20]. The time complexity is ˜O(Nr−3).

Contribution. This paper develops new distinguishing and message-recovery
attacks on small-domain Feistel ciphers with alternating round tweaks. The
attacks are based on linear cryptanalysis, but go beyond standard methods in
several ways. In particular, the role of the tweak input is analyzed, properties
of small uniform random functions are exploited, and for FF3-1 a generalization
of linear cryptanalysis to the group Z/NZ is used. Furthermore, the principle
behind the message-recovery attacks is novel.

If the round tweaks alternate between two values, as in FEA-1 and FF3-1,
the data and time complexity of these attacks is ˜O(Nr/2−1.5). For FEA-2, which
has a different tweak schedule, distinguishing and message-recovery respectively
require ˜O(Nr/3−1.5) and ˜O(Nr/3−0.5) data and time. The new attacks are not
applicable to FF1. For many instances of FF3-1, FEA-1 and FEA-2, the data
and time complexity are well within the reach of real-world adversaries.

The proposed distinguishers only need weak access to the block cipher: it
is sufficient to have ciphertext-only access to encryptions of an arbitrary con-
stant message under many half-constant tweaks. In fact, access to the complete
ciphertext is not necessary. The message-recovery attacks follow the security
model introduced by Bellare et al. [4]. Specifically, given the encryption (with
FF3-1 or FEA-1) of a secret message and a known message with the same right-
hand side under ˜O(Nr/2−1.5) tweaks, the attack recovers the left half of the
secret message. With ˜O(Nr/2−0.5) queries, full messages can also be recovered.
For FEA-1, the message-recovery attack can be used to set up a key-recovery
attack. If q is the concrete data cost of the left-half message-recovery attack,
then the key-recovery attack requires less than 16�8/ log2 N� q + 8q data and
time equivalent to at most 269/N + 16�8/ log2 N� q + 8q evaluations of FEA-1.

Table 1 summarizes the cost of the main attacks from the literature and some
of the new attacks proposed in this paper. In addition, the bottom part of the
table reports concrete costs for the smallest instances of FEA-1, FEA-2 (N =
16) and FF3-1 (N = 103). Detailed cost-estimates for previous attacks on the
same instances are not always available, but the improvement is substantial. For

Linear Cryptanalysis of FF3-1 and FEA 43

example, the attacks on FF3-1 with N = 103 require data and time comparable
to previous attacks for N = 25 [4,15] that led to the requirement N ≥ 103 .
The numbers in Table 1 have been experimentally verified by performing each
attack many times. Source code to reproduce this is provided as supplementary
material1. Further experiments and cost calculations are given in the indicated
sections.

As with previous attacks on tweakable small-domain Feistel ciphers, the max-
imum value of N for which the attacks are applicable is typically determined by
the tweak length rather than by the length of the key. For FEA-1 and FEA-2
the main interest of these attacks is for small N , so the tweak is long enough for
most practical purposes. For FF3-1, the upper bounds are similar to those for
previous attacks: naive estimates are N < 219 for distinguishing and right-half
message-recovery and N < 212 for left-half recovery. The latter bound is quite
close to the required N ≥ 103 for FF3-1, However, as discussed in Sect. 5, it is
not a hard limit.

Early Notification. Prior to the submission of this paper, both NIST (for FF3-1)
and ETRI (for FEA-1 and FEA-2) were notified about these results. Both par-
ties have acknowledged the attacks and have indicated their intention to revise
their standards. Modifying the tweak schedule seems to be the most promising
approach to thwart the attacks.

Organization. After revisiting the overall structure of FEA-1, FEA-2 and FF3-1
in Sect. 2, the basic idea behind the attacks is introduced in Sect. 3. It is shown
that there exists a linear trail through FEA-1 (and similarly for FEA-2) with
high correlation. The novelty of this trail is the fact that it requires considering
the tweak as a proper part of the input of the cipher, and its reliance on the
properties of small random functions. An analogous Z/NZ-linear trail is then
obtained for FF3-1. This result is an application of a generalization of linear
cryptanalysis to other finite Abelian groups [3,6].

Section 4 combines the linear approximations identified in Sect. 3 to obtain
multidimensional linear approximations. These approximations are subsequently
used to construct a χ2-distinguisher. The formalism of (generalized) multidimen-
sional linear cryptanalysis is applied to justify the attack and to obtain initial
estimates of the data complexity. Finally, Sect. 5 shows how the χ2-distinguisher
can be turned into a message-recovery attack. Each attack comes with a detailed
analysis of the advantage and data complexity, and an experimental verification
of the theoretical analysis.

2 Preliminaries

The attacks in this paper are applicable to tweakable small-domain Feistel
ciphers with alternating round tweaks. The South-Korean format-preserving
encryption standards FEA-1 and FEA-2 [16] and the NIST standard FF3-1 [12]
all follow such a design.
1 https://homes.esat.kuleuven.be/∼tbeyne/fpe.

https://homes.esat.kuleuven.be/~tbeyne/fpe

44 T. Beyne

Table 1. Summary of attacks on FEA-1, FEA-2 and FF3-1. The costs in the top half
of the table are up to polylogarithmic factors in N (all of which are small in practice).
Time is expressed in encryption operations. Memory requirements are small for all
attacks. All of the message-recovery attacks listed in this table recover the left half of
a message.

Data Time Advantage Reference

Generic

Distinguisher

Nr−4 Nr−3 Constant [10]
Nr−4 Nr−4 Constant [20]

Nr/2−1 Nr/2−1 Constant Sect. 3a

Nr/2−1.5 Nr/2−1.5 Constant Sect. 4a

Nr/3−1 Nr/3−1 Constant Sect. 3b

Nr/3−1.5 Nr/3−1.5 Constant Sect. 4b

Message recovery
Nr−3 Nr−3 Constant [4,15]

Nr/2−1.5 Nr/2−1.5 Constant Sect. 5a

Nr/3−0.5 Nr/3−0.5 Constant Sect. 5b

FEA-1
N = 16, r = 12

Distinguisher
222 222 0.1 Sect. 3
217 217 0.1 Sect. 4
222 222 0.6 Sect. 4

Message recovery
217 217 0.1 Sect. 5
224 224 0.6 Sect. 5

FEA-2
N = 16, r = 18

Distinguisher
220 220 0.1 Sect. 3
217 217 0.1 Sect. 4
221 221 0.6 Sect. 4

FF3-1
N = 103, r = 8

Distinguisher
229 229 0.1 Sect. 3
223 223 0.1 Sect. 4
226 226 0.6 Sect. 4

Message recovery
224 224 0.1 Sect. 5
227 227 0.6 Sect. 5

a Assuming the round tweaks alternate between two values, as in FEA-1 and FF3-1.
b Assuming the round tweaks alternate between three values, as in FEA-2.

Linear Cryptanalysis of FF3-1 and FEA 45

Figure 1 depicts two rounds of the overall structure of FEA-1 and FF3-1. For
simplicity, it will be assumed that both branches have the same size. In both
designs, the tweak is divided into two equal halves, which will be denoted by
TL and TR for convenience. A crucial property that will be exploited by the
new attacks is that the round tweak alternates between TL and TR. The round
functions F1, F2, . . . can nevertheless be arbitrary.

As shown in Fig. 1a, FEA-1 is a regular Feistel cipher over F
m
2 ⊕ F

m
2 with

m = log2 N , where ⊕ denotes the direct sum. For 128 bit keys, it has a total of 12
rounds. The tweaks TL and TR consist of 64−m bits. The round functions Fi are
truncations of a two-round SHARK-like construction [21], but can be considered
to be uniform random functions for all attacks discussed in this paper except for
the key-recovery attack in Sect. 6. The necessary details of the round function
will be reproduced in Sect. 6.

The design of FEA-2 is very similar to that of FEA-1. The main difference
is that it uses three distinct round tweaks (repeating with period three), one of
which is constant. In addition, for FEA-2, both tweaks have a length of 64 bits
and the number of rounds is 18 for 128 bit keys.

FF3-1 is an eight-round Feistel cipher over Z/NZ⊕ Z/NZ. The round func-
tions F1, F2, . . . are defined as truncations of the AES with the round tweak and
a unique round counter as the input; the details are not important for this work
as these functions will be modelled as uniform random. The tweaks TL and TR

are bitstrings of length 28.

F1

TL

F2

TR

(a) FEA-1.

F1

TL

F2

TR

(b) FF3-1.

Fig. 1. Two rounds of a tweakable Feistel cipher with alternating round tweaks.

Sections 3 and 4 introduce distinguishers for full-round FEA-1, FEA-2 and
FF3-1. The advantage of a distinguisher is equal to the difference between its
success-probability PS and false-positive rate PF and provides a convenient mea-
sure for its statistical quality. The distinguishers discussed in Sects. 3 and 4 allow

46 T. Beyne

for a trade-off between success-probability and false-positive rate. Since they are
ultimately simple hypothesis tests, the trade-off is determined by the choice of
some threshold parameter t. The advantage that will be considered in this paper
is thus the maximum achievable advantage for some value of t:

Adv = max
t

|PS(t) − PF(t)|.

For message-recovery attacks, it is also meaningful to define a similar measure
of quality. Given a list of possible messages, one is interested in narrowing it
down to some fraction PF with a given probability PS. Clearly, PF and PS are
dependent quantities. The advantage of a message-recovery attack will be defined
as the maximum achievable value of |PS − PF| for a given amount of data. This
corresponds to the notion of key-recovery advantage that is often used in linear
and differential cryptanalysis [22]. For the attacks in this paper, it also coincides
with the message-recovery advantage defined by Bellare et al. [4]

Concepts related to linear and multidimensional linear cryptanalysis will be
introduced in Sects. 3 and 4 respectively.

3 Linear Distinguishers

In this section, linear distinguishers for FEA-1, FEA-2 and FF3-1 are introduced.
Section 3.1 summarizes the main concepts from linear cryptanalysis, but some
familiarity with these ideas is necessarily assumed.

Since the attacks on FEA-1 and FEA-2 are based on ordinary F2-linear crypt-
analysis, these are described first in Sect. 3.2. Section 3.3 then transfers these
results to Feistel ciphers defined over Z/NZ. Finally, the data complexity of the
attacks is analyzed in detail and verified experimentally in Sect. 3.4.

3.1 Linear Approximations

Linear cryptanalysis was introduced by Matsui [17] and is based on probabilistic
linear relations or linear approximations, a concept introduced by Tardy-Corfdir
and Gilbert [23]. Let F : Fn

2 → F
m
2 be a function, possibly depending on a key.

Linear distinguishers are based on linear approximations with large absolute
correlation. A linear approximation for F is defined by a pair of masks (u1, u2) ∈
F

m
2 ⊕ F

n
2 and its correlation is equal to

CF
u1,u2

= 2Pr [u�
1 F (x) = u�

2 x] − 1 =
1
2n

∑

x∈Fn
2

(−1)u�
1 F (x)+u�

2 x ,

where the probability is over a uniform random x on F
n
2 . If u1 �= 0, then the

correlation for a uniform random function is concentrated around zero with a
standard deviation of 2−n/2. A more detailed result is given in Theorem 3.1 in
Sect. 3.2 below. Hence, if the correlation c is significantly larger than 2−n/2, a
distinguisher is obtained by estimating the correlation using q = Θ(1/c2) queries

Linear Cryptanalysis of FF3-1 and FEA 47

and comparing the result to some threshold t. As discussed in Sect. 3.2 below, this
description is somewhat simplified since the correlation is usually key-dependent.

For FF3-1, F2-linear approximations are inconvenient because the FF3-1 Feis-
tel structure operates on the ring Z/NZ⊕Z/NZ. Instead, Sect. 3.3 will rely on a
generalization of linear cryptanalysis to arbitrary finite Abelian groups. Such a
generalization was first proposed by Baignères, Stern and Vaudenay [3]. A more
general perspective that includes the multidimensional case (which will be used
in Sect. 4) was introduced in [6].

Let F : G → H be a function between finite Abelian groups G and H. A
linear approximation corresponds to a pair of group characters (ψ1, ψ2) of H and
G respectively. A group character ψ1 is a group homomorphism ψ1 : H → C

×.
The characters of H themselves also form a group of order |H| under pointwise
multiplication. The correlation of the linear approximation (ψ1, ψ2) is equal to

CF
ψ1,ψ2

=
1

|G|
∑

x∈G

ψ1(F (x))ψ2(x) .

In the above, ψ1 denotes the complex-conjugate of ψ1. For H = F
m
2 , every

character ψ1 corresponds to a vector u ∈ F
m
2 such that ψ1(x) = (−1)u�x. If

H = Z/NZ, then for each character ψ1, there exists a non-negative integer
k < N such that ψ1(x) = exp(2π

√
−1 kx/N). This essentially covers all cases,

since any finite Abelian group is a direct sum of cyclic groups. An important
property of group characters is that they are orthogonal functions. That is,

∑

x∈G

χ(x)ψ(x) =

{

|G| if χ = ψ,

0 otherwise.

for any two characters χ and ψ of G. Additional background on group characters
and Fourier analysis may be found in [24].

For a sequence of functions F1, . . . , Fl, the piling-up principle can be used
to estimate the correlation of linear approximations over the composition F =
Fl ◦ · · · ◦ F1. The idea is that, for an approximation with characters (ψ1, ψl+1),
there may exist a dominant sequence of approximations (ψ1, ψ2), . . . , (ψl, ψl+1)
such that

CF
ψ1,ψl+1

≈
l

∏

i=1

CFi

ψi,ψi+1
.

The sequence of approximations (ψ1, ψ2), . . . , (ψl, ψl+1) is called a trail and the
right-hand side of the above equation is called the correlation of the trail. The
sum of the correlations of all trails over Fl ◦ · · · ◦F1 equals the correlation of the
approximation (ψ1, ψl+1) of F [8].

3.2 FEA-1 and FEA-2

At first sight, both FEA-1 and FEA-2 seem to be robust against linear cryptanal-
ysis, especially when their round functions F1, F2, . . . are replaced by uniform

48 T. Beyne

random functions. The key observation behind the attacks in this paper is that
this is not the case when (part of) the tweak is considered as a proper part of
the input.

Figure 2 shows linear trails over two rounds of FEA-1 and three rounds of
FEA-22. In these trails, the tweak TL is an arbitrary constant and TR is consid-
ered to be a variable part of the input. Note that the tweak TR is not active, so
it need not be known to perform the attack. The idea behind these trails is that
the absolute correlation of a linear approximation over round function Fi (cho-
sen uniformly at random) exceeds 1/

√
N = 2−m/2 with fairly large probability.

This becomes meaningful when the tweak is included in the input, because the
domain of the function which maps the tweak and the plaintext to the ciphertext
is large. Indeed, the correlation of linear approximations over a random function
with the same input size (including TR of length 64 − m) as FEA-1 is centered
around zero with a standard deviation of 2−32−m/2. More specifically, we have
the following result.

Theorem 3.1 (Daemen and Rijmen [9]). Let c denote the correlation of
a nontrivial linear approximation for a uniform random function F

n
2 → F

m
2 .

The random variable 2n−1(c + 1) is binomially distributed with mean 2n−1 and
variance 2n−2. In particular3, as n → ∞, the distribution of 2n/2c converges to
the standard normal distribution N (0, 1).

Let r ≥ 2 be an even integer. By the piling-up principle, the correlation of the
r-round trail from Fig. 2a is equal to c =

∏r/2
i=1 ci, where ci ∼ N (0, 1/N) holds

asymptotically due to Theorem3.1. The random variables ci will be assumed to
be independent, which follows for instance from the strong assumption that the
round functions F1, F3 . . . Fr−1 are independent. One can verify that the other
trails through FEA-1 and FF3-1 have negligible correlation.

As mentioned above, the data complexity of a constant-advantage linear
distinguisher based on an approximation with correlation c is Θ(1/c2). In this
case, the correlation varies strongly with the key so this result can not be applied
directly to estimate the data complexity. A commonly used heuristic estimate is
given by 1/Ec2, where Ec2 is the average squared trail correlation for a uniform
random key. For FEA-1, this yields 1/Ec2 = Nr/2. The data complexity is
analyzed in considerably more detail in Sect. 3.4.

For FEA-2 with r divisible by three, the expected squared correlation of each
trail is equal to N−2r/3. However, the number of trails for a given choice of input
and output masks is (N −1)r/3−1. Recall that the correlation of a linear approx-
imation is equal to the sum of the correlations over all possible trails. Hence,
since the trails in Fig. 2b are indeed dominant, the sum c of the correlations of
these trails is a good estimate for the correlation of the corresponding approx-
imation. Since the covariance between the correlations of distinct trails is zero
for independent uniform random round functions, it follows that

1/Ec2 = N2r/3/(N − 1)r/3−1 ∼ Nr/3+1.

2 I thank Dongyoung Roh for bringing the trails with u �= v to my attention.
3 This result is a useful approximation even when n is small (for example, when n ≥ 8).

Linear Cryptanalysis of FF3-1 and FEA 49

F1

TL
u 0

0u

0 u

F2
00

TR

u 0

(a) Two-round trail for FEA-1.

F1

0u 0

vu

v u

F2

TL

uv

0 v

F3

TR

00

v 0

(b) Three-round trail for FEA-2.

Fig. 2. Linear trails for FEA-1 and FEA-2. The tweak TR is considered part of the
input and the value of TL should be fixed.

The fact that the covariance terms are zero is somewhat nontrivial, but it can be
easily deduced from the definition of correlation for a uniform random function.
Neglecting the covariance between the correlation of different trails is, in general,
inaccurate. Finally, note that any other trail through FEA-2 necessarily has a
much smaller average squared correlation.

Before continuing with the analysis of FF3-1, a simple but significant
improvement to the correlation of the aforementioned linear approximation
should be pointed out. If the right part of the plaintext is fixed to an arbitrary
constant, then after two rounds the left branch of the state is equal to the left
part of the plaintext up to addition by some constant. Consequently, the first two
rounds can be effectively skipped. This decreases the data complexity by a factor
N to Nr/2−1 for FEA-1. By fixing both halves of the plaintext, the first three
rounds of FEA-2 can similarly be avoided. In addition, since the input mask is
then no longer fixed, the number of trails within one approximation increases to
(N − 1)r/3. Hence, the resulting data complexity estimate becomes Nr/3−1. A
more detailed estimate of the data complexity will be given in Sect. 3.4.

3.3 FF3-1

The analysis of FF3-1 proceeds analogously to that of FEA-1, but with lin-
ear cryptanalysis over the additive group Z/NZ rather than F

m
2 . An iterative

50 T. Beyne

two-round trail is shown in Fig. 3. In the figure, ψ denotes an arbitrary nontrivial
character of Z/NZ and 1 is the trivial character, i.e. 1(x) = 1 for all x ∈ Z/NZ.

In order to characterize the correlation of this trail, an analog of Theorem3.1
is required. This is provided by Theorem3.2 below. Recall that a complex-valued
random variable z has a standard complex normal distribution CN (0, 1) if its
real part �{z} ∼ N (0, 1/2) and its imaginary part �{z} ∼ N (0, 1/2) are inde-
pendent random variables.

Theorem 3.2. Let G and H be finite Abelian groups and let c denote the cor-
relation of a nontrivial linear approximation for a uniform random function
G → H corresponding to non-real characters. The correlation c has mean zero
and variance 1/|G|. Furthermore, as |G| → ∞, the distribution of

√

|G| c con-
verges to the standard complex normal distribution CN (0, 1).

Proof. Recall that a linear approximation corresponds to a pair of group char-
acters (ψ1, ψ2). The random variable c can then be written as

c =
1

|G|

|G|
∑

i=1

ψ1(yi)ψ2(xi),

where x1, . . . , x|G| are the elements of G and y1, . . . ,y|G| are independent uni-
form random variables on H. The mean of c is zero, since Eψ1(yi) = 0 by
the orthogonality relations for group characters. In addition, it follows from
E|ψ1(yi)|2 = 1 that E|c|2 = 1/|G|. Finally, the convergence to a normal dis-
tribution follows from the central limit theorem for the sum of independent
identically distributed random variables. ��

By Theorem 3.2, the average squared correlation of the r-round trail from
Fig. 3 is equal to N−r/2. As in the case of FEA-1, the right part of the plaintext
can be fixed in order to obtain a trail with average squared correlation N1−r/2.
This gives a corresponding data complexity estimate of Nr/2−1.

3.4 Cost Analysis and Experimental Verification

As mentioned in Sects. 3.2 and 3.3 above, the data complexity of a distinguisher
based on a linear approximation with correlation c is roughly 1/|c|2. By heuristi-
cally plugging in the average squared trail correlation, the approximation 1/E|c|2
was obtained. This resulted in an estimated data complexity of Nr/2−1 for FEA-
1 and FF3-1 and Nr/3−1 for FEA-2. This section analyzes the data complexity
in more detail, along with the advantage achieved by the distinguisher. Broadly
speaking, the detailed analysis confirms the heuristic estimates from Sects. 3.2
and 3.3.

The distinguisher performs a hypothesis test, with null-hypothesis that the
data comes from an ideal tweakable block cipher and alternative hypothesis that
the data comes from the real cipher. If the absolute value of the estimated cor-
relation exceeds a predetermined threshold, then the null-hypothesis is rejected.

Linear Cryptanalysis of FF3-1 and FEA 51

Fig. 3. Iterative two-round trail for FF3-1. The tweak TL is fixed.

Like any hypothesis test, linear distinguishers allow for a trade-off between suc-
cess probability PS and false-positive rate PF. Both probabilities are determined
by the threshold parameter t. The distinguisher is successful if the estimated cor-
relation exceeds t

√
q when interacting with the true block cipher after q queries.

If the estimated correlation exceeds this threshold for an ideal tweakable block
cipher, then a false-positive occurs. Note that PS(t) and PF(t) are key-averaged
quantities.

Figure 4 depicts the estimates of the maximum advantage maxt |PS(t)−PF(t)|
which are derived below. Importantly, for large N , the curve is essentially inde-
pendent of N . This will be shown below. The red dots correspond to experi-
mental verifications of the estimates for full-round instances of FEA-1, FEA-2
and FF3-1. Each point corresponds to 1024 (FEA-1 and FF3-1) or 512 (FEA-2)
evaluations of the distinguisher. For FF3-1, the experiments were performed for
N = 100 < 1000 to limit the computational cost. The verification of the more
efficient χ2-distinguishers in Sect. 4 will be performed for N = 1000.

The false-positive rate is easily computed. Assume the correlation is esti-
mated using q independent queries. If the input space is sufficiently large4, then
by Theorems 3.1 and 3.2 the variance of the ideal correlation is negligible. Hence,
if the number of queries q is moderately large, then the estimated correlation ĉideal
is approximately distributed as N (0, 1/q) for FEA-1 and FEA-2 or CN (0, 1/q)
for FF3-1. The false-positive rate is then

PF(t) = Pr [|ĉideal| ≥ t/
√

q] ≈ 1 − χν(
√

νt),

where χν is the cumulative distribution function of the χ-distribution with ν
degrees of freedom. For FEA-1 and FEA-2, ν = 1 since c is real. For FF3-1,
ν = 2.

4 Relative compared to the required number of queries q.

52 T. Beyne

-6 -4 -2 0 2 4 6 8 10 12
0.00

0.10

0.20

0.30

0.40

Relative data [log2 q/N5]

A
dv

an
ta
ge

Maximum advantage of linear distinguisher
FEA-1 with r = 12

N = 24

N = 26

N→∞
N = 24

-6 -4 -2 0 2 4 6 8 10 12
0.00

0.20

0.40

0.60

0.80

1.00

Relative data [log2 q/N5]

A
dv

an
ta
ge

FEA-2 with r = 18

N = 24

N→∞
N = 24

−6 −4 −2 0 2 4 6 8 10 12
0.00

0.20

0.40

0.60

0.80

1.00

Relative data [log2 q/N3]

A
dv

an
ta
ge

FF3-1 with r = 8

N→∞
N = 100

Fig. 4. Theoretical and experimentally observed maximum advantage of the linear
distinguishers for full-round FEA-1, FEA-2 and FF3-1. The error bars correspond to
95% Clopper-Pearson confidence intervals. (Color figure online)

Linear Cryptanalysis of FF3-1 and FEA 53

The calculation of the success rate PS is more complicated, because the abso-
lute correlation |creal| is not as strongly concentrated around its mean. Let ĉreal
denote the estimated correlation for a particular choice of the key. If the underly-
ing correlation for this key is equal to creal, then ĉreal is approximately distributed
as N (creal, 1/q) for FEA-1 and FEA-2 or CN (creal, 1/q) for FF3-1 if q is large
enough and c2real � 1. The average success probability can be approximated as

PS(t) ≈ E
creal

Pr [|zν − creal
√

q| ≥ t]

where creal is the trail correlation assuming uniform random round functions and
zν a standard (complex if ν = 2) normal random variable. To compute the aver-
age with respect to creal, a Monte-Carlo approach was used. The implementation
is provided as supplementary material. Importantly, the success probability curve
(and consequently the maximum advantage) has essentially the same shape for
all sufficiently large values of N . Indeed, by Theorems 3.1 and 3.2, the distribu-
tion of the round correlations converges to a (complex) normal distribution for
large N . Hence, for q0 = 1/E|creal|2, the distribution of creal

√
q0 will be approxi-

mately the same for all large values of N . Consequently, the success probability
curves tend to a constant function of q/q0.

4 χ2 Distinguishers

This section introduces additional distinguishers on FEA-1, FEA-2 and FF3-
1, based on Pearson’s χ2-test for goodness-of-fit between distributions. Vaude-
nay [25] proposed χ2-distinguishers as a method for distinguishing non-uniform
distributions in cryptanalysis when precise knowledge about these distributions
is lacking.

The distinguishers in Sect. 3 are based on individual linear approximations.
A natural improvement to these attacks is to exploit all approximations simulta-
neously. Multidimensional linear cryptanalysis provides a convenient framework
to describe such attacks.

As shown in Sect. 4.2 below, the existence of a multidimensional linear
approximation implies that a particular probability distribution related to the
ciphertext is highly non-uniform. Pearson’s χ2-test can then be used to verify
this property, resulting in a distinguisher.

Sections 4.1 and 4.2 explain the distinguisher in detail. The data complexity
is estimated and experimentally verified in Sect. 4.3.

4.1 Multidimensional Linear Approximations

A multidimensional F2-linear approximation can be defined as a collection of
linear approximations such that the set of pairs of input and output masks is a
vector space [13]. This generalizes to arbitrary groups, by requiring that the set
of pairs of input and output characters is a group under pointwise multiplication.
A general description of this approach can be found in [6].

54 T. Beyne

To obtain a uniform description of the attacks on FEA-1, FEA-2 and FF3-1,
denote the half-domain by D and the space of tweaks TR by T . The ciphertext
space is then H = D⊕D. The input space G is either D⊕T or T , depending on
whether or not the left half of the plaintext is kept fixed (the right half always
is).

Any character ψ of H ⊕ G uniquely determines a linear approximation of
the cipher. Specifically, the restriction of ψ to H corresponds to the output
character of the approximation, and the restriction to G corresponds to the
complex conjugate of the input character. The need for complex conjugation is
due to technical reasons. Let Z0 be the set of all such characters ψ corresponding
to the linear approximations that were investigated in Sect. 3. The choice of
notation for Z0 will be motivated in Sect. 4.2. Concretely, with ̂D the group of
characters of the domain, let

Z0 =

⎧

⎨

⎩

{

ψ : (yL, yR, xL, TR) �→ χ(xL)χ(yL) | χ ∈ ̂D
}

for FEA-1 and FF3-1,
{

ψ : (yL, yR, TR) �→ χ(yL) | χ ∈ ̂D
}

for FEA-2.

Note that for all three ciphers, Z0 is a group under pointwise multiplication of
functions. Hence, the collection of these approximations is a multidimensional
linear approximation. Finally, let c : Z0 → C be a function that assigns to a group
character ψ ∈ Z0 the correlation c(ψ) of the corresponding linear approximation.

The data complexity of an optimal distinguisher based on a multidimensional
linear approximation is inversely proportional to the capacity of the approxima-
tion [2], which is defined as the quantity

∑

ψ �=1

|c(ψ)|2,

where the sum is over all nontrivial characters in Z0. However, as pointed out in
Sect. 3, the correlations c(ψ) are heavily key-dependent and this will affect the
optimal data complexity. Nevertheless, by linearity of expectation, it is easy to
compute the key-averaged capacity:

E

∑

ψ �=1

|c(ψ)|2 ≈
{

N2−r/2 for FEA-1 and FF3-1,
N2−r/3 for FEA-2.

The above calculation suggests a data complexity of Nr/2−2 for FEA-1 and FF3-
1 and Nr/3−2 for FEA-2. However, as will be shown below, this is somewhat
optimistic because the result that relates the capacity to the data complexity of
an optimal distinguisher assumes that the correlations c(ψ) are known exactly.

The multidimensional linear approximation can be turned into a distin-
guisher by directly estimating the capacity. It will be shown in Sect. 4.3
that the data complexity of this approach can be heuristically estimated as√

N/
∑

ψ �=1 E|c(ψ)|2. However, there exists an equivalent but more direct dis-
tinguisher in terms of Pearson’s χ2-statistic.

Linear Cryptanalysis of FF3-1 and FEA 55

4.2 Distinguisher Based on Pearson’s χ2 Statistic

The relation between χ2-distinguishers and multidimensional linear approxima-
tions is due to the link between correlations and the Fourier transformation of
the probability distribution of the active parts of the input and output state. In
particular, the existence of a strong multidimensional approximation can be used
to show that a distribution related to the approximations is highly non-uniform.

Pearson’s χ2-statistic will be used as a measure of goodness-of-fit between
an estimated (empirical) probability distribution p̂ : S → [0, 1] and the uniform
distribution on S. For this particular case, the χ2-statistic with q samples satisfies

χ2/q = M ‖p̂ − 1/M‖22,

where ‖ · ‖2 is the Euclidean norm, M = |S| and 1(x) = 1 for all x ∈ S. The
χ2-distinguisher succeeds in identifying the real cipher when the χ2-statistic
exceeds some threshold. Indeed, as q → ∞, the estimated distribution p̂ tends
to the true distribution p and χ2/q tends to M ‖p−1/M‖22. In particular, if the
tested distribution is uniform, then χ2/q tends to zero as q → ∞. Statistical
aspects will be discussed in Sect. 4.3.

The link between multidimensional linear approximations and probability
distributions is provided by the following result, which generalizes a classical
result for G and H vector spaces over F2 [3,13]. Below, this result will be used
to show that the existence of large correlations leads to highly non-uniform
distributions.

Theorem 4.1. Let F : G → H be a function between finite Abelian groups G
and H. Let Z be a subgroup of the group H ⊕ G and let Z0 be the group of
characters of H ⊕ G with kernel Z. If x is a uniform random variable on G,
then

Pr [(F (x),x) ≡ z mod Z] =
1

|Z0|
∑

ψ∈Z0

CF
ψH ,ψG

ψ(z) ,

where ψH is the restriction of ψ to H and ψG similarly for G.

Proof. The result is a straightforward consequence of the coordinate-free char-
acterization of multidimensional linear approximations given in [6]. For the sake
of completeness, a self-contained proof is given here. Let S = {(F (x), x) | x ∈ G}
be the graph of F . By the definition of correlation given in Sect. 3.1,

CF
ψH ,ψG

=
1

|G|
∑

z′∈S

ψ(z′) .

It follows that for any z ∈ H ⊕ G,

∑

ψ∈Z0

CF
ψH ,ψG

ψ(z) =
1

|G|
∑

z′∈S

∑

ψ∈Z0

ψ(z′)ψ(z) =
1

|G|
∑

z′∈S

∑

ψ∈Z0

ψ(z − z′).

56 T. Beyne

If z − z′ ∈ Z, then ψ(z − z′) = 1 by the definition of Z0. If z − z′ �∈ Z, then
there exists some character χ ∈ Z0 such that χ(z − z′) �= 1. However, since Z0

is a group under pointwise multiplication, we have
∑

ψ∈Z0

ψ(z − z′) = χ(z − z′)
∑

ψ∈Z0

ψ(z − z′) .

It follows that
∑

ψ∈Z0

ψ(z − z′) =

{

|Z0| if z − z′ ∈ Z

0 otherwise .

Since z − z′ ∈ Z is equivalent to z ≡ z′ mod Z, the above implies that
∑

ψ∈Z0

CF
ψH ,ψG

ψ(z) = |Z0| Pr [(F (x),x) ≡ z mod Z] .

Dividing both sides by |Z0| gives the result. ��

Theorem 4.1 can be applied to the multidimensional linear approximations
that were discussed in Sect. 4.1. For FEA-1 and FEA-2, Z can be taken as the
orthogonal complement of the F2-vector space consisting of the masks in the
multidimensional linear approximation. For both FEA-1 and FF3-1, the right
half of the plaintext is fixed and reduction modulo Z corresponds to taking the
difference of the left half of the ciphertext and the plaintext. More explicitly,
if D is the half-domain of the cipher and T the space of half-tweaks TR, then
H = D ⊕ D, G = D ⊕ T and

Z = {(yL, yR, xL, TR) ∈ D ⊕ D ⊕ D ⊕ T | yL − xL = 0}.

For FEA-2, the full plaintext will be fixed, so G = T . Consequently, reduction
modulo Z will amount to truncating the ciphertext to its left half.

As in Sect. 4.1, let c(ψ) denote the correlation of the approximation corre-
sponding to ψ ∈ Z0. For all three ciphers, Theorem 4.1 then shows that

Pr [(F (x),x) ≡ z mod Z] =
1

|Z0|
∑

ψ∈Z0

c(ψ)ψ(z) ,

where x is uniform random on the input domain (which includes half of the
tweak) and F is the mapping to the ciphertext. In fact, the right hand side
above is the inverse Fourier transformation of the function ψ �→ c(ψ) [24].

A χ2-distinguisher can now be set up based on the non-uniformity of
(F (x),x) modulo Z. Denote the probability mass functions of this random vari-
able by p(z) and denote the size of its domain by M = |G|/|Z| = |Z0|. As the
number of queries q increases, the empirical distribution approaches p and the
χ2/q statistic approaches the value

M ‖p − 1/M‖22 = ‖c − δ1‖22 =
∑

ψ �=1

|c(ψ)|2 . (†)

Linear Cryptanalysis of FF3-1 and FEA 57

The first equality above follows from the fact that characters are orthogonal
functions (as noted in Sect. 3.1) and is also known as Parseval’s theorem [24].
This shows that the χ2-statistic can be interpreted as an alternative method to
estimate the sum of the squared correlations |c(ψ)|2 for ψ ∈ Z0 with ψ �= 1. As
discussed in the next section, this result suggests that the data complexity of
the χ2-distinguisher can be heuristically estimated as

√
M/

∑

ψ �=1 E|c(ψ)|2 with
c(ψ) the correlation c(ψ) for a uniform random key and M = N for the choices
of Z discussed above.

Using the estimates of
∑

ψ �=1 E|c(ψ)|2 from Sect. 4.1, the data complexity of
the χ2-distinguishers for r-round FEA-1 and FF3-1 can be estimated as Nr/2−1.5.
For FEA-2, the data complexity estimate becomes Nr/3−1.5. This is a significant
improvement over the linear attacks from Sect. 3. Furthermore, by considering
smaller choices of the group Z, it is still possible to set up χ2-distinguishers even
if only part of the ciphertext is available.

4.3 Cost Analysis and Experimental Verification

As in Sect. 4.2, consider the χ2-statistic for the empirical probability distribution
of (F (x),x) modulo Z, where x is a uniform random input (consisting of the
tweak TR and possibly the right half of the plaintext). Before going into detailed
calculations of the advantage of the distinguisher, the heuristic estimate that
was used in the previous section will be derived.

Let χ2
ideal be the χ2-statistic when the true distribution is uniform random.

This is a good model for the distribution that would be observed for an ideal
tweakable block cipher. Likewise, denote the χ2-statistic for the real cipher by
χ2

real. It is well known that χ2
ideal follows a χ2 distribution with N − 1 degrees of

freedom when the number of queries q is sufficiently large. Hence, Eχ2
ideal = N−1.

For χ2
real, taking the Fourier transformation (as in †) yields

Eχ2
real = q

∑

ψ �=1

E |ĉ(ψ)|2

where the average is taken with respect to a uniform random key and the random
empirical correlations ĉ(ψ) based on q samples. The expected value of |ĉ(ψ)|2
for a fixed key is approximately equal to |c(ψ)|2 + 1/q when |c(ψ)|2 is negligible
compared to one. For a uniform random key, the true correlation c(ψ) is itself a
random variable and hence

Eχ2
real ≈ N − 1 + q

∑

ψ �=1

E |c(ψ)|2 ≈ Eχ2
ideal + q

∑

ψ �=1

E |c(ψ)|2 .

To obtain a low false-positive rate, the decision threshold t should be larger
than the standard deviation of χ2

ideal. That is, t ≥
√

2(N − 1). Hence, a constant
advantage can be expected when Eχ2

real − Eχ2
ideal �

√
N . That is,

q �
√

N
/

∑

ψ �=1 E|c(ψ)|2 .

58 T. Beyne

Since the main purpose of this section is to obtain accurate estimates of the
advantage for concrete values of N , the above heuristic reasoning will not be
formalized here.

It is relatively easy to estimate the average false-positive rate PF(t) of the
χ2-distinguisher. Indeed, as mentioned above, the statistic χ2

ideal follows a χ2

distribution with N − 1 degrees of freedom when the number of queries q is
sufficiently large. Consequently,

PF(t) = Pr [χ2
ideal ≥ t] ≈ 1 − χ2

N−1(t).

The average success-probability PS(t) is significantly harder to compute. If
χ2

real denotes the χ2-statistic for a random sample and a random key, then

PS(t) = Pr [χ2
real ≥ t].

To accurately estimate this probability, a Monte-Carlo approach was used to
sample from χ2

real. Sampling from the correlation distribution can be done effi-
ciently, provided that the piling-up approximation is used. A detailed exposition
of the sampling strategy is beyond the goals of this paper, but an implementation
is provided as supplementary material.

Figure 5 shows the estimated maximum achievable advantage for the χ2-
distinguishers for full-round FEA-1 and FEA-2 with N = 16 and FF3-1 with
N = 1000. The red dots correspond to experimental verifications of the advan-
tage by performing each attack 512 times. These figures confirm the rough data
complexity estimate of Nr/2−1.5.

5 Message Recovery Attacks

In this section, it is shown how the χ2-distinguishers from Sect. 4 can be turned
into message-recovery attacks. These attacks should be situated in the message-
recovery security model of Bellare et al. [4]. Informally, this model assumes that
the adversary is allowed to (non-adaptively) query the encryption of many dis-
tinct tweak-message pairs related to a secret message. The distinctness require-
ment is sufficient to ensure that a trivial guessing attack cannot achieve a non-
trivial advantage.

Section 5.1 shows how the left-half of a message encrypted using FEA-1 or
FF3-1 can be recovered. The assumptions of the attack are very similar to previ-
ous work: the attacker is given the encryption of a target message and a second
message with the same right half under many tweaks. Contrary to previous
work [4,15], it is not necessary that both messages are encrypted under exactly
the same set of tweaks. Instead, part of each tweak (TL) must be constant.
The data complexity of the attack is computed and experimentally verified in
Sect. 5.2.

With more data, it is also possible to recover the right half of messages.
This is discussed in Sect. 5.3. When combined with the left-half recovery attack,
this results in recovery of entire messages. The same idea is used to extend the
attacks to FEA-2.

Linear Cryptanalysis of FF3-1 and FEA 59

-6 -4 -2 0 2 4 6 8 10 12
0.00

0.20

0.40

0.60

0.80

1.00

Relative data [log2 q/N4.5]

A
dv

an
ta
ge

Maximum advantage of χ2 distinguisher
FEA-1 with N = 16 and r = 12

-6 -4 -2 0 2 4 6 8 10 12
0.00

0.20

0.40

0.60

0.80

1.00

Relative data [log2 q/N4.5]

A
dv

an
ta
ge

FEA-2 with N = 16 and r = 18

−6 −4 −2 0 2 4 6 8 10 12
0.00

0.20

0.40

0.60

0.80

1.00

Relative data [log2 q/N2.5]

A
dv

an
ta
ge

FF3-1 with N = 1000 and r = 8

Fig. 5. Theoretical and experimental maximum advantage of the χ2-distinguishers
for full-round FEA-1, FEA-2 and FF3-1. The error bars correspond to 95% Clopper-
Pearson confidence intervals. (Color figure online)

60 T. Beyne

5.1 Left-Half Recovery for FEA-1 and FF3-1

Consider FEA-1 or FF3-1 with a fixed plaintext input. In this scenario, the χ2-
distinguisher from Sect. 4.2 is still applicable by using only the left part of the
output. That is, Z = {(yL, yR, TR) ∈ D ⊕ D ⊕ T | yL = 0}. The capacity of this
multidimensional approximation is the same as before.

The idea behind the message-recovery attack is that a change in the plaintext
affects the distribution of the left half of the ciphertext (for uniform random
tweaks TR) in a predictable way. Let c1(ψ) denote the correlation of the linear
approximation corresponding to the character ψ when the plaintext is fixed to
(xL, xR). Similarly, denote the correlation for a second plaintext (x′

L, xR) by
c2(ψ). Following the piling-up principle, c1(ψ) and c2(ψ) are well-approximated
by the correlations of the trails given in Sect. 3. The two considered functions
are the same up to the subtraction of a constant Δ = xL − x′

L in the first round
of the trail (the third round of the cipher). Hence,

c2(ψ) ≈ ψD(Δ)c1(ψ)

with ψD the restriction of ψ to the half-domain D. This approximation is highly
accurate in practice, since the trails in Fig. 2a and 3 are strongly dominant.
Denote the probability distribution of the left half of the ciphertext in the first
and second case by p1 and p2 respectively. Theorem 4.1 implies that

p2(yL) =
1
N

∑

ψ∈Z0

c2(ψ)ψ(yL) ≈ ψD(Δ)
N

∑

ψ∈Z0

c1(ψ)ψ(yL) = p1(yL + Δ) .

In other words, the distributions p1 and p2 are (nearly) shifted over a distance
Δ. It should be emphasized that this is a property of the ciphertext distributions
and not of individual ciphertexts. As shown in Sect. 4.2, the distributions p1 and
p2 are highly non-uniform. This is what makes it possible to recover Δ.

The message-recovery attack begins by estimating the probability distribu-
tion (for uniform random tweaks TR) of the left half of the ciphertext twice: once
for the secret plaintext (xL, xR) with fixed tweak TL, and once for an arbitrary
message (x′

L, xR) with the same right half and for the same fixed tweak TL.
Next, for each candidate value Δg for Δ, compute the statistic

r(Δg) = qN/4 ‖p̂1 − p̂g‖22,

where p̂g(yL) = p̂2(yL − Δg) with p̂1 and p̂2 the empirical estimates of p1 and
p2 based on q/2 samples each. The statistics r(Δg) with Δg ∈ D can then be
ranked in ascending order. If the number of samples used to obtain the empirical
distributions is large enough, the values of Δg corresponding to the top of the
list are likely to be good candidates for Δ.

5.2 Cost Analysis and Experimental Verification

The data complexity of the message-recovery attack can be estimated using a
heuristic argument similar to the one that was used for the χ2-distinguisher in

Linear Cryptanalysis of FF3-1 and FEA 61

Sect. 4.2. For a random sample, the statistic r(Δg) satisfies

r(Δg) =
q

4

∑

ψ �=1

|ĉ1(ψ) − ψD(Δg)ĉ2(ψ)|2,

where ĉ1(ψ) and ĉ2(ψ) are the empirical correlations and the sum is over all
nontrivial ψ ∈ Z0. When the fixed-key correlation |ci(ψ)|2 is small, averaging
over the sample gives E|ĉi(ψ)|2 ≈ |ci(ψ)|2 + 2/q. Hence, the average of r(Δg)
over the sample and over a uniform random key is equal to

E r(Δg) =
q

4

∑

ψ �=1

E

(
|ĉ1(ψ)|2 + |ĉ2(ψ)|2 − 2�

{
ψD(Δg) ĉ1(ψ)ĉ2(ψ)

})

≈ q

4

∑

ψ �=1

(
4

q
+ E|c1(ψ)|2 + E|c2(ψ)|2

)
− q

2
�

{ ∑

ψ �=1

ψD(Δg)Ec1(ψ)c2(ψ)
}

≈ N − 1 +
q

2

∑

ψ �=1

E|c1(ψ)|2 − q

2

∑

ψ �=1

�{
ψD(Δ − Δg)

}
E|c1(ψ)|2 .

where the third step follows from c2(ψ) ≈ ψD(Δ)c1(ψ). In fact, E|c1(ψ)|2 is
nearly constant in ψ. If Δg �= Δ, then

∑

ψ �=1 ψD(Δ − Δg) = −1 and it follows
that

E r(Δg) − E r(Δ) ≈ q
∑

ψ �=1

E|c1(ψ)|2 .

In particular, if q �
√

N/
∑

ψ �=1 E|c1(ψ)|2, then E r(Δg) −E r(Δ) �
√

N . This
is sufficient to obtain a constant advantage since the standard deviation of r(Δg)
is of the order

√
N . This can be motivated by noting that, for a uniform output

distribution, the distribution of r(Δg) would be asymptotically χ2 with N − 1
degrees of freedom. Hence, ˜O(Nr/2−1.5) data should suffice to obtain a constant
message-recovery advantage.

No attempt will be made here to make the above argument rigorous. Instead,
accurate estimates of the message-recovery advantage for specific values of N can
be computed using a Monte-Carlo approach. The main ingredient is a method
to sample from the correlation distributions, which is identical to the one used
for the calculations in Sect. 4.3. Results for full-round FEA-1 with N = 16 and
FF3-1 with N = 1000 are shown in Fig. 6, along with experimental estimates of
the advantage.

Observe that for FF3-1 with q = 4×�2N2.5� ≈ 228, the theoretical advantage
is an overestimate. This is due to the fact that only 228 data is available for a
fixed choice of the plaintext and tweak TL. Once the variations in the ideal
distribution (which was assumed to be uniform in the analysis) are of the same
order as the sampling error, the advantage begins to flatten off. However, this
does not imply that the advantage of the FF3-1 message-recovery attack cannot
be made close to one. Indeed, one can simply perform the attack for a different
choice of TL. Of course, for even larger N , the maximum advantage that can
be achieved using one choice of TL decreases and the attack eventually becomes
infeasible. Based on the estimated data complexity of the attack and Fig. 6, this

62 T. Beyne

is expected to occur for N > 212. The right-half recovery attack from Sect. 5.3
avoids this problem and can be used for all N < 219, but it has a higher overall
data complexity.

5.3 Right-Half Recovery and Application to FEA-2

The left-half recovery attack on FEA-1 and FF3-1 could also be applied for
two messages (xL, xR) and (x′

L, x′
R) with xR �= x′

R. However, the recovered
difference would then be Δ = xL − x′

L + F1(xR) − F1(x′
R). If xL − x′

L is known,
then the adversary can recover Δ to obtain the difference F1(xR)−F1(x′

R). This
is useful because it leads to a right-half recovery attack. In addition, the output
differences will be directly used in the key-recovery attack on FEA-1 that is
described in Sect. 6. It is also possible to apply the same attack with a different
choice of Z that includes the left half of the plaintext. In this case, the recovered
difference would simply be F1(xR) − F1(x′

R) due to reduction modulo Z. The
main advantage of this approach is that it increases the amount of available data
per choice of the right half by a factor of N . This extends the reach of the attack
to N < 219, compared to N < 212 for left-half recovery.

The right-half can be recovered by guessing x′
R until the recovered differ-

ence is zero. This does not violate the distinctness requirement of the message-
recovery framework, since the tweaks TR and the left halves of the guessed mes-
sages can be different from those of the secret message. The attack proceeds by
computing the statistics r(0) from Sect. 5.1 with p̂1 the empirical distribution for
the secret message and p̂2 the empirical distribution with right-half guess x′

R. If
these statistics are ranked in ascending order, the values of x′

R corresponding to
the top of the list are the most promising candidates for xR. By the analysis in
Sect. 5.2, this attack requires ˜O(Nr/2−0.5) data. A simulation of the maximum
advantage is shown in the bottom of Fig. 6, along with experimental results.
Note that the error bars are wider than for the left-half recovery experiments
because each data point was estimated using only 40 runs of the attack (to limit
the time complexity of the experiment).

The same idea as above can be used to extend the message-recovery attack
to FEA-2. For example, consider left-half recovery. In this case, the adversary
queries the encryption of the secret message (xL, xR) under many tweaks with
constant TL. In addition, for each guess of x′

L, similar queries are made for
(x′

L, xR). The same process as above can be used to identify the values of xL for
which

F2(xL + F1(xR)) + xR = F2(x′
L + F1(xR)) + xR .

However, there is an additional issue that must be addressed: since the approxi-
mation shown in Fig. 2b does not have equal input and output masks, the effect of
changing the plaintext input on the correlations is more complicated. Neverthe-
less, one can still use the same approach (with roughly the same data complexity)
to check for equality between the two output distributions.

Linear Cryptanalysis of FF3-1 and FEA 63

−6 −4 −2 0 2 4 6 8 10 12
0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

Relative data [log2 q/(2N4.5)]

A
dv

an
ta
ge

Maximum advantage of message-recovery attack
FEA-1 with N = 16 and r = 12 (left-half recovery)

−6 −4 −2 0 2 4 6 8 10 12
0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

Relative data [log2 q/(2N2.5)]

A
dv

an
ta
ge

FF3-1 with N = 1000 and r = 8 (left-half recovery)

−6 −4 −2 0 2 4 6 8 10 12
0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

Relative data [log2 q/N3.5]

A
dv

an
ta
ge

FF3-1 with N = 1000 and r = 8 (right-half recovery)

Fig. 6. Theoretical and experimental maximum advantage of the message-recovery
attacks for full-round FEA-1 and FF3-1. The error bars correspond to 95% Clopper-
Pearson confidence intervals. The dashed vertical line corresponds to a data complexity
of 2 × 228.

64 T. Beyne

6 Key-Recovery Attack on FEA-1

This section shows how the left-half message-recovery attack on FEA-1 from
Sect. 5.1 can be used for key-recovery. Naturally, the attack heavily depends on
the internal details of the round function F1. For FF3-1, key-recovery is not
feasible since the round functions are truncations of the AES.

The FEA-1 round function is illustrated in Fig. 7. It consists of two iterations
of a key-addition layer, an S-box layer and a linear layer with branch number
nine. Each of these layers acts on a state in a vector space F

8
28 . The round keys

will be denoted by Ka and Kb. The round function F1 is defined as the truncation
of this structure to m bits.

The exact choice of the matrix representation M of the linear layer is not
important. The only property of M that will be used is the fact that it has
branch number nine (equivalently, is MDS). The S-box is based on inversion
in F28 , but the details are not important. However, it is important that for all
nonzero Δ1 and Δ2, the equation S(x + Δ1) = S(x) + Δ2 has either no, two
or four solutions in x. For each Δ1 �= 0, the case with four solutions occurs for
exactly one choice of Δ2.

Ka

M

Kb y

M

S S

S S

S S

S S

S S

S S

S S

S S
P

TL

F1(P)

Fig. 7. Round function of FEA-1 with round keys Ka and Kb.

Recall from Sect. 5.3 that it is possible to recover output differences F1(P)+
F1(P ′) for an arbitrary choice of P and P ′. The idea behind the key-recovery
attack is to guess parts of the internal state of the round function and to check
the validity of these guesses using such output differences. After recovering the
relevant parts of the internal state, the round keys can be recovered.

Let x denote the first byte of the round function input P‖TL. Observe that
byte i of the internal state y (indicated in Fig. 7) can be written as

yi = S(γi + Mi,1 S(Ka,1 + x)) ,

where γ1, . . . , γ8 ∈ F28 are constants depending on the round keys Ka and Kb

(but not on the first byte Ka,1) and on the tweak TL. Importantly, γ1, . . . , γ8 do

Linear Cryptanalysis of FF3-1 and FEA 65

not depend on x. Specifically,

γi = Kb,i +
8

∑

j=2

Mi,jS([P‖TL]j + Ka,j) .

In Sect. 6.1, it will be shown how Ka,1 and γi can be recovered using a limited
number of output differences. Section 6.2 then shows how the entire round keys
Ka and Kb can be extracted from these constants and a few additional output
differences.

6.1 Recovering Ka,1 and the Internal Constants γi

It is clear from Fig. 7 that the output difference is a linear function of the differ-
ence between the internal states y and y′ (corresponding to two inputs x and x′).
Furthermore, since M is an invertible matrix, this function is of rank m. Hence,
y + y′ can take 264−m = 264/N possible values. By computing an echelon form
for the linear function that maps y +y′ to the output difference, these candidate
solutions can easily be enumerated. For each guess of y + y′, one obtains the
values

yi + y′
i = S(γi + Mi,1S(Ka,1 + x)) + S(γi + Mi,1S(Ka,1 + x′)) .

For each i = 1, . . . , 8, one can determine the set of possible input differences
S(Ka,1+x)+S(Ka,1+x′) that can lead to the known difference yi +y′

i �= 0. Due
the properties of S, there are 127 possible input differences. Hence, each i reduces
the number of candidate differences by a factor 127/255 < 1/2. It follows that
the difference S(Ka,1 + x) + S(Ka,1 + x′) can be uniquely determined. However,
since the difference x + x′ is known, two candidates for Ka,1 can be computed
from the difference equation. The case with four solutions is unlikely to occur
and does not significantly affect the overall time and data complexity of the
attack.

Once Ka,1 has been determined (as one of two possible values), the constants
γi can also be obtained by solving a difference equation. In particular, since the
case with four solutions is rare, one usually ends up with two candidates for each
γi. To check the validity of these candidates, additional output differences will
be used. To save data, one of x or x′ can be reused. For each of the 29 candidate
values, the expected output difference should then be computed and compared
to the observed difference. This requires roughly 212 S-box evaluations. If the
candidate values are wrong, the output difference will match in roughly 1/N of
the cases. Hence, the computational cost is dominated by the calculation of the
expected output difference for the first pair.

The total number of candidates for the difference y+y′, the internal constants
and the first byte of Ka is 264+9/N = 273/N . Hence, �73/m − 1� pairs are
sufficient to obtain a unique solution. For m = 4, the number of available input
differences is too small to obtain a unique candidate. However, this is not a major
issue since the time complexity of the round key recovery procedure described
in Sect. 6.2 is small enough that it can be repeated several times.

66 T. Beyne

The data complexity of the above process is (�73/m − 1� + 1)q/2 queries,
where q is the data complexity of the left-half message-recovery attack. This
comes with an equal computational cost, measured in FEA-1 evaluations. The
remaining computational cost is dominated by 264+12/N S-box evaluations. Since
the cipher contains 12 × 16 S-boxes, one can conservatively estimate that this
takes less time than 268/N evaluations of full-round FEA-1.

6.2 Recovering the Round Keys

Once the constants γ1, . . . , γ8 have been recovered, obtaining the round keys Ka

and Kb is relatively easy. In particular, recall that

γi = Kb,i +
8

∑

j=2

Mi,jS([P‖TL]j + Ka,j) .

Suppose P‖TL and P ′‖T ′
L differ only in byte j ∈ {2, . . . , 8} and let γ′

i be the
new value of γi for input P ′‖T ′

L. It is easy to see that

γi + γ′
i = Mi,jS([P‖TL]j + Ka,j) + Mi,jS([P ′‖T ′

L]j + Ka,j) .

Hence, after guessing Ka,j , one can compute the new constants γ′
i and the

expected output differences for pairs with tweak T ′
L. To obtain a unique (up to

a constant) candidate for Ka,j , a total of �8/m� differences are sufficient. Recov-
ering all of the bytes of Ka thus requires 7 × �8/m� differences. Once Ka is
recovered, Kb can be computed directly.

To conclude, the data complexity of this step is 7q/2×(�8/m�+1) with q the
data complexity of the left-half message-recovery attack. A few additional pairs
will be required to filter spurious candidates for Ka,j , or if no unique solution for
the constants γ1, . . . , γ8 was obtained in the first step of the attack (m = 4). The
time complexity, excluding the time required for message-recovery, is negligible
compared to that of the first step.

6.3 Recovering All Round Keys

By the results in Sects. 6.1 and 6.2, the round keys Ka and Kb of the first round
function can be recovered using at most �73/m − 1� + 7�8/m� ≤ 16�8/m� eval-
uations of the left-half message-recovery attack and additional time equivalent
to at most 268/N FEA-1 evaluations. If q is the amount of data required for
the left-half recovery attack, this amounts to a total of less than 8�8/m�q + 4q
queries. However, the FEA-1 key-schedule is a Lai-Massey structure that gener-
ates two round keys per iteration. Hence, the remaining round keys can not be
obtained by iterating the key-schedule without knowing the round keys for the
second round. To obtain these keys, it suffices to perform the same key-recovery
attack on F2. Hence, the total cost is less than 16�8/ log2 N�q + 8q data for
left-half recoveries and additional time equivalent to less than 269/N evaluations
of FEA-1.

Linear Cryptanalysis of FF3-1 and FEA 67

7 Conclusion

It was shown that the format-preserving encryption standards FF3-1, FEA-1 and
FEA-2 are all vulnerable to linear cryptanalysis. More generally, the analysis in
this paper is applicable to any small-domain Feistel cipher with alternating round
tweaks.

The attacks rely on the ability to vary the tweaks in even-numbered rounds
(FF3-1 and FEA-1) or rounds numbered by a multiple of three (FEA-2), while
keeping the tweaks in the other rounds fixed. Combined with the observation
that the variance of the correlation of a nontrivial linear approximation over a
small random function is quite large, this results in strong linear trails through
the cipher. The analysis of FF3-1 is also of theoretical interest as an application
of the theory of linear cryptanalysis over the group Z/NZ.

The data requirements of the basic linear distinguishers were reduced using
multidimensional linear cryptanalysis. Based on the same principle, efficient
message-recovery attacks were obtained. For FEA-1, the message-recovery attack
was in turn extended to a key-recovery attack.

For many instances of FF3-1, FEA-1 and FEA-2, the data requirements of
the new attacks are small enough to be a practical concern for users of these
standards.

Acknowledgments. I thank Dongyoung Roh (ETRI) and Morris Dworkin (NIST) for
useful comments on an early draft of this work, and Vincent Rijmen for proofreading
the paper. The author is supported by a PhD Fellowship from the Research Foundation
– Flanders (FWO).

References

1. Amon, O., Dunkelman, O., Keller, N., Ronen, E., Shamir, A.: Three third genera-
tion attacks on the format preserving encryption scheme FF3. Cryptology ePrint
Archive, Report 2021/335 (2021). https://eprint.iacr.org/2021/335

2. Baignères, T., Junod, P., Vaudenay, S.: How far can we go beyond linear crypt-
analysis? In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 432–450.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30539-2 31

3. Baignères, T., Stern, J., Vaudenay, S.: Linear cryptanalysis of non binary ciphers.
In: Adams, C., Miri, A., Wiener, M. (eds.) SAC 2007. LNCS, vol. 4876, pp. 184–
211. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-77360-3 13

4. Bellare, M., Hoang, V.T., Tessaro, S.: Message-recovery attacks on Feistel-based
format preserving encryption. In: Weippl, E.R., Katzenbeisser, S., Kruegel, C.,
Myers, A.C., Halevi, S. (eds.) Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security, Vienna, Austria, 24–28 October 2016,
pp. 444–455. ACM (2016). https://doi.org/10.1145/2976749.2978390

5. Bellare, M., Ristenpart, T., Rogaway, P., Stegers, T.: Format-preserving encryp-
tion. In: Jacobson, M.J., Rijmen, V., Safavi-Naini, R. (eds.) SAC 2009. LNCS,
vol. 5867, pp. 295–312. Springer, Heidelberg (2009). https://doi.org/10.1007/978-
3-642-05445-7 19

6. Beyne, T.: Linear Cryptanalysis in the Weak Key Model. Master’s thesis, KU
Leuven (2019). https://homes.esat.kuleuven.be/∼tbeyne/masterthesis/thesis.pdf

https://eprint.iacr.org/2021/335
https://doi.org/10.1007/978-3-540-30539-2_31
https://doi.org/10.1007/978-3-540-77360-3_13
https://doi.org/10.1145/2976749.2978390
https://doi.org/10.1007/978-3-642-05445-7_19
https://doi.org/10.1007/978-3-642-05445-7_19
https://homes.esat.kuleuven.be/~tbeyne/masterthesis/thesis.pdf

68 T. Beyne

7. Black, J., Rogaway, P.: Ciphers with arbitrary finite domains. In: Preneel, B. (ed.)
CT-RSA 2002. LNCS, vol. 2271, pp. 114–130. Springer, Heidelberg (2002). https://
doi.org/10.1007/3-540-45760-7 9

8. Daemen, J., Govaerts, R., Vandewalle, J.: Correlation matrices. In: Preneel, B. (ed.)
FSE 1994. LNCS, vol. 1008, pp. 275–285. Springer, Heidelberg (1995). https://doi.
org/10.1007/3-540-60590-8 21

9. Daemen, J., Rijmen, V.: Probability distributions of correlation and differentials
in block ciphers. J. Math. Cryptol. 1(3), 221–242 (2007)

10. Dunkelman, O., Kumar, A., Lambooij, E., Sanadhya, S.K.: Cryptanalysis of Feistel-
based format-preserving encryption. Cryptology ePrint Archive, Report 2020/1311
(2020). https://eprint.iacr.org/2020/1311

11. Durak, F.B., Vaudenay, S.: Breaking the FF3 format-preserving encryption stan-
dard over small domains. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS,
vol. 10402, pp. 679–707. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-63715-0 23

12. Dworkin, M.: Recommendation for block cipher modes of operation: methods
for format-preserving encryption. NIST Special Publication 800 38Gr1 (February
2019). https://doi.org/10.6028/NIST.SP.800-38Gr1-draft

13. Hermelin, M., Cho, J.Y., Nyberg, K.: Multidimensional linear cryptanalysis of
reduced round serpent. In: Mu, Y., Susilo, W., Seberry, J. (eds.) ACISP 2008.
LNCS, vol. 5107, pp. 203–215. Springer, Heidelberg (2008). https://doi.org/10.
1007/978-3-540-70500-0 15

14. Hoang, V.T., Miller, D., Trieu, N.: Attacks only get better: how to break ff3 on large
domains. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11477,
pp. 85–116. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17656-3 4

15. Hoang, V.T., Tessaro, S., Trieu, N.: The curse of small domains: new attacks on
format-preserving encryption. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO
2018. LNCS, vol. 10991, pp. 221–251. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-96884-1 8

16. Lee, J.-K., Koo, B., Roh, D., Kim, W.-H., Kwon, D.: Format-preserving encryption
algorithms using families of tweakable blockciphers. In: Lee, J., Kim, J. (eds.)
ICISC 2014. LNCS, vol. 8949, pp. 132–159. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-15943-0 9

17. Matsui, M.: Linear cryptanalysis method for DES cipher. In: Helleseth, T. (ed.)
EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994).
https://doi.org/10.1007/3-540-48285-7 33

18. Patarin, J.: New results on pseudorandom permutation generators based on the
DES scheme. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 301–312.
Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-46766-1 25

19. Patarin, J.: Generic attacks on Feistel schemes. In: Boyd, C. (ed.) ASIACRYPT
2001. LNCS, vol. 2248, pp. 222–238. Springer, Heidelberg (2001). https://doi.org/
10.1007/3-540-45682-1 14

20. Patarin, J.: Security of random Feistel schemes with 5 or more rounds. In: Franklin,
M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 106–122. Springer, Heidelberg
(2004). https://doi.org/10.1007/978-3-540-28628-8 7

21. Rijmen, V., Daemen, J., Preneel, B., Bosselaers, A., De Win, E.: The cipher
SHARK. In: Gollmann, D. (ed.) FSE 1996. LNCS, vol. 1039, pp. 99–111. Springer,
Heidelberg (1996). https://doi.org/10.1007/3-540-60865-6 47

22. Selçuk, A.A.: On probability of success in linear and differential cryptanalysis. J.
Cryptol. 21(1), 131–147 (2008). https://doi.org/10.1007/s00145-007-9013-7

https://doi.org/10.1007/3-540-45760-7_9
https://doi.org/10.1007/3-540-45760-7_9
https://doi.org/10.1007/3-540-60590-8_21
https://doi.org/10.1007/3-540-60590-8_21
https://eprint.iacr.org/2020/1311
https://doi.org/10.1007/978-3-319-63715-0_23
https://doi.org/10.1007/978-3-319-63715-0_23
https://doi.org/10.6028/NIST.SP.800-38Gr1-draft
https://doi.org/10.1007/978-3-540-70500-0_15
https://doi.org/10.1007/978-3-540-70500-0_15
https://doi.org/10.1007/978-3-030-17656-3_4
https://doi.org/10.1007/978-3-319-96884-1_8
https://doi.org/10.1007/978-3-319-96884-1_8
https://doi.org/10.1007/978-3-319-15943-0_9
https://doi.org/10.1007/978-3-319-15943-0_9
https://doi.org/10.1007/3-540-48285-7_33
https://doi.org/10.1007/3-540-46766-1_25
https://doi.org/10.1007/3-540-45682-1_14
https://doi.org/10.1007/3-540-45682-1_14
https://doi.org/10.1007/978-3-540-28628-8_7
https://doi.org/10.1007/3-540-60865-6_47
https://doi.org/10.1007/s00145-007-9013-7

Linear Cryptanalysis of FF3-1 and FEA 69

23. Tardy-Corfdir, A., Gilbert, H.: A known plaintext attack of FEAL-4 and FEAL-6.
In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 172–182. Springer,
Heidelberg (1992). https://doi.org/10.1007/3-540-46766-1 12

24. Terras, A.: Fourier Analysis on Finite Groups and Applications. Cambridge Uni-
versity Press (1999)

25. Vaudenay, S.: An experiment on DES statistical cryptanalysis. In: Gong, L., Stern,
J. (eds.) ACM CCS 96, pp. 139–147. ACM Press (March 1996). https://doi.org/
10.1145/238168.238206

https://doi.org/10.1007/3-540-46766-1_12
https://doi.org/10.1145/238168.238206
https://doi.org/10.1145/238168.238206

Efficient Key Recovery for All HFE
Signature Variants

Chengdong Tao2, Albrecht Petzoldt3, and Jintai Ding1,2(B)

1 Yau Mathematical Center, Tsinghua University, Beijing, China
2 Ding Lab, Beijing Institute of Mathematical Science and Applications,

Beijing, China
3 FAU Erlangen-Nuremberg, Nuremberg, Germany

Abstract. The HFE cryptosystem is one of the most popular multi-
variate schemes. Especially in the area of digital signatures, the HFEv-
variant offers short signatures and high performance. Recently, an
instance of the HFEv- signature scheme called GeMSS was selected as
one of the alternative candidates for signature schemes in the third round
of the NIST Post-Quantum Crypto (PQC) Standardization Project.

In this paper, we propose a new key recovery attack on the HFEv-
signature scheme. Our attack shows that both the Minus and the Vine-
gar modification do not enhance the security of the basic HFE scheme
significantly. This shows that it is very difficult to build a secure and
efficient signature scheme on the basis of HFE. In particular, we use our
attack to show that the proposed parameters of the GeMSS scheme are
not as secure as claimed.

Keywords: Multivariate cryptography · HFEv- · Key recovery ·
MinRank · NIST standardization process

1 Introduction

Cryptographic techniques such as encryption and digital signatures are an indis-
pensable part of modern communication systems. However, the currently used
schemes RSA and ECDSA become insecure as soon as large quantum computers
arrive. Due to recent progress in the development of such computers, there is
an urgent need for alternatives to these classical schemes which are resistant
against attacks with quantum computers. These are known as post-quantum
cryptosystems [4,6].

One of the main candidates for such schemes are multivariate public key
crypto- systems [15]. Especially in the area of digital signatures, there exist
many promising multivariate schemes. In fact, the multivariate signature scheme
Rainbow is among the three signature schemes in the third round of the NIST
standardization process of post-quantum cryptosystems [8]. Another multivari-
ate signature scheme, GeMMS, is one of the alternative candidates. GeMMS is
a special instance of the well known HFEv- signature scheme, which was first
c© International Association for Cryptologic Research 2021
T. Malkin and C. Peikert (Eds.): CRYPTO 2021, LNCS 12825, pp. 70–93, 2021.
https://doi.org/10.1007/978-3-030-84242-0_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-84242-0_4&domain=pdf
https://doi.org/10.1007/978-3-030-84242-0_4

Efficient Key Recovery for All HFE Signature Variants 71

proposed by Patarin et al. in [26]. The principle idea of HFEv- is to combine
the Minus and the Vinegar modifications with the HFE cryptosystem of [25].
Since the resulting multivariate quadratic system contains more variables than
equations, HFEv- can only be used for digital signatures.

Attacks Against HFEv- and Related Work. There exist many attack meth-
ods on HFEv-, such as the direct attack [9,27], the distinguishing attack [13],
the differential attack [7], and the MinRank attack [13]. The most studied attack
against HFEv- is the MinRank attack, which was first proposed by Kipnis and
Shamir in [23]. Later, many variants of this technique have been proposed to
increase its efficiency. The most prominent examples of this are the minors mod-
eling of Bettale, Faugére and Perret [3] as well as the support minors modelling
of Bardet, Bros, Cabarcas, Gaborit, Perlner, Smith-Tone, Tillich and Verbel [1].
Another recent paper closely related to our work is that of Beullens [2]. The main
difference to our paper is that Beullens studies MinRank type attacks against
SingleField schemes such as Rainbow, while we are interested in applying this
attack to BigField schemes.

In this paper, we mainly consider the MinRank attack using minors modeling
as a reference. According to [3], the complexity of this attack is given as

O
((

n + d + a + v + 1
d + a + v + 1

)ω)
,

where n is the degree of the field extension, d = �logq(D)�, where D is the degree
bound on the HFE central polynomial, a is the number of Minus equations, v is
the number of Vinegar variables and 2 < ω ≤ 3 is the linear algebra constant.
More information about the different strategies to solve the MinRank problem
can be found in Sect. 3.2.

Our Contribution. In this paper, we present an improved MinRank type key
recovery attack on the HFEv- signature scheme. The complexity of our new
attack on HFEv- using minors modeling is

O
((

n + d + v + 1
d + 1

)ω)
.

This shows that the Minus modification does not enhance the security of HFE
type cryptosystems, while the Vinegar modification increases the complexity
of our attack only by a polynomial factor. This shows that the currently used
techniques are insufficient to transform HFE into a secure signature scheme. In
particular, we use our attack to show that the parameters of GeMSS which were
submitted to the NIST Post-Quantum Crypto Standardization Project are not
as secure as claimed.

The remainder of this paper is organized as follows. Section 2 gives a short
introduction into multivariate cryptography and introduces the HFEv- signature
scheme, while Sect. 3 repeats some cryptanalytic concepts used in the further
parts of the paper. In Sect. 4 we present our attack against the HFEv- signature

72 C. Tao et al.

scheme and analyze its complexity. Section 5 discusses a possible speed up of our
attack by solving the MinRank problem using the support minors modeling and
Sect. 6 analyzes the importance of our attack on the NIST alternative candidate
GeMMS. Finally, Sect. 7 concludes the paper.

2 Multivariate Cryptography

The public key of a multivariate public key cryptosystem is a system of quadratic
polynomials in several variables over a finite field Fq of q elements, i.e.

p(1)(x1, . . . , xn) =
∑

1≤i≤j≤n

α
(1)
ij xixj +

∑
1≤i≤n

β
(1)
i xi + γ(1),

...
p(m)(x1, . . . , xn) =

∑
1≤i≤j≤n

α
(m)
ij xixj +

∑
1≤i≤n

β
(m)
i xi + γ(m).

The problem of inverting such a system is known as the MQ problem and was
proven to be NP hard [20].

In order to construct a digital signature scheme on the basis of the MQ
problem, one starts with an easily invertible quadratic map F : Fn

q → F
m
q (central

map). To hide the structure of this map in the public key, one combines F with
two randomly chosen invertible affine maps T : Fm

q → F
m
q and S : Fn

q → F
n
q .

The public key of a multivariate signature scheme is therefore given as

P = T ◦ F ◦ S : Fn
q → F

m
q ,

the private key of the scheme consists of the three maps T , F and S.
In order to generate a signature for a document d ∈ {0, 1}�, the owner of the

private key performs the following steps.

1. Use a hash function H to compute the hash value h = H(d) ∈ F
m
q .

2. Compute x = T −1(h) ∈ F
m
q .

3. Find a pre-image y ∈ F
n
q of x under the central map F .

4. Compute the signature z ∈ F
n
q of the document d as z = S−1(y).

To check the correctness of a message/signature pair (d, z), one simply computes
h = H(d) and h′ = P(z). The signature is accepted, if and only if h = h′ holds.
The process of signature generation and verification is illustrated by Fig. 1.

2.1 The HFEv- Signature Scheme

The HFEv- signature scheme is an example of a multivariate BigField scheme. In
such a scheme, the central map F is a univariate map over a degree n extension

Efficient Key Recovery for All HFE Signature Variants 73

Fig. 1. Signature generation and verification process for multivariate signature schemes

field Fqn of Fq. Using an isomorphism φ between the field Fqn and the vector
space F

n
q , we can transform the univariate polynomial map F into a quadratic

map F̄ = φ ◦ F ◦ φ−1 over the vector space F
n
q (see Fig. 2).

Fig. 2. Construction of the central map for multivariate BigField schemes

The HFEv- signature scheme uses three integer parameters D, a and v. The
three algorithms for key generation, signature generation and signature verifica-
tion can be described as follows.

Key Generation. In order to generate a key pair for the HFEv- signature
scheme, one randomly generates a polynomial (the central map) of the form

F(X,xn+1, . . . , xn+v) =
qi+qj≤D∑

i,j∈N

αijX
qi+qj

+
qi≤D∑
i∈N

βi(xn+1, . . . , xn+v)Xqi

+ γ(xn+1, . . . , xn+v).

So, F is a map from Fqn × F
v
q to Fqn , where the αi,j are randomly chosen

elements of the field Fqn , the βi : Fv
q → Fqn are linear maps from the vector

space F
v
q to the field Fqn and γ : Fv

q → Fqn is a quadratic map in the Vinegar
variables xn+1, xn+2, . . . , xn+v.

Due to the special structure of it, the central map F corresponds to a
quadratic map F̄ = φ ◦ F ◦ φ−1 : Fn+v

q → F
n
q . Furthermore, in order to hide

the structure of the central map F in the public key, one randomly chooses two
affine transformations T : Fn

q → F
n−a
q and S : Fn+v

q → F
n+v
q of maximal rank.

74 C. Tao et al.

Therefore, the public key of the scheme is the quadratic map

P = T ◦ F̄ ◦ S = T ◦ φ ◦ F ◦ (φ−1 × idv) ◦ S : Fn+v
q → F

n−a
q .

The private key of the HFEv- scheme consists of the three maps T , F and
S, the public key is given by P.

Signature Generation. Let d ∈ {0, 1}� be a document to be signed. The
process of signature generation works as follows:

1. Use a hash function H : {0, 1}� → F
n−a
q to compute the hash value h =

(h1, . . . , hn−a) ∈ F
n−a
q of the document d.

2. Compute a pre-image x ∈ F
n
q of h under the affine transformation T : Fn

q →
F

n−a
q and lift it to the extension field, obtaining X = φ−1(x) ∈ Fqn .

3. Choose random values for the Vinegar variables (yn+1, . . . , yn+v) ∈ F
v
q and

substitute them into the central map F to obtain a univariate polynomial
map FV (Z) : Fqn → Fqn .

4. Find a solution to the equation FV (Z) = X using Berlekamps algorithm. If
this equation has no solution, go back to step 2, and randomly choose another
vector (yn+1, . . . , yn+v) ∈ F

v
q until we can find a solution. Let Y ∈ Fqn be one

of the solutions and set y′ = φ(Y) = (y1, · · · , yn) ∈ F
n
q . Append the Vinegar

variables of step 2 to it, obtaining y = (y′, yn+1, · · · , yn+v) ∈ F
n+v
q .

5. Compute z = S−1(y). Then z ∈ F
n+v
q is the signature of the document d.

Signature Verification. To check if z ∈ F
n+v
q is indeed a valid signature for

the document d ∈ {0, 1}�, the receiver simply computes

– h = H(d) ∈ F
n−a
q and

– h′ = P(z).

If h′ = h holds, the signature is accepted, otherwise it is rejected.

Efficiency. The most costly step during the signature generation of HFEv- is
the solution of the polynomial equation FV (Z) = X by Berlekamps algorithm.
The complexity of this algorithm is given as

O(Dω + Dn(log(D)log(log(D))log(q))),

(see [15]) where D is the degree of the HFE polynomial, n is the degree of the
extension field Fqn and q is the cardinality of the base field.

A higher value of D therefore slows down the signature generation process
of HFEv- drastically.

One important strategy for the design of HFE based signature schemes was
therefore to choose D small and to compensate for this fact by increasing a
and v.

Efficient Key Recovery for All HFE Signature Variants 75

2.2 Previous Attacks on HFE

Historically, the most efficient attacks against signature schemes of the HFE
type are the direct and the MinRank attack. With regard to the direct attack,
it was discovered that the public systems of HFE and its variants can be solved
much more efficiently than random systems. This phenomenon was analyzed in
a series of papers [11,12,16]. The authors of these papers found that the degree
of regularity of a public HFEv- system is bounded from above by

{
(q−1)(d+v+a−1)

2 + 2 if q is even and d + a is odd,
(q−1)(d+v+a)

2 + 2 otherwise.

Regarding attacks of the MinRank type, many researchers considered the so
called min-Q-rank of the HFE system, which can be seen as the rank of the
quadratic form P lifted to the extension field Fqn . Similar to the degree of reg-
ularity, the min-Q-rank of the HFE system is bounded by the HFE parameters.

However, in our attack, we don’t consider the min-Q-rank of the HFE system,
but perform a MinRank attack over the base field Fq. While it is clear that the
complexity of a direct attack on a system of the HFE type is exponential in
d, a and v [10], our attack shows that this is not the case for MinRank. We
take a closer look at the MinRank problem and different strategies to solve it in
Sect. 3.2.

3 Preliminaries

For simplification, in the following sections of this paper, we assume that T and
S are linear transformations and q is an odd prime. Our attack method can be
easily extended to the case of affine maps T and S and even characteristic.

3.1 Equivalent Keys

An important notion in this paper is that of equivalent keys. For a multivariate
public key cryptosystem, the concept of equivalent keys is defined as follows.

Definition 1. Let ((T ,F ,S),P) be a key pair of a multivariate public key
crypto- system. A tuple (T ′,F ′,S ′) is called an equivalent private key if and
only if

P = T ◦ F ◦ S = T ′ ◦ F ′ ◦ S ′

and F ′ is a valid central map of the cryptosystem, i.e. F ′ has the same algebraic
structure as F .

We have

76 C. Tao et al.

Theorem 1 (Theorem 4.13 in [28]). Let P be a public key of the HFEv-
scheme over Fq. Let v be the number of Vinegar variables, a be the number of
Minus equations and n be the degree of the field extension. Then there exist

nqa+2n+vn(qn − 1)2
v−1∏
i=0

(qv − qi)
n−1∏

i=n−a−1

(qn − qi)

equivalent private keys for the public key P.

Given an HFEv- public key P, our attack finds one of the equivalent private
keys.

3.2 The MinRank Problem

The search version of the MinRank problem is defined as follows.

Definition 2 (MinRank problem). Given a positive number r and nx matri-
ces M1,M2, . . . , Mnx

with m rows and n columns over a field Fq, find a nonzero

vector (x1, x2, . . . , xnx
) ∈ F

nx
q , such that the linear combination M =

nx∑
i=1

xiMi

has rank at most r.

The MinRank problem is an NP-complete problem [5]. The main methods
for solving the MinRank problem are linear algebra search [21], Kipnis-Shamir
modeling [23], minors modeling [19] and support minors modeling [1].

In this paper, we mostly consider the minors modeling of the MinRank attack.
The main idea of this modeling is that the r + 1 minors of the low rank matrix
M are all zero. Since there are

(
n

r+1

)
minors and nx variables x1, . . . , xnx

, this
gives us a highly overdetermined system of equations of degree r + 1, which can
be solved by e.g. Gröbner basis techniques. The complexity of this process can
be estimated as

complexityminors modelling = O
((

n + r + 1
r + 1

)ω)
,

where, for previous attacks against HFEv-, r was given as d + v + a. We show,
how this value can be dropped to d.

In Sect. 5 of this paper we show how our attack might be speed up using
the support minors modeling approach. However, since we don’t have a full
theoretical understanding of the outcome of our experiments yet, we leave a
complete analysis of our attack using support minors modeling as a future work.

3.3 Matrix Representation of HFEv- Keys

Similar to [3], we represent the HFEv- central map in matrix form.

Efficient Key Recovery for All HFE Signature Variants 77

Proposition 1. Let

F ∗0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

α00 α01 · · · α0,n−1 γ00 γ01 · · · γ0,v−1

α10 α11 · · · α1,n−1 γ10 γ11 · · · γ1,v−1

...
...

. . .
...

...
...

. . .
...

αn−1,0 αn−1,1 · · · αn−1,n−1 γn−1,0 γn−1,1 · · · γn−1,v−1

β00 β01 · · · β0,n−1 δ00 δ01 · · · δ0,v−1

β10 β11 · · · β1,n−1 δ10 δ11 · · · δ1,v−1

...
...

. . .
...

...
...

. . .
...

βv−1,0 βv−1,1 · · · βv−1,n−1 δv−1,0 δv−1,1 · · · δv−1,v−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

be an (n + v) × (n + v) matrix over the field Fqn and

F (X,x1, . . . , xv) = (X,Xq , . . . , Xqn−1
, x1, . . . , xv)F

∗0(X,Xq , . . . , Xqn−1
, x1, . . . , xv)

t

be a polynomial in the quotient ring Fqn [X,x1, . . . , xv]/〈xq
1 − x1, . . . , x

q
v − xv〉.

Then we have for all 0 ≤ k < n

F qk
(X,x1, . . . , xv) = (X,Xq , . . . , Xqn−1

, x1, . . . , xv)F
∗k(X,Xq , . . . , Xqn−1

, x1, . . . , xv)
t,

where F ∗k ∈ M(n+v)×(n+v)(Fqn), the (i, j)-th entry of F ∗k is αqk

i−k,j−k for all

0 ≤ i, j, k < n, the (i, n + j)-th entry of F ∗k is γqk

j−k,i for all 0 ≤ j, k < n,

0 ≤ i < v, the (n + i, j)-th entry of F ∗k is βqk

i,j−k for all 0 ≤ i < v, 0 ≤ j, k < n,

and the (n + i, n + j)-th entry is δqk

ij for all 0 ≤ i < v, 0 ≤ j < v, 0 ≤ k < n.

Proof. If k = 0, we have obviously F qk

(X,x1, · · · , xv) = F (X,x1, · · · , xv). Now
we consider the case of 1 ≤ k < n. Since xqk

i = xi for all 1 ≤ i ≤ v, we have

F qk =
n−1∑

i=0

n−1∑

j=0
αqk

ij Xqi+k+qj+k
+

v−1∑

i=0

n−1∑

j=0
(βqk

ij + γqk

ji)xiX
qj+k

+
v−1∑

i=0

v−1∑

j=0
δqk

ij xixj

=
n−1+k∑

i=k

n−1+k∑

j=k

αqk

i−k,j−kXqi+qj +
v−1∑

i=0

n−1+k∑

j=k

(βqk

i,j−k + γqk

j−k,i)xiX
qj +

v−1∑

i=0

v−1∑

j=0
δqk

ij xixj

Then it can be divided as follows

F qk =
n−1∑

i=k

(
n−1+k∑

j=k

αqk

i−k,j−kXqi+qj

)

+
n−1+k∑

i=n

(
n−1+k∑

j=k

αqk

i−k,j−kXqi+qj

)

+
v−1∑

i=0

n−1∑

j=k

(βqk

i,j−k + γqk

j−k,i)xiX
qj +

v−1∑

i=0

n−1+k∑

j=n
(βqk

i,j−k + γqk

j−k,i)xiX
qj +

v−1∑

i=0

v−1∑

j=0
δqk

ij xixj .

That is

F qk =
n−1∑

i=k

(
n−1∑

j=k

αqk

i−k,j−kXqi+qj +
n−1+k∑

j=n

αqk

i−k,j−kXqi+qj

)

+
n−1+k∑

i=n

(
n−1∑

j=k

αqk

i−k,j−kXqi+qj +
n−1+k∑

j=n

αqk

i−k,j−kXqi+qj

)

+
v−1∑

i=0

n−1∑

j=k

(βqk

i,j−k + γqk

j−k,i)xiX
qj +

v−1∑

i=0

n−1+k∑

j=n

(βqk

i,j−k + γqk

j−k,i)xiX
qj +

v−1∑

i=0

v−1∑

j=0
δqk

ij xixj .

78 C. Tao et al.

Thus we have

Fqk =
n−1∑

i=k

(
n−1∑

j=k
α
qk

i−k,j−k
Xqi+qj +

k−1∑

j=0
α
qk

i−k,j−k+n
Xqi+qj+n

)

+
k−1∑

i=0

(
n−1∑

j=k
α
qk

i−k+n,j−k
Xqi+n+qj +

k−1∑

j=0
α
qk

i−k+n,j−k+n
Xqi+n+qj+n

)

+
v−1∑

i=0

n−1∑

j=k
(β

qk

i,j−k
+ γ

qk

j−k,i
)xiXqj +

v−1∑

i=0

k−1∑

j=0
(β

qk

i,j−k+n
+γ

qk

j−k+n,i
)xiXqj+n

+
v−1∑

i=0

v−1∑

j=0
δ
qk

ij xixj .

Since Xqn

= X we obtain by reducing the index of coefficients modulo n

F qk =
n−1∑

i=k

(
n−1∑

j=k

αqk

i−k,j−kXqi+qj +
k−1∑

j=0
αqk

i−k,j−kXqi+qj

)

+
k−1∑

i=0

(
n−1∑

j=k

αqk

i−k,j−kXqi+qj +
k−1∑

j=0
αqk

i−k,j−kXqi+qj

)

+
v−1∑

i=0

n−1∑

j=k

(βqk

i,j−k + γqk

j−k,i)xiX
qj +

v−1∑

i=0

k−1∑

j=0
(βqk

i,j−k + γqk

j−k,i)xiX
qj +

v−1∑

i=0

v−1∑

j=0
δqk

ij xixj .

Grouping the sums back together, we get

F qk =
n−1∑

i=0

n−1∑

j=0
aqk

i−k,j−kXqi+qj +
v−1∑

i=0

n−1∑

j=0
(βqk

i,j−k + γqk

j−k,i)xiX
qj +

v−1∑

i=0

v−1∑

j=0
δqk

ij xixj

= (X, Xq, · · · , Xqn−1
, x1, · · · , xv)F

∗k(X, Xq, · · · , Xqn−1
, x1, · · · , xv)

t,

where F ∗k ∈ M(n+v)×(n+v)(Fqn), the (i, j)-th entry of F ∗k is αqk

i−k,j−k for all

0 ≤ i, j, k < n, the (i, n+j)-th entry of F ∗k is γqk

j−k,i for all 0 ≤ j, k < n, 0 ≤ i < v,

the (n + i, j)-th entry of F ∗k is βqk

i,j−k for all 0 ≤ i < v, 0 ≤ j, k < n, and the

(n + i, n + j)-th entry is δqk

ij for all 0 ≤ i < v, 0 ≤ j < v, 0 ≤ k < n.
�

Proposition 2 (Proposition 2.1 in [3]). Let (θ1, θ2, · · · , θn) ∈ F
n
qn be a vector

basis of Fqn over Fq and

M =

⎛
⎜⎜⎜⎜⎝

θ1 θq
1 · · · θqn−1

1

θ2 θq
2 · · · θqn−1

2
...

...
. . .

...
θn θq

n · · · θqn−1

n

⎞
⎟⎟⎟⎟⎠

be the matrix whose columns are the Frobenius powers of the basis elements. We
can express the morphism φ : Fqn → F

n
q as

V �→ (V, V q, · · · , V qn−1
)M−1.

Its inverse φ−1 : Fn
q → Fqn is given as

(v1, v2, · · · , vn) �→ V,

Efficient Key Recovery for All HFE Signature Variants 79

where V is the first component of the vector (v1, v2, · · · , vn)M . More generally,
we have

(v1, v2, · · · , vn) · M = (V, V q, · · · , V qn−1
).

In this paper, we choose

M =

⎛
⎜⎜⎜⎝

1 1 · · · 1
θ θq · · · θqn−1

...
...

. . .
...

θn−1 (θn−1)q · · · (θn−1)qn−1

⎞
⎟⎟⎟⎠ , (1)

where θ is a generator of Fqn . Define

M̃ =
(

M 0
0 Iv

)
∈ M(n+v)×(n+v)(Fqn), (2)

where Iv is the v × v identity matrix. According to Proposition 2, we have

(v1, v2, · · · , vn, x1, · · · , xv) · M̃ = (V, V q, · · · , V qn−1
, x1, · · · , xv),

where vi, xj ∈ Fq, 1 ≤ i ≤ n, 1 ≤ j ≤ v and V ∈ Fqn .

Proposition 3. Let pi ∈ Fq[x1, x2, · · · , xn+v] be the public key polynomials of
HFEv- and Pi be the matrix representing the quadratic form of pi, 0 ≤ i < n−a.
Let the central map of HFEv- be

F = (X,Xq, · · · ,Xqn−1
, x1, · · · , xv)F ∗0(X,Xq, · · · ,Xqn−1

, x1, · · · , xv)t,

where F ∗0 ∈ M(n+v)×(n+v)(Fqn). Let S ∈ M(n+v)×(n+v)(Fq) and T ∈
Mn×(n−a)(Fq) be the matrices representing the linear parts of S and T . Then

(
M̃−1S−1P0(S−1)t(M̃−1)t, · · · , M̃−1S−1Pn−a−1(S−1)t(M̃−1)t

)

=
(
F ∗0, · · · , F ∗n−1

)
M−1T (3)

Proof. Similar to Lemma 2 in [3].

Denote U = M̃−1S−1 ∈ M(n+v)×(n+v)(Fqn) and W = M−1T ∈
Mn×(n−a)(Fqn), then Eq. (3) can be rewritten as

(
UP0U

t, · · · , UPn−a−1U
t
)

=
(
F ∗0, · · · , F ∗n−1

)
W. (4)

80 C. Tao et al.

4 Our Key Recovery Attack on HFEv-

In this section we describe our key recovery attack on the HFEv- signature
scheme. Our attack is very much motivated by the basic idea that the best
attack on any cryptosystem should make full use of information available for
attack. In this sense, our attack follows a current trend in the cryptanalysis of
multivariate schemes, namely to utilize information provided by certain rows of
the public matrices (see also [1,2]).

Let q, n, v,D, a be the parameters of HFEv- and denote d = �logq(D)�. In
this paper, we assume that 0 ≤ a < n − 2d − 1. Note that this condition is
fulfilled for all practical parameter sets for HFEv-.1

Our attack consists of two steps. In the first step, we recover an equivalent
linear transformation S by solving a MinRank problem over the base field Fq.
In the second step, we use this equivalent linear map to recover equivalent maps
F and T . By doing so, we obtain an equivalent HFEv- private key which allows
us to generate signatures for arbitrary messages.

4.1 Recovering an Equivalent Linear Transformation S

In this subsection, we will present our technique of finding an equivalent map S.
We first show that the right hand side of (4) is a matrix of rank ≤ d and then
show how to recover S by solving a MinRank problem.

Proposition 4. Let F ∗0, · · · , F ∗n−1 and W = [wij] be the matrices of Eq. (4)
and ai be the first row of matrix F ∗i (i = 0, 1, . . . , n − 1). Let Q be the matrix

given as Q = W t ·

⎛
⎜⎝

a0

...
an−1

⎞
⎟⎠. Then the rank of Q is at most d = �logq(D)�.

Proof. We have

Q =

⎛
⎜⎜⎝

w11a0 + w21a1 + · · · + wn1an−1

w12a0 + w22a1 + · · · + wn2an−1

· · ·
w1,n−aa0 + w2,n−aa1 + · · · + wn,n−aan−1

⎞
⎟⎟⎠ = W t ·

⎛
⎜⎜⎝

a0

a1

· · ·
an−1

⎞
⎟⎟⎠

Due to the construction of the matrices F ∗i(i = 0, 1, . . . , n − 1), we have
⎛
⎜⎜⎝

a0

a1

· · ·
an−1

⎞
⎟⎟⎠ =

⎛
⎝A1

0
A2

⎞
⎠ ,

1 Indeed, a ≥ n−2d+1 implies that the number n−a of equations in the public system
is bounded from above by 2d + 1. Defending the scheme against brute force attacks
would therefore require a high value of d which would make the scheme completely
impractical.

Efficient Key Recovery for All HFE Signature Variants 81

where A1 is an 1 × (n + v) matrix and A2 is a (d − 1) × (n + v) matrix. That is,
this matrix has only d non-zero rows, therefore its rank is at most d. Therefore
the rank of Q is at most d.
�

Theorem 2. Let P0, P1, . . . , Pn−a−1 and U be the matrices of Eq. (4), the vector
u = (u0, u1, · · · , un+v−1) be the first row of U and bi = (u0, u1, . . . , un+v−1)Pi,
(i = 0, 1, . . . , n − a). Define Z ∈ M(n−a)×(n+v)(Fqn) as the matrix whose row
vectors are the bi. Then the rank of Z is at most d.

Proof. From Eq. (4) and Proposition 4, we know that the rank of ZU t is not
more than d. Thus the rank of Z is at most d.
�

Proposition 5. Let A = [aij] be an n×m matrix over Fq, B = M−1A = [bij] ∈
Mn×m(Fqn). Then

bij = bq
i−1,j , for all i, j, with 0 ≤ i < n, 0 ≤ j < m.

That is, each row is obtained from the previous one using a Frobenius application.
Therefore, the whole matrix B is completely defined by any of its rows.

Proof. Let (ε1, ε2, · · · , εn) be a dual basis of (θ1, θ2, · · · , θn) of Fqn over Fq, then
we have

M−1 =

⎛
⎜⎜⎜⎝

ε1 ε2 · · · εn

εq
1 εq

2 · · · εq
n

...
...

. . .
...

εqn−1

1 εqn−1

2 · · · εqn−1

n

⎞
⎟⎟⎟⎠ .

Thus bij =
n−1∑
k=0

akjε
qi

k+1 for all i, j, 0 ≤ i < n, 0 ≤ j < m. Since aq
ij = aij and the

linearity of Frobenius, we have

bq
i−1,j =

(
n−1∑
k=0

akjε
qi−1

k+1

)q

=
n−1∑
k=0

aq
kj(ε

qi−1

k+1)q =
n−1∑
k=0

akjε
qi

k+1 = bij

for all i, j, 0 < i ≤ n, 0 ≤ j < m.
�

Proposition 5 implies that we only need to find one row of matrix U =
M̃−1S−1 to recover the first n rows of U . Let u0, u1, · · · , un+v−1 be the first
row of U . We assume that u0, u1, · · · , un+v−1 are unknowns. Since we need to
find only one of the equivalent HFEv- private keys, we can fix u0 = 1 [22]. Since
the rank of Z is at most d, we can find the ui (i = 1, . . . , n + v − 1) by solving
a MinRank Problem over the base field. This can be done by using any of the
methods presented in Sect. 3. Our method to recover S can be summarized as
shown in Algorithm 1.

82 C. Tao et al.

Algorithm 1. Recovering an Equivalent Linear Transformation S

Input: HFEv- parameters (q, n, v,D, a), matrices (P0, · · · , Pn−a−1) representing the

quadratic forms of the public key polynomials, matrix ˜M (see Eq. (2)).
Output: Equivalent linear transformation S.

1. Set bi = (1, u1, · · · , un+v−1)Pi, 0 ≤ i < n − a, where (u1, · · · , un+v−1) are
unknowns.

2. Construct a matrix Z whose row vectors are bi, 0 ≤ i < n − a. According to
Theorem 2, the rank of Z is at most d.

3. Solve the MinRank Problem with matrix Z using one of the methods described
in Section 3. Denote the solution by u0, u1, · · · , un+v−1.

4. Set U =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

u0 u1 · · · un+v−1

uq
0 uq

1 · · · uq
n+v−1

...
...

. . .
...

uqn−1

0 uqn−1

1 · · · uqn−1

n+v−1

r00 r01 · · · r0,n+v−1

...
...

. . .
...

rv−1,0 rv−1,1 · · · rv−1,n+v−1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, where rij , 0 ≤ i < v, 0 ≤ j < n + v

are randomly chosen from the finite field Fq such that U is invertible.

5. Compute S′ = (˜MU)−1.
6. Return S′.

4.2 Recovering Equivalent Maps F and T

In this subsection we show how, having found an equivalent linear transforma-
tion S, we can recover equivalent maps F and T by solving several systems of
(non)linear equations.

Proposition 6. Let (q, n, v,D, a) be the parameters of HFEv-, Pi (0 ≤ i <
n−a),M , U,W,F ∗j(0 ≤ j < n) be the matrices of Eq. (4). We set d = �log2 D�.
Assume that U is known, then F ∗0 can be recovered by solving a linear system
with n − a − 1 variables, (d + a) · (n + v) additional linear equations in at most
d + v variables, and

(
v+1
2

)
univariate polynomial equations of degree qd.

Proof. From Eq. (4) we know that W = M−1T ∈ Mn×(n−a)(Fqn). Let W =(
W1

W2

)
, where W1 ∈ Ma×(n−a)(Fqn) and W2 ∈ M(n−a)×(n−a)(Fqn). Since M is

invertible and the entries of T are randomly chosen from Fq , the probability of

W2 being singular is 1−
n−a∏
i=1

(1− 1
qi). According to Theorem 1, there are at least

qn equivalent maps T , thus the probability that all matrices W2 associated to the

equivalent maps T are singular is approximately (1 −
n−a∏
i=1

(1 − 1
qi))qn

. Therefore

we find an invertible matrix W2 with overwhelming probability. We multiply

Efficient Key Recovery for All HFE Signature Variants 83

both sides of Eq. (4) by W−1
2 , obtaining

(
UP0U

t, · · · , UPn−a−1U
t
)
W−1

2 =
(
F ∗0, · · · , F ∗n−1

) (
W1W

−1
2

In−a

)
, (5)

where In−a is the (n− a)× (n− a) identity matrix. Let (w̃0, w̃1, . . . , w̃n−a−1) be
the first column of W−1

2 and (l̃0, l̃1, . . . , l̃a−1, 1, 0, . . . , 0) be the first column of(
W1W

−1
2

In−a

)
, then Eq. (5) yields

n−a−1∑
k=0

w̃kUPkU t =
a−1∑
i=0

l̃iF
∗k + F ∗a.

We multiply both sides by l̃−1
0 , obtaining

n−a−1∑
k=0

l̃−1
0 w̃kUPkU t = F ∗0 +

a−1∑
i=1

l̃−1
0 l̃iF

∗i + l̃−1
0 F ∗a.

Denoting wk = l̃−1
0 w̃k, (k = 0, 1, · · · , n−a−1), and li = l̃−1

0 l̃i, (i = 1, 2, · · · , a−1),
la = l̃−1

0 yields
n−a−1∑

k=0

wkUPkU t =
a∑

i=1

liF
∗i + F ∗0. (6)

Note that
a∑

i=1

liF
∗i+F ∗0 =

⎛
⎝ F ′

0 0 F ′
1

0 0 0
F

′t
1 0 F ′

2

⎞
⎠ ∈ M(n+v)×(n+v)(Fqn), where F ′

0 = [f ′
ij]

is a (d + a) × (d + a) diagonal band symmetric matrix of width 2d − 1, that is
f ′

ij = 0, if |i−j| ≥ d, F ′
1 ∈ M(d+a)×v(Fqn), F

′t
1 ∈ Mv×(d+a)(Fqn) is the transpose

of F ′
1 , F ′

2 ∈ Mv×v(Fqn) is a symmetric matrix .
Assume that w0, w1, . . . , wn−a−1 are unknowns. Since we need to find only

one of the equivalent HFEv- private keys, we can fix w0 = 1 [28]. Due to the

fact that U is known and the special structure of the matrix
a∑

i=1

liF
∗i + F ∗0,

we obtain from Eq. (6) d(n − a − d) linear equations in the n − a − 1 vari-
ables w1, w2, · · · , wn−a−1. Since 0 < a < n − 2d − 1, we have d(n − a − d) ≥
n − a − 1. Therefore, by solving these linear equations, we get a solution
(w′

0, w
′
1, w

′
2, · · · , w′

n−a−1) with w′
0 = 1. Thus Eq. (6) can be rewritten as

n−a−1∑
k=0

w′
kUPkU t =

a∑
i=1

liF
∗i + F ∗0. (7)

Now we will find l1, · · · , la and F ∗0 from Eq. (7). We know that F ∗0 has the
form

F ∗0 =

⎛
⎝F0 0 F1

0 0 0
F t
1 0 F2

⎞
⎠ ,

84 C. Tao et al.

where F0 = [αij] ∈ Md×d(Fqn) is a symmetric matrix, F1 = [γij] ∈ Md×v(Fqn),
F t
1 ∈ Mv×d(Fqn) is the transpose of F1 and F2 = [δij] ∈ Mv×v(Fqn) is a

symmetric matrix . According to Proposition 1 we can represent F ∗k (1 ≤ k ≤
n − 1) by the entries of F ∗0.

Assume that l1, . . . , la, αij (0 ≤ i ≤ j < d), γij(0 ≤ i < d, 0 ≤ j < v),
δij(0 ≤ i ≤ j < v) are unknowns. Then we can recover F ∗0 as follows.

– From the first row of matrix Eq. (7), we can find a linear system in the vari-
ables α0j (0 ≤ j < d) and γ0j (0 ≤ j < v) of the form

α00+θ00 = 0, · · · , α0,d−1+θ0,d−1 = 0, γ00+θ0,d = 0, · · · , γ0,v−1+θ0,d+v−1 = 0.

Thus we can obtain the first row of F ∗0 by solving this linear system.
– Once the first row of F ∗0 is known, we can obtain from the second row of

matrix Eq. (7) a linear system in the variables l1 and α1j(1 ≤ j < d) and
γ1j(0 ≤ j < v). By solving this linear system we can obtain the second row
of F ∗0 and l1.

– Similarly, if a ≤ d, we can obtain l1, · · · , la, F0 and F1 using the first d rows
of matrix Eq. (7). If a > d, we can obtain l1, · · · , ld, F0 and F1 by using the
first d rows of matrix Eq. (7) and ld+k(1 ≤ k ≤ a − d) by using the (d + k)-th
row of matrix Eq. (7). Thus we obtain l1, · · · , la, F0 and F1.

– Once l1, · · · , la, F0 and F1 are known, we get from the last v rows of matrix
Eq. (7),

(
v+1
2

)
univariate polynomial equations of the form

d∑
k=0

λijkδqk

ij + ηij = 0,

where λijk, ηij ∈ Fqn , 0 ≤ i ≤ j < v. Solving these equations we obtain δij

and then recover F ∗0.
– Once F ∗0 is known, we can obtain an equivalent central map as

F ′(X,x1, . . . , xv)

= (X,Xq, · · · ,Xqn−1
, x1, · · · , xv)F ∗0(X,Xq, · · · ,Xqn−1

, x1, · · · , xv)t.

�
Proposition 7. Let (q, n, v,D, a) be the parameters of HFEv-, Pi (0 ≤ i <
n−a), S, T,M, F ∗j (0 ≤ j < n) be the matrices of Eq. (3). Assume that S, Pi(0 ≤
i < n − a),M, F ∗j(0 ≤ j < n) are known, then T can be recovered by solving
n − a linear systems in n variables.

Proof. Equation (3) can be rewritten as

(P0, · · · , Pn−a) =
(
SMF ∗0M tSt, · · · , SMF ∗n−1M tSt

)
M−1T. (8)

Let (t1k, t2k, · · · , tnk) be the entries of the k-th (k = 1, 2, · · · , n − a) column of
T . Since S, Pi (0 ≤ i < n − a),M, F ∗j(0 ≤ j < n) are known, we obtain from
Eq. (8) a linear system with n(n+1)

2 equations in the n variables (t1k, t2k, · · · , tnk)
for all (k = 1, 2, · · · , n − a). We can recover T by solving (n − a) of these linear
systems.
�

Efficient Key Recovery for All HFE Signature Variants 85

The process of recovering the maps F and T of our equivalent HFEv- key is
summarized in Algorithm 2 .

Algorithm 2. Recovering Equivalent Maps F and T
Input: HFEv- parameters (q, n, v,D, a), Frobenius matrix M (see (1)), matrices

(P0, · · · , Pn−a−1) representing the quadratic forms of the public key polynomials,
recovered linear map S.

Output: Equivalent private maps F and T .

1. Let w0, w1, · · · , wn−a−1 be unknowns and w0 = 1. Get a linear system with
d(n − d − a) equations in the n − a − 1 variables wi, (1 ≤ i < n − a − 1) from
matrix Eq. (6). as shown in the proof of Proposition 6. By solving this linear
system we obtain a solution w′

0, w
′
1, · · · , w′

n−a−1 with w′
0 = 1.

2. Let l1, · · · , la and the nonzero entries of F ∗0 be unknowns in matrix Eq. (7). We
get (d+a) · (n+v) bilinear equations from the first d+a rows of matrix Eq. (7)
and

(

v+1
2

)

univariate polynomial equations from the last v rows of matrix
Eq. (7). By solving these linear systems and univariate polynomial equations
we recover F ∗0 (see Proposition 6). Then we can obtain an equivalent central
map as

F ′ = (X,Xq, · · · , Xqn−1
, x1, · · · , xv)F ∗0(X,Xq, · · · , Xqn−1

, x1, · · · , xv)t.

3. Compute F ∗k 1 ≤ k < n according to Proposition 1.
4. Let (t1k, t2k, · · · , tnk) be the (unknown) entries of the k-th (k = 1, 2, · · · , n −

r) column of T . Get n − r linear systems from matrix Eq. (8) as shown in
Proposition 7. By solving these linear systems we can recover an equivalent
map T .

5. Return F ′, T .

4.3 Complexity of the Attack

The most complex step of our attack is step 3 of Algorithm 1. That is the step
of solving the MinRank problem on the matrix Z, which has rank at most d. For
this step, we can use the methods discussed in Sect. 3.2, in particular the minors
modeling or the support minors modeling.

If we solve the MinRank problem using minors modeling, the degree of reg-
ularity of solving the public system using the F4 algorithm is given as d+1 (c.f.
[3]). Therefore, the complexity of our attack using minors modeling is

O
((

n + v + d + 1
d + 1

)ω)
,

where 2 < ω ≤ 3 is the linear algebra constant.

86 C. Tao et al.

4.4 Discussion

The complexity of our attack is independent of the number a of Minus Equa-
tions and polynomial both in the parameter n and the number v of Vinegar
variables. So, for a fixed parameter D, we obtain a polynomial time attack on
all HFE signature variants. Therefore, the only way of enhancing the security
of the HFEv- scheme is by increasing the parameter d (i.e. the degree D of the
HFE polynomial). However, during the signature generation process, we have to
invert the HFE polynomial using for example Berlekamps algorithm. Since the
complexity of this algorithm grows with Dω or 2dω, this slows down the scheme
drastically.

Our attack therefore raises the question if it is possible at all to construct a
secure and efficient signature scheme on the basis of the HFE cryptosystem. An
alternative might be to use polynomials of degree >2 (see for example [24]).

5 Possible Speed up Using Support Minus Modeling

In [1] Bardet et al. proposed a new modeling for the MinRank attack called
support minors modeling. The main idea of this modeling is to write the low
rank matrix M as a product M = AC, where A is an m × r matrix and C is

an r × n matrix. For i = 1, 2, . . . ,m we define matrices of the form C̃i =
(

ri

C

)
,

where ri is the i-th row of M . Since ri lies in the space spanned by the rows of
C, the rank of the matrix C̃i (i = 1, 2, . . . ,m) is at most r. This implies that all
(r+1)×(r+1) minors of the matrices C̃i (i = 1, 2, . . . ,m) are 0. We view the r×r
minors of the matrix C as new variables which are called kernel variables and
are denoted as y1, y2, . . . , yny

, where ny =
(
n
r

)
. The (r+1)×(r+1) minors of the

matrices C̃i are therefore given as bilinear equations in the variables x1, . . . , xnx

and y1, . . . , yny
. Altogether, we obtain m

(
n

r+1

)
of these bilinear equations. The

total number of monomials of degree 2 in these bilinear equations is at most
nx

(
n
r

)
. If

m

(
n

r + 1

)
≥ nx

(
n

r

)
− 1,

holds, we can solve this system of bilinear equations using relinearization.
In practical applications, we can assume that C has the form (Ir, C0), where

Ir is an r × r identity matrix and C0 is an r × (n − r) matrix. Moreover, instead
of using all r×r minors of the matrix C as variables, we choose a positive integer
n′ ≤ n such that

m

(
n′

r + 1

)
≥ nx

(
n′

r

)
− 1 (9)

holds and restrict the computation of minors to the first n′ rows of the
matrices C̃i.

Efficient Key Recovery for All HFE Signature Variants 87

If the MinRank problem has only one solution, the resulting linear system is
sparse, and we can solve it using the Wiedemann algorithm. The complexity of
solving this linear system is

O
((

nx

(
n′

r

))2

· nx(r + 1)

)

field operations. If the MinRank problem has no unique solution and Fq is a small
finite field, we can guess the values of some variables such that the resulting linear
system has a unique solution, and then solve it using the Wiedemann algorithm.
Otherwise, we solve the bilinear system using a Gröbner basis algorithm such as
F4 or F5 [17].

When applying the support minors modeling to our attack, we obtain an over-
determined bilinear system of nx +ny variables and (nx+ny)(nx+ny+1)

2 equations,
where nx = n + v and ny =

(
n′

d

)
, n′ = � (n−a)(d+1)

n+v � + d + 1, n′ < 2d + 2.
This bilinear system has at least n solutions. In fact, if (u0, u1, . . . , un+v−1) is a
solution of this bilinear system, (uqi−1

0 , uqi−1

1 , . . . , uqi−1

n+v−1) for all 1 ≤ i ≤ n are
also solutions of the bilinear system (see [22] for more details). Therefore, we
don’t longer have a unique solution as in the case of e.g. Rainbow, which makes
the use of the Wiedemann algorithm inefficient. Thus we use a Gröbner basis
technique such as the F4 or F5 algorithm to solve the system instead of using
the relinearization method and Wiedemann.

To estimate the complexity of our attack using the support minors modeling,
we carried out a large number of experiments using the F4 algorithm included in
MAGMA. For these experiments, we created HFEv- public keys over base fields
of size q ∈ {2, 3, 5, 7} using the HFEv- parameters n ∈ {20, 30, 40}, a ∈ {0, 2, 4},
v ∈ {0, 2, 4, 6} and d ∈ {4, 5, 6}. We applied our attack on these instances solving
the MinRank problem for the matrix Z with target rank d using the support
minors modeling. The resulting bilinear system was solved using the F4 algorithm
included in MAGMA. We found that, independently of the HFEv- parameters
used in the experiments, the first degree fall occurs at degree 3. Therefore we
come up with the following

Conjecture: Independently of the HFEv- parameters, the bilinear systems
obtained by our attack and the support minors modeling, can be solved at
degree 3.

However, so far, we do not have theoretical arguments for the correctness of
our conjecture and therefore leave a proof of the conjecture as future work.

Since the total number of monomials in the bilinear system generated by the
support minors modeling is nxny + nx + ny + 1, the total number of monomials
of degree at most 3 is given as O(n2

xny + nxn2
y). Thus, assuming the correctness

of our conjecture, the complexity of our attack on HFEv- using support minors
modeling is O

(
n2

xny + nxn2
y

)ω or O
(
(n + v)2

(
2d+2

d

)
+ (n + v)

(
2d+2

d

)2)ω

. Here,
2 < ω ≤ 3 is again the linear algebra constant. However we note again that this

88 C. Tao et al.

formula only holds assuming the correctness of our conjecture about the first fall
degree.

6 Application to GeMSS

GeMSS is an HFEv- type signature scheme which is one of the alternative can-
didates in the third round of the NIST Post Quantum Crypto Standardization
Project [8]. The attack complexity on GeMSS using our key recovery attack
method can be estimated as shown in Table 1. The table shows:

Table 1. Complexity of our Attack on GeMMS (# of gates)

NIST required our attack using
security parameters security minors support minors
category (q, n, v,D, a) level modeling modeling

I
GeMSS128 (2,174,12,513,12)

143
139 118

BlueGeMSS128 (2,175,14,129,13) 119 99
RedGeMSS128 (2,177,15,17,15) 86 72

II
GeMSS192 (2,265,20,513,22)

207
154 120

BlueGeMSS192 (2,265,23,129,22) 132 101
RedGeMSS192 (2,266,25,17,23) 95 75

III
GeMSS256 (2,354,33,513,30)

272
166 121

BlueGeMSS256 (2,358,32,129,34) 141 103
RedGeMSS256 (2,358,35,17,34) 101 76

1. Especially for the higher security categories (NIST category II and III), the
proposed parameters for GeMMS don’t reach the required security levels.

2. Speeding up the signature generation process of GeMSS by decreasing D
while increasing a and v is, with regard to the security of the scheme, not
possible. This forbids the GeMSS variants BlueGeMMS and RedGeMMS.

3. In order to meet NIST security level III (272 gates), we would need an HFE
parameter d of at least 20, which corresponds to a degree D of the HFE
polynomial of at least 219 + 1 = 524.289. This would lead to a slow down
of the signature generation process by a factor of 1.4 · 107. Therefore, the
techniques used in GeMMS don’t suffice to reach high levels of security while
keeping the scheme efficient.

7 Conclusion

In this paper we proposed a new key recovery attack on the HFEv- signature
scheme. While most of the cryptanalysts tried to attack the HFEv- scheme by
solving a MinRank attack over the extension field Fqn , our attack works com-
pletely over the base field. The complexity of the attack is exponential in the

Efficient Key Recovery for All HFE Signature Variants 89

parameter d = �logq(D)�, but polynomial in n. Therefore, the complexity of our
attack behaves asymptotically exactly as the complexity of the signing process
of HFEv-. Our attack shows that the Minus modifications does not enhance
the security of the HFEv- scheme, while the Vinegar modification only adds a
polynomial factor. Therefore, in order to meet the NIST security requirements,
a very large value of D is needed. However, this makes the signature genera-
tion process of HFEv- very inefficient. We therefore conclude that the currently
existing techniques are not sufficient to transform the HFE scheme into a secure
and efficient signature scheme.

Acknowledgements. Parts of the work were done while the third author was at
Cincinnati. We thank CCB Fintech Co. Ltd for partially sponsoring the work of the
first and the last author with No. KT2000040. Furthermore we thank NFS for partially
sponsoring this work and the anonymous reviewers of CRYPTO 2021 for their valuable
comments which helped to improve the paper.

A Example of the Attack

To illustrate our new attack method, we present a complete key recovery for a toy
example of the HFEv- scheme over a small field. Let the parameters of our HFEv-
instance be (q, n, v,D, a) = (7, 7, 2, 14, 2). Then we have d = �logq(D)� = 2. We
construct the degree n extension field Fqn = Fq[x]/〈x7 + 6x + 4〉. Let θ be a
primitive root of the irreducible polynomial p(x) = x7 + 6x + 4.

We randomly generate central map F = θ176932X14+θ461287X8+θ199902X2+
(θ270502x1 + θ358630x2)X + (θ65557x1 + θ2597x2)X7 + θ811326x2

1 + θ14415x1x2 +
θ151050x2

2. The linear transformations S and T are given by the matrices

S =

⎛
⎜⎜⎝

3 1 1 6 4 2 0 1 6
6 2 4 5 3 3 2 6 0
6 1 3 4 4 2 4 5 3
0 1 4 6 4 2 2 3 1
2 0 0 5 2 4 2 1 3
0 5 1 2 4 2 1 4 3
3 3 5 0 2 6 4 6 6
5 2 0 2 5 6 3 1 2
6 2 5 5 5 4 3 6 1

⎞
⎟⎟⎠ and T =

⎛
⎜⎝

1 4 4 6 5
0 6 5 3 2
0 2 0 2 2
1 3 1 0 1
2 4 2 5 3
3 4 1 0 6
6 5 6 5 0

⎞
⎟⎠ .

We compute the public key as P = T ◦ F ◦ S. The quadratic forms repre-
senting the public key polynomials are given as

P0 =

⎛
⎜⎜⎝

1 2 0 3 3 6 1 3 3
2 6 0 4 4 3 4 4 3
0 0 3 5 4 4 4 5 3
3 4 5 2 1 1 3 2 1
3 4 4 1 0 2 1 6 2
6 3 4 1 2 5 0 5 1
1 4 4 3 1 0 6 0 0
3 4 5 2 6 5 0 3 2
3 3 3 1 2 1 0 2 1

⎞
⎟⎟⎠ , P1 =

⎛
⎜⎜⎝

4 0 3 3 5 6 6 3 2
0 3 0 6 1 1 0 4 4
3 0 3 3 5 4 5 5 4
3 6 3 1 6 6 2 3 5
5 1 5 6 1 6 3 6 4
6 1 4 6 6 5 3 3 1
6 0 5 2 3 3 0 0 5
3 4 5 3 6 3 0 2 1
2 4 4 5 4 1 5 1 6

⎞
⎟⎟⎠ , P2 =

⎛
⎜⎜⎝

3 2 6 4 5 2 6 6 2
2 5 1 0 6 4 1 5 4
6 1 6 0 0 5 0 3 3
4 0 0 5 5 5 5 2 2
5 6 0 5 1 2 1 6 0
2 4 5 5 2 4 1 5 0
6 1 0 5 1 1 4 4 5
6 5 3 2 6 5 4 4 4
2 4 3 2 0 0 5 4 0

⎞
⎟⎟⎠ ,

P3 =

⎛
⎜⎜⎝

2 6 4 5 4 1 6 0 1
6 6 6 1 2 1 0 6 3
4 6 2 6 1 5 0 4 6
5 1 6 0 0 0 0 3 5
4 2 1 0 6 1 6 0 4
1 1 5 0 1 2 6 3 5
6 0 0 0 6 6 5 6 1
0 6 4 3 0 3 6 2 0
1 3 6 5 4 5 1 0 1

⎞
⎟⎟⎠ P4 =

⎛
⎜⎜⎝

3 0 5 4 5 6 0 5 2
0 3 0 3 3 5 4 2 2
5 0 4 2 4 6 1 1 3
4 3 2 3 4 3 2 6 1
5 3 4 4 1 2 3 3 6
6 5 6 3 2 4 0 0 2
0 4 1 2 3 0 6 5 1
5 2 1 6 3 0 5 5 0
2 2 3 1 6 2 1 0 3

⎞
⎟⎟⎠ ,

90 C. Tao et al.

Let M =

⎛
⎜⎜⎝

1 1 1 1 1 1 1
θ θ7 θ49 θ343 θ2401 θ16807 θ117649

θ2 θ14 θ98 θ686 θ4802 θ33614 θ235298

θ3 θ21 θ147 θ1029 θ7203 θ50421 θ352947

θ4 θ28 θ196 θ1372 θ9604 θ67228 θ470596

θ5 θ35 θ245 θ1715 θ12005 θ84035 θ588245

θ6 θ42 θ294 θ2058 θ14406 θ100842 θ705894

⎞
⎟⎟⎠ and M̃ =

(
M 0
0 Iv

)
In the following

we demonstrate our method to recover the private key from P.

A.1 Recovering S

Let the first row of matrix U = M̃−1S−1 be (u0, u1, · · · , un+v−1). Fix u0 = 1
and let u1, · · · , un+v−1 be unknowns. Set bi = (1, u1, · · · , un+v−1)Pi, i =
0, 1, · · · , n − a − 1. Let bi be the i-th row of the matrix Z. Then
the rank of Z is 2. This implies that all minors of order 3 are 0.
Solving the MinRank Problem for matrix Z gives us a solution u =
(1, θ2689, θ240750, θ393451, θ682468, θ184068, θ218176, θ85224, θ760002). Then we have

U =

⎛
⎜⎜⎜⎜⎝

1 θ2689 θ240750 θ393451 θ682468 θ184068 θ218176 θ85224 θ760002

1 θ18823 θ38166 θ283531 θ659566 θ464934 θ703690 θ596568 θ378762

1 θ131761 θ267162 θ337633 θ499252 θ783912 θ808120 θ58266 θ180708

1 θ98785 θ223050 θ716347 θ200596 θ546132 θ715588 θ407862 θ441414

1 θ691495 θ737808 θ73177 θ580630 θ528756 θ67864 θ384408 θ619272

1 θ722755 θ223404 θ512239 θ770242 θ407124 θ475048 θ220230 θ217194

1 θ118033 θ740286 θ291505 θ450442 θ379242 θ31168 θ718068 θ696816

1 5 1 0 1 3 0 3 2
4 6 1 5 4 5 5 6 6

⎞
⎟⎟⎟⎟⎠ ,

where the last v rows of U are randomly chosen from Fq, such that U is invertible.
Thus we can recover an equivalent linear transformation S as

S′ = U−1M̃−1 =

⎛
⎜⎜⎝

0 1 1 2 3 6 6 0 6
1 4 5 3 1 6 0 4 6
4 5 3 1 5 6 0 6 4
5 0 1 2 5 6 0 2 0
2 3 1 3 5 6 0 3 1
1 6 5 0 4 1 0 4 1
0 4 6 4 2 2 0 6 2
2 1 5 2 5 1 2 1 2
6 0 2 6 4 6 1 5 6

⎞
⎟⎟⎠ .

Recovering F and T . Step 1. Once S is known, let w0, w1, · · · , wn−a−1 be
unknowns and w0 = 1. We generate a linear system with d(n − d − a) equations
in the n−a−1 variables wi, (1 ≤ i < n−a−1) using the matrix Eq. (6). By solving
this linear system we obtain a solution (1, θ558954, θ326166, θ142979, θ806014).

Step 2. Let l1, · · · , la and the nonzero entries of F ∗0 be variables in matrix
Eq. (7). By using the first d + a rows of matrix Eq. (7) we get (d + a) · (n + v)
bilinear equations as follows:

α00+θ599798 α01+θ499519 0 0 0 0 0 γ00+θ424284 γ01+θ665059

α10+θ499519 α7
00l1+α11+θ381840 α7

01l1+θ349085 0 0 0 0 γ7
00l1+γ10+θ228693 γ7

01l1+γ11+θ396254

0 α7
10l1+θ349085 α49

00l2+α7
11l1+θ622586 α49

01l2+θ524551 0 0 0 γ49
00 l2+γ7

10l1+θ475138 γ49
01 l2+γ7

11l1+θ2659

0 0 α49
10l2+θ524551 α49

11l2+θ32832 0 0 0 γ49
10 l2+θ9738 γ49

11 l2+θ392135

= 0(d+a)×(n+v).

From the first row, we obtain α00 = θ188027, α01 = θ87748, γ00 = θ12513, γ01 =
θ253288. Once α00, α01 are known, we get from the second row α10 = θ87748, α11 =
θ10485, γ10 = θ581451, γ11 = θ606062, l1 = θ146620. From the third row we can
obtain l2 = θ754380.

Efficient Key Recovery for All HFE Signature Variants 91

Once l1, l2 are known, we get from the last v rows of matrix Eq. (7),
(
v+1
2

)
univariate polynomial equations as follows:

θ754380δ4900 + θ146620δ700 + δ00 + θ81317 = 0,
θ754380δ4901 + θ146620δ701 + δ01 + θ689914 = 0,
θ754380δ4911 + θ146620δ711 + δ11 + θ162754 = 0.

Each of these equations has 49 solutions. We choose one of them as the value of
δij . Thus we have δ00 = θ27191, δ01 = δ10 = θ19044, δ11 = θ9718 and

F ∗0 =

⎛
⎜⎜⎜⎜⎝

θ188027 θ87748 0 0 0 0 0 θ12513 θ253288

θ87748 θ10485 0 0 0 0 0 θ581451 θ606062

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

θ12513 θ581451 0 0 0 0 0 θ27191 θ19044

θ253288 θ606062 0 0 0 0 0 θ19044 θ9718

⎞
⎟⎟⎟⎟⎠

Therefore we get an equivalent central map as F ′ = θ10485X14 + θ362262X8 +
θ188027X2 + (θ287027x1 + θ527802x2)X + (θ32423x1 + θ57034x2)X7 + θ27191x2

1 +
θ293558x1x2 + θ9718x2

2 for F .
Let (t1k, t2k, · · · , tnk) be entries of the k-th (k = 1, 2, · · · , n − a) column of

T . Get n − a linear systems from matrix Eq. (8) as shown by Proposition 7. By
solving these linear systems we can recover a equivalent key of T as follows

T ′ =

⎛
⎜⎝

1 1 6 0 5
3 3 2 0 2
1 3 2 5 6
6 6 6 0 2
2 2 3 3 6
2 2 1 0 5
0 5 1 3 0

⎞
⎟⎠ .

It is easy to check that P = T ◦ F ◦ S = T ′ ◦ F ′ ◦ S ′. Therefore the adversary
can use the three maps T ′, F ′ and S ′ to forge signatures for arbitrary messages.

References

1. Bardet, M., et al.: Improvements of algebraic attacks for solving the rank decoding
and MinRank problems. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020. LNCS,
vol. 12491, pp. 507–536. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-64837-4 17

2. Beullens, W.: Improved Attacks on UOV and Rainbow. IACR eprint 2020/1343
(2020)

3. Bettale, L., Faugere, J.C., Perret, L.: Cryptanalysis of HFE, multi-HFE and vari-
ants for odd and even characteristic. Des. Codes Crypt. 69(1), 1–52 (2013). https://
doi.org/10.1007/s10623-012-9617-2

4. Bernstein, D., Buchmann, J., Dahmen, E. (eds.): Post Quantum Cryptography.
Springer, Berlin (2009). https://doi.org/10.1007/978-3-540-88702-7 1

5. Buss, J.F., Frandsen, G.S., Shallit, J.O.: The computational complexity of some
problems of linear algebra. J. Comput. Syst. Sci. 58(3), 572–596 (1999)

6. Campagna, M., Chen, K., Dagdelen, Ö., Ding, J., Ferrick, J.K., Gisin, N., et al.:
Quantum safe cryptography and security. ETSI White paper 8. https://www.etsi.
org/images/files/ETSIWhitePapers/QuantumSafeWhitepaper.pdf (2015)

https://doi.org/10.1007/978-3-030-64837-4_17
https://doi.org/10.1007/978-3-030-64837-4_17
https://doi.org/10.1007/s10623-012-9617-2
https://doi.org/10.1007/s10623-012-9617-2
https://doi.org/10.1007/978-3-540-88702-7_1
https://www.etsi.org/images/files/ETSIWhitePapers/QuantumSafeWhitepaper.pdf
https://www.etsi.org/images/files/ETSIWhitePapers/QuantumSafeWhitepaper.pdf

92 C. Tao et al.

7. Cartor, R., Gipson, R., Smith-Tone, D., Vates, J.: On the differential security
of the HFEv- signature primitive. In: Takagi, T. (ed.) PQCrypto 2016. LNCS,
vol. 9606, pp. 162–181. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
29360-8 11

8. Casanova, A., Faugere, J.C., Macario Rat, G., Patarin, J., Perret, L., Ryckegem,
J.: GeMSS: a great multivariate short signature (2019). Submission to NIST PQC
competition Round-3

9. Courtois, N.T., Daum, M., Felke, P.: On the security of HFE, HFEv- and quartz. In:
Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 337–350. Springer, Heidelberg
(2003). https://doi.org/10.1007/3-540-36288-6 25

10. Ding, J., Clough, C., Araujo, R.: Inverting square systems algebraically is expo-
nential. Finite Fields Appl. 26, 32–46 (2014)

11. Ding, J., Hodges, T.J.: Inverting HFE systems is quasi-polynomial for all fields.
In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 724–742. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-22792-9 41

12. Ding, J., Kleinjung, T.: Degree of regularity for HFE Minus (HFE-). J. Math Ind.
4, 97–104 (2012)

13. Ding, J., Perlner, R., Petzoldt, A., Smith-Tone, D.: Improved cryptanalysis of
HFEv- via projection. In: Lange, T., Steinwandt, R. (eds.) PQCrypto 2018. LNCS,
vol. 10786, pp. 375–395. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-79063-3 18

14. Ding, J., Petzoldt, A.: Current state of multivariate cryptography. IEEE Secur.
Priv. 15(4), 28–36 (2017)

15. Ding, J., Petzoldt, A., Schmidt, D.S.: Multivariate Public Key Cryptosystems. AIS,
vol. 80. Springer, New York (2020). https://doi.org/10.1007/978-1-0716-0987-3.
ISBN 978-1-0716-0985-9

16. Ding, J., Yang, B.-Y.: Degree of regularity for HFEv and HFEv-. In: Gaborit, P.
(ed.) PQCrypto 2013. LNCS, vol. 7932, pp. 52–66. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-38616-9 4

17. Faugère, J.C.: A new efficient algorithm for computing Gröbner bases (F4). J. Pure
Appl. Algebra 139(1–3), 61–88 (1999)

18. Faugère, J.C., El Din, M.S., Spaenlehauer, P.J.: Computing loci of rank defects of
linear matrices using Gröbner bases and applications to cryptology. In: Proceedings
of the International Symposium on Symbolic and Algebraic Computation, pp. 257–
264 (2010)

19. Gaborit, P., Ruatta, O., Schrek, J.: On the complexity of the rank syndrome decod-
ing problem. IEEE Trans. Inf. Theor. 62(2), 1006–1019 (2016)

20. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W.H. Freeman and Company, New York (1979)

21. Goubin, L., Courtois, N.T.: Cryptanalysis of the TTM cryptosystem. In: Okamoto,
T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 44–57. Springer, Heidelberg
(2000). https://doi.org/10.1007/3-540-44448-3 4

22. Jiang, X., Ding, J., Hu, L.: Kipnis-shamir attack on HFE revisited. In: Pei, D.,
Yung, M., Lin, D., Wu, C. (eds.) Inscrypt 2007. LNCS, vol. 4990, pp. 399–411.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-79499-8 31

23. Kipnis, A., Shamir, A.: Cryptanalysis of the HFE public key cryptosystem by
relinearization. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 19–30.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1 2

24. Macario-Rat, G., Patarin, J.: Ariadne Thread and Salt: New Multivariate Crypto-
graphic Schemes with Public Keys in Degree 3. https://eprint.iacr.org/2021/084.
pdf

https://doi.org/10.1007/978-3-319-29360-8_11
https://doi.org/10.1007/978-3-319-29360-8_11
https://doi.org/10.1007/3-540-36288-6_25
https://doi.org/10.1007/978-3-642-22792-9_41
https://doi.org/10.1007/978-3-319-79063-3_18
https://doi.org/10.1007/978-3-319-79063-3_18
https://doi.org/10.1007/978-1-0716-0987-3
https://doi.org/10.1007/978-3-642-38616-9_4
https://doi.org/10.1007/3-540-44448-3_4
https://doi.org/10.1007/978-3-540-79499-8_31
https://doi.org/10.1007/3-540-48405-1_2
https://eprint.iacr.org/2021/084.pdf
https://eprint.iacr.org/2021/084.pdf

Efficient Key Recovery for All HFE Signature Variants 93

25. Patarin, J.: Hidden fields equations (HFE) and isomorphisms of polynomials (IP):
two new families of asymmetric algorithms. In: Maurer, U. (ed.) EUROCRYPT
1996. LNCS, vol. 1070, pp. 33–48. Springer, Heidelberg (1996). https://doi.org/10.
1007/3-540-68339-9 4

26. Patarin, J., Courtois, N., Goubin, L.: QUARTZ, 128-bit long digital signatures.
In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp. 282–297. Springer,
Heidelberg (2001). https://doi.org/10.1007/3-540-45353-9 21

27. Petzoldt, A., Chen, M.-S., Yang, B.-Y., Tao, C., Ding, J.: Design principles for
HFEv- based multivariate signature schemes. In: Iwata, T., Cheon, J.H. (eds.)
ASIACRYPT 2015. LNCS, vol. 9452, pp. 311–334. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-48797-6 14

28. Wolf, C., Preneel, B.: Equivalent keys in multivariate quadratic public key systems.
J. Math. Cryptology 4(4), 375–415 (2011)

https://doi.org/10.1007/3-540-68339-9_4
https://doi.org/10.1007/3-540-68339-9_4
https://doi.org/10.1007/3-540-45353-9_21
https://doi.org/10.1007/978-3-662-48797-6_14

Three Halves Make a Whole? Beating
the Half-Gates Lower Bound for Garbled

Circuits

Mike Rosulek(B) and Lawrence Roy

Oregon State University, Corvallis, USA
{rosulekm,royl}@oregonstate.edu

Abstract. We describe a garbling scheme for boolean circuits, in which
XOR gates are free and AND gates require communication of 1.5κ + 5
bits. This improves over the state-of-the-art “half-gates” scheme of
Zahur, Rosulek, and Evans (Eurocrypt 2015), in which XOR gates are
free and AND gates cost 2κ bits. The half-gates paper proved a lower
bound of 2κ bits per AND gate, in a model that captured all known
garbling techniques at the time. We bypass this lower bound with a
novel technique that we call slicing and dicing, which involves slicing
wire labels in half and operating separately on those halves. Ours is the
first to bypass the lower bound while being fully compatible with free-
XOR, making it a drop-in replacement for half-gates. Our construction is
proven secure from a similar assumption to prior free-XOR garbling (cir-
cular correlation-robust hash), and uses only slightly more computation
than half-gates.

1 Introduction

Garbled circuits (GC) were introduced by Yao in the 1980s [Yao82] in one of
the first secure two-party computation protocols. They remain the leading tech-
nique for constant-round two-party computation. Garbled circuits exclusively use
extremely efficient symmetric-key operations (e.g., a few calls to AES per gate
of the circuit), making communication rather than computation the bottleneck
in realistic deployments—the parties must exchange O(κ) bits per gate. For that
reason, most improvements to garbled circuits have focused heavily on reducing
their concrete size [BMR90,NPS99,KS08,PSSW09,KMR14,GLNP15]. The cur-
rent state of the art for garbled (boolean) circuits is the half-gates construction
of Zahur, Rosulek, and Evans [ZRE15]. In the half-gates scheme, AND gates are
garbled with size 2κ bits, while XOR gates are free, requiring no communication.

The half-gates paper also establishes a lower bound for the size of garbled
circuits. Specifically, the authors define a model of linear garbling—which cap-
tured all known techniques at the time—and proved that a garbled AND gate

First author partially supported by NSF award #1617197. Second author supported
by a DoE CSGF Fellowship.

c© International Association for Cryptologic Research 2021
T. Malkin and C. Peikert (Eds.): CRYPTO 2021, LNCS 12825, pp. 94–124, 2021.
https://doi.org/10.1007/978-3-030-84242-0_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-84242-0_5&domain=pdf
https://doi.org/10.1007/978-3-030-84242-0_5

Three Halves Make a Whole? Beating the Half-Gates Lower Bound 95

in this model requires 2κ bits. Thus, half-gates is optimal among linear garbling
schemes. In response, there has been a line of work focused on finding ways
around the lower bound. Several works [KKS16,BMR16,WmM17] were success-
ful in constructing an AND gate using only κ bits, using techniques outside of
the linear-garbling model. However, these constructions work only for a single
AND gate in isolation, so they do not result in any improvement to half-gates
for garbling general circuits.1 Garbling an entire arbitrary circuit with less than
2κ bits per AND-gate remained an open problem. We discuss the linear garbling
lower bound and different paths around it later in Sect. 7.

1.1 Our Results

We show a garbling scheme for general boolean circuits, in which XOR gates
are free and AND gates cost only 1.5κ + 5 bits. This is the first scheme to
successfully bypass the linear-garbling lower bound for all AND gates in a circuit,
not just a single isolated AND gate. For the typical case of κ = 128 this is a
concrete reduction of 23% in the size of garbled circuits relative to half-gates.
Our construction compares to half-gates along other dimensions as follows:

– Hardness assumption: All free-XOR-based garbling schemes require a
function H with output length κ and satisfying a circular correlation-robust
property. In short, this means that terms of the form H(X ⊕ Δ) and
H(X ⊕Δ)⊕Δ are indistinguishable from random, for adversarially chosen X
and global, secret Δ. Our construction requires a slight generalization. First,
we require H that gives outputs of length κ/2. Second, the secret Δ is split
into two halves Δ = ΔL‖ΔR, and we require terms like H(X ⊕ Δ) ⊕ ΔL,
H(X ⊕ Δ) ⊕ ΔL ⊕ ΔR, etc. to be indistinguishable from random.

– Computation: Our scheme requires 50% more calls to H per AND gate
than half-gates (6 vs 4 for the garbler, and 3 vs 2 for the evaluators). Similar
to other work, we can instantiate the necessary H using just 1 call to AES
with a key that is fixed for the entire circuit. As a result, the computational
cost of our scheme is comparable to prior work.
Additionally, since we require H with only κ/2 bits of output, certain queries
to H for different AND-gates can be combined into a single query to a κ-
bit-output function. The effect of this optimization depends on the circuit
topology but in some cases our construction can have identical or better
computation to half-gates (see Sect. 6.2).

We bypass the [ZRE15] lower bound by using two techniques that are outside
of its linear-garbling model. We refer to the techniques collectively as slicing-
and-dicing.

– Slicing: In our construction the evaluator slices wire labels into halves, and
uses (possibly different!) linear combinations to compute each half. We stress

1 These constructions require the input labels to have a certain correlation that they
do not guarantee for the gate’s output labels.

96 M. Rosulek and L. Roy

that this does not halve the security—the hash H is still given the whole wire
label with κ bits of entropy. To the best of our knowledge, this technique is
novel in garbled circuits. As we demonstrate in detail later, introducing more
linear combinations for the evaluator increases the linear-algebraic dimension
in which the scheme operates, in a way that lets us exploit more linear-
algebraic structures that prior schemes could not exploit.

– Dicing: The evaluator first decrypts a constant-size ciphertext containing
“control bits”, which determine the linear combinations (of input label
[halves], gate ciphertexts, and H-outputs) he/she will use to compute the out-
put label [halves]. The control bits are chosen randomly by the garbler (i.e.,
by tossing “dice”) in a particular way. Randomized control bits are outside of
the linear garbling model, which requires the evaluator’s linear combinations
to be fixed. This technique first appeared in [KKS16].

We also describe a variant of our scheme that can garble any kind of gate
(e.g., XOR gates, even constant-output gates) for 1.5κ + 10 bits, in a way that
hides the gate’s truth table from the evaluator. This improves on the state of the
art for gate-hiding garbling, due to Rosulek [Ros17], in which each gate is garbled
for 2κ + 8 bits, and constant-output gates are not supported. Additionally, our
gate-hiding construction is fully compatible with free-XOR, meaning that the
circuit can contain both “public” XOR gates (evaluator knows that this gate is
an XOR) and “private” XOR gates (only the garbler knows that this gate is an
XOR), with the public ones being free.

1.2 Related Work

The garbled circuits technique was first introduced by Yao [Yao82], although the
first complete description and security proof for Yao’s protocol was given much
later [LP09]. Bellare, Hoang, and Rogaway [BHR12] promoted garbled circuits
from a technique to well-defined cryptographic primitive with standardized secu-
rity properties, which they dubbed a garbling scheme. In this work, we use
their framework to formally express our schemes and prove security.

The garbling scheme formalization captures many techniques, but in this
work we focus on “practical” GC techniques built from symmetric-key tools
(PRFs, hash functions, but not homomorphic encryption or obfuscation). In the
realm of practical garbling, there have been many quantitative and qualitative
improvements over the years, especially focused on reducing the size of garbled
circuits. These works are showcased in Fig. 1. Of particular note are the Free-
XOR technique of Kolesnikov and Schneider [KS08] and the half-gates construc-
tion [ZRE15], mentioned above. Free-XOR allows XOR gates in the circuit to be
garbled with no communication, and our construction inherits this technique to
achieve the same feature. The free-XOR technique requires a cryptographic hash
with a property called circular correlation-resistance [CKKZ12]. As mentioned
above, the half-gates paper introduced a lower bound for garbling, which several
works have bypassed in some limited manner. We discuss the lower bound and
these related works in more detail in Sect. 7.

Three Halves Make a Whole? Beating the Half-Gates Lower Bound 97

Fig. 1. Comparison of efficient garbling schemes. Gate size ignores small constant addi-
tive term (i.e., “2” means 2κ + O(1) bits per gate). CCR = circular correlation robust
hash function.

Fig. 2. Comparison of gate-hiding garbling schemes, where the garbled circuit leaks
only the topology of the circuit and not the type of each gate. Gate size ignores small
constant additive term (i.e., “2” means 2κ + O(1) bits per gate). CCR = circular
correlation robust hash function. “Symmetric” means all gates g with g(0, 1) = g(1, 0).
“Non-const” means all gates g except g(a, b) = 0 and g(a, b) = 1.

Several garbling schemes are tailored to support both AND and XOR gates
while hiding the type of gate from the evaluator [KKS16,WmM17,Ros17]. These
works are compared in Fig. 2. They differ in the exact class of boolean gates they
can support—all gates, all symmetric gates (satisfying g(0, 1) = g(1, 0)), or all
non-constant gates.

2 Preliminaries

2.1 Circuits

We represent a circuit f = (inputs, outputs, in, leak, eval) by choosing a topological
order of the |f | inputs and gates in the circuit. Let inputs be the number of inputs
in the circuit, which we require to come first in the ordering. Each gate is then
labeled by its index in the order. For every gate index g in the circuit, its two

98 M. Rosulek and L. Roy

input indices2 are in1(g) and in2(g), where ini(g) < g. Each gate can be evaluated
using a function eval(g) : {0, 1}2 → {0, 1}. Finally, the outputs are a subset of
the indices outputs ⊆ [1, |f |].

Garbling only hides only partial information about the circuit. What is
revealed is contained in the “leakage function” Φ(f). Sometimes two gates in
a circuit may both be e.g. XOR-gates, but one will publicly be XOR while the
operation performed by the other gate will be hidden. To support this, each gate
is associated with some leakage leak(g). Gates with different leakages may com-
pute the same function, but have different rules about how much information
is revealed. We then define Φ(f) to be (inputs, outputs, in, leak), containing the
circuit topology and partial information about the gates’ truth tables.

2.2 Garbling Schemes

We use a slightly modified version of the garbling definitions of [BHR12].

Definition 1. A garbling scheme consists of four algorithms:

– (F, e, d) ← Garble(1κ, f).
– X := Encode(e, x). (deterministic)
– Y := Eval(F,X). (deterministic)
– y := Decode(d, Y). (deterministic)

such that the following conditions hold.

Correctness: For any circuit f and input x, if (F, e, d) ← Garble(1κ, f) then
f(x) = Decode(d,Eval(Encode(e, x))) holds with all but negligible probability.

Privacy with respect to leakage Φ: There must be a simulator S such that
for any circuit f and input x the following distributions are indistinguishable.

(F, e, d) ← Garble(1κ, f)
X := Encode(e, x)
return (F,X, d)

(F,X, d) ← S(1κ, Φ(f), f(x))
return (F,X, d)

Obliviousness w.r.t. leakage Φ: There must be a simulator S such that for
any circuit f and input x the following distributions are indistinguishable.

(F, e, d) ← Garble(1κ, f)
X := Encode(e, x)
return (F,X)

(F,X) ← S(1κ, Φ(f))
return (F,X)

2 We assume that all gates take two inputs. NOT gates can be merged into downstream
gates—e.g. if x goes into a NOT gate, and then into an AND gate with another input
y, this is equivalent to a single x ∧ y gate.

Three Halves Make a Whole? Beating the Half-Gates Lower Bound 99

Authenticity: For any circuit f and input x, no PPT adversary A can make
the following distribution output true with non-negligible probability.

(F, e, d) ← Garble(1κ, f)
X := Encode(e, x)
Y ← A(F, d,X)
return Decode(d, Y) /∈ {f(x),⊥}

The definitions differ from [BHR12] in two ways. First, we change correctness
to allow a negligible failure probability.3 Secondly, we strengthen the authenticity
property by giving d to the adversary. This stronger property is easy to achieve
by simply changing what one takes as garbled output Y .

2.3 Circular Correlation Robust Hashes

Our construction requires a hash function H with a property called circular
correlation robustness (CCR). A comprehensive treatment of this property is
presented in [CKKZ12,GKWY20].

The relevant definition of [GKWY20] is tweakable CCR (TCCR). For a hash
function H, define a related oracle OΔ(X, τ, b) = H(X ⊕ Δ, τ) ⊕ bΔ. Then H
is a TCCR if OΔ is indistinguishable from a random oracle, provided that the
distinguisher never repeats a (X, τ) pair in calls to the oracle.

We modify their definition in several important ways:

– We require H to have different input and output lengths. In the original
definition, the adversary used the argument b ∈ {0, 1} to determine whether
Δ was XOR’ed with the output of H. We generalize so that the adversary
can choose a linear function of (the bits of) Δ that will be XOR’ed with
the output of H. Our construction ultimately needs only 4 linear functions
reflecting our slicing of wire labels in half: La,b(ΔL‖ΔR) = aΔL ⊕ bΔR, for
a, b ∈ {0, 1}.

– [GKWY20] observe that a “full” TCCR is stronger than what is needed for
garbled circuits. In order to construct a TCCR that uses only one call to an
ideal permutation, they prove TCCR security against adversaries that query
only on “naturally derived” keys. It is somewhat cumbersome to generalize
“naturally derived” keys to our setting, where the values are sliced into pieces.
We instead relax TCCR so that H is drawn from a family of hashes, and
the adversary only receives the description of H after making all of its oracle
queries. This relaxation suffices for garbled circuits (the garbler chooses H
and reveals it only in the garbled circuit description, after all queries to H
have been made), and simplifies both our definition and our proof.

3 Most garbling schemes actually do not have perfect correctness. If an output wire has
labels W0, W1, then d will contain both H(W0) and H(W1). Correctness is violated
if H(W0) = H(W1).

100 M. Rosulek and L. Roy

Definition 2. A family of hash functions H, where each H ∈ H maps {0, 1}n ×
T → {0, 1}m for some set of tweaks T , is randomized tweakable circular
correlation robust (RTCCR) for a set of linear functions L from {0, 1}n to
{0, 1}m if, for any PPTs A1,A2 that never repeat an oracle query to OH,Δ on
the same (X, τ),

∣
∣
∣
∣
Pr

H,Δ

[

v ← AH,OH,Δ

1 ;A2(v,H) = 1
]

− Pr
H,R

[

v ← AH,R
1 ;A2(v,H) = 1

]
∣
∣
∣
∣

is negligible, where R is a random oracle and OH,Δ is defined as

OH,Δ(X ∈ {0, 1}n, τ ∈ T , L ∈ L):
return H(X ⊕ Δ, τ) ⊕ L(Δ)

In the full version we show that if Fk(X) is both a (plain) CCR hash for L
when k is fixed and a PRF when k is random, and {(X, τ) 	→ X ⊕U(τ) | U ∈ U}
is a universal hash family,4 then

{

(X, τ) 	→ Fk(X ⊕ U(τ)) | k ∈ {0, 1}κ, U ∈ U
}

is a secure RTCCR hash family for L.
For our recommended instantiation, let σ be a simple function of the form

σ(XL‖XR) = αXL‖αXR, where α is any fixed element in GF (2κ/2) \ GF (22).
Then AESk(X) ⊕ σ(X) is both a PRF for random k, and a CCR for any fixed
k (modelling AESk as an ideal permutation). Hence we get an RTCCR of the
form:

(X, τ) 	→ AESk

(

X ⊕ U(τ)
)

⊕ σ(X ⊕ U(τ))

U can likewise be a simple function, e.g., when |τ | ≤ κ/2 then we can use
U(τ) = u1τ‖u2τ where u1, u2 are random elements of GF (2κ/2).

3 A Linear-Algebraic View of Garbling Schemes

In this section we present a linear-algebraic perspective of garbling schemes,
which is necessary to understand our construction and its novelty. This perspec-
tive is inspired by the presentation of Rosulek [Ros17], where the evaluator’s
behavior (in each of the 4 different gate-input combinations) defines a set of
linear equations that the garbler must satisfy, and we rearrange those equations
to isolate the values that are outside of the garbler’s control.

3.1 The Basic Linear Perspective

Throughout this section, we consider an AND gate whose input wires have labels
(A0, A1) and (B0, B1). We will always consider the free-XOR setting [KS08],
where all wires have labels that xor to a common global Δ; i.e., A0 ⊕ A1 =
B0 ⊕ B1 = Δ. Our view of garbling will always start with the circuit evaluator’s
4 Equivalently, U is 2−κ-almost-XOR-universal (AXU).

Three Halves Make a Whole? Beating the Half-Gates Lower Bound 101

perspective; hence we consider the subscripts to be public. In other words, if the
evaluator holds Ai, then he knows the value i. In some works these subscripts
are called “color bits” or “permute bits.” The garbler secretly knows which of
{A0, A1} represent true and which of {B0, B1} represent true.

Let’s take an example of a textbook Yao garbled gate, using the point-
permute technique. The garbled gate consists of 4 ciphertexts G00, . . . , G11.
When the evaluator has input labels Ai, Bj , he computes the output label by
decrypting the (i, j)’th ciphertext, as H(Ai, Bj) ⊕ Gij .5 In order to correspond
to an AND gate, this evaluation expression must result in some label C (which
could be either C0 or C1) representing (false) in 3 cases and C ⊕ Δ (true) in the
other. Suppose (A1, B0) is the case corresponding to inputs (true,true), then the
garbler needs to arrange for:

C = H(A0, B0) ⊕ G00 C ⊕ Δ = H(A1, B0) ⊕ G10

C = H(A0, B1) ⊕ G01 C = H(A1, B1) ⊕ G11

We can rearrange these equations as follows:

⎡

⎢
⎢
⎣

1 1 0 0 0
1 0 1 0 0
1 0 0 1 0
1 0 0 0 1

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎣

C
G00

G01

G10

G11

⎤

⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

H(A0, B0)
H(A0, B1)
H(A1, B0)
H(A1, B1)

⎤

⎥
⎥
⎦

⊕

⎡

⎢
⎢
⎣

0
0
1
0

⎤

⎥
⎥
⎦

︸︷︷︸

t

Δ

In this equation, values that the garbler cannot control are on the right, and
the results of the garbling process (gate ciphertexts and output labels) are on
the left. The vector marked t is the truth table of the gate (when inputs are
ordered by color bits), and known only to the garbler.

In order for the scheme to work, for all possible values on the right-hand
side (including all choices of secret t!) the garbler must be able to solve for the
variables on the left-hand side. In this case the left-hand side is under-determined
so solving is easy. The garbler can simply choose random C and move it to the
right-hand side. Then the matrix remaining on the left-hand side is an invertible
identity matrix. Multiplying by the inverse solves for the desired values. Clearly
this can be done for any t, meaning that this approach works to garble any gate
(not just AND gates).

3.2 Row-Reduction Techniques

Row reduction refers to any technique to reduce the size of the garbled gate
below 4 ciphertexts. The simplest method works by removing the ciphertext
G00, and simply having the evaluator take H(A0, B0) as the output label when
he has inputs A0, B0.

5 For now, assume H is a random oracle. We ignore including the gate ID as an
additional argument to H.

102 M. Rosulek and L. Roy

C = H(A0, B0)
C = H(A0, B1) ⊕ G01

C ⊕ Δ = H(A1, B0) ⊕ G10

C = H(A1, B1) ⊕ G11

⇒

⎡

⎢
⎣

1 0 0 0
1 1 0 0
1 0 1 0
1 0 0 1

⎤

⎥
⎦

⎡

⎢
⎣

C
G01

G10

G11

⎤

⎥
⎦ =

⎡

⎢
⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤

⎥
⎦

⎡

⎢
⎣

H(A0, B0)
H(A0, B1)
H(A1, B0)
H(A1, B1)

⎤

⎥
⎦⊕

⎡
⎢⎢⎣

0
0
1
0

⎤
⎥⎥⎦

︸︷︷︸
t

Δ

The matrix on the left is now a square matrix, and invertible. Thus for any
choice of t, the garbler can solve for C and the Gij values by multiplying by the
inverse matrix.

3.3 Half-Gates

The previous example shows that decreasing the size of the garbled gate from 4
to 3 causes the matrix on the left to change from size 4×5 to 4×4. Reducing the
garbled gate further (from 3 ciphertexts to 2) would cause the matrix to be 4×3,
and the system of linear equations would be overdetermined! So how does the
half-gates garbling scheme [ZRE15] actually achieve a 2-ciphertext AND gate?

Let us recall the gate-evaluation algorithm for the half-gates scheme, which is
considerably different from all previous schemes. On inputs Ai, Bj the evaluator
computes the output label as H(Ai)⊕H(Bj)⊕ i ·G0 ⊕ j(G1 ⊕Ai), where G0, G1

are the two gate ciphertexts.
Suppose as before that A1 and B0 correspond to true. Then the garbler must

arrange for the following to be true:

C = H(A0) ⊕ H(B0)
C = H(A0) ⊕ H(B1) ⊕ G1 ⊕ A0

C ⊕ Δ = H(A1) ⊕ H(B0) ⊕ G0

C = H(A1) ⊕ H(B1) ⊕ G0 ⊕ G1 ⊕ (A0 ⊕ Δ)
︸ ︷︷ ︸

A1

Rearranging in our usual way, we get:

1 0 0
1 0 1
1 1 0
1 1 1

C
G0
G1

=

⎛

⎜
⎜
⎝

⎡

⎢
⎢
⎣

1 0 1 0 0 0
1 0 0 1 1 0
0 1 1 0 0 0
0 1 0 1 1 1

⎤

⎥
⎥
⎦

⊕

⎡

⎢
⎢
⎣

0 0 0
0
1

0 0

t

0

⎤

⎥
⎥
⎦

⎞

⎟
⎟
⎠

H(A0)
H(A1)
H(B0)
H(B1)

A0
Δ

Note that Δ is used both in the truth table adjustment (t) and in the usual
operations of the evaluator (implicitly, in the one case where he includes A1 =
A0 ⊕ Δ in the linear combination).

As promised, the matrix on the left is only 4×3. We cannot solve for the left-
hand side by inverting this matrix as in the previous cases. Instead, the garbler
takes advantage of the fact that the matrices on both sides have the same

Three Halves Make a Whole? Beating the Half-Gates Lower Bound 103

column space. Specifically, the columns on the left span the space of all even-
parity vectors. For any choice of t containing just a single 1 (corresponding to
the truth table of an AND gate), every column on the right also has even parity!
Concretely, suppose the evaluator solved the first three rows of this system of
linear equalities (which is possible since the first three rows on the left form an
invertible matrix), then the fourth row would automatically be in equality since
on both sides it is the sum of the first 3 rows.6 One can see that this technique
works only for gates whose truth table has odd parity (e.g., AND gates).

Half-gates was the first garbling scheme to structure its oracle queries as
H(Ai) and H(Bj), instead of H(Ai, Bj). Our linear-algebraic perspective high-
lights the importance of this change. For a 2-ciphertext AND gate, the matrix on
the left will be 4×3, so the matrix on the right must have rank 3. An expression
like H(Ai, Bj) can be used by the evaluator in only one combination of inputs,
leading to an identity matrix minor that has rank 4. By contrast, each H(Ai)
and H(Bj) term is used for two input combinations, so the corresponding matrix
can have rank 3.

Our linear algebraic perspective confirms and provides an explanation for a
prior finding of Carmer and Rosulek [CR16]. They used a SAT solver to show
that no garbling scheme (in the linear model of the half-gates paper) could
achieve a 2-ciphertext AND gate, when the evaluator makes only one query to
H. This reiterates the importance of half gates using H(A),H(B) oracle queries
to achieve a 2-ciphertext AND gate.

4 High-Level Overview of Our Scheme

In the previous section, we saw that it was important that the evaluator used
oracle queries like H(Ai) and H(Bj) in the half-gates scheme. For every term
of the form H(Ai) there are two gate-input combinations in which the evaluator
uses this term. This property led to a desirable redundancy in the matrix that
relates H-queries to input combinations. Redundancies in this matrix lead to
smaller garbled gates. We push this idea further using several key observations.

4.1 Observation #1: Get the Most Out of the Oracle Queries

H(Ai) and H(Bj) are not the only oracle queries that can be made in two
different gate-input combinations. We can also ask the evaluator to query H(Ai⊕
Bj). Because of the free-XOR constraint, A0 ⊕ B0 = A1 ⊕ B1, and A0 ⊕ B1 =
A1 ⊕ B0. This means that the following oracle queries can be made for each
gate-input combination:

H(A0) H(A1) H(B0) H(B1) H(A0 ⊕ B0) H(A0 ⊕ B1)
gate input (0,0) � � �
gate input (0,1) � � �
gate input (1,0) � � �
gate input (1,1) � � �

(1)

6 More generally, multiplying by a left-inverse of the matrix on the left-hand side
“just works,” as in the case where the matrix on the left-hand side is invertible.

104 M. Rosulek and L. Roy

Can we use queries of this form to introduce even more redundancy in the
relevant matrices?

4.2 Observation #2: Increase Dimension by Slicing Wire Labels

Our linear-algebraic perspective of garbling includes only 4 linear equations, cor-
responding to the 4 different gate-inputs. Having only 4 linear equations makes
it difficult to take advantage of any new structure introduced by observation #1.
Our second observation, and perhaps the key to our entire approach, is to split
each wire label into a left and right half, and let the evaluator compute the
two halves (of the output label) with different linear combinations. This results
in 8 linear equations in our linear-algebraic perspective—2 equations for each of
the 4 gate-input combinations.

Consider the following proposal,

H(A0) H(A1) H(B0) H(B1) H(A0 ⊕ B0) H(A0 ⊕ B1)
(0,0) left � �
(0,0) right � �
(0,1) left � �
(0,1) right � �
(1,0) left � �
(1,0) right � �
(1,1) left � �
(1,1) right � �

(2)

For example, on gate-input (0,0) the evaluator will compute the left half of the
output label as H(A0) ⊕ H(A0 ⊕ B0) ⊕ · · · (plus other terms, involving gate
ciphertexts and input labels). There are several important features of this table
to note:

– H(·) is used in a linear equation to compute half of an output label, therefore
H(·) is a function with κ/2 bits of output. Three of these half-sized hash
functions are combined to encrypt the gate output.7 However, we still will
use the entire input wire labels as input to H—using wire-label halves as
input to H would cut the effective security parameter in half.

– For an evaluator with gate-input (0,0), the values H(A1), H(B1), and H(A0⊕
B1) are all jointly indistinguishable from random. With that in mind, consider
the linear combinations for any other gate-input. For example, in the (1,0)
case the evaluator will compute the output as

left = H(A1) ⊕ H(A0 ⊕ B1) ⊕ · · ·
right = H(B0) ⊕ H(A0 ⊕ B1) ⊕ · · ·

7 Hence the title: “Three Halves Make a Whole”.

Three Halves Make a Whole? Beating the Half-Gates Lower Bound 105

Because H(A1) and H(A0 ⊕B1) are pseudorandom, this makes both of these
outputs jointly pseudorandom. The entire output of the (1,0) case is pseu-
dorandom from the perspective of the evaluator in the (0,0) case. This is a
necessary condition, since sometimes the (0,0) and (1,0) cases give different
outputs. This pattern holds with respect to any pair of two gate-inputs.

– If we interpret Eq. 2 as a matrix (�=1, empty cell=0), we see that it has
rank 5. This suggests that the garbling process can result in only 5 output
values, where in this case each of these values is κ/2 bits. Two of the values
are the halves of the output wire label C, leaving 3 values to comprise the
garbled gate ciphertexts. In other words, we are on our way to a garbled gate
with only 3κ/2 bits, if only we can get all of the relevant linear equations to
cooperate.

4.3 Observation #3: Randomize and Hide the Evaluator’s
Coefficients

Let us apply our observations so far to our linear perspective of Sect. 3. Since
wire labels are divided into halves, we use notation like A0R to denote the right
half of A0. Note that the free-XOR constraint applies independently to the wire
label halves; i.e., A1R = A0R ⊕ ΔR and so on.

The evaluator computes each half of the output label separately, using a
linear combination of available information: oracle responses, gate ciphertexts,
and the 4 (!) halves of the input labels. If we account for all 8 of the evaluator’s
linear equations, while using the oracle-query structure suggested in Eq. 2, we
obtain the following system:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 ? ? ?
0 1 ? ? ?
1 0 ? ? ?
0 1 ? ? ?
1 0 ? ? ?
0 1 ? ? ?
1 0 ? ? ?
0 1 ? ? ?

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

CL

CR

G0

G1

G2

⎤
⎥⎥⎥⎥⎦
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 1 0 ? ? ? ? ? ?
0 0 1 0 1 0 ? ? ? ? ? ?
1 0 0 0 0 1 ? ? ? ? ? ?
0 0 0 1 0 1 ? ? ? ? ? ?
0 1 0 0 0 1 ? ? ? ? ? ?
0 0 1 0 0 1 ? ? ? ? ? ?
0 1 0 0 1 0 ? ? ? ? ? ?
0 0 0 1 1 0 ? ? ? ? ? ?

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⊕

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0
0 0
0 0
0 0
1 0
0 1
0 0

0 0

t

0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢

H(A0)
H(A1)
H(B0)
H(B1)

H(A0 ⊕ B0)
H(A0 ⊕ B1)

A0L

A0R

B0L

B0R

ΔL

ΔR

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥

(3)

The first row represents the evaluator’s linear equation to compute the left
half CL of the output label on input A0, B0, etc. Note that the truth table t now
consists of 2 × 2 identity blocks and 2 × 2 zero-blocks.

For everything to work correctly, we need to replace the “?” entries, so that
for every choice of t, the matrices on both sides have the same column space.

– The columns on the right-hand side (representing the H outputs) already
span a space of dimension 5, so there is no choice but to extend the left-hand
side matrix to a basis of that space.

106 M. Rosulek and L. Roy

– The “?” entries on the right are subject to other constraints, so that they
reflect what an evaluator can actually do in each input combination. For
example, on input A0, B1, the evaluator cannot include B0R in its linear
combination, it can only include B1R = B0R ⊕ ΔR. Note that the matrix is
written in terms of B0 only.

Unfortunately, it is not possible to complete the right-hand-side matrix subject
to these constraints. For every t, there is a valid way to replace the “?”
entries, but there is no one way that works for all t.

To get around this problem, we randomize and encrypt the entries of
the matrix. To the best of our knowledge, the technique first appeared in the
garbling scheme of [KKS16], and was also used in [WmM17,Ros17]. The garbler
will complete the matrices so that the system of equations can be solved (i.e., the
column spaces coincide). This causes the matrix entries to now depend on the
garbler’s secret t. Next, the garbler will encrypt these matrix entries, so that
when the evaluator has input Ai, Bj , he can decrypt only those matrix entries
needed for that particular input combination—not the entire matrix. For example,
the evaluator can use A0, B0 to decrypt the top two rows of the matrix—just
enough to determine the coefficients of the linear combinations computing the
output label. Unlike other schemes, there is a step of indirection (decrypting this
additional ciphertext) before the evaluator determines which linear combinations
to apply—the linear combination does not depend solely on the color bits of the
input labels. We call the contents of these ciphertexts control bits, which tell
the evaluator what linear combination to apply. The control bits are of small
constant size, so encrypting them adds only a constant number of bits to the
garbling scheme.

The garbler completes the missing entries in the matrix by drawing them
randomly from a distribution over matrices. The distribution depends on t, as
we mentioned—however, it can be arranged that each marginal view of the
matrix is independent of t. Since the evaluator sees only such a marginal
view, not the entire matrix, the value of t is hidden.

5 Details: Slicing and Dicing

5.1 Choosing the Matrices

Let us begin by filling out the question marks in Eq. 3. We rewrite this equation
using block matrices, and we group related parts together.

V

[
C
�G

]

= M �H ⊕ (R ⊕ [0 · · · 0|t])

⎡

⎣

A0

B0

Δ

⎤

⎦ (4)

Here C, A0, B0, and Δ are two-element (column) vectors representing the
two halves of these wire labels; �G is the vector of gate ciphertexts; and

Three Halves Make a Whole? Beating the Half-Gates Lower Bound 107

�H =
[

H(A0) H(A1) H(B0) H(B1) H(A0 ⊕ B0) H(A0 ⊕ B1)
]� is the vector

of H-outputs. t is the 8 × 2 truth table matrix, which contains a 2 × 2 identity
matrix block for each case of the gate that should output true. We have already
filled out M—it is the portion of the right-hand side matrix in Eq. 3 with no
question marks, that operates on the hash outputs �H. R is called the control
matrix because it determines which pieces of input labels are added to the
output.

Choosing V . Recall that the matrices on both sides of the equation must have
the same column space, and that M already spans this 5-dimensional space. Call
this common column space the gate space G. Then

G = colspace (V) = colspace (M) ⊇ colspace
(

R ⊕ [0 · · · 0|t]
)

.

It will be more convenient to represent G using linear constraints, rather than
as the span of the columns of M . We use a matrix K as a basis for the cokernel
of M , so that any vector v is in G if and only if Kv = 0. Then V must satisfy
rank(V) = 5 and KV = 0.

Any K and V satisfying these constraints will suffice, and we will use the
following:

K =

⎡

⎣

1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1
0 0 0 1 1 0 1 1

⎤

⎦ V =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 0
0 1 0 0 0
1 0 0 0 1
0 1 0 1 1
1 0 1 0 1
0 1 0 0 1
1 0 1 0 0
0 1 0 1 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Note that the columns of V corresponding to the gate ciphertexts (the 3 right-
most columns) are the same as the columns in M corresponding to hash outputs
H(A1),H(B1),H(A0 ⊕ B1), so they are clearly in the column space of M .

Constraints on Choosing R. It remains to see how we choose the control matrix
R. Using our new notation, colspace

(

R ⊕ [0 · · · 0|t]
)

⊆ G is equivalent to KR =
K[0 · · · 0|t], so we must choose R to match Kt. Because t is composed of 2 × 2
zero or identity blocks, we can deduce:

KR = K[0 · · · 0|t] =

⎡

⎣

0 0 0 0 p 0
0 0 0 0 0 p
0 0 0 0 a b

⎤

⎦ (5)

for some a, b ∈ {0, 1}, where p is the parity of the truth table. In our main
construction, p = 1 since it only considers garbling AND gates. However, the
bits a, b reveal more than the parity of the gate—they leak the position of the
“1” in the truth table. Since R must depend on these a, b bits, we resort to
randomizing the control matrix R to hide a, b.

108 M. Rosulek and L. Roy

We also need the control matrix to reflect linear combinations that the eval-
uator can actually do with the available wire labels. The linear constraints are
expressed in terms of A0, B0, and Δ, but when the evaluator has wire label, say,
A1, he can either include it in the linear combination (adding both A0 and Δ)
or not (adding neither A0 nor Δ)—he cannot include only one of A0,Δ in the
linear combination. This means that R must decompose into 2 × 2 matrices in
the following way:

R =

⎡

⎢
⎢
⎣

R00A R00B 0
R01A R01B R01B

R10A R10B R10A

R11A R11B R11A ⊕ R11B

⎤

⎥
⎥
⎦

(6)

When the evaluator holds input labels Ai, Bj , the submatrix Rij =
[
RijA RijB

]

is enough to completely determine which linear combination should be applied.
We call Rij the marginal view for that input combination. We will random-
ize the choice of R, subject to the constraints listed above, so that any single
marginal view leaks nothing about t. That is, we want to find a distribution
R(t) such that when R ← R(t), KR = K[0 · · · 0|t] with probability 1, yet for
every i, j ∈ {0, 1}, if t ← T and R ← R(t) then t and Rij are independently
distributed.

Basic Approach to the Distribution R(t): We must choose R to match the p, a, b
bits defined above (which depend on the truth table t). Suppose we have a
distribution R0 with the following properties:

– If R$ ← R0 then KR$ = 0
– For all i, j ∈ {0, 1}, if R$ ← R0 then (R$)ij (the marginal view) is uniform

and we also have fixed matrices Rp, Ra, Rb such that:

KRp =

⎡

⎣

0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0

⎤

⎦ KRa =

⎡

⎣

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0

⎤

⎦ KRb =

⎡

⎣

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 1

⎤

⎦ , (7)

Define R(t) to first sample R$ ← R0 and output R = pRp ⊕aRa ⊕bRb ⊕R$. The
result R will always satisfy the condition of Eq. 5. The randomness in R$ also
causes marginal views of Rij to be uniform and therefore hide p, a, b. Concrete
values for Rp, Ra, Rb are given in Figs. 3 and 4, as part of a different construction.

If R0 is the uniform distribution over all matrices satisfying KR = 0, then
the garbler must encrypt the full marginal views Rij at 8 bits per view. A more
thoughtful choice of distribution will allow the garbler to convey Rij marginal
views with fewer bits.

Compressing the Marginal Views: Each marginal view Rij is a 2× 4 matrix. We
can “compress” these if we manage to restrict all Rij to some linear subspace
S = span{S1, S2, . . . , Sd} of 2 × 4 matrices (presumably with dimension d < 8),
while still maintaining the other properties needed.

Three Halves Make a Whole? Beating the Half-Gates Lower Bound 109

Fig. 3. Control matrices for even-parity gates. The top row contains the two basis matri-
ces for S. The bottom row shows the full control matrices (Rp is not needed for even-parity
gates). The middle row shows the “compressed” representation of the control matrices,
in terms of the basis {S1, S2} (i.e., each row expresses which linear combination of S1, S2

appears in the corresponding blocks of the control matrix). The reader can verify that
(1) each row in R̄$ is individually uniform; (2) KR$ = 0; and (3) Eq. 7 holds.

Fig. 4. Control matrices for gate-hiding garbling. The top row contains the basis matri-
ces for S. The basis of Fig. 3 is a subset of this basis, so we can use the same Ra and
Rb as Fig. 3. The distributions on R̄$ and R$ also include the matrices from Fig. 3
(omitted with “. . .” here). The middle row gives the control matrices in terms of the
new basis, while the bottom row shows them directly. The reader may verify that (1)
each row of R̄$ is individually uniform; (2) KR$ = 0; and (3) Eq. 7 holds.

110 M. Rosulek and L. Roy

Let R̄ij denote the representation of Rij with respect to the basis S—i.e., a
vector of length d. Then the garbler can encrypt only the R̄ij ’s to convey the
marginal views of R. The choice of the subspace S depends on the class of truth
tables that need to be hidden.

Parity-Leaking Gates: We performed an exhaustive computer search of low
dimensional subspaces to determine how to pick the basis S for different types
of gates. For even-parity gates (e.g. XOR or constant gates) we found a 2-
dimensional subspace that works. Details of the R(t) distribution are given in
Fig. 3. For odd-parity gates (like AND, OR) we simply use the even-parity distri-
bution and add a public constant Rp (from Fig. 4) to the result. This approach
works when the parity of the gate is public, since the evaluator must know to
add Rp when decoding the description of their marginal view Rij .

The construction for odd-parity gates is our primary construction, which
would be used in most applications of garbling (in combination with free XOR
gates).

Parity-Hiding Gates: To make the garbling scheme gate-hiding, we also need
to hide the parity of the truth table. In other words, the distribution on R$

must be random enough to mask the presence (or absence) of a matrix Rp as
in Eq. 7. The Rp in Fig. 4 is not in the subspace S of control matrices in Fig. 3.
Hence, to support parity-hiding we have had to extend that subspace with two
additional basis elements (the basis matrices S1, S2 are as in the parity-leaking
case). Our parity-hiding gates require 4 (compressed) control bits per gate-input
combination, corresponding to the 4-dimensional basis S. See Fig. 4 for details.

5.2 Garbling the Control Bits

So far we have glossed over the details of how the control bits actually get
encrypted and sent to the evaluator. We know that there will be some 4 × d
(d = 2 for parity-leaking gates and d = 4 for parity hiding gates) matrix R̄, and
that the evaluator should only get to see a single row R̄ij of R̄ telling them what
linear combination of S1, . . . , Sd to use as control bits. The garbler can easily
encrypt these values so that on input Ai, Bj the evaluator can decrypt only R̄ij .

In order to reuse the calls to H that the evaluator already uses, it turns
out that we can use our new garbling construction to garble the control bits as
well. At first it looks like this would just give infinite recursion, as if we used
something like Eq. 4 to garble the control bits then that garbling would need
its own control bits, which would need to be garbled, and so on. In reality, the
compressed control bits actually have a structure that allows us to garble them
without recursive control bits.

Conceptually, we can treat the bits of R̄ as wire labels and slice them as we
do regular wire labels. Collect the bits from odd and even-indexed positions of
R̄ij into numbers rijL and rijR ∈ GF (2d/2), respectively. Define the vector

�r =
[

r00L r00R r01L r01R r10L r10R r11L r11R

]�

Three Halves Make a Whole? Beating the Half-Gates Lower Bound 111

We observed that for both our parity-leaking and parity-hiding constructions,
this vector is always in the gate subspace G—i.e., that K�r = 0. Looking at Fig. 3,
the reader can check that this holds for any possible �r (which in this case is the
same as R̄ read in row-major order). And similarly for Fig. 4; this time the test
for R̄ is equivalent to checking its two 4 × 2 blocks individually.

Since the control bits, when expressed as �r, are always in the gate subspace
G, they can be garbled without needing their own control bits. The garbler can
compute a constant-size ciphertext �z such that:

V �z ⊕ M lsb d
2
(�H) = �r, (8)

where V,M, �H are as in Eq. 4. Here we assume that every hash has been extended
by an extra d/2 bits (or more realistically given that block ciphers have a fixed
size, each wire label slice has been shrunk by d/2 bits to make room), and that
these extra bit can be extracted with lsb d

2
. The remainder of the hash vector,

msbκ
2
(�H), is used for garbling the wire labels themselves. By the same reasoning

as for usual garbling, when the evaluator has input labels Ai, Bj , he can learn
only the �rij portions of �r.

We can combine Eqs. 4 and 8 into a single system, allowing the whole gate
to be garbled at once.

V

(

�z
∥
∥
∥

[
C
�G

])

⊕ M �H = �r
∥
∥
∥

⎛

⎝(R ⊕ [0 · · · 0|t])

⎡

⎣

A0

B0

Δ

⎤

⎦

⎞

⎠ , (9)

where ‖ denotes element wise concatenation, so e.g. the bits of r00L ∈ GF (2d/2)
get concatenated with some x ∈ GF (2κ/2) to get a value in GF (2(κ+d)/2). We
write the bits in little endian order, so lsb d

2
(�H) ‖ msbκ

2
(�H) = �H.

5.3 The Construction

We can now describe our garbling scheme formally. All of our different types of
gates are compatible, so we describe a single unified scheme. The circuit has a
leak function that indicates what information about each gate is public (which
affects the cost of garbling each gate):

– EVEN: even-parity gate
– ODD: odd-parity gate

– XOR: free XOR gate
– NONE: no leakage (gate-hiding)

Because we need different control matrices depending on what kind of gate
is being garbled, we use the notation R(L, t), for L ∈ {EVEN,ODD,NONE} to
denote the appropriate distribution over control matrices. For EVEN/ODD gates,
the distribution is as in Fig. 3 (with Rp added in the case of ODD), and for NONE
the distribution is as in Fig. 4.

Our garbling scheme is shown in Figs. 5 and 6. The garbler associates the
kth wire in the circuit with a wire label Wk (and its opposite label Wk ⊕Δ) and

112 M. Rosulek and L. Roy

Fig. 5. Our garbling scheme (continued in Fig. 6).

a point-and-permute bit πk. Wk is the label with color bit lsb(Wk) = 0 (visible
to the evaluator). The label Wk ⊕ πkΔ is the wire label representing false on
that wire. Equivalently, Wk is the wire label representing logical value πk.

For each non-free gate, the garbler first samples a control matrix R and
encodes its marginal views (i.e., expresses each view in terms of the basis {Sj}j).
We have factored out this sampling procedure into a helper function SampleR,
along with a corresponding decoding function DecodeR used by the evaluator
to reconstruct its marginal view of the control matrix. One thing to note about
SampleR is that in the case of a ODD gate, the control matrices include the term
Rp, but Rp is not in the subspace spanned by the basis {Sj}j . The compressed
representation of each marginal view excludes the contribution of Rp, but in these
cases it is publicly known that the evaluator should compensate by manually
adding Rp.

For each gate k, we have a master evaluation equation in the style of Eq. 9.
This equation expresses constraints that must be true about that gate, but
the garbler is interested in computing garbled gate ciphertexts �Gk, control bit
ciphertexts �zk, and output wire label that satisfy the constraints. As previously
discussed, we can solve for these values by multipying both sides by V −1, a left
inverse of V . One possible choice of V −1 is given below:

V −1 =

⎡

⎢
⎢
⎢
⎢
⎣

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
1 1 0 0 1 1 0 0
1 1 1 1 0 0 0 0
0 0 0 0 1 0 1 0

⎤

⎥
⎥
⎥
⎥
⎦

(10)

The queries to hash function H include tweaks based on the gate ID, for
domain separation. Finally, for each output wire, the garbler computes hashes

Three Halves Make a Whole? Beating the Half-Gates Lower Bound 113

Fig. 6. Our garbling scheme (continued from Fig. 5). V −1 is a left inverse of V .

114 M. Rosulek and L. Roy

of the wire labels, which will be used in Decode to authenticate labels and deter-
mine their logical value (true or false). These hashes need κ bits for authen-
ticity, so they are computed using another hash function H ′(E, k) with output
length κ instead κ+d

2 . It is simplest to set H ′(E, k) = msbκ
2
(H(E, 3|f | + 2k)) ‖

msbκ
2
(H(E, 3|f | + 2k + 1)), which puts together κ bits from two evaluations of

H, while avoiding any overlaps in tweaks.
The evaluator follows a similar process. Starting with the input wire labels E,

it evaluates the garbled circuit one gate at a time. The invariant is that on wire
k, the evaluator will hold the “active” wire label Ek = Wk ⊕ (xk ⊕ πk)Δ, where
xk is the logical value on that wire, for the given circuit input. If A,B are the
active wire labels on the input wires of this gate, then the evaluator computes
terms of the form H(A),H(B),H(A ⊕ B) and evaluates the gate according to
Eq. 9. The evaluator only knows enough for two rows of Eq. 9, depending on the
color bits i = lsb(A), j = lsb(B), so we let Vij be the corresponding pair of rows
from V . It only evaluates the gate partially at first, in order to find the encoded
control bits so that it can decode them with DecodeR and use them to finally
compute the output wire label.

5.4 Security Proof

Theorem 3. Let H be a family of hash functions, with output length (κ + d)/2
bits, that is RTCCR for L = {Lab(ΔL‖ΔR) = 0d/2‖aΔL ⊕ bΔR | a, b,∈ {0, 1}}.
Then our construction (Figs. 5 and 6) is a secure garbling scheme.

Proof. We need to prove four properties of the construction.

Correctness: We need to prove an invariant: Ek = Wk ⊕ (xk ⊕ πk)Δ for all k,
if xk is the plaintext value on that wire. Encode chooses the inputs in this way,
so at least it’s true for k ≤ inputs, and it is trivially maintained for free-XOR
gates. For any v ∈ colspace (V) = G, we have V V −1v = v, as there exists some
u such that v = V u and V V −1V u = V u = v because V −1 is a left inverse of
V . In Sect. 5.1 we showed that colspace (M) = G, colspace (R ⊕ [0 · · · 0|t]) ⊆ G,
and �r ∈ G, so after multiplying both sides of garbler’s equation by V on the left,
the V V −1s will cancel, and taking a two-row piece of this equation gives the
evaluator’s equation. In this equation, Xij is the two rows of

�X = C ⊕ (R ⊕ [0 · · · 0|t])

⎡

⎣

A0

B0

Δ

⎤

⎦ , (11)

corresponding to the evaluation case i, j. The structure of R (see Eq. 6) implies
that the evaluator’s row pair of R[A�

0 B�
0 Δ�]� will be Rij [A� B�]�. Therefore

Ek = Xij ⊕ R

[
A
B

]

= C ⊕ tijΔ = Wk ⊕ (eval(k)(πA ⊕ i, πB ⊕ j) ⊕ πk)Δ,

which maintains this invariant because

i = lsb(Ein1(k)) = lsb
(

Win1(k) ⊕ (xin1(k) ⊕ πin1(k))Δ
)

= xin1(k) ⊕ πin1(k),

Three Halves Make a Whole? Beating the Half-Gates Lower Bound 115

Fig. 7. Left: simulators for privacy and obliviousness. Right: a hybrid for privacy.

and similarly for j. Finally, Decode will correctly find that Dxk

k = H ′(Wk ⊕(xk ⊕
πk)Δ, k

)

= H ′(Ek, k), assuming that Dxk

k = D1−xk

k , which has only negligible
probability of failing. Therefore it gives the correct result.

Privacy: We need to prove that generating (Φ, �G, �z), E, (Φ,D) with Garble and
Encode is indistinguishable from the output of Spriv. We give a sequence of
intermediate hybrids, going from the real garbler to the simulator.

Hybrid 1: This hybrid switches from the garbler’s perspective to the evaluator’s
perspective when garbling the circuit. Instead of keeping track of the “zero” wire

116 M. Rosulek and L. Roy

label Wk for every gate, we keep track of the “active” wire label Ek, and rewrite
the garbling procedure in terms of the “active” labels. This basically involves a
change of variable names throughout the garbling algorithm. The changes are
extensive, and given in detail in Fig. 7:

– Replace point-and-permute bits πk with the equivalent expression xk ⊕
lsb(Ek).

– Write the control matrix part of the garbling equation in terms of active wire
labels A = Ein1(k) and B = Ein2(k) instead of A0 and B0.

replace R ×

⎡

⎣

A0

B0

Δ

⎤

⎦ with equivalent R′ ×

⎡

⎣

A
B
Δ

⎤

⎦ .

where a change of basis has been applied to R, that expresses A0 as the
appropriate linear combination of A and Δ, and expresses B0 in terms of B
and Δ.

– Partition �H into two pieces:

�H0 = [H(A) H(B) H(A ⊕ B)]�

�HΔ = [H(A ⊕ Δ) H(B ⊕ Δ) H(A ⊕ B ⊕ Δ)]�

where again A and B are the active wire labels. Similarly partition the matrix
M into M0 and MΔ, and replace M × �H with (M0

�H0 ⊕ MΔ
�HΔ).

– Note that the matrix V −1 has 5 rows, where the first 2 correspond to slices
of the output label and the last 3 correspond to the gate ciphertexts. Denote
this division of V −1 by V −1

label and V −1
gate. Instead of multiplying on the left by

V −1 to solve for the output label and gate ciphertexts, we now multiply on
the left by V −1

gate to solve for only the gate ciphertexts. We then evaluate those
gate ciphertexts with A and B to learn the (active) output label Ek. This
different approach has the same result by the correctness of the scheme.
We can similarly partition the control bit ciphertexts �zk = [(�zk)top (�zk)bot],
use V −1

gate to compute (�zk)bot, and then use the evaluator’s computation to
solve for (�zk)top. Solving for (�zk)top is simplified by the first two columns of
Vij being the identity matrix. In this case, we solve for the missing positions
using knowledge of the compressed control bits rij .

All of the changes are simple variable substitutions or basis changes in the linear
algebra, so this hybrid is distributed identically to the real garbling.

Hybrid 2: In this hybrid, we apply the RTCCR property of H to all oracle
queries of the form H(· ⊕ Δ). We must show that Δ is used in a way that can
be achieved by calling the oracle from the RTCCR security game.

We focus on the term

V −1
gateM �H = V −1

gate(M0
�H0 ⊕ MΔ

�HΔ)

Three Halves Make a Whole? Beating the Half-Gates Lower Bound 117

First, consider the expression V −1 × M , and recall that M is written in terms
of the zero-labels A0, B0. Using the V −1 given in Eq. 10 , we can compute:

V −1M =

⎡

⎢
⎢
⎢
⎢
⎣

1 0 0 0 1 0
0 0 1 0 1 0
1 1 0 0 0 0
0 0 1 1 0 0
0 0 0 0 1 1

⎤

⎥
⎥
⎥
⎥
⎦

(12)

Thus V −1
gate × M will consist of the bottom three rows of Eq. 12.

Recall that the columns of M correspond to oracle queries H(A0),H(A0 ⊕
Δ),H(B0),H(B0 ⊕ Δ),H(A ⊕ B),H(A ⊕ B ⊕ Δ), in that order. In the current
hybrid M is partitioned into M0 (corresponding to H-queries on active labels)
and MΔ (corresponding to the other queries). In other words, MΔ will consist
of exactly one of rows {1, 2}, exactly one of rows {3, 4}, and exactly one of rows
{5, 6} from M . In all cases, the result of V −1

gateMΔ (i.e., the bottom 3 rows of
V −1MΔ) is the 3 × 3 identity matrix!

This means we can rewrite the hybrid in the following way:

(�zk)bot
∥
∥
∥ �Gk := V −1

gate

⎛

⎝�r
∥
∥
∥ (R′ ⊕ [0 · · · 0| t])

⎡

⎣

A
B
Δ

⎤

⎦

⎞

⎠⊕ V −1
gate(M0

�H0 ⊕ MΔ
�HΔ)

= �HΔ ⊕ [linear combinations of Δ] ⊕ · · ·

Since all the H-queries in �HΔ include a Δ term, we can compute this expression
with 3 suitable calls to the RTCCR oracle.8 Finally, D1−xk

k = H ′(Ek ⊕Δ, k) also
uses Δ, and will become two calls to the RTCCR oracle. These transformations
successfully moves all references to Δ into the RTCCR oracle.

Applying RTCCR security, it has negligible effect to replace the results of
these H-queries with uniformly random values. This has the effect of making the
entire expression uniform, i.e.:

(�zk)bot
∥
∥
∥ �Gk ← GF (2(κ+d)/2)3

Also, D1−xk

k is now sampled uniformly at random in GF (2κ).

Hybrid 3: After making the previous change, the only place that R is used is
when we use the marginal views Rij and �rij to solve for the output label and for
the missing pieces of the control bit ciphertexts. In Sect. 5.1 we specifically chose
R so that this marginal views is uniform for all t and all i, j. Therefore instead
of doing R,�r ← SampleR(t, leak(k)), we can simply choose uniform �rij and use
DecodeR to reconstruct Rij . The change has no effect on the overall view of the
adversary.

Note that after making this change, the control-bit ciphertexts (�zk)top become
uniform since �rij acts as a one-time pad.
8 Note also that the calls to H have globally distinct tweaks.

118 M. Rosulek and L. Roy

Hybrid 4: As a result of the previous change, the hybrid no longer uses t. Addi-
tionally, t was the only place where the plaintext values xk were used, other
than in the computation of D. But D only uses plaintext values for the circuit’s
output wires. In other words, the entire hybrid can be computed knowing only
the circuit output f(x). Additionally, all garbled gate ciphertexts and control
bit ciphertexts are chosen uniformly, and the active wire labels on output wires
are determined by the scheme’s evaluation procedure. Hence, the hybrid exactly
matches what happens in Spriv.

Obliviousness: Notice that Spriv calls Sobliv to generate (F,E), then samples
some more random bits for decoding and returns it all. Therefore, any adversary
for obliviousness could be turned into one for privacy by only looking at (F,E)
and ignoring the rest.

Authenticity: The first two steps of the authenticity distribution are exactly the
same as the real privacy distribution, so we can swap them for the simulated
distribution Spriv in a hybrid. Then to break authenticity the adversary must
cause Decode to choose j = 1 − xk for at least one output k, as otherwise it
will either produce the correct answer or abort. But D1−xk

k is fresh uniform
randomness, so the probability that D1−xk

k = H ′(Ek, k) is 2−κ.

5.5 Discussion

Concrete Costs. The garbler makes 6 calls to H per non-free gate, while the
evaluator makes 3 calls to H per non-free gate.

Each non-free garbled gate consists of gate ciphertexts �G and encrypted con-
trol bits �z. There are 3 gate ciphertexts, each being κ/2 bits long. The encrypted
control bits are a vector of length 5, where each component of the vector has
length d/2 (where d is the dimension of the control matrix subspace). For the
standard (parity-leaking) instantiation of our scheme, d = 2 and we get that the
total size of a garbled gate is 1.5κ + 5 bits. For the gate-hiding instantiation,
d = 4 and we get a size of 1.5κ + 10 bits.

Comparison to Half-Gates. We assume that calls to H are the computational
bottleneck, in any implementation of both our scheme and in half-gates [ZRE15].
The following analysis therefore ignores the cost of xor’ing wire labels and bit-
fiddling related to color bits and control bits.

In the time it takes to call H 12 times, half-gates generates 3 gates and sends
6κ bits (4 calls to H and 2κ bits per gate), while our scheme generates 2 gates
and sends 3κ bits (6 calls to H and 1.5κ bits per gate). Thus, a CPU-bound
implementation of our scheme will produce garbled output at half the rate of
half-gates. We evaluated the optimized half-gates garbling algorithm from the
ABY3 library [MR18], and found it capable of generating garbled output at a
rate of ∼850 Mbyte/s on single core of a i7-7500U laptop processor running at
3.5 GHz. Thus, we conservatively estimate that a comparable implementation of
our scheme could generate garbled output at ∼400 Mbyte/s = 3.2 Gbit/s. This

Three Halves Make a Whole? Beating the Half-Gates Lower Bound 119

rate would still leave our scheme network-bound in most situations and appli-
cations of garbled circuits. When both half-gates and our scheme are network
bound, our scheme is expected to take ∼25% less time by virtue of reducing
communication by 25%.

6 Optimizations

6.1 Optimizing Control Bit Encryptions

In our scheme the control bit encryptions �z is a vector of length 5, where the
components in that vector are each a single bit (in the case of parity-leaking
gates) or 2 bits (in the case of parity-hiding gates). These ciphertexts therefore
contribute 5 or 10 bits to the size of each garbled gate.

We remark that it is possible to use ideas of garbled row reduction [NPS99,
PSSW09] to reduce �z to a length-3 vector. This will result in these ciphertexts
contributing 3 or 6 bits to the garbled gate. Such an optimization may be con-
venient in parity-hiding case, where the change from 10 to 6 bits allows these
control bit ciphertexts to fit in a single byte.

Recall that in the security proof, we partition the control bit ciphertexts �z
into (�z)top (2 components) and (�z)bot (3 components). Our idea to reduce their
size is to simply fix (�z)top to zeroes, so that these components do not need to be
explicitly included in the garbled gate. The evaluator can act exactly as before,
taking the missing values from �z to be zeroes. The garbler must sample the
control matrix subject to it causing (�z)top = 0.

A drawback to this optimization is that it significantly complicates the secu-
rity proof (and hence why we only sketch it here). When we apply the security
of RTCCR in the security proof, the hybrid acts as follows:

1. It uses the d/2 least significant bits of the H-outputs to determine how the
control bits are going to be “masked”.

2. Based on these masks, it chooses a consistent control matrix R that causes
the first two components of �z to be 0.

3. The choice of R determines which linear combinations of wire label slices
(including slices of Δ) are applied.

So the reduction to RTCCR security must first read the low bits of several
H(· ⊕ Δ) queries before it decides which linear combination of Δ should be
XOR’ed with the remaining output of H. Of course the RTCCR oracle requires
the choice of linear combination to be provided when H is called. It is indeed
possible to formally account for this, but only by modeling the two parts of H’s
output (for masking wire label slices and for masking control bits) as separate
hash functions for the purposes of the security proof.

6.2 Optimizing Computation

Our construction requires a RTCCR function H with output length (κ+d)/2. We
propose an efficient instantiation of H which naturally results in κ-bit output,

120 M. Rosulek and L. Roy

which is then truncated to (κ + d)/2. The hash produces nearly twice as many
bits as needed, raising the question of whether we are “wasting” these extra bits.
In fact, if we reduce the security parameter slightly so that H is derived from
a (κ + d)-bit primitive, we can use these extra bits to reduce the computation
cost.

Suppose H ′ is a [RT]CCR with (κ + d) bits of output. Then define

H(X, τ) =

{

first half of H ′(X, τ
2) τ even

second half of H ′(X, τ−1
2) τ odd

Clearly H is also a [RT]CCR with (κ+ d)/2 bits of output. How can we use this
H to reduce the total number of calls to the underlying H ′?

When a wire with labels (A,A ⊕ Δ) is used as input to an AND gate, our
scheme makes calls of the form H(A, j),H(A ⊕ Δ, j) where j is the ID of that
AND gate. Let us slightly change how the tweaks are used. Suppose this wire
with label (A,A⊕Δ) is used as input in n different AND gates. Then those gates
should make calls of the form H(A, 0 ‖ i),H(A, 1 ‖ i), . . . , H(A,n − 1 ‖ i), where
i is now the index of the wire whose labels are (A,A ⊕ Δ). When H is defined
as above, these queries can be computed with only �n/2� queries to H ′.

Note that both the garbler and evaluator can take advantage of this opti-
mization, with the garbler always requiring exactly twice as many calls to H ′

(if in some scenario the evaluator needs H ′(X) then the garbler will need
H ′(X) and H ′(X ⊕ Δ)). Our AND gates require calls to H of the form
H(A),H(B),H(A ⊕ B), and so far we have discussed optimizing only the H(A)
and H(B) queries. Similar logic can be applied to the queries of the form
H(A⊕B); for example, if a circuit contains gates a∧ b and (a⊕ b)∧ c, then both
of those AND gates will require H(A ⊕ B) terms that can be optimized in this
way.

Fig. 8. Number of calls to κ-bit H ′ RTCCR function (per AND gate) to garble each
circuit, with and without the optimization of Sect. 6.2. Evaluating the garbled circuit
costs exactly half this number of calls to H ′.

We explored the effect of this optimization for a selection of circuits.9 The
results are shown in Fig. 8. The improvement ranges from 0% to 33.3%. As a

9 Circuits were obtained from https://homes.esat.kuleuven.be/∼nsmart/MPC/.

https://homes.esat.kuleuven.be/~nsmart/MPC/

Three Halves Make a Whole? Beating the Half-Gates Lower Bound 121

reference, our baseline construction requires 6 calls to ((κ + d)/2-bit output) H
to garble an AND gate, while half-gates requires 4 calls (to a κ-bit function).
Interestingly, in the Keccak f -function every wire used as input to an even
number of AND gates, so that our optimized scheme has the same computation
cost as half-gates (4 calls to H ′ per AND gate). In principle, this optimization
can result in as few as 3 calls to H ′ per AND gate,10 but typical circuits do not
appear to be nearly so favorable.

7 The Linear Garbling Lower Bound

In [ZRE15], the authors present a lower bound for garbled AND gates in a model
that they call linear garbling. The linear garbling model considers schemes
with the following properties:

– Wire labels have an associated color bit which must be {0, 1}.
– To evaluate the garbled gate, the evaluator makes a sequence of calls to a

random oracle (that depend only on the input wire labels), and then outputs
some linear combination of input labels, gate ciphertexts, and random oracle
outputs. The linear combination must depend only on the color bits of the
input labels.

The bound of [ZRE15] considers only linear combinations over the field GF (2κ),
and it is unclear to what extent the results generalize to other fields.

Several works have bypassed this lower bound, and we summarize them
below. All of these works show how to garble an AND gate for κ+O(1) bits, but
only a single AND gate in isolation. These constructions all require the input
wire labels to satisfy a certain structure, but do not guarantee that the output
labels also satisfy that structure.

– Kempka, Kikuchi, and Suzuki [KKS16] and Wang and Malluhi [WmM17]
both use a technique of randomizing the control bits. The evaluator decrypts
a constant-size ciphertext to determine which linear combination to apply.
This approach is outside of the linear garbling model, which requires that
the linear combination depend only on the color bits. These works also add
wire labels in Z2κ rather than XOR them (as in GF (2κ)). Apart from these
similarities, the two approaches are quite different.

– Ball, Malkin, and Rosulek [BMR16] deviate from the linear garbling model by
letting each wire label have a color “trit” from Z3 instead of a color bit from
Z2. There is no further “indirection” of the evaluator’s linear combination—it
depends only on the colors of the input labels. They also perform some linear
combinations on wire labels over a field of characteristic 3.

As described earlier, we bypass the lower bound by adopting the control-bit
randomization technique of [KKS16] but also introducing the wire-label-slicing
technique.

10 This can happen, e.g., when for every a∧b gate there is a corresponding a∨b = a ∧ b
gate.

122 M. Rosulek and L. Roy

8 Open Problems

We conclude by listing several open problems suggested by our work.

Optimality. Is 1.5κ bits optimal for garbled AND gates in a more inclusive model
than the one in [ZRE15]? A natural model that excludes “heavy machinery” like
fully homomorphic encryption is Minicrypt, in which all parties are computa-
tionally unbounded but have bounded access to a random oracle. Conversely,
can one do better—say, 4κ/3 bits per AND gate? Does it help to sacrifice com-
patibility with free-XOR? In our construction, free-XOR seems crucial.

Computation Cost. In Sect. 6.2 we described how to reduce the number of queries
to an underlying κ-bit primitive, with an optimization that depends on topology
of the circuit. Is there a way to reduce the computation cost of our scheme
(measured in number of calls to, say, a κ-bit ideal permutation), for all circuits?

In the best case, we can garble a circuit for only 3 (amortized) calls per AND
gate, whereas all prior schemes require 4. Setting aside garbled circuit size and
free-XOR compatibility, is there any scheme that can garble arbitrary circuits
for less than 4 (amortized) calls to a κ-bit primitive per AND gate?

Hardness Assumption. Free-XOR garbling requires some kind of circular cor-
relation robust assumption (see [CKKZ12] for a formal statement). The state-
of-the-art garbling scheme based on the minimal assumption of PRF is due to
Gueron et al. [GLNP15], where AND gates cost 2κ and XOR gates cost κ bits.
Can our new techniques be used to improve on garbling from the PRF assump-
tion, or alternatively can the optimality of [GLNP15] be proven? Again, our
construction seems to rely heavily on the free-XOR structure of wire labels,
which (apparently) makes circular correlation robustness necessary.

Privacy-Free Garbling. Frederiksen et al. [FNO15] introduced privacy-free gar-
bled circuits, in which only the authenticity property is required of the garbling
scheme. The state-of-the-art privacy-free scheme is due to [ZRE15], where XOR
gates are free and AND gates cost κ bits. Can our new techniques lead to a
privacy-free garbling scheme with less than κ bits per AND gate (with or with-
out free-XOR)?

Simpler Description. Is there a way to describe our construction as the clean
composition of simpler components, similar to how the half-gates construction is
described in terms of simpler “half gate” objects? The challenge in our scheme is
the way in which left-slices and right-slices of the wire labels are used together.

References

BHR12. Bellare, M., Hoang, V.T., Rogaway, P.: Foundations of garbled circuits.
In: Yu, T., Danezis, G., Gligor, V.D. (eds.) ACM CCS 2012, pp. 784–796.
ACM Press, October 2012

Three Halves Make a Whole? Beating the Half-Gates Lower Bound 123

BMR90. Beaver, D., Micali, S., Rogaway, P.: The round complexity of secure proto-
cols (extended abstract). In: 22nd ACM STOC, pp. 503–513. ACM Press,
May 1990

BMR16. Ball, M., Malkin, T., Rosulek, M.: Garbling gadgets for Boolean and arith-
metic circuits. In: Weippl, E.R., Katzenbeisser, S., Kruegel, C., Myers,
A.C., Halevi, S. (eds.) ACM CCS 2016, pp. 565–577. ACM Press, October
2016

CKKZ12. Choi, S.G., Katz, J., Kumaresan, R., Zhou, H.-S.: On the security of
the “Free-XOR” technique. In: Cramer, R. (ed.) TCC 2012. LNCS, vol.
7194, pp. 39–53. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-28914-9 3

CR16. Carmer, B., Rosulek, M.: Linicrypt: a model for practical cryptography.
In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9816, pp.
416–445. Springer, Heidelberg (2016)

FNO15. Frederiksen, T.K., Nielsen, J.B., Orlandi, C.: Privacy-free garbled circuits
with applications to efficient zero-knowledge. In: Oswald, E., Fischlin, M.
(eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 191–219. Springer, Hei-
delberg (2015)

GKWY20. Guo, C., Katz, J., Wang, X., Yu, Y.: Efficient and secure multiparty compu-
tation from fixed-key block ciphers. In: 2020 IEEE Symposium on Security
and Privacy, pp. 825–841. IEEE Computer Society Press, May 2020

GLNP15. Gueron, S., Lindell, Y., Nof, A., Pinkas, B.: Fast garbling of circuits under
standard assumptions. In: Ray, I., Li, N., Kruegel, C. (eds.) ACM CCS
2015, pp. 567–578. ACM Press, October 2015

KKS16. Kempka, C., Kikuchi, R., Suzuki, K.: How to circumvent the two-ciphertext
lower bound for linear garbling schemes. In: Cheon, J.H., Takagi, T. (eds.)
ASIACRYPT 2016. LNCS, vol. 10032, pp. 967–997. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-53890-6 32

KMR14. Kolesnikov, V., Mohassel, P., Rosulek, M.: FleXOR: flexible garbling for
XOR gates that beats free-XOR. In: Garay, J.A., Gennaro, R. (eds.)
CRYPTO 2014. LNCS, vol. 8617, pp. 440–457. Springer, Heidelberg (2014)

KS08. Kolesnikov, V., Schneider, T.: Improved garbled circuit: free XOR gates
and applications. In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson,
M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008. LNCS, vol.
5126, pp. 486–498. Springer, Heidelberg (2008). https://doi.org/10.1007/
978-3-540-70583-3 40

LP09. Lindell, Y., Pinkas, B.: A proof of security of Yao’s protocol for two-party
computation. J. Cryptol. 22(2), 161–188 (2009)

MR18. Mohassel, P., Rindal, P.: ABY3: a mixed protocol framework for machine
learning. In: Lie, D., Mannan, M., Backes, M., Wang, X. (eds.) ACM CCS
2018, pp. 35–52. ACM Press, October 2018

NPS99. Naor, M., Pinkas, B., Sumner, R.: Privacy preserving auctions and mech-
anism design. In: Proceedings of the 1st ACM Conference on Electronic
Commerce, New York, NY, USA, pp. 129–139. ACM (1999)

PSSW09. Pinkas, B., Schneider, T., Smart, N.P., Williams, S.C.: Secure two-party
computation is practical. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS,
vol. 5912, pp. 250–267. Springer, Heidelberg (2009)

Ros17. Rosulek, M.: Improvements for gate-hiding garbled circuits. In: Patra, A.,
Smart, N.P. (eds.) INDOCRYPT 2017. LNCS, vol. 10698, pp. 325–345.
Springer, Heidelberg (2017)

https://doi.org/10.1007/978-3-642-28914-9_3
https://doi.org/10.1007/978-3-642-28914-9_3
https://doi.org/10.1007/978-3-662-53890-6_32
https://doi.org/10.1007/978-3-540-70583-3_40
https://doi.org/10.1007/978-3-540-70583-3_40

124 M. Rosulek and L. Roy

WmM17. Wang, Y., Malluhi, Q.M.: Reducing garbled circuit size while preserving
circuit gate privacy. Cryptology ePrint Archive, Report 2017/041 (2017).
https://eprint.iacr.org/2017/041

Yao82. Yao, A.C.-C.: Protocols for secure computations (extended abstract). In:
23rd FOCS, pp. 160–164. IEEE Computer Society Press, November 1982

ZRE15. Zahur, S., Rosulek, M., Evans, D.: Two halves make a whole-reducing data
transfer in garbled circuits using half gates. In: Oswald, E., Fischlin, M.
(eds.) EUROCRYPT 2015. Part II, LNCS, vol. 9057, pp. 220–250. Springer,
Heidelberg (2015)

https://eprint.iacr.org/2017/041

Signatures

Threshold Schnorr with Stateless
Deterministic Signing from Standard

Assumptions

François Garillot1, Yashvanth Kondi2(B), Payman Mohassel3,
and Valeria Nikolaenko1

1 Novi/Facebook, Palo Alto, USA
francois@garillot.net, valerini@fb.com

2 Northeastern University, Boston, USA
ykondi@ccs.neu.edu

3 Facebook, Palo Alto, USA
paymanm@fb.com

Abstract. Schnorr’s signature scheme permits an elegant threshold sign-
ing protocol due to its linear signing equation. However each new signature
consumes fresh randomness, which can be a major attack vector in practice.
Sources of randomness in deployments are frequently either unreliable, or
require state continuity, i.e. reliable fresh state resilient to rollbacks. State
continuity is a notoriously difficult guarantee to achieve in practice, due to
system crashes caused by software errors, malicious actors, or power supply
interruptions (Parno et al., S&P ’11). This is a non-issue for Schnorr vari-
ants such as EdDSA, which is specified to derive nonces deterministically
as a function of the message and the secret key. However, it is challenging
to translate these benefits to the threshold setting, specifically to construct
a threshold Schnorr scheme where signing neither requires parties to con-
sume fresh randomness nor update long-term secret state.

In this work, we construct a dishonest majority threshold Schnorr
protocol that enables such stateless deterministic nonce derivation using
standardized block ciphers. Our core technical ingredients are new tools
for the zero-knowledge from garbled circuits (ZKGC) paradigm to aid in
verifying correct nonce derivation:

– A mechanism based on UC Commitments that allows a prover to
commit once to a witness, and prove an unbounded number of state-
ments online with only cheap symmetric key operations.

– A garbling gadget to translate intermediate garbled circuit wire
labels to arithmetic encodings.

A proof per our scheme requires only a small constant number of expo-
nentiations.

1 Introduction

The Schnorr signature scheme [Sch91] is a simple discrete logarithm based con-
struction where the public key is of the form X = x ·G, and to sign a message m

Yashvanth Kondi did part of this work during an internship at Novi/Facebook.
c© International Association for Cryptologic Research 2021
T. Malkin and C. Peikert (Eds.): CRYPTO 2021, LNCS 12825, pp. 127–156, 2021.
https://doi.org/10.1007/978-3-030-84242-0_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-84242-0_6&domain=pdf
https://doi.org/10.1007/978-3-030-84242-0_6

128 F. Garillot et al.

the signer provides R = r · G and the linear combination σ = xe + r where e is
derived by hashing X, R, m (or just R, m as in the original specification). This
relation can easily be verified in the exponent as σ · G = e · X + R. Assuming an
ideal hash function (modelled as a random oracle) unforgeability is rooted in the
hardness of the discrete logarithm problem. The signatures themselves embody
a zero-knowledge property: assuming that the r values are uniformly chosen, the
σ values reveal no information about x.

1.1 Practical Concerns: Determinism and Statelessness

The fact that r values are chosen uniformly upon every invocation permits many
useful theoretical properties, among them a clean proof [PS96]. However, the
necessity of fresh randomness introduces a new attack vector in practice: the
assumption that a consistent source of entropy will be available for use has
repeatedly turned out to be ill-founded.

As an example, the public cloud is a context in which access to good entropy
and a well-seeded PRNG is particularly difficult. Indeed, deploying an appli-
cation on cloud infrastructure delivers the convenience of modern enterprise-
grade offerings, yielding significant benefits in uptime, availability, APIs, threat
detection, load balancing, storage, and more. Yet this choice often entails that
a user application will run as a guest in a virtualized environment of some
kind. Existing literature shows that such guests have a lower rate of acquir-
ing entropy [KASN15], that their PRNG behaves deterministically on boot and
reset [EZJ+14], and that they show coupled entropy in multi-tenancy situa-
tions [KC12], including in containers [Bay14]. This can have disastrous con-
sequences, as even a small amount of bias in r values across many Schnorr
signatures can be leveraged to completely break the scheme [HS01].

The idea of deterministically deriving r values from randomness established
during key generation has correspondingly gained traction [MNPV99,KW03,
KL17]. The widely used EdDSA signature scheme [BDL+12] derives its nonces
as r = H(H(k), m) where k is sampled during key generation and m is the mes-
sage to be signed. Assuming k has enough entropy and that H produces pseu-
dorandom outputs, the r values will be pseudorandomly determined for each
m, leading to signatures that are essentially as secure as the original Schnorr
algorithm that consumes fresh randomness for each r. In this work, we aim to
translate the benefits of deterministic signing to the threshold signature setting.
In particular, we study deterministic threshold Schnorr as the problem of design-
ing a decentralized protocol to produce Schnorr signatures where each party’s
signing algorithm is deterministic.

State Continuity is Non-trivial. Folklore would suggest that the problem at hand
is simple: first design a randomized protocol (of which many exist for threshold
Schnorr) and then simply ‘compress’ the random tape by using a PRG/block
cipher invoked with a fresh counter each time new randomness is needed. How-
ever this approach fundamentally assumes state continuity [PLD+11], i.e. that
the state of the device running the protocol can be reliably updated and read
on demand. However as Parno et al. [PLD+11] first pointed out, even secure

Threshold Schnorr with Stateless Deterministic Signing 129

hardened devices with strong isolation guarantees can not take this property for
granted. In particular, malicious attackers or even natural circumstances such
as software errors or power interruptions may induce a device to turn off and
roll back to a ‘last known safe’ state upon restart. While such a state may be
entirely consistent in every detectable way, it could be stale, leading to random-
ness reuse in the PRG context. We stress that reliably storing long-term secrets
is significantly easier than for instance updating a counter every time a signature
is produced.

Why Not Solve This at the Systems Level? While state continuity in general has
been studied as a systems problem, we argue here that incorporating resiliency
to state resets in cryptographic protocol design has both qualitative and quan-
titative advantages:
– Qualitative: Systems-level solutions depend on context, and consequently

hinge on specific assumptions such as trusted hardware [PLD+11,SP16], a
number of helper nodes with uncorrelated failures [BCLK17,MAK+17], or
a trusted server [vDRSD07]. In contrast, a cryptographic protocol in the
standard model offers provable security and strong composition guarantees
without resorting to context-specific physical assumptions.

– Quantitative: Deployment of a protocol that relies on state continuity will
require the expending of resources on establishing context-specific solutions
to this problem for each new environment; acquiring such dedicated hardware
is expensive. Moreover it is unclear that the best systems solution in every
environment will be more efficient than a canonical stateless cryptographic
protocol. Consider two-party distributed signing: it defeats the purpose to
incorporate extra parties/servers for state continuity, and solutions that rely
on monotonic counters maintained on special purpose hardware such as Intel
SGX or Trusted Platform Modules suffer other issues inherent to these plat-
forms. Matetic et al. [MAK+17] showed that the upper limit on the number
of writes to such protected counters (due to non-volatile memory wearing
out) can be exhausted in a few days of continuous use. Moreover maintaining
and reading from such memory is slow; Strackx and Piessens [SP16] report
a 95 ms latency, and Brandenburger et al. [BCLK17] report a 60 ms latency
in incrementing an SGX Trusted Monotonic Counter. In summary, dedicated
hardware for state continuity is expensive, slow, and comes with limited lifes-
pan. The protocols we construct in this work are expected to run significantly
faster on commodity hardware (order of 10 ms) - well within the performance
envelope of trusted hardware solutions due to their latency.
We therefore incorporate statelessness into the problem statement, to mean

that security must hold even when devices are arbitrarily crashed (even in the
middle of a protocol) and restored with only their long-term secrets.

1.2 Why Is Stateless Deterministic Threshold Signing Challenging?
Schnorr signatures permit a very elegant multiparty variant [SS01,GJKR07] as
signatures are simply linear combinations of secret values. Most natural secret

130 F. Garillot et al.

sharing schemes permit linear combinations “for free”, with the result that
threshold Schnorr in different settings has essentially reduced to the task of
establishing x · G and r · G such that x, r are random and secret-shared among
parties.

The instructions for each of the parties in the classic threshold Schnorr pro-
tocols [SS01,GJKR07] looks very much like the regular signing algorithm. We
give a brief sketch of how the semi-honest two party version works, which is
sufficient to understand the challenges we address in the rest of our exposition.
The description is from the point of view of party Pb for b ∈ {0, 1}.

1. Key generation: Pb samples skb ← Zq and sets pkb = skb · G. It then sends
pkb to P1−b and waits for pk1−b. The shared public key is set to pk = pk0+pk1

2. Given message m to sign:
(a) Pb samples rb ← Zq and sets Rb = rb · G. It then sends Rb to P1−b and

waits for R1−b. The signing nonce is computed by both as R = R0 + R1
(b) Pb computes e = H(pk, R, m) and sets σb = skb · e + rb. It then sends σb

to P1−b and waits for σ1−b. Finally (R, σ = σ0 + σ1) is a signature on m

The above protocol can be made secure against an active adversary with an
extra commitment round [NKDM03], however this will not be important for our
discussion. An immediate observation is that instead of having Pb sample a fresh
rb for each message, one could adopt the EdDSA approach and have Pb sample kb

during key generation and instead compute rb = H(H(kb), m). This does in fact
yield a deterministic threshold signing protocol, with security against at least
passive corruption. However, as previously noted by Maxwell et al. [MPSW19], a
malicious adversary will be able to completely break such a system. The attack is
as follows: a malicious P1 can first run the honest signing procedure for message
m with the correct r1 (as per Step 2a), and subsequently ask to sign the same
m but use a different r′

1 �= r1 this time. The honest P0 follows the protocol
specification and unfortunately uses the same r0 value in both executions, as it is
derived as a function of m, k0, both of which are independent of r1. Consequently,
R = (r0 + r1)G and R′ = (r0 + r′

1)G are the nonces derived for each execution,
which induce unequal challenges e = H(..R) and e′ = H(..R′). The honest party
therefore gives P1 the values σ0 = sk0e + r0 and σ′

0 = sk0e′ + r0 in different
executions, which jointly reveal its secret key share sk0.

Going forward, we follow the natural template for threshold Schnorr set by
previous works [NKDM03,SS01,GJKR07], and investigate how to enforce that
parties indeed derive their nonces deterministically by following the protocol.

1.3 Desiderata

There are many possible ways to enforce deterministic nonce derivation, and so
we first highlight the constraints of our context in order to inform our choice of
technology.

– Standard assumptions. This is a subtle but important constraint. As with
any safety critical application, we would like to avoid new and insufficiently

Threshold Schnorr with Stateless Deterministic Signing 131

vetted assumptions in our protocol. However even more important than pro-
tocol security (which is only relevant when parties in the system are corrupt)
is the security of artefacts exposed to the outside world, i.e. the signature. In
particular, we wish to be very conservative in instantiating the PRF that is
used to derive nonces; Schnorr signatures are known to be extremely sensitive
to nonce bias [HS01,TTA18], meaning that the slightest weakness discovered
in the PRF could lead to attackers retrieving entire signing keys using previ-
ously published signatures.

– Lightweight computation. We want our schemes to be as widely applicable
as possible, and consequently we do not want to make use of heavy cryptog-
raphy. In the case of decentralized cryptocurrency wallets where one or more
signing party is likely to be a weak device (e.g. low budget smartphone, or
Hardware Security Module) both computation cost and memory consumption
must be minimized. On the other end of the spectrum for threshold signing at
an institutional level with powerful hardware, lightweight signing is conducive
to high throughput.

– Round efficiency. As much as possible we would like to avoid compromis-
ing on round efficiency in our endeavour to make signing deterministic and
stateless. In particular ordinary threshold Schnorr signing [NKDM03,SS01,
GJKR07] requires only three rounds, and we would like to match this effi-
ciency.

We therefore formulate a more precise problem statement,

How can we construct a lightweight threshold signing protocol for Schnorr
signatures where parties do not consume fresh randomness or update state
after the initial key generation? Moreover nonce derivation must strictly
use standardized primitives (e.g. AES, SHA).

To be clear, our focus is on the ‘online’ signing operations; we do not worry about
optimizing the efficiency of the distributed key generation, which is one-time.

1.4 This Work

In this work, we construct an efficient zero-knowledge proof system for proving
correct nonce derivation that makes use of only cheap symmetric key cryptog-
raphy and a small constant number of exponentiations when invoked, and does
not require updating long-term state.

Our proof system is in the Zero-knowledge from Garbled Circuits (ZKGC)
paradigm of Jawurek et al. [JKO13], and the techniques that we develop improve
the ZKGC paradigm even outside of the stateless deterministic setting.

General ZKGC Bottlenecks. The efficiency of the ZKGC paradigm is rooted in
the fact that the prover and verifier pay at most three AES invocations per
AND gate in the circuit, when instantiated with the privacy-free variant of Half-
Gates [ZRE15]. However especially for small circuits such as AES, SHA, etc.,
the bottleneck usually lies in logistics for the witness (i.e. input to the circuit).
In particular:

132 F. Garillot et al.

– Input Encoding: Transferring wire labels for a |q|-bit input requires |q|
Oblivious Transfers, which means O(κ) public key operations per invocation
even with OT Extension, for κ bits of computational security.

– Binding Composite Statements: The state of the art technique [CGM16]
to tie statements about an order q elliptic curve group elements to a Boolean
circuit involves the garbling of an additional private circuit to multiply a |q|-
bit value with an s-bit statistical MAC. While the cost of these Õ(s · |q|) extra
gates may disappear as the circuit size grows, it incurs high concrete cost rel-
ative to common ciphers that have compact Boolean circuit representations.
Consider the parameter regime relevant here, a 256-bit curve and 60 bits of
statistical security: the cost of garbling with privacy (2× the per-gate cost
of privacy-free [ZRE15]) the corresponding 32k gate multiplication circuit for
the MAC1 is considerably more expensive than privacy-free garbling of the
circuit for the relation itself: nearly an order of magnitude more than AES-128
(7k gates [AMM+]) and even 3× that of SHA-256 (22k gates [CGGN17]).

We develop novel techniques to address both of these problems in this work,
which we briefly describe below.

Commit Once, Prove Many Statements. As the use of O(κ) public key
operations used for input encoding in garbled circuit based protocols is a diffi-
cult foundational issue, we relax the problem to fit our setting more closely. In
particular, it is sufficient for a party to commit to a nonce derivation key k once
during distributed key generation, and subsequently prove an unbounded num-
ber of statements (i.e. PRF evaluations) online. This gives us a more targeted
problem statement:

How can we enable the prover to commit to its witness w once, and prove
an unbounded number of statements x such that R(x, w) = 1 with only
symmetric key operations per instance in the ZKGC paradigm?

This problem reduces to the task of constructing a variant of Committed OT,
where an OT receiver commits to a choice bit once and subsequently receives
one out of two messages for an unbounded number of message pairs sent by the
sender. Importantly, after the sender has sent a message pair, the sender should
be able to reveal the pair at a later point without changing the messages or learn-
ing the receiver’s choice bit. We devise a novel method that makes non-blackbox
use of any Universally Composable (UC) commitment [Can01] in the one-time
preprocessing model to solve this problem. Roughly, each OT in the canonical
instantiation of input encoding is replaced by a pair of UC commitments. This is
substantially more computationally efficient, as we summarize below in Table 1.

On a Macbook Pro 2017 laptop (i7-7700HQ CPU, 2.80 GHz) running OpenSSL
1.1.1f: a single AES-128 invocation takes 0.07µs, SHA-512 takes 0.3µs, and a
Curve25519 exponentiation takes 59.8µs. This data in combination with Table 1
suggests that our technique for preprocessing Committed OT can perform input
encoding an order of magnitude faster than using the fastest plain OT.
1 Calculated with Karatsuba’s multiplication algorithm per Table 6.7 in [CCD+20].

Threshold Schnorr with Stateless Deterministic Signing 133

Table 1. Cost per bit of the witness (send+receive+open), per instance not including
preprocessing. Parameters: 128 bits of computational security, 60 bits of statistical
security. Estimated runtime with AES for F, SHA-512 for CRHF, and Curve25519 for
exponentiations.

Scheme Comp. Comm. (bits) Estd. runtime
OT [CO15] 5 exponentiations 1152 299µs
This work 240 · F + 31 · CRHF 5120 26.1µs

Beyond Stateless Deterministic Signing. This pattern of proving an unbounded
number of statements about the same private input is not unique to thresh-
old signing. Consider the example of distributed symmetric key encryp-
tion [AMMR18]: Servers A and B (one of which may be malicious) hold keys
kA, kB respectively, and comprise one endpoint of a secure channel. Cipher-
texts on this channel are of the form (r, m ⊕ FkA

(r) ⊕ FkB
(r)), and so encryp-

tion/decryption requires the servers to reveal FkA
(r),FkB

(r) and prove correct
evaluation.

Intuition. Recall that a UC commitment scheme must be ‘straight-line
extractable’, i.e. there must exist an extractor algorithm Ext, which when given
a commitment C to message m and a trapdoor ek should efficiently output m.
Our insight is to run Ext to implement the committed OT receiver, even though
its utility in the context of the UC commitment is simply as a ‘proof artefact’
which is never executed in a real protocol. Roughly, we generate a pair of com-
mitment keys ck0, ck1 for the OT sender during the preprocessing phase, and
give the trapdoor ekb corresponding to ckb to the OT receiver, where b is the
choice bit. To send a message pair (m0, m1) the sender commits to m0 using ck0
and m1 using ck1, of which the receiver retrieves mb by invoking Ext with ekb.
In order to ‘open’ its messages, the sender simply runs the decommitment phase
of the UC commitment scheme. The novelty in this approach lies in our use of
the extraction trapdoor ek, which is an object that only appears in the security
proof of a UC commitment (but not in the ‘real’ world), to construct a concrete
protocol. The real-world OT receiver essentially runs the simulator of the UC
commitment scheme.

Exponentiation Garbling Gadget. We design a gadget to garble the expo-
nentiation function fG(x) = x · G at very low cost. The gadget takes as
input a standard Yao’s garbled circuit style encoding of a bit string x (i.e.
keys (kxi

i)i∈[|x|]), and outputs a convenient algebraic encoding of this value
Z = (ax + b) · G for some secret a, b ∈ Z

∗
q .

A similar effect is achieved by Chase et al. [CGM16] by garbling an explicit
multiplication circuit. However our gadget is drastically more efficient, as sum-
marized below in Table 2.

This leads to significant savings, as stated earlier the MAC computation
alone would have dominated bandwidth cost.

134 F. Garillot et al.

Table 2. Cost to apply algebraic MAC z = ax + b to a secret x encoded in a gar-
bled circuit. Concrete costs are given for |q| = 256, s = 60, and κ = 128, with the
HalfGates [ZRE15] garbling scheme. KDF is the cipher used for garbling.

Scheme Asymptotic Comm. Concrete Comm. Calls to KDF
[CGM16] Õ(s · |q| · κ) 1024 KB 64000

Our gadget O(|q| · κ) 8.2 KB 1024

Beyond Stateless Deterministic Signing. This gadget cuts down the heavy MAC
computation in [CGM16] by a factor of 125, and therefore is useful for composite
statements where the Boolean circuit size for the non-algebraic component is
smaller or comparable in size to Õ(s · |q|). Concretely bandwidth savings can
range from ∼ 90% for AES-128, to ∼ 70% for SHA-256. The latter translates
significant bandwidth savings in the context of proving knowledge of an ECDSA
signature [CGM16].

Intuition. The gadget is inspired by the Oblivious Linear Evaluation technique
of Gilboa [Gil99]. The ciphertexts are structured so that the evaluator always
decrypts zi = bi + xi · ui · a on wire i, where a and b =

∑
i bi are the garbler’s

MAC keys and x = 〈u, x〉. Adding up z =
∑

i zi yields z = ax + b, which is
the desired arithmetic encoding, and allows for easy exponentiation outside the
garbled circuit. This self-contained gadget can be expressed as a garbling scheme
and proven secure as such.

We are therefore able to construct a highly efficient zero-knowledge proof
system, where a prover commits to a some nonce derivation key k during key
generation, and subsequently proves correct nonce derivation, i.e. R = Fk(m) ·G
for an unbounded number of messages m that are signed online. Simply aug-
menting the semi-honest threshold signing protocol sketched earlier with this
zero-knowledge proof yields an n-party stateless deterministic threshold signing
protocol that is secure against n − 1 malicious corruptions.

2 Related Work

Resettable Zero-Knowledge (rZK). The notion of rZK introduced by Canetti
et al. [CGGM00] allows an adversarial verifier to arbitrarily reset a prover, and
requires zero-knowledge to hold even in the absence of fresh randomness for
the prover upon being reset. This achieves stateless determinism as we require,
and indeed the attacks discovered by Canetti et al. on canonical protocols when
confronted with such an adversary are of the same flavour as the one in Sect. 1.2.
However the adversarial model that we consider in this work is weaker for two
reasons: one is that the prover and verifier are allowed a one-time reset-free
interactive setup phase, and the other is that in case an abort is induced at
any point no further interaction will occur. Therefore rZK protocols would be
overkill for our setting.

Threshold Schnorr with Stateless Deterministic Signing 135

MuSig-DN. The closest work to ours is the very recent work of Nick et al.
[NRSW20], in which the authors construct a two-round multisignature scheme
called MuSig-DN which enforces deterministic nonces with security against n−1
out of n malicious corruptions. Their protocol achieves stateless deterministic
signing for Schnorr signatures, however their approach diverges from ours in two
significant ways:

– The security of the PRF they use for nonce derivation is based on the Deci-
sional Diffie-Hellman assumption over a carefully chosen custom elliptic curve
that supports efficient proofs. While this offers a nice tradeoff between the
efficiency of proving statements about arithmetization-friendly primitives and
plausibility of assumptions, the assumption is not exactly the same as DDH
over a standardized curve.

– They opt for a SNARK-based approach (specifically Bulletproofs [BBB+18]),
which is very communication efficient (around a kilobyte for a proof) but com-
putation intensive; they report 943 ms on commodity hardware for a single
execution.

In contrast, our dishonest majority protocol occupies a different point on the
spectrum: it supports standardized ciphers for nonce derivation, and is compu-
tationally very light at the expense of higher bandwidth.

Threshold EdDSA. Due to the fact that the EdDSA signing algorithm derives r
as a non-linear function of some preprocessed seed, securely computing EdDSA
in a threshold setting exactly as per its specification is quite challenging. Cur-
rent implementations of threshold EdDSA either require elaborate (random-
ized) MPC protocols [BST21] or abandon deterministic nonce derivation alto-
gether and simply implement randomized threshold Schnorr over the correct
curve [LPR19]. As an example, the Unbound library [LPR19] drops the deter-
minism requirement with the justification that a nonce jointly sampled in a
multiparty protocol will be uniformly random if even one of the parties uses
good randomness. However this does not protect a device using bad randomness
from a malicious adversary controlling a party in the system. Moreover we con-
tend that in practice it is common for all parties in the system to be using similar
implementations, hence inducing correlated randomness-related vulnerabilities.
Additionally faults/bugs may occur at the system or hardware levels, which fur-
ther motivates the need for threshold signing protocols that do not assume that
any party in the system has reliable randomness.

In this work we are not concerned with exactly computing the correct EdDSA
signing equation in a distributed setting, as this will likely require expensive
MPC [BST21]. Instead we would like to construct a threshold Schnorr protocol
that embodies the spirit of deterministic nonce derivation; in particular our
primary goal is to construct a multiparty protocol to compute Schnorr signatures
where each participant runs a deterministic and stateless signing algorithm. Also
note that the work of Bonte et al. [BST21] is in the incomparable honest majority
setting, and highly interactive.

136 F. Garillot et al.

3 Our Techniques

The task at hand can be roughly characterized as follows: parties in the system
first sample some state during a “key generation” phase. When given a message
to sign later, they must securely derive the signing material from the joint state
they sampled earlier. Moreover, this derivation must be deterministic and should
not create new state, i.e. signing material for each message must only rely on the
key generation state and the message itself. The template of sampling a PRF
key during key generation and applying this PRF on the message to be signed
to derive signing material works well in the semi-honest setting as discussed, but
falls apart when adversaries deviate from the protocol.

The canonical method to upgrade a semi-honest protocol to malicious secu-
rity without an honest majority is for parties to commit to some initial random-
ness, and subsequently prove that they computed each message honestly relative
to the committed randomness [GMW87]. What this entails for threshold Schnorr
is for parties to commit to a PRF key during distributed key generation, and
when signing a message, prove that the discrete log of their claimed nonce is
indeed the result of applying the PRF on the public message using the com-
mitted key. In particular for some public x, Ri,Commit(ki), party Pi must prove
that Fki

(x) · G = Ri where F is a PRF. We encapsulate this mechanism in the
functionality FF·G later in this paper.

3.1 What Existing Proof Technologies Suit Our Task?

As per our desiderata that we set in Sect. 1.3, we wish to prioritize standard
assumptions, light computation, and retaining round efficiency. We examine the
different proof technologies available to us with this lens, as follows:

SNARK-Based. The recent progress in succinct proof systems [BFS20,
BCR+19,BBB+18,Gro16] provides a tempting avenue to explore, as a SNARK
attesting to the correctness of nonce generation yields a conceptually simple
approach. We highlight here that we wish to rely on standard assumptions, the
implication being that we would like to use a time-tested and vetted, prefer-
ably standardized PRF. While there has been tremendous progress in con-
structing SNARK/STARK-friendly ciphers [BSGL20], efficiently proving state-
ments involving more traditional non-algebraic ciphers (such as SHA/AES) has
remained elusive using any SNARK technology. For instance the fastest such
succinct proof system at present (Spartan [Set20]) would require over 100 ms to
prove a single AES computation (≈214 R1CS constraints [Kos]) on a modern
laptop as per their implementation.

Generic MPC. Advances in generic MPC [KRRW18,HSS17,KPR18] have
brought the secure computation of sophisticated cryptographic functions into the
realm of practicality. However they are all inherently interactive and randomized
(with many being heavily reliant on preprocessing), posing fresh challenges in
the deterministic/stateless setting. Additionally even the most advanced con-
stant round techniques [KRRW18,HSS17] require several rounds of interaction,

Threshold Schnorr with Stateless Deterministic Signing 137

marking a departure from conventional threshold Schnorr which needs only three
rounds.

Zero-Knowledge for Composite Statements. Chase et al. [CGM16] con-
struct two protocols in the ZKGC paradigm [JKO13] that bind algebraic and
non-algebraic bitwise encodings of the same value, so that the algebraic encoding
may be used for efficient sigma protocols while the non-algebraic encoding can
be used to evaluate a garbled circuit. Roughly, the two methods are as follows,
with the following tradeoffs:

1. Homomorphic bitwise commitments to the witness: This method produces
smaller proofs, and is even extended to the MPC-in-the-head setting by
Backes et al. [BHH+19]. However this fundamentally requires exponentiations
for each bit of the input, i.e. O(|q|) asymptotically and hundreds concretely
for our parameter range, which would require many tens of milliseconds at
least to compute on commodity hardware. We therefore do not pursue this
line further.

2. Algebraic MAC applied to the witness: This method produces larger proofs,
as the MAC is computed by garbling an Õ(s · |q|) circuit. However this avoids
public key operations (besides OT) and presents a promising direction to
investigate.

Equipped with an understanding of the landscape of proof systems, we expand
on the results that we summarized in Sect. 1.4.

4 Organization

We first establish the technical background in Sect. 5. We then expand on our
solutions to the gaps that we identified in Sect. 1.4: Sect. 6 details the garbling
gadget for exponentiation, and Sect. 7 elaborates on how to construct Committed
OT from UC Commitments. Section 8 shows how to combine these ideas to build
a nonce verifying mechanism, and finally Sect. 9 constructs an n-party protocol
resilient to n − 1 corruptions based on this mechanism.

5 Preliminaries

Security Model. We construct and prove our protocols secure in the Universal
Composability framework of Canetti [Can01]. We assume synchronous networks,
with well-defined upper bounds on adversarial message delay.

Standard Helper Functionalities. We make use of the standard notion of
choose all-but-one OT F(�

�−1)OT.

5.1 Garbling Schemes and Zero-Knowledge

We first recall the syntax of garbled circuits, in the language of Bellare
et al. [BHR12]. A garbling scheme G comprises: a garbling algorithm Gb that on

138 F. Garillot et al.

input a circuit C produces a garbled circuit C̃ along with encoding information
en and decoding information de. The encoding algorithm En maps an input x
to a garbled input X̃ relative to en. The evaluation algorithm Ev then evalu-
ates C̃, X̃ to produce a garbled output Ỹ , which is then decoded by De using
de to a clear output y. The verification algorithm Ve given C̃, en validates their
well-formedness, and extracts the decoding information de if they are so.

For the purpose of the paper, we will assume that G is projective [BHR12], i.e.
garbled input X̃ = (eni,xi

)i∈[|x|]. We require the garbling scheme to be privacy-
free [FNO15], i.e. satisfy two main security properties:

– Authenticity2: let C̃, en, de ← Gb(C, 1κ) and X̃ ← En(x, en), and ŷ �= C(x)
for an adversarially chosen C, x, ŷ. It should be computationally infeasible for
any PPT adversary A(C̃, X̃) to output Ẑ such that De(de, Ẑ) = ŷ.

– Verifiability: given C̃, en, the algorithm Ve produces decoding information
de if C̃ is well-formed (i.e. a legitimate output of Gb). Alternatively if C̃ is
malformed, Ve outputs ⊥ with certainty.

Additionally we need ‘Uniqueness’, i.e. that if C(x) = C(x′), then
Ev(C̃,En(en, x)) = Ev(C̃,En(en, x′)) for any valid C̃, en. We defer formal defi-
nitions to the full version.

Committed Oblivious Transfer. Committed Oblivious Transfer (COT) offers
the same interface as regular OT, but it also allows a ‘reveal’ phase where the
both the sender’s messages are revealed to the receiver, while the receiver’s choice
bit stays hidden. We encapsulate this notion (along with additional bookkeping
to account for statelessness) in functionality F∗

COT. Additionally in order to facil-
itate a round compression optimization in the higher level protocol, F∗

COT lets
the sender lock its messages with a ‘key’, and reveals these messages upon the
receiver presenting the key. As this is a straightforward reproduction of previous
work, we defer the formalism to the full version.

Zero-Knowledge from Garbled Circuits. We are now ready to recall a
description of the original ZKGC protocol [JKO13]. The prover P holds a private
witness x (of which the ith bit is xi), such that C(x) = 1 for some public circuit C.

1. The verifier V garbles the verification circuit, C̃, en, de ← Gb(C, 1κ). Both
parties engage in |x| parallel executions of Committed Oblivious Transfer,
with the following inputs in the ith instance: V plays the sender, and inputs
eni,0, eni,1 as its two messages. P plays the receiver, and inputs xi as its choice
bit in order to receive eni,xi

.

2 This is slightly weaker than the standard notion of authenticity [BHR12], which
requires that any output other than C(x) is hard to forge. It is sufficient for ZKGC
if it is hard to forge an output only for any ŷ �= C(x) specified before C̃, X̃ are
generated. Our gadget achieves this weaker notion, however it can easily be upgraded
to the stronger notion if required by executing the gadget twice with independent
randomness, and checking that they decode to the same output.

Threshold Schnorr with Stateless Deterministic Signing 139

2. P assembles X̃ = (eni,xi
)i∈[|x|] locally. V sends C̃ to P , who then computes

Ỹ ← Ev(C̃, X̃), and sends Commit(Ỹ) to V .
3. V opens its randomness from all the COTs to reveal en in its entirety
4. P checks Ve(C̃, en) = 1, and if satisfied decommits Commit(Ỹ). V accepts iff

De(Ỹ , de) = 1
Intuitively the above protocol is sound due to authenticity of the garbling
scheme: a malicious P ∗ who inputs x′ such that C(x′) �= 1 to the OT will
receive X̃ ′ such that De(Ev(C̃, X̃ ′), de) = 0, and so to make V accept P ∗ will
have to forge a valid Ỹ that is not the outcome of ‘honest’ garbled evaluation.
Zero-knowledge comes from the verifiability and unique evaluation properties of
the garbling scheme: an incorrect garbled circuit C̃∗ will be rejected in step 4
by P (who has not sent any useful information to V yet), and conditioned on
C̃ being a valid garbled circuit, the uniqueness property hides which input was
used to arrive at the output.
Extensions to ZKGC. The work of Chase et al. [CGM16] examines how to
integrate proofs of algebraic statements into the garbled circuit based zero-
knowledge framework, in order to prove composite statements. Roughly, their
technique has P commit to a MAC of the witness z = ax + b (computed via the
garbled circuit/OT) along with Ỹ using a homomorphic commitment scheme.
Once V reveals the randomness of the circuit, a, b become public and P leverages
the homomorphism of the commitment in order to prove additional algebraic
statements about the witness via Sigma protocols, such as the relation between
x, z.

Subsequently Ganesh et al. [GKPS18] showed how to compress the original
[JKO13] protocol to three rounds using a conditional disclosure of secrets tech-
nique, essentially by having V encrypt the OT randomness necessary for step 4
using the correct Ỹ .

6 Exponentiation Garbling Gadget

In this section, we give our new garbling gadget that translates a standard Yao-
style representation of a binary string (i.e. with wire labels) to an algebraic
encoding of the same value in the target elliptic curve group. As we intend to
compose this gadget with the Half Gates garbling scheme [ZRE15] we give the
construction and proof assuming FreeXOR style keys [KS08]. Consequently we
prove security assuming a correlation robust hash function (strictly weaker than
circular correlation robustness [CKKZ12] as needed by FreeXOR/HalfGates).
Note that this structure is not required by our scheme, and security can easily
by proven assuming just PRFs if desired.

Algorithm 6.1. Gexp. Privacy-free Exponentiation Garbling Gadget
This scheme allows to garble the gadget f : {0, 1}η �→ G, in particular
f(x) = 〈u, x〉 · G where u ∈ (Z∗

q)η is a public vector of group elements, the
vector x is a length η bit string, and G ∈ G generates an elliptic curve group
G. Note that the garbled output is encoded arithmetically, and as such can

140 F. Garillot et al.

not be composed with (i.e. fed as input to) a standard binary circuit garbling
scheme. All algorithms make use of the key derivation function KDF.

Gb(1κ, g): .
1. Sample Δ ← {0, 1}κ and a ← Z

∗
q

2. For each i ∈ [η],
(a) Sample ki ← {0, 1}κ

(b) Compute bi = KDF(i, ki)
(c) Set C̃i = KDF(i, ki ⊕ Δ) − (bi + ui · a)

3. Set b =
∑

i∈[η] bi and B = b · G

4. Compute encoding information en =
[
Δ, {ki}i∈[η]

]

5. The decoding information is de = (a, B)
6. Output C̃, en, de
En(en, x): .

1. Parse
[
Δ, {ki}i∈[η]

]
from en, and for each i ∈ [η]: set Xi = ki ⊕ xi · Δ

2. Output X̃ = {(xi, Xi)}i∈[η]

Ev(C̃, X̃): .

1. Parse {(xi, Xi)}i∈[η] from X̃

2. For each i ∈ [η]: Compute zi = KDF(i, Xi) − xi · C̃i

3. Compute z =
∑

i∈[η] zi, and output Z̃ = z · G

De(de, Z̃): Parse (a, B) from de and output (Z̃ − B)/a

We first give the exact definition required of KDF in order to secure the
garbling scheme. Informally, KDF is correlation robust if KDF(x ⊕ Δ) appears
random even under adversial choice of x when Δ is chosen uniformly and hidden
from the adversary.

Definition 6.2. (Correlation Robust Hash Function). Let the security param-
eter κ determine a κ-bit prime q, and be an implicit parameter in the following
stateful oracles OKDF and OR defined as follows:

– OKDF(i, x): Upon first invocation, sample Δ ← {0, 1}κ. Return KDF(i, x⊕ Δ)
– OR(i, x): If not previously queried on x, sample F (i, x) ← Zq. Return F (i, x).

A hash function KDF is correlation robust if OKDF and OR are computationally
indistinguishable to any PPT adversary with unrestricted oracle access.

Theorem 6.3. Assuming KDF is a correlation robust hash function, Gexp is a
privacy-free garbling scheme for the function fu(x) = 〈u, x〉 · G.

Proof. Correctness. Observe that for each i ∈ [η] the evaluator computes

zi = KDF(i, Xi) − xi · C̃i

Threshold Schnorr with Stateless Deterministic Signing 141

Substituting C̃i = KDF(i, ki ⊕ Δ) − (bi + ui · a) and Xi = ki ⊕ xi · Δ into the
above equation, we obtain:

zi = KDF(i, ki ⊕ xi · Δ) − xi · (KDF(i, ki ⊕ Δ) − (bi + ui · a))

The above expression therefore simplifies to two cases:

zi =
{
KDF(i, ki) when xi = 0
bi + ui · a when xi = 1

Since KDF(i, ki) = bi, we can simplify the above to zi = bi + xi · ui · a. We
therefore have that z =

∑
i∈[η] zi =

∑
i∈[η](bi + xi · ui · a) = b + a · 〈u, x〉, and

therefore Z̃ = z · G = B + a · 〈u, x〉 · G. Decoding by (Z̃ − B)/a yields 〈u, x〉 · G.

Verifiablity. Revealing en allows each bi to be computed and C̃i to be decrypted,
and clearly if every C̃i = KDF(i, ki ⊕ Δ) − (bi + ui · a) for the same value of a,
the values C̃, X̃ will always evaluate consistently for all inputs.

Authenticity. We prove that the encoded output is unforgeable (i.e. authentic)
via hybrid experiments. Recall that the experiment for authenticity of a garbling
scheme works as follows: the adversary A sends a circuit f and input x to the
challenger, which then responds with C̃, X̃ where C̃, en, de ← Gb(f) and X̃ =
En(en, x). If A is able to produce valid garbled output Ẑ such that De(de, Ẑ) �=
f(x) then the adversary wins.

Hybrid H1. We first define a hybrid experiment H1 that changes the way C̃, X̃
is computed. In particular, C̃, X̃ are jointly produced using f, x rather than by
separate garbling and encoding procedures, as detailed below:

1. Sample Δ ← {0, 1}κ and a ← Z
∗
q

2. For each i ∈ [η],
(a) Sample ki ← {0, 1}κ

(b) If xi = 0 then
i. Compute bi = KDF(i, ki)
ii. Set C̃i = KDF(i, ki ⊕ Δ) − (bi + ui · a)

(c) Otherwise
i. Compute bi = KDF(i, ki ⊕ Δ)
ii. Set C̃i = KDF(i, ki) − (bi + ui · a)

3. Set b =
∑

i∈[η] bi and B = b · G

4. Compute X̃ = {ki}i∈[η]
5. The decoding information is de = (a, B)
6. Output C̃, X̃, de

The distribution of C̃, X̃ in this hybrid experiment is identical to the real
experiment. Observe that the only change is that the ‘active’ key (i.e. key seen
by the evaluator) on the ith wire is defined to be ki in H1, whereas in the real
experiment the active key is ki ⊕ xi · Δ. As the inactive key in both experiments

142 F. Garillot et al.

is simply the active key ⊕Δ, this is merely a syntactic change. Therefore we have
that for all adversaries A, functions and inputs fu, x and any string Ẑ:

Pr
[
Ẑ ← A(C̃, X̃) : (C̃, en, de) ← Gb(fu), X̃ ← En(en, x)

]

= Pr
[
Ẑ ← A(C̃, X̃) : (C̃, X̃, de) ← H1(fu, x)

] (1)

Hybrid H2. In this hybrid experiment, the inactive key is changed from ki ⊕ Δ
to a uniformly random value. In particular, the code for this hybrid experiment
is identical to the last except for the following two changes:

Experiment H1 Experiment H2
Step 2(b)ii C̃i = KDF(i, ki ⊕ Δ) − (bi + ui · a) C̃i ← Zq

Step 2(c)i bi = KDF(i, ki ⊕ Δ) bi ← Zq

A distinguisher for the values (C̃, X̃) produced by H1 and H2 immediately
yields a distinguisher for the correlation robustness property of KDF. The reduc-
tion simply runs the code of H1, and in place of using KDF in Step 2(b)ii and
Step 2(c)i, it queries the challenge oracle O with the same arguments. In the case
that O = OKDF = KDF this exactly produces the distribution per H1, and in
the case O = OR (i.e. truly random function) the distribution per H2 is exactly
produced, resulting in a lossless reduction to the correlation robustness property
of KDF. We therefore have that there is a negligible function negl such that for
all PPT adversaries A and Ẑ ∈ G:

∣
∣
∣
∣

Pr[Ẑ ← A(C̃, X̃) : (C̃, X̃, de) ← H2(fu, x)]
− Pr[Ẑ ← A(C̃, X̃) : (C̃, X̃, de) ← H1(fu, x)]

∣
∣
∣
∣ ≤ negl(κ) (2)

Hybrid H3. This hybrid experiment is the same as the last, with the exception
that C̃i ← Zq for each i ∈ [η]. This differs from Step 2(c)ii, which computes
C̃i = KDF(i, ki) − (bi + ui · a) when xi = 1. However in H2 when xi = 1 the
value bi is sampled uniformly from Zq and never exposed anywhere else in C̃, X̃
anyway, effectively acting as a one-time pad. Therefore the distribution of C̃, X̃
remains unchanged from H2. In particular,

Pr
[
De(de, Ẑ) = Y : Ẑ ← A(C̃, X̃), (C̃, X̃, de) ← H2(fu, x)

]

= Pr
[
De(de, Ẑ) = Y : Ẑ ← A(C̃, X̃), (C̃, X̃, de) ← H3(fu, x)

] (3)

Hybrid H4. This experiment is the same as the last, except that the definition
of the decoding information de = (a, B) is postponed to after C̃, X̃ are defined.
This induces no change in the distribution of C̃, X̃ as in H3 they are computed
independently of a, B. The value a is derived the same way (uniformly sampled
from Z

∗
q), whereas now B is computed as B = Z − a · Y where Y = fu(x) and

Threshold Schnorr with Stateless Deterministic Signing 143

Z = Ev(C̃, X̃). The distribution of (a, B) is unchanged from H3, note that by
definition De(de,Ev(C̃, X̃)) = fu(x) in both experiments. Therefore:

Pr
[
De(de, Ẑ) = Y : Ẑ ← A(C̃, X̃), (C̃, X̃, de) ← H3(fu, x)

]

= Pr
[
De(de, Ẑ) = Y : Ẑ ← A(C̃, X̃), (C̃, X̃, de) ← H4(fu, x)

] (4)

We can now bound the probability that an adversary is able to forge an
output: consider any Ŷ ∈ G such that Ŷ �= Y . In order to induce De(de, Ẑ) = Ŷ ,
the adversary A(C̃, X̃) must output Ẑ such that Ẑ−Z = a(Ŷ −Y). As Ŷ −Y �= 0
and a is sampled uniformly from Z

∗
q only after Ẑ, Z, Ŷ , Y have already been

defined, the probability that this relation is satisfied is exactly 1/(q − 1).
More precisely, for any fu, x ∈ {0, 1}η, Ŷ ∈ G such that Ŷ �= fu(x) and

unbounded adversary A,

Pr
[
De(de, Ẑ) = Ŷ : Ẑ ← A(C̃, X̃), (C̃, X̃, de) ← H4(fu, x)

]
= 1/(q − 1) (5)

For our choice of parameters, we have 1/(q − 1) ≤ 2−κ which is negligible in
κ. Combining Eqs. 1–5 we conclude that the following probability is negligible
for any fu, x ∈ {0, 1}η, Ŷ ∈ G such that Ŷ �= fu(x) and PPT adversary A:

Pr
[
De(de, Ẑ) = Ŷ : Ẑ ← A(C̃, X̃), (C̃, en, de) ← Gb(fu), X̃ ← En(en, x)

]

The garbling scheme Gexp is therefore correct, verifiable, and authentic.

7 Committed OT from UC Commitments

In this section, we give the details of our approach to constructing our committed
OT from UC commitments. Recall that we need an OT protocol where the
receiver commits to its choice bits during an offline phase, and the sender is able
to send (and subsequently open) message pairs relative to the same choice bit.
This is because the receiver’s choice bits will correspond to the prover’s witness
(i.e. the PRF key for nonce derivation) which can be committed once during key
generation; signing corresponds to proving different statements about the same
witness.

Why Is This Challenging? Consider the following simple attempt at instan-
tiating this object: during the preprocessing phase, the sender samples two PRF
keys k0, k1, of which the receiver obtains kb via OT. In order to transmit a mes-
sage pair m0, m1 online, assuming some public instance-specific information x,
the sender computes c0 = Fk0(x) ⊕ m0, c1 = Fk1(x) ⊕ m1 and sends them to
the receiver, who is able to decrypt mb. In order to ‘open’ the messages, the
sender gives Fk0(x),Fk1(x) to the receiver, who then obtains m1−b. While this
protects the sender against a malicious receiver, the flaw lies in that it doesn’t
bind the sender to any particular message pair m0, m1. For instance during the

144 F. Garillot et al.

opening phase, the sender could provide Fk0(x), r∗ (for some r∗ �= Fk1(x)). If
the receiver’s choice bit was 0, it does not notice this deviation and outputs
m∗

1 = c1 ⊕ r∗, as opposed to m1 = c1 ⊕ Fk1(x) which would have been the out-
put if the receiver’s choice bit was 1. Inconsistencies of this flavour propagate
upwards to induce selective failure attacks in the ZKGC protocol. We leave the
exact attack implicit. This issue is easily solved by using a PRF which allows
outputs to be efficiently verified such as a Verifiable Random Function [MRV99].
However to the best of our knowledge, all such known primitives require public
key operations, which would defeat the purpose of having moved the OTs offline.

To recap our idea: assume that C is a commitment scheme that permits
straight-line extraction. In particular there exists an extractor which, given a
commitment and an extraction key ek (corresponding to the commitment key
ck), outputs the committed message. This is a property that is conducive to
arguing security under concurrent composition [Can01]. However in the ‘real’
protocol no party has ek; the receiver has a verification key vk which it uses
to validate openings to commitments, but the existence of ek is only required
for the proof. We will characterize the commitment scheme as a collection of
concrete algorithms (rather than working in an FCommit hybrid model) and so
in principle the trapdoor ek can created by a generic setup functionality and
given to the receiver. We use such a commitment scheme to realize the notion
of committed OT that we need as follows: create two pairs of keys (ck0, vk0, ek0)
and (ck1, vk1, ek1), and provide sender S with both ck0, ck1 and receiver R with
ekb, vk1−b. In order to send a message pair m0, m1, S commits to m0 using
ck0 and m1 using ck1. Then R is able to extract mb using ekb immediately.
Subsequently when it’s time to reveal both messages, S provides decommitment
information for m0, m1, and R uses vk1−b to validate m1−b.

In more detail, the commitment scheme C comprises the following algorithms:

– One-time setup:
• Gen-ck(1κ; ρS) �→ ck. Samples the committer’s key with randomness ρS .
• Gen-vk(ck; ρR) �→ vk. Samples the receiver’s verification key using ck with

randomness ρR.
• Gen-ek(ck) �→ ek. Determines the extraction key given ck.
• Gen-td(vk) �→ td. Determines the trapdoor for equivocation given vk.

– Per message with index ind:
• Commit(ck, ind, m) �→ C, δ. Produces commitment C and decommitment

information δ for message m and index ind.
• DecomVrfy(vk, ind,C, δ, m) �→ {0, 1}. Commitment verification by R.
• Ext(ek, ind,C) �→ m ∪ {⊥}. Extracts the committed message from C.
• SCom,R∗(td). A simulator that produces and equivocates commitments.

Rather than enumerating a series of definitions that the scheme must satisfy, we
use the above interface to construct a protocol, and require that the protocol
must UC-realize our commitment functionality. The structure of the commit-
ment functionality FCom and the protocol πCom and Simulator SCom are straight-
forward in their usage of C. Protocol πCom makes use of a helper functionality

Threshold Schnorr with Stateless Deterministic Signing 145

F setup
Com which simply runs the one-time setup algorithms. We defer the formal

details to the full version.
Commitment schemes that are of interest to us allow protocol πCom to be

simulated by simulator SCom with respect to functionality FCom. Also note that
by virtue of the definition, commitment is inherently stateless; no state has to
be maintained across commitment instances that use different ind values.

Definition 7.1. A commitment scheme C is a preprocessable UC commit-
ment if protocol πCom[C] can be simulated by SCom[C] with respect to function-
ality FCom in the UC experiment where an adversary statically corrupts up to
one party, in the F setup

Com -hybrid model.

We stress that while we refer to C as the preprocessable UC commitment
scheme, the actual protocol for the UC experiment is πCom[C], which is merely a
wrapper for the algorithms specified by C.

Instantiating FCom. Efficiently instantiating the UC commitment functional-
ity (of which FCom is a relaxation) has been studied extensively in the liter-
ature [DN02,Lin11,CJS14]. However the subset of such works most relevant
here are those that operate in the offline-online paradigm, where expensive
message-independent public key operations are pushed to an offline phase and
(de)committments online only require cheap symmetric key operations. Such pro-
tocols have been constructed in a line of works [DDGN14,GIKW14,CDD+15,
FJNT16] where a number of oblivious transfers are performed offline to estab-
lish correlations, and (de)committing online derives security from the fact that
the receiver knows some subset (but not all) of the sender’s secrets. Some of
these works [CDD+15,FJNT16] are quite practical; their technique is roughly
to have the sender commit to a message by first encoding it using an error cor-
recting code, then producing additive shares of each component of the resulting
codeword, and finally sending the receiver each additive share encrypted by a
pseudorandom one-time pad derived by extending a corresponding PRG seed.
The receiver has some subset of these seeds (chosen via OT offline) and obtains
the corresponding shares of the codeword. The committed message stays hidden
as the receiver is missing one additive share of each component. To decommit,
the sender reveals the entire codeword and its shares, and the receiver checks
consistency with the shares it already knows. Soundness comes from the property
that changing the committed message requires changing so many components
of the codeword that the receiver will detect such a change with overwhelming
probability. The trapdoor for extraction is the entire set of PRG seeds that are
used to encrypt the codeword components. As the sender must encrypt a value
that is close to a codeword using these seeds, the extractor is able to decrypt and
decode the near-codeword to retrieve the committed message. Extraction is pos-
sible as the simulator knows all PRG seeds, and the sender must have encrypted
a value sufficiently close to a real codeword in order to have a non-negligible
chance of the receiver accepting it later.

Cascudo et al. [CDD+15] report a concretely efficient instantiation of this
idea by using binary BCH codes. However existing constructions are designed

146 F. Garillot et al.

to amortize the cost of (de)committing large numbers of messages, and as such
they are heavily reliant on maintaining state for the PRG. It is feasible to modify
their constructions to be stateless by the standard method of replacing the PRG
with a PRF, but the resulting cost per instance would save little compared to
exponentiation; for instance the protocol of Frederiksen et al. [FJNT16] would
require over 800 PRF invocations per instance at a 40 bit security level. While
this cost disappears over many simultaneous instances in their setting, we unfor-
tunately can not amortize our costs as independent instances must not share
state.
Our Technique. Our commitment scheme essentially implements the same high-
level idea, but with a repetition code. The sender S has 	 PRF keys k1, · · · , k�, of
which the receiver R is given a random subset of 	−1 (say all but i ∈ []). In order
to commit to a message μ for index ind, S sends Fk1(ind) ⊕ · · · ⊕ Fk�

(ind) ⊕ μ
to the receiver. In order to decommit, S reveals μ and Fk1(ind), · · · ,Fk�

(ind),
given which R computes F∗

ki
= μ

⊕
j∈[�]\i Fkj

(ind) and verifies that it matches
Fki

claimed by S. Intuitively, S has to guess exactly which key R is missing
in order to fool it. This has soundness error 1/	, however simply repeating this
procedure sufficiently many times in parallel (with independent keys) boosts the
protocol to have negligible soundness error. This description omits some details,
such as how the repetitions are bound together, and optimizing communication,
so we describe the commitment scheme itself in terms of the language we laid
out earlier.

Algorithm 7.2. C. Commitment scheme
This set of algorithms instantiates a commitment scheme C. The security
parameter κ fixes statistical security parameter s and integers 	 and r such
that r log2() = s. The (de)commitment protocols make use of a random
oracle RO for equivocation, but notably the extractor does not observe
queries to the RO (meaning that it can be run without a backdoor for RO).
The protocols additionally use a collision resistant hash function CRHF.

Gen-ck(1κ; ρS):.
1. For each j ∈ [r] and l ∈ [], sample kj,l ← {0, 1}κ

2. Sample k∗ ← {0, 1}κ

3. Output ck = k∗, {kj,l}j∈[r],l∈[�]
Gen-vk(ck; ρR):.

1. Parse {kj,l}j∈[r],l∈[�] from ck, and for each j ∈ [r], sample integer ij ← []

2. Output vk =
{

(kj,l)l∈[�]\ij

}

j∈[r]

Gen-ek(ck): Output ck
Gen-td(vk): Output {ij}j∈[�]

CommitRO(ck, ind, m):.

1. Compute μ = Fk∗(ind), and for each j ∈ [r] set ctj = μ
⊕

l∈[�]
Fkj,l

(ind)

Threshold Schnorr with Stateless Deterministic Signing 147

2. Set ct = {ctj}j∈[r] , h = RO(μ), ξ = μ ⊕ m

3. Set δ = CRHF
({

Fkj,l
(ind)

}
j∈[r],l∈[�]

)
, and output C = (ct, h, ξ), δ

DecomVrfy(vk, ind,C, δ, m):.

1. Parse {ij}j∈[�] = vk, and ct, h, ξ from C
2. Compute μ = m ⊕ ξ and verify RO(μ) ?= h
3. For each j ∈ [r] compute F∗

j,kij
= μ ⊕ ctj

⊕

l∈[�]\ij

Fkj,l
(ind)

4. For each j ∈ [r], set F[j, l] = Fkj,l
(ind) for l ∈ [] \ ij and F[j, ij] =

μ ⊕ ctj
⊕

l∈[�]\ij

Fkj,l
(ind)

5. Verify δ
?= CRHF

(
{F[j, l]}j∈[r],l∈[�]

)

Ext(ek, ind,C):.

1. Parse {kj,l}j∈[r],l∈[�] from ck, and ct, h, ξ from C
2. For each j ∈ [r], compute μ∗

j = ctj
⊕

l∈[�]
Fkj,l

(ind)

3. If ∃j ∈ [r] such that RO(μ∗
j) = h, then output m = μ∗

j ⊕ ξ
4. If no such μ∗

j exists, then output ⊥
SCom,R∗(td): Postponed to full version as it is straightforward.

We postpone the theorem and proof to the full version.

How to Implement the Setup? Observe that the structure of the verification key
is to choose all but one out of the 	 keys in each of the r batches. This is directly
achieved by r invocations of F(�

�−1)OT.

Efficiency. A commitment to a message m (assume |m| = κ) is of size (r+ 3) · κ
bits, and in terms of computation requires r · 	 PRF evaluations and hashing a
r · 	 · κ bit message via CRHF. Decommitment requires the same effort.

Parameters. Looking ahead, we will introduce a privacy amplifying optimiza-
tion in the ZKGC protocol so that for s bits of statistical security, the receiver’s
security in the Committed OT protocol it uses (and therefore soundness of the
Commitment scheme under the hood) need only achieve s/2 bits of statistical
security. We therefore calibrate our parameters here appropriately. A reasonable
instantiation of parameters would be 	 = 4, s = 30, κ = 128, and r = 15 (i.e.
a 30-bit statistical soundness level) with AES-128 as the PRF, and SHA-512 as
the CRHF and RO. This means that a single commitment to a 128-bit message
requires 288 bytes (32 bytes to decommit), 60 AES-128 evaluations, and hash-
ing a 0.96 kilobyte message via SHA-512. The work done by R in verifying a
commitment is almost the same. Looking ahead, we will use a pair of these com-
mitments to replace a single OT instance, providing a significant improvement
in computation time.

148 F. Garillot et al.

7.1 Committed OT from Preprocessable UC Commitments

Using commitment scheme C, we now have an clean template for a protocol to
build committed OT. We first define a helper functionality F setup

COT to handle the
preprocessing stage. Intuitively, F setup

COT samples two commitment keys ck0, ck1 for
the sender and corresponding verification and extraction keys vk0, vk1, ek0, ek1,
and gives vk0, vk1, ekb to the receiver upon its choice of bit b. The formalism
is straightforward and so we postpone it to the full version. Unfortunately it is
unclear how to generically construct F setup

COT using the commitment scheme, but for
our specific case we can construct a custom protocol based on the same Bellare-
Micali construction that we used for F(�

�−1)OT. We give the exact construction
in the full version.

Protocol 7.3. πCOT[C]. Committed Oblivious Transfer
This protocol is run between a sender S and a receiver R, and is param-
eterized by a commitment scheme C. This protocol makes use of the ideal
oracle F setup

COT and random oracle RO : {0, 1}∗ �→ {0, 1}4κ.

Setup: R has private input b ∈ {0, 1}
1. S and R send (sid, init) to F setup

COT
2. R additionally sends (choose, b) to F setup

COT , and receives
(sid, keys, ekb, vk0, vk1) in response.

3. S receives (sid, ck-keys, ck0, ck1) from F setup
COT

Transfer: S has private inputs m0, m1, key, and ind is public input.

1. S computes C0, δ0 = Commit(ck0, ind, m0) and
C1, δ1 = Commit(ck1, ind, m1)

2. S encrypts the decommitment information with key as ν = RO(key) ⊕
(m0, δ0, m1, δ1)

3. S sends C0,C1, ν to R
4. R outputs mb = Ext(ekb, ind,Cb)

Reveal: R does the following with inputs ind and key:

1. R computes (m0, δ0, m1, δ1) = RO(key) ⊕ ν
2. R outputs

DecomVrfy(vk0, ind,C0, δ0, m0) ∧ DecomVrfy(vk1, ind,C1, δ1, m1)

Theorem 7.4. Assuming C is a preprocessable UC commitment (Defini-
tion 7.1), protocol πCOT UC-realizes F∗

COT in the presence of an adversary cor-
rupting up to one party, in the F setup

COT -hybrid random oracle model.

The theorem directly follows from the definition of preprocessable UC com-
mitments, and the fact that encryptions with the random oracle carry no infor-
mation until the correct pre-image is queried.

Threshold Schnorr with Stateless Deterministic Signing 149

Efficiency. There are three components to analyze: the setup, transfer, and
reveal phases.

Setup. We do not analyze the exact cost of setup, beyond that it requires
O(rκ/ log κ) curve multiplications, and as many field elements transmitted.

Transfer and Reveal. This is the important metric, as the transfer and reveal
phases are executed when a message has to be signed. A transfer consists of
two independent instances of preprocessable UC commitments for S, of which
R simply receives one and runs Ext on the other. A reveal requires no work for
S, and two decommitment verifications for R. In our specific instantiation, the
work done by S when committing and R when verifying is roughly the same.
Additionally R can reuse the work of Ext in verifying a commitment. Based on
Sect. 7, the work done by each party in total for a transfer and reveal of a message
pair is 120 AES invocations, and hashing a 1.92 KB message via SHA-512. The
bandwidth consumed is two UC commitments and their decommitments, so
0.64 KB. Note that these parameters are for a 30-bit statistical security level,
which is inadequate by itself, but will be sufficient in the ZKGC context due to
a privacy amplifying technique.

8 Provable Nonce Derivation

In order to clarify the target, we give the ideal functionality FF·G for proving
deterministic nonce derivation, with a conditional disclosure property woven in.

Functionality 8.1. FF·G. Deterministic Nonce Derivation
This functionality is accessed by a prover P and a verifier V , and is param-
eterized by the keyed function F : {0, 1}κ × {0, 1}κ �→ Zq, and the group
(G, G, q). In principle, the public instance x = (m, R∗

m) for which the prover
has witness w = k satisfies relation f(x, w) only when R∗

m = Fk(m) · G. All
messages are adversarially delayed.

Key Generation: This phase is run exactly once for each sid. Any requests
to the functionality with an sid for which Key Generation has not yet been
run are ignored.
1. Wait to receive (sid, input-key, k) from P .
2. If k ∈ {0, 1}κ, then store (sid, key, k) and send (sid, initialized) to V .

Verify Nonce: Upon receiving (sid, verify-nonce, m, R∗
m) from P and

(sid, verify-nonce, m, R∗
m, z) from V , if (sid, key, k) exists in memory, m ∈

{0, 1}κ, and R∗
m ∈ G then:

1. Compute rm = Fk(m) and Rm = rm · G.
2. If R∗

m
?= Rm then send (sid, secret, m, z) to P and then

(sid, verified, m, R∗
m) to V . Otherwise send (sid, fail, m, R∗

m) to V .

150 F. Garillot et al.

This is essentially a specific instantiation of the standard zero-knowledge
functionality, with the exception that the prover commits its witness w first,
and subsequently multiple statements x are supplied to the functionality, which
verifies that R(x, w) = 1. This is directly achieved by replacing the committed
OT functionality used by ZKGC with F∗

COT which allows the receiver to commit
to a choice bit and subsequently receive/open multiple message pairs indepen-
dently without ever revealing the choice bit. Note that the circuit to be garbled
(C(k, x) = Fk(x)·G) is supported by HalfGates with our garbling gadget. Finally,
the disclosure of the secret z conditioned on the validity of the statement/witness
is the same as the technique introduced by Ganesh et al. [GKPS18]. We give the
explicit protocol in the full version.

8.1 A Privacy Amplifying Optimization

While the ZKGC protocol makes only oracle use of F∗
COT, we can make an

instantiation-specific optimization which will likely apply to any similarly struc-
tured instantiation, where the receiver only has statistical security inherited
from statistical soundness of the decommitment/reveal phase. Currently, a naive
instantiation would protect each choice bit of the receiver’s (and hence private
witness bit) with s bits of statistical security, i.e. there is at most a 2−s prob-
ability of an adversary subverting the reveal phase by opening its message to a
different one than committed earlier. As each instance of protocol πCOT makes
use of independent randomness, the probability that a malicious sender is able
to subvert the reveal phases of a pair of commitments is 2−2s. Therefore if we
are willing to tolerate one bit of leakage, we can in some sense consider the
soundness of the reveal phase to be doubled.

Plugging the Leak. The prover samples a random bit r ← {0, 1} during the one-
time key setup phase. Now instead of directly using its witness bits xi as the
choice bit to the ith instance of F∗

COT, the prover instead uses x′
i = xi ⊕ r as

the choice bit to the ith instance. Finally the prover also inputs r as the choice
bit to the |x| + 1th instance of F∗

COT. When the time comes to evaluate a circuit
C(x), the prover and verifier instead use the circuit C ′(x′, r) = C(x′

1 ⊕ r||x′
1 ⊕

r|| · · · ||x′|x| ⊕ r) to cancel out the effect of r. Since XOR gates come for free in a
garbled circuit [KS08], this adds essentially no overhead beyond the single extra
instance of F∗

COT for r. Now the input to C ′ can tolerate a single bit of leakage;
any one bit leaked from x′||r is perfectly independent of x.

Security. This clearly does not harm security against a corrupt prover, as the
encoded input x′||r supplied to F∗

COT unambiguously specify its candidate wit-
ness x just as earlier. As for when simulating for a corrupt verifier, in case one of
the extractors for a πCOT instance i reports an extraction error for the key ki,b

corresponding to bit b (this happens with probability 2−s, but recall that the
target security level is 2s bits) the simulator tosses a coin b′. If b′ = b, then the
simulator aborts the protocol (corresponding to a cheat being caught in the real
protocol). Otherwise, the simulator simply runs the honest prover’s protocol for
the ith bit going forward, effectively setting x′

i = ¬b. The subtle point is that

Threshold Schnorr with Stateless Deterministic Signing 151

failing to extract ki,b does not hamper the simulator’s ability to extract garbled
circuits’ embedded decoding information in the future: in case i = |x| + 1, the
value compromised is r, which does not influence any output wires anyway. In
case i ≤ |x|, the simulator still obtains ki,¬b by running the honest prover’s code,
and the availability of both keys on the r wire allow for the retrieval of both
keys for xi as x′

i ⊕ 0 and x′
i ⊕ 1 (i.e. substituting both values of r). We defer a

more formal proof to the full version of this paper.
Therefore in order to achieve s′ = 60 bits of statistical security for ZKGC,

one can parameterize the underlying OT protocol with s = 30 bits of soundness
and remove the resulting leakage as described above.

8.2 Estimated Efficiency
We give estimates for an Ed25519 [BDL+12] style configuration. In particular,
we assume a 256-bit curve, with SHA-512 as the PRF used to derive nonces
just as in the EdDSA specification. SHA-512 has 58k AND gates [AMM+]. The
nonce derivation key is 128 bits.

– Garbled Circuit. We can use a privacy-free garbled circuit in this con-
text [FNO15], as the evaluator knows the entire input. In particular we can
use the privacy-free variant of the Half Gates garbling scheme [ZRE15] which
produces only one 128-bit ciphertext per AND gate. Each ciphertext is com-
puted with two AES-128 invocations, and evaluated with one. The exponen-
tiation gadget produces one 256-bit ciphertext for each output wire of the
Boolean circuit. Consequently in the course of a single proof, V garbles the
circuit (116k AES invocations), and P evaluates and verifies it (116k AES
invocations). The bandwidth consumed is 928 KB to transmit the garbled
circuit C̃ and ciphertexts ct.

– F∗
COT. As discussed in Sect. 7.1, a single transfer and reveal instance costs 120

AES invocations and hashing a 1.92 KB message via SHA-512 to compute, and
0.64 KB in bandwidth. A single proof here requires 128 concurrent transfers
and reveals via F∗

COT, bringing the computation cost to 16k AES invocations
and hashing a 245 KB message via SHA-512 for each P and V , and 81.92 KB
of bandwidth consumption.

Overall Burden. In summary, P and V have roughly the same workload, dom-
inated by 132k AES invocations and hashing a 245 KB message. Each party
additionally performs up to three curve multiplications, 256 additions in Zq, at
little overhead. Bandwidth for (|C̃| + |ct| + |F∗

COT|) is 1.01 MB. Given the cost
breakup above, it is evident that the logistics for input encoding and exponen-
tiation are no longer the bottleneck, and the cost of proving correctness of a
derived nonce is now essentially the cost of evaluating the garbled circuit of
the PRF (usually in the order of milliseconds [GLNP15,HK20]) used for nonce
derivation. Our figures are derived assuming SHA-512 is used for this task as it
is the same hash function used by Ed25519, however it is likely that exploring
standardized ciphers with smaller circuits such as AES will lead to substantial
efficiency improvements.

152 F. Garillot et al.

9 Multiparty Dishonest Majority Threshold Signing

With the most complex component of stateless deterministic threshold signing -
verifiable nonce derivation - instantiated, we are equipped to construct a clean
multiparty signing protocol. The outline is as follows:

– Setup: All parties run canonical distributed key generation [Ped91] to obtain
additive shares ski of a secret key sk (for public pk), and every pair of parties
initializes an instance of FF·G to commit to a nonce derivation key ki. Note
that we do not explicitly enforce any consistency across parties. Each party
also samples a key k∗ to derive randomness online.

– Signing m: Each party Pi derives its nonce Rm,i = Fki
(m) and sends it to all

other parties. Consistency is verified by standard echo-broadcast in parallel
with the next round. Every party derives its local random tape going forward
by applying Fk∗ on the digest of the view from the first round, i.e. v =
CRHF(Rm,0||Rm,1||, · · · ||Rm,n). Each party Pi sets (zi,j)j∈[n]\i = Fk∗(j||v)
and instructs FF·G to deliver zi,j to Pj only if Rm,j is the correct nonce. Finally
each Pi sets the nonce to be Rm =

∑
i Rm,i and computes its signature share

σi = (ski · H(pk, Rm, m) + rm,i) +
∑

j∈[n]\i

(zi,j − zj,i)

and sends it to all parties. The signature is then computed as σ =
∑

i σi.

Intuitively, Pi’s share adds the mask zi,j to its contribution, and Pj ’s share
removes this mask by subtracting zi,j . Note that this is possible only if Pj

obtained zi,j from FF·G by having sent the correct Rm,j . Adding up all par-
ties’ σis cancels out the z values (if everyone is honest), and what remains is
simply sk · H(pk, Rm, m) + r which is a valid signature on m. We give the formal
functionality, and full threshold signing protocol and proof in the full version.

9.1 Efficiency

The protocol is essentially a thin wrapper on top of FF·G, and consequently the
cost is dominated by running FF·G between every pair of parties. Every pair
of parties Pi, Pj shares two instantiations of FF·G, one in which Pi plays the
prover and Pj the verifier, and another with the roles reversed. However by the
structure of our protocol πF·G, instantiating FF·G in both directions induces little
computational overhead on top of a single instantiation: while the verifier garbles
the circuit the prover sits idle, and while the prover evaluates the garbled circuit
the verifier has nothing to do. This means that when Pi is working as the verifier
in one instance of FF·G with Pj , it will be idling in its role as the prover in the
other instance of FF·G with Pj , and vice versa.

For this reason, we expect a two-party instantiation of πn,Sign to run in the
order of milliseconds just as a single instance of πF·G, and bandwidth stays at
roughly 1.01 MB transmitted per party. This cost is multiplied by n for an n
party instantiation.

Threshold Schnorr with Stateless Deterministic Signing 153

References
[AMM+] Archer, D., Abril, V.A., Maene, P., Mertens, N., Sijacic, D., Smart, N.:

Bristol fashion MPC circuits. https://homes.esat.kuleuven.be/~nsmart/
MPC/. Accessed 24 Feb 2021

[AMMR18] Agrawal, S., Mohassel, P., Mukherjee, P., Rindal, P.: DiSE: distributed
symmetric-key encryption. In: ACM CCS 2018. ACM Press (2018)

[Bay14] Bayer, J.: Challenges With Randomness In Multi-tenant Linux Container
Platforms (2014)

[BBB+18] Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.:
Bulletproofs: short proofs for confidential transactions and more. In: 2018
IEEE S&P (2018)

[BCLK17] Brandenburger, M., Cachin, C., Lorenz, M., Kapitza, R.: Rollback and
forking detection for trusted execution environments using lightweight col-
lective memory. In: DSN 2017 (2017)

[BCR+19] Ben-Sasson, E., Chiesa, A., Riabzev, M., Spooner, N., Virza, M., Ward,
N.P.: Aurora: transparent succinct arguments for R1CS. In: Ishai, Y., Rij-
men, V. (eds.) EUROCRYPT 2019, Part I. LNCS, vol. 11476, pp. 103–128.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17653-2_4

[BDL+12] Bernstein, D.J., Duif, N., Lange, T., Schwabe, P., Yang, B.-Y.: High-speed
high-security signatures. J. Cryptogr. Eng. 2, 77–89 (2012). https://doi.
org/10.1007/s13389-012-0027-1

[BFS20] Bünz, B., Fisch, B., Szepieniec, A.: Transparent SNARKs from DARK
compilers. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS,
vol. 12105, pp. 677–706. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-45721-1_24

[BHH+19] Backes, M., Hanzlik, L., Herzberg, A., Kate, A., Pryvalov, I.: Efficient
non-interactive zero-knowledge proofs in cross-domains without trusted
setup. In: Lin, D., Sako, K. (eds.) PKC 2019, Part I. LNCS, vol. 11442,
pp. 286–313. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
17253-4_10

[BHR12] Bellare, M., Hoang, V.T., Rogaway, P.: Foundations of garbled circuits.
In: ACM CCS 2012 (2012)

[BSGL20] Ben-Sasson, E., Goldberg, L., Levit, D.: Stark friendly hash – survey and
recommendation. IACR Cryptol. ePrint Arch. 2020:948 (2020)

[BST21] Bonte, C., Smart, N.P., Tanguy, T.: Thresholdizing HashEdDSA: MPC to
the rescue. Int. J. Inf. Secur. 1–16 (2021). https://doi.org/10.1007/s10207-
021-00539-6

[Can01] Canetti, R.: Universally composable security: a new paradigm for crypto-
graphic protocols. In: 42nd FOCS (2001)

[CCD+20] Chen, M., et al.: Multiparty generation of an RSA modulus. In: Micciancio,
D., Ristenpart, T. (eds.) CRYPTO 2020. LNCS, vol. 12172, pp. 64–93.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56877-1_3

[CDD+15] Cascudo, I., Damgård, I., David, B., Giacomelli, I., Nielsen, J.B., Tri-
filetti, R.: Additively homomorphic UC commitments with optimal amor-
tized overhead. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp.
495–515. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-
46447-2_22

[CGGM00] Canetti, R., Goldreich, O., Goldwasser, S., Micali, S.: Resettable zero-
knowledge (extended abstract). In: 32nd ACM STOC, pp. 235–244. ACM
Press, May 2000

https://homes.esat.kuleuven.be/~nsmart/MPC/
https://homes.esat.kuleuven.be/~nsmart/MPC/
https://doi.org/10.1007/978-3-030-17653-2_4
https://doi.org/10.1007/s13389-012-0027-1
https://doi.org/10.1007/s13389-012-0027-1
https://doi.org/10.1007/978-3-030-45721-1_24
https://doi.org/10.1007/978-3-030-45721-1_24
https://doi.org/10.1007/978-3-030-17253-4_10
https://doi.org/10.1007/978-3-030-17253-4_10
https://doi.org/10.1007/s10207-021-00539-6
https://doi.org/10.1007/s10207-021-00539-6
https://doi.org/10.1007/978-3-030-56877-1_3
https://doi.org/10.1007/978-3-662-46447-2_22
https://doi.org/10.1007/978-3-662-46447-2_22

154 F. Garillot et al.

[CGGN17] Campanelli, M., Gennaro, R., Goldfeder, S., Nizzardo, L.: Zero-knowledge
contingent payments revisited: attacks and payments for services. In: ACM
CCS 2017 (2017)

[CGM16] Chase, M., Ganesh, C., Mohassel, P.: Efficient zero-knowledge proof of
algebraic and non-algebraic statements with applications to privacy pre-
serving credentials. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part
III. LNCS, vol. 9816, pp. 499–530. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-53015-3_18

[CJS14] Canetti, R., Jain, A., Scafuro, A.: Practical UC security with a global
random oracle. In: ACM CCS 2014 (2014)

[CKKZ12] Choi, S.G., Katz, J., Kumaresan, R., Zhou, H.-S.: On the security of the
“free-XOR” technique. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194,
pp. 39–53. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-28914-9_3

[CO15] Chou, T., Orlandi, C.: The simplest protocol for oblivious transfer. In:
Lauter, K., Rodríguez-Henríquez, F. (eds.) LATINCRYPT 2015. LNCS,
vol. 9230, pp. 40–58. Springer, Cham (2015). https://doi.org/10.1007/978-
3-319-22174-8_3

[DDGN14] Damgård, I., David, B., Giacomelli, I., Nielsen, J.B.: Compact VSS and
efficient homomorphic UC commitments. In: Sarkar, P., Iwata, T. (eds.)
ASIACRYPT 2014, Part II. LNCS, vol. 8874, pp. 213–232. Springer, Hei-
delberg (2014). https://doi.org/10.1007/978-3-662-45608-8_12

[DN02] Damgård, I., Nielsen, J.B.: Perfect hiding and perfect binding univer-
sally composable commitment schemes with constant expansion factor. In:
Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 581–596. Springer,
Heidelberg (2002). https://doi.org/10.1007/3-540-45708-9_37

[EZJ+14] Everspaugh, A., Zhai, Y., Jellinek, R., Ristenpart, T., Swift, M.: Not-so-
random numbers in virtualized Linux and the Whirlwind RNG. In: 2014
IEEE Symposium on Security and Privacy, pp. 559–574. IEEE, May 2014

[FJNT16] Frederiksen, T.K., Jakobsen, T.P., Nielsen, J.B., Trifiletti, R.: On the
complexity of additively homomorphic UC commitments. In: Kushile-
vitz, E., Malkin, T. (eds.) TCC 2016, Part I. LNCS, vol. 9562, pp.
542–565. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-
49096-9_23

[FNO15] Frederiksen, T.K., Nielsen, J.B., Orlandi, C.: Privacy-free garbled cir-
cuits with applications to efficient zero-knowledge. In: Oswald, E., Fis-
chlin, M. (eds.) EUROCRYPT 2015, Part II. LNCS, vol. 9057, pp.
191–219. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-
46803-6_7

[GIKW14] Garay, J.A., Ishai, Y., Kumaresan, R., Wee, H.: On the complexity of UC
commitments. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014.
LNCS, vol. 8441, pp. 677–694. Springer, Heidelberg (2014). https://doi.
org/10.1007/978-3-642-55220-5_37

[Gil99] Gilboa, N.: Two party RSA key generation. In: Wiener, M. (ed.) CRYPTO
1999. LNCS, vol. 1666, pp. 116–129. Springer, Heidelberg (1999). https://
doi.org/10.1007/3-540-48405-1_8

[GJKR07] Gennaro, R., Jarecki, S., Krawczyk, H., Rabin, T.: Secure distributed key
generation for discrete-log based cryptosystems. J. Cryptol. 20(1), 51–83
(2006). https://doi.org/10.1007/s00145-006-0347-3

https://doi.org/10.1007/978-3-662-53015-3_18
https://doi.org/10.1007/978-3-662-53015-3_18
https://doi.org/10.1007/978-3-642-28914-9_3
https://doi.org/10.1007/978-3-642-28914-9_3
https://doi.org/10.1007/978-3-319-22174-8_3
https://doi.org/10.1007/978-3-319-22174-8_3
https://doi.org/10.1007/978-3-662-45608-8_12
https://doi.org/10.1007/3-540-45708-9_37
https://doi.org/10.1007/978-3-662-49096-9_23
https://doi.org/10.1007/978-3-662-49096-9_23
https://doi.org/10.1007/978-3-662-46803-6_7
https://doi.org/10.1007/978-3-662-46803-6_7
https://doi.org/10.1007/978-3-642-55220-5_37
https://doi.org/10.1007/978-3-642-55220-5_37
https://doi.org/10.1007/3-540-48405-1_8
https://doi.org/10.1007/3-540-48405-1_8
https://doi.org/10.1007/s00145-006-0347-3

Threshold Schnorr with Stateless Deterministic Signing 155

[GKPS18] Ganesh, C., Kondi, Y., Patra, A., Sarkar, P.: Efficient adaptively secure
zero-knowledge from garbled circuits. In: Abdalla, M., Dahab, R. (eds.)
PKC 2018, Part II. LNCS, vol. 10770, pp. 499–529. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-76581-5_17

[GLNP15] Gueron, S., Lindell, Y., Nof, A., Pinkas, B.: Fast garbling of circuits under
standard assumptions. In: Ray, I., Li, N., Kruegel, C. (eds.) ACM CCS
2015, pp. 567–578. ACM Press, October 2015

[GMW87] Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or
a completeness theorem for protocols with honest majority. In: 19th ACM
STOC (1987)

[Gro16] Groth, J.: On the size of pairing-based non-interactive arguments. In: Fis-
chlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016, Part II. LNCS, vol.
9666, pp. 305–326. Springer, Heidelberg (2016). https://doi.org/10.1007/
978-3-662-49896-5_11

[HK20] Heath, D., Kolesnikov, V.: Stacked garbling for disjunctive zero-knowledge
proofs. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020, Part III.
LNCS, vol. 12107, pp. 569–598. Springer, Cham (2020). https://doi.org/
10.1007/978-3-030-45727-3_19

[HS01] Howgrave-Graham, N., Smart, N.P.: Lattice attacks on digital signature
schemes. Des. Codes Cryptogr. 23(3), 283–290 (2001)

[HSS17] Hazay, C., Scholl, P., Soria-Vazquez, E.: Low cost constant round MPC
combining BMR and oblivious transfer. In: Takagi, T., Peyrin, T. (eds.)
ASIACRYPT 2017, Part I. LNCS, vol. 10624, pp. 598–628. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-70694-8_21

[JKO13] Jawurek, M., Kerschbaum, F., Orlandi, C.: Zero-knowledge using garbled
circuits: how to prove non-algebraic statements efficiently. In: ACM CCS
2013 (2013)

[KASN15] Kumari, R., Alimomeni, M., Safavi-Naini, R.: Performance analysis of
Linux RNG in virtualized environments. In: ACM Workshop on Cloud
Computing Security Workshop - CCSW 2015, New York, USA (2015)

[KC12] Kerrigan, B., Chen, Yu.: A study of entropy sources in cloud computers:
random number generation on cloud hosts. In: Kotenko, I., Skormin, V.
(eds.) MMM-ACNS 2012. LNCS, vol. 7531, pp. 286–298. Springer, Heidel-
berg (2012). https://doi.org/10.1007/978-3-642-33704-8_24

[KL17] Khovratovich, D., Law, J.: BIP32-Ed25519: hierarchical deterministic keys
over a non-linear keyspace. In: 2017 IEEE European Symposium on Secu-
rity and Privacy Workshops (EuroS&PW), pp. 27–31. IEEE, April 2017

[Kos] Kosba, A.: xJsnark
[KPR18] Keller, M., Pastro, V., Rotaru, D.: Overdrive: making SPDZ great again.

In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018, Part III. LNCS,
vol. 10822, pp. 158–189. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-78372-7_6

[KRRW18] Katz, J., Ranellucci, S., Rosulek, M., Wang, X.: Optimizing authenti-
cated garbling for faster secure two-party computation. In: Shacham,
H., Boldyreva, A. (eds.) CRYPTO 2018, Part III. LNCS, vol. 10993,
pp. 365–391. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
96878-0_13

[KS08] Kolesnikov, V., Schneider, T.: Improved garbled circuit: free XOR gates
and applications. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson,
M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS,
vol. 5126, pp. 486–498. Springer, Heidelberg (2008). https://doi.org/10.
1007/978-3-540-70583-3_40

https://doi.org/10.1007/978-3-319-76581-5_17
https://doi.org/10.1007/978-3-662-49896-5_11
https://doi.org/10.1007/978-3-662-49896-5_11
https://doi.org/10.1007/978-3-030-45727-3_19
https://doi.org/10.1007/978-3-030-45727-3_19
https://doi.org/10.1007/978-3-319-70694-8_21
https://doi.org/10.1007/978-3-642-33704-8_24
https://doi.org/10.1007/978-3-319-78372-7_6
https://doi.org/10.1007/978-3-319-78372-7_6
https://doi.org/10.1007/978-3-319-96878-0_13
https://doi.org/10.1007/978-3-319-96878-0_13
https://doi.org/10.1007/978-3-540-70583-3_40
https://doi.org/10.1007/978-3-540-70583-3_40

156 F. Garillot et al.

[KW03] Katz, J., Wang, N.: Efficiency improvements for signature schemes with
tight security reductions. In: ACM CCS 2003 (2003)

[Lin11] Lindell, Y.: Highly-efficient universally-composable commitments based on
the DDH assumption. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS,
vol. 6632, pp. 446–466. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-20465-4_25

[LPR19] Lindell, Y., Peer, G., Ranellucci, S.: Unbound blockchain-crypto-MPC
library. White Paper (2019)

[MAK+17] Matetic, S., et al.: ROTE: rollback protection for trusted execution. In:
USENIX Security 2017 (2017)

[MNPV99] M’Raïhi, D., Naccache, D., Pointcheval, D., Vaudenay, S.: Computational
alternatives to random number generators. In: Tavares, S., Meijer, H.
(eds.) SAC 1998. LNCS, vol. 1556, pp. 72–80. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48892-8_6

[MPSW19] Maxwell, G., Poelstra, A., Seurin, Y., Wuille, P.: Simple Schnorr multi-
signatures with applications to bitcoin. Des. Codes Crypt. 87(9), 2139–
2164 (2019)

[MRV99] Micali, S., Rabin, M.O., Vadhan, S.P.: Verifiable random functions. In:
40th FOCS (1999)

[NKDM03] Nicolosi, A., Krohn, M.N., Dodis, Y., Mazières, D.: Proactive two-party
signatures for user authentication. In: NDSS 2003 (2003)

[NRSW20] Nick, J., Ruffing, T., Seurin, Y., Wuille, P.: MuSig-DN: schnorr multi-
signatures with verifiably deterministic nonces. In: ACM CCS 2020 (2020)

[Ped91] Pedersen, T.P.: A threshold cryptosystem without a trusted party. In:
Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 522–526.
Springer, Heidelberg (1991). https://doi.org/10.1007/3-540-46416-6_47

[PLD+11] Parno, B., Lorch, J.R., Douceur, J.R., Mickens, J.W., McCune, J.M.:
Memoir: practical state continuity for protected modules. In: 2011 IEEE
S&P (2011)

[PS96] Pointcheval, D., Stern, J.: Security proofs for signature schemes. In: Mau-
rer, U. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 387–398. Springer,
Heidelberg (1996). https://doi.org/10.1007/3-540-68339-9_33

[Sch91] Schnorr, C.P.: Efficient signature generation by smart cards. J. Cryptol.
4(3), 161–174 (1991). https://doi.org/10.1007/BF00196725

[Set20] Setty, S.: Spartan: efficient and general-purpose zkSNARKs without
trusted setup. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020.
LNCS, vol. 12172, pp. 704–737. Springer, Cham (2020). https://doi.org/
10.1007/978-3-030-56877-1_25

[SP16] Strackx, R., Piessens, F.: Ariadne: a minimal approach to state continuity.
In: USENIX Security 2016 (2016)

[SS01] Stinson, D.R., Strobl, R.: Provably secure distributed schnorr signatures
and a (t, n) threshold scheme for implicit certificates. In: Varadharajan,
V., Mu, Y. (eds.) ACISP 2001. LNCS, vol. 2119, pp. 417–434. Springer,
Heidelberg (2001). https://doi.org/10.1007/3-540-47719-5_33

[TTA18] Takahashi, A., Tibouchi, M., Abe, M.: New Bleichenbacher records: fault
attacks on qDSA signatures. IACR TCHES 2018, 331–371 (2018)

[vDRSD07] van Dijk, M., Rhodes, J., Sarmenta, L.F.G., Devadas, S.: Offline untrusted
storage with immediate detection of forking and replay attacks. In: ACM
STC 2007 (2007)

[ZRE15] Zahur, S., Rosulek, M., Evans, D.: Two halves make a whole. In: Oswald,
E., Fischlin, M. (eds.) EUROCRYPT 2015, Part II. LNCS, vol. 9057, pp.
220–250. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-
46803-6_8

https://doi.org/10.1007/978-3-642-20465-4_25
https://doi.org/10.1007/978-3-642-20465-4_25
https://doi.org/10.1007/3-540-48892-8_6
https://doi.org/10.1007/3-540-46416-6_47
https://doi.org/10.1007/3-540-68339-9_33
https://doi.org/10.1007/BF00196725
https://doi.org/10.1007/978-3-030-56877-1_25
https://doi.org/10.1007/978-3-030-56877-1_25
https://doi.org/10.1007/3-540-47719-5_33
https://doi.org/10.1007/978-3-662-46803-6_8
https://doi.org/10.1007/978-3-662-46803-6_8

Two-Round Trip Schnorr
Multi-signatures via Delinearized

Witnesses

Handan Kılınç Alper(B) and Jeffrey Burdges

Web3 Foundation, Zug, Switzerland
handan@web3.foundation

Abstract. We construct a two-round Schnorr-based signature scheme
(DWMS) by delinearizing two pre-commitments supplied by each signer.
DWMS is a secure signature scheme in the algebraic group model (AGM)
and the random oracle model (ROM) under the assumption of the hard-
ness of the one-more discrete logarithm problem and the 2-entwined sum
problem that we introduce in this paper. Our new m-entwined sum prob-
lem tweaks the k-sum problem in a scalar field using the associated group.
We prove the hardness of our new problem in the AGM assuming the
hardness of the discrete logarithm problem in the associated group. We
believe that our new problem simplifies the security proofs of multi-
signature schemes that use the delinearization of commitments.

1 Introduction

A multi-signature scheme is a signature scheme that allows multiple parties
collaboratively to sign a message so that the final signature can be verified with
the public keys of the signers by a user. The trivial solution for this is that
each entity signs the data individually and provides it to the user. However,
this is not a space and time-efficient solution since the user needs to verify each
signature separately and keep a larger amount of signatures. Hence, we require
more elegant multi-signature schemes which save time and space on the user and
the signer side.

To this end, multi-signature schemes [3,6,9,15,17–19,22] have been studied
for a long time. Increased operational security demands have driven a growth
spurt in multi-signer implementations in recent years especially for Schnorr-
based multi-signature schemes [2,9–11,17,24]. At their core, any multi-signature
scheme should protect each honest signer who participates against forgeries by
an adversary who controls all the other signers and interacts extensively with
our one honest signer. Yet in [11], Drijvers, et al. broke all previously known
Schnorr-based two-round multi-signature protocols [3,18,19,26], using the trau-
matic ROS [8] or k-SUM attack [27] that break blind Schnorr signatures [23,25].
In short, these attacks are executed by the adversary who engages in enough par-
allel signing sessions to reply with appropriate witnesses against honest witnesses

c© International Association for Cryptologic Research 2021
T. Malkin and C. Peikert (Eds.): CRYPTO 2021, LNCS 12825, pp. 157–188, 2021.
https://doi.org/10.1007/978-3-030-84242-0_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-84242-0_7&domain=pdf
https://doi.org/10.1007/978-3-030-84242-0_7

158 H. Kılınç Alper and J. Burdges

in the first round of each session. Then, the linear combination of signatures in
each session constitutes a forgery.

In this paper, we propose a simple and lightweight two-round Schnorr-
based multi-signature protocol that we call delinearized witness multi-signatures
(DWMS) and prove its security. We call the linear combination of the witnesses
with random oracle outputs delinearization. The reason of this naming is that
the coefficients of the linear combinations are random and cannot be known by
the adversary before the adversary selects its own witnesses. The security of
DWMS is based on the hardness assumptions of entwined sum problem that we
define and one more discrete logarithm (OMDL) problem [5,7]. In more detail,
our contributions in this paper are as follows:

– We define a new computationally hard problem that we called m-entwined
sum problem. We show that this problem is hard as long as m > 1 and the
discrete logarithm is hard in the algebraic group model (AGM) [12] and the
random oracle model (ROM). Thanks to this problem, we prove the secu-
rity of our signature scheme without any complicated linear algebra analysis.
Thus, we avoid possible mistakes in the proof. We believe that our new prob-
lem improves and simplifies the security proof of multi-signature [20] and
threshold signature schemes [16] based delinearization of witnesses as ours.
Beyond the simplified proof, we wonder if it is possible to improve Clause
Schnorr-based blind signature [13] invoking the m-entwined sum problem
instead of the modified-ROS problem [13] which does not have any extensive
cryptanalysis yet.

– We construct our new protocol DWMS which consists of two-rounds: first,
all signers generate two witnesses and propose two pre-commitment of them
in the prime-order group, and second, after obtaining all pre-commitments,
all signers compute the Schnorr commitment by delinearizing these pre-
commitment with a random oracle and produce their signature share using
their portion of the combined witnesses. As we mentioned above, most of the
two-round Schnorr-based multi-signature schemes can be broken by solving
the k-sum problem with respect to the session witnesses. Similarly, our new
protocol DWMS can be broken by solving more complex k-sum problem that
we call the m-entwined sum problem. Since we show that the m-entwined
sum problem is hard when m > 1, DWMS is not vulnerable to this attack as
long as the number of witnesses is at least two. After making sure that the
2-entwined sum problem is hard, we prove the security of DWMS in the plain
public-key model [3], in the AGM and the ROM under the assumption that
the OMDL problem and the 2-entwined sum problem is hard.

We note that DWMS is implemented in the cryptographic library ‘schnor-
rkel/sr25519’ [1] and it is used by substrate based blockchains since January
2020 as an option for multi-signatures.

Two-Round Trip Schnorr Multi-signatures via Delinearized Witnesses 159

1.1 Related Work

Insecure Multi-signatures: Drijvers et al. [11] invalidated the security of some
Schnorr-based two-round multi-signature schemes [3,18,19,26] by showing an
attack based on the k-sum problem [27]. The key observation that Drijvers et al.
[11] made was that a multi-signature participant choosing her signature random-
ness (nonce) after other participants could launch a parallel attack by initiating
multiple concurrent signature sessions (say k of them) and let the honest partic-
ipants commit to their randomness across all those sessions before choosing its
own randomness for these sessions. It could then choose her randomness so that
the hash on the sum of session randomness across the k sessions equals the sum
of hashes on each individual session randomness, thereby helping it to derive a
multi-signature session on a message of its own choice. They also noted a sub-
tle flaw in the security proofs of these schemes, where the reduction to DL (or
ODML depending on the scheme) on rewinding the multi-signature forger was
inadvertently giving two signatures of the honest signer on the same randomness
and two different challenges to the forger, thereby letting the latter potentially
derive the honest signer’s secret key. Note, all the earlier multi-signature schemes
used different techniques: BCJ1, BCJ2 [2,3] used a multiplicatively homomor-
phic equivocal commitment scheme to prove security under the DL assumption,
MWLD [18] used Okamoto signatures [22] and the double-hashing technique to
prove security under the DL assumption and MuSig [19] used regular Schnorr
signatures and proved security under the OMDL assumption, but all of them cru-
cially relied on the rewinding of the multi-signature forger to derive its security.
Thus, mBCJ [11] ruled out the possibility of the existence of secure two-round
multi-signatures based on Schnorr signatures via an impossibility result that
formalized the above inconsistency in the proof to construct a meta-reduction
(which now simulated the multi-signature forger for the DL/OMDL reduction)
to solve the OMDL problem itself.

A recent work of Bellare et al. [4] introduced a new problem called the
Multi-Base Discrete Log (MBDL) problem that enables the security of several
schemes including Schnorr signatures, Okamoto signatures, Bellare-Neven multi-
signatures, and other Schnorr based ring and threshold signatures to be proved
using a non-rewinding reduction.

Random Inhomogeneities in a Overdetermined Solvable System of Linear Equa-
tions (ROS): Earlier blind signatures constructed from Schnorr signatures [25]
were shown to be insecure via a k-SUM attack [27]. The security of these blind
signatures had been proven under the ROS assumption which was shown to
be false as Wagner’s (sub-exponential) algorithm on the k-SUM problem was
used to break the ROS problem. Fuchsbauer et al. [14] was able to overcome this
attack and constructed a two-round blind signature scheme that is proved secure
under a (new) modified-ROS assumption that does not seem to fall prey to a
k-SUM attack. Recently, Benhamouda et al. [8] find an algorithm that solves the
ROS problem in polynomial time for large enough dimensions.

160 H. Kılınç Alper and J. Burdges

Table 1. Review of the efficiency and security of existing Schnorr-based multi-signature
schemes with n-signers. Optim. is the optimized DWMS where signers are organised
in a tree structure: i.e., each multi-signature round takes 2-sub-rounds: parent-children
communication only [11]. G is the prime p order group that the schemes work. kexp
shows k-exponentiation in G. NIZK is non-interactive zero knowledge and NIZK proof
and NIZK verify corresponds to the number of exp in order to execute the prove and
verify algorithm. pk is the individual public key and PK is the aggregated public key.

Protocol Sign Verify
Domain

Security
pk signature PK

mBCJ [11] 5exp 6exp G × Z
2
p G

2 × Z
3
p G DL, ROM

MuSig-DN [21]
NIZK proof + n NIZK verifica-

tion
2exp G

G×Zp or Zp×
Zp

G
DL, DDH, ZK,

PRF,ROM

Musig2 v = 4 [20] 7exp 2exp G
G×Zp or Zp×
Zp

G
4qs-OMDL,

ROM

Musig2 v = 2 [20] 3exp 2exp G
G×Zp or Zp×
Zp

G
2qs-OMDL,

AGM, ROM

Ours (DWMS

m = 2)

(Worst Case) (2n + 2)exp

(Optim.)

(2n+2)exp by

the root, 2exp

by others

2exp G
G×Zp or Zp×
Zp

G

qs-OMDL, 2-

entwined sum,

AGM, ROM

Secure 2-Round Schnorr-Based Multi-signatures: We compare the existing 2-
round Schnorr-based Multi-Signatures in Table 1. We note that we do not give
the key aggregation operations in Table 1 to obtain the aggregated public key PK
because this is necessary step for all multi-signature protocols. Some of them [11]
first verifies the proof of knowledge of each public key with two-exponentiation
and then obtains the aggregated public key and some of them [20,21] including
DWMS delinearize each public key by one exponentiation and then obtain the
aggregated public key.

mBCJ [11] is one of the few existing two-round Schnorr-based signature
schemes. mBCJ is more efficient in terms of signing operations than DWMS,
but DWMS is more efficient in terms of verification operations and has also
shorter signature size (See Table 1). mBCJ’s first round messages can be spread
by aggregating. Thus, the signers use the network bandwidth more efficiently.
One advantage of mBCJ over DWMS is that it is secure in the random oracle
model while DWMS is secure in AGM and the random oracle model.

Aside from mBCJ, MuSig-DN [21] is another Schnorr multi-signature proto-
col which provides deterministic witnesses, a nice property previously unavailable
in a Schnorr multi-signature. It achieves determinism using several novel bullet-
proof optimizations which require a suitable group for an efficient instantiation.
In MuSig-DN, the first round messages require only 1124 bytes per signer, but
their participant-only benchmarks show 0.9 s proving times.

In DWMS, all signers incur a per signer cost of only 64 bytes and only two
scalar multiplications in a prime order-elliptic curve group. Besides, DWMS asks
no special features of the underlying group as MuSig-DN.

FROST [16] is a recent Schnorr-based threshold signature scheme that uses
the delinearization of witnesses in the first round similar to DWMS. However,

Two-Round Trip Schnorr Multi-signatures via Delinearized Witnesses 161

the security proof of FROST applies an ad-hoc heuristic that resembles a Fiat-
Shamir transform which adds an additional round the FROST. Therefore, the
proven FROST and the original FROST protocol are different. We hope that
the hardness of our new problem ‘the m-entwined sum problem’ or its extensions
improve the security proof of FROST.

There exists also simultaneous and independent protocol MuSig2 [20] which
applies a similar idea as our DWMS protocol. DWMS’s pre-commitments that
signers send in the first round are delinearized first and then aggregated while
Musig2’s pre-commitments can be aggregated before delinearizing the pre-
commitments. Therefore, the first round messages in Musig2 can be spread by
aggregating. Thus, signers use the network bandwidth more efficiently. Besides,
the signers in DWMS exponentiate each pre-commitment by a random oracle
output for the delinearization while signers in Musig2 exponentiate only the
summation of pre-commitments by a random oracle output. As a result of this,
Musig2 is more efficient in terms of signing operations than DWMS (See Table 1).
MuSig2 is secure in AGM with two pre-commitments as DWMS. They also show
that its security with four pre-commitments without AGM. They deal with the
case, where we need the hardness of the 2-entwined sum problem in our security
proof in AGM, inside their signature proof with complex linear algebra analysis.
It makes the proof much longer and hard to follow and verify. This also shows
the ease that the m-entwined sum problem provides.

2 Preliminaries

2.1 Notations

We denote by G a prime p-order group. For the sake of representation, we con-
sider additive operation in G in this paper. The notations with capital letters
represent the elements of G and with small letters represent the elements in the
scalar field Zp. The addition and multiplication operation between elements of
Zp is always in mod p even though we do not specifically write it.

We use superscript (i) on any notation where i ∈ N to distinguish values
generated in a session i e.g., X(i).

We use bold style for the vectors. If elements of the vector are from G then
we represent the vector with the capital bold letter e.g. VVV . If they are from Zp

then we represent the vector with the small bold letter e.g. vvv.

2.2 Security Definitions

Multi-signature Schemes: We describe the multi-signature scheme and the secu-
rity model that we consider for DWMS.

Definition 1 (Multi-Signature Scheme). Multi-signature scheme with the
security parameter λ consists of the following algorithms.

– ParamGen(λ) → par : It generates the parameters of the signature scheme
par with respect to the security parameter λ.

162 H. Kılınç Alper and J. Burdges

– KeyGen(par) → (sk, pk): It generates a secret/public key pair (sk, pk) with the
input par.

– Sign(par, sk,msg) → σ: It is an interactive algorithm which is run between
other signers to sign a message msg ∈ M where M is the message space.

– KeyAg(par, {pki}n
i=1) → PK: It receives public key pki of each signer and

generates the aggregated public key PK.
– Verify(par, PK, σ,msg) → 1/0: It verifies whether the signature σ is signed

by the parties with public key pki for the message msg.

We consider the plain public-key model [3] for the security of our multi-signature
scheme as described below. In this model, KeyVerify(par, pki) outputs always 1.

Definition 2 (Multi-Signature Security in the Plain Public-key Model
[3]). The challenger generates the parameters par with ParamGen(λ) and gener-
ates a secret/public key pair (sk, pk) and gives par, pk to the adversary A. A has
access to the signing oracle Σ which returns Sign(par, sk,msg) given input msg
by A.

In the end, A outputs a signature σ∗, message msg∗ ∈ M and PK =
{pk1, pk2, . . . , pkn}. A wins if

– the public key given by the challenger is in PK i.e., pk ∈ PK,
– A never queries with the input msg∗ to the signing oracle Σ before,
– the signature is valid i.e., Verify(par, PK, σ,msg) → 1 where

KeyAg(par,PK) → PK.

We say that a multi-signature scheme is secure in the plain public-key model
if for all probabilistic polynomial time (PPT) adversary A with qs-signing oracle
queries, the probability of winning the above game is ε which is negligible in terms
of λ.

There is also a weaker security definition called the knowledge of secret key
(KOSK) model where the adversary outputs its secret keys in the end of the
game.

Algebraic Group Model (AGM). The AGM is a model between the standard
model and the generic group model, i.e., the security in the standard model
implies security in the AGM and the security in the AGM implies the security
in the GGM [12]. In short, the AGM is a computational model that considers
only algebraic algorithms (corresponds to the adversaries in the security proofs)
as described below. As in the standard model, it is possible to have security
proofs with reductions [12].

Definition 3 (Algebraic Adversary). Let G be a group with order p and
P be the element of G. Informally, we call an algorithm A is algebraic if it
fulfills the following requirement: whenever A outputs Z ∈ G, “representation”
zzz = (z1, . . . , zt) ∈ Z

t
p such that Z = zzz · LLL =

∑t
i=1 ziLi where LLL = (L1, . . . , Lt)

is the vector in G
t and each element of LLL is a group element that A has seen

during its execution so far.

Two-Round Trip Schnorr Multi-signatures via Delinearized Witnesses 163

Now, we give the OMDL problem [5,7] since DWMS’s security relies on the
hardness of the OMDL problem.

Definition 4 (n-OMDL Problem [5,7]). Given a prime p-order group G

generated by P , and random Y1, Y2, . . . , Yn+1 ∈ G and a discrete logarithm oracle
DLOracle which returns discrete logarithm of any given input in G, if a PPT
adversary A outputs the discrete logarithms of Y1, Y2, . . . , Yn+1 with the access
of at most n-times to the DLOracle, then A solves the n-OMDL problem. We say
that n-OMDL problem is hard in G, if for all PPT adversaries, the probability of
solving the n-OMDL problem is εomdl which is negligible in terms of the security
parameter.

2.3 Multi-signature Schemes vs. the k-Sum Problem

In this section, we show an example attack to one of the broken schemes in [11]
to explain why a solution of the k-sum problem helps an adversary to break
some multi-signature schemes. This section will make more clear the necessity
of defining a new k-sum-like problem for our new scheme DWMS and proving
its hardness.

Definition 5 (k-sum Problem). Given k-lists L1, L2, . . . , Lk of size sL where
each elements of Li is from Zp, the problem requires to find x1, x2, . . . , xk where
xi ∈ Li such that x1 + x2 + . . . + xk ≡ 0 mod p.

Wagner [27] described an algorithm which solves the k-sum problem within
O(k2n/(1+log n)) when sL = 2n/(1+log n) where n is the bit length of the elements
in lists. Benhamouda et al. [8] recently showed that with the list of dimensions
sL = k > log p, the ROS-problem can be solved in polynomial time. Recall that
the ROS problem is a generalization of the k-sum problem. Solving the ROS
problem is sufficient to break security of the schemes [3,18,19,26].

Drijvers et al. [11] showed an attack on many two-round Schnorr-based multi-
signatures [3,18,19,26] based on a solution of the k-sum problem. We next show
the attack on CoSi [26] described in [11] to illustrate the relation between the
k-sum problem and multi-signature schemes. The other attacks on other schemes
[3,18,19] can be found in [11].

CoSi Protocol [26]: CoSi works in a prime p-order group G with the hash function
H : {0, 1}∗ → Zp. Public parameters are the group structure (G, P, p) where P is
a generator of G. Normally, each public key of the signers are associated with the
proof-of-knowledge of the secret key to prevent the rogue key attacks. We omit
this part in the description of the protocol because the attack is still applicable
even if the public keys are generated as described in the protocol.

Key Generation: Each signer generates a random private key x and computes
the public key X = xP .

164 H. Kılınç Alper and J. Burdges

Signing: Each signer i does the following to sign a message msg with public
keys PK = {X1,X2, . . . , Xn}:

– [Round 1:] Each signer i picks ri ∈ Zp and computes Ti = riP . Then, each
publishes the witness Ti.

– [Round 2:] After receiving all witnesses, each signer i aggregates all witnesses
and obtains T =

∑n
j=1 Tj and computes the partial signature si = ri + cxi

where c = H(T,msg). In the end, each publishes si.

The signature of the message msg is σ = (c, s) where s =
∑n

j=1 si.

Key Aggregation: Given list of public keys PK = {X1,X2, . . . , Xn}, the
aggregated public key is X =

∑n
j=1 Xj .

Verification: The verification algorithm outputs 1 if c = H(sP − cX,msg).
Otherwise, it outputs 0.

Now, we explain the k-sum attack on the CoSi protocol described in [11].
The k-sum Attack on CoSi [11]: For simplicity, we describe the attack with one
honest party having the public key X1 and one adversary having the public
key X2 and we let PK = {X1,X2}. In a nutshell, the adversary aims in this
attack to find an appropriate adversarial witnesses for each parallel session that
is started with an honest party such that the linear combination of the honest
partial signatures lets the adversary obtain a forgery. It consists of the following
steps:

1. The adversary starts qs concurrent session for an arbitrary message(s) msg(i)

with an honest signer and obtains qs-witnesses T
(1)
1 , T

(2)
1 , . . . , T

(qs)
1 of the

honest signer for each session i ∈ [1, qs]. Now, the adversary needs to select
corresponding witnesses for each session. For this selection, it continues with
the next step.

2. The adversary creates qs + 1 lists of size sL. It creates the first qs list Li

as follows: picks a random element r
(i)
2 ∈ Zp and lets T

(i)
2 = r

(i)
2 P as a

possible adversarial witness against the honest witness T
(i)
1 , computes c(i) =

H(
∑

T
(i)
1 + T

(i)
2 ,msg(i)) and adds c(i) to the list Li. The adversary repeats

this process sL times until the size of Li is sL. It creates the last list Lqs+1

differently. For each element of Lqs+1, it picks a message msg∗ and adds
−H(

∑qs

i T
(i)
1 ,msg∗) to Lqs+1. The adversary repeats this process sL times

until the size of Lqs+1 is sL.
3. Adversary finds elements c(i) in each list Li such that c(1) + c(2) + . . . c(qs) +

c(qs+1) = 0 as in the k-sum problem (Definition 5) i.e.,

c(1) + c(2) + . . . + c(qs) = H(
qs∑

i=1

T
(i)
1 ,msg∗) (1)

Two-Round Trip Schnorr Multi-signatures via Delinearized Witnesses 165

Then the adversary gets the corresponding adversarial witness T
(i)
2 that was

selected in step 2 for each found element c(i) for i ∈ [1, qs]. In the end, it
responds with T

(1)
2 , T

(2)
2 , . . . , T

(qs)
2 respectively to each qs session that was

initiated in the beginning and receives partial signatures for all sessions
s
(1)
1 , . . . , s

(qs)
qs where s

(i)
1 = r

(i)
1 + x1c

(i) and c(i) = H(T (i)
1 + T

(i)
2 ,msg(i)).

Thus, all sessions end.

This step of the attack is equivalent to solving the k-sum problem [27] with
the lists L1, L2, . . . , Lqs+1 where k = qs + 1.

4. Now, the adversary outputs (c∗, s∗), as a forgery of the message msg∗ signed
by PK where

s∗ =
qs∑

i=1

s
(i)
1 + x2c

∗

and c∗ = H(
∑qs

i=1 T
(i)
1 ,msg∗). This is a valid forgery because

s∗P − c∗X = (
qs∑

i=1

s
(i)
1)P + c∗x2P − c∗(X1 + X2)

= (
qs∑

i=1

T
(i)
1 + c(i)X1) − c∗X1 (2)

=
qs∑

i=1

T
(i)
1 (3)

We obtain Eq. (3) by using Eq. (1) that the adversary obtained in the third
step.

The main reason for the above attack comes from the fact that the adversary
selects its witnesses after seeing the honest witnesses. Therefore, three-round
Schnorr-based multi-signatures are not vulnerable to this type of attack because
the adversary has to commit its witness in the first round before seeing the honest
witness. Existing two-round multi-signature protocols overcome this issue in dif-
ferent ways. Witnesses in mBCJ [11] are generated with different group elements
for each message. This makes the adversary’s job hard to generate compatible
list Lqs+1. In Musig-DN [21], the witnesses are generated deterministically so
that the adversary cannot choose an appropriate witness as in the above attack.
We consider a different solution. We observe that the independence of the last
list Lqs+1 from the selection of the adversarial witnesses is causing to apply this
attack. Therefore, we decide to solve the issue by preventing this independence
in our scheme. Accordingly, we solve this problem in our scheme by delinearizing
each witness by a corresponding random value generated with the adversarial
and honest witnesses. We will explain this in the next sections in more detail.

166 H. Kılınç Alper and J. Burdges

3 Delinearized Witness Multi-signature (DWMS)

We give our two-round delinearized witness multi-signature (DWMS) protocol
that replaces the witness sharing and combination steps in multi-signer Schnorr
protocol with a delinearization phase inspired by the delinearization defense [6]
against rogue key attacks. The DWMS protocol works in prime p-order group G

with the functions H : {0, 1}∗ ×G×G → Zp, H1 : {0, 1}∗ ×G
mn ×N×N → Zp

and H2 : G
n × G → Zp where n ≥ 1 is the number of signers and m is a

parameter.

Public Parameter Generation (ParamGen(λ)). Given λ, ParamGen generates
a prime p order group G and a generator P ∈ G. In the end, it outputs par =
(G, P, p).

Key Generation (KeyGen(par) → (sk, pk)). Each signer generates a random
private key x ∈ Zq and computes the public key X = xP .

Signing (Sign(par, xi,msg) → σ). It consists of two rounds where in the first
round signers exchange their pre-commitments and in the second round signers
generate their signature by delinearizing their pre-commitments.

– [Round 1]: Each signer i with the secret key xi ∈ {x1, x2, . . . , xn} generates
random witnesses ri1, ri2, . . . , rim ∈ Zp and computes the pre-commitments
Ti1 = ri1P, Ti2 = ri2P, . . . , Tim = rimP and broadcasts (Ti1, Ti2, . . . , Tim)
together with their public key Xi

1. This round ends when each signer i
receives all pre-commitments. Let PK = {X1, . . . , Xn} be the multi-set of
all public keys involved in the session.

– [Round 2]: On receiving (Tj1, Tj2, . . . , Tjm) from the co-signers, each signer
i sets the list of public keys PK = {X1,X2, . . . , Xn}, it computes the delin-
earization parameter of each key Xj ∈ PK: aj = H2(PK,Xj) and finds the
aggregated public key X =

∑n
j=1 ajXj . This step is necessary to prevent

rogue-key attacks. It lets the session identifier be

SID = (PK,msg, {T1j}m
j=1, . . . , {Tnj}m

j=1).

Then, it computes delinearization scalars for each pre-commitments Tuj where
u ∈ {1, 2, . . . , n} and j ∈ {1, 2, . . . ,m} which are

αij = H1(SID, i, j)

and computes the individual delinearized commitment of each signer u:

Tu =
m∑

j=1

αujTuj , for u ∈ [1, n]

1 There can be a specified structure (e.g., tree structure [11]) between parties for more
efficient communication.

Two-Round Trip Schnorr Multi-signatures via Delinearized Witnesses 167

Signer i further computes T =
∑n

u=1 Tu and c = H(msg,X, T) and the
signature

si = (
m∑

j=1

αijrij) + caixi

and broadcasts si as its signature.

On receiving other signatures sj ’s from the co-signers, signer can compute
s =

∑n
j=1 si. The multi-signature on message msg under the aggregated

public key X is σ = (c, s). We remark that the signature is the same as the
Schnorr signature.

Key Aggregation (KeyAg(par,PK)). It outputs the aggregated public key X =∑n
i=1 aiXi where ai = H2(PK,Xi)

Verification (Verify(par,X, σ,msg)). It accepts the signature if c equals to
H(msg,X, sP − cX) as in the standard Schnorr signature scheme.

Network and Computation Optimization: In the worst case, each signer sends
the first round messages (m-exponentiations) to all other signers, each signer
computes T (mn-exponentiation) and sends the partial signature to all other
signers. So, the communication complexity is O(n2) and computation complexity
is O(n) i.e., the number of exponentiations made by each signer is mn + m. We
can optimize this with the tree based network topology suggested in [11]. The
leaf nodes start the protocol by sending their pre-commitments to their parents.
When a party Pi receives pre-commitments from its children, it relays them and
its own pre-commitments Ti1, . . . , Tim to its parent. In the end, the root node
receives all of them. Then, the root node computes T =

∑n
u=1 Tu and sends T

to its children so that the leaf nodes receives them. Finally, each leaf node gives
its partial signature to its parent to be added parent’s partial signature and the
root node obtains the multi-signature. The communication complexity is O(n)
and the computation complexity is O(n) (mn + m-exponentiations) for the root
node and O(1) (m-exponentiations) for the other parties. The computation can
be distributed among other nodes where each node computes m-exponentiation
by additional 2-sub-rounds. In this case, the root node should send the pre-
commitments to the children so that the computation of T can be done from
leaves to root by aggregation.

We prove in Sect. 5 the security of DWMS when m = 2. However, we show
below that it is not secure when m = 1 by solving a k-sum problem. Then, we
discuss whether such an attack is possible when m > 1 to illustrate a relation
between our new problem ‘the m-entwined sum problem’ and these attacks in
DWMS.

Forgery Attack When m = 1: For simplicity, we describe the attack with one hon-
est party with the public key X1 and one adversary with the public key X2 and
we let PK = {X1,X2}, a1 = H2(PK,X1) and a2 = H2(PK,X2), the aggregated
key X = a1X1 + a2X2. As in the CoSi attack in Sect. 2.3, the adversary wants

168 H. Kılınç Alper and J. Burdges

to find adversarial witnesses for each parallel session to obtain a forgery with
the linear combinations of honest partial signatures. It consists of the following
steps:

1. The adversary starts qs-concurrent session for an arbitrary message(s) msg(i)

with an honest signer and obtain qs-pre-commitments T
(1)
11 , T

(2)
11 , . . . , T

(qs)
11 of

the honest signer for each session i ∈ [1, qs]. Now, the adversary needs to select
the corresponding witnesses for each session. For this selection, it continues
with the next step.

2. The adversary creates qs + 1 lists of size sL. It creates the first qs list Li as
follows: picks a random element r

(i)
21 ∈ Zp and lets T

(i)
21 = r

(i)
21 P as a possible

adversarial pre-commitments against the honest pre-commitment T
(i)
11 , com-

putes the corresponding α
(i)
21 and c(i) as in the second round of DWMS and

adds c(i)

α
(i)
11

to the list Li. The adversary repeats this process sL times until the

size of Li is sL. It creates the last list Lqs+1 differently. For each element of
Lqs+1, it picks randomly an element β′ ∈ Zp and a forgery message msg∗ and

adds −H(msg∗,X,β′ ∑qs
i=1 T

(i)
11)

β′ to Lqs+1. We note that selecting β′ is necessary
to populate Lqs+1 with random elements if the forgery msg∗ is fixed. The
adversary repeats this process sL times until the size of Lqs+1 is sL.

3. The adversary finds elements v(i) in each list Li such that v(1)+v(2)+. . . v(qs)+
v(qs+1) = 0 i.e.,

c(1)

α
(1)
11

+
c(2)

α
(2)
11

+ . . . +
c(qs)

α
(qs)
11

=
H(msg∗,X, β′ ∑qs

i=1 T
(i)
11)

β′ (4)

Then the adversary gets the corresponding adversarial pre-commitment T
(i)
21

that was selected in step 2 for each found element v(i) for i ∈ [1, qs]. In
the end, it responds with T

(1)
21 , T

(2)
21 , . . . , T

(qs)
21 respectively to each qs session

that is initiated in the beginning and receives partial signatures s
(1)
1 , . . . , s

(qs)
1

where s
(i)
1 = α

(i)
11 r

(i)
11 + x1a1c

(i) and c(i) = H(msg(i),X, α
(i)
11T

(i)
11 + α

(i)
21T

(i)
21).

Thus, all sessions end.
This step of the attack is equivalent to solving the k-sum problem [27] with
the lists L1, L2, . . . , Lqs+1 where k = qs + 1.

4. Now, the adversary outputs (c∗, s∗), as a forgery of the message msg∗ signed
by PK where

s∗ = β′(
s
(1)
1

α
(1)
11

+
s
(2)
1

α
(2)
11

+ . . . +
s
(qs)
1

α
(qs)
11

) + c∗a2x2

and c∗ = H(msg∗,X, T ∗) where T ∗ = β′ ∑qs

i=1 T
(i)
11 .. This is a valid forgery

because c∗ = H(msg∗,X, T ∗) and

Two-Round Trip Schnorr Multi-signatures via Delinearized Witnesses 169

s∗P − c∗X = (β′(
s
(1)
1

α
(1)
11

+
s
(2)
1

α
(2)
11

+ . . . +
s
(qs)
1

α
(qs)
11

) + c∗a2x2)P − (c∗a1X1 − c∗a2X2)

= β′(T (1)
11 + T

(2)
11 + . . . + T

(qs)
11) + (β′

qs∑

i=1

x1a1c(i)

α
(i)
11

)P − c∗a1X1 (5)

= T ∗ (6)

We obtain Eq. (6) from Eq. (5) by using Eq. (4) that the adversary obtained
in the third step.

The adversary’s attack described above is equivalent to finding a mes-
sage msg∗, a vector βββ = (β(1), . . . , β(qs)) and T

(1)
21 , T

(2)
21 , . . . , T

(qs)
21 such that

c∗ =
∑

β(i)c(i) = H(msg∗,X,
∑qs

i=1 β(i)α
(i)
11T

(i)
11). In this case, the forgery

σ∗ = (c∗, s∗) of msg∗ is a valid signature signed by X1 and X2 where
s∗ =

∑qs

i=1 β(i)s
(i)
1 + c∗a2x2. So, in the attack that we describe, βββ =

(β′

α
(1)
11

, β′

α
(2)
11

, . . . , β′

α
(qs)
11

).

Is a Similar Attack Possible When m > 1?: Now, we informally discuss whether
an adversary can do the similar attack when m > 1. We believe that these
discussions give a motivation for our new problem ‘the m-entwined sum problem’
which we introduce in the next section.

The question we should examine is after initiating qs parallel sessions with an
honest signer and receiving honest pre-commitments T

(i)
hT
(i)
hT
(i)
h = (T (i)

11 , T
(i)
12 , . . . , T

(i)
1m)

for each session i ∈ [1, qs] whether the adversary can find a message msg∗, a
vector βββ = (β(1), . . . , β(qs)) and (T (1)

21 , . . . , T
(1)
2m), . . . , (T (qs)

21 , . . . , T
(qs)
2m) such that

c∗ =
∑

β(i)c(i) = H(msg∗,X,

qs∑

i=1

β(i)(
m∑

j=1

α
(i)
1j T

(i)
1j)). (7)

In this case, the forgery σ∗ = (c∗, s∗) of msg∗ is a valid signature signed by X1

and X2 where s∗ =
∑qs

i=1 β(i)s
(i)
1 + c∗a2x2 and s

(i)
1 = (

∑m
i=1 α

(i)
1j r

(i)
1j) + c(i)a1x1.

In Definition 8, we formalize this attack as a new problem and prove its hard-
ness when m > 1 in the AGM. We show that an algebraic adversary (Definition
3) cannot find βββ ∈ Z

qs+1
p and T

(i)
AT
(i)
AT
(i)
A for i ∈ [1, qs] satisfying Eq. (7) except with

the negligible probability as long as the discrete logarithm problem is hard and
m > 1.

In the next section, we have a break on DWMS and introduce the simple
m-entwined sum and the m-entwined sum problem and show their hardness. We
later prove the security of DWMS when m > 1 under the assumption that the
qs-OMDL and the m-entwined sum problems are hard.

170 H. Kılınç Alper and J. Burdges

4 Entwined Sum Problem

In this section, we introduce our new k-sum [27] like problem ‘the entwined
sum problem’ and show its hardness in AGM. Before giving the problem, we
introduce a version of the discrete logarithm problem (the DLR problem) that
we use in the hardness proof of our entwined sum problem. DLR is equivalent
to the discrete logarithm problem. We employ DLR because it is a more flexible
variant of the discrete logarithm problem in which an adversary finding any new
relationship among group elements interests us.

Definition 6 (Discrete Logarithm Relation (DLR) problem). Given
prime p-order group G generated by P and random Xi ∈ G for i ∈ {1, 2, . . . , k}
with k ≥ 1 then find y0, y1, . . . , yk ∈ Zp such that y0P +

∑k
i=1 yiXi = 0 where

not all yi’s are 0.

Proposition 1. The discrete logarithm (DLOG) problem in the group structure
(G, P, p) is equivalent to the DLR problem in the same group structure.

Proof. It is clear that if DLOG problem is easy then DLR is easy. Now, we
show that if DLR is easy then DLOG is easy. Let X denote our DLOG chal-
lenge over prime p order group G generated by P . We compute the Pedersen
commitment Xi = aiX + biP for random ai, bi ∈ Zp for i ∈ {1, 2, . . . , k} and
give X1,X2, . . . , Xk, (G, P, p) to the DLR solver. In the end, the DLR solver
outputs a DLR solution y0, y1, y2, . . . , yk ∈ Zp such that y0P +

∑k
i=1 yiXi =

y0P +
∑k

i=1 yi(aiX + biP) = 0. It follows that X = −(y0+
∑

i yibi)∑
i yiai

P , as desired.
We remark that

∑
i yiai �= 0 except with probability 1

p because these Pedersen
commitments Xi’s are perfectly hiding.

We first introduce a simple version of our problem that we call ‘the simple
m-entwined sum problem’. Then, we extend the simple version and give the m-
entwined sum problem. The simple m-entwined sum problem has fewer variables.
When we introduce the m-entwined sum problem, we show its hardness based
on the results in the proof of the simple m-entwined sum problem so that we
avoid dealing with more variables that may complicate the proof.

The classical k-sum problem [27] works in the field Zp (See Definition 5).
Differently, an attacker in our problem works not only in the field Zp but also in
its associated group G. This difference makes our problem hard as long as the
DLR problem is hard in the AGM.

Definition 7 (Simple m-entwined sum Problem). The challenger gener-
ates a prime p order group G with the security parameter λ and selects a gener-
ator P ∈ G. As an input, the challenger supplies the group description (p,G, P)
and vectors T

(1)
hT
(1)
hT
(1)
h ,T

(2)
hT
(2)
hT
(2)
h , . . . ,T

(qs)
hT
(qs)
hT
(qs)
h ∈ G

m to the the adversary A where T
(i)
hT
(i)
hT
(i)
h =

(T (i)
11 , T

(i)
12 , . . . , T

(i)
1m). A has access to the random oracles H,H ′ : Ω × G → Zp

and H1 : Ω × G
m × N → Zp where Ω is an arbitrary set.

Two-Round Trip Schnorr Multi-signatures via Delinearized Witnesses 171

In the end, the adversary outputs the following vectors βββ = (β(0),
β(1), . . . , β(qs)) ∈ Z

qs+1
p , Tout = (μ(1), μ(2), . . . , μ(qs)) ∈ Ωqs and ω∗ ∈ Ω. If

the following holds, then the adversary wins the simple entwined sum game:

qs∑

u=1

β(u)H ′(μ(u), T
(u)
h) = H(ω∗, β(0)P +

qs∑

u=1

β(u)T
(u)
h) (8)

where

T
(u)
h =

m∑

j=1

α
(u)
1j T

(u)
1j and α

(u)
1j = H1(μ(u),T

(u)
hT
(u)
hT
(u)
h , j) (9)

We call that the simple m-entwined sum problem is hard in G, if for all PPT
adversaries who access the random oracles H, H ′ and H1 at most qh,qh′ ,qh1-
times respectively, the probability of solving the above problem is εeSum which is
negligible in terms of λ.

We named our problem entwined because the adversary should satisfy the
same linear relationship in Zp (see the left hand side of Eq. 8) and in G (see the
right hand side of Eq. 8). Both linear relationships in Zp and in G are constructed
with respect to the challenges and adversarial outputs. We note that if the
simple m-entwined sum was not a hard problem then an adversary could obtain
adversarial witnesses that satisfy the Eq. 7 and construct a forgery in DWMS.

We prove that the simple m-entwined sum problem when m > 1 is hard
under the assumption that DLR problem is hard. Our hardness proof is based
on the lemma (Lemma 1) that for any choice of W ∈ G as an input to the
right hand side random oracle input of Eq. 8, the adversary can obtain only one
possible solution (βββ, Tout) and vice versa. This fact makes the adversary’s job
hard to solve the problem.

Theorem 1. Assume that there exits a PPT, algebraic adversary A that solves
the simple m-entwined sum problem for m > 1 with probability εeSum in the
group structure (G, P, p) with qh ≥ qh′ and qh1 random oracle queries. Then,
there exists a PPT adversary B that solves the DLR problem in the group struc-
ture (G, P, p) with probability εdlr ≥ εeSum − qh

p − qh1√
ppm−2 .

Proof. We construct an adversary B which simulates the simple m-
entwined sum problem against an algebraic adversary A. We denote by
Pr[eSum → 1] = εeSum the probability that A solves the simple m-entwined
sum problem. The DLR challenger gives the group (G, P, p), the challenges
T

(1)
11 , . . . , T

(1)
1m , T

(2)
11 , . . . , T

(2)
1m , . . . , T

(qs)
11 , . . . , T

(qs)
1m ∈ G to B. B forwards them to

A as m-entwined sum challenges. B simulates the random oracles H,H ′ and H1

against A as a usual random oracle. We let

Tinp = (P, T
(1)
11 , . . . , T

(1)
1m , . . . , T

(qs)
11 , . . . , T

(qs)
1m)

which is the vector including the group elements given to A during the simulation
and we also let T

(i)
hT
(i)
hT
(i)
h = (T (i)

11 , T
(i)
12 , . . . , T

(i)
1m).

172 H. Kılınç Alper and J. Burdges

Whenever A queries the oracle H,H ′ or H1 with an input includ-
ing a group element Y ∈ G, it gives the representation of it zzz =
(z0, z

(1)
11 , z

(1)
12 , . . . , z

(1)
1m, . . . , z

(qs)
11 , z

(qs)
12 , . . . , z

(qs)
1m) ∈ Z

mqs+1
p such that zzz · Tinp = Y

because A is algebraic (Definition 3) and Tinp are the group elements that A
has seen. If A gives two different representation of an element Y ∈ G which are
zzz ∈ Z

mqs+1
p and ẑ̂ẑz ∈ Z

mqs+1
p such that zzz �= ẑ̂ẑz, B gives the vector vvv = zzz − ẑ̂ẑz to the

DLR challenger as a solution and ends the simulation against A. We remark that
vvv ·Tinp = 0 so it is a valid solution to the DLR problem. Otherwise, in the end, A
outputs βββ = (β(0), β(1), β(2), . . . , β(qs)), ω∗ and Tout = (μ(1), μ(2), . . . , μ(qs)) as a
solution of the simple entwined sum problem which satisfies the below equation
and the simulation against A ends.

qs∑

u=1

β(u)H ′(μ(u), T
(u)
h) = H(ω∗, β(0)P +

(qs)∑

u=1

β(u)T
(u)
h) (10)

Then, B computes W = β(0)P +
∑(qs)

u=1 β(u)T
(u)
h . By using the fact that

T
(u)
h =

∑m
j=1 α

(u)
1j T

(u)
1j (See Eq. 9), B reorganizes W and obtains W =

β(0)P +
∑qs

u=1

∑m
j=1 β(u)α

(u)
1j T

(u)
1j . Thus, B obtains a representation bbb =

(β(0), b
(1)
11 , . . . , b

(1)
1m, . . . , b

(qs)
11 , . . . , b

(qs)
1m) of W in terms of Tinp where b

(u)
1j =

β(u)α
(u)
1j i.e. W = bbb · Tinp. Then, B checks the oracle queries of H with (.,W).

We remark that there should be such query, otherwise A cannot check the cor-
rectness of its solution. When A queries (.,W) to H, it gives a representation
aaa = (a, a

(1)
11 , . . . , a

(1)
1m, . . . , a

(qs)
11 , . . . , a

(qs)
1m) of W such that W = aaa · Tinp. If bbb �= aaa,

then B finds a solution of the DLR problem which is bbb −aaa and wins. Otherwise,
B aborts.

So, the success probability of B is

εdlr = Pr[A wins] − Pr[A wins|aaa = bbb]

Next, we find Pr[A wins|aaa = bbb]. We distinguish the session indexes i where
β(i) �= 0. For this, we define an index set I = {i : β(i) �= 0, i ∈ [1, qs]} which
includes the session indexes of non-zero elements of the vector βββ. We note that
μ(j) ∈ Tout where j /∈ I does not play any role in the correctness of the m-
entwined sum solution because β(j) = 0. Therefore, we consider Tout = {μ(j)}i∈I
in the rest of the proof.

We call that μ̂ ∈ Ω is an ith potential session where i ∈ I, for all 1 ≤ j ≤ m

if (μ̂,T
(i)
hT
(i)
hT
(i)
h , j) is queried to the random oracle H1. In other words, μ̂ ∈ Ω is the

ith potential session, if A obtained all α̂
(i)
1j = H1(μ̂,T

(i)
hT
(i)
hT
(i)
h , j) values to be able

to compute T̂
(i)
h =

∑m
j=1 α̂

(i)
1j T

(i)
1j . We denote by O

(i)
H1

the set of ith potential
sessions.

We define a function φ : Z
qs+1
p × (×i∈IO

(i)
H1

) → Z
qs+1
p . Given input β̂̂β̂β =

(β̂(0), β̂(1), . . . , β̂(qs)) ∈ Z
qs+1
p and ˆTout = {μ̂(i)}i∈I ∈ (×i∈IO

(i)
H1

), we define the

Two-Round Trip Schnorr Multi-signatures via Delinearized Witnesses 173

function φ as φ(β̂̂β̂β, ˆTout) = yyy where yyy = (y(0), y
(1)
11 , . . . , y

(1)
1m, . . . , y

(qs)
11 , . . . , y

(qs)
1m)

φ(β̂̂β̂β, ˆTout) = yyy =

⎧
⎪⎪⎨

⎪⎪⎩

y(0) = β(0)

y
(i)
1j = β̂(i)α̂

(i)
1j if i ∈ I

y
(i)
1j = 0 otherwise

(11)

We remark that (βββ, Tout) provided by A as a solution to the simple m-entwined
sum problem satisfies φ(βββ, Tout) = bbb.

Lemma 1. φ is an injective function for m > 1 except with the probability less
than qh1√

ppm−2 .

Proof. Let’s assume that φ is not injective. Then, there exists (β̃̃β̃β, ˜Tout) �= (β̂̂β̂β, ˆTout)
such that φ(β̃̃β̃β, ˜Tout) = φ(β̂̂β̂β, ˆTout) = yyy ∈ Z

qs+1
p . In this case, β̃(i)α̃

(i)
1j = y

(i)
1j and

β̂(i)α̂
(i)
1j = y

(i)
1j for all i ∈ I and 1 ≤ j ≤ m which implies that

α̃
(i)
11

α̂
(i)
11

= . . . =
α̃
(i)
1m

α̂
(i)
1m

(12)

So, if φ is not injective, there should exist two different potential sessions μ̂(i)

and μ̃(i) in a potential session set O
(i)
H1

satisfies Eq. (12). The probability that it

happens is for m > 1, given that |O(i)
H1

| ≤ qh1

Pr

[
α
(i)
11

α̂
(1)
11

= . . . =
α
(i)
1m

α̂
(1)
1m

]

≤ qh1√
ppm−2

	

As a result of the lemma, for each representation ccc ∈ Z
mqs+1
p of W such

that W = ccc · Tinp, A can have only one possible (β̃ββ, ˜Tout) except with the prob-
ability qh1√

ppm−2 that satisfies W = β̃(0)P +
∑(qs)

u=1 β̃(u)
∑m

j=1 α̃
(u)
1j T

(u)
1j because

φ(β̃ββ, ˜Tout) = ccc is injective. So, when A queries (.,W) to the oracle H and gives
its representation aaa, it can have only one appropriate (βββ, Tout). Therefore, if A
finds a solution with respect to the representation aaa, in other words, if aaa = bbb,
the probability that A satisfies Eq. (10) with only one possible βββ, Tout for W ∈ G

is qh

p . The reason of this is that the left hand side of the Eq. 8 is fixed when A
gives the representation aaa because φ is injective. Since the probability that the
fixed left hand side equals to H(ω̄,W) for ω̄ ∈ Ω is 1

p , the adversary’s success
probability to win when aaa = bbb is qh

p .
As a result of this, εdlr ≥ εeSum − qh

p − qh1√
ppm−2 which implies that εeSum is

negligible in terms of λ.
	

We next give the m-entwined sum problem which is a version of the simple
m-entwined sum problem with one more variable.

174 H. Kılınç Alper and J. Burdges

Definition 8 (m-entwined sum problem). It is the same as the simple m-
entwined sum problem in Definition 7 except that the challenger gives addition-
ally Y ∈ G

n to the adversary and the adversary additionally outputs v ∈ Zp.
Adversary wins the m-entwined sum game if

qs∑

u=1

β(u)H ′(μ(u), T (u)) = H(ω∗, vY + β(0)P +
(qs)∑

u=1

β(u)T
(i)
h) (13)

We call that the m-entwined sum problem is hard in G, if for all PPT adver-
saries who access the random oracles H,H ′ and H1 at most qh, qh1′qh1-times
respectively, the probability of solving above problem is εeSum which is negligible
in terms of λ.

Theorem 2. If the simple m-entwined sum problem is hard then the m-entwined
sum problem is hard.

Proof. We construct an adversary B that breaks the simple m-entwined sum
problem given that there is another adversary A that breaks the m-entwined
sum problem. The simulation against A is trivial. B receives the simple m-
entwined sum challenges (p,G, P) and vectors T

(1)
hT
(1)
hT
(1)
h ,T

(2)
hT
(2)
hT
(2)
h , . . . ,T

(qs)
hT
(qs)
hT
(qs)
h ∈ G

m. Then,
B picks randomly y ∈ Zp and sends the simple m-entwined sum challenges and
additionally Y = yP to A. Whenever A queries any random oracle with an input,
B queries the same to the corresponding simple m-entwined sum oracle and
forwards the answer to A. In the end, A outputs a solution βββ, Tout and ω∗, v. B
lets β = β(0)+vy and sends β̄ββ = (β, β(1), . . . , β(qs)) and the same Tout, ω

∗ that A
outputted as a solution of the m-entwined sum problem. The simulation against
A is perfect. Therefore, the probability that B wins the simple m-entwined sum
problem is the same as the probability that A wins the m-entwined sum problem.
Since we know that B’s success probability is negligible, the success probability
of A is negligible in the m-entwined sum problem. 	

5 Security Proof of DWMS

In the next theorem, we prove that DWMS is a secure multi-signature scheme
in the ROM and the AGM.

Theorem 3. Suppose there exists a PPT algebraic adversary A in the AGM
against DWMS with parameters (G, P, p) and m > 1 who accesses random ora-
cles H,H1,H2 at most qh, qh1 , qh2 times respectively and breaks the security of
DWMS in the plain public-key model (Definition 2) with probability ε. Then,
under the 2-entwined sum assumption, there exists a PPT reduction R that solves
the qs-OMDL problem with probability εomdl ≥ ε − 2qs−2qh1−qh2+qsqh1

p − qh2√
p −

qs

p2 − εeSum where εeSum ≤ εdlr + qh

p + qh1√
p .

Before giving the proof, we give the main ideas about how to construct a
reduction that solves the OMDL problem given that an adversary outputs a

Two-Round Trip Schnorr Multi-signatures via Delinearized Witnesses 175

forgery in DWMS. The qs-OMDL challenger gives qs + 1 challenges. The reduc-
tion selects the last challenge as its public key. In each signing query, the reduc-
tion sends a random linear combination of the first qs OMDL challenges as pre-
commitments. Since the reduction does not know its secret key and the discrete
logarithm of pre-commitments, it obtains the partial signature while simulat-
ing round 2 of DWMS from the DLOracle. Thus, the reduction obtains a linear
equation with qs + 1 unknowns (discrete logarithm of the OMDL challenges)
in each signing session simulation. After at most qs signing oracle calls, A out-
puts a forgery. Since we are in the AGM, A gives the representation of each
group element during the simulation. From these representations, the reduction
obtains qs +1th linear equation with the qs +1 unknowns which are the discrete
logarithm of the OMDL challenges. If the last linear equation obtained from the
forgery is not linearly dependent on other equations obtained from DLOracle,
then the reduction solves the linear system of equations and obtains the discrete
logarithm of the OMDL challenges. If it is linearly dependent, it means that
the adversary obtained the forgery with a linear combination of the partial sig-
natures generated in each signing session so the forgery does not give any new
information and OMDL challenges cannot be found. During the proof, we see
that if it is the case, the adversary actually solves the 2-entwined sum problem
which can happen with negligible probability. Therefore, the reduction obtains
the OMDL solution by solving qs + 1 linear equations as long as the 2-entwined
sum problem is hard.

Proof. We will show that given a forger A on the multi-signature scheme
DWMS, there exists a reduction R that can solve the qs-OMDL problem
under the entwined sum assumption. We will use the following three nota-
tions for the adversary in the proof: A is an abbreviated notation that we
will use often in the text description. A more formal and expanded notation is
AH,H1,H2,Σ1,Σ2(X1, par; ρ), which accesses various oracles (all explained later)
H,H1,H2, Σ1 and Σ2 that are simulated by the reduction R and receives the
two inputs, namely X1 - the honest signer’s public key, par- the parameters of
the multi-signature scheme and ρ - any random coins, provided by the reduction.

The formal security definition for multi-signatures is defined in Definition 2
and we denote it as Game0. The challenger (simulated by the reduction R)
publishes the public parameters using the ParamGen algorithm and shares the
honest signer’s public key generated using the key generation algorithm KeyGen
with the adversary. The reduction also provides any random coins ρ used by the
adversary. Thereafter, the reduction simulates the random oracles H,H1,H2 for
the adversary. The reduction also simulates the honest signer for the adversary
using two oracles Σ1 and Σ2 that execute the two rounds of the Sign algorithm.
The adversary can make up to qs queries to Oracles Σ1 and Σ2. The adversary’s
challenge is to output a tuple (PK∗,msg∗, σ∗), such that the honest signer’s
public key X1 is part of the multiset PK∗, and the message msg∗ was never
queried to Oracle Σ1 and the signature σ∗ verifies for (PK∗,msg∗) while making
fewer than qh, qh1 , qh2 queries to the random oracles H,H1,H2, respectively and
qs queries to oracles Σ1 and Σ2.

176 H. Kılınç Alper and J. Burdges

The oracles that A can access are in more detail as follows in Game 0:

Oracle H,H1,H2: The reduction simulates a perfect random oracle by respond-
ing with a random group element from Zp for each previously unseen query.

Oracle Σ1: The reduction maintains a counter � to track each query made
by the adversary. We use the notation superscript (�) to distinguish the values
specific to �th signature query. The reduction simulates a perfect response to
a signature initiation query msg from the adversary by generating randomly
chosen witnesses r

(�)
11 , r

(�)
12 . It stores all responses in a list LΣ1 . In more detail, Σ1

in Game 0 is as follows:

Σ1(msg(�)) in Game 0
1: � := � + 1
2: r

(�)
11 , r

(�)
12 ←R Zp, T

(�)
11 = r

(�)
11 P, T

(�)
12 = r

(�)
12 P

3: LΣ1 := LΣ1 ∪ {msg, T
(�)
11 , T

(�)
12 , r

(�)
11 , r

(�)
12 }

4: return (msg(�), T
(�)
11 , T

(�)
12)

Oracle Σ2: The reduction simulates a perfect response to the �th signature
query from the adversary by retrieving witnesses r

(�)
11 and r

(�)
12 from List LΣ1 and

using the pre-commitments of other session participants to derive a signature
contribution. It stores all necessary elements related to the session in List LΣ2 .
In more detail, Σ2 in Game 0 is as described below:

Σ2(PK(�),msg(�), (T(�)
i1 ,T(�)

i2)i∈[1,n]) in Game 0

if (msg, T
(�)
11 , T

(�)
12 , ., .) /∈ LΣ1 or |PK(�)| �= n − 1 then return 0

retrieve (r
(�)
11 , r

(�)
12) from LΣ1

SID = (PK(�), msg(�), {T
(�)
11 , T

(�)
12 }, . . . , {T

(�)
n1 , T

(�)
n2 })

α
(�)
i1 ← H1(SID, i, 1), α

(�)
i2 ← H1(SID, i, 2), ∀i ∈ [1, n]

T
(�)
h = α

(�)
11 T

(�)
11 + α

(�)
12 T

(�)
12

T
(�)
i = (α

(�)
i1 T

(�)
i1 + α

(�)
i2 T

(�)
i2), ∀i ∈ [2, n]

T (�) = T
(�)
h +

∑n
i=2 T

(�)
i

PK(�) := PK(�) ∪ {X1}
X(�) ← KeyAgg(par, PK)

a
(�)
1 = H2(PK(�), X1)

c(�) ← H(msg(�), X(�), T (�))

s
(�)
1 = α

(�)
11 r

(�)
11 + α

(�)
12 r

(�)
12 + c(�)a

(�)
1 x1

LΣ2 := LΣ2 ∪ {�, SID, (T (�), s
(�)
1 , c(�)), r

(�)
11 , r

(�)
12 , α

(�)
11 , α

(�)
12 }

return s
(�)
1

Remember that A is an algebraic adversary (See Definition 3). Therefore,
whenever it queries to oracles with a group element Z ∈ G, it also gives the

Two-Round Trip Schnorr Multi-signatures via Delinearized Witnesses 177

representation of them zzz ∈ Z
|VVV |
p such that Z = zzz.VVV in terms of the group

elements that it has seen so far which we denote in vector VVV . For the sake of the
presentation, we do not specify the representation vector of each group element
in the oracle descriptions.

In the end, we define the Game 0 which is equivalent to the game in Defi-
nition 2 as follows:

Game 0
par = (G, P, p) ← ParamGen(λ)
(x1, X1) ← KeyGen(par)
� := 0
(PK∗, msg∗, σ∗ = (s∗, c∗)) ← AH,H1,H2,Σ1,Σ2 (X1, par; ρ)
return (X1 ∈ PK∗ ∧ msg∗ /∈ LΣ2 ∧ Verify(par, PK∗, msg∗, σ∗))

The adversary is said to succeed in Game 0 if Game0 returns 1 and thus
the success probability of the adversary, ε = Pr[Game0 → 1].

In the following, we will show how the reduction R solves the qs-OMDL
problem given a multi-signature adversary A against the DWMS scheme. To
simplify the presentation of the proof, we define a sequence of security games:
Game 1, . . . , Game 9, each game differing slightly from the previous one. We
relate the probability of the output being 1 in any two consecutive games, and
finally show that probability of solving the qs-OMDL problem is close to the
probability of the output being 1 in Game 9.

In Game 1 , the reduction R uses its OMDL challenge {Y1, . . . , Yqs+1} to derive
the honest signer’s public key as well as the pre-commitments in the simulation
of Oracle Σ1. R sets its public key X1 as Yqs+1. The details of Game 1 is given
below. The gray color lines are the same as Game 0.

Game 1
(Y1, Y2, . . . , Yqs , Yqs+1) ← OMDL-Game
X1 := Yqs+1
� := 0
(PK∗, msg∗, σ∗ = (s∗, c∗)) ← AH,H1,H2,Σ1,Σ2 (X1, par; ρ)
return(pk ∈ PK∗ ∧ msg∗ /∈ LΣ2 ∧ Verify(PK∗, msg∗, σ∗))

We also change the way of generating pre-commitments in Σ1 Game 1.
Instead of generating fresh witnesses r11, r12 to generate the honest signer’s pre-
commitments in Oracle Σ1, R uses the first qs OMDL challenges as follows:
T11 =

∑qs

j=1 η1jYj , T12 =
∑qs

j=1 η2jYj for randomly chosen {η1j , η2j}j∈[1,qs] from
Zp. In more detail, the oracle Σ1 in Game 1 is modified as below:

R also modifies the oracle Σ2 in Game 1 because the discrete logarithms
of the OMDL challenges are not known to the reduction R. So, it uses the
available DL oracle from the OMDL problem, to which it can make up to qs

queries, to simulate Oracle Σ2. The reduction queries to the DL oracle on T
(�)
h +

c(�)a
(�)
1 Yqs+1 = α

(�)
11 (

∑qs

j=1 η
(�)
1j Yj)+α

(�)
12 (

∑qs

j=1 η
(�)
2j Yj)+ c(�)a

(�)
1 Yqs+1 to generate

178 H. Kılınç Alper and J. Burdges

Σ1(msg(�)) in Game 1
1: � := � + 1
2: η

(�)
ij ←R Zp, ∀i ∈ [1, 2], ∀j ∈ [1, qs]

3: T
(�)
11 =

∑qs
j=1 η

(�)
1j Yj , T

(�)
12 =

∑qs
j=1 η

(�)
2j Yj

4: LΣ1 := LΣ1 ∪ {msg(�), T
(�)
11 , T

(�)
12 , {η

(�)
1j }j∈[1,qs], {η

(�)
2j }j∈[1,qs]}

5: return (msg(�), T
(�)
11 , T

(�)
12)

Σ2(PK,msg, (T(�)
i1 ,T(�)

i2)i∈[1,n]) in Game 1

if (msg, T
(�)
11 , T

(�)
12) /∈ LΣ1 or |PK(�)| �= n − 1 then return 0

retrieve ({η
(�)
1j }j∈[1,qs], {η

(�)
2j }j∈[1,qs]) from LΣ1

SID(�) = (PK(�), msg(�), {T
(�)
11 , T

(�)
12 }, . . . , {T

(�)
n1 , T

(�)
n2 })

α
(�)
i1 ← H1(SID, i, 1), α

(�)
i2 ← H1(SID, i, 2), ∀i ∈ [1, n]

T
(�)
h = α

(�)
11 T

(�)
11 + α

(�)
12 T

(�)
12

T
(�)
i = (α

(�)
i1 T

(�)
i1 + α

(�)
i2 T

(�)
i2), ∀i ∈ [2, n]

T (�) = T
(�)
h +

∑n
i=2 T

(�)
i

PK(�) := PK(�) ∪ {X1}
X(�) ← KeyGen(par, PK(�))

a
(�)
1 = H2(PK(�), X1)

c(�) ← H(msg(�), X(�), T (�))

s
(�)
1 ← DLOracle(T

(�)
h + c(�)a

(�)
1 Yqs+1)

LΣ2 := LΣ2 ∪ {�, SID(�), (T (�), s
(�)
1 , c(�)), {η

(�)
1j }j∈[1,qs], {η

(�)
2j }j∈[1,qs], α

(�)
11 , α

(�)
12 }

return s
(�)
1

the honest signer’s signature towards the multi-signature. The details of Σ2 is
below. The different lines from the Σ2 of the previous game are in color black.

Since all ηij ’s are uniformly distributed in Zp and Yi’s are randomly chosen
elements in G (received as part of the OMDL challenge), both T11 =

∑qs

j=1 β1jYj

and T12 =
∑qs

j=1 β2jYj} are uniformly distributed over G as in Game 1. So,
Game 0 and Game 1 are identical. Therefore Pr[Game0] = Pr[Game1].

Remember that, given the signing counter equals to �, when A out-
puts a group element B ∈ G with its representation vector bbb =
(b0, b

(1)
11 , b

(1)
12 , . . . , b

(�)
12 , b

(�)
12 , bqs+1) ∈ Z

2�+2
p in terms of the group elements VVV =

(P, T
(1)
11 , T

(1)
12 , . . . , T

(�)
11 , T

(�)
12 , Yqs+1) that it has seen so far. In the rest of the

proof, we consider another representation of Z ∈ G in terms of vector YYY =
(P, Y1, Y2, . . . , Yqs+1) whenever A gives a representation of Z. Since all group
elements that A sees are the linear combinations of Y1, Y2, . . . , Yqs

, the another
representation of Z in terms YYY is as follows:

Two-Round Trip Schnorr Multi-signatures via Delinearized Witnesses 179

B = b0P + b
(1)
11 T

(1)
11 + b

(1)
12 T

(1)
12 + . . . + b

(�)
11 T

(�)
11 + b

(�)
12 T

(�)
12 + bqs+1Yqs+1

= b0P + b
(1)
11

qs∑

j=1

η
(1)
1j Yj + b

(1)
12

qs∑

j=1

η
(1)
2j Yj + . . . + b

(�)
11

qs∑

j=1

η
(�)
1j Yj + b

(�)
12

qs∑

j=1

η
(�)
2j Yj + bqs+1Yqs+1

= b0P +

qs∑

j=1

(
�∑

i=1

b
(i)
11 η

(i)
1j + b

(i)
12 η

(i)
2j)

︸ ︷︷ ︸
bj

Yj + bqs+1Yqs+1 = b0P +

qs+1∑

i=1

bjYj (14)

In Game 2 , R works as in the previous game except that it outputs abort
if H1 ever outputs 0. Since H1 is a random oracle, the probability of aborting
in Game 2 is qh1

p . From the difference lemma, Pr[Output(Game2) = 1] ≥
Pr[Output(Game1) = 1] − qh1

p .

In Game 3 , R works as in the previous game except that it outputs
abort if α

(i)
11T

(i)
11 + α

(i)
11T

(i)
11 = 0 for a session i. Remark that α

(i)
11T

(i)
11 +

α
(i)
12T

(i)
12 = (α(i)

11 (
∑qs

j=1 η
(i)
1j yj) + α

(i)
12 (

∑qs

j=1 η
(i)
2j yj))P = τ (i)P . Therefore, if

α
(i)
11T

(i)
11 + α

(i)
12T

(i)
12 = 0 for a session i, it means that either T

(i)
11 = T

(i)
12 = 0 or

α
(i)
11 (

∑qs

j=1 η
(i)
1j yj) = −α

(i)
12 (

∑qs

j=1 η
(i)
2j yj) given that T

(i)
11 �= 0, T

(i)
12 �= 0. Therefore,

the probability of this event for a session i is (1− (1− 1
p2)qs)+(1− (1− qh1

p)qs) ≤
(1 − (1 − qs

p2)) + (1 − (1 − qh1qs

p)) = qs

p2 + qh1qs

p
2. From the difference lemma,

Pr[Output(Game3) = 1] ≥ Pr[Output(Game2) = 1] − qsqh1
p − qs

p2 .

In Game 4 , R works as in the previous game except that it also gen-
erates a matrix M of size � ≤ qs after receiving the forgery and it
aborts the game if the rank of M is not �. In more details, R obtains
{η

(i)
1j }j∈[1,qs], {η

(i)
2j }j∈[1,qs], α

(i)
11 , α

(i)
12 , a

(i)
1 , c(i) from LΣ2 [i] for all i ∈ [1, �]. Then,

R constructs a matrix M of size (� × qs + 1) as below:

M =

⎡

⎢
⎢
⎢
⎣

α
(1)
11 η

(1)
11 + α

(1)
12 η

(1)
21 . . . α

(1)
11 η

(1)
1qs

+ α
(1)
12 η

(1)
2qs

a
(1)
1 c(1)

α
(2)
11 η

(2)
11 + α

(2)
12 η

(2)
21 . . . α

(2)
11 η

(2)
1qs

+ α
(2)
12 η

(2)
2qs

a
(2)
1 c(2)

: . . . : :

α
(�)
11 η

(�)
11 + α

(�)
12 η

(�)
21 . . . α

(qs)
11 η

(�)
1qs

+ α
(�)
12 η

(�)
2qs

a
(�)
1 c(�)

⎤

⎥
⎥
⎥
⎦

After the construction of M, if the rank of M is not �, R aborts. Clearly, the
only difference of Game 4 from Game 3 is aborting when the rank of M is not
�. Therefore, we analyse the probability of abort in Game 4.

We assume next that the qs-OMDL challenger never selects yi = 0. If there
was yi = 0, R wins the qs-OMDL game without the forgery by A i.e., R knows
the discrete logarithm of Yi = 0 and receives discrete logarithm of rest of the
challenges from the DL- oracle.

2 Remark that α
(i)
11 = H1(SID

(i), 1, 1), α
(i)
12 = H1(SID

(i), 1, 2). So, the probability of

having α
(i)
11 (

∑qs
j=1 η

(i)
1j yj) = −α

(i)
12 (

∑qs
j=1 η

(i)
2j yj) given that T

(i)
11 �= 0, T

(i)
11 �= 0 is not a

collision probability.

180 H. Kılınç Alper and J. Burdges

We first consider the case where � < qs. We remark that given that y1 �= 0,
T

(i)
11 and T

(i)
12 are uniformly random even if we fix η

(i)
1j , η

(i)
2j for j > 1 (i.e., fix all

η
(i)
1j , η

(i)
2j ’s except η

(i)
11 , η

(i)
21) and all y1, y2, . . . , y�. values. Therefore, conditioned on

T
(i)
11 , T

(i)
12 and y1 �= 0, all η

(i)
1j , η

(i)
2j -values for j > 1 are independent and uniformly

distributed i.e.,

Pr
[
η
(i)
1j , η

(i)
2j , ∀j > 1|T (i)

11 , T
(i)
12

]
=

Pr
[
T

(i)
11 , T

(i)
12 |η(i)

1j , η
(i)
2j , ∀j > 1

]
Pr

[
η
(i)
1j , η

(i)
2j , ∀j > 1

]

Pr
[
T

(i)
11 , T

(i)
12

]

=

1
p2

1
p2qs−2

1
p2

=
1

p2qs−2

We remark that we can say only η
(i)
1j , η

(i)
2j values for j > 1 are independent and

uniformly distributed because Pr
[
η
(i)
1j , η

(i)
2j ,∀j ≥ 1|T (i)

11 , T
(i)
12

]
=

1
pqs
1
p

= 1
p2qs−2 �=

1
p2qs . Therefore, all column vectors from 2nd column vector to the qth

s column
vector are uniformly random and independent random variables given that α-
values are not 0 (See Game 2). In other words, we have a random submatrix
M̄ of size (� × qs − 1) which is M without the first and the last column. It is
a known fact that random M̄’s rank is � except with the probability �

p where
� ≤ qs − 1 (See Appendix A). Therefore, the rank of M is � ≤ qs − 1 except
with the probability �

p because the rank of a matrix is defined as the maximum
number of linearly independent columns (or rows) and the columns of M̄ are
also M’s columns. Remember that the rank of M is at most �. In other words,
Pr[Rank(M) < �|� < qs] ≤ �

p ≤ qs−1
p .

Now, we assume that � = qs. In this case, M̄ without the first and last column
of M consists of independent and random column vectors because of the same
reasoning as above. Let’s define a vector τττ = (τ (1), τ (2), . . . , τ (qs)) ∈ Z

qs
p where

τ (i)P = α
(i)
11T

(i)
11 +α

(i)
11T

(i)
11 = (α(i)

11 (
∑qs

j=1 η
(i)
1j yj)+α

(i)
12 (

∑qs

j=1 η
(i)
2j yj))P . Remember

that τττ is a non-zero vector i.e., τττ �= 000 because of Game 3.
We can write the first column of M as a linear combination of τττ and the

column vectors of M̄ i.e.,

α
(i)
11 η

(i)
11 + α

(i)
12 η

(i)
21 =

−1
y1

τ (i) −
qs∑

j=2

yj

y1
(α(i)

11 η
(i)
1j + α

(i)
12 η

(i)
2j) (15)

since 1
y1

�= 0 and y1 �= 0. Next, we prove a lemma that implies that if τττ and the
column vectors of M̄ are linearly independent, then the first column vector and
the column vectors of M̄ (i.e., the first qs columns of M) are linearly independent.

Lemma 2. Assume that there exist vectors v1v1v1, v2v2v2, v3v3v3, . . . , vqs
vqsvqs

in Z
qs
p and another

vector v′
1v
′
1v
′
1 ∈ Z

qs
p such that v′

1v
′
1v
′
1 =

∑qs

j=1 λjvjvjvj where λj ∈ Zp \ {0}. If
v1v1v1, v2v2v2, v3v3v3, . . . , vqs

vqsvqs
are linearly independent, then v′

1v
′
1v
′
1, v2v2v2, v3v3v3, . . . , vqs

vqsvqs
are linearly

independent,

Two-Round Trip Schnorr Multi-signatures via Delinearized Witnesses 181

Proof. Assume that it is not the case to prove by contradiction i.e.,
v′
1v
′
1v
′
1, v2v2v2, v3v3v3, . . . , vqs

vqsvqs
are not linearly independent while v1v1v1, v2v2v2, v3v3v3, . . . , vqs

vqsvqs
are linearly

independent. In this case, there exists a non-zero vector θθθ = (θ2, θ3, . . . , θqs
) ∈

Z
qs−1
p such that v′

1v
′
1v
′
1 =

∑qs

i=2 θivjvjvj . We also know that v′
1v
′
1v
′
1 =

∑qs

j=1 λjvjvjvj . These two

imply that v1v1v1 =
∑qs

j=2
θj−λj

λ1
vjvjvj which is a contradiction with the linear indepen-

dence of v1v1v1, v2v2v2, v3v3v3, . . . , vqs
vqsvqs

. Remark that not all θj−λj

λ1
= 0 because v1v1v1 �= 000 due to

the fact that v1v1v1, v2v2v2, v3v3v3, . . . , vqs
vqsvqs

are linearly independent. 	

Lemma 2 shows that if we show τττ and the column vectors of M̄ are linearly
independent, then the first column vector and the column vectors of M̄ are linearly
independent because of Eq. (15). Next, we show another lemma to relate the
linear independence of τττ and the column vectors of M̄.

Lemma 3. Given a fixed vector τττ ∈ Z
qs
p where τττ �= 000 and uniformly and inde-

pendently chosen vectors vvv2, vvv3, . . . , vvvqs
in Z

qs
p , τττ and vvv2, vvv3, . . . , vvvqs

are linearly
independent except with the probability qs

p .

Proof. τττ and vvv2, vvv3, . . . , vvvqs
are linearly dependent if either

1. vvv2, vvv3, . . . , vvvqs
are linearly dependent or

2. τττ and vvv2, vvv3, . . . , vvvqs
are linearly dependent given that vvv2, vvv3, . . . , vvvqs

are lin-
early independent.

The probability of condition 1 is 1 − qs−1
p since vvv2, vvv3, . . . , vvvqs

are randomly
and independently selected (See Appendix A). Therefore, they span a random
vector space V with the size pqs−1 except with the probability qs−1

p .
If condition 2 does not hold, it means that τττ is not in the vector space V.

Since V is a random vector space of size pqs−1, the probability that a fixed τττ is
not in it is pqs −pqs−1

pqs = 1 − 1
p . So, condition 2 holds with the probability 1

p .
Hence, the probability that they are linearly dependent is qs−1

p + 1
p = qs

p . 	

When A gives a forgery, we set the first qs columns of M and we fix τττ . Thanks
to Lemma 3, fixed τττ and independent and random column vectors of M̄ are lin-
early independent except with the probability qs

p . By applying Lemma 2 thanks
to the Eq. (15), we conclude that the first qs columns of M (equivalently the
first column of M and the column vectors of M̄) are linearly independent. It
means that the rank of M is qs except with the probability qs

p . In other words,
Pr[Rank(M) < �|� = qs] ≤ qs

p .
As a result, the rank of M is � except with the probability

Pr[Rank(M) < �] = Pr[Rank(M) < �|� < qs] + Pr[Rank(M) < �|� = qs]

≤ qs − 1
p

+
qs

p

By the difference lemma, Pr[Output(Game4) = 1] ≥ Pr[Output(Game3) =
1] − 2qs−1

p .

182 H. Kılınç Alper and J. Burdges

In Game 5 , the reduction simulates all the oracles as in the previous game
except H2. R defines a map mapkey from Zp → Z

∗
p. When (PK,Xi) ∈ Z

n′
p × Zp

is queried to H2 and Xi ∈ PK, R finds the aggregated public key which is X ←
KeyAgg(par,PK) i.e., X =

∑
Xi∈PK H2(PK,Xi)Xi. Then, it checks whether X

is mapped to a set in mapkey. If it is not mapped, it lets mapkey(X) = PK.
Otherwise, it checks whether mapkey(X) = PK. If mapkey(X) �= PK, R aborts.
When A first time queries with a list of PK to H2, it actually commits PK to
X without knowing it. Therefore, the probability that an aggregated public key
maps to two list of public key sets PK,PK′ is b

p ≤ qh2
p where b is the number of

elements that is mapped. By the difference lemma, Pr[Output(Game5) = 1] ≥
Pr[Output(Game4) = 1] − qh2

p .

In Game 6 , the reduction simulates all the oracles as in the previous game
except H1. R defines a map mapcommit from Zp → {0, 1}∗. In this game, we call
(SID, i, j) is a legit input for H1 if SID = (PK,msg, {T11, T12}, . . . , {Tn1, Tn2}) ∈
G

n × {0, 1}∗ × G
2n, (msg, T11, T12) ∈ listΣ1 , 1 ≤ i ≤ n and 1 ≤ j ≤ 2. In

short, (SID, i, j) is legit if SID is a valid session id for the second round of the
signing the message msg by Σ2. When legit (SID, i, j) is queried to H1, R finds
the commitment T =

∑n
i=1 αi1Ti1 + αi2Ti2 where αij = H1(SID, i, j). Then, it

checks whether T is mapped to a value in mapcommit. If it is not mapped, it
lets mapcommit(T) = SID. Otherwise, it checks whether mapcommit(T) = SID. If
mapcommit(T) �= SID, R aborts. Similarly to Game 5, when A first time queries
with legit SID to H1, it actually commits SID to the value T without knowing it.
Therefore, the probability that T maps to two session ids SID,SID′ is b

p ≤ qh1
p

where b is the number of elements that is mapped. By the difference lemma,
Pr[Output(Game6) = 1] ≥ Pr[Output(Game5) = 1] − qh1

p

In Game 7 , the reduction simulates all the oracles as in the previous game
except H2. When the adversary queries with PK = {X1,X2, . . . , Xn} and Xj ∈
G with the representation vectors of each group element in PK, R obtains the
representation xixixi ∈ Z

|YYY |
p of the each group element Xi ∈ PK in terms of YYY . If

Yqs+1,Xj ∈ PK (the valid key aggregation input), the reduction simulates H2 as
follows: We assume that X1 = Yqs+1 without loss of generality and there exists
a key database DBkey which stores the aggregated key and its representation. R
computes X ← KeyAgg(par,PK) and if DBkey[X] is empty, it does the following:
R first obtains the representation of adversarial aggregated key X̃ =

∑n
i=2 aiXi

which is z̃ =
∑n

i=2 aixixixi in terms of YYY . Then, it lets zzz = z̃zz+(0, 0, . . . , 0, a1) be the
representation of the aggregated public key of PK (i.e., X = KeyAgg(par,PK) =
X̃ + a1Yqs+1) in terms of YYY where (0, 0, . . . , 0, a1) is a representation a1Yqs+1.
If z̃qs+1 = −a1, R aborts and the simulation ends. If it is not the case, R
stores zzz to the valid key database DBkey[X] = zzz. We remark that z̃qs+1 =∑n

i=2 aixixixi[qs + 1] is random because R does this check when A queries first
time with the valid key aggregation input PK,Xj and its representations to
H2. In other words, R does this check when A does not know a1, a2, . . . , an.
The later queries of the same input with different representation of keys are
not considered in this check. Since a1 is the random oracle output and z̃qs+1

Two-Round Trip Schnorr Multi-signatures via Delinearized Witnesses 183

is random, the probability that a1 = −z̃qs+1 less than or equal to 1√
p . By the

difference lemma, Pr[Output(Game7) = 1] ≥ Pr[Output(Game6) = 1] − qh2√
p .

In Game 8 , the reduction simulates all the oracles as in the previous game.
Differently, after receiving the forgery, it constructs a new matrix M′ by adding a
new row vvv = (t1+c∗z1, t2+c∗z2, . . . , tqs+1+c∗zqs+1) to M and it aborts the game
if the rank of the new matrix M′ is less than � + 1. Here, ttt = (t0, t1, . . . , tqs+1)
is the representation of T ∗ = s∗P − c∗X∗ where X∗ = KeyAgg(par,PK∗) is
the aggregated public key of the forgery. The vector zzz = (z0, z1, z2, . . . , zqs+1) is
DBkey[X∗] which is a representation of X∗ as defined in Game 7.

R can obtain the representation ttt by checking the H-oracle queries with the
input (msg∗,X∗, s∗P − c∗P) where ttt must be given. We remark that A has
to query with the input (msg∗,X∗, s∗P − c∗P) to output c∗ as a part of the
forgery. DBkey[X∗] cannot be null because A needs the aggregated public key
for the forgery. We remark that s∗P − c∗X∗ = ttt · YYY and c∗X∗ = c∗(zzz · YYY)

M
′ =

⎡

⎢
⎢
⎣

α
(1)
11 η

(1)
11 + α

(1)
12 η

(1)
21 . . . α

(1)
11 η

(1)
1qs

+ α
(1)
12 η

(1)
2qs

a
(1)
1 c(1)

: . . . : :

α
(�)
11 η

(�)
11 + α

(�)
12 η

(�)
21 . . . α

(�)
11 η

(�)
1qs

+ α
(�)
12 η

(�)
2qs

a
(�)
1 c(�)

t1 + c∗z1 . . . tqs + c∗zqs tqs+1 + c∗zqs+1

⎤

⎥
⎥
⎦

Let’s assume that the rank of M′ is less than � + 1 to analyse the probability
that it happens. We show next that if it happens, A solves the 2-entwined sum
problem (Definition 8) with the challenges (p,G, P), T

(i)
hT
(i)
hT
(i)
h = (T (i)

11 , T
(i)
12) for i ∈

[1, �] and Y = Yqs+1, the random oracles H̄ : ({0, 1}∗ × G) × G → Zp, H̄ ′ :
(Gn ×{0, 1}∗ ×G

2n)×G → Zp and H̄1 : (Gn ×{0, 1}∗ ×G
2n)×G

2 ×N → Zp for
n ≥ 1. The random oracles H̄, H̄ ′, H̄1 are defined as follows where each stores
their responses in the database DBH̄ ,DBH̄′ and DBH̄1

, respectively:

H̄(ω, T):
input: ω = (msg,X) ∈ {0, 1}∗ × G and ttt = (t0, t1, t2, . . . , tqs+1) which is
the representation of T
if (ω,W) /∈ DBH̄ :

if DBkey[X] �= null :
zzz ← DBkey[X]
ρ1 ← zqs+1

ρ2 ← tqs+1

DBH̄ [(ω, T)] ← ρ1H(ω, T) + ρ2
else:

DBH̄ [(ω, T)] ←$Zp

return DBH̄ [(ω, T)]

H̄ is a random oracle because H is a random oracle and ρ1 is not 0 in this
game (See Game 7).

184 H. Kılınç Alper and J. Burdges

H̄ ′(μ, Th):
input: μ = (PK,msg, {T11, T12}, . . . , {Tn1, Tn2}) ∈ G

n × {0, 1}∗ × G
2n

if (μ, Th) /∈ DBH̄′ :
α11 ← H1(μ, 1, 1), α12 ← H1(μ, 1, 2)
if Th =

∑2
j=1 α1jT1j :

α
(�)
i1 ← H1(μ, i, 1), α(�)

i2 ← H1(μ, i, 2),∀i ∈ [2, n]
T = Th +

∑n
i=2(α

(�)
i1 Ti1 + α

(�)
i2 Ti2)

X ← KeyAgg(par,PK)
a1 ← H2(PK,X1)
c = H(msg,X, T)
DBH̄′ [(μ, Th)] ← a1c

else: DBH̄′ [(μ, Th)] ←$Zp

return DBH̄′ [(μ, Th)]

H̄ ′ is a random oracle because H1,H2 and H are random oracles and also
there exists no PK �= PK′ that aggregates to same X (See Game 5) and there
exists no μ �= μ′ that maps to same T (See Game 6).

H̄1(μ, T, j):
input: μ = (PK,msg, {T11, T12}, . . . , {Tn1, Tn2}) ∈ G

n × {0, 1}∗ × G
2n

if (μ, T, j) /∈ DBH̄1

if T = {T11, T12}
DBH̄1

[(μ, T, j)] ← H1(μ, 1, j)
else: DBH̄1

[(μ, T, j)] ← Zp

else: DBH̄1
[(μ, T, j)] ← Zp

return DBH̄1
[(μ, T, j)]

H̄1 is a random oracle because H1 is a random oracle.
Now, we show why Rank(M′) < � implies that A finds a 2-entwined sum

solution: We remark that the rank of M′ must be � if it is less than �+1 thanks to
Game 4. Therefore, if the last row of M′ is linearly dependent, then there exists a
unique vector βββ = (β(1), β(2), . . . , β(�)) such that tj +c∗zj =

∑�
i=1 β(i)(α(i)

11 η
(i)
1j +

α
(i)
12 η

(i)
2j) for j ∈ [1, qs] and tqs+1 + c∗zqs+1 =

∑�
i=1 β(i)a

(i)
1 c(i). We remark that

in this case s∗ = t∗ + c∗(
∑n

i=2 a∗
i xi + a∗

1yqs+1) = t0 + (
∑qs+1

i=1 tiyi) + c∗z0 +
c∗(

∑qs+1
i=1 ziyi) = t0 + c∗z0 +

∑qs

i=1 β(i)s(i) as in the m-entwined sum attack that
we show in Sect. 3. Accordingly, if we reorganize T ∗ = s∗P − c∗X, we obtain the
following:

Two-Round Trip Schnorr Multi-signatures via Delinearized Witnesses 185

T ∗ = (t0 +
qs+1∑

j=1

yjtj)P

= t0P + (
qs∑

j=1

yj(
�∑

i=1

β(i)(α(i)
11 η

(i)
1j + α

(i)
12 η2j) − c∗zj))P + tqs+1Yqs+1

= t0P +
�∑

i=1

β(i)(α(i)
11T

(i)
11 + α

(i)
12T

(i)
12) −

qs∑

j=1

c∗zjYj + tqs+1Yqs+1 (16)

= (t0 − c∗(
n∑

i=2

aixi − z0))P +
�∑

i=1

β(i)T
(i)
h + (tqs+1 − c∗(a∗

1 − zqs+1))Yqs+1

(17)

= β(0)P +
�∑

i=1

β(i)T
(i)
h + vYqs+1 (18)

We obtain from Eq. (16) to Eq. (17) by using the fact that
∑qs

j=1 c∗zjYj =
c∗(X∗ − zqs+1Yqs+1 − z0P) = c∗((

∑n
i=2 a∗

i xi)P + a∗
1Yqs+1 − zqs+1Yqs+1 − z0P).

Since the forgery is a valid signature, c∗ = H(msg∗,X∗, T ∗). c∗ satisfies the
following because Rank(M′) = � that

zqs+1c
∗ + tqs+1 =

�∑

i=1

β(i)a
(i)
1 c(i).

These imply that

H̄(msg∗,X∗, T ∗) =
�∑

i=1

β(i)H̄ ′(SID(i), T
(i)
h)

Therefore, if the rank of M′ is �, it means that A generates the forgery by
solving 2-entwined sum problem with the solution βββ = (β(0), β(1), . . . , β(�)),
Tout = (SID(1), SID(2), . . . , SID(�)), ω = (msg∗,X∗) and v. We remark that
the adversary knows the solution βββ because β(0) = t0 − c∗(

∑n
i=2 aixi − z0) and

for i ∈ [1, �], β(i) = t
(i)
11 +z

(i)
11

α
(i)
11

= t
(i)
12 +z

(i)
12

α
(i)
12

(See Eq. (14)), v = tqs+1 − c∗(a∗
1 − zqs+1)

which are generated by the parameters selected by the adversary.
Since the probability of having 2-entwined sum problem solution is εeSum,

the probability that the rank of M′ is � is εeSum. Therefore, Pr[Game 8 = 1] ≥
Pr[Game 7 = 1] − εeSum.

In Game 9 , R obtains the OMDL solution by solving a linear system of
equations. If � < qs, R can make qs − � more DL-query. So, it queries
Y�+1, Y�+2, . . . , Yqs

to the DL-oracle and obtain y�+1, y�+2, . . . , yqs
. Now, it needs

to learn the DL of Y1, Y2, . . . , Y�, Yqs+1.
Given that s∗ = t∗ + c∗(a1yqs+1 +

∑n
i=2 aixi) = t0 +

∑qs+1
j=1 tjyj + c∗(z0 +

∑qs+1
j=1 zjyj) = t0 + c∗z0 +

∑qs+1
j=1 (tj + c∗zj)yj , R obtains a linear equation with

186 H. Kılınç Alper and J. Burdges

� + 1 unknowns y1, y2, . . . , y�, yqs+1 i.e., s̄ = s∗ − t0 − c∗z0 −
∑qs

j=�+1,if �<qs
(tj +

zj)yj =
∑�

j=1(tj + c∗zj)yj + (tqs+1 + c∗zqs+1)yqs+1 Similarly, given that for u ∈
[1, �], s

(u)
1 =

∑qs

i=1 yi(α
(u)
11 η

(u)
1i + α

(u)
12 η

(u)
2i) + c(u)a

(u)
1 yqs+1 R also obtains �-more

linear equations such that s̄
(u)
1 = s

(u)
1 −

∑qs

j=�+1,if �<qs
(α(u)

11 η
(u)
1j + α

(u)
12 η

(u)
2j)yj =

∑�
j=1(α

(u)
11 η

(u)
1j + α

(u)
12 η

(u)
2j)yj + c(u)a

(u)
1 yqs+1.

In the end, R obtains a unique solution y1, y2, . . . , y�, yqs+1 by solving the
following linear equation system M′yyy = s̄̄s̄s where yyy = (y1, y2, . . . , y�, yqs+1) and
s̄̄s̄s = (s̄(1)1 , s̄

(2)
1 , . . . , s̄

(�)
1 , s̄)

We remark that matrix of the linear system of equations is M′ without columns
� + 1, � + 2, . . . , qs. Therefore, its rank is � + 1 which is the reason of the unique
solution. Hence, Pr[Game 9 = 1] = Pr[Game 8 = 1] = εomdl.

	

6 Conclusion

In this paper, we introduce our new Schnorr-based two-round multi-signature
scheme DWMS. Our protocol is one of the few provably secure protocols among
the existing secure Schnorr-based two-round multi-signature schemes [11,20,21].
Drawing upon the lessons learned from the k-sum attack [11], we proved the
security of our scheme with special care. We introduced the m-entwined sum
problem that simplifies the security proof of DWMS. We showed that the m-
entwined sum problem is hard in the AGM as long as the DLOG problem is
hard. We believe that the m-entwined sum problem shows a way to improve
and simplify the security proofs which require excluding a specific relationship
between the group and the field in the ROM. As future work, it would be inter-
esting to show the hardness of the m-entwined sum problem in the standard
model.

Acknowledgement. We thank Raghav Bhaskar and Alistair Stewart for their exten-
sive advise and extremely insightful conversations throughout the effort. We warmly
thank Michele Orrù for his helpful conversations, especially around understanding the
algebraic group models.

A Rank of a Random Matrix

Assume that we have a random matrix M of size (� × �′). Given that � ≤ �′, the
rank of M can be at most �.

Let’s define another event Ei where the first i row vectors of M are linearly
independent. In this case, Pr[E1] = 1− 1

p� which is the probability that a random
vector equals to 000 (vector consisting of 0). In this case,

Two-Round Trip Schnorr Multi-signatures via Delinearized Witnesses 187

Pr[E�] = Pr[E�|E�−1] Pr[E�−1] + Pr[E�|¬E�−1] Pr[¬E�−1]
︸ ︷︷ ︸

0

= Pr[E1]
�∏

k=2

Pr[Ek|Ek−1]
︸ ︷︷ ︸

(1− pk−1

p�)

=
�∏

k=1

(1 − pk−1

p�
) ≤

�∏

k=1

(1 − pk−1

p�
) ≤ (1 − 1

p
)� ≤ 1 − �

p

So, the probability of M’s rank is less than � is at most �
p .

References

1. Schnorrkel library, January 2020. https://github.com/w3f/schnorrkel/commit/
fa6c35f832

2. Bagherzandi, A., Cheon, J.-H., Jarecki, S.: Multisignatures secure under the dis-
crete logarithm assumption and a generalized forking lemma. In: Proceedings of the
15th ACM Conference on Computer and Communications Security, pp. 449–458
(2008)

3. Bagherzandi, A., Jarecki, S.: Multisignatures using proofs of secret key possession,
as secure as the Diffie-Hellman problem. In: Ostrovsky, R., De Prisco, R., Visconti,
I. (eds.) SCN 2008. LNCS, vol. 5229, pp. 218–235. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-85855-3 15

4. Bellare, M., Dai, W.: The multi-base discrete logarithm problem: Concrete security
improvements for Schnorr identification, signatures and multi-signatures. IACR
Cryptology ePrint Archive 2020:416 (2020)

5. Bellare, N., Pointcheval, S.: The one-more-RSA-inversion problems and the security
of Chaum’s blind signature scheme. J. Cryptol. 16(3), 185–215 (2003). https://doi.
org/10.1007/s00145-002-0120-1

6. Bellare, M., Neven, G.: Multi-signatures in the plain public-key model and a general
forking lemma. In: Proceedings of the 13th ACM Conference on Computer and
Communications Security, pp. 390–399 (2006)

7. Bellare, M., Palacio, A.: GQ and Schnorr identification schemes: proofs of secu-
rity against impersonation under active and concurrent attacks. In: Yung, M.
(ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 162–177. Springer, Heidelberg (2002).
https://doi.org/10.1007/3-540-45708-9 11

8. Benhamouda, F., Lepoint, T., Orrù, M., Raykova, M.: On the (in)security of ROS.
Cryptology ePrint Archive, Report 2020/945 (2020). https://eprint.iacr.org/2020/
945

9. Boldyreva, A.: Threshold signatures, multisignatures and blind signatures based
on the gap-Diffie-Hellman-group signature scheme. In: Desmedt, Y.G. (ed.) PKC
2003. LNCS, vol. 2567, pp. 31–46. Springer, Heidelberg (2003). https://doi.org/10.
1007/3-540-36288-6 3

10. Boneh, D., Drijvers, M., Neven, G.: Compact multi-signatures for smaller
blockchains. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018. LNCS, vol.
11273, pp. 435–464. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-
03329-3 15

https://github.com/w3f/schnorrkel/commit/fa6c35f832
https://github.com/w3f/schnorrkel/commit/fa6c35f832
https://doi.org/10.1007/978-3-540-85855-3_15
https://doi.org/10.1007/s00145-002-0120-1
https://doi.org/10.1007/s00145-002-0120-1
https://doi.org/10.1007/3-540-45708-9_11
https://eprint.iacr.org/2020/945
https://eprint.iacr.org/2020/945
https://doi.org/10.1007/3-540-36288-6_3
https://doi.org/10.1007/3-540-36288-6_3
https://doi.org/10.1007/978-3-030-03329-3_15
https://doi.org/10.1007/978-3-030-03329-3_15

188 H. Kılınç Alper and J. Burdges

11. Drijvers, M., et al.: On the security of two-round multi-signatures. In: 2019 IEEE
Symposium on Security and Privacy (SP), pp. 1084–1101. IEEE (2019)

12. Fuchsbauer, G., Kiltz, E., Loss, J.: The algebraic group model and its applications.
In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10992, pp. 33–62.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96881-0 2

13. Fuchsbauer, G., Plouviez, A., Seurin, Y.: Blind Schnorr signatures in the algebraic
group model. Cryptology ePrint Archive, Report 2019/877 (2019). https://eprint.
iacr.org/2019/877

14. Fuchsbauer, G., Plouviez, A., Seurin, Y.: Blind Schnorr signatures and signed
ElGamal encryption in the algebraic group model. In: Canteaut, A., Ishai, Y.
(eds.) EUROCRYPT 2020. LNCS, vol. 12106, pp. 63–95. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-45724-2 3

15. Itakura, K., Nakamura, K.: A public-key cryptosystem suitable for digital mul-
tisignatures. NEC Res. Dev. 71, 1–8 (1983)

16. Komlo, C., Goldberg, I.: FROST: flexible round-optimized Schnorr threshold sig-
natures (2020)

17. Lu, S., Ostrovsky, R., Sahai, A., Shacham, H., Waters, B.: Sequential aggregate
signatures and multisignatures without random oracles. In: Vaudenay, S. (ed.)
EUROCRYPT 2006. LNCS, vol. 4004, pp. 465–485. Springer, Heidelberg (2006).
https://doi.org/10.1007/11761679 28

18. Ma, C., Weng, J., Li, Y., Deng, R.: Efficient discrete logarithm based multi-
signature scheme in the plain public key model. Des. Codes Crypt. 54(2), 121–133
(2010). https://doi.org/10.1007/s10623-009-9313-z

19. Maxwell, G., Poelstra, A., Seurin, Y., Wuille, P.: Simple Schnorr multi-signatures
with applications to bitcoin. Des. Codes Crypt. 87(9), 2139–2164 (2019). https://
doi.org/10.1007/s10623-019-00608-x

20. Nick, J., Ruffing, T., Seurin, Y.: MuSig2: simple two-round Schnorr multi-
signatures. Cryptology ePrint Archive, Report 2020/1261 (2020). https://eprint.
iacr.org/2020/1261

21. Nick, J., Ruffing, T., Seurin, Y., Wuille, P.: MuSig-DN: Schnorr multi-signatures
with verifiably deterministic nonces. Cryptology ePrint Archive, Report 2020/1057
(2020). https://eprint.iacr.org/2020/1057

22. Ohta, K., Okamoto, T.: A digital multisignature scheme based on the Fiat-Shamir
scheme. In: Imai, H., Rivest, R.L., Matsumoto, T. (eds.) ASIACRYPT 1991. LNCS,
vol. 739, pp. 139–148. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-
57332-1 11

23. Pointcheval, D., Stern, J.: Security arguments for digital signatures and blind
linsignatures. J. Cryptol. 13, 361–396 (2000)

24. Ristenpart, T., Yilek, S.: The power of proofs-of-possession: securing multiparty
signatures against rogue-key attacks. In: Naor, M. (ed.) EUROCRYPT 2007.
LNCS, vol. 4515, pp. 228–245. Springer, Heidelberg (2007). https://doi.org/10.
1007/978-3-540-72540-4 13

25. Schnorr, C.P.: Security of blind discrete log signatures against interactive attacks.
In: Qing, S., Okamoto, T., Zhou, J. (eds.) ICICS 2001. LNCS, vol. 2229, pp. 1–12.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45600-7 1

26. Syta, E., et al.: Keeping authorities “honest or bust” with decentralized witness
cosigning. In: 2016 IEEE Symposium on Security and Privacy (SP), pp. 526–545.
IEEE (2016)

27. Wagner, D.: A generalized birthday problem. In: Yung, M. (ed.) CRYPTO 2002.
LNCS, vol. 2442, pp. 288–304. Springer, Heidelberg (2002). https://doi.org/10.
1007/3-540-45708-9 19

https://doi.org/10.1007/978-3-319-96881-0_2
https://eprint.iacr.org/2019/877
https://eprint.iacr.org/2019/877
https://doi.org/10.1007/978-3-030-45724-2_3
https://doi.org/10.1007/11761679_28
https://doi.org/10.1007/s10623-009-9313-z
https://doi.org/10.1007/s10623-019-00608-x
https://doi.org/10.1007/s10623-019-00608-x
https://eprint.iacr.org/2020/1261
https://eprint.iacr.org/2020/1261
https://eprint.iacr.org/2020/1057
https://doi.org/10.1007/3-540-57332-1_11
https://doi.org/10.1007/3-540-57332-1_11
https://doi.org/10.1007/978-3-540-72540-4_13
https://doi.org/10.1007/978-3-540-72540-4_13
https://doi.org/10.1007/3-540-45600-7_1
https://doi.org/10.1007/3-540-45708-9_19
https://doi.org/10.1007/3-540-45708-9_19

MuSig2: Simple Two-Round Schnorr
Multi-signatures

Jonas Nick1(B), Tim Ruffing1, and Yannick Seurin2

1 Blockstream, Victoria, Canada
2 ANSSI, Paris, France

Abstract. Multi-signatures enable a group of signers to produce a joint
signature on a joint message. Recently, Drijvers et al. (S&P’19) showed
that all thus far proposed two-round multi-signature schemes in the pure
DL setting (without pairings) are insecure under concurrent signing ses-
sions. While Drijvers et al. proposed a secure two-round scheme, this
efficiency in terms of rounds comes with the price of having signatures
that are more than twice as large as Schnorr signatures, which are becom-
ing popular in cryptographic systems due to their practicality (e.g., they
will likely be adopted in Bitcoin). If one needs a multi-signature scheme
that can be used as a drop-in replacement for Schnorr signatures, then
one is forced to resort either to a three-round scheme or to sequential
signing sessions, both of which are undesirable options in practice.

In this work, we propose MuSig2, a simple and highly practical two-
round multi-signature scheme. This is the first scheme that simultane-
ously i) is secure under concurrent signing sessions, ii) supports key
aggregation, iii) outputs ordinary Schnorr signatures, iv) needs only two
communication rounds, and v) has similar signer complexity as ordinary
Schnorr signatures. Furthermore, it is the first multi-signature scheme in
the pure DL setting that supports preprocessing of all but one rounds,
effectively enabling a non-interactive signing process without forgoing
security under concurrent sessions. We prove the security of MuSig2 in
the random oracle model, and the security of a more efficient variant in
the combination of the random oracle and the algebraic group model.
Both our proofs rely on a weaker variant of the OMDL assumption.

1 Introduction

Multi-signature schemes [17] enable a group of signers (each possessing an own
secret/public key pair) to run an interactive protocol to produce a single signa-
ture σ on a message m. A recent spark of interest in multi-signatures is motivated
by the idea of using them as a drop-in replacement for ordinary (single-signer) sig-
natures in applications such as cryptocurrencies that support signatures already.
For example the Bitcoin community, awaiting the adoption of Schnorr signa-
tures [32] as proposed in BIP 340 [38], is seeking for practical multi-signature
schemes which are fully compatible with Schnorr signatures: multi-signatures
produced by a group of signers should just be ordinary Schnorr signatures and
c© International Association for Cryptologic Research 2021
T. Malkin and C. Peikert (Eds.): CRYPTO 2021, LNCS 12825, pp. 189–221, 2021.
https://doi.org/10.1007/978-3-030-84242-0_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-84242-0_8&domain=pdf
https://doi.org/10.1007/978-3-030-84242-0_8

190 J. Nick et al.

should be verifiable like Schnorr signatures, i.e., they can be verified using the
ordinary Schnorr verification algorithm given only a single aggregate public key
that can be computed from the set of public keys of the signers and serves as a
compact representation of it.

This provides a number of benefits that reach beyond simple compatibility
with an upcoming system: Most importantly, multi-signatures enjoy the effi-
ciency of Schnorr signatures, which are very compact and cheap to store on the
blockchain. Moreover, if multi-signatures can be verified like ordinary Schnorr
signatures, the additional complexity introduced by multi-signatures remains on
the side of the signers and is not exposed to verifiers who need not be concerned
with multi-signatures at all and can simply run Schnorr signature verification.
Verifiers, who are just given the signature and the aggregate public key, in fact
do not even learn whether the signature was created by a single signer or by
a group of signers (or equivalently, whether the public key is an aggregation of
multiple keys), which is advantageous for the privacy of users.

Multi-signatures Based on Schnorr Signatures. A number of modern and practi-
cal proposals [2,4,11,20,22,28,29,36] for multi-signature schemes are based on
Schnorr signatures. The Schnorr signature scheme [32] relies on a cyclic group
G of prime order p, a generator g of G, and a hash function H. A secret/public
key pair is a pair (x,X) ∈ {0, . . . , p − 1} × G where X = gx. To sign a message
m, the signer draws a random integer r in Zp, computes a nonce R = gr, the
challenge c = H(X,R,m), and s = r + cx. The signature is the pair (R, s), and
its validity can be checked by verifying whether gs = RXc.

The naive way to design a multi-signature scheme fully compatible with
Schnorr signatures would be as follows. Say a group of n signers want to sign
a message m, and let L = {X1 = gx1 , . . . , Xn = gxn} be the multiset1 of all
their public keys. Each signer randomly generates and communicates to others
a nonce Ri = gri ; then, each of them computes R =

∏n
i=1 Ri, c = H(X̃, R,m)

where X̃ =
∏n

i=1 Xi is the product of individual public keys, and a partial sig-
nature si = ri + cxi; partial signatures are then combined into a single signature
(R, s) where s =

∑n
i=1 si mod p. The validity of a signature (R, s) on message m

for public keys {X1, . . . , Xn} is equivalent to gs = RX̃c where X̃ =
∏n

i=1 Xi and
c = H(X̃, R,m). Note that this is exactly the verification equation for an ordi-
nary key-prefixed Schnorr signature with respect to the aggregate public key X̃.
However, as already pointed out many times [16,19,23,24], this simplistic proto-
col is vulnerable to a rogue-key attack where a corrupted signer sets its public
key to X1 = gx1(

∏n
i=2 Xi)−1, allowing him to produce signatures for public keys

{X1, . . . , Xn} by himself.
One way to generically prevent rogue-key attacks is to require that users

prove possession of the secret key, e.g., by attaching a zero-knowledge proof
of knowledge to their public keys [9,31]. However, this makes key management
cumbersome, complicates implementations, and is not compatible with existing
and widely used key serialization formats.
1 Since we do not impose any constraint on the key setup, the adversary can choose

corrupted public keys arbitrarily and duplicate public keys can appear in L.

MuSig2: Simple Two-Round Schnorr Multi-signatures 191

The MuSig Scheme. A more direct defense against rogue-key attacks proposed
by Bellare and Neven [4] is to work in the plain public-key model, where public
keys can be aggregated without the need to check their validity. To date, the
only multi-signature scheme provably secure in this model and fully compatible
with Schnorr signatures is MuSig (and the variant MuSig-DN [28]) by Maxwell
et al. [22], independently proven secure by Boneh, Drijvers, and Neven [9].

In order to overcome rogue-key attacks in the plain public-key model, MuSig
computes partial signatures si with respect to “signer-dependent” challenges
ci = Hagg(L,Xi) · Hsig(X̃, R,m), where X̃ is the aggregate public key cor-
responding to the multiset of public keys L = {X1, . . . , Xn}. It is defined
as X̃ =

∏n
i=1 Xai

i where ai = Hagg(L,Xi) (note that the ai’s only depend
on the public keys of the signers). This way, the verification equation of a
signature (R, s) on message m for public keys L = {X1, . . . , Xn} becomes
gs = R

∏n
i=1 Xaic

i = RX̃c, where c = Hsig(X̃, R,m). This recovers the key
aggregation property enjoyed by the naive scheme, albeit with respect to a more
complex aggregate key X̃ =

∏n
i=1 Xai

i .
In order to be able to simulate an honest signer in a run of the signing

protocol via the standard way of programming the random oracle Hsig, MuSig
has an initial commitment round (like the scheme by Bellare and Neven [4])
where each signer commits to its share Ri before receiving the shares of other
signers.

As a result, the signing protocol of MuSig requires three communication
rounds, and only the initial commitment round can be preprocessed without
knowing the message to be signed [26].

Two-Round Schemes. Following the scheme by Bellare and Neven [4], in which
signing requires three rounds of interaction, multiple attempts to reduce this
number to two rounds [2,4,22,36] were foiled by Drijvers et al.. [11]. In their
pivotal work, they show that all thus far proposed two-round schemes in the
pure DL setting (without pairings) cannot be proven secure and are vulnerable
to attacks with subexponential complexity when the adversary is allowed to
engage in an arbitrary number of concurrent sessions (concurrent security), as
required by the standard definition of unforgeability.

If one prefers a scheme in the pure DL setting with fewer communication
rounds, only two options remain, and none of them is fully satisfactory. The first
option is the mBCJ scheme by Drijvers et al. [11], a repaired variant of the scheme
by Bagherzandi, Cheon, and Jarecki [2]. While mBCJ needs only two rounds, it
does not output ordinary Schnorr signatures and is thus not suitable as a drop-
in replacement for Schnorr signatures, e.g., in cryptocurrencies whose validation
rules support Schnorr signatures (such as proposed for Bitcoin). The second
option is MuSig-DN (MuSig with Deterministic Nonces) [28], which however relies
on heavy zero-knowledge proofs to prove a deterministic derivation of the nonce
to all cosigners. This increases the complexity of the implementation significantly
and makes MuSig-DN, even though it needs only two rounds, in fact less efficient
than three-round MuSig in common settings. Moreover, in neither of these two-
round schemes is it possible to reduce the rounds further by preprocessing the
first round without knowledge of the message to be signed.

192 J. Nick et al.

1.1 Our Contribution

We propose a novel and simple two-round variant of the MuSig scheme that we
call MuSig2. In particular, we remove the preliminary commitment phase, so that
signers start right away by sending nonces. However, to obtain a scheme secure
under concurrent sessions, each signer i sends a list of ν ≥ 2 nonces Ri,1, . . . , Ri,ν

(instead of a single nonce Ri), and effectively uses a linear combination R̂i =
∏ν

j=1 Rbj−1

i,j of these ν nonces, where b is derived via a hash function.
MuSig2 is the first multi-signature scheme that simultaneously i) is secure

under concurrent signing sessions, ii) supports key aggregation, iii) outputs
ordinary Schnorr signatures, iv) needs only two communication rounds, and
v) has similar signer complexity as ordinary Schnorr signatures. Furthermore, it
is the first scheme in the pure DL setting that supports preprocessing of all but
one rounds, effectively enabling non-interactive signing without forgoing security
under concurrent sessions. MuSig-DN [28], which relies on rather complex and
expensive zero-knowledge proofs (proving time ≈ 1 s), only enjoys the first four
properties and does not allow preprocessing of the first round without knowledge
of the message.

In comparison to other multi-signature schemes based on Schnorr signatures,
the price we pay for saving a round is a stronger cryptographic assumption:
instead of the DL assumption, we rely on the algebraic one-more discrete loga-
rithm (AOMDL) assumption, a weaker and falsifiable variant of the one-more
discrete logarithm (OMDL) assumption [3,5], which states that it is hard to find
the discrete logarithm of q + 1 group elements by making at most q queries to
an oracle solving the DL problem.

We give two independent security proofs which reduce the security of MuSig2
to the AOMDL assumption. Our first proof relies on the random oracle model
(ROM), and applies to MuSig2 with ν = 4 nonces. Our second proof additionally
assumes the algebraic group model (AGM) [12], and for this ROM+AGM proof,
ν = 2 nonces are sufficient.

Assuming a group element is as large as a collision-resistant hash of a group
element, the overhead for every MuSig2 signer as compared to normal three-
round MuSig is broadcasting ν−2 group elements as well as ν−1 exponentiations
plus one multi-exponentiation of size ν − 1. As a result, for the optimal choice
of ν = 2, the computational overhead of a signing session of MuSig2 is just two
exponentiations as compared to the state-of-the-art scheme MuSig. This makes
MuSig2 highly practical.

A further optimized variant of MuSig2, which we call MuSig2∗ and discuss
in the full version [27], reduces the size of the multi-exponentiation in the key
aggregation algorithm from n to n − 1.

1.2 Concurrent Work

Concurrently to our work, two other works rely on a similar idea of using a linear
combination of multiple nonces in order to remove a communication round while
achieving security under concurrent sessions.

MuSig2: Simple Two-Round Schnorr Multi-signatures 193

FROST. Komlo and Goldberg [18] use this idea for their FROST scheme in
the context of the more general setting of threshold signatures: in a “t-of-n”
threshold signature scheme, any subset of size t of some set of n signers can
create a signature. By setting t = n (as supported in FROST), it is possible
to obtain a multi-signature scheme as a special case. In comparison, the scope
of our work is restricted to only “n-of-n” multi-signatures, which enables us
to optimize for this case and achieve properties which, in the pure DL setting,
are unique to multi-signatures, namely non-interactive key generation as well as
non-interactive public key aggregation, two features not offered by FROST.

A major difference between our work and their work is the cryptographic
model. The FROST security proof relies on a non-standard heuristic which mod-
els the hash function (a public primitive) used for deriving the coefficients for the
linear combination as a one-time VRF (a primitive with a secret key) in the secu-
rity proof. This treatment requires an additional communication round in FROST
preprocessing stage and to disallow concurrent sessions in this stage, resulting in
a modified scheme FROST-Interactive. As a consequence, the FROST-Interactive
scheme that is proven secure is in fact a three-round scheme and as such differs
significantly from the two-round FROST scheme that is recommended for deploy-
ment. Komlo and Goldberg [18] show that the security of FROST-Interactive is
implied by the DL assumption. In contrast, our MuSig2 proofs use the well-
established ROM (or alternatively, AGM+ROM) to model the hash function
as a random oracle and rely on a falsifiable and weaker variant of the OMDL
assumption.

DWMS. Again concurrently, Alper and Burdges [1] use the idea of a linear
combination of multiple nonces to obtain a two-round multi-signature scheme
DWMS, which resembles MuSig2 closely but lacks several optimizations present
in MuSig2. Concretely, DWMS does not aggregate the first-round messages of
all signers, an optimization which saves bandwidth and ensures that each signer
needs to perform only a constant number of exponentiations. Moreover, DWMS
does not make use of the optimizations of setting the coefficient of one nonce to
the constant 1, which saves one more exponentiation per signer when aggregating
nonces, as well as setting the coefficient of one public key to the constant 1, which
saves one exponentiation when aggregating keys (see the variant MuSig2∗ of our
scheme in the full version [27]).

In terms of provable security, Alper and Burdges [1] provide a proof only in
the combination of ROM+AGM, whereas we additionally provide a proof that
does not rely on the AGM.

2 Technical Overview

2.1 The Challenge of Constructing Two-Round Schemes

Already an obsolete preliminary version [21] of the MuSig paper [22] proposed a
two-round variant of MuSig in which the initial commitment round is omitted.
We call this scheme InsecureMuSig in the following. Maxwell et al. [21] claimed

194 J. Nick et al.

concurrent security under the OMDL assumption but their proof turned out
be flawed: it fails to cover a subtle problem in the simulation of the signing
oracle, which in fact had been described (and correctly sidestepped by restricting
concurrency) already 15 years earlier in a work on two-party Schnorr signatures
by Nicolosi et al. [29].

Drijvers et al. [11] rediscovered the flaw in the security proof of InsecureMuSig
and show that similar flaws appear also in the proofs of the other two-round DL-
based multi-signature schemes by Bagherzandi et al. [2] and Ma et al. [20].2

Moreover, they show through a meta-reduction that the concurrent security of
these schemes cannot be reduced to the DL or OMDL problem using an alge-
braic black-box reduction (assuming the OMDL problem is hard).3 In addition
to the meta-reduction, Drijvers et al. [11] also gave a concrete attack of subexpo-
nential complexity based on Wagner’s algorithm [37] for solving the Generalized
Birthday Problem [37], which has led to similar attacks on Schnorr blind sig-
natures [33]. Their attack breaks InsecureMuSig and the other aforementioned
multi-signature schemes and inherently exploits the ability to run multiple ses-
sions concurrently. Recently, Benhamouda et al. [7] gave a novel, simple, and
very efficient attack of polynomial complexity, which confirms and extends these
negative results.

A Concrete Attack. We outline the attack by Drijvers et al. [11] in order to
provide an intuition for how we can overcome their negative results. The attack
relies on Wagner’s algorithm for solving the Generalized Birthday Problem [37],
which can be defined as follows for the purpose of this paper: Given a constant
value t ∈ Zp, an integer kmax, and access to random oracle H mapping onto
Zp, find a set {q1, . . . , qkmax} of kmax queries such that

∑kmax
k=1 H(qk) = t. While

for kmax ≤ 2, the complexity of this problem is the same as finding a preimage
(kmax = 1) or a collision (kmax = 2) in the random oracle, the problem becomes,
maybe surprisingly, easy for large kmax. In particular, Wagner [37] gives a subex-
ponential algorithm assuming that kmax is not bounded.

The attack proceeds as follows. The adversary opens kmax concurrent signing
sessions, in which it plays the role of the signer with public key X2 = gx2 , and
receives kmax nonces R

(1)
1 , . . . , R

(kmax)
1 from the honest signer with public key

X1 = gx1 . Let X̃ = Xa1
1 Xa2

2 be the corresponding aggregate public key. Given a
forgery target message m∗, the adversary computes R∗ =

∏kmax
k=1 R

(k)
1 and uses

Wagner’s algorithm to find nonces R
(k)
2 to reply with such that

kmax∑

k=1

Hsig(X̃, R
(k)
1 R

(k)
2 ,m(k))

︸ ︷︷ ︸
=: c(k)

= Hsig(X̃, R∗,m∗)
︸ ︷︷ ︸

=: c∗

. (1)

2 Remarkably, both Maxwell et al. [21] and Drijvers et al. [11] were apparently unaware
of the much earlier work by Nicolosi et al. [29].

3 We refer the interested reader to the full version [27] for a high-level explanation of
why the meta-reduction cannot be adapted to work with our scheme.

MuSig2: Simple Two-Round Schnorr Multi-signatures 195

Having received R
(k)
2 , the honest signer will reply with partial signatures s

(k)
1 =

r
(k)
1 +c(k) ·a1x1. Let r∗ =

∑kmax
k=1 r

(k)
1 = logg(R∗). The adversary is able to obtain

s∗
1 =

kmax∑

k=1

s
(k)
1 =

kmax∑

k=1

r
(k)
1 +

(
kmax∑

k=1

c(k)

)

· a1x1 = r∗ + c∗ · a1x1,

where the last equality follows from Eq. (1). The adversary can further complete
s∗
1 to the full value

s∗ = s∗
1 + c∗ · a2x2 = r∗ + c∗ · (a1x1 + a2x2).

In other words, (R∗, s∗) is a valid forgery on message m∗ with signature hash
c∗ = Hsig(X̃, R∗,m∗). In this example, the forgery is valid for the aggregate
public key X̃, which is the result of aggregating public keys X1 and X2. It
is however straightforward to adapt the attack to produce a forgery under a
different aggregate public key as long as it is the result of aggregating the honest
signer’s public key X1 with any multiset of adversarial public keys.

The complexity of this attack is dominated by the complexity of Wag-
ner’s algorithm, which is O(kmax 2log2(p)/(1+�(log2(kmax)�)). While this is super-
polynomial, the attack is practical for common parameters and moderately large
numbers kmax of sessions. For example, for a group size of p ≈ 2256 as common
for elliptic curves, a value of kmax = 128 brings the complexity of the attack
down to approximately 239 operations, which is practical even on off-the-shelf
hardware. If the attacker is able to open more sessions concurrently, the improved
polynomial-time attack by Benhamouda et al. [7] assumes kmax > log2 p sessions,
but then has complexity O(kmax log2 p) and a negligible running time in practice.

2.2 Our Solution

The attack by Drijvers et al. (and similarly the attack by Benhamouda et al.)
relies on the ability to control the signature hash by controlling the aggregate
nonce R

(k)
1 R

(k)
2 (on the LHS of Eq. (1)) in the first round of each of the concurrent

signing sessions. Since all signers must know the aggregate nonce at the end of the
first round, it seems hard to prevent the adversary from being able to control the
aggregate nonce on the LHS without adding a preliminary commitment round.
Our high-level idea to solve this problem and to foil the attacks is to accept that
the adversary can control the LHS of the equation but prevent it from controlling
the RHS instead.

The main novelty in our work is to let every signer i send a list of ν ≥ 2
nonces Ri,1, . . . , Ri,ν and let it effectively use a random linear combination R̂i =
∏ν

j=1 Rbj−1

i,j of those nonces in lieu of the former single nonce Ri. The scalar b
is derived via a hash function Hnon (modeled as a random oracle) applied the
nonces of all signers, i.e., b = Hnon(X̃, (

∏n
i=1 Ri,1, . . . ,

∏n
i=1 Ri,ν),m).

As a result, whenever the adversary tries different values for R2, the coeffi-
cient b changes, and so does the honest signer’s effective nonce R̂1 =

∏ν
j=1 Rbj−1

1,j .

196 J. Nick et al.

This ensures that the sum of the honest signer’s effective nonces taken over all
open sessions, i.e., value R∗ =

∏kmax
k=1 R̂

(k)
1 in the RHS of Eq. (1), is no longer a

constant value. Without a constant RHS, the adversary lacks an essential pre-
requisite in the definition of the Generalized Birthday Problem and Wagner’s
algorithm is not applicable.

With this idea in mind, it is tempting to fall back to only a single nonce
(ν = 1) but instead rely just on the coefficient b such that R̂1 = Rb

1. However,
then the adversary can effectively eliminate b by redefining R∗ =

∏kmax
k=1 R

(k)
1

(which is independent of all b(k)) and considering the equation

kmax∑

k=1

Hsig(X̃, (R(k)
1 R

(k)
2)b(k)

,m(k))
b(k)

= Hsig(X̃, R∗,m∗)

instead of Eq. (1) in order to perform the attack.

2.3 Proving Security

Before we describe how to prove MuSig2 secure, we first take a step back to
InsecureMuSig in order to understand the flaw in its purported security proof.
Then, we explain how the usage of more than once nonce in MuSig2 enables us
to fix that flaw.

The Difficulty of Simulating Signatures. Following the textbook security proof
of Schnorr signatures, a natural but necessarily flawed approach to reduce the
security of InsecureMuSig4 to the DL problem in the ROM will be to let the
reduction announce the challenge group element X1 as the public key of the
honest signer and fork the execution of the adversary in order to extract the
discrete logarithm of X1 from the two forgeries output by the adversary in its
two executions (using the Forking Lemma [4,30]).

The insurmountable difficulty for the reduction in this approach is to simu-
late the honest signer in signing sessions without knowledge of the secret key of
the honest signer. From the perspective of the reduction, simply omitting the pre-
liminary commitment phase enables the adversary to know the combined nonce
R before the reduction learns it, which prevents the reduction from simulating
the signing oracle using the standard technique of programming the random
oracle on the signature challenge Hsig(X̃, R,m). In more details, observe that in
InsecureMuSig, an adversary (controlling public key X2) can impose the value of
R = R1R2 used in signing sessions since it can choose R2 after having received
R1 from the honest signer (with public key X1 = gx1). This forbids the text-
book way of simulating the honest signer in the ROM without knowing x1 by
randomly drawing s1 and c, computing R1 = gs1(X1)−a1c, and programming
Hsig(X̃, R,m) = c, since the adversary might have made the random oracle
query Hsig(X̃, R,m) before making the corresponding signing query.
4 Observe that InsecureMuSig is identical to an imaginary MuSig2 with a just a single

nonce, i.e., ν = 1.

MuSig2: Simple Two-Round Schnorr Multi-signatures 197

The Flawed Security Proof of InsecureMuSig. The hope of Maxwell et al. [21]
was to rely on the stronger OMDL assumption instead of the DL assumption
in order to solve this problem without a commitment round. The DL oracle
in the formulation of the OMDL problem enables the reduction to answer a
signing query by obtaining the partial signature s1 of the honest signer via a
DL oracle query for the discrete logarithm of R1(X1)a1c. The reduction does
not generate the nonce R1 of the honest signer randomly, but instead sets it
to a DL challenge freshly drawn from the OMDL problem at the start of each
signing session. As in the standard security proof of Schnorr signatures, the
reduction forks the adversary and extracts the discrete logarithm x1 of the first
DL challenge X1 from the forgeries that the adversary outputs in its different
executions. This allows computing the discrete logarithm of each challenge R1

from s1 as r1 = s1 − a1cx1.
With the adversary opening qs signing sessions, if the reduction was not

flawed, it would return the DL of qs + 1 challenge elements (including the DL
challenge X1 used as public key of the honest signer) using only qs DL oracle
calls, i.e., the reduction would solve the OMDL problem.

This simulation technique however fails in a subtle way when combined with
the Forking Lemma, since the adversary might be forked in the middle of a
signing session, when it has received R1 but has not returned R2 to the reduction
yet. This can be seen as follows. Assume that the adversary sends a different value
R2 and R′

2 in the two executions after the fork, resulting in different signature
hashes c and c′ respectively. This implies that in order to correctly simulate the
signing oracle in the forked execution, the reduction needs two queries to the
DL oracle, both of which are related to the same single challenge R1. Since the
answer of the first DL oracle query will already be enough to compute the discrete
logarithm of R1 later on, the second query does not provide any additional useful
information to the reduction (neither about the discrete logarithm of R1 nor
about the discrete logarithm of another DL challenge) and is thus wasted. As a
result, the reduction forgoes any hope to solve the OMDL problem when making
the second query.5

How Multiple Nonces in MuSig2 Help the Reduction. With MuSig2 however, the
reduction can handle this situation. Now assume ν = 2, i.e., the reduction will
obtain two (instead of one) group elements R1,1, R1,2 as DL challenges from the
OMDL challenger during the first round of each signing session. This will allow
the reduction to make two DL queries per signing session, and thus be able to
simulate signatures even if the adversary forces different signature hashes c �= c′

in the two executions.
The natural question is how the reduction ensures that it is able to answer

both DL challenges R1,1, R1,2 for each signing session. MuSig2 solves this by
having signers effectively use the linear combination R̂1 = R1,1R

b
1,2 as nonce

where b = Hnon(X̃, (
∏n

i=1 Ri,1,
∏n

i=1 Ri,2),m). As a result, the reduction is able
to program the Hnon and Hsig such that whenever the adversary gives a different

5 This is exactly the issue which had been observed earlier by Nicolisi et al. [29], and
which is exploited in the meta-reduction by Drijvers et al. [11].

198 J. Nick et al.

response to a signing query in the second execution such that c �= c′, then also b
and b′ differ between the two executions. Consequently, the two DL queries made
by the reduction will be answered with some s1 and s′

1 that give rise to two linear
independent equations s1 = r1,1 + br1,2 + a1cx1 and s′

1 = r1,1 + b′r1,2 + a1c
′x1.

After the reduction has extracted x1 from the forgeries output by the adversary
in the two executions, it can solve those equations for the unknowns r1,1 and
r1,2, the discrete logarithms of the DL challenges R1,1 and R1,2.

Similarly, in the case that c = c′, the reduction ensures that b = b′ and
therefore needs only one DL query to simulate the honest signer in both execu-
tions. Thus, it can use the free DL query to obtain a second linear independent
equation.

Note that for this simulation technique, it is not important how the adver-
sary controls the signature hashes c and c′. So far we only considered the case
that the adversary influences c and c′ by choosing its nonces depending on the
honest signer’s nonce. The reduction works equally for an adversary which con-
trols the signature hash computed as Hsig(X̃, R,m) not by influencing R but
instead by being able to choose the message m or the set of signers L (and thus
the aggregate public key X̃) only in the second round of the signing protocol,
i.e., after having seen the honest signer’s nonce. This explains why our scheme
enables preprocessing and broadcasting the nonces (the first round) without hav-
ing determined the message and the set of signers. This is in contrast to existing
schemes, which are vulnerable to essentially the same attack as explained above
if the adversary is given the ability to select the message or the set of signers
after having seen the honest signer’s nonce [26].

So far we discussed only how the reduction is able to handle two different
executions of the adversary (due to a single fork). However, since our reduction
needs to fork the adversary twice to support key aggregation, it needs to handle
four possible executions of the adversary. As a consequence, it will need four DL
queries as well as ν = 4 nonces.

2.4 A More Efficient Solution in the Algebraic Group Model

In the algebraic group model (AGM) [12], the adversary is assumed to be alge-
braic, i.e., whenever it outputs a group element, it outputs a representation of
this group element in the base formed by all group elements it has received so far.
While the AGM is idealized, it is a strictly weaker model than the generic group
model (GGM) [34], i.e., security proofs in the AGM carry over to the GGM
but the AGM imposes fewer restrictions on the adversary. Security proofs in
the AGM work via reductions to hard problems (similar to the standard model)
because computational problems such as DL and OMDL are not information-
theoretically hard in the AGM (as opposed to the GGM). In the AGM, Schnorr
signatures (and related schemes such Schnorr blind signatures [10]) can be proven
secure using a straight-line reduction without forking the execution of the adver-
sary [13].

The main technical reason why our ROM proof works only for MuSig2 with
as many as ν = 4 nonces is that our reduction needs to handle four executions

MuSig2: Simple Two-Round Schnorr Multi-signatures 199

of the adversary due to two applications of the Forking Lemma. Since this fun-
damental reason for requiring ν = 4 in the plain ROM simply disappears in the
AGM, we are able to prove MuSig2 with ν = 2 nonces secure in the combination
ROM+AGM.

Due to space limitations, our results in the AGM+ROM can be found in the
full version of the paper [27].

2.5 Algebraic OMDL: A Falsifiable Variant of OMDL

A cryptographic assumption is algorithmically falsifiable if it can be decided in
p.p.t. whether a given algorithm breaks it.6 While this is true for most standard
assumptions such as the RSA assumption or the DL assumption, it is notably not
true for the OMDL assumption, where the OMDL challenger needs to provide
the adversary with a DL oracle that cannot be implemented in p.p.t. (unless the
DL problem is easy, but then the OMDL assumption does not hold anyway).

While we believe that the OMDL has withstood the test of time, it is still
desirable to avoid non-falsifiable assumptions whenever possible. We observe
that the DL oracle can be in fact implemented in p.p.t. when the solving algo-
rithm is required to be algebraic. In the context of OMDL, this translates to
the requirement that whenever the adversary queries the discrete logarithm of
a group element via the DL oracle, it outputs a representation of this group ele-
ment in the basis formed by the generator and all DL challenges it has received
thus far (which together constitute all group elements it has received thus far).
As a result we obtain a falsifiable variant of the OMDL assumption that we call
the algebraic OMDL (AOMDL) assumption. Since every algebraic algorithm is
also a normal algorithm, the AOMDL assumption is immediately implied by the
well-established OMDL assumption.

Since our reductions in both the ROM and in the AGM+ROM are algebraic
in this sense, we can rely on the falsifiable AOMDL assumption. We would
like to stress that being algebraic here refers to a property of the reduction,
which acts as the algorithm solving (A)OMDL, and our reductions are algebraic
independent of whether the unforgeability adversary, to which the reduction has
access internally, is algebraic. As such, the use of the AOMDL assumption is
independent and orthogonal of our use of the AGM as described in the previous
subsection. In particular we can rely on the AOMDL assumption even in our
ROM-only proof.

We believe that the AOMDL problem is helpful beyond the scope of this
paper, as it turns out that essentially all security proofs in the literature use the
OMDL problem in an algebraic and thus falsifiable fashion [e.g., 5,6,13,29]. We
do not claim that our observation about algebraic algorithms is a deep insight—
in fact implementing the DL oracle is straight-forward given an algebraic solving
algorithm—we simply believe it is useful for the evaluation of security results.
6 Note that there are multiple different formal definitions of falsifiability in the lit-

erature. In this work we work with the commonly used definition by Gentry and
Wichs [14,15] which unlike the definition by Naor [25] allows for interactive assump-
tions.

200 J. Nick et al.

Fig. 1. The algebraic OMDL problem. The changes from the OMDL problem to the
algebraic OMDL problem are in gray.

3 Preliminaries

The security parameter is denoted λ. A group description is a triple (G, p, g)
where G is a cyclic group of order p and g is a generator of G. A (prime-order)
group generation algorithm is an algorithm GrGen which on input 1λ returns a
group description (G, p, g) where p is a λ-bit prime. The group G is denoted
multiplicatively, and we conflate group elements and their encoding when given
as input to hash functions. Given an element X ∈ G, we let logg(X) denote the
discrete logarithm of X in base g, i.e., the unique x ∈ Zp such that X = gx.

Algebraic OMDL Problem. We introduce the algebraic OMDL (AOMDL) prob-
lem, which is at least as hard as the standard one-more discrete logarithm
(OMDL) problem [3,5].

Definition 1 (AOMDL Problem). Let GrGen be a group generation algo-
rithm, and let game AOMDLA

GrGen be as defined in Fig. 1. The algebraic one-more
discrete logarithm (AOMDL) problem is hard for GrGen if for any p.p.t. algo-
rithm A,

AdvAOMDL
A,GrGen(λ) ··= Pr

[
AOMDLA

GrGen(λ) = true
]

= negl(λ) .

We highlight the changes from the standard OMDL problem to the AOMDL
problem in gray in Fig. 1. Since every algorithm solving AOMDL can be turned
into an algorithm solving OMDL by dropping the representation from the
DLogg oracle queries, the AOMDL problem is hard for some GrGen if the OMDL
problem is hard for GrGen.

It is immediate that the entire AOMDLA
GrGen game runs in p.p.t. whenever A

runs in p.p.t., i.e., the assumption that the AOMDL problem is hard is falsifiable
as defined for instance by Gentry and Wichs [14].

MuSig2: Simple Two-Round Schnorr Multi-signatures 201

3.1 Syntax and Security Definition of Multi-signature Schemes

To keep the notation simple, we make a few simplifying assumptions. In partic-
ular, we restrict our syntax and security model to two-round signing algorithms,
and in order to model that the first round can be preprocessed without having
determined a message to be signed or the public keys of all signers, and without
accessing the secret key, those inputs are given only to the second round of the
signing algorithm.

Syntax. A two-round multi-signature scheme Σ with key aggregation consists
of algorithms (Setup,KeyGen,KeyAgg, (Sign,SignAgg,Sign′,SignAgg′,Sign′′),Ver)
as follows. System-wide parameters par are generated by the setup algorithm
Setup taking as input the security parameter. For notational simplicity, we
assume that par is given as implicit input to all other algorithms. The random-
ized key generation algorithm takes no input and returns a secret/public key
pair (sk , pk) ←$KeyGen(). The deterministic key aggregation algorithm KeyAgg
takes a multiset of public keys L = {pk1, . . . , pkn} and returns an aggregate
public key p̃k ··= KeyAgg(pk1, . . . , pkn).

The interactive signature algorithm (Sign,SignAgg,Sign′,SignAgg′,Sign′′) is
run by each signer i and proceeds in a sequence of two communication rounds.
Sign does not take explicit inputs and returns a signer’s first-round output out i

and some first-round secret state statei. SignAgg is a deterministic algorithm
that aggregates the first-round outputs (out1, . . . , outn) from all signers into a
single first-round output out to be broadcast to all signers. Similarly, Sign′ takes
the first-round secret state statei of signer i, the aggregate first-round output out ,
the secret key sk i of signer i, a message m to sign, public keys (pk2, . . . , pkn)
of all cosigners, and returns this signer’s second-round output out ′

i and some
second-round secret state state ′

i, and SignAgg′ is a deterministic algorithm that
aggregates the second-round outputs (out ′

1, . . . , out ′
n) from all signers into a

single second-round output out ′ to be broadcast to all signers. Finally, Sign′′

takes the second-round secret state state ′
i of signer i and the aggregate second-

round output out ′ and outputs a signature σ.
The purpose of the aggregation algorithms SignAgg and SignAgg′ is to enable

savings in the broadcast communication in both signing rounds: An aggregator
node [18,35], which will be untrusted in our security model and can for instance
be one of the signers, can collect the outputs of all signers in both rounds, aggre-
gate the outputs using SignAgg and SignAgg′, respectively, and broadcast only
the aggregate output back to all signers. This optimization is entirely optional.
If it is not desired, each signer can simply broadcast its outputs directly to all
signers, which then all run SignAgg and SignAgg′ by themselves.

The deterministic verification algorithm Ver takes an aggregate public key
p̃k , a message m, and a signature σ, and returns true iff σ is valid for p̃k and m.

Security. Our security model is the same as in previous works on multi-signatures
for multi-signatures with key aggregation [9,11,22] and requires that it is infeasi-
ble to forge multi-signatures involving at least one honest signer. As in previous

202 J. Nick et al.

work [4,8,23], we assume without loss of generality that there is a single honest
public key (representing a honest signer) and that the adversary has corrupted
all other public keys (representing possible cosigners), choosing corrupted public
keys arbitrarily and potentially as a function of the honest signer’s public key.

The security game EUF-CMAA
Σ is defined as follows. A key pair (sk1, pk1) is

generated for the honest signer and the adversary A is given pk1. The adversary
can engage in any number of (concurrent) signing sessions with the honest signer.
Formally, A has access to oracles Sign, Sign′, and Sign′′ implementing the three
steps Sign, Sign′, and Sign′′ of the signing algorithm with the honest signer’s
secret key. This in particular means that the adversary can pass the same L,
containing pk1 multiple times, and the same m to multiple Sign′ calls, effectively
obtaining a signing session in which the honest signer participates multiple times.

Note that oracles Sign′ and Sign′′ expect as input aggregate values out and
out ′, purported to be the aggregation of all signers’ outputs from the respective
previous round. This leaves the task performed by the algorithms SignAgg and
SignAgg′ to the adversary and models that the aggregator node (if present) is
untrusted. We omit explicit oracles for SignAgg and SignAgg′. This is without
loss of generality because these algorithms do not take secret inputs and can be
run by the adversary locally.

Eventually, the adversary returns a multiset L = {pk1, . . . , pkn} of public
keys, a message m, and a signature σ. The game returns true (representing a
win of A) if pk1 ∈ L, the forgery is valid, i.e., Ver(KeyAgg(L),m, σ) = true, and
the adversary never made a Sign′ query for multiset L and message m.

Definition 2 (EUF-CMA). Given a multi-signature scheme with key aggrega-
tion Σ = (Setup,KeyGen,KeyAgg, (Sign,SignAgg,Sign′,SignAgg′,Sign′′),Ver), let
game EUF-CMAA

Σ be as defined above. Then Σ is existentially unforgeable under
chosen-message attacks (EUF-CMA) if for any p.p.t. adversary A,

AdvEUF-CMA
A,Σ (λ) ··= Pr

[
EUF-CMAA

Σ (λ) = true
]

= negl(λ) .

Our security model is based on the model by Bellare and Neven [4] which
was proposed in the context of multi-signatures without key aggregation. Even
though this security model has been used previously for multi-signatures with
key aggregation [9,11,22], one may wonder if it is at all suitable in this context.
We argue in the full version [27] that it is indeed suitable.

4 The Multi-signature Scheme MuSig2

Our new multi-signature scheme MuSig2 is parameterized by a group generation
algorithm GrGen and by an integer ν, which specifies the number of nonces sent
by each signer. The scheme is defined in Fig. 2. Note that verification is exactly
the same as for ordinary key-prefixed Schnorr signatures with respect to the
aggregate public key X̃.

MuSig2: Simple Two-Round Schnorr Multi-signatures 203

Fig. 2. The multi-signature scheme MuSig2[GrGen, ν]. Public parameters par returned
by Setup are implicitly given as input to all other algorithms. We use a helper algo-
rithm MuSigCoef as a wrapper for Hagg to make the description of the scheme more
modular, which will help us describe a variant MuSig2∗ of the scheme with optimized
key aggregation (see the full version [27]).

204 J. Nick et al.

Implementers should be aware that derandomizing techniques often applied
to the signing algorithm of single-signer signatures are in general not secure in the
case of multi-signatures, and that care has to be taken when implementing the
stateful signing algorithm of MuSig2. We discuss these issues as well as further
practical considerations and optimizations in the full version [27].

5 Security of MuSig2 in the ROM

In this section, we establish the security of MuSig2 with ν = 4 nonces in the
random oracle model.

Theorem 1. Let GrGen be a group generation algorithm for which the AOMDL
problem is hard. Then the multi-signature scheme MuSig2[GrGen, ν = 4] is EUF-
CMA in the random oracle model for Hagg, Hnon, Hsig : {0, 1}∗ → Zp.

Precisely, for any adversary A against MuSig2[GrGen, ν = 4] running in time
at most t, making at most qs Sign queries and at most qh queries to each random
oracle, and such that the size of L in any signing session and in the forgery
is at most N , there exists an algorithm D taking as input group parameters
(G, p, g) ← GrGen(1λ), running in time at most

t′ = 4(t + Nq + 6q)texp + O(qN),

where q = 2qh + qs +1 and texp is the time of an exponentiation in G, making at
most 4qs DLogg queries, and solving the AOMDL problem with an advantage

AdvAOMDL
D,GrGen(λ) ≥ (AdvEUF-CMA

A,MuSig2[GrGen,ν=4](λ))4/q3 − (32q2 + 22)/2λ.

Before proving the theorem, we start with an informal explanation of the key
techniques used in the proof. Let us recall the security game defined in Sect. 3.1,
adapting the notation to our setting. Group parameters (G, p, g) and a key pair
(x∗,X∗) for the honest signer are generated. The target public key X∗ is given as
input to the adversary A. Then, the adversary can engage in protocol executions
with the honest signer by providing a message m to sign and a multiset L of
public keys involved in the signing process where X∗ occurs at least once, and
simulating all signers except one instance of X∗.

The Double-Forking Technique. This technique is already used by Maxwell et
al. in the security proof for MuSig [22]. We are repeating the idea below with
slightly modified notation.

The first difficulty is to extract the discrete logarithm x∗ of the challenge pub-
lic key X∗. The standard technique for this would be to “fork” two executions
of the adversary in order to obtain two valid forgeries (R, s) and (R′, s′) for the
same multiset of public keys L = {X1, . . . , Xn} with X∗ ∈ L and the same mes-
sage m such that R = R′, Hsig(X̃, R,m) was programmed in both executions to
some common value hsig, Hagg(L,Xi) was programmed in both executions to the
same value ai for each i such that Xi �= X∗, and Hagg(L,X∗) was programmed
to two distinct values hagg and h′

agg in the two executions, implying that

MuSig2: Simple Two-Round Schnorr Multi-signatures 205

gs = R(X∗)n∗hagghsig
∏

i∈{1,...,n}
Xi �=X∗

X
aihsig
i , gs′

= R(X∗)n∗h′
agghsig

∏

i∈{1,...,n}
Xi �=X∗

X
aihsig
i ,

where n∗ is the number of times X∗ appears in L. This would allow to compute
the discrete logarithm of X∗ by dividing the two equations above.

However, simply forking the executions with respect to the answer to the
query Hagg(L,X∗) does not work: indeed, at this moment, the relevant query
Hsig(X̃, R,m) might not have been made yet by the adversary,7 and there is no
guarantee that the adversary will ever make this same query again in the second
execution, let alone return a forgery corresponding to the same Hsig query. In
order to remedy this situation, we fork the execution of the adversary twice:
once on the answer to the query Hsig(X̃, R,m), which allows us to retrieve the
discrete logarithm of the aggregate public key X̃ with respect to which the
adversary returns a forgery, and on the answer to Hagg(L,X∗), which allows us
to retrieve the discrete logarithm of X∗.

As in Bellare and Neven [4], our technical tool to handle forking of the adver-
sary is a “generalized Forking Lemma” which extends Pointcheval and Stern’s
Forking Lemma [30] and which does not mention signatures nor adversaries and
only deals with the outputs of an algorithm A run twice on related inputs.

However, the generalized Forking Lemma of Bellare and Neven [4] is not
general enough for our setting, and we rely on the following variant.

Lemma 1. Fix integers q and m. Let A be a randomized algorithm which
takes as input a main input inp generated by some probabilistic algorithm
InpGen(), elements h1, . . . , hq from some sampleable set H, elements v1, . . . , vm

from some sampleable set V , and random coins from some sampleable set
R, and returns either a distinguished failure symbol ⊥, or a tuple (i, j, out),
where i ∈ {1, . . . , q}, j ∈ {0, . . . ,m}, and out is some side output. The
accepting probability of A, denoted acc(A), is defined as the probability, over
inp ← InpGen(), h1, . . . , hq ←$ H, v1, . . . , vm ←$ V , and the random coins of A,
that A returns a non-⊥ output. Consider algorithm ForkA, taking as input inp
and v1, v

′
1, . . . , vm, v′

m ∈ V , described in Fig. 3. Let frk be the probability (over
inp ← InpGen(), v1, v

′
1, . . . , vm, v′

m ←$ V , and the random coins of ForkA) that
ForkA returns a non-⊥ output. Then

frk ≥ acc(A)
(

acc(A)
q

− 1
|H|

)

.

Since the proof of the lemma is very similar to the one of [4, Lemma 1], it is
deferred to the full version [27].

7 In fact, it is easy to see that the adversary can only guess the value of the aggregate
public key ˜X corresponding to L at random before making the relevant queries
Hagg(L, Xi) for Xi ∈ L, so that the query Hsig(˜X, R, m) can only come after the
relevant queries Hagg(L, Xi) except with negligible probability.

206 J. Nick et al.

Fig. 3. The “forking” algorithm ForkA built from A.

Simulating the Honest Signer. For now, consider the scheme with ν = 1. (We will
illustrate the problem of this choice further down in this section.) The adversary
has access to an interactive signing oracle, which enables it to open sessions with
the honest signer. The signing oracle consists of three sub-oracles Sign, Sign′,
and Sign′′ but note that we can without loss of generality ignore Sign′′, which
computes the final signature s =

∑n
i=1 si mod p, because it does not depend on

secret state and thus the adversary can simply simulate it locally.
The reduction’s strategy for simulating the signing oracle is to use the DL

oracle available in the formulation of the AOMDL problem as follows. Whenever
the adversary starts the k-th signing session by querying Sign, the reduction
uses a fresh DL challenge R1,1 from the AOMDL challenge oracle and returns
it as its nonce to the adversary. At any later time the adversary queries Sign′

with session counter k, a nonce R (purported to be obtained as R =
∏n

i=1 Ri,1),
a message m to sign, and n − 1 public keys X2, . . . , Xn. The reduction then sets
L = {X1 = X∗,X2, . . . , Xn}, computes X̃ and c = Hsig(X̃, R,m), and uses the
DL oracle in the formulation of the AOMDL problem to compute s1 as

s1 = DLogg(R1,1(X∗)ca1 , . . .),

where the required algebraic representation of R1,1(X∗)ca1 is omitted in this
informal description and can be computed naturally by the reduction. The reduc-
tion then returns s1 to the adversary. Since a fresh DL challenge is used as R1,1 in
each signing query, the reduction will be able to compute its discrete logarithm
r1,1 once x∗ has been retrieved via r1,1 = ca1x

∗ − s1.

Leveraging Two or More Nonces. The main obstacle in the proof and the nov-
elty in this work is to handle adversaries whose behavior follows this pattern:

MuSig2: Simple Two-Round Schnorr Multi-signatures 207

The adversary initiates a signing session by querying the oracle Sign to obtain
R1,1, then makes a query Hsig(X̃, R,m), for which it will output a forgery later,
and only then continues the signing session with a query to Sign′ with argu-
ments m,R, (X2, . . . , Xn). Our goal is to fork the execution of the adversary at
the Hsig query. But then, the adversary may make Sign′ queries with different
arguments m,R, (X2, . . . , Xn), and m′, R′, (X ′

2, . . . , X
′
n′) in the two executions.

In that case, this results in different signature hashes c �= c′ and requires the
reduction simulating the honest signer to make two DL oracle queries in order
to answer the Sign′ query. Consequently, the reduction will lose the AOMDL
game because it had only requested the single AOMDL challenge R1,1.

This is exactly where ν ≥ 2 nonces will come to the rescue. Now assume ν = 2,
i.e., the reduction will obtain two (instead of one) group elements R1,1, R1,2 as
challenges from the AOMDL challenger. This will allow the reduction to make
two DL queries. In order to answer Sign′, the reduction follows the MuSig2
scheme by computing X̃ from the public keys, and b by hashing X̃, m and all
R values of the signing session with Hnon. The reduction then aggregates the
nonces of the honest signer into its effective nonce R̂1 = R1,1R

b
1,2, queries the

signature hash c and replies to the adversary with s1 = DLogg(R̂1(X∗)a1c, . . .).
Now since the reduction has obtained two AOMDL challenges, it can make a

second DLogg query to compute s′
1 = DLogg(R̂′

1(X
∗)a′

1c′
, . . .) and answer the

Sign′ query in the second execution. Moreover, to ensure that the AOMDL chal-
lenge responses r1,1 and r1,2 can be computed after extracting x∗, the reduction
programs Hnon to give different responses in each execution after a fork. Let us
assume for now that the signing session was started with a Sign query after the
Hagg fork. We can distinguish the following two cases depending on when Hnon

is queried with the inputs corresponding to the signing session:

Hnon is queried after the Hsig fork. Regardless of what values the adversary
sends in Sign′, hashing with Hnon ensures that with overwhelming probability
the second execution will use a value b′ that is different from b in the first
execution. In order to answer the Sign′ queries, the reduction uses DLogg

to compute s1 and s′
1 resulting in a system of linear equations

r1,1 + br1,2 = s1 − a1cx
∗ mod p

r1,1 + b′r1,2 = s′
1 − a′

1c
′x∗ mod p

with unknowns r1,1 and r1,2. As the system is linearly independent (as b �= b′)
the reduction can solve it and forward the solutions to the AOMDL challenger.

Hnon is queried before the Hsig fork. This implies that b in the first exe-
cution is equal to b′ in the second execution and requires the reduction to
ensure that a′

1 and c′ are identical in both executions. Then the input to the
DLogg query is also identical and the reduction can simply cache and reuse
the result of the DLogg query from the first execution to save the DLogg

query in the second execution. (Without this caching, the reduction would
waste a second DLogg query to compute s′

1 = s1, which it knows already,

208 J. Nick et al.

and then would not have a second, linearly independent equation that allows
solving for r1,1 and r1,2.)
The value a1 is equal to a′

1 because the inputs of Hnon contain X̃ which implies
that the corresponding Hagg happened before Hnon and therefore before the
fork. Similarly, Hsig requires the aggregate nonce R of the signing session and
therefore Hnon must be queried before the corresponding Hsig. In order to
argue that c = c′, observe that from the inputs (and output) of a Hnon query
it is possible to compute the inputs of the Hsig query. Therefore, the reduction
can make such an internal Hsig query for every Hnon query it receives. This Hsig

query is before the fork point implying c = c′ as desired. (The reduction does
not need to handle the case that this Hsig query is the fork point, because then
the values L and m of forgery were queried in a signing session and thus the
forgery is invalid.) Now the reduction has a DLogg query left to compute the
discrete logarithm of R1,1, which enables to compute the discrete logarithm
of R1,2 after x∗ has been extracted.

More generally, if the signing session can be started before the Hagg fork,
the reduction may have to provide different signatures in all four executions. To
answer the signature queries nonetheless, the reduction requires four DL queries
and therefore requires MuSig2 with ν = 4 nonces. Similar to the above, whenever
Hnon is queried after the Hsig fork, the reduction ends up with up to four equa-
tions, which are constructed to be linearly independent with high probability.
Whenever Hnon is queried before the Hsig fork, the DLogg queries in the corre-
sponding executions will be identical and the result can be cached and reused.
The DLogg queries saved due to caching can then be used to complete the linear
system to ν = 4 linearly independent equations, and the reduction can solve for
the unknowns r1,1, . . . , r1,4.

5.1 Security Proof

Proof Overview. We first construct a “wrapping” algorithm B which essentially
runs the adversary A and returns a forgery together with some information about
the adversary execution, unless some bad events happen. Algorithm B simulates
the random oracles Hagg, Hnon, and Hsig uniformly at random and the signing
oracle by obtaining ν DL challenges from the AOMDL challenge oracle for each
Sign query and by making a single query to the DL oracle for each Sign′ query.
Then, we use B to construct an algorithm C which runs the forking algorithm
ForkB as defined in Sect. 3 (where the fork is w.r.t. the answer to the Hsig query
related to the forgery), allowing it to return a multiset of public keys L together
with the discrete logarithm of the corresponding aggregate public key. Finally,
we use C to construct an algorithm D computing the DL of the public key of the
honest signer by running ForkC (where the fork is now w.r.t. the answer to the
Hagg query related to the forgery). Throughout the proof, the reader might find
helpful to refer to Fig. 4 which illustrates the inner working of D.

Due to D and C carefully relaying DL challenges, it is ensured that the
ν ≥ 4 DL challenges that B obtains in each Sign query are identical across all

MuSig2: Simple Two-Round Schnorr Multi-signatures 209

Fig. 4. A possible execution of algorithm D. Each path from left to right represents
an execution of the adversary A. Each vertex symbolizes a call to random oracles Hagg

and Hsig, and the edge originating from this vertex symbolizes the response used for
the query. Leaves symbolize the forgery returned by the adversary.

executions of B. Since D (via C and B) obtains 1 + νqs DL challenges (one for
the public key of the honest signer and ν for each of the qs signing sessions) and
solves all of these challenges using at most νqs queries to the DL oracle (one for
each of the qs signing session in at most 4 ≤ ν executions due to double-forking),
algorithm D solves the AOMDL problem.

Normalizing Assumptions and Conventions. Let a (t, qs, qh, N)-adversary be an
adversary running in time at most t, making at most qs Sign queries, at most
qh queries to each random oracle, and such that |L| in any signing session and
in the forgery is at most N .

In all the following, we assume that the adversary only makes “well-formed”
random oracles queries, meaning that X∗ ∈ L and X ∈ L for any query
Hagg(L,X). This is without loss of generality, since “ill-formed” queries are irrel-
evant and could simply be answered uniformly at random in the simulation.

We further assume without loss of generality that the adversary makes exactly
qh queries to each random oracle and exactly qs queries to the Sign oracle, and
that the adversary closes every signing session, i.e., for every Sign query it will
also make a corresponding Sign′ query at some point. This is without loss of
generality because remaining queries can be emulated after the adversary has
terminated (in the case of Sign′ queries using a set of public keys and a message
m which are different from the adversary’s forgery to make sure not to invalidate
a valid forgery).

We ignore the Sign′′ oracle in the simulation. This is without loss of general-
ity because it does not depend on secret state and thus the adversary can simply
simulate it locally.

Lemma 2. Given some integer ν, let A be a (t, qs, qh, N)-adversary in the ran-
dom oracle model against the multi-signature scheme MuSig2[GrGen, ν], and
let q = 2qh + qs + 1. Then there exists an algorithm B that takes as
input group parameters (G, p, g) ← GrGen(1λ), uniformly random group ele-
ments X∗, U1, . . . , Uνqs

∈ G, and uniformly random scalars hagg,1, . . . , hagg,q,

210 J. Nick et al.

hnon,1, . . . , hnon,q, hsig,1, . . . , hsig,q ∈ Zp, makes at most qs queries to a discrete
logarithm oracle DLogg, and with accepting probability (as defined in Lemma 1)

acc(B) ≥ AdvEUF-CMA
A,MuSig2[GrGen,ν](λ) − 4q2

2λ

outputs a tuple (iagg, jagg, isig, jsig, L,R, s,�a) where iagg, isig ∈ {1, . . . , q}, jagg,
jsig ∈ {0, . . . , q}, L = {X1, . . . , Xn} is a multiset of public keys such that X∗ ∈ L,
�a = (a1, . . . , an) ∈ Z

n
p is a tuple of scalars such that ai = hagg,iagg for any i such

that Xi = X∗, and

gs = R

n∏

i=1

X
aihsig,isig
i . (2)

Proof. We construct algorithm B as follows. It initializes three empty sets Tagg,
Tnon and Tsig for storing key-value pairs (k, v), which we write in assignment
form “T (k) ··= v” for a set T . The sets represent tables for storing programmed
values for respectively Hagg, Hnon and Hsig. It also initializes four counters ctrhagg,
ctrhnon, ctrhsig, and ctrs (initially zero), an empty set S for keeping track of open
signing sessions, an empty set Q for keeping track of completed signing sessions,
an empty set K for keeping track of aggregate keys resulting from queries to
Hagg, and two flags BadOrder and KeyColl (initially false) that will help keep
track of bad events. Then, it picks random coins ρA, runs the adversary A on
(G, p, g) and public key X∗ as input and answers its queries as follows.

– Hash query Hagg(L,X): (Recall that by assumption, X∗ ∈ L and X ∈ L.)
If Tagg(L,X) is undefined, then B increments ctrhagg, randomly assigns
Tagg(L,X ′) ←$Zp for all X ′ ∈ L \ {X∗}, and assigns Tagg(L,X∗) ··=
hagg,ctrhagg . Then, B computes the aggregate key corresponding to L, namely
X̃ ··=

∏n
i=1 Xai

i where {X1, . . . , Xn} ··= L and ai ··= Tagg(L,Xi). If X̃ is equal
to the first argument of some defined entry in Tsig (i.e., there exists R and m

such that Tsig(X̃, R,m) �= ⊥), then B sets BadOrder ··= true. If X̃ ∈ K, then
B sets KeyColl ··= true, otherwise it sets K ··= K ∪ {X̃}. Finally, it returns
Tagg(L,X).

– Hash query Hnon(X̃, (R1, . . . , Rν),m): If Tnon(X̃, (R1, . . . , Rν),m) is unde-
fined, then B increments ctrhnon and assigns Tnon(X̃, (R1, . . . , Rν),m) ··=
hnon,ctrhnon . Then B sets b ··= Tnon(X̃, (R1, . . . , Rν),m) and computes R ··=
∏ν

j=1 Rbj−1

j . If Tsig(X̃, R,m) is undefined, then B makes an internal query to
Hsig(X̃, R,m). Finally, it returns b.

– Hash query Hsig(X̃, R,m): If Tsig(X̃, R,m) is undefined, then B increments
ctrhsig and assigns Tsig(X̃, R,m) ··= hsig,ctrhsig . Then, it returns Tsig(X̃, R,m).

– Signing query Sign(): B increments ctrs, adds ctrs to S, lets k̂ ··= ν(ctrs −
1) + 1 and sends (R1,1 ··= Uk̂, . . . , R1,ν ··= Uk̂+ν−1) to the adversary.

– Signing query Sign′(k, out ,m, (pk2, . . . , pkn)): If k /∈ S then the signing query
is answered with ⊥. Otherwise, B removes k from S. Let k′ ··= ν(k − 1) + 1

MuSig2: Simple Two-Round Schnorr Multi-signatures 211

and R1,1 ··= Uk′ , . . . , R1,ν ··= Uk′+ν−1. Let Xi ··= pk i for each i ∈ {2, . . . , n}
and let L ··= {X1 = X∗,X2, . . . , Xn}. If Tagg(L,X∗) is undefined, B makes
an internal query to Hagg(L,X∗) which ensures that Tagg(L,Xi) is defined for
each i ∈ {1, . . . , n}. It sets ai ··= Tagg(L,Xi), computes X̃ ··=

∏n
i=1 Xai

i , and
sets Q ··= Q ∪ {(L,m)}. Then B sets (R1, . . . , Rν) ··= out . If Tnon(X̃, (R1, . . . ,

Rν),m) is undefined, then B makes an internal query to Hnon(X̃, (R1, . . . ,

Rν),m). It sets b ··= Tnon(X̃, (R1, . . . , Rν),m), aggregates the nonces as R ··=∏ν
j=1 Rbj−1

j ,8 and sets c ··= Tsig(X̃, R,m), where Tsig(X̃, R,m) is defined due
to the internal Hsig query when handling the internal Hnon query. Then, B
computes the honest signer’s effective nonce R̂1 ··=

∏ν
j=1 Rbj−1

1,j . It setsα ··= 0
and (βi)1≤i≤k̂

··= (a1c, 0, . . . , 0, βk′ = b0 = 1, . . . , βk′+ν−1 = bν−1, 0, . . . , 0) for
k̂ ··= ν(ctrs − 1) + 1, and obtains s1 ··= DLogg(R̂1(X∗)a1c

, (α, (βi)1≤i≤k̂)) by
querying the DL oracle. Finally, B returns s1.

If A returns ⊥ or if BadOrder = true or KeyColl = true at the end of the
game, then B outputs ⊥. Otherwise, let (L,m, (R, s)) denote the output of the
adversary, where (R, s) is a purported forgery for a public key multiset L such
that X∗ ∈ L and a message m. Then, B parses L as {X1 = X∗, . . . , Xn} and
checks the validity of the forgery as follows. If Tagg(L,X∗) is undefined, it makes
an internal query to Hagg(L,X∗) which ensures that Tagg(L,Xi) is defined for
each i ∈ {1, . . . , n}, sets ai ··= Tagg(L,Xi), and computes X̃ ··=

∏n
i=1 Xai

i . If
Tsig(X̃, R,m) is undefined, it makes an internal query to Hsig(X̃, R,m) and lets
c ··= Tsig(X̃, R,m). If gs �= RX̃c, i.e., the forgery is not a valid signature, or if
(L,m) ∈ Q, i.e., the forgery is invalid because the adversary made a Sign′ query
for L and m, B outputs ⊥. Otherwise, it takes the following additional steps. Let

– iagg be the index such that Tagg(L,X∗) = hagg,iagg ,
– jagg be the value of ctrhnon at the moment Tagg(L,X∗) is assigned,
– isig be the index such that Tsig(X̃, R,m) = hsig,isig ,
– jsig be the value of ctrhnon at the moment Tsig(X̃, R,m) is assigned.

Then B returns (iagg, jagg, isig, jsig, L,R, s,�a), where �a = (a1, . . . , an). By con-
struction, ai = hagg,iagg for each i such that Xi = X∗, and the validity of the
forgery implies Equation (2).

Hagg is called at most qh times by the adversary, at most once per Sign′

query, and at most once when verifying the forgery, hence at most qh + qs + 1
times in total. Similarly, Hnon is called at most qh times by the adversary and
at most once per Sign′ query, hence at most qh + qs times in total. Finally, Hsig

is called at most qh times by the adversary, at most once per Hnon query, and at
most once when verifying the forgery, hence at most 2qh + qs + 1 times in total.
Hence, each random oracle is called at most q = 2qh + qs + 1 times in total.

8 This computation can be saved by caching the result when handling the internal
Hnon query.

212 J. Nick et al.

We now lower bound the accepting probability of B. Since hagg,1, . . . , hagg,q,
hnon,1, . . . , hnon,q and hsig,1, . . . , hsig,q are uniformly random, B perfectly simu-
lates the security experiment to the adversary. Moreover, when the adversary
eventually returns a forgery, B returns a non-⊥ output unless BadOrder or
KeyColl is set to true. Hence, by the union bound,

acc(B) ≥ AdvEUF-CMA
A,MuSig2[GrGen,ν](λ) − Pr [BadOrder] − Pr [KeyColl] .

It remains to upper bound Pr [BadOrder] and Pr [KeyColl]. Note that for any
query Hagg(L′,X ′), either Tagg(L′,X ′) is already defined, in which case Hagg

returns immediately and neither BadOrder nor KeyColl can be set to true, or
Tagg(L′,X ′) is undefined, in which case Tagg(L′,X ′′) is undefined for every X ′′ ∈
L′ since all these table values are set at the same time when the first query
Hagg(L′, ∗) happens. In the latter case, the corresponding aggregate key is

X̃ ′ = (X∗)n∗hagg,i · Z

where n∗ ≥ 1 is the number of times X∗ appears in L′ and hagg,i (where i is
the value of ctrhagg when Tagg(L′,X∗) is set) is uniformly random in Zp and
independent of Z which accounts for public keys different from X∗ in L′. Hence,
X̃ ′ is uniformly random in G of size p ≥ 2λ−1. Since there are always at most
q defined entries in Tsig and at most q queries to Hagg, BadOrder is set to true
with probability at most q2/2λ−1. Similarly, the size of K is always at most q
(since at most one element is added per Hagg query), hence KeyColl is set to true
with probability at most q2/2λ−1. Combining all of the above, we obtain

acc(B) ≥ AdvEUF-CMA
A,MuSig2[GrGen,ν](λ) − 4q2

2λ
.

�
Using B, we now construct an algorithm C which returns a multiset of public

keys L together with the discrete logarithm of the corresponding aggregate key.

Lemma 3. Given some integer ν, let A be a (t, qs, qh, N)-adversary in the
random oracle model against the multi-signature scheme MuSig2[GrGen, ν] and
let q = 2qh + qs + 1. Then there exists an algorithm C that takes as
input group parameters (G, p, g) ← GrGen(1λ), uniformly random group ele-
ments X∗, U1, . . . , Uνqs

∈ G, and uniformly random scalars hagg,1, . . . , hagg,q,
hnon,1, h

′
non,1, . . . , hnon,q, h

′
non,q ∈ Zp, makes at most 2qs queries to a discrete

logarithm oracle DLogg, and with accepting probability (as defined in Lemma 1)

acc(C) ≥ (AdvEUF-CMA
A,MuSig2[GrGen,ν](λ))2

q
− 2(4q + 1)

2λ

outputs a tuple (iagg, jagg, L,�a, x̃) where iagg ∈ {1, . . . , q}, jagg ∈ {0, . . . , q}, L =
{X1, . . . , Xn} is a multiset of public keys such that X∗ ∈ L, �a = (a1, . . . , an) ∈
Z

n
p is a tuple of scalars such that ai = hagg,iagg for any i such that Xi = X∗, and

x̃ is the discrete logarithm of X̃ =
∏n

i=1 Xai
i in base g.

MuSig2: Simple Two-Round Schnorr Multi-signatures 213

Proof. Algorithm C runs ForkB with B as defined in Lemma 2 and takes addi-
tional steps as described below. The mapping with notation of our Forking
Lemma (Lemma 1) is as follows:

– (G, p, g), X∗, U1, . . . , Uνqs
, and hagg,1, . . . , hagg,q play the role of inp,

– hnon,1, h
′
non,1, . . . , hnon,q, h

′
non,q play the role of v1, v

′
1, . . . , vm, v′

m,
– hsig,1, . . . , hsig,q play the role of h1, . . . , hq,
– (isig, jsig) play the role of (i, j),
– (iagg, jagg, L,R, s,�a) play the role of out .

In more details, C picks random coins ρB and uniformly random scalars hsig,1, . . . ,
hsig,q ∈ Zp, and runs algorithm B on coins ρB , group description (G, p, g), group
elements X∗, U1, . . . , Uνqs

∈ G, and scalars hagg,1, . . . , hagg,q, hnon,1, . . . , hnon,q,
hsig,1, . . . , hsig,q ∈ Zp. Recall that scalars hagg,1, . . . , hagg,q and hnon,1, h

′
non,1, . . . ,

, hnon,q, h
′
non,q are part of the input of C and the former will be the same in

both runs of B. All DLogg oracle queries made by B are relayed by C to its own
DLogg oracle. If B returns ⊥, C returns ⊥ as well. Otherwise, if B returns a tuple
(iagg, jagg, isig, jsig, L,R, s,�a), where L = {X1, . . . , Xn} and �a = (a1, . . . , an), C
picks uniformly random scalars h′

sig,isig
, . . . , h′

sig,q ∈ Zp and runs B again with
the same random coins ρB on input

(G, p, g),X∗, U1, . . . , Uνqs
,

hagg,1, . . . , hagg,q,

hnon,1, . . . , hnon,jsig , h
′
non,jsig+1, . . . , h

′
non,q,

hsig,1, . . . , hsig,isig−1, h
′
sig,isig , . . . , h

′
sig,q.

Again, all DLogg oracle queries made by B are relayed by C to its own DLogg

oracle. If B returns ⊥ in this second run, C returns ⊥ as well. If B returns a
second tuple (i′agg, j

′
agg, i

′
sig, j

′
sig, L

′, R′, s′,�a′), where L′ = {X ′
1, . . . , X

′
n′} and �a′ =

(a′
1, . . . , a

′
n′), C proceeds as follows. Let X̃ =

∏n
i=1 Xai

i and X̃ ′ =
∏n′

i=1(X
′
i)

a′
i

denote the aggregate public keys from the two forgeries. If isig �= i′sig, or isig = i′sig
and hsig,isig = h′

sig,isig
, then C returns ⊥. Otherwise, if isig = i′sig and hsig,isig �=

h′
sig,isig

, we will prove shortly that

iagg = i′agg, jagg = j′
agg, L = L′, R = R′, and �a = �a′, (3)

which implies in particular that X̃ = X̃ ′. By Lemma 2, the two outputs returned
by B are such that

gs = RX̃hsig,isig and gs′
= R′(X̃ ′)h′

sig,isig = RX̃
h′
sig,isig ,

which allows C to compute the discrete logarithm of X̃ as

x̃ ··= (s − s′)(hsig,isig − h′
sig,isig)

−1 mod p.

Then C returns (iagg, jagg, L,�a, x̃).

214 J. Nick et al.

C returns a non-⊥ output if ForkB does, so that by Lemmas 1 and 2, and
letting ε = AdvEUF-CMA

A,MuSig2[GrGen,ν](λ), C’s accepting probability satisfies

acc(C) ≥ acc(B)
(

acc(B)
q

− 1
p

)

≥ (ε − 4q2/2λ)2

q
− ε − 4q2/2λ

2λ−1

=
ε2

q
− 2ε(4q + 1)

2λ
+

8q2(2q + 1)
22λ

≥ ε2

q
− 2(4q + 1)

2λ
.

It remains to prove the equalities of Eq. (3). In B’s first execution, hsig,isig is
assigned to Tsig(X̃, R,m), while is B’s second execution, h′

sig,isig
is assigned to

Tsig(X̃ ′, R′,m′). Note that these two assignments can happen either because of
a direct query to Hsig by the adversary, during a query to Hnon, during a Sign′

query, or during the final verification of the validity of the forgery. Up to these
two assignments, the two executions are identical since B runs A on the same
random coins and input, uses the same values hagg,1, . . . , hagg,q for Tagg(·,X∗)
assignments, the same values hsig,1, . . . , hsig,isig−1 for Tsig assignments, and the
same values hnon,1, . . . , hnon,jsig for Tnon assignments, Tagg(·,X �= X∗) assign-
ments, and DL oracle outputs s1 in Sign′ queries. Since both executions are iden-
tical up to the two assignments Tsig(X̃, R,m) ··= hsig,isig and Tsig(X̃ ′, R′,m′) ··=
h′

sig,isig
, the arguments of the two assignments must be the same, which in partic-

ular implies that R = R′ and X̃ = X̃ ′. Assume that L �= L′. Then, since X̃ = X̃ ′,
this would mean that KeyColl is set to true in both executions, a contradiction
since B returns a non-⊥ output in both executions. Hence, L = L′. Since in both
executions of B, BadOrder is not set to true, assignments Tagg(L,X∗) ··= hagg,iagg

and Tagg(L′,X∗) ··= hagg,i′
agg

necessarily happened before the fork. This implies
that iagg = i′agg, jagg = j′

agg, and �a = �a′. �
We are now ready to prove Theorem 1 by constructing from C an algorithm

D solving the AOMDL problem.

Proof of Theorem 1. Fix some integer ν ≥ 4.9 Algorithm D runs ForkC with C as
defined in Lemma 3 and takes additional steps as described below. The mapping
with the notation in our Forking Lemma (Lemma 1) is as follows:

– (G, p, g), X∗, U1, . . . , Uνqs
play the role of inp,

– (hnon,1, h
′
non,1), (h′′

non,1, h
′′′
non,1), . . . , (hnon,q, h

′
non,q), (h′′

non,q, h
′′′
non,q) play the

role of v1, v′
1, . . . , vm, v′

m,
– hagg,1, . . . , hagg,q play the role of h1, . . . , hq,
– (iagg, jagg) play the role of (i, j),
– (L,�a, x̃) play the role of out .

9 Theorem 1 states the security of MuSig2 only for ν = 4, because there is no reason
to use more than four nonces in practice. The proof works for any ν ≥ 4.

MuSig2: Simple Two-Round Schnorr Multi-signatures 215

In more details, algorithm D makes νqs + 1 queries to its challenge oracle
X∗, U1, . . . , Uνqs

← Ch(), picks random coins ρC and scalars hagg,1, . . . , hagg,q,
hnon,1, h

′
non,1, . . . , hnon,q, h

′
non,q ∈ Zp, and runs C on coins ρC , group description

(G, p, g), group elements X∗, U1, . . . , Uνqs
∈ Zp, and scalars hagg,1, . . . , hagg,q,

hnon,1, h
′
non,1, . . . , hnon,q, h

′
non,q ∈ Zp. It relays all DLogg oracle queries

made by C to its own DLogg oracle, caching pairs of group elements
and responses to avoid making multiple queries for the same group ele-
ment. If C returns ⊥, D returns ⊥ as well. Otherwise, if C returns a tuple
(iagg, jagg, L,�a, x̃), D picks uniformly random scalars h′

agg,iagg
, . . . , h′

agg,q ∈ Zp

and h′′
non,jagg+1, h

′′′
non,jagg+1, . . . , h

′′
non,q, h

′′′
non,q ∈ Zp, and runs C again with the

same random coins ρC on input X∗, U1, . . . , Uνqs
,

hagg,1, . . . , hagg,iagg−1, h
′
agg,iagg , . . . , h

′
agg,q, and

hnon,1, h
′
non,1 . . . , hnon,jagg , h

′
non,jagg , h

′′
non,jagg+1, h

′′′
non,jagg+1, . . . , h

′′
non,q, h

′′′
non,q.

It relays all DLogg oracle queries made by C to its own DLogg oracle
after looking them up in its cache to avoid making duplicate queries. If C
returns ⊥ in this second run, D returns ⊥ as well. If C returns a second
tuple (i′agg, j

′
agg, L

′,�a′, x̃′), D proceeds as follows. Let L = {X1, . . . , Xn}, �a =
(a1, . . . , an), L′ = {X ′

1, . . . , X
′
n′}, and �a′ = (a′

1, . . . , a
′
n). Let n∗ be the number of

times X∗ appears in L. If iagg �= i′agg, or iagg = i′agg and hagg,iagg = h′
agg,iagg

, D
returns ⊥. Otherwise, if iagg = i′agg and hagg,iagg �= h′

agg,iagg
, then we will show

below that

L = L′ and ai = a′
i for each i such that Xi �= X∗. (4)

By Lemma 3, we have that

gx̃ =
n∏

i=1

Xai
i = (X∗)n∗hagg,iagg

∏

i∈{1,...,n}
Xi �=X∗

Xai
i ,

gx̃′
=

n∏

i=1

X
a′

i
i = (X∗)n∗h′

agg,iagg
∏

i∈{1,...,n}
Xi �=X∗

Xai
i .

Thus, D can compute the discrete logarithm of X∗ as

x∗ ··= (x̃ − x̃′)(n∗)−1(hagg,iagg − h′
agg,iagg)

−1 mod p.

We will now prove the equalities in Eq. (4). In the two executions of B run
within the first execution of C, hagg,iagg is assigned to Tagg(L,X∗), while in the
two executions of B run within the second execution of C, h′

agg,iagg
is assigned

to Tagg(L′,X∗). Note that these two assignments can happen either because of
a direct query Hagg(L,X) made by the adversary for some key X ∈ L (not
necessarily X∗), during a signing query, or during the final verification of the

216 J. Nick et al.

validity of the forgery. Up to these two assignments, the four executions of A
are identical since B runs A on the same random coins and the same input,
uses the same values hagg,1, . . . , hagg,iagg−1 for Tagg(·,X∗) assignments, the same
values hsig,1, . . . , hsig,q for Tsig assignments, the same values hnon,1, . . . , hnon,jagg

for Tnon assignments, Tagg(·,X �= X∗) assignments, and the DL oracle outputs
s1 in Sign′ queries (note that this relies on the fact that in the four executions
of B, BadOrder is not set to true). Since the four executions of B are identical
up to the assignments Tagg(L,X∗) ··= hagg,iagg and Tagg(L′,X∗) ··= h′

agg,iagg
, the

arguments of these two assignments must be the same, which implies that L = L′.
Besides, all values Tagg(L,X) for X ∈ L \ {X∗} are chosen uniformly at random
by B using the same coins in the four executions, which implies that ai = a′

i for
each i such that Xi �= X∗. This shows the equalities in Eq. (4).

Recall that D internally ran four executions of B (throughout forking in ForkB

and in ForkC). Consider a Sign query handled by B, and let i be the index such
that the group elements Ui, . . . , Ui+ν−1 queried by D to Ch were assigned to
R1,1, . . . R1,ν by B when handling this query. In the corresponding Sign′ query,
algorithm B has computed a1, b and c and has queried the DL oracle with

s1 ··= DLogg

((
ν∏

j=1

Rbj−1

1,j

)

(X∗)a1c
, . . .

)

(5)

(and the appropriate algebraic representation, which we do not repeat here).
Note that all four executions of B have been passed the same group elements
Ui, . . . , Ui+ν−1 as input to be used in Sign queries. However, when handling the
corresponding Sign′ queries, B may have made different queries to the DL oracle
in the four executions.10

Algorithm D initializes a flag LinDep representing a bad event and attempts
to deduce the discrete logarithm of all challenges which were used in each Sign
query in all four executions of B as follows.

For each Sign′(k, . . .) query with session index k, algorithm D proceeds to
build a system of ν linear equations with unknowns r1, . . . , rν , the discrete log-
arithms of R1,1, . . . , R1,ν . Let Pk be the partition of the four executions of B
such that two executions are in the same component if they were identical up to
assignment of the Tnon entry accessed by the Sign′(k, . . .) query handler when
defining b ··= Tnon(X̃, (R1, . . . , Rν),m).11 Consider the variables b, a1, c, s1 in the
Sign′(k, . . .) query handler within all executions within some component
 ∈ Pk.
We will show below that all executions in component
 ∈ Pk assign identical
values b

(�)
, a

(�)
1 , c

(�)
, s

(�)
1 to these variables. As a consequence, all executions in

component
 pass identical group elements as inputs to their DL oracles in the

10 For example, the adversary may have replied with different L, m or R values in
different executions, or algorithm B may have received different “hnon” values.

11 For example, all four executions (as visualized in Fig. 4) are in the same component if
the corresponding Tnon value was set before the Hagg fork point, and two executions
in the same branch of the Hagg fork are in the same component if the Tnon value was
set before the Hsig fork point.

MuSig2: Simple Two-Round Schnorr Multi-signatures 217

Sign′(k, . . .) query handler (see Eq. (5)). Thus, due to the caching of DL oracle
replies in D, algorithm D has used only |Pk| DL queries to its own DL oracle
to answer the DL oracle queries originating by all four executions of B. Then D
has a system of |Pk| ≤ 4 ≤ ν linear equations

ν∑

j=1

(b(�))j−1 rj = s
(�)
1 − a

(�)
1 c

(�)
x∗,
 ∈ {1, . . . , |Pk|} (6)

with unknowns r1, . . . , rν . If the values b(�) for
 ∈ {1, . . . , |Pk|} are not pairwise
distinct, then D sets LinDep ··= true and returns ⊥.

Otherwise, D completes the linear system with ν−|Pk| remaining DL queries
as follows. For each
 ∈ {|Pk|+1, . . . , ν}, it picks a value b(�) from Zp such that
b(�) �= b(�′) for all
′ <
 and obtains the additional equations

ν∑

j=1

(b(�))j−1 rj = DLogg

(
ν∏

j=1

(R1,j)(b
(�))j−1

,
(
α(�), (β(�)

i)1≤i≤νqs+1

)
)

, (7)

 ∈ {|P |+1, . . . , ν}, computing the algebraic representations of the queried group
elements appropriately as α(�) ··= 0 and (β(�)

i)1≤i≤νqs+1 ··= (0, . . . , 0, βν(k−1) =
(b(�))0 = 1, . . . , βνk−1 = (b(�))ν−1, 0, . . . , 0).

The coefficient matrix

B =

⎛

⎜
⎜
⎜
⎝

1 (b(1))1 · · · (b(1))ν−1

1 (b(2))1 · · · (b(2))ν−1

...
...

. . .
...

1 (b(ν))1 · · · (b(ν))ν−1

⎞

⎟
⎟
⎟
⎠

of the complete linear system (Eqs. (6) and (7)) is a square Vandermonde matrix
with pairwise distinct b(�) values, and thus has full rank ν. At this stage, D has a
system of ν linear independent equations with ν unknowns. Because the system is
consistent by construction, it has a unique solution r1, . . . , rν , which is computed
and output by D.

It remains to show that if for some given Sign′(k, . . .) query, two executions
of B are in the same component of Pk, then

b = b′, a1 = a′
1, c = c′, and s1 = s′

1, (8)

where here and in the following, non-primed and primed terms are
the values used in the Sign′ query in the respective execution. By
definition, the executions were identical up to the assignments of
Tnon(X̃, (R1, . . . , Rν),m) and Tnon(X̃ ′, (R′

1, . . . , R
′
ν),m′), which implies that

X̃ = X̃ ′, (R1, . . . , Rν) = (R′
1, . . . , R

′
ν), m = m′, and Tnon(X̃, (R1, . . . , Rν),m) =

Tnon(X̃ ′, (R′
1, . . . , R

′
ν),m′). The equality b = b′ follows immediately.

To prove c = c′, note that previous equalities imply that
∏ν

j=1 Rbj−1

j =
∏ν

j=1(R
′
j)

(b′)j−1
, i.e. R = R′. Hence, c and c′ were defined using the same table

218 J. Nick et al.

entry Tsig(X̃, R,m) in both executions. If entry Tsig(X̃, R,m) had already been
set when Tnon(X̃, (R1, . . . , Rν),m) was set, then c = c′ due to the executions
being identical. Otherwise, if the value Tsig(X̃, R,m) had not already been set
when Tnon(X̃, (R1, . . . , Rν),m) was set, then the internal Hsig query in the Hnon

query handler set Tsig(X̃, R,m) exactly when the query Hnon(X̃, (R1, . . . , Rν),m)
was handled. Since B did not receive a forgery which is invalid due to the values
m and L from the forgery having been queried in a Sign′ query, the internal Hsig

query was not the Hsig fork point. Therefore, both executions are still identical
when Tsig(X̃, R,m) is set, which implies that c = c′.

To prove a1 = a′
1 we first note that in the first execution, Hagg(L,X∗) was

set before Tsig(X̃, R,m) (as otherwise B would have set BadOrder ··= true),
hence before Tnon(X̃, (R1, . . . , Rν),m) since as proved above Tsig(X̃, R,m) was
set before or at the same time as Tnon(X̃, (R1, . . . , Rν),m). Similarly, in the
second execution, Hagg(L′,X∗) was set before Tnon(X̃, (R1, . . . , Rν),m). Because
both executions are identical up to the assignment of Tnon(X̃, (R1, . . . , Rν),m),
Hagg(L,X∗) and Hagg(L′,X∗) were set in both executions. Assume that L �= L′.
Then KeyAgg(L) = X̃ = X̃ ′ = KeyAgg(L′), a contradiction since B has not set
KeyColl ··= true in either of the executions. This implies that a1 and a′

1 were
defined using the same table entry Hagg(L,X∗) which was set when executions
were identical, hence a1 = a′

1.
The equality s1 = s′

1 follows from Eq. (5) together with b = b′, a1 = a′
1, and

c = c′. This shows the equalities in Eq. (8).
Altogether, D makes |P | DL queries initiated by B (as in Eq. (6)) and ν −|P |

additional DL queries (as in Eq. (7)) per initiated signing session. Thus, the total
number of DL queries is exactly νqs.

Neglecting the time needed to compute discrete logarithms and solve linear
equation systems, the running time t′ of D is twice the running time of C, which
itself is twice the running time of B. The running time of B is the running time
t of A plus the time needed to maintain tables Tagg, Tnon, and Tsig (we assume
each assignment takes unit time) and answer signing and hash queries. The sizes
of Tagg, Tnon, and Tsig are at most qN , q, and q respectively. Answering signing
queries is dominated by the time needed to compute the aggregate key as well
as the honest signer’s effective nonce, which is at most Ntexp and (ν − 1)texp

respectively. Answering hash queries is dominated by the time to compute the
aggregate nonce which is at most (ν − 1)texp. Therefore, t′ = 4(t + q(N + 2ν −
2))texp + O(qN).

Clearly, D is successful if ForkC returns a non-⊥ answer and LinDep is not
set to true. LinDep is set to true if, in the linear system corresponding to some
Sign(k, . . .) query, there are two identical values b(�) = b(�′) in two different
execution components
,
′ ≤ |Pk|. By construction, b(�) and b(�′) were assigned
to two of the scalars hnon,1, h

′
non,1, h

′′
non,1, h

′′′
non,1, . . . , hnon,q, h

′
non,q, h

′′
non,q, h

′′′
non,q.

Since these 4q scalars are drawn from Zp with p ≤ 2λ−1, we have Pr [LinDep] ≤
(4q)2/2λ−1 = 32q2/2λ. Let ε = AdvEUF-CMA

A,MuSig2[GrGen,ν](λ). By Lemmas 1 and 3, the
success probability of ForkC is at least

MuSig2: Simple Two-Round Schnorr Multi-signatures 219

acc(ForkC) ≥ acc(C)
(

acc(C)
q

− 1
p

)

≥ (ε2/q − 2(4q + 1)/2λ)2

q
− ε2/q − 2(4q + 1)/2λ

2λ−1

≥ ε4

q3
− (16 + 4/q)

q · 2λ
− 2

q · 2λ
≥ ε4

q3
− 22

2λ
.

Altogether, the advantage of D is at least

AdvAOMDL
D,GrGen(λ) ≥ acc(ForkC) − Pr [LinDep] ≥ ε4

q3
− 32q2 + 22

2λ

�

References

1. Alper, H.K., Burdges, J.: Two-round trip schnorr multi-signatures via delinearized
witnesses. In: CRYPTO 2021, 2021. https://eprint.iacr.org/2020/1245

2. Bagherzandi, A., Cheon, J.H., Jarecki, S.: Multisignatures secure under the discrete
logarithm assumption and a generalized forking lemma. In: Ning, P., Syverson, P.F.,
Jha, S. (eds.) ACM CCS 2008, pp. 449–458. ACM Press, October 2008. https://
doi.org/10.1145/1455770.1455827

3. Bellare, M., Namprempre, C., Pointcheval, D., Semanko, M.: The one-more-RSA-
inversion problems and the security of Chaum’s blind signature scheme. J. Cryptol.
16(3), 185–215 (2003). https://doi.org/10.1007/s00145-002-0120-1

4. Bellare, M., Neven, G.: Multi-signatures in the plain public-key model and a general
forking lemma. In: Juels, A., Wright, R.N., De Capitani di Vimercati, S. (eds.)
ACM CCS 2006, pp. 390–399. ACM Press, October/November 2006. https://doi.
org/10.1145/1180405.1180453

5. Bellare, M., Palacio, A.: GQ and schnorr identification schemes: proofs of secu-
rity against impersonation under active and concurrent attacks. In: Yung, M.
(ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 162–177. Springer, Heidelberg (2002).
https://doi.org/10.1007/3-540-45708-9 11

6. Bellare, M., Shoup, S.: Two-tier signatures, strongly unforgeable signatures, and
Fiat-Shamir without Random Oracles. In: Okamoto, T., Wang, X. (eds.) PKC
2007. LNCS, vol. 4450, pp. 201–216. Springer, Heidelberg (2007). https://doi.org/
10.1007/978-3-540-71677-8 14

7. Benhamouda, F., Lepoint, T., Loss, J., Orrù, M., Raykova, M.: On the (in)security
of ROS. In: Canteaut, A., Standaert, F.-X. (eds.) EUROCRYPT 2021. LNCS,
vol. 12696, pp. 33–53. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
77870-5 2

8. Boldyreva, A.: Threshold signatures, multisignatures and blind signatures based
on the gap-Diffie-Hellman-group signature scheme. In: Desmedt, Y.G. (ed.) PKC
2003. LNCS, vol. 2567, pp. 31–46. Springer, Heidelberg (2003). https://doi.org/10.
1007/3-540-36288-6 3

9. Boneh, D., Drijvers, M., Neven, G.: Compact multi-signatures for smaller
blockchains. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018. LNCS, vol.
11273, pp. 435–464. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-
03329-3 15

https://eprint.iacr.org/2020/1245
https://doi.org/10.1145/1455770.1455827
https://doi.org/10.1145/1455770.1455827
https://doi.org/10.1007/s00145-002-0120-1
https://doi.org/10.1145/1180405.1180453
https://doi.org/10.1145/1180405.1180453
https://doi.org/10.1007/3-540-45708-9_11
https://doi.org/10.1007/978-3-540-71677-8_14
https://doi.org/10.1007/978-3-540-71677-8_14
https://doi.org/10.1007/978-3-030-77870-5_2
https://doi.org/10.1007/978-3-030-77870-5_2
https://doi.org/10.1007/3-540-36288-6_3
https://doi.org/10.1007/3-540-36288-6_3
https://doi.org/10.1007/978-3-030-03329-3_15
https://doi.org/10.1007/978-3-030-03329-3_15

220 J. Nick et al.

10. Chaum, D., Pedersen, T.P.: Wallet databases with observers. In: Brickell, E.F. (ed.)
CRYPTO 1992. LNCS, vol. 740, pp. 89–105. Springer, Heidelberg (1993). https://
doi.org/10.1007/3-540-48071-4 7

11. Drijvers, M., et al.: On the security of two-round multi-signatures. In: 2019 IEEE
Symposium on Security and Privacy, pp. 1084–1101. IEEE Computer Society Press,
May 2019. https://doi.org/10.1109/SP.2019.00050

12. Fuchsbauer, G., Kiltz, E., Loss, J.: The algebraic group model and its applications.
In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10992, pp. 33–62.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96881-0 2

13. Fuchsbauer, G., Plouviez, A., Seurin, Y.: Blind schnorr signatures and signed ElGa-
mal encryption in the algebraic group model. In: Canteaut, A., Ishai, Y. (eds.)
EUROCRYPT 2020. LNCS, vol. 12106, pp. 63–95. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-45724-2 3

14. Gentry, C., Wichs, D.: Separating succinct non-interactive arguments from all fal-
sifiable assumptions. In: Fortnow, L., Vadhan, S.P. (eds.) 43rd ACM STOC, pp.
99–108. ACM Press, June 2011. https://doi.org/10.1145/1993636.1993651

15. Goldwasser, S., Kalai, Y.T.: Cryptographic assumptions: A position paper. Cryp-
tology ePrint Archive, Report 2015/907 (2015). https://eprint.iacr.org/2015/907

16. Horster, P., Michels, M., Petersen, H.: Meta-multisignature schemes based on the
discrete logarithm problem. In: IFIP/Sec ’95, IFIP Advances in Information and
Communication Technology, pp. 128–142. Springer (1995)

17. Itakura, K., Nakamura, K.: A public-key cryptosystem suitable for digital multisig-
natures. NEC Res. Dev. 71, 1–8 (1983)

18. Komlo, C., Goldberg, I.: FROST: flexible round-optimized schnorr threshold sig-
natures. In: SAC 2020, 2020. To be published. https://eprint.iacr.org/2020/852

19. Langford, S.K.: Weaknesses in some threshold cryptosystems. In: Koblitz, N. (ed.)
CRYPTO 1996. LNCS, vol. 1109, pp. 74–82. Springer, Heidelberg (1996). https://
doi.org/10.1007/3-540-68697-5 6

20. Ma, C., Weng, J., Li, Y., Deng, R.H.: Efficient discrete logarithm based multi-
signature scheme in the plain public key model. Des. Codes Cryptogr. 54(2), 121–
133 (2010). https://doi.org/10.1007/s10623-009-9313-z

21. Maxwell, G., Poelstra, A., Seurin, Y., Wuille, P.: Simple Schnorr multi-signatures
with applications to Bitcoin. IACR Cryptology ePrint Archive, 2018/068, Version
20180118:124757, 2018. Preliminary obsolete version of [22]. https://eprint.iacr.
org/2018/068/20180118:124757

22. Maxwell, G., Poelstra, A., Seurin, Y., Wuille, P.: Simple Schnorr multi-signatures
with applications to Bitcoin. Des. Codes Cryptogr. 87(9), 2139–2164 (2019).
https://eprint.iacr.org/2018/068.pdf

23. Micali, S., Ohta, K., Reyzin, L.: Accountable-subgroup multisignatures: extended
abstract. In: Reiter, M.K., Samarati, P., (eds.) ACM CCS 2001, pp. 245–254. ACM
Press, November 2001. https://doi.org/10.1145/501983.502017

24. Michels, M., Horster, P.: On the risk of disruption in several multiparty signature
schemes. In: Kim, K., Matsumoto, T. (eds.) ASIACRYPT 1996. LNCS, vol. 1163,
pp. 334–345. Springer, Heidelberg (1996). https://doi.org/10.1007/BFb0034859

25. Naor, M.: On cryptographic assumptions and challenges. In: Boneh, D. (ed.)
CRYPTO 2003. LNCS, vol. 2729, pp. 96–109. Springer, Heidelberg (2003). https://
doi.org/10.1007/978-3-540-45146-4 6

26. Nick, J.: Insecure shortcuts in MuSig (2019). https://medium.com/blockstream/
insecure-shortcuts-in-musig-2ad0d38a97da

https://doi.org/10.1007/3-540-48071-4_7
https://doi.org/10.1007/3-540-48071-4_7
https://doi.org/10.1109/SP.2019.00050
https://doi.org/10.1007/978-3-319-96881-0_2
https://doi.org/10.1007/978-3-030-45724-2_3
https://doi.org/10.1007/978-3-030-45724-2_3
https://doi.org/10.1145/1993636.1993651
https://eprint.iacr.org/2015/907
https://eprint.iacr.org/2020/852
https://doi.org/10.1007/3-540-68697-5_6
https://doi.org/10.1007/3-540-68697-5_6
https://doi.org/10.1007/s10623-009-9313-z
https://eprint.iacr.org/2018/068/20180118:124757
https://eprint.iacr.org/2018/068/20180118:124757
https://eprint.iacr.org/2018/068.pdf
https://doi.org/10.1145/501983.502017
https://doi.org/10.1007/BFb0034859
https://doi.org/10.1007/978-3-540-45146-4_6
https://doi.org/10.1007/978-3-540-45146-4_6
https://medium.com/blockstream/insecure-shortcuts-in-musig-2ad0d38a97da
https://medium.com/blockstream/insecure-shortcuts-in-musig-2ad0d38a97da

MuSig2: Simple Two-Round Schnorr Multi-signatures 221

27. Nick, J., Ruffing, T., Seurin, Y.: MuSig2: simple two-round schnorr multi-
signatures. Cryptology ePrint Archive, Report 2020/1261 (2020). https://eprint.
iacr.org/2020/1261

28. Nick, J., Ruffing, T., Seurin, Y., Wuille, P.: MuSig-DN: schnorr multi-signatures
with verifiably deterministic nonces. In: Ligatti, J., Ou, X., Katz, J., Vigna, G.,
(eds.) ACM CCS 20, pp. 1717–1731. ACM Press, November 2020. https://doi.org/
10.1145/3372297.3417236

29. Nicolosi, A., Krohn, M.N., Dodis, Y., Mazières, D.: Proactive two-party
signatures for user authentication. In: NDSS 2003. The Internet Society,
February 2003. https://www.ndss-symposium.org/ndss2003/proactive-two-party-
signatures-user-authentication/

30. Pointcheval, D., Stern, J.: Security arguments for digital signatures and blind signa-
tures. J. Cryptol. 13(3), 361–396 (2000). https://doi.org/10.1007/s001450010003

31. Ristenpart, T., Yilek, S.: The power of proofs-of-possession: securing multiparty sig-
natures against rogue-key attacks. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS,
vol. 4515, pp. 228–245. Springer, Heidelberg (2007). https://doi.org/10.1007/978-
3-540-72540-4 13

32. Schnorr, C.-P.: Efficient signature generation by smart cards. J. Cryptol. 4(3),
161–174 (1991). https://doi.org/10.1007/BF00196725

33. Schnorr, C.P.: Security of blind discrete log signatures against interactive attacks.
In: Qing, S., Okamoto, T., Zhou, J. (eds.) ICICS 2001. LNCS, vol. 2229, pp. 1–12.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45600-7 1

34. Shoup, V.: Lower bounds for discrete logarithms and related problems. In: Fumy,
W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 256–266. Springer, Heidelberg
(1997). https://doi.org/10.1007/3-540-69053-0 18

35. Stinson, D.R., Strobl, R.: Provably secure distributed schnorr signatures and a (t,
n) threshold scheme for implicit certificates. In: Varadharajan, V., Mu, Y. (eds.)
ACISP 2001. LNCS, vol. 2119, pp. 417–434. Springer, Heidelberg (2001). https://
doi.org/10.1007/3-540-47719-5 33

36. Syta, E., et al.: Keeping authorities “honest or bust” with decentralized witness
cosigning. In: 2016 IEEE Symposium on Security and Privacy, pages 526–545. IEEE
Computer Society Press, May 2016. https://doi.org/10.1109/SP.2016.38

37. Wagner, D.: A generalized birthday problem. In: Yung, M. (ed.) CRYPTO 2002.
LNCS, vol. 2442, pp. 288–304. Springer, Heidelberg (2002). https://doi.org/10.
1007/3-540-45708-9 19

38. Wuille, P., Nick, J., Ruffing, T.: Schnorr signatures for secp256k1. Bitcoin
Improvement Proposal 340 (2020). https://github.com/bitcoin/bips/blob/master/
bip-0340.mediawiki

https://eprint.iacr.org/2020/1261
https://eprint.iacr.org/2020/1261
https://doi.org/10.1145/3372297.3417236
https://doi.org/10.1145/3372297.3417236
https://www.ndss-symposium.org/ndss2003/proactive-two-party-signatures-user-authentication/
https://www.ndss-symposium.org/ndss2003/proactive-two-party-signatures-user-authentication/
https://doi.org/10.1007/s001450010003
https://doi.org/10.1007/978-3-540-72540-4_13
https://doi.org/10.1007/978-3-540-72540-4_13
https://doi.org/10.1007/BF00196725
https://doi.org/10.1007/3-540-45600-7_1
https://doi.org/10.1007/3-540-69053-0_18
https://doi.org/10.1007/3-540-47719-5_33
https://doi.org/10.1007/3-540-47719-5_33
https://doi.org/10.1109/SP.2016.38
https://doi.org/10.1007/3-540-45708-9_19
https://doi.org/10.1007/3-540-45708-9_19
https://github.com/bitcoin/bips/blob/master/bip-0340.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0340.mediawiki

Tighter Security for Schnorr Identification
and Signatures: A High-Moment Forking

Lemma for Σ-Protocols

Lior Rotem(B) and Gil Segev

School of Computer Science and Engineering, Hebrew University of Jerusalem,
91904 Jerusalem, Israel

{lior.rotem,segev}@cs.huji.ac.il

Abstract. The Schnorr identification and signature schemes have been
amongst the most influential cryptographic protocols of the past three
decades. Unfortunately, although the best-known attacks on these two
schemes are via discrete-logarithm computation, the known approaches
for basing their security on the hardness of the discrete logarithm prob-
lem encounter the “square-root barrier”. In particular, in any group of
order p where Shoup’s generic hardness result for the discrete logarithm
problem is believed to hold (and is thus used for setting concrete secu-
rity parameters), the best-known t-time attacks on the Schnorr iden-
tification and signature schemes have success probability t2/p, whereas
existing proofs of security only rule out attacks with success probabilities
(t2/p)1/2 and (qH · t2/p)1/2, respectively, where qH denotes the number
of random-oracle queries issued by the attacker.

We establish tighter security guarantees for identification and sig-
nature schemes which result from Σ-protocols with special soundness
based on the hardness of their underlying relation, and in particu-
lar for Schnorr’s schemes based on the hardness of the discrete loga-
rithm problem. We circumvent the square-root barrier by introducing a
high-moment generalization of the classic forking lemma, relying on the
assumption that the underlying relation is “d-moment hard”: The suc-
cess probability of any algorithm in the task of producing a witness for
a random instance is dominated by the d-th moment of the algorithm’s
running time.

In the concrete context of the discrete logarithm problem, already
Shoup’s original proof shows that the discrete logarithm problem is 2-
moment hard in the generic-group model, and thus our assumption can
be viewed as a highly-plausible strengthening of the discrete logarithm
assumption in any group where no better-than-generic algorithms are
currently known. Applying our high-moment forking lemma in this con-
text shows that, assuming the 2-moment hardness of the discrete loga-
rithm problem, any t-time attacker breaks the security of the Schnorr

L. Rotem and G. Segev—Supported by the European Union’s Horizon 2020 Framework
Program (H2020) via an ERC Grant (Grant No. 714253).
L. Rotem—Supported by the Adams Fellowship Program of the Israel Academy of
Sciences and Humanities.

c© International Association for Cryptologic Research 2021
T. Malkin and C. Peikert (Eds.): CRYPTO 2021, LNCS 12825, pp. 222–250, 2021.
https://doi.org/10.1007/978-3-030-84242-0_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-84242-0_9&domain=pdf
https://doi.org/10.1007/978-3-030-84242-0_9

A High-Moment Forking Lemma for Σ-Protocols 223

identification and signature schemes with probabilities at most (t2/p)2/3

and (qH · t2/p)2/3, respectively.

1 Introduction

The Schnorr identification and signature schemes [Sch89,Sch91] have been
amongst the most influential cryptographic protocols of the past three decades,
due to their conceptual simplicity and practical efficiency. Accordingly, the anal-
ysis of their security guarantees has attracted much attention over the years.
Though from the onset, it was observed that their asymptotic security can be
tied to that of the discrete logarithm problem, characterizing their concrete
security has remained an elusive feat. On the one hand, to this day there are no
known attacks on these schemes that improve upon the existing algorithms for
computing discrete logarithms. On the other hand, essentially all known security
reductions to the discrete logarithm problem are non-tight, which may lead to
significant blowups when setting concrete security parameters (i.e., the group
size), and hence to degraded efficiency.1 Concretely, the known approaches for
basing the security of the Schnorr identification and signature schemes on the
hardness of the discrete logarithm problem encounter the “square-root barrier”.

The Square-Root Barrier. In order to base the security of the Schnorr identi-
fication scheme and signature scheme on the hardness of the discrete logarithm
problem, one has to transform any malicious impersonator and any malicious
forger, respectively, into a discrete-logarithm algorithm. The existing approaches
are based on the classic “forking lemma” of Pointcheval and Stern [PS00] (see
also [AAB+02,BN06,BCC+16,KMP16] and the references therein). The dif-
ference between the various approaches is reflected by the different trade-offs
between the success probability and the running time of their discrete-logarithm
algorithms.

For the Schnorr identification scheme, any malicious impersonator that runs
in time t and breaks the security of the scheme with probability ε, can be trans-
formed for example into a discrete-logarithm algorithm that has success proba-
bility roughly ε2 and runs in time roughly t. Similarly, for the Schnorr signature
scheme, any malicious forger that runs in time t, issues qH random-oracle queries
and breaks the security of the scheme with probability ε, can be transformed into
a discrete-logarithm algorithm that has success probability roughly ε2/qH and
runs in time roughly t.

Thus, in any group of order p where Shoup’s generic hardness result for
computing discrete logarithms is believed to hold [Sho97], this leads to the bound
ε ≤ (t2/p)1/2 on the security of the Schnorr identification scheme, and to the
bound ε ≤ (qH ·t2/p)1/2 on the security of the Schnorr signature scheme (we refer
the reader to Sect. 3 for a variety of other trade-offs that were established over
the years, all of which lead to the same square-root bounds, as recently observed
by Bellare and Dai [BD20] and by Jaeger and Tessaro [JT20]).

1 These exclude reductions in the generic-group model [Sho97] and algebraic-group
model [FKL18], as discussed below.

224 L. Rotem and G. Segev

However, the best-known attack on the security the Schnorr identification
and signature schemes is via discrete-logarithm computation, which has success
probability t2/p in such groups. For example, for a 256-bit prime p, the suc-
cess probability of the best-known 280-time attack on the Schnorr identification
scheme is roughly 2−96, whereas the square-root bound only rules out attacks
with success probability greater than 2−48 (for the Schnorr signature scheme
this gap only increases due to the additional dependency on qH).

A Wider Perspective: Identification and Signatures from Σ-Protocols.
The square-root barrier is encountered not only when proving the security of the
Schnorr identification and signatures schemes, but also when proving the secu-
rity of additional ones, such as the Okamoto identification and signature schemes
[Oka92] (see [AAB+02,KMP16] for various other examples). The Schnorr and
Okamoto schemes are prime examples of the more general approach of con-
structing identification schemes based on Σ-protocols with special soundness,
and of constructing signature schemes based on such identification schemes via
the Fiat-Shamir paradigm [FS86,AAB+02]. In such schemes, the square-root
barrier arises due to the rewinding-based methodology underlying their security
proofs, as we further discuss in Sect. 3.

It should be noted that additional approaches were suggested as alternatives
to basing the security of the Schnorr identification and signature schemes on
the hardness of the discrete logarithm problem. Shoup [Sho97] and Fuchsbauer,
Plouviez and Seurin [FPS20] provided tight security proofs in the generic-group
model and in the algebraic-group model, respectively, and Bellare and Dai [BD20]
provided tight security proofs based on the hardness of their multi-base discrete
logarithm problem. These approaches do not encounter the square-root bar-
rier, at the cost of considering either idealized models that considerably restrict
attackers, or a newly-introduced interactive problem instead of the long-studied
discrete logarithm problem.

1.1 Our Contributions

We establish tighter security guarantees for identification and signature schemes
by circumventing the square-root barrier. Our approach applies to schemes that
result from Σ-protocols with special soundness based on the hardness of their
underlying relation R ⊆ X × W, and in particular to the Schnorr and Okamoto
identification and signature schemes based on the hardness of the discrete loga-
rithm problem.

We prove our results by introducing a high-moment generalization of the
classic forking lemma, relying on the assumption that the success probability
of any algorithm in the task of producing a witness w ∈ W given a random
instance x ∈ X is dominated by the d-th moment of the algorithm’s running
time. In what follows we provide a high-level description of our assumption, and
then state our bounds on the security of identification and signature schemes.

Our Assumption: d-Moment Hardness. Given a relation R ⊆ X ×W under-
lying a Σ-protocol, and a distribution D over pairs (x,w) ∈ R, we put forward
the d-moment assumption that considers the task of producing a witness w given

A High-Moment Forking Lemma for Σ-Protocols 225

an instance x that is sampled via D. Informally, in its most simplistic form, our
assumption asks that the success probability of any algorithm A in this task is at
most E

[
(TA,D)d

]
/|W|, where TA,D denotes the random variable corresponding

to A’s running time.2 We refer the reader to Sect. 3 for a formal statement.
In the specific context of the discrete logarithm problem, instances are of the

form x = (G, p, g, h) where G is a cyclic group of order p that is generated by g,
and h is a group element. The relation R consists of all pairs ((G, p, g, h), w) for
which h = gw, and the distribution D consists of a group-generation algorithm
that produces the description (G, p, g) of the group, together with a uniformly-
distributed group element h.

As recently observed by Jaeger and Tessaro [JT20], already Shoup’s original
proof shows that the discrete logarithm problem is 2-moment hard in the generic-
group model [Sho97].3 Thus, our assumption can be viewed a highly-plausible
strengthening of the discrete logarithm assumption in any group where no better-
than-generic algorithms are currently known for the discrete logarithm problem.
In such groups, the generic hardness of the problem is used for setting concrete
security parameters, and thus the assumption that the discrete logarithm prob-
lem is 2-moment hard can be viewed as identifying some of the core essence of
the problem’s generic hardness in the form of a standard-model assumption.

Tighter Security for Identification Schemes. Given an identification
scheme resulting from a Σ-protocol for a relation R, we follow the approach
underlying the classic “forking lemma” of Pointcheval and Stern [PS00], and
show that any attacker can be transformed into an algorithm A that takes as
input an instance x ∈ X and produces (with a certain probability) a witness
w ∈ W such that (x,w) ∈ R. However, unlike existing variants of the forking
lemma (see, for example, [AAB+02,BN06,KMP16,BCC+16,JT20]), we design
our algorithm A with the goal of optimizing the trade-off between its success
probability and the dth moment of its running time. Assuming the d-moment
hardness of the relation R, this trade-off leads to the following tighter bound on
the success probability of the attacker when considering the standard notion of
security against passive impersonation attacks (in Sect. 3 we demonstrate that
the existing variants of the forking lemma do not circumvent the square-root
barrier when relying on our assumption):

Theorem 1.1 (informal). Let ID be an identification scheme with special
soundness for a relation R ⊆ X × W. If R is d-moment hard, then any

2 More generally, our assumption asks that the latter probability is at most Δ ·
E

[
(TA,D)d

]
/|W|ω for functions Δ and ω of the security parameter. Looking ahead,

the Schnorr identification and signature schemes will correspond to Δ = ω = 1,
whereas the Okamoto identification and signature scheme will correspond to Δ = 1
and ω = 1/2.

3 In fact, Shoup proved the following stronger statement: For any t ≥ 0, the success
probability of any algorithm in computing the discrete logarithm of a uniformly-
distributed group element, conditioned on running in time at most t, is at most
t2/p. This implies, in particular, 2-moment hardness (with Δ = ω = 1).

226 L. Rotem and G. Segev

attacker that runs in time t breaks the security of ID with probability at most
(td/|W|)d/(2d−1).

In particular, our theorem yields the following corollary for the Schnorr and
Okamoto identification schemes (Table 1 exemplifies our concrete improvement
over the square-root bound for a few typical choices of parameters):

Corollary 1.2 (informal). Assuming that the discrete logarithm problem is 2-
moment hard, then any attacker that runs in time t breaks the security of the
Schnorr and Okamoto identification schemes with probability at most (t2/p)2/3,
where p is the order of the underlying group.

Tighter Security for Signature Schemes. We show that our approach
extends to establishing tighter security guarantees for signature schemes that
are obtained from identification schemes via the Fiat-Shamir paradigm [FS86].
The generic analysis of the Fiat-Shamir transform in this context [AAB+02],
when combined with Theorem 1.1, yields the bound ε ≤ qH · (td/|W|)d/(2d−1)

on the success probability of any malicious forger that runs in time t and issues
qH random-oracle queries assuming the d-moment hardness of the underlying
relation. Although this bound may already be useful on its own, we nevertheless
show that it can be further improved by applying our proof technique directly
for reducing the dependence on qH:

Theorem 1.3 (informal). Let ID be an identification protocol with special
soundness for a relation R ⊆ X × W, and let SIGID,H be its corresponding sig-
nature schemes obtained via the Fiat-Shamir transform using the hash function
H. If R is d-moment hard and H is modeled as a random oracle, then any attacker
that runs in time t and issues qH random-oracle queries breaks the security of
SIGID,H with probability at most (qH · td/|W|)d/(2d−1).

As above, our theorem yields the following corollary for the Schnorr and
Okamoto signature schemes (Table 2 exemplifies our concrete improvement over
the square-root bound for a few typical choices of parameters):

Corollary 1.4 (informal). Assuming that the discrete logarithm problem is 2-
moment hard, then any attacker that runs in time t and issues qH random-oracle
queries breaks the security of the Schnorr and Okamoto signature schemes with
probability at most (qH · t2/p)2/3, where p is the order of the underlying group.

1.2 Paper Organization

The remainder of this paper is organized as follows. First, in Sect. 2 we present
the basic notation and standard cryptographic primitives that are used through-
out the paper. In Sect. 3 we formally define our d-moment assumption, and
demonstrate that the existing variants of the forking lemma do not circumvent
the square-root barrier when relying on our assumption. In Sects. 4 and 5 we
present and prove our bounds on the security of identification and signature
schemes, respectively, from which in Sect. 6 we derive concrete security bounds
for the Schnorr and Okamoto identification and signature schemes.

A High-Moment Forking Lemma for Σ-Protocols 227

Table 1. A comparison of the security guarantees for the Schnorr and Okamoto iden-
tification schemes provided by the square-root bound and by our bound.

Attacker’s
running
time t

Security
parameter
λ

Square-root bound
(t2/p)1/2

Our bound
(t2/p)2/3

264 256 2−64 2−85.34

280 256 2−48 2−64

2100 512 2−156 2−208

Table 2. A comparison of the security guarantees for the Schnorr Okamoto signature
schemes provided by the square-root bound and by our bound.

Attacker’s
running time t

Attacker’s
oracle queries
qH

Security
parameter λ

Square-root
bound
(qH · t2/p)1/2

Our bound
(qH · t2/p)2/3

264 250 256 2−39 2−52

280 260 256 2−18 2−24

280 260 512 2−146 2−194.67

2100 280 512 2−116 2−142.67

2 Preliminaries

In this section we present the basic notions and standard cryptographic primi-
tives that are used in this work. For an integer n ∈ N we denote by [n] the set
{1, . . . , n}. For a distribution X we denote by x ← X the process of sampling a
value x from the distribution X. Similarly, for a set X we denote by x ← X the
process of sampling a value x from the uniform distribution over X .

Σ-Protocols. Let R = {Rλ}λ∈N
be a relation, where Rλ ⊆ Xλ × Wλ for any

λ ∈ N, for sets X = {Xλ}λ∈N and W = {Wλ}λ∈N. A Σ-protocol Π for the
relation R is a 4-tuple (P1,P2,V, C), where P1 is a probabilistic polynomial-
time algorithm, P2 and V are deterministic polynomial-time algorithms, and
C = {Cx}x∈X is an ensemble of efficiently sampleable sets. The protocol π is
defined as follows:

1. The algorithm P1 on input (x,w), where x ∈ Xλ and w ∈ Wλ, produces a
message α and a state st.

2. A challenge β is sampled uniformly at random from the challenge set Cx.
3. The algorithm P2 on input (st, β) produces a message γ.
4. The algorithm V on input (x, α, β, γ) determines the output of the protocol

by outputting either 0 or 1.

In terms of completeness, we ask that for every λ ∈ N and for every (x,w) ∈ Rλ,
it holds that V(x, α, β,P2(st, β)) = 1 with an overwhelming probability over the
choice of (α, st) ← P1(x,w) and β ← Cx. In terms of soundness, we consider

228 L. Rotem and G. Segev

the following standard special soundness property for Σ-protocols. Roughly, the
property requires that given an instance x ∈ X and two accepting transcripts
for x which share the same first message α but differ on their second message β,
one can efficiently compute a witness w ∈ W such that (x,w) ∈ R.

Definition 2.1. Let Π = (P1,P2,V, C) be a Σ-protocol for a relation R ⊆ X ×
W, and let t = t(λ) be a function of the security parameter λ ∈ N. Then, Π has t-
time special soundness if there exists a deterministic t-time algorithm WitnessExt
for which to following holds: For every λ ∈ N, for every instance x ∈ Xλ, and for
every (α, (β, γ), (β′, γ′)) such that V(x, α, β, γ) = V(x, α, β′, γ′) = 1 and β �= β′

it holds that (x,WitnessExt(x, α, (β, γ), (β′, γ′)) ∈ R.

Identification Schemes. An identification scheme consists of a Σ-protocol for
a relation R ⊆ X × W and of an algorithm Gen that produces a distribution
over instances x ∈ X together with a corresponding witness w ∈ W such that
(x,w) ∈ R. We say that an identification protocol has t-time special soundness
if its underlying Σ-protocol has t-time special soundness.

Additionally, we consider the standard notion of security against passive
impersonation attacks, asking that a malicious prover on input an instance x
produced by Gen should not be able to convince the verifier to accept even
when given access to an oracle that produces honestly-generated transcripts for
the instance x. In what follows, given an identification protocol, we let Transx,w

denote an oracle that (when queried without any input) runs an honest execution
of the protocol on input (x,w) and returns the resulting transcript (α, β, γ).

Definition 2.2. Let t = t(λ) and ε = ε(λ) be function of the security parameter
λ ∈ N. An identification scheme ID = (Gen,P1,P2,V, C) is (t, ε)-secure against
passive impersonation attacks if for any t-time probabilistic prover P̄ = (P̄1, P̄2)
it holds that

AdvPA-IMP
ID,P̄ (λ) def= Pr

[
PA-IMPID,P̄(λ) = 1

] ≤ ε(λ)

for all sufficiently large λ ∈ N, where the experiment PA-IMPID,P̄(λ) is defined
as follows:

1. (x,w) ← Gen(1λ).
2. (α, st) ← P̄

Transx,w

1 (1λ, x).
3. γ ← P̄

Transx,w

2 (st, β) for β ← Cx.
4. If V(x, α, β, γ) = 1 then output 1 and otherwise output 0.

In this work we consider identification schemes that are simulatable: There
exists an efficient algorithm that on input x ∈ X , for (x,w) ← Gen(1λ), samples
a transcript (α, β, γ) from the distribution of honest executions of the protocol
on input (x,w).

Definition 2.3. Let t = t(λ) be function of the security parameter λ ∈ N.
An identification scheme ID = (Gen,P1,P2,V, C) is t-time simulatable if there
exists a t-time algorithm Sim such that the distributions {(x, (α, β, γ))}λ∈N and
{(x,Sim(1λ, x))}λ∈N are identical, where (x,w) ← Gen(1λ), (α, st) ← P1(x,w),
β ← Cx and γ ← P2(st, β).

A High-Moment Forking Lemma for Σ-Protocols 229

Note that for any simulatable identification scheme ID we can thus assume
that malicious provers do not query the transcript-generation oracle Transx,w

as such queries can be internally simulated given the instance x. Specifically, if
ID is tSim-time simulatable then any malicious prover P̄ that runs in time tP̄
and issues qP̄ queries to the transcript-generation oracle can be simulated by a
malicious prover that runs in time tP̄ + qP̄ · tSim and does not issue any queries.
Such a malicious prover is in fact attacking the Σ-protocol underlying ID with
respect to the distribution over instances that is determined by Gen.

Finally, for considering the standard transformation of identification schemes
to signature schemes via the Fiat-Shamir paradigm, we rely on the following
notion of first-message unpredictability (originally referred to as “min-entropy
of commitments” by Abdalla et al. [AAB+02]):

Definition 2.4. Let δ = δ(λ) be function of the security parameter λ ∈ N. An
identification scheme ID = (Gen,P1,P2,V, C) is δ-first-message unpredictable if
for any λ ∈ N, for any (x,w) produced by Gen(1λ) and for any α∗ it holds that
Pr [α = α∗] ≤ δ(λ), where (α, st) ← P1(x,w).

Signature Schemes. A signature scheme is a tuple SIG = (KG,Sign,Verify) of
algorithms defined as follows:

– The algorithm KG is a probabilistic algorithm that receives as input the secu-
rity parameter λ ∈ N and outputs a pair (sk, vk) of a signing key and a
verification key.

– The algorithm Sign is a (possibly) probabilistic algorithm that receives as
input a signing key sk and a message m and outputs a signature σ.

– The algorithm Verify is a deterministic algorithm that receives as input a
verification key vk, a message m and a signature σ, and outputs a bit b ∈
{0, 1}.

In terms of correctness, the standard requirement for signature schemes asks
that

Pr [Verifyvk(m,Signsk(m)) = 1] = 1

for every λ ∈ N and for every message m, where the probability is taken over
the choice of (sk, vk) ← KG(1λ) and over the internal randomness of Sign and
Verify. In terms of security, we rely on the following standard notion of exis-
tential unforgeability under adaptive chosen-message attack (see, for example,
[Gol04]) which naturally generalizes to the random-oracle model by providing
all algorithm access to the oracle.

Definition 2.5. Let t = t(λ) and ε = ε(λ) be function of the security param-
eter λ ∈ N. A signature scheme SIG = (KG,Sign,Verify) is (t, ε)-existentially
unforgeable under adaptive chosen-message attacks if for t-time probabilistic
algorithm F it holds that

AdvForge
SIG,F (λ) def= Pr

[
ForgeSIG,F (λ) = 1

] ≤ ε(λ)

for all sufficiently large λ ∈ N, where the experiment ForgeSIG,F (λ) is defined as
follows:

230 L. Rotem and G. Segev

1. (sk, vk) ← KG(1λ).
2. (m∗, σ∗) ← F Signsk(·)(1λ, vk). Let Q denote the set of all messages with which

F queried its oracle.
3. If Verifyvk(m∗, σ∗) = 1 and m∗ �∈ Q then output 1, and otherwise output 0.

3 Our Assumption: d-Moment Hardness

In this section we first formally define the computational assumption on which
our approach is based. Then, we demonstrate that the existing approaches for
proving the security of identification schemes and signature schemes that are
based on Σ-protocols with special soundness do not yield improved results when
relying on our assumption.

The Assumption. In what follows, we consider relations R = {Rλ}λ∈N
, where

Rλ ⊆ Xλ × Wλ for any λ ∈ N, and distributions D = {Dλ}λ∈N
where each Dλ

produces pairs (x,w) ∈ Rλ. For any such distribution D and for any probabilistic
algorithm A, we denote by TA,Dλ

the random variable corresponding to the
running time of A on input x where (x,w) ← Dλ.

Definition 3.1. Let d = d(λ), Δ = Δ(λ) and ω = ω(λ) be functions of the
security parameter λ ∈ N, and let R = {Rλ}λ∈N

be a relation, where Rλ ⊆
Xλ × Wλ for any λ ∈ N. We say that R is d-moment (Δ,ω)-hard with respect
to a distribution D = {Dλ}λ∈N

if for every algorithm A it holds that

Pr [(x,A(x)) ∈ Rλ] ≤ Δ · E [(TA,Dλ
)d
]

|Wλ|ω ,

for all sufficiently large λ ∈ N, where the probability is taken over the choice of
(x,w) ← Dλ and over the internal randomness of A.

When Δ(λ) = 1 and ω(λ) = 1 for all λ ∈ N, we will simply say that the
relation R is d-moment hard. As discussed in Sect. 1.1, in the specific context of
the discrete logarithm problem the relation R consists of all pairs ((G, p, g, h), w)
for which h = gw, and the distribution D consists of a group-generation algorithm
that produces the description (G, p, g) of the group, together with a uniformly-
distributed group element h. Given that the discrete logarithm problem is 2-
moment hard in the generic-group model [Sho97,JT20], the assumption that the
discrete logarithm problem is 2-moment hard (in the standard model) can be
viewed as identifying the core essence of the problem’s generic hardness in the
form of a standard-model assumption.

Existing Approaches. Extensive research has been devoted over the years for
analyzing the security of identification schemes and signature schemes that are
based on Σ-protocols with special soundness. For concreteness, we focus in this
discussion on identification schemes as they already capture the main difficulties
(the reader is referred to Sect. 5 for a discussion on transforming such schemes
into signature schemes via the Fiat-Shamir paradigm [FS86]).

Given an identification scheme that is based on a Σ-protocol for a relation
R, the security of the scheme is proved by showing that any malicious prover P̄

A High-Moment Forking Lemma for Σ-Protocols 231

can be transformed into an algorithm A that takes as input an instance x ∈ X
and produces two accepting transcripts (α, β, γ) and (α, β′, γ′) with β′ �= β. The
special soundness of the Σ-protocol guarantees that these two transcripts can
then be used to retrieve a witness w ∈ W such that (x,w) ∈ R. To the best of
our knowledge, all known approaches for the construction of such an algorithm A
are based on the following fundamental idea: The algorithm A uses the malicious
prover P̄ to obtain an accepting transcript (α, β, γ), and then rewinds it to the
same first message α and feeds it with fresh challenges β′ with the hope of
obtaining an additional accepting transcript (α, β′, γ′) with β′ �= β.

This fundamental idea traces back to the classic “forking lemma” of
Pointcheval and Stern [PS00], later generalized and refined by Bellare and Neven
[BN06], and by Kiltz, Masny and Pan [KMP16]. The difference between the
existing approaches is reflected by the different trade-offs between the success
probability of the algorithm A and its running time.

Given a malicious prover P̄ that runs in time t and breaks the security of
the identification scheme with probability ε, then on one end of the spectrum P̄
is invoked roughly 1/ε times, leading to an algorithm A with constant success
probability and running time t/ε [KMP16]. On the other end of the spectrum, P̄
is invoked only twice, leading to an algorithm A with success probability roughly
ε2 and running time 2t [BN06]. When the relation R corresponds to the discrete
logarithm problem in a group of order p where Shoup’s generic hardness result
is believed to hold, in both cases one obtains the bound ε ≤ (t2/p)1/2 (which
is inferior to our bound ε ≤ (t2/p)2/3). More generally, if the discrete logarithm
problem is d-moment (Δ,ω)-hard for some d ≥ 2, Δ ≥ 1 and ω ≤ 1, one obtains
the bound ε ≤ (Δ · td/pω)1/d in the first case and the bound ε ≤ (Δ · td/pω)1/2 in
the second case (both of which are inferior to our bound ε ≤ (Δ · td/pω)d/(2d−1)).

An approach that is closer to ours is to optimize the trade-off between the
success probability of the algorithm A and its expected running time [PS00,
BCC+16,JT20]. In their recent work, Jaeger and Tessaro [JT20] showed that in
the generic-group model any algorithm A with an expected running time E[T]
computes the discrete logarithm of a random group element with probability at
most (E[T]2/p)1/2 (omitting small constants for simplicity), and this can be used
for establishing concrete bounds for algorithms that do not have a strict running
time.4

In this setting, given a malicious prover P̄ that runs in time t and breaks the
security of the identification scheme with probability ε, Bootle et al. [BCC+16]
suggested the following algorithm A: It invokes P̄ once, and only if successful
then it repeatedly rewinds A to the same first message and feeds it with a fresh

4 More generally, if the discrete logarithm problem is d-moment hard for some d ≥ 2,
their approach shows that any algorithm A with an expected running time E[T]
computes the discrete logarithm of a random group element with probability at
most (E[T]d/p)1/d.

232 L. Rotem and G. Segev

challenge until it succeeds again.5 A simple argument shows that A’s success
probability is roughly ε, and its expected running time is t. A similar algorithm
A suggested by Pointcheval and Stern [PS00] has constant success probability
and expected running time t/ε. In both cases, using the work of Jaeger and
Tessaro one again obtains the bound ε ≤ (t2/p)1/2 as above (which is inferior to
our bound ε ≤ (t2/p)2/3).6

4 Tighter Security for Σ-Protocols and Identifi-
cation Schemes

In this section we introduce our high-moment forking lemma for establishing
tighter security guarantee for Σ-protocols and identification schemes. We first
focus on our result for Σ-protocols, and then extend it to identification schemes.

Given a Σ-protocol for a relation R, we follow the approach underlying the
forking lemma [PS00], and show that any malicious prover P̄ can be transformed
into an algorithm A that takes as input an instance x ∈ X and produces (with a
certain probability) two accepting transcripts (α, β, γ) and (α, β′, γ′) for x such
that β′ �= β. Assuming that Π has special soundness, these two transcripts can
then be used to retrieve a witness w ∈ W such that (x,w) ∈ R.

However, unlike existing variants of the forking lemma, we design our algo-
rithm A with the goal of optimizing the trade-off between its success probability
and the dth moment of its running time. Assuming that R is a d-moment (Δ,ω)-
hard relation (recall Definition 3.1), this trade-off leads to an upper bound on
the success probability of the malicious prover P̄.

At a high level, given a malicious prover that runs in time t and convinces
the verifier with probability ε, the description of our algorithm A is quite intu-
itive. First, it invokes the malicious prover to obtain a transcript (α, β, γ) of
the protocol. Then, if this transcript is accepted by the verifier, it rewinds the
malicious prover B ≈ 1/ε1/d times, providing it with randomly sampled chal-
lenges β1, . . . , βB and obtaining respective responses γ1, . . . , γB . If any one of
these additional transcripts (α, βi, γi) is accepted by the verifier and βi �= β′,
then the algorithm A successfully retrieves a witness.

Ignoring various approximations and other technical challenges, we prove
that the algorithm A has success probability roughly B · ε2 ≈ ε2−1/d, and the d-
th moment of its running time is at most ε · td/Bd ≈ T d. Thus, assuming that R
is a d-moment (Δ,ω)-hard relation leads to the bound ε ≤ (Δ · td/|W|ω)d/(2d−1)

on the probability of a t-time malicious prover to convince the verifier. This

5 The rewinding technique of Bootle et al. is actually a more general one that is
motivated by recent protocols with a generalized special soundness property (for
which the classic forking lemma is insufficient).

6 More generally, if the discrete logarithm problem is d-moment (Δ, ω)-hard, then
using the expected-time rewinding techniques of Bootle et al. and of Pointcheval
and Stern one obtains the bound ε ≤ (Δ · td/pω)1/d (which is inferior to our bound
ε ≤ (Δ · td/pω)d/(2d−1)).

A High-Moment Forking Lemma for Σ-Protocols 233

should be compared with the approaches discussed in Sect. 3, leading roughly
either to success probability ε2 and dth moment td, or to success probability
ε and dth moment at least td/εd−1, or to constant success probability and dth
moment at least td/εd – all of which lead to inferior bounds. Formally, we prove
the following theorem:

Theorem 4.1. Let d = d(λ), Δ = Δ(λ), ω = ω(λ), tW = tW(λ) and tP̄ = tP̄(λ)
be functions of the security parameter λ ∈ N, and let Π = (P1,P2,V, C) be a
Σ-protocol with tW-time special soundness for a relation R ⊆ X × W. If R is
d-moment (Δ,ω)-hard with respect to a distribution D then for any malicious
prover P̄ that runs in time tP̄ it holds that

Pr [V(x, α, β, γ) = 1] ≤
(

Δ · (16(tP̄ + tV + tW))d

|Wλ|ω
) d

2d−1

+
2

|Cλ| ,

for all sufficiently large λ ∈ N, where the probability is taken over (x,w) ← Dλ,
(α, st) ← P̄1(x), β ← Cx and γ ← P̄2(st, β), and where tV = tV(λ) denotes the
running time of the algorithm V, |Cλ| denotes the size of the challenge set Cx for
any x ∈ Xλ.

Recall that the notion of security against passive impersonations attacks for
an identification scheme ID = (Gen,P1,P2,V, C) is obtained from the exper-
iment considered in Theorem 4.1 for its underlying Σ-protocol, by addition-
ally providing the malicious prover with access to a transcript-generation oracle
(recall Definition 2.2). As discussed in Sect. 2, if ID is tSim-time simulatable
(recall Definition 2.3), then any malicious prover P̄ that runs in time tP̄ and
issues qP̄ queries to the transcript-generation oracle can be simulated by a mali-
cious prover that runs in time tP̄ + qP̄ · tSim and does not issue any queries. Thus,
Theorem 4.1 immediately yields the following corollary:

Corollary 4.2. Let d = d(λ), Δ = Δ(λ), ω = ω(λ), tSim = tSim(λ), tW = tW(λ),
tP̄ = tP̄(λ) and qP̄ = qP̄(λ) be functions of the security parameter λ ∈ N, and let
ID = (Gen,P1,P2,V, C) be a tSim-time simulatable identification protocol with
tW-time special soundness for a relation R ⊆ X × W. If R is d-moment (Δ,ω)-
hard with respect to Gen, then for any malicious prover P̄ that runs in time tP̄
and issues qP̄ transcript-generation queries it holds that

AdvPA-IMP
ID,P̄ (λ) ≤

(
Δ · (16(tP̄ + qP̄ · tSim + tV + tW))d

|Wλ|ω
) d

2d−1

+
2

|Cλ| ,

for all sufficiently large λ ∈ N, where tV = tV(λ) denotes the running time of the
algorithm V, and |Cλ| denotes the size of the challenge set Cx for any x ∈ Xλ.

In the remainder of this section we prove Theorem 4.1.

Proof of Theorem 4.1. Let P̄ = (P̄1, P̄2), and for any λ ∈ N let ε = ε(λ) =
Pr [V(x, α, β, γ) = 1], where (x,w) ← Dλ, (α, st) ← P̄1(x), β ← Cx and γ =
P̄2(st, β) (without loss of generality we assume that P̄2 is deterministic given st).
Let B = 	1/ε1/d − 1
, and consider the following algorithm A:

234 L. Rotem and G. Segev

The algorithm A

Input: An instance x ∈ Xλ.

1. Sample (α, st) ← P̄1(x), β0 ← Cx and compute γ0 = P̄2(st, β0). If
V(x, α, β0, γ0) = 0 then output ⊥ and terminate.

2. For every j ∈ [B] sample βj ← Cx and compute γj = P̄2(st, βj). If for every
j ∈ [B] it holds that either V(x, α, βj , γj) = 0 or βj = β0, then output ⊥
and terminate.

3. Output w = WitnessExt(α, (β0, γ0), (βj∗ , γj∗)), where j∗ is the minimal
index for which V(x, α, βj∗ , γj∗) = 1 and βj∗ �= β0.

The following lemma establishes a lower bound on the success probability of
the algorithm A:

Lemma 4.3. For any λ ∈ N it holds that either Pr [(x,A(x)) ∈ R] ≥ B · ε2/8
or ε < 2/|Cλ|.
Proof of Lemma 4.3. Whenever the algorithm A reaches Step 3 the witness
extraction algorithm WitnessExt guarantees that (x,A(x)) ∈ R. Therefore,

Pr [(x,A(x)) ∈ R]

= Pr

⎡

⎣V(x, α, β0, γ0) = 1 ∧
⎛

⎝
B∨

j=1

{
V(x, α, βj , γj) = 1

∧ βj �= β0

}
⎞

⎠

⎤

⎦

=
∑

st

⎛

⎝Pr [st] · Pr

⎡

⎣V(x, α, β0, γ0) = 1 ∧
⎛

⎝
B∨

j=1

{
V(x, α, βj , γj) = 1

∧ βj �= β0

}
⎞

⎠

⎤

⎦

⎞

⎠

where (x,w) ← Dλ, (α, st) ← P̄1(x), β0, . . . , βB ← Cx and γj = P̄2(st, βj) for
every j ∈ {0, . . . , B}; and we assume without loss of generality that for any
λ ∈ N, x ∈ Xλ and for any (α, st) produced by P∗

1(x) it holds that the state
st consists of λ, x and α (in addition to any other information determined by
P∗
1). In what follows, for every state st, let β∗

st denote the lexicographically first
β ∈ Cx for which V(x, α, β, P̄2(st, β)) = 1. If no such β exists, let β∗

st = ⊥. It thus
holds that

Pr [(x,A(x)) ∈ R]

=
∑

st

⎛

⎝Pr [st] · Pr

⎡

⎣V(x, α, β0, γ0) = 1 ∧
⎛

⎝
B∨

j=1

{
V(x, α, βj , γj) = 1

∧ βj �= β∗
st

}
⎞

⎠

⎤

⎦

⎞

⎠

where for every state st, the probability is taken only over the choice of
β0, . . . , βB ← Cx. Then, for every fixed state st, the events V(x, α, β0, γ0) = 1
and {V(x, α, βj , γj) = 1 ∧ βj �= β∗

st}j are independent, and therefore

Pr

⎡

⎣
B∨

j=1

{
V(x, α, βj , γj) = 1

∧ βj �= β∗
st

}
⎤

⎦

A High-Moment Forking Lemma for Σ-Protocols 235

= 1 − Pr

⎡

⎣
B∧

j=1

{
V(x, α, βj , γj) = 0

∨ βj = β∗
st

}
⎤

⎦

= 1 −
B∏

j=1

Pr
[
V(x, α, βj , γj) = 0

∨ βj = β∗
st

]

≥ 1 −
B∏

j=1

min
{

1,Pr [V(x, α, βj , γj) = 0] + Pr [βj = β∗
st]
}

≥ 1 −
(

1 − max
{

0, ε(st) − 1
|Cλ|
})B

,

where ε(st) = Prβ

[
V(x, α, β, P̄2(st, β)) = 1

]
for each st. Denoting

ε̃(st) = max {0, ε(st) − 1/|Cλ|}

for every st, we obtain

Pr [(x,A(x)) ∈ R] ≥
∑

st

(
Pr [st] · ε(st) ·

(
1 − (1 − ε̃(st))B

))

= Est

[
ε̃(st) ·

(
1 − (1 − ε̃(st))B

)]
.

The following claim (which is proved in the full version of the paper) provides
a lower bound on the above term Est

[
ε̃(st) ·

(
1 − (1 − ε̃(st))B

)]
. Note that this

term is the expectation of a non-convex function of ε̃(st) over the interval [0, 1],
and therefore such a lower bound is not directly implied by Jensen’s inequality.

Claim 4.4. It holds that Est

[
ε̃(st) ·

(
1 − (1 − ε̃(st))B

)]
≥ 1

2 · B ·
(
ε − 1

|Cλ|
)2

.

Given Claim 4.4, it holds that either ε < 2/|Cλ| or Pr [(x,A(x)) ∈ R] ≥
1
2 · B · (ε/2)2, and this concludes the proof of Lemma 4.3. �

The following lemma establishes an upper bound on the dth moment of the
running time of the algorithm A (recall that TA,Dλ

denotes the random variable
corresponding to the running time of A on input x where (x,w) ← Dλ):

Lemma 4.5. For any λ ∈ N it holds that

E
[
(TA,Dλ

)d
] ≤ 2(1 + B)d · (tP̄ + tV + tW)d · ε.

Proof of Lemma 4.5. The description of A yields that with probability 1 − ε
it runs in time at most tP̄ + tV, and with probability ε it runs in time at most
(1 + B) · (tP̄ + tV) + tW (for simplicity we assume that the time required for
sampling a uniform β ∈ Cx is subsumed by tP̄ + tV). Therefore,

E
[
(TA,Dλ

)d
] ≤ (tP̄ + tV)d · (1 − ε) + ((1 + B) · (tP̄ + tV + tW))d · ε

236 L. Rotem and G. Segev

≤ (tP̄ + tV)d + ((1 + B) · (tP̄ + tV + tW))d · ε

≤ 2(1 + B)d · (tP̄ + tV + tW)d · ε. (1)

where Eq. (1) follows from the fact that B ≥ 1/ε1/d−1 (and thus 1 ≤ (1+B)d ·ε).
�

Equipped with Lemmas 4.3 and 4.5, the assumption that R is a d-moment
(Δ,ω)-hard relation with respect to the distribution D implies that either ε <
2/|Cλ| or

B · ε2

8
≤ Pr [(x,A(x)) ∈ R]

≤ Δ · E [(TA,Dλ
)d
]

|Wλ|ω

≤ Δ · 2(1 + B)d · (tP̄ + tV + tW)d · ε

|Wλ|ω

≤ Δ · 2d+1Bd · (tP̄ + tV + tW)d · ε

|Wλ|ω

≤ Δ · Bd · (2(tP̄ + tV + tW))d · ε

|Wλ|ω

Our choice of B = 	1/ε1/d − 1
 guarantees that Bd−1 ≤ ε1−1/d, and therefore

ε2− 1
d ≤ ε

Bd−1
≤ Δ · 8 · (2(tP̄ + tV + tW))d

|Wλ|ω

leading to

ε ≤
(

Δ · 8 · (2(tP̄ + tV + tW))d

|Wλ|ω
) d

2d−1

.

Therefore, overall we obtain

ε ≤ max

⎧
⎨

⎩

(
Δ · 8 · (2(tP̄ + tV + tW))d

|Wλ|ω
) d

2d−1

,
2

|Cλ|

⎫
⎬

⎭

≤
(

Δ · (16(tP̄ + tV + tW))d

|Wλ|ω
) d

2d−1

+
2

|Cλ| .

�

5 Tighter Security for Signature Schemes

In this section we show that our approach extends to establishing tighter security
guarantees for signature schemes that are obtained from identification schemes

A High-Moment Forking Lemma for Σ-Protocols 237

via the Fiat-Shamir paradigm [FS86]. The generic analysis of the Fiat-Shamir
transform in this context [AAB+02] shows that if any malicious prover that runs
in time t breaks the security of the identification scheme with probability at most
ε, then any malicious forger that runs in time roughly t and issues qH random-
oracle queries breaks the security of the signature scheme with probability at
most roughly qH · ε. Therefore, given our result from Sect. 4, if the relation R ⊆
X ×W underlying the identification scheme is a d-moment (Δ,ω)-hard relation,
then any such forger breaks the security of the signature scheme with probability
at most roughly qH · (Δ · td/|W|ω)d/(2d−1).

Here, we show that the latter bound can be further improved by applying our
proof technique directly, showing that any forger as above breaks the security of
the signature scheme with probability at most roughly (qH ·Δ · td/|W|ω)d/(2d−1).
Note that some dependency on qH seems to be unavoidable, at least for a very
large class of reductions which includes in particular all reductions based on the
underlying paradigm of the forking lemma [PV05,GBL08,Seu12,FJS14]. In what
follows, we first recall the standard transformation from identification schemes
to signature schemes via the Fiat-Shamir paradigm [FS86,AAB+02], and then
state and prove our result.

Let ID = (Gen,P1,P2,V, C) be an identification scheme for a relation R ⊆
X × W, and let H be a hash function mapping triplets of the form (x,m, α) to
challenges in Cx. The Fiat-Shamir paradigm then defines the following signature
scheme SIGID,H = (KG,Sign,Verify):

– KG(1λ) samples (x,w) ← Gen(1λ) and outputs sk = (x,w) and vk = x.
– Sign(sk,m) parses sk = (x,w) and outputs σ = (α, β, γ), where (α, st) ←

P1(x,w), β = H(vk,m, α) and γ ← P2(st, β).
– Verify(vk,m, σ) parses σ = (α, β, γ), and outputs 1 if and only V(vk, α, β, γ) =

1 and β = H(vk,m, α).

Note that the value β in fact does not have to be included in the signature
σ = (α, β, γ) as it can be computed given vk, m and α. Alternatively, in some
identification protocols, for any x, β and γ there is a unique and efficiently
computable α for which V(x, α, β, γ) = 1, and in such cases the value α does not
have to be included in the signature σ = (α, β, γ).

We prove the following theorem (the reader is referred to Sect. 2 for the
standard notions of tSim-time simulatability, tW-time special soundness, and δ-
first-message unpredictability for identification protocols):

Theorem 5.1. Let d = d(λ), Δ = Δ(λ), ω = ω(λ), tSim = tSim(λ), tW =
tW(λ), δ = δ(λ), tF = tF (λ), qH = qH(λ) and qSign = qSign(λ) be functions of
the security parameter λ ∈ N, and let ID = (Gen,P1,P2,V, C) be a tSim-time
simulatable identification protocol with tW-time special soundness and δ-first-
message unpredictability for a relation R ⊆ X × W. If R is d-moment (Δ,ω)-
hard with respect to Gen, and the hash function H is modeled as a random oracle,
then for every tF -time algorithm F that issues qH oracle queries and qSign signing
queries it holds that

238 L. Rotem and G. Segev

AdvForge
SIGID,H,F (λ) ≤

(
qH · Δ · (16(tF + qSign · tSim + tV + tW))d

|Wλ|ω
) d

2d−1

+2 ·
(

q2H + 1
|Cλ| + qSign · q2H · δ

)

for all sufficiently large λ ∈ N, where tV = tV(λ) denotes the running time of the
algorithm V and |Cλ| denotes the size of the challenge set Cx for any x ∈ Xλ.

At a high level, the proof of Theorem 5.1 follows a similar outline to that The-
orem 4.1, while carefully handling additional technical challenges that arise when
considering the unforgeability of signatures schemes in the random oracle model,
as to minimize the increase in the adversary’s success probability. Concretely,
let F be a forger that runs in time t, issues at most qH random-oracle queries
and produces a successful forgery with probability ε. Our algorithm A invokes
the forger to obtain a message-signature pair (m,σ = (α, β, γ)), while simulating
the random oracle and the signing oracle using the simulatability of the under-
lying Σ-protocol. Then, it checks that this pair is a valid one and that the forger
queried the random oracle for the hash value of (x,m, α). If so, it rewinds the
forger B ≈ 1/ε1/d times to the point just before (x,m, α) was queried, simulating
a fresh random oracle from that point on each time, and obtaining respective
message-signature pairs (m1, σ1 = (α1, β1, γ1)), . . . , (mB , σB = (αB , βB , γB)). If
any one of these additional pairs (mi, σi) is a valid one, and in addition αi = α
and βi �= β, then the algorithm A successfully retrieves a witness.

Technical challenges and approximations omitted, we prove that the algo-
rithm A has success probability roughly B · ε2/qH ≈ ε2−1/d/qH, and the d-th
moment of its running time is at most ε ·td/Bd ≈ T d. Thus, assuming that R is a
d-moment (Δ,ω)-hard relation leads to the bound ε ≤ (qH · Δ · td/|W|ω)d/(2d−1)

on the advantage of a t-time forger which issues qH random oracle queries in
breaking the existential unforgeability of the signature schemes via an adaptive-
chosen message attack.

Proof of Theorem 5.1. For any λ ∈ N let ε = ε(λ) = AdvForge
SIGID,H,F (λ), and

B = 	1/ε1/d−1
. We make the following assumptions about the forger F without
loss of generality:

– F does not issue the same query twice to H, as F can always store the answers
received from the oracle.

– After querying the signing oracle Sign(sk, ·) on a message m and receiving a
signature σ = (α, β, γ), F does not query H on (vk,m, α). This is without loss
of generality, since in the real experiment ForgeSIGID,H,F (λ), it is always the
case H(vk,m, α) = β, and hence F can just store this value.

– If FH,Sign(sk,·)(vk) outputs a pair (m,σ = (α, β, γ)) and F queried H for y =
H(vk,m, α), then β = y. If this is not the case, then it necessarily holds that
Verify(vk,m, σ) = 0 and thus ForgeSIGID,H,F (λ) = 0.

– F never outputs a message m on which it has queried Sign(sk, ·).

A High-Moment Forking Lemma for Σ-Protocols 239

Consider the following algorithm A (which uses the algorithms Sim and
WitnessExt provided by the simulatability and special soundness of ID, respec-
tively):

The Algorithm A

Input: An instance x ∈ Xλ.

1. Set vk = x, sample randomness r ← {0, 1}∗ for F , sample qH
hash values y0 = (y0,1, . . . , y0,qH) ← Cq

x, and sample qSign transcripts
(α′

0, β
′
0, γ

′
0), . . . , (α

′
qSign , β

′
qSign , γ

′
qSign) ← Sim(x).

2. Invoke (m0, α0, β0, γ0) ← FH,Sign(sk,·)(vk; r) while simulating the oracles to
F as follows:

– H-queries: For each i ∈ [qH] respond to the ith query with y0,i.
– Sign-queries: For each i ∈ [qSign] let m denote the ith query and

responds as follows. If H(vk, m, α′
i) was already queried and the

response was different than β′
i, then output ⊥ and terminate. Oth-

erwise, respond with the signature σ = (α′
i, β

′
i, γ

′
i).

3. If V(x, m0, α0, β0, γ0) = 0 or if F did not query for H(vk, m0, α0) then
output ⊥ and terminate. Otherwise, let i∗ ∈ [qH] denote the index of query
in which F queried for H(vk, m0, α0).

4. For every j ∈ [B]:
(a) Sample yj,i∗ , . . . , yj,q ← Cx. If yj,i∗ = y0,i∗ then skip to the next iter-

ation.
(b) Invoke (mj , αj , βj , γj) ← FH,Sign(sk,·)(vk; r) while simulating the oracles

as in Step 2 with the following modification: For each � ∈ {i∗, . . . , q}
respond to F ’s �th H-query with yj,�.

(c) If mj = m0, αj = α0, βj = yj,i∗ and V(x, αj , βj , γj) = 1 then output
w = WitnessExt(α0, (β0, γ0), (βj , γj)) and terminate.

5. Output ⊥.

The following lemma establishes a lower bound on the success probability of
the algorithm A:

Lemma 5.2. For any λ ∈ N it holds that either

Pr [(x,A(x)) ∈ R] ≥ B · ε2

8 · qH

or

ε < 2 ·
(

q2H + 1
|Cλ| + qSign · q2H · δ

)
.

Proof of Lemma 5.2. Denote by I0 the random variable corresponding to the
index of the H-query in which F queries H with (vk,m0, α0) in its invocation in
Step 2. If in this invocation F does not query H with (vk,m0, α0) or if β0 �= y0,I0 ,
then we set I0 = 0. Similarly, for each j ∈ [B] denote by Ij the random variable
corresponding to the index of the H-query in which F queries H with (vk,mj , αj)

240 L. Rotem and G. Segev

in its invocation in the jth iteration of Step 4. If in this invocation F does not
query (vk,mj , αj) or if βj �= yj,Ij

, then we set Ij = 0.
For every i ∈ [qSign] let Bad0,i denote the event in which A aborts in the ith

Sign-query of F in its invocation in Step 2. That is, if we denote by m the ith
Sign-query of F in its invocation in Step 2, then Bad0,i is the event in which F
already queried H with (vk,m, α′

i) in an earlier stage of this invocation, and the
response was different than β′

i. For every j ∈ [B] and i ∈ [qSign], let Badj,i be
defined analogously with respect to the jth invocation of F in Step 4, and let
Bad� =

∨
i∈[qSign]

Bad�,i for every � ∈ {0, . . . , B}. Since transcripts sampled using
Sim are distributed identically as honestly-generated transcripts, then by the
δ-first-message unpredictability of the identification scheme ID, it holds that

Pr [Bad�] ≤
qSign∑

i=1

Bad�,i

≤
qSign∑

i=1

qH · δ

≤ qSign · qH · δ.

Whenever A reaches Step 4c, it is guaranteed that it invokes the witness extrac-
tion algorithm on two accepting transcripts with distinct challenges. Therefore,

Pr [(x, A(x)) ∈ R]

= Pr

⎡
⎣

(
V(x, m0, α0, β0, γ0) = 1

∧ I0 > 0 ∧ Bad0

)
∧

⎛
⎝

B∨
j=1

⎧
⎨
⎩

V(x, mj , αj , βj , γj) = 1
∧ I0 = Ij ∧ yj,Ij

�= y0,I0

∧ Badj

⎫
⎬
⎭

⎞
⎠

⎤
⎦

=

qH∑
i=1

Pr

⎡
⎣

(
V(x, m0, α0, β0, γ0) = 1

∧ I0 = i ∧ Bad0

)
∧

⎛
⎝

B∨
j=1

⎧
⎨
⎩

V(x, mj , αj , βj , γj) = 1
∧ Ij = i ∧ yj,i �= y0,i

∧ Badj

⎫
⎬
⎭

⎞
⎠

⎤
⎦

=

qH∑
i=1

∑
x,r,{(α′

�
,β′

�
,γ′

�
)}�∈[qSign]

y0,1,...,y0,i−1

⎛
⎜⎜⎜⎜⎝
Pr

[
x ∧ r ∧ {(α′

�, β
′
�, γ

′
�)}�∈[qSign]

∧ y0,1, . . . , y0,i−1

]

×Pr

⎡
⎢⎢⎢⎢⎣

V(x, m0, α0, β0, γ0) = 1

∧ I0 = i ∧ Bad0

∧
⎛
⎝∨B

j=1

⎧
⎨
⎩

V(x, mj , αj , βj , γj) = 1
∧ Ij = i ∧ yj,i �= y0,i

∧ Badj

⎫
⎬
⎭

⎞
⎠

⎤
⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎠

.

It thus holds that

Pr [(x,A(x)) ∈ R]

≥
qH∑

i=1

∑

x,r,{(α′
�

,β′
�

,γ′
�
)}�∈[qSign]

y0,1,...,y0,i−1

⎛

⎜
⎜
⎜
⎜
⎝

Pr
[
x ∧ r ∧ {(α′

�, β
′
�, γ

′
�)}�∈[qSign]

∧ y0,1, . . . , y0,i−1

]

A High-Moment Forking Lemma for Σ-Protocols 241

×Pr

⎡

⎢
⎢
⎢
⎢
⎣

V(x,m0, α0, β0, γ0) = 1
∧ I0 = i ∧ Bad0

∧
⎛

⎝∨B
j=1

⎧
⎨

⎩

V(x,mj , αj , βj , γj) = 1
∧ Ij = i ∧ Badj

∧ ∀� ∈ {i, . . . , qH} : yj,� �= y0,�

⎫
⎬

⎭

⎞

⎠

⎤

⎥
⎥
⎥
⎥
⎦

⎞

⎟
⎟
⎟
⎟
⎠

where (x,w) ← Gen(1λ), and the values r, {{yj,�}�∈[qH],mj , αj , βj , γj}j∈{0,...,B}
and {(α′

�, β
′
�, γ

′
�)}�∈[qSign] are distributed as in the description of A.

For every y0,1, . . . , y0,i−1 let us denote y[i − 1] = (y0,1, . . . , y0,i−1) and τ =
{(α′

�, β
′
�, γ

′
�)}�∈[qSign]. For every i, x, r, τ and y[i−1], denote by (y∗

i (i, x, r, τ ,y[i−
1]), . . . , y∗

qH
(i, x, r, τ ,y[i−1])) the lexicographically first tuple of qH − i+1 values

in Cx for which the following holds: In the simulation FH,Sign(sk,·)(x; r) (where
the oracles are simulated to F as in the description of A using the values τ and
y[i − 1], y∗

i (i, x, r, τ ,y[i − 1]), . . . , y∗
qH

(i, x, r, τ ,y[i − 1])), F outputs (m,α, β, γ)
such that:

– V(x,m, α, β, γ) = 1;
– F ’s ith query to H is (x,m, α);
– For every � ∈ [qSign]: If m� is the �th query of F to Sign(sk, ·), then F does

not query H on (x,m�, α
′
�) before its �th query to Sign(sk, ·).

Then, it holds that

Pr [(x,A(x)) ∈ R]

≥
qH∑

i=1

∑

x,r,{(α′
�

,β′
�

,γ′
�
)}�∈[qSign]

y0,1,...,y0,i−1

⎛

⎜
⎜
⎜
⎜
⎝

Pr
[
x ∧ r ∧ {(α′

�, β
′
�, γ

′
�)}�∈[qSign]

∧ y0,1, . . . , y0,i−1

]

×Pr

⎡

⎢
⎢
⎢
⎢
⎣

V(x,m0, α0, β0, γ0) = 1
∧ I0 = i ∧ Bad0

∧
⎛

⎝∨B
j=1

⎧
⎨

⎩

V(x,mj , αj , βj , γj) = 1
∧ Ij = i ∧ Badj

∧ ∀� ∈ {i, . . . , q} : yj,� �= y∗
� (i, x, r, τ ,y[i − 1])

⎫
⎬

⎭

⎞

⎠

⎤

⎥
⎥
⎥
⎥
⎦

⎞

⎟
⎟
⎟
⎟
⎠

For every fixing of i, x, r, {(α′
�, β

′
�, γ

′
�)}�∈[qSign] and y0,1, . . . , y0,i−1, the event

V(x,m0, α0, β0, γ0)) = 1 ∧ I0 = i ∧ Bad0 and the events
{

V(x,mj , αj , βj , γj) = 1 ∧ Ij = i ∧ Badj

∧ ∀� ∈ {i, . . . , q} : yj,i �= y∗
i (i, x, r, τ ,y[i − 1])

}

j∈[B]

are independent. Therefore,

Pr [(x,A(x)) ∈ R]

≥
qH∑

i=1

∑

x,r,{(α′
�

,β′
�

,γ′
�
)}�∈[qSign]

y0,1,...,y0,i−1

⎛

⎜
⎜
⎝Pr

[
x ∧ r ∧ {(α′

�, β
′
�, γ

′
�)}�∈[qSign]

∧ y0,1, . . . , y0,i−1

]

242 L. Rotem and G. Segev

×Pr
[
V(x,m0, α0, β0, γ0) = 1

∧ I0 = i ∧ Bad0

]

×
⎛

⎝1 −
B∏

j=1

Pr
[

V(x,mj , αj , βj , γj) = 0 ∨ Ij �= i ∨ Badj

∨ ∃� ∈ {i, . . . , q} : yj,i = y∗
i (i, x, r, τ ,y[i − 1])

]
⎞

⎠

⎞

⎟
⎟
⎠,

and for every j ∈ [B] the union bound implies that

Pr
[

V(x,mj , αj , βj , γj) = 0 ∨ Ij �= i ∨ Badj

∨ ∃� ∈ {i, . . . , q} : yj,i = y∗
i (i, x, r, τ ,y[i − 1])

]

≤ min

{

1, Pr [V(x,mj , αj , βj , γj) = 0 ∨ Ij �= i]

+ Pr [∃� ∈ {i, . . . , q} : yj,i = y∗
i (i, x, r, τ ,y[i − 1])] + Pr [Badj]

}

≤ min

{

1, 1 − Pr [V(x,mj , αj , βj , γj) = 1 ∧ Ij = i]

+
qH
|Cλ| + qSign · qH · δ

}

.

For every i, x, r, {(α′
�, β

′
�, γ

′
�)}�∈[qSign] and y0,1, . . . , y0,i−1 denote

ε̃i(x, r, τ ,y[i − 1])

= max
{

0, Pr [V(vk,m0, α0, β0, γ0) = 1 ∧ I0 = i] − qH
|Cλ| − qSign · qH · δ

}
.

Then, we obtain that

Pr [(x,A(x)) ∈ R]

≥
qH∑

i=1

∑

x,r,{(α′
�

,β′
�

,γ′
�
)}�∈[qSign]

y0,1,...,y0,i−1

⎛

⎝Pr
[
x ∧ r ∧ {(α′

�, β
′
�, γ

′
�)}�∈[qSign]

∧ y0,1, . . . , y0,i−1

]

×ε̃i(x, r, τ ,y[i − 1]) ·
(
1 − (1 − ε̃i(x, r, τ ,y[i − 1]))B

)
⎞

⎠

=
qH∑

i=1

E

[
ε̃i(x, r, τ ,y[i − 1]) ·

(
1 − (1 − ε̃i(x, r, τ ,y[i − 1]))B

)]
,

where the expectation is taken over the choice of x, r, y0,1, . . . , y0,i−1 and of
{(α′

�, β
′
�, γ

′
�)}�∈[qSign].

A High-Moment Forking Lemma for Σ-Protocols 243

For each i ∈ [qH], denote εi = Pr [V(x,m0, α0, β0, γ0) = 1 ∧ I0 = i] and ε̃i =
E [ε̃i(x, r, τ ,y[i − 1])]. The following claim (which is proved in the full version of
the paper) provides a lower bound on each of the terms in the above sum (note
that each term is the expectation of a non-convex function, and therefore such
a lower bound is not directly implied by Jensen’s inequality)

Claim 5.3 For every i ∈ [qH] it holds that

E

[
ε̃i(x, r, τ ,y[i − 1]) ·

(
1 − (1 − ε̃i(x, r, τ ,y[i − 1]))B

)]
≥ 1

2
· B · ε̃2i .

Claim 5.3 together with Jensen’s inequality imply that

Pr [(x,A(x)) ∈ R]

≥ 1
2

· B ·
qH∑

i=1

ε̃2i .

≥ 1
2 · qH

· B ·
(

qH∑

i=1

ε̃i

)2

≥ 1
2 · qH

· B ·
(

qH∑

i=1

(
εi − qH

|Cλ| − qSign · qH · δ

))2

=
B

2 · qH
·
(

Pr [V(x,m0, α0, β0, γ0) = 1 ∧ I0 > 0] − q2H
|Cλ| − qSign · q2H · δ

)2

.

Observe that when F outputs a pair (m,σ = (α, β, γ)) without querying H on
(vk,m, α), the view of F at termination is independent of the value H(vk,m, α).
Hence, the probability that it outputs a value β such that H(vk,m, α) = β
(which is a necessary condition for F to win the experiment) is at most 1/|Cλ|.
Therefore,

Pr [V(x,m0, α0, β0, γ0) = 1 ∧ I0 > 0] ≥ ε − 1
|Cλ| ,

which implies that

Pr [(x,A(x)) ∈ R] ≥ 1
2 · qH

· B ·
(

ε − q2H + 1
|Cλ| − qSign · q2H · δ

)2

.

Then, either ε < 2 ·
(

q2
H+1
|Cλ| + qSign · q2H · δ

)
, or

Pr [(x,A(x)) ∈ R] ≥ 1
8 · qH

· B · ε2.

�
The following lemma establishes an upper bound on the dth moment of

the running time of the algorithm A (recall that TA,KG(1λ) denotes the random
variable corresponding to the running time of A on input x where (x,w) ←
KG(1λ)):

244 L. Rotem and G. Segev

Lemma 5.4. For any λ ∈ N it holds that

E
[
(TA,KG(1λ))

d
] ≤ 2(1 + B)d · (qSign · tSim + tF + tV + tW)d · ε.

Proof of Lemma 5.4. The description of A yields that with probability 1− ε it
runs in time at most qSign · tSim+ tF + tV, and with probability ε it runs in time at
most qSign · tSim +(1+B) · (tF + tV)+ tW (for simplicity we assume that the time
required for sampling a uniform β ∈ Cx is subsumed by tF + tV). Therefore,

E
[
(TA,KG(1λ))

d
] ≤ (qSign · tSim + tF + tV)d · (1 − ε)

+ (qSign · tSim + (1 + B) · (tF + tV) + tW)d · ε

≤ (qSign · tSim + tF + tV)d

+ ((1 + B) · (qSign · tSim + tF + tV + tW))d · ε

≤ 2(1 + B)d · (qSign · tSim + tF + tV + tW)d · ε. (2)

where Eq. (2) follows from the fact that B ≥ 1/ε1/d−1 (and thus 1 ≤ (1+B)d ·ε).
�

Lemma 5.2 and Lemma 5.4, together with the assumption that R is a
d-moment (Δ,ω)-hard relation imply that either ε < 2 · ((q2H + 1)/|Cλ|+
qSign · q2H · δ

)
or

B · ε2

8 · qH
≤ Pr [(x,A(x)) ∈ R]

≤ Δ · E [(TA,KG(1λ))d
]

|Wλ|ω

≤ Δ · 2(1 + B)d · (qSign · tSim + tF + tV + tW)d · ε

|Wλ|ω

≤ Δ · 2d+1Bd · (qSign · tSim + tF + tV + tW)d · ε

|Wλ|ω

≤ Δ · Bd · (2(qSign · tSim + tF + tV + tW))d · ε

|Wλ|ω

Our choice of B = 	1/ε1/d − 1
 guarantees that Bd−1 ≤ ε1−1/d, and therefore

ε2− 1
d ≤ ε

Bd−1
≤ 8 · qH · Δ · (2(qSign · tSim + tF + tV + tW))d

|Wλ|ω

A High-Moment Forking Lemma for Σ-Protocols 245

which yields

ε ≤
(

8 · qH · Δ · (2(qSign · tSim + tF + tV + tW))d

|Wλ|ω
) d

2d−1

.

Therefore, overall we obtain

ε ≤ max

⎧
⎨

⎩

(
8·qH·Δ·(2(qSign·tSim+tF +tV+tW))d

|Wλ|ω
) d

2d−1
,

2 ·
(

q2
H+1
|Cλ| + qSign · q2H · δ

)

⎫
⎬

⎭

≤
(

qH · Δ · (16(qSign · tSim + tF + tV + tW))d

|Wλ|ω
) d

2d−1

+2 ·
(

q2H + 1
|Cλ| + qSign · q2H · δ

)
.

�

6 Implications to the Schnorr and Okamoto
Schemes

In this section we derive concrete security bounds for the Schnorr identification
and signature schemes and for the Okamoto identification and signature schemes
based on Corollary 4.2 and Theorem 5.1, assuming the 2-moment hardness of
the discrete logarithm problem. In the description of the schemes, we rely on
the existence of a group generation algorithm GroupGen, which takes as input
the security parameter 1λ and outputs a description (G, p, g) of a cyclic group
G of prime order p, where g is a generator of the group. We focus on the typical
case where the security parameter λ ∈ N determines a lower bound on the size
of the group and thus p ≥ 2λ, and we denote by texp = texp(λ) the time required
for a single exponentiation in the group G, where (G, p, g) ← GroupGen(1λ).
Moreover, we assume for simplicity that the time required for multiplication
in G, for sampling elements in Zp, and for arithmetic computations in Zp is
subsumed by texp.

6.1 The Schnorr Identification and Signature Schemes

We start by recalling the definition of the Schnorr identification scheme
IDSchnorr = (Gen,P1,P2,V, C) which is defined as follows:

246 L. Rotem and G. Segev

Gen(1λ):

1. (G, p, g) ← GroupGen(1λ)
2. w ← Zp

3. x = ((G, p, g), gw)
4. Output (x, w)

V(x, α, β, γ):

1. Parse x as ((G, p, g), h)
2. If α = gγ · h−β then output 1

and otherwise output 0

P1(x, w):

1. Parse x as ((G, p, g), h)
2. r ← Zp

3. α = gr

4. st = (w, r)
5. Output (α, st)

P2(st, β):

1. Parse st as (w, r)
2. Output γ = w · β + r mod p

Note that the scheme’s challenge space C = Cx is Zp for any x = ((G, p, g), gw)
produced by Gen, and that IDSchnorr has a challenge space of size |Cλ| ≥ 2λ and
δ-first message unpredictability for δ = δ(λ) = 2−λ. Additionally, the verifier V
preforms two exponentiations in the group G which yields a total running time
of tV = tV(λ) = 2texp(λ). The following well-known claim establishes the special
soundness and simulatability of IDSchnorr.

Claim 6.1. IDSchnorr is simulatable and has special soundness.

For completeness, in the full version of the paper we present the simulator Sim
establishing the simulatability of the scheme, and the extractor WitnessExt which
establishes its special soundness. The simulator Sim runs in time tSim = 2texp,
and the extractor WitnessExt performs only arithmetic operations in the ring Zp,
and hence for our purposes its running time is dominated by that of the other
algorithms under consideration. Given Claim 6.1 and the above observations,
we obtain the following theorem, establishing concrete security bounds for the
Schnorr identification scheme, as an immediate implication of Corollary 4.2.

Theorem 6.2. Let tP̄ = tP̄(λ) and qP̄ = qP̄(λ) be functions of the security
parameter λ ∈ N. If the discrete logarithm problem is 2-moment hard with respect
to Gen, then for any malicious prover P̄ that runs in time tP̄ and issues qP̄
transcript-generation queries it holds that

AdvPA-IMP
IDSchnorr,P̄

(λ) ≤
(

(16(tP̄ + 2(qP̄ + 1) · texp)
2

2λ

) 2
3

+
2
2λ

,

for all sufficiently large λ ∈ N.

Recall that Schnorr signatures are obtained from IDSchnorr via the Fiat-
Shamir transform relative to hash function H, as described in Sect. 5. Hence,
we obtain the following theorem, establishing concrete security bounds for the
Schnorr signature scheme, as a corollary of Theorem 5.1.

Theorem 6.3. Let tF = tF (λ), qH = qH(λ) and qSign = qSign(λ) be functions
of the security parameter λ ∈ N. If the discrete logarithm problem is 2-moment

A High-Moment Forking Lemma for Σ-Protocols 247

hard with respect to Gen, and the hash function H is modeled as a random oracle,
then for every tF -time algorithm F that issues qH oracle queries and qSign signing
queries it holds that

AdvForge
SIGIDSchnorr,H

,F (λ) ≤
(

qH · (16(tF + 2(qSign + 1) · texp))
2

2λ

) 2
3

+2 ·
(

(qSign + 1) · q2H + 1
2λ

)

for all sufficiently large λ ∈ N.

6.2 The Okamoto Identification and Signature Schemes

The Okamoto identification scheme IDOkamoto is defined as follows:

Gen(1λ):

1. (G, p, g) ← GroupGen(1λ)
2. g2 ← G

3. w1, w2 ← Zp

4. w = (w1, w2)
5. x = ((G, p, g), g2, g

w1 · gw2
2)

6. Output (x, w)

V(x, α, β, γ):

1. Parse x as ((G, p, g), g2, h) and γ as
(γ1, γ2)

2. If α = gγ1 · gγ2
2 · h−β then output 1

and otherwise output 0

P1(x, w):

1. Parse x as ((G, p, g), g2, h)
2. r1, r2 ← Zp

3. α = gr · gr2
2

4. st = (w, r1, r2)
5. Output (α, st)

P2(st, β):

1. Parse st as (w1, w2, r1, r2)
2. γi = wi ·β+ri mod p for i ∈ {1, 2}
3. Output γ = (γ1, γ2)

Observe that the scheme’s challenge space C = Cx is Zp for any x = ((G, p, g), gw)
produced by Gen, and that IDOkamoto has a challenge space of size |Cλ| ≥ 2λ and
δ-first message unpredictability for δ = δ(λ) = 2−λ. Moreover, the verifier V
preforms three exponentiations in the group G which yields a total running time
of tV = tV(λ) = 3texp(λ).

Note that the instance-witness relation induced by Gen consists of all pairs
of the form ((G, p, g1, g2, h), (w1, w2)) for which h = gw1

1 · gw2
2 . We denote this

relation by R2DLog. The following claim establishes the special soundness (with
respect to the relation R2Dlog) and simulatability of IDOkamoto.

Claim 6.4. IDOkamoto is simulatable and has special soundness.

For completeness, in the full version of the paper we present the simulator Sim
establishing the simulatability of the scheme, and the extractor WitnessExt which
establishes its special soundness. The simulator Sim runs in time tSim = 3texp,
and the extractor WitnessExt performs only arithmetic operations in the ring Zp,

248 L. Rotem and G. Segev

and hence for our purposes its running time is dominated by that of the other
algorithms under consideration.

Let D = {Dλ}λ∈N be the distribution which outputs pairs of the form
((G, p, g, h), w) where (G, p, g) ← GroupGen(1λ), w ← Zp and h = gw. It is well-
known that the hardness of the relation R2DLog with respect to Gen is tightly
implied by the hardness of the discrete logarithm relation with respect to D.
That is, for any algorithm A there exists an algorithm B such that TA,Gen and
TB,D are identically distributed7 and

Pr

⎡

⎣gw = h

∣
∣
∣
∣
∣
∣

(G, p, g) ← GroupGen(1λ)
h ← G

w ← A(G, p, g, h)

⎤

⎦

= Pr

⎡

⎣gw1 · gw2
2 = h

∣
∣
∣
∣
∣
∣

(G, p, g) ← GroupGen(1λ)
g2, h ← G

(w1, w2) ← B(G, p, g, g2, h)

⎤

⎦ .

It immediately follows that if the discrete logarithm relation is 2-moment hard,
then the R2DLog relation is 2-moment (Δ = 1, ω = 1/2)-hard, where the param-
eter ω = 1/2 comes from the fact that the witness space Wλ of R2DLog is of size
p2 where p is the order of the group. Hence, the following theorem which estab-
lishes concrete security bounds for the Okamoto identification scheme follows
immediately from Corollary 4.2.

Theorem 6.5. Let tP̄ = tP̄(λ) and qP̄ = qP̄(λ) be functions of the security
parameter λ ∈ N. If the discrete logarithm problem is 2-moment hard with respect
to Gen, then for any malicious prover P̄ that runs in time tP̄ and issues qP̄
transcript-generation queries it holds that

AdvPA-IMP
IDOkamoto,P̄

(λ) ≤
(

(16(tP̄ + 3(qP̄ + 1) · texp)
2

2λ

) 2
3

+
2
2λ

,

for all sufficiently large λ ∈ N.

The Okamoto signature scheme is obtained from IDOkamoto via the Fiat-
Shamir transform relative to hash function H, as described in Sect. 5. There-
fore, the following theorem which establishes concrete security bounds for the
Okamoto signature scheme, is an immediate corollary of Theorem 5.1.

Theorem 6.6. Let tF = tF (λ), qH = qH(λ) and qSign = qSign(λ) be functions
of the security parameter λ ∈ N. If the discrete logarithm problem is 2-moment
hard with respect to Gen, and the hash function H is modeled as a random oracle,
then for every tF -time algorithm F that issues qH oracle queries and qSign signing
queries it holds that

7 To be precise, the running time TB,D of B is distributed as TA,Gen + 2texp, since B
performs two exponentiations and invokes A once. For simplicity of presentation, we
assume that the term 2texp is subsumed by TA,Gen.

A High-Moment Forking Lemma for Σ-Protocols 249

AdvForge
SIGIDOkamoto,H,F (λ) ≤

(
qH · (16(tF + 3(qSign + 1) · texp))

2

2λ

) 2
3

+2 ·
(

(qSign + 1) · q2H + 1
2λ

)

for all sufficiently large λ ∈ N.

References

[AAB+02] Abdalla, M., An, J.H., Bellare, M., Namprempre, C.: From identification
to signatures via the Fiat-Shamir transform: minimizing assumptions for
security and forward-security. In: Knudsen, L.R. (ed.) EUROCRYPT 2002.
LNCS, vol. 2332, pp. 418–433. Springer, Heidelberg (2002). https://doi.org/
10.1007/3-540-46035-7 28

[BCC+16] Bootle, J., Cerulli, A., Chaidos, P., Groth, J., Petit, C.: Efficient zero-
knowledge arguments for arithmetic circuits in the discrete log setting. In:
Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp.
327–357. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-
49896-5 12

[BD20] Bellare, M., Dai, W.: The multi-base discrete logarithm problem: tight
reductions and non-rewinding proofs for schnorr identification and signa-
tures. In: Bhargavan, K., Oswald, E., Prabhakaran, M. (eds.) INDOCRYPT
2020. LNCS, vol. 12578, pp. 529–552. Springer, Cham (2020). https://doi.
org/10.1007/978-3-030-65277-7 24

[BN06] Bellare, M., Neven, G.: Multi-signatures in the plain public-key model and
a general forking lemma. In: Proceedings of the ACM Conference on Com-
puter and Communications Security, pp. 390–399 (2006)

[FJS14] Fleischhacker, N., Jager, T., Schröder, D.: On tight security proofs for
schnorr signatures. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014.
LNCS, vol. 8873, pp. 512–531. Springer, Heidelberg (2014). https://doi.
org/10.1007/978-3-662-45611-8 27

[FKL18] Fuchsbauer, G., Kiltz, E., Loss, J.: The algebraic group model and its appli-
cations. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol.
10992, pp. 33–62. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-96881-0 2

[FPS20] Fuchsbauer, G., Plouviez, A., Seurin, Y.: Blind schnorr signatures and
signed ElGamal encryption in the algebraic group model. In: Canteaut, A.,
Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12106, pp. 63–95. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-45724-2 3

[FS86] Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identi-
fication and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986.
LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987). https://doi.org/
10.1007/3-540-47721-7 12

[GBL08] Garg, S., Bhaskar, R., Lokam, S.V.: Improved bounds on security reduc-
tions for discrete log based signatures. In: Wagner, D. (ed.) CRYPTO 2008.
LNCS, vol. 5157, pp. 93–107. Springer, Heidelberg (2008). https://doi.org/
10.1007/978-3-540-85174-5 6

https://doi.org/10.1007/3-540-46035-7_28
https://doi.org/10.1007/3-540-46035-7_28
https://doi.org/10.1007/978-3-662-49896-5_12
https://doi.org/10.1007/978-3-662-49896-5_12
https://doi.org/10.1007/978-3-030-65277-7_24
https://doi.org/10.1007/978-3-030-65277-7_24
https://doi.org/10.1007/978-3-662-45611-8_27
https://doi.org/10.1007/978-3-662-45611-8_27
https://doi.org/10.1007/978-3-319-96881-0_2
https://doi.org/10.1007/978-3-319-96881-0_2
https://doi.org/10.1007/978-3-030-45724-2_3
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/978-3-540-85174-5_6
https://doi.org/10.1007/978-3-540-85174-5_6

250 L. Rotem and G. Segev

[Gol04] Goldreich, O.: Foundations of Cryptography - Volume 2: Basic Applica-
tions. Cambridge University Press, Cambridge (2004)

[JT20] Jaeger, J., Tessaro, S.: Expected-time cryptography: generic techniques and
applications to concrete soundness. In: Proceedings of the 18th Theory of
Cryptography Conference, pp. 414–443 (2020)

[KMP16] Kiltz, E., Masny, D., Pan, J.: Optimal security proofs for signatures from
identification schemes. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016.
LNCS, vol. 9815, pp. 33–61. Springer, Heidelberg (2016). https://doi.org/
10.1007/978-3-662-53008-5 2

[Oka92] Okamoto, T.: Provably secure and practical identification schemes and
corresponding signature schemes. In: Brickell, E.F. (ed.) CRYPTO 1992.
LNCS, vol. 740, pp. 31–53. Springer, Heidelberg (1993). https://doi.org/
10.1007/3-540-48071-4 3

[PS00] Pointcheval, D., Stern, J.: Security arguments for digital signatures and
blind signatures. J. Cryptol. 13, 361–396 (2000)

[PV05] Paillier, P., Vergnaud, D.: Discrete-log-based signatures may not be equiv-
alent to discrete log. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788,
pp. 1–20. Springer, Heidelberg (2005). https://doi.org/10.1007/11593447 1

[Sch89] Schnorr, C.P.: Efficient identification and signatures for smart cards. In:
Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 239–252. Springer,
New York (1990). https://doi.org/10.1007/0-387-34805-0 22

[Sch91] Schnorr, C.: Efficient signature generation by smart cards. J. Cryptol. 4(3),
161–174 (1991)

[Seu12] Seurin, Y.: On the exact security of Schnorr-type signatures in the ran-
dom Oracle model. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT
2012. LNCS, vol. 7237, pp. 554–571. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-29011-4 33

[Sho97] Shoup, V.: Lower bounds for discrete logarithms and related problems.
In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 256–266.
Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-69053-0 18

https://doi.org/10.1007/978-3-662-53008-5_2
https://doi.org/10.1007/978-3-662-53008-5_2
https://doi.org/10.1007/3-540-48071-4_3
https://doi.org/10.1007/3-540-48071-4_3
https://doi.org/10.1007/11593447_1
https://doi.org/10.1007/0-387-34805-0_22
https://doi.org/10.1007/978-3-642-29011-4_33
https://doi.org/10.1007/978-3-642-29011-4_33
https://doi.org/10.1007/3-540-69053-0_18

DualRing : Generic Construction of Ring
Signatures with Efficient Instantiations

Tsz Hon Yuen1(B) , Muhammed F. Esgin2,3, Joseph K. Liu2, Man Ho Au1 ,
and Zhimin Ding4

1 The University of Hong Kong, Pok Fu Lam, Hong Kong
{thyuen,allenau}@cs.hku.hk

2 Department of Software Systems and Cybersecurity, Faculty of Information
Technology, Monash University, Melbourne, Australia

{muhammed.esgin,joseph.liu}@monash.edu
3 CSIRO’s Data61, Melbourne, Australia

4 Rice University, Houston, USA
zd21@rice.edu

Abstract. We introduce a novel generic ring signature construction,
called DualRing, which can be built from several canonical identifica-
tion schemes (such as Schnorr identification). DualRing differs from the
classical ring signatures by its formation of two rings: a ring of com-
mitments and a ring of challenges. It has a structural difference from
the common ring signature approaches based on accumulators or zero-
knowledge proofs of the signer index. Comparatively, DualRing has a
number of unique advantages.

Considering the DL-based setting by using Schnorr identification
scheme, our DualRing structure allows the signature size to be com-
pressed into logarithmic size via an argument of knowledge system such
as Bulletproofs. We further improve on the Bulletproofs argument sys-
tem to eliminate about half of the computation while maintaining the
same proof size. We call this Sum Argument and it can be of indepen-
dent interest. This DL-based construction, named DualRing-EC, using
Schnorr identification with Sum Argument has the shortest ring signa-
ture size in the literature without using trusted setup.

Considering the lattice-based setting, we instantiate DualRing by a
canonical identification based on M-LWE and M-SIS. In practice, we
achieve the shortest lattice-based ring signature, named DualRing-LB,
when the ring size is between 4 and 2000. DualRing-LB is also 5× faster
in signing and verification than the fastest lattice-based scheme by Esgin
et al. (CRYPTO’19).

Keywords: Ring signature · Generic construction · Sum argument ·
M-LWE/SIS

1 Introduction

Ring signatures [35] allow a signer to dynamically choose a set of public keys
(including his/her own) and to sign messages on behalf of the set, without reveal-
c© International Association for Cryptologic Research 2021
T. Malkin and C. Peikert (Eds.): CRYPTO 2021, LNCS 12825, pp. 251–281, 2021.
https://doi.org/10.1007/978-3-030-84242-0_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-84242-0_10&domain=pdf
http://orcid.org/0000-0002-0629-6792
http://orcid.org/0000-0003-2068-9530
https://doi.org/10.1007/978-3-030-84242-0_10

252 T. H. Yuen et al.

ing who the real signer is. In addition, it is impossible to check if two signatures
are issued by the same signer. Ring signatures provide anonymity and they are
widely used in privacy-preserving protocols such as e-voting, whistleblowing and
privacy-preserving cryptocurrencies.

Classical Ring Structure. The classical ring signatures [35] for a set of n public
keys pk are constructed by computing n − 1 “pseudo-signatures” (the outputs
computed from the verification function) sequentially in a ring structure first and
then using one signer secret key to create a real signature. These n signatures
together form a ring signature on behalf of pk.

Abe et al. [2] generalized this idea in a generic construction (AOS ring signa-
ture), which can be built from two types of standard signatures: Type-H (Hash-
and-one-way type, e.g., RSA signature) and Type-T (Three-move type, e.g.,
Schnorr signature). Borromean ring signatures [33] used the ring structure in
[2] to compress multiple ring signatures. Its variant is used in privacy-preserving
cryptocurrency Monero.

From Accumulator to Zero-Knowledge Proof. The major drawback of
the above ring structure approach is the signature size of O(n). Therefore,
researchers used other cryptographic primitives to build ring signatures.

An accumulator allows the signer to “compress” n public keys into a constant
size value and there is a witness showing that the signer’s public key is in the
set of public keys. The advantage of the accumulator-based ring signature [17] is
the constant signature size. However, most of the existing accumulators require
a trusted setup, which is often not desirable.

Another main approach to constructing an efficient ring signature is to use
a zero-knowledge proof to prove knowledge of the secret key with respect to one
of the public keys in the ring. The state-of-the-art proof size is O(log n) by the
use of one-out-of-many proof [22].

1.1 DualRing: New Generic Construction of Ring Signature

In this paper, we revisit the classical ring structure approach and design a novel
dual ring structure to build a new generic construction of ring signatures. Let
us first recall how a Type-T signature works and how the AOS ring signature [2]
is built on top of it.

A Type-T signature involves the following three functions in its signing (we
use Schnorr signature as a running example, indicated inside [], with a secret
key sk, a public key pk = gsk and a message M): a commit function A, which
outputs a commitment R [A : gr → R]; a hash function H, which outputs a
challenge c [H(M,R) → c]; and a response function Z, which outputs a response
z [Z : r − c · sk → z]. A Type-T signature is then σ = (c, z). For the verification
algorithm, one runs a function V to reconstruct R from σ [V : gz · pkc → R′],
and then runs H to check if c is correct [H(M,R′) ?= c].

Now, in a Type-T AOS ring signature for public keys pk = {pk1, . . . , pkn},
the signer (with index j) follows the structure in Fig. 1, where the signer is

DualRing: Generic Construction of Ring Signatures 253

Fig. 1. Structure of the AOS ring signature from a Type-T Signature in [2].

assumed to have skj corresponding to pkj . In particular, (1) the signer picks a
randomness rj to generate Rj via the commit function A. (2) The signer uses the
commitment Rj to compute the (j + 1)-th challenge cj+1 by the hash function
H. (3) For i = j + 1, . . . , n, 1, . . . , j − 1 by picking a random (i + 1)-th response
zi and the public key of the (i)-th user pki, the signer can reconstruct the (i)-th
commitment Ri using the function V as in verification and generate the (i + 1)-
th challenge ci+1 by the hash function H. A ring is then formed sequentially.
(4) The last step is to compute zj from skj , cj , rj using the response function
Z. The final ring signature is composed of a single challenge c1 and n responses
(z1, . . . , zn).

Overview of DualRing. We now describe our novel generic construction of
ring signatures called DualRing. Let � and ⊗ be two commutative group oper-
ations (e.g., modular multiplication and modular addition). We first modify the
definition of a Type-T signature as follows:

– the verification function V (pk, z, c) within the verification algorithm can be
divided into two functions V1(z) and V2(pk, c) (pk is the public key, c is the
challenge and z is the response) such that

V (pk, z, c) = V1(z) � V2(pk, c) [Schnorr: V1 : gz, V2 : pkc].

Using this property, we construct a ring signature with a dual-ring structure
as in Fig. 2. Particularly, for a set of public keys pk = (pk1, . . . , pkn) and a
secret key skj , (1) the signer first picks some randomness rj . (2) He further picks
random challenges c1, . . . , cj−1, cj+1, . . . , cn, and (3) forms an R-ring using the
group operation � with the functions A and V2. (4) Then he computes R as:

R = A(skj ; rj)�
V2(pkj+1, cj+1) � · · · � V2(pkn, cn) � V2(pk1, c1) � · · · � V2(pkj−1, cj−1).

254 T. H. Yuen et al.

Fig. 2. Structure of DualRing construction

After that, the signer forms a C-ring using the group operation ⊗, where the
“missing” challenge (5) cj is computed as:

cj = H(M,pk, R) � cj+1 � · · · � cn � c1 � · · · cj−1(where � is the inverse of ⊗).

As a result, the following equation is satisfied

c1 ⊗ · · · ⊗ cn = H(M,pk, R) (1)

to form the link connecting the two rings for the input message M and the list of
public key pk. (6) Lastly, the response z is computed by running Z(skj , cj , rj).
The final ring signature is composed of a single response z and n challenges
(c1, . . . , cn), in contrast of the AOS signature which is composed of a single
challenge c1 and n responses (z1, . . . zn).

Advantages of DualRing over the AOS Ring Signature. The advantage
of DualRing is threefold. Firstly, the AOS ring signature is composed of a single
challenge and n responses, while DualRing is composed of n challenges and a
single response. When instantiated with cryptosystems having a small challenge
size and a large response size (e.g., lattice-based cryptosystem), it leads to a
significant saving in terms of signature size.

Secondly, we observe that the AOS ring signature includes the hash function
H in the ring structure (Fig. 1), and this makes it difficult to further shorten
the signature. On the other hand, DualRing uses two separate rings with simple
group operations, which allows the use of an argument of knowledge to efficiently
prove the relation in Eq. (1). We instantiate this in the discrete logarithm (DL)
setting with communication complexity O(log n).

Thirdly, our DualRing, when instantiated with the Schnorr identification,
has a simpler security reduction when compared to the alternative construc-
tion of the AOS ring signature in the Appendix A of [2]. They described that
“the reduction is quite costly because we may have to have at most n successful

DualRing: Generic Construction of Ring Signatures 255

rewinding simulations” and hence they did not give a full proof. On the other
hand, our instantiation does not incur such security loss.

Technical Challenges. One of technical challenges we solve in this paper is
to give a security proof for DualRing, as well as the Type-T AOS ring signature
which has not been formally proven. Note that it has been an open problem to
prove the security of the generic construction of the Type-T AOS ring signature
[2] (only a security proof for the instantiation using the Schnorr signature was
previously given). We solve this open problem by using canonical identification
[1] (which is a three-move identification scheme that can be transformed to a
Type-T signature by the Fiat-Shamir heuristic) in the construction and the secu-
rity proofs. While the Type-T signature restricts the input to the hash function
to include the signer’s public key, the hash function H of the AOS ring signature
takes the set of public keys pk as an input. This difference hinders the use of
a forgery of the AOS ring signature to break the unforegability of the Type-T
signature. On the other hand, the canonical identification does not have such a
restriction on the generation of the challenge. The security proof of the Type-T
AOS ring signature is given in the full version of the paper.

In order to prove the security of DualRing, we further define a variant called
Type-T* canonical identification, with the following properties:

1. the verification V (pk, z, c) can be divided into two algorithms V1(z) and
V2(pk, c) such that V (pk, z, c) = V1(z) � V2(pk, c);

2. V1 is additively/multiplicatively homomorphic;
3. given the secret key sk corresponding to pk and a challenge c, there exists a

function T which outputs ẑ = T (sk, c) such that V1(ẑ) = V2(pk, c);
4. the challenge space Δc is a group.

Property 1 of Type-T* canonical identification allows us to build the R-ring
as in Fig. 2. Looking ahead, Property 3 is needed in the proof of DualRing’s
unforgeability to calculate ẑi such that V1(ẑi) = V2(pki, ci) for i �= j, and then
we use Property 2 to combine z with all ẑi’s to break the Type-T* canonical
identification. Property 4 is needed in the proof of DualRing’s anonymity to make
sure that the challenge cj constructed in a specific way is indistinguishable from
the others. We further define a new security model for canonical identification
called special impersonation, which is a combination of the security models of
impersonation and special soundness. Some standard identification schemes such
as Schnorr identification and GQ identification [23] are examples of Type-T*
canonical identification secure against special impersonation.

1.2 Efficient Instantiations of DualRing

DualRing-EC: Logarithmic DL-based Ring Signature by Sum Argu-
ment. Having established a secure generic construction, DualRing, we try to
compress the n challenges (c1, . . . cn) via an argument of knowledge by exploit-
ing the following simple algebraic structure:

c1 ⊗ · · · ⊗ cn = H(M,pk, R).

256 T. H. Yuen et al.

Table 1. O(log n)-size DL-based ring signature schemes for n public keys, where p is
a 256-bit prime.

Ring # elements in signature Signature Size (Bytes)
Signatures G Zp n = 2 n = 8 n = 64 n = 2048 n = 4096

[29] 4 log n +2 5 log n + 4 480 1070 1946 3114 3406

[22] 4 log n 3 log n + 1 260 716 1400 2540 2768

[11] log n + 12 3
2

log n + 6 669 831 1074 1479 1560

[36] 2 log n + 7 7 521 653 851 1181 1247

[27] 2 log(n + 2) + 4 5 424 523 721 1051 1117

DualRing-EC 2 log n + 1 3 195 327 525 855 921

This is theoretically a new approach to construct efficient ring signatures by
combining the classical ring structure approach with the argument of knowl-
edge1.

In the DL setting, the group operation ⊗ is the modular addition. We improve
the Bulletproof’s inner product argument [14] into a new proof system called
Sum Argument, which allows a prover to convince a verifier that he/she has
the knowledge of a vector of scalars (c1, . . . , cn) such that their summation is a
public value (i.e., H(M,pk, R)). Our Sum Argument only requires about half of
the computation of Bulletproof while keeping the same proof size. We show how
to obtain it by removing one of the two vectors of the inner product argument
required in Bulletproof and to achieve a proof of size O(log n).

Based on DualRing, Schnorr identification and the sum argument above, we
design DualRing-EC, the shortest ring signature scheme in the literature without
using trusted setup, as shown in Table 1. The signature size is O(log(n)). When
implemented on an elliptic curve with a 256-bit modulus, DualRing-EC is at
least 54% (resp., 27%, 18%) shorter than [27] for a ring size of 2 (resp. 64, 4096).
Our scheme is at least 46% (resp., 64%, 67%) shorter than [29] for a ring size of
2 (resp. 64, 4096) at the same security level of 128-bit. Therefore, DualRing-EC
is highly efficient and is useful for real world applications.
DualRing-LB: Shortest Lattice-based Ring Signature for Ring Size
between 4 and 2000. We instantiate DualRing in the M-LWE/SIS setting
and obtain DualRing-LB, the shortest lattice-based ring signature for a ring
size between 4 and 2000. As mentioned above, DualRing-LB consists of a single
response and n challenges. The size of a challenge (around 256 bits) in lattice-
based identification is often much smaller than the size of a response (around
a few KB). As a result, we obtain a compact lattice-based ring signature even
without requiring a lattice-based sum argument. We compare with the shortest
linear-size ring signature in [30] and shortest logarithmic-size ring signatures in
[10,21] in Table 2. DualRing-LB is shorter than [10,21] for ring size less than
about 2000 (note that our ring size can be arbitrary number). [30] is longer for
all the ring sizes larger than 4, and it is based on a stronger NTRU assumption.

1 Here, we do not require the zero-knowledge property since the anonymity of Dual-
Ring is provided by the ring structure.

DualRing: Generic Construction of Ring Signatures 257

Table 2. Lattice-based ring signatures for n public keys.

Ring Signatures
Signature Size (Bytes)

Assumption
n = 2 n = 8 n = 64 n = 1024 n = 2048 n = 4096

Raptor [30] 2532 10128 81024 1296384 2592768 6564888576 NTRU

Falafl (for 2) [10] 49000 50000 52000 54000 54500 55000 M-LWE+M-SIS

MatRiCT [21] 18000 19000 31000 48000 53000 59000 M-LWE+M-SIS

DualRing-LB
4480 4630 6020 31160 55500 106570 M-LWE+M-SIS

(Algo. 3 + 6)

The isogeny-based construction in [10] is at a much lower security level (60 bits
of quantum security), is extremely slow (in the order of minutes), and has longer
signatures than ours in the range around 5–300.

It is estimated in [19] that the running time of [19] is faster than Raptor for
medium/large-sized rings (n ≥ 1024) and also the estimated runtimes of [19] are
significantly faster than those in [10]. The construction in [21] is an optimized
version of that in [19] to reduce the signature length at the cost of computational
efficiency. Therefore, the scheme by Esgin et al. [19] is the fastest scalable ring
signature from lattices. We implement DualRing-LB together with the scheme
in [19] and find that our scheme is at least 5 times faster in terms of sign and
verify. We, therefore, expect an optimized implementation of our scheme to run
faster than Raptor [30] and Falafl [10] as well for most ring sizes.

1.3 Our Contributions

Our contributions can be summarized as follows.

– The main contribution of our paper is the introduction of the novel dual
ring structure DualRing to design generic construction of ring signatures,
which differs significantly from the mainstream zero-knowledge-based or
accumulator-based approaches.

– DualRing consists of n challenges and a single response, while the AOS ring
signature consists of a single challenge and n responses. This significant dif-
ference allows us to produce much shorter signatures in both DL-based and
lattice-based setting.

– In the DL-based setting, the DualRing structure allows the signature size to
be compressed into O(log n) size, where n is the number of users in the ring,
by using argument of knowledge system such as Bulletproofs [14]. We further
enhance the Bulletproofs by eliminating almost half of the computation while
maintaining the same proof size and thus achieve much better efficiency. We
call this new argument of knowledge Sum Argument which can be of inde-
pendent interest. Our resulting DualRing-EC deploying Schnorr identification
scheme with Sum Argument is the shortest ring signature in the literature
without using trusted setup.

– In the lattice-based setting, we instantiate DualRing by constructing a canon-
ical identification based on M-LWE and M-SIS assumptions. DualRing-LB is
the shortest lattice-based ring signature for the most practical ring sizes of 4

258 T. H. Yuen et al.

up to 2000.2 We also implement DualRing-LB and show that it is at least 5
times faster in signing and verification than the state-of-the-art fastest con-
struction (in terms of running times of signing and verification) in [19].

2 Related Work

Accumulator-Based Approach. Ring signatures can be constructed by accu-
mulators [17]. The advantage of the accumulator approach is the constant signa-
ture size. However, the existing RSA-based and pairing-based accumulators both
require a trusted setup for generating system parameters, which is not desirable
for systems without a mutually trusted party. There exists a lattice-based accu-
mulator [28] with no trusted setup, but it is not practical (the signature size is
in the order of several MBs). Merkle-tree based accumulator does not require
trusted setup. However, the membership proof of Merkle-tree based accumulator
involves expensive zero-knowledge proof on hash function input.

Zero-Knowledge Proof Based Approach. The mainstream approach to con-
struct a ring signature is to use a zero-knowledge proof on a signer index with
the corresponding secret key. Most efficient schemes in the literature is to design
a specific zero-knowledge proof for the designated cryptosystem (e.g., DL-based,
RSA-based or lattice-based). In particular, a one-out-of-many proof [22] shows
that the prover knows an opening of one out of n commitments. The index of
such commitment can be expressed as a binary string (b1, . . . blog n). The zero-
knowledge proof demonstrates the correctness of such an index, and hence the
proof size is O(log n). Since a public key can be viewed as a commitment to
zero3, there are multiple ring signature schemes proposed using one-out-of-many
proofs, including the DL-based setting [11,22] and lattice-based setting [19–21].
These ring signatures have size of O(log n).

Logarithmic-Size Generic Construction. The logarithmic-size generic con-
struction of ring signature in [3] is secure in the standard model by using a public
key encryption, a standard signature, a somewhere perfectly binding hash func-
tion with private local opening, and a non-interactive witness-indistinguishable
(NIWI) proof systems. Their DL-based construction has a signature size of
2(log n)2 + 4 elements in G and 2 log n elements in Zp with an additional NIWI
proof (not instantiated in [3]), and hence it is not as efficient as the schemes in
Table 1. The lattice-based construction in [3] is also not efficient.

2 A ring signature of n users has some inherent limitations such that it requires at
least n operations in signing and verification and storage of n public keys. These
two limitations restrict the ring size to go up a lot for many practical applications.
On the other hand, for very small ring sizes of, say, 2–5, the anonymity guarantee
is very weak. For example, there has been attacks against Monero (cf. [26,34]) that
exploit the earlier use of very small rings of size < 6. Hence, one may argue that the
most relevant range in practice falls inside 10–2000.

3 E.g., a DL-based public key gx is a Pedersen commitment to zero.

DualRing: Generic Construction of Ring Signatures 259

3 Preliminaries

Notations. In this paper, we use λ as the security parameter. For the notion
a ←s S, it means that we randomly pick an element a from a set S. We use bold
letters such as a to represent a vector (or matrix for lattice-based construction).

Argument of Knowledge. An argument consists of three PPT algorithms
(S,P,V), which are CRS (Common Reference String) generator S, the prover P
and the verifier V. A CRS σ̂ is produced by S on input λ and a transcript tr is
produced by P and V on inputs s and t, which is denoted by tr ← 〈P(s),V(t)〉.
We write 〈P(s),V(t)〉 = b to denote that the verifier V accepts b = 1 or rejects
b = 0. We define the language:

L = {x | ∃w : (σ̂, x, w) ∈ R} ,

where w is a witness and x is a set of statements u in the relation R.
An argument of knowledge (S,P,V) should satisfy perfect completeness and

statistical witness-extended emulation [12]. Informally, completeness means that
a prover with a witness w for x ∈ L can convince the verifier of this fact. Statisti-
cal witness-extended emulation means that given an adversary that produces an
acceptable argument with probability ε, there exists an emulator that produces
a similar argument with probability ε together with a witness w.

Definition 1 (Perfect completeness). For any non-uniform polynomial time
adversary A, (S,P,V) has perfect completeness if

Pr
[
(σ̂, u, w) /∈ R or 〈P(σ̂, u, w),V(σ, u)〉 = 1

∣
∣ σ̂ ← S(λ), (u,w) ← A(σ̂)

]
= 1.

Definition 2 (Statistical Witness-Extended Emulation). For any deter-
ministic polynomial time prover P∗, (S,P,V) has witness-extended emulation
if there is a polynomial time emulator E such that for any pair of interactive
adversaries A1 and A2 such that

Pr

⎡

⎢
⎢
⎢
⎣

A1(tr)
= 1

∣
∣
∣
∣
∣
∣
∣
∣
∣

σ̂ ← S(λ),
(u, s) ← A2(σ̂),
tr ← 〈P∗(σ̂, u, s),

V(σ̂, u)〉

⎤

⎥
⎥
⎥
⎦

≈ Pr

⎡

⎢
⎣

A1(tr) = 1∧
(tr is accepting
⇒ (σ̂, u, w) ∈ R)

∣
∣
∣
∣
∣
∣
∣

σ̂ ← S(λ),
(u, s) ← A2(σ̂),

(tr, w) ← EO(σ̂, u)

⎤

⎥
⎦ ,

where the oracle O = 〈P∗(σ̂, u, s),V(σ̂, u)〉 can rewind to some point and resume
with new randomness for the verifier V from this point onward.

Such an emulation above is used to define knowledge-soundness [12]. We consider
s (which is the output of the adversary A2 in the above equation) as the internal
state of P∗ with randomness, which follows that E can extract a witness whenever
P∗ generates a convincing argument in s.

260 T. H. Yuen et al.

4 Security Model

We review the security model of a ring signature in [8]. A ring signature consists
of four PPT algorithms as follows:

RS

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Setup(λ) →param

KeyGen(param) →(pk, sk)
Sign(param,M,pk, sk) →σ

Verify(param,M,pk, σ) →1/0

We use pk to represent a vector of public keys (pk1, . . . , pkn). For simplicity, we
omit the input of system parameters param to algorithms other than Setup in
the rest of this paper.

Unforgeability w.r.t. insider corruption. Unforgeability w.r.t. insider cor-
ruption [8] means that the adversary A cannot generate a valid signature with-
out a secret key, even if he can adaptively corrupt some honest participants and
obtain their secret keys.

Definition 3 (Unforgeability w.r.t. Insider Corruption). For any poly-
nomial time adversary A, a ring signature is unforgeable if for some integer qk

polynomial in λ:

Pr

⎡
⎣

1 ← Verify(M∗,pk∗, σ∗),
pk∗ ⊆ S \ C, (M∗,pk∗, ·)
was not the input of SO

∣∣∣∣∣∣
param ← Setup(λ), for i ∈ [1, qk] :

(p̂ki, ŝki) ← KeyGen(), S := {p̂ki}qk
i=1,

(M∗,pk∗, σ∗) ← ACO,SO(param, S)

⎤
⎦ ≤ negl(λ),

where the oracles given to A is defined as:

– CO(i) outputs ŝki. We denote C as the set of corrupted users queried in CO.
– SO(M,pk, j): On input a message M , a vector of public keys pk and the

signer index j, the Signing Oracle outputs ⊥ if p̂kj /∈ pk. Otherwise, it outputs
a signature σ ← Sign(M,pk, ŝkj).

Anonymity against full key exposure. We use the strong anonymity model
in [8] that the adversary A is given all randomness to generate the secret keys.

Definition 4 (Anonymity against Full Key Exposure). For any polyno-
mial time adversary (A1,A2), a ring signature is anonymous if for some integer
qk polynomial in λ:
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

Pr

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

b = b′,
p̂ki0 , p̂ki1
∈ S ∩ pk∗.

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

param ← Setup(λ), for i ∈ [1, qk] :
(p̂ki, ŝki) ← KeyGen(param;ωi),
S := {p̂ki}qk

i=1,
(M∗,pk∗, i0, i1, St) ← ASO

1 (param, S),
b ←s {0, 1}, σ ← Sign(M∗,pk∗, ŝkib),
b′ ← A2(σ, {ωi}qk

i=1, St)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

− 1
2

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

≤ negl(λ).

Note that the set of public keys pk∗ chosen by A1 can include adversarially
generated public keys.

DualRing: Generic Construction of Ring Signatures 261

Algorithm 1: Type-T Signature

1 Procedure Setup(λ):
2 define H : {0, 1}∗ → Δc;
3 return param; // including H .

4 Procedure Sign(M, sk):
5 r ← Δr;
6 R = A(sk; r);
7 c = H(M, R);
8 z = Z(sk, r, c);
9 return σ = (z, c);

10 Procedure KeyGen():
11 return (pk, sk);

12 Procedure Verify(M, pk, σ):
13 parse σ = (z, c);
14 R′ = V (pk, z, c);
15 if c �= H(M, R′) then
16 return 0;

17 return 1;

5 DualRing: Generic Ring Signature Construction

In this section, we show how to construct a generic ring signature scheme, Dual-
Ring, from a special kind of canonical identification scheme.

5.1 AOS Ring Signature

The AOS ring signature [2] can be constructed from a standard signature of
Type-H or Type-T. We review the definition of Type-T in Algorithm 1.

– The Sign algorithm uses the algorithm A to generate a commitment R using
a randomness r (chosen from a randomness domain Δr). Then, the message
and R are hashed by H to obtain the hash value c (within the range of
hash function Δc). Finally, the algorithm uses the function Z to generate the
signature using the secret key sk, r and c.

– The Verify algorithm allows the reconstruction of R′ from the public key
pk, z and c using the function V . The signature is validated by using H on
the message and R′.

Schnorr signature, Guillou-Quisquater signature [23], Katz-Wang signature
[24] and EdDSA [9] are examples of Type-T signatures. Using Type-T signatures,
a Type-T AOS ring signature can be constructed as shown in Fig. 1. However,
as mentioned before, there is no security proof for this generic construction in
[2], but only the instantiation with Schnorr signature is proven secure in [2]. We
formally prove its security in the full version of the paper.

5.2 Canonical Identification

Canonical identification [1] is a three-move public-key authentication protocol
of a specific form. We first give canonical identification in Algorithm 2, based
on the definition of Type-T signature in [2]. We add the additional checking in
line 17 of Algorithm 2, which is useful for lattice-based construction. It is known
that after applying the Fiat-Shamir transformation to canonical identification,
we obtain a Type-T signature.

262 T. H. Yuen et al.

Algorithm 2: Canonical Identification

1 Procedure Setup(λ):
2 return param;

3 Procedure KeyGen():
4 return (pk, sk);

5 Procedure Proof1(sk):
6 r ←s Δr;
7 R = A(sk; r);
8 return (R, r);

9 Procedure Ch(R):
10 return c;

11 Procedure Proof2(sk, r, c):
12 return z = Z(sk, r, c);

13 Procedure Verify(pk, z, c):
14 R′ = V (pk, c, z);
15 if c �= Ch(R′) then
16 return 0;

17 auxiliary checking with R′, c, z;
18 return 1;

We define a new security notion of special impersonation under key only
attack for canonical identification. It can be viewed as a combination of the spe-
cial soundness and the impersonation attack: the adversary wins by outputting
two valid transcripts with the same commitment.

Definition 5. A canonical identification is secure against special impersonation
under key only attack for any polynomial time adversary A:

Pr

⎡

⎣
Verify(pk, z, c)
= Verify(pk, z′, c′) = 1
∧ c �= c′ ∧ c, c′ ∈ Δc

∣
∣
∣
∣
∣
∣

param ← Setup(λ),
(pk, sk) ← KeyGen(),
(z, c, z′, c′) ← A(param, pk)

⎤

⎦ ≤ negl(λ).

We use this new definition instead of special soundness together with key
recovery under key only attack in this paper, because the standard special sound-
ness definition [25] is not satisfied by the efficient lattice-based identification
scheme used in Section 7. This stems from the so-called ‘knowledge gap’ in effi-
cient lattice-based zero-knowledge proofs. In particular, the knowledge extractor
in such schemes is not guaranteed to recover a secret key of a given public key,
but rather recovers an ‘approximate’ witness of a relaxed relation closely related
to the relation satisfied by a public-secret key pair. Therefore, to keep the gen-
erality of our results, we use the special impersonation under key only attack.
We refer the reader to earlier works such as [19,20,31,32] for further discussion
about this knowledge/soundness gap issue.

We also note that for the settings where the knowledge/soundness gap issue
do not arise (i.e., standard special soundness is satisfied) such as the DL-setting,
‘special impersonation under key only attack’ implies the standard ‘key recovery
under key only attack’ [25] since the knowledge extractor in that case recovers
a secret key sk∗ with (sk∗, pk) ∈ KeyGen() given a public key pk and two
accepting transcripts.

Type-T* Canonical Identification. Next, we define Type-T* canonical identi-
fication, which is a canonical identification with the following properties.

DualRing: Generic Construction of Ring Signatures 263

1. The function V in the verify algorithm consists of two functions V1 and V2

during the reconstruction of R′, such that line 14 in Algorithm 2 becomes:

R′ = V1(z) � V2(pk, c),

where � is a commutative group operation for the domain of R′.
2. The function V1 is additively/multiplicatively homomorphic, i.e., V1(z1) �

V1(z2) = V1(z1 ⊕ z2), where ⊕ is the additive/multiplicative operation. The
homomorphic operation should be efficiently computable.

3. Given the secret key sk corresponding to pk and c, there exists a function T
that outputs ẑ = T (sk, c) such that V1(ẑ) = V2(pk, c).

4. The challenge space Δc is a group with operation “⊗”. We denote the inverse
operation of ⊗ as �. (For example, if ⊗ is defined as “+”, � will be “−”.)
If c1 and c2 are uniformly distributed in Δc, then c1 ⊗ c2 is also uniformly
distributed in Δc.

It is easy to see that Schnorr identification and Guillou-Quisquater identifica-
tion [23] are examples of Type-T* canonical identification. There are in fact many
more examples from the literature. For many identification schemes reviewed in
[6], the verification function V can be split into V1(z) and V2(pk, c), such as
the FFS family, FF family, and Hs family. Apart from the above schemes, the
identification scheme from Katz-Wong signature [24], Chaum-Pedersen identifi-
cation [15] and the Okamoto-Schnorr identification are some examples of Type-
T* canonical identification. Type-T* canonical identification can also be applied
to the lattice-based setting, in particular, effectively to all “Fiat-Shamir with
Aborts” [31,32]-based identification schemes (as shown in Sect. 7).

Schnorr identification. The Setup algorithm outputs a cyclic group G of
prime order p, with a generator g. For each KeyGen execution, the algorithm
picks a random sk ∈ Zp and computes pk = gsk. The functions A,Z, V1, V2 are
defined as:

R = A(sk; r) := gr,

z = Z(sk, r, c) := r − c · sk mod p,

R′ = V1(z) � V2(pk, c) := gz · pkc.

Note that V1 is additively homomorphic: V1(z1)�V1(z2) = gz1 ·gz2 = gz1+z2 =
V1(z1 + z2). Given the secret key sk corresponding to pk and c, it is easy to
compute ẑ = T (sk, c) := sk · c mod p such that V1(ẑ) = gsk·c = pkc = V2(pk, c).
The challenge space Zp is a group under addition modulo p. Therefore, Schnorr
identification is a Type-T* canonical identification.

Theorem 1. Schnorr identification is secure against special impersonation
under key only attack if the DL assumption holds.

Proof. Suppose that A is an adversary breaking the special impersonation under
key only attack. The algorithm B is given a DL problem (g, y) for a cyclic group
G of prime order p. B gives param = (G, p, g) and pk = y to A.

264 T. H. Yuen et al.

A returns (c, z, c′, z′) where c �= c′. Then we have:

gz · pkc = gz′ · pkc′
.

Therefore B can extract the secret key sk = z−z′
(c′−c) as the solution to the DL

problem. ��

Guillou-Quisquater (GQ) identification [23]. The Setup algorithm outputs
a pair (N, e), where N = pq, p and q are large prime numbers, e is a prime number
less than N/4 and gcd(e, φ(N)) = 1. For each KeyGen execution, the algorithm
picks a random sk ∈ ZN and calculates pk = ske. The functions A,Z, V1, V2 are
defined as:

R = A(sk; r) := re,

z = Z(sk, r, c) := skc · r mod N,

R′ = V1(z) � V2(pk, c) := ze · pk−c mod N.

Note that V1 is multiplicatively homomorphic: V1(z1) � V1(z2) = ze
1 · ze

2 =
(z1z2)e = V1(z1 ·z2). Given the secret key sk corresponding to pk and c, it is easy
to compute ẑ = T (sk, c) := sk−c mod N such that V1(ẑ) = ẑe = sk−ce = pk−c =
V2(pk, c). The challenge space of GQ identification is Ze and it is a group under
addition. Therefore, GQ identification is a Type-T* canonical identification.

Theorem 2. GQ identification is secure against special impersonation under
key only attack if the RSA assumption holds.

Proof. Suppose that A is an adversary breaking the special impersonation under
key only attack. The algorithm B is given a RSA problem (N, e, y). B gives
param = (N, e) and pk = y to A.

A returns (c, z, c′, z′), where c �= c′, we have ze · pk−c = z′e · pk−c′
. Then:

(z/z′)e = pk(c−c′)

Since e is a prime and c, c′ ∈ Ze, B can compute integers A and B such that:

A · e + B · (c − c′) = gcd(e, (c − c′)) = 1,

by the Euclidean algorithm. Hence we have:

(z/z′)Be = pk1−Ae.

Therefore we can extract the secret key sk = (z/z′)BpkA as the solution to the
RSA problem. ��

DualRing: Generic Construction of Ring Signatures 265

Algorithm 3: DualRing

1 Procedure Setup(λ):
2 define H : {0, 1}∗ → Δc;
3 return param ← T*.Setup(λ);

4 Procedure Sign(param, m,pk =
{pk1, . . . , pkn}, skj):

5 r ←s Δr, ci ←s Δc for all i �= j;
6 R = A(skj ; r) � ⊙

i�=j V2(pki, ci);

7 c = H(m,pk, R);
8 cj = c 	 ⊗

i�=j ci;

9 z = Z(skj , r, cj);
10 return σ = (c1, . . . , cn, z);

11 Procedure KeyGen(param):
12 return (pk, sk) ←

T*.KeyGen(param);

13 Procedure Verify(param, m,pk =
{pk1, . . . , pkn}, σ):

14 parse σ = (c1, . . . , cn, z);
15 R = V1(z) � ⊙n

i=1 V2(pki, ci);
16 c =

⊗n
i=1 ci;

17 if c �= H(m,pk, R) then
18 return 0;

19 auxiliary checking with (R, c, z);
20 return 1;

5.3 Our Construction: DualRing

We denote a Type-T* canonical identification scheme by T*. We use the symbol⊙
and

⊗
to represent consecutive � and ⊗ operations, respectively:

n⊙

i=1

ai := a1 � a2 � . . . � an−1 � an,

n⊗

i=1

bi := b1 ⊗ b2 ⊗ . . . ⊗ bn−1 ⊗ bn.

DualRing is shown in Algorithm 3. The high level idea is that we use V2

to add the decoy public keys pki and their corresponding challenge values ci to
the commitment R first. After getting the real challenge value c, the signer with
index j computes cj = c�

⊗
i�=j ci ∈ Δc. The signer computes z according to the

canonical identification scheme. To verify, the commitment R is reconstructed
from all public keys and their corresponding challenge values. The value

⊗
∀i ci

should be equal to the real challenge value c.

Theorem 3. DualRing is unforgeable w.r.t. insider corruption in the random
oracle model if T* is secure against special impersonation under key only attack
and |Δc| > qs(qh + qs − 1), where qs and qh are the number of queries to the
signing oracle and the H oracle respectively.

Proof. Denote A as a PPT adversary breaking the unforgeability w.r.t. insider
corruption of DualRing. We build an algorithm B to break the special imperson-
ation under key only attack of T*. Suppose the algorithm B is given a system
parameters param and a public key pk∗ from its challenger C.

Setup. B picks a random index i∗ ∈ [1, qk]. B runs (p̂ki, ŝki) ← KeyGen() for
i ∈ [1, qk], i �= i∗. B sets p̂ki∗ = pk∗. B gives param and S := {p̂ki}qk

i=1 to A.

Oracle Simulation. B answers the oracle queries as follows.

– H: B simulates H as a random oracle.

266 T. H. Yuen et al.

– CO: On input i, B returns ŝki (If i = i∗, B declares failure and exits.).
– SO: On input a message M , a set of public key pk = (pk1, . . . , pkn) and

the signer index j, it outputs ⊥ if p̂kj /∈ pk. If j �= i∗, then B returns σ ←
Sign(param,M,pk, ŝkj).
Otherwise, B picks random c1, . . . , cn ∈ Δc and z from the domain of response
Δz according to the distribution of the output of Z(·). B computes R =
V1(z)�

⊙n
i=1 V2(pki, ci). B sets H(M,pk, R) =

⊗n
i=1 ci in the random oracle.

If such value has been set in the random oracle, B declares failure and exits.
B returns σ = (c1, . . . , cn, z).

Challenge. A returns a forgery (M∗, {p̂kij}n
j=1, σ

∗ = (c∗
1, . . ., c∗

n∗ , z∗)). If pk∗ �=
p̂kij for all j ∈ [1, n], B declares failure and exits. Otherwise, we denote j∗ as the
index such that pk∗ = p̂kij∗ . Denote pk∗ = {p̂kij}n

j=1 and compute R∗ as in the
Verify algorithm. B rewinds to the point that (M∗,pk∗, R∗) is queried to H and
returns a different c′ instead. A returns another signature σ′ = (c′

1, . . . , c
′
n, z′).

Since both σ∗ and σ′ are valid signatures, We have:

R∗ = V1(z∗) �
n⊙

j=1

V2(p̂kij , c
∗
j) = V1(z′) �

n⊙

j=1

V2(p̂kij , c
′
j).

Note that it is impossible to have c∗
j = c′

j for all j ∈ [1, n] (since
⊗n

j=1 c∗
j �=⊗n

j=1 c′
j). If c∗

j∗ = c′
j∗ , B declares failure and exits. With probability at least

1/n, we have c∗
j∗ �= c′

j∗ . Observe that:

V1(z∗) �
n⊙

j=1

V2(p̂kij , c
∗
j)

=V1(z∗ ⊕ ẑ∗
1 ⊕ . . . ⊕ ẑ∗

j∗−1 ⊕ ẑ∗
j∗+1 ⊕ . . . ⊕ ẑ∗

n) � V2(pk∗, c∗
j∗)

=V1(z̃∗) � V2(pk∗, c∗
j∗),

where ẑ∗
i = T (ŝki, c

∗
i) for i ∈ [1, n] \ j∗ and z̃∗ = z∗ ⊕ ẑ∗

1 ⊕ . . . ⊕ ẑ∗
j∗−1 ⊕ ẑ∗

j∗+1 ⊕
. . . ⊕ ẑ∗

n. Similarly we have V1(z′) �
⊙n

j=1 V2(p̂kij , c
′
j) = V1(z̃′) � V2(pk∗, c′

j∗) for
some z̃′. Then B can return (c∗

j∗ , z̃∗, c′
j∗ , z̃′) to its challenger C.

Probability Analysis. We analyse the probability of success (i.e., not aborting)
in the above simulation. For qc queries to the CO, the probability of success
in the first query is (1 − 1

qk
). The probability of success in the second query

is at least (1 − 1
qk−1). The probability of success after qc queries is at least

(1 − 1
qk

)(1 − 1
qk−1) · · · (1 − 1

qk−qc+1) = qk−qc
qk

= 1 − qc
qk

. (It is implied by the
security model that qk > qc + n.)

For qs queries to the SO, the probability of success in the first query is at
least (1− qh

|Δc|), where qh is the number queries to the H oracle. The probability
of success after qs queries to SO is at least

(1 − qh

|Δc|
)(1 − qh + 1

|Δc|
) · · · (1 − qh + qs − 1

|Δc|
) ≥ 1 − qs(qh + qs − 1)

|Δc|
.

DualRing: Generic Construction of Ring Signatures 267

Here we assume that |Δc| > qs(qh + qs − 1).
The probability of pk∗ �= p̂kij in the challenge phase is (1 − 1

qk−qc
)(1 −

1
qk−qc−1) · · · (1 − 1

qk−qc−n+1) = qk−qc−n
qk−qc

. If the probability of forgery by A is ε,
then the probability of B does not return failure before rewinding is

εb := ε(1 − qc

qk
)(1 − qs(qh + qs − 1)

|Δc|
)(1 − qk − qc − n

qk − qc
)

= ε(1 − qs(qh + qs − 1)
|Δc|

)(
n

qk
).

By the generalized forking lemma [4], the probability of a successful rewinding
is at least εb

8 if |Δc| > 8qh/εb (it runs in time τ · 8qn/εb · ln(8n/εb) if A runs in
time τ). Finally we have c∗

j∗ �= c′
j∗ with probability at least 1/n. As a result, the

probability ε′ of B breaking the special impersonation is:

ε′ ≥ (
εn

8qk
)(1 − qs(qh + qs − 1)

|Δc|
).

if |Δc| > qs(qh + qs − 1) and |Δc| > 8qh/εb
4. We can further simplify the

probability ε′ if we take |Δc| ≥ 2qs(qh + qs − 1). Then if |Δc| > 16qhqk
εn , we

have ε′ ≥ εn
16qk

. ��

Theorem 4. DualRing is anonymous in the random oracle model, if |Δc| >
qs(qh + qs − 1), where qs and qh are the number of queries to the signing oracle
and the H oracle respectively.

Proof. We show how to build an algorithm B providing perfect anonymity in
the random oracle model.

Setup. B runs param ← Setup(λ). B runs (pki, ski) ← KeyGen(param;ωi) for
i ∈ [1, qk] with randomness ωi. B gives param and S := {pki}qk

i=1 to A1.

Oracle Simulation. B answers the oracle queries as follows.

– SO: On input a message m, a set of public key pk with the signer index j,
B returns σ ← Sign(param,m,pk, skj).

– H: B simulates H as a random oracle.

Challenge. A1 gives B a message m and a vector of public keys pk and two
indices i0, i1. B picks random c1, . . . , cn ∈ Δc and picks z from the domain of
response Δz according to the distribution of the output of Z(·). B computes
R = V1(z) �

⊙n
i=1 V2(pki, ci). B sets H(m,pk, R) =

⊗n
i=1 ci in the random

oracle. By Property 4, the distribution is correct. If the hash value is already set
by the H oracle, B declares failure and exits. B returns σ = (c1, . . . , cn, z) and
{ωi}qk

i=1 to A2. B picks a random bit b.

4 The condition |Δc| > 8qh/εb is not needed if we use the forking lemma in [7] with a
looser security bound.

268 T. H. Yuen et al.

Output. Finally, A2 outputs a bit b′. Observe that b is not used in the generation
of σ. Therefore, A2 can only win with probability 1/2.

Probability Analysis. We analyse the probability of success (i.e., not aborting) in
the above simulation. For qh queries to the H oracle and qs queries to the SO,
the probability of success in the first query is at least (1− qh

|Δc|). The probability
of success after qs queries to SO is at least

(1 − qh

|Δc|
)(1 − qh + 1

|Δc|
) · · · (1 − qh + qs − 1

|Δc|
) ≥ 1 − qs(qh + qs − 1)

|Δc|
.

Here we assume that |Δc| > qs(qh + qs − 1). If B does not abort, then no PPT
adversary can win with non-negligible probability over half. ��

Difference with AOS Ring Signature. Our ring signature is a bit different
from the AOS ring signature. The AOS ring signature allows a mixture of differ-
ent types of public keys, such as keys from the Schnorr signature and the RSA
signature. The security proof for the generic construction of the AOS ring signa-
ture was not formally given in [2]. On the other hand, our scheme allows different
types of public keys from different Type-T* canonical identification schemes, with
the restriction that these canonical identification schemes should use the same V1

function5 (Otherwise, we do not know which V1 function to use in the Verify
algorithm). The security proof for our generic construction holds for different
Type-T* canonical identification schemes satisfying the requirement above.

The AOS ring signature is generated sequentially by forming a “ring” of ci

in a loop and calculating zi for n times. On the other hand, our signature is
generated by forming a “R-ring” in one-shot during the commit phase, forming
a “C-ring” in one-shot after getting the challenge c and calculating z for one
time only. Therefore, our scheme is more efficient than the AOS ring signature.

Finally, our dual ring technique cannot be applied to the Type-H signature
in [2]. Recall that for our Type-T* DualRing, we require the use of V2(pki, ci)
(for all non-signer indices) to generate R. For Type-H, pki is tied with z by the
one-way function F (z, pki). Hence, we cannot separate z and pki into V1 and V2

to form the R-ring similarly.

Difference with CDS OR-proofs. The C-Ring in DualRing is similar to the
use of secret sharing in CDS 1-out-of-n OR proof [16]. Our construction of R-
Ring leads to a single R and hence a single z in the signature. On the contrary,
[16] does not have the formation of R-Ring and still has n commitments Ri’s.
It results in n responses zi’s. So, the ring signature constructed by [16] consists
of (ci, zi) for i ∈ [n]. There is no trivial way to combine all zi’s, because each zi

is only related to Ri and ci, and not to other zj ’s. Hence, [16] does not (easily)
achieve an O(log n) size ring signature in the DL-based setting.

5 Which implicitly implies all users should use the same set of security parameters
including the same group and generator for their sk and pk.

DualRing: Generic Construction of Ring Signatures 269

6 DualRing-EC: Our Succinct DL-based Ring Signature

We give a new sum argument of knowledge which is useful to reduce the signa-
ture size of DualRing from linear to logarithmic in the DL-based setting. The
group operation ⊗ of the challenge space is modular addition. This is the first
combination of the classical ring structure with the argument of knowledge.

Notations and Assumptions. For a security parameter λ, we use G to repre-
sent a cyclic group of prime order p. We use [n] to denote the numbers 1, 2, ..., n.

We use the following notations for vectors for our DL-based construction: a[:l]

and a[l:] represent (a1, ..., al) and (al+1, ..., an). a ◦ b is the Hadamard product
(a1b1, a2b2, ..., anbn). 〈a,b〉 is the inner product

∑n
i=1 aibi. ab, a + b and ab

represent (ab
1, a

b
2, ..., a

b
n), (a1 +b, a2 +b, ..., an +b) and

∏n
i=1 abi

i respectively.
∑

a
and

∏
a denotes

∑n
i=1 ai and

∏n
i=1 ai.

Definition 6 (Discrete Logarithm Assumption). For all PPT adversaries
A such that

Pr [y = ga|g, y ←s G, a ← A(G, g, y)] ≤ negl(λ).

6.1 Sum Arguments of Knowledge

The sum argument of knowledge is a variant of inner product argument in [14].
The inner product argument is an efficient proof system for the following relation:

{
(g,h ∈ G

n, P ∈ G, c ∈ Zp;a,b ∈ Z
n
p) : P = gahb ∧ c = 〈a,b〉

}

in which a prover P convinces a verifier V that c is the inner product of two
committed vectors a,b. Bootle et al. [12] presented an efficient zero-knowledge
proof for inner product argument, with communication complexity of 6 log2(n)
(n is the dimension of vectors). Based on their works, Bünz et al. proposed
Bulletproofs [14] to reduce the communication complexity to 2 log2(n). They
achieve O(log n) complexity by running a recursive Pf algorithm, such that
in each round two vectors a,b of size n are committed into two commitments
(L,R), and two vector of proofs a′,b′ of size n/2 are computed for challenge x,
where Lx2

PRx−2
is equal to the commitment of a′,b′ and 〈a′,b′〉. In the next

round, run the Pf algorithm with input vectors a′,b′ and the recursion ends
when n = 1.
From Inner Product Argument to Sum Argument. To construct our
logarithmic size ring signature, we propose a new argument of knowledge named
Sum Argument. First we give the relation:

{
(g ∈ G

n, P ∈ G, c ∈ Zp;a ∈ Z
n
p) : P = ga ∧ c =

∑
a
}

(2)

In a sum argument, a prover convinces a verifier that he/she has the knowledge
of a vector of scalars a, such that P = ga and c =

∑
a. Our sum argument looks

270 T. H. Yuen et al.

like an inner product argument, where a vector of generators and a computation
of multi-exponentiation is used. Although an inner product argument can be
converted into a sum argument by setting the vector b to 1n, this yields a less
efficient protocol than ours.

Assume that the system parameter param includes a generator u ∈ G in
group G with order p and two hash functions HZ ,H ′

Z : {0, 1}∗ → Zp. A
Non-interactive Sum Argument (NISA) consists of a Proof algorithm which
takes (param,g, P, c,a) and outputs a proof π; and a Verify algorithm which
takes(param,g, P, c, π) and outputs a bit 1/0. Our NISA is given in Algorithm 4.
Observe that for the k-th recursion in Pf, the value of b is

∏k
i=1(xi + x−1

i)1
n

2k ,
where xi is the i-th output of HZ . This b is known to the verifier and hence we
do not need a vector of generators h to commit b in L,R as in [12]. As a result,
we can set h as 1n and can save almost half of the exponentiation during the
recursion. In addition, the computation of P is also not needed by the prover.

Theorem 5. Our sum argument has statistical witness-extended emulation for
non-trivial discrete logarithm relation among g, u or a valid witness a.

We defer its security proof to the full version of the paper.
Compared with [14], our protocol is simpler. In each iteration, we com-

pute (4n′ + 2) exponentiations to generate a proof, then compute a multi-
exponentiation of size (1 + n + 2 log2(n)) to verify. For an inner product argu-
ment [14], the corresponding computations are (8n′ + 8) exponentiations and a
multi-exponentiation of size (1 + 2n + 2 log2(n)), respectively. The proof sizes
are similar; however we omit almost half of exponentiations.

6.2 Logarithmic Size DL-based Ring Signature

We give the full construction of compact DL-based ring signature, by combining
DualRing with the sum argument of knowledge and Schnorr identification. Then,
we compare the efficiency with the existing ring signature schemes.
Matching Sum Argument with Ring Signature. Notice that the sum argu-
ment proves the relation for some ai ∈ Zp, given gi, P ∈ G and c ∈ Zp:

P =
n∏

i=1

gai
i ∧ c =

n∑

i=1

ai.

On the other hand, the verification of our generic ring signature includes:

R � (V1(z))−1 =
n⊙

i=1

V2(pki, ci) ∧ H(m, pk, R) =
n⊗

i=1

ci.

Interestingly, the two examples (DL- and RSA-based) of the Type-T* canonical
identification have V2(pki, ci) = pkci

i . Therefore, we can use the sum argument
for the relation:

R · (V1(z))−1 =
n∏

i=1

pkci
i ∧ H(m, pk, R) =

n∑

i=1

ci.

DualRing: Generic Construction of Ring Signatures 271

Algorithm 4: NISA
1 Procedure NISA.Proof({param,g, P, c}, a):

2 Run protocol Pf on input (g, uH′
Z(P,u,c),a,1n);

3 Procedure Pf(g, û,a,b):
// L, R are initially empty, but maintain its memory throughout

the recurrsion. n is the length of vector a and b.
4 if n = 1 then
5 Output π = (L, R, a, b).

6 else
7 Compute n′ = n

2
, cL = 〈a[:n′],b[n′:]〉 ∈ Zp, cR = 〈a[n′:],b[:n′]〉 ∈ Zp;

8 L = g
a[:n′]
[n′:] ûcL ∈ G and R = g

a[n′:]
[:n′] ûcR ∈ G;

9 Add L to L and R to R and compute x = HZ(L, R);

10 Compute g′ = gx−1

[:n′] ◦ gx
[n′:] ∈ G

n′
, a′ = x · a[:n′] + x−1 · a[n′:] ∈ Z

n′
p and

b′ = x−1 · b[:n′] + x · b[n′:] ∈ Z
n′
p ;

11 Run protocol Pf on input (g′, û,a′,b′);

12 Procedure NISA.Verify(param,g, P, c, π = (L, R, a, b)):

13 P ′ = P · uc·H′
Z(P,u,c);

14 Compute for all j = 1, ..., log2 n: xj = HZ(Lj , Rj);
15 Compute for all i = 1, ..., n:

yi =
∏

j∈[log2 n] x
f(i,j)
j , f(i, j) =

{
1 if (i − 1)’s j-th bit is 1

−1 otherwise
;

16 Set y = (y1, . . . , yn), x = (x1, . . . , xlog2 n) ;

17 if Lx2
P ′Rx−2

=ga·yuab·H′
Z(P,u,c) then

18 Output 1

19 Output 0

As a result, we can give a logarithmic size ring signature from Type-T* canon-
ical identification scheme with matching non-interactive sum argument.
DualRing-EC Construction. Our DL-based construction DualRing-EC is
shown in Algorithm 5, by using DualRing and NISA for Relation 2.

Theorem 6. DualRing-EC is unforgeable w.r.t. insider corruption if Dual-
Ring is unforgeable w.r.t. insider corruption and the NISA has statistical
witness-extended emulation.

Proof. Suppose that A is an adversary breaking the unforgeability w.r.t. insider
corruption of DualRing-EC. Then, we can construct an algorithm B breaking the
unforgeability of DualRing. B is given the system parameter param′ and a set
of public keys S from the challenger of DualRing. B picks a random generator
u ∈ G and returns param = (param′, u) to A.

When A asks for a signing oracle query, B asks the signing oracle of
DualRing and obtains σ′ = (c1, . . . , cn, z). B computes R by running Dual-

272 T. H. Yuen et al.

Algorithm 5: DualRing-EC

1 Procedure Setup(λ):

2 param′ ← DualRing.Setup(λ);

3 pick a generator u ←s G;

4 return param = (param′, u);

5 Procedure Sign(param, m,pk, skj):

6 (c1, . . . , cn, z) ← DualRing.Sign

(param, m,pk, skj);

// (c, R) is computed in DualRing.Sign

7 a ← (c1, . . . , cn);

8 P = R � (V1(z))
−1;

9 π ← NISA.Proof({param,pk, u, P, c}, a);

10 return σ = (z, R, π);

11 Procedure KeyGen(param):

12 return (pk, sk) ←
DualRing.KeyGen(param′);

13 Procedure Verify(param, m,pk, σ):

14 parse σ = (z, R, π);

15 c = HZ(m,pk, R);

16 P = R � (V1(z))
−1;

17 if 0 ← NISA.Verify(param,pk, u, P, c)

then

18 return 0;

19 return 1;

Ring.Verify on σ′. B computes c = c1 + · · · + cn and P = R � (V1(z))−1. B
runs the NISA.Proof and obtains π. B returns (c, z, R, π).

In the challenge phase, A returns a signature σ∗ = (c∗, z∗, R∗, π∗) with
respect to a message M∗ and {pk∗

i }n
i=1. By the statistical witness-extended

emulation of NISA, B can run an extractor E to obtain (c∗
1, . . . , c

∗
n), where

P ∗ = R∗ � (V1(z∗))−1 =
⊙n

i=1 V2(pk∗
i , c

∗
i). Then B returns the signature

σ′ = (c∗
1, . . . , c

∗
n, z∗), the message M∗ and {pk∗

i }n
i=1 to the challenger of Dual-

Ring. ��

Theorem 7. DualRing-EC is anonymous if DualRing is anonymous.

Proof. Suppose that A is an adversary breaking the anonymity of DualRing-EC.
Then, we can construct an algorithm B breaking the anonymity of DualRing.
B is given param′ and the set S from its challenger. B picks a random generator
u ∈ G and gives param = (param′, u) to A.

When A asks for a signing oracle query, B simulates it as in the proof of
unforgeability. In the challenge phase, A gives M∗,pk∗, i0, i1) to B and B for-
wards it to its challenger. B receives ((c∗

1, . . . , c
∗
n, z∗), {ωi}qk

i=1). B computes σ∗

by line 7–9 of the Sign algorithm and returns (σ∗, {ωi}qk
i=1) to A.

Finally A returns a bit b′ and B sends b′ to its challenger to break the
anonymity of DualRing. ��

6.3 Efficiency Analysis

Signature Size. We compare our DL-based instantiation for n public keys with
other O(log n)-size DL-based ring signatures without trusted setup in Table 1.
Most accumulator-based O(1)-size ring signatures require trusted setup. The
lattice-based logarithmic ring signatures [19,20,28] are still at least 100 times
longer than DL-based construction. Our ring signature is 789/921 bytes for the
ring size = 1024/4096 with λ = 128. We can see that DualRing-EC (Algorithm 5
with Schnorr Identification) is the shortest ring signature without trusted setup.
Figure 3 shows the concrete signature size when an element in Zp is represented
by 32 bytes and an element in G is represented by 33 bytes. Note that the

DualRing: Generic Construction of Ring Signatures 273

102 103 104

1,000

2,000

3,000

4,000

Ring Size

Si
gn

at
ur
e
Si
ze

(B
yt
es
)

[22]
[11]
[36]
[27]

DualRing-EC
AOS

Fig. 3. The signature size of ring signature schemes for n public keys, when imple-
mented on elliptic curve with λ = 128.

signature size for a ring with size [log(n − 1) + 1, log n] is the same. Therefore,
the signature size increases for ring size 1025, 2049, 4097, etc.

Computational Efficiency. We implement our DualRing-EC in Python, using
the P256 curve in the fastecdsa library. It is tested on a computer with Intel Core
i5 2.3 GHz, 8 GB RAM with MacOS 10. The running time is shown in Fig. 4.

We compare the asymptotic running time of our scheme with [11,22]6. The
running time of the signer for both [22] and [11] are both dominated by O(n log n)
exponentiations. On the other hand, the signer’s running time for DualRing-EC
is O(n) exponentiations only. Comparing with [27,36], the major difference for
the signer’s running time is the use of the inner product argument in [27,36] and
the use of NISA in our scheme. As discussed in the section of NISA, we only
use half of the exponentiation used in the inner product argument. Verification
time for out scheme is dominated by Line 17 of Algorithm 4, which contains
n + 2 log n + 1 exponentiations for a ring size of n. [27,36] used Bulletproof
which contains 2n + 2 log n + 1 exponentiations in verification. To conclude,
our DualRing-EC outperforms [11,22,27,36] in terms of signature size and the
running time of the signer and the verifier.

7 DualRing-LB: Our Lattice-Based Ring Signature

In this section, we give a concrete ring signature construction based on standard
(module) lattice assumptions using DualRing.
6 For simplicity, we compare the schemes by assuming that a multi-exponentiation of

size � is the same as � exponentiation in G.

274 T. H. Yuen et al.

0 200 400 600 800 1,000
0

2

4

6

8

10

12

Ring Size

R
un

ni
ng

T
im

e
(s
)

(a) Running time of Sign.

0 200 400 600 800 1,000
0

1

2

3

Ring Size

R
un

ni
ng

T
im

e
(s
)

(b) Running time of Verify.

Fig. 4. Running times of DualRing-EC

Notations and Assumptions. We define q as an odd modulus and Rq as a
ring Zq[X]/(Xd +1) of dimension d. Define In as the identity matrix with size n,
Uk as a set of polynomials in Z[X]/(Xd + 1) with infinity norm at most k ∈ Z

+,
and U as the uniform distribution. The Euclidean ‖·‖ and infinity ‖ · ‖∞ norms
of a polynomial (or a vector of polynomials) are defined in the standard fashion
w.r.t. the coefficient vector of the polynomial. Define the following challenge
space:

C = { c ∈ Z[X]/(Xd + 1) : ‖c‖∞ = 1 }. (3)

Observe that |C| = 3d. That is, for d = 128, we have |C| = 3128 > 2202.
We review the hardness of Module-SIS (M-SIS) (defined in “Hermite normal

form” as in [5]) and Module-LWE (M-LWE) problems [19].

Definition 7 (M-SISn,m,q,βSIS
Assumption). For all PPT adversaries A,

Pr
[
A′ ←s U(Rn×(m−n)

q),
A = [In||A′],z ← A(A)

:
Az = 0 ∈ Rn

q ,
0 < ‖z‖ ≤ βSIS

]
≤ negl(λ).

Definition 8 (M-LWEn,m,q,χ Assumption). Let χ be a distribution over Rq

and s ←s χn be a secret key. Define LWEq,s as the distribution obtained by sam-
pling a ←s Rn

q , e ←s χ and outputting (a, 〈a, s〉+e). For all PPT adversaries A,
the probability of distinguishing between m samples from LWEq,s and U(Rn

q , Rq)
is negl(λ).

7.1 Lattice-Based Canonical Identification

We give a Type-T* canonical identification from M-LWE/SIS in Algorithm 6. We
use the rejection sampling technique from [31] to make sure that no information
about the signer’s secret key is revealed in the response.

DualRing: Generic Construction of Ring Signatures 275

Algorithm 6: Lattice-based Type-T* Canonical Identification

1 Procedure Setup(λ):

2 set M-LWE parameters k, m, d, q;

3 define a hash function H : {0, 1}∗ → C;

4 pick G ′ ← R
k×(m−k)
q ;

5 G =
[
Ik ‖ G ′]

;

6 return param = (k, m, d, q, G , H);

7 Procedure KeyGen():

8 pick x ← Um
1 ;

9 compute c = G · x ;

10 return (pk, sk) = (c , x);

11 Procedure Proof1(sk):

12 pick r ← Um
md2

;

13 R = A(sk; r) := G · r ;
14 return (R , r);

15 Procedure Ch(R):

16 pick c ← C;

17 return c;

18 Procedure Proof2(sk, r , c):

19 z = Z(sk, r, c) := c · sk − r ;

20 if ‖z‖∞ > md2 − d then

21 restart Proof1;

22 return z ;

23 Procedure Verify(pk, z , c):

24 R ′ = V1(z) + V2(pk, c) := −G · z + c · pk;
25 if c �= Ch(R ′) then

26 return 0;

27 if ‖z‖∞ > md2 − d then

28 return 0;

29 return 1;

We can observe the following

1. The function V1 is additively homomorphic:

V1(z1) + V1(z2) = −G · z1 − G · z2 = −G · (z1 + z2) = V1(z1 + z2).

2. Given sk, pk and c, we can compute z̃ = −c ·sk such that V1(z̃) = G ·(c ·sk) =
V2(pk, c).

3. The challenge space C is a group under addition mod 3.

Theorem 8. Algorithm 6 is secure against special impersonation under key only
attack if M-SISk,m+1,q,βSIS (in HNF) for βSIS ≈ 2d2

√
m ·

(
1 + m

√
d
)

and M-
LWEm−k,k,q,U1 are hard.

Proof. Suppose that A is an adversary breaking the special impersonation under
key only attack. Suppose that B is given Ĝ = [Ik ‖G′ ‖ g] ∈ R

k×(m+1)
q as

the M-SIS matrix where G′ and g are sampled uniformly at random. Denote
G = [Ik ‖G′], which is used as the commitment key in the oracle simulations
by B. The number of public keys generated by the challenger is qk. B sets

pk = G · r + g (4)

for r ← Um
1 . Observe that ‖r′‖ ≤

√
md + 1 for r′ =

(
r
1

)
. Also, note that

we can write G · r = r0 + G′ · r1 for r0 ∈ Uk
1 and r1 ∈ Um−k

1 . Therefore, by
M-LWEm−k,k,q,U1 assumption, G ·r is computationally indistinguishable from a
random element in Rk

q and so is pk = G ·r+g. B gives param = (k,m, d, q,G,H)
and pk to A.

A returns (c,z, c′,z′), where c �= c′, we have:

−G · z + c · pk = −G · z′ + c′ · pk

276 T. H. Yuen et al.

(c − c′) · pk = G · (z − z′) = Ĝ ·
(
z − z′

0

)

Further, multiplying Eq. (4) by (c − c′), we have

(c − c′) · pk = G · (c − c′) · r + (c − c′) · g = Ĝ · (c − c′) ·
(
r
1

)
.

Therefore, we get:

Ĝ · (c − c′) ·
(
r
1

)
= Ĝ ·

(
z − z′

0

)
.

That is, Ĝ · s = 0 over Rq for s = (c − c′) ·
(
r
1

)
−
(
z − z′

0

)
. Observe that s

cannot be the zero vector as c �= c′ and the last coordinate of s is (c − c′). Since
‖z‖∞ , ‖z′‖∞ ≤ md2 − d, we also have

‖s‖ ≤ 2d
√

d
√

md + 1 + 2 · (md2
√

md) ≈ 2d2
√

m ·
(
1 + m

√
d
)

.

Hence, s is a solution to M-SISk,m+1,q,βSIS for βSIS ≈ 2d2
√

m
(
1 + m

√
d
)

. ��

Remark. It is not known how to build an efficient lattice-based ZK proof for
sum argument. There is a theoretical work on constructing a lattice analog of
Bulletproofs in [13]. However, in practice, the construction is inefficient. As the
lattice analog of the Sum Argument cannot be constructed efficiently, the signa-
ture size of our lattice-based construction remains at O(n), while [10,19] achieve
O(log n) signature size. Hence, after some point (around 1100), our construction
eventually produces longer signatures.

7.2 Efficiency Analysis of DualRing-LB

Signature Size. The practical security estimations of M-SIS and M-LWE
against known attacks are done by following the methodology detailed in [18,
Section 3.2.4]. In particular, we aim for a “root Hermite factor” of around 1.0045.
The root Hermite factor is a common metric used in lattice-based cryptography
to measure practical hardness. We refer to [18] for further discussion. We refer to
Table 3 for the concrete parameter setting. In general, for d = 128, the signature
length can be approximated by the following formula:

|σ| = |z| + n · |ci| ≈ 4536 + 26n bytes. (5)

The above formula stems from the fact that |ci| = d log 3/8 bytes and |z| =
md log(2md2)/8 bytes since z ∈ Rm with ‖z‖∞ ≤ md2. Plugging in (d,m) =
(128, 15) yields (5).

Although Theorems 3 and 8 imply that DualRing-LB is secure, they do not
provide all the information required in the concrete parameter setting. Unlike

DualRing: Generic Construction of Ring Signatures 277

Table 3. The parameter setting of DualRing-LB. The root Hermite factor for both
M-SIS and M-LWE are ≤ 1.0045. d = 128 always. The sizes are in KB.

n k m log q Signature Size PK Size SK Size Size of (c1, . . . , cn) Size of z

2 7 15 26 4.48 2.84 0.23 0.05 4.43
4 7 15 26 4.53 2.84 0.23 0.10 4.43
8 7 15 26 4.63 2.84 0.23 0.20 4.43
16 7 15 26 4.83 2.84 0.23 0.40 4.43
32 7 15 26 5.22 2.84 0.23 0.79 4.43
64 7 15 26 6.02 2.84 0.23 1.59 4.43
128 7 15 26 7.60 2.84 0.23 3.17 4.43
256 7 15 26 10.78 2.84 0.23 6.34 4.43
512 8 16 26 17.44 3.25 0.25 12.69 4.75
1024 8 16 26 30.13 3.25 0.25 25.38 4.75
2048 8 16 26 55.50 3.25 0.25 50.75 4.75
4096 8 17 27 106.57 3.38 0.27 101.50 5.07

the classical DL- or factoring-based constructions, in the lattice setting, it is
important for the concrete parameter setting to know the precise (Euclidean)
norm bound βSIS of M-SIS solution that arises in the security reduction. This is
because the practical security estimations depend on the βSIS parameter of the
M-SIS problem. Therefore, we also need to investigate in more detail the M-SIS
solution length βSIS for the ring signature (not the underlying Type-T* canonical
identification as in Theorem 8) and see how it depends on the parameters. We do
this in the full version of the paper and show concretely what the length of the M-
SIS solution is for the ring signature, which gives βSIS ≈ 2d

√
md · (md + n). The

proof follows the same blueprint in the generic unforgeability proof of DualRing
(Theorem 3), but we keep track of the norms as the proof proceeds.

Computational Efficiency. First, the modulus q is always less than 32 bits in
length for the parameters in Table 3. Therefore the values in our construction fit
into 32-bit registers, boosting the computational efficiency. Another advantage
of our construction is that no (discrete) Gaussian sampling is required, making
the implementation easier to protect against side-channel attacks.

We show the running times of DualRing-LB in Fig. 5. The code is written
in Python, using the polynomial arithmetic and NTT transform in the sympy
library. It is tested on a computer with Intel Core i5 2.3GHz, 8GB RAM with
MacOS 10. For our scheme, the expected number of iterations due to rejection
sampling in Sign is about 2.72 and our experiment matches this prediction. The
running time for a single run of sign and verify algorithms are about the same.
However, the expected number of iterations for sign is 2.72. Therefore, we have
the running time for sign as in Fig. 5.

The construction in [19] is at least 5 times slower than DualRing-LB for both
sign and verify. Some of the possible reasons include: (1) their expected number
of iterations due to rejection sampling in Sign is about 4.757, (2) they use a
polynomial of degree d = 256. Their scheme does not exhibit a linear increase in

278 T. H. Yuen et al.

running time since [19] changes the system parameters (e.g., matrix dimension,
degree of polynomial) for different ring size to optimize their signature size.

0 50 100 150 200 250
0

50

100

150

Ring Size

R
un

ni
ng

T
im

e
(s
)

DualRing-LB
[19]

(a) Running Time of Sign.

0 50 100 150 200 250
0

5

10

15

20

25

Ring Size

R
un

ni
ng

T
im

e
(s
)

DualRing-LB
[19]

(b) Running Time of Verify.

Fig. 5. Lattice-based ring signatures

8 Conclusion

In this paper, we propose a generic construction of ring signature scheme using
a dual ring structure. When we instantiate in the DL-setting, it is the shortest
ring signature scheme without using trusted setup. When instantiated in M-
LWE/SIS, we have the shortest ring signature for ring size between 4 and 2000.

References

1. Abdalla, M., An, J.H., Bellare, M., Namprempre, C.: From identification to signa-
tures via the fiat-shamir transform: necessary and sufficient conditions for security
and forward-security. IEEE Trans. Inf. Theor. 54(8), 3631–3646 (2008)

2. Abe, M., Ohkubo, M., Suzuki, K.: 1-out-of-n signatures from a variety of keys.
In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 415–432. Springer,
Heidelberg (2002). https://doi.org/10.1007/3-540-36178-2 26

3. Backes, M., Döttling, N., Hanzlik, L., Kluczniak, K., Schneider, J.: Ring signatures:
logarithmic-size, no setup—from standard assumptions. In: Ishai, Y., Rijmen, V.
(eds.) EUROCRYPT 2019. LNCS, vol. 11478, pp. 281–311. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-17659-4 10

4. Bagherzandi, A., Cheon, J.H., Jarecki, S.: Multisignatures secure under the discrete
logarithm assumption and a generalized forking lemma. In: CCS 2008, pp. 449–458.
ACM (2008)

5. Baum, C., Damg̊ard, I., Lyubashevsky, V., Oechsner, S., Peikert, C.: More efficient
commitments from structured lattice assumptions. In: Catalano, D., De Prisco, R.
(eds.) SCN 2018. LNCS, vol. 11035, pp. 368–385. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-98113-0 20

https://doi.org/10.1007/3-540-36178-2_26
https://doi.org/10.1007/978-3-030-17659-4_10
https://doi.org/10.1007/978-3-319-98113-0_20
https://doi.org/10.1007/978-3-319-98113-0_20

DualRing: Generic Construction of Ring Signatures 279

6. Bellare, M., Namprempre, C., Neven, G.: Security proofs for identity-based identifi-
cation and signature schemes. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT
2004. LNCS, vol. 3027, pp. 268–286. Springer, Heidelberg (2004). https://doi.org/
10.1007/978-3-540-24676-3 17

7. Bellare, M., Neven, G.: Multi-signatures in the plain public-key model and a general
forking lemma. In: CCS 2006, pp. 390–399. ACM (2006)

8. Bender, A., Katz, J., Morselli, R.: Ring signatures: stronger definitions, and con-
structions without random oracles. J. Cryptology 22(1), 114–138 (2009)

9. Bernstein, D.J., Duif, N., Lange, T., Schwabe, P., Yang, B.-Y.: High-speed high-
security signatures. In: Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol.
6917, pp. 124–142. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-23951-9 9

10. Beullens, W., Katsumata, S., Pintore, F.: Calamari and Falafl: logarithmic (Link-
able) ring signatures from isogenies and lattices. In: Moriai, S., Wang, H. (eds.)
ASIACRYPT 2020. LNCS, vol. 12492, pp. 464–492. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-64834-3 16

11. Bootle, J., Cerulli, A., Chaidos, P., Ghadafi, E., Groth, J., Petit, C.: Short account-
able ring signatures based on DDH. In: Pernul, G., Ryan, P.Y.A., Weippl, E. (eds.)
ESORICS 2015. LNCS, vol. 9326, pp. 243–265. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-24174-6 13

12. Bootle, J., Cerulli, A., Chaidos, P., Groth, J., Petit, C.: Efficient Zero-Knowledge
Arguments for Arithmetic Circuits in the Discrete Log Setting. In: Fischlin, M.,
Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 327–357. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5 12

13. Bootle, J., Lyubashevsky, V., Nguyen, N.K., Seiler, G.: A Non-PCP approach to
succinct quantum-safe zero-knowledge. In: Micciancio, D., Ristenpart, T. (eds.)
CRYPTO 2020. LNCS, vol. 12171, pp. 441–469. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-56880-1 16

14. Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.: Bulletproofs:
short proofs for confidential transactions and more. In: 2018 IEEE Symposium on
Security and Privacy (SP), pp. 315–334 (2018)

15. Chaum, D., Pedersen, T.P.: Wallet databases with observers. In: Brickell, E.F.
(ed.) CRYPTO 1992. LNCS, vol. 740, pp. 89–105. Springer, Heidelberg (1993).
https://doi.org/10.1007/3-540-48071-4 7

16. Cramer, R., Damg̊ard, I., Schoenmakers, B.: Proofs of partial knowledge and sim-
plified design of witness hiding protocols. In: Desmedt, Y.G. (ed.) CRYPTO 1994.
LNCS, vol. 839, pp. 174–187. Springer, Heidelberg (1994). https://doi.org/10.1007/
3-540-48658-5 19

17. Dodis, Y., Kiayias, A., Nicolosi, A., Shoup, V.: Anonymous identification in Ad
Hoc groups. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS,
vol. 3027, pp. 609–626. Springer, Heidelberg (2004). https://doi.org/10.1007/978-
3-540-24676-3 36

18. Esgin, M.F.: Practice-Oriented Techniques in Lattice-Based Cryptography. Ph.D.
thesis, Monash University (5 2020). https://doi.org/10.26180/5eb8f525b3562

19. Esgin, M.F., Steinfeld, R., Liu, J.K., Liu, D.: Lattice-based zero-knowledge proofs:
new techniques for shorter and faster constructions and applications. In: Boldyreva,
A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11692, pp. 115–146. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-26948-7 5

https://doi.org/10.1007/978-3-540-24676-3_17
https://doi.org/10.1007/978-3-540-24676-3_17
https://doi.org/10.1007/978-3-642-23951-9_9
https://doi.org/10.1007/978-3-642-23951-9_9
https://doi.org/10.1007/978-3-030-64834-3_16
https://doi.org/10.1007/978-3-319-24174-6_13
https://doi.org/10.1007/978-3-319-24174-6_13
https://doi.org/10.1007/978-3-662-49896-5_12
https://doi.org/10.1007/978-3-030-56880-1_16
https://doi.org/10.1007/978-3-030-56880-1_16
https://doi.org/10.1007/3-540-48071-4_7
https://doi.org/10.1007/3-540-48658-5_19
https://doi.org/10.1007/3-540-48658-5_19
https://doi.org/10.1007/978-3-540-24676-3_36
https://doi.org/10.1007/978-3-540-24676-3_36
https://doi.org/10.26180/5eb8f525b3562
https://doi.org/10.1007/978-3-030-26948-7_5

280 T. H. Yuen et al.

20. Esgin, M.F., Steinfeld, R., Sakzad, A., Liu, J.K., Liu, D.: Short lattice-based one-
out-of-many proofs and applications to ring signatures. In: Deng, R.H., Gauthier-
Umaña, V., Ochoa, M., Yung, M. (eds.) ACNS 2019. LNCS, vol. 11464, pp. 67–88.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21568-2 4

21. Esgin, M.F., Zhao, R.K., Steinfeld, R., Liu, J.K., Liu, D.: MatRiCT: efficient,
scalable and post-quantum blockchain confidential transactions protocol. In: ACM
CCS, pp. 567–584. ACM (2019), (Full version at ia.cr/2019/1287)

22. Groth, J., Kohlweiss, M.: One-out-of-many proofs: or how to leak a secret and
spend a coin. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol.
9057, pp. 253–280. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-
662-46803-6 9

23. Guillou, L.C., Quisquater, J.-J.: A paradoxical indentity-based signature scheme
resulting from zero-knowledge. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS,
vol. 403, pp. 216–231. Springer, New York (1990). https://doi.org/10.1007/0-387-
34799-2 16

24. Katz, J., Wang, N.: Efficiency improvements for signature schemes with tight secu-
rity reductions. In: CCS 2003, pp. 155–164. ACM (2003)

25. Kiltz, E., Masny, D., Pan, J.: Optimal security proofs for signatures from identifi-
cation schemes. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9815,
pp. 33–61. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53008-
5 2

26. Kumar, A., Fischer, C., Tople, S., Saxena, P.: A traceability analysis of Monero’s
blockchain. In: Foley, S.N., Gollmann, D., Snekkenes, E. (eds.) ESORICS 2017.
LNCS, vol. 10493, pp. 153–173. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-66399-9 9

27. Lai, R.W.F., Ronge, V., Ruffing, T., Schröder, D., Thyagarajan, S.A.K., Wang,
J.: Omniring: scaling private payments without trusted setup. In: CCS 2019, pp.
31–48. ACM (2019)

28. Libert, B., Ling, S., Nguyen, K., Wang, H.: Zero-knowledge arguments for lattice-
based accumulators: logarithmic-size ring signatures and group signatures without
trapdoors. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol.
9666, pp. 1–31. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-
49896-5 1

29. Libert, B., Peters, T., Qian, C.: Logarithmic-size ring signatures with tight security
from the DDH assumption. In: Lopez, J., Zhou, J., Soriano, M. (eds.) ESORICS
2018. LNCS, vol. 11099, pp. 288–308. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-98989-1 15

30. Lu, X., Au, M.H., Zhang, Z.: Raptor: a practical lattice-based (Linkable) ring
signature. In: Deng, R.H., Gauthier-Umaña, V., Ochoa, M., Yung, M. (eds.) ACNS
2019. LNCS, vol. 11464, pp. 110–130. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-21568-2 6

31. Lyubashevsky, V.: Fiat-Shamir with aborts: applications to lattice and factoring-
based signatures. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp.
598–616. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10366-
7 35

32. Lyubashevsky, V.: Lattice signatures without trapdoors. In: Pointcheval, D.,
Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 738–755. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4 43

33. Maxwell, G., Poelstra, A.: Borromean ring signatures (2015). https://pdfs.
semanticscholar.org/4160/470c7f6cf05ffc81a98e8fd67fb0c84836ea.pdf

https://doi.org/10.1007/978-3-030-21568-2_4
https://doi.org/10.1007/978-3-662-46803-6_9
https://doi.org/10.1007/978-3-662-46803-6_9
https://doi.org/10.1007/0-387-34799-2_16
https://doi.org/10.1007/0-387-34799-2_16
https://doi.org/10.1007/978-3-662-53008-5_2
https://doi.org/10.1007/978-3-662-53008-5_2
https://doi.org/10.1007/978-3-319-66399-9_9
https://doi.org/10.1007/978-3-319-66399-9_9
https://doi.org/10.1007/978-3-662-49896-5_1
https://doi.org/10.1007/978-3-662-49896-5_1
https://doi.org/10.1007/978-3-319-98989-1_15
https://doi.org/10.1007/978-3-319-98989-1_15
https://doi.org/10.1007/978-3-030-21568-2_6
https://doi.org/10.1007/978-3-030-21568-2_6
https://doi.org/10.1007/978-3-642-10366-7_35
https://doi.org/10.1007/978-3-642-10366-7_35
https://doi.org/10.1007/978-3-642-29011-4_43
https://pdfs.semanticscholar.org/4160/470c7f6cf05ffc81a98e8fd67fb0c84836ea.pdf
https://pdfs.semanticscholar.org/4160/470c7f6cf05ffc81a98e8fd67fb0c84836ea.pdf

DualRing: Generic Construction of Ring Signatures 281

34. Möser, M., et al.: An empirical analysis of traceability in the monero blockchain.
PoPETs 2018(3), 143–163 (2018)

35. Rivest, R.L., Shamir, A., Tauman, Y.: How to Leak a Secret. In: Boyd, C. (ed.)
ASIACRYPT 2001. LNCS, vol. 2248, pp. 552–565. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-45682-1 32

36. Yuen, T.H., et al.: RingCT 3.0 for blockchain confidential transaction: shorter size
and stronger security. In: Bonneau, J., Heninger, N. (eds.) FC 2020. LNCS, vol.
12059, pp. 464–483. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
51280-4 25

https://doi.org/10.1007/3-540-45682-1_32
https://doi.org/10.1007/978-3-030-51280-4_25
https://doi.org/10.1007/978-3-030-51280-4_25

Compact Ring Signatures from Learning
with Errors

Rohit Chatterjee1(B), Sanjam Garg2,3, Mohammad Hajiabadi4,
Dakshita Khurana5, Xiao Liang1, Giulio Malavolta6, Omkant Pandey1,

and Sina Shiehian1,2

1 Stony Brook University, Stony Brook, USA
rochatterjee@cs.stonybrook.edu

2 University of California, Berkeley, USA
3 NTT Research, Tokyo, Japan

4 University of Waterloo, Waterloo, Canada
5 University of Illinois Urbana-Champaign, Champaign, USA

6 Max Planck Institute for Security and Privacy, Bochum, Germany

Abstract. Ring signatures allow a user to sign a message on behalf of a
“ring” of signers, while hiding the true identity of the signer. As the degree
of anonymity guaranteed by a ring signature is directly proportional
to the size of the ring, an important goal in cryptography is to study
constructions that minimize the size of the signature as a function of the
number of ring members.

In this work, we present the first compact ring signature scheme (i.e.,
where the size of the signature grows logarithmically with the size of
the ring) from the (plain) learning with errors (LWE) problem. The
construction is in the standard model and it does not rely on a common
random string or on the random oracle heuristic. In contrast with the
prior work of Backes et al. [EUROCRYPT’2019], our scheme does not
rely on bilinear pairings, which allows us to show that the scheme is
post-quantum secure assuming the quantum hardness of LWE.

At the heart of our scheme is a new construction of compact and
statistically witness indistinguishable ZAP arguments for NP ∩ coNP,
that we show to be sound based on the plain LWE assumption. Prior
to our work, statistical ZAPs (for all of NP) were known to exist only
assuming sub-exponential LWE. We believe that this scheme might find
further applications in the future.

1 Introduction

In a ring signature scheme, (introduced in [44]) a user can sign a message with
respect to a ring of public keys. The ring can be arbitrarily chosen by the signer
and the verification keys that populate the ring can be sampled locally by each
user, i.e., no central coordination is required. No user or entity should be able
to tell which user in the ring actually produced a given signature—a property
referred to as anonymity. This is complemented with the standard notion of

c© International Association for Cryptologic Research 2021
T. Malkin and C. Peikert (Eds.): CRYPTO 2021, LNCS 12825, pp. 282–312, 2021.
https://doi.org/10.1007/978-3-030-84242-0_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-84242-0_11&domain=pdf
https://doi.org/10.1007/978-3-030-84242-0_11

Compact Ring Signatures from Learning with Errors 283

unforgeability for signatures, which in this case requires that no user outside a
specified ring should be able to produce valid signatures on behalf of this ring.
A salient feature is the online or setup-free generation of ring signatures, which
requires that signatures can be generated without any prior interaction between
members of the ring. Ring signatures and their variants have found natural
applications related to whistleblowing, authenticating leaked information, and
more recently to cryptocurrencies [37,47].

There is a sizeable body of work [2,5,29,39] that construct ring signatures
under various definitions and hardness assumptions. As the degree of anonymity
guaranteed by the ring signature is directly proportional to the size of the ring,
an important property of ring signatures becomes compactness, which requires
that signatures only have a logarithmic (or lower) dependence on the size of the
ring. Recently, the work of [2] provided a compact ring signature construction
in the plain model (i.e., not needing a common random string or a setup). Their
construction assumes the existence of the following: noninteractive witness indis-
tinguishable proofs or NIWIs (which are known only from bilinear pairing based
assumptions or indistinguishability obfuscation), somewhere perfectly binding
(SPB) hashes, public key encryption with oblivious public key generation and
pseudorandom ciphertexts, and a standard signature scheme. While most of
these primitives are known under a variety of cryptographic assumptions includ-
ing LWE, unfortunately, we currently do not know any constructions of NIWI
proofs from LWE (please see the technical overview for related discussion).

This leads to the natural question of whether NIWIs are necessary to con-
struct compact ring signatures in the plain model. The looming threat of quan-
tum computers makes this question particularly pressing, since we would lose our
only candidate construction to quantum attacks (due to the reliance on bilinear
maps). We therefore ask the following open question:

Can we obtain compact (logarithmic size) ring signatures from the
hardness of standard learning with errors (LWE) problem?

1.1 Our Results

Our main contribution resolves the open problem stated above. In other words,
we obtain a ring signature construction from plain or standard LWE, i.e., only
assuming polynomial hardness of the LWE problem with polynomial modulus-
to-noise ratio. Our result is obtained as follows:

ZAPs for NP ∩ coNP. The first key step to our construction of ring signa-
tures is realization of a new argument system that we call relaxed ZAPs for
extended NP ∩ coNP. These are akin to ZAPs but with a few additional restric-
tions, and can also be viewed as a generalization of (non-adaptive) ZAPs for
languages in NP ∩ coNP. We show how to construct these ZAPs from the plain
(polynomially-hard) LWE. This is in contrast with the known constructions of
ZAPs for NP [4,25,31] that assume subexponential hardness of LWE. Our ZAP
construction also enjoys several other attractive properties such as statistical

284 R. Chatterjee et al.

witness indistinguishability and proof compactness; which we expect will make
them useful in other application contexts. We defer further exposition to our
technical overview.

Compact Ring Signatures from LWE. Next, we show that our notion of
relaxed ZAPs, along with SPB hash schemes and a special public key encryption
scheme, is sufficient to construct compact ring signatures. All these components
have constructions from plain LWE. Thus, we obtain the first construction of
compact ring signatures in the plain model from purely post-quantum assump-
tions in the literature. In addition, we investigate security in the fully quantum
setting, where the adversary can query the signing oracle on a superposition of
messages. Towards this goal, we give a construction that retains unforgeability
and anonymity in this setting.

1.2 Background

Fiat-Shamir Transformation, Trapdoor Σ-Protocols, and Correlation
Intractability. A trapdoor Σ-protocol [14] for a language L is a 3-move (hon-
est verifier) zero-knowledge protocol between a prover and a verifier, where the
prover tries to convince the verifier about the veracity of a statement x. The
protocol is instantiated with an extractable commitment scheme where there is
an extraction trapdoor td which allows extracting the plaintexts in the commit-
ments. In the first move of the protocol, the prover commits to a string a and
sends this commitment Com(a) to the verifier. Next, in the second move, the
verifier sends a challenge b to the prover. In the final round, based on the chal-
lenge b, the prover computes the final message and sends it to the verifier. The
distinctive property of trapdoor sigma protocols is that for a false statement x,
there is at most one bad challenge b∗ which lets a malicious prover to successfully
complete its proof, and this bad challenge is efficiently computable given a. Con-
sequently, given the extraction trapdoor td, the bad challenge can be efficiently
computed from Com(a).

The Fiat-Shamir transformation [20] can convert a trapdoor Σ-protocol
(indeed any Σ-protocol) to a noninteractive protocol in the random oracle model.
The way it works is that the prover evaluates a hash function on its first message
to compute the challenge b, and then proceeds to send the full proof generated
using this challenge to the verifier. To argue soundness, notice that since the
bad challenge is unique and the hash function is modeled as a random oracle, a
malicious prover has a negligible chance of finding a first message such that the
hash of it equals the bad challenge b∗.

A line of work [14,42] builds a special type of hash functions called corre-
lation intractable (CI) hash functions, to securely instantiate the Fiat-Shamir
heuristic in the plain model for trapdoor Σ-protocols, thus turning them into
noninteractive protocols in the CRS model. In particular, the LWE-based CI
hash functions in [42] allow building noninteractive zero knowledege protocols
for all of NP from the LWE assumption. Informally, a hash function is CI for
a class of circuits if for any circuit C in the class, given a random hash key k,

Compact Ring Signatures from Learning with Errors 285

it is hard to find an input z whose image under the hash function equals C(z).
We can securely replace CI hash functions with random oracles when we apply
the Fiat-Shamir transformation to trapdoor Σ-protocols. To see this, notice that
since in trapdoor Σ-protocols the bad challenge is efficiently computable given
the prover’s first message, a malicious prover that can find a first message which
gets mapped to the bad challenge is breaking the correlation intractability of the
hash function.

Somewhere Perfectly Binding Hash. A somewhere perfectly binding (SPB)
hash is similar to a Merkle tree [34]: it can compress a large database of N
records into a small digest. In a SPB hash with private local openings, binding
holds perfectly for a single hidden index i ∈ [N]. In more detail, the SPB hash
key generation algorithm takes as input a binding index i ∈ [N] and outputs a
pair of keys (hk, shk). The hash key hk can be used to generate a digest. The
secret key shk, can be used to generate a short opening for the ith record in the
database. Perfect binding says that a valid opening for the ith location of the
database uniquely determines the value of that location. Also, the hash key hk
is index hiding, i.e., it computationally hides the binding index i.

Compact Ring Signatures of [2]. The construction of [2] is based on four
ingredients: a noninteractive witness indistinguishable argument system NIWI,
a public key encryption scheme PKE, a standard signature scheme Sig, and a
somewhere perfectly binding hash scheme SPB. In this scheme, each verification
key consists of two components: a uniformly chosen public key pk (not generated
through the key generation algorithm of PKE) and a standard signature verifi-
cation key vk. The signing key consists of sk, the corresponding signing key for
vk. To sign a message m using signing key ski corresponding to verification key
VKi = (vki, pki), and on behalf of ring R = (VK1, · · · ,VK�), the signer

– first generates a standard signature σ for message m as σ ← Sig.Sign(ski,m),
– encrypts σ under pki with random coins r to get ciphertext c ←
PKE.Enc(pki, σ; r),

– generates a binding SPB key pair for index i, (hk, shk) ← SPB.Gen(i),
– hashes the ring R with hk to get a short digest h := SPB.Hash(hk,R),
– creates an opening for the ith location τ ← SPB.Open(hk, shk,R, i),
– generates a NIWI proof π which using the short opening τ proves existence

of a verification key VKi = (vki, pki) in the ring R such that under pki, c
encrypts a valid signature under verifiable with vki,

– finally, it publishes (π, c, hk) as the signature for message m.

To prove unforgeability, we switch to a hybrid where we generate each pki with
a corresponding secret key ski. Consequently, perfect binding of SPB and sound-
ness of NIWI imply that given a forgery (π, c, hk) for ring R, there exists a
ski such that PKE.Dec(ski, c) is valid forgery against Sig. Proving anonymity
involves techniques similar to [36].

286 R. Chatterjee et al.

1.3 Technical Overview

ZAP Instead of NIWI. As already mentioned, the issue that prevents [2]
from basing their construction solely on LWE is their reliance on NIWIs. Our
starting point is the observation of [6] which proposes using two-message public
coin argument systems, known in the literature as ZAPs [18], instead of NIWIs.
Namely, we can add a ZAP first message ρ to each verification key. The signer
now picks the lexicographically smallest verification key VK1 = (vk1, pk1, ρ1) ∈ R
in the ring and uses ρ1 to generate a proof. Using LWE-based ZAPs constructed
in [4,25,31], this approach gives us LWE based compact ring signatures. However,
there is a major caveat: none of the LWE-based ZAPs mentioned above are based
on polynomial hardness assumptions. They all need super-polynomial hardness
of LWE (in fact subexponential hardness if the goal is to achieve conventional
λ bits of security). Therefore, using lattice based ZAPs generically seems to be
unsatisfactory as the resulting construction would rely on qualitatively stronger
assumptions.

ZAPs for NP ∩ coNP. Our next insight is that we may not need ZAPs for
all of NP. Assume that in the forgery Σ∗ = (π∗, c∗, hk∗), the ciphertext c∗ is
guaranteed to be encrypted under one of the public keys pki. In the unforgeability
game we can generate pkis with corresponding secrets ski. In this case, given
ski, checking that Σ∗ is a forgery can be done efficiently, i.e., ski is a witness for
the fact that Σ∗ is not a valid signature. Therefore, ZAPs for NP ∩ coNP might
suffice for our application.

It turns out that for NP ∩ coNP we can build ZAPs based on the polyno-
mial hardness of LWE. We will now describe a ZAP protocol for any arbitrary
language L ∈ NP ∩ coNP. The ZAP that we describe here is constructed by
following the general framework of converting a Σ-protocol to a noninteractive
protocol using a CI hash function [14,42]. More specifically, we describe a two
round commitment scheme and use it to instantiate [14,42]. Our commitment
scheme is defined with respect to the complement language L. To commit to a
bit b and generate the second commitment message, the sender specifies a state-
ment x. The receiver can recover the committed bit, if, when generating the first
message it specified a (non-)witness w for the fact that x ∈ L. If x �∈ L, the
committed bit is hidden. The commitment scheme works as follows:

– The receiver sends an arbitrary bitstring w via the first message of a statisti-
cally sender private (1 out of 2) OT, OT1(w).

– The sender garbles the following circuit: on input w, if w is a witness for
x ∈ L, output b, otherwise, output 0. The sender sends the garbled circuit
along with a OT second message containing the labels OT2({lbli,0, lbli,1}).

We instantiate [14,42] for language L with our two round witness extractable
commitment for L, to get a ZAP for NP ∩ coNP: the verifier sends the commit-
ment first message along with a key for a CI hash function, the prover uses the
hash key and the commitment scheme to proceed as in [14]. Recall that to apply

Compact Ring Signatures from Learning with Errors 287

the transformation of [14,42], we have to make sure that when x �∈ L, the com-
mitments used in the underlying Σ-protocol are extractable given the extraction
trapdoor. If x �∈ L, the verifier can (undetectably) switch to generating the first
commitment message using a non-witness wx for x ∈ L and this will let the
soundness proof go through.

Unfortunately, when trying to use our NP ∩ coNP ZAPs to build ring signa-
tures we encounter two issues:

1. The ZAPs that we need for our ring signatures need to be adaptively sound.
However, the ZAPs that we just constructed are only selectively sound. This
is because, in the soundness reduction we have to switch to a commitment
first message that depends on a non-witness w for the statement x (depends
on a w such that (x,w) ∈ R).

2. We assumed the ciphertext c∗ in the forgery is a valid encryption under one
of the public keys of the ring. This may not be true. In particular, L might
not be in NP.

The first issue seems relatively easy to resolve. Our ZAP construction already
achieves a weak notion of adaptivity that is sufficient for our purpose: as long as
the non-witness w is fixed in advance, the cheating prover cannot come up with
a valid proof for a statement x where (x,w) ∈ R. In our case, the non-witnesses
which are the secret keys corresponding to pkis are clearly fixed in advance.

Extending the Complement language. For the second issue, our solution is
to extend L to a language ˜L ∈ NP and use a witness extractable commitment
for this extended language ˜L. In more detail, given a forgery Σ∗ for a ring R∗

of size �, we define statement x = (Σ∗,R∗). For a witness w̃ = (sk1, · · · , sk�)
we say that (x, w̃) ∈ ˜L, if each ski is a valid secret key for pki, and decrypting
c∗ with any skj does not yield a valid standard signature corresponding to vkj .
Accordingly, in the unforgeability game, we can generate each public key pki

with a corresponding secret ski, and put these secret keys inside the witness
extractable commitment first message. With this approach we encounter a new
problem: the size of the commitment first message, and consequently the veri-
fier’s first message in the ZAP scheme, needs to scale at least linearly with the
maximum number of members in a ring. However, the number of members in a
ring can be arbitrarily large.

One Secret Key, Multiple Public Keys. To overcome this problem we use a
public key cryptosystem which can generate multiple public keys having a single
secret key. Using such a public key scheme, the first commitment message now
only needs to hold one short secret key. Luckily, public key cryptosystems with
this property already exist in the literature. In particular, Regev’s cryptosys-
tem [43] already has the ability to generate multiple pseudorandom public keys
having a single uniformly chosen secret key. This cryptosystem also has another
appealing feature: it has sparse valid public keys. In other words, a randomly
chosen public key does not have a corresponding secret key (except with negligi-
ble probability). In the ring signature context, this sparseness property will be

288 R. Chatterjee et al.

helpful in proving the anonymity of the scheme. Specifically, given a signature
Σ for a ring R, if at least one verification key in R is generated honestly, or in
particular if at least one public key pki ∈ R is chosen uniformly at random, then
(Σ,R) �∈ ˜L, and therefore, the commitment scheme is hiding.

Compactness Through Malicious Circuit Private FHE. The ZAP that we
have constructed so far seems to satisfy the soundness and witness indistinguishi-
bility properties that we need in the application to our ring signature scheme.
However, upon a closer look, it seems that our resulting ZAP scheme suffers
from a major flaw. Namely, the size of our ring signatures is linear in the size of
the ring. This is because in the witness extractable commitment scheme, each
commitment contains a garbling of a circuit that computes on each verification
key in the ring separately. Specifically, while the size of the circuit for checking
membership in L is independent of the size of the ring (thanks to the properties
of SPB hashing), circuits for checking membership in ˜L, and even the relevant
statements, have size that depend on the ring. It seems that to overcome this,
we need some form of a compact witness extractable commitment. Our final idea
is to use a fully homomorphic encryption scheme [21] to build such a compact
witness extractable commitment. The construction is as follows:

– The receiver generates a FHE key pair (FHE.pk,FHE.sk) and sends a cipher-
text
ct ← FHE.Enc(FHE.pk, w̃) encrypting an arbitrary string w̃.

– The sender homomorphically evaluates the following circuit on ct: on input
w̃, if w̃ is a witness for x ∈ ˜L, output b, otherwise, output 0. The sender sends
the evalauted ciphertext cteval.

Observe now that the compactness of the commitment scheme follows from the
compactness of the FHE scheme. Clearly, if the receiver encrypts a non-witness
for x, it can recover the committed bit b using the secret key FHE.sk. For this
commitment scheme to be hiding, it is sufficient that in the FHE scheme, the
evaluated ciphertext hides the circuit that has been evaluated on it, even if the ini-
tial FHE ciphertext and public key are maliciously generated. Fortunately, FHE
schemes satisfying the aforementioned malicious circuit privacy have already
been constructed from LWE [11,38].

1.4 Related Existing Work

The initial construction of ring signatures by Rivest, Shamir and Kalai [44]
is in the random oracle model. Several subsequent constructions [1,9,27] were
also given in the ROM. Constructions in the standard model were first obtained
concurrently by Chow, Liu, Wei and Yuen [16] and Bender, Katz and Morselli [6].
Several works also construct schemes in the CRS model [10,45,46]. Brakerski
and Kalai [12] gave a construction based on the SIS problem in the standard
model, and there are subsequent lattice-based constructions [5,47] that give more
practical constructions (these works actually construct linkable ring signatures).
Park and Sealfon [39] give certain constructions based on SIS and others based

Compact Ring Signatures from Learning with Errors 289

on verifiable random functions that satisfy new and interesting definitions of
repudiability and claimability that they develop. All of these constructions give
ring signatures linear in the ring size.

Dodis et al. [17] gave the first sublinear size ring signatures in the ROM.
Since then, constructing logarithmic size ring signatures in the ROM been the
focus of many works [7,19,26,28,29,32]. In the CRS model, [15,23,24,30] build
sublinear ring signatures under various assumptions. In the plain model, Backes
et al. [3] construct sublinear ring signatures using a primitive called signatures
with flexible public key, and Malavolta and Schroder [33] construct constant size
ring signatures under a knowledge of exponent assumption, which is unfalsifiable.
Finally, as mentioned, Backes et al. [2] construct the first logarithmic size ring
signatures in the plain model under standard and falsifiable assumptions, namely
DDH or LWE along with NIWI proofs.

2 Preliminaries

We denote the security parameter by λ. For any � ∈ N, we denote the set of the
first � positive integers by [�]. For a set S, x ← S denotes sampling a uniformly
random element x from S.

2.1 Learning with Errors

We recall the Learning With Errors (LWE) problem, and its hardness based on
worst-case lattice problems.

For a positive integer dimension n and modulus q, and an error distribution χ
over Z, the LWE distribution and decision problem are defined as follows. For an
s ∈ Z

n, the LWE distribution As,χ is sampled by choosing a uniformly random
a ← Z

n
q and an error term e ← χ, and outputting (a, b = 〈s,a〉 + e) ∈ Z

n+1
q .

Definition 1. The decision-LWEn,q,χ problem is to distinguish, with non-
negligible advantage, between any desired (but polynomially bounded) number of
independent samples drawn from As,χ for a single s ← Z

n
q , and the same number

of uniformly random and independent samples over Z
n+1
q .

A standard instantiation of LWE is to let χ be a discrete Gaussian distribu-
tion over Z with parameter r = 2

√
n. A sample drawn from this distribution has

magnitude bounded by, say, r
√

n = Θ(n) except with probability at most 2−n,
and hence this tail of the distribution can be entirely removed. For this parame-
terization, it is known that LWE is at least as hard as quantumly approximating
certain “short vector” problems on n-dimensional lattices, in the worst case, to
within Õ(q

√
n) factors [41,43]. Classical reductions are also known for different

parameterizations [13,40].
Fix a dimension n = poly(λ). For the rest of this paper, when we refer to

hardness of LWE, we mean hardness of LWE with polynomial modulus-to-noise
ratio against polynomial sized adversaries, i.e., polynomial hardness of LWEn,q,χ

where, q is a polynomial in n, and χ is the error distribution described in the
previous paragraph.

290 R. Chatterjee et al.

2.2 Correlation Intractable Hash Functions

We borrow the following the definition of CI hash functions from [42] verbatim.

Definition 2. Let C = {Cλ} be a family of circuits, i.e., a set of circuits for
each λ. A hash function family Hash = (Gen,Eval) is correlation intractable (CI)
for C if for every non-uniform polynomial-size adversary A = {Aλ} there exists
a negligible function ν(λ) such that for every C ∈ Cλ,

Pr
k←Hash.Gen(1λ)

x←Aλ(k)

[Hash.Eval(k, x) = C(x)] ≤ ν(λ) . (1)

We will also use CI hash construction of [42].

Theorem 1 ([42]). Assuming hardness of LWE, there exists a polynomial
m = m(λ) such that, for every family of polynomial sized circuits C with out-
put size at least m bits, there exists a hash function family which is CI for C.
Furthermore, the key generation algorithm in this hash function family simply
outputs a uniformly random key from its key space.

2.3 Public Key Encryption

Similar to [2], we need a public key encryption scheme which has pseudoran-
dom ciphertexts and public keys. For our application, we also require additional
properties.

Definition 3. A public key encryption scheme is a tuple of PPT algorithms
PKE = (GenWithKey,Enc,Dec,Valid), with the following interfaces, where for
each security parameter λ ∈ N, PKλ, SKλ and CTλ are three sets where the
uniform distribution is efficiently sampleable,

– GenWithKey(sk), on input a secret key sk ∈ SKλ outputs a public key pk ∈
PKλ.

– Enc(pk, b), on input a public key pk, and a message b ∈ {0, 1}, outputs a
ciphertext ct ∈ CTλ.

– Dec(sk, ct), on input a secret key sk and a ciphertext ct, outputs a bit b.
– Valid(pk, sk), on input a public pk and a secret key sk, either accepts or

rejects.

We consider the following properties:

1. Completeness: for any λ ∈ N, any key pair (pk, sk) such that Valid(pk, sk)
accepts, and any message b,

Pr[Dec(sk, ct) = b] = 1,

where ct ← Enc(pk,m). Furthermore, for any λ ∈ N,

Pr
sk←SKλ

pk←GenWithKey(sk)

[Valid(pk, sk) accepts] = 1.

Compact Ring Signatures from Learning with Errors 291

2. Sparseness of valid public keys: for any λ ∈ N,

Pr
pk←PKλ

[∃sk : Valid(pk, sk) accepts] = negl(λ).

3. Injectivity of key generation: for any sk,

Pr
pk←GenWithKey(sk)

[∃sk′ �= sk : Valid(pk, sk′) accepts] = negl(λ).

4. Pseudorandomness of public keys: for every Q = poly(λ), the following two
distributions
– first, samples a uniformly random secret key sk ← SKλ, then outputs

{pki ← GenWithKey(sk)}i∈[Q]

– outputs L uniformly random public keys {pki ← PKλ}i∈[Q],
are computationally indistinguishable.

5. Closeness of ciphertexts to uniform: for every message b, the output of the
following two distributions
– first, samples a uniformly random public key pk ← PKλ, then, outputs

(pk,Enc(pk, b)),
– first, samples a uniformly random public key pk ← PKλ, then, chooses a

uniformly random ciphertext ct ← CTλ and outputs (pk, ct),
are statistically indistinguishable.

Consider Regev’s public key cryptosystem [43]. For some appropriate parameters
n = poly(λ), q = poly(n),m ≥ 2n log q, B � q/4, a secret key in this scheme is
a vector s ∈ Z

n
q and valid public keys for secret s are generated as

pk := A =
[

Ā
stĀ + et

]

∈ Z
(n+1)×m
q ,

where, Ā ← Z
n×m
q and e is chosen from some B-bounded distribution. For this

cryptosystem we define the following validity check algorithm

– Valid(pk = A, sk = s): Accept iff |(st,−1) · A|∞ ≤ B.

Theorem 2. Assuming hardness of LWE, there exists a public key encryption
scheme satisfying all the properties in Definition 3.

Proof. We briefly argue that equipped with algorithm Valid, Regev’s cryptosys-
tem satisfies all the properties in Definition 3. When q is a prime number, injec-
tivity of key generation is an implication of Lemma 5.3 in [22]. The rest of the
properties are already established in [35,43].

2.4 Blum’s Raw Protocol

Here, we formally define and state the properties of the raw version of Blum’s
sigma protocol [8]. In this abstraction, the prover does not use any commitment
or encryption scheme to hide its first message and therefore, the protocol does
not satisfy a conventional zero knowledge property. Using a commitment scheme,
this protocol can be converted into an honest verifier zero knowledge protocol.

292 R. Chatterjee et al.

Definition 4. Let L ∈ NP be a language with a corresponding relation R.
Blum’s raw protocol for L, is a tuple of PPT algorithms
Π = (P1,P2,V,BadChallenge,Sim) with the following interfaces

– P1(x,w), on input a statement witness pair (x,w) ∈ L, it outputs a first mes-
sage a, two substrings (a0, a1) of a corresponding to two subsets of indices
S0, S1, and an internal state ζ. We implicitly assume (a0, a1) uniquely deter-
mine the subsets S0, S1.

– P2(a, b, ζ), on input first message a, a challenge bit b ∈ {0, 1}, and internal
state ζ, it outputs a second message c.

– V(x, b, ab, c), on input an instance x, a challenge bit b ∈ {0, 1}, an opening
ab, and a response c, it either accepts or rejects.

– BadChallenge(a), on input a first message a, it outputs a badchallenge bit
b ∈ {0, 1}.

– Sim(b, x), takes as input a challenge bit b, and an instance x, and outputs two
strings ab and c.

These algorithms satisfy the following properties:

1. Completeness: for any (x,w) ∈ L, any � ∈ N, and any b ∈ {0, 1},
Pr[V(x, b, ab, c) accepts] = 1,

where, (a, (a0, a1), ζ) ← P1(x,w), and c ← P2(a, b, ζ).
2. Soundness: if x �∈ L, then, for any two subsets of indices S0, S1, bit b �=

BadChallenge(a), and any c,

Pr[V(x, b, ab, c) rejects] = 1,

where, ab denotes a subset of a specified by indices in Sb.
3. Zero knowledge: for any b ∈ {0, 1} and any (x,w) ∈ R the following two

distributions,
– outputs (b, ab, c), where (a, (a0, a1), ζ) ← P1(x,w), and c ← P2(a, b, ζ)
– outputs (b,Sim(b, x))

are identical.

Blum’s raw protocol exists unconditionally for any language L ∈ NP [8].

2.5 Maliciously Circuit Private FHE

We review the definition of maliciously circuit private FHE.

Definition 5 ([38]). A maliciously circuit private leveled FHE scheme is a
tuple of algorithms.
FHE = (Gen,Enc,Eval,Dec,Sim), where, except for Sim the rest of the algorithms
are PPT, having the following interfaces

– Gen(1λ, 1d), given a security parameter λ ∈ N and a depth parameter d ∈ N,
outputs a public and private key pair (pk, sk).

Compact Ring Signatures from Learning with Errors 293

– Enc(pk, b), given a public key pk and a message b ∈ {0, 1}, outputs a ciphertext
ct ∈ {0, 1}�ct(λ,d).

– Eval((ct1, · · · , ctk), C; r), given k ciphertexts ct1, · · · , ctk, a boolean circuit C :
{0, 1}k → {0, 1}, and random coins r, outputs an evaluated ciphertext cteval ∈
{0, 1}�eval .

– Dec(sk, ct), given a secret key sk and a ciphertext ct, outputs a bit b ∈ {0, 1}.
– Sim(pk∗, (ct∗1, · · · , ct∗k), b), on input a (not necessarily honestly generated)

public-key pk∗ and k (not necessarily honestly generated) ciphertexts ct∗1 ∈
{0, 1}�ct(λ,d)

, ..., ct∗k ∈ {0, 1}�ct(λ,d), and a bit b, outputs a simulated cipher-
text ctsim.

We consider FHE schemes that satisfy the following properties:

1. Completeness: for every λ, d ∈ N, every circuit C : {0, 1}k → {0, 1} of depth
at most d and every input m ∈ {0, 1}k,

Pr[Dec(sk, cteval) = C(m)] = 1,

where, (pk, sk) ← Gen(1λ, 1d), cti ← Enc(pk,mi) for every i ∈ [�],
and cteval ← Eval((ct1, · · · , ct�), C).

2. Compactness: there exists fixed polynomials �eval = �eval(λ, d) and �rand =
�rand(λ, d), such that evaluated ciphertexts have size �eval(λ, d) and the size
of the randomness used in Eval algorithm is �rand(λ, d), i.e., the size of evalu-
ated ciphertexts and the size of randomness in the evaluation algorithm only
depend on the depth of the circuit being evaluated.

3. Pseudorandomness of public keys: the public key pk output by the Gen algo-
rithm is pseudorandom.

4. Pseudorandomness of ciphertexts: for every non-uniform polynomial-size
adversary A, every d ∈ N and every b ∈ {0, 1}, the probabilities

Pr[A(pk, ct) = 1], (2)

in the following two experiments differ by only negl(λ):
– in experiment 1, (pk, sk) ← Gen(1λ, 1d), ct ← Enc(pk, b)
– in experiment 2, (pk, sk) ← Gen(1λ, 1d), ct ← {0, 1}�ct(λ,d)

5. Malicious circuit privacy: for every (not necessarily honestly generated) public-
key pk∗, every k ∈ N, and every k (not necessarily honestly generated) cipher-
texts ct∗1 ∈ {0, 1}�ct(λ,d)

, ..., ct∗k ∈ {0, 1}�ct(λ,d), there exists a m∗ ∈ {0, 1}k

such that, for every circuit C : {0, 1}k → {0, 1} of depth at most d,

Eval((ct∗1, · · · , ct∗k), C)
s≈ Sim(pk∗, (ct∗1, · · · , ct∗k), C(m∗)).

Theorem 3 ([11,38]). Assuming hardness of LWE, there exists a maliciously
circuit private leveled FHE, where the size of evaluated ciphertexts and secret
keys only depend on the security parameter λ.

294 R. Chatterjee et al.

2.6 Somewhere Perfectly Binding Hash

We next define the notion of somewhere perfectly binding hash or SPB schemes,
which are very similar to somewhere statistically binding hash schemes (as can be
surmised, the only change from the latter is that here we expect the somewhere
binding property to hold with probability 1). As in the scheme of [2], we will only
define and employ a slightly weaker primitive denoted as somewhere perfectly
binding hash with private local openings, which is what we will need for our
signature scheme as well. We direct the reader to [2] for further details. The
definition is essentially identical to that in [2], and is as follows.

Definition 6 (SPB Hash). A somewhere perfectly binding hash scheme with
private local openings, denoted by SPB, consists of a tuple of probabilistic poly-
nomial time algorithms (Gen,Hash,Open,Verify), with the following syntax:

– Gen(1λ, n, ind), given a security parameter λ, a database size n, and index ind
as input, outputs a hash and secret key pair (hk, shk).

– Hash(hk, db), given a hash key hk and database db as input, outputs a hash
value h.

– Open(hk, shk, db, ind), given a hash key hk, secret key shk, database db and
index ind as input, outputs a witness τ .

– Verify(hk, h, ind, x, τ), given as input a hash key hk, a hash value h, an index
ind, a value x and a witness τ , either accepts or rejects.

To maintain clarity, we will not explicitly specify the block size of databases as
input to Gen, but assume that this is clear from the specific usage and hardwired
into the algorithm. We ask that the SPB scheme satisfies the following properties:

1. Correctness: for all λ ∈ N, n = poly(λ), all databases db of size n, and all
indices ind ∈ [n], we have,

Pr[Verify(hk, h, ind, dbind, τ) accepts] = 1,

where, (hk, shk) ← Gen(1λ, n, ind), h ← Hash(hk, db) and τ ←
Open(hk, shk, db, ind).

2. Efficiency: any hash keys hk and witnesses τ corresponding to size n databases,
are of size log(n) · poly(λ). Further, for size n databases, Verify can be com-
puted by a circuit of size log(n) · poly(λ).

3. Somewhere perfectly binding: for all λ, n ∈ N, all databases db of size n,
all indices ind ∈ [n], all purported hashing keys hk, all purported witnesses
τ , all h in the support of Hash(hk, db), if Verify(hk, h, ind, x, τ) accepts, then
x = dbind.

4. Index hiding, for any n ∈ N and any ind0, ind1 ∈ [n],

{hk : (hk, shk) ← Gen(1λ, n, ind0)} c≈ {hk : (hk, shk) ← Gen(1λ, n, ind1)}

Theorem 4 ([2]). Assuming hardness of LWE, there exists a SPB hash.

Compact Ring Signatures from Learning with Errors 295

2.7 Ring Signatures

We review the definition of compact ring signatures as presented in [2].

Definition 7 (Compact Ring Signature [2]). A compact ring signature
scheme RS is described by a triple of PPT algorithms (Gen,Sign,Verify) that
have the following interface:

– Gen(1λ, N), given a security parameter λ and the maximum number of mem-
bers in a ring N , outputs a verification and signing key pair (VK,SK).

– Sign(SK,m,R), given a secret key SK, a message m ∈ Mλ. and a list of
verification keys (interpreted as a ring) R = (VK1, · · · ,VK�) as input, outputs
a ring signature Σ.

– Verify(R,m,Σ), given a ring R = (VK1, . . . ,VK�), message m ∈ Mλ and ring
signature Σ as input, either accepts or rejects.

Further, we require that the ring signature satisfies the following properties:

1. Completeness: for all λ ∈ N, N ∈ N, � ≤ N , i ∈ [�] and m ∈ Mλ, we have:

Pr[RS.Verify(R,m,Σ) accepts] = 1,

where, (VKi,SKi) ← Gen(1λ, N), Σ ← Sign(SKi,m,R) (where R = (VK1, . . .,
V K�)).

2. Unforgeability: for any N ∈ N, and any Q = poly(λ), any PPT adversary A
has negligible advantage in the following game:

Experiment RS−ForgeQ(A): This experiment is run by a challenger that
proceeds as follows:
– For each i ∈ [Q], the challenger generates key pairs (VKi,SKi) ←

Gen(1λ, N ; ri), and stores these key pairs along with their corresponding
randomness. It then sets VK = {VK1, . . . ,VKQ} and initializes C = ∅.

– The challenger sends VK to A.
– A can now make the following two kinds of queries: signing queries sign to

get signatures signed by a particular entity on a particular message with
respect to a ring of its choice, and corruption queries corrupt to corrupt
a particular entity. The challenger responds as follows:

• Signing query (sign, i,m,R): The challenger first checks if VKi ∈ R.
If so, it computes Σ ← Sign(SKi,m,R) and sends this to A. It also
keeps a list of all such queries made by A.

• Corruption query (corrupt, i): The challenger adds VKi to the set C
and returns the randomness ri to A.

– Finally, A outputs a forgery attempt, namely a purported ring signature
Σ∗ with respect to a ring R∗ and message m∗. The challenger checks if:

• R∗ ⊆ VK \ C,
• A never made a signing query with respect to m∗ and R∗ (together,

i.e. of the form (sign, ·,m∗,R∗)), and
• Verify(R∗,m∗, Σ∗) accepts.

If so, the challenger outputs 1, otherwise, it outputs 0.

296 R. Chatterjee et al.

The advantage of the adversary A is defined to be AdvRS−ForgeQ(A) =
Pr[RS−ForgeQ(A) = 1].

3. Anonymity: for all Q = poly(λ), any PPT adversary A has negligible advan-
tage in the following game:

Experiment RS−AnonQ(A): This experiment is run by a challenger that
proceeds as follows:
– For each i ∈ [Q], the challenger generates key pairs (VKi,SKi) ←

Gen(1λ; ri). It sends these key pairs along with their corresponding ran-
domness to A.

– Eventually A sends a challenge to the challenger of the form (R,m, i0, i1).
We stress that R might have keys that are not generated by the challenger
in the previous step. In particular, it might contain maliciously generated
keys. The challenger checks if VKi0 ,VKi1 ∈ R. If so, it first samples a
uniform bit b ← {0, 1}, then computes Σ ← Sign(SKib ,m,R), and sends
this to A.

– A sends back its guess bit b′. The challenger outputs 1 if b′ = b, otherwise
it outputs 0.

The advantage of the adversary A in this game is defined as

AdvRS−AnonQ(A) = | Pr[RS−AnonQ(A) = 1] − 1
2
|.

4. Compactness: the size of a signature is upper-bounded by a polynomial in λ
and log N .

We mention that the unforgeability and anonymity properties defined in Def-
inition 7 correspond respectively to the notions of unforgeability with insider
corruption and anonymity with respect to full key exposure presented in [6].

3 Compact Witness Extractable Commitments

In this section we define witness extractable commitments. A witness extractable
commitment for a language L ∈ NP with corresponding NP relation R is a two
round commitment protocol. The receiver’s message is generated using a witness
w, and the sender’s commitment to a bit b is generated using a statement x.
Informally speaking, the bit b can be efficiently extracted when (x,w) ∈ R,
however, when x �∈ L, b is statistically hidden.

For our application in this paper, we are interested in witness extractable
commitments that are compact. This means that the size of a commitment sec-
ond message does not depend on the size of the NP verifier circuit (except for
maybe its depth).

3.1 Definition

Definition 8. Fix a language L ∈ NP. By R and {Cn,� : {0, 1}n × {0, 1}� →
{0, 1}}n,�∈N denote the NP relation and the NP verification circuit corresponding

Compact Ring Signatures from Learning with Errors 297

to L respectively. Also, let d = d(n, �) be the depth of Cn,�. When it is clear
from the context, we use d instead of d(n, �). A witness extractable commitment
scheme for L, is a tuple of PPT algorithms (Com1,Com2,Verify,Extract) having
the following interfaces:

– Com1(1λ, 1D, w), given a security parameter λ, circuit depth upper bound D,
and a witness w ∈ {0, 1}�, outputs the commitment first message com1 ∈
{0, 1}�com1=�com1(λ,D,�) and a string st ∈ {0, 1}�st representing the internal
state.

– Com2(com1, x, b; r), given a commitment first message com1, a statement x, a
bit b to commit, and randomness r ∈ {0, 1}�r , outputs a commitment com2 ∈
{0, 1}�com2 .

– Verify(com1, com2, x, b, r), given a commitment transcript com1, com2, a
statement x, a bit b, and random coins r, it either accepts or rejects.

– Extract(com2, st), given a commitment com2 and internal state st, outputs a
bit b.

We consider the following properties:

1. Completeness: for every λ ∈ N, bit b, every statement x, every witness w,
every D ≥ d,

Pr[Verify(com1, com2, x, b, r) accepts] = 1,

where, com1 ← Com1(1λ, 1D, w), r ← {0, 1}�r , and com2 ←
Com2(com1, x, b; r).

2. Statistical hiding: if x �∈ L, then, for any � ∈ N, any D ≥ d(|x|, �), and any
sequence of strings {com1λ ∈ {0, 1}�com1(λ,D,�)}λ∈N,

com1λ,Com2(com1λ, x, 0)
s≈ com1λ,Com2(com1λ, x, 1) (3)

3. Pseudorandomness of first message: for any w and any D,

Com1(1λ, 1D, w)
c≈ U�com1 (4)

4. Extractability: if (x,w) ∈ R, then, for any bit b, any D ≥ d, any com1, st in
the support of Com1(1λ, 1D, w), any randomness r, and any com2 such that
Verify(com1, com2, x, b, r) accepts,

Pr[Extract(com2, st) = b] = 1. (5)

5. Compactness: the parameters �com2,�r and �st are upper-bounded by some
language-independent fixed polynomials in λ and D. In particular, they are
independent of the size of the NP verifier circuit Cn,� and the size of the
statement x.

298 R. Chatterjee et al.

3.2 Construction

We will use the maliciously circuit private FHE scheme FHE = (FHE.Gen,FHE.
Enc,FHE.Eval) of [38].

Construction 1. Here we use the same notation as in Definition 8.

– Com1(1λ, 1D, w): run (FHE.pk,FHE.sk) ← FHE.Gen(1λ, 1D+1). Output
com1 ← FHE.Enc(FHE.pk, w). Keep st := FHE.sk as internal state. Notice
that for any circuit C of depth D, the circuit constructed in Fig. 1 has depth
D + 1.

– Com2(com1, x, b): on input first message com1 and bit b, output

com2 ← FHE.Eval(com1, Gx,b; r),

where, Gx,b is the circuit defined below and r represents the random coins
used in the FHE evaluation algorithm.

– Extract(com2, st = FHE.sk): output FHE.Dec(FHE.sk, com2).
– Verify(com1, com2, x, b, r): accept iff com2 is equal to FHE.Eval(com1, Gx,b; r).

Fig. 1. Description of Gx,b

Extractability and completeness of Construction 1 follow immediately from
completeness of FHE. Compactness also follows from compactness of FHE. In
fact, using the FHE in [38], both �st and �com2 only depend on λ. Finally, pseu-
dorandomness of FHE ciphertext and public keys imply pseudorandomness of
the first message in Construction 1.

Theorem 5. If FHE is maliciously circuit private, then, the commitment
scheme in Construction 1 is statistically hiding.

4 Compact Relaxed ZAPs for Extended NP ∩ coNP

In this section, we define and construct a 2-round public-coin argument system.
Our argument system can be viewed as a generalization of ZAPs for NP∩ coNP.
To describe this generalization, first we introduce the notion of super-complement
of a language. A super-complement of a language is an extension of the com-
plement of that language. Notably, the complement of a language is a super-
complement of it.

Compact Ring Signatures from Learning with Errors 299

Definition 9 (Super-Complement). Let L, ˜L be two languages where the
elements of ˜L are represented as pairs of bit strings. We say ˜L is a super-
complement of L, if

˜L ⊆ ({0, 1}∗ \ L) × {0, 1}∗
,

i.e., ˜L is a super complement of L if for any x = (x1, x2),

x ∈ ˜L ⇒ x1 �∈ L.

Our argument system is defined for two NP languages L, ˜L, where, ˜L is a super-
complement of L. Notice that, while the complement of L might not be in NP,
however we require that ˜L ∈ NP. The language ˜L is used to define the soundness
property. Namely, producing a proof for a statement x = (x1, x2) ∈ ˜L, should be
hard. We also use the fact that ˜L ∈ NP to mildly strengthen the soundness prop-
erty. In more detail, instead of having selective soundness where the statement
x ∈ ˜L is fixed in advance, now, we fix a non-witness w̃ and let the statement x
be adaptively chosen by the malicious prover from all statements which have w̃
as a witness to their membership in ˜L.

For our application to compact ring signatures, we further require the size of
the proofs to be compact with respect to ˜L. Roughly speaking, this means that
size of a proof for a statement x = (x1, x2) only depends on the size of x1.

4.1 Definition

Definition 10. Let L, ˜L ∈ NP be two languages such that ˜L is a super com-
plement of L. By R and ˜R denote the NP relations corresponding to L and ˜L
respectively. Let {Cn,�}n,�∈N and { ˜Cn,�}n,�∈N be the NP verification circuits for
L and ˜L respectively. Let ˜d = ˜d(n, �) be the depth of ˜Cn,�. A compact relaxed
ZAP for L, ˜L is a tuple of PPT algorithms (V,P,Verify) having the following
interfaces (where 1n, 1λ are implicit inputs to P, Verify):

– V(1λ, 1n, 1˜�, 1 ˜D), given a security parameter λ, statement length n for L, wit-
ness length ˜� for ˜L, and NP verifier circuit depth upper-bound ˜D for ˜L, outputs
a first message ρ.

– P(ρ, x = (x1, x2), w), given a string ρ, a statement (x1 ∈ {0, 1}n
, x2), and a

witness w such that (x1, w) ∈ R, outputs a proof π.
– Verify(ρ, x = (x1, x2), π), given a string ρ, a statement x, and a proof π, either

accepts or rejects.

We consider the following properties:

1. Completeness: for every (x1, w) ∈ L, every x2 ∈ {0, 1}∗, every ˜� ∈ N, every
˜D ≥ ˜d(|x1| + |x2|, ˜�), and every λ ∈ N,

Pr[Verify(ρ, x = (x1, x2), π) accepts] = 1,

where, ρ ← V(1λ, 1|x1|, 1˜�, 1 ˜D) and π ← P(ρ, x, w).

300 R. Chatterjee et al.

2. Public coin: V(1λ, 1n, 1˜�, 1 ˜D) simply outputs a uniformly random string.
3. Selective non-witness and adaptive statement soundness: for every non-

uniform polynomial-size “cheating” prover P ∗ = {P ∗
λ} there exists a negligible

function ν(λ) such that for any n, ˜D ∈ N and any non-witness w̃ ∈ {0, 1}∗,

Pr
ρ←V(1λ,1n,1|w̃|,1˜D)

(x=(x1,x2),π
∗)←P ∗

λ (ρ)

[Verify(ρ, x, π∗) accepts ∧ ˜D ≥ ˜d(|x|, |w̃|) ∧ (x, w̃) ∈ ˜R] ≤ ν(λ). (6)

4. Statistical witness indistinguishability: for every (possibly unbounded) “cheat-
ing” verifier V ∗ = (V ∗

1 , V ∗
2), and every n, ˜�, ˜D ∈ N the probabilities

Pr[V ∗
2 (ρ, x, π, ζ) = 1 ∧ (x,w) ∈ R ∧ (x,w′) ∈ R]

in the following two experiments differ only by negl(λ):
– in experiment 1, (ρ, x, w,w′, ζ) ← V ∗

1 (1λ, 1n, 1˜�, 1 ˜D), π ← P(ρ, x, w)
– in experiment 2, (ρ, x, w,w′, ζ) ← V ∗

1 (1λ, 1n, 1˜�, 1 ˜D), π ← P(ρ, x, w′)
5. Compactness: bit-size of proof π is a fixed polynomial in n, ˜�, ˜D, |C| and λ. In

particular, it is independent of the size of ˜C and x2.

4.2 Construction

For languages L, ˜L, we give the tuple of algorithms (V,P,Verify) that make up our
relaxed ZAP scheme. In the construction we will use the following ingredients:

– A witness extractable commitment Com = (Com1,Com2,Verify,Extract) for
˜L. We denote the sizes of the first commitment message, second commitment
message, the internal state output by Com1, and the randomness for Com2,
by �com1 ,�com2, �st and �r respectively.

– Blum’s raw protocol Π = (P1,P2, V,BadChallenge,Sim) for L. We denote
the size of the first and second prover messages by �p1 and �p2 respectively.
For any � ∈ N , Π� means repeating the protocol Π, � times in parallel and
interpreting the inputs to the algorithms accordingly. When it is clear from
the context, we drop the superscript �.

– A hash family Hashn,�rep = (Gen,Eval) that for any n ∈ N, and any polynomial
�rep = �rep(λ) that is larger than the polynomial m(λ) in Theorem 1, is CI
for a circuit family Cn,�rep which we will define next. The circuit family is
defined as

Cn,�rep = {Cn,�rep

λ }λ∈N,

where for each λ ∈ N,

Cn,�rep

λ = {fst : {0, 1}�rep·�p1·�com2 → {0, 1}�rep}st∈{0,1}�st(λ) ,

where, fst is defined as

fst(x) = Π�rep .BadChallenge(Com.Extract(x, st)),

i.e., fst extracts a message from the input commitment and outputs the bad
challenge corresponding to that message. We will drop the indices n, �rep

when they are clear from the context.

Compact Ring Signatures from Learning with Errors 301

Construction 2. Let �rep = �rep(λ) be a polynomial that is larger than the
polynomial m(λ) in Theorem 1.

– V(1λ, 1n, 1˜�, 1 ˜D): first, pick a uniformly random commitment first message

com1 ← {0, 1}�com1(λ, ˜D,˜�), then, generate CI-hash key k ← Hashn,�rep .Gen(1λ).
Output ρ := (com1, k).

– P(ρ = (com1, k), x = (x1, x2), w): first, compute

(a, {ai,b}i∈[�rep],b∈{0,1}, ζ) ← Π�rep .P1(x1, w),

and then send

π = (com2 = Com.Com2(com1, x,a; r), I = Hash.Eval(k, com2), c = Π.P2(a, I, ζ), rI ,aI)

to the verifier, where, aI = {ai,Ii
}i∈[�rep] and rI denotes the subset of ran-

domness used to commit to aI . Also, com2I denotes the chunks of com2 which
commit to aI .

– Verify(ρ, x = (x1, x2), π): parse π = (com2, I, c, rI , aI). Accept iff both
Π.V(x, I,aI , c) and Com.Verify(com1, com2I , x,aI , rI) accept.

Completeness of Construction 2 follows directly from the completeness of Π and
Com. It is also public coin because the CI hash keys are uniform. Compactness
also follows from the compactness of Com, namely, it follows from the fact that
�com2, �st and �r may only polynomially depend on the depth ˜D of ˜C and not
its size.

Theorem 6. The protocol described in Construction 2 satisfies selective non-
witness adaptive statement soundness.

Theorem 7. The protocol described in Construction 2 is statistically witness
indsitinguishable.

5 Compact LWE-Based Ring Signature Scheme

In this section, we present our compact ring signature scheme. First, we briefly
list the ingredients in our construction:

– A standard signature scheme Sig= (Gen, Sign, Verify) with EUF−CMA secu-
rity.

– A public key encryption scheme PKE = (GenWithKey, Enc, Dec, Valid) as
defined in Definition 3.

– A somewhere perfectly binding hash function SPB = (Gen, Hash, Open, Verify)
with private local openings.

– A compact relaxed ZAP scheme ZAP = (V, P, Verify) as described in Sect. 4.

302 R. Chatterjee et al.

Next, we define the languages L and ˜L that we will instantiate our relaxed
ZAP construction for. The language L is identical to the language L used in the
ring signature construction of [2]. For a statement y1 = (m, c, hk, h) and witness
w = (VK = (vk, pk, ρ), i, τ, σ, rc), define relations R1, R2 and R3 as follows:

(y1, w) ∈ R1 ⇔ SPB.Verify(hk, h, i,VK, τ) accepts
(y1, w) ∈ R2 ⇔ PKE.Enc(pk, (σ, vk); rc) = c

(y1, w) ∈ R3 ⇔ Sig.Verify(vk,m, σ) accepts

Next, define the relation R′ as

R′ := R1 ∩ R2 ∩ R3.

Let L′ be the language corresponding to R′. For statements of the form
(m, c1, c2, hk1, hk2, h1, h2), define the language L as

L = {(m, c1, c2, hk1, hk2, h1, h2)|(m, c1, hk1, h1) ∈ L′ ∨ (m, c2, hk2, h2) ∈ L′}.

Now, we define the language ˜L and prove that it is a super-complement of
L. Let x2 = R = (VK1, . . . ,VK�), y = (y1, x2), and w̃ = s. Define the following
relations:

(y, w̃) ∈ R4 ⇔ ∀j ∈ [�] : PKE.Valid(pkj , s) accepts ∧ h = SPB.Hash(hk,R)
(y, w̃) ∈ R5 ⇔ PKE.Dec(s, c) = (σ, vk) ∧ Sig.Verify(vk,m, σ) accepts

∧ ∃VK ∈ R : VK = (vk, pk, ρ) for some pk and ρ

where, for each j ∈ [�], pkj is the public key in VKj . Let L4, L5 be the languages
corresponding to R4, R5 respectively.

Define further the relation ̂R according to

̂R := R4 \ R5,

and let ̂L be the corresponding language. Finally, for statements of the form
x = (x1 = (m, c1, c2, hk1, hk2, h1, h2), x2 = R), let ˜L be the language given by

˜L ={(m, c1, c2, hk1, hk2, h1, h2,R)|(m, c1, hk1, h1,R) ∈ ̂L∧(m, c2, hk2, h2,R)∈ ̂L}.

Given the properties of the SPB and PKE we can quickly prove the following
lemma.

Lemma 1. If SPB is somewhere perfectly binding and PKE is complete, ˜L is a
super-complement of L.

We will employ the relaxed ZAP scheme for the languages L and ˜L.

Compact Ring Signatures from Learning with Errors 303

5.1 Construction

Construction 3. Let ˜D = ˜D(λ,N) be the maximum depth of the NP verifier
circuit for language ˜L restricted to statements where the ring has at most N
members, and the security parameter corresponding to SPB hash keys and values
and PKE ciphertext is λ. By n = n(λ, log N) denote the maximum size of the
statements of language L where the ring has at most N members and the security
parameter is λ. Recall that for security parameter λ, secret keys in PKE have
size ˜� = �sk(λ). We now describe our ring signature construction:

– Gen(1λ, N):
• sample signing and verification keys (vk, sk) ← Sig.Gen(1λ),
• sample pk uniformly from the keyspace of PKE,
• compute the first message ρ ← ZAP.V(1λ, 1n, 1˜�, 1 ˜D) for the relaxed ZAP

scheme,
• output the verification key VK = (vk, pk, ρ) and signing key SK =

(sk, vk, pk, ρ).
– Sign(SK,m,R = (VK1, . . . ,VKl)):

• parse SK = (sk, vk, pk, ρ),
• compute σ ← Sig.Sign(sk,m),
• let VK = VKi ∈ R be the verification key corresponding to SK,
• sample hash keys (hk1, shk1) ← SPB.Gen(1λ, |R|, i), and compute the

hash h1 ← SPB.Hash(hk1,R),
• compute the opening τ1 ← SPB.Open(hk1, shk1,R, i) to position i,
• compute c1 ← PKE.Enc(pk, (σ, vk); rc1)
• sample hash keys (hk2, shk2) ← SPB.Gen(1λ, |R|, i) and compute the hash

h2 ← SPB.Hash(hk2,R),
• sample c2 randomly from the ciphertext space of PKE,
• let VK1 = (vk1, pk1, ρ1) denote the lexicographically smallest member of

R (as a string; note that this is necessarily unique).,
• fix statement x1 = (m, c1, c2, hk1, hk2, h1, h2), witness w = (vk, pk, i, τ1,

σ, rc1), and statement x2 = R,
• Compute π ← ZAP.P(ρ1, x = (x1, x2), w),
• output Σ = (c1, hk1, c2, hk2, π).

– Verify(Σ,m,R):
• identify the lexicographically smallest verification key VK1 in R,
• compute h′

1 = SPB.Hash(hk1,R),
• compute h′

2 = SPB.Hash(hk2,R),
• fix x1 = (m, c1, c2, hk1, hk2, h

′
1, h

′
2), and x2 = R,

• determine ρ1 in VK1,
• compute and output ZAP.Verify(ρ1, x, π).

Completeness of Construction 3 follows by the completeness of SPB and ZAP.
For compactness, notice that ˜D is upper-bounded by a polynomial in λ and log N ,
and therefore, since Construction 2 is compact, Construction 3 is also compact.

304 R. Chatterjee et al.

5.2 Unforgeability

Here, we prove that our ring signature scheme possesses the unforgeability prop-
erty as defined in Definition 7. The proof strategy is as follows: we leverage
the selective non-witness adaptive statement soundness of ZAP to conclude that
there must be a valid signature σ in the forgery attempt, and essentially try to
obtain this signature with significantly high probability so that we can devise a
reduction to the existential unforgeability of Sig.

Theorem 8. Construction 3 is unforgeable, assuming Sig is EUF−CMA secure,
PKE has injective key generation and pseudorandom public keys, SPB is some-
where perfectly binding, and ZAP satisfies selective non-witness adaptive state-
ment soundness.

Proof. We start by considering a PPT adversary A that participates in the
unforgeability game. Let Q = poly(λ) be an upper bound on the number of key
queries made by A.

We proceed with a hybrid argument to set up our reduction to the unforge-
ability of Sig. Consider the following hybrids:

Hybrid H0: This is just the standard unforgeability game. In particular, for
all i ∈ [Q], the challenger in the game generates pki by sampling an element
uniformly from the keyspace of PKE.

Hybrid H1: In this experiment, the only difference is that, the challenger
first picks a uniformly random secret key skPKE for PKE, and then generates
the corresponding public keys for the adversary using this, namely pki ←
PKE.GenWithKey(skPKE), for all i ∈ [Q]. The challenger now stores skPKE.

Lemma 2. Assuming PKE has pseudorandom public keys, H0
c≈ H1.

Proof. Let A be a PPT adversary attempting to distinguish H0 and H1.
We use A to build an adversary A′ having the same advantage against the
pseudorandomness of public keys of PKE. Here, A′ is either given {pki ←
GenWithKey(sk)}i∈[Q] for a sk chosen uniformly at random or {pki ← PKλ}i∈[Q].
We define A′ to proceed exactly as in H0 but using the public keys that is given
to it as input. Clearly, if pkis are chosen with a single uniformly chosen secret
key, then, the view of A is identical to H1, whereas, if pkis are chosen uniformly
at random, the view of A is identical to H0.

Now, we will proceed to show that unforgeability holds in H1. Consider the
adversary’s forgery attempt (Σ∗ = (c∗

1, hk∗
1 , c

∗
2, hk∗

2 , π
∗),m∗,R∗). Define x∗

1 as
the statement corresponding to Σ∗ as x∗

1 = (m∗, c∗
1, c

∗
2, hk∗

1 , hk∗
2 , h

∗
1, h

∗
2), where

h∗
1 = SPB.Hash(hk∗

1 ,R
∗) and h∗

2 = SPB.Hash(hk∗
2 ,R

∗). Let VK∗
1 = (vk∗

1 , pk∗
1 , ρ

∗
1)

be the lexicographically smallest verification key in R∗.
Our next step is to show that if π∗ is a valid proof for x∗ = (x∗

1, x
∗
2 = R∗)

under ρ∗
1, then, with overwhelming probability, x∗ �∈ ˜L.

Compact Ring Signatures from Learning with Errors 305

Lemma 3. In H1, assuming ZAP satisfies selective non-witness adaptive state-
ment soundness, and PKE has injective key generation,

Pr[x∗ ∈ ˜L ∧ ZAP.Verify(ρ∗
1, x

∗, π∗) accepts] = negl(λ).

Proof. It is enough to show that for each j ∈ [Q],

Pr[x∗ ∈ ˜L ∧ ZAP.Verify(ρj , x
∗, π∗) accepts] = negl(λ),

where ρj denotes the ZAP first message corresponding to the jth verification
key VKj generated in the game.

Let A be an adversary attempting to output a forgery such that x∗ ∈ ˜L ∧
ZAP.Verify(ρj , x

∗, π∗) accepts. We build an adversary A′ against the selective
non-witness adaptive statement soundness of ZAP for languages L and ˜L with
fixed non-witness w̃ = skPKE. The algorithm A′ proceeds as follows:

– on input ZAP first message ρ̂, it sets ρj = ρ̂ and then proceeds exactly as H1.
– upon recieving the forgery attempt Σ∗ from A, it constructs the correspond-

ing x∗ and π∗, and outputs (x∗, π∗).

To finish the proof of this lemma, we observe that if x∗ ∈ ˜L, then, except with
negligible probability, (x∗, skPKE) ∈ ˜R. This is because, if x∗ ∈ ˜L, then, by
definition of ˜L, there exists a non-witness w̃∗ such that,

∀(vk∗
i , pk∗

i , ρ∗
i) ∈ R∗ : PKE.Valid(pk∗

i , w̃∗) accepts,

and since PKE has injective key generation, it follows that except with negligible
probability, w̃∗ = skPKE.

In the next lemma we show that if x∗ �∈ ˜L, then, by decrypting c∗
1 or c∗

2, we
can find a forgery for Sig.

Lemma 4. In H1, assuming Sig is EUF−CMA secure, PKE has injective key
generation, and SPB is somewhere perfectly binding,

Pr[x∗ �∈ ˜L] = negl(λ).

Proof. Let A be an adversary attempting to output a forgery such that x∗ �∈ ˜L.
We build an algorithm A′ against the EUF−CMA security of Sig. The algorithm
A′ proceeds as follows,

– on input ̂vk, first picks an index j ← [Q] uniformly at random, and then sets
vkj = ̂vk. It then proceeds as in H1,

– when A sends a signing query, if it is using keys from a party other than
the jth party, it proceeds as in H1, otherwise, it uses the EUF−CMA game’s
signing oracle to obtain a signature for the jth party and then continues
exactly as in H1.

– if A tries to corrupt the jth party, A′ aborts.

306 R. Chatterjee et al.

– upon recieving the forgery attempt Σ∗ from A, it decrypts c∗
1 using skPKE to

recover σ∗
1 .

If Sig.Verify(vkj ,m
∗, σ∗

1) accepts, it sets σ̂ := σ∗
1 . Otherwise, it decrypts c∗

2

with skPKE to recover σ∗
2 , and sets σ̂ = σ∗

2 . It outputs (m∗, σ̂).

To finish the proof, we show that with probability at least

1
Q

(Pr[x∗ �∈ ˜L] − negl(λ)),

(m∗, σ̂) is a valid forgery for key vkj . Without loss of generality assume that

(m∗, c∗
1, hk∗

1 , h
∗
1,R

∗) �∈ ̂L.

Observe that due to the way H1 generates the public keys and also by definition
of h∗

1,
(m∗, c∗

1, hk∗
1 , h

∗
1,R

∗) ∈ L4.

Therefore, by definition of ̂L, there exists a string w̃ such that,

((m∗, c∗
1, hk∗

1 , h
∗
1,R

∗), w̃) ∈ R5.

By an argument similar to the one presented in Lemma 3, it follows that except
with negligible probability w̃ = skPKE. Consequently, (i) PKE.Dec(skPKE , c∗

1) =
(σ∗, vk∗), (ii) due to the somewhere perfectly binding property of SPB,
there exists VK∗ = (vk∗, pk∗, ρ∗) such that VK∗ ∈ R∗, and finally (iii)
Sig.Verify(vk∗,m∗, σ∗) accepts. We conclude that the adversary uses a verifi-
cation key VK∗ ∈ R∗ and that c∗

1 encrypts (among other things) a signature σ∗

that is valid for the forgery message m∗ w.r.t. key vk∗. Since index j is chosen
uniformly at random, vkj = vk∗ with probability 1/Q.

Lemma 3 and Lemma 4 show that any efficient adversary has negligible chance
of winning the RS−FORGE game in hybrid H1. We observe that winning the
RS−FORGE game is an event that can be efficiently tested, therefore, by Lemma 2
no efficient adversary can win the RS−FORGE game in hybrid H0, i.e., Construc-
tion 3 is unforgeable.

5.3 Anonymity

We now prove that our construction satisfies anonymity. Recall that this cor-
responds to an experiment where the adversary recieves the secret keys and
randomness of all the existing parties, and then recieves a challenge signature
created using the keys of one of two possible parties (of course, the challenge
ring may also include parties that were created by the adversary). Our task is
to show that the adversary cannot distinguish between a signature created by
party i0 and one created by party i1 (for any distinct i0, i1). We will do this
using a sequence of hybrids. Our strategy will be roughly as follows: we start
with a signature produced using the signing key of party i0. First, we switch

Compact Ring Signatures from Learning with Errors 307

c2 to valid encryptions of a signature under vki1 (along with vki1) and hk2 to
a valid SPB hash key to the index for VKi1 in the ring respectively. Next, we
switch the witness used in π to use these values (instead of c1 and hk1). Then,
we change c1 to valid encryption of a signature under vki1 and a valid SPB hash
key to the index for VKi1 in the ring respectively. Finally, we change c2 to a junk
ciphertext, as in the honest signing algorithm. The final hybrid just outputs a
signature using the keys for party i1, and thus we only have to show that the
adversary cannot detect any of the individual changes outlined above.

Theorem 9. Assume PKE has close to uniform ciphertexts and sparse valid pub-
lic keys as described in Definition 3, SPB is index hiding, and ZAP is statistically
witness indistinguishable. Then the ring signature scheme in Construction 3 sat-
isfies the anonymity property described in Definition 7.

Proof. Let A be a PPT adversary participating in the anonymity game. Let Q =
poly(λ) be an upper bound on the number of key queries made by A. Suppose
that the adversary’s eventual challenge is (R,m, i0, i1). Let t0, t1 be the indices of
VKi0 , VKi1 in R respectively. Denote by ρ the ZAP first message corresponding to
the lexicographically smallest VK in R. As pointed out, it suffices to show that
a signature prepared using SKi0 is indistinguishable from one prepared using
SKi1 , even when A has all the keys VK1, · · · ,VKQ and the randomness used in
creating them. We do so using the following hybrids:

Hybrid H0: This hybrid simply runs the anonymity game honestly as the
challenger, and sends an honest signature generated using SKi0 , namely Σ =
(c1, hk1, c2, hk2, π), as the challenge to the adversary.

Hybrid H1: The only change in this hybrid is that it samples hk2 in the signa-
ture with index t1, i.e. (hk2, shk2) ← SPB.Gen(1λ, |R|, t1).
Hybrid H2: The only difference between this hybrid and H1 is that here, instead
of sampling c2 uniformly from the PKE ciphertext space, it generates c2 as c2 ←
PKE.Enc(pki1 , (σ

′, vki1); rc2), where, σ′ ← Sig.Sign(ski1 ,m).

Hybrid H3: This hybrid works exactly like the previous one, except that it uses a
witness corresponding to (c2, hk2) to generate the proof π. Namely, it computes
witness w′ = (vki2 , pki2 , t1, τ

′
2, σ

′, rc2), where, τ ′
2 = SPB.Open(hk2, shk2,R, t1),

and proof π is generated as π ← ZAP.P(ρ, x, w′).

Hybrid H4: This hybrid is similar to H3, except that it now computes c1 by
sampling it uniformly from the ciphertext space of PKE.

Hybrid H5: This hybrid works exactly like the previous, with the only differ-
ence being that it generates hk1 with respect to index t1, i.e., (hk1, shk1) ←
SPB.Gen(1λ, |R|, t1).
Hybrid H6: It is identical to H5, except that here, c1 ← PKE.Enc(pki1 ,
(σ′, vki1); rc1) where σ′ ← Sig.Sign(ski1 ,m).

308 R. Chatterjee et al.

Hybrid H7: The only change in this hybrid is that, it uses a witness cor-
responding to (c1, hk1) to generate the ZAP proof. Namely, it computes
w′′ = (vk, pk, t1, τ

′
1, σ, rc1 ,), where τ ′

1 = SPB.Open(hk1, shk1,R, t1), and π =
ZAP.P(ρ, x, w′′), and uses this in Σ.

Hybrid H8: This hybrids works exactly like the previous, except that it now
computes c2 by sampling it uniformly from the ciphertext space of Enc. Notice
that this hybrid corresponds to generating the signature using SKi1 .

Lemma 5. Assuming SPB is index hiding, H0
c≈ H1.

Proof. Let A be an adversary attempting to distinguish H0 and H1. We use A
to build an adversary A′ having the same advantage against the index hiding
property of SPB. A′ runs A and interacts with it exactly like H0, till the point
where A sends its challenge (R,m, i0, i1). At this point, A′ sends (t0, t1, |R|)
to its index hiding challenger. A′ then receives a SPB hash key hk∗, which is
either SPB.Gen(1λ, |R|, t0) or SPB.Gen(1λ, |R|, t1). It uses hk∗ as the key hk2 for
generating the challenge signature Σ for A. If hk∗ is generated for index t0 then
A’s view is identical to its view in H0. Otherwise, if hk∗ corresponds to t1, A’s
view is identical to its view in H1.

Lemma 6. If PKE has close to uniform ciphertexts, H1
s≈ H2.

Proof. This follows directly from the definition of close to uniform ciphertexts
property described in Definition 3.

Lemma 7. If ZAP is statistically witness indistinguishable, and PKE has sparse
valid public keys, H2

s≈ H3.

Proof. At least two of the public-keys in R, pki0 and pki1 are generated uniformly
at random. Consequently, since PKE has sparse valid public keys, except with
negligible probability,

� ∃sk : (∀(vk, pk, ρ) ∈ R : PKE.Valid(pk, sk) accepts).

Thus, x1 �∈ ˜L, and consequently, the lemma follows from the definition of witness
indistinguishability described in Definition 3.

Lemma 8. If PKE has close to uniform ciphertexts, H3
s≈ H4.

Proof. This follows directly from the definition of close to uniform ciphertexts
property described in Definition 3.

Lemma 9. Assuming SPB is index hiding, H4
c≈ H5.

Proof. The proof of the lemma is almost identical to Lemma 5.

Lemma 10. If PKE has close to uniform ciphertexts, H5
s≈ H6.

Compact Ring Signatures from Learning with Errors 309

Proof. This follows directly from the definition of close to uniform ciphertexts
property described in Definition 3.

Lemma 11. If ZAP is statistically witness indistinguishable, and PKE has
sparse valid public keys, H6

s≈ H7.

Proof. The proof for this lemma is very similar to Lemma 5.3 and we won’t
repeat it.

Lemma 12. If PKE has close to uniform ciphertexts, H7
s≈ H8.

Proof. This follows directly from the definition of close to uniform ciphertexts
property described in Definition 3.

This completes the proof of Definition 9.

Acknowledgments. We thank anonymous reviewers for pointing out issues in Defi-
nition 4 and Definition 8 in an earlier version of this work.

Omkant Pandey is supported in part by DARPA SIEVE Award HR00112020026,
NSF grants 1907908 and 2028920, and a Cisco Research Award.

Sanjam Garg is supported in part by DARPA under Agreement No.
HR00112020026, AFOSR Award FA9550-19-1-0200, NSF CNS Award 1936826, and
research grants by the Sloan Foundation and Visa Inc.

Any opinions, findings and conclusions or recommendations expressed in this mate-
rial are those of the author(s) and do not necessarily reflect the views of the United
States Government, DARPA, AFOSR, NSF, Cisco, Sloan Foundation, or Visa Inc.

Dakshita Khurana is supported in part by DARPA SIEVE Award HR00112020024.

References

1. Abe, M., Ohkubo, M., Suzuki, K.: 1-out-of-n signatures from a variety of keys.
In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 415–432. Springer,
Heidelberg (2002). https://doi.org/10.1007/3-540-36178-2 26

2. Backes, M., Döttling, N., Hanzlik, L., Kluczniak, K., Schneider, J.: Ring signatures:
logarithmic-size, no setup—from standard assumptions. In: Ishai, Y., Rijmen, V.
(eds.) EUROCRYPT 2019. LNCS, vol. 11478, pp. 281–311. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-17659-4 10

3. Backes, M., Hanzlik, L., Kluczniak, K., Schneider, J.: Signatures with flexible pub-
lic key: introducing equivalence classes for public keys. In: Peyrin, T., Galbraith, S.
(eds.) ASIACRYPT 2018. LNCS, vol. 11273, pp. 405–434. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-03329-3 14

4. Badrinarayanan, S., Fernando, R., Jain, A., Khurana, D., Sahai, A.: Statistical
ZAP arguments. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS,
vol. 12107, pp. 642–667. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-45727-3 22

5. Baum, C., Lin, H., Oechsner, S.: Towards practical lattice-based one-time linkable
ring signatures. In: ICICS, pp. 303–322 (2018)

https://doi.org/10.1007/3-540-36178-2_26
https://doi.org/10.1007/978-3-030-17659-4_10
https://doi.org/10.1007/978-3-030-03329-3_14
https://doi.org/10.1007/978-3-030-45727-3_22
https://doi.org/10.1007/978-3-030-45727-3_22

310 R. Chatterjee et al.

6. Bender, A., Katz, J., Morselli, R.: Ring signatures: stronger definitions, and con-
structions without random Oracles. In: TCC, pp. 60–79 (2006)

7. Beullens, W., Katsumata, S., Pintore, F.: Calamari and Falafl: logarithmic (link-
able) ring signatures from isogenies and lattices. In: Moriai, S., Wang, H. (eds.) ASI-
ACRYPT 2020. LNCS, vol. 12492, pp. 464–492. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-64834-3 16

8. Blum, M.: How to prove a theorem so no one else can claim it. In: Proceedings of
the International Congress of Mathematicians, pp. 1444–1451 (1987)

9. Boneh, D., Gentry, C., Lynn, B., Shacham, H.: Aggregate and verifiably encrypted
signatures from bilinear maps. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS,
vol. 2656, pp. 416–432. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-
39200-9 26

10. Boyen, X., Haines, T.: Forward-secure linkable ring signatures. In: ACISP, pp. 245–
264 (2018)

11. Brakerski, Z., Döttling, N.: Two-message statistically sender-private OT from LWE.
In: TCC, pp. 370–390 (2018)

12. Brakerski, Z., Kalai, Y.T.: A framework for efficient signatures, ring signatures
and identity based encryption in the standard model. Cryptology ePrint Archive,
Report 2010/086 (2010). https://eprint.iacr.org/2010/086

13. Brakerski, Z., Langlois, A., Peikert, C., Regev, O., Stehlé, D.: Classical hardness
of learning with errors. In: STOC, pp. 575–584 (2013)

14. Canetti, R., et al.: Fiat-Shamir: from practice to theory. In: STOC (2019, to appear)
15. Chandran, N., Groth, J., Sahai, A.: Ring signatures of sub-linear size without

random Oracles. In: ICALP, pp. 423–434 (2007)
16. Chow, S.S.M., Wei, V.K., Liu, J.K., Yuen, T.H.: Ring signatures without random

Oracles. In: ASIACCS, pp. 297–302 (2006)
17. Dodis, Y., Kiayias, A., Nicolosi, A., Shoup, V.: Anonymous identification in Ad

Hoc groups. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS,
vol. 3027, pp. 609–626. Springer, Heidelberg (2004). https://doi.org/10.1007/978-
3-540-24676-3 36

18. Dwork, C., Naor, M.: Zaps and their applications. SIAM J. Comput. 36(6), 1513–
1543 (2007)

19. Esgin, M.F., Zhao, R.K., Steinfeld, R., Liu, J.K., Liu, D.: Matrict: efficient, scalable
and post-quantum blockchain confidential transactions protocol. In: CCS, pp. 567–
584 (2019)

20. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and
signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp.
186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7 12

21. Gentry, C.: A fully homomorphic encryption scheme. Ph.D. thesis, Stanford Uni-
versity (2009). http://crypto.stanford.edu/craig

22. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: STOC, pp. 197–206 (2008)

23. Ghadafi, E.: Sub-linear blind ring signatures without random Oracles. In: IMACC,
pp. 304–323 (2013)

24. González, A.: A ring signature of size Θ(sqrt[3]n) without random oracles (2017).
https://eprint.iacr.org/2017/905

25. Goyal, V., Jain, A., Jin, Z., Malavolta, G.: Statistical zaps and new oblivious
transfer protocols. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS,
vol. 12107, pp. 668–699. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-45727-3 23

https://doi.org/10.1007/978-3-030-64834-3_16
https://doi.org/10.1007/978-3-030-64834-3_16
https://doi.org/10.1007/3-540-39200-9_26
https://doi.org/10.1007/3-540-39200-9_26
https://eprint.iacr.org/2010/086
https://doi.org/10.1007/978-3-540-24676-3_36
https://doi.org/10.1007/978-3-540-24676-3_36
https://doi.org/10.1007/3-540-47721-7_12
http://crypto.stanford.edu/craig
https://eprint.iacr.org/2017/905
https://doi.org/10.1007/978-3-030-45727-3_23
https://doi.org/10.1007/978-3-030-45727-3_23

Compact Ring Signatures from Learning with Errors 311

26. Groth, J., Kohlweiss, M.: One-out-of-many proofs: or how to leak a secret and
spend a coin. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS,
vol. 9057, pp. 253–280. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-46803-6 9

27. Herranz, J., Sáez, G.: Forking lemmas for ring signature schemes. In: Johansson,
T., Maitra, S. (eds.) INDOCRYPT 2003. LNCS, vol. 2904, pp. 266–279. Springer,
Heidelberg (2003). https://doi.org/10.1007/978-3-540-24582-7 20

28. Libert, B., Ling, S., Nguyen, K., Wang, H.: Zero-knowledge arguments for lattice-
based accumulators: logarithmic-size ring signatures and group signatures without
trapdoors. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol.
9666, pp. 1–31. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-
49896-5 1

29. Libert, B., Peters, T., Qian, C.: Logarithmic-size ring signatures with tight security
from the DDH assumption. In: ESORICS, pp. 288–308 (2018)

30. Libert, B., Nguyen, K., Peters, T., Yung, M.: One-shot fiat-shamir-based nizk argu-
ments of composite residuosity in the standard model. Cryptology ePrint Archive,
Report 2020/1334 (2020). https://eprint.iacr.org/2020/1334

31. Lombardi, A., Vaikuntanathan, V., Wichs, D.: 2-message publicly verifiable WI
from (subexponential) LWE. Cryptology ePrint Archive, Report 2019/808, p. 808
(2019). https://eprint.iacr.org/2019/808

32. Lyubashevsky, V., Nguyen, N.K., Seiler, G.: SMILE: set membership from ideal
lattices with applications to ring signatures and confidential transactions. In:
CRYPTO (2021, to appear)

33. Malavolta, G., Schröder, D.: Efficient ring signatures in the standard model. In:
Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10625, pp. 128–157.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70697-9 5

34. Merkle, R.C.: A digital signature based on a conventional encryption function.
In: Pomerance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 369–378. Springer,
Heidelberg (1988). https://doi.org/10.1007/3-540-48184-2 32

35. Micciancio, D.: Duality in lattice cryptography. In: Public Key Cryptography
(2010). Invited talk

36. Naor, M., Yung, M.: Public-key cryptosystems provably secure against chosen
ciphertext attacks. In: STOC, pp. 427–437 (1990)

37. Noether, S.: Ring signature confidential transactions for monero (2015). https://
eprint.iacr.org/2015/1098

38. Ostrovsky, R., Paskin-Cherniavsky, A., Paskin-Cherniavsky, B.: Maliciously circuit-
private FHE. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol.
8616, pp. 536–553. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-
662-44371-2 30

39. Park, S., Sealfon, A.: It wasn’t me! - repudiability and claimability of ring signa-
tures. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11694,
pp. 159–190. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26954-8 6

40. Peikert, C.: Public-key cryptosystems from the worst-case shortest vector problem.
In: STOC, pp. 333–342 (2009)

41. Peikert, C., Regev, O., Stephens-Davidowitz, N.: Pseudorandomness of Ring-LWE
for any ring and modulus. In: STOC, pp. 461–473 (2017)

42. Peikert, C., Shiehian, S.: Noninteractive zero knowledge for NP from (plain) learn-
ing with errors. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS,
vol. 11692, pp. 89–114. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
26948-7 4

https://doi.org/10.1007/978-3-662-46803-6_9
https://doi.org/10.1007/978-3-662-46803-6_9
https://doi.org/10.1007/978-3-540-24582-7_20
https://doi.org/10.1007/978-3-662-49896-5_1
https://doi.org/10.1007/978-3-662-49896-5_1
https://eprint.iacr.org/2020/1334
https://eprint.iacr.org/2019/808
https://doi.org/10.1007/978-3-319-70697-9_5
https://doi.org/10.1007/3-540-48184-2_32
https://eprint.iacr.org/2015/1098
https://eprint.iacr.org/2015/1098
https://doi.org/10.1007/978-3-662-44371-2_30
https://doi.org/10.1007/978-3-662-44371-2_30
https://doi.org/10.1007/978-3-030-26954-8_6
https://doi.org/10.1007/978-3-030-26948-7_4
https://doi.org/10.1007/978-3-030-26948-7_4

312 R. Chatterjee et al.

43. Regev, O.: On lattices, learning with errors, random linear codes, and cryptography.
J. ACM 56(6), 1–40 (2009). Preliminary version in STOC 2005

44. Rivest, R.L., Shamir, A., Tauman, Y.: How to leak a secret. In: Boyd, C. (ed.)
ASIACRYPT 2001. LNCS, vol. 2248, pp. 552–565. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-45682-1 32

45. Schäge, S., Schwenk, J.: A CDH-based ring signature scheme with short signatures
and public keys. In: Financial Cryptography and Data Security, pp. 129–142 (2010)

46. Shacham, H., Waters, B.: Efficient ring signatures without random oracles. In:
PKC, pp. 166–180 (2007)

47. Alberto Torres, W.A., et al.: Post-quantum one-time linkable ring signature and
application to ring confidential transactions in blockchain (Lattice RingCT v1.0).
In: Susilo, W., Yang, G. (eds.) ACISP 2018. LNCS, vol. 10946, pp. 558–576.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93638-3 32

https://doi.org/10.1007/3-540-45682-1_32
https://doi.org/10.1007/978-3-319-93638-3_32

Quantum Cryptography

A Black-Box Approach to Post-Quantum
Zero-Knowledge in Constant Rounds

Nai-Hui Chia1,2(B), Kai-Min Chung3, and Takashi Yamakawa4

1 QuICS, University of Maryland, College Park, USA
naichia@iu.edu

2 Luddy School of Informatics, Computing, and Engineering, Indiana University,
Bloomington, USA

3 Institute of Information Science, Academia Sinica, Taiwan, China
kmchung@iis.sinica.edu.tw

4 NTT Secure Platform Laboratories, Tokyo, Japan
takashi.yamakawa.ga@hco.ntt.co.jp

Abstract. In a recent seminal work, Bitansky and Shmueli (STOC ’20)
gave the first construction of a constant round zero-knowledge argument
for NP secure against quantum attacks. However, their construction
has several drawbacks compared to the classical counterparts. Specifi-
cally, their construction only achieves computational soundness, requires
strong assumptions of quantum hardness of learning with errors (QLWE
assumption) and the existence of quantum fully homomorphic encryp-
tion (QFHE), and relies on non-black-box simulation.

In this paper, we resolve these issues at the cost of weakening the
notion of zero-knowledge to what is called ε-zero-knowledge. Concretely,
we construct the following protocols:

– We construct a constant round interactive proof for NP that sat-
isfies statistical soundness and black-box ε-zero-knowledge against quan-
tum attacks assuming the existence of collapsing hash functions, which
is a quantum counterpart of collision-resistant hash functions. Interest-
ingly, this construction is just an adapted version of the classical protocol
by Goldreich and Kahan (JoC ’96) though the proof of ε-zero-knowledge
property against quantum adversaries requires novel ideas.

– We construct a constant round interactive argument for NP
that satisfies computational soundness and black-box ε-zero-knowledge
against quantum attacks only assuming the existence of post-quantum
one-way functions.

At the heart of our results is a new quantum rewinding technique
that enables a simulator to extract a committed message of a malicious
verifier while simulating verifier’s internal state in an appropriate sense.

1 Introduction

Zero-Knowledge Proof. Zero-knowledge (ZK) proof [GMR89] is a fundamen-
tal cryptographic primitive, which enables a prover to convince a verifier of a

c© International Association for Cryptologic Research 2021
T. Malkin and C. Peikert (Eds.): CRYPTO 2021, LNCS 12825, pp. 315–345, 2021.
https://doi.org/10.1007/978-3-030-84242-0_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-84242-0_12&domain=pdf
https://doi.org/10.1007/978-3-030-84242-0_12

316 N.-H. Chia et al.

statement without giving any additional “knowledge” beyond that the state-
ment is true. In the classical setting, there have been many feasibility results
on ZK proofs for specific languages including quadratic residuosity [GMR89],
graph isomorphism [GMW91], statistical difference problem [SV03] etc., and
for all NP languages assuming the existence of one-way functions (OWFs)
[GMW91,Blu86]. On the other hand, van de Graaf [Gra97] pointed out that
there is a technical difficulty to prove security of these protocols against quan-
tum attacks. Roughly, the difficulty comes from the fact that security proofs of
these results are based on a technique called rewinding, which cannot be done
when an adversary is quantum due to the no-cloning theorem. Watrous [Wat09]
considered post-quantum ZK proof, which means a classical interactive proof
that satisfies (computational) zero-knowledge property against quantum mali-
cious verifiers, and showed that some of the classical constructions above are also
post-quantum ZK. Especially, he introduced a new quantum rewinding technique
which is also applicable to quantum adversaries and proved that 3-coloring pro-
tocol of Goldreich, Micali, and Wigderson [GMW91] is secure against quantum
attacks assuming that the underlying OWF is post-quantum secure, i.e., unin-
vertible in quantum polynomial-time (QPT).1 Since the 3-coloring problem is
NP-complete, this means that there exists a post-quantum ZK proof for all NP
languages assuming the existence of post-quantum OWFs.

Round Complexity. An important complexity measure of ZK proofs is round
complexity, which is the number of interactions between a prover and verifier. In
this aspect, the 3-coloring protocol [GMW91] (and its quantumly secure version
[Wat09]) is not satisfactory since that requires super-constant number of rounds.2

Goldreich and Kahan [GK96] gave the first construction of a constant round ZK
proof for NP assuming the existence of collision-resistant hash function in the
classical setting. However, Watrous’ rewinding technique does not seem to work
for this construction (as explained in Sect. 1.2), and it has been unknown if their
protocol is secure against quantum attacks.

Recently, Bitansky and Shmueli [BS20] gave the first construction of post-
quantum ZK argument [BC90] for NP, which is a weakened version of post-
quantum ZK proof where soundness holds only against computationally bounded
adversaries. In addition to weakening soundness to computational one, there are
several drawbacks compared to classical counterparts. First, they assume strong
assumptions of quantum hardness of learning with erros (QLWE assumption)
[Reg09] and the existence of quantum fully homomorphic encryption (QFHE)

1 Strictly speaking, Watrous’ assumption is a statistically binding and post-quantum
computationally hiding commitment scheme, and he did not claim that this can be
constructed under the existence of post-quantum OWFs. However, we can see that
such a commitment scheme can be obtained by instantiating the construction of
[Nao91,HILL99] with a post-quantum OWF.

2 3-round suffices for achieving a constant soundness error, but super-constant times
sequential repetitions are needed for achieving negligible soundness error (i.e., a
cheating prover can let a verifier accept on a false statement only with a negligible
probability). Negligible soundness error is a default requirement in this paper.

A Black-Box Approach to Post-Quantum Zero-Knowledge 317

[Mah18a,Bra18]. Though the QLWE assumption is considered fairly standard
due to reductions to worst-case lattice problems [Reg09,Pei09,BLP13], a con-
struction of QFHE requires circular security of an QLWE-based encryption
scheme, which has no theoretical evidence. In contrast, a constant round clas-
sical ZK argument for NP is known to exist under the minimal assumption
of the existence of OWFs [FS90,PW09]. Second, their security proof of quan-
tum ZK property relies on a novel non-black-box simulation technique, which
makes use of the actual description of malicious verifier instead of using it as a
black-box. In contrast, classical counterparts can be obtained by black-box sim-
ulation [FS90,GK96,PW09]. Therefore, it is of theoretical interest to ask if we
can achieve constant round quantum ZK by black-box simulation. Third, some-
what related to the second issue, their construction also uses building blocks
in a non-black-box manner, which makes the actual efficiency of the protocol
far from practical. Again, classical counterparts are known based on black-box
constructions [GK96,PW09].

Given the state of affairs, it is natural to ask the following questions:

1. Are there constant round post-quantum ZK proofs for NP instead of argu-
ments?

2. Are there constant round post-quantum ZK proofs/arguments for NP from
weaker assumptions than those in [BS20]?

3. Are there constant round post-quantum ZK proofs/arguments for NP based
on black-box simulation and/or black-box construction?

4. Are known constructions of constant round classical ZK proofs/arguments for
NP (e.g., [FS90,GK96,PW09]) secure against quantum attacks if we instan-
tiate them with post-quantum building blocks?

1.1 Our Results

In this work, we partially answer the above questions affirmatively at the cost of
weakening the quantum ZK property to quantum ε-ZK, which is the quantum
version of ε-ZK introduced in [DNS04].3

Quantum ε-Zero-Knowledge. The standard quantum ZK property roughly
requires that for any QPT V ∗, there exists a QPT simulator S that simulates
the interaction between V ∗ and an honest prover so that the simulation is indis-
tinguishable from the real execution against any QPT distinguishers. On the
other hand, in quantum ε-ZK, a simulator is allowed to depend on a “accuracy
parameter” ε. That is, it requires that for any QPT malicious verifier V ∗ and a
noticeable accuracy parameter ε, there exists a QPT simulator S whose running
time polynomially depends on ε−1 that simulates the interaction between V ∗

and an honest prover so that no QPT distinguisher can distinguish it from real
execution with advantage larger than ε. Though this is a significant relaxation
of quantum ZK, this still captures meaningful security. For example, we can see

3 ε-ZK was originally called ε-knowledge, but some later works [BKP18,FGJ18] call it
ε-ZK. We use ε-ZK to clarify that this is a variant of ZK.

318 N.-H. Chia et al.

that quantum ε-ZK implies both quantum versions of witness indistinguishabil-
ity and witness hiding similarly to the analogous claims in the classical setting
[BKP19].4 Moreover, by extending the observation in [DNS04] to the quantum
setting, we can see the following: Suppose that a QPT malicious verifier solves
some puzzle whose solution is efficiently checkable (e.g., finding a witness of an
NP statement) after an interaction between an honest prover. Then, quantum
ε-ZK implies that if the verifier succeeds in solving the puzzle with noticeable
probability p after the interaction, then there is a QPT algorithm (whose running
time polynomially depends on p−1) that solves the same puzzle with noticeable
probability (say, p/2) without interacting with the honest prover. This captures
the naive intuition of the ZK property that “anything that can be done after the
execution can be done without execution” in some sense, and this would be suf-
ficient in many cryptographic applications. Thus we believe that quantum ε-ZK
is conceptually a similar notion to the standard quantum ZK. More discussion
on (quantum) ε-ZK and other related notions of ZK can be found in Sect. 1.3.

Our Constructions. We give two constructions of constant round quantum ε-ZK
protocols.

– We construct a constant round quantum ε-ZK proof for NP assuming the
existence of collapsing hash functions [Unr16b,Unr16a], which is considered
as a counterpart of collision-resistant hash functions in the quantum setting.
Especially, we can instantiate the construction based on the QLWE assump-
tion. Our construction is fully black-box in the sense that both simulation and
construction rely on black-box usage of building blocks and a malicious veri-
fier. Interestingly, this construction is just an adapted version of the classical
protocol of [GK96] though the proof of quantum ε-zero-knowledge property
requires novel ideas.

– We construct a constant round quantum ε-ZK argument for NP assuming
the minimal assumption of the existence of post-quantum OWFs. This con-
struction relies on black-box simulation, but the construction itself is non-
black-box.

At the heart of our results is a new quantum rewinding technique that enables
a simulator to extract a committed message of a malicious verifier while simu-
lating verifier’s internal state in some sense. We formalize this technique as an
extraction lemma, which we believe is of independent interest.

1.2 Technical Overview

Though we prove a general lemma which we call extraction lemma (Lemma 3.1)
and then prove quantum ε-ZK of our constructions based on that in the main
body, we directly explain the proof of quantum ε-ZK without going through such
an abstraction in this overview.
4 Actually, [BKP19] shows that even weaker notion called weak ZK suffices for witness

indistinguishability and witness hiding. See also Sect. 1.3.

A Black-Box Approach to Post-Quantum Zero-Knowledge 319

Known Classical Technique and Difficulty in Quantum Setting. First, we review
a classical constant round ZK proof by Goldreich and Kahan [GK96] (referred to
as GK protocol in the following), and explain why it is difficult to prove quantum
ZK for this protocol by known techniques. GK protocol is based on a special type
of 3-round proof system called Σ-protocol.5 In a Σ-protocol, a prover sends the
first message a, a verifier sends the second message e referred to as a challenge,
which is just a public randomness, and the prover sends the third message z.
A Σ-protocol satisfies a special type of honest-verifier ZK, which ensures that
if a challenge e is fixed, then one can simulate the transcript (a, e, z) without
using a witness. Though this may sound like almost the standard ZK property,
a difficulty when proving ZK is that a malicious verifier may adaptively choose
e depending on a, and thus we cannot fix e at the beginning. To resolve this
issue, the idea of GK protocol is to let the verifier commit to a challenge e at the
beginning of the protocol. That is, GK protocol roughly proceeds as follows:6

1. A verifier sends a commitment com to a challenge e of a Σ-protocol.
2. The prover sends the first message a of the Σ-protocol.
3. The verifier opens com to open a challenge e and its opening information r

(i.e., the randomness used for the commitment).
4. The prover aborts if the verifier’s opening is invalid. Otherwise it sends the

third message z of the Σ-protocol.

When proving the ZK property of GK protocol, they rely on a rewinding argu-
ment. That is, a simulator first runs the protocol with a malicious verifier until
Step 3 to extract a committed message e inside com, and then rewind the veri-
fier’s state back to just after Step 1, and then simulates the transcript by using
the extracted knowledge of e.

On the other hand, this strategy does not work if we consider a quantum
malicious verifier since a quantum malicious verifier may perform measurements
in Step 3, which is in general not reversible. In other words, since we cannot
copy the verifier’s internal state after Step 1 due to the no-cloning theorem, we
cannot recover that state after running the protocol until Step 3.

Watrous [Wat09] proved that we can apply a rewinding argument for quan-
tum verifiers under a certain condition. Roughly speaking, the condition is that
there is a simulator that succeeds in simulation for quantum verifiers with a
fixed (verifier-independent) and noticeable probability. For example, if the chal-
lenge space is polynomial size, then a simulator that simply guesses a challenge
e suffices. However, for achieving negligible soundness error, the challenge space
should be super-polynomial size, in which case it seems difficult to construct
such a simulator. Also, relaxing quantum ZK to quantum ε-ZK does not seem
to resolve the issue in any obvious way.

5 In this paper, we use Σ-protocol to mean a parallel repetition version where sound-
ness error is reduced to negligible.

6 We note that this construction is based on an earlier work of [BCY91].

320 N.-H. Chia et al.

Quantum Analysis of GK Protocol. In spite of the above mentioned diffi-
culty, we succeed in proving quantum ε-ZK for a slight variant of GK protocol.
In the following, we explain the idea for our results.

Simplified Goal: Simulation of Non-Aborting Case. First, we apply a general
trick introduced in [BS20], which simplifies the task of proving quantum ZK. In
GK protocol, we say that a verifier aborts if it fails to provide a valid opening
to com in Step 3. Then, for proving quantum ZK of the protocol, it suffices to
construct two simulators Sima and Simna that work only when the verifier aborts
and does not abort and they do not change the probability that the verifier aborts
too much, respectively. The reason is that if we randomly choose either of these
two simulators and just run the chosen one, then the simulation succeeds with
probability 1/2 since the guess of if the verifier aborts is correct with probability
1/2. Then, we can apply Watrous’ rewinding technique to convert it to a full-
fledged simulator. Essentially the same trick also works for quantum ε-ZK.

Moreover, it is easy to construct Sima because the first message of a Σ-
protocol can be simulated without witness, and one need not provide the third
message to the verifier when it aborts. Therefore, the problem boils down to
constructing a simulator Simna that works only when the verifier does not abort.

Initial Observations. For explaining how to construct Simna, we start by con-
sidering the simplest case where a verifier never aborts. Moreover, suppose that
the commitment scheme used for committing to a challenge e satisfies the strict-
binding property [Unr12], i.e., for any commitment com, there is at most one
valid message and randomness. Then, a rewinding strategy similar to the classi-
cal case works since, in this case, the verifier’s message in Step 3 is information-
theoretically determined, and such a deterministic computation does not collapse
a quantum state in general.7 However, for ensuring statistical soundness, we have
to use a statistically hiding commitment, which cannot be strict-binding. For-
tunately, this problem can be resolved by using collapse-binding commitments
[Unr16b], which roughly behave similarly to strict-binding commitments for any
computationally bounded adversaries.8 Since this is rather a standard technique,
in the rest of this overview, we treat the commitment as if it satisfies the strict-
binding property.

Next, we consider another toy example where a verifier sometimes aborts.
Suppose that a malicious verifier V ∗ is given an initial state 1√

2
(|ψa〉 + |ψna〉) in

its internal register V where |ψa〉 and |ψna〉 are orthogonal, and runs as follows:

1. V ∗ randomly picks e, honestly generates a commitment com to e, and sends
it to the prover (just ignoring the initial state).

7 This is also observed in [BS20].
8 Strictly speaking, we need to use a slightly stronger variant of collapse-binding com-

mitments which we call strong collapse-binding commitments. Such commitments
can be constructed under the QLWE assumption or the existence of collapsing hash
functions in more general. See Sect. 2.2 for more details.

A Black-Box Approach to Post-Quantum Zero-Knowledge 321

2. After receiving a, V ∗ performs a projective measurement {|ψa〉 〈ψa| , I −
|ψa〉 〈ψa|} on V, and immediately aborts if |ψa〉 〈ψa| is applied, and other-
wise honestly opens (e, r).

3. After completing the protocol, V ∗ outputs its internal state in V.

It is trivial to construct a simulator for this particular V ∗ since it just ignores
prover’s messages. But for explaining our main idea, we examine what happens
if we apply the same rewinding strategy as the classical case to the above verifier.
After getting a commitment com from V ∗, a simulator sends a random a to V ∗

to extract e. Since we are interested in constructing a simulator that works in
the non-aborting case, suppose that V ∗ does not abort, i.e., sends back a valid
opening (e, r). At this point, V ∗’s internal state collapses to |ψna〉. Then the
simulator cannot “rewind” this state to the original verifier’s state 1√

2
(|ψa〉 +

|ψna〉) in general, and thus the simulation seems to get stuck. However, our key
observation is that, conditioned on that V ∗ does not abort, V ∗’s state always
collapses to |ψna〉 even in the real execution. Since our goal is to construct Simna

that is only required to work for the non-aborting case, it does not matter if
V ∗’s state collapses to |ψna〉 when the simulator runs extraction. More generally,
extraction procedure may collapse verifier’s internal state if a similar collapsing
happens even in the real execution conditioned on that the verifier does not
abort.

Our Idea: Decompose Verifier’s Space. To generalize the above idea, we want
to decompose verifier’s internal state after Step 1 into aborting part and non-
aborting part. However, the definition of such a decomposition is non-trivial since
a verifier may determine if it aborts depending on the prover’s message a in
addition to its internal state. Therefore, instead of decomposing it into always-
aborting part and always-non-aborting part as in the example of the previous
paragraph, we set a noticeable threshold t and decompose it into “not-abort-
with-probability < t part” and “not-abort-with-probability ≥ t part” over the
randomness of a.

For implementing this idea, we rely on Jordan’s lemma (e.g., see a lecture
note by Regev [AR06]) in a similar way to the work by Nagaj, Wocjan, and
Zhang [NWZ09] on the amplification theorem for QMA. Let Π be a projection
that corresponds to “Step 2 + Step 3 + Check if the verifier does not abort” in
GK protocol. A little bit more formally, let V be a register for verifier’s internal
state and Aux be an auxiliary register. Then Π is a projection over V ⊗ Aux
that works as follows:

1. Apply a unitary Uaux over Aux that maps |0〉Aux to 1√
|R|

∑
rand∈R

|rand, arand〉Aux where R is the randomness space to generate the first message
of the Σ-protocol and arand is the first message derived from the randomness
rand.9

9 Aux stores multiple qubits, but we denote by |0〉Aux to mean |0�〉Aux for the appro-
priate length � for notational simplicity.

322 N.-H. Chia et al.

2. Apply a unitary UV that corresponds to Step 3 for prover’s message arand in
Aux except for measurement,

3. Apply a projection to the subspace spanned by states that contain valid
opening (e, r) for com in designated output registers,

4. Apply (UV Uaux)†.

One can see that the probability that the verifier does not abort (i.e., sends a
valid opening) is ‖Π |ψ〉V |0〉Aux ‖2 where |ψ〉V is verifier’s internal state after
Step 1. Then Jordan’s lemma gives an orthogonal decomposition of the Hilbert
space of V ⊗ Aux into many one- or two-dimensional subspaces S1, ..., SN that
are invariant under Π and |0〉Aux 〈0|Aux such that we have the following:

1. For any j ∈ [N] and |ψj〉V |0〉Aux ∈ Sj , the projection Π succeeds with
probability pj , i.e., ‖Π |ψj〉V |0〉Aux ‖2 = pj .

2. A success probability of projection Π is “amplifiable” in each subspace. That
is, there is an “amplification procedure” Amp that maps any |ψj〉V |0〉Aux ∈
Sj to Π |ψj〉V |0〉Aux with overwhelming probability within poly(λ, p−1

j) times
iteration of the same procedure (that does not depend on j) for any j ∈ [N].
Moreover, this procedure does not cause any interference between different
subspaces.

Then we define two subspaces

S<t :=
⊕

j:pj<t

Sj , S≥t :=
⊕

j:pj≥t

Sj .

Then for any |ψ〉V, we can decompose it as

|ψ〉V = |ψ<t〉V + |ψ≥t〉V
by using (sub-normalized) states |ψ<t〉V and |ψ≥t〉V such that |ψ<t〉V |0〉Aux ∈
S<t and |ψ≥t〉V |0〉Aux ∈ S≥t. In this way, we can formally define a decompo-
sition of verifier’s internal state into “not-abort-with-probability < t part” and
“not-abort-with-probability ≥ t part”.

Extraction and Simulation. Then we explain how we can use the above decom-
position to implement extraction of e for simulation of non-aborting case. First,
we consider an easier case where the verifier’s state after Step 1 only has S≥t

component |ψ≥t〉V. In this case, we can use Amp to map |ψ≥t〉V |0〉Aux onto the
span of Π within poly(λ, t−1) times iteration. After mapped to Π, we can extract
(e, r) without collapsing the state by the definition of Π and our assumption that
the commitment is strict-binding. This means that given |ψ≥t〉V, we can extract
(e, r), which is information theoretically determined by com, with overwhelming
probability. In general, such a deterministic computation can be implemented in
a reversible manner, and thus we can extract (e, r) from |ψ≥t〉V almost without
damaging the state.

On the other hand, the same procedure does not work for |ψ<t〉V since
poly(λ, t−1) times iteration is not sufficient for amplifying the success proba-
bility of Π to overwhelming in this subspace. Our idea is to let a simulator run

A Black-Box Approach to Post-Quantum Zero-Knowledge 323

the above extraction procedure in superposition even though S<t component
may be damaged.

Specifically, our extraction procedure Ext works as follows:

1. Given a verifier’s internal state |ψ〉V after Step 1, initialize Aux to |0〉Aux

and runs Amp for poly(λ, t−1) times iteration. Abort if a mapping onto Π
does not succeed. Otherwise, proceed to the next step.

2. Apply UV Uaux, measure designated output registers to obtain (eExt, rExt), and
apply (UV Uaux)†. We note that (eExt, rExt) is always a valid opening of com
since Ext runs this step only if it succeeds in mapping the state onto Π in
the previous step. We also note that this step does not collapse the state at
all by the strict-binding property of the commitment.

3. Uncompute Step 1 and measure Aux. Abort if the measurement outcome is
not 0. Otherwise, proceed to the next step.

4. Output the extracted opening (eExt, rExt) along with a “post-extraction state”
|ψ′〉V in register V. For convenience, we express |ψ′〉V as a sub-normalized
state whose norm is the probability that Ext does not abort and the post-
extraction state conditioned on that the extraction succeeds is |ψ′〉V

‖|ψ′〉V‖ .

In the following, we analyze Ext. We consider the decomposition of |ψ〉V as
defined in the previous paragraph:

|ψ〉V = |ψ<t〉V + |ψ≥t〉V .

Suppose that Ext does not abort, i.e., it outputs a valid opening (eExt, rExt) along
with a post-extraction state |ψ′〉V. Then, |ψ′〉V can be expressed as

|ψ′〉V = |ψ′
<t〉V + |ψ′

≥t〉V
for some |ψ′

<t〉V and |ψ′
≥t〉V such that |ψ′

<t〉V |0〉Aux ∈ S<t, |ψ′
≥t〉V |0〉Aux ∈

S≥t, and |ψ≥t〉V ≈ |ψ′
≥t〉V since there is no interference between S<t and S≥t

when running Amp and S≥t component hardly changes as observed above. This
is not even a close state to the original state |ψ〉V in general since the S<t

component may be completely different. However, our key observation is that,
conditioned on that the verifier does not abort, at most “t-fraction” of S<t

component survives even in the real execution by the definition of the subspace
S<t. That is, in the verifier’s final output state conditioned on that it does not
abort, the average squared norm of a portion that comes from S<t component
is at most t. Thus, even if a simulator fails to simulate this portion, this only
impacts the accuracy of the simulation by a certain function of t, which is shown
to be O(t1/3) in the main body.

With this observation in mind, the non-aborting case simulator Simna works
as follows.

1. Run Step 1 of the verifier to obtain com and let |ψ〉V be verifier’s internal
state at this point.

324 N.-H. Chia et al.

2. Run Ext on input |ψ〉V. Abort if Ext aborts. Otherwise, obtain an extracted
opening (eExt, rExt) and a post-extraction state |ψ′〉V, and proceed to the next
step.

3. Simulate a transcript (a, eExt, z) by the honest-verifier ZK property of the
Σ-protocol.

4. Send a to the verifier whose internal state is replaced with |ψ′〉V. Let (e, r) be
the verifier’s response. Abort if (e, r) is not a valid opening to com. Otherwise
send z to the verifier.

5. Output the verifier’s final output.

By the above analysis, we can see that Simna’s output distribution is close to
the real verifier’s output distribution with an approximation error O(t1/3) con-
ditioned on that the verifier does not abort. Furthermore, the probability that
the verifier does not abort can only be changed by at most O(t1/3). If we could
set t to be a negligible function, then we would be able to achieve quantum
ZK rather than quantum ε-ZK. However, since we have to ensure that Amp’s
running time poly(λ, t−1) is polynomial in λ, we can only set t to be noticeable.
Since we can set t to be an arbitrarily small noticeable function, we can make
the approximation error O(t1/3) be an arbitrarily small noticeable function. This
means that the protocol satisfies quantum ε-ZK.

Black-Box Simulation. So far, we did not pay attention to the black-box prop-
erty of simulation. We briefly explain the definition of black-box quantum ZK
and that our simulator satisfies it. First, we define black-box quantum ZK by
borrowing the definition of quantum oracle machine by Unruh [Unr12]. Roughly,
we say that a simulator is black-box if it only accesses unitary part of a verifier
and its inverse in a black-box manner, and does not directly act on the veri-
fier’s internal registers. With this definition, one part where it is unclear if our
simulator is black-box is the amplification procedure Amp. However, by a close
inspection, we can see that Amp actually just performs sequential measurements
{Π, IV,Aux − Π} and {|0〉Aux 〈0|Aux , IV,Aux − |0〉Aux 〈0|Aux}, which can be
done by black-box access to the verifier as seen from the definition of Π. There-
fore, we can see that our simulator is black-box.

A Remark on Underlying Σ-Protocol. In the original GK protocol, any Σ-
Protocol can be used as a building block. However, in our technique, we need to
use delayed-witness Σ-protocol where the first message a can be generated with-
out knowledge of a witness due to a technical reason. An example of delayed-
witness Σ-protocol is Blum’s Graph Hamiltonicity protocol [Blu86]. Roughly,
the reason to require this additional property is for ensuring that a simulator
can perfectly simulate the first message a of the Σ-protocol when running the
extraction procedure. In the classical setting, a computationally indistinguish-
able simulation of a works, but we could not prove an analogous claim in our
setting.

A Black-Box Approach to Post-Quantum Zero-Knowledge 325

OWF-Based Construction. Next, we briefly explain our OWF-based quan-
tum ε-ZK argument. The reason why we need a stronger assumption in our first
construction is that we need to implement the commitment for the challenge
by a constant round statistically hiding commitment, which is not known to
exist from OWF. Then, a natural idea is to relax it to computationally hiding
one if we only need computational soundness. We can show that the extraction
technique as explained above also works for statistically binding commitments
with a small tweak. However, we cannot prove soundness of the protocol with-
out any modification due to a malleability issue. For explaining this, we recall
that the first message a of a Σ-protocol itself is also implemented as a com-
mitment. Then, the computational hiding of commitment does not prevent a
computationally bounded prover, which is given a commitment com to e, from
generating a “commitment” a whose committed message depends on e. Such a
dependence leads to an attack against soundness. To prevent this, an extractable
commitment scheme is used to generate a in the classical setting [PW09]. How-
ever, since it is unclear if the extractable commitment scheme used in [PW09]
is secure against quantum adversaries, we take an alternative approach that we
let a prover prove that it knows a committed message inside a by using a proof
of knowledge before a verifier opens a challenge as is done in [Gol01, Sec.4.9],
[Gol04, App.C.3]. A naive approach to implement this idea would be to use ZK
proof of knowledge, but this does not work since a constant round ZK argu-
ment is what we are trying to construct. Fortunately, we can instead use witness
indistinguishable proof of knowledge (WIPoK) with a simple OR proof trick.
Specifically, we let a prover prove that “I know committed message in a” OR “I
know witness w for x” where x is the statement being proven in the protocol. In
the proof of soundness, since we assume x is a false statement, a witness for the
latter statement does not exist. Then we can extract a committed message inside
a to break the hiding property of the commitment scheme used by the verifier if
the committed message depends on e. On the other hand, in the proof of ε-ZK
property, we can use the real witness w in an intermediate hybrid to simulate
WIPoK without using knowledge of a committed message. In such a hybrid, we
can rely on honest-verifier ZK of the Σ-protocol to change a to a simulated one
for an extracted challenge e.

Finally, we remark that though we are not aware of any work that explicitly
claims the existence of a constant round WIPoK that works for quantum provers
from OWFs, we observe that a combination of known works easily yields such
a construction. (See the full version for more details.) As a result, we obtain
constant round quantum ε-ZK argument from OWFs.

1.3 Related Work

ε-Zero-Knowledge and Related Notions. Though we are the first to consider ε-ZK
in the quantum setting, there are several works that consider ε-ZK in the classical
setting. We briefly review them. We note that all of these results are in the
classical setting, and it is unknown if similar results hold in the quantum setting.
The notion of ε-ZK (originally called ε-knowledge) was introduced by Dwork,

326 N.-H. Chia et al.

Naor, and Sahai [DNS04] in the context of concurrent ZK proofs. Bitansky, Kalai,
and Paneth [BKP18] gave a construction of 4-round ε-ZK proof for NP assuming
the existence of key-less multi-collision resistant hash function.10 Barak and
Lindell [BL02] showed the impossibility of constant round black-box ZK proof
with strict-polynomial time simulation, and observed that strict-polynomial time
simulation is possible if we relax ZK to ε-ZK. This can be understood as a
theoretical separation between ZK and ε-ZK. On the other hand, Fleischhacker,
Goyal, and Jain [FGJ18] showed that there does not exist 3-round ε-ZK proof for
NP even with non-black-box simulation under some computational assumptions,
which is the same lower bound as that for ZK proofs if we allow non-black-box
simulation.

Another relaxation of ZK is super-polynomial simulation (SPS)-ZK [Pas03],
where a simulator is allowed to run in super-polynomial time. One may find a
similarity between ε-ZK and SPS-ZK in the sense that the latter can be seen as
a variant of ε-ZK where we set the accuracy parameter ε to be negligible. On the
other hand, it has been considered that ε-ZK is much more difficult to achieve
than SPS-ZK. For example, the work of Bitansky, Khurana, and Paneth [BKP19]
gave a construction of a 2-round argument for NP that achieves a weaker notion
of ZK than ε-ZK, and the result is considered a significant breakthrough in the
area even though there is a simple construction of 2-round SPS-ZK argument
for NP [Pas03].

Several works considered other weakened notions of ZK [DNRS03,BP12,
CLP15,JKKR17,BKP19]. Some of them are weaker than ε-ZK, and others are
incomparable. For example, “weak ZK” in [BP12,CLP15] is incomparable to
ε-ZK whereas “weak ZK” in [BKP19] is weaker than ε-ZK.

Post-Quantum Zero-Knowledge with Classical Computational Soundness.
Ananth and La Placa [AL20] gave a construction of post-quantum ZK argument
for NP with classical computational soundness assuming the QLWE assump-
tion. Though such a protocol would be easy to obtain if we assume average-case
classical hardness of certain problems in BQP (e.g., factoring) in addition to
the QLWE assumption, what is interesting in [AL20] is that they only assume
the QLWE assumption.

Post-Quantum Zero-Knowledge with Trusted Setup. Several works studied (non-
interactive) post-quantum ZK proofs for NP in the common random/reference
string model [Kob03,DFS04,PS19]. Among them, Peikert and Shiehian [PS19]
proved that there exists non-interactive post-quantum ZK proof for NP in the
common reference string model assuming the QLWE assumption.11

10 The protocol achieves full-fledged ZK if we allow the simulator to take non-uniform
advice or assume a super-polynomial assumption.

11 In [PS19], they do not explicitly claim ZK against quantum adversaries. However,
since their security proof does not rely on rewinding, it immediately extends to
post-quantum security if we assume the underlying assumption against quantum
adversaries.

A Black-Box Approach to Post-Quantum Zero-Knowledge 327

Zero-Knowledge for QMA. The complexity class QMA is a quantum analogue
of NP. Broadbent, Ji, Song, and Watrous [BJSW20] gave a construction of a
ZK proof for QMA. Recently, Broadbent and Grilo [BG20] gave an alternative
simpler construction of a ZK proof for QMA. Bitansky and Shmueli [BS20]
gave a constant round ZK argument for QMA by combining the construction
of [BG20] and their post-quantum ZK argument for NP. We believe that our
technique can be used to construct a constant round ε-ZK proof for QMA by
replacing the delayed-witness Σ-protocol for NP with the delayed-witness quan-
tum Σ-protocol for QMA recently proposed by Brakerski and Yuen [BY20].12

This is beyond the scope of this paper, and we leave a formal proof as a future
work.

Several works studied non-interactive ZK proofs/arguments for QMA in
preprocessing models [CVZ20,BG20,Shm20,ACGH20].

Collapsing Hash Functions. The notion of collapsing hash functions was intro-
duced by Unruh [Unr16b] for a replacement of collision-resistant hash functions
in post-quantum setting. Unruh [Unr16a] gave a construction of a collapsing
hash function under the QLWE assumption. Actually, the construction is generic
based on any lossy function with sufficiently large “lossy rate”.13 Currently, we
are not aware of any other construction of collapsing hash function based on
standard assumptions, but any new construction of collapsing hash function
yields a new instantiation of our first construction.

Zhandry [Zha19] proved that any collision-resistant hash function that is not
collapsing yields a stronger variant of public-key quantum money (with infinitely
often security). Given the difficulty of constructing public key quantum money,
he suggested that most natural post-quantum collision-resistant hash functions
are likely already collapsing.

Relation to [CCY20]. Our idea of decomposing a verifier’s internal space into
“aborting space” and “non-aborting space” is inspired by a recent work of Chia,
Chung, and Yamakawa [CCY20]. In [CCY20], the authors consider a decomposi-
tion of a prover’s internal space into “know-answer space” and “not-know-answer
space” to prove soundness of parallel repetition version of Mahadev’s classical
verification of quantum computation protocol [Mah18b]. Though the conceptual
idea and some technical tools are similar, the ways of applying them to actual
problems are quite different. For example, in our case, we need a careful analysis
to make sure that a post-extraction state is close to the original one in some
sense while such an argument does not appear in their work since their goal is
proving soundness rather than ZK. On the other hand, their technical core is a
approximated projection to each subspace, which is not needed in this paper.

Subsequent work. Subsequently to this work, Chia, Chung, Liu, and Yamakawa
[CCLY21] proved that there does not exist a constant round post-quantum ZK
12 Actually, their protocol is delayed-input, i.e., the first message generation does not

use the statement either.
13 A lossy function is defined similarly to a lossy trapdoor function [PW08] except that

we do not require the existence of trapdoor.

328 N.-H. Chia et al.

argument for NP unless NP ∈ BQP, which is highly unlikely. This justifies the
relaxation to ε-ZK in our constructions.

2 Preliminaries

Basic Notations. We use λ to denote the security parameter throughout the
paper. For a positive integer n ∈ N, [n] denotes a set {1, 2, ..., n}. For a finite set
X , x

$← X means that x is uniformly chosen from X . A function f : N → [0, 1]
is said to be negligible if for all polynomial p and sufficiently large λ ∈ N, we
have f(λ) < 1/p(λ), said to be overwhelming if 1 − f is negligible, and said to
be noticeable if there is a polynomial p such that we have f(λ) ≥ 1/p(λ) for
sufficiently large λ ∈ N. We denote by poly an unspecified polynomial and by
negl an unspecified negligible function. We use PPT and QPT to mean (classi-
cal) probabilistic polynomial time and quantum polynomial time, respectively.
For a classical probabilistic or quantum algorithm A, y

$← A(x) means that A
is run on input x and outputs y. When A is classical probabilistic algorithm,
we denote by A(x; r) to mean the execution of A on input x and a randomness
r. When A is a quantum algorithm that takes a quantum advice, we denote by
A(x; ρ) to mean the execution of A on input x and an advice ρ. For a quantum
algorithm A, a unitary part of A means the unitary obtained by deferring all
measurements by A and omitting these measurements. We use the bold font
(like X) to denote quantum registers, and HX to mean the Hilbert space corre-
sponding to the register X. For a quantum state ρ, MX◦ρ means a measurement
in the computational basis on the register X of ρ. For quantum states ρ and ρ′,
TD(ρ, ρ′) denotes trace distance between them. When we consider a sequence
{Xλ}λ∈N of some objects (e.g., bit strings, quantum states, sets, Hilbert spaces
etc.) indexed by the security parameter λ, we often simply write X to mean Xλ

or {Xλ}λ∈N, which will be clear from the context. Similarly, for a function f in
the security parameter λ, we often simply write f to mean f(λ).

Standard Computational Models

– A PPT algorithm is a probabilistic polynomial time (classical) Turing
machine. A PPT algorithm is also often seen as a sequence of uniform
polynomial-size circuits.

– A QPT algorithm is a polynomial time quantum Turing machine. A QPT
algorithm is also often seen as a sequence of uniform polynomial-size quantum
circuits.

– An adversary (or malicious party) is modeled as a non-uniform QPT algo-
rithm A (with quantum advice) that is specified by sequences of polynomial-
size quantum circuits {Aλ}λ∈N and polynomial-size quantum advice {ρλ}λ∈N.
When A takes an input of λ-bit, A runs Aλ taking ρλ as an advice.

Interactive Quantum Machine and Oracle-Aided Quantum Machine. We rely
on the definition of an interactive quantum machine and oracle-aided quantum

A Black-Box Approach to Post-Quantum Zero-Knowledge 329

machine that is given oracle access to an interactive quantum machine following
[Unr12]. Roughly, an interactive quantum machine A is formalized by a unitary
over registers M for receiving and sending messages and A for maintaining
A’s internal state. For two interactive quantum machines A and B that share
the same message register M, an interaction between A and B proceeds by
alternating invocations of A and B while exchanging messages over M.

An oracle-aided quantum machine S given oracle access to an interactive
quantum machine A with an initial internal state ρ (denoted by SA(ρ)) is allowed
to apply unitary part of A and its inverse in a black-box manner where S can
act on A’s internal register A only through oracle access. We refer to [Unr12] for
more formal definitions of interactive quantum machines and black-box access
to them.

Indistinguishability of Quantum States. We define computational and statistical
indistinguishability of quantum states similarly to [BS20].

We may consider random variables over bit strings or over quantum states.
This will be clear from the context. For ensembles of random variables X =
{Xi}λ∈N,i∈Iλ

and Y = {Yi}λ∈N,i∈Iλ
over the same set of indices I =

⋃
λ∈N

Iλ

and a function δ, we write X comp≈ δ Y to mean that for any non-uniform QPT
algorithm A = {Aλ, ρλ}, there exists a negligible function negl such that for all
λ ∈ N, i ∈ Iλ, we have

|Pr[Aλ(Xi; ρλ)] − Pr[Aλ(Yi; ρλ)]| ≤ δ(λ) + negl(λ).

Especially, when we have the above for δ = 0, we say that X and Y are compu-
tationally indistinguishable, and simply write X comp≈ Y.

Similarly, we write X stat≈ δ Y to mean that for any unbounded time algorithm
A, there exists a negligible function negl such that for all λ ∈ N, i ∈ Iλ, we have

|Pr[A(Xi)] − Pr[A(Yi)]| ≤ δ(λ) + negl(λ).

Especially, when we have the above for δ = 0, we say that X and Y are statis-
tically indistinguishable, and simply write X stat≈ Y. Moreover, we write X ≡ Y
to mean that Xi and Yi are distributed identically for all i ∈ I14.

2.1 Post-Quantum One-Way Functions and Collapsing Hash
Functions

A post-quantum one-way function (OWF) is a classically computable function
that is hard to invert in QPT. A collapsing hash function is a quantum counter-
part of collision-resistant hash function introduced by Unruh [Unr16b]. Unruh
[Unr16a] gave a construction of collapsing hash functions based on the QLWE

14 In other words, X stat≈ δ Y means that there exists a negligible function negl such
that the trace distance between ρXi and ρYi is at most δ(λ) + negl(λ) for all λ ∈ N

and i ∈ Iλ where ρXi and ρYi denote density matrices corresponding to Xi and Yi.

330 N.-H. Chia et al.

assumption. We give formal definitions in the full version since they are only
used for constructing other cryptographic primitives and not directly used in
our constructions.

2.2 Commitment

We use commitments in our constructions. Though they are mostly standard,
we need one new security notion which we call strong collapse-binding, which
is a stronger variant of collapse-biding introduced by Unruh [Unr16b]. Roughly
speaking, this security requires that for any superposition of messages and ran-
domness corresponding the same commitment generated by an adversary, the
adversary cannot distinguish if the message and randomness registers are mea-
sured or not. The difference from the original collapse-binding property is that
both message and randomness registers are measured rather than only the mes-
sage register. We observe that the collapse-binding commitment based on collaps-
ing hash functions in [Unr16b] also satisfies the strong collapse-binding property.
Especially, there exists a strong collapse-binding commitment under the QLWE
assumption. See the full version for details of the definition and construction of
strong collapse-binding commitments.

2.3 Interactive Proof and Argument

We define interactive proofs and arguments similarly to [BS20].

Notations. For an NP language L and x ∈ L, RL(x) is the set that consists of
all (classical) witnesses w such that the verification machine for L accepts (x,w).

A (classical) interactive protocol is modeled as an interaction between inter-
active quantum machines P referred to as a prover and V referred to as a verifier
that can be implemented by PPT algorithms. We denote by 〈P (xP), V (xV)〉(x)
an execution of the protocol where x is a common input, xP is P ’s private input,
and xV is V ’s private input. We denote by OUTV 〈P (xP), V (xV)〉(x) the final
output of V in the execution. An honest verifier’s output is � indicating accep-
tance or ⊥ indicating rejection, and a quantum malicious verifier’s output may
be an arbitrary quantum state.

Definition 2.1 (Interactive Proof and Argument for NP). An interactive
proof or argument for an NP language L is an interactive protocol between a
PPT prover P and a PPT verifier V that satisfies the following:

Perfect Completeness. For any x ∈ L, and w ∈ RL(x), we have

Pr[OUTV 〈P (w), V 〉(x) = �] = 1

A Black-Box Approach to Post-Quantum Zero-Knowledge 331

Statistical/Computational Soundness. We say that an interactive protocol is sta-
tistically (resp. computationally) sound if for any unbounded-time (resp. non-
uniform QPT) cheating prover P ∗, there exists a negligible function negl such
that for any λ ∈ N and any x ∈ {0, 1}λ \ L, we have

Pr[OUTV 〈P ∗, V 〉(x) = �] ≤ negl(λ).

We call an interactive protocol with statistical (resp. computational) soundness
an interactive proof (resp. argument).

Delayed-Witness Σ-Protocol. We introduce a special type of Σ-protocol
which we call delayed-witness Σ-protocol where the first message can be gen-
erated without witness.

Definition 2.2 (Delayed-Witness Σ-Protocol). A (post-quantum) delayed-
witness Σ-protocol for an NP language L is a 3-round interactive proof for NP
with the following syntax.

Common Input: An instance x ∈ L ∩ {0, 1}λ for security parameter λ ∈ N.
P ’s Private Input: A classical witness w ∈ RL(x) for x.

1. P generates a “commitment” a and a state st. For this part, P only uses the
statement x and does not use any witness w. We denote this procedure by
(a, st) $← Σ.P1(x). Then it sends a to the verifier, and keeps st as its internal
state.

2. V chooses a“challenge” e
$← {0, 1}λ and sends e to P .

3. P generates a “response” z from st, witness w, and e. We denote this proce-
dure by z

$← Σ.P3(st, w, e). Then it sends z to V .
4. V verifies the transcript (a, e, z) and outputs � indicating acceptance or ⊥

indicating rejection. We denote this procedure by �/⊥ $← Σ.V (x, a, e, z).

We require a delayed-witness Σ-protocol to satisfy the following property in
addition to perfect completeness and statistical soundness.15

Special Honest-Verifier Zero-Knowledge. There exists a PPT simulator SimΣ

such that we have

{(a, z) : (a, st)
$← Σ.P1(x), z

$← Σ.P3(st, w, e)}λ,x,w,e

comp≈ {(a, z) : (a, z)
$← SimΣ(x, e)}λ,x,w,e

where x ∈ L ∩ {0, 1}λ, w ∈ RL(x), and e ∈ {0, 1}λ.

15 We do not require special soundness, which is often a default requirement of Σ-
protocol.

332 N.-H. Chia et al.

Instantiations. An example of a delayed-witness Σ-protocol is a parallel repe-
tition version of Blum’s Graph Hamiltonicity protocol [Blu86]. In the protocol,
we need a computationally hiding and perfectly binding non-interactive commit-
ment scheme, which exists under the QLWE assumption as noted in Sect. 2.2.
In summary, a delayed-input Σ-protocol for all NP languages exists under the
QLWE assumption.

Quantum ε-Zero-Knowledge Proof and Argument. Here, we define quan-
tum black-box ε-zero-knowledge proofs and arguments. The difference from the
definition of quantum zero-knowledge in [BS20] are:

1. (ε-Zero-Knowledge) We allow the simulator to depend on a noticeable
“accuracy parameter” ε, and allows its running time to polynomially depend
on ε−1, and

2. (Black-Box Simulation) the simulator is only given black-box access to a
malicious verifier.

Definition 2.3 (Post-Quantum Black-Box ε-Zero-Knowledge Proof
and Argument). A post-quantum black-box ε-zero-knowledge proof (resp. argu-
ment) for an NP language L is an interactive proof (resp. argument) for L that
satisfies the following property in addition to perfect completeness and statistical
(resp. computational) soundness:

Quantum Black-Box ε-Zero-Knowledge. There exists an oracle-aided QPT sim-
ulator Sim such that for any non-uniform QPT malicious verifier V ∗ =
{V ∗

λ , ρλ}λ∈N and any noticeable function ε(λ), we have

{OUTV ∗
λ
〈P (w), V ∗

λ (ρλ)〉(x)}λ,x,w

comp≈ ε {OUTV ∗
λ
(SimV ∗

λ (ρλ)(x, 1ε−1
))}λ,x,w

where λ ∈ N, x ∈ L∩{0, 1}λ, w ∈ RL(λ), and OUTV ∗
λ
(SimV ∗

λ (ρλ)(x)) is the state
in the output register of V ∗

λ after the simulated execution of V ∗
λ by Sim.

Remark 2.1. In the above definition of quantum black-box ε-zero-knowledge, we
do not consider an entanglement between auxiliary input of a malicious verifier
and distinguisher unlike the original definition of quantum zero-knowledge by
Watrous [Wat09]. However, in the full version we show that the above definition
implies indistinguishability against a distinguisher that may get an entangled
state to verifier’s auxiliary input by taking advantage of black-box simulation.

Witness Indistinguishable Proof of Knowledge. The definition of witness
indistinguishable proof of knowledge is given in the full version.

2.4 Quantum Rewinding Lemma

Watrous [Wat09] proved a lemma that enables us to amplify the success prob-
ability of a quantum algorithm under certain conditions. The following form of
the lemma is based on that in [BS20, Lemma 2.1].

A Black-Box Approach to Post-Quantum Zero-Knowledge 333

Lemma 2.1 ([Wat09,BS20]). There is an oracle-aided quantum algorithm R
that gets as input the following:

– A quantum circuit Q that takes n-input qubits in register Inp and outputs a
classical bit b (in a register outside Inp) and an m output qubits.

– An n-qubit state ρ in register Inp.
– A number T ∈ N in unary.

R(1T ,Q, ρ) executes in time T · |Q| and outputs a distribution over m-qubit
states Dρ := R(1T ,Q, ρ) with the following guarantees.

For an n-qubit state ρ, denote by Qρ the conditional distribution of the output
distribution Q(ρ), conditioned on b = 0, and denote by p(ρ) the probability that
b = 0. If there exist p0, q ∈ (0, 1), γ ∈ (0, 1

2) such that:

– Amplification executes for enough time: T ≥ log(1/γ)
4p0(1−p0)

,
– There is some minimal probability that b = 0: For every n-qubit state ρ,

p0 ≤ p(ρ),
– p(ρ) is input-independent, up to γ distance: For every n-qubit state ρ, |p(ρ)−

q| < γ, and
– q is closer to 1

2 : p0(1 − p0) ≤ q(1 − q),

then for every n-qubit state ρ,

TD(Qρ,Dρ) ≤ 4
√

γ
log(1/γ)

p0(1 − p0)
.

Moreover, R(1T ,Q, ρ) works in the following manner: It uses Q for only imple-
menting oracles that perform the unitary part of Q and its inverse, acts on Inp
only through these oracles, and the output of R is the state in the output regis-
ter of Q after the simulated execution. We note that R may directly act on Q’s
internal registers other than Inp.

Remark 2.2. The final claim of the lemma (“Moreover...”) is not explicitly stated
in previous works. In the description of R in [Wat09], the first qubit of Inp is
designated to output b, and thus the above requirement is not satisfied. However,
this can be easily avoided by just letting Q output b in a register outside Inp as
required above. Then one can see that R acts on the input register only through
Q as seen from the description of R in [Wat09] (with the above modification in
mind). Looking ahead, this is needed to show our ε-zero-knowledge simulators
are black-box.

3 Extraction Lemma

In this section, we prove our main technical lemma, which we call the extraction
lemma. Before giving a formal statement, we give an intuitive explanation. Sup-
pose that we have a two-stage quantum algorithm A = (Acom,Aopen) that works
as follows. Acom is given pp of a commitment scheme and generates a commitment

334 N.-H. Chia et al.

com, and passes a quantum state ρst in its internal register to Aopen. Aopen is given
the internal state ρst, and outputs a message-randomness pair (m, r) (which is
not necessarily a valid opening to com) along with a classical output out, and
let ρ′

st be its internal state after the execution. We call a successive execution of
Acom and Aopen a real experiment. On the other hand, we consider an extraction
experiment where an “extractor” Ext runs on input ρst in between Acom and
Aopen to “extract” a committed message mExt while generating a simulated A’s
internal state ρExt. Then we run Aopen with the internal state ρExt instead of ρst to
complete the extraction experiment. Roughly, the extraction lemma claims that
if the commitment scheme is strong collapse-binding (resp. statistically binding),
then there exists an extractor Ext such that we have m = mExt with high proba-
bility and distributions of (m, r, out, ρ′

st) in real and extraction experiments are
computationally (resp. statistically) indistinguishable conditioned on that (m, r)
is a valid opening to com.

The formal statement is given below.

Definition 3.1 (Extraction Experiments). Let Com = (Setup,Commit) be
a commitment scheme with message space M, randomness space R, commitment
space COM, and a public parameter space PP. Let A = {Acom,λ,Aopen,λ, ρλ}λ∈N

be a sequence of two-stage non-uniform QPT algorithms with the following
syntax:

Acom,λ(pp; ρλ) → (com, ρst): It takes as input pp ∈ PP and an advice ρλ, and
outputs com ∈ COM and a quantum state ρst in register ST.

Aopen,λ(ρst) → (m, r, out, ρ′
st): It takes as input a quantum state ρst in register

ST, and outputs m ∈ M, r ∈ R, a classical string out, and a quantum state
ρ′
st in register ST.

Let Ext be a QPT algorithm and δ be a function in λ. Then we define following
experiments:

Expreal[Com, A](λ)

pp
$← Setup(1λ),

(com, ρst)
$← Acom,λ(pp; ρλ),

(m, r, out, ρ′
st)

$← Aopen,λ(ρst),
If Commit(pp, m; r) �= com,

Output ⊥
Else Output (pp,com, m, r, out, ρ′

st).

Expext[Com, A,Ext](λ, δ)

pp
$← Setup(1λ),

(com, ρst)
$← Acom,λ(pp; ρλ),

(mExt, ρExt)
$← Ext(1λ, 1δ−1

, pp,com, Aopen,λ, ρst),

(m, r, out, ρ′
st)

$← Aopen,λ(ρExt),
If Commit(pp, m; r) �= com∨m �= mExt,

Output ⊥
Else Output (pp,com, m, r, out, ρ′

st).

Lemma 3.1 (Extraction Lemma). For any strong collapse-binding commit-
ment scheme Com = (Setup,Commit), there exists a QPT algorithm Ext such
that for any noticeable function δ(λ) and A = {Acom,λ,Aopen,λ, ρλ}λ∈N as in
Definition 3.1, we have

{Expreal[Com,A](λ)}λ∈N

comp≈ δ {Expext[Com,A,Ext](λ, δ)}λ∈N.

A Black-Box Approach to Post-Quantum Zero-Knowledge 335

If Com is statistically binding instead of strong collapse-binding, we have

{Expreal[Com,A](λ)}λ∈N

stat≈ δ {Expext[Com,A,Ext](λ, δ)}λ∈N.

Moreover, Ext(1λ, 1δ−1
, pp, com,Aopen,λ, ρst) works in the following manner: It

uses Aopen,λ for only implementing oracles that perform unitary part of Aopen,λ

and its inverse, and acts on ST only through black-box access to the oracles. The
second output ρExt of Ext is the state in ST after the execution. We note that
Ext may directly act on internal registers of Aopen,λ other than ST.

The above lemma abstracts our technical core, which is extraction of the ver-
ifier’s committed challenge without collapsing verifier’s internal state too much.
(One can think of A in the above lemma as the verifier and ρst and ρ′

st as ver-
ifier’s internal states before and after opening the commitment, respectively, in
our constant round ε-zero-knowledge proofs/arguments.) Since the intuition of
the proof is already explained in Sect. 1.2, we defer the proof to the full version.

4 Post-quantum ε-Zero-Knowledge Proof and Argument

In this section, we prove the following theorems.

Theorem 4.1. If the QLWE assumption holds, then there exists a 5-round post-
quantum black-box ε-zero-knowledge proof for all NP languages.

Theorem 4.2. If a collapsing hash function exists, then there exists a 5-round
post-quantum black-box ε-zero-knowledge proof for all NP languages.

Theorem 4.3. If post-quantunm OWF exists, then there exists a 9-round post-
quantum black-box ε-zero-knowledge argument for all NP languages.

In the rest of this section, we prove Theorem 4.1 and 4.2. The proof of Theo-
rem 4.3 is given in the full version.

4.1 Construction

Our construction is the same as the Golderich-Kahan protocol [GK96] except
that we instantiate the verifier’s commitment with a strong collapse-binding com-
mitment and we rely on a post-quantum delayed-witness Σ-protocol. Specifically,
our construction is built on the following ingredients:

– A commitment scheme (CBCom.Setup,CBCom.Commit) that is statistical hid-
ing and strong collapse-binding with message space {0, 1}λ and randomness
space R. As noted in Sect. 2.2, such a commitment scheme exists under the
QLWE assumption.

– A delayed-witness Σ-protocol (Σ.P1, Σ.P3, Σ.V) for an NP language L as
defined in Definition 2.2. As noted in Sect. 2.3, such a protocol exists under
the QLWE assumption.

336 N.-H. Chia et al.

Fig. 1. Constant-round post-quantum ε-zero-knowledge proof for L ∈ NP

Then our construction of post-quantum black-box ε-zero-knowledge proof is
given in Fig. 1.

The completeness of the protocol clearly follows from that of the underly-
ing Σ-protocol. In Sect. 4.2 and 4.3, we prove that this protocol satisfies sta-
tistical soundness and quantum black-box ε-zero-knowledge. Then we obtain
Theorem 4.1.

4.2 Statistical Soundness

This is essentially the same as the proof in [GK96], but we give a proof for
completeness.

For x /∈ L an unbounded-time cheating prover P ∗, we consider the following
sequence of hybrids. We denote by wini the event that P ∗ wins in Hybi.

Hyb1: This is the original game. That is,
1. P ∗ sends pp to V .
2. V chooses e

$← {0, 1}λ and r
$← R, computes com

$←
CBCom.Commit(pp, e; r), and sends com to P ∗.

3. P ∗ sends a to V .
4. V sends (e, r) to P ∗

5. P ∗ sends z to V .
We say that P ∗ wins if we have Σ.V (x, a, e, z) = �.

Hyb2: This hybrid is identical to the previous one except that in Step 4, V
uniformly chooses r′ such that com = CBCom.Commit(pp, e; r′) and sends
(e, r′) to P ∗ instead of (e, r). We note that this procedure may be inefficient.
This is just a conceptual change and thus we have Pr[win1] = Pr[win2].

A Black-Box Approach to Post-Quantum Zero-Knowledge 337

Hyb3: This hybrid is identical to the previous one except that in Step 2, V sends
com

$← CBCom.Commit(pp, 0	; r) and the generation of e is delayed to Step 4.
Since no information of r is given to P ∗ due to the modification made in Hyb2,
by the statistical hiding property of CBCom, we have |Pr[win3] − Pr[win2]| =
negl(λ).
Now, it is easy to prove Pr[win3] = negl(λ) by reducing it to the statistical
soundness of the Σ-protocol. Namely, we consider a cheating prover Σ.P ∗

against the Σ-protocol that works as follows.
1. Σ.P ∗ runs P ∗ to get the first message pp.
2. Σ.P ∗ computes com

$← CBCom.Commit(pp, 0	; r), sends com to P ∗, and
gets the third message a. Then Σ.P ∗ sends a to its own external challenger
as the first message of the Σ-protocol.

3. Upon receiving a challenge e from the external challenger, Σ.P ∗ uniformly
chooses r′ such that com = CBCom.Commit(pp, e; r′), sends (e, r′) to P ∗,
and gets the P ∗’s final message z. Then Σ.P ∗ sends z to the external
challenger.

It is easy to see that Σ.P ∗ perfectly simulates the environment in Hyb3 for
P ∗. Therefore, Σ.P ∗’s winning probability is equal to Pr[win3]. On the other
hand, by soundness of the Σ-protocol, Σ.P ∗’s winning probability is negl(λ).
Therefore we have Pr[win3] = negl(λ).

Combining the above, we have Pr[win1] = negl(λ), which means that the
protocol satisfies the statistical soundness.

4.3 Quantum Black-Box ε-Zero-Knowledge

Structure of the Proof. A high-level structure of our proof is similar to that
of [BS20]. Specifically, we first construct simulators Sima and Simna that simulate
the “aborting case” and “non-aborting case”, respectively. More precisely, Sima

correctly simulates the verifier’s view if the verifier aborts and otherwise returns
a failure symbol Fail and Simna correctly simulates the verifier’s view if the veri-
fier does not abort and otherwise returns a failure symbol Fail. Then we consider
a combined simulator Simcomb that runs either of Sima or Simna with equal prob-
ability. Then Simcomb correctly simulates the verifier’s view conditioned on that
the output is not Fail, and it returns Fail with probability almost 1/2. By apply-
ing the Watrous’ quantum rewinding lemma (Lemma2.1) to Simcomb, we can
convert it to a full-fledged simulator.

Though the above high-level structure is similar to [BS20], the analyses of
simulators Sima and Simna are completely different from [BS20] since we consider
different protocols. While the analysis of Sima is easy, the analysis of Simna is a
little more complicated as it requires the extraction lemma (Lemma 3.1), which
was developed in Sect. 3.

Proof of Quantum Black-Box ε-Zero-Knowledge. For clarity of exposition,
we first show the quantum ε-zero-knowledge property ignoring that the simulator
should be black-box. That is, we give the full description of the malicious verifier

338 N.-H. Chia et al.

and its quantum advice as part of the simulator’s input instead of only the oracle
access to the verifier. At the end of the proof, we explain that the simulator is
indeed black-box.

In quantum ε-zero-knowledge, we need to show a simulator Sim that takes
an accuracy parameter 1ε−1

as part of its input. We assume ε(λ) = o(1) without
loss of generality since the other case trivially follows from this case. Without
loss of generality, we can assume that a malicious verifier V ∗ does not terminate
the protocol before the prover aborts since it does not gain anything by declaring
the termination. We say that V ∗ aborts if it fails to provide a valid opening (e, r)
to com in Step 2b (i.e., the prover aborts in Step 2c).

First, we construct a simulator Simcomb, which returns a special symbol Fail
with probability roughly 1/2 but almost correctly simulates the output of V ∗

λ

conditioned on that it does not return Fail. The simulator Simcomb uses simulators
Sima and Simna as sub-protocols:

Simcomb(x, 1ε−1
, V ∗

λ , ρλ):
1. Choose mode

$← {a, na}.
2. Run Simmode(x, 1ε−1

, V ∗
λ , ρλ).

3. Output what Simmode outputs.
Sima(x, 1ε−1

, V ∗
λ , ρλ):16

1. Set V ∗
λ ’s internal state to ρλ.

2. Compute pp
$← CBCom.Setup(1λ) and send pp to V ∗

λ .
3. V ∗

λ returns com.
4. Compute (a, st) $← Σ.P1(x) and send a to V ∗

λ .
5. V ∗

λ returns (e, r).
6. Return Fail and abort if CBCom.Commit(pp, e; r) = com.

Otherwise, let V ∗
λ output the final output notifying that the prover aborts.

7. The final output of V ∗
λ is treated as the output Sima.

Simna(x, 1ε−1
, V ∗

λ , ρλ):
1. Set V ∗

λ ’s internal state to ρλ.
2. Compute pp

$← CBCom.Setup(1λ) and send pp to V ∗
λ .

3. V ∗
λ returns com. Let ρst be the internal state of V ∗

λ at this point.
4. Compute (eExt, ρExt)

$← Ext(1λ, 1δ−1
, pp, com,Aopen,λ, ρst) where Ext is as

in Lemma 3.1 for the commitment scheme CBCom, δ := ε2

3600 log4(λ)
, and

A = (Acom,λ,Aopen,λ) as defined below:
Acom,λ(pp; ρλ): It sets V ∗

λ ’s internal state to ρλ and sends pp to V ∗
λ . Let

com be the response by V ∗
λ and ρst be the internal state of V ∗

λ at this
point. It outputs (com, ρst).

Aopen,λ(ρst): It generates (a, st) $← Σ.P1(x),17 sets V ∗
λ ’s internal state

to ρst, and sends a to V ∗
λ . Let (e, r) be the response by V ∗

λ and let

16 Though Sima does not depend on ε, we include 1ε−1
in the input for notational

uniformity.
17 We note that we consider x to be hardwired into Aopen,λ. We also note that though

Aopen,λ does not take explicit randomness, it can generate randomness by say, apply-
ing Hadamard on its working register and then measuring it.

A Black-Box Approach to Post-Quantum Zero-Knowledge 339

ρ′
st be the internal state of V ∗

λ at this point. It outputs (e, r, out :=
(a, st), ρ′

st).
Here, we remark that V ∗

λ ’s internal register corresponds to ST and e
corresponds to m in the notation of Lemma3.1.

5. Set the verifier’s internal state to ρExt.
6. Compute (a, z) $← SimΣ(x, eExt) and send a to V ∗

λ .
7. V ∗

λ returns (e, r).
8. Return Fail and abort if e �= eExt or CBCom.Commit(pp, e; r) �= com.

Otherwise, send z to V ∗
λ .

9. The final output of V ∗
λ is treated as the output Simna.

Intuitively, Sima (resp. Simna) is a simulator that simulates the verifier’s view
in the case that verifier aborts (resp. does not abort).

More formally, we prove the following lemmas.

Lemma 4.1 (Sima simulates the aborting case). For any non-uniform QPT
malicious verifier V ∗ = {V ∗

λ , ρλ}λ∈N, let OUTV ∗
a
〈P (w), V ∗

λ (ρλ)〉(x) be the V ∗
λ ’s

final output that is replaced with Fail if V ∗
λ does not abort. Then we have

{OUTV ∗
a
〈P (w), V ∗

λ (ρλ)〉(x)}λ,x,w ≡ {Sima(x, 1ε−1
, V ∗

λ , ρλ)}λ,x,w.

where λ ∈ N, x ∈ L ∩ {0, 1}λ, and w ∈ RL(x).

Proof. Since Sima perfectly simulates the real execution for V ∗
λ when it aborts,

Lemma 4.1 immediately follows.

Lemma 4.2 (Simna simulates the non-aborting case). For any non-
uniform QPT malicious verifier V ∗ = {V ∗

λ , ρλ}λ∈N, let OUTV ∗
na
〈P (w), V ∗

λ (ρλ)〉
(x) be the V ∗

λ ’s final output that is replaced with Fail if V ∗
λ aborts. Then we have

{OUTV ∗
na
〈P (w), V ∗

λ (ρλ)〉(x)}λ,x,w

comp≈ δ {Simna(x, 1ε−1
, V ∗

λ , ρλ)}λ,x,w

where λ ∈ N, x ∈ L ∩ {0, 1}λ, and w ∈ RL(x).

Proof. Here, we analyze Simna(x, 1ε−1
, V ∗

λ , ρλ). In the following, we consider
hybrid simulators Simna,i(x,w, 1ε−1

, V ∗
λ , ρλ) for i = 1, 2, 3. We remark that they

also take the witness w as input unlike Simna.

Simna,1(x,w, 1ε−1
, V ∗

λ , ρλ): This simulator works similarly to Simna(x, 1ε−1
,

V ∗
λ , ρλ) except that it generates (a, st) $← Σ.P1(x) and z

$← Σ.P3(st, w, eExt)
instead of (a, z) $← SimΣ(x, eExt) in Step 6.
By the special honest-verifier zero-knowledge property of the Σ-protocol, we
have

{Simna(x, 1ε−1
, V ∗

λ , ρλ)}λ,x,w

comp≈ {{Simna,1(x,w, 1ε−1
, V ∗

λ , ρλ)}λ,x,w}λ,x,w

where λ ∈ N, x ∈ L ∩ {0, 1}λ, and w ∈ RL(x).

340 N.-H. Chia et al.

Simna,2(x,w, 1ε−1
, V ∗

λ , ρλ): This simulator works similarly to Simna,1(x,w, 1ε−1
,

V ∗
λ , ρλ) except that the generation of z is delayed until Step 8 and it is gen-

erated as z
$← Σ.P3(st, w, e) instead of z

$← Σ.P3(st, w, eExt).
The modification does not affect the output distribution since it outputs Fail
if e �= eExt and if e = eExt, then this simulator works in exactly the same way
as the previous one. Therefore we have

{Simna,1(x,w, 1ε−1
, V ∗

λ , ρλ)}λ,x,w ≡ {Simna,2(x,w, 1ε−1
, V ∗

λ , ρλ)}λ,x,w

where λ ∈ N, x ∈ L ∩ {0, 1}λ, and w ∈ RL(x).
Simna,3(x,w, 1ε−1

, V ∗
λ , ρλ): This simulator works similarly to

Simna,2(x,w, 1ε−1
, V ∗

λ , ρλ) except that Step 4 and 5 are deleted and the check
of e �= eExt in Step 8 is omitted. That is, it outputs Fail in Step 8 if and only
if we have CBCom.Commit(pp, e; r) �= com.
We note that eExt and ρExt are no longer used at all and thus need not be
generated.
We can see that Step 3 is exactly the same as executing (com, ρst)

$←
Acom,λ(pp; ρλ) and Step 6 and 7 of previous and this experiments are exactly
the same as executing (e, r, out = (a, st), ρ′

st)
$← Aopen,λ(ρExt) and (e, r, out =

(a, st), ρ′
st)

$← Aopen,λ(ρst), respectively where we define ρ′
st in simulated exper-

iments as V ∗
λ ’s internal state after Step 7. Moreover, the rest of execution of

the simulators can be done given (pp, com, e, r, out = (a, st), ρ′
st). Therefore,

by a straightforward reduction to Lemma3.1, we have

{Simna,2(x,w, 1ε−1
, V ∗

λ , ρλ)}λ,x,w

comp≈ δ {Simna,3(x,w, 1ε−1
, V ∗

λ , ρλ)}λ,x,w

where λ ∈ N, x ∈ L ∩ {0, 1}λ, and w ∈ RL(x).

We can see that Simna,3(x,w, 1ε−1
, V ∗

λ , ρλ) perfectly simulates the real exe-
cution for V ∗

λ and outputs V ∗
λ ’s output conditioned on that V ∗

λ does not abort,
and just outputs Fail otherwise. Therefore, we have

{Simna,3(x,w, 1ε−1
, V ∗

λ , ρλ)}λ,x,w ≡ {OUTV ∗
na
〈P (w), V ∗

λ (ρλ)〉(x)}λ,x,w

where λ ∈ N, x ∈ L ∩ {0, 1}λ, and w ∈ RL(x). Combining the above, Lemma 4.2
is proven.

By combining Lemmas 4.1 and 4.2, we can prove the following lemma.

Lemma 4.3 (Simcomb simulates V ∗
λ ’s output with probability almost

1/2). For any non-uniform QPT malicious verifier V ∗ = {V ∗
λ , ρλ}λ∈N,

let psuccomb(x, 1ε−1
, V ∗

λ , ρλ) be the probability that Simcomb(x, 1ε−1
, V ∗

λ , ρλ) does
not return Fail and Dsim,comb(x, 1ε−1

, V ∗
λ , ρλ) be a conditional distribution of

Simcomb(x, 1ε−1
, V ∗

λ , ρλ), conditioned on that it does not return Fail. There exists
a negligible function negl such that for any x = {xλ ∈ L ∩ {0, 1}λ}λ∈N, we have

∣
∣
∣psuccomb(x, 1ε−1

, V ∗
λ , ρλ) − 1/2

∣
∣
∣ ≤ δ/2 + negl(λ). (1)

A Black-Box Approach to Post-Quantum Zero-Knowledge 341

Moreover, we have

{OUTV ∗〈P (w), V ∗
λ (ρλ)〉(x)}λ,x,w

comp≈ 4δ {Dsim,comb(x, 1ε−1
, V ∗

λ , ρλ)}λ,x,w (2)

where λ ∈ N, x ∈ L ∩ {0, 1}λ, and w ∈ RL(x).

Proof. (sketch.) Intuition of the proof is very easy: By Lemma4.1 and 4.2, Sima

and Simna almost simulate the real output distribution of V ∗
λ conditioned on that

V ∗
λ aborts and does not abort, respectively. Therefore, if we randomly guess if

V ∗
λ aborts and runs either of Sima and Simna that successfully works for the

guessed case, the output distribution is close to the real output distribution of
V ∗

λ conditioned on that the guess is correct, which happens with probability
almost 1/2.

Indeed, the actual proof is based on the above idea, but for obtaining concrete
bounds as in Eq. 1 and 2, we need some tedious calculations. We give a full proof
in the full version since the proof is easy and very similar to that in [BS20] (once
we obtain Lemma 4.1 and 4.2).

Then, we convert Simcomb to a full-fledged simulator that does not return
Fail by using the quantum rewinding lemma (Lemma 2.1). Namely, we let Q be a
quantum algorithm that takes ρλ as input and outputs Simcomb(x, 1ε−1

, V ∗
λ , ρλ)

where b := 0 if and only if it does not return Fail, p0 := 1
4 , q := 1

2 , γ := δ, and
T := 2 log(1/δ). Then it is easy to check that the conditions for Lemma 2.1 is sat-
isfied by Eq. 1 in Lemma 4.3 (for sufficiently large λ). Then by using Lemma 2.1,
we can see that R(1T ,Q, ρλ) runs in time T · |Q| = poly(λ) and its output
(seen as a mixed state) has a trace distance bounded by 4

√
γ log(1/γ)

p0(1−p0)
from

Dsim,comb(x, 1ε−1
, V ∗

λ , ρλ). Since we have γ = δ = ε2

3600 log4(λ)
= 1/poly(λ), we

have 4
√

γ log(1/γ)
p0(1−p0)

< 30
√

γ log2(λ) = ε
2 for sufficiently large λ where we used

log(1/γ) = log(poly(λ)) = o(log2(λ)). Thus, by combining the above and Eq. 2
in Lemma 4.3, if we define Sim(x, 1ε−1

, V ∗
λ , ρλ) := R(1T ,Q, ρλ), then we have

OUTV ∗〈P (w), V ∗
λ (ρλ)〉(x)

comp≈ ε
2+4δ Sim(x, 1ε−1

, V ∗
λ , ρλ).

We can conclude the proof of quantum ε-zero-knowledge by noting that we have
ε
2 + 4δ < ε since we have δ = ε2

3600 log4(λ)
< ε

8 .

Black-Box Simulation. Here, we explain that the simulator Sim constructed as
above only needs black-box access to the verifier. What we need to show are that
Sim applies the unitary part UV ∗

λ
of V ∗

λ and its inverse U†
V ∗

λ
only as oracles and

Sim does not directly act on V ∗
λ ’s internal register. There are two parts of the

construction of Sim that are not obviously black-box. The first is Step 4 and 5 of
Simna where it runs the extraction algorithm Ext of Lemma 3.1, and the second
is the conversion from Simcomb to Sim using R in Lemma 2.1. In the following, we
explain that both steps can be implemented by black-box access to the verifier.

342 N.-H. Chia et al.

1. By Lemma 3.1, Ext uses the unitary part of Aopen,λ and its inverse only in
a black-box manner, and they can be implemented by black-box access to
UV ∗

λ
and U†

V ∗
λ
. Moreover, since register ST in the notation of Lemma3.1

corresponds to the internal register of V ∗
λ in our context, the lemma ensures

that Ext does not directly act on it. Also, Simna need not explicitly set V ∗
λ ’s

internal register to ρExt in Step 5 if we do the above black-box simulation
since a state in the register automatically becomes ρExt after the execution as
stated in Lemma 3.1. Therefore, this step can be implemented by black-box
access to V ∗

λ .
2. Given the above observation, we now know that both Sima and Simna only

need black-box access to V ∗
λ . This means that Q only needs black-box access

to V ∗
λ . Since R only uses Q as oracles that perform the unitary part of Q and

its inverse as stated in Lemma 2.1 and they can be implemented by black-box
access to V ∗

λ , R uses UV ∗
λ

and U†
V ∗

λ
only as oracles. Moreover, since the register

Inp in Lemma 2.1 corresponds to the internal register of V ∗
λ in our context, R

does not directly act on it.

By the above observations, we can see that the simulator Sim only needs black-
box access to V ∗

λ .

4.4 Instantiation from Collapsing Hash Function

Our construction in Fig. 1 is based on two building blocks: a statistically hid-
ing and strong collapse-binding commitment scheme and a delayed-witness Σ-
protocol. Though the former can be instantiated by a collapsing hash function,
we do not know how to instantiate the latter by a collapsing hash function since it
needs non-interactive commitment that is not known to be implied by collapsing
hash functions. However, we can just use a 4-round version of a delayed-witness
Σ-protocol where the first message “commitment” in the Σ-protocol is instan-
tiated based on Naor’s commitments [Nao91] instead of a non-interactive one.
Since Naor’s commitments can be instantiated under any OWF and collapsing
hash function is trivially also one-way, we can instantiate the 4-round version
of a delayed-witness Σ-protocol based on a collapsing hash function. We can
prove security of the construction based on 4-round version of a delayed-witness
Σ-protocol in essentially the same manner as the security proofs in Sect. 4.2
and 4.3. We also note that this does not increase the number of rounds of our
construction. Based on these observations, we obtain Theorem4.2.

Acknowledgement. NHC’s research is support by the U.S. Department of Defense
and NIST through the Hartree Postdoctoral Fellowship at QuICS and by NSF through
IUCRC Planning Grant Indiana University: Center for Quantum Technologies (CQT)
under award number 2052730. KMC’s research is partially supported by MOST, Tai-
wan, under Grant no. MOST 109-2223-E-001-001-MY3 and Executive Yuan Data
Safety and Talent Cultivation Project (ASKPQ-109-DSTCP).

A Black-Box Approach to Post-Quantum Zero-Knowledge 343

References

[ACGH20] Alagic, G., Childs, A.M., Grilo, A.B., Hung, S.-H.: Non-interactive classical
verification of quantum computation. In: Pass, R., Pietrzak, K. (eds.) TCC
2020, Part III. LNCS, vol. 12552, pp. 153–180. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-64381-2 6

[AL20] Ananth, P., La Placa, R.L.: Secure quantum extraction protocols. In: Pass,
R., Pietrzak, K. (eds.) TCC 2020, Part III. LNCS, vol. 12552, pp. 123–152.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64381-2 5

[AR06] Aharon, N., Regev, O.: Witness-preserving Amplification of QMA (lecture
note) (2006). https://cims.nyu.edu/regev/teaching/quantum fall 2005/ln/
qma.pdf

[BC90] Brassard, G., Crepeau, C.: Sorting out zero-knowledge. In: Quisquater, J.-
J., Vandewalle, J. (eds.) EUROCRYPT 1989. LNCS, vol. 434, pp. 181–191.
Springer, Heidelberg (1990). https://doi.org/10.1007/3-540-46885-4 20

[BCY91] Brassard, G., Crépeau, C., Yung, M.: Constant-round perfect zero-
knowledge computationally convincing protocols. Theor. Comput. Sci.
84(1), 23–52 (1991)

[BG20] Broadbent, A., Grilo, A.B.: QMA-hardness of consistency of local density
matrices with applications to quantum zero-knowledge. In: 61st FOCS, pp.
196–205 (2020)

[BJSW20] Broadbent, A., Ji, Z., Song, F., Watrous, J.: Zero-knowledge proof systems
for QMA. SIAM J. Comput. 49(2), 245–283 (2020)

[BKP18] Bitansky, N., Kalai, Y.T., Paneth, O.: Multi-collision resistance: a paradigm
for keyless hash functions. In: 50th ACM STOC, pp. 671–684 (2018)

[BKP19] Bitansky, N., Khurana, D., Paneth, O.: Weak zero-knowledge beyond the
black-box barrier. In: 51st ACM STOC, pp. 1091–1102 (2019)

[BL02] Barak, B., Lindell, Y.: Strict polynomial-time in simulation and extraction.
In: 34th ACM STOC, pp. 484–493 (2002)

[BLP13] Brakerski, Z., Langlois, A., Peikert, C., Regev, O., Stehlé, D.: Classical
hardness of learning with errors. In: 45th ACM STOC, pp. 575–584 (2013)

[Blu86] Blum, M.: How to prove a theorem so no one else can claim it. In: Pro-
ceedings of the International Congress of Mathematicians, pp. 1444–1451
(1986)

[BP12] Bitansky, N., Paneth, O.: Point obfuscation and 3-round zero-knowledge.
In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 190–208. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-28914-9 11

[Bra18] Brakerski, Z.: Quantum FHE (almost) as secure as classical. In: Shacham,
H., Boldyreva, A. (eds.) CRYPTO 2018, Part III. LNCS, vol. 10993, pp.
67–95. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96878-
0 3

[BS20] Bitansky, N., Shmueli, O.: Post-quantum zero knowledge in constant
rounds. In: 52nd ACM STOC, pp. 269–279 (2020)

[BY20] Brakerski, Z., Yuen, H.: Quantum Garbled Circuits. arXiv:2006.01085
(2020)

[CCLY21] Chia, N.-H., Chung, K.-M., Liu, Q., Yamakawa, T.: On the Impossi-
bility of Post-Quantum Black-Box Zero-Knowledge in Constant Rounds.
arXiv:2103.11244 (2021)

https://doi.org/10.1007/978-3-030-64381-2_6
https://doi.org/10.1007/978-3-030-64381-2_5
https://cims.nyu.edu/regev/teaching/quantum_fall_2005/ln/qma.pdf
https://cims.nyu.edu/regev/teaching/quantum_fall_2005/ln/qma.pdf
https://doi.org/10.1007/3-540-46885-4_20
https://doi.org/10.1007/978-3-642-28914-9_11
https://doi.org/10.1007/978-3-319-96878-0_3
https://doi.org/10.1007/978-3-319-96878-0_3
https://arxiv.org/abs/2006.01085
https://arxiv.org/abs/2103.11244

344 N.-H. Chia et al.

[CCY20] Chia, N.-H., Chung, K.-M., Yamakawa, T.: Classical verification of quan-
tum computations with efficient verifier. In: Pass, R., Pietrzak, K. (eds.)
TCC 2020, Part III. LNCS, vol. 12552, pp. 181–206. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-64381-2 7

[CLP15] Chung, K.-M., Lui, E., Pass, R.: From weak to strong zero-knowledge and
applications. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part I. LNCS,
vol. 9014, pp. 66–92. Springer, Heidelberg (2015). https://doi.org/10.1007/
978-3-662-46494-6 4

[CVZ20] Coladangelo, A., Vidick, T., Zhang, T.: Non-interactive zero-knowledge
arguments for QMA, with preprocessing. In: Micciancio, D., Ristenpart, T.
(eds.) CRYPTO 2020, Part III. LNCS, vol. 12172, pp. 799–828. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-56877-1 28

[DFS04] Damg̊ard, I., Fehr, S., Salvail, L.: Zero-knowledge proofs and string com-
mitments withstanding quantum attacks. In: Franklin, M. (ed.) CRYPTO
2004. LNCS, vol. 3152, pp. 254–272. Springer, Heidelberg (2004). https://
doi.org/10.1007/978-3-540-28628-8 16

[DNRS03] Dwork, C., Naor, M., Reingold, O., Stockmeyer, L.J.: Magic functions. J.
ACM 50(6), 852–921 (2003)

[DNS04] Dwork, C., Naor, M., Sahai, A.: Concurrent zero-knowledge. J. ACM 51(6),
851–898 (2004)

[FGJ18] Fleischhacker, N., Goyal, V., Jain, A.: On the existence of three round zero-
knowledge proofs. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018,
Part III. LNCS, vol. 10822, pp. 3–33. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-78372-7 1

[FS90] Feige, U., Shamir, A.: Zero knowledge proofs of knowledge in two rounds. In:
Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 526–544. Springer,
New York (1990). https://doi.org/10.1007/0-387-34805-0 46

[GK96] Goldreich, O., Kahan, A.: How to construct constant-round zero-knowledge
proof systems for NP. J. Cryptol. 9(3), 167–190 (1996)

[GMR89] Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of inter-
active proof systems. SIAM J. Comput. 18(1), 186–208 (1989)

[GMW91] Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but their
validity for all languages in NP have zero-knowledge proof systems. J. ACM
38(3), 691–729 (1991)

[Gol01] Goldreich, O.: The Foundations of Cryptography - Volume 1: Basic Tech-
niques. Cambridge University Press, Cambridge (2001)

[Gol04] Goldreich, O.: The Foundations of Cryptography - Volume 2: Basic Appli-
cations. Cambridge University Press, Cambridge (2004)

[Gra97] Graaf, J.V.D.: Towards a formal definition of security for quantum proto-
cols. PhD thesis, University of Montreal, Montreal, Canada (1997)

[HILL99] H̊astad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom gener-
ator from any one-way function. SIAM J. Comput. 28(4), 1364–1396 (1999)

[JKKR17] Jain, A., Kalai, Y.T., Khurana, D., Rothblum, R.: Distinguisher-dependent
simulation in two rounds and its applications. In: Katz, J., Shacham, H.
(eds.) CRYPTO 2017, Part II. LNCS, vol. 10402, pp. 158–189. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-63715-0 6

[Kob03] Kobayashi, H.: Non-interactive quantum perfect and statistical zero-
knowledge. In: Ibaraki, T., Katoh, N., Ono, H. (eds.) ISAAC 2003. LNCS,
vol. 2906, pp. 178–188. Springer, Heidelberg (2003). https://doi.org/10.
1007/978-3-540-24587-2 20

https://doi.org/10.1007/978-3-030-64381-2_7
https://doi.org/10.1007/978-3-662-46494-6_4
https://doi.org/10.1007/978-3-662-46494-6_4
https://doi.org/10.1007/978-3-030-56877-1_28
https://doi.org/10.1007/978-3-540-28628-8_16
https://doi.org/10.1007/978-3-540-28628-8_16
https://doi.org/10.1007/978-3-319-78372-7_1
https://doi.org/10.1007/978-3-319-78372-7_1
https://doi.org/10.1007/0-387-34805-0_46
https://doi.org/10.1007/978-3-319-63715-0_6
https://doi.org/10.1007/978-3-540-24587-2_20
https://doi.org/10.1007/978-3-540-24587-2_20

A Black-Box Approach to Post-Quantum Zero-Knowledge 345

[Mah18a] Mahadev, U.: Classical homomorphic encryption for quantum circuits. In:
59th FOCS, pp. 332–338 (2018)

[Mah18b] Mahadev, U.: Classical verification of quantum computations. In: 59th
FOCS, pp. 259–267 (2018)

[Nao91] Naor, M.: Bit commitment using pseudorandomness. J. Cryptol. 4(2), 151–
158 (1991)

[NWZ09] Nagaj, D., Wocjan, P., Zhang, Y.: Fast Amplification of QMA.
arXiv:0904.1549 (2009)

[Pas03] Pass, R.: Simulation in quasi-polynomial time, and its application to proto-
col composition. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656,
pp. 160–176. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-
39200-9 10

[Pei09] Peikert, C.: Public-key cryptosystems from the worst-case shortest vector
problem: extended abstract. In: 41st ACM STOC, pp. 333–342 (2009)

[PS19] Peikert, C., Shiehian, S.: Noninteractive zero knowledge for NP from (plain)
learning with errors. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO
2019, Part I. LNCS, vol. 11692, pp. 89–114. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-26948-7 4

[PW08] Peikert, C., Waters, B.: Lossy trapdoor functions and their applications.
In: 40th ACM STOC, pp. 187–196 (2008)

[PW09] Pass, R., Wee, H.: Black-box constructions of two-party protocols from
one-way functions. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp.
403–418. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-
00457-5 24

[Reg09] Regev, O.: On lattices, learning with errors, random linear codes, and cryp-
tography. J. ACM 56(6), 34:1-34:40 (2009)

[Shm20] Shmueli, O.: Multi-theorem (Malicious) Designated-Verifier NIZK for
QMA. arXiv:2007.12923 (2020)

[SV03] Sahai, A., Vadhan, S.P.: A complete problem for statistical zero knowledge.
J. ACM 50(2), 196–249 (2003)

[Unr12] Unruh, D.: Quantum proofs of knowledge. In: Pointcheval, D., Johansson,
T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 135–152. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4 10

[Unr16a] Unruh, D.: Collapse-binding quantum commitments without random ora-
cles. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016, Part II. LNCS,
vol. 10032, pp. 166–195. Springer, Heidelberg (2016). https://doi.org/10.
1007/978-3-662-53890-6 6

[Unr16b] Unruh, D.: Computationally binding quantum commitments. In: Fischlin,
M., Coron, J.-S. (eds.) EUROCRYPT 2016, Part II. LNCS, vol. 9666, pp.
497–527. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-
49896-5 18

[Wat09] Watrous, J.: Zero-knowledge against quantum attacks. SIAM J. Comput.
39(1), 25–58 (2009)

[Zha19] Zhandry, M.: Quantum lightning never strikes the same state twice. In:
Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019, Part III. LNCS, vol. 11478,
pp. 408–438. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
17659-4 14

https://arxiv.org/abs/0904.1549
https://doi.org/10.1007/3-540-39200-9_10
https://doi.org/10.1007/3-540-39200-9_10
https://doi.org/10.1007/978-3-030-26948-7_4
https://doi.org/10.1007/978-3-030-26948-7_4
https://doi.org/10.1007/978-3-642-00457-5_24
https://doi.org/10.1007/978-3-642-00457-5_24
https://arxiv.org/abs/2007.12923
https://doi.org/10.1007/978-3-642-29011-4_10
https://doi.org/10.1007/978-3-662-53890-6_6
https://doi.org/10.1007/978-3-662-53890-6_6
https://doi.org/10.1007/978-3-662-49896-5_18
https://doi.org/10.1007/978-3-662-49896-5_18
https://doi.org/10.1007/978-3-030-17659-4_14
https://doi.org/10.1007/978-3-030-17659-4_14

On the Concurrent Composition
of Quantum Zero-Knowledge

Prabhanjan Ananth1(B), Kai-Min Chung2, and Rolando L. La Placa3

1 UCSB, Santa Barbara, USA
prabhanjan@cs.ucsb.edu

2 Academia Sinica, Taipei City, Taiwan
kmchung@iis.sinica.edu.tw

3 MIT, Cambridge, USA
rlaplaca@mit.edu

Abstract. We study the notion of zero-knowledge secure against quan-
tum polynomial-time verifiers (referred to as quantum zero-knowledge)
in the concurrent composition setting. Despite being extensively studied
in the classical setting, concurrent composition in the quantum setting
has hardly been studied.

We initiate a formal study of concurrent quantum zero-knowledge.
Our results are as follows:

– Bounded Concurrent QZK for NP and QMA: Assuming post-
quantum one-way functions, there exists a quantum zero-knowledge
proof system for NP in the bounded concurrent setting. In this set-
ting, we fix a priori the number of verifiers that can simultaneously
interact with the prover. Under the same assumption, we also show
that there exists a quantum zero-knowledge proof system for QMA
in the bounded concurrency setting.

– Quantum Proofs of Knowledge: Assuming quantum hardness
of learning with errors (QLWE), there exists a bounded concurrent
zero-knowledge proof system for NP satisfying quantum proof of
knowledge property.
Our extraction mechanism simultaneously allows for extrac-
tion probability to be negligibly close to acceptance probability
(extractability) and also ensures that the prover’s state after extrac-
tion is statistically close to the prover’s state after interacting with
the verifier (simulatability).
Even in the standalone setting, the seminal work of [Unruh EURO-
CRYPT’12], and all its followups, satisfied a weaker version of
extractability property and moreover, did not achieve simulatabil-
ity. Our result yields a proof of quantum knowledge system for QMA
with better parameters than prior works.

1 Introduction

Zero-knowledge [GMR85] is one of the foundational concepts in cryptography. A
zero-knowledge system for NP is an interactive protocol between a prover P , who
c© International Association for Cryptologic Research 2021
T. Malkin and C. Peikert (Eds.): CRYPTO 2021, LNCS 12825, pp. 346–374, 2021.
https://doi.org/10.1007/978-3-030-84242-0_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-84242-0_13&domain=pdf
https://doi.org/10.1007/978-3-030-84242-0_13

On the Concurrent Composition of Quantum Zero-Knowledge 347

receives as input an instance x and a witness w, and a verifier V who receives as
input an instance x. The (classical) zero-knowledge property roughly states that
the view of the malicious probabilistic polynomial-time verifier V ∗ generated
after interacting with the prover P can be simulated by a PPT simulator, who
doesn’t know the witness w.

Protocol Composition in the Quantum Setting. Typical zero-knowledge proof sys-
tems only focus on the case when the malicious verifier is classical. The potential
threat of quantum computers forces us to revisit this definition. There are already
many works [ARU14,BJSW16,BG19,BS20,ALP20,VZ20,ABG+20], starting
with the work of Watrous [Wat09], that consider the definition of zero-knowledge
against verifiers modeled as quantum polynomial-time (QPT) algorithms; hence-
forth this definition will be referred to as quantum zero-knowledge. However,
most of these works study quantum zero-knowledge only in the standalone set-
ting. These constructions work under the assumption that the designed protocols
work in isolation. That is, a standalone protocol is one that only guarantees secu-
rity if the parties participating in an execution of this protocol do not partake
in any other protocol execution. This is an unrealistic assumption. Indeed, the
standalone setting has been questioned in the classical cryptography literature
by a large number of works [DS98,DCO99,Can01,CLOS02,CF01,RK99,BS05,
DNS04,PRS02,Lin03,Pas04,PV08,PTV14,GJO+13,CLP15,FKP19] that have
focussed on designing cryptographic protocols that still guarantee security even
when composed with the other protocols.

A natural question to ask is whether there exist quantum zero-knowledge
protocols (without any setup) that still guarantee security under composition.
Barring a few works [Unr10,JKMR06,ABG+20], this direction has largely been
unaddressed. The couple of works [JKMR06,ABG+20] that do address composi-
tion only focus on parallel composition; in this setting, all the verifiers interacting
with the prover should send the ith round messages before the (i + 1)th round
begins. The setting of parallel composition is quite restrictive; it disallows the
adversarial verifiers from arbitrarily interleaving their messages with the prover.
A more reasonable scenario, also referred to as concurrent composition, would
be to allow the adversarial verifiers to choose the scheduling of their messages in
any order they desire. So far, there has been no work that addresses concurrent
composition in the quantum setting.

Concurrent Quantum Zero-Knowledge. In the concurrent setting, quantum zero-
knowledge is defined as follows: there is a single prover, who on input instance-
witness pair (x,w), can simultaneously interact with multiple verifiers, where
all these verifiers are controlled by a single malicious quantum polynomial-time
adversary. All the verifiers can potentially share an entangled state. Moreover,
they can arbitrarily interleave their messages when they interact with the prover.
For example, suppose the prover sends a message to the first verifier, instead of
responding, it could let the second verifier send a message, after which the third
verifier interacts with the prover and so on.

348 P. Ananth et al.

We say that zero-knowledge in this setting holds if there exists a quantum
polynomial-time simulator (with access to the initial quantum state of all the
verifiers) that can simultaneously simulate the interaction between the prover
and all the verifiers.

We ask the following question in this work:

Do there exist quantum zero-knowledge proof systems that are secure under
concurrent composition?

1.1 Our Contributions

Bounded Concurrent QZK for NP. We initiate a formal study of concurrent
composition in the quantum setting. We work in the bounded concurrent set-
ting: where the prover interacts only with a bounded number of verifiers where
this bound is fixed at the time of protocol specification. This setting has been
well studied in the classical concurrency literature [Lin03,PR03,Pas04,PTW09].
Moreover, we note that the only other existing work that constructs quantum
zero-knowledge against multiple verifiers albeit in the parallel composition set-
ting, namely [ABG+20]1, also works in the bounded setting. We prove the fol-
lowing.

Theorem 1 (Informal). Assuming the existence of post-quantum one-way
functions2, there exists a bounded concurrent quantum zero-knowledge proof sys-
tem for NP. Additionally, our protocol is a public coin proof system.

Our construction satisfies quantum black-box zero-knowledge3. We note that
achieving public-coin unbounded concurrrent ZK is impossible [PTW09] even in
the classical setting.

Quantum Proofs of Knowledge. Our construction, described above, only satis-
fies the standard soundness guarantee. A more desirable property is quantum
proof of knowledge. Roughly speaking, proof of knowledge states the following:
suppose a malicious (computationally unbounded) prover can convince a verifier
to accept an instance x with probability ε. Let the state of the prover at the end
of interaction with the verifier be |Ψ〉4. Then there exists an efficient extractor,

1 They achieve bounded parallel ZK under the assumption of quantum learning with
errors and circular security assumption in constant rounds. While the notion they
consider is sufficient for achieving MPC, the parallel QZK constructed by [ABG+20]
has the drawback that the simulator aborts even if one of the verifiers abort. Whereas
the notion of bounded concurrent QZK we consider allows for the simulation to
proceed even if one of the sessions abort. On the downside, our protocol runs in
polynomially many rounds.

2 That is, one-way functions secure against (non-uniform) quantum polynomial-time
algorithms.

3 The simulator has oracle access to the unitary V and V †, where V is the verifier.
4 We work in the purified picture and thus we can assume that the output of the

prover is a pure state.

On the Concurrent Composition of Quantum Zero-Knowledge 349

with black-box access to the prover, that can output a witness w for x with prob-
ability δ. Additionally, it also outputs a quantum state |Φ〉. Ideally, we require
the following two conditions to hold: (i) |ε − δ| is negligible and, (ii) the states
|Ψ〉 and |Φ〉 are close in trace distance; this property is also referred to as simu-
latability property. Unruh [Unr12] presented a construction of quantum proofs of
knowledge; their construction satisfies (i) but not (ii). Indeed, the prover’s state,
after it interacts with the extractor, could be completely destroyed. Condition
(ii) is especially important if we were to use quantum proofs of knowledge pro-
tocols as a sub-routine inside larger protocols, for instance in secure multiparty
computation protocols.

Since Unruh’s work, there have been other works that present constructions
that satisfy both the above conditions but they demonstrate extraction only
against computationally bounded adversaries [HSS11,BS20,ALP20]. Thus, it has
been an important open problem to design quantum proofs of knowledge satis-
fying both of the above conditions.

We show the following.

Theorem 2 (Informal). Assuming that learning with errors is hard against
QPT algorithms (QLWE), there exists a bounded concurrent quantum zero-
knowledge proof system for NP satisfying quantum proofs of knowledge property.

Unlike all of the previous quantum proof of knowledge protocols which make use
of Unruh’s rewinding technique, we make black-box use of Watrous rewinding
lemma in conjunction with novel cryptographic tools to prove the above theorem.
On the downside, our protocol runs in polynomially many rounds, while Unruh’s
technique works for the existing 3-message Σ protocols.

Bounded Concurrent QZK for QMA. We also show how to extend our result to
achieve bounded concurrrent zero-knowledge proof system for QMA [KSVV02]
(a quantum-analogue of MA).

We show the following.

Theorem 3 (Informal). Assuming post-quantum one-way functions, there
exists a bounded concurrent quantum zero-knowledge proof system for QMA.

This improves upon the existing QZK protocols for QMA [BJSW16,BG19,
CVZ20,BS20] which only guarantee security in the standalone setting.

Our construction considers a simplified version of the framework
of [BJSW16]5 and instantiates the underlying primitives in their protocol with
bounded concurrent secure constructions.

We could combine the recent work of Coladangelo et al. [CVZ20] with our
quantum proof of knowledge system for NP to obtain a proof of quantum knowl-
edge system for QMA. This result yields better parameters than the one guaran-
teed in prior works [CVZ20,BG19]. Specifically, if the malicious prover convinces
5 For the reader familiar with [BJSW16], we consider a coin-flipping protocol secure

against explainable adversaries as against malicious adversaries as considered
in [BJSW16].

350 P. Ananth et al.

the verifier with probability negligibly close to 1 then the extractor (in our result)
can extract a state that is negligibly close to the witness state whereas the pre-
vious works did not have this guarantee.

1.2 Guide to the Reader

We present the overview of our results in the technical sections, just before
presenting a formal description of the results.

– In Sect. 2, we present the definitions of concurrent QZK proof systems for NP
and QMA. In the same section, we present definitions of quantum proof of
knowledge.

– Bounded Concurrent QZK: In Sect. 3, we present the construction of
bounded concurrent QZK for NP. We first begin with an overview of the
construction and then present the formal construction in the same section.
The proofs are presented in the Appendix (see the relevant references at the
end of Sect. 3).

– QZK Proof of Knowledge: In Sect. 4.1, we present the construction of
bounded concurrent QZK proof of knowledge for NP. We first begin with
an overview of the construction and then present the formal construction in
the same section. This construction involves the tool of oblivious transfer;
we present the definition and the construction of oblivious transfer in the
Appendix.

– Bounded Concurrent QZK for QMA: Finally, we present a construction
of bounded concurrent QZK for QMA in Sect. 5.

2 Concurrent Quantum ZK Proof Systems: Definitions

We denote the security parameter by λ.
We denote the (classical) computational indistiguishability of the two distri-

butions D0 and D1 by D0 ≈c,ε D1, where ε is the distinguishing advantage. In
the case when ε is negligible, we drop ε from this notation.

We define two distributions D0 and D1 to be quantum computationally indis-
tinguishable if they cannot be distinguished by QPT distinguishers; we define
this formally in the full version. We denote this by D0 ≈Q,ε D1, where ε is
the distinguishing advantage. We denote the process of an algorithm A being
executed on input a sample from a distribution D by the notation A(D).

Languages and Relations. A language L is a subset of {0, 1}∗. A (classical)
relation R is a subset of {0, 1}∗ × {0, 1}∗. We use the following notation:

– Suppose R is a relation. We define R to be efficiently decidable if there exists
an algorithm A and fixed polynomial p such that (x,w) ∈ R if and only if
A(x,w) = 1 and the running time of A is upper bounded by p(|x|, |w|).

On the Concurrent Composition of Quantum Zero-Knowledge 351

– Suppose R is an efficiently decidable relation. We say that R is a NP relation
if L(R) is a NP language, where L(R) is defined as follows: x ∈ L(R) if and
only if there exists w such that (x,w) ∈ R and |w| ≤ p(|x|) for some fixed
polynomial p.

In Sect. 2.1, we define the notion of bounded concurrent QZK for NP. In Sect. 2.2,
we define the notion of bounded concurrent ZK for QMA. We present the defi-
nition of quantum proof of knowledge in Sect. 2.3.

2.1 Bounded Concurrent QZK for NP

We start by recalling the definitions of the completeness and soundness proper-
ties of a classical interactive proof system.

Definition 1 (Proof System). Let Π be an interactive protocol between a clas-
sical PPT prover P and a classical PPT verifier V . Let R(L) be the NP relation
associated with Π.

Π is said to satisfy completeness if the following holds:

– Completeness: For every (x,w) ∈ R(L),

Pr[Accept ← 〈P (x,w), V (x)〉] ≥ 1 − negl(λ),

for some negligible function negl.

Π is said to satisfy (unconditional) soundness if the following holds:

– Soundness: For every prover P ∗ (possibly computationally unbounded),
every x /∈ R(L),

Pr [Accept ← 〈P ∗(x), V (x)〉] ≤ negl(λ),

for some negligible function negl.

Remark 1. We will later define a stronger property called proof of knowledge
property that subsumes the soundness property.

To define (bounded) concurrent QZK, we first define Q-session adversarial ver-
ifiers. Roughly speaking, a Q-session adversarial verifier is one that invokes Q
instantiations of the protocol and in each instantiation, the adversarial verifier
interacts with the honest prover. In particular, the adversarial verifier can inter-
leave its messages from different instantiations.

Definition 2 (Q-session Quantum Adversary). Let Q ∈ N. Let Π be an
interactive protocol between a (classical) PPT prover and a (classical) PPT ver-
ifier V for the relation R(L). Let (x,w) ∈ R(L). We say that an adversarial
non-uniform QPT verifier V ∗ is a Q-session adversary if it invokes Q ses-
sions with the prover P (x,w).

Moreover, we assume that the interaction of V ∗ with P is defined as follows:
denote by V ∗

i to be the verifier algorithm used by V ∗ in the ith session and denote

352 P. Ananth et al.

by Pi to be the ith invocation of P (x,w) interacting with V ∗
i . Every message sent

by V ∗ is of the form
(
(1,msg1) , . . . ,

(
Q,msgQ

))
, where msgi is defined as:

msgi =
{
N/A, if V ∗

i doesn’t send a message,
(t, z), if V ∗

i sends z in the round t

Pi responds to msgi. If msgi = N/A then it sets msg′
i = N/A. If V ∗

i has sent the
messages in the correct order6, then Pi applies the next message function on its
own private state and msgi to obtain z′ and sets msg′

i = (t + 1, z′). Otherwise,
it sets msg′

i = (⊥,⊥). Finally, V ∗ receives
(
(1,msg′

1), . . . , (Q,msg′
Q)

)
. In total,

V ∗ exchanges �prot · Q number of messages, �prot is the number of the messages
in the protocol.

While the above formulation of the adversary is not typically how concurrent
adversaries are defined in the concurrency literature, we note that this formula-
tion is without loss of generality and does capture all concurrent adversaries.

We define quantum ZK for NP in the concurrent setting below.

Definition 3 (Concurrent Quantum ZK for NP). An interactive protocol
Π between a (classical) PPT prover P and a (classical) PPT verifier V for
a language L ∈ NP is said to be a concurrent quantum zero-knowledge
(QZK) proof system if it satisfies completeness, unconditional soundness and
the following property:

– Concurrent Quantum Zero-Knowledge: For every sufficiently large λ ∈ N,
every polynomial Q = Q(λ), every Q-session QPT adversary V ∗ there exists a
QPT simulator Sim such that for every (x,w) ∈ R(L), poly(λ)-qubit bipartite
advice state, ρAB, on registers A and B, the following holds:

ViewV ∗ 〈P (x,w), V ∗(x, ρAB)〉 ≈Q Sim(x, ρAB)

where V ∗ and Sim only have access to register A. In other words, only the
identity is performed on register B.

In this work, we consider a weaker setting, called bounded concurrency. The
number of sessions, denoted by Q, in which the adversarial verifier interacts
with the prover is fixed ahead of time and in particular, the different complexity
measures of a protocol can depend on Q.

Definition 4 (Bounded Concurrent Quantum ZK for NP). Let Q ∈ N.
An interactive protocol between a (classical) probabilistic polynomial time (in Q)
prover P and a (classical) probabilistic polynomial time (in Q) verifier V for
a language L ∈ NP is said to be a bounded concurrent quantum zero-
knowledge (QZK) proof system if it satisfies completeness, unconditional
soundness and the following property:

6 That is, it has sent (1, z1) first, then (2, z2) and so on.

On the Concurrent Composition of Quantum Zero-Knowledge 353

– Bounded Concurrent Quantum Zero-Knowledge: For every sufficiently large
λ ∈ N, every Q-session concurrent QPT adversary V ∗, there exists a QPT
simulator Sim such that for every (x,w) ∈ R(L), poly(λ)-qubit bipartite
advice state, ρAB, on registers A and B, the following holds:

ViewV ∗ 〈P (x,w), V ∗(x, ρAB)〉 ≈Q Sim(x, ρAB)

where V ∗ and Sim only have access to register A. In other words, only the
identity is performed on register B.

2.2 Bounded Concurrent QZK for QMA

We start by recalling the definitions of completeness and soundness properties
of a quantum interactive proof system for promise problems.

Definition 5 (Interactive Quantum Proof System for QMA). Π is an
interactive proof system between a QPT prover P and a QPT verifier V , asso-
ciated with a promise problem A = Ayes ∪ Ano ∈ QMA, if the following two
conditions are satisfied.

– Completeness: For all x ∈ Ayes, there exists a poly(|x|)-qubit state |ψ〉 such
that the following holds:

Pr[Accept ← 〈P (x, |Ψ〉), V (x)〉] ≥ 1 − negl(|x|),
for some negligible function negl.

Π is said to satisfy (unconditional) soundness if the following holds:

– Soundness: For every prover P ∗ (possibly computationally unbounded),
every x ∈ Ano, the following holds:

Pr [Accept ← 〈P ∗(x), V (x)〉] ≤ negl(|x|),
for some negligible function negl.

To define bounded concurrent QZK for QMA, we first define the notion of Q-
session adversaries.

Definition 6 (Q-session adversary for QMA). Let Q ∈ N≥1. Let Π be a
quantum interactive protocol between a QPT prover and a QPT verifier V for a
QMA promise problem A = Ayes ∪Ano. We say that an adversarial non-uniform
QPT verifier V ∗ is a Q-session adversary if it invokes Q sessions with the prover
P (x, |ψ〉).

As in the case of concurrent verifiers for NP, we assume that the interac-
tion of V ∗ with P is defined as follows: denote by V ∗

i to be the verifier algo-
rithm used by V ∗ in the ith session and denote by Pi to be the ith invoca-
tion of P (x,w) interacting with V ∗

i . Every message sent by V ∗ is of the form(
(1,msg1) , . . . ,

(
Q,msgQ

))
, where msgi is defined as:

msgi =
{
N/A, if V ∗

i doesn’t send a message,
(t, ρ), if V ∗

i sends the state ρ in the round t

354 P. Ananth et al.

Pi responds to msgi. If msgi = N/A then it sets msg′
i = N/A. If V ∗

i has sent
the messages in the correct order, Pi applies the next message function (modeled
as a quantum circuit) on msgi and its private quantum state to obtain ρ′ and
sets msg′

i = (t + 1, ρ′). Otherwise, it sets msg′
i = (⊥,⊥). Finally, V ∗ receives(

(1,msg′
1), . . . , (Q,msg′

Q)
)
. In total, V ∗ exchanges �prot · Q number of messages,

where �prot is the number of the messages in the protocol.

Remark 2. To invoke Q different sessions, we assume that the prover has Q
copies of the witness state.

Remark 3. We assume, without loss of generality, the prover will measure the
appropriate registers to figure out the round number for each verifier. This is
because the malicious verifier can always send the superposition of the ordering
of messages.

We define quantum ZK for QMA in the bounded concurrent setting below.

Definition 7 (Bounded Concurrent QZK for QMA). Let Q ∈ N. An
interactive protocol Π between a QPT prover P (running in time polynomial in
Q) and a QPT verifier V (running in time polynomial in Q) for a QMA promise
problem A = Ayes∪Ano if it satisfies completeness, unconditional soundness and
the following property:

– Bounded Concurrent Quantum Zero-Knowledge: For every suffi-
ciently large λ ∈ N, for every Q-session QPT adversary V ∗, there exists
a QPT simulator Sim such that for every x ∈ Ayes and any witness |ψ〉,
poly(λ)-qubit bipartite advice state, ρAB, on registers A and B, the following
holds:

ViewV ∗ 〈P (x, |ψ〉), V ∗(x, ρAB)〉 ≈Q Sim(x, ρAB)

where V ∗ and Sim only have access to register A. In other words, only the
identity is performed on register B.

2.3 Quantum Proofs of Knowledge

We present the definition of quantum proof of knowledge; this is the traditional
notion of proof of knowledge, except that the unbounded prover could be a
quantum algorithm and specifically, its intermediate states could be quantum
states.

Definition 8 (Quantum Proof of Knowledge). We say that an interac-
tive proof system (P, V) for a NP relation R satisfies (ε, δ)-proof of knowledge
property if the following holds: suppose there exists a malicious (possibly compu-
tationally unbounded prover) P ∗ such that for every x, and quantum state ρ it
holds that:

Pr
[
(ρ̃, decision) ← 〈P ∗(x, ρ), V (x)〉

∧
decision = accept

]
= ε

On the Concurrent Composition of Quantum Zero-Knowledge 355

Then there exists a quantum polynomial-time extractor Ext, such that:

Pr
[
(ρ̃′, decision, w) ← Ext (x, ρ)

∧
decision = accept

]
= δ

Moreover, we require T (ρ̃, ρ̃′) = negl(|x|), where T (·, ·) denotes the trace distance
and negl is a negligible function.

We drop (ε, δ) from the notation if |δ−ε| ≤ negl(|x|), for a negligible function
negl.

Remark 4 (Comparison with Unruh’s Proof of Knowledge [Unr12]). Our defini-
tion is a special case of Unruh’s quantum proof of knowledge definition. Any
proof system satisfying our definition is a quantum proof of knowledge system
(according to Unruh’s definition) with knowledge error κ, for any κ. Moreover,
in Unruh’s definition, the extraction probability is allowed to be polynomially
related to the acceptance probability whereas in our case, the extraction proba-
bility needs to be negligibly close to the acceptance probability.

Definition 9 (Concurrent Quantum ZK PoK). We say that a concurrent
(resp., bounded) quantum ZK is a concurrent (resp., bounded) QZKPoK if it
satisfies proof of knowledge property.

2.4 Intermediate Tool: Quantum Witness-Indistinguishable Proofs
for NP

For our construction, we use a proof system that satisfies a property called
quantum witness indistinguishability. We recall this notion below.

Definition 10 (Quantum Witness-Indistinguishability). An interactive
protocol between a (classical) PPT prover P and a (classical) PPT verifier V for
a language L ∈ NP is said to be a quantum witness-indistinguishable proof
system if in addition to completeness, unconditional soundness, the following
holds:

– Quantum Witness-Indistinguishability: For every x ∈ L and w1, w2

such that (x,w1) ∈ R(L) and (x,w2) ∈ R(L), for every QPT verifier V ∗ with
poly(λ)-qubit advice ρ, the following holds:

{ViewV ∗ (〈P (x,w1), V ∗(x, ρ))} ≈Q {ViewV ∗ (〈P (x,w2), V ∗(x, ρ))}

Instantiation. By suitably instantiating the constant round WI argument sys-
tem of Blum [Blu86] with statistically binding commitments (which in turn can
be based on post-quantum one-way functions [Nao91]), we achieve a 4 round
quantum WI proof system for NP. Moreover, this proof system is a public-coin
proof system; that is, the verifier’s messages are sampled uniformly at random.

3 Bounded Concurrent QZK for NP

We first give an overview of bounded concurrent QZK for NP.

356 P. Ananth et al.

3.1 Bounded Concurrent QZK for NP

Black Box QZK via Watrous Rewinding. The traditional rewinding technique
that has been used to prove powerful results on classical zero-knowledge cannot
be easily ported to the quantum setting. The fundamental reason behind this
difficulty is the fact that to carry out rewinding, it is necessary to clone the
state of the verifier. While cloning comes for free in the classical setting, the
no-cloning theorem of quantum mechanics prevents us from being able to clone
arbitrary states. Nonetheless, the seminal work of Watrous [Wat09] demonstrates
that there are rewinding techniques that are amenable to the quantum setting.
Watrous used this technique to present the first construction of quantum zero-
knowledge for NP. This technique is so powerful that all quantum zero-knowledge
protocols known so far (including the ones with non-black box simulation [BS20,
ABG+20]!) either implicitly or explicitly use this technique.

We can abstractly think of Watrous technique as follows: to prove that a
classical protocol is quantum zero-knowledge, first come up with a (classical)
PPT simulator that simulates a (classical) malicious PPT verifier. The classical
simulator needs to satisfy the following two conditions:

– Oblivious Rewinding: There is a distribution induced on the decision bits
of the simulator to rewind in any given round i. This distribution could poten-
tially depend on the randomness of the simulator and also the state of the
verifier.
The oblivious rewinding condition requires that this distribution should be
independent of the state of the verifier. That is, this distribution should
remain the same irrespective of the state of the verifier7.

– No-recording: Before rewinding any round, the simulator could record (or
remember) the transcript generated so far. This recorded transcript along
with the rewound transcript will be used for simulation. For instance, in
Goldreich and Kahan [GK96], the simulator first commits to garbage values
and then waits for the verifier to decommit its challenges. The simulator
then records the decommitments before rewinding and then changing its own
commitments based on the decommitted values.
The no-recording condition requires the following to hold: in order for the
simulator to rewind from point i to point j (i > j), the simulator needs to
forget the transcript generated from jth round to the ith round. Note that
the simulator of [GK96] does not satisfy the no-recording condition.

Once such a classical simulator is identified, we can then simulate quantum ver-
ifiers as follows: run the classical simulator and the quantum verifier8 in super-
position and then at the end of each round, measure the appropriate register to
figure out whether to rewind or not. The fact that the distribution associated
with the decision bits are independent of the verifier’s state is used to argue
7 A slightly weaker property where the distribution is “approximately” independent of

the state of the verifier also suffices.
8 Without loss of generality, we can consider verifiers whose next message functions

are implemented as unitaries and they perform all the measurements in the end.

On the Concurrent Composition of Quantum Zero-Knowledge 357

that the state, after measuring the decision register, is essentially not disturbed.
Using this fact, we can then reverse the computation and go back to an earlier
round. Once the computation is reversed (or rewound to an earlier round), the
simulator forgets all the messages exchanged from the point – to which its being
rewound to – until the current round.

Incompatibility of Existing Concurrent ZK Techniques. To realize our goal of
building bounded concurrent QZK, a natural direction to pursue is to look for
classical concurrent ZK protocols with the guarantee that the classical simula-
tor satisfies both the oblivious rewinding and no-recording conditions. However,
most known classical concurrent ZK techniques are such that they satisfy one
of these two conditions but not both. For example, the seminal work of [PRS02]
proposes a concurrent ZK protocol and the simulator they describe satisfies the
oblivious rewinding condition but not the no-recording condition. More relevant
to our work is the work of Pass et al. [PTW09], who construct a bounded con-
current ZK protocol whose simulator satisfies the no-recording condition but not
the oblivious rewinding condition.

In more detail, at every round, the simulator (as described in [PTW09])
makes a decision to rewind based on which session verifier sends a message in
that round. This means that the probability of whether the simulator rewinds
any given round depends on the scheduling of the messages of the verifiers.
Unfortunately, the scheduling itself could be a function of the state of the verifier.
The malicious verifier could look at the first bit of its auxiliary state. If it is 0,
it will ask the first session verifier to send a message and if it is 1, it will ask the
second session verifier to send a message and so on. This means that a simulator’s
decision to rewind could depend on the state of the verifier.

Bounded Concurrent QZK. We now discuss our construction of bounded concur-
rent QZK and how we overcome the aforementioned difficulties. Our construc-
tion is identical to the bounded concurrent (classical) ZK construction of Pass
et al. [PTW09], modulo the setting of parameters. We recall their construction
below.

The protocol is divided into two phases. In the first phase, a sub-protocol,
referred to as slot, is executed many times. We will fix the number of executions
later when we do the analysis. In the second phase, the prover and the verifier
execute a witness-indistinguishable proof system.

In more detail, one execution of a slot is defined as follows:

– Prover sends a commitment of a random bit b to the verifier. This commitment
is generated using a statistically binding commitment scheme that guarantees
hiding property against quantum polynomial-time adversaries (also referred
to as quantum concealing).

– The verifier then sends a uniformly random bit b′ to the prover.

We say that a slot is matched if b = b′.

358 P. Ananth et al.

In the second phase, the prover convinces the verifier that either the instance
is in the language or there is a large fraction, denoted by τ , of matched slots.
This is done using a proof system satisfying witness-indistinguishability prop-
erty against efficient quantum verifiers. Of course, τ needs to be carefully set
such that the simulator will be able to satisfy this constraint while a malicious
prover cannot. Before we discuss the precise parameters, we first outline the
simulator’s strategy to prove zero-knowledge. As remarked earlier, the classi-
cal simulation strategy described in Pass et al. [PTW09] is incompatible with
Watrous rewinding. We first discuss a new classical simulation strategy, that
we call block rewinding, for this protocol and then we discuss how to combine
this strategy along with Watrous rewinding to prove quantum zero-knowledge
property of the above protocol.

Block Rewinding. Suppose Q be the number of sessions the malicious verifier
initiates with the simulator. Since this is a bounded concurrent setting, Q is
known even before the protocol is designed. Let �prot be the number of messages
in the protocol. Note that the total number of messages exchanged in all the
sessions is at most �prot · Q. We assume for a moment that the malicious verifier
never aborts. Thus, the number of messages exchanged between the prover and
the verifier is exactly �prot · Q.

The simulator partitions the �prot · Q messages into many blocks with each
block being of a fixed size (we discuss the parameters later). The simulator then
runs the verifier till the end of first block. At this point, it checks if this block
contains a slot. Note that the verifier can stagger the messages of a particular
session across the different blocks such that the first message of a slot is in one
block but the second message of this slot could be in a different block. The
simulator only considers those slots such that both the messages of these slots
are contained inside the first block. Let the set of all the slots in the first block
be denoted by μ(B1), where B1 denotes the first block. Now, the simulator picks
a random slot from the set μ(B1). It then checks if this slot is matched or not.
That is, it checks if the bit committed in the slot equals the bit sent by the
verifier. If indeed they are equal, it continues to the next block, else it rewinds
to the beginning of the first block and then executes the first block again. Before
rewinding, it forgets the transcript collected in the first block. It repeats this
process until the slot it picked is matched. The simulator then moves on to
the second block and repeats the entire process. When the simulator needs to
compute a witness-indistinguishable proof for a session, it first checks if the
fraction of matched slots for that particular session is at least τ . If so, it uses
this information to complete the proof. Otherwise, it aborts.

It is easy to see why the no-recording condition is satisfied: the simulator
never stores the messages sent in a block. Let us now analyze why the oblivious
rewinding condition is satisfied. Suppose we are guaranteed that in every block
there is at least one slot. Then, we claim that the probability that the simulator
rewinds is 1

2 ± negl(λ), where negl is a negligible function and λ is the security
parameter. This is because the simulator rewinds only if the slot is not matched
and the probability that a slot is not matched is precisely 1

2 ± negl(λ), from the

On the Concurrent Composition of Quantum Zero-Knowledge 359

hiding property of the commitment scheme. If we can show that every block
contains a slot, then the oblivious rewinding condition would also be satisfied.

Absence of Slots and Aborting Issues: We glossed over a couple of issues in
the above description. Firstly, the malicious verifier could abort all the sessions
in some block. Moreover, it can also stagger the messages across blocks such
that there are blocks that contain no slots. In either of the above two cases, the
simulator will not rewind these blocks and this violates the oblivious rewinding
condition: the decision to rewind would be based on whether the verifier aborted
or whether there were any slots within a block. In turn, these two conditions
could depend on the state of the verifier.

To overcome these two issues, we fix the simulator as follows: at the end of
every block, it checks if there are any slots inside this block. If there are slots
available, then the simulator continues as detailed above. Otherwise, it performs
a dummy rewind: it picks a bit uniformly at random and rewinds only if the bit
is 0. If the bit is 1, it continues its execution. This ensures that the simulator will
rewind with probability 1

2 ± negl(λ) irrespective of whether there are any slots
inside a block. Thus, with this fix, the oblivious rewinding condition is satisfied
as well.

Parameters and Analysis: We now discuss the parameters associated with
the system. We set the number of slots in the system to be 120Q7λ. We set
τ to be � 60Q7λ+Q4λ

120Q7λ �. We set the number of blocks to be 24Q6λ. Thus, the

size of each block is � 120Q7λ
24Q6λ �. Recall that the reason why we need to set these

parameters carefully is to ensure that the malicious prover cannot match more
than τ slots with better than negligible probability whereas the simulator can
beat this threshold with overwhelming probability.

We now argue that the classical simulator can successfully simulate all the
Q sessions. To simulate any given session, say the ith session, the number of
matched slots needs to be at least 60Q7λ+Q4λ. Note that the number of blocks
is 24Q6λ; the best case scenario is that each of these blocks contain at least
one slot of the ith session and the simulator picks this slot every time. Even in
this best case scenario, the simulator can match at most 24Q6λ slots and thus,
there still would remain 60Q7λ + Q4λ − 24Q6λ number of slots to be matched.
Moreover, even the likelihood of this best case scenario is quite low.

Instead, we argue the following:

– The simulator only needs to match 3Q4λ number of slots for the ith session.
We argue that with overwhelming probability, there are 3Q4λ blocks such
that (i) there is at least one slot from the ith session and, (ii) the simulator
happens to choose a slot belonging to this session in each of these blocks.

– Roughly, 120Q7λ−3Q4λ
2 60Q7λ − 2Q4λ number of slots are matched by

luck, even without the simulator picking these slots and trying to match.
This follows from the fact that with probability 1

2 , a slot is matched and the
number of remaining slots that need to be matched are 120Q7λ − 3Q4λ.

360 P. Ananth et al.

From the above two bullet points, it follows that with overwhelming probability,
the total number of slots matched is at least 60Q7λ + Q4λ.

We note that although the simulation strategy of Pass et al. [PTW09] is quite
different, their analysis follows the same template as above.

Simulation of Quantum Verifiers: So far we have demonstrated a simu-
lator that can simulate classical verifiers. We describe, at a high level, how to
simulate quantum verifiers. The quantum simulator runs the classical simulator
in superposition. At the end of every block, it measures a single-qubit register,
denoted by Dec, which indicates whether the simulator needs to rewind this
block or not. If this register has 0, the simulator does not rewind, otherwise it
rewinds. We can show that, no matter what the auxiliary state of the malicious
verifier is, at the end of a block, the quantum state is of the following form:

√
p|0〉Dec|ΨGood〉 +

√
1 − p|1〉Dec|ΨBad〉,

where |ΨGood〉 is a superposition of all the transcripts where the chosen slot is
matched and on the other hand, |ΨBad〉 is a superposition of all the transcripts
where the chosen slot is not matched. Moreover, using the hiding property of the
commitment scheme, we can argue that |p − 1

2 | ≤ negl(λ). Then we can apply
the Watrous rewinding lemma, to obtain a state that is close to |ΨGood〉. This
process is repeated for every block. At the end of the protocol, the simulator
measures the registers containing the transcript of the protocol and outputs this
along with the private state of the verifier.

3.2 Construction

We present the construction of quantum zero-knowledge proof system for NP in
the bounded concurrent setting in Fig. 1. As remarked earlier, the construction
is the same as the classical bounded concurrent ZK by Pass et al. [PTW09],
whereas our proof strategy is significantly different from that of Pass et al.

The relation associated with the bounded concurrent system will be denoted
by R(L), with L being the associated NP language. Let Q be an upper bound
on the number of sessions. We use the following tools in our construction.

– Statistically-binding and quantum-concealing commitment protocol, denoted
by (Comm,R).

– Four round quantum witness-indistinguishable proof system ΠWI (Defini-
tion 10). The relation associated with ΠWI, denoted by RWI, is defined as
follows:

RWI =

{ ((
x, r1, c1, b

′
1, . . . , r120Q7λ

, c120Q7λ
, b

′
120Q7λ

)
;

(
w, r1, . . . , r120Q7λ

))
: (x, w) ∈ R(L)

∨

⎛
⎜⎝∃j1, . . . , j60Q7λ+Q4λ

∈ [120Q
7
λ] s.t.

60Q7λ+Q4λ∧
i=1

Comm(1
λ

, rji
, b

′
ji

; rji
) = cji

⎞
⎟⎠

}

We present the proofs of completeness, soundness and quantum zero-knowledge
in the full version.

On the Concurrent Composition of Quantum Zero-Knowledge 361

Fig. 1. Construction of classical bounded concurrent ZK for NP.

4 Quantum Proofs of Knowledge

We first present a construction of standalone quantum proof of knowledge for
NP. We extend this construction to the bounded concurrent setting in Sect. 3.1.

4.1 Standalone Quantum Proofs of Knowledge

Towards building a bounded-concurrent QZK system satisfying quantum proof of
knowledge property, we first focus on the standalone QZK setting. The quantum
proof of knowledge property roughly says the following: for every unbounded
prover convincing a verifier to accept an instance x with probability p, there
exists an extractor that outputs a witness w with probability negligibly close to
p and it also outputs a state |Φ〉 that is close (in trace distance) to the output
state of the real prover.

Our approach is to design a novel extraction mechanism that uses oblivious
transfer to extract a bit from a quantum adversary.

362 P. Ananth et al.

Main Tool: Statistical Receiver-Private Oblivious Transfer. Our starting point
is an oblivious transfer (OT) protocol [Rab05]. This protocol is defined between
two entities: a sender and a receiver. The sender has two bits (m0,m1) and the
receiver has a single bit b. At the end of the protocol, the receiver receives the
bit mb.

The security against malicious senders (receiver privacy) states that the
sender should not be able to distinguish (with non-negligible probability)
whether the receiver’s bit is 0 or 1. The security against malicious receivers
(also called sender privacy) states that there is a bit b′ such that the receiver
cannot distinguish (with non-negligible probability) the case when the sender’s
input is (m0,m1) versus the setting when the sender’s input is (mb′ ,mb′).

We require receiver privacy to hold against unbounded senders while we
require sender privacy to hold against quantum polynomial-time receivers. The
reason we require receiver privacy against unbounded senders is because our goal
is to design extraction mechanism against computationally unbounded provers.

We postpone discussing the construction of statistical receiver-private oblivi-
ous transfer to the Appendix. We will now see how to use this to achieve extrac-
tion.

One-bit Extraction with
(
1
2 ± negl

)
-error. We begin with a naive attempt to

design the extraction mechanism for extracting a single secret bit, say s9. The
prover and the verifier execute the OT protocol; prover takes on the role of the
OT sender and the verifier takes on the receiver’s role. The prover picks bits b
and α uniformly at random and then sets the OT sender’s input to be (s, α) if
b = 0, otherwise if b = 1, it sets the OT sender’s input to be (α, s). The verifier
sets the receiver’s bit to be 0. After the OT protocol ends, the prover sends the
bit b. Note that if the bit b picked by the prover was 0 then the verifier can
successfully recover s, else it recovers α.

We first discuss the classical extraction process. The quantum extractor runs
the classical extractor in superposition as we did in the case of quantum zero-
knowledge. The extraction process proceeds as follows: the extractor picks a bit
b̃ uniformly at random and sets b̃ to be the receiver’s bit in the OT protocol.
By the statistical receiver privacy property of OT, it follows that the probability
that the extractor succeeds in recovering s is negligibly close to 1

2 . Moreover,
the success probability is independent of the initial state of the prover. This
means that we can apply the Watrous rewinding lemma and amplify the success
probability.

Malicious Provers: However, we missed a subtle issue: the malicious prover
could misbehave. For instance, the prover can set the OT sender’s input to be
(r, r) and thus, not use the secret bit s at all.

9 For instance, s could be the first bit of the witness.

On the Concurrent Composition of Quantum Zero-Knowledge 363

We resolve this issue by additionally requiring the prover to prove to the
verifier that one of its inputs in the OT protocol is the secret bit10 s. This is
realized by using a quantum zero-knowledge protocol, denoted by Π.

Error amplification. A malicious verifier can successfully recover the secret s with
probability 1

2 . To reduce the verifier’s success probability, we execute the above
process (i.e., first executing the OT protocol and then executing the ZK protocol)
λ number of times, where λ is the security parameter. First, the prover will
additively secret share the bit s into secret shares sh1, . . . , shλ. It also samples
the bits b1, . . . , bλ uniformly at random. In the ith execution, it sets the OT
sender’s input to be (shi, αi) if bi = 0, otherwise it sets the OT sender’s input to
be (αi, shi), where αi is sampled uniformly at random. After all the OT protocols
are executed, the prover is going to prove using a QZK protocol Π, as considered
above, that the messages in the OT protocols were correctly computed.

We first argue that even in this protocol, the extraction still succeeds with
overwhelming probability. In each OT execution, the extractor applies Watrous
rewinding, as before, to extract all the shares sh1, . . . , shλ. From this, it can
recover s. All is left is to argue that this template satisfies quantum zero-
knowledge property. It turns out that arguing this is challenging11.

Challenges in Proving QZK and Distinguisher-Dependent Hybrids. We first
define the simulator as follows:

– The simulator uses (αi, αi) as the sender’s input in the ith OT execution,
where αi is sampled uniformly at random.

– It then simulates the protocol Π.

To prove that the output distribution of the simulated world is computationally
indistinguishable from the real world, we adopt a hybrid argument. The first
hybrid, Hyb1, corresponds to the real world. In the second hybrid, Hyb2, simulate
the protocol Π. The indistinguishability of Hyb1 and Hyb2 follows from the
QZK property of Π. Next, we define the third hybrid, Hyb3, that executes the
simulator. To prove the indistinguishability of Hyb2 and Hyb3, we consider a
sequence of intermediate hybrids, denoted by {Hyb2.j}j∈[λ]. Using this sequence
of hybrids, we change the inputs in all the λ OT executions one at a time. Finally,
we define the third hybrid, Hyb3, that corresponds to the ideal world. Proving

10 For now, assume that there exists a predicate that can check if s is a valid secret bit.
11 We would like to point out that we are designing the standalone PoK protocol as

a stepping stone towards the bounded concurrent PoK protocol. If one were to be
interested in just the standalone setting, then it might be possible to avoid the
subtleties described above by making use of a simulation-secure OT rather than an
indistinguishable-secure OT. The reason why we use an indistinguishable-secure OT
in the concurrent PoK setting instead of a simulation-secure OT is because we want
to avoid using more than one simulator in the analysis; otherwise, we would have
multiple simulators trying to rewind the verifier, making the analysis significantly
complicated.

364 P. Ananth et al.

the indistinguishability of the consecutive hybrids, Hyb2.j and Hyb2.j+1, in this
sequence turns out to be challenging.

The main issue is the following: suppose we are in the jth intermediate hybrid
Hyb2.j , for j ≤ λ. At this point, we have changed the inputs to the first j OT
executions and we are about to change the input to the (j + 1)th OT. But what
exactly are the inputs we are using for the first j OT executions? It is unclear
whether we use the input (shi, shi) or the input (αi, αi), for i ≤ j, in the ith

OT execution. Note that the OT security states that we can either switch the
real sender’s inputs to either (shi, shi) or (αi, αi), based on the sender’s and
the distinguisher’s randomness. And hence, we define an inefficient intermediate
hybrid, which is a function (not necessarily computable), that determines for
every i, where i ≤ j, whether to use (shi, shi) or (αi, αi). Moreover, this hybrid
depends on the distinguisher, that distinguishes the two intermediate hybrids.

The indistinguishability of the consecutive pair of inefficient hybrids, say
Hyb2.j and Hyb2.j+1, is proven by a non-uniform reduction that receives as input
the advice corresponding to the first j executions of OT, where the sender’s
inputs are correctly switched to either (shi, shi) or (αi, αi), for i ≤ j. This
in turn depends on the distinguisher distinguishing these two hybrids. Then,
the reduction uses the (j + 1)th OT execution in the protocol to break the
sender privacy property of OT. If the two hybrids can be distinguished with non-
negligible probability then the reduction can succeed with the same probability.

In the hybrid Hyb2.λ−1, we additionally include an abort condition: if the
inputs in the first λ − 1 OT executions are all switched to (shi, shi) then we
abort. We show that the probability that Hyb2.λ−1 aborts is negligible. This is
necessary to argue that the verifier does not receive all the shares of the secret.

Note that only the intermediate hybrids, namely {Hyb2.j}j∈[λ], are inefficient,
and in particular, the final hybrid Hyb3 is still efficient.

Extraction of Multiple Bits. To design a quantum proof of knowledge protocol,
we need to be able to extract not just one bit, but multiple bits. To achieve this,
we design the prover as follows: on input a witness w, it sequentially executes
the above extraction template for each bit of the witness. That is, for every
i ∈ [�w], where �w is the length of w, it additively secret shares wi into the
shares (shi,1, . . . , shi,λ). It then invokes �w · λ number of OT executions, where
in the (i, j)th execution, it chooses the input (shi,j , αi,j) if bi,j = 0, or the input
(αi,j , shi,j) if bi,j = 1, where αi,j , bi,j are sampled uniformly at random. Finally,
it uses a QZK protocol to prove that it behaved honestly in the earlier OT
executions.

The proofs of quantum proof of knowledge and the QZK properties follow
along the same lines as the single-bit extraction case.

4.2 Construction of (Standalone) QZKPoK

We construct a (standalone) QZKPoK (P, V) for an NP relation R(L). The
following tools are used in our construction:

On the Concurrent Composition of Quantum Zero-Knowledge 365

– A post-quantum statistical receiver-private oblivious transfer protocol,
ΠOT = (S,R) satisfying perfect correctness property.
We say that a transcript τ is valid with respect to sender’s randomness r and
its input bits (m0,m1) if τ can be generated with a sender that uses r as
randomness for the protocol and uses (m0,m1) as inputs.

– A (standalone) QZK proof system Πzk for R(Lzk). We describe the relation
R(Lzk), parameterized by security parameter λ, below.

R (Lzk
)

=

{ ((
x, {τ

(i,j)
OT

, bi,j}i∈[�w],j∈[λ]

)
;

(
w,

{
r
(i,j)
OT

, shi,j , αi,j

}
i∈[�w],j∈[λ]

))
:

⎛
⎜⎝

∀i∈[�w],j∈[λ],

τ
(i,j)
OT is valid w.r.t

r
(i,j)
OT and (((1−bi,j)shi,j+bi,j ·αi,j), (bi,jshi,j+(1−bi,j)·αi,j))

⎞
⎟⎠∧ (∀i∈[�w],

⊕λ
j=1shi,j=wi

) ∧
(x, w) ∈ R(L)

}

In other words, the relation checks if the shares {shi,j} used in all the OT exe-
cutions so far are defined to be such that the XOR of the shares shi,1, . . . , shi,λ

yields the bit wi. Moreover, the relation also checks if w1 · · · w�w
is the witness

to the instance x.

We describe the construction in Fig. 2.
We present the proofs of completeness, quantum proof of knowledge and

quantum zero-knowledge in the full version.

4.2.1 Quantum PoK in the Bounded Concurrent Setting
Our construction of bounded concurrent quantum proof of knowledge is the same
as the one described in Sect. 4.1, except that we instantiate Π using the bounded
concurrent QZK protocol that we constructed in Sect. 312.

However, proving the bounded concurrent QZK protocol turns out to be even
more challenging than the standalone setting. To grasp the underlying difficul-
ties, let us revisit the proof of QZK in Sect. 4.1. To prove the indistinguishability
of the real and the ideal world, we first simulated the protocol Π. Since we are
in the bounded concurrent setting, the simulator of Π is now simultaneously
simulating multiple sessions of the verifier. Then using a sequence of intermedi-
ate hybrids, we changed the inputs used in the OT executions of all the sessions
one at a time. However, in the bounded concurrent setting, the OT messages
can be interleaved with QZK messages. This means that the simulator of QZK
could be rewinding the OT messages along with the QZK messages. This makes
it difficult to invoke the security of OT.

To reduce the indistinguishability of hybrids to breaking OT, we will care-
fully design the security reduction such that it does not rewind the blocks (the
definition of a block is the same as the one described in Sect. 3.1) containing
the messages of the OT protocol. This ensures that we can embed the mes-
sages exchanged with the external challenger (in the OT game) without the
fear of being rewound. Of course, we need to be cautious: the decision to not

12 We emphasize that we use the specific bounded concurrent QZK protocol that we
constructed earlier and we do not know how to provide a generic transformation.

366 P. Ananth et al.

Fig. 2. Construction of (standalone) QZKPoK for NP.

rewind a specific block could leak information about the private state of the ver-
ifier and this could affect the zero-knowledge property of the underlying QZK
protocol. To overcome this issue, for a block containing the OT messages, we
perform a dummy rewind where the transcript of conversation in this block does
not change. Thus, we can still interact with the external challenger using the
messages in this block. Another issue that arises is that we might end up not
rewinding as many blocks as the round complexity of the underlying OT pro-
tocol, which is polynomially many rounds. We show that the simulator of the
bounded concurrent QZK we constructed in Sect. 3.1 can be modified in such a
way that it can successfully simulate all the sessions even if polynomially many
blocks are ignored.

We present the formal details in Sect. 3.1.

On the Concurrent Composition of Quantum Zero-Knowledge 367

5 Bounded Concurrent QZK for QMA

We show a construction of bounded concurrent QZK for QMA. Our starting
point is the QZK protocol for QMA from [BJSW16], which constructs QZK for
QMA from QZK for NP, a commitment scheme and a coin-flipping protocol. We
first simplify the protocol of [BJSW16] as follows: their protocol requires security
of the coin-flipping protocol to hold against malicious adversaries whereas we
only require the security to hold against adversaries who don’t deviate from
the protocol specification. Once we simplify this step, the resulting protocol will
satisfy the property that the QZK simulator only rewinds during the execution of
the underlying simulator simulating the QZK protocol for NP. This modification
makes it easier for us to extend this protocol to the bounded concurrent setting.
We simply instantiate the underlying QZK for NP protocol with its bounded
concurrent version.

5.1 Bounded Concurrent QZK for QMA

We first recall the QZK for QMA construction from [BJSW16]. Their protocol
is specifically designed for the QMA promise problem called k-local Clifford
Hamiltonian, which they showed to be QMA-complete for k = 5. We restate it
here for completeness.

Definition 11 (k-local Clifford Hamiltonian Problem [BJSW16]). For all
i ∈ [m], let Hi = Ci|0⊗k〉〈0⊗k|C†

i be a Hamiltonian term on k-qubits where Ci

is a Clifford circuit.

– Input: H1,H2, . . . , Hm and strings 1p, 1q where p and q are positive integers
satisfying 2p > q.

– Yes instances (Ayes): There exists an n-qubit state such that Tr[ρ
∑

i Hi] ≤
2−p

– No instances (Ano): For every n-qubit state ρ, the following holds:
Tr[ρ

∑
i Hi] ≥ 1

q

BJSW Encoding. A key idea behind the construction from [BJSW16] is for
the prover to encode its witness, |ψ〉, using a secret-key quantum authentication
code (that also serves as an encryption) that satisfies the following key properties
needed in the protocol. For any state |ψ〉, denote the encoding of |ψ〉 under the
secret-key s by Es(|ψ〉).

1. Homomorphic evaluation of Cliffords. Given Es(|ψ〉), and given any Clifford
circuit C, it is possible to compute Es′(C|ψ〉) efficiently. Moreover, s′ can be
determined efficiently by knowing C and s.

2. Homomorphic measurements of arbitrary Clifford basis. For any Clifford cir-
cuit C and any state |ψ〉, a computational basis measurement on C|ψ〉 can
be recovered from a computational basis measurement on Es′(C|ψ〉) along
with C and s. Formally, there is a classically efficiently computable function

368 P. Ananth et al.

g such that if y is sampled from the distribution induced by measuring the
state Es′(C|ψ〉) in the computational basis, then g(s, C, y) is sampled from
the distribution induced by measuring the state C|ψ〉 in the computational
basis.

3. Authentication of measurement outcomes. For any s and any clifford C, there
is a set Ss,C such that for any state |ψ〉, and any computational basis measure-
ment outcome y performed on Es′(C|ψ〉), it holds that y ∈ Ss,C . Furthermore,
for any y, given s and C, it can be efficiently checked whether y ∈ Ss,C .

4. Simulatability of authenticated states: there exists an efficient QPT algo-
rithm B such that for any adversary A, every x ∈ Ayes along with wit-
ness |ψ〉, poly(λ)-qubit advice ρ, the following holds: the probability that
P(s, C†

r∗ ,A(Es(|ψ〉))) outputs 1 is negligibly close to the probability that
P(s, C†

r∗ ,A(B(x, s, r∗)))) outputs 1, where P is defined below.

P(s, C†, y) =

{
1 if g(s, C†, y) �= 0
0 otherwise

In both the events, s and r∗ are chosen uniformly at random.

The QMA verifier of the k-local Clifford Hamiltonian problem measures terms
of the form C|0⊗k〉〈0⊗k|C† where C is a Clifford circuit on a witness |ψ〉. Specifi-
cally, a verifier will first apply C† and then measure in the computational basis. If
the outcome of the measurement is the 0 string, it rejects. Otherwise, it accepts.
In the zero-knowledge case, the witness will be encoded, Es(|ψ〉), but the ver-
ifier can still compute Es(C†|ψ〉) and measure to obtain some string y. Then,
the prover can prove to the verifier (in NP) that y corresponds to a non-zero
outcome on a measurement of C†|ψ〉 instead using the predicate P.

We follow the approach of BJSW [BJSW16], except that we instantiate the
coin-flipping protocol in a specific way in order to get concurrency when instan-
tiating the underlying QZK for NP with our bounded concurrent construction.

Construction. We use the following ingredients in our construction:

– Statistical-binding and quantum-concealing commitment scheme, (Comm,R).
– Bounded concurrent QZK proof system, denoted by ΠNP, for the following

language (Sect. 3.2).

L =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

((r, c, r′, c′, r∗, y, b) ; (s, �, a, �′)) :

P(s,C†
r∗ ,y)=1∧

Comm(1λ,r,s;�)=c∧
Comm(1λ,r′,a;�′)=c′∧

a⊕b=r∗

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

Let Q be the maximum number of sessions associated with the protocol.

We describe the construction of bounded concurrent QZK for QMA (with bound
Q) in Fig. 3. We prove the following.

On the Concurrent Composition of Quantum Zero-Knowledge 369

Fig. 3. Bounded-concurrent QZK for QMA

Theorem 4. Assuming that ΠNP satisfies the definition of bounded concurrent
QZK for NP, the protocol given in Fig. 3 is a bounded concurrent QZK protocol
for QMA with soundness 1

poly .

Remark 5. The soundness of the above protocol can be amplified by sequential
repetition. In this case, the prover needs as many copies of the witness as the
number of repetitions.

Proof (Proof Sketch).
Completeness follows from [BJSW16].

Soundness. Once we argue that r∗ produced in the protocol is uniformly dis-
tributed, even when the verifier is interacting with the malicious prover, we can
then invoke the soundness of [BJSW16] to prove the soundness of our protocol.

370 P. Ananth et al.

Suppose the verifier accepts the ΠNP proof produced during the execution of
the above protocol. From the soundness of ΠNP, we have that r∗ = a ⊕ b where
a is the string that the prover initially committed to in c′. By the statistical
binding security of the commitment, and the fact that b is chosen at random
after a has been committed to, we have that r∗ is sampled uniformly from [M].

Bounded-Concurrent Quantum Zero-Knowledge. Suppose x ∈ Ayes. Suppose V ∗

is a non-uniform malicious QPT Q-session verifier. Then we construct a QPT
simulator Sim as follows.

Description of Sim: it starts with the registers Xzk,Xanc,M,Aux. The register
Xzk is used by the simulator of the bounded concurrent QZK protocol, Xanc

is an ancillary register, M is used to store the messages exchanged between
the simulator and the verifier and finally, the register Aux is used for stor-
ing the private state of the verifier. Initialize the registers Xzk,M with all
zeroes. Initialize the register Xanc with (

⊗Q
j=1 |sj〉〈sj |) ⊗ (

⊗Q
j=1 |r∗

j 〉〈r∗
j |) ⊗

(
⊗Q

j=1 ρj) ⊗ |0⊗poly〉〈0⊗poly|, where si, r
∗
i are generated uniformly at random

and ρj ← B(x, sj , r
∗
j) is defined in bullet 4 under BJSW encoding.

Sim applies the following unitary for Q times on the above registers. This
unitary is defined as follows: it parses the message ((1,msg1), . . . , (Q,msgQ)) in
the register M. For every round of conversation, it does the following: if it is
V ∗’s turn to talk, it applies V ∗ on Aux and M. Otherwise,

– Let S1 be the set of indices such that for every i ∈ S1, msgi is a message in
the protocol ΠNP. Finally, let S2 = [Q]\S1.

– It copies ((1,msg1), . . . , (Q,msgQ)) into Xzk (using many CNOT operations)
and for every i /∈ S1, replaces msgi with N/A. We note that msgi is a quantum
state (for instance, it could be a superposition over different messages).

– For every i ∈ S2, if msgi is the first prover’s message of the ith session, then
set msg′

i to be |ci〉〈ci| ⊗ ρi, where ci is the secret-key commitment of 0. If
msgi corresponds to the coin-flipping commitment, then set msg′

i to be |c′
i〉〈c′

i|
where c′

i is a commitment to 0.
– It applies the simulator of ΠNP on Xzk to obtain ((1,msg′

1,zk), . . .
(Q,msg′

Q,zk)). The ith session simulator of ΠNP takes as input
(ri, ci, r′

i, c
′
i, r

∗
i , yi, bi), where r∗

i was generated in the beginning and
ri, ci, r′

i, c
′
i, yi, bi are generated as specified in the protocol.

– Determine ((1,msg′
1), . . . , (Q,msg′

Q)) as follows. Set msg′
i = msgi,zk, if i ∈ S1.

Output of this round is ((1,msg′
1), . . . , (Q,msg′

Q)).

We claim that the output distribution of Sim (ideal world) is computationally
indistinguishable from the output distribution of V ∗ when interacting with the
prover (real world).

On the Concurrent Composition of Quantum Zero-Knowledge 371

Hyb1: This corresponds to the real world.

Hyb2: This is the same as Hyb1 except that the verifier V ∗ is run in superposition
and the transcript is measured at the end.

The output distributions of Hyb1 and Hyb2 are identical.

Hyb3: Simulate the zero-knowledge protocol ΠNP simultaneously for all the ses-
sions. Other than this, the rest of the hybrid is the same as before.

The output distributions of Hyb2 and Hyb3 are computationally indistin-
guishable from the bounded concurrent QZK property of ΠNP.

Hyb4.i for i ∈ [Q]: For every j ≤ i, the coin-flipping commitment in the jth

session is a commitment to 0 instead of ai. For all j > i, the commitment is
computed as in the previous hybrid.

The output distributions of Hyb4.i−1 (or Hyb3 if i = 1) and Hyb4.i are compu-
tationally indistinguishable from the quantum concealing property of (Comm,R).

Hyb5.i for i ∈ [Q]: For every j ≤ i, the secret-key commitment in the jth session
is a commitment to 0. For all j > i, the commitment is computed as in the
previous hybrid.

The output distributions of Hyb5.i−1 (or Hyb4.Q if i = 1) and Hyb5.i are
computationally indistinguishable from the quantum concealing property of
(Comm,R).

Hyb6.i for i ∈ [Q]: For every j ≤ i, the encoding of the state is computed instead
using B(x, si, r

∗
i), where si, r

∗
i is generated uniformly at random.

The output distributions of Hyb6.i−1 and Hyb6.i are statistically indistin-
guishable from simulatability of authenticated states property of BJSW encod-
ing (bullet 4). This follows from the following fact: conditioned on the prover not
aborting, the output distributions of the two worlds are identical. Moreover, the
property of simulatability of authenticated states shows that the probability of
the prover aborting in the previous hybrid is negligibly close to the probability
of the prover aborting in this hybrid.

Hyb7: This corresponds to the ideal world.
The output distributions of Hyb6.Q and Hyb7 are identical.

Proof of Quantum Knowledge with better witness quality. We can define an
anologous notion of proof of knowledge in the context of interactive protocols
for QMA. This notion is called proof of quantum knowledge. See [CVZ20] for a
definition of this notion. Coladangelo, Vidick and Zhang [CVZ20] show how to
achieve quantum proof of quantum knowledge generically using quantum proof of
classical knowledge. Their protocol builds upon [BJSW16] to achieve their goal.
We can adopt their idea to achieve proof of quantum knowledge property for a
bounded concurrent QZK for QMA system. In Fig. 3, include a quantum proof
of classical knowledge system for NP (for instance, the one we constructed in

372 P. Ananth et al.

Sect. 4.2) just after the prover sends encoding of the witness state |Ψ〉, encoded
using the key s. Using the quantum proof of classical knowledge system, the
prover convinces the verifier of its knowledge of the s. The rest of the protocol
is the same as Fig. 3. To see why this satisfies proof of quantum knowledge, note
that an extractor can extract s with probability negligibly close to the acceptance
probability and using s, can recover the witness |Ψ〉.

For the first time, we get proof of quantum knowledge (even in the standalone
setting) with (1−negl)-quality if the acceptance probability is negligibly close to
1, where the quality denotes the closeness to the witness state. Previous proof of
quantum knowledge [BG19,CVZ20] achieved only 1− 1

poly quality; this is because
these works use Unruh’s quantum proof of classical knowledge technique [Unr12]
and the extraction probability in Unruh is not negligibly close to the acceptance
probability.

Acknowledgements. We thank Abhishek Jain for many enlightening discussions,
Zhengzhong Jin for patiently answering questions regarding [GJJM20], Dakshita Khu-
rana for suggestions on constructing oblivious transfer, Ran Canetti for giving an
overview of existing classical concurrent ZK techniques, Aram Harrow and Takashi
Yamakawa for discussions on the assumption of cloning security (included in a previ-
ous version of this paper) and Andrea Coladangelo for clarifications regarding [CVZ20].
RL was funded by NSF grant CCF-1729369. MIT-CTP/5289.

References

[ABG+20] Agarwal, A., Bartusek, J., Goyal, V., Khurana, D., Malavolta, G.: Post-
quantum multi-party computation in constant rounds. arXiv preprint
arXiv:2005.12904 (2020)

[ALP20] Ananth, P., La Placa, R.L.: Secure quantum extraction protocols. In: Pass,
R., Pietrzak, K. (eds.) TCC 2020, Part III. LNCS, vol. 12552, pp. 123–152.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64381-2 5

[ARU14] Ambainis, A., Rosmanis, A., Unruh, D.: Quantum attacks on classical
proof systems: the hardness of quantum rewinding. In: 2014 IEEE 55th
Annual Symposium on Foundations of Computer Science, pp. 474–483.
IEEE (2014)

[BG19] Broadbent, A., Grilo, A.B.: Zero-knowledge for QMA from locally simulat-
able proofs. arXiv preprint arXiv:1911.07782 (2019)

[BJSW16] Broadbent, A., Ji, Z., Song, F., Watrous, J.: Zero-knowledge proof sys-
tems for QMA. In: 2016 IEEE 57th Annual Symposium on Foundations of
Computer Science (FOCS), pp. 31–40. IEEE (2016)

[Blu86] Blum, M.: How to prove a theorem so no one else can claim it. In: Proceed-
ings of the International Congress of Mathematicians, vol. 1, p. 2. Citeseer
(1986)

[BS05] Barak, B., Sahai, A.: How to play almost any mental game over the net-
concurrent composition via super-polynomial simulation. In: 46th Annual
IEEE Symposium on Foundations of Computer Science (FOCS 2005), pp.
543–552. IEEE (2005)

[BS20] Bitansky, N., Shmueli, O.: Post-quantum zero knowledge in constant
rounds. In: STOC (2020)

http://arxiv.org/abs/2005.12904
https://doi.org/10.1007/978-3-030-64381-2_5
http://arxiv.org/abs/1911.07782

On the Concurrent Composition of Quantum Zero-Knowledge 373

[Can01] Canetti, R.: Universally composable security: a new paradigm for crypto-
graphic protocols. In: Proceedings 42nd IEEE Symposium on Foundations
of Computer Science, pp. 136–145. IEEE (2001)

[CF01] Canetti, R., Fischlin, M.: Universally composable commitments. In: Kilian,
J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 19–40. Springer, Heidelberg
(2001). https://doi.org/10.1007/3-540-44647-8 2

[CLOS02] Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally compos-
able two-party and multi-party secure computation. In: Proceedings of the
Thirty-Fourth Annual ACM Symposium on Theory of Computing, pp. 494–
503 (2002)

[CLP15] Chung, K.-M., Lin, H., Pass, R.: Constant-round concurrent zero-
knowledge from indistinguishability obfuscation. In: Gennaro, R., Robshaw,
M. (eds.) CRYPTO 2015, Part I. LNCS, vol. 9215, pp. 287–307. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-47989-6 14

[CVZ20] Coladangelo, A., Vidick, T., Zhang, T.: Non-interactive zero-knowledge
arguments for QMA, with preprocessing. In: Micciancio, D., Ristenpart, T.
(eds.) CRYPTO 2020, Part III. LNCS, vol. 12172, pp. 799–828. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-56877-1 28

[DCO99] Di Crescenzo, G., Ostrovsky, R.: On concurrent zero-knowledge with pre-
processing. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 485–
502. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-
1 31

[DNS04] Dwork, C., Naor, M., Sahai, A.: Concurrent zero-knowledge. J. ACM
(JACM) 51(6), 851–898 (2004)

[DS98] Dwork, C., Sahai, A.: Concurrent zero-knowledge: reducing the need for
timing constraints. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol.
1462, pp. 442–457. Springer, Heidelberg (1998). https://doi.org/10.1007/
BFb0055746

[FKP19] Freitag, C., Komargodski, I., Pass, R.: Non-uniformly sound certificates
with applications to concurrent zero-knowledge. In: Boldyreva, A., Mic-
ciancio, D. (eds.) CRYPTO 2019, Part III. LNCS, vol. 11694, pp. 98–127.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26954-8 4

[GJJM20] Goyal, V., Jain, A., Jin, Z., Malavolta, G.: Statistical zaps and new obliv-
ious transfer protocols. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT
2020, Part III. LNCS, vol. 12107, pp. 668–699. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-45727-3 23

[GJO+13] Goyal, V., Jain, A., Ostrovsky, R., Richelson, S., Visconti, I.: Concurrent
zero knowledge in the bounded player model. In: Sahai, A. (ed.) TCC 2013.
LNCS, vol. 7785, pp. 60–79. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-36594-2 4

[GK96] Goldreich, O., Kahan, A.: How to construct constant-round zero-knowledge
proof systems for NP. J. Cryptol. 9(3), 167–190 (1996)

[GMR85] Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of inter-
active proof-systems. In: STOC, pp. 291–304 (1985)

[HSS11] Hallgren, S., Smith, A., Song, F.: Classical cryptographic protocols in a
quantum world. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841,
pp. 411–428. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-22792-9 23

[JKMR06] Jain, R., Kolla, A., Midrijanis, G., Reichardt, B,W.: On parallel compo-
sition of zero-knowledge proofs with black-box quantum simulators. arXiv
preprint quant-ph/0607211 (2006)

https://doi.org/10.1007/3-540-44647-8_2
https://doi.org/10.1007/978-3-662-47989-6_14
https://doi.org/10.1007/978-3-030-56877-1_28
https://doi.org/10.1007/3-540-48405-1_31
https://doi.org/10.1007/3-540-48405-1_31
https://doi.org/10.1007/BFb0055746
https://doi.org/10.1007/BFb0055746
https://doi.org/10.1007/978-3-030-26954-8_4
https://doi.org/10.1007/978-3-030-45727-3_23
https://doi.org/10.1007/978-3-642-36594-2_4
https://doi.org/10.1007/978-3-642-36594-2_4
https://doi.org/10.1007/978-3-642-22792-9_23
https://doi.org/10.1007/978-3-642-22792-9_23
https://arxiv.org/abs/quant-ph/0607211

374 P. Ananth et al.

[KSVV02] Kitaev, A.Y., Shen, A., Vyalyi, M.N., Vyalyi, M.N.: Classical and Quantum
Computation, vol. 47. American Mathematical Society, Providence (2002)

[Lin03] Lindell, Y.: Bounded-concurrent secure two-party computation without
setup assumptions. In: Proceedings of the Thirty-Fifth Annual ACM Sym-
posium on Theory of Computing, pp. 683–692 (2003)

[Nao91] Naor, M.: Bit commitment using pseudorandomness. J. Cryptol. 4(2), 151–
158 (1991)

[Pas04] Pass, R.: Bounded-concurrent secure multi-party computation with a dis-
honest majority. In: STOC, pp. 232–241 (2004)

[PR03] Pass, R., Rosen, A.: Bounded-concurrent secure two-party computation
in a constant number of rounds. In: 44th Annual IEEE Symposium on
Foundations of Computer Science, 2003. Proceedings, pp. 404–413. IEEE
(2003)

[PRS02] Prabhakaran, M., Rosen, A., Sahai, A.: Concurrent zero knowledge with
logarithmic round-complexity. In: FOCS, pp. 366–375. IEEE (2002)

[PTV14] Pass, R., Tseng, W.-L.D., Venkitasubramaniam, M.: Concurrent zero
knowledge, revisited. J. Cryptol. 27(1), 45–66 (2014)

[PTW09] Pass, R., Tseng, W.-L.D., Wikström, D.: On the composition of public-coin
zero-knowledge protocols. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol.
5677, pp. 160–176. Springer, Heidelberg (2009). https://doi.org/10.1007/
978-3-642-03356-8 10

[PV08] Pass, R., Venkitasubramaniam, M.: On constant-round concurrent zero-
knowledge. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp.
553–570. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-
78524-8 30

[Rab05] Rabin, M.O.: How to exchange secrets with oblivious transfer. IACR Cryp-
tol. ePrint Arch., 2005(187) (2005)

[RK99] Richardson, R., Kilian, J.: On the concurrent composition of zero-
knowledge proofs. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592,
pp. 415–431. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-
48910-X 29

[Unr10] Unruh, D.: Universally composable quantum multi-party computation.
In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 486–505.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-
5 25

[Unr12] Unruh, D.: Quantum proofs of knowledge. In: Pointcheval, D., Johansson,
T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 135–152. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4 10

[VZ20] Vidick, T., Zhang, T.: Classical zero-knowledge arguments for quantum
computations. Quantum 4, 266 (2020)

[Wat09] Watrous, J.: Zero-knowledge against quantum attacks. SIAM J. Comput.
39(1), 25–58 (2009)

https://doi.org/10.1007/978-3-642-03356-8_10
https://doi.org/10.1007/978-3-642-03356-8_10
https://doi.org/10.1007/978-3-540-78524-8_30
https://doi.org/10.1007/978-3-540-78524-8_30
https://doi.org/10.1007/3-540-48910-X_29
https://doi.org/10.1007/3-540-48910-X_29
https://doi.org/10.1007/978-3-642-13190-5_25
https://doi.org/10.1007/978-3-642-13190-5_25
https://doi.org/10.1007/978-3-642-29011-4_10

Multi-theorem Designated-Verifier NIZK
for QMA

Omri Shmueli(B)

Tel Aviv University, Tel Aviv, Israel
omrishmueli@mail.tau.ac.il

Abstract. We present a designated-verifier non-interactive zero-
knowledge argument system for QMA with multi-theorem security under
the Learning with Errors Assumption. All previous such protocols for
QMA are only single-theorem secure. We also relax the setup assump-
tion required in previous works. We prove security in the malicious
designated-verifier (MDV-NIZK) model (Quach, Rothblum, and Wichs,
EUROCRYPT 2019), where the setup consists of a mutually trusted ran-
dom string and an untrusted verifier public key.

Our main technical contribution is a general compiler that given a
NIZK for NP and a quantum sigma protocol for QMA generates an
MDV-NIZK protocol for QMA.

1 Introduction

Zero-knowledge protocols allow to prove statements without revealing anything
but the mere fact that they are true. Since their introduction by Goldwasser,
Micali, and Rackoff [GMR89] they have had a profound impact on modern
cryptography and theoretical computer science at large. While standard zero-
knowledge protocols are interactive, Blum, Feldman, and Micali [BFM19] intro-
duced the concept of a non-interactive zero-knowledge (NIZK) protocol, which
consists of a single message sent by the prover to the verifier. NIZK protocols
cannot exist in the plain model (i.e. a language with such a NIZK protocol can
be decided by an efficient algorithm) but can be realized with a pre-computed
setup. The point of the setup is that it can be computed instance-independently
and usually, the setup is executed by a trusted third party that generates and
publishes a string of bits and sometimes trapdoors are handed to the prover or
verifier (or both).

Although existing zero-knowledge protocols for NP cover an array of diverse
tasks and in particular, under standard computational assumptions it is known
how to construct NIZK protocols for NP [CCH+19,PS19,BKM20], far less is

O. Shmueli—Supported by ISF grants 18/484 and 19/2137, by Len Blavatnik and the
Blavatnik Family Foundation, and by the European Union Horizon 2020 Research and
Innovation Program via ERC Project REACT (Grant 756482).

c© International Association for Cryptologic Research 2021
T. Malkin and C. Peikert (Eds.): CRYPTO 2021, LNCS 12825, pp. 375–405, 2021.
https://doi.org/10.1007/978-3-030-84242-0_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-84242-0_14&domain=pdf
https://doi.org/10.1007/978-3-030-84242-0_14

376 O. Shmueli

known about the class QMA, the quantum generalization of NP. This knowl-
edge gap between NP and QMA, which is present in both interactive and non-
interactive zero-knowledge protocols, stems from the fact that many of the tech-
niques that work for constructing protocols for NP, implicitly rely on the assump-
tion that information in the system is classical. Accordingly, these techniques fail
when this assumption no longer holds.

The first gap between classical and quantum NIZK protocols is that of setup
requirements, that is, how much trust and resources the setup needs. The stan-
dard setup in NIZK is called the common reference string (CRS) model, where
the trusted party samples a classical string from some specified distribution and
publishes it. If the reference string is simply uniformly random then the setup
is in the common random string model, which is considered to require minimal
trust in the NIZK setting. While NIZK arguments for NP are known to exist
in the common random string model under LWE [CCH+19,PS19], in current
QMA constructions the setup is comprised at least of a common reference string
sampled by the trusted party, and an additional public and secret verification
keys (pvk, svk) where pvk is published along with the CRS and svk is kept by the
verifier, such that either:

– pvk is a quantum state that needs to stay coherent while waiting for the proof
by the prover, or

– The pair (pvk, svk) can be sampled only by the trusted party and not the
verifier.

Aside from the above, a more elementary missing part in current NIZK pro-
tocols for QMA is multi-theorem security, which provides the main efficiency
advantage to a NIZK protocol over an interactive protocol. Multi-theorem secu-
rity considers the reusability of the setup, that is, once the setup is computed,
any prover can send a proof by a single message repeatedly for many different
statements and there is no need to re-compute the setup for every new proof sent,
and in relation to the above QMA setups: once the CRS and public verification
key are published, they are reusable.

Given the gap of knowledge in NIZK techniques between NP and QMA,
improving the power of NIZKs for QMA and specifically constructing a reusable
non-interactive zero-knowledge protocol for QMA seem as a natural crypto-
graphic goal which we explore in this work.

1.1 Results

Under the Learning with Errors (LWE) assumption [Reg09] we resolve the above
question. Specifically, we construct a multi-theorem-secure NIZK argument for
QMA in the malicious designated-verifier model, which is the following:

1. The trusted party samples only a common random string crs.
2. Given crs, any verifier can sample a pair of classical public and secret veri-

fication keys (pvk, svk), in particular it is possible that the published pvk is
maliciously-generated.

Multi-theorem Designated-Verifier NIZK for QMA 377

Given crs and pvk, any prover can repeatedly give a non-interactive zero-
knowledge proof by a single quantum message |π〉. The MDV-NIZK model is
introduced by Quach, Rothblum, and Wichs in [QRW19] and has the same min-
imal trust requirements as the common random string model (but is privately
verifiable).

Theorem 1 (informal). Assuming that LWE is hard for polynomial-time
quantum algorithms, there exists a reusable, non-interactive computational zero-
knowledge argument system for QMA in the malicious designated-verifier model.

Main Technical Contribution: General Sigma Protocol MDV-NIZK
Compilation. Technically, we deviate from previous NIZK constructions for
QMA and aim for a simple and classical technique which is post-quantum (i.e.
preserves security also for quantum protocols). Specifically, our main contribu-
tion is showing how given a NIZK for NP it is possible to compile a quantum
sigma protocol into a reusable MDV-NIZK protocol. Further details are given in
the technical overview below.

1.2 Technical Overview

We next describe our construction of a multi-theorem-secure MDV-NIZK pro-
tocol for QMA. For a discussion about the possibility of constructing a NIZK
protocol for QMA in the CRS model see Subsect. 1.3, and for an overview of
NIZK models and previous work on NIZK for QMA see Subsect. 1.3.

As we are aiming for a classical (quantum-secure) technique we currently
restrict our attention to a purely-classical question: Given any sigma protocol
(Σ.P, Σ.V), generically compile it into a multi-theorem-secure MDV-NIZK while
assuming minimal properties of the protocol1. We will start with considering
classical sigma protocols and later see what changes should take place in order
for the technique to work for quantum protocols.

From a Sigma Protocol to a Single-Theorem-Secure MDV-NIZK. A
sigma protocol is a 3-message public-coin proof system (with some mild zero
knowledge properties), where the 3 messages are denoted by α, β and γ (i.e.
β is a random string and is called “the challenge string”). Our first step is
to construct a MDV-NIZK protocol with only single-theorem security out of a
sigma protocol and is very simple.

In a sigma protocol, since the verifier’s message β is a random string it
is independent of any other information, additionally, our second need from it
is that it stays hidden (until after the prover sends its first message α). The
verifier can compute its public verification key, which is computed instance-
independently, as a function of β: The public verification key pvk is an FHE-
encrypted random challenge β and the secret verification key svk is the FHE
decryption key and the challenge string,

pvk = FHE.Encfhek(β), svk = (β, fhek) .

1 In particular, we do not assume that the message α is classical.

378 O. Shmueli

Given the public verification key pvk, the 1-message proof procedure for x ∈ L
goes as follows:

– P computes the first sigma protocol message α ← Σ.P(x,w), where w ∈
RL(x).

– P computes γ the last protocol message under the encryption, that is, P per-
forms the homomorphic evaluation ĉtP ← FHE.Eval(Σ.P3,FHE.Encfhek(β)).

– As the proof, P sends α out in the open and γ under the encryption, that is,
the proof is π = (α, ĉtP).

In order for the proof to stay zero-knowledge, the homomorphic evaluation needs
to be circuit-private. The verification algorithm is straightforward: Given svk, an
instance x and a proof π = (α, ĉtP), the verifier decrypts ĉtP to get γ, and accepts
iff the sigma protocol verifier accepts Σ.V(x, α, β, γ) = 1.

Is the Above Protocol Multi-theorem-Secure? While it is intuitively clear
that the described construction is secure for a single use of the setup (that is,
the above should, with some modifications, yield a single-theorem-secure MDV-
NIZK) it is provably not multi-theorem-secure. Sigma protocols are usually par-
allel repetitions of 3-message zero-knowledge protocols, for example, consider the
sigma protocol which is the parallel repetition of the zero-knowledge protocol for
Graph Hamiltonicity [Blu86], which is as follows: Given a Hamiltonian cycle C
in a graph G = (V,E), the prover samples a random permutation ϕ : V → V of
the vertices and commits to the permuted graph ϕ(G)2. The verifier then sends
a random bit b, and the prover answers accordingly:

– If b = 0 it is considered as a validity check, and the prover opens all com-
mitments and sends ϕ. The verifier accepts if indeed the committed graph is
ϕ(G).

– If b = 1 it is considered as the cycle check, and the prover opens commit-
ments only for the subgraph ϕ(C). The verifier accepts if the opening shows
a Hamiltonian cycle.

If the sigma protocol used in the above MDV-NIZK construction is the par-
allel repetition of the zero-knowledge protocol for Hamiltonicity3, then there is a
polynomial-time malicious prover P∗ that given multiple access to the verifier’s
verdict function V(svk, ·) using the same public/secret verification key pair, can
decode the encrypted challenge string β (which is polynomially-many random
bits, each bit is for the i-th parallel repetition of the zero-knowledge protocol)
and consequently break the soundness.

P∗ takes a Hamiltonian graph G and a Hamiltonian cycle C in it, and will
decode the entire β = (b1, b2, · · · , bk) bit-by-bit: To decode bi, P∗ will honestly

2 That is, the prover commits to all of the cells in the adjacency matrix that represents
the graph ϕ(G).

3 We take the Hamiltonicity protocol only as a concrete easy example and in fact any
other sigma protocol can take the role of this protocol in our context of attacking
the soundness.

Multi-theorem Designated-Verifier NIZK for QMA 379

execute the zero-knowledge protocol prover’s algorithm for all indices but index
i (that is, for all j �= i, it will honestly compute Com(ϕj(G)) and under the
encryption, the opening of either the entire graph and the permutation of just
the cycle ϕj(C)), for which it is going to operate as follows. P∗ will guess that
bi = 0 and send a commitment to a permutation of the graph out in the open
and under the encryption act as if bi = 0 regardless of the actual value of bi.
By the verifier’s acceptance or rejection it will know whether the bit was 0 or 1.
After decoding β the prover can now use this information to “prove” that any
graph G is Hamiltonian.

From Single-Theorem to Multi-theorem Security. In the above attack the
prover heavily relied on a specific operation: It uses a yes-instance (in the above
case, a Hamiltonian graph G), in order to decode the random challenge β and
then goes on to use the knowledge of β to give a false proof for a no-instance
(again, in the above, a non Hamiltonian graph G∗).

Crucially, P∗ does not know how to decode β when the graph is not Hamil-
tonian. More specifically, in the above we decode β bit-by-bit rather than all at
once, and this ability comes from the fact that G is Hamiltonian and the zero-
knowledge protocol is complete, thus P∗ can be sure that if it honestly executes
the zero-knowledge protocol for all indices but i, the only index that can make
the proof get rejected is i. In this isolation, checking whether the challenge bit bi

is 0 or 1 becomes easy. However, if the graph is not Hamiltonian then the prover
cannot know which index made the proof get rejected because all k indices are
prone to rejection. Formally, by the soundness of the sigma protocol, we know
that the answer from the verdict function of the verifier in this case will always
be a rejection for any polynomial (or even sub-exponential) number of queries,
with overwhelming probability. This means in particular that the prover cannot
decode anything through the oracle access to the verdict function.

Our fix to the first protocol is based on the above observation: If we could
make the random challenge β change with the instance at hand it seems that
the decoding attack is neutralized, because even if the prover decodes βG the
challenge for a Hamiltonian graph G, it doesn’t have information about βG∗

the challenge of some non Hamiltonian G∗. Since the instance x is in particular
a classical string we can make the challenge change with the instance: The
public verification key will not be an encrypted challenge β but instead will be
a secret key prfk of a pseudorandom function PRF. The prover will compute α
out in the open as before but the homomorphic evaluation changes: under the
encryption, P will compute the challenge string as the PRF’s output on the
instance βx = PRF.Fprfk(x), and then compute γ for the challenge βx.

Extraction by Non-interactive Zero Knowledge for NP. Up to this point
we only came close to constructing a provably-secure MDV-NIZK. Indeed, we
didn’t even use any NIZK tools yet for NP, and in order to prove the security of
our construction we need knowledge extraction from both the prover and verifier.

To prove soundness, our thought process is roughly the following: We know
that the prover computes γ obliviously under the FHE, more precisely, it homo-
morphically evaluates the circuit Cx,r that computes βx = PRF.Fprfk(x) and then

380 O. Shmueli

given βx computes γ. The part of the circuit Cx,r that computes γ from βx is the
“non-trivial” part of the circuit and is determined by a secret string r (which is
the information that the honest sigma protocol prover uses in order to compute
γ, this information is the randomness of the prover and possibly the witness). If
we could extract r from a prover (e.g. by the prover giving a proof of knowledge
on the non-trivial part of the circuit Cx,r) that successfully cheats in the NIZK
protocol then we could get a successfully cheating prover for the sigma protocol
and thus prove security. To see this, note that by the hiding of the FHE and by
the pseudorandomness of the PRF, even if as the public verification key we send
an encryption of 0 instead of an encryption of the PRF secret key, the string r
still needs to yield a circuit Cx,r that does well in generating a satisfying γ for
a now-truly-random challenge β.

On the zero knowledge side we also need extraction; we recall a basic prop-
erty of a sigma protocol: if the sigma protocol simulator knows the challenge
string β before sending the first message α then it can simulate a view that is
indistinguishable from the real interaction with the honest prover. This means
that the information we want to extract from the malicious verifier is the secret
PRF key prfk that in particular holds the information for obtaining βx.

We solve both extraction tasks by a combination of a two-sided NP NIZK
and a public-key encryption scheme with pseudorandom public keys. Given the
existence of a PKE scheme (PKE.Gen,PKE.Enc,PKE.Dec) with pseudorandom
public keys of length � we take the common random string of our protocol to be
(1) the common random string of an NP NIZK (NIZK.Setup,NIZK.P,NIZK.V)
protocol which we denote with crs, concatenated with (2) a random string of
length � which we denote with ek (for extraction key).

We will let each of the parties encrypt, using PKE.Encek(·), the secrets that
we want to extract and then use the NIZK to prove consistency between the
content of the PKE encryption and the protocol computations. More precisely,
as part of its 1-message proof, the prover will give a proof πP that the string
r encrypted using the PKE yields the (canonical) circuit Cx,r that it used for
the (circuit-private) homomorphic evaluation that generated γ, and the verifier,
as part of its public verification key, will give a proof πV that the PRF key prfk
that is encrypted using the PKE is the same key encrypted with the FHE. Note
that the information that the parties encrypt using a random string instead of
a real PKE key stays secure due to the fact that a real key is indistinguishable
from a random string, and thus an adversary that manages to break the PKE
when it uses a random string as the public key can break the pseudorandomness
property of the public keys.

When wanting to extract information (either in the soundness reduction or in
the zero-knowledge simulation), we will sample ek using the PKE key-generation
algorithm (ek, sk) ← PKE.Gen, and since the public keys are pseudorandom the
change in key distribution won’t be felt by either of the parties. At that point
the parties encrypt their secrets and prove they do so using the NIZK, and the
extractor can just use the PKE decryption PKE.Decsk(·) to obtain the secrets.

Multi-theorem Designated-Verifier NIZK for QMA 381

Compiling Quantum Protocols. Our technique so far is entirely classical
and compiles classical sigma protocols. We now ask whether it works to com-
pile quantum sigma protocols. This can be answered in turn by answering the
following question: what properties of the sigma protocol exactly did we use in
order for the MDV-NIZK protocol to work?

It can be verified that even if we don’t assume nothing on the sigma protocol
that we compile, every action in the MDV-NIZK protocol except the homomor-
phic evaluation of the circuit Cx,r can stay exactly the same. Regarding the
homomorphic evaluation, the issue that we have is the following: In order to
still be able to extract the information r of the circuit Cx,r from the prover, the
computation that takes βx and outputs γ needs to be a classical circuit. This
is not necessarily the case in a quantum protocol. For example, in the quantum
zero-knowledge protocol for QMA of [BJSW16] (which is also the basis for the
quantum NIZK protocol of [CVZ19]), in order to generate γ given α, β, first a
quantum Clifford operation that is chosen with respect to β needs to be executed
on α, followed by a measurement. Then, the prover proves in ZK that the clas-
sical string obtained by the measurement satisfies some properties4. With this
goal in mind, we identify a different quantum protocol that in fact does satisfy
the property that γ can be computed by an entirely classical circuit.

We consider the Consistency of Local Density Matrices (CLDM) problem
[Liu06], which is a QMA problem with some special properties. In [BG19] Broad-
bent and Grilo show that CLDM is QMA-complete and how to construct a very
simple quantum zero-knowledge protocol for it. The [BG19] zero-knowledge pro-
tocol for CLDM is as follows: Given a quantum witness |w〉, the protocol starts
with the prover sending a quantum one-time pad encryption of |w〉 as the mes-
sage α. More precisely, for a length-l witness it samples classical random pads
a, b ← {0, 1}l, applies ⊗

i∈[l]

(
Xai · Zbi

) · |w〉 ,

and then sends as α the transformed quantum state and classical commitments
to the QOTP keys a, b. For a random challenge β, the prover response γ is an
opening to part of the state. We find the CLDM problem and specifically the
zero-knowledge protocol for it especially attractive for our purposes as γ is only a
function of the randomness of the prover and the challenge β, which in particular
means that the circuit Cx,r can stay classical in our setting.

Finally, by using the sigma protocol yielded by the parallel repetition of
the zero-knowledge protocol from [BG19] we obtain a clean and simple non-
interactive computational zero-knowledge argument system for the class QMA
in the malicious designated-verifier model:

4 in that protocol it is also needed that the verifier itself makes the Clifford operation
and measurement, which makes the protocol more challenging to use for a NIZK
protocol.

382 O. Shmueli

1. Common Random String: (crs, ek).
2. Public and Secret Verification Keys: prfk ← PRF.Gen(1λ), fhek ←

FHE.Gen(1λ),

pvk =
(
FHE.Encfhek(prfk), PKE.Encek(prfk), πV

)
, svk =

(
prfk, fhek

)
.

For any prover that wishes to give a proof for an instance x ∈ Lyes, it executes
the following:

– Proof: If πV is valid, P computes α ← Ξ.P(|w〉; r) and sends

|π〉 =
(
α, FHE.Eval(Cx,r,FHE.Enc(prfk)), PKE.Encek(r), πP

)
.

1.3 Related Work

In this section we discuss the main challenges in the construction of non-
interactive zero-knowledge protocols for QMA (specifically in the CRS model)
and the previous works on QMA NIZKs.

Can We Build a NIZK Protocol for QMA in the CRS Model? In short,
the answer to the above question is that we don’t know, and this section does
not aim to answer it. This section is intended to give some evidence to why
constructing a NIZK for QMA in the CRS model seem to require a different set
of techniques from what we currently have for NP. In what follows we will start
with briefly recalling how NIZKs for NP are constructed and then understand
why current approaches fail in the setting of quantum proofs.

NP, Fiat-Shamir and Correlation Intractability. In order to construct a
non-interactive zero-knowledge protocol for NP under standard assumptions,
the construction starts with a sigma protocol (Σ.P, Σ.V). To make the protocol
non-interactive, the Fiat-Shamir transform is applied: By assuming public oracle
access to a random function F , the prover applies it to α and treat its (random-
string) output F (α) as the challenge string β. It then computes γ and sends all of
this information to the verifier, who makes sure that β was rightfully generated
β = F (α), and that the sigma protocol verifier Σ.V(α, β, γ) accepts. Since we
don’t know how to construct a cryptographic primitive that acts as a publicly-
computable random function, the above protocol is secure only in the random
oracle model, that is, only if we directly assume public access to such random
function F .

In order to prove the security of the NIZK protocol in the standard model
(with access to a common reference string rather than a random oracle), the final
part of the construction involves swapping the random function F with a new,
special hash function H - this general technique of swapping F with a special
hash function H is usually called the Correlation Intractability (CI) paradigm
[CGH04]. The properties of the hash function H or the meaning of correlation
intractability are less relevant to this overview, but it is suffices to say that under
the LWE assumption it is known how to construct a hash function H that can

Multi-theorem Designated-Verifier NIZK for QMA 383

be swapped with F in the FS transform and where the protocol can be proven
secure [CCH+19,PS19].

Can we use Known Classical NIZK Techniques for Quantum Proto-
cols? There are two known routes for getting a quantum-secure NIZK for NP
in the CRS model, the first is through the FS transform and CI (which also uses
only standard assumptions, described above) and the second is through the hid-
den bits model and indistinguishability obfuscation. It is natural to ask whether
we can use these techniques for QMA (the question of whether the FS transform
can be used for quantum protocols was asked as one of the open questions in
Sect. 1.4 of [BG19]).

We first review the ability to use the FS transform (and in particular
correlation intractability) for QMA and explain why there is an issue with
the no-cloning theorem. In the quantum setting, sigma protocols (Ξ.P, Ξ.V)
[BG19,BJSW16] are quite the same but with the main difference that the first
message α is quantum (and of course, the prover takes as input a quantum wit-
ness |w〉 rather than classical). Recall that when we use the FS transform on a
sigma protocol in order to generate a NIZK, for the protocol to be complete,
when the parties act honestly then the verifier needs to verify that the random
function F yields the challenge, that is F (α) = β. This means that now F needs
to be a quantum transformation such that for x ∈ Lyes and an honestly gener-
ated α ← Ξ.P(|w〉), F (α) is always the same classical string (with overwhelming
probability). Also, for the protocol to be sound we need that the entire output of
F will be the chellenge β and it cannot be the case for example that the output
F (α) will contain one register with the classical string β and another register
with some quantum state |ψ〉. Now, denote by s the classical string s.t. F (α) = s,
and we have a generating circuit for the quantum witness: |w〉 = Ξ.P†(·) ·F † · |s〉,
where the inverse versions of F and Ξ.P are purified. This seems to violate the
no-cloning theorem in the following manner: the prover gets a copy of the wit-
ness and can generate a generating circuit for the witness state, this circuit can
be used to generate arbitrarily many copies of the state. Finally, because we can
always consider a trivial language with a dummy witness, and take the quantum
witness to be some unclonable state (for example, a pseudorandom quantum
state) we get a contradiction to the no-cloning theorem.

Even if we aim to construct a NIZK using the FS transform for QCMA,
the subclass of QMA where the verification algorithm is still quantum but the
witness is classical, the problem is not seemed to be solved. The reason, is that we
don’t know how to construct sigma protocols for QCMA where the first message
α is classical, and the same contradiction to the no-cloning theorem holds.

The second known route of obtaining a quantum-secure NIZK protocol for
NP in the CRS model is through the hidden bits model [FLS99] which is imple-
mentable by sub-exponentially-secure indistinguishability obfuscation [BP15]. In
the hidden bits model, intuitively (and roughly), the trusted party samples as
the common reference string a commitment to a string sampled from some dis-
tribution (where by using a trapdoor permutation, the prover can open the com-
mitments efficiently), and the prover proves that the instance at hand x ∈ Lyes

384 O. Shmueli

satisfies some property related to the string underlying the commitments. Even
if we are willing to assume the very strong cryptographic assumptions which are
needed for the realization of this protocol (i.e. sub-exponentially-secure post-
quantum indistinguishability obfuscation), it is currently unknown how to use
the hidden bits model to instantiate non-interactive zero-knowledge quantum
protocols.

Relaxations of the CRS Model and Previous Work. The constructions of
NIZKs for NP discussed in Subsect. 1.3 are implicitly in the CRS model, where
the setup consists of a string that is sampled and published by the trusted party,
in particular, nor the prover or verifier hold any trapdoors over the setup. Some-
times when it is unknown how to build a NIZK in the CRS model (or unknown
how to minimize the assumptions for building one) we turn to relaxations of the
CRS model. For example, in the designated-verifier model (DV-NIZK) [PV+06]
the trusted party samples, along with the CRS, a pair of public and secret ver-
ification keys (pvk, svk), publishes pvk along with the CRS and hands svk only
to the verifier. Another example is the designated prover model (DP-NIZK)
[KW19], which is analogous to the DV-NIZK model, only that the prover is the
one who gets a secret, now-proof key.

It is a well known fact in the design of NIZKs that when the verifier holds
a secret verification key (e.g. in the DV-NIZK model) then multi-theorem zero
knowledge can be achieved generically by the compiler of [FLS99], but multi-
theorem soundness becomes non-trivial. For example, it is possible (and is some-
times provably the case) that the prover can decode the verifier’s secret key
by having access multiple times to the verifier’s verdict function, consequently
breaking the soundness of the protocol. Indeed, one example is that until the
works of [QRW19,LQR+19], based on [PV+06] it was only known how to get
single-theorem-secure DV-NIZK for NP, and another example is that this is the
current situation with QMA constructions of NIZK protocols.

The QMA NIZK protocol of Broadbent and Grilo [BG19] is in the secret
parameters model (i.e. the protocol is both designated-prover and designated-
verifier and both parties get secret keys from the trusted party) but is a proof
system and has statistical soundness rather than the computational soundness
we achieve. The protocol of Coladangelo, Vidick and Zhang [CVZ19] is in a
model that is somewhat between the common reference string model and the
DV-NIZK model, where the trusted party samples a common reference string
and the verifier itself samples a pair (pvk, svk) where pvk is a quantum state.
Morimae [Mor20] shows a classical-designated-verifier NIZK proof system for
QMA with a quantum trusted setup. Outside of the standard model, an addi-
tional construction by Alagic, Childs, Grilo and Hung [ACGH19] yields a QMA
NIZK argument in the quantum random oracle model (with additional setup
in the secret parameters model) which is classical-verifier. All of the abovemen-
tioned protocols are not reusable.

There are two main issues with letting the trusted party sample secret keys
for any of the parties: First, the trust requirements of the setup now increase as

Multi-theorem Designated-Verifier NIZK for QMA 385

the party receiving the secret key should assume that the trusted party handles
its secret information securely. The second issue is that of centralization of com-
putational resources: for example, in the DV-NIZK model, the trusted party is
now responsible for sampling a fresh pair (pvk, svk) for every new verifier that
wishes to use the protocol, which is very different from the CRS setting where
it samples a string and from that point on can terminate.

The malicious designated-verifier (MDV-NIZK) model [QRW19,LQR+19]
seeks to solve the above two problems, which is also the model of our protocol.
In the MDV-NIZK model the trusted party only samples a common random
string, and then, any verifier wishing to use the protocol can sample by itself a
pair of classical keys (pvk, svk) and publish pvk. The protocol then stays secure
even if the public key pvk is maliciously-generated.

1.4 Subsequent Work

Subsequently to this work, several related constructions for NIZK protocols
for QMA are shown. Morimae and Yamakawa construct a classically verifiable
dual-mode NIZK for QMA, with quantum preprocessing [MY21]. The result is
essentially in the same model of the protocol of Coladangelo, Vidick and Zhang
[CVZ19], that is, the CRS is published, and then the verifier sends an instance-
independent quantum message to the prover, keeping a classical trapdoor. Given
the instance, witness and the verifier’s quantum message, the prover can perform
an efficient quantum procedure and send a classical message to the verifier which
acts as a proof. The improvement of [MY21] over [CVZ19] is that the protocol
is dual-mode and has two modes: (1) a proof (with statistical soundness) and
computational ZK guarantee and (2) an argument (with computational sound-
ness guarantee) and statistical ZK, rather than only an argument mode, that
[CVZ19] enables.

Bartusek, Coladangelo, Khurana and Ma also construct an MDV-NIZK pro-
tocol for QMA [BCKM20], and improve our result in two aspects. First, in
order to get adaptive soundness (over standard soundness) we need to assume
the subexponential (quantum) hardness of LWE, while [BCKM20] only requires
assuming the polynomial (quantum) hardness of LWE. Second, our protocol
requires polynomially-many copies of the quantum witness for the QMA instance
x, while the protocol of [BCKM20] is a single-witness protocol.

2 Preliminaries

We rely on standard notions of classical Turing machines and Boolean circuits:

– A PPT algorithm is a probabilistic polynomial-time Turing machine.
– Let M be a PPT and let x denote the random variable which is the output

of M . Whenever the entropy of the output of M is non-zero, we denote the
random experiment of sampling x with x ← M(·). If the entropy of the output
of M is zero (i.e. M is deterministic), we denote x = M(·).

386 O. Shmueli

– We sometimes think about PPT algorithms as polynomial-size uniform fam-
ilies of circuits, these are equivalent models. A polynomial-size circuit family
C is a sequence of circuits C = {Cλ}λ∈N

, such that each circuit Cλ is of
polynomial size λO(1). We say that the family is uniform if there exists a
deterministic polynomial-time algorithm M that on input 1λ outputs Cλ.

– For a PPT algorithm M , we denote by M(x; r) the output of M on input
x and random coins r. For such an algorithm and any input x, we write
m ∈ M(x) to denote the fact that m is in the support of M(x; ·).

We follow standard notions from quantum computation.

– A QPT algorithm is a quantum polynomial-time Turing machine.
– We sometimes think about QPT algorithms as polynomial-size uniform fami-

lies of quantum circuits, these are equivalent models. A polynomial-size quan-
tum circuit family C is a sequence of quantum circuits C = {Cλ}λ∈N

, such
that each circuit Cλ is of polynomial size λO(1). We say that the family is
uniform if there exists a deterministic polynomial-time algorithm M that on
input 1λ outputs Cλ.

– An interactive algorithm M , in a two-party setting, has input divided into
two registers and output divided into two registers. For the input, one register
Im is for an input message from the other party, and a second register Ia is
an auxiliary input that acts as an inner state of the party. For the output,
one register Om is for a message to be sent to the other party, and another
register Oa is again for auxiliary output that acts again as an inner state.
For a quantum interactive algorithm M , both input and output registers are
quantum.

The Adversarial Model. Throughout, efficient adversaries are modeled as
quantum circuits with non-uniform quantum advice (i.e. quantum auxiliary
input). Formally, a polynomial-size adversary A∗ = {A∗

λ, ρλ}λ∈N
, consists of

a polynomial-size non-uniform sequence of quantum circuits {A∗
λ}λ∈N, and a

sequence of polynomial-size mixed quantum states {ρλ}λ∈N.
For an interactive quantum adversary in a classical protocol, it can be

assumed without loss of generality that its output message register is always
measured in the computational basis at the end of computation. This assump-
tion is indeed without the loss of generality, because whenever a quantum state
is sent through a classical channel then qubits decohere and are effectively mea-
sured in the computational basis.

Indistinguishability in the Quantum Setting

– Let f : N → [0, 1] be a function.
• f is negligible if for every constant c ∈ N there exists N ∈ N such that

for all n > N , f(n) < n−c.
• f is noticeable if there exists c ∈ N, N ∈ N such that for every n ≥ N ,

f(n) ≥ n−c.
• f is overwhelming if it is of the form 1−μ(n), for a negligible function μ.

Multi-theorem Designated-Verifier NIZK for QMA 387

– We may consider random variables over bit strings or over quantum states.
This will be clear from the context.

– For two random variables X and Y supported on quantum states, quantum
distinguisher circuit D with, quantum auxiliary input ρ, and μ ∈ [0, 1], we
write X ≈D,ρ,μ Y if

|Pr[D(X; ρ) = 1] − Pr[D(Y ; ρ) = 1]| ≤ μ.

– Two ensembles of random variables X = {Xi}λ∈N,i∈Iλ
, Y = {Yi}λ∈N,i∈Iλ

over
the same set of indices I = ·∪λ∈NIλ are said to be computationally indistin-
guishable, denoted by X ≈c Y, if for every polynomial-size quantum distin-
guisher D = {Dλ, ρλ}λ∈N

there exists a negligible function μ(·) such that for
all λ ∈ N, i ∈ Iλ,

Xi ≈Dλ,ρλ,μ(λ) Yi .

– The trace distance between two distributions X,Y supported over quan-
tum states, denoted TD(X,Y), is a generalization of statistical distance to
the quantum setting and represents the maximal distinguishing advantage
between two distributions supported over quantum states, by unbounded
quantum algorithms. We thus say that ensembles X = {Xi}λ∈N,i∈Iλ

, Y =
{Yi}λ∈N,i∈Iλ

, supported over quantum states, are statistically indistinguish-
able (and write X ≈s Y), if there exists a negligible function μ(·) such that
for all λ ∈ N, i ∈ Iλ,

TD (Xi, Yi) ≤ μ(λ) .

In what follows, we introduce the cryptographic tools used in this work.
By default, all algorithms are classical and efficient, and security holds against
polynomial-size non-uniform quantum adversaries with quantum advice.

2.1 Cryptographic Tools

Interactive Proofs and Sigma Protocols. We define interactive proof sys-
tems and then proceed to describe sigma protocols, which are a special case
of interactive proof systems. In what follows, we denote by (P,V) a protocol
between two parties P and V. For common input x, we denote by OUTV〈P,V〉(x)
the output of V in the protocol. For honest verifiers, this output will be a single
bit indicating acceptance or rejection of the proof. Malicious quantum verifiers
may have arbitrary quantum output.

Definition 1 (Quantum Proof Systems for QMA). Let (P,V) be a quan-
tum protocol with an honest QPT prover P and an honest QPT verifier V for a
problem L ∈ QMA, satisfying:

388 O. Shmueli

1. Statistical Completeness: There is a polynomial k(·) and a negligible func-
tion μ(·) s.t. for any λ ∈ N, x ∈ L ∩ {0, 1}λ, |w〉 ∈ RL(x)5,

Pr[OUTV〈P(|w〉⊗k(λ)),V〉(x) = 1] ≥ 1 − μ(λ) .

2. Statistical Soundness: There exists a negligible function μ(·), such that
for any (unbounded) prover P∗, any security parameter λ ∈ N, and any x ∈
{0, 1}λ \ L,

Pr [OUTV〈P∗,V〉(x) = 1] ≤ μ(λ) .

We use the abstraction of Sigma Protocols, which are public-coin three-
message proof systems with a weak zero-knowledge quarantee. We define quan-
tum Sigma Protocols for gap problems in QMA.

Definition 2 (Quantum Sigma Protocol for QMA). A quantum sigma
protocol for L ∈ QMA is a quantum proof system (Ξ.P, Ξ.V) (as in Definition
1) with 3 messages and the following syntax.

– α = Ξ.P(|w〉⊗k(λ); r) : Given k(λ) copies of the quantum witness w ∈ RL(x)
and classical randomness r, the first prover message consists of a quantum
message α generated by a quantum unitary computation Ξ.P.

– β ← Ξ.V(x) : The verifier simply outputs a string of poly(|x|) random bits.
– γ = Ξ.P3(β, r) : Given the verifier’s β and the randomness r, the prover

outputs a response γ by a classical computation Ξ.P3.

The protocol satisfies the following.

Special Zero-Knowledge: There exists a QPT simulator Ξ.Sim such that,
{

(α, γ) | r ← U�(λ), α = Ξ.P(|w〉⊗k(λ); r), γ = Ξ.P3(β, r)
}

λ,x,|w〉,β

≈c {(α, γ) | (α, γ) ← Ξ.Sim(x, β)}λ,x,|w〉,β ,

where λ ∈ N, x ∈ L ∩ {0, 1}λ, |w〉 ∈ RL(x), β ∈ {0, 1}poly(λ) and �(λ) is the
amount of randomness needed for the first prover message.

Instantiations. Quantum sigma protocols follow from the parallel repetition of
the 3-message quantum zero-knowledge protocols of [BG19] for QMA.

Leveled Fully-Homomorphic Encryption with Circuit Privacy. We
define a leveled fully-homomorphic encryption scheme with circuit privacy, that
is, for an encryption ct = FHE.Enc(x) and a circuit C, a C-homomorphically-
evaluated ciphertext ĉt = FHE.Eval(C, ct) reveals nothing on C but C(x).

5 For a problem L = (Lyes, Lno) in QMA, for an instance x ∈ Lyes, the set RL(x)
is the (possibly infinite) set of quantum witnesses that make the BQP verification
machine accept with some overwhelming probability 1 − negl(λ).

Multi-theorem Designated-Verifier NIZK for QMA 389

Definition 3 (Circuit-Private Fully-Homomorphic Encryption). A
circuit-private, leveled fully-homomoprhic encryption scheme (FHE.Gen,
FHE.Enc, FHE.Eval, FHE.Dec) has the following syntax:

– sk ← FHE.Gen(1λ, 1s(λ)) : a probabilistic algorithm that takes a security
parameter 1λ and a circuit size bound s(λ) and outputs a secret key sk.

– ct ← FHE.Encsk(x) : a probabilistic algorithm that given the secret key, takes
a string x ∈ {0, 1}∗ and outputs a ciphertext ct.

– ĉt ← FHE.Eval(C, ct) : a probabilistic algorithm that takes a (classical) circuit
C and a ciphertext ct and outputs an evaluated ciphertext ĉt.

– x̂ = FHE.Decsk(ĉt) : a deterministic algorithm that takes a ciphertext ĉt and
outputs a string x̂.

The scheme satisfies the following.

– Perfect Correctness: For any polynomial s(·), for any λ ∈ N, size-s(λ)
classical circuit C and input x for C,

Pr

⎡

⎣FHE.Decsk(ĉt) = C(x)

∣∣∣∣∣∣

sk ← FHE.Gen(1λ, 1s(λ)),
ct ← FHE.Encsk(x),
ĉt ← FHE.Eval(C, ct)

⎤

⎦ = 1 .

– Input Privacy: For every polynomial �(·) (and any polynomial s(λ)),
{
ct

∣∣∣∣ sk ← FHE.Gen(1λ, 1s(λ)),
ct ← FHE.Encsk(x0)

}
λ,x0,x1

≈c

{
ct

∣∣∣∣ sk ← FHE.Gen(1λ, 1s(λ)),
ct ← FHE.Encsk(x1)

}
λ,x0,x1

,

where λ ∈ N and x0, x1 ∈ {0, 1}�(λ).
– Statistical Circuit Privacy: There exist unbounded algorithms, probabilis-

tic Sim and deterministic Ext such that:
• For every x ∈ {0, 1}∗, ct ∈ FHE.Enc(x), the extractor outputs Ext(ct) = x.
• For any polynomial s(·),

{FHE.Eval(C, ct∗)}λ,C,ct∗ ≈s {Sim(1λ, C(Ext(1λ, ct∗)))}λ,C,ct∗ ,

where λ ∈ N, C is a s(λ)-size circuit, and ct∗ ∈ {0, 1}∗.

The next claim follows directly from the circuit privacy property, and will be
used throughout the analysis.

Claim (Evaluations of Agreeing Circuits are Statistically Close). For any poly-
nomial s(·),

{FHE.Eval(C0, ct
∗)}λ,C0,C1,ct ≈s {FHE.Eval(C1, ct

∗)}λ,C0,C1,ct ,

where λ ∈ N, C0, C1 are two s(λ)-size functionally-equivalent circuits, and ct∗ ∈
{0, 1}∗.

Instantiations. Circuit-private leveled FHE schemes are known based on LWE
[OPCPC14,BD18].

390 O. Shmueli

Pseudorandom-Key Public-Key Encryption. We define a public-key
encryption scheme with pseudorandom public keys.

Definition 4 (Pseudorandom-key Public-key Encryption). A
pseudorandom-key public-key encryption scheme (PKE.Gen, PKE.Enc, PKE.Dec)
has the following syntax:

– (pk, sk) ← PKE.Gen(1λ) : a probabilistic algorithm that takes a security
parameter 1λ and outputs a pair of public and secret keys (pk, sk).

– ct ← PKE.Encpk(x) : a probabilistic algorithm that given the public key, takes
a string x ∈ {0, 1}∗ and outputs a ciphertext ct.

– x = PKE.Decsk(ct) : a deterministic algorithm that given the secret key, takes
a ciphertext ct and outputs a string x.

The scheme satisfies the following.

– Statistical Correctness Against Malicious Encryptors: There is a neg-
ligible function negl(·) such that for any λ ∈ N and input x ∈ {0, 1}∗, the
following perfect correctness holds with probability at least 1 − negl(λ) over
sampling (pk, sk) ← PKE.Gen(1λ):

Pr [PKE.Decsk(ct) = x | ct ← PKE.Encpk(x)] = 1 .

– Public-key Pseudorandomness: For λ ∈ N let �(λ) be the length of the
public key generated by PKE.Gen(1λ), then,

{
pk

∣∣ (pk, sk) ← PKE.Gen(1λ)
}

λ∈N
≈c

{
U�(λ)

}
λ∈N

.

– Encryption Security: For every polynomial l(·),
{
(pk, ct)

∣∣∣∣ (pk, sk) ← PKE.Gen(1λ),

ct ← PKE.Encpk(x0)

}
λ,x0,x1

≈c

{
(pk, ct)

∣∣∣∣ (pk, sk) ← PKE.Gen(1λ),

ct ← PKE.Encpk(x1)

}
λ,x0,x1

,

where λ ∈ N and x0, x1 ∈ {0, 1}l(λ).

Instantiations. Pseudorandom-key public-key encryption schemes are known
based on LWE [Reg09].

Pseudorandom Function

Definition 5 (Pseudorandom Function (PRF)). A pseudorandom func-
tion scheme (PRF.Gen, PRF.F) has the following syntax:

– sk ← PRF.Gen(1λ, 1�(λ)) : a probabilistic algorithm that takes a security
parameter 1λ and an output size �(λ) and outputs a secret key sk.

– y = PRF.Fsk(x) : a deterministic algorithm that given the secret key, takes a
string x ∈ {0, 1}∗ and outputs a string y ∈ {0, 1}�(λ).

The scheme satisfies the following property.
– Pseudorandomness: For every quantum polynomial-size distinguisher D =

{Dλ, ρλ}λ∈N and polynomial �(·) there is a negligible function μ(·) such that
for all λ ∈ N,∣∣∣∣∣ Pr
sk←PRF.Gen(1λ,1�(λ))

[Dλ(ρλ)
PRF.Fsk(·) = 1] − Pr

f←({0,1}�(λ))({0,1}∗)
[Dλ(ρλ)

f(·) = 1]

∣∣∣∣∣ ≤ μ(λ) .

Multi-theorem Designated-Verifier NIZK for QMA 391

NIZK Argument for NP in the Common Random String Model. We
define non-interactive computational zero-knowledge arguments for NP in the
common random string model, with adaptive multi-theorem security.

Definition 6 (NICZK Argument for NP). A non-interactive computational
zero-knowledge argument system in the common random string model for a lan-
guage L ∈ NP consists of 3 algorithms (NIZK.Setup ,NIZK.P ,NIZK.V) with the
following syntax:

– crs ← NIZK.Setup(1λ) : A classical algorithm that on input security parameter
λ simply samples a common uniformly random string crs.

– π ← NIZK.P(crs, x, w) : A probabilistic algorithm that on input crs, an
instance x ∈ L and a witness w ∈ RL(x), outputs a proof π.

– NIZK.V(crs, x, π) ∈ {0, 1} : A deterministic algorithm that on input crs, an
instance x ∈ L and a proof π, outputs a bit.

The protocol satisfies the following properties.

– Perfect Completeness: For any λ ∈ N, x ∈ L ∩ {0, 1}λ, w ∈ RL(x),

Pr
crs←NIZK.Setup(1λ),
π←NIZK.P(crs,x,w)

[
NIZK.V(crs, x, π) = 1

]
= 1 .

– Adaptive Computational Soundness: For every quantum polynomial-size
prover NIZK.P∗ = {NIZK.P∗

λ, ρλ}λ∈N there is a negligible function μ(·) such
that for every security parameter λ ∈ N,

Pr
crs←NIZK.Setup(1λ),

(x,π∗)←NIZK.P∗
λ(ρλ,crs)

[
(x /∈ L) ∧ (

1 = NIZK.V(crs, x, π∗)
)] ≤ μ(λ) .

– Multi-Theorem Adaptive Computational Zero Knowledge: There
exists a polynomial-time simulator NIZK.Sim such that for every quantum
polynomial-size distinguisher D∗ = {D∗

λ, ρλ}λ∈N there is a negligible function
μ(·) such that for every security parameter λ ∈ N,

|Pλ,Real − Pλ,Simulated| ≤ μ(λ) ,

where,

Pλ,Real := Pr
crs←NIZK.Setup(1λ)

[
D∗

λ(ρλ, crs)NIZK.P(crs,·,·) = 1
]

,

Pλ,Simulated := Pr
(c̃rs,td)←NIZK.Sim(1λ)

[
D∗

λ(ρλ, c̃rs)NIZK.Sim(td,·) = 1
]

,

where,
• In every query that D∗ makes to the oracle, it sends a pair (x,w) where

x ∈ L ∩ {0, 1}λ and w ∈ RL(x).
• NIZK.P(crs, ·, ·) is the prover algorithm and NIZK.Sim(·, ·) acts only on its

sampled trapdoor td and on x.

Instantiations. Non-interactive computational zero-knowledge arguments for
NP in the common random string model with both adaptive soundness and zero
knowledge are known based on LWE [CCH+19,PS19].

392 O. Shmueli

Malicious Designated-Verifier Non-interactive Zero-Knowledge for
QMA. We define non-interactive zero-knowledge protocols in the malicious
designated-verifier model (MDV-NIZK) for QMA, with adaptive (and non-
adaptive) multi-theorem security.

Definition 7 (MDV-NICZK Argument for QMA). A non-interactive
computational zero-knowledge argument system for in the malicious designated-
verifier model for a gap problem (Lyes,Lno) = L ∈ QMA consists of 4 algo-
rithms (Setup ,VSetup ,P ,V) with the following syntax:

– crs ← Setup(1λ) : A classical algorithm that on input security parameter λ
simply samples a common uniformly random string crs.

– (pvk, svk) ← VSetup(crs) : A classical algorithm that on input crs samples a
pair of public and secret verification keys.

– |π〉 ← P(crs, pvk, x, |w〉⊗k(λ)) : A quantum algorithm that on input crs, the
public verification key pvk, an instance x ∈ Lyes and polynomially-many
identical copies of a witness |w〉 ∈ RL(x) (k(·) is some polynomial), outputs
a quantum state |π〉.

– V(crs, svk, x, |π〉) ∈ {0, 1} : A quantum algorithm that on input crs, secret
verification key svk, an instance x ∈ L and a quantum proof |π〉, outputs a
bit.

The protocol satisfies the following properties.

– Statistical Completeness: There is a polynomial k(·) and a negligible func-
tion μ(·) s.t. for any λ ∈ N, x ∈ Lyes ∩{0, 1}λ, |w〉 ∈ RL(x), crs ∈ Setup(1λ),
(pvk, svk) ∈ VSetup(crs),

Pr
|π〉←P(crs,pvk,x,|w〉⊗k(λ))

[
V(crs, svk, x, |π〉) = 1

]
≥ 1 − μ(λ) .

– Multi-Theorem Adaptive Computational Soundness: For every quan-
tum polynomial-size prover P∗ = {P∗

λ, ρλ}λ∈N there is a negligible function
μ(·) such that for every security parameter λ ∈ N,

Pr
crs←Setup(1λ),

(pvk,svk)←VSetup(crs),

(x,|π∗〉)←P∗
λ(ρλ,crs,pvk)V(crs,svk,·,·)

[
(x ∈ Lno) ∧ (

1 = V(crs, svk, x, |π∗〉))
]

≤ μ(λ) .

– Multi-Theorem Adaptive Computational Zero Knowledge: There
exists a quantum polynomial-time simulator Sim such that for every quantum
polynomial-size distinguisher D∗ = {D∗

λ, ρλ}λ∈N there is a negligible function
μ(·) such that for every security parameter λ ∈ N,

∣∣∣∣∣ Pr
crs←Setup(1λ)

[
D∗

λ(ρλ, crs)P(crs,·,·,·) = 1
]

− Pr
(c̃rs,td)←Sim(1λ)

[
D∗

λ(ρλ, c̃rs)Sim(td,·,·)
= 1

]∣∣∣∣∣ ≤ μ(λ) ,

where,

Multi-theorem Designated-Verifier NIZK for QMA 393

• In every query that D∗ makes to the oracle, it sends a triplet
(pvk∗, x, |w〉⊗k(λ)) where pvk∗ can be arbitrary, x ∈ Lyes ∩ {0, 1}λ and
|w〉 ∈ RL(x).

• P(crs, ·, ·, ·) is the prover algorithm and Sim(·, ·) acts only on its sampled
trapdoor td and on pvk∗, x.

We note that the standard (non-adaptive) soundness guarantees the
following:

Definition 8 (MDV-NICZK Argument for QMA with Standard
Soundness). A non-interactive computational zero-knowledge argument sys-
tem in the malicious designated-verifier model for a gap problem (Lyes,Lno) =
L ∈ QMA has standard non-adaptive soundness if it satisfies the same prop-
erties described in Definition 7, with the only change that instead of satisfying
multi-theorem adaptive soundness, it satisfies the following guarantee:

– Multi-Theorem Computational Soundness: For every quantum
polynomial-size prover P∗ = {P∗

λ, ρλ}λ∈N and {xλ}λ∈N where ∀λ ∈ N : xλ ∈
Lno, there is a negligible function μ(·) such that for every security parameter
λ ∈ N,

Pr
crs←Setup(1λ),

(pvk,svk)←VSetup(crs),

|π∗〉←P∗
λ(ρλ,crs,pvk)V(crs,svk,·,·)

[
1 = V(crs, svk, x, |π∗〉)

]
≤ μ(λ) .

3 Non-interactive Zero-Knowledge Protocol

In this section we describe a non-interactive computational zero-knowledge
argument system in the malicious designated-verifier model for an arbitrary
L ∈ QMA, according to Definition 7.

Ingredients and notation

– A non-interactive zero-knowledge argument for NP (NIZK.Setup, NIZK.P,
NIZK.V) in the common random string model.

– A pseudorandom function (PRF.Gen,PRF.F).
– A leveled fully-homomorphic encryption scheme (FHE.Gen, FHE.Enc,
FHE.Eval, FHE.Dec) with circuit privacy.

– A public-key encryption scheme (PKE.Gen,PKE.Enc,PKE.Dec) with pseudo-
random public keys.

– A 3-message quantum sigma protocol (Ξ.P, Ξ.V) for QMA.

We describe the protocol in Fig. 1.
The (statistical) completeness of the protocol follows readily from the perfect

completeness of the NIZK scheme, the perfect correctness of FHE and the sta-
tistical completeness of the quantum sigma protocol (Ξ.P, Ξ.V). We next prove
the soundness and zero knowledge of the protocol.

394 O. Shmueli

3.1 Soundness

We prove that the protocol has multi-theorem computational soundness (as in
Definition 8). By standard generic compilation and sub-exponential hardness of
LWE we extend our soundness to be adaptive (as in Definition 7).

Fig. 1. A non-interactive computational zero-knowledge argument system for L ∈
QMA in the malicious designated-verifier model.

Multi-theorem Designated-Verifier NIZK for QMA 395

Proposition 1 (The Protocol has Multi-theorem Computational
Soundness). For every quantum polynomial-size prover P∗ = {P∗

λ, ρλ}λ∈N

there is a negligible function μ(·) such that for every security parameter λ ∈ N

and x ∈ Lno ∩ {0, 1}λ,

Pr
(crs,ek)←Setup(1λ),(

(ctV,ctrV
,πV),(prfk,fhek)

)
←VSetup(crs,ek),

|π∗〉←P∗
λ

(
ρλ,(crs,ek),(ctV,ctrV

,πV)
)V((crs,ek),(prfk,fhek),·,·)

[
1 = V((crs, ek), (prfk, fhek), x, |π∗〉)

]
≤ μ(λ) .

Proof. Let P∗ = {P∗
λ, ρλ}λ∈N a polynomial-size quantum prover and let {xλ}λ∈N

s.t. ∀λ ∈ N : xλ ∈ Lno ∩{0, 1}λ. We prove soundness by a hybrid argument, that
is, we consider a series of computationally-indistinguishable hybrid processes
with output over {0, 1}, starting from the output of the verifier (for the prover’s
false proof) in the real interaction, until we get to a distribution where the
output of the verifier can be 1 with at most negligible probability. We define the
following processes.

– Hyb0 : The output distribution of the verifier in the real interaction, that is,
for

(crs, ek) ← Setup(1λ) ,
(
(ctV, ctrV

, πV), (prfk, fhek)
) ← VSetup(crs, ek) ,

|π∗〉 ← P∗
λ

(
ρλ, (crs, ek), (ctV, ctrV

, πV)
)V((crs,ek),(prfk,fhek),·,·)

,

the output bit V((crs, ek), (prfk, fhek), x, |π∗〉).
– Hyb1 : This hybrid process is identical to Hyb0, with the exception that ek is

sampled as a public key for the PKE scheme (ek, sk) ← PKE.Gen(1λ), rather
than as a random string of the same length. To move to this hybrid we will
use the fact that the public keys of the PKE scheme are pseudorandom.

– Hyb2 : This hybrid process is identical to Hyb1, with the exception that the
verification algorithm (described in step 4 of the protocol) changes. The new
verifier Ṽ still makes sure that πP is a valid proof for (ĉtP, ctrΞ

, ek), but the
second check changes to the following: Let rΞ = PKE.Decsk(ctrΞ

), and let
γ = Ξ.P3(βx, rΞ). Then Ṽ accepts if 1 = Ξ.V(x, α, βx, γ). To move to this
hybrid we will use the (adaptive) soundness property of the NP NIZK proof
that P∗ provides.

– Hyb3 : This hybrid process is identical to Hyb2, with the exception that
when generating the CRS (crs, ek) and the public verification key pvk =
(ctV, ctrV

, πV), (1) the CRS for the NP NIZK is simulated (crs, td) ←
NIZK.Sim(1λ), (2) the proof πV is simulated πV ← NIZK.Sim(td, (ctV, ctrV

, ek))
rather than generated by the NP NIZK prover. To move to this hybrid we
use the zero-knowledge property of the NP NIZK proof that V provides.

– Hyb4 : This hybrid process is identical to Hyb3, with the exception that when
generating pvk = (ctV, ctrV

, πV), ctrV
is just an encryption of a string of zeros

(of the same length) rather than the randomness rV. To move to this hybrid
we use the security of the PKE scheme.

396 O. Shmueli

– Hyb5 : This hybrid process is identical to Hyb4, with the exception that when
generating pvk = (ctV, ctrV

, πV), ctV is just an encryption of a string of zeros
(of the same length) rather than the FHE encryption of the secret PRF key
prfk. To move to this hybrid we use the security of the FHE scheme.

– Hyb6 : This hybrid process is identical to Hyb5, with the exception that the
modified verification algorithm Ṽ from Hyb2 is now going to be a new stateful
algorithm Ṽs. The new verifier Ṽs still makes sure that πP is a valid proof for
(ĉtP, ctrΞ

, ek), but the second check changes to the following: It is identical
to that of Ṽ, except that βx is now lazily sampled as a truly random string,
that is, every time P∗ sends a query for some x′, instead of computing βx′ =
PRF.Fprfk(x′), Ṽs samples βx′ a truly random string of the same length and
remembers it for future queries by the prover (for the same x′). To move to
this hybrid we use the pseudorandomnes guarantee of the PRF.

– Hyb7 : This hybrid process is identical to Hyb6, with the exception that the
behaviour of the verification algorithm Ṽs changes in the following way: Con-
sider t the first time step in the execution of P∗ (in Hyb6) such that with a
noticeable probability, P∗ sends a pair (x′, |π∗〉) such that (1) x′ ∈ Lno and
(2) the modified verification algorithm Ṽs accepts - this proof can be sent
either as a query to the verification oracle, or as the final output of P∗ (in
that case, t is the last time step of P∗ and x′ = x).
Now we define Hyb7: the verification algorithm works as in Hyb6 with the one
change that if P∗ sends a query to the verification oracle before its time step
t and this query is for a no-instance x′ ∈ Lno, then we simply return 0 to
P∗ as the verifier’s answer, without computing anything. Note that checking
whether x′ ∈ Lno takes 2O(|x′|) time6, and thus the execution of this hybrid
is inefficient. If such time step t does not exist (i.e. in each of the prover’s
time steps, the probability for it to generate a false proof is only negligible),
this process is identical to Hyb6.

We now explain why the outputs of each two consecutive hybrids are compu-
tationally indistinguishable7. We will then use the last hybrid process to show
that soundness of the protocol follows from the soundness of the quantum sigma
protocol (Ξ.P, Ξ.V).

– Hyb0 ≈c Hyb1 : Follows readily from the pseudorandomness property of the
public keys generated by PKE.Gen(1λ).

– Hyb1 ≈c Hyb2 : Follows from the adaptive soundness of the NIZK protocol for
NP, the statistical correctness of the PKE scheme and the perfect correctness
of the FHE scheme. We explain in more detail: Assume the output bits of

6 We assume that our gap problem L ∈ QMA has exponential-time algorithms that
solve it, that is, for x ∈ L we can decide whether x ∈ Lyes or x ∈ Lno in 2O(|x|) time.
It is also enough for our proof to assume that L is solvable in general exponential
time i.e. O(2|x|c) time for some constant c ∈ N.

7 the output bits of the hybrids are in fact statistically indistinguishable, because any
two distributions over a bit are statistically indistinguishable if they are computa-
tionally indistinguishable, but we won’t care about this in our analysis.

Multi-theorem Designated-Verifier NIZK for QMA 397

Hyb1 and Hyb2 are distinguishable with some noticeable advantage, then by
the perfect correctness of the FHE evaluation, it follows that with a noticeable
probability, either (1) there was an error in the decryption process of the PKE
scheme at least once, or (2) P∗ generated a false proof for the NP NIZK scheme
at least once. We prove that both happen with at most negligible probability,
and thus the statistical distance between the output bits of Hyb1 and Hyb2 is
at most negligible.
The correctness guarantee of the PKE scheme is that when the public key is
sampled honestly, which is true in our case, then with overwhelming probabil-
ity over the randomness of PKE.Gen(1λ), the decryption is perfectly correct,
regardless of the randomness used for the encryption (which in our case is
possibly malicious, as it is chosen by P∗). This implies that with at most neg-
ligible probability there is an error in the decryption process PKE.Decsk(·).
If P∗ manages to give a false proof π∗

P for some tuple (ĉtP, ctrΞ
, ek) with a

noticeable probability ε then we can use it to break the adaptive soundness
of the NP NIZK scheme: We guess the index of the query (to the verification
oracle Ṽ((crs, ek), (prfk, fhek), ·, ·)) where P∗ gives such false proof, and with
probability at least ε · 1

t , where t is the (polynomial) running time of P∗, we
find such false proof. This implies that ε has to be at most negligible i.e. P∗

cannot produce a false proof for the NP NIZK with a noticeable probability.
– Hyb2 ≈c Hyb3 : Assume toward contradiction that the output bits of Hyb2 and

Hyb3 are distinguishable with some noticeable advantage, we use the prover
P∗ in order to construct a distinguisher D that breaks the zero-knowledge
property of the NP NIZK scheme (it seems that we don’t have to use the fact
that the zero knowledge property of the NP NIZK is adaptive, but we will
use it for the convenience of the proof and because it does not cause an extra
cost in computational assumptions).
D will sample (ek, sk) ← PKE.Gen(1λ), honestly sample (ctV, ctrV

) with ran-
domness r, and then get a common random string crs from the NIZK zero
knowledge challenger. D then hands (ctV, ctrV

, ek) along with the NP witness
r and gets back either a real proof or a simulated proof. it then proceeds to
run the malicious prover P∗ and at the end, by the verdict of the (modified)
verification algorithm Ṽ for the prover’s proof and instance, distinguishes
between whether it got a simulated proof or a real proof. This follows from
the fact that whenever D gets a real proof (and CRS) then the view of P∗ is
exactly its view in Hyb2 and whenever D gets a simulated proof (and CRS)
then the view of P∗ is exactly its view in Hyb3.

– Hyb3 ≈c Hyb4 : Follows readily from the security of the PKE scheme.
– Hyb4 ≈c Hyb5 : Follows readily from the security of the FHE scheme.
– Hyb5 ≈c Hyb6 : Follows readily from the security of the PRF scheme.
– Hyb6 ≈c Hyb7 : Note that by how we defined the time step t it follows that the

change of returning 0 on queries for no-instances before time step t (rather
than actually evaluating the verification algorithm Ṽs) is unnoticeable to the
prover P∗.

Now, assume toward contradiction that P∗ succeeds in breaking the sound-
ness with a noticeable probability in the original execution of the protocol (i.e.

398 O. Shmueli

in the process Hyb0), and by the fact Hyb0 ≈c Hyb7 it follows that the verifier
accepts the prover’s false proof with some noticeable probability in the hybrid
experiment Hyb7. By the fact that with some noticeable probability P∗ succeeds
in cheating in Hyb7, it follows that a time step t exists where P∗ sends a pair
(x′, |π∗〉) such that x′ ∈ Lno and Ṽs accepts the proof (this follows because in
the last step of P∗’s execution it sends noticeably often a successful false proof
for x ∈ Lno).

Now we consider the execution process of Hyb7 and fix by an averaging
argument the snapshot |ψ〉 of the execution in the exact moment where P∗

sends a pair (x′, |π∗〉) in its time step t, such that the snapshot maximizes the
probability that x′ ∈ Lno and Ṽs accepts the proof |π∗〉 (as a side note, this
snapshot includes (1) all of the randomness (including setup information) in
the process Hyb7 until P∗’s step t, (2) the inner quantum state of P∗ in step
t, and of course a pair (x′, |π∗〉) such that x′ ∈ Lno.). It follows that the part
α and the extracted γ (both obtained from |π∗〉, recall γ is obtained by the
extracted randomness rΞ and the random string βx′) make a quantum sigma
protocol verifier Ξ.V accept the proof for a random challenge β with a noticeable
probability.

We now describe a malicious prover Ξ.P∗ that breaks the soundness of the
quantum sigma protocol (Ξ.P, Ξ.V), by using P∗ and the quantum advice |ψ〉 in
order to convince Ξ.V to accept the no-instance x′ ∈ Lno. Ξ.P∗ uses the snapshot
|ψ〉 and takes α from |π∗〉 and sends it as the first sigma protocol message to
Ξ.V. Ξ.V returns a random challenge β, and Ξ.P∗ treats this random challenge
as the random βx′ for the verification procedure Ṽs. Ξ.P∗ then derives γ from
|π∗〉 (as usual in Ṽs) and sends it to Ξ.V. Recall that we know Ξ.V accepts the
proof with a noticeable probability, and thus Ξ.P∗ breaks the soundness of the
quantum sigma protocol with noticeable probability, in contradiction.

We next use standard complexity leveraging to make the soundness adaptive,
that is, by assuming that the security of our cryptographic primitives is sub-
exponential we prove that the prover cannot choose the no-instance x ∈ Lno

adaptively. As mentioned in the preliminaries, the security of all of our primitives
can be based on the hardness of LWE, and thus based on the sub-exponential
hardness of LWE we can get adaptive soundness.

Proposition 2 (The Protocol has Multi-theorem Adaptive Computa-
tional Soundness). Assume there is a constant ε ∈ (0, 1) such that the cryp-
tographic ingredients we use are secure against O(2λε

)-time quantum algorithms
for security parameter λ. Then, by executing the protocol with security param-
eter λ := |x| 2

ε rather than λ = |x|, for every quantum polynomial-size prover
P∗ = {P∗

λ, ρλ}λ∈N there is a negligible function μ(·) such that for every security
parameter λ ∈ N,

Pr
[
(x ∈ Lno) ∧ (

1 = V((crs, ek), (prfk, fhek), x, |π∗〉))
]

≤ μ(λ) ,

where the probability is above the following experiment:

(crs, ek) ← Setup(1λ),
(
(ctV, ctrV

, πV), (prfk, fhek)
) ← VSetup(crs, ek),

Multi-theorem Designated-Verifier NIZK for QMA 399

(x, |π∗〉) ← P∗
λ

(
ρλ, (crs, ek), (ctV, ctrV

, πV)
)V((crs,ek),(prfk,fhek),·,·)

.

Proof. The proof is almost identical to the proof of Proposition 1, with minor
technical changes. Let P∗ = {P∗

λ, ρλ}λ∈N a polynomial-size quantum prover in
Protocol 1 and as before, we prove soundness by a hybrid argument by consid-
ering almost the same series of hybrids processes, and the reductions that show
the outputs of each consecutive pair of hybrids are indistinguishable, are also
going to be slightly different.

More precisely, consider the exact same hybrids Hyb0, · · · ,Hyb7 from the
proof of Proposition 1, with only the following differences:

– With accordance to the fact that we consider adaptive provers, in each hybrid
process, the output of the malicious prover at the end of the execution is a
pair (x, |π∗〉) rather than only a proof |π∗〉.

– The output of each hybrid process is still a bit, but going to be the logical
AND of (1) the verifier accepting the prover’s proof and instance x, and (2)
the instance x is indeed a no-instance x ∈ Lno (note that in the proof for
Proposition 1 the output bit of the hybrids only considers the verdict of the
verifier, as the no-instance x ∈ Lno is already fixed).

We will next claim that the outputs of each pair of consecutive hybrids are
computationally indistinguishable. For this, we will use the fact that given x ∈
L = Lyes ∪ Lno, we can decide whether x ∈ Lno or not in 2O(|x|) time.8 We also
use the fact that our primitives are assumed to be secure against sub-exponential
time algorithms and we run the protocol with increased security parameter,
more specifically, we assume that our primitives are secure against O(2λε

)-time
algorithms and we use security parameter λ = |x| 2

ε , thus it follows that no
O(2λε

) = O(2|x|2)-time algorithm can break the security of the primitives.
In continuance to the above, by the exact same reductions from the proof of

Proposition 1 with a single change, we have

Hyb0 ≈c Hyb1 ≈c Hyb2 ≈c Hyb3 ≈c Hyb4 ≈c Hyb5 ≈c Hyb6 ≈c Hyb7 .

The single change that we refer to is the check that the reduction makes when
getting the final output of the prover. In the proof of Proposition 1, the final
output of P∗ is a false proof |π∗〉 for a specific and pre-chosen x, while in our
case (the adaptive case) it is a pair (x, |π∗〉) for an adaptively-chosen x. Instead
of checking only the verdict of V, which can be done in polynomial time, the
reduction in our case will also check that x ∈ Lno, which can be done in time
2O(|x|). This implies that our security reductions take 2O(|x|) time to execute,
but they break primitives with security against O(2|x|2)-time algorithms, which
constitutes the needed contradiction. Finally, the algorithm Ξ.P∗ that uses P∗ in
the process Hyb7 in order to break the soundness of the quantum sigma protocol
is exactly the same as before, and our proof is finished.

8 As noted before, the proof is not sensitive to the fact that the time complexity is
2O(|x|) and not O(2|x|c) time for some constant c ∈ N.

400 O. Shmueli

As mentioned before, by the fact that the security of the cryptographic ingre-
dients in our protocol can be based on the hardness of LWE and the security
reductions for the primitives are polynomial-time, we get the following corollary.

Corollary 1. Assume there is a constant ε ∈ (0, 1) such that LWE is hard for
O(2nε

)-time quantum algorithms (for LWE secret of n bits). Then, for every
quantum polynomial-size prover P∗ = {P∗

λ, ρλ}λ∈N there is a negligible function
μ(·) such that for every security parameter λ ∈ N,

Pr
[
(x ∈ Lno) ∧ (

1 = V((crs, ek), (prfk, fhek), x, |π∗〉))
]

≤ μ(λ) ,

where the probability is above the following experiment:

(crs, ek) ← Setup(1λ),
(
(ctV, ctrV

, πV), (prfk, fhek)
) ← VSetup(crs, ek),

(x, |π∗〉) ← P∗
λ

(
ρλ, (crs, ek), (ctV, ctrV

, πV)
)V((crs,ek),(prfk,fhek),·,·)

.

3.2 Zero Knowledge

We show that the protocol is multi-theorem adaptive computational zero-
knowledge9, which holds even when the trusted setup samples only a common
uniformly random string, and an adversarial polynomial-time (quantum) verifier
samples its public verification key maliciously.

We next describe the simulator and then prove that the view that it generates
is indistinguishable from the real one, against adaptive distinguishers that choose
the statement to be proven only after seeing the common random string.
Sim(1λ) :

1. CRS Simulation: Given a security parameter λ, the first simulator output
is the simulation of the CRS for the NP NIZK protocol and swapping ek with
a public key for the PKE scheme, that is, Sim samples:

(crs, td) ← NIZK.Sim(1λ) , (ek, sk) ← PKE.Gen(1λ) ,

outputs (crs, ek) as the simulated CRS and (td, sk) as the simulator trapdoor.
2. Proof Simulation: Given the trapdoor (td, sk), a (possibly malicious) pub-

lic verification key pvk = (ctV, ctrV
, πV) and a yes-instance x ∈ Lyes, the

simulator does the following:
(a) Sim checks that πV is a valid proof for the tuple (ctV, ctrV

, ek)
and also actually verifies some of the statement itself: It decrypts
rV = PKE.Decsk(ctrV

) and checks that ctV is obtained by running
PRF.Gen, fhek ← FHE.Gen,FHE.Encfhek with randomness rV. If the check
is not accepted, Sim returns ⊥.

9 It would have been enough to show that the protocol is single-theorem adaptive
computational zero-knowledge, and then by the single-to-multi-theorem compiler
for NIZKs of [FLS99] get a MDV-NICZK argument with adaptive multi-theorem
security, but for the sake of completeness, because our construction can be shown to
be multi-theorem zero-knowledge without the FLS compilation and because it does
not change the main ideas in the proof, we prove the multi-theorem case directly.

Multi-theorem Designated-Verifier NIZK for QMA 401

(b) Sim derives prfk from rV, computes βx = PRF.Fprfk(x) and then executes
(α, γ) ← Ξ.Sim(x, βx).

(c) Sim performs a circuit-private homomorphic evaluation ĉtP ←
FHE.Eval(Cγ , ctV), where Cγ is the circuit that always outputs γ.

(d) Sim encrypts ctrΞ
← PKE.Encek(0�), where � is the length of the random-

ness for the prover in the quantum sigma protocol.
(e) Finally, Sim simulates the non-interactive zero-knowledge proof πP, by

executing πP ← NIZK.Sim(td, (ĉtP, ctrΞ
, ek)).

Sim outputs (α, ĉtP, ctrΞ
, πP).

We now prove that the simulated proofs that the simulator generates are
computationally indistinguishable from the real proofs that the prover generates.

Proposition 3 (The Protocol is Multi-theorem Adaptive Computa-
tional Zero-knowledge). For every quantum polynomial-size distinguisher
D∗ = {D∗

λ, ρλ}λ∈N there is a negligible function μ(·) such that for every secu-
rity parameter λ ∈ N,

|Pλ,Real − Pλ,Simulated| ≤ μ(λ) ,

where,

Pλ,Real := Pr
(crs,ek)←Setup(1λ)

[
D∗

λ(ρλ, (crs, ek))P((crs,ek),·,·,·) = 1
]

,

Pλ,Simulated := Pr
((crs,ek),(td,sk))←Sim(1λ)

[
D∗

λ(ρλ, (crs, ek))Sim((td,sk),·,·) = 1
]

,

where in every query that D∗ makes to the oracle, it sends a triplet
(pvk∗, x, |w〉⊗k(λ)) such that pvk∗ can be arbitrary, x ∈ Lyes ∩ {0, 1}λ and
|w〉 ∈ RL(x).

Proof. Let D∗ = {D∗
λ, ρλ}λ∈N a polynomial-size quantum distinguisher. We

prove zero knowledge by a hybrid argument, that is, we consider a series of
computationally-indistinguishable hybrid processes with 1-bit outputs, starting
from the output of D∗ when getting real proofs, until we get to the output of D∗

when getting simulated proofs. We define the following processes.

– Hyb0 : The output of D∗ when getting honestly-generated proofs, that
is, it gets the CRS from (crs, ek) ← Setup(1λ) and the proofs from
P∗((crs, ek), ·, ·, ·), as described in the experiment of PReal.

– Hyb1 : This hybrid process is identical to Hyb0, with the exception that ek is
sampled as a public key for the PKE scheme (ek, sk) ← PKE.Gen(1λ), rather
than as a random string of the same length. To move to this hybrid we will
use the fact that the public keys of the PKE scheme are pseudorandom.

– Hyb2 : This hybrid process is identical to Hyb1, with the exception that the
prover adds another validity check, over the one checking the validity of the
proof πV: It decrypts rV = PKE.Decsk(ctrV

) and checks that ctV is obtained
by running PRF.Gen, fhek ← FHE.Gen,FHE.Encfhek with randomness rV. To
move to this hybrid we will use the adaptive soundness of the NP NIZK.

402 O. Shmueli

– Hyb3 : This hybrid process is identical to Hyb2, with the exception that we
simulate the NP NIZK proofs, that is, (1) when sampling the NP NIZK
common random string crs from the total CRS (crs, ek), we sample a simulated
CRS (crs, td) ← NIZK.Sim(1λ) instead of crs ← NIZK.Setup(1λ), and (2) every
time we compute an NP NIZK proof πP as part of the QMA NIZK proof
|π〉, we use the NP NIZK simulator πP ← NIZK.Sim(td, (ĉtP, ctrΞ

, ek)) rather
than πP ← NIZK.P(crs, (ĉtP, ctrΞ

, ek)) (where we execute NIZK.P along with
a witness for the statement). To move to this hybrid we will use the adaptive
zero knowledge property of the NP NIZK.

– Hyb4 : This hybrid process is identical to Hyb3, with the exception that ctrΞ

is an encryption of zeros rather than the randomness for the circuit Cx,rΞ
,

which is homomorphically evaluated. To move to this hybrid we will use the
security of the PKE scheme.

– Hyb5 : This hybrid process is identical to Hyb4, with the exception that when
computing the evaluated ciphertext ĉtP, instead of homomorphically evalu-
ating the circuit Cx,rΞ

, we compute Cx,rΞ
in the clear and inject the result

by circuit-private evaluation. More precisely, the prover does the following:
First, it regularly computes α = Ξ.P(|w〉⊗k(λ); rΞ), for randomness rΞ . It
derives prfk from the decrypted randomness rV, computes βx = PRF.Fprfk(x),
γ = Ξ.P3(βx, rΞ), and then ĉtP ← FHE.Eval(Cγ , ctV), where Cγ is the circuit
that always outputs γ. To move to this hybrid we will use the circuit-privacy
property of the FHE’s evaluation algorithm.

– Hyb6 : This hybrid process is identical to Hyb5, with the exception that when
computing (α, γ) we use the quantum sigma protocol (special zero-knowledge)
simulator, that is, the prover first computes βx (from prfk which is derived
from rV) and then computes (α, γ) ← Ξ.Sim(x, βx) and as before, α is sent in
the clear and γ is sent through homomorphically evaluating the circuit Cγ on
ctV. To move to this hybrid we will use the special zero knowledge property
of the quantum sigma protocol. Note that the actions of the prover in this
hybrid process are exactly the ones of the QMA NIZK simulator Sim and
thus Hyb6 is exactly the process described in the experiment of PSimulated.

We now claim that the outputs of each two consecutive hybrids are computa-
tionally indistinguishable, which will finish our proof.

– Hyb0 ≈s Hyb1 : Follows readily from the pseudorandomness property of the
public keys generated by PKE.Gen(1λ).

– Hyb1 ≈s Hyb2 : Follows from the adaptive soundness of the NIZK protocol
for NP and the statistical correctness of the PKE scheme. We explain in
more detail: First, note that whenever the NP statement that D∗ proves in
πV is correct and the decryption of the PKE is correct, then the output
distribution of the proof oracle is identical between the two hybrid processes,
as the additional check that is made in Hyb2 passes successfully. Also note
that whenever the proof πV is invalid, then both processes output ⊥ and are
identical. It follows that the only times that the output distributions of the
proof oracles are not identical is whenever there is an error in the decryption

Multi-theorem Designated-Verifier NIZK for QMA 403

of the PKE, or the proof πV checks successfully but the statement is false
i.e. whenever D∗ breaks the adaptive soundness of the NP NIZK protocol.
Since both of the above happen with at most negligible probability, it follows
that only with negligible probability the outputs of Hyb1 and Hyb2 can be
distinguished, and the statistical closeness between them follows.

– Hyb2 ≈c Hyb3 : Follows readily from the adaptive zero-knowledge property of
the NP NIZK protocol.

– Hyb3 ≈c Hyb4 : Follows from the security of the PKE scheme. Specifically, the
encrypted randomness rΞ for every query is simply a random string (inde-
pendent of all other operations in the process) and thus all of these ran-
dom strings can be chosen at the beginning of the execution of the process,
and thus we fix by an averaging argument the strings r1Ξ , · · · , rq

Ξ that max-
imize the distinguishability of D∗, where the q is the (polynomial) number
of queries that D∗ makes to the proof oracle. It then follows that if D∗ dis-
tinguishes between Hyb3 and Hyb4 then it distinguishes between encryptions
of r1Ξ , · · · , rq

Ξ and encryptions of zeros, and since the single-message security
of public-key encryption schemes implies many-message security the indistin-
guishability Hyb3 ≈c Hyb4 follow.

– Hyb4 ≈s Hyb5 : Follows by a hybrid argument, by the circuit-privacy property
of the FHE scheme and from the fact that the prover makes the additional
check on the public verification key, which checks that ctV is obtained by run-
ning PRF.Gen, fhek ← FHE.Gen,FHE.Encfhek with the extracted randomness
rV. More precisely, let q be the number of queries that D∗ makes to the proof
oracle, and for i ∈ {0, 1, · · · , q} we define Hybi

4 as the process that performs
the homomorphic evaluation of Cx,rΞ

(rather than computing it in the clear
and then injecting the result, as done in Hyb5) starting from query number
i + 1 that D∗ makes, thus Hyb04 = Hyb4, Hyb

q
4 = Hyb5.

If Hyb4 and Hyb5 are distinguishable then for some i ∈ {0, 1, · · · , q−1}, Hybi
4

and Hybi+1
4 are distinguishable. We fix by an averaging argument a snapshot

of the execution until after the point that D∗ sends the (i + 1)-th query to
the proof oracle. If the check that the prover makes in the beginning, which
includes both checking the validity of the NP proof πV and also checking
the validity of creating ctV from the extracted randomness rV, fails, then the
hybrid processes are the same as the answer of the proof oracle will be ⊥. In
case the check is successful, it follows that the outputs of the circuits Cx,rΞ

and Cγ on the input prfk (which is encrypted inside ctV) are the same, and
thus it follows that the distinguisher between the hybrids Hybi

4 and Hybi+1
4 can

be used to break the (even statistical) circuit privacy of the FHE evaluation.
– Hyb5 ≈c Hyb6 : The proof is very similar to the proof for the indistinguisha-

bility Hyb4 ≈c Hyb5, as the indistinguishability follows by a hybrid argument
and from the special zero knowledge property of the quantum sigma protocol.
More precisely, for i ∈ {0, 1, · · · , q} we define Hybi

5 as the process that uses
Ξ.P (and the polynomially-many copies of the quantum witness) in order to
generate (α, γ) (rather than computing it using the simulator) starting from
query number i + 1 that D∗ makes, thus Hyb05 = Hyb5, Hyb

q
5 = Hyb6.

404 O. Shmueli

If Hyb5 and Hyb6 are distinguishable then for some i ∈ {0, 1, · · · , q − 1},
Hybi

5 and Hybi+1
5 are distinguishable. We fix by an averaging argument a

snapshot of the execution until after the point that D∗ sends the (i + 1)-th
query to the proof oracle, this in particular fixes the yes instance x ∈ Lyes,
the quantum witness |w〉 and the pseudorandomness βx. It follows that the
distinguisher between the hybrids Hybi

5 and Hybi+1
5 can be used to tell the

difference between a tuple (α, γ) that was generated by Ξ.P and a tuple that
was generated by Ξ.Sim, in contradiction the special zero knowledge property
of the protocol (Ξ.P, Ξ.V).

Acknowledgments. We thank Nir Bitansky and Zvika Brakerski for helpful discus-
sions during the preparation of this work.

References

[ACGH19] Alagic, G., Childs, A.M., Grilo, A.B., Hung, S.H.: Non-interactive classical
verification of quantum computation. arXiv, pages arXiv-1911 2019)

[BCKM20] Bartusek, J., Coladangelo, A., Khurana, D., Ma, F.: On the
round complexity of two-party quantum computation. arXiv preprint
arXiv:2011.11212 (2020)

[BD18] Brakerski, Z., Döttling, N.: Two-message statistically sender-private OT
from LWE. In: Beimel, A., Dziembowski, S. (eds.) TCC 2018. LNCS, vol.
11240, pp. 370–390. Springer, Cham (2018). https://doi.org/10.1007/978-
3-030-03810-6 14

[BFM19] Blum, M., Feldman, P., Micali, S.: Non-interactive zero-knowledge and its
applications. In: Providing Sound Foundations for Cryptography: On the
Work of Shafi Goldwasser and Silvio Micali, pP. 329–349 (2019)

[BG19] Broadbent, A., Grilo, A.B.: Zero-knowledge for qma from locally simulat-
able proofs. arXiv preprint arXiv:1911.07782 (2019)

[BJSW16] Broadbent, A., Ji, Z., Song, F., Watrous, J.: Zero-knowledge proof sys-
tems for qma. In: 2016 IEEE 57th Annual Symposium on Foundations of
Computer Science (FOCS), pp. 31–40. IEEE (2016)

[BKM20] Brakerski, Z., Koppula, V., Mour, T.: Nizk from lpn and trapdoor hash
via correlation intractability for approximable relations. IACR Cryptol.
ePrint Arch. 2020, 258 (2020)

[Blu86] Blum, M.: How to prove a theorem so no one else can claim it. In: Pro-
ceedings of the International Congress of Mathematicians, vol. 1, p. 2.
Citeseer (1986)

[BP15] Bitansky, N., Paneth, O.: ZAPs and non-interactive witness indistin-
guishability from indistinguishability obfuscation. In: Dodis, Y., Nielsen,
J.B. (eds.) TCC 2015. LNCS, vol. 9015, pp. 401–427. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-46497-7 16

[CCH+19] Canetti, R., et al.: Fiat-shamir: from practice to theory. In: Proceedings
of the 51st Annual ACM SIGACT Symposium on Theory of Computing,
pp. 1082–1090 (2019)

[CGH04] Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology,
revisited. J. ACM (JACM) 51(4), 557–594 (2004)

http://arxiv.org/abs/2011.11212
https://doi.org/10.1007/978-3-030-03810-6_14
https://doi.org/10.1007/978-3-030-03810-6_14
http://arxiv.org/abs/1911.07782
https://doi.org/10.1007/978-3-662-46497-7_16

Multi-theorem Designated-Verifier NIZK for QMA 405

[CVZ19] Coladangelo, A., Vidick, A., Zhang, T.: Non-interactive zero-knowledge
arguments for qma, with preprocessing. arXiv preprint arXiv:1911.07546
(2019)

[FLS99] Feige, U., Lapidot, D., Shamir, A.: Multiple noninteractive zero knowledge
proofs under general assumptions. SIAM J. Comput. 29(1), 1–28 (1999)

[GMR89] Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of inter-
active proof systems. SIAM J. Comput. 18(1), 186–208 (1989)

[KW19] Kim, S., Wu, D.J.: Multi-theorem preprocessing nizks from lattices. J.
Cryptol., pp. 1–84 (2019)

[Liu06] Liu, Y.-K.: Consistency of local density matrices is QMA-complete. In:
Dı́az, J., Jansen, K., Rolim, J.D.P., Zwick, U. (eds.) APPROX/RANDOM
-2006. LNCS, vol. 4110, pp. 438–449. Springer, Heidelberg (2006). https://
doi.org/10.1007/11830924 40

[LQR+19] Lombardi, A., Quach, W., Rothblum, R.D., Wichs, D., Wu, D.J.: New
constructions of reusable designated-verifier NIZKs. In: Boldyreva, A.,
Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11694, pp. 670–700.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26954-8 22

[Mor20] Morimae, T.: Information-theoretically-sound non-interactive classical
verification of quantum computing with trusted center. arXiv preprint
arXiv:2003.10712 (2020)

[MY21] Morimae, T., Yamakawa, T.: Classically verifiable (dual-mode) nizk for
qma with preprocessing. arXiv preprint arXiv:2102.09149, 2021

[OPCPC14] Ostrovsky, R., Paskin-Cherniavsky, A., Paskin-Cherniavsky, B.: Mali-
ciously circuit-private FHE. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO
2014. LNCS, vol. 8616, pp. 536–553. Springer, Heidelberg (2014). https://
doi.org/10.1007/978-3-662-44371-2 30

[PS19] Peikert, C., Shiehian, S.: Noninteractive zero knowledge for NP from
(plain) learning with errors. In: Boldyreva, A., Micciancio, D. (eds.)
CRYPTO 2019. LNCS, vol. 11692, pp. 89–114. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-26948-7 4

[PV+06] Pass, R., Vaikuntanathan, V., et al.: Construction of a non-malleable
encryption scheme from any semantically secure one. In: Dwork, C.
(ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 271–289. Springer, Heidelberg
(2006). https://doi.org/10.1007/11818175 16

[QRW19] Quach, W., Rothblum, R.D., Wichs, D.: Reusable designated-verifier
NIZKs for all NP from CDH. In: Ishai, Y., Rijmen, V. (eds.) EURO-
CRYPT 2019. LNCS, vol. 11477, pp. 593–621. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-17656-3 21

[Reg09] Regev, O.: On lattices, learning with errors, random linear codes, and
cryptography. J. ACM 56(6), 34:1–34:40 (2009)

http://arxiv.org/abs/1911.07546
https://doi.org/10.1007/11830924_40
https://doi.org/10.1007/11830924_40
https://doi.org/10.1007/978-3-030-26954-8_22
http://arxiv.org/abs/2003.10712
http://arxiv.org/abs/2102.09149
https://doi.org/10.1007/978-3-662-44371-2_30
https://doi.org/10.1007/978-3-662-44371-2_30
https://doi.org/10.1007/978-3-030-26948-7_4
https://doi.org/10.1007/11818175_16
https://doi.org/10.1007/978-3-030-17656-3_21

On the Round Complexity of Secure
Quantum Computation

James Bartusek1(B), Andrea Coladangelo1, Dakshita Khurana2,
and Fermi Ma3,4

1 UC Berkeley, Berkeley, USA
2 UIUC, Champaign, USA
dakshita@illinois.edu

3 Princeton University, Princeton, USA
fermima@alum.mit.edu

4 NTT Research, Palo Alto, USA

Abstract. We construct the first constant-round protocols for secure
quantum computation in the two-party (2PQC) and multi-party
(MPQC) settings with security against malicious adversaries. Our pro-
tocols are in the common random string (CRS) model.

– Assuming two-message oblivious transfer (OT), we obtain (i) three-
message 2PQC, and (ii) five-round MPQC with only three rounds
of online (input-dependent) communication; such OT is known from
quantum-hard Learning with Errors (QLWE).

– Assuming sub-exponential hardness of QLWE, we obtain (i) three-
round 2PQC with two online rounds and (ii) four-round MPQC with
two online rounds.

– When only one (out of two) parties receives output, we achieve
minimal interaction (two messages) from two-message OT; classi-
cally, such protocols are known as non-interactive secure computa-
tion (NISC), and our result constitutes the first maliciously-secure
quantum NISC.
Additionally assuming reusable malicious designated-verifier NIZK
arguments for NP (MDV-NIZKs), we give the first MDV-NIZK for
QMA that only requires one copy of the quantum witness.

Finally, we perform a preliminary investigation into two-round secure
quantum computation where each party must obtain output. On the
negative side, we identify a broad class of simulation strategies that suf-
fice for classical two-round secure computation that are unlikely to work
in the quantum setting. Next, as a proof-of-concept, we show that two-
round secure quantum computation exists with respect to a quantum
oracle.

1 Introduction

Secure computation allowsmutually distrusting parties to compute arbitrary func-
tions on their private inputs, revealing only the outputs of the computation while
hiding all other private information [12,18,27,40]. With the emergence of quantum
c© International Association for Cryptologic Research 2021
T. Malkin and C. Peikert (Eds.): CRYPTO 2021, LNCS 12825, pp. 406–435, 2021.
https://doi.org/10.1007/978-3-030-84242-0_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-84242-0_15&domain=pdf
https://doi.org/10.1007/978-3-030-84242-0_15

On the Round Complexity of Secure Quantum Computation 407

computers, it becomes important to understand the landscape of secure quantum
computation over distributed, private quantum (or classical) states. In the most
general setting, n parties hold (possibly entangled) quantum inputs x1, . . . ,xn,
and would like to evaluate a quantum circuit Q(x1, . . . ,xn). The output is of the
form (y1, . . . ,yn), so at the end of the protocol party i holds state yi.

Secure computation with classical inputs and circuits forms a centerpiece of
classical cryptography. Solutions to this problem in the classical setting were
first obtained nearly 35 years ago, when [40] built garbled circuits to enable
secure two-party computation, and [12,18,27] obtained the first secure multi-
party computation protocols. Since then, there has been an extensive body of
work in this area, of which a large chunk focuses on understanding the amount
of back-and-forth interaction required to implement these protocols. Notably,
the work of Beaver, Micali and Rogaway [9] obtained the first constant-round
classical multi-party computation protocols in the dishonest majority setting.
There have been several subsequent works including but not limited to [5,7,14,
19,25,31] that have nearly completely characterized the exact round complexity
of classical secure computation.

The problem of secure quantum computation on distributed quantum states
is not nearly as well-understood as its classical counterpart. The quantum set-
ting was first studied by [11,20], who obtained unconditional maliciously-secure
multi-party quantum computation with honest majority. Just like the classical
setting, when half (or more) of the players are malicious, secure quantum com-
putation also requires computational assumptions due to the impossibility of
unconditionally secure quantum bit commitment [21,32,35].

In the dishonest majority setting, [23] gave a two-party quantum compu-
tation (2PQC) protocol secure against the quantum analogue of semi-honest
adversaries (specious adversaries); this was later extended to the malicious set-
ting by [24]. A work of [22] constructed maliciously-secure multi-party quantum
computation (MPQC) with dishonest majority from any maliciously-secure post-
quantum classical MPC, where the round complexity grows with the size of the
circuit and the number of participants. Very recently, [4] constructed MPQC
with identifiable abort, and with round complexity that does not grow with the
circuit size but grows with the number of participants.

However, the feasibility of maliciously-secure MPQC with constant rounds
has remained open until this work. In addition to settling this question, we also
make several headways in understanding the exact round complexity of secure
quantum computation with up to all-but-one malicious corruptions.

1.1 Our Results

We assume that parties have access to a common random string (CRS), and
obtain answers to a range of fundamental questions, as we discuss next1.
1 We point out that the post-quantum MPC protocol of [1] can be used to generate a

CRS in constant rounds. This, combined with our results, yields the first constant
round multi-party quantum computation protocols without trusted setup in the
standard model.

408 J. Bartusek et al.

Quantum Non-interactive Secure Computation. Our first result pertains
to the most basic setting for secure (quantum) computation: a sender holds input
y, a receiver holds input x, and the goal is for the receiver to obtain Q(x,y) for
some quantum circuit Q. We construct a protocol achieving minimal interac-
tion—commonly known as non-interactive secure computation (NISC) [30]—
where the receiver publishes an encryption of x, the sender replies with an
encryption of y, and the receiver subsequently obtains Q(x,y). Our result con-
stitutes the first maliciously-secure NISC for quantum computation (Q-NISC).

Theorem 1. (Informal) Maliciously-secure NISC for quantum computation
exists assuming post-quantum maliciously-secure two-message oblivious transfer
(OT) with straight-line simulation.

Such OT protocols are known from the post-quantum hardness of Learning
with Errors (LWE) [36]. We remark that our Q-NISC result also extends to the
reusable setting where the receiver has a classical input that they would like to
reuse across multiple quantum computations on different sender inputs.

Application: Malicious Designated-Verifier NIZK Arguments for QMA. As an
application of our maliciously-secure Q-NISC, we construct (reusable) malicious
designated-verifier non-interactive zero-knowledge arguments (MDV-NIZKs) for
QMA in the common random string model. Specifically, our MDV-NIZK enables
the following interaction for any QMA language: a verifier can publish a classical
public key pk that enables a prover to send an instance x and quantum message
m, such that the verifier holding the corresponding secret key sk can determine
if x is a valid instance.

Theorem 2. (Informal) There exists a reusable MDV-NIZK for QMA with a
classical CRS and classical proving key assuming the existence of post-quantum
maliciously-secure two-message oblivious transfer with straight-line simulation
in the CRS model, and post-quantum (adaptively sound) reusable MDV-NIZK
for NP. All of the underlying primitives exist assuming the quantum hardness of
learning with errors.

We briefly elaborate on the security guarantees of our reusable MDV-NIZK.
Reusability means that soundness holds for multiple proofs (of potentially differ-
ent statements) computed with respect to the same setup (i.e., the common ran-
dom string and the public key), even if the prover learns whether or not the ver-
ifier accepted each proof; we remark that reusable security is sometimes referred
to as multi-theorem security. Malicious security means that the zero-knowledge
property holds even against verifiers that generate the public key maliciously.
Previously, such a reusable MDV-NIZK for QMA required the prover to have
access to multiple copies of the quantum witness [37], while our MDV-NIZK only
requires the prover to have a single copy.

Constant-Round 2PQC and MPQC. Our next set of results concerns the
general setting for 2PQC and MPQC where all parties obtain output. We focus

On the Round Complexity of Secure Quantum Computation 409

on minimizing total round complexity as well as online round complexity, where
the latter refers to the number of input-dependent rounds; if a protocol has round
complexity d and online round complexity k, then the parties can perform the
first d − k rounds before they receive their inputs.2

We obtain various results, some from the generic assumption of quantum
polynomially-secure two-message oblivious transfer, and others from the specific
assumption of sub-exponential QLWE. Our results in this section are summa-
rized in Table 1.3

Table 1. Maliciously-secure quantum computation in the CRS model

From OT From sub-exp QLWE

Two-party 3 rounds (3 online) 3 rounds (2 online)

Multi-party 5 rounds (3 online) 4 rounds (2 online)

In order to prove the security of these protocols, we develop a delayed simu-
lation technique, which we call “simulation via teleportation”, which may be of
independent interest.

Is Two-Round Secure Quantum Computation Possible? A natural next
question is whether it is possible to construct two-round secure quantum com-
putation without pre-processing. This appears to be a challenging question to
resolve, either positively or negatively. We provide some preliminary results on
both fronts: we give a negative result indicating that common simulation strate-
gies from the classical setting will not suffice in the quantum setting, but we
also provide a proof-of-concept positive result, with a new simulation strategy,
assuming virtual-black-box obfuscation of quantum circuits. We stress that the
latter result is primarily to give intuition, as virtual-black-box obfuscation is
known to be impossible even for classical circuits [8]. We limit the scope of this
preliminary investigation to the two-party setting.

First, we give some intuition for why it seems hard to design a two-round
two-party protocol by showing that, under a plausible quantum information-
theoretic conjecture, a large class of common simulation techniques would not
suffice. We consider any simulator that learns which player (between Alice and
Bob) is corrupted only after it has generated the simulated CRS. We call such
a simulator an oblivious simulator. To the best of our knowledge, all existing

2 We remark that a k-online round protocol can also be viewed as a k-round protocol
in a quantum pre-processing model, i.e. a model where parties receive some quantum
correlations as setup.

3 The results below are in the setting of security with abort, as opposed to security
with unanimous abort (which is only a distinction in the multi-party setting). If one
wants security with unanimous abort, the overall round complexity will not change,
but one more round of online communication will be required.

410 J. Bartusek et al.

classical and quantum two-party computation protocols in the CRS model either
(1) already admit oblivious simulation, or (2) can generically be transformed to
admit oblivious simulation via post-quantum NIZK proofs of knowledge for NP.

In the quantum setting, we show, roughly, that any two-round 2PQC protocol
for general quantum functionalities with an oblivious simulator would yield an
instantaneous nonlocal quantum computation protocol [10,28,38,39] for general
quantum functionalities, with polynomial-size pre-processing.

Instantaneous nonlocal quantum computation is well-studied in the quantum
information literature [10,28,38,39], and the best known protocols for general
functionalities require exponential-size pre-processing [10]. Thus, a two-round
2PQC for general functionalities with oblivious simulation would immediately
yield an exponential improvement in the size of the pre-processing for this task.

Theorem 3. (Informal) Under the conjecture that there exists a quantum func-
tionality that does not admit an instantaneous nonlocal quantum computation
protocol with polynomial-size pre-processing, there exists a quantum functional-
ity that cannot be securely computed in two rounds in the classical CRS model
with an oblivious simulator.

Towards getting around this potential barrier, we give a proof-of-concept
construction of a protocol with non-oblivious simulation. Specifically, we assume
a (strong) form of VBB obfuscation for quantum circuits that contain unitary
and measurement gates, where the former may be classically controlled on the
outcome of measurement gates. We point out, however, that VBB-obfuscation of
circuits with measurement gates is potentially even more powerful than the VBB
obfuscation for unitaries that was formalized in [3] (further discussion on this
is available in the full version). Under this assumption, we obtain a two-round
two-party secure quantum computation protocol in the CRS model.

Theorem 4. (Informal) Two-round two-party secure quantum computation in
the common reference string model exists assuming a strong form of VBB or
ideal obfuscation for quantum circuits as discussed above.

We remark that while there exist (contrived) examples of functionalities that
cannot be VBB obfuscated [2,3,6], it is still plausible that many quantum func-
tionalities can be obfuscated. However, without any candidate constructions of
obfuscation for quantum circuits, we stress that our result should only be taken
as a proof-of-concept.

1.2 Paper Organization

In Sect. 2, we provide technical intuition for all of our results. In Sect. 3, we give
a full technical specification of our three-message 2PQC protocol. We prove that
security holds against a malicious Alice, and we defer a security proof for mali-
cious Bob to the full version (as will become clear in Sect. 2, handling malicious
Alice is the more challenging case). We defer the remainder of our results to
the full version, which includes the two-round 2PQC with preprocessing, the

On the Round Complexity of Secure Quantum Computation 411

MPQC results, the technical formalization of [15] C+M garbling, MDV-NIZKs
for QMA, our oblivious simulation barrier, and our VBB-based proof-of-concept
construction.

2 Technical Overview

2.1 Quantum Background

We briefly recap some relevant concepts from quantum computation.

Notation. We use bold letters to write the density matrix of a quantum state
x. We use the shorthand U(x) to mean UxU†, the result of applying unitary U
to x. The notation (x,y) denotes a state on two registers, where x and y are
potentially entangled. The k-fold tensor product of a state x ⊗ x ⊗ · · · ⊗ x will
be written as xk.

The Pauli Group. The Pauli group on a single qubit, denoted by P1, is gen-
erated by the unitary operations X (bit flip) and Z (phase flip), defined as

X =
[
0 1
1 0

]
, Z =

[
1 0
0 −1

]
. The Pauli group on n qubits, denoted by Pn, is the

n-fold tensor product of the single qubit Pauli group. Any unitary in the Pauli
group Pn can be written (up to global phase) as

⊗
i∈[n] X

riZsi for r, s ∈ {0, 1}n.

The Clifford Group. The Clifford group on n qubits, denoted by Cn, is the group
of unitaries that normalize Pn, i.e. C ∈ Cn if and only if for all U ∈ Pn, we have
CUC† ∈ Pn. Alternatively, we can think of a Clifford unitary C as an operation
where for any choice of r, s ∈ {0, 1}n, there exists a choice of r′, s′ ∈ {0, 1}n such
that

C

⎛
⎝⊗

i∈[n]

XriZsi

⎞
⎠ =

⎛
⎝⊗

i∈[n]

Xr′
iZs′

i

⎞
⎠ C.

Intuitively, this means that with a suitable update of the Pauli operation,
one can swap the order in which a Clifford and a Pauli are applied.

Clifford Authentication Codes. We will make extensive use of Clifford authenti-
cation codes. Clifford authentication codes are an information-theoretic encoding
scheme for quantum states that provides both secrecy and authentication. An
n-qubit quantum state x can be encoded in a Clifford authentication code as fol-
lows: prepare a λ-qubit all 0’s state which we denote as 0λ (where λ is a security
parameter), sample a random Clifford unitary C ← Cn+λ, and output C(x,0λ).
The Clifford C serves as a secret key, while the 0λ qubits enable authentication,
and are called “trap” qubits. A party without knowledge of C cannot modify the
encoding without modifying the trap qubits (except with negligible probability).
Therefore, decoding works by applying C† and then measuring the λ trap qubits
in the computational basis. If these measurements are all 0, this ensures that
with all but negligible probability, the n remaining registers hold the originally
encoded state x.

412 J. Bartusek et al.

Clifford + Measurement Circuits. We will rely heavily on the “Clifford + Mea-
surement” representation of quantum circuits (henceforth “C+M circuits”) due
to [16]. In this representation, a quantum circuit can be decomposed into layers.
Each layer consists of a Clifford unitary whose output wires are partitioned into
wires that will be fed as inputs into the next layer, and wires that will be mea-
sured. The latter group of wires are measured in the computational basis, result-
ing in a classical bitstring that is used to select the Clifford unitary to be applied
in the subsequent layer. The first layer takes in all of the inputs to the quantum
circuit, ancilla 0 states, and “magic” T states defined as T := (|0〉 +eiπ/4|1〉)/√2.
The final layer only produces output wires (i.e. its output registers have no wires
to be measured), which are interpreted as the output of the circuit. [16] demon-
strate that, with constant multiplicative factor overhead in size, any quantum
circuit can be written as a “C + M circuit” or equivalently, in a magic state
representation.

Therefore, for the purposes of this technical overview, we will assume that
any quantum circuit F is written as a C+M circuit FCM, and its evaluation on
an input x is computed as F (x) = FCM(x,Tk,0k). For simplicity, we use the
same k to denote the number of T states and the number of ancilla 0 states.

Magic State Distillation. In settings where malicious parties are tasked with
providing the T states, we will use cryptographic techniques such as “cut-and-
choose” to ensure that FCM is evaluated on an input of the form (x, T̂k,0k) where
T̂k is a state guaranteed to be “somewhat” close to Tk. However, correctness
of FCM will require states that are negligibly close to real magic states. To that
end, we will make use of a magic state distillation C+M circuit D due to [22]
which takes in somewhat-close magic states T̂k and outputs states negligibly
close to Tk′

, for k′ < k. Therefore, the representation of any functionality F will
in fact be a C+M circuit FCM,D that first applies D to T̂k, and then runs FCM.

2.2 Why Is Malicious Security Hard to Achieve?

We begin this technical overview by describing our results in the two-party set-
ting. Before this, we briefly explain why malicious security does not follow read-
ily from existing techniques. Indeed, a candidate two-message 2PQC (where one
party receives output) with specious security (the quantum analogue of classical
semi-honest security [23]) was recently proposed in [15]. Alternatively, any con-
struction of quantum fully-homomorphic encryption (QFHE) naturally yields a
two-message 2PQC protocol: (1) Alice QFHE-encodes her input and sends it to
Bob, (2) Bob evaluates the functionality on his input and Alice’s encoded input,
and (3) Bob sends Alice the encryption of her output.

One might hope to compile this QFHE-based protocol or the [15] protocol
into a maliciously secure protocol by having the parties include proofs that their
messages are well-formed. Unfortunately, it is unclear how to implement this
in the quantum setting. In both of these approaches, the parties would have to
prove (in zero-knowledge) statements of the form “y is the result of evaluating

On the Round Complexity of Secure Quantum Computation 413

quantum circuit C on x.” Crucially, the statement the parties need to prove
explicitly makes reference to a quantum state. This is beyond the reach of what
one can prove with, say, NIZKs for QMA, in which witnesses are quantum but
the statements are entirely classical.

Therefore, we design our malicious 2PQC so that parties do not have to prove
general statements about quantum states. A core ingredient in our protocol is
a quantum garbled circuit construction sketched in [15, §2.5], where the circuit
garbling procedure is entirely classical.4 Combining this with a post-quantum
maliciously-secure classical 2PC, we will ensure valid circuit garbling against
malicious quantum adversaries.

2.3 A Garbling Scheme for C + M Circuits

Our first step is to formalize the proposal sketched in [15, §2.5] for garbling
C + M circuits. The starting point for the [15, §2.5] construction is a simple
technique for garbling any quantum circuit that consists of a single Clifford
unitary F .5 The idea is to sample a random Clifford E and give out FE† as the
garbled circuit; note that the description of FE† will be entirely classical. Since
the Clifford unitaries form a group, FE† is a uniformly random Clifford unitary
independent of F . To garble the input quantum state x, simply compute E(x).
The construction in [15, §2.5] extends this simple construction to any circuit.

To build intuition, we will consider a two-layer C + M circuit Q = (F1, f),
where F1 is the first layer Clifford unitary, and f is a classical circuit that takes
as input a single bit measurement result m, and outputs a classical description of
F2, the second layer Clifford unitary. On input x, the circuit operates as follows:

1. Apply F1 to x.
2. Measure the last output wire in the computational basis to obtain m ∈ {0, 1},

and feed the remaining wires to the next layer. Compute the second layer
Clifford unitary F2 = f(m).

3. Apply F2 to the non-measured output wires from the first layer. Return the
result.

One could try to extend the simple idea for one-layer garbling to this circuit.
We still sample a random input-garbling Clifford E0 and compute F1E

†
0. To hide

the second layer Clifford, a natural idea is to sample yet another random Clifford
E1 to be applied to the non-measured output wires of F1. That is, we replace
F1E

†
0 with (E1 ⊗ I)F1E

†
0, and release the description of a function g such that

g(m) = f(m)E†
1.

4 We remark that the 2PQC proposed in [15] is based on their “main” quantum
garbled circuit construction, which crucially does not have a classical circuit garbling
procedure. The advantage of their main construction is that garbling can be done in
low depth, whereas the alternative construction requires an expensive but classical
garbling procedure.

5 [15] call this group-randomizing quantum randomized encoding.

414 J. Bartusek et al.

However, this may in general be insecure. Let F
(0)
2 be the Clifford output by

function f when m = 0, and F
(1)
2 the Clifford output by function f when m = 1.

Suppose F
(0)
2 − F

(1)
2 = A for some invertible matrix A. Then, an attacker with

access to g could obtain F
(0)
2 E†

1 − F
(1)
2 E†

1, and multiplying the result by A−1

yields A−1(F (0)
2 E†

1 − F
(1)
2 E†

1) = A−1AE†
1 = E†

1.
Therefore, instead of giving out g, the construction of [15, §2.5] gives out a

classical garbling of g. To accommodate this, the output wire from the first layer
that is measured to produce m ∈ {0, 1} must be replaced by a collection of wires
that produces the corresponding label labm for the garbled circuit. This can be
easily achieved by applying a suitable “label unitary” to the m wire (and ancilla
wires) within the garbled gate for the first layer.

There is one last issue with this approach: an attacker that chooses not
to measure the wires containing labm can obtain a superposition over two valid
labels. Recall that the standard definition of security for classical garbled circuits
only guarantees simulation of one label, not a quantum superposition of both
labels. To ensure the attacker cannot get away with skipping the computational
basis measurement, the [15, §2.5] construction applies a Z-twirl to m before the
“label unitary” is applied. Recall that a Z-twirl is simply a random application
of a Pauli Z gate, i.e. Zb for a uniformly random bit b; applying Zb to a wire is
equivalent to performing a computational basis measurement (without recording
the result).

To recap, a garbled 2-layer C + M circuit Q consists of three components: an
“input garbling” Clifford E0, an initial Clifford unitary to be applied to the gar-
bled input D0 := (E1 ⊗ I)F1E

†
0, and a classical garbled circuit g̃. Extrapolating,

we see that in general a garbled C + M circuit takes the form

(E0,D0, g̃1, . . . , g̃d) := (E0, Q̃),

where the g̃i’s are garblings of classical circuits. Crucially, all of these components
can be generated by an entirely classical circuit. The only quantum operation
involved in the garbling process is the application of E0 to the input x to garble
the input. Next, we show how we can take advantage of this mostly classical
garbling procedure to obtain maliciously-secure 2PQC.

2.4 A Three-Message Protocol with Malicious Security

In this section, we describe a three-message 2PQC protocol where both parties
obtain output. This implies the two-message 2PQC result with one-sided output
described in the first part of our results section, and fills in the upper left corner
of Table 1.

We begin with a plausible but insecure construction of a three-message 2PQC
based on the above quantum garbled circuit construction. We will then highlight
the ways a malicious attacker might break this construction, and arrive at our
final construction by implementing suitable modifications.

Our protocol relies only on a classical two-message 2PC with one-sided out-
put that is (post-quantum) secure against malicious adversaries; this can be

On the Round Complexity of Secure Quantum Computation 415

realized by combining (post-quantum) classical garbled circuits [40] with (post-
quantum) two-message oblivious transfer [36] following e.g. [30].

We will consider two parties: Alice with input xA and Bob with input xB.
They wish to jointly compute a quantum circuit Q on their inputs whose output
is delivered to both players. Q is represented as a Clifford+Measurement circuit
that takes input (xA,xB ,Tk,0k). We denote by (yA,yB) the joint outputs of
Alice and Bob. At a high level, the parties will use the first two messages (Bob
→ Alice, Alice → Bob) to jointly encode their quantum inputs, while in parallel
computing a two-message classical 2PC that outputs the classical description of
a quantum garbled circuit to Bob. By evaluating the garbled circuit, Bob can
learn his own output, as well as Alice’s encoded output, which he sends to Alice
in the 3rd message.

In more detail, the classical functionality F [Q] to be computed by the classi-
cal 2PC is defined as follows. It takes as input (the classical description of) a Clif-
ford unitary CB,in from Bob and Clifford unitaries (CA,in, CA,out) from Alice. Let
QB be a modification of Q that outputs (CA,out(yA,0λ),yB) in place of (yA,yB);
looking ahead, this will enable Bob to evaluate (a garbling of) QB on (a garbling
of) their joint inputs without learning Alice’s output. The functionality computes
a garbling (E0, Q̃B) of QB . Finally, it computes W := E0 · (I⊗ C−1

B,in ⊗ I) · C−1
A,in

(where the registers implied by the tensor product will become clear below), and
outputs (W, Q̃B) to Bob.

The (insecure) protocol template is as follows:

– First Message (Bob → Alice). Bob picks a random Clifford CB,in and uses
it to encrypt and authenticate his input xB as m1 := CB,in(xB ,0λ). He also
computes the first round message m1 of the classical 2PC, using CB,in as his
input. He sends (m1,m1) to Alice.

– Second Message (Alice → Bob). After receiving (m1,m1), Alice picks a
random Clifford CA,in and uses it to encrypt her input xA along with Bob’s
encoding m1, k copies of a T state, and k + λ copies of a 0 state. The result
of this is m2 := CA,in(xA,m1,Tk,0k+λ). Alice also samples another random
Clifford CA,out that will serve to encrypt and authenticate her output, and
computes the second round message m2 of the classical 2PC using input
(CA,in, CA,out). She sends (m2,m2) to Bob.

– Third Message (Bob → Alice). After receiving (m2,m2), Bob can com-
pute his output of the classical 2PC, which is (W, Q̃B). He computes

W (m2) = E0 · (I⊗C−1
B,in ⊗ I) ·C−1

A,in

(
CA,in(xA,m1,T

k,0k+λ)
)
= E0(xA,xB ,Tk,0k+λ).

Recall that E0(xA,xB ,Tk,0k+λ) corresponds to a garbled input for Q̃B . He
evaluates Q̃B on this garbled input and obtains (CA,out(yA,0λ),yB).
At this point, Bob has his output yB in the clear. Next he sets m3 =
CA,out(yA,0λ), and sends m3 to Alice. Upon receiving m3, Alice can recover
her output by computing C−1

A,out(m3).

The above protocol can already be shown to be secure against malicious Bob
by relying on security of the classical two-party computation protocol against

416 J. Bartusek et al.

malicious adversaries. But malicious Alice can break security by generating ill-
formed auxiliary states. We now describe this issue in some more detail and then
present modifications to address the problem.

Malicious Generation of Auxiliary States. In the second message of the protocol,
Alice is instructed to send a quantum state CA,in(xA,m1,Tk,0k+λ). A malicious
Alice can deviate from honest behavior by submitting arbitrary states in place of
the magic T states and the auxiliary 0 states, either of which may compromise
security.

We therefore modify the classical 2PC to include randomized checks that will
enable Bob to detect if Alice has deviated from honest behavior.

We check validity of 0 states using the “random linear map” technique of [22].
The classical 2PC will sample a uniformly random matrix M ∈ F

k×k
2 , and apply

a unitary UM that maps the quantum state v = |v〉 〈v| for any v ∈ F
k
2 to the

state Mv = |Mv〉 〈Mv|. For any M ∈ F
k×k
2 , there exists an efficient Clifford

unitary UM implementing this map. This check takes advantage of the fact that
UM (0k) = 0k for any M , but on any other pure state v = |v〉 〈v| for non-zero
v ∈ F

k
2 , we have UM (v) 	= 0k with overwhelming probability in k.

More precisely, our protocol will now ask Alice to prepare twice (2k) the
required number of 0 states. The classical 2PC will generate a Clifford unitary
UM implementing a random linear map M ∈ F

2k×2k
2 , and incorporate UM into

its output Clifford W , which is now W = (E0⊗I) ·(I⊗C−1
B,in⊗I) ·(I⊗UM) ·C−1

A,in.
Now when Bob applies W to Alice’s message CA,in(xA, CB,in(xB ,0λ),Tk,02k),
it has the effect of stripping off CA,in by applying C−1

A,in, and then applying
UM to the last 2k registers. The rest of the application of W has the same
effect as before the modification, so it undoes the application of CB,in, and then
re-encodes all but the last k registers under the input garbling Clifford E0 to
produce a garbled input. Crucially, the last k registers are designated “0-state
check registers”, which Bob can simply measure in the computational basis to
detect if Alice prepared the 0 states properly.

Unfortunately, this technique does not extend to checking validity of T states.
To do so, we would have to map T states to 0 states, but there is no Clifford
unitary that realizes this transformation.6 The problem with using a non-Clifford
unitary is that security of W relies on the fact that it is the product of a random
Clifford CA,in and some other Clifford W ′. Since the Clifford unitaries form a
group, multiplication by a random CA,in perfectly masks the details of W ′, but
only when W ′ is Clifford.

We will therefore employ the “cut-and-choose” technique from [22]. The pro-
tocol will now have Alice prepare λ(k + 1)-many T states instead of just k. The
classical 2PC will generate a random permutation π on [λ(k + 1)], which will
move a random selection of λ of the T states into “T-state check registers.”
The application of π will be implemented by a unitary Uπ incorporated into W .

6 The existence of such a Clifford would imply that Clifford + Measurement cir-
cuits without magic states are universal for quantum computing, contradicting the
Gottesman-Knill theorem (assuming BPP �= BQP).

On the Round Complexity of Secure Quantum Computation 417

After applying W , Bob will apply a projective measurement onto T to each of
the T-state check registers, and will abort if any of the λ measurements fails.

If all of the λ measurements pass, this means the remaining λk un-tested T
states are “somewhat close” to being real T states. However, being “somewhat
close” will not be sufficient; for instance, an attacker who prepares exactly one
completely invalid T state will only be caught with 1/(k + 1) probability.

We will therefore need to apply magic-state distillation to transform these
into states which are negligibly close to real T states. For this, we use a magic-
state distillation circuit of [22, §2.5] (which builds on [16]). This circuit consists
solely of Clifford gates and computational basis measurements. To apply this
circuit we modify our underlying functionality, so that we now give out a garbling
of a circuit that first implements magic-state distillation and only then applies
QB .

This completes an overview of our protocol, and a formal construction and
analysis can be found in Sect. 3.

2.5 Application: Reusable MDV-NIZK for QMA

Now we briefly describe how the above techniques readily give a reusable mali-
cious designated-verifier NIZK for QMA in the CRS model. Note that NIZK for
QMA is a special case of two-party quantum computation, where the function-
ality being computed is the verification circuit V for some QMA language, the
prover (previously Alice) has the quantum witness w as input, and the verifier
(previously Bob) has no input and receives a binary output indicating whether
V(x,w) accepts or rejects, where x is the (classical) description of the instance
they are considering.

Since the prover does not receive output, there is no need for the third mes-
sage in the protocol of Sect. 2.4. Furthermore, since the verifier has no input,
there is no need for any quantum message from him in the first message. The
verifier only needs to send a first-round classical 2PC message which then func-
tions as a proving key. The (classical) left-over state is the verifier’s secret veri-
fication key. After this, the prover just sends one quantum message (the Second
Message in the above protocol), proving that V(x,w) = 1.

In order to make the above template reusable, we can first instantiate the
underlying classical 2PC with a reusable 2PC. Once this is in place, the verifier’s
first-round message is necessarily independent. Then, to ensure that a cheating
prover cannot break soundness by observing whether the verifier accepts its
proofs or not, we modify the classical functionality to take as input a PRF
key from the verifier, and generate all required randomness (used for the 0 and
T checks, and the quantum garbling procedure) by applying this PRF to the
(classical) description of the instance x. By security of the reusable 2PC and the
PRF, a verifier will never accept a maliciously sampled proof for any instance x
not in the language.

418 J. Bartusek et al.

2.6 Challenges in Achieving a Two-Round Protocol in the Quantum
Setting

The previous sections show that we can achieve 2PQC in two messages if only
one party receives output, which is optimal in terms of round complexity. Now we
ask whether both parties can obtain output with just two rounds of simultaneous
exchange. Indeed, in the classical setting, there is a natural approach to obtain-
ing a two-round protocol, given a two-message protocol where one party receives
output. The parties simply run two parallel executions of the two-message proto-
col on the same inputs - one in which Alice speaks first and the functionality only
computes her part of the output, and another in which Bob speaks first and the
functionality only computes his part of the output. Unfortunately, this natural
approach completely fails in the quantum setting, for at least two reasons.

– Running two parallel executions of the same protocol on the same set of
inputs seems to require cloning those inputs, which is in general impossible
if the inputs may be arbitrary quantum states.

– Running two parallel executions of a randomized functionality requires the
parties to fix the same random coins to be used in each execution, as otherwise
their outputs may not be properly jointly distributed. This is not possible in
the quantum setting, since randomness can come from measurement, and
measurement results cannot be fixed and agreed upon beforehand.

These issues motivate the rest of our work. Since running two protocols in
parallel on the same inputs is problematic, we take as our guiding principle
that one party must be performing the actual computation at some point in the
protocol, and then distributing the outputs.

Interestingly, while the first issue mentioned above is unique to the setting
of quantum inputs, the second issue applies even if the parties wish to compute
a quantum circuit over just classical inputs, which we regard as a very natural
setting. Thus, while this paper focuses on the most general case of secure quan-
tum computation over potentially quantum inputs, we stress that all the results
we achieve are the best known even for the classical input setting. Furthermore,
note that both issues also exist in the specious setting, so it doesn’t appear to be
straightforward to achieve two-round 2PQC even in this setting. While the focus
of this paper is on the setting of malicious security, exploring these questions in
the specious setting is also an interesting direction.

2.7 A Two-Round Protocol with Pre-processing

Our next result is a three-round protocol for 2PQC which requires only two
online rounds of communication, filling in the upper right corner of Table 1.

In fact, we construct a protocol in which the pre-input phase only consists
of a single message from Bob to Alice (computed with respect to a CRS). We
take our three sequential message protocol as a starting point, and introduce
several modifications. The first modification will immediately achieve the goal
of removing input-dependence from Bob’s first message, and all the subsequent
modifications will be necessary to restore correctness and security.

On the Round Complexity of Secure Quantum Computation 419

Modification 1: Removing Input-Dependence via Teleportation. Before sending
his first message, Bob samples n EPR pairs, where n is the number of qubits of
the input xB . We denote these EPR pairs by (epr1, epr2), where epr1 denotes
the left n qubits, and epr2 denotes the right n qubits. In place of sending
CB,in(xB ,0λ), Bob sends mB,1 := CB,in(epr1,0λ). Note that the classical 2PC
only requires input CB,in, which is a random Clifford that Bob samples for him-
self, so Bob’s entire first round message (mB,1,mB,1) can now be sent before
Bob receives his input. The idea is that later on, when Bob learns his input xB,
he will perform Bell measurements on (xB , epr2) to teleport xB into epr1.

Issue: Incorporating Bob’s Teleportation Errors. Teleporting xB into epr1 will
require Bob to somehow correct epr1 later in the protocol using the results of
his Bell measurements on (xB , epr2). But enabling Bob to do this in a way that
does not compromise security will be tricky, as we now explain.

After receiving the second round message from Alice in our original malicious
2PQC protocol, Bob learns the output of the classical 2PC, which includes (1) a
(classical description of a) quantum garbled circuit Q̃, and (2) a Clifford unitary
W . Bob applies W to Alice’s quantum message mA,2, performs the appropriate 0
and T state checks, and conditioned on the checks passing, is left with a state of
the form E0(xA,xB , T̂,0), where T̂ is a state “somewhat close” to Tk. But at this
point in our newly modified protocol, Bob is holding the state E0(xA, epr1, T̂,0).
To restore correctness, we somehow need to modify the protocol so that Bob can
apply XxinpZzinp to epr1 “inside” the E0 mask, where xinp, zinp are the result
of Bell basis measurements on (xB , epr2).

Recall that the structure of W is W = E0 · U†
dec−check, where E0 is the

input garbling Clifford for the quantum garbled circuit, and Udec−check is the
matrix that undoes CA,in, undoes CB,in, and then applies a permutation π and
a random linear map M , and rearranges all the to-be-checked registers to the
last few (rightmost) register slots. The multiplication by E0 is applied only to
the non-checked registers.

Thus, it seems like correctness would have to be restored by inserting the
unitary (I⊗ XxinpZzinp ⊗ I) in between E0 and U†

dec−check. But if Bob can learn
E0(I ⊗ XxinpZzinp ⊗ I)U†

dec−check for even two different values of xinp and zinp,
security of the input garbling Clifford E0 may be lost entirely.

Modification 2: Classical Garbling + Quantum Multi-Key Fully Homomorphic
Encryption. In order to resolve this issue, we will split up the matrix E0(I ⊗
XxinpZzinp ⊗ I)U†

dec−check into two matrices

Uxinp,zinp := E0(I ⊗ XxinpZzinp ⊗ I)U†
rand

Ucheck := UrandU
†
dec−check

where Urand is a “re-randomizing” Clifford.
The matrix Ucheck is independent of Bob’s teleportation errors, and will

now be output to Bob by the classical 2PC. But to preserve security, we will

420 J. Bartusek et al.

have Bob obtain Uxinp,zinp by evaluating a classical garbled circuit f̃inp where
finp(xinp, zinp) := Uxinp,zinp ; the garbled circuit f̃inp is included in the output of
the classical 2PC.

But now we are faced with a new problem: how does Bob obtain the (classical)
labels for f̃inp? Since we only have one round of interaction remaining, Bob won’t
be able to run an OT to learn the correct labels (Bob could learn the labels by
the end of the two online rounds, but then we would still need another round
for Bob to send Alice her encrypted output).

We resolve this problem with quantum multi-key fully-homomorphic encryp-
tion (QMFHE), which we will use in tandem with our classical garbled circuit
f̃inp to enable Bob to compute (a homomorphic encryption of) Uxinp,zinp with-
out leaking anything else. Before we continue, we give a brief, intuition-level
recap of QMFHE (we refer the reader to the full version for a formal descrip-
tion). Recall that a standard fully-homomorphic encryption (FHE) allows one
to apply arbitrary efficient computation to encrypted data (without needing to
first decrypt). Multi-key FHE (MFHE) extends FHE to enable computation over
multiple ciphertexts encrypted under different keys; the output of such a homo-
morphic computation is a “multi-key” ciphertext which can only be decrypted
given all the secret keys for all of the ciphertexts involved in the computation [33].
Finally, QMFHE extends MFHE a step further to allow arbitrary efficient quan-
tum computation over encrypted (classical or quantum) data [1,13,29,34].

We will encrypt each of the garbled circuit labels for f̃inp under an indepen-
dent QMFHE key. All of these encrypted labels along with the corresponding
QMFHE public keys (to enable quantum computations over these ciphertexts)
will also be output to Bob as part of the classical 2PC. We remark that this
requires a QMFHE scheme where encryptions of classical plaintexts are them-
selves classical; such schemes are known assuming the quantum hardness of the
learning with errors (QLWE) assumption [1].7

To recap, Bob obtains from the classical 2PC a collection of QMFHE
ciphertexts, one for each of the garbled circuit labels for f̃inp. Bob picks
out the ciphertexts corresponding to xinp, zinp and performs quantum multi-
key evaluation of f̃inp over these ciphertexts, obtaining a QMFHE encryp-
tion of the output of f̃inp, i.e. QMFHE.Enc(pkxinp,zinp

, Uxinp,zinp) where
pkxinp,zinp

denotes the collection of QMFHE public keys corresponding to
xinp, zinp. The classical 2PC output also includes Ucheck in the clear,
which Bob can apply to mA,2 to obtain Urand(xA, epr1, T̂,0) (after per-
forming appropriate measurement checks). Then Bob can homomorphically
compute the ciphertext QMFHE.Enc(pkxinp,zinp

, E0(xA,xB , T̂,0)), and pro-
ceed to homomorphically evaluate his quantum garbled circuit to obtain
QMFHE.Enc(pkxinp,zinp

, (CA,out(yA,0λ),yB)).
In order for Bob to obtain his final output in the clear, we will have

Bob send Alice xinp, zinp in the first online round. In response, in the sec-
ond online round Alice will reply with skxinp,zinp ; security of the QMFHE will

7 We only require leveled QMFHE, which can be based solely on the QLWE assump-
tion. Unleveled QMFHE requires an additional circularity security assumption.

On the Round Complexity of Secure Quantum Computation 421

guarantee that Bob cannot decrypt ciphertexts corresponding to any other
choice of the teleportation errors. In the second online round, Bob will send
Alice QMFHE.Enc(pkxinp,zinp

, (CA,out(yA,0λ)), which she can decrypt to obtain
yA. Finally, Bob produces his output by performing QMFHE decryption with
skxinp,zinp .

Issue: Simulating a Quantum Garbled Circuit with Unknown Output. At this
point, we have a correct protocol whose first round is completely input-
independent. However, we will run into issues when attempting to prove mali-
cious security.

The problem arises in the security proof for a malicious Bob. In the original
three-round maliciously secure protocol, the simulator is able to extract xB from
Bob’s first round message to Alice; this is done by first extracting CB,in from
Bob’s first round classical message for the classical 2PC, and then applying C−1

B,in

to Bob’s first round quantum message. Extracting xB from Bob’s first round
message to Alice is crucial for proving security, since it enables the simulator to
query the ideal functionality on xB, learn the output yB, and finally simulate
the quantum garbled circuit using Bob’s output yB before computing Alice’s
simulated second round message to be sent to Bob. This second round message
reveals to Bob the quantum garbled circuit, so it is crucial that the quantum
garbled circuit simulator has been executed at this point.

Not surprisingly, this simulation strategy runs into a major problem in our
newly modified protocol. Bob’s first message is independent of xB, so the simula-
tor cannot query the ideal functionality, and therefore seemingly cannot simulate
the quantum garbled circuit before computing Alice’s message, which in particu-
lar reveals the quantum garbled circuit to Bob. In summary, the simulator must
provide Bob with the quantum garbled circuit (part of Alice’s first online round
message), before it has enough information to extract Bob’s input. This appears
quite problematic since simulating a garbled circuit certainly requires knowing
the output. However, since Bob can only obtain an encryption of the output of
the garbled circuit after receiving Alice’s first message, it is still reasonable to
expect that the protocol is secure.

Modification 3: Simulation via Teleportation. We fix this problem through a new
technique we call simulation via teleportation. The idea is as follows. Instead
of running the quantum garbled circuit simulator on the output of the circuit
(which the simulator does not yet know), the simulator will first prepare fresh
EPR pairs epr′

1, epr
′
2 and then run the quantum garbled circuit simulator on

(CA,out(0,0λ), epr′
1) (where 0 takes the place of Alice’s input xA and epr′

1 takes
the place of Bob’s output yB). In the following round, after Bob has teleported
over his input state xB , the simulator will query the ideal functionality, learn
yB , and then teleport yB into epr′

1.
Implementing the final teleportation step requires some care. When the sim-

ulator learns yB , it performs Bell measurements on (yB , epr′
2), obtaining mea-

surement outcomes xout, zout. It must then find some way to apply xout, zout to
the state epr′

1 so that Bob can obtain his correct output.

422 J. Bartusek et al.

So we further modify the protocol so that the garbled circuit Bob receives
from the classical 2PC is modified to output (CA,out(yA,0λ),XxoutZzoutyB)
instead of (CA,out(yA,0λ),yB), as before. That is, in the real protocol, an honest
Alice will sample random xout, zout, and then the 2PC will output the circuit
implementing this functionality. Alice will send xout, zout to Bob in the second
online round, and Bob will first apply Pauli corrections XxoutZzout to his out-
put to obtain yB . In the simulated protocol, however, xout, zout are not sampled
by the simulator. Instead, they are the result of the simulator’s Bell measure-
ments on (yB , epr′

2). The simulator thus simulates a garbled circuit that outputs
(CA,out(0,0λ), epr′

1), and then sends xout, zout in the second online round. Note
that this teleportation step occurs exclusively within the simulation.

Modification 4: Alice (Equivocally) Commits to Pauli Corrections. To arrive at a
fully secure protocol, we need to address one last issue. As currently described,
there is nothing that prevents a malicious Alice from misreporting her choice
of xout, zout. This can introduce arbitrary Pauli errors into Bob’s output that
he has no way of detecting. However, this can easily be fixed using equivocal
commitments. That is, Alice inputs xout, zout to the classical 2PC, along with
commitment randomness s. Bob obtains the commitment as part of the output
of the classical 2PC, and later when Alice sends xout, zout in the second online
round, she must also send along s. The equivocality property enables the simu-
lation strategy to work as before, as the simulator will have the power to send
Bob a commitment to an arbitrary value, and after learning xout, zout from its
Bell measurements, use equivocation to produce a valid opening.

2.8 The Multi-party Setting

In this section, we describe our results in the multi-party setting, filling in the
bottom row of Table 1.

We begin by describing our approach to obtaining a five-round protocol from
quantum-secure OT. Our approach follows the same high-level idea as the three-
message 2PQC protocol described in Sect. 2.4, where one party (the “designated
party”, or P1) will evaluate a quantum garbled circuit on encodings of each
party’s input, and then distribute the encoded outputs to each party. However,
implementing this template in the multi-party setting requires resolving a host
of new challenges.

Input Encoding. Recall that in our two-party protocol, Alice received an encod-
ing of Bob’s input, concatenated their own input, re-randomized the entire set
of registers with a random Clifford C, and then sent the re-randomized state to
Bob. This re-randomization ensures that the only meaningful computation Bob
can perform is to apply the quantum garbled circuit, whose classical description
is re-randomized with C†. A natural extension of this idea to the multi-party set-
ting goes as follows. First, each party sends their encoded input to P1. Then P1

concatenates all inputs together and re-randomizes the resulting set of registers
with their own random Clifford C1. Then, these registers are passed around in a
circle, each party Pi applying their own re-randomizing Clifford Ci. Finally, P1

On the Round Complexity of Secure Quantum Computation 423

receives the fully re-randomized state, along with some classical description of
a quantum garbled circuit obtained via classical MPC, and re-randomized with
C†

1 . . . C†
n. The fact that each party applies their own re-randomizing Clifford

is necessary, since we are in the dishonest majority setting. Indeed, if only one
party Pi is honest, their security will crucially rely on the fact that the adver-
sary does not know their re-randomizing Clifford Ci. This approach of encrypting
and sending a state around the circle of parties for re-randomization is similar to
[22]’s “input encoding” protocol, in which each individual party’s input is sent
around the circle of parties for re-randomization.

Unfortunately, the round complexity of this encoding step will grow linearly
with the number of parties. To obtain a constant-round protocol, our idea is to
round-collapse this input-encoding via the use of quantum teleportation. In the
first round, parties will send EPR pairs to each other following the topology of
the computation described above. That is, each party sets up EPR pairs with
P1 that will be used to teleport their encoded inputs to P1, and each consecutive
pair of parties will set up EPR pairs that will be used to teleport the encoded
state around the circle. After this setup, the parties can simultaneously apply
re-randomization Cliffords and teleport the encoded state around the circle. This
will introduce teleportation errors, but since the re-randomization operations are
Clifford, these can be later corrected. Indeed, this correction will be facilitated
by a classical MPC protocol that takes as input each party’s Clifford and set of
teleportation errors.

0 and T State Checks. The next challenge is how to enforce 0 and T state checks
in the multi-party setting. Recall that in the two-party setting, we had the non-
evaluator party (Alice) prepare the 0 and T states, which were then checked
by the garbled circuit evaluator (Bob). This approach works because we know
that if Alice is malicious and tried to cheat during preparation of these states,
then Bob must be honest and will then refuse to evaluate the garbled circuit.
However, this does not carry over to the multi-party setting. If we try to fix
some party Pi to prepare the 0 and T states and then have the evaluator P1

check them, it may be the case that both Pi and P1 are malicious, which would
be problematic.

Thus, we take a different approach, instructing P1 to prepare the 0 and T
states, and designing a distributed checking protocol, similar to that of [22].
We now briefly describe the T state check, leaving a description of the 0 state
check to the body. P1 will be instructed to concatenate all parties’ inputs with
their own T states, and then send the resulting state around the circle for re-
randomization. Later, they receive the re-randomized state, along with a unitary
from the classical MPC that i) undoes the re-randomization, ii) samples a dif-
ferent subset of T states for each party, iii) Clifford-encodes each subset, and
iv) garbles the inputs together with the remaining T states. Thus, P1 obtains
n encoded subsets of T states, and is supposed to send one to each party. Each
party will then receive their encoded subset, decode (using information obtained
from the classical MPC), and measure in the T -basis. Each party will then abort
the protocol if their check failed. Only if no parties abort will the classical MPC
send information to each party allowing them to decrypt their output from the

424 J. Bartusek et al.

quantum garbled circuit. It is crucial that no party receives output until all hon-
est parties indicate that their T state check passed, because using malformed T
states in the quantum garbled circuit could result in outputs that leak informa-
tion about honest party inputs.

The Five-Round Protocol. We give a high-level overview of the five rounds of
the protocol.

– Round 1: Each party Pi generates EPR pairs and sends half of each pair to
its neighbor Pi+1. Additionally, party P1 generates enough EPR pairs so that
it can send EPR pair halves to every other party Pi for i 	= 1.

– Round 2: Teleport inputs to P1 and teleport the resulting state around the
circle (with re-randomization Cliffords Ci applied along the way). Input tele-
portation errors and {Ci}i∈[n] to the classical MPC.

– Round 3: Classical MPC delivers unitary to P1 that samples subsets of T
states and garbles inputs, along with classical description of the quantum
garbled circuit.

– Round 4: P1 evaluates the unitary and garbled circuit, then delivers encoded
subsets of T states and encrypted outputs to each party.

– Round 5: If no parties abort after their T state check, the classical MPC
delivers key to each party allowing them to decrypt their output.

Note that the distributed T state check is the reason that the protocol
requires five rounds. The first round is used for setting up EPR pairs. At this
point the parties can perform quantum teleportation and obtain their Pauli
errors. Now, these must be corrected by the classical MPC, which takes a mini-
mum of two rounds. Thus, P1 can only obtain output from the MPC, and thus
from the quantum garbled circuit, after Round 3. Then, Round 4 must be used
to distribute subsets of T states, and Round 5 must be used to deliver decryption
keys conditioned on all parties being happy with their T states. As we describe
in the body, the actual computation of the garbled circuit can be delayed one
round (at the cost of settling for security with abort rather than unanimous
abort), giving a five-round protocol with three online rounds.

Now we discuss how to instantiate the classical MPC. We are going to need
an MPC that supports reactive functionalities, where inputs may depend on
previous outputs obtained from the MPC. Moreover, we need the MPC to be
round-optimal, in the sense that outputs delivered in round i may depend on
inputs from round i − 1. We observe that the round-collapsing compiler of [26]
gives exactly this—an �+1 round MPC for a reactive functionality with � rounds
of output. Thus, we can rely solely on quantum-secure two-message OT to con-
struct the above five-round quantum MPC.

The Four-Round Protocol. Finally, we observe that there is some slack in the
aforementioned protocol. Indeed, P1 does not obtain any output from the clas-
sical MPC until after round 3, when in principle the classical MPC can be used
to compute some output in only two rounds. The reason we waited three rounds

On the Round Complexity of Secure Quantum Computation 425

is that we wanted to include the parties’ teleportation errors in the computation
performed by the MPC, and these are not known until the beginning of the
second round.

However, we can use ideas similar to those in Sect. 2.7 in order to allow the
MPC to compute something meaningful during the first two rounds without
yet knowing the teleportation errors. In particular, we make use of classical
garbled circuits and quantum multi-key FHE to provide a mechanism by which
the classical MPC can output information allowing P1 to (homomorphically)
compute a function of the teleportation errors after Round 2. This allows us to
collapse the total number of required rounds to 4. Moreover, a similar idea allows
the parties to delay teleportation of their inputs another round, giving a four-
round protocol with (optimal) two rounds of online interaction. Equivalently, our
protocol can be seen as two-round MPQC in a quantum pre-processing model.

2.9 Two Round 2PQC Without Pre-processing: Challenges
and Possibilities

In this section, we explore the possibility of achieving a two-round 2PQC protocol
in the CRS model without pre-processing. We stress that this model does not
permit pre-shared entanglement between the two parties, as we consider sharing
of entanglement to be a pre-processing step.

The Challenge of Oblivious Simulation. In the classical setting, all known two-
round two-party computation protocols (in the CRS model) can be modified so
that security is proven via (what we call) an oblivious simulator.8 That is, the
simulator (1) only makes black-box queries to the adversary, (2) is straight-line
(meaning it only runs the adversary a single time without rewinding), and (3)
it generates the simulated CRS independently of the choice of corrupted party
(between Alice and Bob).

By focusing on protocols with oblivious simulation, we can highlight an
apparent difficulty of building secure two-round protocols for quantum func-
tionalities in the CRS model. Assume without loss of generality that Alice is
adversarial (the identical argument applies to Bob). Observe that if the first
message that Alice sends is not computationally binding to her input xA, she
can potentially cheat by equivocating, i.e. acting as if she had received a dif-
ferent input, and subsequently learn multiple outputs of the functionality. If
the simulation is oblivious, then this reasoning applies simultaneously to Alice
and Bob—that is, both parties must, in the first round, send computationally-
binding commitments to their respective inputs. This is immediately problematic
for quantum inputs, since no-cloning implies that their leftover states will have
no (computationally) useful information about their original inputs. Thus, it is
unclear how a general computation can be performed on their joint inputs before

8 Each party will use a NIZK proof of knowledge to prove that their first message is
well-formed, using their input and randomness as witness. Then, a simulator pro-
gramming the CRS may extract either party’s input.

426 J. Bartusek et al.

the start of the second round, as the parties have effectively swapped their initial
states. And somehow, after just one more round of messaging, they must hold
their correctly computed output states.

Our negative result formalizes this intuitive difficulty. If the simulator is
oblivious, then by roughly following the above reasoning, at the end of the first
round:

– Alice holds a computationally binding commitment to Bob’s input xB,
– Bob holds a computationally binding commitment to Alice’s input xA, and
– Neither party has information about their original inputs.

Moreover, the correctness of oblivious simulation implies that for a computation-
ally indistinguishable CRS, there exists a “trapdoor” that would enable Alice
to extract xB and would enable Bob to extract xA. But now their states can
be viewed as the states of two parties at the beginning of a one-round protocol
with polynomial-size pre-processing in which the parties’ inputs are swapped ; the
pre-processing step is necessary to give both parties the trapdoor information of
the simulator. The resulting one-round protocol no longer satisfies any meaning-
ful security guarantees, but crucially, it still satisfies correctness. Moreover, the
one-round protocol falls into a model of “instantaneous non-local computation”
that has been previously studied in the quantum information literature [10]. It is
currently open whether this model enables general quantum computation with
only polynomial-size preprocessing, and a positive result for two-round 2PQC
with oblivious simulation would affirmatively answer this question.

A Proof-of-Concept Construction from Quantum VBB Obfuscation. Given the
above barrier, one could attempt to construct a two-round protocol whose secu-
rity relies crucially on a non-oblivious simulation strategy. In this work, we take
an initial step in this direction by providing a proof-of-concept construction from
a strong form of quantum VBB obfuscation that handles obfuscation of quan-
tum circuits that include both unitary gates and measurement gates (further
discussion is available in the full version).

In our construction, Alice will send an encryption of her input to Bob in
round 1, who will then homomorphically compute the functionality over their
joint inputs and respond with Alice’s encrypted output in round 2. Alice will also
send a message in round 2 that allows Bob to decrypt his output. However, the
key is that this interaction will actually be indistinguishable from an interaction
in which the opposite flow of computation is occuring. In particular, if the CRS
if sampled differently (but in an indistinguishable way), it will be the case that
Bob is actually sending his encrypted input to Alice in the first round, and then
Alice homomorphically computes the functionality and sends Bob’s encrypted
output back in the second round.

To instantiate this template, we provide a number of quantum obfuscations
in the CRS, three per party. First, there are the “input” obfuscations OA,inp and
OB,inp. OA,inp will take as input Alice’s input xA along with a “dummy” input
dA, and output Clifford encodings of each. Alice is instructed to send the first
output of this obfuscation as her first message, and keep the second output as

On the Round Complexity of Secure Quantum Computation 427

her state. In the real protocol, the obfuscated functionality will be such that the
first output will be the Clifford encoding of the first input (Alice’s real input xA),
and the second output will be the Clifford encoding of the second input (Alice’s
dummy input dA). On the other hand, OB,inp will obfuscate the functionality
that does the exact opposite, setting its first output to be a Clifford encoding
of its second input, and its second output to be a Clifford encodings of its first
input. Thus, in round 1, Alice sends a Clifford encoding of her real input and
keeps a Clifford encoding of her dummy input in her state, while Bob sends a
Clifford encoding of his dummy input and keeps a Clifford encoding of his real
input in his state.

The next obfuscations OA,cmp and OB,cmp share secret randomness with the
input obfuscations (in the form of PRF keys) and can thus decrypt Clifford
encodings output by the input obfuscations. They each are defined to decrypt
and check the authenticity of their inputs, apply the functionality Q that the
parties wish to compute, and then encode the outputs with freshly sampled
Cliffords. Each party will run their respective obfuscation on their state and the
other party’s first round message. Note that then Alice is just using OA,cmp to
compute Q over dummy inputs, while Bob is using OB,cmp to compute Q over
their real inputs. Alice will send an encrypted dummy output to Bob in round
2, while Bob will send an encrypted real output to Alice.

Finally, each party applies their respective output obfuscation OA,out and
OB,out to their final state and other party’s second round message. OA,out will
ignore Alice’s state (which contains Alice’s dummy output) and decrypt and
output Bob’s second round message (which contains Alice’s real output). On
the other hand, OB,out will ignore Alice’s second round message and decrypt
and output Bob’s state.

Now, it is possible to argue (under the assumption that the obfuscations in
the CRS are in fact VBB obfuscations) that, because all intermediate states
and messages are Clifford-encoded, “switching the direction” of the input and
output obfuscations cannot be noticed by the parties. Note that if each of OA,inp

and OB,inp are re-defined to permute the order of their outputs, then the flow of
computation will be completely reversed. In particular, Alice will be computing
the functionality over real inputs with OA,cmp, and Bob will be computing the
functionality over dummy inputs with OB,cmp. Thus, depending on how the
simulator programs the CRS, it can either extract directly from Alice’s first
round message OR it can extract directly from Bob’s first round message, but
it could never extract from both simultaneously.

Thus, this template represents a potential method for securely computing
a quantum functionality in two rounds, where one of the two parties actually
performs the computation between rounds 1 and 2 and then distributes the
output in round 2. In other words, it is an instantiation of our guiding principle
mentioned in Sect. 2.6 in a model without pre-processing.

428 J. Bartusek et al.

3 Quantum Non-interactive Secure Computation

3.1 Useful Lemmas

Lemma 1 (Magic State Distillation [16,22]). Let p(·) be a polynomial. Then
there exists a poly(λ) size C + M circuit Q from λp(λ) input qubits to p(λ) output
qubits such that the following holds. Take any state x on λp(λ)+λ qubits. Apply
a uniformly random permutation to the registers of x and then measure the final
λ qubits in the T -basis to obtain a bitstring s. Let x̃ be the remaining λp(λ)
registers. Then there exist negligible functions μ, ν such that

Pr
[
(s = 0) ∧

(∥∥∥Q(x̃) − Tp(λ)
∥∥∥
1

> μ(λ)
)]

≤ ν(λ).

Proof. This follows from applying [22, Lemma I.1] with parameters n = λp(λ),
k = λ, δ = 1/2 followed by [22, Lemma 2.7] with parameters m = λp(λ),
� = m/2, t = p(λ).

Lemma 2 ([22]). For any n ∈ N and projector Π on 2n qubits, define the
quantum channel LΠ by

LΠ(x) := ΠxΠ + |⊥〉 〈⊥|Tr[(I2n − Π)x],

where |⊥〉 is a distinguished state on 2n qubits with Π|⊥〉 = 0. For any t ∈
{0, 1}n, let Πt,Full := |02n〉 〈02n| if t = 0n and Πt,Full := 0 otherwise. Let Πt,Half :=
I
n ⊗ |t〉 〈t|. Then for any QRV x on 2n registers and t ∈ {0, 1}n,

∥∥∥∥LΠt,Full(x) − E
U←GL(2n,F2)

[LΠt,Half (U(x))
]∥∥∥∥

1

= negl(n).

3.2 The Protocol

In what follows, we describe our protocol for two-party quantum computation
in the setting of sequential messages. This protocol requires three messages of
interaction when both players desire output, and two messages in a setting where
only one party obtains an output, which can be seen as a Q-NISC (Quantum
Non-interactive Secure Computation) protocol.

Ingredients. Our protocol will make use of the following cryptographic primi-
tives: (1) Quantum-secure two-message two-party classical computation in the
CRS model (2PC.Gen, 2PC1, 2PC2, 2PCout) with a straight-line black-box simula-
tor (see Sect. 3.4 of the full version), and (2) a garbling scheme for C + M circuits
(QGarble,QGEval,QGSim). (see Sect. 4 of the full version).

On the Round Complexity of Secure Quantum Computation 429

Notation. The protocol below computes a two-party quantum functionality rep-
resented by a C + M circuit Q that takes nA+nB input qubits, produces mA+mB

output qubits, and requires nZ auxiliary 0 states and nT auxiliary T states. Let
λ be the security parameter. The total number of quantum registers used will
be s = nA +(nB +λ)+ (2nZ +λ)+ (nT +1)λ, and we’ll give a name to different
groups of these registers.

Given a C + M circuit Q and a Clifford Cout ∈ CmA+λ, we define another
C + M circuit Qdist[Cout]. This circuit takes as input nA + nB + nZ + λ + nT λ
qubits (xA,xB , zinp, trapA, tinp) on registers (A,B,Zinp,TrapA,Tinp). It will first
apply the magic state distillation circuit from Lemma 1 with parameters (nT λ, λ)
to tinp to produce QRV t of size nT . It will then run Q on (xA,xB , zinp, t) to
produce (yA,yB). Finally, it will output (Cout(yA, trapA),yB) (Fig. 1).

Fig. 1. Classical functionality to be used in Protocol 2.

430 J. Bartusek et al.

Fig. 2. Three-message two-party quantum computation.

3.3 Security

Theorem 5. Assuming post-quantum maliciously-secure two-message oblivious
transfer, there exists maliciously-secure NISC for quantum computation and
maliciously-secure three-message two-party quantum computation.

On the Round Complexity of Secure Quantum Computation 431

Proof. Let Π be the protocol described in Protocol 2 computing some quantum
circuit Q. Here, we only show security against a malicious party A and defer the
remainder of the proof to the full version.

The simulator. Consider any QPT adversary Adv = {Advλ}λ∈N corrupting party
A. The simulator Sim is defined as follows. Whenever we say that the simulator
aborts, we mean that it sends ⊥ to the ideal functionality and to the adversary.
SimI[xB](·)(xA,auxAdv):

– Compute (crs, τ,mB,1) ← 2PC.Sim
(1)
A (1λ), sample CB ← CnB+λ, compute

mB,1 := CB(0nB ,0λ), and send (crs,mB,1,mB,1) to Advλ(xA,auxAdv).
– Receive (mA,2,mA,2) from Advλ and compute out ← 2PC.Sim

(1)
A (1λ, τ,mA,2).

If out = ⊥ then abort. Otherwise, parse out as (CA, Cout).
– Using (CA, CB), sample Udec−check as in the description of F [Q]. Compute

(x′
A,x′

B , zinp, trapA, tinp, zcheck, trapB , tcheck) := Udec−check(mA,2).

Measure each qubit of zcheck and trapB in the standard basis and each qubit
of tcheck in the T -basis. If any measurement is non-zero, then abort.

– Forward x′
A to I[xB](·) and receive back yA. Compute ŷA := Cout(yA, trapA),

send ŷA to Advλ, send ok to I[xB], and output the output of Advλ.

We consider a sequence of hybrid distributions, where the first hybrid H0 is
REALΠ,Q(Advλ,xA,xB ,auxAdv), i.e. the real interaction between the adversary
Advλ(xA,auxAdv) and an honest party B(1λ,xB). In each hybrid, we describe
the differences from the previous hybrid.

– H1: Simulate 2PC as described in Sim, using 2PC.Sim
(1)
A to compute mB,1

and 2PC.Sim
(2)
A to extract an input (CA, Cout) (or abort). Use (CA, Cout) to

sample an output (Udec−check−enc,D0, g̃1, . . . , g̃d) of the classical functionality.
Use this output to run party B’s honest Message 3 algorithm.

– H2: In this hybrid, we change how B’s third round message ŷA is sampled.
In particular, rather than evaluating the quantum garbled circuit on minp,
we will directly evaluate Qdist[Cout] on the input. In more detail, given mA,2

returned by Advλ, (CA, Cout) extracted from Advλ, and CB sampled in Mes-
sage 1, ŷA is sampled as follows. Sample Udec−check as in Step 1 of F [Q].
Compute

(x′
A,x′

B , zinp, trapA, tinp, zcheck, trapB , tcheck) := Udec−check(mA,2)

and carry out the checks on zcheck, trapB , tcheck as described in Steps 3.(c) and
3.(d) of Protocol 2, aborting if needed. Then, compute

(ŷA,yB) ← Qdist[Cout](x′
A,x′

B , zinp, trapA, tinp)

and return ŷA to Advλ.
– H3: Compute mB,1 as CB(0nB ,0λ), and substitute xB for x′

B before applying
Qdist[Cout] to the registers described above in H2.

432 J. Bartusek et al.

– H4: Rather than directly computing Qdist[Cout], query the ideal functionality
with x′

A, receive yA, and send ŷA := Cout(yA, trapA) to Advλ. This hybrid is
IDEALΠ,Q,A(Sim,ρλ,xA,xB ,aux).

We show indistinguishability between each pair of hybrids.

– H0 ≈c H1: This follows from the security against corrupted A of 2PC.
– H1 ≈s H2: This follows from the statistical correctness of QGC.
– H2 ≈s H3: First, by the security of the Clifford authentication code, con-

ditioned on all measurements of qubits in trapB returning 0, we have that
x′

B ≈s xB . Next, switching xB to 0nB in B’s first message is perfectly indis-
tinguishable due to the perfect hiding of the Clifford authentication code.

– H3 ≈s H4: First, by Lemma 2, conditioned on all measurements of qubits in
zcheck returning 0, we have that zinp ≈s 0nZ .
Next, the above observation, along with Lemma 1, implies that, condi-
tioned on all T -basis measurements of qubits in tcheck returning 0, it holds
that the output of Qdist[Cout](x′

A,xB , zinp, trapA, tinp) is statistically close
to the result of computing (yA,yB) ← Q(x′

A,xB ,0nZ ,TnT) and returning
(Cout(yA, trapA),yB). This is precisely what is being computed in H4.

On Reusable Security against Malicious A. We remark that the two-message
special case of the above protocol, that is, our Quantum NISC protocol, can
be lightly modified to also achieve reusable security. A reusable classical NISC
protocol (see, e.g. [17]) retains security against malicious A in a setting where A
and B execute many instances of secure computation that reuse the first mes-
sage of B. A natural quantum analogue of this protocol enables computation
of quantum circuits while guaranteeing security against malicious A, in a set-
ting where A and B execute many instances of secure computation that reuse
the first message of B. Here we assume that B’s input is classical, and so func-
tionality will hold over repeated executions. We note that our protocol can be
lightly modified to achieve reusable security against malicious A, by replacing
the underlying classical 2PC with a reusable classical 2PC. The proof of security
remains identical, except that the indistinguishability between hybrids 0 and 1
relies on the reusable security of the underlying classical two-party computation
protocol. In the full version, we discuss how to achieve reusable MDV-NIZKs for
NP, which can be viewed as a special case of reusable Q-NISC.

References

1. Agarwal, A., Bartusek, J., Goyal, V., Khurana, D., Malavolta, G.: Post-quantum
multi-party computation. In: Canteaut, A., Standaert, F.-X. (eds.) EUROCRYPT
2021. LNCS, vol. 12696, pp. 435–464. Springer, Cham (2021). https://doi.org/10.
1007/978-3-030-77870-5 16

2. Alagic, G., Brakerski, Z., Dulek, Y., Schaffner, C.: Impossibility of quantum virtual
black-box obfuscation of classical circuits. arXiv preprint arXiv:2005.06432 (2020)

3. Alagic, G., Fefferman, B.: On quantum obfuscation. ArXiv abs/1602.01771 (2016)

https://doi.org/10.1007/978-3-030-77870-5_16
https://doi.org/10.1007/978-3-030-77870-5_16
http://arxiv.org/abs/2005.06432

On the Round Complexity of Secure Quantum Computation 433

4. Alon, B., Chung, H., Chung, K.M., Huang, M.Y., Lee, Y., Shen, Y.C.: Round effi-
cient secure multiparty quantum computation with identifiable abort. Cryptology
ePrint Archive, Report 2020/1464 (2020). https://eprint.iacr.org/2020/1464

5. Ananth, P., Choudhuri, A.R., Jain, A.: A new approach to round-optimal secure
multiparty computation. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part I.
LNCS, vol. 10401, pp. 468–499. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-63688-7 16

6. Ananth, P., La Placa, R.L.: Secure software leasing. arXiv preprint
arXiv:2005.05289 (2020)

7. Badrinarayanan, S., Goyal, V., Jain, A., Kalai, Y.T., Khurana, D., Sahai, A.:
Promise zero knowledge and its applications to round optimal MPC. In: Shacham,
H., Boldyreva, A. (eds.) CRYPTO 2018, Part II. LNCS, vol. 10992, pp. 459–487.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96881-0 16

8. Barak, B., et al.: On the (Im)possibility of Obfuscating Programs. In: Kilian, J.
(ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-44647-8 1

9. Beaver, D., Micali, S., Rogaway, P.: The round complexity of secure protocols
(extended abstract). In: 22nd ACM STOC, pp. 503–513. ACM Press, May 1990

10. Beigi, S., Koenig, R.: Simplified instantaneous non-local quantum computation
with applications to position-based cryptography. J. Phys. 13(9), 093036 (2011)

11. Ben-Or, M., Crépeau, C., Gottesman, D., Hassidim, A., Smith, A.: Secure multi-
party quantum computation with (only) a strict honest majority. In: 47th FOCS,
pp. 249–260. IEEE Computer Society Press, October 2006

12. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation (extended abstract). In: 20th
ACM STOC, pp. 1–10. ACM Press, May 1988

13. Brakerski, Z.: Quantum FHE (Almost) as secure as classical. In: Shacham, H.,
Boldyreva, A. (eds.) CRYPTO 2018, Part III. LNCS, vol. 10993, pp. 67–95.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96878-0 3

14. Brakerski, Z., Halevi, S., Polychroniadou, A.: Four round secure computation with-
out setup. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017, Part I. LNCS, vol. 10677, pp.
645–677. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70500-2 22

15. Brakerski, Z., Yuen, H.: Quantum garbled circuits. arXiv preprint arXiv:2006.01085
(2020)

16. Bravyi, S., Kitaev, A.: Universal quantum computation with ideal clifford gates
and noisy ancillas. Phys. Rev. A 71(2), 022316 (2005)

17. Chase, M., et al.: Reusable non-interactive secure computation. In: Boldyreva, A.,
Micciancio, D. (eds.) CRYPTO 2019, Part III. LNCS, vol. 11694, pp. 462–488.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26954-8 15

18. Chaum, D., Crépeau, C., Damg̊ard, I.: Multiparty unconditionally secure protocols
(abstract) (informal contribution). In: Pomerance, C. (ed.) CRYPTO 1987. LNCS,
vol. 293, p. 462. Springer, Heidelberg (1988). https://doi.org/10.1007/3-540-48184-
2 43

19. Choudhuri, A.R., Ciampi, M., Goyal, V., Jain, A., Ostrovsky, R.: Round optimal
secure multiparty computation from minimal assumptions. In: Theory of Cryp-
tography - 18th International Conference, TCC 2020, Durham, NC, USA, 16–19
November 2020, Proceedings, Part II, pp. 291–319 (2020)

20. Crépeau, C., Gottesman, D., Smith, A.: Secure multi-party quantum computation.
In: 34th ACM STOC, pp. 643–652. ACM Press, May 2002

21. D’Ariano, G.M., Schlingemann, D., Werner, R., Kretschmann, D.: Quantum bit
commitment revisited: the possible and the impossible. Tech. rep. (2006)

https://eprint.iacr.org/2020/1464
https://doi.org/10.1007/978-3-319-63688-7_16
https://doi.org/10.1007/978-3-319-63688-7_16
http://arxiv.org/abs/2005.05289
https://doi.org/10.1007/978-3-319-96881-0_16
https://doi.org/10.1007/3-540-44647-8_1
https://doi.org/10.1007/978-3-319-96878-0_3
https://doi.org/10.1007/978-3-319-70500-2_22
http://arxiv.org/abs/2006.01085
https://doi.org/10.1007/978-3-030-26954-8_15
https://doi.org/10.1007/3-540-48184-2_43
https://doi.org/10.1007/3-540-48184-2_43

434 J. Bartusek et al.

22. Dulek, Y., Grilo, A.B., Jeffery, S., Majenz, C., Schaffner, C.: Secure multi-party
quantum computation with a dishonest majority. In: Canteaut, A., Ishai, Y. (eds.)
EUROCRYPT 2020, Part III. LNCS, vol. 12107, pp. 729–758. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-45727-3 25

23. Dupuis, F., Nielsen, J.B., Salvail, L.: Secure two-party quantum evaluation of uni-
taries against specious adversaries. In: Rabin, T. (ed.) CRYPTO 2010. LNCS,
vol. 6223, pp. 685–706. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-14623-7 37

24. Dupuis, F., Nielsen, J.B., Salvail, L.: Actively secure two-party evaluation of any
quantum operation. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS,
vol. 7417, pp. 794–811. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-32009-5 46

25. Garg, S., Mukherjee, P., Pandey, O., Polychroniadou, A.: The exact round com-
plexity of secure computation. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT
2016, Part II. LNCS, vol. 9666, pp. 448–476. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-49896-5 16

26. Garg, S., Srinivasan, A.: Two-round multiparty secure computation from minimal
assumptions. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018, Part II.
LNCS, vol. 10821, pp. 468–499. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-78375-8 16

27. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or A
completeness theorem for protocols with honest majority. In: Aho, A. (ed.) 19th
ACM STOC, pp. 218–229. ACM Press, May 1987

28. Gonzales, A., Chitambar, E.: Bounds on instantaneous nonlocal quantum compu-
tation. IEEE Trans. Inf. Theory 66(5), 2951–2963 (2020)

29. Goyal, R.: Quantum multi-key homomorphic encryption for polynomial-sized cir-
cuits. Cryptology ePrint Archive, Report 2018/443 (2018). https://eprint.iacr.org/
2018/443

30. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Prabhakaran, M., Sahai, A.: Efficient
non-interactive secure computation. In: Paterson, K.G. (ed.) EUROCRYPT 2011.
LNCS, vol. 6632, pp. 406–425. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-20465-4 23

31. Ciampi, M., Ostrovsky, R., Siniscalchi, L., Visconti, I.: Round-optimal secure two-
party computation from trapdoor permutations. In: Kalai, Y., Reyzin, L. (eds.)
TCC 2017. LNCS, vol. 10677, pp. 678–710. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-70500-2 23

32. Lo, H.K., Chau, H.F.: Why quantum bit commitment and ideal quantum coin
tossing are impossible. Physica D Nonlinear Phenom. 120(1–2), 177–187 (1998)

33. López-Alt, A., Tromer, E., Vaikuntanathan, V.: On-the-fly multiparty computation
on the cloud via multikey fully homomorphic encryption. In: Karloff, H.J., Pitassi,
T. (eds.) 44th ACM STOC, pp. 1219–1234. ACM Press, May 2012

34. Mahadev, U.: Classical homomorphic encryption for quantum circuits. In: Thorup,
M. (ed.) 59th FOCS, pp. 332–338. IEEE Computer Society Press, October 2018

35. Mayers, D.: Unconditionally secure quantum bit commitment is impossible. Phys.
Rev. Lett. 78(17), 3414 (1997)

36. Peikert, C., Vaikuntanathan, V., Waters, B.: A framework for efficient and compos-
able oblivious transfer. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp.
554–571. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85174-
5 31

37. Shmueli, O.: Multi-theorem (malicious) designated-verifier NIZK for QMA (2020)

https://doi.org/10.1007/978-3-030-45727-3_25
https://doi.org/10.1007/978-3-642-14623-7_37
https://doi.org/10.1007/978-3-642-14623-7_37
https://doi.org/10.1007/978-3-642-32009-5_46
https://doi.org/10.1007/978-3-642-32009-5_46
https://doi.org/10.1007/978-3-662-49896-5_16
https://doi.org/10.1007/978-3-662-49896-5_16
https://doi.org/10.1007/978-3-319-78375-8_16
https://doi.org/10.1007/978-3-319-78375-8_16
https://eprint.iacr.org/2018/443
https://eprint.iacr.org/2018/443
https://doi.org/10.1007/978-3-642-20465-4_23
https://doi.org/10.1007/978-3-642-20465-4_23
https://doi.org/10.1007/978-3-319-70500-2_23
https://doi.org/10.1007/978-3-319-70500-2_23
https://doi.org/10.1007/978-3-540-85174-5_31
https://doi.org/10.1007/978-3-540-85174-5_31

On the Round Complexity of Secure Quantum Computation 435

38. Speelman, F.: Instantaneous non-local computation of low t-depth quantum cir-
cuits. In: Broadbent, A. (ed.) 11th Conference on the Theory of Quantum Com-
putation, Communication and Cryptography, TQC 2016, 27–29 September 2016,
Berlin, Germany. LIPIcs, vol. 61, pp. 9:1–9:24. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik (2016)

39. Vaidman, L.: Instantaneous measurement of nonlocal variables. Phys. Rev. Lett.
90, 010402 (2003)

40. Yao, A.C.C.: How to generate and exchange secrets (extended abstract). In: 27th
FOCS, pp. 162–167. IEEE Computer Society Press, October 1986

Round Efficient Secure Multiparty
Quantum Computation with Identifiable

Abort

Bar Alon1, Hao Chung2, Kai-Min Chung3(B), Mi-Ying Huang3,4, Yi Lee3,
and Yu-Ching Shen3

1 Department of Computer Science, Ariel University, Ariel, Israel
2 Department of Electrical and Computer Engineering, Carnegie Mellon University,

Pittsburgh, USA
haochung@andrew.cmu.edu

3 Institute of Information Science, Academia Sinica, Taipei City, Taiwan
{kmchung,yuching}@iis.sinica.edu.tw, ylee1228@umd.edu

4 Department of Computer Science and Information Engineering,
National Taiwan University, Taipei City, Taiwan

mining.huang@usc.edu

Abstract. A recent result by Dulek et al. (EUROCRYPT 2020) showed
a secure protocol for computing any quantum circuit even without the
presence of an honest majority. Their protocol, however, is susceptible
to a “denial of service” attack and allows even a single corrupted party
to force an abort. We propose the first quantum protocol that admits
security-with-identifiable-abort, which allows the honest parties to agree
on the identity of a corrupted party in case of an abort. Additionally,
our protocol is the first to have the property that the number of rounds
where quantum communication is required is independent of the circuit
complexity. Furthermore, if there exists a post-quantum secure classical
protocol whose round complexity is independent of the circuit complex-
ity, then our protocol has this property as well. Our protocol is secure
under the assumption that classical quantum-resistant fully homomor-
phic encryption schemes with decryption circuit of logarithmic depth
exist. Interestingly, our construction also admits a reduction from quan-
tum fair secure computation to classical fair secure computation.

B. Alon—This work was supported by ISF grant 152/17 and by the Ariel Cyber Innovation
Center in conjunction with the Israel National Cyber directorate in the Prime Minister’s Office.
Part of the work was done while visiting Academia Sinica.
H. Chung and Y.-C. Shen—This research is partially supported by the Young Scholar Fel-
lowship (Einstein Program) of the Ministry of Science and Technology (MOST) in Taiwan,
under grant number MOST 108-2636-E-002-014 and Executive Yuan Data Safety and Talent
Cultivation Project (ASKPQ-109-DSTCP).
K.-M. Chung—This research is partially supported by the Air Force Office of Scientific
Research under award number FA2386-20-1-4066, and MOST, Taiwan, under Grant no. MOST
109-2223-E-001-001-MY3.
M.-Y. Huang—This work is supported by the Young Scholar Fellowship (Einstein Program)
of the Ministry of Science and Technology (MOST) in Taiwan, under grant number MOST
109-2636-E-002-025.
Y. Lee—This work was done in part while the author was affiliated to National Taiwan Uni-
versity.

c© International Association for Cryptologic Research 2021
T. Malkin and C. Peikert (Eds.): CRYPTO 2021, LNCS 12825, pp. 436–466, 2021.
https://doi.org/10.1007/978-3-030-84242-0_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-84242-0_16&domain=pdf
https://doi.org/10.1007/978-3-030-84242-0_16

Round Efficient Secure Multiparty Quantum Computation 437

1 Introduction

In the setting of secure multiparty computation (MPC), the goal is to allow
a set of mutually distrustful parties to compute some function of their private
inputs in a way that preserves some security properties, even in the face of
adversarial behavior by some of the parties. Some of the desired properties of a
secure protocol include correctness (cheating parties can only affect the output
by choosing their inputs), privacy (nothing but the specified output is learned),
fairness (all parties receive an output or none do), and even guaranteed output
delivery (meaning that all honestly behaving parties always learn an output).
Informally speaking, a protocol π computes a functionality f with full-security
if it provides all of the above security properties.

It is well-known that, assuming an honest majority and a broadcast channel,
any functionality can be computed with full-security [RBO89]. However, achiev-
ing fairness, and hence full-security, is impossible in general assuming no honest
majority [Cle86]. Instead, one usually settles on a weaker notion called security-
with-abort, which completely disregards fairness. Roughly, security-with-abort
guarantees that either the protocol terminates successfully, in which case the
honest parties receive their outputs, or the protocol aborts, in which case all
honest parties learn that there was an attack. Note that since fairness is not
guaranteed, it might be the case where the adversary learns the output of the
corrupted parties. In many setting, however, security-with-abort is not enough,
as an adversary can cause a denial-of-service attack by repeatedly aborting the
protocol. Thus, it is highly desirable to consider the stronger security notion
called security-with-identifiable-abort (SWIA) [IOZ14]. Here, if the protocol is
aborted, then all honest parties additionally agree on an identity of a corrupted
party. It is well-known that there are protocols admitting SWIA for any number
of corrupted parties, e.g., the GMW protocol [GMW87].

In this work we consider the quantum version of MPC. In the fully quantum
setting, the functionality – including the inputs and outputs – is quantum. As
such, the parties, as well as the adversary attacking the protocol, are quantum.
Secure multiparty quantum computation (MPQC) in the fully quantum setting,
was first studied by [CGS02], who constructed a fully secure n-party protocol
tolerating strictly less than n/6. The threshold n/6 was subsequently improved
the more general honest majority setting [BOCG+06], assuming the availability
of a classical broadcast channel. Similarly to the classical setting, if there is no
honest majority, then full-security is impossible to achieve in general [ABDR04,
Kit].1 Moreover, [DNS12] presented a secure-with-abort protocol in the
two-party case, and recently [DGJ+20] extended it to the multiparty case, tol-
erating any number of corrupted parties.

1 The impossibility proof is in the information theoretic setting, where the adversary is
unbounded. However, even though Cleve’s impossibility result is stated for classical
protocols, the proof can still be applied for quantum protocols.

438 B. Alon et al.

The protocol of [DGJ+20], however, does not admit identifiable abort. This
follows from the fact that it is impossible to broadcast a quantum state. Therefore
a corrupted party can accuse an honest party of not sending it a message, thus,
not only is the quantum state lost, but the other parties cannot identify the
corrupted party. When compared to the classical setting, this raises the following
natural question.

Can any multiparty quantum circuit be computed with security-with-
identifiable-abort, tolerating any number of corrupted parties?

1.1 Our Results

In this paper, we answer the above question affirmatively. Additionally, our pro-
tocol is the first to have the property that the number of rounds where quantum
communication is required is independent of the circuit complexity. Furthermore,
if there exists a post-quantum secure classical protocol whose round complexity
is independent of the circuit complexity, then our protocol has this property as
well.

Similarly to [DGJ+20,DNS12], we present the results and the protocol,
assuming the availability of a reactive trusted party, called cMPC, that is able
to compute any classical multiparty functionality. We refer to this as the cMPC-
hybrid model. Furthermore, we assume that the parties are able to broadcast
classical messages. The implementation of cMPC can be done by first removing
the reactive assumption using standard techniques, and then implement each
call using a post-quantum secure-with-identifiable-abort protocol. We refer the
reader to Sect. 3.2 for more details. We prove the following.

Theorem 1 (Informal). Assume the existence of a classical quantum-resistant
fully homomorphic encryption scheme with decryption circuit of logarithmic
depth. Then any multiparty quantum circuit can be computed with security-with-
identifiable-abort tolerating any number of corrupted parties in the cMPC-hybrid
model. Moreover, the round complexity of the quantum communication of the
protocol is independent of the circuit complexity.

The formal statement of the theorem appears in Sect. 4. A few notes are in
place. First, Brakerski and Vaikuntanathan [BV11] showed that the existence of
a fully-homomorphic encryption satisfying the conditions stated in Theorem 1
can be reduced to the learning with errors assumption.

Second, we note that the protocol can be split into an online phase and an
offline phase, where the parties have yet to receive their inputs. In the offline
phase, the parties prepare auxiliary magic states in order to compute quantum
gates later in the online phase. In fact, it suffices that the parties know only
an upper bound on the number of gates in the circuit before interacting in the
offline phase.

Third, although the number of rounds requiring quantum information to be
sent is independent of the circuit complexity (i.e., independent of the number of
gates), it still depends on the number of parties, the number of input-qubits and

Round Efficient Secure Multiparty Quantum Computation 439

output-qubits of the circuit, and the security parameter. Specifically, the offline
phase consists of O(n4 · κ) rounds, and the online phase consists of O(n3 · (�in +
�out)) rounds, where n is the number of parties, κ is the security parameter, and
�in and �out upper-bound the number of input-qubits and output-qubits of the
circuit, respectively.

Fourth, although our protocol admits security-with-identifiable-abort, any
single corrupted party can cause it to abort. It is arguably more desirable and
an interesting open problem to have a protocol that requires the adversary to
corrupt more parties to cause an abort.

Finally, an interesting consequence of our construction is that quantum fair
secure computation can be implemented assuming the hybrid functionality cMPC
is fair.2

In the following sections, we present the ideas behind the construction.

1.2 Our Techniques

In this section, we present the main ideas behind the construction of our protocol.

A Warm-Up: Reliable Transmission of Quantum States
Before presenting the general construction, let us consider the following simple
task. Suppose that there are n parties P1, . . . ,Pn, where P1 – called the sender
– holds a quantum state ρ. The goal of the parties is to send ρ to Pn – called the
receiver – such that if either the sender or the receiver is corrupted and deviate
from the protocol, then the other parties can identify which of them is corrupted.
Moreover, this should hold even the corrupted party collude with some of the
other parties in {P2, . . . ,Pn−1}.

As stated before, simply having P1 send ρ to Pn, and have Pn broadcast a
complaint in case it did not receive a message, does not work. Indeed, it could
be the case where the receiver is corrupted, and falsely accuse the sender of not
sending ρ. Since broadcasting a quantum state is impossible, to the other parties,
this scenario is identical to the case where a corrupted sender did not send ρ.
Thus, the desired security property is not met. Moreover, due to the no-cloning
theorem, the state ρ is now permanently lost, making it unclear as to how to
proceed the protocol.

Dealing with False Accusations. As such “packet loss” seems unavoidable, our
first idea is to not send ρ directly, but rather to encode ρ using a quantum error-
correcting code (QECC), that can tolerate d deletions, where d will be determined
below. This generates an q-qubit codeword (σk)q

k=1, for some q, which will then
be transmitted qubit-by-qubit as explained below.3 By doing so, Pn can still
recover ρ as long as it receives enough qubits of the codeword.

We next explain how the parties can transmit the codeword’s qubits in such
a way that will allow them to identify the corrupted party, if such exists. For
2 Intuitively, fair computation means that either all parties receive their respective

outputs, or none of them do.
3 Here we abuse the notation that we denote the kth qubit of the codeword σk, while

these q qubits may be entangled.

440 B. Alon et al.

simplicity of the current discussion, let us assume that the adversary can perform
one of the following two attacks. Either it does not send a message, or it can
falsely accuse a party of not sending a message. Below we will explain how to
remove this assumption and how to resist general malicious attackers. Under
these simplifying assumptions, we can make the following observation. If Pn

accused P1 of not sending a message, then all parties know that at least one
of them is corrupted. Therefore, they can agree to remove the channel between
them, and have P1 send the next qubit of the codeword via a different path.
The parties continue in this fashion until either enough σk’s where successfully
transmitted to the receiver, or until there is no path from the sender to the
receiver. Formally, the parties keep track of a simple and undirected graph G,
which represents trust between parties, i.e., an edge between two vertices exists
if and only if there was no accusation between the two parties that the vertices
represent. Observe that in the above protocol, all honest parties form a clique in
G. Thus, if G becomes disconnected, the honest parties can agree on a corrupted
party not connected to them. Therefore, using a QECC that can tolerate d =
Θ(n2) deletions results in a secure protocol.

Dealing with General Malicious Behavior. Next, we show to remove the sim-
plifying assumption of the behavior of the adversary, and allow it to tamper
with the messages arbitrarily. Here, we utilize quantum authentication codes
[BCG+02], that allow a party to verify if a quantum state was tampered with.
However, in our protocol the parties must know where on the path the message
had been tampered with (if any tampered occurred), in order to later remove
the corresponding edge. To achieve this, we define a new primitive, which we
call sequential authentication (SA), that allows the sender to transmit a qubit to
the receiver along some path, so that if the qubit was tampered with, all parties
know where on the path the tampering occurred. We then combine SA with the
previous protocol that dealt with false accusations, to construct a secure-with-
identifiable-abort protocol for the transmission of a quantum state. One subtlety
in the final construction, is that any path from P1 to Pn must go through all
parties, so as to ensure that at least one honest party can verify the integrity of
the message.

We now describe the construction of a protocol for sequential authentica-
tion. The construction is inspired by the swaddling notion from [DNS12] and
the public authentication test from [DGJ+20], which are both based on Clifford
authentication codes. Let us first recall Clifford codes [ABOE10]. Given a m-
qubit state ρ and a security parameter κ, the Clifford encryption4 appends an
auxiliary register |0κ〉〈0κ|, called traps. Then, a random Clifford operator E is
sampled from the Clifford group acting on m +κ qubits. Finally, the encryption
outputs the ciphertext E(ρ ⊗ |0κ〉〈0κ|)E†, where E serves as the secret key. The
decryption of a Clifford ciphertext σ, simply applies E† to σ and measures the

4 It is more common to use the term Clifford encoding. However, in the quantum
setting authentication implies encryption. Thus, we refer to these as encryptions to
remove confusion with the QECC encoding.

Round Efficient Secure Multiparty Quantum Computation 441

last κ trap qubits. If the measurement outcome is all-zero, then the decoding
algorithm outputs the resulting state of the first m qubits. Otherwise, it rejects.
The security of Clifford codes stems from the fact that any operation that is
applied to the ciphertext, will flip each qubit in the trap with noticeable prob-
ability upon measurement. Moreover, the secret key of the Clifford code can be
sampled efficiently by a classical algorithm [DLT02].

Constructing a Sequential Authentication Protocol. We utilize these property to
build a protocol for SA. Suppose that a message ρ is going to be transmitted
through � parties. Let us first present a näıve solution. The first party on the path
will append �κ qubits of |0〉 to ρ. Then, using the classical MPC functionality
cMPC, the parties will securely sample for P1 a Clifford key E1 to encrypt its
state. It then sends the encrypted message to P2. To verify the authenticity of the
state, the parties will again use cMPC for sampling a Clifford V2 = E2E

†
1, where

E2 acts only on the first (�−1)κ qubits. We then let P2 receive V2 and apply it to
the encrypted message it received from P1. This allows P2 to measure the last κ
qubits and compare them to zero. For each party Pi on the transmitting path, Pi

measures κ qubits of traps. The parties can then continue in this fashion. Notice,
however, that a corrupt P1 might only append the last κ qubits honestly, which
will not be immediately detected by P2. This could later result in an honest
party accusing another honest party. To overcome this issue, we use a similar
trick to the public authentication test [DGJ+20], and have the Clifford V2 that
cMPC sampled include a random invertible linear transformation over F2 acting
on all traps. Specifically, we let V2 = E2G2E

†
1, where we abuse notations and let

G2|x〉 = |G2(x)〉. Observe that if P1 did not prepare the traps correctly, then
upon measurement with high probability P2 will not obtain all-zero.

Security With Packet Drops
With the above technique, it is natural to incorporate it into the construction
of [DGJ+20]. This näıve solution, however, does not work. Towards explaining
the issue, let us first briefly describe the protocol of [DGJ+20]. Roughly, their
protocol starts with an input encoding phase, such that at the end of the phase
each party’s input is encrypted under a Clifford code with cMPC holding the
secret Clifford key. This is done similarly to the sequential authentication proto-
col described earlier. The parties then proceed to perform computation over the
encrypted inputs. Computation over single-qubit Clifford gates can be done by
simply letting cMPC update its key, while CNOT gates require communication
since the inputs to CNOT gates are encrypted separately under different Clifford
keys.

While the input encoding phase can be modified to admit security-with-
identifiable-abort, it is unclear how to modify the computation phase of the
protocol. This follows from the fact that the parties are required to use QECC
over their inputs in the input encoding phase, thus at the end of this phase,
each party will hold a Clifford encoding of each qubit of its input’s codeword.
As a result, the parties have to either perform the computation over QECC
codewords in some way, or decode the Clifford encrypted codewords and perform

442 B. Alon et al.

computation similarly to [DGJ+20]. We next give an intuitive explanation as to
why both solutions fail.

Let us first argue why the second solution fails. That is, suppose the parties
decode all QECC encodings before starting to perform any computation. The
issue here is that once the parties decode the QECC they lose its protection,
hence the protocol cannot tolerate losing quantum states after this step. Since
the protocol of [DGJ+20] requires communicating quantum messages to compute
CNOT gates, this causes inevitable packet drops during computation, causing the
honest parties to output incorrect values.

The former solution fails due to the fact that a corrupted party might not
encode its qubit correctly using the QECC. Observe that our sequential authen-
tication protocol will not be able to detect such error, since it is able to detect
an attack only after a Clifford had been applied. Furthermore, this error might
propagate into the evaluation. Indeed, consider the following example.

Suppose that the parties use repetition code as an implementation of the
QECC.5 In repetition code, a logical zero |0̄〉 is encoded as |000〉 and a logical
one |1̄〉 is encoded as |111〉. The decoding is done by taking the majority, e.g.,
|000〉, |001〉, |010〉 and |100〉 are all decoded to |0̄〉. Suppose three parties wish to
compute the following circuit, where the CNOTs are applied transversally, and
where the inputs |ψi〉 are repetition codes of logical |0̄〉.

|ψ1〉 •
|ψ2〉 •
|ψ3〉

Clearly, in an honest execution the value of |ψ3〉 becomes |000〉 which decodes
to |0〉. Now, suppose the two parties holding |ψ1〉 and |ψ2〉 are corrupted and
prepares |ψ1〉 = |001〉 and |ψ2〉 = |010〉. Then the value of |ψ3〉 under such an
attack becomes |011〉. Consequently, even if all codewords are of logical 0 at the
beginning, the decoding would result in a logical 1.

A possible way to try and fix this issue, would be to try to correct the QECC
codewords. However, this in particular would require the parties to compute a
multi-qubit gate (e.g., CNOT), which as stated before, cannot be done without
losing the quantum states due to a potential attack.

With this state of affairs, we aim to construct a protocol that has the property
that no adversary can cause qubits to be “dropped” during the computation
of the circuit. Thus, we first propose an abstraction of a security notion that
allows the adversary to “drop” some of the input-states and output-states. We
call this security notion secure-with-identifiable-abort-and-packet-drop (IDPD-
security). We then show how to reduce the problem of constructing a secure-
with-identifiable-abort protocol to the problem of constructing an IDPD-secure
protocol.

5 Repetition codes only resist bit-flip error (i.e., Pauli X attack). However, it is suffi-
cient for the purposes of demonstration here.

Round Efficient Secure Multiparty Quantum Computation 443

Defining IDPD-Security. Let us now define IDPD-security. Similarly to other
notions of security in multiparty computation, here we follow the standard
ideal vs. real paradigm. Roughly, the ideal-world follows similar instructions to
that of the security-with-identifiable-abort ideal-world, with the following two
additions. First, when the parties send their inputs to the trusted party, the
adversary additionally sends it a bounded-sized set, representing which input-
qubits are to be replaced with |0〉 (modelling “packet drop”). Note that it might
be the case where a single party holds several qubits as inputs, and the adver-
sary changes only a subset of them to the 0 state. The second change we make
is done after the adversary receives its output from the trusted party. Here,
the adversary either instructs the trusted party to abort while revealing the
identity of a corrupted party, or it instructs the trusted party to continue and
drop some qubits from the output.6 In case the adversary instructed to con-
tinue, the trusted party then sends to all other parties their respective outputs
that remained. Additionally, the trusted party reveals which input-qubits and
which output-qubits were dropped. The formal definition of IDPD-security can
be found in Sect. 3.1.

Reducing SWIA to IDPD-security. We now show a simple reduction from SWIA
to IDPD-security. The reduction makes use of a QECC. Let C be the circuit that
the parties wish to compute. First, each party encodes its input using the QECC.
The parties then use an IDPD-secure protocol in order to compute the circuit
C ′ that first decodes its inputs using the QECC, then applies C, and finally
re-encodes each output using the QECC. Upon receiving their encoded outputs,
each party locally decodes it to obtain their output. To see why this reduction
works, observe that the adversary can only drop some of the qubits in the input
to C ′ and some of the qubits in the output. Therefore, by the properties of the
QECC and IDPD-security, either the original state can be reconstructed, or the
adversary has revealed the identity of a corrupted party.

Securely Computing A General Circuit
We next explain how to achieve a secure protocol for computing a general cir-
cuit. With the above reduction, it suffices to construct an IDPD-secure protocol.
Unfortunately, previous approaches, such as that of [DGJ+20], for construct-
ing secure protocols fail to achieve IDPD-security. Indeed, as stated before, the
protocol of [DGJ+20] requires communicating quantum messages to compute
CNOT gates, which causes inevitable packet drops during computation and thus
fails to achieve IDPD-security.

Our Approach. To circumvent the aforementioned issue, the parties need a way
to perform computation without quantum communication. To do so, our main
idea is to delegate the computation to some designated party, say P1, and let
it perform computation under verifiable quantum fully homomorphic encryption

6 Formally, the ideal-world is parametrized by two polynomial in the security param-
eter that bound the number input-qubits and number of output-qubits that can be
dropped.

444 B. Alon et al.

(VQFHE) [ADSS17]. More precisely, the first step of our protocol will encrypt
all parties’ input using the VQFHE scheme of [ADSS17], called TrapTP, send
their encrypted inputs to P1, and store the VQFHE classical secret key sk in
cMPC. We refer to this step as the pre-computation step. This allows us to let P1

perform the computation homomorphically to obtain encrypted output without
any quantum communication. Furthermore, the verification of the evaluation
can be done using the help of cMPC holding sk. If the verification passes, P1

delivers the output to each party. Note that an additional advantage of our
approach is that the round complexity of our protocol is independent of the
circuit complexity.

VQFHE scheme TrapTP. We first review some useful facts about the TrapTP
scheme. In TrapTP, the encryption of a 1-qubit state |ψ〉 consists of a quantum
part and a classical part. The quantum part is a trap code encryption of |ψ〉

ΠXxZz(QECC.Enc(|ψ〉) ⊗ |0〉⊗κ ⊗ |+〉⊗κ),

where Π is a random permutation over 3κ qubits (which is part of the secret key
sk) and x, z ← {0, 1}3κ are sampled independent and uniformly at random. The
classical part is a classical FHE encryption of the Pauli key x, z. Homomorphic
evaluation requires a quantum evaluation key ρevk, which consists of multiple
TrapTP encryptions of magic states, including ancilla zero states, phase (P)
states |P 〉 := P |+〉, Hadamard (H) states |H〉 := (H ⊗ I)CNOT(|+〉 ⊗ |0〉), T
states |T 〉 := T |+〉, and a special gadget state |γ〉 (see Sect. 7.3 in the full version
[ACC+20] for a more detailed definition of |γ〉). These (encrypted) states are
used to perform computation homomorphically over the underlying trap codes.

The Pre-Computation Step. Recall that the goal is to send TrapTP encrypted
inputs to P1, with the secret key stored in cMPC. The first step is to let each party
send their input to P1 using the technique we developed in Sect. 1.2. Namely, we
let each party to send Clifford encryptions of their input qubits using sequential
authentication protocol through paths determined by a trust graph G. We for-
malize this as an authenticated routing (AR) protocol that achieves the following
functionality with IDPD-security.

Authenticated Routing (AR): As input, each sender Pi holds multiple
quantum messages ρ1, . . . , ρ� (the “packets”) to send to P1. As output,
the receiver P1 receives Clifford ciphertexts σj = Ej(ρj ⊗ |0t〉〈0t|)E†

j with
trap size t and cMPC receives the Clifford keys Ej for j ∈ [�] with at most
n2 packet drop.

We note that in AR, a packet ρj can consist of multiple qubits and the trap
size can be set arbitrarily; these properties will be useful later. Here, we let each
Pi send their input qubit-by-qubit to P1 using AR with trap size 3κ − 1. After
that, P1 holds Clifford encodings of all parties’ input (with certain packet drops).
Note that AR allows to drop at most n2 input states, while it is acceptable in
IDPD-security.

Round Efficient Secure Multiparty Quantum Computation 445

However, in TrapTP, the quantum messages are encrypted under trap code
instead of Clifford code. We next use the following simple re-encrypt protocol
to turn Clifford codes into trap codes: Let σ = E(ρ ⊗ |03κ−1〉〈03κ−1|)E† be a
Clifford encoding of ρ held by P1 with the corresponding Clifford key E held by
cMPC. We simply let cMPC send to P1 the Clifford operator

V = XxZzΠ(UEnc ⊗ I⊗κ ⊗ H⊗κ)E†,

where UEnc is an unitary operator maps ρ⊗|0κ−1〉〈0κ−1| into an QECC codeword.
Observe that if P1 applies V to σ, the result would be a trap-code encryption of
ρ, which is also the quantum part of the TrapTP encryption of ρ. Also note that
since the Clifford key E is uniformly random to P1, it serves as a one-time pad,
hence P1 learns nothing about the trap code secret Π,x, z from V . After that,
we can let cMPC generate and send the classical part of the TrapTP encryption
of ρ to P1 so that it obtains a complete TrapTP encryption of ρ.

It is worth mentioning that a natural alternative is to use trap code to con-
struct SA in AR to avoid using two different codes with re-encryption. However,
this does not provide a secure protocol since, unlike Clifford codes, in trap codes
each qubit is encrypted individually. If only one qubit has been tampered with,
then there is no guarantee that the adversary would be immediately caught.

To conclude the pre-computation step, it is left to prepare the evaluation key
ρevk for P1, which consists of multiple TrapTP encryptions of auxiliary magic
states and a special gadget state. Preparing such states turns out to be involved,
which we discuss next.

Magic State Preparation (except T). We first note that it suffices to generate
Clifford encryption of these states, and we can apply the above re-encryption
protocol to turn them into TrapTP encryption.

Let us start with the simplest case of ancilla zero state |0〉. For this, we can
use the AR protocol to send the empty state, denoted ε, with trap size 3κ to
prepare it. Indeed, the Clifford encoding outputs

E(ε ⊗ |03κ〉〈03κ|)E† = E(|0〉〈0| ⊗ |03κ−1〉〈03κ−1|)E†,

as required. Note that AR protocol takes as input a list of “packets,” where
n2 packets may be dropped. Since magic state preparation is independent to
parties’ private states, the parties actually call AR protocol with n2 + 1 packets
to make sure that at least one packet can be delivered. Then, the server and
cMPC keep the lexicographically first remaining packet. For simplicity, we omit
the number of initial packets.

Next, consider preparing a |P 〉 magic state. Since a P gate is a Clifford, we
can generate it by preparing encoding of |0〉 and update the Clifford key held
by cMPC. Specifically, if cMPC updates its Clifford E to E(PH)† (where PH is
applied only to the first qubit of the codeword), then decrypting the ciphertext
with the updated key would result in

(E(PH)†)†E(|0〉 ⊗ |03κ−1〉) = PH(|0〉 ⊗ |03κ−1〉) = |P 〉 ⊗ |03κ−1〉.

446 B. Alon et al.

The |H〉 magic state, is also generated by a Clifford, but consists of two
qubits. To generate this, we first use AR to send the empty state with trap size
6κ and view it as

E(|0〉M1 ⊗ |0〉M2 ⊗ |03κ−1〉T1 ⊗ |03κ−1〉T2),

where the gray superscript denote the registers the qubits are stored in. Then,
we let cMPC send to P1 the Clifford operator

V = (EM1T1
1 ⊗ EM2T2

2)(H ⊗ I)CNOT(H ⊗ I)M1M2E†,

where E1 and E2 are two Clifford sampled uniformly at random and indepen-
dently, and where the gray superscript denote the registers on which each oper-
ator acts. Observe that upon applying V to its codeword, P1 will obtain an
encrypted H state. Additionally, as V is distributed like a uniform random Clif-
ford operator, it follows that a corrupted P1 will gain no new information.

More generally, the above examples suggest that we can prepare any �-qubit
state in the Clifford group by first preparing Clifford encoding of 3�κ qubits
E|03�κ〉 using AR, and letting cMPC send Clifford operator V to instruct P1 to
prepare the Clifford state and split it into � Clifford encodings of each qubit.
We note that the special gadget state |γ〉 is of this type and therefore can be
prepared in this way.

T Magic State Preparation. Among all magic states, the preparation of T :=
T |+〉 magic state is the most difficult, since T is not a Clifford operator. We fol-
low a similar approach to that of [DGJ+20], but with modifications to achieve
security-with-identifiable-abort. Here, we give a brief overview of their construc-
tion and discuss the required modifications.

At a high-level, the protocol asks a party, say P1, to prepare a large number
N of (supposedly) |T 〉 states under Clifford encoding with Clifford keys stored
in cMPC. This can be done by, e.g., letting P1 send these states using AR in
our context. Then, the parties randomly distribute these encoded states among
themselves, and have P2, . . . ,Pn verify that they are indeed |T 〉 states. This is
done by sending the Clifford keys to Pi, and having Pi measure the decoded
states in the {|T 〉, |T⊥〉}-basis. If any |T⊥〉 outcome is detected, the protocol
aborts. If not, then we know that the states held in P1 contains only a small
number of errors with high probability. The protocol then apply a T state dis-
tillation circuit (over the encoded states) to distill the desired T magic states.

To achieve security-with-identifiable-abort, we cannot let the protocol be
aborted when an error is detected, since the parties cannot distinguish the case
where the error was due to a malicious P1 preparing incorrect states, or a mali-
cious party Pi falsely reporting the error. Thus, to identify the malicious party,
we let each party Pi report its error rate εi, i.e., the fraction of |T⊥〉 outcomes it
obtained, to cMPC with ε1 set to 0. cMPC then sort these numbers, and check if
there are two consecutive numbers with difference greater than a certain thresh-
old δ that is larger than expected sampling errors. If so, cMPC finds the smallest
such pairs, say, they are εi < εj reported by Pi and Pj , respectively, and pub-
lish the result. The parties then abort, with an honest party Pk identifying Pi

Round Efficient Secure Multiparty Quantum Computation 447

(resp., Pj) as the malicious party if εk ≥ εj (resp., εk ≤ εi). Intuitively, this
works since all honest parties should obtain roughly the same error rate up to
a small sampling error, and hence they will belong to the same side and accuse
the same party being the malicious party. Also, if the protocol does not abort,
it means that all reported error rates are small, since ε1 = 0 and we still have
the guarantee that the error rate of the states held in P1 is small.

The second issue is that we need to be able to apply the T state distilla-
tion circuit to the (Clifford encrypted) states held by P1, which is a classically-
controlled Clifford circuit (A circuit consists of Clifford gates and measurements,
and which Clifford gates should be applied depends on all previous measurement
outcomes.). If these states are encrypted separately, then we do not know how to
compute the distillation circuit without quantum communication, as this is the
problem we want to solve to begin with. Fortunately, as discussed above, if these
states are encrypted as a single Clifford ciphertext of a multi-qubit message,
then we can perform Clifford operation on the underlying message and split it
into multiple Clifford ciphertexts of smaller messages by letting cMPC sending
proper Clifford instruction to P1. We can further extend it to evaluate classically-
controlled Clifford circuit. Based on this observation, we let P1 to prepare the
N copies of |T 〉 states and send it as a N -qubit quantum message ρ = |T 〉⊗N in
AR (with a sufficiently large trap size). This allows us to distribute the states to
all parties (by splitting the ciphertexts) and apply the T state distillation circuit
to the states held by P1 later.

Final Issue: Re-encryption to Clifford Codes. The computation step is rather
straightforward, so we do not discuss the details here but just state that as a
result, P1 holds trap code encoding of the output. All that is left is to show how
it can distribute each output to its corresponding party. The idea is to reverse
the operations done until now. That is, to first re-encrypt the trap codes back
to Clifford codes, and then use AR to distribute the outputs. The final issue is
that re-encrypting trap code to Clifford cannot be done in the same way as it
was done in the other direction. This is because before, we use the randomness
of the Clifford key as one-time pad to protect the trap code key, but now the
randomness in the trap code key is not enough to protect the Clifford key.

To resolve the issue, we again use AR. Let us say σ is a trap code that P1

needs to send to a party Pi. We let P1 send ρ as a 3κ-qubit message to itself using
AR. As a result, P1 will receive a Clifford encoding σ = E(ρ⊗|0t〉〈0t|)E† (with a
sufficiently large trap size t) for which we can let P1 perform Clifford operation on
the underlying message ρ. Note that if P1 is malicious, the underlying message
ρ of σ may not be a valid trap code. Thus, we let P1 and cMPC verify and
decode the supposedly trap code ρ. Specifically, cMPC will check the classical
parts of the computation. If the verification rejects, we abort and identify P1

as the malicious party. If it passes, then we obtain a Clifford encoding of the
qubit underlying the trap code as desired. Finally, we remind the reader that
some of the trap codes in ρ may be dropped by AR, but this is allowed since
IDPD-security allows to drop part of the output qubits.

448 B. Alon et al.

1.3 Roadmap

In Sect. 2 we provide the required preliminaries. In Sect. 3 we explain in detail the
model of our computation. Then, in Sect. 4 we state our main theorem and show
the reduction to IDPD-security. In Sect. 5 we give the construction of sequential
authentication, and in Sect. 6 we use it to construct authenticated routing. These
constructions admits information theoretic security. Following that, in Sect. 7 we
show how to prepare all required magic states. In Sect. 8 we show how to securely
compute the pre-computation protocol, Sect. 9 is dedicated to performing the
computation of the circuit, and finally, in Sect. 10 we show how the parties can
distribute the output securely. We note that only the computation protocol from
Sect. 9 has computational security.

2 Preliminaries

For space considerations, most standard definitions and notations are deferred
to the full version [ACC+20]. We next provide the definitions that we find more
essential for the readability of the bulk of the paper.

For n ∈ N, let [n] = {1, 2 . . . n}. We also let Symn to denote the symmetric
group over n symbols. Given a binary string x, we write |x| to denote the length
of x, and w(x) to denote the relative Hamming weight of x which equals to
Hamming weight of x divided by |x|. For a string x and a subset S ⊆ [|x|], we
use xS to denote the substring of x indicated by S.

Given a set S, we write s ← S to indicate that s is selected uniformly at
random from S. Similarly, given a random variable (or a distribution) X, we write
x ← X to indicate that x is selected according to X. A function μ : N → [0, 1] is
called negligible, if for every positive polynomial p(·) and all sufficiently large n,
it holds that μ(n) < 1/p(n). We use neg(·) to denote an unspecified negligible
function.

For n ∈ N, we use Hn to denote the Hilbert space of n qubits. We write
D(H) to denote the set of density matrices over the Hilbert space H, and let
Dn := D(Hn). We define D∗ :=

⋃∞
n=0 D(Hn) to denote the set of the density

matrices acting on the Hilbert space of arbitrary number of qubits. We use
lowercase Greek alphabets, e.g., ρ, σ, τ , to denote quantum state. We use capital
Latin alphabets, e.g., A,B,M, T , to denote quantum registers. For a quantum
register A, we write |A| to denote the number of qubits in it. We denote the
Hilbert space of a quantum register A by HA. The Hilbert space HAB of a
joint quantum register AB is the tensor product of the Hilbert spaces of each
subsystems, that is, HAB = HA ⊗HB. It will be convenient to denote by ε ∈ D0

the empty state.
The trace distance between two quantum states ρ and σ, denoted as Δ(ρ, σ),

is define by Δ(ρ, σ) = 1
2‖ρ − σ‖1, where ‖M‖1 = tr

(√
M†M

)
is the trace norm

of a matrix. Let |+〉 = 1√
2
(|0〉 + |1〉) and |−〉 = 1√

2
(|0〉 − |1〉). An EPR pair is

the two-qubit state |Φ+〉 = 1√
2
(|00〉 + |11〉).

Round Efficient Secure Multiparty Quantum Computation 449

A state ensemble ρ = {ρa,κ}a∈Dκ,κ∈N is an infinite sequence of quantum
states indexed by a ∈ Dκ and κ ∈ N, where Dκ is a domain that might depend
on κ. When the domains of a and κ are clear from context, we remove them for
brevity. We write ρ ≈neg(κ) σ if there exists a negligible function μ, such that for
all κ ∈ N and a ∈ Dκ, it holds that Δ(ρa,κ, σa,κ) ≤ μ(κ). We sometimes abuse
notations and write ρa,κ ≈neg(κ) σa,κ.

Let qpt stand for quantum polynomial time. Computational indistinguisha-
bility is defined as follows.

Definition 1. Let ρ = {ρa,κ}a∈Dκ,κ∈N and σ = {σa,κ}a∈Dκ,κ∈N be two ensem-
bles. We say that ρ and σ are computationally indistinguishable, denoted ρ

C≡ σ,
if for every non-uniform qpt distinguisher D, there exists a negligible function
μ(·), such that for all κ ∈ N and a ∈ Dκ, it holds that

|Pr [D(ρa,κ) = 1] − Pr [D(σa,κ) = 1]| ≤ μ(κ).

For a quantum operator U , we write UA to specify that the quantum operator
U acts on register A. Similarly, we write ρA to specify that the quantum state ρ
lies in register A. Here, the register written in gray on the superscript is only for
reminder, and whether it is written does not change the meaning of the operator
or the state. That is, UA = U and ρA = ρ. We write χA to denote the maximally
mixed state IA/|A| of register A. For n ∈ N we let Cn denote the set of Clifford
operators acting on n qubits.

In this paper we make use of quantum error-correcting codes (QECC) and
quantum authentication scheme (QAS) [ABOE10]. A QAS is a way to ensure
that quantum state was not tampered with. We refer the reader to Sect. 2 of the
full version [ACC+20] for a formal definition of a QAS. To remove confusion with
the encoding and decoding of QECC, we view QAS as an encryption scheme.

We make use of Clifford codes [ABOE10]. Roughly, they are defined as fol-
lows. The encryption procedure, denoted CAuth.EncE , encrypt a quantum mes-
sage ρ using a Clifford E as its key (sampled uniformly at random). The proce-
dure first append to ρ a trap |0t〉〈0t|, where t is considered the security parameter,
and then applies the Clifford E to ρ⊗|0t〉〈0t|. The decoding procedure, denoted
CAuth.DecE , accepts if and only if after applying E† to its input and measure
the traps, the value of the trap is |0t〉〈0t|. We refer the reader to Sect. 2 of the
full version [ACC+20] for a formal definition alongside the security properties
of Clifford encodings.

We also use trapcodes [BGS13]. A trapcode encrypts a single qubit ρM held
in register M as follows. First, apply QECC.Enc on register M , and append t-
qubits from register TX in the state (|0〉〈0|)⊗t, and append t-qubits from register
TZ in the states (|+〉〈+|)⊗t. Then permute the qubits of M̃TXTZ according to
Π, where M̃ is the register holding the encoding of the qubit ρ. Finally, apply
XxZz on register M̃TXTZ . That is,

TAuth.EncΠ,x,z(ρ) := XxZzΠ
(
QECC.Enc(ρ) ⊗ (|0〉〈0|)⊗t ⊗ (|+〉〈+|)⊗t) (XxZzΠ)†.

The decryption applies (XxZzΠ)† onto register M̃TXTZ , and measure the
register TX in computational basis, and measure the register TZ in Hadamard

450 B. Alon et al.

{|+〉, |−〉}-basis. If the outcome of TX is all zeros and the outcome of TZ is
all +, then apply QECC.Dec on register M̃ and set |Acc〉〈Acc| in F . Otherwise,
replace the state in M with |⊥〉〈⊥| and set |Rej〉〈Rej| in F . Since XxZz is a
Pauli operator up to a phase ±1 or ±i, we sometimes write TAuth.EncΠ,P and
TAuth.DecΠ,P , where P is a Pauli operator. We refer the reader to Sect. 2 of
the full version [ACC+20] for a formal definition alongside the security and
homomorphic properties of trapcodes.

We define the trap code partial decryption operation TAuth.PDec, as the
unitary part of TAuth.Dec. That is, it decodes the permutation and quantum one
time pad, perform the (unitary part of) QECC decoding on the first t qubits,
and then apply Hadamards on the last t qubits to map |+〉 to |0〉. Formally, we
define it as follows.

Definition 2. Let x, z ∈ {0, 1}m and let Π ∈ Symm. Then,

TAuth.PDecΠ,x,z := (UDec ⊗ I⊗2t)(I⊗2t ⊗ H⊗t)(XxZzΠ)†,

where UDec is the unitary operator corresponding to the QECC.Dec circuit.

Notice that when applied to a TAuth.Enc encoding of ρ using the same keys,
the result is ρ ⊗ |02t〉〈02t|. Similarly, we define the trap code partial encryption
operation TAuth.PEnc as the unitary part of TAuth.Enc.

Definition 3. Let x, z ∈ {0, 1}m and let Π ∈ Symm. Then,

TAuth.PEncΠ,x,z := XxZzΠ(UEnc ⊗ I⊗t ⊗ H⊗t),

where UEnc is the unitary operator corresponding to the QECC.Enc circuit.

3 The Model of Computation

The security of multiparty computation protocols is defined using the real vs.
ideal paradigm. In this paradigm, we consider the real-world model, in which
protocols are executed. Here, an n-party quantum protocol π for computing a
quantum circuit family C = {Cκ}κ∈N is defined by a set of n interactive uniform
qpt circuits P = {P1, . . . ,Pn}. To alleviate notation, we simply write C for the
circuit. We then formulate an ideal model for executing the task. This ideal model
involves a trusted party whose functionality captures the security requirements
of the task. Finally, we show that the real-world protocol “emulates” the ideal-
world protocol, i.e., for any real-world adversary A there exists an ideal-world
adversary Sim (called the simulator) such that the global output of an execution
of the protocol with A in the real-world is distributed similarly to the global
output of running Sim in the ideal model.

In this work we are mainly interested in the security notion called security-
with-identifiable-abort. Due to space considerations, the formal definition is
deferred to Sect. 3 of the full version [ACC+20].

Round Efficient Secure Multiparty Quantum Computation 451

3.1 Security with Packet Drops

We now introduce a relaxed security notion of security-with-identifiable-abort
that allows the adversary to drop some of the input-qubits and some of the
output-qubits. We call this security notion IDPD-security. This security notion is
parameterized with two polynomials din = din(κ) and dout = dout(κ) representing
an upper bound on the number of input-qubits and output-qubits, respectively,
the adversary is allowed to drop from the computation. The definition follows
the standard ideal vs. real paradigm.

Informally, in the ideal world, in addition to sending inputs, the adversary
also instructs the trusted party which single qubits are to be replaced with 0.
Then, upon receiving the output, the adversary can decide to either abort the
protocol while revealing the identity of a corrupted party, or to instruct the
trusted party to discard some of the qubits in the output and distribute it.

We now formally describe the (din, dout)-IDPD ideal model, which specifies
the requirements for an IDPD-secure computation of a circuit C with security
parameter κ. Unlike the informal discussion from Sect. 1.2, it will be more con-
venient to have the adversary send to the trusted party the set of remaining
qubits. Let A be an adversary in the ideal-world, which is given an auxiliary
quantum state ρaux and corrupts a subset I of the parties.

Security with identifiable abort and packet drops

Inputs: Each honest party Pi holds the security parameter 1κ where κ ∈ N

and an input ρi = (ρij)
�in
j=1 where each ρij ∈ D1 is single-qubit. The

adversary is given 1κ, input ρi of every corrupted party Pi ∈ I, and an
auxiliary input ρaux. Finally, the trusted party T is given the security
parameter 1κ.

Parties send inputs: Each honest Pi sends ρi to T. For every corrupted
party Pi, the adversary sends a state ρ∗

i to T as the input of Pi.
The adversary instructs T to drop some input-qubits: The adver-

sary sends to T a set Rin ⊆ {
(i, j) ∈ N

2 | i ∈ [n], j ∈ [�in]
}

of size
|Rin| ≥ n�in − din (note that it could be the case that n�in < din, in
which case no restriction are imposed on Rin). Denote

ρ′
ij =

⎧
⎪⎨

⎪⎩

|0〉〈0| if (i, j) /∈ Rin

ρij if (i, j) ∈ Rin and i /∈ I
ρ∗

ij if (i, j) ∈ Rin and i ∈ I

and let ρ′ = (ρ̂ij)i∈[n],j∈[�in]
.

The trusted party performs the computation: The trusted party
T prepares ancilla zero states ρ0 and computes C(ρ′, ρ0). Let
(σ1, . . . , σn, σdiscard) be the resulting output-states, where σi is the output
associated with party Pi. The trusted party sends σI to A.

Adversary instructs T to drop some output-qubits or halt: For
every i ∈ [n] write σi = (σij)

�out
j=1, where each σij ∈ D1 is single-

qubit. The adversary A sends to T either (continue,Rout) where

452 B. Alon et al.

Rout ⊆ {
(i, j) ∈ N

2 | i ∈ [n], j ∈ [�out]
}

is of size |Rout| ≥ �out − dout, or
(abort,Pi) for some Pi ∈ I. If the adversary sent (continue,Rout), then
for every honest party Pi /∈ I, the trusted party sends it (Rin,Rout, σ

′
i),

where σ′
i =

(
σ′

ij

)�out

j=1
are defined as

σ′
ij =

{
σij if (i, j) ∈ Rout

⊥ if (i, j) /∈ Rout

Otherwise, if A sent (abort,Pi), then T sends (abort,Pi) to all honest
parties.

Outputs: Each honest party outputs whatever it received from the trusted
party, the parties in I output nothing, and the adversary outputs some
function of its view.

Observe that if din = dout = 0 then the above process is identical to
the security-with-identifiable-abort process. We denote by IDEAL

(din,dout)-IDPD
C,A(ρaux)

(κ, (ρi)
n
i=1) the joint output of the adversary A and the honest parties in an

execution of the above ideal-world computation of C, on security parameter κ,
inputs (ρi)

n
i=1, auxiliary input ρaux, and packet-drop bounds din and dout. When

din and dout are clear from context, we remove them from the notations.
We next give the definition of IDPD-security.

Definition 4 (IDPD-security). Let π be a protocol for computing a circuit
C, and let din = din(·) and dout = dout(·) be two polynomials. We say that π
computes C with computational (din, dout)-IDPD-security, if the following holds.
For every non-uniform qpt adversary A, controlling a set I ⊂ P in the real-
world, there exists a non-uniform qpt adversary SimA, controlling I in the
IDPD ideal-world, such that

{
IDEAL

(din,dout)-IDPD
C,SimA(ρaux)

(κ, (ρi)
n
i=1)

}

κ∈N,ρ1,...,ρn,ρaux∈D∗

C≡ {
REALπ,A(ρaux) (κ, (ρi)

n
i=1)

}
κ∈N,ρ1,...,ρn,ρaux∈D∗ (1)

Statistical and perfect security are defined similarly by replacing
C≡ with ≈neg(κ)

and =, respectively, and assuming unbounded adversaries and simulators.

In Sect. 4, we reduce the problem of constructing a secure-with-identifiable-
abort protocol, to the problem of constructing an IDPD-secure protocol.

3.2 The Hybrid Model

The hybrid model is a model that extends the real model with a trusted party
that provides ideal computation for specific circuits. The parties communicate
with this trusted party as specified by the ideal model.

Round Efficient Secure Multiparty Quantum Computation 453

Let C be a quantum circuit. Then, an execution of a protocol π computing
a circuit C ′ in the C-hybrid model involves the parties sending normal messages
to each other (as in the real model) and in addition, having access to a trusted
party computing C. It is essential that the invocations of C are done sequentially,
meaning that before an invocation of C begins, the preceding invocation must
finish. In particular, there is at most a single call to C per round, and no other
messages are sent during any round in which C is called.

Let type be an ideal world. Let A be a non-uniform qpt machine with
auxiliary input ρaux controlling a subset I ⊂ P of the parties. We denote by
HYBRID

C,type
π,A(ρaux)

(κ, ρ1, . . . , ρn) the joint output of the adversary and of the honest
parties, following an execution of π with ideal calls to a trusted party computing
C according to the ideal model “type,” on inputs ρ1, . . . , ρn, auxiliary input ρaux
given to A, and security parameter κ. We call this the (C, type)-hybrid model.
When type is clear from context we remove it for brevity.

The Classical MPC Hybrid Model
Following [DNS12,DGJ+20], throughout the paper, we assume the availability of
a trusted party, denoted cMPC, that is able to compute any efficiently computable
classical multiparty functionality. Furthermore, we assume cMPC is a reactive
functionality, i.e., it is allowed to have an internal state that may be taken
into account the next time it is invoked. One particular classical functionality
we employ is the broadcast functionality. Thus, we implicitly assume that each
party can broadcast a classical message at any given round of the protocol.

Similarly to [DGJ+20], we can implement cMPC using a post-quantum secure
protocol. Specifically, we first remove the assumption that cMPC is reactive via
standard techniques. To maintain security-with-identifiable-abort, this is done as
follows. At the end of each call to cMPC, its state s will be shared in an additive
n-out-of-n secret sharing scheme. Let si denote the ith share. The functionality
then uses a post-quantum secure signature scheme to sign each share. Let σi

denote the signature of si. The output of Pi will now additionally include si,
σi, and the verification key of the signature scheme (which is the same for all
parties). Note that the parties do not keep the signing key. In the next call to
cMPC, the parties will additionally send their signed shares and keys to cMPC.
If the keys are not all equal, then cMPC sends to party Pi the output (abort,P),
where P is the lexicographically smallest party whose key differs from the key of
Pi. Otherwise, if all the keys are the same, cMPC verifies all shares, sending the
identity of a party whose verification failed if such a party exists, and reconstruct
the state s and continue with the computation otherwise. Note that since the
honest parties forward the output they received from the previous call, in case
of abort they all agree on the identity of a corrupted party.

Finally, we can implement each call to cMPC assuming a correlated random-
ness setup, using the information theoretic UC-secure protocol of [IOZ14] and
apply [Unr10]’s lifting theorem, to obtain post-quantum security. Furthermore,
pre-computing the randomness in an off-line phase yields a protocol in the pre-
processing model [DPSZ12]. Such protocols have an off-line phase which admits
computational security, however, assuming no attack was successful during this
phase, their online-phase admit information theoretic security.

454 B. Alon et al.

Furthermore, for the sake of presentation, we sometimes abuse the existence
of cMPC, and construct some of the ideal worlds with the ability to interact with
it. Although this cannot happen in the standalone model, such an assumption
can be removed using the techniques described above, i.e., each party will hold
a signed share of cMPC’s input and receive a signed share of its output.

We denote by HYBRID
cMPC
π,A(ρaux)

(κ, (ρi)
n
i=1) the joint output of the adversary A,

cMPC, and of the honest parties in a random execution of π in the cMPC-hybrid
model on security parameter κ ∈ N, inputs ρ1, . . . , ρn, and an auxiliary input
ρaux.

4 Statement of Our Main Result

In this section we present the main theorem of the paper, namely that any mul-
tiparty quantum functionality can be computed with security-with-identifiable-
abort against any number of corrupted parties.

Theorem 2. Assume the existence of a classical quantum-resistant fully homo-
morphic encryption scheme with decryption circuit of logarithmic depth. Let C be
an n-ary quantum circuit. Then C can be computed with computational security-
with-identifiable-abort in the cMPC-hybrid model. Moreover, the round complex-
ity of the protocol is independent of the circuit depth.

Toward proving Theorem 2 we first show how to reduce the problem to
the problem of constructing an IDPD-secure protocol for a related circuit. The
following lemma states the existence of such an IDPD-secure protocol.

Lemma 1. Assume the existence of a classical quantum-resistant fully homo-
morphic encryption scheme with decryption circuit of logarithmic depth. Let C be
an n-ary quantum circuit. Then C can be computed with computational (n2, 2n2)-
IDPD security in the cMPC-hybrid model. Moreover, the round complexity of the
protocol is independent of the circuit depth.

The proof of Lemma 1 is given in Sect. 10. Toward proving it, in the following
sections we construct several building blocks used in the construction of the final
protocol. We now use it to prove Theorem 2. It suffices to prove the following
claim, asserting that security-with-identifiable-abort can be reduced to IDPD-
security.

Claim 3. Let C be an n-ary quantum circuit and let din = din(κ) and dout =
dout(κ) be two polynomials. Additionally, let QECC denote a quantum error-
correcting code that can tolerate max{din, dout} errors. Then C can be computed
with perfect security-with-identifiable-abort in the (C ′, (din, dout)-IDPD)-hybrid
model, where

C ′ = QECC.Enc⊗n�out ◦ C ◦ QECC.Dec⊗n�in .

That is, C ′ transversely decodes each of its inputs using the QECC, computes
C, and then re-encode each output.

Due to space considerations, the formal proof is deferred to Sect. 4 of the full
version [ACC+20].

Round Efficient Secure Multiparty Quantum Computation 455

5 Sequential Authentication

In this section, we present a protocol, called sequential authentication (SA), that
allows a party – called the sender – to send an encryption of its input along a
predetermined path known to everyone, to a designated party called the receiver
(not necessarily different from the sender). The security achieved by this protocol
roughly guarantees that in case the protocol is aborted, the parties will identify
two parties, one of which is guaranteed to be corrupted. Later, in Sect. 6, using
sequential calls to SA we show how to use it in order to augment the security to
obtain an IDPD-secure protocol.

Let us first formally define the ideal world of SA. To simplify the presenta-
tion, we assume that cMPC is an additional party that will receive an output.
Additionally, the parties have two common inputs, in addition to the security
parameter. These are a path PATH and number of traps t. The domain of PATH
is the set of all (non-simple) paths that goes through all parties, whose length
is exactly7 � := n2. To remove confusion with the parties themselves, we call
the parties along the path relays and denote by Qi the ith party along the path
(note that a single party may be multiple relays on the path). Furthermore, we
call Q1 the sender, and call Q� the receiver.

Ideal world of sequential authentication

Inputs: Each party Pi and cMPC holds the security parameter 1κ, a path
description PATH = (Q1, · · · ,Q�) that goes through every party at least
once, and the number of traps t = t(κ) required for the output ciphertext.
The sender Q1 holds an m-qubit input state ρ. The adversary A is given
an auxiliary quantum state ρaux.

The sender sends input: If Q1 /∈ I, then it sends ρ as its input to T.
Otherwise, the adversary chooses an input ρ∗ to be given to T. Let ρ′ be
the input received by the trusted party.

The trusted party encodes the state and sends A its output: T
samples a Clifford E ← Cm+t and encode ρ′ to obtain σ ←
CAuth.EncE(ρ′). If Q� ∈ I, then T sends σ to A.

The adversary instructs trusted party to continue or to abort:
The adversary A sends to T either continue or (abort,Qi,Qi+1) where
1 ≤ i < � and where either Qi or Qi+1 is corrupted. If A sent continue,
then T sends E to cMPC. Additionally, if the receiver Q� /∈ I is hon-
est, then T sends it σ. Otherwise, if A sends (abort,Qi,Qi+1), then T
forwards it to the cMPC and all honest parties.

Outputs: The honest parties output whatever they received from T, the
corrupted parties in I output nothing, and the adversary outputs some
function of its view.

7 The reason for the fixed length is due to a technicality that follows from the way SA
is used.

456 B. Alon et al.

We denote by SAA(ρaux)(κ, PATH, t, ρ) the joint output of A, the honest parties,
and cMPC, in an execution of the above ideal world, on security parameter κ,
input ρ, auxiliary input ρaux, path PATH, and the number of traps t.

As mentioned in Sect. 1.2, our construction is similar to swaddling from
[DNS12] and the public authentication test from [DGJ+20], both of which are
based on Clifford code. Due to space limitations the construction alongside its
proof of security is deferred to Sect. 5 of the full version [ACC+20].

We also make use of a variant of SA, where the input – instead of an arbitrary
state – is encrypted under Clifford encryption, with the key being held by cMPC.
We call this variant input-ciphertext SA (CTSA). The protocol follows the same
lines as the protocol for computing SA and is presented in Sect. 5.2 of the full
version [ACC+20]. We stress that unlike the protocol for SA, this protocol is not
secure and will only be used as a subroutine in other protocols.

6 Authenticated Routing

In this section, we present a protocol, called authenticated routing (AR), that
allows the parties to securely send an encryption of their inputs to a designated
party. The security achieved by this protocol is IDPD-security (i.e., security-
with-identifiable-abort-and-packet-drops), as was defined in Sect. 3.1. We exten-
sively use AR as a building block in order to construct a secure-with-identifiable-
abort protocol for a general circuit.

We next define the AR functionality. For a polynomial t = t(κ) ≥ κ, rep-
resenting trap-size, denote by AR = ARt the following mapping. Each party Pi

holds �in packets ρi = (ρij)�in
j=1, where each ρij ∈ Dm. An output is given only

to P1 – called the receiver – and to cMPC. Specifically, cMPC receives a collec-
tion of Cliffords (Eij)i∈[n],j∈[�in]

, where Eij ← Cm+t are sampled independently
and uniformly at random, and the receiver P1 receives the Clifford encoding
of each packet ρij under Eij ; that is, P1 receives (CAuth.EncEij

(ρij))i∈[n],j∈[�in].
In the following section we present a protocol that computes AR with (n2, 0)-
IDPD-security in the cMPC-hybrid model, i.e., at most n2 input-packets can be
dropped by the adversary while no output-packets can be dropped.

6.1 The Authenticated Routing Protocol

In this section, we present our protocol for authenticated routing. Roughly, the
idea is as follows. Throughout the entire interaction, we let cMPC maintain a
graph G that represents trustfulness. In more details, each vertex in G corre-
sponds to a party and the graph is initialized as the complete graph. Then,
whenever a party accuses another party, the corresponding edge will be removed
from G.8 Following the initialization, each party Pi tries to send its packets

8 We note that this technique, of using the graph to allow honest parties to unani-
mously agree on the identity of a corrupted party, was independently used in another
recent paper by [BMMMQ20].

Round Efficient Secure Multiparty Quantum Computation 457

(ρij), one by one, to P1 along a path that goes through all parties. Such a path
can be computed, and thus agreed upon, by having cMPC repeatedly applying
BFS/DFS to find a path from Pi to P2, then to P3 until it reaches the last party
Pn, from which it finds a path to P1. The parties will send the packets along
the path using the SA functionality.9 If SA aborted, then the parties now hold
two identities Pa and Pb given to them by SA, one of which is guaranteed to be
corrupted. cMPC will then remove the edge ab from the graph G. Now, party
Pi will try to send the rest of its packets using a different route that does not
pass through the edge ab. The parties continue in this fashion until either most
qubits were sent successfully, or until G becomes disconnected, in which case all
honest parties are in the same connected component. Therefore, they can agree
to identify a party not connected to them as malicious.

Let us now consider the case where a call SA ended in abort. Here, a single
packet had been dropped, and so by the ideal-world definition of IDPD-security,
the parties must agree to replace this packet with the 0 state. To do this, the
parties will call SA again with the empty state ε ∈ D0 and m + κ traps. To
see why this work, notice that the Clifford encoding of the empty state with
m+κ traps, is equivalent to a Clifford encoding of |0m〉 with κ traps. Moreover,
by the security of Clifford encoding, if the adversary changes the traps from 0
then SA will abort again, which will remove another edge from the graph. Thus,
this can be done repeatedly until either G becomes disconnected or the parties
successfully encode the 0 state.

The IDPD-security of the protocol described so far can still be breached by
a malicious adversary, due to the following difficulty one would encounter while
constructing a simulator. Suppose that the adversary corrupted the receiver
P1, and consider a call to SA, for a packet (1, j) for some j ∈ [�in], i.e., the
receiver sends to itself an encoding of the packet. To generate the corresponding
transcript, the simulator in the ideal-world must query the adversary for its input
ρ to the SA functionality and must send to A an output in return. Observe that
A expects to receive σ = CAuth.EncE(ρ) where the key E is held by the cMPC.
Since the simulator does not know the key E, it cannot generate a-priori a value
σ that is consistent with the output of cMPC. On the other hand, the simulator
may not be ready to send inputs to the trusted party either, as it must hold all
input packets from the adversary. Since rewinding the adversary can help the
environment to distinguish between the real world and ideal world, it seems to be
the case where there are no good ways to generate this output of SA. One possible
solution is to modify the AR ideal functionality so it will immediately encode
and output each received packet before receiving the next packet. Unfortunately,
the resulting ideal functionality would be too weak for our purposes later.

It is possible to overcome this challenge by tweaking the protocol. A simple
solution to this issue would be to have the receiver, after it has received all of the
packets, to send them to itself again using CTSA (that is, the ciphertext-input

9 Recall that SA requires the path to be of length n2. Note that the way cMPC com-
putes the path always generates a path of length at most n2. If the path is shorter,
then cMPC can just add the last party repeatedly.

458 B. Alon et al.

version of SA). With this modification, the simulator can send authentication
of 0s to the receiver as the outputs of SA. To see why this works, recall that
Clifford authentication ciphertexts are identical to maximally mixed states due
to Clifford twirling. Thus, the simulator can then collect all input packets and
interact with the trusted party to receive the correct outputs. When the receiver
sends the dummy ciphertexts to itself, the simulator collects and verifies them,
before replacing them with the correct outputs.

Although this approach works, as CTSA is not secure as a standalone pro-
tocol, it hard to formally argue the security of the above protocol. Instead, we
slightly modify the protocol and also construct a slightly different simulator.
The idea is to have the simulator send halves of EPR pairs as the output of SA,
instead of authentications of 0s. Since halves of EPR pairs are indistinguishable
from Clifford authentication ciphertexts, the adversary will reply with the same
messages in both the real and the ideal world. After the simulator collects all
packets and interact with the trusted party, it then replaces these halves of EPR
pairs with the correct output via quantum teleportation. To complete the tele-
portation, the simulator must send a Pauli operator for the adversary to apply.
Thus, we correspondingly add a key-update step at the end of the protocol to
provide an opportunity for this.

Protocol 1 Authenticated Routing protocol πAR

Inputs: Each party Pi holds private input ρi = (ρij)�in
j=1 where ρij ∈ Dm.

Common input: The security parameter 1κ and the packet-size m.

1. cMPC initializes G as the complete graph with n vertices where each vertex
represents a party, and initializes a set Rin = ∅, which will keep track of all
packets that were sent successfully.

2. For each packet (i, j) ∈ [n] × [�in]:
(a) cMPC computes a path PATHij in G from Pi to P1 that goes through all

parties of size exactly n2, and send it to all parties.
(b) The parties call SA with Pi’s input being ρij , with κ as the common

trap-size, and PATH as the common path.
– If SA outputs (abort,Pa,Pb) for some a, b ∈ [n], then cMPC removes

the edge ab from the graph G. If G becomes disconnected, then cMPC
sends ab to all parties. Each party then outputs (abort,P), where
P ∈ {Pa,Pb} is the party on the edge not connected to it on the
graph, and halts.

– Otherwise SA terminates successfully, sending a uniform random
Clifford Fij ← Cm+κ to cMPC, sending σij to P1, where σij =
CAuth.EncFij

(ρij), and sending continue to all other parties. In this
case, cMPC adds (i, j) to Rin.

3. For each dropped packet (i, j) ∈ ([n] × [�in]) \ Rin:
(a) cMPC finds a path PATH′

ij in G from P1 to itself that passes through every
party and send it to all parties.

(b) The parties call SA, trap-size m + κ, no private inputs, and PATH′
ij as the

common input.

Round Efficient Secure Multiparty Quantum Computation 459

– If SA outputs (abort,Pa,Pb) for some a, b ∈ [n], then, similarly to
Step 2b, cMPC removes the edge ab from the graph G. If G becomes
disconnected, then cMPC sends ab to all parties. Each party P then
outputs (abort,P′), where P′ ∈ {Pa,Pb} is the party on the edge not
connected to P, and halt. Otherwise, if the graph is still connected,
then the parties go back to Step 3a.

– Otherwise SA terminates successfully, sending a uniform random
Clifford Fij ← Cm+κ to cMPC, sending σij to P1, where σij ←
CAuth.EncFij

(ε), and sending continue to all other parties.
4. For all packets (i, j) ∈ [n] × [�in]:

(a) cMPC samples a Pauli independently and uniformly at random Pij ←
Pm+κ and sends it to P1.

(b) P1 applies Pij to σij , obtaining τij .
(c) cMPC updates its Clifford key to be Eij = PijFij .

5. cMPC sends Rin to all parties.
6. Each party outputs (continue,Rin), cMPC additionally outputs the Cliffords

{Eij}ij∈Sinput , and P1 additionally outputs {τij}ij∈Sinput .

We next state the security of the protocol.

Lemma 2. Protocol πAR computes the functionality AR with perfect (n2, 0)-
IDPD-security in the {cMPC,SA}-hybrid model.

The proof of security is deferred to Sect. 6 of the full version [ACC+20]. We
also make use of the input-ciphertext variant of AR, denoted CTAR. Similarly to
CTSA, this is also insecure in general, so we only describe the protocol. Here,
unlike in AR, there is only a single sender, denoted P1, and multiple receivers.
The goal of this variant is to send each plaintext from the P1 to its designated
receiver, encrypted under a new key. The protocol follows similar ideas to πAR

and is given in Sect. 6.2 of the full version [ACC+20]. We let πCTAR be the
protocol for computing the input-ciphertext variant of the AR functionality.

7 Magic State Preparation

Recall that we aim to have a single designated party to homomorphically evalu-
ate a universal circuit over encrypted values. Towards achieving this, the parties
require five kinds of magic states. These include ancilla zero states, P magic
states, T magic states, H magic state and gadgets γ. In all magic state prepa-
ration protocols, an output will be given to only two parties: the server P1 and
cMPC. Furthermore, since the preparation is independent of the parties’ inputs,
these can be prepared in advance in an offline phase (in fact, the parties only
require to know an upper bound on the number of gates in the circuit).

For space considerations, we will only present a rough overview of the con-
struction of the protocol for preparing T magic states. The rest of the magic

460 B. Alon et al.

states can be prepared by using simpler protocols. These protocols can be found
in the full version [ACC+20]. To simplify the presentation, the protocol and
the functionality will prepare a single magic state. This, however, can be easily
generalized to create more magic T states using the same number of rounds (see
the full version for more details).

We next define the functionality MSPT for preparing a single T magic
state, |T 〉 := T |+〉. The other functionalities are denoted MSPms, where ms ∈
{Z,P,H, γ}, are defined similarly (here ms represents either the ancilla zero
state, |P 〉 := P |+〉 state, |H〉 := (H ⊗ I)|Φ+〉 state, or a gadget state |γ〉 defined
in Sect. 7.3 of the full version [ACC+20] , respectively). MSPT is a no-input func-
tionality whose output is defined as follows. Let E ← C3κ be a uniform random
Clifford. Then the mapping outputs to P1 a Clifford encryption of the T magic
state CAuth.EncE(|T 〉〈T |) and outputs to cMPC the corresponding key E.

7.1 T Magic State Preparation Protocol

Our protocol is a modification of the protocol of [DGJ+20] for preparing T magic
states, which achieves only security-with-abort. Let us first give an overview
of the protocol of [DGJ+20]. First, recall the result of magic state distillation
[BK05] (or see the discussion in Sect. 2.4 of the full version [ACC+20]), that
given poly(log(1/δ0)) copies of noisy T magic states with a constant fraction
error, using the T distillation circuit we can obtain δ0-close |T 〉 state. Now, in
[DGJ+20], the server P1 prepares κn copies of |T 〉. Then, the parties execute
the secure-with-abort input-encoding protocol of [DGJ+20], which generates a
Clifford encoding of each |T 〉 state, i.e., (CAuth.EncEj

(|T 〉〈T |))κn
j=1, and outputs

to cMPC the corresponding Clifford keys. Following this, cMPC samples disjoint
sets S1, · · · , Sn ⊆ [κn], each of size κ, uniformly at random, and sends them to
all parties. For each subset Si, the server P1 sends {CAuth.EncEj

(|T 〉〈T |)}j∈Si

to Pi and cMPC sends {Ej}j∈Si
to Pi. Then, party Pi decrypts and measures

the received states in the {|T 〉, |T⊥〉}-basis, and broadcast an abort if it gets
|T⊥〉 in any of the measurements. We refer to this step as the random sampling
test. Upon receiving an abort from a party, all parties abort and halt. Otherwise,
[DGJ+20] showed that the remaining copies the server holds differ by a constant
fraction from {CAuth.EncEj

(|T 〉〈T |)}j∈S1 with respect to the trace distance. The
server can then get a state of negligible trace distance from CAuth.EncE(|T 〉〈T |)
with respect to a new key E, by running the T distillation circuit (guaranteed
to exist by Theorem 2.8 in the full version [ACC+20]).

Clearly, the above protocol does not admits security-with-identifiable-abort.
Indeed, not only is the input-encoding protocol of [DGJ+20] does not admit
security-with-identifiable-abort, it further holds that a corrupted party may
accuse an honest server by lying about the states that it measured. To over-
come this two issues, we perform the following modifications to the protocol of
[DGJ+20].

First, we make the following observations. Regardless of what the server
prepares, assuming all states were successfully sent during the random sampling
test, with overwhelming probability all honest parties will have roughly the same

Round Efficient Secure Multiparty Quantum Computation 461

number of |T⊥〉 states upon measurement. Therefore, instead of broadcasting
abort, we consider each party’s error rate, defined to be number of |T⊥〉 it
holds divided by κ. These will be sent to cMPC, who compares them. If there
are two parties whose error rates are significantly far apart, then cMPC can
publish them, and the honest parties can agree on which is corrupted.

Second, note that the previous observation holds only if the states were faith-
fully distributed by during the random sampling test. Indeed, the corrupted
parties can bias the error rates by dropping the packets. Consider the following
example. Suppose that P1 is corrupted and P2, . . . ,Pn are honest. The server
P1 prepares each state to be |T 〉 with probability 1/2 and |T⊥〉 with probability
1/2. Then, after cMPC sends to P1 the set S2, the adversary drops the all |T 〉
states that belong to S2. As for the states that belong to S3, the adversary will
drop the |T⊥〉 states. Consequently, the error rate ε2 will be much higher than
1/2 while ε3 will be much lower than 1/2. To solve this issue, we would like that
for any state that was dropped, the error rate will not include it. We achieve
this as follows. The server first prepares N0 := 3n2 + 1 copies of |T 〉〈T |⊗κn.
Then, for each copy of |T 〉〈T |⊗κn a random sampling test is applied, where each
party receives κ of the qubits among |T 〉〈T |⊗κn. Moreover, the qubits will be
transmitted to their destination using the AR functionality, to ensure that the
adversary cannot drop too many qubits. If there is a state that was lost during
the transmission, all parties start the random sampling test for another copy of
|T 〉〈T |⊗κn.

Third, the parties need to be able to sample a subset of the qubits held
by P1, even if |T 〉〈T |⊗κn are encrypted under a Clifford code. The idea is to
have cMPC update the encryption keys so that they will randomly permute the
qubits and re-encrypt using a new key of the form (E1 ⊗ · · · ⊗ En), where each
Ei ← Cκ+t, where t is the number of traps. Additionally, the permutation must
ensure that each κ of the T states have t trap states |0〉 appended to. Observe
that decrypting using such key would result in n pieces of T states, each of size
κ and encrypted under a different key with t traps. The parties can then use
input-ciphertext authenticated routing (formally defined as Protocol 5 in the full
version [ACC+20]) to distribute the states.

Finally, we encounter the following difficulty when constructing the simulator.
The T distillation circuit is not deterministic in the sense that which gates should
be applied depend on previous measurement outcomes. To simplify the security
proof, after performing the T distillation, the parties execute πCTAR to have the
server P1 route all ciphertexts generated by the T distillation circuit to itself.
Now, similarly to πAR, we let cMPC updating its key using a random Pauli.
Then, similarly to the simulation for AR, the simulator can send halves of EPR
pairs as the output during the execution of πCTAR. Among the remaining packets
after πCTAR, the simulator can teleport the output it got from the trusted party
to P1.

The formal description of the protocol alongside its proof of security are
deferred to Sect. 7.4 of the full version [ACC+20].

462 B. Alon et al.

8 Secure Delegation of the Computation – Preparation

In this section, we present a protocol, which we call pre-computation, that allows
the parties to securely delegate the computation to a designated party, called
the server. More concretely, at the end of the protocol, the server will hold an
encryption of each of the parties’ inputs, while cMPC will hold the keys used
for the encryption. Later, in Sect. 9, we show how the server and cMPC can
homomorphically evaluate a quantum circuit over the encrypted inputs. Thus,
we require that the encryption used by the parties to be the TrapTP VQFHE
scheme of [ADSS17]. Recall that a VQFHE is four-tuple of qpt algorithms
(KeyGen,Enc,Eval,Dec), that generate keys, encrypt plaintext, evaluate a circuit
of an encrypted message, and decrypt a ciphertext while verifying the evaluation
was performed honestly. Our pre-computation protocol can thus be viewed as
a way to implement TrapTP.KeyGen and TrapTP.Enc – the key generation and
encryption algorithms of TrapTP, respectively – in a distributed manner. We
next present a formal definition of the functionality we wish to compute.

Let L = L(κ) be a polynomial (this will later represent an upper-bound
on the size of a circuit to be evaluated and the number of ancilla 0 states it
requires). Denote by PreComp = PreCompL the following mapping. Party Pi

holds an �in-qubit input ρi = (ρij)
�in
j=1, where �in = �in(κ) ∈ N is some poly-

nomial. Only the server P1 and cMPC are given outputs, defined as follows.
Let (sk, ρevk) ← TrapTP.KeyGen(1κ, 1L) (recall that sk ∈ {0, 1}∗ is a classical
string and ρevk is a quantum state). Then cMPC receives sk and P1 receives the
encryptions of each input-qubit, encryptions of 0 states, and the evaluation key
ρevk, i.e., it receives (ρ̂, ρ̂0, ρevk) where ρ̂ = (TrapTP.Encsk(ρij))(i,j)∈[n]×[�in]

, and

ρ̂0 = (TrapTP.Encsk(|0〉〈0|))L
i=1.

We now present a rough overview of our protocol for computing PreComp with
(n2, 0)-IDPD-security that outputs ciphertexts of size 3κ. The formal description
of the protocol alongside its proof of security are deferred to Sect. 8 of the full
version [ACC+20]. Conceptually, the protocol consists of three main steps. First,
the private inputs of each party are routed to P1 by a call to AR. This results
in P1 holding the Clifford ciphertexts of all private inputs, and cMPC holding
the keys. Second, the parties call the magic state preparation functionalities.
This include MSPZ that prepares ancilla 0 states, MSPP that prepares magic
P states, MSPH that prepares magic H states, MSPT that prepares magic T
states, and MSPγ that prepares gadget states. At the end of the call, the server
P1 holds the Clifford ciphertexts of all these magic states, while cMPC holds the
Clifford keys. Finally, as we use the TrapTP scheme, the homomorphic evaluation
can only be applied to trap-code ciphertexts. Thus, we show how the server and
cMPC can re-encrypt all Clifford ciphertexts to trap-code ciphertext.

9 Secure Delegation of the Computation – Computation

In the previous section we introduced the PreComp protocol for generating a key
of TrapTP and outputs to the server P1 encryptions of all inputs. In this section,

Round Efficient Secure Multiparty Quantum Computation 463

we present a protocol that securely implements evaluation and verified decryp-
tion. This in turn, allows P1 to perform the circuit evaluation, while ensuring
to the other parties that the evaluation was done correctly. Looking ahead, as
the server would need to distribute the outputs, unlike in PreComp, the result-
ing encrypted value held by the server would be under Clifford code. In Sect. 10
below, we will show how to securely distribute these Clifford ciphertexts.

Formally, let C be an n-ary circuit. Define the functionality Comp as follows.
Let �in and �out be the number of input-qubits and output-qubits, respectively,
of each party Pi. Denote the input of Pi as ρi. An output is given only to the
server P1 and cMPC, as follows. cMPC receives a uniform random Clifford for
each output-qubit, namely it receives (Eij)(i,j)∈[n]×[�out]

where Eij ← C1+n2κ are
sampled independently and uniformly at random. The server P1 receives the
Clifford encryptions of each of the output-qubits encrypted with the Cliffords
given to cMPC. That is, P1 receives CAuth.EncEij

(σij), where for all i ∈ [n]
and j ∈ [�out] it holds that σij ∈ D1 is a single qubit, and these are defined as
(σij)(i,j)∈[n]×[�out]

= C(ρ1, . . . , ρn).
Roughly, our protocol works as follows. First, the parties prepare the values

required to run TrapTP.Eval. That is, they generate keys and ciphertexts of their
inputs under TrapTP using PreComp. The server P1 can now run TrapTP.Eval on
the ciphertexts to homomorphically evaluate the circuit, obtaining the outcome
σ̂ij for every party i and qubit j (possibly after some qubits where dropped).
As σ̂ij is encrypted using TrapTP, the parties now need to re-encrypt it to a
Clifford ciphertext. To do this, the parties call AR, to have the server route the
encrypted results to itself. This results in a Clifford ciphertext τij of a trap code
ciphertext of the outputs.

We now explain how cMPC can verify the computation. Let us first recall
two important properties of TrapTP.Eval and TrapTP.VerDec. Recall that
TrapTP.Eval, in addition to performing a computation over trap codes, if fur-
ther produces a log of the computation, that includes all the classical messages
including randomness, computation steps, and all intermediate results during
evaluation. Next recall, that although TrapTP.VerDec is a quantum procedure,
it includes a classical subroutine that verifies these logs. We denote this subrou-
tine by CheckLogs. It is given a secret key sk (generated from TrapTP.KeyGen
used in PreComp) and a log to be checked, and outputs updated Pauli keys and
a flag to indicate whether the computation was performed faithfully. We refer
the reader to [ADSS17] for a detailed construction of the classical algorithm.

Now, P1 sends log to cMPC who applies CheckLogs to check validity. Then,
the server split the trap registers into Z1 and Z2 for each ciphertext τij , and
cMPC sends it the Clifford

Vij = (EMZ2
ij ⊗ RS

ij ⊗ TAuth.PEncTZ1
Πij ,Qij

)TAuth.PDecMST
Π0,Pij

F †
ij .

Here, the first term F †
ij would remove the Clifford encryption added by AR,

resulting in a trap code ciphertext. Then the partial decryption of the trap code
TAuth.PDec is applied (see Definition 2), using the global permutation Π0, and
the Pauli Pij it got from checking the logs using CheckLogs. This converts the

464 B. Alon et al.

trap code ciphertext into a plaintext in register M , traps to be verified in register
T , and the syndrome in register S (recall that trap codes use QECC in their con-
struction). The term Eij is a new Clifford that re-encrypts the plaintexts under
a Clifford code, the term Rij is a random Pauli that overwrites the syndromes to
prevent leak of information, and TAuth.PEncΠij ,Qij

perform partial encryption
of the trap code (see Definition 3), to re-encrypt the traps in register T under
trap code with a newly sampled key. The server is then asked to homomorphi-
cally measure these traps and send the measurement results to cMPC to verify,
who aborts if the verification failed. Specifically, the verification compares the
measured traps to 0’s. If the protocol does not abort, the server outputs the
computation results that is now under a Clifford code, and cMPC outputs the
corresponding keys.

The proof of security is done by reducing it to the security of the TrapTP
scheme. The formal description of the protocol alongside its proof of security are
deferred to Sect. 9 of the full version [ACC+20].

10 Secure Computation of a Quantum Circuit with
Packet Drops

In this section, we are finally ready to present our protocol for computing an
arbitrary quantum circuit C with IDPD-security. That is, we prove Lemma 1.
We do so by constructing a protocol in the {cMPC,Comp}-hybrid model. Given
the functionality Comp from the previous section, the protocol is rather simple.
The parties first call Comp, which ensures that P1 will hold a Clifford encoding
of the output of each party, and cMPC will hold the keys. The parties then
execute πCTAR to route each output held by P1 to the correct party. Finally, if
the protocol did not yet abort, then cMPC will send the keys to each output to
the corresponding party.

The formal description of the protocol and its proof of security are deferred
to Sect. 10 of the full version [ACC+20].

Remark 1. Interestingly, assuming that cMPC sends all Clifford keys to the par-
ties simultaneously, it follows that identifiable fair10 classical MPC is sufficient
for identifiable fair quantum MPC (see Appendix A of the full version [ACC+20]
for a formal definition). Indeed, observe that until cMPC sends the Clifford keys,
all quantum states held by each party is encrypted. Therefore, an adversary that
causes the protocol to abort gains no information on the output. Thus, if the
last call to cMPC is fair, then all parties will receive the keys to their respective
encrypted output simultaneously. This results in a fair MPQC protocol in the
cMPC-hybrid model.

10 In addition to fairness, identifiable fair computation have the added property that
in case the protocol aborts, the honest parties agree on the identity of at least one
corrupted party.

Round Efficient Secure Multiparty Quantum Computation 465

Acknowledgements. The authors would like to thank the anonymous reviewers for
their useful comments and suggestions, and in particular for pointing out the existence
of NC1 decryption of classical fully homomorphic encryption schemes [BV11]. We would
also like to thank Eran Omri for many useful conversations.

References

[ABDR04] Ambainis, A., Buhrman, H., Dodis, Y., Rohrig, H.: Multiparty quantum
coin flipping. In: Proceedings of the 19th IEEE Annual Conference on
Computational Complexity 2004, pp. 250–259. IEEE (2004)

[ABOE10] Aharonov, D., Ben-Or, M., Eban, E.: Interactive proofs for quantum
computations. In: Chi-Chih Yao, A. (ed.) Innovations in Computer Sci-
ence - ICS 2010, Tsinghua University, 5–7 January 2010, Beijing, China.
Proceedings, pp. 453–469. Tsinghua University Press (2010)

[ACC+20] Alon, B., Chung, H., Chung, K.-M., Huang, M.-Y., Lee, Y., Shen, Y.-C.:
Round efficient secure multiparty quantum computation with identifi-
able abort. Cryptology ePrint Archive, Report 2020/1464, 2020. https://
eprint.iacr.org/2020/1464

[ADSS17] Alagic, G., Dulek, Y., Schaffner, C., Speelman, F.: Quantum fully homo-
morphic encryption with verification (2017)

[BCG+02] Barnum, H., Crepeau, C., Gottesman, D., Smith, A., Tapp, A.: Authen-
tication of quantum messages. In: The 43rd Annual IEEE Symposium
on Foundations of Computer Science 2002 Proceedings. IEEE Comput.
Soc (2002) Authentication of quantum messages. In The 43rd Annual
IEEE Symposium on Foundations of Computer Science, 2002. Proceed-
ings. IEEE Comput. Soc, 2002

[BGS13] Broadbent, A., Gutoski, G., Stebila, D.: Quantum one-time programs.
In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043,
pp. 344–360. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-40084-1 20

[BK05] Bravyi, S., Kitaev, A.: Universal quantum computation with ideal Clif-
ford gates and noisy ancillas. Physical Review A (2005)

[BMMMQ20] Brandt, N.-P., Maier, S., Müller, T., Müller-Quade, J.: Constructing
secure multi-party computation with identifiable abort. IACR Cryptol.
ePrint Arch. 2020, vol. 153 (2020)

[BOCG+06] Ben-Or, M., Crepeau, C., Gottesman, D., Hassidim, A., Smith, A.:
Secure multiparty quantum computation with (only) a strict honest
majority. In: 2006 47th Annual IEEE Symposium on Foundations of
Computer Science (FOCS 2006). IEEE (2006)

[BV11] Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryp-
tion from (standard) LWE. In: Ostrovsky, R. (ed.) IEEE 52nd Annual
Symposium on Foundations of Computer Science, FOCS 2011, 22–25
October 2011, Palm Springs, CA, USA, pp. 97–106. IEEE Computer
Society (2011)

[CGS02] Crépeau, C., Gottesman, D., Smith, A.: Secure multi-party quantum
computation. In: Proceedings of the Thiry-Fourth Annual ACM Sym-
posium on Theory of Computing - STOC 2002. ACM Press (2002)

[Cle86] Cleve, R.: Limits on the security of coin flips when half the processors
are faulty. In: Proceedings of the Eighteenth Annual ACM Symposium
on Theory of Computing, pp. 364–369 (1986)

https://eprint.iacr.org/2020/1464
https://eprint.iacr.org/2020/1464
https://doi.org/10.1007/978-3-642-40084-1_20
https://doi.org/10.1007/978-3-642-40084-1_20

466 B. Alon et al.

[DGJ+20] Dulek, Y., Grilo, A.B., Jeffery, S., Majenz, C., Schaffner, C.: Secure
multi-party quantum computation with a dishonest majority. Advances
in Cryptology - EUROCRYPT 2020 (2020)

[DLT02] DiVincenzo, D.P., Leung, D.W., Terhal, B.M.: Quantum data hiding.
IEEE Trans. Inf. Theory 48(3), 580–598 (2002)

[DNS12] Dupuis, F., Nielsen, J.B., Salvail, L.: Actively secure two-party evalua-
tion of any quantum operation. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 794–811. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-32009-5 46

[DPSZ12] Damg̊ard, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation
from somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti,
R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Hei-
delberg (2012). https://doi.org/10.1007/978-3-642-32009-5 38

[GMW87] Goldreich, O., Micali, S., Wigderson, A.: How to play ANY mental game.
In: Proceedings of the Nineteenth Annual ACM Conference on Theory
of Computing - STOC 1987. ACM Press (1987)

[IOZ14] Ishai, Y., Ostrovsky, R., Zikas, V.: Secure multi-party computation with
identifiable abort. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014.
LNCS, vol. 8617, pp. 369–386. Springer, Heidelberg (2014). https://doi.
org/10.1007/978-3-662-44381-1 21

[Kit] Kitaev, A.: Quantum coin-flipping. Talk at QIP 2003 (slides and video
at MSRI), December 2002

[RBO89] Rabin, T., Ben-Or, M.: Verifiable secret sharing and multiparty protocols
with honest majority. In: Proceedings of the Twenty-First Annual ACM
Symposium on Theory of Computing, pp. 73–85 (1989)

[Unr10] Unruh, D.: Universally composable quantum multi-party computation.
In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 486–505.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-
5 25

https://doi.org/10.1007/978-3-642-32009-5_46
https://doi.org/10.1007/978-3-642-32009-5_38
https://doi.org/10.1007/978-3-662-44381-1_21
https://doi.org/10.1007/978-3-662-44381-1_21
https://doi.org/10.1007/978-3-642-13190-5_25
https://doi.org/10.1007/978-3-642-13190-5_25

One-Way Functions Imply Secure
Computation in a Quantum World

James Bartusek1(B), Andrea Coladangelo1, Dakshita Khurana2,
and Fermi Ma3

1 UC Berkeley, Berkeley, USA
2 UIUC, Champaign, USA
dakshita@illinois.edu

3 Princeton University and NTT Research, Princeton, USA
fermima@alum.mit.edu

Abstract. We prove that quantum-hard one-way functions imply
simulation-secure quantum oblivious transfer (QOT), which is known
to suffice for secure computation of arbitrary quantum functionalities.
Furthermore, our construction only makes black-box use of the quantum-
hard one-way function.

Our primary technical contribution is a construction of extractable
and equivocal quantum bit commitments based on the black-box use of
quantum-hard one-way functions in the standard model. Instantiating
the Crépeau-Kilian (FOCS 1988) framework with these commitments
yields simulation-secure QOT.

1 Introduction

The complexity of cryptographic primitives is central to the study of cryptog-
raphy. Much of the work in the field focuses on establishing reductions between
different primitives, typically building more sophisticated primitives from sim-
pler ones. Reductions imply relative measures of complexity among different
functionalities, and over the years have resulted in an expansive hierarchy of
assumptions and primitives, as well as separations between them.

One-way functions (OWFs) lie at the center of cryptographic complexity:
their existence is the minimal assumption necessary for nearly all classical cryp-
tography [22,23,28]. One-way functions are equivalent to so-called “minicrypt”
primitives like pseudorandom generators, pseudorandom functions and symmet-
ric encryption; but provably cannot imply key exchange when used in a black-
box way [3,24]. Thus, the existence of key exchange is believed to be a stronger
assumption than the existence of one-way functions. Oblivious transfer (OT) is
believed to be even stronger : it implies key exchange, but cannot be obtained
from black-box use of a key exchange protocol [29].

The importance of OT stems from the fact that it can be used to achieve
secure computation, which is a central cryptographic primitive with widespread
applications. In a nutshell, secure computation allows mutually distrusting
c© International Association for Cryptologic Research 2021
T. Malkin and C. Peikert (Eds.): CRYPTO 2021, LNCS 12825, pp. 467–496, 2021.
https://doi.org/10.1007/978-3-030-84242-0_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-84242-0_17&domain=pdf
https://doi.org/10.1007/978-3-030-84242-0_17

468 J. Bartusek et al.

participants to compute any public function over their joint private inputs while
revealing no private information beyond the output of the computation.

The Quantum Landscape. The landscape of cryptographic possibilities changes
significantly when participants have quantum computation and communication
capabilities. For one, unconditionally secure key distribution—commonly known
as quantum key distribution (QKD)—becomes possible [5]. Moreover, quantum
oblivious transfer (QOT) is known to be achievable from special types of com-
mitments, as we discuss next.

Crépeau and Kilian [11] first proposed a protocol for QOT using quantum
bit commitments. The central idea in these QKD and QOT protocols is the
use of (what are now known as) “BB84 states”. These are single qubit states
encoding either 0 or 1 in either the computational or Hadamard basis. Crucially,
measuring (or essentially attempting to copy the encoded bit) in the wrong basis
completely destroys information about the encoded bit. Then [6] presented a
transmission-error resistant version of the [11] protocol. These protocols did not
come with a proof of security, but subsequently Mayers and Salvail [31] proved
that the [11] protocol is secure against a restricted class of attackers that only
perform single-qubit measurements. This was later improved by Yao [37], who
extended the [31] result to handle general quantum adversaries.

By an unfortunate historical accident, the aforementioned security proofs
claimed the [11] QOT could be information-theoretically secure, since at the
time it was believed that information-theoretic quantum bit commitment was
possible [9]. Several years later, Mayers [30] and Lo and Chau [27] independently
proved the impossibility of information-theoretic quantum bit commitment, and
as a consequence, the precise security of [11] QOT was once again unclear. This
state of affairs remained largely unchanged until 2009, when Damgard, Fehr,
Lunemann, Salvail, and Schaffner [13] proved that bit commitment schemes sat-
isfying certain additional properties, namely extraction and equivocation, suffice
to instantiate [11] QOT. [13] called their commitments dual-mode commitments,
and provided a construction based on the quantum hardness of the learning
with errors (QLWE) assumption. We remark that assumptions about the hard-
ness of specific problems like QLWE are qualitatively even worse than general
assumptions like QOWFs and QOT. Thus, the following basic question remains

Do quantum-hard one-way functions suffice for quantum oblivious transfer?

Quantum OT: The Basis of Secure Quantum Computation. There is a natural
extension of secure computation to the quantum world, where Alice and Bob wish
to compute a quantum circuit on (possibly entangled) quantum input states. This
setting, usually referred to as secure quantum computation, has been previously
studied and in fact has a strong tradition in the quantum cryptography literature.

[4,10] constructed unconditional maliciously-secure multi-party quantum
computation with honest majority. The setting where half (or more) of the play-
ers are malicious requires computational assumptions due to the impossibility of
unconditionally secure quantum bit commitment [27,30].

In this computational setting, [16,17] showed the feasibility of two-
party quantum computation (2PQC) assuming post-quantum OT. More

One-Way Functions Imply Secure Computation in a Quantum World 469

recently, [15] constructed maliciously-secure general multi-party quantum com-
putation (MPQC) secure against a dishonest majority from any maliciously-
secure post-quantum multi-party computation (MPC) protocol for classical func-
tionalities, which can itself be obtained from post-quantum OT [2].

Nevertheless, the following natural question has remained unanswered:

Can secure (quantum) computation be obtained from quantum-hard one-way
functions?

1.1 Our Results

Our main result is the following:

Quantum oblivious transfer can be based on the assumption that quantum-hard
one-way functions exist.

In fact, we prove a stronger result: we show that quantum oblivious transfer
can be based on the black-box use of any statistically binding, quantum computa-
tionally hiding commitment. Such commitments can be based on the black-box
use of quantum-hard one-way functions. This in turn implies secure two-party
computation of classical functionalities, in the presence of quantum computation
and communication capabilities, from (black-box use of) quantum-hard one-way
functions [26]. The latter can then be used to obtain secure two-party quantum
computation, by relying on the work of [17]. Quantum OT can also be used to
obtain multi-party secure computation of all classical functionalities, in the pres-
ence of quantum computation and communication capabilities, and additionally
assuming the existence of authenticated channels. This follows from the tech-
niques in [12,14,25,26] which obtain classical MPC based on black-box use of
any OT protocol. By relying on [15], this also implies multi-party secure quantum
computation.

In summary, our main result implies that: (1) 2PQC can be obtained
from (black-box use of) quantum-hard OWFs and (2) assuming the existence
of authenticated channels, MPQC can be obtained from (black-box use of)
quantum-hard OWFs.

This gives a potential separation between the complexity of cryptographic
primitives in the classical and quantum worlds. In the former, (two-party) secure
computation provably cannot be based on black-box use of quantum-hard one-
way functions. It is only known from special types of enhanced public-key encryp-
tion schemes or from the hardness of specific problems, both of which are believed
to be much stronger assumptions than one-way functions. But in the quantum
world, prior to our work, (two-party) secure computation was only known from
the special commitments required in the protocol of [13], which can be based on
QLWE following [13], or post-quantum OT (implicit in [2,7,20])—but were not
known to be achievable from quantum-hard one-way functions.

On the Significance of the Black-Box use of Cryptography in the Quantum Set-
ting. Making black-box use of a cryptographic primitive refers to only having
oracle access to its input/output behavior, without having the ability to examine

470 J. Bartusek et al.

the actual code (i.e., representation as a sequence of symbols) of the primitive.
For instance, proving in zero-knowledge that a committed value satisfies some
given predicate often requires explicit knowledge of the commitment algorithm;
classifying the resulting proof as making “non-black-box” use of the one-way
function. In the literature, constructions that make black-box use of crypto-
graphic primitives are often preferred over those that make non-black-box use of
cryptography. Besides their conceptual simplicity and elegance, black-box con-
structions are also of practical interest since they avoid expensive NP reductions
involving circuits of primitives. Perhaps most importantly, in the case of black-
box constructions, one can instantiate the underlying primitive with an arbi-
trary implementation, including physical implementations via secure hardware
or those involving quantum communication.

In many quantum protocols, which involve quantum states being transferred
between two or more players, black-box constructions are not only significantly
preferable but often become a necessity. Let us illustrate this with an example.
The GMW protocol [18] first showed that secure multi-party computation can
be based on any oblivious transfer protocol; however the protocol involved zero-
knowledge proofs involving the description of the (classical) oblivious transfer
protocol. Due to the GMW [18] protocol being non-black-box in the underly-
ing OT, our OT protocols cannot be used with GMW to obtain multi-party
computation of classical functionalities. We instead need to rely on compilers
like [12,14,25,26] that only make black-box use of the underlying OT protocol.
As discussed above, the black-box nature of these compilers makes them appli-
cable irrespective of whether they are instantiated with classical or QOT.

In a similar vein, we believe that our black-box use of any statistically bind-
ing, quantum computationally hiding commitment in our QOT protocol is of
particular significance. For instance, one can substitute our statistically binding,
quantum computationally hiding commitment with an unconditionally secure
one in the quantum random oracle model [34], resulting in unconditional quan-
tum OT in the quantum random oracle model. Moreover if in the future, new
constructions of statistically binding, quantum computationally hiding commit-
ments involving quantum communication are discovered based on assumptions
weaker than quantum-hard one-way functions, it would be possible to plug those
into our protocol compilers to obtain QOT. These applications would not have
been possible had we required non-black-box use of the underlying commitment.

Primary Tool: Stand-alone Extractable and Equivocal Commitments. As dis-
cussed earlier, [13] show that simulation-secure QOT can be obtained from com-
mitments satisfying certain properties, namely extraction and equivocation.

– At a high level, extraction requires that there exist an efficient quantum
“extractor” that is able to extract a committed message from any quantum
committer.

– Equivocality requires that there exist an efficient quantum “equivocator”
capable of simulating an interaction with any quantum receiver such that
it can later open the commitment to any message of its choice.

One-Way Functions Imply Secure Computation in a Quantum World 471

These two properties are crucial for proving simulation security of the [11]
OT protocol: extraction implies receiver security and equivocality implies sender
security1. Our key technical contribution is the following:

Extractable and equivocal commitments can be based on the black-box use of
quantum-hard one-way functions.

We obtain this result via the following transformations, each of which only makes
black-box use of the underlying primitives.

– Step 1: Quantum Equivocal Commitments from Quantum-Hard One-Way
Functions. We describe a generic unconditional compiler to turn any com-
mitment into an equivocal commitment in the plain model. By applying our
compiler to Naor’s statistically binding commitment [32]—which can be based
on quantum-hard one-way functions—we obtain a statistically binding, equiv-
ocal commitment.

– Step 2: Quantum Extractable Commitments from Quantum Equivocal Com-
mitments. We show that the [8,11,13] framework can be used to obtain an
extractable commitment that leverages quantum communication, and can be
based on the existence of any quantum equivocal commitment. This com-
bined with the previous step implies the existence of quantum extractable
commitments based on the existence of quantum-hard one-way functions.
This is in contrast to existing approaches (e.g., [20]) that require classical
communication but rely on qualitatively stronger assumptions like classical
OT with post-quantum security.

– Step 3: From Extractable Commitments to Extractable and Equivocal Commit-
ments. We apply the black-box equivocality compiler from the first step to the
quantum extractable commitment obtained above, to produce an extractable
and equivocal commitment.
We point out that it is generally straightforward to make a classical commit-
ment equivocal using zero-knowledge proofs, but this approach does not apply
to quantum commitment protocols. We therefore devise our own equivocality
compiler capable of handling quantum commitments and use it in both Step
1 and Step 3.

Plugging our quantum extractable and equivocal commitments into the [11]
framework yields a final QOT protocol with an interaction pattern that readers
familiar with [5,11] may find interesting: the sender sends the receiver several
BB84 states, after which the receiver proves to the sender that it has honestly
measured the sender’s BB84 states by generating more BB84 states of their
own and asking the sender to prove that they have measured the receiver’s BB84
states. An intriguing open question is whether obtaining QOT from one-way

1 It is important to note that extraction and equivocation are only made possible in an
ideal world where a simulator has access to the adversary’s state. Participants in the
real protocol cannot access each others’ state, which prevents them from extracting
or equivocating.

472 J. Bartusek et al.

functions requires this type of two-way quantum communication or, alternatively,
quantum memory.2

1.2 Related Work

For some readers, it may appear that the central claim of this work—that
quantum-hard one-way functions suffice for oblivious transfer—has already been
established [8,13]. Indeed, prior work [8,13] showed that statistically binding
and computational hiding commitments (which are weaker than extractable
and equivocal commitments), known to exist from one-way functions, can be
plugged into the [11] template to achieve an oblivious transfer protocol satisfy-
ing indistinguishability-based security.

However, the indistinguishability-based security definition for oblivious trans-
fer is not standard in the cryptographic literature. When cryptographers refer
to “oblivious transfer”, they almost always mean the standard simulation-based
security notion. Indeed, the fundamental importance of oblivious transfer in
modern cryptography is due to the fact that it is necessary and sufficient for
secure computation, but this is only true for the simulation-based notion.

1.3 Concurrent and Independent Work

In a concurrent and independent work, Grilo, Lin, Song, and Vaikuntanathan [19]
also construct simulation-secure quantum oblivious transfer from quantum-hard
one way functions via the intermediate primitive of extractable and equivocal
commitments. However, the two works take entirely different approaches to con-
structing these commitments. We briefly summarize these strategies below.

This work:

1. Construct equivocal commitments from statistically binding commitments via
a new “equivocality compiler” based on Watrous [35] rewinding.

2. Construct extractable commitments from equivocal commitments via a new
“extractability compiler” based on the [11] template.

3. Construct extractable and equivocal commitments from extractable commit-
ments via the same compiler from Step 1.

[19]:

1. Construct selective opening secure commitments with inefficient simulation
against malicious committers from statistically binding commitments and
zero-knowledge proofs.

2. Construct QOT with inefficient simulation against malicious receivers from
selective opening secure commitments with inefficient simulation against mali-
cious committers, following the [11] QOT template.3

2 Naive approaches to removing one direction of quantum communication appear to
require the honest parties to be entangled and subsequently perform quantum tele-
portation.

3 [19] point out that the conclusions of Steps 1 and 2 together had also been established
in prior works of [8,13,33].

One-Way Functions Imply Secure Computation in a Quantum World 473

3. Construct parallel QOT with inefficient simulation against malicious receivers
from (stand-alone) QOT with inefficient simulation against malicious
receivers via a new lemma for parallel repetition of protocols.

4. Construct verifiable conditional disclosure of secrets, a new primitive intro-
duced in [19], from parallel QOT with inefficient simulation against malicious
receivers, statistically binding commitments, Yao’s garbled circuits, and zero-
knowledge proofs.

5. Construct extractable commitments from verifiable conditional disclosure of
secrets, statistically binding commitments, and zero-knowledge proofs.

6. Construct extractable and equivocal commitments from extractable commit-
ments and zero-knowledge proofs.

We believe that our result is easier to understand and conceptually simpler,
as we do not need to define additional primitives beyond extractable and/or
equivocal commitments. Aside from differences in approach, there are several
other places where the results differ:

– This Work: Black-Box Use of One-Way Functions. A significant advan-
tage of our work over [19] is that we construct quantum OT from black-box use
of statistically binding commitments or one-way functions. The OT in [19]
makes non-black-box use of the underlying one-way function. As discussed
above, making black-box use of underlying cryptographic primitives is par-
ticularly useful in the quantum setting. Due to the extensive use of zero-
knowledge proofs and garbled circuits in [19], it appears difficult to modify
their approach to be black-box in the underlying one-way function.

– This Work: One-Sided Statistical Security. Additionally, our oblivious
transfer protocol offers one-sided statistical security. As written, our quantum
OT protocol satisfies statistical security against malicious senders (and com-
putational security against malicious receivers). Moreover, this OT can be
reversed following the techniques in e.g., [36] to obtain a quantum OT proto-
col that satisfies statistical security against malicious receivers (and compu-
tational security against malicious senders). On the other hand, the quantum
OT protocol in [19] appears to achieve computational security against both
malicious senders and malicious receivers.

– [19]: Verifiable Conditional Disclosure of Secrets. Towards achieving
their main result, [19] introduce and construct verifiable conditional disclosure
of secrets (vCDS). This primitive may be of independent interest.

– [19]: Constant Rounds in the CRS Model. While both works construct
poly(λ)-round protocols in the plain model, [19] additionally construct a con-
stant round OT protocol in the CRS model based on (non-black-box use of)
quantum-hard one-way functions.
In an earlier version of this work, we did not consider the CRS model. After
both works were posted to the Cryptology ePrint Archive, we realized that
our techniques could be straightforwardly adapted to achieve constant round
complexity in the CRS model, while still making black-box use of one-way
functions. However, unlike [19], our CRS is non-reusable. For the interested
reader, we sketch how this can be achieved in the full version.

474 J. Bartusek et al.

2 Technical Overview

This work establishes that (1) black-box use of post-quantum one-way functions
suffices for post-quantum extractable and equivocal commitment schemes and
moreover, that (2) [11] quantum oblivious transfer instantiated with such com-
mitments is a standard simulation-secure oblivious transfer. Crucially, the stan-
dard notion of simulation-secure (quantum) oblivious transfer that we achieve is
sequentially composable and suffices to achieve general-purpose secure quantum
computation. Before explaining our technical approach, we provide a complete
review of the original [11] protocol.

2.1 Recap: Quantum Oblivious Transfer from Commitments

In quantum oblivious transfer (QOT), a quantum sender holding two classical
messages m0,m1 engages in an interactive protocol over a quantum channel
with a quantum receiver holding a classical choice bit b. Correctness requires the
receiver to learn mb by the end of the protocol. Informally, security demands
that a malicious receiver only learn information about one of m0,m1, and that
a malicious sender learn nothing about b. Somewhat more formally, as discussed
earlier, our focus is on the standard simulation-based notion of security. This
stipulates the existence of an efficient quantum simulator that generates the view
of an adversary (sender/receiver) when given access to an ideal OT functionality.
In particular, when simulating the view of a malicious sender, this simulator must
extract the sender’s inputs (m0,m1) without knowledge of the receiver’s input
b. And when simulating the view of a malicious receiver, the simulator must
extract the receiver’s input b, and then simulate the receiver’s view given just
mb.

We recall the construction of quantum oblivious transfer due to [11] (hence-
forth CK88), which combines the information theoretic quantum key distribution
protocol of [5] (henceforth BB84) with cryptographic bit commitments.

CK88 First Message. The first message of the CK88 protocol exactly follows
the beginning of the BB84 protocol. For classical bits y, z, let |y〉z denote |y〉 if
z = 0, and (|0〉 + (−1)y|1〉)/√2 if z = 1, i.e. the choice of z specifies whether
to interpret y as a computational or Hadamard basis vector. Let λ denote the
security parameter. The sender samples two random 2λ-bit strings x and θ,
and constructs “BB84 states” |xi〉θi

for i ∈ [2λ]. The sender forwards these 2λ
BB84 states (|xi〉θi

)i∈[2λ] to the receiver. Next, the receiver samples a 2λ-bit
string θ̂, measures each |xi〉θi

in the basis specified by θ̂i, and obtains a 2λ-bit
measurement result string x̂.

CK88 Measurement-Check Subprotocol. At this point, the CK88 and BB84 pro-
tocols diverge. Since the BB84 protocol is an interaction between two honest
parties, it assumes the parties comply with the protocol instructions. However,
in the CK88 protocol, a malicious receiver who does not measure these BB84

One-Way Functions Imply Secure Computation in a Quantum World 475

states will be able to compromise sender privacy later in the protocol. There-
fore, the next phase of CK88 is a measurement-check subprotocol designed to
catch a malicious receiver who skips the specified measurements. This subproto-
col requires the use of a quantum-secure classical commitment scheme; for the
purposes of this recap, one should imagine a commitment with idealized hiding
and binding properties. The subprotocol proceeds as follows:

– For each i ∈ [2λ], the receiver commits to (θ̂i, x̂i).
– Next, the sender picks a random set T of λ indices from [2λ], and challenges

the receiver to open the corresponding commitments.
– The receiver sends (θ̂i, x̂i) along with the corresponding opening for each

i ∈ T .
– The sender verifies each commitment opening, and furthermore checks that

x̂i = xi for each i ∈ T where θ̂i = θi. If any of these checks fail, the sender
aborts.

The rough intuition for the subprotocol is simple: from the receiver’s point of
view, the BB84 states are maximally mixed and therefore completely hide xi and
θi. For any index i that the receiver does not measure, it must guess x̂i. From
the receiver’s perspective, the sender checks x̂i against xi if two 1/2-probability
events occur: (1) i is included in T , and (2) θ̂i = θi. This means a malicious
receiver who skips a significant number of measurements will be caught with
overwhelming probability.

CK88 Privacy Amplification. If all the subprotocol checks pass, the sender con-
tinues to the final stage of the CK88 protocol. For convenience, relabel the λ
indices in [2λ]\T from 1 to λ; all indices corresponding to opened commitments
are discarded for the remainder of the protocol.

For each i ∈ [λ], the sender reveals the correct measurement basis θi. The
receiver then constructs the index set Ib—where b is its choice bit for the obliv-
ious transfer—as the set of all i ∈ [λ] where θi = θ̂i. It sets I1−b to be the
remaining indices, and sends (I0, I1) to the sender. Note that by the hiding
property of the commitments, the sender should not be able to deduce b from
(I0, I1); furthermore, I0 and I1 will both be close to size λ/2, since for each
i ∈ [λ], the receiver committed to θ̂i before obtaining θi.

On receiving I0, I1, the sender sets x0 := (xi)i∈I0 and x1 := (xi)i∈I1 . The
intuition is that if a receiver honestly constructs (I0, I1), it will only have infor-
mation about xb corresponding to its choice bit b. However, it turns out that
even if the receiver maliciously constructs (I0, I1), at least one of x0 and x1 will
have high min-entropy from its point of view. Thus, by standard privacy ampli-
fication techniques, the sender can complete the oblivious transfer as follows. It
samples two universal hash functions h0 and h1, both with �-bit outputs, and
uses h0(x0) to mask the �-bit message m0, and uses h1(x1) to mask m1. That is,
the sender sends (h0, h1, h0(x0)⊕m0, h1(x1)⊕m1) to the receiver, who can then
use xb to recover mb. Since x1−b will have high entropy, the leftover hash lemma
implies that h1−b(x1−b) is statistically close to uniform, which hides m1−b from
the receiver.

476 J. Bartusek et al.

Simulation-Based Security. Turning this intuition into a proof of simulation-
based security of the resulting QOT requires some additional insights [13], and
requires the commitments used in the measurement-check subprotocol to satisfy
two additional properties: extractability and equivocality. In what follows, we
briefly summarize why these properties help achieve simulation-based security.

To argue that the resulting QOT protocol satisfies security against a mali-
cious sender, one must demonstrate the existence of a simulator that simulates
the sender’s view by generating messages on behalf of an honest receiver, and
extracts both QOT inputs of the sender4. Now, the measurement-check sub-
protocol described above is designed to ensure that at least one of the sender’s
inputs is hidden from a receiver. To nevertheless enable the simulator to extract
both sender inputs, the idea in [13] is to modify the commitments used in the
measurement-check subprotocol with equivocal commitments that allow the sim-
ulator to later open these commitments to any value of its choice. This enables
the simulator to defer any measurements until after it obtains the set T from the
sender, and then selectively measure only the states that correspond to indices
in T . All other states are left untouched until the sender reveals its measure-
ment bases in the final stage of the CK88 protocol. Upon obtaining the sender’s
“correct” measurement bases, the simulator measures all the remaining states
in the correct bases, allowing it to learn both the inputs of the sender.

To demonstrate that the resulting QOT protocol satisfies security against
a malicious receiver, one must demonstrate the existence of a simulator that
simulates the receiver’s view by generating messages on behalf of an honest
sender, and extracts the receiver’s choice bit. Again by design, the measurement-
check subprotocol ensures that the receiver’s choice bit hidden is hidden from the
sender. To nevertheless enable the simulator to extract this choice bit, [13] modify
the commitments in the measurement-check subprotocol so that the simulator
is able to extract all of the {(̂θi, x̂i)}i∈[2λ] from the receiver’s commitments.
This enables the simulator to compute which one of the sets I0, I1 contain more
indices i for which θi = ̂θi; clearly the set with more indices corresponds to the
receiver’s choice bit. In summary, the key tool that enables simulation against a
malicious receiver is an extractable commitment, that forces the receiver to use
commitments for which the simulator can extract the committed value, without
ever running the opening phase.

To conclude, following [13] the CK88 protocol can be shown to satisfy
simulation-based security as long as the commitments used in the measurement-
check subprotocol satisfy both the extractability and equivocality properties that
were informally described above.

With this in mind, we now describe our primary technical contribution: a
construction of the required extractable and equivocal commitments based on
black-box use of quantum-hard one-way functions.

4 We refer the reader to Sect. 6.1 for a formal definition of simulation-based QOT.

One-Way Functions Imply Secure Computation in a Quantum World 477

2.2 Our Construction: A High-Level Overview

The rest of this technical overview describes our black-box construction of
simultaneously extractable and equivocal quantum bit commitments from any
quantum-hard one-way function.

The ingredients for our construction are the following:

– A general-purpose “equivocality compiler” that turns any bit commit-
ment scheme—classical or quantum—into an equivocal quantum commitment
scheme. Moreover, if the original commitment scheme is extractable, this com-
piler outputs an extractable and equivocal commitment scheme.

– A general-purpose “extractability compiler” that turns any equivocal bit com-
mitment scheme—classical or quantum—into an extractable but not equivocal
commitment scheme.

Both of these compilers require no additional computational assumptions beyond
those of the original commitment schemes. Given these compilers, we build
extractable and equivocal commitments via the following steps:

– Instantiation: Begin with Naor’s statistically-binding, computationally hid-
ing commitments [32]. Naor’s construction makes black-box use of one-way
functions and achieves post-quantum computational hiding assuming post-
quantum security of the one-way function.5

– Step 1: Plug Naor’s commitments into our equivocality compiler to obtain
an equivocal quantum bit commitment scheme.

– Step 2: Feed the resulting equivocal quantum bit commitments into our
extractability compiler to obtain an extractable but not equivocal quantum
bit commitment.

– Step 3: Run the equivocality compiler a second time, but now starting with
the extractable commitments produced by the previous step. This gives the
desired extractable and equivocal quantum bit commitments.

2.3 Making Any Quantum (or Classical) Commitment Equivocal

Recall that a quantum commitment protocol is equivocal if an efficient quantum
algorithm called the equivocator, with access to the receiver, can generate com-
mitments that can be opened to any value. More precisely, for any receiver

5 In slightly more detail, Naor’s commitment scheme makes black-box use of any
pseudo-random generator (PRG). It is straightforward to verify that if the PRG is
post-quantum secure, the commitment satisfies computational hiding against quan-
tum attackers. A black-box construction of pseudo-random generators from one-way
functions is due to [21]; Aaronson [1] and Zhandry [38] observed that [21] applies to
non-uniform quantum attackers with classical advice. This can be extended to handle
non-uniform quantum advice by giving the one-way function attacker constructed in
the [21] reduction many copies of the PRG attacker’s non-uniform quantum advice
(which only requires some polynomial upper bound on the number of times the
reduction invokes the PRG attacker).

478 J. Bartusek et al.

(modeled as an efficient malicious quantum algorithm), there must exist an
equivocator who can generate a computationally indistinguishable commitment
that the equivocator can later open arbitrarily.

In this subsection, we describe a black-box compiler for a fairly general task
(which may be of independent interest): making any classical or quantum com-
mitment equivocal. Recall from Sect. 2.2 that we will need to invoke our equiv-
ocality compiler twice, once on a classical bit commitment scheme, and once on
an extractable quantum bit commitment scheme; in the latter case, our com-
piler will need to preserve the extractability of the original commitment. Since
classical commitments are a subclass of quantum commitments, our exposition
will focus on challenges unique to the quantum setting.

Our Equivocality Compiler. In our construction, to commit to a bit b, the com-
mitter and receiver will perform λ sequential repetitions of the following subpro-
tocol:

– The (honest) committer samples 2 uniformly random bits u0, u1, and com-
mits to each one twice using the base commitment scheme. Let the resulting
commitments be c(0)0 , c(1)0 , c(0)1 , c(1)1 , where the first two are to u0 and the
second two are to u1. Note that since the base commitment scheme can be
an arbitrary quantum interactive commitment, each commitment c(b2)b1

cor-
responds to the receiver’s quantum state after the commitment phase of the
base commitment.

– The receiver sends the committer a random challenge bit β.
– The committer opens the two base commitments c(0)β , c(1)β . If the openings are

invalid or the revealed messages are different, the receiver aborts the entire
protocol.

If these λ executions pass, the receiver is convinced that a majority of the com-
mitter’s remaining 2λ unopened commitments are honestly generated, i.e. most
pairs of commitments are to the same bit.

Rewriting the (honest) committer’s unopened bits as u1, . . . , uλ, the final
step of the commitment phase is for the committer to send hi := ui ⊕ b for each
i ∈ [λ] (recall that b is the committed bit).

To decommit, the committer reveals each ui by picking one of the two corre-
sponding base commitments at random, and opening it. The receiver accepts if
each one of the base commitment openings is valid, and the opened ui satisfies
hi ⊕ ui = b for every i.

The (statistical) binding property of the resulting commitment can be seen
to follow from the (statistical) binding of the underlying commitment. For any
commitment, define the unique committed value as the majority of (hi ⊕ui) val-
ues in the unopened commitments, setting ui to ⊥ if both committed bits in the
ith session differ. Due to the randomized checks by the receiver, any committer
that tries to open to a value that differs from the unique committed value will
already have been caught in the commit phase, and the commitment will have
been rejected with overwhelming probability. A similar argument also allows us

One-Way Functions Imply Secure Computation in a Quantum World 479

to establish that this transformation preserves extractability of the underlying
commitment. We now discuss why the resulting commitment is equivocal.

Quantum Equivocation. The natural equivocation strategy should have the
equivocator (somehow) end up with λ pairs of base commitments where for
each i ∈ [λ], the pair of commitments is to ui and 1−ui for some random bit ui.
This way, it can send an appropriately distributed string h1, · · · , hλ, and later
open to any b by opening the commitment to b ⊕ hi for each i.

We construct our equivocator using Watrous’s quantum rewinding lemma [35]
(readers familiar with Watrous’s technique may have already noticed our con-
struction is tailored to enable its use).

We give a brief, intuition-level recap of the rewinding technique as it pertains
to our equivocator. Without loss of generality, the malicious quantum receiver
derives its challenge bit β by performing some binary outcome measurement
on the four quantum commitments it has just received (and on any auxiliary
states). Our equivocator succeeds (in one iteration) if it can prepare four quan-
tum commitments c(0)0 , c(1)0 , c(0)1 , c(1)1 where:

1. c(0)α , c(0)α are commitments to the same random bit,
2. c(0)1−α, c(0)1−α are commitments to a random bit and its complement,
3. on input c(0)0 , c(1)0 , c(0)1 , c(1)1 , the receiver produces challenge bit β = α.

That is, the equivocator is successful if the receiver’s challenge bit β corresponds
to the bit α that it can open honestly. Watrous’s [35] rewinding lemma applies if
the distribution of β is independent of the receiver’s choice of α, which is guar-
anteed here by the hiding of the base commitments. Thus, the rewinding lemma
yields a procedure for obtaining an honest-looking interaction where all three
properties above are met. Given the output of the rewinding process, the equiv-
ocator has successfully “fooled” the committer on this interaction and proceeds
to perform this for all λ iterations. As described above, fooling the committer on
all λ iterations enables the equivocator to later open the commitment arbitrarily.

2.4 An Extractability Compiler for Equivocal Commitments

In this subsection, we compile any classical or quantum equivocal bit commitment
into a quantum extractable bit commitment. We stress that even though this
compiler is applied to equivocal bit commitments, the resulting commitment
is not guaranteed to be simultaneously extractable and equivocal ; we refer the
reader to Sect. 2.2 for details on how this compiler fits into our final construction.
Recall that a commitment scheme is extractable if for any adversarial quantum
committer that successfully completes the commitment phase, there exists an
efficient quantum algorithm (called the extractor) which outputs the committed
bit.

480 J. Bartusek et al.

Construction. The committer, who intends to commit to a classical bit b, begins
by sampling 2λ-bit strings x and θ. It generates the corresponding 2λ BB84 states
|xi〉θi

and sends this to the receiver. The receiver picks 2λ random measurement
bases θ̂i, and measures each |xi〉θi

in the corresponding basis, obtaining outcomes
x̂i.

Next, the receiver and committer engage in a CK88-style measurement-check
subprotocol. That is, they temporarily switch roles (for the duration of the sub-
protocol), and perform the following steps:

1. The receiver (acting as a committer in the subprotocol), commits to each θ̂i

and x̂i (for each i ∈ [2λ]) with an equivocal commitment.
2. The committer (acting as a receiver in the subprotocol), asks the receiver to

open the equivocal commitments for all i ∈ T , where T ⊂ [2λ] is a random
set of size λ.

3. The receiver (acting as a committer in the subprotocol) opens the λ commit-
ments specified by T .

Provided the receiver passes the measurement-check subprotocol, the com-
mitter generates the final message of the commitment phase as follows:

– Discard the indices in T and relabel the remaining λ indices from 1 to λ.
– Partition {x1, . . . , xλ} into

√
λ strings x1, . . . ,x√

λ each of length
√

λ.
– Sample

√
λ universal hash functions h1, . . . , h√

λ each with 1-bit output.
– Finally, send (θi)i∈[λ], (hj , hj(xj) ⊕ b)j∈[

√
λ].

This concludes the commitment phase.
To decommit, the committer reveals b and (x1, . . . ,x√

λ). The receiver
accepts if (1) for each j, the bit b and the value xj are consistent with the
claimed value of hj(xj) ⊕ b from the commit phase, and (2) for each index
i ∈ [λ] where θi = θ̂i, the xi from the opening is consistent with x̂i.

Extraction. The use of equivocal commitments in the measurement-check sub-
protocol makes extraction simple. Given any malicious committer, we construct
an extractor as follows.

The extractor plays the role of the receiver and begins an interaction with
the malicious committer. But once the committer sends its 2λ BB84 states, the
extractor skips the specified measurements, instead leaving these states unmea-
sured. Next, instead of performing honest commitments to each θ̂i, x̂i, the extrac-
tor invokes (for each commitment) the equivocator algorithm of the underlying
equivocal commitment scheme. Since the equivocator is guaranteed to produce
an indistinguishable commitment from the point of view of any malicious receiver
for the equivocal commitment, this dishonest behavior by the extractor will go
undetected.

When the malicious committer responds with a challenge set T ⊂ [2λ], the
extractor samples uniformly random bases θ̂i for each i ∈ T , measures the cor-
responding BB84 states to obtain x̂i values, and sends (θ̂i, x̂i)i∈T . Moreover,

One-Way Functions Imply Secure Computation in a Quantum World 481

the equivocator (for each commitment) will enable the extractor to generate
valid-looking openings for all of these claimed values.

Thus, the malicious committer proceeds with the commitment protocol, and
sends

(θi)i∈[λ], (hj , hj(xj) ⊕ b)j∈[
√

λ]

to the extractor. These correspond to the λ BB84 states that the extractor has
not yet measured, so it can simply read off the bases θi, perform the specified
measurements, and extract the committer’s choice of b.

Statistical Hiding. Intuitively, statistical hiding of the above commitment pro-
tocol follows because the measurement-check subprotocol forces the receiver to
measure states in arbitrary bases, which destroys information about the corre-
sponding xi values whenever ̂θi �= θi. The formal argument is a straightforward
application of a quantum sampling lemma of [8], devised in part to simplify
analysis of [11]-style protocols, and we defer further details to the full version.

2.5 Putting It Together: From Commitments to Secure
Computation

Plugging the compilers of Sects. 2.3 and 2.4 into the steps described in Sect. 2.2
yields a black-box construction of simultaneously extractable and equivocal
quantum bit commitments from quantum-hard one-way functions. Follow-
ing [13], these commitments can be plugged into CK88 to obtain maliciously
simulation-secure QOT (see Sect. 6 for further details). Finally, going from QOT
to arbitrary secure computation (in a black-box way) follows from prior works
of [15,17,25,26]; a more thorough discussion is available in the full version.

3 Preliminaries

Notation. We will write density matrices/quantum random variables (hence-
forth, QRVs) in lowercase bold font, e.g. x. A quantum register X will be written
in uppercase (grey) serif font. A collection of (possibly entangled) QRVs will be
written as (x,y, z).

Throughout this paper, λ will denote a cryptographic security parameter.
We say that a function μ(λ) is negligible if μ(λ) = 1/λω(1).

The trace distance between two QRVs x and y will be written as ‖x − y‖1.
Recall that the trace distance captures the maximum probability that two
QRVs can be distinguished by any (potentially inefficient) procedure. We there-
fore say that two infinite collections of QRVs {xλ}λ∈N and {yλ}λ∈N are sta-
tistically indistinguishable if there exists a negligible function μ(λ) such that
||xλ − yλ||1 ≤ μ(λ), and we will frequently denote this with the shorthand
{xλ}λ∈N ≈s {yλ}λ∈N.

482 J. Bartusek et al.

Non-uniform Quantum Advice. We will consider non-uniform quantum
polynomial-time (QPT) algorithms with quantum advice, denoted by A =
{Aλ,ρλ}λ∈N, where each Aλ is the classical description of a poly(λ)-size quan-
tum circuit, and each ρλ is some (not necessarily efficiently computable) non-
uniform poly(λ)-qubit quantum advice. We remark that “non-uniform quantum
polynomial-time algorithms” often means non-uniform classical advice, but the
cryptographic applications in this work will require us to explicitly consider
quantum advice.

Definitions for Cryptographic Commitments. Full definitions of cryptographic
commitments can be found in the full version.

4 A Quantum Equivocality Compiler

In this section, we show a generic black-box compiler that takes any quantum-
secure bit commitment scheme and produces a quantum-secure equivocal bit
commitment scheme.

The compiler is described in Protocol 1, where (Commit,Decommit) denotes
some statistically binding and computationally hiding bit commitment scheme.
We describe how to equivocally commit to a single bit, and note that commit-
ment to an arbitrary length string follows by sequential repetition.

Furthermore, we show that if the underlying commitment (Commit,
Decommit) is extractable, then the resulting commitment is both extractable
and equivocal.

These results are captured in the following theorems.

Theorem 1. For X ∈ {quantum extractability, statistical binding} and Y ∈
{computationally, statistically}, if Commit is a Y-hiding quantum bit commit-
ment satisfying X , then Protocol 1 is a Y-equivocal bit commitment satisfying X .

These theorems follow from establishing statistical binding, equivocality, and
extractability of the commitment in Protocol 1, as we do next. First, we note that
if Commit is statistically binding, then Protocol 1 is statistically binding. For any
adversarial committer strategy, consider the λ unopened pairs of commitments
after the commit phase. Since Commit is statistically binding, we can assume that
each of the 2λ commitments is binding to a particular bit, except with negligible
probability. Now, if any single pair contains binding commitments to the same
bit di, then the committer will only be able to open its Protocol 1 commitment
to the bit di ⊕ ei. Thus, to violate binding, the adversarial committer will have
to have committed to different bits in each of the λ unopened pairs. However, in
this case, the committer will be caught and the receiver will abort except with
probability 1/2λ.

4.1 Equivocality

The equivocal simulator (QR∗,com,QR∗,open) is obtained via the use of Watrous’s
quantum rewinding lemma [35]; a full statement of the lemma is available in

One-Way Functions Imply Secure Computation in a Quantum World 483

Fig. 1. Equivocal bit commitment.

the full version. For the purposes of defining the simulation strategy, it will
be sufficient (w.l.o.g.) to consider a restricted receiver R∗ as follows, for the
ith sequential step of the protocol. In our simulation, the state of R∗ will be
initialized to the final state at the end of simulating the (i − 1)th step.

1. R∗ takes a quantum register W, representing its auxiliary quantum input.
R∗ will use two additional quantum registers that function as work space: V,
which is an arbitrary (polynomial-size) register, and A, which is a single qubit
register. The registers V and A are initialized to their all-zero states before
the protocol begins.

2. Let M denote the polynomial-size register used by C to send messages to
R∗. After carrying out step 2(a) by running on registers (W,V,A,M), R∗

measures the register A to obtain a bit ci, for Step 2(b), which it sends back
to C.

3. Next, R∗ computes the decommitment phases (with messages from C placed
in register M) according to Step 2(c). R∗ outputs registers (W,V,A,M).

Any polynomial-time quantum receiver can be modeled as a receiver of
this restricted form followed by some polynomial-time post-processing of the

484 J. Bartusek et al.

restricted receiver’s output. The same post-processing can be applied to the
output of the simulator that will be constructed for the given restricted receiver.

Following [35], we define a simulator that uses two additional registers, C and
Z. C is a one qubit register, while Z is an auxiliary register used to implement the
computation that will be described next. Consider a quantum procedure Qpartial

that implements the strategy described in Protocol 2 using these registers.

Fig. 2. Equivocal simulator.

Next, we would like to apply Watrous’s quantum rewinding lemma to the
Qpartial circuit. In order to do this, we will argue that the probability p(ψ) that
this circuit outputs 0 is such that |p(ψ)− 1

2 | = negl(λ), regardless of the auxiliary
input |ψ〉 to R∗. This follows from the fact that the commitments are (statisti-
cally/computationally) hiding. In more detail, by definition, Step 5 produces a
distribution on the R∗’s side that is identical to the distribution generated by R∗

in its interaction with the committer. If |p(ψ) − 1
2 | were non-negligible, then the

sequence of unitaries applied by R∗ could be used to distinguish commitments
generated according to the case ĉ = 0 from commitments generated according
to the case ĉ = 1, leading to a contradiction.

Now consider the state of the residual qubits of Qpartial conditioned on a mea-
surement of its output qubit being 0. The output state of the general quantum
circuit ̂Q resulting from applying Watrous’s quantum rewinding lemma will have
negligible trace distance from this state. This state is over all of the registers
discussed above, so the simulator Qcom,R∗ must further process this state as:

One-Way Functions Imply Secure Computation in a Quantum World 485

– Measure the register C, obtaining challenge c.
– Compute decommitment information corresponding to challenge c, as in Step

2(c) of the protocol (recall that this information is stored in the message
register M).

– Output registers (W,V,A,M). All remaining registers are traced out.

The simulator QR∗,com executes all i sequential interactions in this manner,
and then samples e1, . . . , eλ ← {0, 1}λ, as the committer messages for Step
3 of Protocol 1. It runs the receiver’s unitary on the resulting protocol, and
outputs the resulting registers (W,V,A,M). It additionally outputs private state
st = (c1, d1, . . . , cλ, dλ) where ci, di were sampled during the ith execution of
Protocol 2.

The simulator QR∗,open(b, st,w,v,a,m) parses st as (c1, d1, . . . , cλ, dλ). For
every i ∈ [λ] it does the following:

– Let ̂di = b ⊕ ei.
– If ci = 0, it executes the decommitment phase for the ((̂di ⊕di)+2)th session.
– If ci = 1, it executes the decommitment phase for the (̂di ⊕ di)th session.

QR∗,open then executes the receiver’s algorithm on these decommitments and
outputs the resulting state. Note that each decommitment will be to the bit
̂di = b ⊕ ei.

To complete the proof of equivocality, we must establish that the view of the
receiver interacting with an honest committer the view of the receiver interact-
ing with the equivocator are indistinguishable. This follows from the (statisti-
cal/computational) hiding of the commitment scheme, via an identical argument
to the one used above. In particular, if the equivocal simulator produces a distri-
bution that is distinguishable from the real distribution, then there exists a ses-
sion i ∈ [λ] such that the distribution in the real and ideal experiments upto the
i − 1th session are indistinguishable, but upto the ith session are distinguishable.
This contradicts the above guarantee given by the quantum rewinding lemma,
since for any i, the post-processed residual qubits of Qpartial are indistinguishable
from the state of R∗ after the ith sequential session in the real protocol (due to
the hiding of the commitment scheme).

4.2 Extractability

Next, we prove that Protocol 1 satisfies extractability as long as the underlying
commitment (Commit,Decommit) is extractable; in other words, this compiler
preserves extractability. Consider the following extractor EC∗ .

– For i ∈ [λ]:
• Execute four sequential commitment sessions with C∗, where the

extractor of Commit is run on all sessions. Obtain outputs
(ρC∗ , stR,i,0, d

′
i,0, stR,i,1, d

′
i,1), where ρC∗ is the final state of the commit-

ter after engaging in all four sequential sessions, and stR,i,0, stR,i,1 are
receiver states output by the extractor corresponding to the first and third
sessions.

486 J. Bartusek et al.

• Corresponding to Step 2(b), compute and send ci ← {0, 1}.
• Execute Step 2(c) identically to Protocol 1.

– Executes Step 3 of Protocol 1, receiving bits {ei}i∈[λ]. Fix b∗ to be the most
frequently occurring bit in {ei ⊕d′

i,1−ci
}i∈[λ], and output the final state of C∗,

the receiver states {stR,i,0, stR,i,1}i∈[λ], and the extracted bit b∗.

Indistinguishability between the distributions Real and Ideal defined by the
above extractor follows by a hybrid argument, and is based on the definition
of extractability of the underlying commitment (Commit,Decommit). In more
detail, recall that Real denotes the distribution (ρC∗,final, b) where ρC∗,final denotes
the final state of C∗ and b the output of the receiver, and Ideal denotes the final
committer state and opened bit after the opening phase of the scheme is run on
the output of the extractor.

Note that there are a total of 4λ commitment sessions. For each i ∈ [λ], j ∈
[0, 3], define Hybi,j to be the distribution of the committer’s state and receiver
output when extracting from all commitments in sessions 1, . . . , i−1 and extract-
ing from the first j commitments in the ith session, but computing the receiver’s
output as in the honest protocol.

Claim. There exists a negligible function μ(·) such that for every i ∈ [λ], j ∈
[0, 2], and every QPT distinguisher D,

|Pr[D(Hybridi,j) = 1] − Pr[D(Hybridi,j+1) = 1]| = μ(λ),

and for every i ∈ [λ] and every QPT distinguisher D,

|Pr[D(Hybridi,3) = 1] − Pr[D(Hybridi+1,0) = 1]| = μ(λ).

Proof. Suppose this is not the case, then there exists an adversarial committer
C∗, a distinguisher D, a polynomial p(·), and an initial committer state ψ that
corresponds to a state just before the beginning of the (i, j + 1)th commitment,
and where

Pr[D(Hybridi,j) = 1] − Pr[D(Hybridi,j+1) = 1]| ≥ 1
p(λ)

.

Consider a reduction/adversarial committer ˜C that obtains initial state ψ,
then internally runs C∗, forwarding all messages between an external receiver and
C∗ for the (i, j + 1)th commitment. It then begins the opening phase, running
C∗ internally and forwarding the opening of the (i, j + 1)th commitment (if
it is executed) to an external receiver. Finally, it outputs the final state of the
committer, and b is output by the external receiver. The claim being false directly
implies that ˜C contradicts extractability of the bit commitment. ��

One-Way Functions Imply Secure Computation in a Quantum World 487

Now for every commitment strategy, every i ∈ [λ], the probability that d′
i,1−ci

is not equal to the other bit committed in its pair, and yet the receiver does not
abort in Step 2(c) in the ith sequential repetition, is ≤ 1

2 + negl(λ). Then with
probability 1 − negl(λ), the same also holds for the extracted bits. Thus, by the
correctness of the extractor, this implies that the probability that an adversarial
committer opens to 1 − b∗ is at most 1/2λ/2 + negl(λ) = negl(λ). This implies
that Hybridλ,2 is indistinguishable from the Ideal distribution defined by the
extractor defined above, since the only difference lies in the computation of the
receiver’s output b∗. Since Real is indistinguishable from Hybrid1,0, this completes
the proof.

5 Quantum Extractable Commitments

We construct extractable commitments by making use of the following building
blocks.

– We let (EqCommit,EqDecommit) denote any statistically binding, equivocal
quantum commitment scheme. Such a commitment can be obtained by apply-
ing the compiler from last section to Naor’s commitment scheme [32].

– For a suitable polynomial k(·), let h : {0, 1}k(λ) × {0, 1}λ2 → {0, 1} be a
universal hash function that is evaluated on a random seed s ∈ {0, 1}k(λ) and
input x ∈ {0, 1}λ2

.

Our extractable commitment scheme is described formally in Fig. 3. We show
how to commit to a single bit, though commitment to any arbitrary length string
follows by sequential repetition. Correctness of the protocol follows by inspection.
In the remainder of this section, we prove the following theorem.

Theorem 2. Protocol 3 describes a quantum statistically hiding and extractable
bit commitment whenever (EqCommit,EqDecommit) is instantiated with any
quantum statistically binding and equivocal bit commitment scheme.

Throughout, we will consider non-uniform adversaries, but for ease of expo-
sition we drop the indexing by λ.

5.1 Extractability

Consider any adversarial committer C∗ with advice ρ. The extractor EC∗(ρ) is
constructed as follows.

1. Run the first message algorithm of C∗ on input ρ, obtaining message ψ.
2. For i ∈ [2λ3], sequentially execute equivocal commitment sessions with the

equivocal simulator QR∗,com, where R∗ is the part of C∗ that participates as
receiver in the ith session. Session i results in output (zi,ycom,i), where zi is
stored by the extractor, and ycom,i is the current state of C∗, which is fed as
input into the next session.

488 J. Bartusek et al.

Fig. 3. Extractable commitment.

3. Obtain T from C∗, and sample ̂θ ← {+,×}2λ3
. Let ψi denote the ith qubit

of ψ, and measure the qubits ψi for i ∈ T , each in basis ̂θi. Let {x̂i}i∈[T] be
the results of the measurements.

4. Let xcom be the current state of C∗. For each i ∈ [T], execute
QR∗,open((̂θi, x̂i), zi,xcom), where R∗ is the part of C∗ that participates in
the ith opening, and xcom is updated to be the current state of C∗ after each
sequential session.

5. If C∗ aborts at any point, abort and output ⊥, otherwise continue.
6. Discard tested positions and restrict ̂θ to the indices in T . Obtain θ ∈

{+,×}λ3
from C∗. Measure the qubits ψi in basis θi to obtain x̂i for i ∈ T ,

and then partition x̂ into λ different λ2-bit strings ŷ1, . . . , ŷλ.

One-Way Functions Imply Secure Computation in a Quantum World 489

7. Obtain {s�, v�}�∈[λ] from C∗. Let b∗ be the most frequently occurring bit in
{h(s�, x̂

(�))⊕v�}�∈[λ]. Output (xcom,ycom, b∗), where xcom is the resulting state
of C∗ and ycom = (θ, ̂θ, x̂).

We now prove that EC∗ is a secure extractor; for space reasons, a full definition
of extractability in the quantum setting is in the full version.

Hyb1. Define distribution Hyb1 identically to Real (the honest interaction), except
that in Step 2, for i ∈ [2λ3], sequentially execute equivocal commitment sessions
using the equivocal simulator QR∗,com, as described in the extractor. In Step 4,
for every i ∈ T , open the i’th commitment to (̂θi, x̂i) using QR∗,open, as described
in the extractor.

By the equivocal property of Commit, for any QPT distinguisher (D∗,σ),
there exists a negligible function ν(·) such that

∣

∣

∣ Pr[D∗(σ,Hyb1) = 1] − Pr[D∗(σ,Hyb0) = 1]
∣

∣

∣ = ν(λ).

Hyb2. This is identical to Hyb1, except that the verifier measures qubits of |x〉θ

only after obtaining a description of the set T , and only measures the qubits
i ∈ [T]. The output of this experiment is identical to Hyb1, therefore for any
QPT distinguisher (D∗,σ),

Pr[D∗(σ,Hyb3) = 1] = Pr[D∗(σ,Hyb2) = 1].

Moreover, the only difference between Hyb2 and Ideal is that Ideal outputs
FAIL when the message b opened by C∗ is not ⊥ and differs from the one extracted
by EC∗ . Therefore, to derive a contradiction it will suffice to prove that there
exists a negligible function ν(·) such that

Pr[FAIL|Ideal] = ν(λ).

Consider any sender C∗ that produces a committer state xcom and then
decommits to message b′ using strings (y1, . . . , yλ) during the decommit phase.
Let T ′ ⊆ [λ] denote the set of all indices � ∈ [λ] such that the corresponding
x(�) �= v�, where x̂(�) denotes the values obtained by the extractor in Step 6.
Then we have the following claim.

Claim. There exists a negligible function ν(·) such that

Pr[|T ′| > λ/2] = ν(λ)

where the probability is over the randomness of the extractor.

Proof. For every � ∈ [λ], we have that (over the randomness of the extractor):

Pr
[

Ropen(ycom) outputs ⊥ in 〈C∗
open(xcom),Ropen(ycom)〉

∣

∣

∣ x(�) �= x̂(�)
]

≥ 1
2
.

Indeed, the receiver will reject if for some position i for which x(�) �= x̂(�), it holds
that θi = ̂θi. Since ̂θ was sampled uniformly at random, this will occur for a single
i with independent probability 1/2. This implies that Pr[|T ′| > λ/2] ≤ 1

2λ/2 , and
the claim follows. ��

490 J. Bartusek et al.

By construction of EC∗ , Pr[FAIL|Ideal] < Pr[|T ′| > λ/2], and therefore it
follows that there exists a negligble function ν(·) such that

Pr[FAIL|Ideal] = ν(λ).

The proof of that the extractable commitment scheme described in Fig. 3 is
statistically hiding follows readily from quantum sampling techniques developed
by [8], and is deferred to the full version.

6 Quantum Oblivious Transfer from Extractable and
Equivocal Commitments

6.1 Definitions for Oblivious Transfer with Quantum
Communication

An oblivious transfer with quantum communication is a protocol between a
quantum interactive sender S and a quantum interactive receiver R, where the
sender S has input m0,m1 ∈ {0, 1}λ and the receiver R has input b ∈ {0, 1}.
After interaction the sender outputs (m0,m1) and the receiver outputs (b,mb).

Let F(·, ·) be the following functionality. F(b, ·) takes as input either (m0,m1)
or abort from the sender, returns end to the sender, and outputs mb to the receiver
in the non-abort case and ⊥ in the abort case. F(·, (m0,m1)) takes as input either
b or abort from the receiver, returns mb to the receiver, and returns end to the
sender in the non-abort case, and returns ⊥ to the sender in the abort case.

Definition 1. We let 〈S(m0,m1), R(b)〉 denote an execution of the OT
protocol with sender input (m0,m1) and receiver input bit b. We denote
by ρout,S∗〈S∗(ρ), R(b)〉 and OUTR〈S∗(ρ), R(b)〉 the final state of a non-
uniform malicious sender S∗(ρ) and the output of the receiver R(b) at the
end of an interaction (leaving the indexing by λ implicit). We denote by
ρout,R∗〈S(m0,m1), R∗(ρ)〉 and OUTS〈S(m0,m1), R∗(ρ)〉 the final state of a non-
uniform malicious receiver R∗(ρ) and the output of the sender S(m0,m1) at the
end of an interaction. We require OT to satisfy the following security properties:

– Receiver Security. For every QPT non-uniform malicious sender S∗, there
exists a simulator SimS∗ such that the following holds. For any non-uniform
advice ρ,σ where ρ and σ may be entangled, bit b ∈ {0, 1}, and QPT non-
uniform distinguisher D∗, SimS∗(ρ) sends inputs (m0,m1) or abort to the
ideal functionality FOT(b, ·), and outputs a final state ρSim,out,S∗ . The output of
the ideal functionality to the receiver in this experiment is denoted by OUTR.
It must hold that
∣

∣

∣

∣

Pr
[

D∗ (

σ,
(

ρSim,out,S∗ ,OUTR

))

= 1
]

− Pr
[

D∗ (

σ,
(

ρout,S∗〈S∗(ρ), R(b)〉,OUTR〈S∗(ρ), R(b)〉)) = 1
]

∣

∣

∣

∣

= negl(λ).

One-Way Functions Imply Secure Computation in a Quantum World 491

– Sender Security. For every QPT non-uniform malicious receiver R∗, there
exists a simulator SimR∗ such that the following holds. For any non-uniform
advice ρ,σ where ρ and σ may be entangled, pair of sender inputs (m0,m1),
and QPT non-uniform distinguisher D∗, SimR∗(ρ) sends bit b or abort to the
ideal functionality FOT(m0,m1, ·), and outputs a final state ρSim,out,R∗ . The
output of the ideal functionality to the sender in this experiment is denoted
by OUTS. It must hold that
∣
∣
∣
∣
Pr

[
D∗ (

σ,
(
ρSim,out,R∗ ,OUTS

))
= 1

]

− Pr
[
D∗ (

σ,
(
ρout,R∗ 〈S(m0, m1), R

∗(ρ)〉,OUTS〈S(m0, m1), R
∗(ρ)〉)) = 1

]
∣
∣
∣
∣
= negl(λ).

6.2 Our Construction

We construct simulation-secure quantum oblivious transfer by making use of the
following building blocks.

– Let (EECommit,EEDecommit) denote any quantum bit commitment scheme
satisfying extractability and equivocality. Such a commitment scheme may be
obtained by applying the compiler from Sect. 4 to the extractable commitment
constructed in Sect. 5.

– Let h : {0, 1}k(λ) × X → {0, 1}λ be a universal hash with seed length k(λ) =
poly(λ) and domain X the set of all binary strings of length at most 8λ.

Our QOT protocol is described in Protocol 4, which is essentially the [11]
protocol instantiated with our extractable and equivocal commitment scheme.

Theorem 3. The protocol in Fig. 4 is a simulation-secure QOT protocol when-
ever (EECommit,EEDecommit) is instantiated with a quantum bit commitment
satisfying extractability and equivocality.

We prove that the resulting QOT protocol satisfies standard simulation-based
notions of receiver and sender security.

The proof of sender security follows readily from quantum sampling tech-
niques developed by [8], and is deferred to the full version.

6.3 Receiver Security

Consider any adversarial sender S∗ with advice ρ. The simulator SimS∗(ρ) is
constructed as follows.

1. Run the first message algorithm of S∗ on input ρ to obtain message ψ.
2. Execute 16λ sequential sessions of EECommit. In each session, run the equiv-

ocator QR∗,com, where R∗ denotes the portion of S∗ that participates as
receiver in the ith sequential EECommit session.

3. Obtain test subset T of size 8λ from S∗.

492 J. Bartusek et al.

Fig. 4. Quantum oblivious transfer.

4. For each i ∈ T , sample ̂θi ← {+,×}. Obtain x̂i by measuring the ith qubit
of ψ in basis ̂θi. For each i ∈ T , sequentially execute the equivocal simulator
QR∗,open on input (̂θi, x̂i) and the state obtained from QR∗,com.

5. If S∗ continues, discard positions indexed by T . Obtain θi for i ∈ T from S∗,
and compute xi for i ∈ T by measuring the ith qubit of ψ in basis θi.

6. For every i ∈ T , sample bit di ← {0, 1}. Partition the set T into two subsets
(I0, I1), where for every i ∈ T , place i ∈ I0 if d = 0 and otherwise place i ∈ I1.
Send (I0, I1) to S.

7. Obtain (y0, y1) from S. Set x0 to be x restricted to the set of indices I0 and
x1 to be x restricted to the set of indices I1. For b ∈ {0, 1}, parse yb = (sb, tb)
and compute mb = tb ⊕ h(sb, xb).

8. If S∗ aborts anywhere in the process, send abort to the ideal functionality.
Otherwise, send (m0,m1) to the ideal functionality. Output the final state of
S∗.

Next, we establish receiver security according to Definition 1. Towards a
contradiction, suppose there exists a bit b ∈ {0, 1}, a non-uniform QPT sender

One-Way Functions Imply Secure Computation in a Quantum World 493

(S∗,ρ), a non-uniform QPT distinguisher (D∗,σ), and polynomial poly(·) s.t.
∣

∣

∣ Pr
[

D∗ (

σ,
(

ρSim,out,S∗ ,OUTR

))

= 1
]

− Pr
[

D∗ (

σ,
(

ρout,S∗〈S∗(ρ), R(b)〉,OUTR〈S∗(ρ), R(b)〉)) = 1
]

∣

∣

∣ ≥ 1
poly(λ)

.

Fix any such b, sender (S∗,ρ) and distinguisher (D∗,σ). We derive a contradic-
tion via an intermediate hybrid experiment, defined as follows with respect to
bit b and sender (S∗,ρ).

Hyb. In this hybrid, we generate the QOT receiver commitments via the equiv-
ocal simulator QR∗ (where R∗ is derived from the malicious QOT sender S∗),
and otherwise follow the honest QOT receiver’s algorithm.

1. Run the first message algorithm of S∗ on input ρ to obtain message ψ.
2. Choose ̂θ ← {+,×}16λ and obtain x̂ ∈ {0, 1}16λ by measuring ψ in basis

̂θ. Execute 16λ sequential sessions of EECommit. In each session, run the
equivocator QR∗,com, where R∗ denotes the portion of S∗ that participates
as receiver in the ith sequential EECommit session.

3. Obtain test subset T of size 8λ from S∗.
4. For each i ∈ T , sequentially execute the equivocal simulator QR∗,open on input

̂θi, x̂i and the state obtained from QR∗,com.
5. If S∗ continues, discard positions indexed by T . Obtain θi for i ∈ T from S∗.
6. Partition the set T into two subsets: the “good” subset Ib = {i : θi = ̂θi} and

the “bad” subset I1−b = {i : θi �= ̂θi}. Send (I0, I1) to S.
7. Obtain (y0, y1) from S. Set xb to be x̂ restricted to the set of indices Ib, and

compute and set mb = tb ⊕ h(sb, xb). If S∗ aborts anywhere in the process,
let ⊥ be the output of the receiver, otherwise let mb be the output of the
receiver.

The output of Hyb is the joint distribution of the final state of S∗ and the output
of the receiver. Receiver security then follows from the following two claims.

Claim. Pr
[

D∗ (

σ,
(

ρSim,out,S∗ ,OUTR

))

= 1
] ≡ Pr [D∗(σ,Hyb) = 1] .

Proof. The only differences in the simulated distribution are (1) that measure-
ments of S∗’s initial message ψ are delayed (which cannot be noticed by S∗),
and (2) a syntactic difference in that the ideal functionality is queried to produce
the receiver’s output. ��
Claim. There exists a negligible function ν(·) such that
∣
∣
∣Pr[D∗(σ,Hyb) = 1] − Pr

[
D∗ (

σ,
(
ρout,S∗ 〈S∗(ρ), R(b)〉,OUTR〈S∗(ρ), R(b)〉)) = 1

]
∣
∣
∣ = ν(λ).

Proof. The only difference between the two distributions is that in the first,
the receiver generates commitments according to the honest commit algorithms
of EECommit while in the second, commitments in step 2 are generated via
the equivocal simulator QR∗ of EECommit. Therefore, this claim follows by the
equivocality of (EECommit,EEDecommit). ��

494 J. Bartusek et al.

Finally, Theorems 1, Theorem 2, and Theorem 3 give the following.

Corollary 1. Quantum oblivious transfer (QOT) satisfying Definition 1 can be
based on black-box use of statistically binding bit commitments, or on black-box
use of quantum-hard one-way functions.

Acknowledgments. The authors are grateful to the Simons Institute programs on
Lattices: Algorithms, Complexity and Cryptography, and The Quantum Wave in Com-
puting for fostering this collaboration. Thanks also to Alex Grilo, Huijia Lin, Fang Song,
and Vinod Vaikuntanathan for discussions about similarities and differences with [19].
A.C. is supported by DoE under grant DOD ONR Federal. This material is based on
work supported in part by DARPA under Contract No. HR001120C0024 (for DK).
Any opinions, findings and conclusions or recommendations expressed in this material
are those of the author(s) and do not necessarily reflect the views of the United States
Government or DARPA.

References

1. Aaronson, S.: Quantum copy-protection and quantum money. In: 2009 24th Annual
IEEE Conference on Computational Complexity, pp. 229–242. IEEE (2009)

2. Agarwal, A., Bartusek, J., Goyal, V., Khurana, D., Malavolta, G.: Post-quantum
multi-party computation. Cryptology ePrint Archive, Report 2020/1395 (2020).
https://eprint.iacr.org/2020/1395

3. Barak, B., Mahmoody-Ghidary, M.: Merkle puzzles are optimal — an O(n2)-query
attack on any key exchange from a random oracle. In: Halevi, S. (ed.) CRYPTO
2009. LNCS, vol. 5677, pp. 374–390. Springer, Heidelberg (2009). https://doi.org/
10.1007/978-3-642-03356-8 22

4. Ben-Or, M., Crépeau, C., Gottesman, D., Hassidim, A., Smith, A.: Secure multi-
party quantum computation with (only) a strict honest majority. In: 47th FOCS,
pp. 249–260. IEEE Computer Society Press, October 2006

5. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and
coin tossing. In: Proceedings of the IEEE International Conference on Computers,
Systems, and Signal Processing, pp. 175–179 (1984)

6. Bennett, C.H., Brassard, G., Crépeau, C., Skubiszewska, M.-H.: Practical quantum
oblivious transfer. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp.
351–366. Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-46766-1 29

7. Bitansky, N., Shmueli, O.: Post-quantum zero knowledge in constant rounds. In:
Makarychev, K., Makarychev, Y., Tulsiani, M., Kamath, G., Chuzhoy, J. (eds.)
Proccedings of the 52nd Annual ACM SIGACT Symposium on Theory of Com-
puting, STOC 2020, Chicago, IL, USA, 22–26 June, 2020, pp. 269–279. ACM (2020)

8. Bouman, N.J., Fehr, S.: Sampling in a quantum population, and applications. In:
Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 724–741. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-14623-7 39

9. Brassard, G., Crépeau, C., Jozsa, R., Langlois, D.: A quantum bit commitment
scheme provably unbreakable by both parties. In: 34th FOCS, pp. 362–371. IEEE
Computer Society Press, November 1993

10. Crépeau, C., Gottesman, D., Smith, A.: Secure multi-party quantum computation.
In: 34th ACM STOC, pp. 643–652. ACM Press, May 2002

https://eprint.iacr.org/2020/1395
https://doi.org/10.1007/978-3-642-03356-8_22
https://doi.org/10.1007/978-3-642-03356-8_22
https://doi.org/10.1007/3-540-46766-1_29
https://doi.org/10.1007/978-3-642-14623-7_39

One-Way Functions Imply Secure Computation in a Quantum World 495

11. Crépeau, C., Kilian, J.: Achieving oblivious transfer using weakened security
assumptions (extended abstract). In: 29th FOCS, pp. 42–52. IEEE Computer Soci-
ety Press, October 1988

12. Crépeau, C., van de Graaf, J., Tapp, A.: Committed oblivious transfer and pri-
vate multi-party computation. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS,
vol. 963, pp. 110–123. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-
44750-4 9

13. Damg̊ard, I., Fehr, S., Lunemann, C., Salvail, L., Schaffner, C.: Improving the
security of quantum protocols via commit-and-open. In: Halevi, S. (ed.) CRYPTO
2009. LNCS, vol. 5677, pp. 408–427. Springer, Heidelberg (2009). https://doi.org/
10.1007/978-3-642-03356-8 24

14. Damg̊ard, I., Ishai, Y.: Constant-round multiparty computation using a black-box
pseudorandom generator. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp.
378–394. Springer, Heidelberg (2005). https://doi.org/10.1007/11535218 23

15. Dulek, Y., Grilo, A.B., Jeffery, S., Majenz, C., Schaffner, C.: Secure multi-party
quantum computation with a dishonest majority. In: Canteaut, A., Ishai, Y. (eds.)
EUROCRYPT 2020, Part III. LNCS, vol. 12107, pp. 729–758. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-45727-3 25

16. Dupuis, F., Nielsen, J.B., Salvail, L.: Secure two-party quantum evaluation of uni-
taries against specious adversaries. In: Rabin, T. (ed.) CRYPTO 2010. LNCS,
vol. 6223, pp. 685–706. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-14623-7 37

17. Dupuis, F., Nielsen, J.B., Salvail, L.: Actively secure two-party evaluation of any
quantum operation. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS,
vol. 7417, pp. 794–811. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-32009-5 46

18. Goldreich, O., Micali, S., Wigderson, A.: How to prove all NP statements in
zero-knowledge and a methodology of cryptographic protocol design (extended
abstract). In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 171–185.
Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7 11

19. Grilo, A.B., Lin, H., Song, F., Vaikuntanathan, V.: Oblivious transfer is in
miniqcrypt. CoRR abs/2011.14980 (2020)

20. Hallgren, S., Smith, A., Song, F.: Classical cryptographic protocols in a quan-
tum world. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 411–428.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22792-9 23

21. H̊astad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom generator
from any one-way function. SIAM J. Comput. 28(4), 1364–1396 (1999)

22. Impagliazzo, R., Levin, L.A., Luby, M.: Pseudo-random generation from one-way
functions (extended abstracts). In: 21st ACM STOC, pp. 12–24. ACM Press, May
1989

23. Impagliazzo, R., Luby, M.: One-way functions are essential for complexity based
cryptography (extended abstract). In: 30th FOCS, pp. 230–235. IEEE Computer
Society Press, October/November 1989

24. Impagliazzo, R., Rudich, S.: Limits on the provable consequences of one-way per-
mutations. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 8–26.
Springer, New York (1990). https://doi.org/10.1007/0-387-34799-2 2

25. Ishai, Y., Prabhakaran, M., Sahai, A.: Founding cryptography on oblivious transfer
– efficiently. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 572–591.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85174-5 32

26. Kilian, J.: Founding cryptography on oblivious transfer. In: 20th ACM STOC, pp.
20–31. ACM Press, May 1988

https://doi.org/10.1007/3-540-44750-4_9
https://doi.org/10.1007/3-540-44750-4_9
https://doi.org/10.1007/978-3-642-03356-8_24
https://doi.org/10.1007/978-3-642-03356-8_24
https://doi.org/10.1007/11535218_23
https://doi.org/10.1007/978-3-030-45727-3_25
https://doi.org/10.1007/978-3-642-14623-7_37
https://doi.org/10.1007/978-3-642-14623-7_37
https://doi.org/10.1007/978-3-642-32009-5_46
https://doi.org/10.1007/978-3-642-32009-5_46
https://doi.org/10.1007/3-540-47721-7_11
https://doi.org/10.1007/978-3-642-22792-9_23
https://doi.org/10.1007/0-387-34799-2_2
https://doi.org/10.1007/978-3-540-85174-5_32

496 J. Bartusek et al.

27. Lo, H.K., Chau, H.F.: Is quantum bit commitment really possible? Phys. Rev.
Lett. 78(17), 3410 (1997)

28. Luby, M., Rackoff, C.: Pseudo-random permutation generators and cryptographic
composition. In: 18th ACM STOC, pp. 356–363. ACM Press, May 1986

29. Mahmoody, M., Maji, H.K., Prabhakaran, M.: On the power of public-key encryp-
tion in secure computation. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp.
240–264. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54242-
8 11

30. Mayers, D.: Unconditionally secure quantum bit commitment is impossible. Phys.
Rev. lett. 78(17), 3414 (1997)

31. Mayers, D., Salvail, L.: Quantum oblivious transfer is secure against all individual
measurements. In: Proceedings Workshop on Physics and Computation. PhysComp
1994, pp. 69–77. IEEE (1994)

32. Naor, M.: Bit commitment using pseudorandomness. J. Cryptology 4(2), 151–158
(1991)

33. Unruh, D.: Random Oracles and auxiliary input. In: Menezes, A. (ed.) CRYPTO
2007. LNCS, vol. 4622, pp. 205–223. Springer, Heidelberg (2007). https://doi.org/
10.1007/978-3-540-74143-5 12

34. Unruh, D.: Quantum position verification in the random Oracle model. In: Garay,
J.A., Gennaro, R. (eds.) CRYPTO 2014, Part II. LNCS, vol. 8617, pp. 1–18.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44381-1 1

35. Watrous, J.: Zero-knowledge against quantum attacks. In: Kleinberg, J.M. (ed.)
38th ACM STOC, pp. 296–305. ACM Press, May 2006

36. Wolf, S., Wullschleger, J.: Oblivious transfer is symmetric. In: Vaudenay, S. (ed.)
EUROCRYPT 2006. LNCS, vol. 4004, pp. 222–232. Springer, Heidelberg (2006).
https://doi.org/10.1007/11761679 14

37. Yao, A.C.C.: Security of quantum protocols against coherent measurements. In:
27th ACM STOC, pp. 67–75. ACM Press, May/Jun 1995

38. Zhandry, M.: How to construct quantum random functions. In: 53rd FOCS, pp.
679–687. IEEE Computer Society Press, October 2012

https://doi.org/10.1007/978-3-642-54242-8_11
https://doi.org/10.1007/978-3-642-54242-8_11
https://doi.org/10.1007/978-3-540-74143-5_12
https://doi.org/10.1007/978-3-540-74143-5_12
https://doi.org/10.1007/978-3-662-44381-1_1
https://doi.org/10.1007/11761679_14

Impossibility of Quantum Virtual
Black-Box Obfuscation of Classical

Circuits

Gorjan Alagic1,2, Zvika Brakerski3, Yfke Dulek4,6(B),
and Christian Schaffner5,6

1 Joint Center for Quantum Information and Computer Science,
University of Maryland, College Park, MD, USA

galagic@umd.edu
2 National Institute of Standards and Technology, Gaithersburg, MD, USA

3 Weizmann Institute of Science, Rehovot, Israel
zvika.brakerski@weizmann.ac.il

4 Centrum Wiskunde & Informatica, Amsterdam, The Netherlands
dulek@cwi.nl

5 University of Amsterdam, Amsterdam, The Netherlands
c.schaffner@uva.nl

6 QuSoft, Amsterdam, The Netherlands

Abstract. Virtual black-box obfuscation is a strong cryptographic
primitive: it encrypts a circuit while maintaining its full input/output
functionality. A remarkable result by Barak et al. (Crypto 2001) shows
that a general obfuscator that obfuscates classical circuits into classi-
cal circuits cannot exist. A promising direction that circumvents this
impossibility result is to obfuscate classical circuits into quantum states,
which would potentially be better capable of hiding information about
the obfuscated circuit. We show that, under the assumption that Learn-
ing With Errors (LWE) is hard for quantum computers, this quantum
variant of virtual black-box obfuscation of classical circuits is generally
impossible. On the way, we show that under the presence of dependent
classical auxiliary input, even the small class of classical point functions
cannot be quantum virtual black-box obfuscated.

1 Introduction

The obfuscation of a circuit is an object, typically another circuit, that allows
a user to evaluate the functionality of the original circuit without learning any
additional information about the structure of the circuit. Obfuscation is useful for
publishing software without revealing the code, but it also has more fundamen-
tal applications in cryptography. For example, the strongest notion called virtual
black-box obfuscation can transform any private-key encryption scheme into a
public-key scheme, and transform public-key schemes into fully-homomorphic
schemes. Unfortunately, this notion turns out to be impossible for general cir-
cuits [BGI+01] – at least, if we require the obfuscation of a circuit to be a circuit
itself.
c© International Association for Cryptologic Research 2021
T. Malkin and C. Peikert (Eds.): CRYPTO 2021, LNCS 12825, pp. 497–525, 2021.
https://doi.org/10.1007/978-3-030-84242-0_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-84242-0_18&domain=pdf
https://doi.org/10.1007/978-3-030-84242-0_18

498 G. Alagic et al.

The impossibility result from [BGI+01] leaves open an intriguing possibility:
what if the obfuscation of a (classical) circuit is allowed to be a quantum state?
Could a quantum state contain all the information about a functionality, allowing
a user to produce correct outputs, without revealing all that information? This
possibility seems hopeful, due to the unrevealing nature of quantum states, but
the extent to which no-cloning affects cryptography is not fully understood. The
question whether quantum obfuscation of classical circuits is possible appeared
in Aaronson’s list of semi-grand challenges in quantum computing [Aar05]. At
least one candidate construction was proposed [Chr14], but subsequently broken.
An attempt to prove impossibility [AF16] also encountered several obstacles
(discussed below). As a result, the question remained far from settled.

In this work, we answer the question by showing that virtual-black-box obfus-
cating classical circuits into quantum states is not possible. We adopt ideas from
the classical proof [BGI+01], but while using a similar proof outline is natu-
ral, the actual execution is non-trivial: our work requires tools such as quan-
tum fully homomorphic encryption [Mah18] and compute-and-compare obfusca-
tion [WZ17,GKW17] that were only developed in recent years.

1.1 Related Work

Barak et al. defined the obfuscating property of virtual black-box (vbb) obfusca-
tors as follows: any information that an adversary can learn about a circuit from
its obfuscation can also be learned by a simulator that does not have access to
the obfuscation, but only to an oracle for the circuit’s functionality [BGI+01]. In
this definition, the crucial difference between the adversary and the simulator is
that the adversary has access to a short representation of the circuit (namely, the
obfuscation), whereas the simulator only has access to an input/output interface
that implements the functionality. Some circuit classes allow the adversary to
exploit this difference by using the obfuscation as an input value to the circuit
itself. Those circuit classes are unobfuscatable in the vbb sense, rendering vbb
obfuscation impossible for the general class of circuits in P [BGI+01].

In more detail, the impossibility proof in [BGI+01] relies on point functions,
which output zero everywhere except at a single input value α, where they output
a string β. The circuits in the unobfuscatable class can, depending on the input,
do all of the following: (1) apply that point function, (2) return an encryption
of α, (3) homomorphically evaluate a gate, or (4) check whether a ciphertext
decrypts to β. An adversary holding the obfuscation is able to divide it into
single gates, and can use those to homomorphically evaluate option (1), thereby
converting a ciphertext for α into a ciphertext for β. That way, the adversary can
tell whether he is holding an obfuscation with a point function from α to β, or
one with the all-zero function. (In the second case, the homomorphic evaluation
would yield a ciphertext for zero, rather than one for β.) A simulator, only
having access to the input/output behavior, cannot perform the homomorphic
evaluation, because it cannot divide the functionality into single gates.

The above construction rules out the existence of an obfuscator that maps
classical circuits to classical circuits. It leaves open the possibility of an

Impossibility of Quantum Virtual Black-Box Obfuscation 499

obfuscator that maps classical circuits to quantum states: such a quantum state,
together with a fixed public ‘interpreter map’, could be used to evaluate the
obfuscated circuit. The possibility of quantum obfuscation was the object of
study for Alagic and Fefferman [AF16], who attempted to port the impossibility
proof from [BGI+01] to the quantum setting. In doing so, they encountered two
issues:

Homomorphic Evaluation. The interpreter map, that runs the obfuscation
state on a chosen input, is a quantum map. It will likely have quantum states
as intermediate states of the computation, so in order to homomorphically
run the point function, one needs the ability to evaluate quantum gates on
quantum ciphertexts. The unobfuscatable circuit class will thus need to con-
tain quantum circuits to perform homomorphic evaluation steps.

Reusability. In the construction from [BGI+01], the obfuscated circuit needs
to be used multiple times: for example, each homomorphic gate evaluation
requires a separate call to the obfuscated circuit. If the obfuscation is a
(classical or quantum) circuit, this poses no problem, but if it is a quantum
state, multiple uses are not guaranteed.

These two issues limit the extent of the impossibility results in [AF16]: they show
that it is impossible to vbb obfuscate quantum circuits into reusable obfuscated
states (e.g., quantum circuits).

After it became clear [BGI+01] that obfuscating all classical circuits is impos-
sible, efforts were made to construct obfuscators for smaller, but still non-
trivial, classes of circuits. Successful constructions have been found for several
classes of evasive functions, such as point functions [Wee05,CD08] and compute-
and-compare functions [WZ17,GKW17]. Currently, no quantum obfuscators are
known for circuit classes that cannot be classically obfuscated.

1.2 Our Contributions

We strengthen the impossibility of virtual-black-box obfuscation of classical
circuits by showing that classical circuits cannot be obfuscated into quantum
states. We assume the existence of classical-client quantum fully homomor-
phic encryption and classical obfuscation of compute-and-compare functions.
Both of these can be constructed from the learning-with-errors (LWE) assump-
tion [Mah18,Bra18,WZ17,GKW17]. The compute-and-compare construction
requires the strongest assumption in terms of the LWE parameters.

Theorem (informal). If LWE is hard for quantum algorithms, then it is impos-
sible to quantum vbb obfuscate the class of polynomial-size classical circuits (even
with non-negligible correctness and security error, and even if the obfuscation
procedure is inefficient).

Our result uses the same proof strategy as in [BGI+01] and [AF16], over-
coming the two main issues described above as follows:

Homomorphic Evaluation. The constructions in [BGI+01] and [AF16] rely
on the obfuscator to implement the homomorphic evaluations, by obfuscating

500 G. Alagic et al.

the functionality “decrypt, then apply a gate, then re-encrypt”. However, by
now, we know how to build quantum fully-homomorphic encryption schemes
directly [Mah18,Bra18], based on the learning-with-errors (LWE) assump-
tion. Thus, in our construction, we can remove the homomorphic gate eval-
uation from the obfuscated circuits: the adversary can do the homomorphic
evaluation of the point function herself, using a quantum fully-homomorphic
encryption scheme. With the homomorphic evaluation removed from it, the
class of circuits that we prove impossible to obfuscate can remain classical.
This solution introduces a slight complication: part of the functionality of
the circuit we construct is now to return the public evaluation key. How-
ever, unless one is willing to make an assumption on the circular security
of the homomorphic encryption, the size of this key (and therefore the size
of the circuit) scales with the size of the circuit that needs to be homomor-
phically evaluated. To get rid of this inconvenient dependence, our unobfus-
catable circuit returns the public key in small, individual blocks that can
be independently computed. We argue that any classical-key quantum fully-
homomorphic encryption scheme has public keys that can be decomposed in
this way.

Reusability. The circuits that we consider are classical and deterministic.
Therefore, if the interpreter map is run on an obfuscation state ρ for a cir-
cuit C, plus a classical input x, then by correctness, the result is (close
to) a computational-basis state |C(x)〉. This output can be copied out to a
separate wire without disturbing the state, and the interpreter map can be
reversed, recovering the obfuscation ρ to be used again. If the interpreter
map is not unitary, then it can be run coherently (i.e., keeping purification
registers around instead of measuring wires), and this coherent version can
be reversed as long as the purification registers are not measured.
At one point in our proof, we will need to run the interpreter map homomor-
phically on (an encryption of) ρ and x. This may result in a superposition of
different ciphertexts for C(x), which cannot cleanly be copied out to a sep-
arate wire without entangling that wire with the output. Thus, recovering ρ
is not necessarily possible after the homomorphic-evaluation step.
We circumvent this problem by making sure that the homomorphic evalua-
tion occurs last, so that ρ is not needed anymore afterwards. This reorder-
ing is achieved by classically obfuscating the part of the circuit that checks
whether a ciphertext decrypts to the value β. That way, this functionality
becomes a constant output value that a user can request and store before per-
forming the homomorphic evaluation, and use afterwards. To obfuscate the
decryption check, we use a classical vbb obfuscator for compute-and-compare
functions, which relies on a variant of the LWE assumption [WZ17,GKW17].
These vbb obfuscators have previously been successfully applied in a similar
way, in the context of quantum extraction [AL20a,BS20].

Our impossibility result compares to the classical impossibility result from Barak
et al. [BGI+01] as follows. First, as mentioned, we extend the realm of impossible
obfuscators to include obfuscators that produce a quantum state, rather than a

Impossibility of Quantum Virtual Black-Box Obfuscation 501

classical circuit. Second, the impossibility result from [BGI+01] is unconditional,
whereas we require the (standard) assumption that learning-with-errors is hard
for quantum adversaries. It may be possible to relax this assumption if ρ can be
recovered after the homomorphic evaluation, see Sect. 1.3 below. Third, the class
of classical circuits that cannot be obfuscated is slightly different: in our work,
it does not have the homomorphic-evaluation functionality built into it, and is
therefore arguably simpler, strengthening the impossibility result. However, we
stress that in both works, the unobfuscatable circuit class itself is somewhat
contrived: the main implication is that its superclass P is unobfuscatable.

As an intermediate result, we show that it is impossible to vbb obfuscate even
just the class of classical multi-bit-output point functions into a quantum state,
if the adversary and simulator have access to auxiliary classical information that
contains an encryption of the non-zero input value α and a vbb obfuscation of
a function depending on the secret key for that encryption.

Theorem (informal). If LWE is hard for quantum algorithms, then it is impos-
sible to quantum vbb obfuscate multi-bit-output point functions and the all-zero
function under the presence of classical dependent auxiliary information (even
with non-negligible soundness and security error).

At first glance, that may seem to contradict constructions in [WZ17,
GKW17], where vbb obfuscation for point functions is constructed, even in the
presence of dependent auxiliary information. The crucial difference is that the
constructions in [WZ17,GKW17] only allow a limited dependency of the auxil-
iary information, whereas in our impossibility proof, the dependence is slightly
stronger. This subtle difference seems to indicate that the gap between possibility
and impossibility of vbb obfuscation is closing.

Comparison with Concurrent Work. Independently of this work, Ananth and
La Placa [AL20b] have concurrently shown the general impossibility of quan-
tum copy-protection, thereby also ruling out quantum obfuscation of classical
circuits. Their techniques are very similar to ours, but their adversary allows to
completely de-obfuscate the program given non-black-box access (a property that
we did not attempt to achieve). They also present some positive results in their
work in the context of software protection. Their result requires an additional
assumption compared to ours. Specifically, in addition to LWE being quantum-
secure, they also require that the underlying homomorphic-encryption scheme is
circularly secure. We avoid circularity by introducing a notion of decomposable
public keys for homomorphic encryption. Our technique could be used to remove
the circularity assumption from the copy-protection impossibility result [AL20b]
as well.

1.3 Open Questions

The strongest assumption in our work is the existence of the classical vbb obfus-
cator for compute-and-compare functions, which relies on a variant of LWE. It is
necessary because the QFHE evaluation may destroy the obfuscation state when

502 G. Alagic et al.

the superposition of output ciphertexts is measured. However, it is not clear if
this measurement actually destroys any information on the plaintext level, since
the plaintext value is deterministic. Thus, it may be possible to recover the
(plaintext) obfuscation state after the QFHE evaluation. In that case, it is not
necessary to classically obfuscate the compute-and-compare function: it can sim-
ply be part of the quantum-obfuscated functionality.

Other open questions are about possibilities rather than impossibilities. What
circuit classes can be vbb obfuscated into quantum states? Is quantum vbb obfus-
cation stronger than classical vbb obfuscation, in the sense that it can obfuscate
circuit classes that classical vbb cannot? Also, the weaker notion of indistin-
guishability obfuscation (iO) (also introduced in [BGI+01]) is not affected by
our impossibility result: it may still be possible to classically or quantumly iO
obfuscate classical functionalities. Could such a construction be lifted into the
quantum realm, so that we can (quantum) iO obfuscate [BK20] quantum func-
tionalities?

1.4 Structure of This Work

In Sect. 2, we give preliminary definitions of the relevant concepts for this work:
(classical and quantum) obfuscation, quantum fully homomorphic encryption,
and compute-and-compare functions. We also describe how the input of an
(almost) deterministic quantum circuit can be recovered. In Sect. 4, we prove
impossibility of quantum obfuscation of point functions under dependent aux-
iliary input. Building on the concepts in that section, Sect. 5 proves our main
result, impossibility of quantum obfuscation of classical circuits without any
auxiliary input.

2 Preliminaries

2.1 Notation

PPT stands for probabilistic polynomial-time algorithm, and QPT stands for
quantum polynomial-time algorithm. If a classical or quantum algorithm A has
oracle access to a classical function f , we write Af . If A has access to multiple
oracles with separate input/output interfaces, we write, e.g., Af,g. Since our ora-
cles will model or emulate evaluation of a known circuit, our quantum algorithms
will always have superposition access to a classical oracle f . This amounts to
oracle access to the unitary map |x〉 |y〉 �→ |x〉 |y ⊕ f(x)〉 where ⊕ is the bit-wise
XOR operation.

Let poly (x) denote an unspecified polynomial p(x). Similarly, let negl (x)
denote an unspecified negligible function μ(x), i.e., for all constants c ∈ N there
exists an x0 ∈ R such that for all x > x0, |μ(x)| < x−c. Let Zn : {0, 1}n → {0n}
denote the all-zero function on n input bits: Zn(x) = 0n for all x.

If D is a distribution, we write x ← D to signify that x is sampled according
to D. For a finite set S, we write x ←R S to signify that x is sampled uniformly at

Impossibility of Quantum Virtual Black-Box Obfuscation 503

random from the set S. Two distribution ensembles {Dλ}λ∈N and {D′
λ}λ∈N are

computationally indistinguishable, written Dλ
c≈ D′

λ, if no poly-time algorithm
can distinguish between a sample from one distribution or the other, i.e., for all
PPT A, ∣

∣
∣
∣

Pr
x←Dλ

[A(x) = 1] − Pr
y←D′

λ

[A(y) = 1]
∣
∣
∣
∣
≤ negl (λ) .

We sometimes write x
c≈ y if it is clear from which distributions x and y are

sampled. If not even a QPT algorithm can distinguish them, the distributions
are quantum-computationally indistinguishable.

A pure quantum state is written |ψ〉 or |ϕ〉, and a mixed quantum state
is usually denoted by ρ or σ. As a special case, a computational-basis state is
written |x〉 for some classical string x ∈ {0, 1}∗. We sometimes abuse notation
and give a classical input x to a quantum algorithm A, writing A(x): in that
case, the algorithm A is actually given |x〉 as input.

X and Z denote the bit-flip gate and phase-flip gate, respectively. If we write
Xa for some a ∈ {0, 1}, we mean that the gate X is applied if a = 1; otherwise,
identity is applied.

Finally, for a mixed state ρ, let ‖ ρ ‖tr := Tr
(√

ρ†ρ
)

denote the trace norm.

The trace distance 1
2 ‖ ρ − σ ‖tr is a measure for how different two mixed states

ρ and σ are.

2.2 Classical and Quantum Virtual-Black-Box Obfuscation

In this work we consider so-called circuit obfuscators: the functionalities to be
hidden are represented by circuits. A virtual-black-box circuit obfuscator hides
the functionality in such a way that the obfuscation looks like a “black box”:
the only way to get information about its functionality is to evaluate it on an
input and observe the output.

Definition 2.1 ([BGI+01, Definition 2.2]). A classical virtual black-box
obfuscator for the circuit class F is a probabilistic algorithm O such that

1. (polynomial slowdown) For every circuit C ∈ F, |O(C)| = poly (|C|);
2. (functional equivalence) For every circuit C ∈ F, the string O(C) describes a

circuit that computes the same function as C;
3. (virtual black-box) For any PPT adversary A, there exists a PPT simulator

S such that for all circuits C ∈ F,
∣
∣
∣Pr [A(O(C)) = 1] − Pr

[

A(SC(1|C|)) = 1
]∣
∣
∣ ≤ negl (|C|) .

As a variation on the third requirement, one may assume that some auxiliary
information (which may depend on the circuit C) is present alongside the obfus-
cation O(C). In that case, a simulator with access to that auxiliary information
should still be able to simulate the adversary’s output distribution:

504 G. Alagic et al.

Definition 2.2 ([GK05, Definition 3]). A classical virtual black-box obfuscator
w.r.t. dependent auxiliary input for a circuit class F is a probabilistic algorithm
O that satisfies Definition 2.1, with the “virtual black-box” property redefined as
follows:

3. (virtual black-box) For any PPT adversary A, there exists a PPT simulator
S such that for all circuits C ∈ F and all strings aux ∈ {0, 1}poly(|C|) (which
may depend on C),

∣
∣
∣Pr [A(O(C), aux) = 1] − Pr

[

A(SC(1|C|, aux)) = 1
]∣
∣
∣ ≤ negl (|C|) .

In the quantum setting, we consider quantum obfuscators for classical circuit
classes: that is, the obfuscation O(C) may be a quantum state. We adapt Defi-
nition 5 from [AF16], which defines quantum obfuscators for quantum circuits.

Definition 2.3. A quantum virtual black-box obfuscator for the classical circuit
class F is a quantum algorithm O and a QPT J such that

1. (polynomial expansion) For every circuit C ∈ F , O(C) is an m-qubit quantum
state with m = poly (n);

2. (functional equivalence) For every circuit C ∈ F and every input x,

1
2

‖ J (O(C) ⊗ |x〉〈x|) − |C(x)〉〈C(x)| ‖tr ≤ negl (|C|) ;

3. (virtual black-box) For every QPT adversary A, there exists a QPT simulator
S (with superposition access to its oracle) such that for all circuits C ∈ F,

∣
∣
∣Pr[A(O(C)) = 1] − Pr[SC(1|C|) = 1]

∣
∣
∣ ≤ negl (|C|) .

There are a few differences with the classical definition. First, the obfuscation
is a quantum state, and not a (classical or quantum) circuit. Second, due to
the probabilistic nature of quantum computation, we allow a negligible error
in the functional equivalence. Third, the simulator is slightly more powerful
because of its superposition access to the functionality of C: a query performs
the unitary operation specified by |x〉 |z〉 �→ |x〉 |z ⊕ C(x)〉. Note that a quantum
adversary can always use a (classical or quantum) obfuscation to compute the
obfuscated functionality on a superposition of inputs, obtaining a superposition
of outputs. For this reason, the simulator gets superposition access to its oracle
in the quantum setting. Throughout this work, all oracles supplied to quantum
algorithms allow for superposition access.

We can again strengthen the virtual black-box property to include (classical
or quantum) dependent auxiliary information: this auxiliary string or state would
be provided to both the adversary and the simulator, in the same way as in
Definition 2.2.

Impossibility of Quantum Virtual Black-Box Obfuscation 505

2.3 Quantum Fully Homomorphic Encryption

A fully homomorphic encryption (FHE) of a message m provides privacy by
hiding the message, but allows ciphertexts to be transformed in a meaningful
way. Given a ciphertext for m, some party that only knows the public key can
produce a ciphertext for f(m) for any efficiently computable function f . Any
information that is necessary for this transformation is contained in the public
key (in particular, we do not make a distinction between the public key and the
evaluation key).

A quantum fully homomorphic encryption (QFHE) scheme allows quan-
tum computations on encrypted quantum data. From the Learning with
Errors assumption, it is possible to construct secure QFHE schemes where all
client-side operations (key generation, encryption, and decryption) are classi-
cal [Mah18,Bra18].

Definition 2.4. A quantum fully homomorphic encryption scheme QFHE con-
sists of four algorithms, as follows:

– Key Generation: (pk , sk) ← QFHE.KeyGen(1λ) produces a public key pk
and a secret key sk, given a security parameter λ. This is a classical PPT
algorithm.

– Encryption: c ← QFHE.Encpk (m) encrypts a single-bit message m ∈ {0, 1}.
For multi-bit messages m ∈ {0, 1}�, we write QFHE.Encpk (m) to denote the
bit-by-bit encryption

(QFHE.Encpk (m1),QFHE.Encpk (m2), . . . ,QFHE.Encpk (m�)) .

This algorithm is in general QPT but it only uses a classical random tape,
and furthermore whenever m is classical, so is the encryption algorithm.

– Decryption: m′ = QFHE.Decsk (c) decrypts a ciphertext c into a single-bit
message m′, using the secret key sk. If c is a ciphertext for a multi-bit mes-
sage, we write QFHE.Decsk (c) for the bit-by-bit decryption. Again this is QPT
in general, but can be classical if c is classical.

– Homomorphic evaluation: c′ ← QFHE.Evalpk (C, c) takes as input the pub-
lic key, a classical description of a BQP circuit C with 	 input wires and 	′

output wires, and a bit-by-bit encrypted ciphertext c encrypting 	 bits. It pro-
duces a c′, a sequence of 	′ output ciphertexts. This is a QPT algorithm.

We say that a (Q)FHE scheme is (perfectly) correct if the homomorphic
evaluation of any BQP circuit C on a ciphertext has the effect of applying C to
the plaintext, i.e.,

QFHE.Decsk (QFHE.Evalpk (C,QFHE.Encpk (m))) = C(m)

for all m, C, and (pk , sk) ← QFHE.KeyGen(1λ). A (Q)FHE scheme is secure if its
encryption function is secure. We usually require quantum indistinguishability
under chosen plaintext attacks (q-IND-CPA) [BJ15].

506 G. Alagic et al.

The QFHE schemes from [Mah18,Bra18] encrypt a message m using a quan-
tum one-time-pad with random keys a, b ∈ {0, 1}, attaching classical FHE cipher-
texts of the one-time pad keys:

QFHE.Encpk(m) = XaZb |m〉 ⊗ |FHE.Encpk (a),FHE.Encpk (b)〉 .

Note that this ciphertext can be classically represented as the tuple

(m ⊕ a,FHE.Encpk (a),FHE.Encpk (b)) ,

so that encryption may be seen as a classical procedure. Conversely, a clas-
sical homomorphic encryption m̃ ← FHE.Encpk (m) can easily be turned
into a valid quantum homomorphic encryption by preparing the state |0〉 ⊗
|m̃,FHE.Encpk (0)〉 , which decrypts to m. Thus, it is possible to freely switch
back and forth between quantum ciphertexts and classical ciphertexts, as long
as the message is known to be classical.

The quantum one-time pad encryption also straightforwardly extends to
encrypting general quantum states |ψ〉, rather than only computational-basis
states |m〉: the quantum one-time pad is simply applied to the state |ψ〉, and
the one-time-pad keys encrypted into a computational-basis state as above. Of
course, encryption becomes a quantum procedure in this setting. We will use
encryption of quantum states in our work, where we supply the encryption of a
quantum-state obfuscation as the input to a homomorphic evaluation.

Leveled FHE and Bootstrappable FHE. In many cases in the literature, we wish to
consider FHE schemes which require an a priori upper bound (polynomial in the
security parameter) on the depth of circuits to be homomorphically evaluated.
In the current state of the art, such schemes (referred to as leveled FHE) can
be constructed under milder assumptions than unleveled schemes: in particular,
they do not require circular-security-type assumptions. There are a few variants
of leveled FHE defined in the literature, but for the purpose of this work we use
the following.

Definition 2.5 (Leveled FHE). A leveled (Q)FHE scheme is a scheme where
the key generation takes an additional parameter KeyGen(1λ, 1d) and outputs
(sk , pk) for a (Q)FHE scheme. Correctness holds only for evaluating circuits
of total depth at most d. Furthermore, the length of sk and the complexity of
decryption are independent of d.

We assume w.l.o.g. that the random tape used by KeyGen is always of length
λ and does not depend on d (this is w.l.o.g. since it is always possible to use a
PRG to stretch the random tape into the desired length).

One way to construct leveled FHE is via the bootstrapping technique as
suggested by Gentry [Gen09]. Gentry showed that given a base scheme with
homomorphic capacity greater than its decryption depth, it is possible to create
a leveled scheme with the following properties.

Impossibility of Quantum Virtual Black-Box Obfuscation 507

Definition 2.6 (Leveled Bootstrapped FHE). A leveled bootstrapped
(Q)FHE is a scheme where there exists a base-scheme with a key-generation
algorithm SubKeyGen(1λ) and encryption, decryption and evaluation algorithms,
such that the key generation algorithm KeyGen(1λ, 1d) takes the following form.

1. Run SubKeyGen(1λ) with fresh randomness (d+1) times to generate sub-keys
(sk i, pk i) for i = 0, . . . , d.

2. Encrypt c∗
i = Encpki

(sk i−1) for all i = 1, . . . , d.
3. Output pk = (pk0, (pk1, c

∗
1), . . . , (pkd, c

∗
d)) and sk = skd.

For our purposes, we will assume that the random tape that is being used for the
SubKeyGen executions is generated using a pseudorandom function. That is, the
random tape of KeyGen is used as a seed for a PRF, and for the ith execution of
SubKeyGen we use a random tape that is derived by applying a PRF on i.

For the sake of completeness we note that the decryption algorithm of the boot-
strapped scheme is the same as that of the base scheme, and that for the sake
of encryption only pk0 is needed.

2.4 Point Functions and Compute-and-Compare Functions

The class of compute-and-compare functions, as well as its subclass of point
functions, plays an important role in this work. In this section we define these
function classes.

Definition 2.7 (Point function). Let y ∈ {0, 1}n. The point function Py is
defined by

Py(x) :=

{

1 if x = y

0 otherwise.
(1)

The value y is called the target value. Point functions are a special type of
compute-and-compare function, where the function f is the identity:

Definition 2.8 (Compute-and-compare function). Let f : {0, 1}m →
{0, 1}n and y ∈ {0, 1}n. The compute-and-compare function CCf,y is defined
by

CCf,y(x) :=

{

1 if f(x) = y

0 otherwise.
(2)

One can also consider point functions or compute-and-compare functions with
multi-bit output : in that case, the function outputs either some string z (instead
of 1), or the all-zero string (instead of 0). We denote such functions with Py,z

and CCf,y,z.

508 G. Alagic et al.

2.5 Recovering the Input of a Quantum Circuit

We will consider (efficient) quantum operations as (polynomial-size) circuits,
consisting of the following set of basic operations: unitary gates from some fixed
constant-size gate set, measurements in the computational basis, and initializa-
tion of auxiliary wires in the |0〉 state.

While unitary gates are always reversible by applying their transpose (U†U =
I for any unitary U), measurement gates may not be, as they can possibly
collapse a state. However, we can effectively delay all measurements in a circuit
C until the very end, as follows. Define UC as the unitary that computes C
coherently : that is, for every computational-basis measurement in C on some
wire w, UC performs a CNOT operation from w onto a fresh auxiliary target
wire initialized in the state |0〉. The circuit C is now equivalent to the following
operation: initialize all auxiliary target wires in the |0〉 state1, apply the unitary
UC , and measure all auxiliary target wires in the computational basis.

In this work, we will encounter circuits C which, for specific inputs, yield a
specific state in the computational basis with very high probability. In the proof
of the following lemma, we specify how to use coherent computation in order to
learn the output value while preserving the input quantum state.

Lemma 2.9. Let C be a quantum circuit. There exists an input-recovering cir-
cuit Crec such that for all inputs ρin, the following holds: if 1

2 ‖ C(ρin) − |x〉〈x| ‖tr
≤ ε for some classical string x and some ε > 0, then

1
2

‖Crec(ρin) − (ρin ⊗ |x〉〈x|) ‖tr ≤ 2
√

ε.

The specification of Crec is independent of the specific input state ρin. How-
ever, Crec cannot necessarily recover all possible inputs ρin, only those that lead
to an almost-classical output.

The input-recovering circuit consists of running C coherently, copying out
the output register, and reverting the coherent computation of C. We formally
prove Lemma 2.9 in Appendix A.

3 FHE with Decomposable Public Keys

For the purpose of our result in Sect. 5, we will need to obfuscate a class of circuits
that allow to (quantumly) homomorphically evaluate operations of arbitrary
polynomial depth. We nevertheless wish to rely only on leveled FHE for the
sake of minimizing our assumptions. We therefore would like to define a class of
circuits that are a priori polynomially bounded in size, but which are capable of

1 If, apart from the targets of the aforementioned CNOTs, the circuit C contains any
other wires that are initialized in the |0〉 state inside the circuit, those wires are also
considered part of the input of the unitary UC . They should be initialized to |0〉 here
as well.

Impossibility of Quantum Virtual Black-Box Obfuscation 509

encapsulating public-key generation of a leveled scheme for some depth d that is
not fixed a priori. Note that in a leveled scheme even the length of pk depends
on d.

To this end, we define the notion of a scheme with decomposable public
key, which is defined below. Intuitively, in such a scheme, the public key can be
generated by first generating a sequence of blocks, each of some size independent
of d. These blocks can then be combined into the actual pk of the scheme.
Crucially, the generation of the blocks can be done in parallel, and the complexity
of generating each block (given the security parameter and the random tape) is
independent of d. In other words, a decomposable public key can be generated
on the fly, involving small “chunks” of computation that are independent of d.
Formally, we recall Definition 2.5 and define decomposability as follows.

Definition 3.1 (Decomposable public key). A leveled (Q)FHE scheme has
a decomposable public key if there exists a polynomial K = K(λ, d) and
a polynomial-time deterministic function BlockGen(1λ, i, r, r′) (where r, r′ ∈
{0, 1}λ) that generates classical strings (“blocks”) ci such that the following
holds:

1. Correctness: there exists a QPT Assemble such that for all λ, d, r, and r′,
letting K = K(λ, d), it holds that

Assemble(c0, c1, c2, . . . , cK) = pk ,

where (pk , sk) = KeyGen(1λ, 1d; r), and ci = BlockGen(1λ, i, r, r′) for all i.
2. Simulatability: there exists a QPT simulator S such that for all d and r,

S(1λ, pk)
c≈ (c0, c1, c2, . . . , cK),

where (pk , sk) = KeyGen(1λ, d, r), and the distribution on (c1, c2, . . . , cK) on
the right-hand side is generated by selecting a uniformly random r′, and then
for all i, setting ci = BlockGen(1λ, i, r, r′).

We emphasize that in Definition 3.1, the randomness strings r and r′ are
the same for every run of BlockGen. The reason for this choice is twofold. First,
with our final goal in mind of obfuscating the BlockGen functionality, we want
to avoid having to specify K independent randomness strings (as that would
considerably increase the size of the circuit to obfuscate). Second, most schemes
require some form of correlation to exist between the different blocks. Thinking
of r and r′ as short random seeds for a PRF, this correlation can be realized by
running the PRF on the same inputs (see, for example Sect. 3.1).

3.1 Instantiation from Bootstrapped Schemes

For bootstrapped schemes (see Definition 2.6), decomposability follows immedi-
ately by definition. In this case, we do not even need the extra randomness r′ and
can simply set BlockGen(1λ, i, r, r′) to be the process that evaluates PRFr(i−1)

510 G. Alagic et al.

and PRFr(i) to generate random tapes for SubKeyGen, uses this randomness to
generate (sk i−1, pk i−1) and (sk i, pk i), generates c∗

i based on these values, and
outputs (pk i, c

∗
i). In addition, for i = 0, it simply computes PRFr(0), and uses

the resulting randomness to generate pk0.
Existing QFHE schemes are based on bootstrapping [Mah18,Bra18]. Without

affecting security, we can assume that their randomness is sampled using a PRF
as just described.

Lemma 3.2. Bootstrapping-based leveled QFHE schemes with keys generated
from a PRF have decomposable public keys.

Proof. Define K(λ, d) := d, and c0 := pk0. For i > 0, define the blocks ci, which
are generated by BlockGen(1λ, i, r, r′), as follows:

ci := (pk i, c
∗
i = Encpki

(sk i−1)), where (pk i, sk i) ← SubKeyGen(1λ; PRFr(i)),

(pk i−1, sk i−1) ← SubKeyGen(1λ; PRFr(i − 1)).
(3)

Note that for public keys of this form, BlockGen does not make use of the addi-
tional randomness r′.

The assembly function Assemble(c0, c1, . . . , cd) is a straightforward concate-
nation of all the blocks: Assemble(c0, c1, . . . , cd) := (c0, c1, . . . , cd).

Simulatability as in Definition 3.1 is also easily satisfied: a simulator S, for
a public key pk and index i, reads out the pair (pk i, c

∗
i). It can thereby exactly

produce the list (c1, . . . , cd).

3.2 Instantiation from Any Leveled (Q)FHE

We now observe that we can instantiate the a (Q)FHE with decomposable
public keys from any leveled scheme, even ones that are not bootstrapped.
Decomposing the public key of a general QFHE scheme is done via garbled
circuits [Yao86,App17], as we will briefly outline here. A block ci corresponds
to a single garbled gate of the circuit for KeyGen. That is, BlockGen(1λ, i, r, r′)
returns a garbling of the ith gate2 of KeyGen(1λ, d, r), using r′ as a PRF seed
to generate sufficient randomness for the garbling. A separate block (e.g., c0)
contains the required encoding/decoding information to use the garbled circuit.
To assemble the public key, a user concatenates all garbled gates, and evaluates
the garbled circuit to obtain the output pk . Conversely, by the privacy property
of garbled circuits [BHR12], a simulator given only the security parameter λ
and the output pk of the garbled circuit, can reproduce a garbled circuit that is
indistinguishable from the actual garbled circuit. It can then return the gates of
that simulated garbled circuit as the blocks ci.

Any result relying on the decomposability of the public key of a non-
/bootstrapping based QFHE scheme of course also relies on any computational
assumptions required for the security of the garbled-circuit construction.
2 The total number of blocks, K(λ, d), will be the number of gates in KeyGen(1λ, 1d, r).

Since the number of gates is polynomial in λ, it suffices for the length of the PRF
seed r′ to be linear in λ.

Impossibility of Quantum Virtual Black-Box Obfuscation 511

4 Impossibility with Respect to Dependent Auxiliary
Information

In this section, we show impossibility of virtual-black-box quantum obfuscation
of classical point functions under dependent auxiliary information. It sets the
stage for our main result, Theorem 5.1, where we incorporate the auxiliary infor-
mation into the circuit, constructing a circuit class which is unobfuscatable even
without the presence of any auxiliary information. Although the result in the
current section is perhaps less surprising, the proof contains the most important
technical details of our work.

The impossibility result requires two cryptographic primitives, both of which
can be built from the hardness of LWE [Mah18,WZ17,GKW17]: (1) quantum
fully homomorphic encryption with classical client-side operations (see Sect. 2.3),
and (2) classical vbb obfuscation of compute-and-compare functions. Our result
therefore holds under the assumption that LWE is hard. The least favorable LWE
parameters are required for the obfuscation of compute-and-compare function-
alities, and are discussed in Sect. 4.1.

In Sect. 4.1, we describe the classical obfuscator for compute-and-compare
functions that we use. We will apply the construction from [WZ17,GKW17] to a
specific class of compute-and-compare functions with a specific type of auxiliary
information. In Sect. 4.2, we use this specific application to define a class of
circuits and auxiliary-information strings that is unobfuscatable in the quantum
vbb sense. The impossibility proof follows in Sect. 4.3.

4.1 Classical Obfuscation of Compute-and-Compare Functions

The works of [WZ17,GKW17] showed that under the assumption that LWE
(with polynomial dimension and exponential modulus in the security parameter
λ) is hard, it is possible to classically obfuscate compute-and-compare func-
tions [WZ17,GKW17]. We will write “LWE*” to denote their specific variant
of the LWE assumption. We note that LWE is known to be at least as hard
as worst-case lattice problems [Reg05,PRS17]. In particular, the aforementioned
parameter regime LWE* translates to the worst-case hardness of the Gap Short-
est Vector Problem (GapSVP) with sub-exponential approximation factor (in
the dimension of the lattice). There is currently no known super-polynomial
quantum speedup for GapSVP, and the best known quantum (and classical)
algorithms require sub-exponential running time.

The works of [WZ17,GKW17] achieve so-called distributional virtual-black-
box obfuscation of functions CCf,y, assuming that the target value y has suf-
ficient pseudo-entropy given a description of the function f . The obfuscation
is even secure in the presence of (dependent) auxiliary information, so long as
the pseudo-entropy of the target value remains high, even conditioned on this
auxiliary information.

In our construction, we provide a classically-obfuscated compute-and-
compare function as auxiliary information to a quantum obfuscation. We will

512 G. Alagic et al.

require that the target value of the compute-and-compare function is sufficiently
random, even given the rest of the auxiliary information (including the quantum
obfuscation).

More specifically, for any IND-secure public-key encryption scheme (KeyGen,
Enc, Dec), fixed bit string α, and a classical obfuscation procedure O(·), define
a distribution ensemble {Dα,d

λ }λ∈N that samples

(pk , α̃, osk ,β) ← Dα,d
λ as (pk , sk) ← KeyGen(1λ, 1d),

α̃ ← Encpk (α),

β ←R {0, 1}λ ,

osk ,β ← O (CCDecsk ,β) , (4)

where CCDecsk ,β is a compute-and-compare function as in Definition 2.8. For each
α and λ, the target value β is chosen independently from all other information:
its pseudo-entropy is λ, even conditioned on pk , α̃ and Decsk . Therefore, there
exists an obfuscation procedure for this class of compute-and-compare programs
that has distributional indistinguishability in the following sense:

Lemma 4.1 (Application of [WZ17, Theorem 5.2]). Under the LWE*
assumption, there exists a classical obfuscation procedure OCC(·) and a (non-
uniform) simulator S such that for all α and d,

(pk , α̃, osk ,β)
c≈ (pk , α̃,S(1λ, params)), (5)

where (pk , α̃, osk ,β) ← Dα,d
λ using OCC(·) as the obfuscation procedure O(·), and

params is some information that is independent of sk and β (e.g., it may contain
the size of the circuit and/or λ).

In the rest of this work, OCC(·) will implicitly be the obfuscation procedure
used in the distributions Dα,d

λ .
We note that the proofs in [WZ17,GKW17] showed a classical reduction

from the hardness of distinguishing the aforementioned distributions to the hard-
ness of solving LWE. We note that proofs by (either Karp or Turing) classical
polynomial-time reduction from A to B implies that any solver for A can be
translated into a solver for B with comparable complexity, in particular if the
solver for A runs in quantum polynomial time then so will the resulting solver
for B.

As a consequence of Lemma 4.1, we show that it is hard to guess the value
of α, given only a ciphertext α̃ for α, and an obfuscation of the compute-and-
compare function. Intuitively, since the information α is completely independent
of the target value β, the obfuscation effectively hides the secret key sk that
would be necessary to learn α.

Lemma 4.2. Under the LWE* assumption, there exists a negligible function
negl (·) such that for any QPT algorithm A and any d,

Pr[A(pk , α̃, osk ,β) = α] ≤ negl (λ) . (6)

Impossibility of Quantum Virtual Black-Box Obfuscation 513

Here, the probability is over α ←R {0, 1}λ, (pk , α̃, osk ,β) ← Dα,d
λ , and the exe-

cution of A.

Proof. The result follows almost directly from Lemma 4.1, except that we want
to bound the probability that A outputs the multi-bit string α, whereas Lemma
4.1 only deals with algorithms with a single-bit output.

To bridge the gap, define an algorithm A′
α that runs A on its input, and

compares the output of A to α: if they are equal, A′
α outputs 1; otherwise, it

outputs 0.
For any fixed value of α, we have

Pr[A(pk , α̃, osk ,β) = α] = Pr[A′
α(pk , α̃, osk ,β) = 1] (7)

(∗)≈ Pr[A′
α(pk , α̃,S(1λ, params)) = 1] (8)

= Pr[A(pk , α̃,S(1λ, params)) = α]. (9)

The approximation (*) follows from Lemma 4.1, and holds up to a difference
of negl (λ).

To complete the proof, note that S(1λ, params) depends neither on α nor on
sk . Thus, randomizing over α again, and invoking privacy of the encryption, we
get

Pr[A(pk , α̃, osk,β) = α] ≈ Pr[A(pk , α̃, S(1λ, params)) = α] ≤ negl (|α|) = negl (λ) .
(10)

We have thus established that, even in the presence of an obfuscated compute-
and-compare function that depends on the secret key, encryptions remain secure
(in the one-way sense). For this security to hold, it is important that the target
value β is sufficiently independent of the plaintext α.

4.2 An Unobfuscatable Circuit Class

In this subsection, we define the class of circuits and auxiliary-information strings
that we will prove unobfuscatable. Like in [BGI+01], we will exploit the idea
that access to an object (circuit or quantum state) that allows the evaluation of
a function is more powerful than mere black-box access to the functionality: in
particular, it allows to evaluate the function homomorphically. For this argument
to work, it is important that the function is not easily learnable through black-
box access. We will use point functions, as in [BGI+01]: with black-box access
only, it is hard to tell the difference between a point function and the all-zero
function Zλ, that accepts inputs of length λ, and always returns 0λ.

Consider the class Cpoint
λ,d ∪ Czero

λ,d of circuits plus auxiliary information, where

Cpoint
λ,d := {(Pα,β ,(pk , α̃, osk ,β)) | α ∈ {0, 1}λ, (pk , α̃, osk ,β) ∈ supp(Dα,d

λ)}, (11)

Czero
λ,d := {(Zλ,(pk , α̃, osk ,β)) | α ∈ {0, 1}λ, (pk , α̃, osk ,β) ∈ supp(Dα,d

λ)}. (12)

514 G. Alagic et al.

The class Cpoint
λ,d contains all λ-bit point functions, together with an encryption

of the point input α, a public key that enables evaluation of circuits up to depth
d, and a function that checks whether a ciphertext decrypts to the target value
β. Czero

λ,d contains the all-zero function Zλ (which is itself a point function), but
still with auxiliary information for the possible values of α and β.

Suppose that some quantum obfuscation (OQ(·)),J) exists. We define a QPT
algorithm A, which expects an obfuscation ρ = OQ(Pα,β) (or OQ(Zλ)), together
with the classical auxiliary information aux = (pk , α̃, osk ,β). On general inputs ρ
and aux = (key, ctxt, obf) of this form, let A do as follows:

1. Run QFHE.Evalkey(J ,Enckey(ρ) ⊗ |ctxt〉〈ctxt|) to homomorphically evaluate
the interpreter algorithm J . If ρ = OQ(Pα,β), key = pk , and ctxt = α̃, then
this step results in an encryption of β with high probability. If ρ = OQ(Zλ),
key = pk , ctxt = α̃, and d is at least the depth of J , then it results in an
encryption of 0λ. Note that we use classical and quantum ciphertexts for the
QFHE scheme interchangeably here: see Sect. 2.3 for a justification.

2. Run obf on the output of the previous step. If obf = osk ,β , this will indicate
whether the previous step resulted in a ciphertext for β or not.

The above algorithm A will almost certainly output 1 when given an element
from Cpoint

λ,d for a sufficiently high value of d, because of the functional equivalence
of the two obfuscations and the correctness of the homomorphic evaluation.
Similarly, when given an element from Czero

λ,d − Cpoint
λ,d , it will almost certainly

output 0. Formally, for all α, β ∈ {0, 1}λ − {0λ}, and d at least the depth of J ,

Pr [A(OQ(Pα,β), pk , α̃, osk ,β) = 1] ≥ 1 − negl (λ) , (13)
Pr [A(OQ(Zλ), pk , α̃, osk ,β) = 1] ≤ negl (λ) . (14)

The vastly different output distribution of A when given an obfuscation of a
point function versus the zero function are due the fact that A has an actual
representation, ρ, of the function to feed into the interpreter J . In the proof in
the next subsection, we will see that a simulator, with only black-box access to
these functionality, will not be able to make that distinction.

4.3 Impossibility Proof

We are now ready to state and prove the impossibility theorem for quantum
obfuscation of classical circuits with dependent auxiliary input. We reiterate that
the two assumptions (quantum FHE and compute-and-compare obfuscation) can
be realized under the LWE* assumption.

Define Cpoint
λ :=

⋃

d∈[2λ] Cpoint
λ,d , and similarly Czero

λ :=
⋃

d∈[2λ] Czero
λ,d .

Theorem 4.3 (Impossibility of quantum obfuscation w.r.t. auxiliary
input). Suppose that a classical-client quantum fully homomorphic encryption
scheme QFHE exists that satisfies Definition 2.4, and a classical obfuscation
procedure OCC(·) for compute-and-compare functionalities exists that satisfies

Impossibility of Quantum Virtual Black-Box Obfuscation 515

Lemma 4.1. Then any (not necessarily efficient) quantum obfuscator (OQ(·),J)
for the class Cpoint

λ ∪ Czero
λ satisfying conditions 1 (polynomial expansion) and 2

(functional equivalence) from Definition 2.3 cannot be virtual black-box under
the presence of classical dependent auxiliary input, i.e., cannot satisfy condition
3 from Definition 2.3 where both A and S get access to a classical string aux
(which may depend on C).

It may seem that the class Cpoint
λ ∪ Czero

λ , consisting of point functions, is
classically obfuscatable using OCC(·) from [WZ17,GKW17]. That obfuscation
is secure if α (wich is the target value if we view Pα,β as the multi-bit output
compute-and-compare function CCid,α,β) is unpredictable given the auxiliary
information aux = (pk , α̃, osk ,β). On the surface, that seems to be the case: only
an encryption of α is available in the auxiliary information. However, the secret
key sk is present as part of the compute-and-compare function CCDecsk ,β . That
function is obfuscated, but the obfuscation is not secure in the presence of (an
obfuscation of) Pα,β . Thus, the obfuscation result from [WZ17,GKW17] almost
applies to the class Cpoint

λ ∪ Czero
λ , but not quite. Hence we are able to prove

impossibility of obfuscating it, which we do below.

Proof. The proof structure is similar to [BGI+01], and is by contradiction:
assume that a quantum obfuscation (OQ(·),J) for the class Cpoint

λ ∪ Czero
λ does

exist that satisfies all three conditions. We will show that the output distribu-
tion of the algorithm A defined in Sect. 4.2 is approximately the same for every
element of the class, contradicting Eqs. (13) and (14).

By the assumption of the existence of a secure quantum obfuscation
(OQ(·),J), there exists a simulator S such that

∣
∣Pr[A(OQ(Pα,β), aux) = 1] − Pr[SPα,β (1λ, aux) = 1]

∣
∣ ≤ negl (λ) , and (15)

∣
∣Pr[A(OQ(Zλ), aux) = 1] − Pr[SZλ(1λ, aux) = 1]

∣
∣ ≤ negl (λ) . (16)

The probability is taken over α ←R {0, 1}λ and aux = (pk , α̃, OCC(CCDecsk ,β))
← Dα,q

λ for q the depth of the interpreter circuit J . Note that S does not depend
on α, β, sk , or pk .

In the remainder of this proof we show that for any S (independent of α, β,
sk , pk),

∣
∣Pr[SPα,β (1λ, aux) = 1] − Pr[SZλ(1λ, aux) = 1]

∣
∣ ≤ negl (λ) , (17)

from which it can be concluded that

|Pr[A(OQ(Pα,β), aux) = 1] − Pr[A(OQ(Zλ), aux) = 1]| ≤ negl (λ) . (18)

Since Eqs. 13 and 14 imply that this difference must be at least 1 − negl (λ),
Eq. 18 yields a contradiction.

516 G. Alagic et al.

To show that Eq. (17) holds, i.e., to bound the difference in output probabil-
ities of S when given an oracle for Pα,β versus an oracle for Zλ, we employ the
one-way to hiding theorem as it is stated in [AHU19, Theorem 3]. It says that
there exists a QPT algorithm B such that

∣
∣Pr[SPα,β (1λ, aux) = 1] − Pr[SZλ(1λ, aux) = 1]

∣
∣ ≤ 2d′ ·

√

Pr[BZλ(1λ, aux) = α],
(19)

where d′ = poly (λ) is the query depth of S. However, by Lemma 4.2, the proba-
bility that B outputs α when given the auxiliary information aux = (pk , α̃, osk ,β)
is negligible in λ. Granting B access to the zero-oracle and the additional input
1λ does not increase this probability, since the value of λ can already be deduced
from aux.

We can thus conclude that the difference in Eq. (19) is negligible, and Eq. (17)
holds, as desired.

We end this section with a few remarks: we describe some variants and gener-
alizations of Theorem 4.3 which almost immediately follow from the presented
proof.

Remark 4.4. The proof for Theorem 4.3 also works if we replace OCC(CCDecsk ,β)
inside the distributions Dα,d

λ with OQ(CCDecsk ,β), the quantum obfuscation we
get from the assumption. This adaptation renders a quantum obfuscator for
point functions impossible with respect to dependent auxiliary quantum input:
a slightly weaker statement, but it does not require the existence of a classical
obfuscator for compute-and-compare programs. In particular, the required LWE
parameters are better, because we only need the assumption of quantum fully
homomorphic encryption.

Remark 4.5. Even a quantum obfuscator (OQ(·),J) for Cpoint
λ ∪ Czero

λ with non-
negligible errors in the functional equivalence and/or the virtual-black-box prop-
erty would lead to a contradiction in the proof of Theorem 4.3. Concretely, let
εf denote the error for functional equivalence, and εs denote the error for secu-
rity in the virtual-black-box sense (they are both negl (|C|) = negl (λ) in Def-
inition 2.3). The impossibility proof works for any values of εf , εs such that
εf + εs ≤ 1

2 − 1
poly(λ) . So in particular, even a quantum obfuscator with small

constant (instead of negligible) errors in both conditions cannot exist.

5 Impossibility Without Auxiliary Information

In this section, we will show that quantum virtual-black-box obfuscation of clas-
sical circuits is impossible even when no auxiliary information is present. We will
rely heavily on the class constructed in Sect. 4, essentially showing how the aux-
iliary information can be absorbed into the obfuscated circuit. As a result, the
unobfuscatable circuit class itself becomes perhaps less natural, but still consists

Impossibility of Quantum Virtual Black-Box Obfuscation 517

of classical polynomial-size circuits. Thus, our theorem implies impossibility of
quantum vbb obfuscation of the class of all efficient classical circuits.

We would like to consider circuits of the following form:

Cα,β,aux(b, x) :=

{

aux = (pk , α̃, osk ,β) if b = 0
Pα,β(x) if b = 1,

(20)

where (pk , α̃, osk ,β) is generated from Dα,d
λ , as in Sect. 4. The input bit b is a

choice bit: if it is set to 1, the function Pα,β (or Zλ) is evaluated on the actual
input x, whereas if it is set to 0, the auxiliary information is retrieved.

The idea would then be to retrieve the auxiliary information, followed by
a homomorphic evaluation of the branch for b = 1. There is a problem with
this approach, however: since the auxiliary information aux contains the public
evaluation key pk , the circuit C grows with d, which affects the length of pk .
But as the circuit grows, a (non-circularly-secure) QFHE scheme may require a
larger pk to perform all evaluation steps.

To get around this issue, the unobfuscatable circuit will generate the public
key step-by-step, in a construction inspired by [CLTV15]. We will assume that
the public key of the leveled QFHE scheme is decomposable in the sense of
Definition 3.1.

Given a scheme with a decomposable public key, we redefine the unobfuscat-
able circuit class as follows. Instead of returning the entire public key at once,
the circuit allows the user to request individual blocks ci, up to some depth
d. An honest user can run the circuit K + 1 = K(d, λ) + 1 times to obtain
pk = Assemble(c0, c1, . . . , cK). The depth d will not be fixed a priori, although
it will be (exponentially) upper bounded: the circuit will only be able to handle
inputs i where |i| ≤ λ. Thus, only up to 2λ blocks ci can be retrieved.

The circuit class we consider in this section consists of circuits of the following
form:

Ĉα,β,d,r,r′,α̃,osk,β
(b, x) :=

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

(α̃, osk ,β) if b = 0,

BlockGen(1λ, x, r, r′) if b = 1 and x ≤ K(d, λ),
⊥ if b = 1 and x > K(d, λ),
Pα,β(x) if b = 2.

(21)

or

Ĉ ′
α,β,d,r,r′,α̃,osk,β

(b, x) :=

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

(α̃, osk ,β) if b = 0,

BlockGen(1λ, x, r, r′) if b = 1 and x ≤ K(d, λ),
⊥ if b = 1 and x > K(d, λ),
Zλ(x) if b = 2.

(22)

The first input b is now a choice trit: depending on its value, a different branch
of the circuit is executed.

518 G. Alagic et al.

We alter the distribution Dα,d
λ from Eq. 4, so that it does not explicitly

generate the public key anymore. That information is now generated on-the-
fly by setting b = 1. The public and secret key are deterministically computed
using r to generate the auxiliary information (α̃, osk ,β) for b = 0. Consider the
distribution ensemble {Dα,d,r

λ }λ∈N, where

(α̃, osk ,β) ← Dα,d,r
λ as (pk , sk) = KeyGen(1λ, 1d, r),

α̃ ← Encpk (α),

β ←R {0, 1}λ

osk ,β ← CCDecsk ,β . (23)

Note that the value of d does not influence the size of α̃ or osk ,β (and thereby
the circuit size of Ĉ and Ĉ ′).

We can then define the following parametrized circuit classes:

Ĉpoint
λ,d := {Ĉα,β,d,r,r′,α̃,osk,β

| α ∈ {0, 1}λ, r, r′ ∈ {0, 1}λ, (α̃, osk,β) ∈ supp(Dα,d,r
λ)},

(24)

Ĉzero
λ,d := {Ĉ′

α,β,d,r,r′,α̃,osk,β
| α ∈ {0, 1}λ, r, r′ ∈ {0, 1}λ, (α̃, osk,β) ∈ supp(Dα,d,r

λ)}.

(25)

Define the circuit class Ĉpoint
λ ∪ Ĉzero

λ , where Ĉpoint
λ :=

⋃

d∈[2λ] Ĉpoint
λ,d and simi-

larly Ĉzero
λ :=

⋃

d∈[2λ] Ĉzero
λ,d . Note that in all circuits in this class, the “auxiliary

information” (α̃, osk ,β) is fixed. Hence, when the obfuscation of the compute-
and-compare function is requested by setting b = 0, the circuit always returns
the same obfuscation that depends on the same secret key sk .

Similarly to the setting with auxiliary input, there exists a QPT algorithm
A′ that has significantly different output distributions when given a circuit from
Ĉpoint

λ,d versus a circuit from Ĉzero
λ,d . Here, we define the algorithm A′ that is able

to distinguish only if it receives a circuit for d = q, where q is the depth of the
interpreter circuit. If d < q, then A′ will not be able to retrieve a long enough
evaluation key, and will always output zero. However, for our impossibility result,
a single value of d on which A′ succeeds in distinguishing is sufficient. Note that
we cannot define our circuit class to contain only circuits with d = q, since q
depends on the specific obfuscator/interpreter pair.

On an input state ρ, we define A′ as follows:

1. Run Jrec(ρ, |b = 0〉〈b = 0| ⊗ ∣
∣0λ

〉〈

0λ
∣
∣), where Jrec is the input-recovering ver-

sion of the interpreter circuit (see Lemma 2.9). If ρ is an obfuscation of
a circuit in Ĉpoint ∪ Ĉzero, this will result in a state (negligibly close to)
ρ ⊗ |α̃〉〈α̃| ⊗ |osk ,β〉〈osk ,β |. Measure the second and third registers to obtain
α̃ and osk ,β .

2. Let q be the depth of the interpreter J . Because the interpreter is efficient,
q = poly (λ). Sequentially run Jrec(ρ, |b = 1〉〈b = 1| ⊗ |i〉〈i|) for all 0 ≤ i ≤
K = K(q, λ) to obtain (c0, c1, . . . , cK), and compute the public evaluation

Impossibility of Quantum Virtual Black-Box Obfuscation 519

key pk = Assemble(c0, c1, . . . , cK), suitable for homomorphic evaluations of
up to depth q. Note that the key pk is only revealed in its entirety if the given
circuit has parameter d = q. If d < q, A′ will notice that ⊥ is returned for
some queries, and outputs 0 at this point.

3. Run QFHE.Evalpk (J ,Encpk (ρ)⊗|Encpk (b = 2)〉〈Encpk (b = 2)|⊗|α̃〉〈α̃|). Simi-
larly to Sect. 4.2, this will result in a ciphertext for β (if ρ was an obfuscation
of a circuit in Ĉpoint

λ) or a ciphertext for 0λ (if ρ was an obfuscation of a circuit
in Ĉzero

λ), provided that d = q.
4. Run osk ,β on the output of the previous step. Doing so will indicate whether

the previous step resulted in a ciphertext for β or not. If yes, output 1;
otherwise output 0.

Let (OQ(·),J) be an obfuscator. The algorithm A′, when given a random
obfuscated circuit from Ĉpoint

λ,q , will almost certainly output 1, where q is the depth
of J . At the same time, an element from Ĉzero

λ,q −Ĉpoint
λ,q will almost certainly result

in the output 0. More formally, for all α, r ∈ {0, 1}λ and d = q,

Pr
[

A′(OQ(Ĉα,β,d,r,r′,α̃,osk,β
)) = 1

]

≥ 1 − negl (λ) , (26)

Pr
[

A′(OQ(Ĉ ′
α,β,d,r,r′,α̃,osk,β

)) = 1
]

≤ negl (λ) . (27)

The probability is taken over Dα,d,r
λ , r′, and the internal randomness of A′.

Compare these inequalities to Eqs. 13 and 14.
We are now ready to state our main theorem.

Theorem 5.1 (Impossibility of quantum obfuscation). Suppose that a
classical/client quantum fully homomorphic encryption scheme QFHE exists that
satisfies Definition 2.4 and 3.1, and a classical obfuscation procedure OCC(·)
for compute-and-compare functionalities exists that satisfies Lemma 4.1. Then
any (not necessarily efficient) quantum obfuscator (OQ(·),J) for the class
Ĉpoint

λ ∪ Ĉzero
λ satisfying conditions 1 (polynomial expansion) and 2 (functional

equivalence) from Definition 2.3 cannot be virtual black-box, i.e., cannot satisfy
condition 3 from Definition 2.3.

Corollary 5.2. If the LWE* assumption holds, the class of classical polynomial-
size circuits cannot be quantum virtual-black-box obfuscated in the sense of Def-
inition 2.3.

Proof (Proof of Theorem 5.1). We again prove the statement by contradiction,
assuming that there does exist an obfuscator (OQ(·),J) that securely obfuscates
Ĉpoint

λ ∪ Ĉzero
λ . Let q be the depth of J , so that K(q, λ) is the number of blocks

ci of the evaluation key required by A′ to successfully distinguish between an
element of Ĉpoint

λ and of Ĉzero
λ .

520 G. Alagic et al.

By the assumption that (OQ(·),J) is secure, there must exist a simulator S0

such that for all α, r ∈ {0, 1}λ (and setting d = q),
∣
∣
∣
∣
Pr[A′(OQ(Ĉα,β,q,r,r′,α̃,osk,β

)) = 1] − Pr[SĈα,β,q,r,r′,α̃,osk,β

0 (1λ) = 1]
∣
∣
∣
∣
≤ negl (λ) ,

(28)
∣
∣
∣
∣
Pr[A′(OQ(Ĉ ′

α,β,q,r,r′,α̃,osk,β
)) = 1] − Pr[S

Ĉ′
α,β,q,r,r′,α̃,osk,β

0 (1λ) = 1]
∣
∣
∣
∣
≤ negl (λ) .

(29)

The probabilities are taken over (α̃, osk ,β) ← Dα,d,r
λ and r′ ←R {0, 1}λ, and the

internal randomness of A′ and S0.
The output distribution of S0 can be exactly simulated by another simulator,

S1, that has access only to an oracle for Pα,β or Zλ, and gets the auxiliary
information pk , α̃, and osk ,β as input. S1 can simply run S0, simulating each
oracle query using its own oracle, auxiliary input, or a combination thereof. If
(part of) the query of S0 is for some block ci, S1 can use the decomposability of
pk to compute the individual blocks. We formally show the existence of such an
S1 in Corollary B.2.

We can thus conclude that for all α, r ∈ {0, 1}λ,
∣
∣
∣Pr[A′(OQ(Ĉα,β,q,r,r′,α̃,osk,β

)) = 1] − Pr[SPα,β

1 (1λ, α̃, osk ,β , pk) = 1]
∣
∣
∣ ≤ negl (λ) ,

(30)
∣
∣
∣Pr[A′(OQ(Ĉ ′

α,β,q,r,r′,α̃,osk,β
)) = 1] − Pr[SZλ

1 (1λ, α̃, osk ,β , pk) = 1]
∣
∣
∣ ≤ negl (λ) .

(31)

Again, the probabilities are over Dα,d,r
λ and r′, A′, and S1.

However, by Eq. (17) in the proof of Theorem 4.3, the output distribution of
S1 can only differ negligibly between the two different oracles. Thus, we have

∣

∣

∣Pr[A′(OQ(Ĉα,β,q,r,r′,α̃,osk,β
)) = 1] − Pr[A′(OQ(Ĉ′

α,β,q,r,r′,α̃,osk,β
)) = 1]

∣

∣

∣ ≤ negl (λ) .

(32)

This contradicts our observation in Eqs. 26 and 27 that on input Ĉα,β,q,r,r′,α̃,osk,β
,

A′ will almost always output 1, whereas on input Ĉ ′
α,β,q,r,r′,α̃,osk,β

, it will almost
always output 0.

Acknowledgements. We thank Andrea Coladangelo, Urmila Mahadev and Alexan-
der Poremba for useful discussions, and Serge Fehr for pointing out an error in the proof
of Lemma 2.9. GA acknowledges support from the NSF under grant CCF-1763736,
from the U.S. Army Research Office under Grant Number W911NF-20-1-0015, and
from the U.S. Department of Energy under Award Number DE-SC0020312. ZB is sup-
ported by the Binational Science Foundation (Grant No. 2016726), and by the Euro-
pean Union Horizon 2020 Research and Innovation Program via ERC Project REACT

Impossibility of Quantum Virtual Black-Box Obfuscation 521

(Grant 756482) and via Project PROMETHEUS (Grant 780701). YD is supported by
the Dutch Research Council (NWO/OCW), as part of the Quantum Software Con-
sortium programme (project number 024.003.037). CS is supported by a NWO VIDI
grant (Project No. 639.022.519). Part of this work was done while the authors were
attending https://simons.berkeley.edu/programs/quantum2020. The Quantum Wave
in Computing at the Simons Institute for the Theory of Computing.

A Proof of Lemma 2.9

Proof. The input-recovering circuit Crec will consist of running C coherently,
copying out the output register, and reverting the coherent computation of C.
Suppose the circuit C contains k measurement gates, 	 initializations of wires in
the |0〉 state, and outputs of length n. Define Crec as:

1. Run UC on input ρA1
in ⊗ ∣

∣0�
〉〈

0�
∣
∣
A2 ⊗ ∣

∣0k
〉〈

0k
∣
∣
M , where UC is the unitary that

coherently executes C, A = (A1, A2) is a register that contains the actual
input and the auxiliary input |0〉 states for C, and M is the register that
contains the auxiliary wires for the coherent measurements.

2. Copy the wires that are supposed to contain the output C(ρin) into a register
Y , initialized to |0n〉〈0n|, using CNOTs. The source of the CNOTs is a register
O, the subregister of A containing those output wires. Write O for the registers
in A that are not in O (these wires are normally discarded after the execution
of C).

3. Run U†
C to recover the original input, and discard the registers A2 and M .

The behavior of Crec can be summarized as

Crec(ρin) = TrA2M

[

U†
CCNOT

⊗n
O,Y

(

UC

(

ρA1
in ⊗ ∣

∣0�+k
〉〈

0�+k
∣
∣
A2M

)

U†
C ⊗ |0〉〈0|Y

)

(

CNOT⊗n
O,Y

)†
UC

]

. (33)

To see that Crec acts as promised, let ρin, x, and ε be s.t. ‖ C(ρin) − |x〉〈x| ‖tr ≤ ε.
If ε is small, the CNOT in Step 2. does not create a lot of entanglement, since
the control wires are (close to) the computational-basis state |x〉〈x|. The output
is therefore (almost) perfectly copied out.

More formally, note that C(ρin) = TrOM

[

UC(ρin ⊗ ∣
∣0�+k

〉〈

0�+k
∣
∣)U†

C

]

. By
Lemma A.1 in [ABC+19], the closeness of C(ρin) and |x〉〈x| implies that there
exists a density matrix χOM such that

1
2

∥
∥
∥UC(ρin ⊗ ∣

∣0�+k
〉〈

0�+k
∣
∣)U†

C − |x〉〈x| ⊗ χOM
∥
∥
∥
tr

≤ √
ε. (34)

Next, we use the fact that a quantum map cannot increase the trace distance
between two states to derive two inequalities from Eq. 34.

https://simons.berkeley.edu/programs/quantum2020

522 G. Alagic et al.

For the first inequality, we append |x〉〈x| on both sides (into a separate Y
register):

1
2

∥
∥
∥ UC(ρin ⊗ ∣

∣0�+k
〉〈

0�+k
∣
∣)U†

C ⊗ |x〉〈x|Y − |x〉〈x| ⊗ χOM ⊗ |x〉〈x|Y
∥
∥
∥
tr

≤ √
ε.

(35)

For the second inequality, we instead append |0〉〈0| into the Y register, fol-
lowed by CNOTs from O onto Y . Note that on the second term inside the trace
norm, the effect is the same as before:

1
2

∥
∥
∥CNOT⊗n

O,Y

(

UC(ρin ⊗ ∣
∣0�+k

〉〈

0�+k
∣
∣)U†

C ⊗ |0〉〈0|Y
) (

CNOT⊗n
O,Y

)†

− |x〉〈x| ⊗ χOM ⊗ |x〉〈x|Y
∥
∥
∥
tr

≤ √
ε. (36)

Thus, by the triangle inequality, the left-hand terms inside the trace norms
in Eqs. 35 and 36 are 2

√
ε-close. Applying the map TrA2M

[

U†
C(·)UC

]

to both
terms, which again does not increase the trace difference, we arrive at the desired
statement:

1
2

‖ (ρin ⊗ |x〉〈x|) − Crec(ρin) ‖tr ≤ 2
√

ε. (37)

B Auxiliary Lemmas for Theorem 5.1

Lemma B.1. Let g : {0, 1}m → {0, 1}n for m,n ∈ N, and let c ∈ {0, 1}n. Let
f : {0, 1} × {0, 1}m → {0, 1}n be defined by

f(b, x) :=

{

c if b = 0
g(x) if b = 1.

(38)

Then for every QPT A, there exists a simulator S such that for all f, g of the
form described above, and all input states ρ:

Pr[Af (ρ) = 1] = Pr[Sg(ρ, c) = 1]. (39)

Proof. Recall that since A and S are quantum algorithms, they access their
oracles in superposition: that is, A has access to the map defined by |x〉 |z〉 �→
|x〉 |z ⊕ f(x)〉, and S has access to the map defined by |x〉 |z〉 �→ |x〉 |z ⊕ g(x)〉.
The simulator S runs A on input ρ, and simulates any oracle calls to f (on inputs
registers BX and output register Z) using two oracle calls to g. It only needs to
prepare an auxiliary register in the state |0n〉, and run the following circuit:

B • X • X

X
g g

|0n〉 •
Z

|c〉 •

Impossibility of Quantum Virtual Black-Box Obfuscation 523

To see that this circuit exactly simulates a query to f on BXZ, consider an
arbitrary query state

∑

i

αi |bi, xi〉BX |zi〉Z |ϕi〉R , (40)

where R is some purifying register. The state on BXZR (plus the two auxiliary
registers containing |0n〉 and |c〉) after the above circuit is executed, is equal to

∑

i

αi |bi, xi〉XB |0n〉 |zi ⊕ b · g(xi) ⊕ (1 − b) · c〉Z |c〉 |ϕi〉R (41)

=
∑

i

αi |bi, xi〉XB |0n〉 |zi ⊕ f(xi)〉Z |c〉 |ϕi〉R , (42)

which is exactly the state that would result from a direct query to f .

Corollary B.2. Let Ĉpoint
λ and q be as in Sect. 5. Then for any QPT S0, there

exists a QPT simulator S1 such that for all α, r ∈ {0, 1}λ,
∣
∣
∣
∣
Pr[SĈα,β,q,r,r′,α̃,osk,β

0 (1λ) = 1] − Pr[SPα,β

1 (1λ, α̃, osk ,β , pk) = 1]
∣
∣
∣
∣
≤ negl (λ) .

(43)

A similar statement holds for circuits from Ĉzero
λ .

Proof. The statement is proven via an intermediate simulator S2. This simulator
is constructed by repeated application of Lemma B.1, so that for all α, r,
∣
∣
∣
∣
Pr[SĈα,β,q,r,r′,α̃,osk,β

0 (1λ) = 1] − Pr[SPα,β

2 (1λ, α̃, osk ,β , c0, c1, c2, . . . , cK ,⊥) = 1]
∣
∣
∣
∣

(44)

is at most negl (λ), where K = K(q, λ) as in Definition 3.1. On the right-hand
side, the probability is additionally over a random choice of r′ (resulting in the
sequence (c0, c1, c2, . . . , cK)).

Next, we apply the simulatability property of Definition 3.1. It states that
there exists a simulator S3 that, given a public key, can generate the distribution
over (c0, c1, c2, . . . , cK) itself. Define

SPα,β

1 (1λ, α̃, osk ,β , pk) := SPα,β

2 (1λ, α̃, osk ,β ,S3(pk),⊥), (45)

and the corollary follows.

References

[Aar05] Aaronson, S.: Ten semi-grand challenges for quantum computing theory.
Blog post (2005). https://www.scottaaronson.com/writings/qchallenge.
html

https://www.scottaaronson.com/writings/qchallenge.html
https://www.scottaaronson.com/writings/qchallenge.html

524 G. Alagic et al.

[ABC+19] Aharonov, D., Brakerski, Z., Chung, K.-M., Green, A., Lai, C.-Y., Sattath,
O.: On quantum advantage in information theoretic single-server PIR. In:
Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11478, pp. 219–
246. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17659-4 8

[AF16] Alagic, G., Fefferman, B.: On quantum obfuscation. arxiv preprint
arXiv: 1602.01771 (2016)

[AHU19] Ambainis, A., Hamburg, M., Unruh, D.: Quantum security proofs using
semi-classical oracles. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO
2019. LNCS, vol. 11693, pp. 269–295. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-26951-7 10

[AL20a] Ananth, P., La Placa, R.L.: Secure quantum extraction protocols. In: Pass,
R., Pietrzak, K. (eds.) TCC 2020. LNCS, vol. 12552, pp. 123–152. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-64381-2 5

[AL20b] Ananth, P., La Placa, R.L.: Secure software leasing. arXiv
arXiv: 2005.05289 (2020)

[App17] Applebaum, B.: Garbled circuits as randomized encodings of functions: a
primer. In: Tutorials on the Foundations of Cryptography. ISC, pp. 1–44.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57048-8 1

[BGI+01] Barak, B., et al.: On the (Im)possibility of obfuscating programs. In: Kilian,
J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg
(2001). https://doi.org/10.1007/3-540-44647-8 1

[BHR12] Bellare, M., Hoang, V.T., Rogaway, P.: Foundations of garbled circuits.
In: Proceedings of the 19th ACM SIGSAC Conference on Computer and
Communications Security (CCS), pp. 784–796. ACM (2012). https://doi.
org/10.1145/2382196.2382279

[BJ15] Broadbent, A., Jeffery, S.: Quantum homomorphic encryption for circuits
of low T-gate complexity. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO
2015. LNCS, vol. 9216, pp. 609–629. Springer, Heidelberg (2015). https://
doi.org/10.1007/978-3-662-48000-7 30

[BK20] Broadbent, A., Kazmi, R.A.: Indistinguishability obfuscation for quantum
circuits of low t-count. arXiv: 2005.14699 (2020)

[Bra18] Brakerski, Z.: Quantum FHE (Almost) as secure as classical. In: Shacham,
H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10993, pp. 67–95.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96878-0 3

[BS20] Bitansky, N., Shmueli, O.: Post-quantum zero knowledge in constant
rounds. In: Proceedings of the 52nd Annual ACM SIGACT Symposium
on Theory of Computing, pp. 269–279 (2020)

[CD08] Canetti, R., Dakdouk, R.R.: Obfuscating point functions with multibit
output. In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp.
489–508. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-
78967-3 28

[Chr14] Christiano, P.: Quantum obfuscation of classical circuits. Seminar talk in
the Quantum Games and Protocols program, Simons Insitute for the The-
ory of Computing (2014). Online: https://simons.berkeley.edu/talks/paul-
christiano-2014-02-25

[CLTV15] Canetti, R., Lin, H., Tessaro, S., Vaikuntanathan, V.: Obfuscation of prob-
abilistic circuits and applications. In: Dodis, Y., Nielsen, J.B. (eds.) TCC
2015. LNCS, vol. 9015, pp. 468–497. Springer, Heidelberg (2015). https://
doi.org/10.1007/978-3-662-46497-7 19

https://doi.org/10.1007/978-3-030-17659-4_8
http://arxiv.org/abs/1602.01771
https://doi.org/10.1007/978-3-030-26951-7_10
https://doi.org/10.1007/978-3-030-26951-7_10
https://doi.org/10.1007/978-3-030-64381-2_5
http://arxiv.org/abs/2005.05289
https://doi.org/10.1007/978-3-319-57048-8_1
https://doi.org/10.1007/3-540-44647-8_1
https://doi.org/10.1145/2382196.2382279
https://doi.org/10.1145/2382196.2382279
https://doi.org/10.1007/978-3-662-48000-7_30
https://doi.org/10.1007/978-3-662-48000-7_30
http://arxiv.org/abs/2005.14699
https://doi.org/10.1007/978-3-319-96878-0_3
https://doi.org/10.1007/978-3-540-78967-3_28
https://doi.org/10.1007/978-3-540-78967-3_28
https://simons.berkeley.edu/talks/paul-christiano-2014-02-25
https://simons.berkeley.edu/talks/paul-christiano-2014-02-25
https://doi.org/10.1007/978-3-662-46497-7_19
https://doi.org/10.1007/978-3-662-46497-7_19

Impossibility of Quantum Virtual Black-Box Obfuscation 525

[Gen09] Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Proceed-
ings of the 41st Annual ACM Symposium on Theory of Computing (STOC),
pp. 169–178. ACM (2009). https://doi.org/10.1145/1536414.1536440

[GK05] Goldwasser, S., Kalai, Y.T.: On the impossibility of obfuscation with auxil-
iary input. In: Proceedings of the 46th Annual Symposium on Foundations
of Computer Science (FOCS), pp. 553–562. IEEE (2005). https://doi.org/
10.1109/SFCS.2005.60

[GKW17] Goyal, R., Koppula, V., Waters, B.: Lockable obfuscation. In: Proceed-
ings of the 58th Annual Symposium on Foundations of Computer Science
(FOCS), pp. 612–621. IEEE (2017). https://doi.org/10.1109/FOCS.2017.
62

[Mah18] Mahadev, U.: Classical homomorphic encryption for quantum circuits.
In: Proceedings of the 59th Annual Symposium on Foundations of Com-
puter Science (FOCS), pp. 332–338. IEEE (2018). https://doi.org/10.1109/
FOCS.2018.00039

[PRS17] Peikert, C., Regev, O., Stephens-Davidowitz, N.: Pseudorandomness of
ring-LWE for any ring and modulus. In: Proceedings of the 49th Annual
ACM Symposium on Theory of Computing (STOC), pp. 461–473. ACM
(2017). https://doi.org/10.1145/3055399.3055489

[Reg05] Regev, O.: On lattices, learning with errors, random linear codes, and cryp-
tography. In: Proceedings of the 37th Annual ACM Symposium on Theory
of Computing (STOC), pp. 84–93. ACM (2005). https://doi.org/10.1145/
1060590.1060603

[Wee05] Wee, H.: On obfuscating point functions. In: Proceedings of the 37th Annual
ACM Symposium on Theory of Computing (STOC), pp. 523–532. ACM
(2005). https://doi.org/10.1145/1060590.1060669

[WZ17] Wichs, D., Zirdelis, G.: Obfuscating compute-and-compare programs under
LWE. In: Proceedings of the 58th Annual Symposium on Foundations of
Computer Science (FOCS), pp. 600–611. IEEE (2017). https://doi.org/10.
1109/FOCS.2017.61

[Yao86] Yao, A.C.: How to generate and exchange secrets. In: Proceedings of the
27th Annual Symposium on Foundations of Computer Science (FOCS), pp.
162–167. IEEE (1986). https://doi.org/10.1109/SFCS.1986.25

https://doi.org/10.1145/1536414.1536440
https://doi.org/10.1109/SFCS.2005.60
https://doi.org/10.1109/SFCS.2005.60
https://doi.org/10.1109/FOCS.2017.62
https://doi.org/10.1109/FOCS.2017.62
https://doi.org/10.1109/FOCS.2018.00039
https://doi.org/10.1109/FOCS.2018.00039
https://doi.org/10.1145/3055399.3055489
https://doi.org/10.1145/1060590.1060603
https://doi.org/10.1145/1060590.1060603
https://doi.org/10.1145/1060590.1060669
https://doi.org/10.1109/FOCS.2017.61
https://doi.org/10.1109/FOCS.2017.61
https://doi.org/10.1109/SFCS.1986.25

New Approaches for Quantum
Copy-Protection

Scott Aaronson1(B), Jiahui Liu1, Qipeng Liu2, Mark Zhandry3,
and Ruizhe Zhang1

1 The University of Texas at Austin, Austin, USA
{aaronson,jiahui,rzzhang}@cs.utexas.edu

2 Princeton University, Princeton, USA
qipengl@cs.princeton.edu

3 Princeton University and NTT Research, Princeton, USA
mzhandry@princeton.edu

Abstract. Quantum copy-protection uses the unclonability of quantum
states to construct quantum software that provably cannot be pirated.
copy-protection would be immensely useful, but unfortunately, little is
known about achieving it in general. In this work, we make progress on
this goal, by giving the following results:

– We show how to copy-protect any program that cannot be learned
from its input-output behavior relative to a classical oracle. This
construction improves on Aaronson (CCC 2009), which achieves the
same relative to a quantum oracle. By instantiating the oracle with
post-quantum candidate obfuscation schemes, we obtain a heuristic
construction of copy-protection.

– We show, roughly, that any program which can be watermarked can
be copy detected, a weaker version of copy-protection that does not
prevent copying, but guarantees that any copying can be detected.
Our scheme relies on the security of the assumed watermarking, plus
the assumed existence of public-key quantum money. Our construc-
tion is publicly detectable and applicable to many recent watermark-
ing schemes.

1 Introduction

Quantum copy-protection, proposed by Aaronson [Aar09], aims to use the
unclonability of quantum states to achieve programs that cannot be copied.
That is, the program f is given as a quantum state |ψf 〉. |ψf 〉 allows for com-
puting f on arbitrary inputs; meanwhile, it is infeasible to copy the state |ψf 〉,
or even convert |ψf 〉 into two arbitrary states that both allow for computing f .
The quantum no-cloning theorem shows that quantum states, in general, cannot
be copied. Copy protection takes this much further, augmenting the unclon-
able state with the ability to evaluate programs. Copy-protection would have
numerous applications to intellectual property management and to cryptogra-
phy generally.
c© International Association for Cryptologic Research 2021
T. Malkin and C. Peikert (Eds.): CRYPTO 2021, LNCS 12825, pp. 526–555, 2021.
https://doi.org/10.1007/978-3-030-84242-0_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-84242-0_19&domain=pdf
https://doi.org/10.1007/978-3-030-84242-0_19

New Approaches for Quantum Copy-Protection 527

Progress on quantum copy-protection has unfortunately been slow. On the
negative side, copy-protection for general programs is impossible. As explained
by Aaronson [Aar09], any learnable program—that is, a program whose descrip-
tion can be learned from just its input/output behavior—cannot be copy-
protected. Indeed, given the (copy-protected) code for the program, an attacker
can just query the code on several inputs and learn the original program from
the results. The attacker can then copy the original program indefinitely. A
more recent result of Ananth and La Placa [AP20] shows, under certain com-
putational assumptions, that certain contrived unlearnable programs cannot be
copy-protected.

On the positive side, Aaronson demonstrates a quantum oracle1 relative to
which copy-protection exists for any unlearnable program. Due to the negative
result above, this scheme cannot be instantiated in general. Worse, even for
programs that are not subject to the impossibility result, it remains unclear
how even heuristically to instantiate the scheme. Very recently, Ananth and La
Placa [AP20] build a version of copy-protection, which they call software leasing,
which guarantees a sort of copy detection mechanism. Unfortunately, their work
explicitly allows copying the functionality and only ensures that such copying can
be detected. Also, their construction only works for a certain class of “evasive”
functions, which accept a hidden sparse set of inputs. The work of Ben-David
and Sattath [BDS16] and more recently Amos et al. [AGKZ20] can be seen as
copy-protecting specific cryptographic functionalities.

1.1 This Work

In this work, we give new general results for copy-protection. Our two main
results are:

– Any unlearnable functionality can be copy-protected, relative to a classical
oracle.

– Any functionality that can be watermarked in a certain sense, can be copy-
detected assuming just the existence of public-key quantum money.

Both of our results are very general, applying to a wide variety of learning and
watermarking settings, including settings where functionality preservation is not
required. Along the way to obtaining our results, we give new definitions for
security of copy-protection (as well as copy-detection and watermarking), which
provide stronger guarantees.

Our first result improves Aaronson [Aar09] to use a classical oracle, which
can then heuristically be instantiated using candidate post-quantum obfuscation
(e.g. [BGMZ18,BDGM20]), resulting in a concrete candidate copy-protection
scheme. Of course, the impossibility of Ananth and La Placa [AP20] means the
resulting scheme cannot be secure in the standard model for arbitrary programs.
Still, it can be conjectured to be secure for programs not subject to the impos-
sibility.
1 That is, an oracle that implements a quantum operation.

528 S. Aaronson et al.

Our second result complements Ananth and La Placa [AP20]’s positive result
for copy-detecting certain evasive functions by copy-detecting arbitrary water-
markable functions. For our purposes, watermarkable functions are those that
can have a publicly observable “mark” embedded into the program, such that it
is infeasible to remove the mark without destroying the functionality. We note
that the results (and techniques) are incomparable to [AP20]. First, watermark-
able functions are never evasive, so the class of functions considered are disjoint.
Second, our security guarantee is much stronger than theirs, which we discuss
in Sect. 1.2.

Taken together, we believe our results strongly suggest that watermarkable
functions may be copy-protectable. Concretely, the impossibility result of Ananth
and La Placa also applies to copy detection, and our second result shows that
watermarkable functions, therefore, circumvent the impossibility. Based on this,
we conjecture that our first result, when instantiated with candidate obfuscators,
is a secure copy-protection scheme for watermarkable functions. We leave proving
or disproving our conjecture as an interesting direction for future work.

1.2 Technical Overview

Definitional Work. We first investigate the definition of quantum copy-
protection. We find that existing definitions and other straightforward attempts
have several limitations. We therefore carefully develop a strong and general
definition of copy-protection to resolve these limitations. In particular, our defi-
nition captures attacks where (1) the program is meaningfully copied even if the
functionality is technically different, and (2) the program is copied only with a
small but detectable probability.

Consider the following attempt of defining quantum copy-protection: we say
an adversary successfully pirates a quantum program for computing a function
f if it outputs two quantum programs σ1, σ2, each of them able to compute
f correctly on a large fraction of inputs. Now consider applying this definition
to the case where f is a signing algorithm with a particular signing key hard-
coded, and suppose there are many valid signatures for each message. Consider a
hypothetical adversary who “splits” the program into two pieces, each computing
valid signatures; but neither computing the same signature that f produces.
Such programs are “good enough” for forging signatures, and the ability to copy
a signature-producing program in this way would naturally be considered an
attack. However, the usual notions of security for copy-protection do not apply
to such programs.

Another example is the copy-protection of public-key encryption. Let f be
a decrypting algorithm with a particular decryption key hard-coded. Suppose
the split two program pieces only work correctly on a sparse set: they can only
decrypt correctly on ciphertexts of m0,m1; for ciphertexts of other messages,
the output is arbitrary. This splitting attack does not violate the security notion
either since both functions produced by the adversary differ from the origi-
nal program on most inputs. But again, such programs are “good enough” for

New Approaches for Quantum Copy-Protection 529

breaking the semantic security of the encryption scheme, and therefore would
reasonably count as an attack.

Similar definitional issues are discussed in the context of watermark-
ing [GKM+19] but have not been explored in the setting of copy-protection.
Inspired by the watermarking case, our solution is to define “compute f cor-
rectly” by a general relation. The relation takes some random coins r, the func-
tion f (with some additional information about f hard-coded in the circuit);
it samples an input and runs the (quantum) program on that classical input;
finally, it checks the output of the quantum program, testing (in superposition)
if the output z together with f, r is in the relation. As an example, if f is a
signing circuit (with the signing key hard-coded), the relation is defined as: use
random coins r to generate a random message m, run the quantum program on
m and test in superposition if it is a valid signature, by applying the verification
algorithm Ver(vk,m, · ; r).

Therefore, we propose a general definition that can capture a broader class
of attacks, especially in the context of cryptographic functionalities.

Unfortunately, another uniquely quantum issue arises when trying to formu-
late a definition. We intuitively want to consider a program to be a valid copy if
it computes f correctly on a non-trivial fraction of the domain. Unfortunately,
there is no physical way to actually test if a program represented as a quantum
state satisfies the property when an algorithm only receives a single copy of the
program, especially in game-based security definitions.

Generally, any attempt at assigning a non-trivial property to quantum states
(e.g., “valid program” vs. “invalid program”) will be physically meaningless.
Indeed, given any valid program P1 and any invalid program P2 (regardless
of the meaning of “valid”), what is the uniform superposition |P1〉 + |P2〉 of the
two programs? Is it valid or invalid? Regardless of which, because the three pro-
grams are not orthogonal quantum states, no measurement can determine all
three states’ validity.

At a more operational level, the classical way to test for correctly computing
f is to evaluate the function on all points and report the fraction of inputs where
the program computed correctly. Alternatively, one can efficiently estimate the
fraction of inputs that are computed correctly by simply testing a polynomial
number of random points. Regardless, testing involves running the program on
multiple points.

In the setting of quantum programs, however, the uncertainty principle
implies that the moment one tests the first input, the quantum program state
is irreversibly altered, potentially affecting the subsequent evaluations of the
program. Thus, the fraction of inputs computed correctly is ever-changing, and
simply evaluating the program on several points will not give a meaningful indi-
cation of the program’s validity at any single point in time.

To illustrate further issues, consider the adversary which takes its quantum
program P and simply produces 1√

2
(|P 〉 |D〉 |0〉+|D〉 |P 〉 |1〉) where D is a dummy

program that outputs junk. The two halves of this bipartite system each have

530 S. Aaronson et al.

probability 1/2 of outputting the right answer on a random input. And yet, this
“attack” is rather useless and should not be considered a break.

On the other hand, consider a hypothetical attacker which produces
1√
2

|P 〉 |P 〉+ 1√
2

|D〉 |D〉. The two halves of this bipartite system each separately
has probability 1/2 of outputting the right answer on a random input. However,
if we measure both halves, there is a 1/2 chance of obtaining two copies of P ,
which each answers correctly with probability 1. Therefore, this attack should
likely be considered a break.

Thus, we see that any characterization of program validity which just tests
the program on a random input cannot distinguish cases that should be con-
sidered breaks from those that are not. On the other hand, if we test multiple
random inputs, we run into the problem that testing each input causes the pro-
gram state to change, meaning we may not get meaningful results.

Our solution will be to use recent ideas from Zhandry [Zha20], who considered
similar issues in the context of traitor tracing. At a high level, the issue above is
that we are trying to assign a property to a quantum state (whether the state
is a good program), but this property is non-physical and does not make sense
for mixed or entangled states. Instead, we want “a program is good” to be a
measurement that can be applied to the state. We would naturally also want the
measurement to be projective, so that if a program is once tested to be “good”,
it will always be “good”.

Let M = (M0,M1) be binary positive operator-valued measures (POVMs)
that represents choosing random coins and testing if the quantum program com-
putes correctly with respect to the random coins. For a mixed quantum program
state σ, the probability the program evaluates correctly relative to this test is
given as Tr[M0σ] . Let M′ be the (inefficient) projective measurement {Pp}p∈[0,1],
projecting onto the eigenspaces of M0, where p ranges over the corresponding
eigenvalues of M0

2 Zhandry showed that the measurement below results in an
equivalent POVM as M:

– Apply the projective measurement M′, and obtain p;
– Output 0 with probability p, and output 1 with probability 1 − p.

Intuitively, M′ will project a state to an eigenvector with eigenvalue p. The
leftover state computes correctly on p-fraction of all inputs.

Therefore, we say a quantum program σ is tested to be γ-good, if the mea-
surement M′ has outcome p ≥ γ. We say an adversary successfully pirates a
quantum program for computing f if the two programs are both tested to be
γ-good with non-negligible probability. We will show an efficient algorithm that
approximates the measurement. Thus, our new definition provides an opera-
tional game-based security definition that resolves all the issues we mentioned
above. Besides, although the definition may be laborious, this definition implies
the previous definitions in [Aar09,CMP20] and etc., and we find proving secu-

2 Since M0 + M1 is the identity, M1 shares the same eigenvectors, with eigenvalue
1− p.

New Approaches for Quantum Copy-Protection 531

rity with this definition is considerably easier. Using similar ideas, we also define
quantum unlearnability of programs and quantum copy-detection.

Our Copy-Protection Scheme. We give a quantum copy-protection construc-
tion for all unlearnable functions based on (1) classical oracles, and (2) subspace
states, or more abstractly, any tokenized signature scheme [BDS16].

Note the difference between classical and quantum oracles: a classical oracle
is a classical functionality that can be (superposition) queried in a black-box way,
while a quantum oracle is a quantum unitary operation used as a black-box. It is
more feasible to implement classical oracles heuristically considering existing can-
didates of (post-quantum) obfuscations for classical circuits [BDGM20]. There-
fore our construction is a significant improvement from the result in [Aar09].

A tokenized signature generates a signature token |sig〉 which we call a signing
token. A signer who gets one copy of the signing token can sign a single bit b of
her choice. Sign(b, |sig〉) outputs a classical signature whose correctness guarantee
is the same as classical signatures: namely, verification will accept the result as a
signature on b. Importantly, the signing procedure is a unitary and will produce
a superposition of all valid signatures of b; to obtain a classical signature, a
measurement to the state is necessary, leading to a collapse of the token state.
Thus, a signature token |sig〉 can only be used to produce one classical signature
of a single bit, and any attempt to produce a classical signature of the other
bit would fail. [BDS16] formalizes this idea and constructs a tokenized signature
scheme relative to a classical oracle (a subspace membership oracle).

The high-level idea of our copy-protection scheme is that it requires an autho-
rized user to query an oracle twice on signatures of bits 0 and 1. Let f be the
function we want to copy-protect. Define the following classical circuits:

O1(x, sig) =

{
H(x) if Ver(vk, 0, sig) = 1
⊥ otherwise

,

O2(x, sig) =

{
f(x) ⊕ H(x) if Ver(vk, 1, sig) = 1
⊥ otherwise

.

Here H is a random function. The copy-protected program of f is a signature
token |sig〉 and obfuscations of O1,O2, which we will heuristically treat as oracles
to O1,O2. We denote this program as (|sig〉 ,O1,O2).

To obtain f(x), a user has to query on signatures of both bits and get H(x)
and H(x) ⊕ f(x). Note that even if one can only produce one of the classical
signatures with token |sig〉, a user can still query both oracles O1,O2 multiple
times. To obtain H(x), a user can compute the superposition of all valid signa-
tures of 0 by applying a unitary and feed the quantum state together with x
to O1. It then measures the output register. The user never actually measures
the signature. Because the output register contains a unique output H(x), by
Gentle Measurement Lemma [Aar04], it can rewind the quantum state back to
|sig〉. Thus, our copy-protection scheme allows a copy-protected program to be
evaluated on multiple inputs multiple times.

532 S. Aaronson et al.

We next show how to prove anti-piracy security. Let σ1, σ2 be two (potentially
entangled) program states pirated by an adversary, which makes oracle access
to both O1,O2 and breaks the anti-piracy security. Let O⊥ be an oracle that
always outputs ⊥. If σ1 never queries the oracle O2, we know the two programs
(σ1,O1,O2) and (σ1,O1,O⊥) will have identical output distributions. Moreover,
(σ1,O1,O⊥) can be simulated even without querying f because O1 is simply a
random oracle (on valid inputs). Therefore, the program can be used to break
the unlearnability of f . Similarly, if σ2 never queries the oracle O1, the program
(σ2,O⊥,O2) can be used to break the unlearnability of f .

Since f is unlearnable, the above two cases can not happen. We show that
under this case, we can extract signatures of both 0 and 1. Intuitively, since
(σ1,O1,O2) makes queries to O2, we can run the program on random inputs and
measure a random query to O2, thereby extracting a signature of 1. Similarly, it
holds for (σ2,O1,O2) and one could extract a signature of 0. Unfortunately, this
intuition does not quite work since σ1 and σ2 are potentially entangled. It means
there can be correlations between the outcomes of the measurements producing
the two signatures: perhaps, if the measurement on (σ1,O1,O2) produces a valid
signature on 1, then the measurement on (σ2,O1,O2) is guaranteed to fail to
produce a signature. We show by a delicate argument that, in fact, adversaries
cannot cheat using such correlations. Intuitively, although σ1, σ2 are entangled,
we show there exists an efficient measurement: by applying this measurement
to (σ1, σ2), with non-negligible probability, the resulting programs (σ′

1, σ
′
2) have

the following properties:

– They are both “good” programs. Thus, we can extract a signature of 1 in σ′
1.

– The resulting program σ′′
2 after applying any measurement on σ′

1 is still
“good”. Similarly, we can extract a signature of 0 in σ′′

2 .

Note that the above argument does not directly work for the original programs
(σ1, σ2).

Our Copy-Detection Scheme. Inspired by [AP20], we propose a weaker defi-
nition called copy-detection, which has an additional checking procedure. A user
can publicly verify a program’s validity by running this checking procedure. The
security guarantees that, given one copy of the program, no adversary can pro-
duce two programs such that both programs pass the checking procedure and
both are ‘functionally correct’ (as in the copy-protection definition)—in other
words, honest users can always identify the pirate. Looking ahead, we note that
copy-detection is similar to secure software leasing (SSL, [AP20]), with the major
differences are (1) the checking procedure is public, (2) ‘functionally correct’ in
the security of copy-detection is average-case while that in the security of SSL
is worst-case.

We construct a copy-detection scheme for any function family that can be
watermarked. A watermarking scheme roughly consists of the following pro-
cedure: Mark takes a circuit and a message, and outputs a circuit embed-
ded with that mark; Extract takes a marked circuit and produces the embed-
ded mark. A watermarking scheme requires: (1) the watermarked circuit

New Approaches for Quantum Copy-Protection 533

f̃ = Mark(f,m) should preserve its intended functionality as f ; (2) any effi-
cient adversary given a marked f̃ , can not generate a new marked circuit
with a different mark (or remove the mark) while preserving its functional-
ity. Watermarking primitives have been studied in previous works, including
[CHN+18,KW17,QWZ18,KW19,GKM+19].

Our construction also requires a public key quantum money scheme. It con-
sists two procedures: a generation procedure and a verification procedure. The
generation procedure outputs a quantum banknote |$〉. Verification is public,
takes a quantum money banknote, and outputs either a (classical) serial number
of that banknote or ⊥ indicating it is an invalid banknote. The security requires
no efficient adversary could use a quantum banknote |$〉 to prepare two quan-
tum banknotes |$1〉 |$2〉 such that both banknotes pass the verification and their
serial numbers are equal to that of |$〉. We note that this version of quantum
money corresponds to a “mini-scheme” as defined by [AC12].

The copy-detection scheme takes a function f , samples a banknote |$〉 with
serial number s, lets f̃ ← Mark(f, s) and outputs a copy-detection program as
(f̃ , |$〉). To evaluate the function, it simply runs the classical program f̃ . To
check a program is valid, it extracts the serial number from the money state and
compares it with the mark of the program.

The security requires that no efficient adversary could produce f̃1, |$1〉 and
f̃2, |$2〉 such that two programs pass the check and both classical circuits preserve
the functionality. Let s be the serial number of |$〉, sb be the serial number of
|$b〉 for b = 1, 2. To pass the check, there are two possible cases:

– s1 = s2 = s. In this case, |$1〉 |$2〉 breaks the security of the quantum money
scheme because one successfully duplicates a banknote with the same serial
number.

– At least one of sb �= s. Because the mark of f̃b is also equal to sb, one
of f̃b breaks the security of the watermarking scheme, as it preserves the
functionality, while having a different mark from s.

We show that the above construction and proof apply to a wide range of water-
marking primitives.

Copy-Protection in the Standard Model? The security of our copy-
protection scheme requires treating the obfuscated programs as oracles. While
we prove security for all unlearnable programs, we cannot expect such security
to hold in the standard model: as shown in [AP20], there are unlearnable func-
tions that can not be copy-protected or even copy-detected. On the other hand,
watermarkable programs are a natural class of programs that are necessarily
immune to the style of counter-example of Barak et al. [BGI+01], on which the
copy-protection impossibility is based. Namely, the counter-example works by
giving programs that are unlearnable, but such that having any (even approxi-
mate [BP15]) code for the program lets you recover the original program. Such
programs cannot be watermarkable, as the adversary can always recover the
original program from the (supposedly) watermarked program.

534 S. Aaronson et al.

Thus, we broadly conjecture that all watermarkable functions can be copy-
protected. Our copy-detection result gives some evidence that this may be fea-
sible. Concretely, we conjecture that our copy-protection construction is secure
for any watermarkable program when the oracles are instantiated with post-
quantum obfuscation constructions. We leave justifying either the broad or con-
crete conjectures as fascinating open questions.

1.3 Other Related Works

Quantum Copy Protection. Quantum copy-protection was proposed by
Aaronson in [Aar09]; this paper gave two candidate schemes for copy-protecting
point functions without security proofs and showed that any functions that are
not quantum learnable could be quantum copy-protected relative to a quantum
oracle (an oracle which could perform an arbitrary unitary).

[AP20] gave a conditional impossibility of general copy-protection: they
construct a quantum unlearnable circuit using the quantum FHE scheme
and compute-and-compare obfuscation [WZ17,GKW17], which is not copy-
protectable once a QPT adversary has non-black-box access to the program.
[AP20] also gave a new definition that is weaker than the standard copy-
protection security, called Secure Software Leasing (SSL) and an SSL construc-
tion for a subclass of evasive functions, namely, searchable compute-and-compare
circuits.

[BL19] and [GZ20] introduced two new notions respectively, unclon-
able encryption/decryption schemes; [CMP20] gave a construction for copy-
protecting point functions in the quantum random oracle model with techniques
inspired by [BL19] and the construction can be extended to copy-protecting
compute-and-compare circuits. [BJL+21] then constructed information-theoretic
SSL for point functions.

1.4 Concurrent and Independent Work

Very recently, [KNY20] presents a secure software leasing for a subclass of evasive
functions and PRFs, using watermarking and two-tier quantum-lightning, which
can be built from the LWE assumption. Their main observation is that the full
power of public-key quantum money is not needed in the verification of SSL, and
they introduce a new primitive in between public-key and private-key quantum
money, which they call two-tier quantum lightning. While their construction can
be built from LWE alone, our construction aims at a more generalized definition
in terms of successful piracy and functionality-preserving; our copy detection
construction also works for a broader class of cryptographic functionalities such
as encryption and signature.

2 Preliminaries

We denote by λ the security parameter, and when inputted into an algorithm, λ
will be represented in unary. We say a function ε(x) is negligible if for all inverse

New Approaches for Quantum Copy-Protection 535

polynomials 1/p(x), ε(x) < 1/p(x) for all large enough x. We denote a negligible
function by negl(x). We use QPT to denote quantum polynomial time.

2.1 Quantum Computation

Definition 1 (Trace distance). Let ρ, σ ∈ C
2n×2n

be the density matrices of
two quantum states. The trace distance between ρ and σ is

‖ρ − σ‖tr := 1
2

√
Tr[(ρ − σ)†(ρ − σ)],

Here, we only state a key lemma for our construction: the Gentle Measure-
ment Lemma proposed by Aaronson [Aar04], which gives a way to perform mea-
surements without destroying the state.

Lemma 1 (Gentle Measurement Lemma [Aar04]). Suppose a measure-
ment on a mixed state ρ yields a particular outcome with probability 1− ε. Then
after the measurement, one can recover a state ρ̃ such that ‖ρ̃ − ρ‖tr ≤ √

ε. Here
‖·‖tr is the trace distance (defined in Definition 1).

We give other basic definitions of quantum computation and quantum infor-
mation in the full version.

2.2 Quantum Oracle Algorithm

We consider the quantum query model in this work, which gives quantum circuits
access to some oracles.
Definition 2 (Classical Oracle). A classical oracle O on input query x is
a unitary transformation of the form Uf |x, y, z〉 → |x, y + f(x), z〉 for classical
function f : {0, 1}n → {0, 1}m. Note that a classical oracle can be queried in
quantum superposition.
In the rest of the paper, we refer to the word “oracle” as “classical oracle”. A
quantum oracle algorithm with oracle access to O is a sequence of unitary Ui

and oracle access to O (or Uf). Thus, the query complexity of a quantum oracle
algorithm is defined as the number of O access.

In the analysis of the security of the copy-protection scheme in Sect. 5.2, we
will use the following theorem from [BBBV97] to bound the change in adversary’s
state when we change the oracle’s input-output behavior at places where the
adversary hardly ever queries on.

Theorem 1 ([BBBV97]). Let |φi〉 be the superposition of quantum Turing
machine M with oracle O on input x at time i. Define Wy(|φi〉) to be the sum of
squared magnitudes in |φi〉 of configurations of M which are querying the oracle
on string y. For ε > 0, let F ⊆ [0, T − 1] × Σ∗ be the set of time-string pairs
such that

∑
(i,y)∈F Wy(|φi〉) ≤ ε2/T .

Now suppose the answer to each query (i, y) ∈ F is modified to some arbitrary
fixed ai,y (these answers need not be consistent with an oracle). Let |φ′

i〉 be the
superposition of M on input x at time i with oracle O modified as stated above.
Then ‖|φT 〉 − |φ′

T 〉‖tr ≤ ε.

536 S. Aaronson et al.

2.3 Direct-Product Problem and Quantum Signature Tokens

In this section, we will define direct-product problems, which are key components
of the quantum signature token scheme by Ben-David and Sattath [BDS16] and
also our quantum copy-protection scheme.

Definition 3 (Dual Subspace). Given a subspace S of a vector space V , let
S⊥ be the orthogonal complement of S: the set of y ∈ V such that x · y = 0 for
all x ∈ S. It is not hard to show: S⊥ is also a subspace of V ; (S⊥)⊥ = S.

Definition 4 (Subspace Membership Oracles). A subspace membership
oracle for a subspace A ⊆ F

n, denoted as UA, on input vector v, will output
1 if v ∈ A, v �= 0 and output 0 otherwise.

Definition 5 (Subspace State). For a subspace A ⊆ F
n, the state |A〉 is

defined as 1√
|A|

∑
v∈A |v〉, which is a uniform superposition of all vectors in A.

Direct-Product Problem. Our construction relies on the following problem
called the “Direct-Product Problem" in [AC12]: for any QPT adversary A, given
one copy of |A〉 and oracle access to UA, UA⊥ , the problem is to finds two non-
zero vectors such that u ∈ A and v ∈ A⊥.

Ben-David and Sattath [BDS16] proved the hardness of the direct-product
problem for the construction of quantum signature tokens. More precisely, a
signature token is a subspace state |A〉 in their construction. All vectors in
A \ {0} are signatures for bit 0 and all vectors in A⊥ \ {0} are signatures for
bit 1. Therefore, to generate valid signatures for both 0 and 1, it is required to
solve the “Direct-Product Problem". We believe that our copy-protection scheme
works for general signature token schemes. To keep the statements and proofs
simple, we focus on the construction in [BDS16].

Theorem 2 ([BDS16]). Let ε > 0 be such that 1/ε = o(2n/2). Let A be a
random subspace F

n, and dim(A) = n/2. Given one copy of |A〉 and access to
both subspace membership oracles of UA and UA⊥ , an adversary needs Ω(

√
ε2n/4)

queries to output a pair of non-zero vectors (u, v) such that u ∈ A and v ∈ A⊥

with probability at least ε.

We will refer to the direct-product problem as a security game, which is
defined as follows:

Definition 6 (Direct-Product Game). A direct-product game consists of the
following steps:

Setup Phase: the challenger takes in a security parameter λ, samples a random
λ/2-dimensional subspace A from F

λ; then prepares the membership oracle
UA for A, UA⊥ for the dual subspace A⊥ and a quantum state |A〉.

Query Phase: the challenger sends |A〉 to the adversary; the adversary can
query UA, UA⊥ for polynomially many times.

Output Phase: the adversary outputs two vectors (u, v).

New Approaches for Quantum Copy-Protection 537

The challenger checks if u ∈ A \ {0}, v ∈ A⊥ \ {0}. If this is satisfied, then the
adversary wins the game.

Theorem 2 shows that for any QPT adversary, the winning probability of the
direct-product game is negligible.

2.4 Testing Quantum Programs: Measurement Implementation

In classical cryptographic security games, the challenger typically gets some
information from the adversary and checks if this information satisfies certain
properties.

However, in the quantum world, when a challenger tries to decide if a quan-
tum adversary has produced a state with certain properties, especially in the
context of security games for properties related to unclonability, classical defini-
tions of “testing properties” may result in various failures as discussed in [Zha20].
Such an issue has also been discussed in the introduction.

To deal with this issue, [Zha20] formalized a measurement procedure for
testing an adversary’s state. This is best understood with an example.

Consider a security game where the adversary needs to produce a state that
can decrypt a challenge ciphertext. First, the challenger’s behavior is abstracted
into the following:

– Encrypt a random message bit m to get c using randomness rand, note that
randomness rand is used to sample m and random coins for encryption;

– Run the adversary’s state on the resulting ciphertext c;
– Output 1 or 0 depending on whether the adversary’s state correctly decrypts

or not.

Fixing the ciphertext c, the procedure of outputting 1 or 0 depending on
whether the adversary’s state correctly decrypts c can be described as a projec-
tive measurement Pm,c = (Pm,c, Qm,c) where Pm,c corresponds to output 1, Qm,c

corresponds to output 0 and (Pm,c, Qm,c) can be efficiently implemented given
subscript m, c. The challenger uses m, c as a control to decide which projective
measurement to be applied to the state.

More generally, let R be the set of randomness, I be the control set (similar
to the role of m, c in the above example). Let D be a function from R to I. For
a uniform randomness rand, D(rand) defines a distribution over I. Therefore we
will use the word “distribution” for D in the rest of the discussion. For every
control (or index) i ∈ I, we have a projective measurement Pi = (Pi, Qi). Let
P = {Pi = (Pi, Qi)} be a collection of binary projective measurements. We
define a mixture of projective measurement PD as follows.

Definition 7 (Mixture of Projective Measurement PD). For P =
{Pi, Qi}i∈I and D : R → I, a mixture of projective measurement PD =
(PD, QD) is a POVM defined as the following:

PD =
∑
i∈I

Pr[i ← D(R)]Pi, QD =
∑
i∈I

Pr[i ← D(R)]Qi,

where R is a uniform random variable in R.

538 S. Aaronson et al.

In other words, PD is implemented in the following way: sample randomness
rand ← R, compute index/control i ← D(rand) and apply projective measure-
ment Pi = (Pi, Qi).

Thus, for any quantum state ρ, Tr[PDρ] is the probability that a random
sampled projective measurement Pi = (Pi, Qi) (according to the distribution
D) applies on ρ and outputs 1.

Definition 8 (Projective Implementation). Let P = (P,Q) be a binary
outcome POVM. Let D be a finite set of distributions (p, 1 − p) over outcomes
{0, 1}. Let E = {Ep}(p,1−p)∈D be a projective measurement with index set D.
Consider the following measurement experiment:

– Measure under the projective measurement E and obtain a distribution (p, 1−
p) over {0, 1};

– Output a bit according to the distribution: output 1 with probability p and
output 0 with probability 1 − p.

We say the measurement E is a projective implementation of P if the above
experiment and P produce identical outcomes on any quantum states. We denote
E by ProjImp(P).

Note that if the collapsed state is an eigenvector of P corresponding to eigen-
value p, then it is also an eigenvector of Q corresponding to eigenvalue 1 − p.

Lemma 2 (A variation of Lemma 1 in [Zha20]). Any binary outcome
POVM P = (P,Q) has a unique projective measurement ProjImp(P).

In this work, we propose the following new definition corresponding to
ProjImp.

Definition 9 (Threshold Implementation). A threshold implementation
with parameter γ of a binary POVM P = (P,Q) is a variant of projective imple-
mentation ProjImp(P), denoted as (TIγ(P), I − TIγ(P)):

– Measure under the projective measurement E (ProjImp(P)) and obtain a dis-
tribution (p, 1 − p) over {0, 1};

– Output a bit according to the distribution (p, 1 − p): output 1 if p ≥ γ, or 0
otherwise.

Remark 1. For any quantum state ρ, the threshold implementation outputs 1
with probability Tr[TIγ(P)ρ], and 0 with probability 1 − Tr[TIγ(P)ρ].

Remark 2. For a binary outcome measurement P = (P,Q), we usually say “per-
form measurement P on ρ” if P was performed on ρ. For example, if we say a
threshold implementation TI(PD) on a quantum state ρ outputs 1, we refer to
apply (TIγ(PD), I − TIγPD) on ρ and the outcome is 1.

New Approaches for Quantum Copy-Protection 539

Approximating Projective Implementation. Before describing the theo-
rem of the approximation algorithm, we give two definitions that characterize
how good an approximation projective implementation is, which were first intro-
duced in [Zha20].

Definition 10 (Shift Distance). For two distributions D0,D1, the shift dis-
tance with parameter ε is defined as Δε

Shift(D0,D1), which is the smallest quantity
δ such that for all x ∈ R:

Pr[D0 ≤ x] ≤ Pr[D1 ≤ x + ε] + δ,

Pr[D1 ≤ x] ≤ Pr[D0 ≤ x + ε] + δ.

For two real-valued measurements M and N over the same quantum system,
the shift distance between M and N with parameter ε is defined as,

Δε
Shift(M,N) := sup

|ψ〉
Δε

Shift (M(|ψ〉),N (|ψ〉)) .

Definition 11 ((ε, δ)-Almost Projective). A real-valued quantum measure-
ment M is said to be (ε, δ)-almost projective if for all quantum state |ψ〉,
apply M twice in a row to |ψ〉, obtaining outcomes X and Y . Then we have
Pr[|X − Y | ≤ ε] ≥ 1 − δ.

The following theorem gives a way to approximate any projective implemen-
tation:

Theorem 3 (Theorem 2 in [Zha20]). Let D be any probability distribution
over some control set I and P be a collection of projective measurements. For
any 0 < ε, δ < 1, there exists an algorithm of measurement APIε,δP,D that satisfies
the followings:

– Δε
Shift(API

ε,δ
P,D,ProjImp(PD)) ≤ δ.

– APIε,δP,D is (ε, δ)-almost projective.
– The expected running time of APIε,δP,D is TP,D ·poly(1/ε, log(1/δ)) where TP,D

is the combined running time of D, the procedure mapping i to (Pi, Qi) and
the run-time of measurement (Pi, Qi).

3 Learning Game Definitions

In this section, we define unlearnability, copy-protection, copy-detection, and
watermarking with respect to a function family and a testing distribution.

We assume a function f is sampled uniformly at random from a function
family Fλ. To test the correctness of a quantum program (for computing f), it
samples an input x from a testing distribution Dλ, runs the quantum program
on x, and checks if the output is f(x).

We will give the generalized definitions (for unlearnability, copy-protection,
copy-detection, and watermarking) in the full version, which allow for more
general sampling procedures and functionality testing. Since our constructions
naturally extend to these settings, we leave all the discussions about definitions
and proofs in the full version of the paper.

540 S. Aaronson et al.

Definition 12 (Quantum Program with Classical Inputs and Outputs).
A quantum program with classical inputs is a pair of quantum state ρ and uni-
taries {Ux}x∈[N] (where [N] is the domain), such that the state of the program
evaluated on input x is equal to UxρU†

x. To obtain an output, it measures the
first register of UxρU†

x. Moreover, {Ux}x∈[N] has a compact classical description
which means “applying Ux” can be efficiently computed given x.

Notation-wise, the input and output space N,M are functions of λ.

3.1 Unlearnability

First, we define γ-goodness testing with respect to a fixed function f and a
testing distribution D (over inputs).

Definition 13 (γ-Goodness Test with respect to f,D). Let (ρ, {Ux}x∈[N])
be a quantum program for computing a classical function f : [N] → [M]. Let D
be a testing distribution over the input space [N].

– Define Px = (Px, Qx) be the following projective measurement:

• On input x, it runs Ux on the quantum state ρ;
• It measures whether the output register is equal to f(x); output 1 if yes, and
0 otherwise.

Let P = {Px} be a collection of projective measurements.

– D is the distribution that samples an input: given randomness rand, output
x = D(rand).

– Let PD = (PD, QD) be the mixture of projective measurement defined in Def-
inition 7.

– We say a quantum program is tested γ-good with respect to f,D, if the thresh-
old implementation TIγ(PD) outputs 1.

We then define a learning game for a function family F and a set of test-
ing distribution D. Note that we assume for a fixed security parameter λ, f is
drawn uniformly at random from Fλ and the testing distribution Df is efficiently
sampleable given the description f .

Definition 14 (Learning Game for F ,D). A learning game for a function
family F = {Fλ : [N] → [M]}, a distribution family D = {Df}, a threshold
γ ∈ (0, 1), and an adversary A is denoted as LearningGameA

F,D,γ(1
λ), which

consists of the following steps:

1. Sampling Phase: At the beginning of the game, the challenger takes a secu-
rity parameter λ and samples a function f ← Fλ uniformly at random;

2. Query Phase: A then gets oracle access to f ;
3. Output Phase: Finally, A outputs a quantum program (ρ, {Ux}x∈[N]).

The game outputs 1 if and only if the program is tested γ-good with respect to f,Df .

New Approaches for Quantum Copy-Protection 541

Definition 15 (Quantum Unlearnability of F with Testing Distribu-
tion D). A family of functions F with respect to D is called γ quantum unlearn-
able if for any QPT adversary A, there exists a negligible function negl(·) such
that the following holds for all λ:

Pr
[
b = 1, b ← LearningGameA

F,D,γ(1
λ)

]
≤ negl(λ)

3.2 Copy-Protection

Definition 16 (Quantum Copy-Protection). A quantum copy-protection
scheme for F ,D consists of the following procedures:

Setup(1λ) → sk: the setup algorithm takes in a security parameter λ in unary
and generates a secret key sk.

Generate(sk, f) → (ρf , {Uf,x}x∈[N]): on input f ∈ Fλ and secret key sk, the
vendor generates a quantum program (ρf , {Uf,x}x∈[N]).

Compute(ρf , {Uf,x}x∈[N], x) → y: given a quantum program, a user can compute
the function f(x) on input x by applying Uf,x on ρf and measuring the first
register of the state.

Efficiency: Setup, Compute and Generate should run in poly(λ) time.
Correctness: There exists a negligible function negl(·) such that: all λ ∈ N,

every f ∈ Fλ, all sk ← Setup(1λ), all (ρf , {Uf,x}x∈[N]) ← Generate(sk, f), for
all x ∈ [N], apply Uf,x on ρf and measure the first register, with probability
at least 1 − negl(λ), the output is a fixed value zf,x; moreover, zf,x = f(x).

Security: The γ-anti-piracy security defined below.

Note that correctness ensures that the copy-protected program can be evaluated
polynomially many times.

Definition 17 (γ-Anti-Piracy Security Game). An anti-piracy security
game for F ,D and adversary A is denoted as CopyProtectionGameA

F,D,γ(1
λ),

which consists of the following steps:

1. Setup Phase: At the beginning of the game, the challenger takes a security
parameter λ and obtains a secret key sk ← Setup(1λ).

2. Sampling Phase: A function f is sampled uniformly at random, f ← Fλ.
3. Query Phase: A makes a single query to the challenger and obtains a copy-

protection program for f : (ρf , {Uf,x}x∈[N]) ← Generate(sk, f).
4. Output Phase: Finally, A outputs a (possibly mixed and entangled) state

σ over two registers R1, R2 and two sets of unitaries ({UR1,x}x, {UR2,x}x)
They can be viewed as programs P1 = (σ[R1], {UR1,x}x∈[N]) and P2 = (σ[R2],
{UR2,x}x∈[N]).

The game outputs 1 if and only if both programs P1,P2 are tested to be γ-good
with respect to f,Df .

542 S. Aaronson et al.

Definition 18 (γ-Anti-Piracy-Security). A copy-protection scheme for F
and D has γ-anti-piracy security, if for any QPT adversary A, there exists a
negligible function negl(·) such that the following holds for all λ ∈ N:

Pr
[
b = 1, b ← CopyProtectionGameA

F,D,γ(1
λ)

]
≤ negl(λ) (1)

In the full version, we will show our new anti-piracy security implies previous
security, defined in [Aar09].

3.3 Copy-Detection

A copy-detection scheme is very similar to the copy-protection scheme, except it
has an additional procedure Check which applies a projective measurement and
checks if the quantum state is valid.

Definition 19 (Quantum Copy-Detection). A quantum copy-detection
scheme for F ,D consists of the following procedures:

Setup(1λ), Generate(sk, f) and Compute(ρf , {Uf,x}x∈[N], x) are the same as those
in Definition 16, except Setup additionally samples a public key for Check.

Check(pk, ρf , {Uf,x}x∈[N]) → b, ρ′: on input a quantum program, it applies a
binary projective measurement (P0, P1) on ρf that depends on {Uf,x}x∈[N]; it
outputs the outcome b and the leftover state ρ′.

Correctness (Generate): The same as the security of Definition 16.
Correctness (Check): For every efficient A, there exists a negligible func-

tion negl(·) such that, all λ ∈ N, (pk, sk) ← Setup(1λ), every f ∈ Fλ,
all (ρf , {Uf,x}x∈[N]) ← Generate(sk, f), Check(pk, ρf , {Uf,x}x∈[N]) outputs 1
with probability at least 1 − negl(λ).

Security: The γ-copy-detection security defined below.

Definition 20 (γ-Copy-Detection Security Game). A copy-detection secu-
rity game for F ,D and adversary A is denoted as CopyDetectionGameA

F,D,γ(1
λ),

which consists of the following steps:

1. Setup Phase: At the beginning of the game, the challenger takes a security
parameter λ and obtains keys (pk, sk) ← Setup(1λ).

2. Sampling Phase: A function f is sampled uniformly at random, f ← Fλ.
3. Query Phase: A makes a single query to the challenger and obtains a quan-

tum program for f : (ρf , {Uf,x}x∈[N]) ← Generate(sk, f).
4. Output Phase: Finally, A outputs a (possibly mixed and entangled) state

σ over two registers R1, R2 and two sets of unitaries ({UR1,x}x, {UR2,x}x)
They can be viewed as programs P1 = (σ[R1], {UR1,x}x∈[N]) and P2 = (σ[R2],
{UR2,x}x∈[N]).

The game outputs 1 if and only if

New Approaches for Quantum Copy-Protection 543

– Apply Check on Pi respectively and both outcomes are 1. Let P ′
i be the col-

lapsed program conditioned on outcomes are 1.
– Both programs P′

1,P
′
2 are tested γ-good with respect to f,Df .

Definition 21 (γ-Copy-Detection-Security). A copy-detection scheme for
F ,D has γ-copy-detection security, if for any QPT adversary A, there exists a
negligible function negl(·) such that the following holds for all λ ∈ N:

Pr
[
b = 1, b ← CopyDetectionGameA

F,D,γ(1
λ)

]
≤ negl(λ) (2)

3.4 Watermarking Primitives with Public Extraction

In this section, we formalize watermarking. We will give the generalized notations
in the full version.

Definition 22 (Watermarking Primitives for F ,D). A watermarking
scheme for F ,D consists of the following classical algorithms:

Setup(1λ): it takes as input a security parameter 1λ and outputs keys (xk,mk). xk
is the extracting key and mk is the marking key. We only consider the publicly
extractable watermarking schemes. Thus, xk is always public.

Mark(mk, f, τ): it takes a circuit f and a message τ ∈ Mλ, outputs a marked
circuit f̃ .

Extract(xk, f ′): it takes a circuit f ′ and outputs a message in {⊥} ∪ Mλ.

It satisfies the following properties.

Definition 23 (Correctness of Mark (Functionality Preserving)). For
for every efficient algorithm A, there exists a negligible function negl, for all
(xk,mk) ← Setup(1λ), and every τ ∈ Mλ, all λ,

Pr
[
f̃(x) = f(x) :

f←Fλ

˜f←Mark(mk,f,τ)
x←Df

]
≥ 1 − negl(λ).

Definition 24 (Correctness of Extract). For every efficient algorithm A,
there exists a negligible function negl(·), for all (xk,mk) ← Setup(1λ), and every
τ ∈ Mλ, all λ,

Pr
[
τ �= Extract(xk, f̃) : f←Fλ

˜f←Mark(mk,f,τ)

]
≤ negl(λ).

Definition 25. (γ-Unremovability with respect to F ,D). Consider the
following game, denoted as WaterMarkingGameA

F,D,γ :

1. Setup: The challenger samples (xk,mk) ← Setup(1λ). A then gets xk.
2. Sampling Phase: A function f is sampled uniformly at random in Fλ.
3. Query Phase: A has classical access to Mark(mk, f, ·) at any time. Define

Q be the set of messages that A has queried on.
4. Output Phase: Finally, the algorithm outputs a circuit f∗.

544 S. Aaronson et al.

The adversary wins the game if and only if

Extract(xk, f∗) �∈ Q ∧ Pr
x←Df

[f∗(x) = f(x)] ≥ γ

We say a watermarking scheme has γ-unremovability with respect to F ,D, if for
all QPT A, it wins the above game with negligible probability in λ.

Remark 3. Here, we only consider a weaker security notion where a quantum
adversary only has classical oracle access in the query phase. We claim it is
practical and good enough in most of the settings since the watermarking key mk
is only in the hands of the challenger: whenever adversary queries Mark(mk, f, ·),
the challenger can always measure this query.

Remark 4. Watermarking primitives should also satisfy ‘meaningfulness’ prop-
erty [GKM+19] but since we do not use this property in our construction, we
omit it here.

4 Approximating Threshold Implementation

By applying APIε,δP,D and checking if the outcome is greater than or smaller
than γ, we get a approximated threshold implementation ATIε,δP,D,γ . Here, we use
(ATIε,δP,D,γ , I − ATIε,δP,D,γ) to denote this binary POVM.

Theorem 3 gives the following theorem on approximating threshold imple-
mentation:

Theorem 4. For any ε, δ, γ,P,D, the algorithm of measurement ATIε,δP,D,γ that
satisfies the followings:

– For all quantum state ρ, Tr[ATIε,δP,D,γ−ε · ρ] ≥ Tr[TIγ(PD) · ρ] − δ.
– By symmetry, for all quantum state ρ, Tr[TIγ−ε(PD) ·ρ] ≥ Tr[ATIε,δP,D,γ ·ρ]−δ.
– For all quantum state ρ, let ρ′ be the collapsed state after applying ATIε,δP,D,γ

on ρ (conditioned on outcome 1). Then, Tr[TIγ−2ε(PD) · ρ′] ≥ 1 − 2δ.
– The expected running time is the same as APIε,δP,D.

Intuitively the theorem says that if a quantum state ρ has weight p on eigen-
vectors with eigenvalues at least γ, the measurement ATIε,δP,D,γ−ε with probability
at least p − δ will produce a collapsed state which has weight 1 − 2δ on eigen-
vectors with eigenvalues at least γ − 2ε. Also note that the running time is
proportional to poly(1/ε, 1/(log δ)), which is a polynomial in λ as long as ε is
any inverse polynomial and δ is any inverse sub-exponential function. The proof
of the above theorem is in the full version.

We can also consider approximating the measurements on a bipartite (pos-
sibly entangled) quantum state. In this case, we will prove a similar statement
as Theorem 4.

New Approaches for Quantum Copy-Protection 545

Lemma 3. Let P1 and P2 be two collections of projective measurements and D1

and D2 be any probability distributions defined on the index set of P1 and P2

respectively. For any 0 < ε, δ, γ < 1, the algorithms ATIε,δP1,D1,γ and ATIε,δP2,D2,γ

satisfy the followings:

– For any bipartite (possibly entangled, mixed) quantum state ρ ∈ HL ⊗ HR,

Tr
[(
ATIε,δP1,D1,γ−ε ⊗ ATIε,δP2,D2,γ−ε

)
ρ
] ≥ Tr

[(
TIγ(PD1) ⊗ TIγ(PD2)

)
ρ
] − 2δ.

– For any (possibly entangled, mixed) quantum state ρ, let ρ′ be the collapsed
state after applying ATIε,δP1,D1,γ ⊗ ATIε,δP2,D2,γ on ρ (and normalized). Then,

Tr
[(
TIγ−2ε(PD1) ⊗ TIγ−2ε(PD2)

)
ρ′] ≥ 1 − 4δ.

We defer the proof of the above Lemma to the full version.

5 Quantum Copy-Protection Scheme

Let λ be the security parameter. Let F = {Fλ}λ∈N be a class of circuits. We
assume F is quantum unlearnable with respect to D (see Definition 15) and
can be computed by polynomial-sized classical circuits. The construction for
quantum copy-protection of function class Fλ is defined in Fig. 1.

Note that this construction works for general quantum unlearnable function
families as well. By simply changing the notation in the proof to that in the gen-
eral quantum unlearnability case, we prove it for general quantum unlearnable
function families. More discussion will be given in the full version.

Oracle Heuristics. In practice we use a quantum-secure PRF [Zha12] to imple-
ment function g; and we use quantum-secure (classical) VBB obfuscation to
implement each of (O1,O2, UA, UA⊥). We can replace VBB obfuscation pro-
grams with oracles that only allow black-box access by the security of VBB
obfuscation; afterwards, we can also replace PRF g with a real random function
by the property of PRF. The heuristic analysis is straightforward and we omit
them here.

5.1 Correctness and Efficiency

Correctness. For the quantum program
(
ρ = |A〉 〈A| , {Ux}x∈[N]

)
produced by

the Generate algorithm, it performs the following computation:

1. Make an oracle query O1 on the state |0〉 |x〉 |A〉, the resulting state is sta-
tistically close to |y1〉 |x〉 |A〉. Note that |A〉 with overwhelming probabil-
ity 1 − 1/|A| contains a non-zero vector in A. It measures y1, which is
y1 = f(x) ⊕ g(x).

2. It then prepares a state by applying QFT on the third register and the result-
ing state is is statistically close to |0〉 |x〉 ∣∣A⊥〉

. It makes an oracle query O2 on
the state |0〉 |x〉 ∣∣A⊥〉

, the resulting state is statistically close to |y2〉 |x〉 ∣∣A⊥〉
where y2 = g(x).

Therefore, with overwhelming probability, the output is y1 ⊕ y2 = f(x).

546 S. Aaronson et al.

Fig. 1. Quantum copy-protection scheme.

Efficiency. In Generate algorithm, as shown in [AC12], given the basis of A,
the subspace state |A〉 can be prepared in polynomial time using QFT. For the
oracles O1,O2, it only needs to check the membership of A and A⊥ and compute
functions f and g. f can be prepared in polynomial time by definition. As we
discussed above, we can prepare the function g as a PRF. Therefore, the oracles
O1,O2 can be generated in polynomial time. The Compute algorithm is clearly
efficient.

New Approaches for Quantum Copy-Protection 547

5.2 Anti-Piracy Security

We show that for a quantum unlearnable families of functions F with respect to
D defined in Definition 15, the quantum copy-protection scheme has anti-piracy
security against any quantum polynomial-time adversaries. More formally:

Theorem 5 (Main Theorem). Let F be a function families that is γ-
quantum-unlearnable with respect to distribution D (γ is a non-negligible function
of λ). The above copy-protection scheme for F ,D has (γ(λ) − 1/poly(λ))-anti-
piracy security, for all polynomial poly.

In order to describe the quantum query behavior of quantum programs made
to oracles, we give the following definitions and notations.

We recall that in Definition 13, a QPT adversary A in the anti-piracy security
game CopyProtectionGameA

F,D,γ(1
λ), will produce a state σ over registers R1, R2

and unitaries {UR1,x}x∈[N], {UR2,x}x∈[N], the challenger will then perform γ-
goodness test on σ using threshold implementations TIγ(PR1,f) and TIγ(PR2,f).
For simplicity we will describe the unitary ensembles {UR1,x}x∈[N], {UR2,x}x∈[N]

as UR1 , UR2 and describe threshold implementations TIγ(PR1,f), TIγ(PR2,f) as
TIR1,γ ,TIR2,γ . Similarly, let ATIR1,γ−ε and ATIR2,γ−ε denote the approximation
threshold implementation ATIε,δR1,γ−ε and ATIε,δR2,γ−ε respectively, for some inverse
polynomial ε and inverse subexponential function δ (in other words, log(1/δ) is
polynomial in λ).

In this particular construction, A’s behavior can be described as follows:
A “splits" the copy-protection state ρ into two potentially entangled states
σ[R1], σ[R2]. A prepares (σ[R1], UR1) with oracle access to (O1,O2) as pirate
program P1; and prepares (σ[R2], UR2) with oracle access (O1,O2) as pirate pro-
gram P2. Therefore, TIRb,γ and ATIRb,γ−ε both make oracle queries to O1,O2.

We can assume the joint state of R1, R2 has been purified and the overall
state is a pure state over register R1, R2, R3 where P1 has only access to R1 and
P2 has only access to R2.

Quantum Query Weight. Let σ be any quantum state of R1, R2, R3. We
consider the program P1. P1 has access to register R1 and oracle access to O =
(O1,O2). We denote |φi〉 to be the overall state of registers R1, R2, R3 before P1

makes i-th query to O1, when it applies ATIR1,γ−ε on σ[R1].

|φi〉 =
∑
x,v,z

αx,v,z |x, v, z〉 .

where (x, v) is the query to oracle O1 and z is working space of P1, the registers
of R2, R3. Note that when ATIR1,γ−ε is applied on σ[R1], it in fact applies some
unitary and eventually makes a measurement, during which the unitary makes
queries to oracles O1,O2. Therefore such a query weight is well-defined.

We denote by W1,A,i to be the sum of squared amplitudes in |φi〉, which are
querying O1 on input (x, v) such that v ∈ A \ {0}:

W1,A,i =
∑

x,v,z:v∈A\{0}
|αx,v,z|2

548 S. Aaronson et al.

Then we sum up all the squared amplitudes W1,A,i in all the queries made
by P1 to O1, where v ∈ A \ {0}. We denote this sum as W1,A =

∑
i∈[�1]

W1,A,i,
where �1 = �1(λ) is the number of queries made by P1 to O1.

Similarly, we write W1,A⊥ =
∑

i∈[�2]
W1,A⊥,i =

∑
i∈[�2]

∑
x,v,z:v∈A⊥\{0}

|αx,v,z|2 to be the sum of squared amplitudes in |φi〉 where v ∈ A⊥ \ {0}, in
the �2 queries made by P1 to O2.

Accordingly, for the other program P2 and threshold implementation
ATIR2,γ−ε, we denote these sums of squared amplitudes as W2,A =∑

i∈[m1]
W2,A,i and W2,A⊥ =

∑
i∈[m2]

W2,A⊥,i, where m1,m2 are the number
of queries made by P2 to oracles O1,O2 respectively.

Case One. Fixing a function f , let (σ,UR1 , UR2) be the two programs output
by the adversary which are both tested γ-good with respect to f,Df with some
non-negligible probability.

Let O⊥ be an oracle that always outputs ⊥. We hope one of the following
events will happen:

1. The program (σ[R1], UR1) with oracle access to O1,O⊥ is tested (γ−2ε)-good
with respect to f,Df , with non-negligible probability.

2. The program (σ[R2], UR2) with oracle access to O⊥,O2 is tested (γ−2ε)-good
with respect to f,Df , with non-negligible probability.

Let ÃTIR1,γ−ε be the same as ATIR1,γ−ε except with oracle access to O1,O⊥
and ÃTIR2,γ−ε be the same as ATIR2,γ−ε except with oracle access to O⊥,O2.
Similarly, let T̃IRb,γ−2ε be the same threshold implementation as TIRb,γ−2ε except
with oracle access to O1,O⊥ and O⊥,O2 respectively.

Since (σ[R1], UR1) and (σ[R2], UR2) are both γ-good with respect to f,Df

with non-negligible probability, for some non-negligible function β(·),
Tr[(TIR1,γ ⊗ TIR2,γ) · σ] ≥ β(λ)

From the property of the approximated threshold implementation (Lemma 3),

Tr[(ATIR1,γ−ε ⊗ ATIR2,γ−ε) · σ] ≥ β(λ) − 2δ

Thus, for any b ∈ {1, 2}, we have Tr[ATIRb,γ−ε · σ[Rb]] ≥ β(λ) − 2δ. Since δ is
negligible, both probabilities are still non-negligible.

We then define the following two events:

E1: Let E1 be the event denotes Tr[ÃTIR1,γ−ε · σ[R1]] is non-negligible. If E1

happens, by Theorem 4,

Tr
[
T̃IR1,γ−2ε · σ[R1]

]
≥ Tr

[
ÃTIR1,γ−ε · σ[R1]

]
− δ

which is still non-negligible. In other words, (σ[R1], UR1) with oracle access
to O1,O⊥ is tested (γ − 2ε)-good with respect to f,Df with non-negligible
probability.

E2: Similarly, define E2 as the program (σ[R2], UR2) with oracle access to O⊥,O2

is (γ − 2ε)-good with respect to f,Df with non-negligible probability.

New Approaches for Quantum Copy-Protection 549

Case Two. Fixing a function f , let (σ,UR1 , UR2) be the two programs output by
the adversary which are both γ-good with respect to f,Df , with non-negligible
probability.

If E1 ∨ E2 does not happen, we are in the case Ē1 ∧ Ē2. By definition, there
exist negligible functions negl1, negl2 such that

Tr
[
ÃTIR1,γ−ε · σ[R1]

]
≤ negl1(λ), Tr

[
ÃTIR2,γ−ε · σ[R2]

]
≤ negl2(λ).

We look at the following thought experiments:

1. We apply ATIR1,γ−ε ⊗ ATIR2,γ−ε on σ, by Lemma 3, there exists a non-
negligible function β(·) such that

Tr [(ATIR1,γ−ε ⊗ ATIR2,γ−ε) · σ] ≥ β(λ) − 2δ.

2. We apply ATIR1,γ−ε ⊗ ÃTIR2,γ−ε on σ. We have,

Tr
[
(ATIR1,γ−ε ⊗ ÃTIR2,γ−ε) · σ

]
≤ Tr

[
(I ⊗ ÃTIR2,γ−ε) · σ

]
≤ negl2(λ).

3. Note that in 1 and 2, the only difference is the oracle access: in 1, it has oracle
access to O1,O2; in 2, it has oracle access to O⊥,O2. Let σ′ be the state
which we apply (ATIR1,γ−ε ⊗ I) on σ and obtain a outcome 1, which happens
with non-negligible probability. Let W2,A be the query weight defined on the
state σ′. We know that W2,A can not be negligible otherwise by Theorem 1
(BBBV), the probability difference in 1 and 2 can not be non-neglibile.
Define MR2 be the operator that measures a random query of ATIR2,γ−ε to
O1 and the query (x, v) satisfies v ∈ A \ {0}. By the above discussion, there
exists a non-negligible function β1(·),

Tr [(ATIR1,γ−ε ⊗ MR2) · σ] ≥ β1(λ).

4. We apply ÃTIR1,γ−ε ⊗ MR2 on σ. We have,

Tr
[
(ÃTIR1,γ−ε ⊗ MR2) · σ

]
≤ Tr

[
(ÃTIR1,γ−ε ⊗ I) · σ

]
≤ negl1(λ).

5. By a similar argument of 3, let MR1 be the operator that measures a random
query of ATIR1,γ−ε to O2 and the query (x, v) satisfies v ∈ A⊥ \ {0}. There
exists a non-negligible function β2(·),

Tr [(MR1 ⊗ MR2) · σ] ≥ β2(λ).

Thus, in the case, one can extract a pair of vectors (u, v) ∈ (A\{0})×(A⊥ \{0})
with non-negligible probability. To conclude it, we have the following lemma,

Lemma 4. Fixing a function f , let (σ,UR1 , UR2) be the two programs output
by the adversary which are both γ-good with respect to f,Df , with non-negligible
probability. If E1 ∨ E2 does not happen, by randomly picking and measuring a
query of ATIR1,γ−ε to O2 and a query of ATIR2,γ−ε to O1, one can obtain a pair
of vectors (u, v) ∈ (A \ {0}) × (A⊥ \ {0}) with non-negligible probability.

550 S. Aaronson et al.

Then we show a reduction to violate unlearnability in case of E1 or E2 and
a reduction to violate direct product hardness in case of Ē1 ∧ Ē2. We have the
following lemmas:

Lemma 5. Let Pr[E1] be the probability of E1 taken over all randomness of
CopyProtectionGameA

F,D,γ(1
λ). If Pr[E1] is non-negligible, there exists an adver-

sary A1 that wins LearningGameA1
F,D,γ−2ε(1

λ) with non-negligible probability.

Proof. The challenger in the copy-protection security game plays as the quantum
unlearnability adversary A1 for function f ← F , given only black-box access to
f ; we denote this black box as oracle Of , which on query |x, z〉, answers the
query with |x, f(x) + z〉.

Next, we show that A1 can simulate the copy-protection security game for
A using the information given and uses A to quantumly learn f . A1 samples
random λ/2-dimensional subspace A over F and prepares the membership oracles
(two unitaries) UA, U⊥

A as well as state |A〉.
Using UA, U⊥

A and given oracle access to f in the unlearnability game, A1

simulates the copy-protection oracles O1,O2 for A in the query phase of anti-
piracy game.

There is one subtlety in the proof: A1 needs to simulate the oracles in the
anti-piracy game slightly differently: A1 simulates the oracles with their func-
tionalities partially swapped:

O′
1(x, v) =

{
g(x) if v ∈ A and v �= 0,
⊥ otherwise.

O′
2(x, v) =

{
f(x) ⊕ g(x) if v ∈ A⊥ and v �= 0,
⊥ otherwise.

That is, a random function g(x) is output when queried on u ∈ A \ {0}, and
f(x)⊕g(x) is output when queried on u ∈ A⊥ \{0}. The distributions of O1,O2

and O′
1,O′

2 are identical. Note that g(x) can be simulated by a quantum secure
PRF or a 2t-wise independent hash function where t is the number of oracle
queries made by A [Zha12].

In the output phase, A outputs (σ,UR1 , UR2) and sends to A1. A1 simply
outputs (σ[R1], UR1) with oracle access to O′

1,O⊥. The program does not need
access to oracle f because O′

1 is only about g(·) and O⊥ is a dummy oracle. If
E1 happens, the program is a (γ − 2ε)-good with non-negligible probability, by
the definition of E1. Because Pr[E1] is also non-negligible, A1 breaks (γ − 2ε)-
quantum-unlearnability of F ,D. ��
Lemma 6. Let Pr[E2] be the probability of E2 taken over all randomness of
CopyProtectionGameA

F,D,γ(1
λ). If Pr[E2] is non-negligible, there exists an adver-

sary A2 that wins LearningGameA2
F,D,γ−2ε(1

λ) with non-negligible probability.

Proof (Proof Sketch). The proof is almost identical to the proof for Lemma 6
except oracles O1,O2 are simulated in the same way as that in the construction.

New Approaches for Quantum Copy-Protection 551

O1(x, v) outputs f(x)⊕ g(x) if v ∈ A \ {0}, and otherwise outputs ⊥. Similarly,
O2(x, v) outputs g(x) if v ∈ A⊥ \ {0}, and otherwise outputs ⊥ ��

As discussed above, if Pr[E1∨E2] is non-negligible, we can break the quantum
unlearnability. Otherwise, Pr[Ē1∧ Ē2] is overwhelming. We show that in the case,
one can use the adversary A to break the direct-product problem Theorem 2.

Lemma 7. Let Pr[Ē1 ∧ Ē2] be the probability taken over all randomness of the
game CopyProtectionGameA

F,D,γ(1
λ). If Pr[Ē1 ∧ Ē2] is non-negligible, there exists

an adversary A3 that breaks the direct-product problem.

Proof. The challenger in the copy-protection security game plays as the adver-
sary in breaking direct-product problem, denoted as A3. In the reduction, A3 is
given the access to membership oracles UA, U⊥

A and one copy of |A〉.
Next, we show that A3 can simulate the anti-piracy security game for A using

the information given and uses A to obtain the two vectors. A3 samples f ← F ,
and simulates a γ-anti-piracy game, specifically simulating the copy-protection
oracle O1,O2 for adversary A. In the output phase, A outputs (σ,UR1 , UR2).

A1 upon taking the output, it randomly picks and measures a query of
ATIR1,γ−ε to O2 and a query of ATIR2,γ−ε to O1, and obtain a pair of vec-
tors (u, v). If Ē1 ∧ Ē2 happens. By Lemma 4, (u, v) breaks the direct-product
problem with non-negligible probability. Since Pr[Ē1 ∧ Ē2] is non-negligible, the
overall probability is non-negligible. ��

Note that the proof does not naturally extend to q-collusion resistant anti-
piracy. We leave this as an interesting open problem.

6 Quantum Copy-Detection

6.1 Construction

We construct a copy-detection scheme for a watermarkable function family F
with respect to an input distribution D. Let QM and WM be a public key quan-
tum money scheme and a publicly extractable watermarking scheme for F ,D,
whose serial number space Sλ of QM is a subset of the message space Mλ of
WM. We construct a copy-detection scheme in Fig. 2. The definition of quantum
money schemes, our general scheme and full proofs are in the full version of this
paper.

6.2 Efficiency and Correctness

First, for all λ ∈ N, all efficient A, every f ∈ Fλ, the copy-detection program
is (ρf , {Uf,x}x∈[N]). We have Compute(ρf , {Uf,x}x∈[N], x) = f̃(x), where f̃ =
WM.Mark(mk, f, s) for some serial number s. From the correctness of WM, it
satisfies the correctness of copy-detection.

The correctness of Check comes from the correctness of WM.Extract and
unique serial number property of QM. Check is a projection since QM.Ver is
also a projection. Efficiency is straightforward.

552 S. Aaronson et al.

Fig. 2. Quantum copy-detection scheme.

6.3 Security

Theorem 6. Assume QM is a quantum money scheme and WM is a watermark-
ing scheme for F ,D with γ-unremovability, the above copy-detection scheme for
F ,D has γ-copy-detection-security.

Proof. Let A be a QPT algorithm that tries to break the security of the copy-
detection scheme. Let (σ,UR1 , UR2) be the programs output by A which wins
the game CopyDetectionGameA

F,D,γ . To win the game, the program (σ,UR1 , UR2)
should pass the following two tests:

1. Apply the projective measurement (defined by Check(pk, ·)) on both σ[R1]
and σ[R2], and both outcomes are 1.

2. Let σ′ be the state that passes step 1. Then both programs (σ′[R1], UR1),
(σ′[R2], UR2) are tested to be γ-good with non-negligible probability.

In our construction, Check first measures the program registers. The resulting
state is f̃1, f̃2, σ, where f̃1, f̃2 are supposed to be classical (marked) circuits
that computes f and σ are (possibly entangled) states that are supposed to be
quantum money state for each of the program.

Next, Check applies QM.Ver on both registers of σ and computes serial num-
bers. Define Sb be the random variable of QM.Ver applying on σ[Rb] represent-
ing the serial number of ρb, for b = 1, 2. Define S be the random variable of
QM.Ver(|$〉) representing the serial number of the quantum money state in the
Generate procedure.

Define E be the event that both WM.Extract(xk, f̃b) = Sb and at least one of
S1, S2 is not equal to S. Define E′ be the event that both S1, S2 are equal to S
and both WM.Extract(xk, f̃b) = Sb. If f̃1, f̃2, σ passes the step 1, exactly one of
E and E′ happens.

New Approaches for Quantum Copy-Protection 553

In step 2, it simply tests if f̃1 and f̃2 are γ-good with respect to f,Df . Since
f̃1, f̃2 are classical circuits, it is equivalent to check whether they work correctly
on at least γ fraction of all inputs. If it passes step 2, we have for all b ∈ {1, 2},
Prx←Dλ

[f̃b(x) = f(x)] ≥ γ.
Therefore, the probability of A breaks the security game is indeed,

Pr
(f̃1,f̃2,σ)

[
(E ∨ E′) ∧ ∀b, Pr

x←Dλ

[f̃b(x) = f(x)] ≥ γ

]

≤ Pr
(f̃1,f̃2,σ)

[
E ∧ ∀b, Pr

x←Dλ

[f̃b(x) = f(x)] ≥ γ

]
+ Pr

(f̃1,f̃2,σ)
[E′]

Note that the probability is taken over the randomness of
CopyDetectionGameA

F,D,γ . Next we are going to show both probabilities are neg-
ligible, otherwise we can break the quantum money scheme or watermarking
scheme.

Claim 1. Pr(f̃1,f̃2,σ)[E
′] ≤ negl(λ).

Proof. It corresponds to the security game of the quantum money scheme.
Assume Pr[E′] is non-negligible, we can construct an adversary B for the quan-
tum money scheme with non-negligible advantage. Given a quantum money state
|$〉, the algorithm B simulates the challenger for the copy-detection game and
can successfully ‘copy’ a money state. ��

Claim 2. Pr(f̃1,f̃2,σ)

[
E ∧ ∀b,Prx←Dλ

[f̃b(x) = f(x)] ≥ γ
]

≤ negl(λ).

Proof. It corresponds to the security game of the underlying watermarking
scheme. Since if E happens, at least one of the circuit has different mark than s
and it satisfies the correctness requirement. ��

Thus, the probability of A breaks the game is negligible. ��

Acknowledgements. We thank Paul Christiano for suggesting the idea of quantum
copy-protection based on [AC12] hidden subspace oracles.

J. L., Q. L., M. Z. and R. Z.’s research is supported by NSF Grant; S. A. is supported
by Vannevar Bush Faculty Fellowship from the US Department of Defense, the Simons
Foundation’s It from Qubit Collaboration, and a Simons Investigator Award.

References

[Aar04] Aaronson, S.: Limitations of quantum advice and one-way communication.
In: Proceedings. 19th IEEE Annual Conference on Computational Com-
plexity, 2004, pp. 320–332. IEEE (2004)

[Aar09] Aaronson, S.: Quantum copy-protection and quantum money. In 2009
24th Annual IEEE Conference on Computational Complexity, pp. 229–
242. IEEE (2009)

554 S. Aaronson et al.

[AC12] Aaronson, S., Christiano, P.: Quantum money from hidden subspaces. In:
Proceedings of the Forty-Fourth Annual ACM Symposium on Theory of
Computing, pp. 41–60. ACM (2012)

[AGKZ20] Amos, R., Georgiou, M., Kiayias, A., Zhandry, M.: One-shot signatures and
applications to hybrid quantum/classical authentication. In: Proceedings
of the 52nd Annual ACM SIGACT Symposium on Theory of Computing,
STOC 2020, pp. 255–268. Association for Computing Machinery (2020)

[AP20] Ananth, P., La Placa, R.L.: Secure software leasing (2020)
[BBBV97] Bennett, C.H., Bernstein, E., Brassard, G., Vazirani, U.: Strengths and

weaknesses of quantum computing. SIAM J. Comput. 26(5), 1510–1523
(1997)

[BDGM20] Brakerski, Z., Döttling, N., Garg, S., Malavolta, G.: Factoring and pairings
are not necessary for io: circular-secure lwe suffices. Cryptology ePrint
Archive, Report 2020/1024 (2020). https://eprint.iacr.org/2020/1024

[BDS16] Ben-David, S., Sattath, O.: Quantum tokens for digital signatures. arXiv
preprint arXiv:1609.09047 (2016)

[BGI+01] Barak, B., et al.: On the (im)possibility of obfuscating programs. In: Kilian,
J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg
(2001). https://doi.org/10.1007/3-540-44647-8_1

[BGMZ18] Bartusek, J., Guan, J., Ma, F., Zhandry, M.: Preventing zeroizing attacks
on ggh15. In: Proceedings of TCC 2018 (2018)

[BJL+21] Broadbent, A., Jeffery, S., Podder, S., Sundaram, A.: Secure software leas-
ing without assumptions. Sébastien Lord (2021)

[BL19] Broadbent, A., Lord, S.: Uncloneable quantum encryption via random ora-
cles. IACR Cryptol. ePrint Arch. 2019, 257 (2019)

[BP15] Bitansky, N., Paneth, O.: On non-black-box simulation and the impos-
sibility of approximate obfuscation. SIAM J. Comput. 44(5), 1325–1383
(2015)

[CHN+18] Cohen, A., Holmgren, J., Nishimaki, R., Vaikuntanathan, V., Wichs, D.:
Watermarking cryptographic capabilities. SIAM J. Comput. 47(6), 2157–
2202 (2018)

[CMP20] Coladangelo, A., Majenz, C., Poremba, A.: Quantum copy-protection of
compute-and-compare programs in the quantum random oracle model
(2020)

[GKM+19] Goyal, R., Kim, S., Manohar, N., Waters, B., Wu, D.J.: Watermarking
public-key cryptographic primitives. In: Boldyreva, A., Micciancio, D.
(eds.) CRYPTO 2019. LNCS, vol. 11694, pp. 367–398. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-26954-8_12

[GKW17] Goyal, R., Koppula, V., Waters, B.: Lockable obfuscation. In: 2017 IEEE
58th Annual Symposium on Foundations of Computer Science (FOCS),
pp. 612–621. IEEE (2017)

[GZ20] Georgiou, M., Zhandry, M.: Unclonable decryption keys. Cryptology ePrint
Archive, Report 2020/877 (2020). https://eprint.iacr.org/2020/877

[KNY20] Kitagawa, F., Nishimaki, R., Yamakawa, T.: Secure software leasing from
standard assumptions (2020)

[KW17] Kim, S., Wu, D.J.: Watermarking cryptographic functionalities from stan-
dard lattice assumptions. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017.
LNCS, vol. 10401, pp. 503–536. Springer, Cham (2017). https://doi.org/
10.1007/978-3-319-63688-7_17

https://eprint.iacr.org/2020/1024
http://arxiv.org/abs/1609.09047
https://doi.org/10.1007/3-540-44647-8_1
https://doi.org/10.1007/978-3-030-26954-8_12
https://eprint.iacr.org/2020/877
https://doi.org/10.1007/978-3-319-63688-7_17
https://doi.org/10.1007/978-3-319-63688-7_17

New Approaches for Quantum Copy-Protection 555

[KW19] Kim, S., Wu, D.J.: Watermarking PRFs from lattices: stronger security via
extractable PRFs. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019.
LNCS, vol. 11694, pp. 335–366. Springer, Cham (2019). https://doi.org/
10.1007/978-3-030-26954-8_11

[QWZ18] Quach, W., Wichs, D., Zirdelis, G.: Watermarking PRFs under stan-
dard assumptions: public marking and security with extraction queries.
In: Beimel, A., Dziembowski, S. (eds.) TCC 2018. LNCS, vol. 11240,
pp. 669–698. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-
03810-6_24

[WZ17] Wichs, D., Zirdelis, G.: Obfuscating compute-and-compare programs under
lwe. In: 2017 IEEE 58th Annual Symposium on Foundations of Computer
Science (FOCS), pp. 600–611. IEEE (2017)

[Zha12] Zhandry, M.: How to construct quantum random functions. In 2012 IEEE
53rd Annual Symposium on Foundations of Computer Science, pp. 679–
687. IEEE (2012)

[Zha20] Zhandry, M.: Schrödinger’s pirate: how to trace a quantum decoder. Cryp-
tology ePrint Archive, Report 2020/1191 (2020). https://eprint.iacr.org/
2020/1191

https://doi.org/10.1007/978-3-030-26954-8_11
https://doi.org/10.1007/978-3-030-26954-8_11
https://doi.org/10.1007/978-3-030-03810-6_24
https://doi.org/10.1007/978-3-030-03810-6_24
https://eprint.iacr.org/2020/1191
https://eprint.iacr.org/2020/1191

Hidden Cosets and Applications
to Unclonable Cryptography

Andrea Coladangelo1(B), Jiahui Liu2, Qipeng Liu3, and Mark Zhandry4

1 University of California, Berkeley, USA
2 The University of Texas at Austin, Austin, USA

jiahui@cs.utexas.edu
3 Princeton University, Princeton, USA

qipengl@cs.princeton.edu
4 Princeton University and NTT Research, Princeton, USA

mzhandry@princeton.edu

Abstract. In 2012, Aaronson and Christiano introduced the idea of
hidden subspace states to build public-key quantum money [STOC ’12].
Since then, this idea has been applied to realize several other crypto-
graphic primitives which enjoy some form of unclonability.

In this work, we propose a generalization of hidden subspace states
to hidden coset states. We study different unclonable properties of coset
states and several applications:

– We show that, assuming indistinguishability obfuscation (iO), hidden
coset states possess a certain direct product hardness property, which
immediately implies a tokenized signature scheme in the plain model.
Previously, a tokenized signature scheme was known only relative to
an oracle, from a work of Ben-David and Sattath [QCrypt ’17].

– Combining a tokenized signature scheme with extractable witness
encryption, we give a construction of an unclonable decryption
scheme in the plain model. The latter primitive was recently pro-
posed by Georgiou and Zhandry [ePrint ’20], who gave a construction
relative to a classical oracle.

– We conjecture that coset states satisfy a certain natural (information-
theoretic) monogamy-of-entanglement property. Assuming this con-
jecture is true, we remove the requirement for extractable wit-
ness encryption in our unclonable decryption construction, by rely-
ing instead on compute-and-compare obfuscation for the class of
unpredictable distributions. As potential evidence in support of the
monogamy conjecture, we prove a weaker version of this monogamy
property, which we believe will still be of independent interest.

– Finally, we give the first construction of a copy-protection scheme for
pseudorandom functions (PRFs) in the plain model. Our scheme is
secure either assuming iO, OWF and extractable witness encryption,
or assuming iO,OWF, compute-and-compare obfuscation for the
class of unpredictable distributions, and the conjectured monogamy
property mentioned above.

c© International Association for Cryptologic Research 2021
T. Malkin and C. Peikert (Eds.): CRYPTO 2021, LNCS 12825, pp. 556–584, 2021.
https://doi.org/10.1007/978-3-030-84242-0_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-84242-0_20&domain=pdf
https://doi.org/10.1007/978-3-030-84242-0_20

Hidden Cosets and Applications to Unclonable Cryptography 557

1 Introduction

The no-cloning principle of quantum mechanics asserts that quantum informa-
tion cannot be generically copied. This principle has profound consequences in
quantum cryptography, as it puts a fundamental restriction on the possible
strategies that a malicious party can implement. One of these consequences
is that quantum information enables cryptographic tasks that are provably
impossible to realize classically, the most famous example being information-
theoretically secure key distribution [BB84].

Beyond this, the no-cloning principle opens up an exciting avenue to real-
ize cryptographic tasks which enjoy some form of unclonability, e.g. quantum
money [Wie83,AC12,FGH+12,Zha19a,Kan18], quantum tokens for digital sig-
natures [BS16], copy-protection of programs [Aar09,ALL+20,CMP20], and more
recently unclonable encryption [Got02,BL19] and decryption [GZ20].

In this work, we revisit the hidden subspace idea proposed by Aaronson and
Christiano, which has been employed towards several of the applications above.
We propose a generalization of this idea, which involves hidden cosets (affine
subspaces), and we show applications of this to signature tokens, unclonable
decryption and copy-protection.

Given a subspace A ⊆ F
n
2 , the corresponding subspace state is defined as a

uniform superposition over all strings in the subspace A, i.e.

|A〉 :=
1

√|A|
∑

x∈A

|x〉 ,

The first property that makes this state useful is that applying a Hadamard on
all qubits creates a uniform superposition over all strings in A⊥, the orthogonal
complement of A, i.e. H⊗n|A〉 = |A⊥〉.

The second property, which is crucial for constructing unclonable primitives
with some form of verification, is the following. Given one copy of |A〉, where A ⊆
Fn
2 is uniformly random of dimension n/2, it is impossible to produce two copies

of |A〉 except with negligible probability. As shown by [AC12], unclonability
holds even when given quantum access to oracles for membership in A and A⊥,
as long as the number of queries is polynomially bounded. On the other hand,
such membership oracles allow for verifying the state |A〉, leading to publicly-
verifiable quantum money, where the verification procedure is the following:

– Given an alleged quantum money state |ψ〉, query the oracle for membership
in A on input |ψ〉. Measure the outcome register, and verify that the outcome
is 1.

– If so, apply H⊗n to the query register, and query the oracle for membership in
A⊥. Measure the outcome register, and accept the money state if the outcome
is 1.

It is not difficult to see that the unique state that passes this verification
procedure is |A〉.

558 A. Coladangelo et al.

In order to obtain a quantum money scheme in the plain model (without
oracles), Aaronson and Christiano suggest instantiating the oracles with some
form of program obfuscation. This vision is realized subsequently in [Zha19a],
where access to the oracles for subspace membership is replaced by a suitable
obfuscation of the membership programs, which can be built from indistinguisha-
bility obfuscation (iO). More precisely, Zhandry shows that, letting PA and PA⊥

be programs that check membership in A and A⊥ respectively, any computa-
tionally bounded adversary who receives a uniformly random subspace state |A〉
together with iO(PA) and iO(PA⊥) cannot produce two copies of |A〉 except with
negligible probability.

The subspace state idea was later employed to obtain quantum tokens for dig-
ital signatures [BS16]. What these are is best explained by the (award-winning)
infographic in [BS16] (see the ancillary arXiv files there). Concisely, a quantum
signature token allows Alice to provide Bob with the ability to sign one and only
one message in her name, where such signature can be publicly verified using
Alice’s public key. The construction of quantum tokens for digital signatures
from [BS16] is the following.

– Alice samples a uniformly random subspace A ⊆ F
n
2 , which constitutes her

secret key. A signature token is the state |A〉.
– Anyone in possession of a token |A〉 can sign message 0 by outputting a string

v ∈ A (this can be obtained by measuring |A〉 in the computational basis),
and can sign message 1 by outputting a string w ∈ A⊥ (this can be done by
measuring |A〉 in the Hadamard basis).

– Signatures can be publicly verified assuming access to an oracle for subspace
membership in A and in A⊥ (such access can be thought of as Alice’s public
key).

In order to guarantee security of the scheme, i.e. that Bob cannot produce a valid
signature for more than one message, Ben-David and Sattath prove the follow-
ing strengthening of the original property proven by Aaronson and Christiano.
Namely, they show that any query-bounded adversary with quantum access to
oracles for membership in A and A⊥ cannot produce, except with negligible
probability, a pair (v, w) where v ∈ A \ {0} and w ∈ A⊥ \ {0}. We refer to this
property as a direct product hardness property.

The natural step to obtain a signature token scheme in the plain model is
to instantiate the subspace membership oracles using iO, analogously to the
quantum money application. However, unlike for the case of quantum money,
here one runs into a technical barrier, which we expand upon in Sect. 2.1. Thus,
a signature token scheme is not known in the plain model, and this has remained
an open question since [BS16].

In general, a similar difficulty in obtaining schemes that are secure in the
plain model as opposed to an oracle model seems prevalent in works about
other unclonable primitives. For example, in the case of copy-protection of
programs, we know that copy-protection of a large class of evasive programs,
namely compute-and-compare programs, is possible with provable non-trivial
security against fully malicious adversaries in the quantum random oracle model

Hidden Cosets and Applications to Unclonable Cryptography 559

(QROM) [CMP20]. Other results achieving provable security in the plain model
are secure only against a restricted class of adversaries [AP21,KNY20,BJL+21].
To make the contrast between plain model and oracle model even more stark, all
unlearnable programs can be copy-protected assuming access to (highly struc-
tured) oracles [ALL+20], but we know, on the other hand, that a copy-protection
scheme for all unlearnable programs in the plain model does not exist (assuming
Learning With Errors is hard for quantum computers) [AP21].

Likewise, for the recently proposed task of unclonable decryption, the only
currently known scheme is secure only in a model with access to subspace mem-
bership oracles [GZ20].

1.1 Our Results

We propose a generalization of subspace states, which we call coset states. For
A ⊆ F

n
2 , and s, s′ ∈ F

n
2 , the corresponding coset state is:

|As,s′〉 :=
∑

x∈A

(−1)〈x,s′〉|x + s〉 ,

where here 〈x, s′〉 denotes the inner product of x and s′. In the computational
basis, the quantum state is a superposition over all elements in the coset A + s,
while, in the Hadamard basis, it is a superposition over all elements in A⊥ + s′.
Let PA+s and PA⊥+s′ be programs that check membership in the cosets A + s
and A⊥ + s′ respectively. To check if a state |ψ〉 is a coset state with respect to
A, s, s′, one can compute PA+s in the computational basis, and check that the
outcome is 1; then, apply H⊗n followed by PA⊥+s′ , and check that the outcome
is 1.

Computational Direct Product Hardness. Our first technical result is establishing
a computational direct product hardness property in the plain model, assuming
post-quantum iO and one-way functions.

Theorem 1 (Informal). Any quantum polynomial-time adversary who receives
|As,s′〉 and programs iO(PA+s) and iO(PA⊥+s′) for uniformly random A ⊆ F

n
2 ,

s, s′ ∈ F
n
2 , cannot produce a pair (v, w) ∈ (A + s) × (A⊥ + s′), except with

negligible probability in n.

As we mentioned earlier, this is in contrast to regular subspace states, for
which a similar direct product hardness is currently not known in the plain
model, but only in a model with access to subspace membership oracles.

We then apply this property to obtain the following primitives.

Signature Tokens. Our direct product hardness immediately implies a signature
token scheme in the plain model (from post-quantum iO and one-way functions),
thus resolving the main question left open in [BS16].

Theorem 2 (Informal). Assuming post-quantum iO and one-way functions,
there exists a signature token scheme.

560 A. Coladangelo et al.

In this signature token scheme, the public verification key is the pair of pro-
grams (iO(PA+s), iO(PA⊥+s′)), and a signature token is the coset state |As,s′〉.
Producing signatures for both messages 0 and 1 is equivalent to finding elements
in both A + s and A⊥ + s′, which violates our computational direct product
hardness property.

Unclonable Decryption. Unclonable decryption, also known as single-decryptor
encryption, was introduced in [GZ20]. Informally, a single-decryptor encryption
scheme is a (public-key) encryption scheme in which the secret key is a quantum
state. The scheme satisfies a standard notion of security (in our case, CPA secu-
rity), as well as the following additional security guarantee: no efficient quantum
algorithm with one decryption key is able to produce two working decryption
keys. We build a single-decryptor encryption scheme using a signature tokens
scheme and extractable witness encryption in a black-box way. By leveraging
our previous result about the existence of a signature token scheme in the plain
model, we are able to prove security without the need for the structured oracles
used in the original construction of [GZ20].

Theorem 3 (Informal). Assuming post-quantum iO, one-way functions, and
extractable witness encryption, there exists a public-key single-decryptor encryp-
tion scheme.

Copy-Protection of PRFs. The notion of a copy-protection scheme was intro-
duced by Aaronson in [Aar09] and recently explored further in [AP21,CMP20,
ALL+20,BJL+21].

In a copy-protection scheme, the vendor of a classical program wishes to
provide a user the ability to run the program on any input, while ensuring
that the functionality cannot be “pirated”: informally, the adversary, given one
copy of the program, cannot produce two programs that enable evaluating the
program correctly.

Copy-protection is trivially impossible classically, since classical information
can always be copied. This impossibility can be in principle circumvented if
the classical program is encoded in a quantum state, due to the no-cloning
principle. However, positive results have so far been limited. A copy-protection
scheme [CMP20] is known for a class of evasive programs, known as compute-
and-compare programs, with provable non-trivial security against fully malicious
adversaries in the Quantum Random Oracle Model (QROM). Other schemes in
the plain model are only secure against restricted classes of adversaries (which
behave honestly in certain parts of the protocol) [AP21,KNY20,BJL+21]. Copy-
protection schemes for more general functionalities are known [ALL+20], but
these are only secure assuming very structured oracles (which depend on the
functionality that is being copy-protected).

In this work, we present a copy-protection scheme for a family of pseudoran-
dom functions (PRFs). In such a scheme, for any classical key K for the PRF,
anyone in possession of a quantum key ρK is able to evaluate PRF (K,x) on any
input x.

Hidden Cosets and Applications to Unclonable Cryptography 561

The copy-protection property that our scheme satisfies is that given a quan-
tum key ρK , no efficient algorithm can produce two (possibly entangled) keys
such that these two keys allow for simultaneous correct evaluation on uniformly
random inputs, with noticeable probability.

Similarly to the unclonable decryption scheme, our copy-protection scheme
is secure assuming post-quantum iO, one-way functions, and extractable witness
encryption.

Theorem 4 (Informal). Assuming post-quantum iO, one-way functions, and
extractable witness encryption, there exists a copy-protection scheme for a family
of PRFs.

We remark that our scheme requires a particular kind of PRFs, namely punc-
turing and extracting with small enough error. However, PRFs satisfying these
properties can be built from just one-way functions.

The existence of extractable witness encryption is considered to be a very
strong assumption. In particular, it was shown to be impossible in general (under a
special-purpose obfuscation conjecture) [GGHW17]. However, we emphasize that
no provably secure copy-protection schemes with standard malicious security in
the plain model are known at all. Given the central role of PRFs in the construc-
tion of many other cryptographic primitives, we expect that our copy-protection
scheme, and the techniques developed along the way, will play an important role
as a building block to realize unclonable versions of other primitives.

To avoid the use of extractable witness encryption, we put forth a
(information-theoretic) conjecture about a monogamy of entanglement property
of coset states, which we discuss below. Assuming this conjecture is true, we
show that both unclonable decryption and copy-protection of PRFs can be con-
structed without extractable witness encryption, by relying instead on compute-
and-compare obfuscation [WZ17,GKW17] (more details on the latter can be
found in Sect. 3.1).

Theorem 5 (Informal). Assuming post-quantum iO, one-way functions, and
obfuscation of compute-and-compare programs against unpredictable distribu-
tions, there exist: (i) a public-key single-decryptor encryption scheme, and (ii)
a copy-protection scheme for a family of PRFs.

Aspotential evidence in support of themonogamy-of-entanglement conjecture,
we prove a weaker version of the monogamy of entanglement property, which we
believe will still be of independent interest (more details on this are below).

Remark 1. While iO was recently constructed based on widely-believed compu-
tational assumptions [JLS20], the latter construction is not quantum resistant,
and the situation is less clear quantumly. However, several works have proposed
candidate post-quantum obfuscation schemes [BGMZ18,WW20,BDGM20], and
based on these works iO seems plausible in the post-quantum setting as well.

Remark 2. Compute-and-compare obfuscation against unpredictable distribu-
tions is known to exist assuming LWE (or iO) and assuming the existence of

562 A. Coladangelo et al.

Extremely Lossy Functions (ELFs) [Zha19c] [WZ17,GKW17]. Unfortunately,
the only known constructions of ELFs rely on hardness assumptions that are bro-
ken by quantum computers (exponential hardness of decisional Diffie-Hellman).
To remedy this, we give a construction of computate-and-compare obfuscation
against sub-exponentially unpredictable distributions, from plain LWE (see The-
orem 6, and its proof in the full version). The latter weaker obfuscation is suf-
ficient to prove security of our single-decryptor encryption scheme, and copy-
protection scheme for PRFs, if one additionally assumes sub-exponentially secure
iO and one-way functions.

Monogamy-of-Entanglement. As previously mentioned, we conjecture that coset
states additionally satisfy a certain (information-theoretic) monogamy of entan-
glement property, similar to the one satisfied by BB84 states, which is studied
extensively in [TFKW13]. Unlike the monogamy property of BB84 states, the
monogamy property we put forth is well-suited for applications with public ver-
ification, in a sense made more precise below.

This monogamy property states that Alice, Bob and Charlie cannot cooper-
atively win the following game with a challenger, except with negligible proba-
bility. The challenger first prepares a uniformly random coset state |As,s′〉 and
gives the state to Alice. Alice outputs two (possibly entangled) quantum states
and sends them to Bob and Charlie respectively. Finally, Bob and Charlie both
get the description of the subspace A. The game is won if Bob outputs a vector
in A + s and Charlie outputs a vector in A⊥ + s′.

Notice that if Alice were told A before she had to send the quantum states
to Bob and Charlie, then she could recover s and s′ (efficiently) given |As,s′〉.
Crucially, A is only revealed to Bob and Charlie after Alice has sent them
the quantum states (analogously to the usual monogamy-of-entanglement game
based on BB84 states, where θ is only revealed to Bob and Charlie after they
receive their states from Alice.).

We note that the hardness of this game is an information-theoretic conjecture.
As such, there is hope that it can be proven unconditionally.

Under this conjecture, we show that the problem remains hard (computation-
ally) even if Alice additionally receives the programs iO(PA+s) and iO(PA⊥+s′).
Based on this result, we then obtain unclonable decryption and copy-protection
of PRFs from post-quantum iO and one-way functions, and compute-and-
compare obfuscation against unpredictable distributions. We thus remove the
need for extractable witness encryption (more details on this are provided in the
technical overview, Sect. 2.1).

As evidence in support of our conjecture, we prove a weaker information-
theoretic monogamy property, namely that Alice, Bob and Charlie cannot win at
a monogamy game that is identical to the one described above, except that at the
last step, Bob and Charlie are each required to return a pair in (A+s)×(A⊥+s′),
instead of a single element each. Since coset states have more algebraic structure
than BB84 states, a more refined analysis is required to prove this (weaker)
property compared to that of [TFKW13]. We again extend this monogamy result
to the case where Alice receives programs iO(PA+s) and iO(PA⊥+s′).

Hidden Cosets and Applications to Unclonable Cryptography 563

We emphasize that our monogamy result for coset states differs from the
similar monogamy result for BB84 states in one crucial way: the result still
holds when Alice receives programs that allow her to verify the correctness of
her state (namely iO(PA+s) and iO(PA⊥+s′)). This is not the case for the BB84
monogamy result. In fact, Lutomirski [Lut10] showed that an adversary who is
given |xθ〉 and a public verification oracle that outputs 1 if the input state is
correct and 0 otherwise, can efficiently copy the state |xθ〉. At the core of this
difference is the fact that coset states are highly entangled, whereas strings of
BB84 states have no entanglement at all.

For this reason, we believe that the monogamy property of coset states may
be of independent interest, and may find application in contexts where public
verification of states is important.

2 Technical Overview

2.1 Computational Direct Product Hardness for Coset States

Our first technical contribution is to establish a computational direct product
hardness property for coset states. In this section, we aim to give some intuition
for the barrier to proving such a property for regular subspace states, and why
resorting to coset states helps.

We establish the following: a computationally bounded adversary who
receives |As,s′〉 and programs iO(PA+s) and iO(PA⊥+s′) for uniformly random
A, s, s′, cannot produce a pair (v, w), where v ∈ A + s and w ∈ A⊥ + s′, except
with negligible probability.

The first version of this direct product hardness property involved regular
subspace states, and was information-theoretic. It was proven by Ben-David
and Sattath [BS16], and it established the following: given a uniformly random
subspace state |A〉, where A ⊆ F

n
2 has dimension n/2, no adversary can produce

a pair of vectors v, w such that v ∈ A and w ∈ A⊥ respectively, even with access
to oracles for membership in A and in A⊥.

The first successful instantiation of the membership oracles in the plain
model is due to Zhandry, in the context of public-key quantum money [Zha19a].
Zhandry showed that replacing the membership oracles with indistinguishability
obfuscations of the membership programs PA and PA⊥ is sufficient to prevent an
adversary from copying the subspace state, and thus is sufficient for public-key
quantum money. In what follows, we provide some intuition as to how one proves
this “computational no-cloning” property, and why the same proof idea does not
extend naturally to the direct product hardness property for regular subspace
states.

In [Zha19a], Zhandry shows that iO realizes what he refers to as a subspace-
hiding obfuscator. A subspace hiding obfuscator shO has the property that any
computationally bounded adversary who chooses a subspace A cannot distin-
guish between shO(PA) and shO(PB) for a uniformly random superspace B of
A (of not too large dimension). In turn, a subspace hiding obfuscator can then
be used to show that an adversary who receives |A〉, shO(PA) and shO(PA⊥),

564 A. Coladangelo et al.

for a uniformly random A, cannot produce two copies of |A〉. This is done in the
following way. For the rest of the section, we assume that A ⊆ F

n
2 has dimension

n/2.

– Replace shO(PA) with shO(PB) for a uniformly random superspace B of A,
where dim(B) = 3

4n. Replace shO(PA⊥) with shO(PC) for a uniformly random
superspace C of A⊥, where dim(C) = 3

4n.
– Argue that the task of copying a subspace state |A〉, for a uniformly random

subspace C⊥ ⊆ A ⊆ B (even knowing B and C directly) is just as hard as the
task of copying a uniformly random subspace state of dimension |A′〉 ⊆ F

n/2
2

where dim(A′) = n
4 . The intuition for this is that knowing C⊥ fixes n

4 dimen-
sions out of the n

2 original dimensions of A. Then, you can think of the first
copying task as equivalent to the second up to a change of basis. Such reduc-
tion completely removes the adversary’s knowledge about the membership
programs.

– The latter task is of course hard (it would even be hard with access to mem-
bership oracles for A′ and A′⊥).

One can try to apply the same idea to prove a computational direct product
hardness property for subspace states, where the task is no longer to copy |A〉, but
rather we wish to show that a bounded adversary receiving |A〉 and programs
iO(PA) and iO(PA⊥), for uniformly random A, cannot produce a pair (v, w),
where v ∈ A and w ∈ A⊥. Applying the same replacements as above using shO
allows us to reduce this task to the task of finding a pair of vectors in A × A⊥

given |A〉,B,C, such that C⊥ ⊆ A ⊆ B. Unfortunately, unlike in the case of
copying, this task is easy, because any pair of vectors in C⊥ × B⊥ also belongs
to A×A⊥. This is the technical hurdle that ones runs into when trying to apply
the proof idea from [Zha19a] to obtain a computational direct hardness property
for subspace states.

Our first result is that we overcome this hurdle by using coset states. In the
case of cosets, the natural analog of the argument above results in a replacement
of the program that checks membership in A + s with a program that checks
membership in B + s. Similarly, we replace A⊥ + s′ with C + s′. The crucial
observation is that, since B + s = B + s + t for any t ∈ B, the programs PB+s

and PB+s+t are functionally equivalent. So, an adversary who receives iO(PB+s)
cannot distinguish this from iO(PB+s+t) for any t. We can thus argue that t
functions as a randomizing mask that prevents the adversary from guessing s
and finding a vector in A + s.

Signature Tokens. The computational direct product hardness immediately
gives a signature token scheme in the plain model:

– Alice samples a key (A, s, s′) uniformly at random. This constitutes her secret
key. The verification key is (iO(PA+s), iO(PA⊥+s′)). A signature token is
|As,s′〉.

– Anyone in possession of a token can sign message 0 by outputting a string
v ∈ A+ s (this can be obtained by measuring the token in the computational

Hidden Cosets and Applications to Unclonable Cryptography 565

basis), and can sign message 1 by outputting a string w ∈ A⊥ + s′ (this can
be done by measuring the token in the Hadamard basis).

– Signatures can be publicly verified using Alice’s public key.

If an algorithm produces both signatures for messages 0 and 1, it finds vectors
v ∈ A+s and w ∈ A⊥+s′, which violates computational direct product hardness.

2.2 Unclonable Decryption

Our second result is an unclonable decryption scheme (also known as a single-
decryptor encryption scheme [GZ20] - we will use the two terms interchangeably
in the rest of the paper) from black-box use of a signature token scheme and
extractable witness encryption. This construction removes the need for struc-
tured oracles, as used in the construction of [GZ20].

Additionally, we show that, assuming the conjectured monogamy property
described in Sect. 1.1, we obtain an unclonable decryption scheme from just iO
and post-quantum one-way functions, where iO is used to construct obfusca-
tors for both subspace-membership programs and compute-and-compare pro-
grams [GKW17,WZ17].

In this overview, we focus on the construction from the monogamy property,
as we think it is conceptually more interesting.

Recall that a single-decryptor encryption scheme is a public-key encryption
scheme in which the secret key is a quantum state. On top of the usual encryption
security notions, one can define “single-decryptor” security: this requires that it
is not possible for an adversary who is given the secret key to produce two
(possibly entangled) decryption keys, which both enable simultaneous successful
decryption of ciphertexts. A simplified version of our single-decryptor encryption
scheme is the following. Let n ∈ N.

– The key generation procedure samples uniformly at random A ⊆ F
n
2 , with

dim(A) = n
2 and s, s′ ∈ F

n
2 uniformly at random. The public key is the pair

(iO(PA+s), iO(PA⊥+s′)). The (quantum) secret key is the coset state |As,s′〉.
– To encrypt a message m, sample uniformly r ← {0, 1}, and set R = iO(PA+s)

if r = 0 and R = iO(PA⊥+s′) if r = 1. Then, let C be the following program:
C: on input v, output the message m if R(v) = 1 and otherwise output ⊥.
The ciphertext is then (r, iO(C)).

– To decrypt a ciphertext (r, iO(C)) with the quantum key |As,s′〉, one sim-
ply runs the program iO(C) coherently on input |As,s′〉 if r = 0, and on
H⊗n|As,s′〉 if r = 1.

In the full scheme, we actually amplify security by sampling r ← {0, 1}λ, and
having λ coset states, but we choose to keep the presentation in this section as
simple as possible.

566 A. Coladangelo et al.

The high level idea for single-decryptor security is the following. Assume for
the moment that iO were an ideal obfuscator (we will argue after this that iO is
good enough). Consider a pirate who receives a secret key, produces two copies of
it, and gives one to Bob and the other to Charlie. Suppose both Bob and Charlie
can decrypt ciphertexts (r, iO(C)) correctly with probability close to 1, over the
randomness in the choice of r (which is crucially chosen only after Bob and
Charlie have received their copies). Then, there must be some efficient quantum
algorithm, which uses Bob’s (resp. Charlie’s) auxiliary quantum information
(whatever state he has received from the pirate), and is able to output a vector
in A + s. This is because in the case of r = 0, the program C outputs the
plaintext message m exclusively on inputs v ∈ A+s. Similarly, there must be an
algorithm that outputs a vector in A⊥ + s′ starting from Bob’s (resp. Charlie’s)
auxiliary quantum information. Notice that this doesn’t imply that Bob can
simultaneously output a pair in (A+s)×(A⊥ +s′), because explicitly recovering
a vector in one coset might destroy the auxiliary quantum information preventing
recovery of a vector in the other (and this very fact is of course crucial to the
direct product hardness). Hence, in order to argue that it is not possible for both
Bob and Charlie to be decrypting with probability close to 1, we have to use
the fact that Bob and Charlie have separate auxiliary quantum information, and
that each of them can recover vectors in A+s or A⊥ +s′, which means that this
can be done simultaneously, now violating the direct product hardness property.

The crux of the security proof is establishing that iO is a good enough obfus-
cator to enable this argument to go through.

To this end, we first notice that there is an alternative way of computing
membership in A+ s, which is functionally equivalent to the program C defined
above.

Let CanA(s) be a function that computes the lexicographically smallest vector
in A+ s (think of this as a representative of the coset). It is not hard to see that
a vector t is in A + s if and only if CanA(t) = CanA(s). Also CanA is efficiently
computable given A. Therefore, a functionally equivalent program to C, in the
case that r = 0, is:

C̃: on input v, output m if CanA(v) = CanA(s), otherwise output ⊥.
By the security of iO, an adversary can’t distinguish iO(C) from iO(C̃).
The key insight is that now the program C̃ is a compute-and-compare pro-

gram [GKW17,WZ17]. The latter is a program described by three parameters:
an efficiently computable function f , a target y and an output z. The program
outputs z on input x if f(x) = y, and otherwise outputs ⊥. In our case, f = CanA,
y = CanA(s), and z = m. Goyal et al. [GKW17] and Wichs et al. [WZ17] show
that, assuming LWE or assuming iO and certain PRGs, a compute-and-compare
program can be obfuscated provided y is (computationally) unpredictable given
the function f and the auxiliary information. More precisely, the obfuscation
guarantee is that the obfuscated compute-and-compare program is indistinguish-
able from the obfuscation of a (simulated) program that outputs zero on every
input (notice, as a sanity check, that if y is unpredictable given f , then the
compute-and-compare program must output zero almost everywhere as well).

Hidden Cosets and Applications to Unclonable Cryptography 567

We will provide more discussion on compute-and-compare obfuscation for unpre-
dictable distributions in the presence of quantum auxiliary input in Sect. 3.1 and
the full version.

– By the security of iO, we can replace the ciphertext (0, iO(C)), with the
ciphertext (0, iO(CC.Obf(C̃))) where CC.Obf is an obfuscator for compute-
and-compare programs (this is because C has the same functionality as
CC.Obf(C̃)).

– By the security of CC.Obf, we can replace the latter with (0, iO(CC.Obf(Z))),
where Z is the zero program. It is clearly impossible to decrypt from the
latter, since no information about the message is present.

Thus, assuming iO cannot be broken, a Bob that is able to decrypt implies
an adversary breaking the compute-and-compare obfuscation. This implies that
there must be an efficient algorithm that can predict y = CanA(s) with non-
negligible probability given the function CanA and the auxiliary information
received by Bob. Similarly for Charlie.

Therefore, if Bob and Charlie, with their own quantum auxiliary information,
can both independently decrypt respectively (0, iO(C)) and (1, iO(C ′)) with high
probability (where here C and C ′ only differ in that the former releases the
encrypted message on input a vector in A + s, and C ′ on input a vector in
A⊥ +s′), then there exist efficient quantum algorithms for Bob and Charlie that
take as input the descriptions of CanA(·) and CanA⊥(·) respectively (or of the
subspace A), and their respective auxiliary information, and recover CanA(s) and
CanA⊥(s′) respectively with non-negligible probability. Since CanA(s) ∈ A + s
and CanA⊥(s′) ∈ A⊥ + s′, this violates the strong monogamy property of coset
states described in Sect. 1.1.

Recall that this states that Alice, Bob and Charlie cannot cooperatively win
the following game with a challenger, except with negligible probability. The
challenger first prepares a uniformly random coset state |As,s′〉 and gives the
state to Alice. Alice outputs two (possibly entangled) quantum states and sends
them to Bob and Charlie respectively. Finally, Bob and Charlie both get the
description of the subspace A. The game is won if Bob outputs a vector in A+ s
and Charlie outputs a vector in A⊥ + s′. Crucially, in this monogamy property,
Bob and Charlie will both receive the description of the subspace A in the final
stage, yet it is still not possible for both of them to be simultaneously successful.

What allows to deduce the existence of efficient extracting algorithms is
the fact that the obfuscation of compute-and-compare programs from [GKW17,
WZ17] holds provided y is computationally unpredictable given f (and the aux-
iliary information). Thus, an algorithm that breaks the obfuscation property
implies an efficient algorithm that outputs y (with noticeable probability) given
f (and the auxiliary information).

In our other construction from signature tokens and extractable witness
encryption, one can directly reduce unclonable decryption security to direct
product hardness. We do not discuss the details of this construction here, instead
we refer the reader to the full version.

568 A. Coladangelo et al.

2.3 Copy-Protecting PRFs

Our last contribution is the construction of copy-protected PRFs assuming post-
quantum iO, one-way functions and the monogamy property we discussed in the
previous section. Alternatively just as for unclonable decryption, we can do away
with the monogamy property by assuming extractable witness encryption.

A copy-protectable PRF is a regular PRF F : {0, 1}k × {0, 1}m → {0, 1}m′
,

except that it is augmented with a quantum key generation procedure, which
we refer to as QKeyGen. This takes as input the classical PRF key K and out-
puts a quantum state ρK . The state ρK allows to efficiently compute F (K,x) on
any input x (where correctness holds with overwhelming probability). Beyond
the standard PRF security, the copy-protected PRF satisfies the following addi-
tional security guarantee: any computationally bounded adversary that receives
ρK cannot process ρK into two states, such that each state enables efficient
evaluation of F (K, ·) on uniformly random inputs.

A simplified version of our construction has the following structure. For the
rest of the section, we take all subspaces to be of Fn

2 with dimension n/2.

– The quantum key generation procedure QKeyGen takes as input a classical
PRF key K and outputs a quantum key. The latter consists of a number
of uniformly sampled coset states |(Ai)si,s′

i
〉, for i ∈ [λ], together with a

(classical) obfuscation of the classical program P that operates as follows. P
takes an input of the form (x, v1, . . . , vλ); checks that each vector vi belongs
to the correct coset (Ai + si if xi = 0, and A⊥

i + s′
i if xi = 1); if so, outputs

the value F (K,x), otherwise outputs ⊥.
– A party in possession of the quantum key can evaluate the PRF on input x

as follows: for each i such that xi = 1, apply H⊗n to |(Ai)si,s′
i
〉. Measure each

resulting coset state in the standard basis to obtain vectors v1, . . . , vλ. Run
the obfuscated program on input (x, v1, . . . , vλ).

Notice that the program has the classical PRF key K hardcoded, as well as
the values Ai, si, s

′
i, so giving the program in the clear to the adversary would be

completely insecure: once the adversary knows the key K, he can trivially copy
the functionality F (K, ·); and even if the key K is hidden by the obfuscation, but
the Ai, si, s

′
i are known, a copy of the (classical) obfuscated program P , together

with the Ai, si, s
′
i is sufficient to evaluate F (K, ·) on any input.

So, the hope is that an appropriate obfuscation will be sufficient to hide all
of these parameters. If this is the case, then the intuition for why the scheme
is secure is that in order for two parties to simultaneously evaluate correctly
on uniformly random inputs, each party should be able to produce a vector in
Ai + s or in A⊥

i + s′
i. If the two parties accomplish this separately, then this

Hidden Cosets and Applications to Unclonable Cryptography 569

implies that it is possible to simultaneously extract a vector in Ai + si and one
in A⊥

i + s′
i, which should not be possible.1

We will use iO to obfuscate the program P . In the next part of this overview,
we will discuss how we are able to deal with the fact that the PRF key K
and the cosets are hardcoded in the program P . First of all, we describe a bit
more precisely the copy-protection security that we wish to achieve. The latter is
captured by the following security game between a challenger and an adversary
(A,B,C):

– The challenger samples a uniformly random PRF key K and runs QKeyGen
to generate ρK . Sends ρK to A.

– A sends quantum registers to two spatially separated parties B and C.
– The challenger samples uniformly random inputs x, x′ to F (K, ·). Sends x to

B and x′ to C.
– B and C return y and y′ respectively to the challenger.

(A,B,C) wins if y = F (K,x) and y′ = F (K,x′).
Since the obfuscation we are using is not VBB, but only iO, there are two

potential issues with security. B and C could be returning correct answers not
because they are able to produce vectors in the appropriate cosets, but because:

(i) iO(P) leaks information about the PRF key K.
(ii) iO(P) leaks information about the cosets.

We handle issue (i) via a delicate “puncturing” argument [SW14]. At a high level,
a puncturable PRF F is a PRF augmented with a procedure that takes a key K
and an input value x, and produces a “punctured” key K \ {x}, which enables
evaluation of F (K, ·) at any point other than x. The security guarantee is that a
computationally bounded adversary possessing the punctured key K\{x} cannot
distinguish between F (K,x) and a uniformly random value (more generally, one
can puncture the key at any polynomially sized set of points). Puncturable PRFs
can be obtained from OWFs using the [GGM86] construction [BW13].

By puncturing K precisely at the challenge inputs x and x′, one is able to
hardcode a punctured PRF key K \ {x, x′} in the program P , instead of K, and
setting the output of program P at x to uniformly random z and z′, instead
of to F (K,x) and F (K,x′) respectively. The full argument is technical, and
relies on the “hidden trigger” technique introduced in [SW14], which allows the
“puncturing” technique to work even when the program P is generated before
x and x′ are sampled.

Once we have replaced the outputs of the program P on the challenge inputs
x, x′ with uniformly random outputs z, z′, we can handle issue (ii) in a similar
way to the case of unclonable decryption in the previous section.
1 Again, we point out that we could not draw this conclusion if only a single party were

able to do the following two things, each with non-negligible probability: produce
a vector in A + si and produce a vector in A⊥ + s′

i. This is because in a quantum
world, being able to perform two tasks with good probability, does not imply being
able to perform both tasks simultaneously. So it is crucial that both parties are able
to separately recover the vectors.

570 A. Coladangelo et al.

By the security of iO, we can replace the behaviour of program P at x by
a suitable functionally equivalent compute-and-compare program that checks
membership in the appropriate cosets. We then replace this by an obfuscation
of the same compute-and-compare program, and finally by an obfuscation of the
zero program. We can then perform a similar reduction as in the previous section
from an adversary breaking copy-protection security (and thus the security of
the compute-and-compare obfuscation) to an adversary breaking the monogamy
of entanglement game described in the previous section.

As in the previous section, we can replace the reliance on the conjectured
monogamy property by extractable witness encryption. In fact, formally, we
directly reduce the security of our copy-protected PRFs to the security of our
unclonable decryption scheme.

3 Preliminaries

In this paper, we use λ to denote security parameters. We denote a function
belonging to the class of polynomial functions by poly(·). We say a function
f(·) : N → R

+ is negligible if for all constant c > 0, f(n) < 1
nc for all large

enough n. We use negl(·) to denote a negligible function. We say a function
f(·) : N → R

+ is sub-exponential if there exists a constant 0 < c ≤ 1, such that
f(n) ≥ 2nc

for all large enough n. We use subexp(·) to denote a sub-exponential
function. When we refer to a probabilistic algorithm A, sometimes we need to
specify the randomness r used by A when running on some input x. We write
this as A(x; r). For a finite set S, we use x ← S to denote uniform sampling
of x from the set S. We denote [n] = {1, 2, · · · , n}. A binary string x ∈ {0, 1}�

is represented as x1x2 · · · x�. For two strings x, y, x||y is the concatenation of
x and y. We refer to a probabilistic polynomial-time and quantum polynomial
time algorithm as PPT and QPT respectively.

For the rest of this paper, we will assume that all the classical cryptographic
primitives used are post-quantum secure, and we sometimes omit this description
for simplicity, except in formal definitions and theorems.

We omit the definitions of extracting, puncturable PRFs, injective punturable
PRFs, indistinguishability obfuscation (iO), and subspace hiding obfuscation
(shO). We refer the reader to the full version for these.

3.1 Compute-and-Compare Obfuscation

Definition 1 (Compute-and-Compare Program). Given a function f :
{0, 1}�in → {0, 1}�out along with a target value y ∈ {0, 1}�out and a message
z ∈ {0, 1}�msg , we define the compute-and-compare program:

CC[f, y, z](x) =

{
z if f(x) = y

⊥ otherwise

We define the following class of unpredictable distributions over pairs of the
form (CC[f, y, z], aux), where aux is auxiliary quantum information. These dis-
tributions are such that y is computationally unpredictable given f and aux.

Hidden Cosets and Applications to Unclonable Cryptography 571

Definition 2 (Unpredictable/Sub-exponentially Unpredictable Distri-
butions). We say that a family of distributions D = {Dλ} where Dλ is a dis-
tribution over pairs of the form (CC[f, y, z], aux) where aux is a quantum state,
belongs to the class of unpredictable distributions if the following holds. There
exists a negligible function negl, for all QPT algorithms A,

Pr
(CC[f,y,z],aux)←Dλ

[
A(1λ, f, aux) = y

] ≤ negl(λ).

If there exists a sub-exponential function subexp such that, for all QPT algo-
rithms A, the above probability is at most 1/subexp(λ), we say it belongs to the
class of sub-exponentially unpredictable distributions.

Definition 3 (Compute-and-Compare Obfuscation). A PPT algorithm
CC.Obf is an obfuscator for the class of unpredictable distributions (or sub-
exponentially unpredictable distributions) if for any family of distributions D =
{Dλ} belonging to the class, the following holds:

– Functionality Preserving: there exists a negligible function negl such that for
all λ, every program P in the support of Dλ,

Pr[∀x, P̃ (x) = P (x), P̃ ← CC.Obf(1λ, P)] ≥ 1 − negl(λ)

– Distributional Indistinguishability: there exists an efficient simulator Sim such
that:

(CC.Obf(1λ, P), aux) ≈c (Sim(1λ, P.param), aux)

where (P, aux) ← Dλ and P.param consists the parameters of the circuit,
including input size, output size, circuit size and etc.

Combining the results of [WZ17,GKW17] with those of [Zha19c], one obtains
the following theorem. We refer to the full version for proofs and discussions.

Theorem 6. Assuming the existence of post-quantum iO and the quantum hard-
ness of LWE, there exist obfuscators for sub-exponentially unpredictable distri-
butions, as in Definition 3.

4 Coset States

This section is organized as follows. In Sect. 4.1, we introduce coset states. In
Sect. 4.2, we show that coset states satisfy both an information-theoretic and a
computational direct product hardness property. The latter immediately yields
a signature token scheme in the plain model assuming iO, (this is described
in Sect. 5). In Sect. 4.3 we show that coset states satisfy both an information-
theoretic monogamy of entanglement property (analogous to that satisfied by
BB84 states [TFKW13]), and a computational monogamy of entanglement prop-
erty. The latter is used to obtain an unclonable decryption scheme from iO and

572 A. Coladangelo et al.

extractable witness encryption (which will be presented in the full version). In
Sect. 4.4, we describe a strong version of the monogamy property, which we
conjecture to be true. The latter is used in Sect. 6.2 to obtain an unclonable
decryption scheme which does not assume extractable witness encryption.

4.1 Definitions

In this subsection, we provide the basic definitions and properties of coset states.
For any subspace A, its complement is A⊥ = {b ∈ F

n | 〈a, b〉 mod 2 = 0 , ∀a ∈
A}. It satisfies dim(A)+dim(A⊥) = n. We also let |A| = 2dim(A) denote the size
of the subspace A.

Definition 4 (Subspace States). For any subspace A ⊆ F
n
2 , the subspace state

|A〉 is defined as

|A〉 =
1

√|A|
∑

a∈A

|a〉 .

Note that given A, the subspace state |A〉 can be constructed efficiently.

Definition 5 (Coset States). For any subspace A ⊆ F
n
2 and vectors s, s′ ∈ F

n
2 ,

the coset state |As,s′〉 is defined as:

|As,s′〉 =
1

√|A|
∑

a∈A

(−1)〈s′,a〉|a + s〉 .

Note that by applying H⊗n, which is QFT for F
n
2 , to the state |As,s′〉, one

obtains exactly |A⊥
s′,s〉.

Additionally, note that given |A〉 and s, s′, one can efficiently construct |As,s′〉
as follows:

∑

a

|a〉 add s−−−→
∑

a

|a + s〉 H⊗n

−−−→
∑

a′∈A⊥
(−1)〈a′,s〉|a′〉

adding s′
−−−−−−→

∑

a′∈A⊥
(−1)〈a′,s〉|a′ + s′〉 H⊗n

−−−→
∑

a∈A

(−1)〈a,s′〉|a + s〉

For a subspace A and vectors s, s′, we define A + s = {v + s : v ∈ A}, and
A⊥ + s′ = {v + s′ : v ∈ A⊥}.

When it is clear from the context, for ease of notation, we will write A + s
to mean the program that checks membership in A + s. For example, we will
often write iO(A + s) to mean an iO obfuscation of the program that checks
membership in A + s.

4.2 Direct Product Hardness

We describe the computational direct product hardness property satisfied by
coset states. For more details, and a proof, we refer the reader to the full version.

Hidden Cosets and Applications to Unclonable Cryptography 573

Theorem 7. Assume the existence of post-quantum iO and one-way function.
Let A ⊆ F

n
2 be a uniformly random subspace of dimension n/2, and s, s′ be

uniformly random in F
n
2 . Given one copy of |As,s′〉, iO(A + s) and iO(A⊥ + s′),

any polynomial time adversary outputs a pair (v, w) such that v ∈ A + s and
w ∈ A⊥ + s′ with negligible probability.

The proof follows a similar outline to the proof of security of public-key
quantum money in [Zha19a]. The main difference is that our proof handles (and
leverages) coset states, instead of regular subspace states.

4.3 Monogamy-of-Entanglement Property

In this subsection, we argue that coset states satisfy an information-theoretic and
a computational monogamy-of-entanglement property. We will not make use of
these properties directly, instead we will have to rely on a stronger conjectured
monogamy-of-entanglement property, which is presented in Subsect. 4.4. Thus,
the properties that we prove in this subsection serve merely as “evidence” in
support of the stronger conjecture. Due to lack of space, we only discuss the
computational monogamy-of-entanglement property.

The game is between a challenger and an adversary (A0,A1,A2).

– The challenger picks a uniformly random subspace A ⊆ F
n of dimension n

2 ,
and two uniformly random elements s, s′ ∈ F

n
2 . It sends |As,s′〉, iO(A + s),

and iO(A⊥ + s′) to A0.
– A0 creates a bipartite state on registers B and C. Then, A0 sends register B

to A1, and C to A2.
– The description of A is then sent to both A1,A2.
– A1 and A2 return respectively (s1, s′

1) and (s2, s′
2).

(A0,A1,A2) wins if, for i ∈ {1, 2}, si ∈ A + s and s′
i ∈ A⊥ + s′ .

Let CompMonogamy((A0,A1,A2), n) be a random variable which takes the
value 1 if the game above is won, and takes the value 0 otherwise.

Theorem 8. Assume the existence of post-quantum iO and one-way function,
there exists a negligible function negl(·), for any QPT adversary (A0,A1,A2),

Pr[CompMonogamy((A0,A1,A2), n) = 1] = negl(n) .

4.4 Conjectured Strong Monogamy Property

In this section, we describe a stronger version of the monogamy property, which
we conjecture to hold. The monogamy property is a slight (but significant) vari-
ation of the one stated in the last section (which we proved to be true). Recall
that there A1 and A2 are required to return pairs (s1, s′

1) and (s2, s′
2) respec-

tively, such that both s1, s2 ∈ A + s and s′
1, s

′
2 ∈ A⊥ + s′. Now, we require that

it is hard for A1 and A2 to even return a single string s1 and s2 respectively
such that s1 ∈ A + s and s2 ∈ A⊥ + s′.

Formally, consider the following game between a challenger and an adversary
(A0,A1,A2).

574 A. Coladangelo et al.

– The challenger picks a uniformly random subspace A ⊆ F
n
2 of dimension n

2 ,
and two uniformly random elements s, s′ ∈ F

n
2 . It sends |As,s′〉 to A0.

– A0 creates a bipartite state on registers B and C. Then, A0 sends register B
to A1, and C to A2.

– The description of A is then sent to both A1,A2.
– A1 and A2 return respectively s1 and s2.

Let ITStrongMonogamy((A0,A1,A2), n) be a random variable which takes the
value 1 if the game above is won by adversary (A0,A1,A2), and takes the value
0 otherwise. We conjecture the following:

Conjecture 1. There exists a sub-exponential function subexp such that, for any
(unbounded) adversary (A0,A1,A2),

Pr[ITStrongMonogamy((A0,A1,A2), n) = 1] ≤ 1/subexp(n) .

Assuming the conjecture is true, and assuming post-quantum iO and one-way
functions, we are able to prove the following computational strong monogamy
statement. Consider a game between a challenger and an adversary (A0,A1,A2),
which is identical to the one described above except that all A0 additionally gets
the membership checking programs iO(A + s) and iO(A⊥ + s′).

– The challenger picks a uniformly random subspace A ⊆ F
n
2 of dimension n

2 ,
and two uniformly random elements s, s′ ∈ F

n
2 . It sends |As,s′〉, iO(A + s),

and iO(A⊥ + s′) to A0.
– A0 creates a bipartite state on registers B and C. Then, A0 sends register B

to A1, and C to A2.
– The description of A is then sent to both A1,A2.
– A1 and A2 return respectively s1 and s2.

(A0,A1,A2) wins if, for s1 ∈ A + s and s2 ∈ A⊥ + s′.
Let CompStrongMonogamy((A0,A1,A2), n) be a random variable which takes

the value 1 if the game above is won, and takes the value 0 otherwise.

Theorem 9. Assuming Conjecture 1 holds, and assuming the existence of post-
quantum iO and one-way functions, then there exists a negligible function negl(·),
for any QPT adversary (A0,A1,A2),

Pr[CompStrongMonogamy((A0,A1,A2), n) = 1] = negl(n) .

We can further show a ‘sub-exponential strong monogamy property’ if we
additionally assume sub-exponentially secure iO and one-way functions.

Theorem 10. Assuming Conjecture 1 holds, and assuming the existence of sub-
exponentially secure post-quantum iO and one-way functions, then for any QPT
adversary (A0,A1,A2),

Pr[CompStrongMonogamy((A0,A1,A2), n) = 1] ≤ 1/subexp(n) .

In the rest of the work, whenever we mention the ‘strong monogamy prop-
erty’, we refer to the computational monogamy property of Theorem 9 above.
Whenever we mention the ‘sub-exponentially strong monogamy property’, we
refer to the computational monogamy property of Theorem 10.

Hidden Cosets and Applications to Unclonable Cryptography 575

5 Tokenized Signature Scheme from iO

In this section, we present tokenized signature scheme based on the computa-
tional direct product hardness property (Theorem 7).

5.1 Definitions

Definition 6 (Tokenized signature scheme). A tokenized signature (TS)
scheme consists of a tuple of QPT algorithms (KeyGen,TokenGen,Sign,Verify)
with the following properties:

– KeyGen(1λ) → (sk, pk): Takes as input 1λ, where λ is a security parameter,
and outputs a secret key, public (verification) key pair (sk, pk).

– TokenGen(sk) → |tk〉: Takes as input a secret key sk and outputs a signing
token |tk〉.

– Sign(m, |tk〉) → (m, sig)/⊥: Takes as input a message m ∈ {0, 1}∗ and a token
|tk〉, and outputs either a message, signature pair (m, sig) or ⊥.

– Verify(pk,m, sig) → 0/1: Takes as input an verification key, an alleged mes-
sage, signature pair (m, sig), and outputs 0 (“reject”) or 1 (“accept”).

These algorithms satisfy the following. First is correctness. There exists a
negligible function negl(·), for any λ ∈ N, m ∈ {0, 1}∗,

Pr[Verify(pk,m, sig) = 1 :(m, sig) ← Sign(m, |tk〉), |tk〉 ← TokenGen(sk),

(sk, pk) ← KeyGen(1λ)] ≥ 1 − negl(λ) .

Definition 7 (Length restricted TS scheme). A TS scheme is r-restricted
if it holds only for m ∈ {0, 1}r. We refer to a scheme that is 1-restricted as a
one-bit TS scheme.

For notational purposes, we introduce an additional algorithm Verify�. The
latter takes as input a public key pk and � pairs (m�, sig�), . . . , (m�, sig�). It checks
that mi = mj for all i = j, and Verify(mi, sigi) = 1 for all i ∈ [�]; it outputs 1 if
and only if they all hold. Next we define unforgeability.

Definition 8 (1-Unforgeability). A TS scheme is 1-unforgeable if for every
QPT adversary A, there exists a negligible function negl(·), for every λ:

Pr
[

(m0, sig0,m1, sig1) ← A(pk, |tk〉)
Verify2(pk,m0, sig0,m1, sig1) = 1 : (sk, pk) ← KeyGen(1λ)

|tk〉 ← TokenGen(sk)

]
≤ negl(λ) .

Definition 9 (Unforgeability). A TS scheme is unforgeable if for every QPT
adversary A, there exists a negligible function negl(·), for every λ, l = poly(λ):

Pr

⎡

⎢⎢⎢
⎣

{mi, sigi}i∈[l+1] ← A(pk, {|tki〉}i∈[l])
Verifyl+1(pk, {mi, sigi}i∈[l+1]) = 1 :

(sk, pk) ← KeyGen(1λ)
|tk1〉 ← TokenGen(sk)

...
|tkl〉 ← TokenGen(sk)

⎤

⎥⎥⎥
⎦

≤ negl(λ) .

576 A. Coladangelo et al.

A tokenized signature scheme should also satisfy a revocability property. The
revocability property follows straightforwardly from unforgeability [BS16]. Thus
to show a construction is secure, we only need to focus on proving unforgeability.

The following theorem says that 1-unforgeability is sufficient to achieve a full
blown TS scheme.

Theorem 11 ([BS16]). A one-bit 1-unforgeable TS scheme implies a (full
blown) TS scheme, assuming the existence of a quantum-secure digital signa-
ture scheme.

In the next section, we give our construction of a one-bit 1-unforgeable TS
scheme from coset states.

5.2 Tokenized Signature Construction

Construction.

– KeyGen(1λ): Set n = poly(λ). Sample uniformly A ⊆ F
n
2 . Sample s, s′ ← F

n
2 .

Output sk = (A, s, s′) (where by A we mean a description of the subspace A)
and pk = (iO(A + s), iO(A⊥ + s′)).

– TokenGen(sk): Takes as input sk of the form (A, s, s′). Outputs |tk〉 = |As,s′〉.
– Sign(m, |tk〉): Takes as input m ∈ {0, 1} and a state |tk〉 on n qubits. Compute

H⊗n|tk〉 if m = 1, otherwise do nothing to the quantum state. It then measures
in the standard basis. Let sig be the outcome. Output (m, sig).

– Verify(pk, (m, sig)): Parse pk as pk = (C0, C1) where C0 and C1 are circuits.
Output Cm(sig).

Theorem 12. Assuming post-quantum iO and one-way function, the scheme of
Construction 5.2 is a one-bit 1-unforgeable tokenized signature scheme.

Proof. Security follows immediately from Theorem 7. �

Corollary 1. Assuming post-quantum iO, one-way function(which implies digi-
tal signature) and a quantum-secure digital signature scheme, there exists a (full
blown) tokenized signature scheme.

Proof. This is an immediate consequence of Theorems 11 and 12. �

6 Single-Decryptor Encryption

In this section, we formally introduce unclonable decryption, i.e. single-decryptor
encryption [GZ20]. Then we describe two constructions and prove their security.

Our first construction (Sect. 6.2) relies on the strong monogamy-of-
entanglement property (Conjecture 1), the existence of post-quantum one-way
function, indistinguishability obfuscation and compute-and-compare obfuscation
for (sub-exponentially) unpredictable distributions (whose existence has been
discussed in Theorem 3.1). Our second construction has a similar structure.

Hidden Cosets and Applications to Unclonable Cryptography 577

It does not rely on the strong monogamy-of-entanglement property for coset
states, but on the (weaker) direct product hardness property (Theorem 7).
However, the construction additionally relies on a much stronger cryptographic
primitive – post-quantum extractable witness encryption (as well post-quantum
one-way functions and indistinguishability obfuscation). Due to lack of space,
we refer the reader to the full version for further the latter construction.

6.1 Definitions

Definition 10 (Single-Decryptor Encryption Scheme). A single-
decryptor encryption scheme consists of the following efficient algorithms:

– Setup(1λ) → (sk, pk) : a (classical) probabilistic algorithm that takes as input
a security parameter λ and outputs a classical secret key sk and public key
pk.

– QKeyGen(sk) → ρsk : a quantum algorithm that takes as input a secret key sk
and outputs a quantum secret key ρsk.

– Enc(pk,m) → ct : a (classical) probabilistic algorithm that takes as input a
public key pk, a message m and outputs a classical ciphertext ct.

– Dec(ρsk, ct) → m/⊥ : a quantum algorithm that takes as input a quantum
secret key ρsk and a ciphertext ct, and outputs a message m or a decryption
failure symbol ⊥.

A secure single-decryptor encryption scheme should satisfy the following:

Correctness: There exists a negligible function negl(·), for all λ ∈ N, for all
m ∈ M,

Pr

[
Dec(ρsk, ct) = m

∣∣∣∣ (sk, pk) ← Setup(1λ), ρsk ← QKeyGen(sk)
ct ← Enc(pk, m)

]
≥ 1 − negl(λ)

Note that correctness implies that a honestly generated quantum decryption
key can be used to decrypt correctly polynomially many times, from the gentle
measurement lemma [Aar05].

CPA Security: The scheme should satisfy (post-quantum) CPA security, i.e.
indistinguishability under chosen-plaintext attacks: for every (stateful) QPT
adversary A, there exists a negligible function negl(·) such that for all λ ∈ N,
the following holds:

Pr

⎡

⎣A(ct) = b :
(sk, pk) ← Setup(1λ)

((m0,m1) ∈ M2) ← A(1λ, pk)
b ← {0, 1}; ct ← Enc(pk,mb)

⎤

⎦ ≤ 1
2

+ negl(λ),

Anti-Piracy Security. Next, we define anti-piracy security via the anti-piracy
game below. Recall that, intuitively, anti-piracy security says that it is infeasible
for a pirate who receives a quantum secret key to produce two quantum keys,
which both allow successful decryption. This can be formalized as:

578 A. Coladangelo et al.

(CPA-style Anti-piracy) We ask the pirate to provide a pair of messages (m0,m1)
along with two quantum secret keys, and we test whether the two keys allow
to (simultanoeusly) distinguish encryptions of m0 and m1.
In order to describe the security games, it is convenient to first introduce

the concept of a quantum decryptor. The following definition is implicitly with
respect to some single-decryptor encryption scheme (Setup,QKeyGen,Enc,Dec).

Definition 11 (Quantum decryptor). A quantum decryptor for ciphertexts
of length n, is a pair (ρ, U) where ρ is a state, and U is a general quantum circuit
acting on n + m qubits, where m is the number of qubits of ρ.

For a ciphertext c of length n, we say that we run the quantum decryptor
(ρ, U) on ciphertext c to mean that we execute the circuit U on inputs |c〉 and ρ.

We are now ready to describe the CPA-style anti-piracy game.

Definition 12 (Anti-Piracy Game, CPA-style). Let λ ∈ N
+. The CPA-

style anti-piracy game is the following game between a challenger and an adver-
sary A.

1. Setup Phase: The challenger samples keys (sk, pk) ← Setup(1λ).
2. Quantum Key Generation Phase: The challenger sends A the classical

public key pk and one copy of quantum decryption key ρsk ← QKeyGen(sk).
3. Output Phase: A outputs a pair of distinct messages (m0,m1). It also out-

puts a (possibly mixed and entangled) state σ over two registers R1, R2 and
two general quantum circuits U1 and U2. We interpret A’s output as two (pos-
sibly entangled) quantum decryptors D1 = (σ[R1], U1) and D2 = (σ[R2], U2).

4. Challenge Phase: The challenger samples b1, b2 and r1, r2 uniformly
at random and generates ciphertexts c1 = Enc(pk,mb1 ; r1) and c2 =
Enc(pk,mb2 ; r2). The challenger runs quantum decryptor D1 on c1 and D2

on c2, and checks that D1 outputs mb1 and D2 outputs mb2 . If so, the chal-
lenger outputs 1 (the game is won by the adversary), otherwise outputs 0.

We denote by AntiPiracyCPA(1λ,A) a random variable for the output of the
game.

Note that an adversary can succeed in this game with probability at least
1/2. It simply gives ρsk to the first quantum decryptor and the second decryptor
randomly guesses the plaintext.

We remark that one could have equivalently formulated this definition by
having the pirate send registers R1 and R2 to two separated parties Bob and
Charlie, who then receive ciphertexts from the challenger sampled as in the
Challenge Phase above. The two formulations are equivalent upon identifying
the quantum circuits U1 and U2.

Definition 13 (Anti-Piracy Security, CPA-style). Let γ : N
+ → [0, 1].

A single-decryptor encryption scheme satisfies γ-anti-piracy security, if for any
QPT adversary A, there exists a negligible function negl(·) such that the following
holds for all λ ∈ N:

Pr
[
b = 1, b ← AntiPiracyCPA(1λ,A)

] ≤ 1
2

+ γ(λ) + negl(λ) (1)

Hidden Cosets and Applications to Unclonable Cryptography 579

It is not difficult to show that if γ-anti-piracy security holds for all inverse
poly γ, then this directly implies CPA security (we refer the reader to the full
version for the proof of this implication).

6.2 Construction from Strong Monogamy Property

In this section, we give our first construction of a single-decryptor encryption
scheme, whose security relies on the strong monogamy-of-entanglement property
from Sect. 4.4.

In the rest of the paper, to simplify notation, whenever it is clear from the
context, we will denote a program that checks membership in a set S simply by
S.

Construction 13.

– Setup(1λ) → (sk, pk) :
• Sample κ random (n/2)-dimensional subspaces Ai ⊆ F

n
2 for i =

1, 2, · · · , κ, where n = λ and κ = κ(λ) is a polynomial in λ.
• For each i ∈ [κ], choose two uniformly random vectors si, s

′
i ∈ F

n
2 .

• Prepare the programs iO(Ai + si) and iO(A⊥
i + s′

i) (where we assume that
the programs Ai +si and A⊥

i +s′
i are padded to some appropriate length).

• Output sk = {Ai, si, s
′
i}i∈[κ], pk = {iO(Ai + si), iO(A⊥

i + s′
i)}i∈[κ].

– QKeyGen(sk) → ρsk : on input sk = {Ai, si, s
′
i}i∈[κ], output the “quantum

secret key” ρsk = {|Ai,si,s′
i
〉}i∈[κ]. Recall that each |Ai,si,s′

i
〉 is

|Ai,si,s′
i
〉 =

1
√|Ai|

∑

a∈Ai

(−1)〈a,s′
i〉|a + si〉.

– Enc(pk,m) → ct : on input a public key pk = {iO(Ai + si), iO(A⊥
i + s′

i)}i∈[κ]

and message m:
• Sample a uniformly random string r ← {0, 1}κ.
• Let ri be the i-th bit of r. Define R0

i = iO(Ai + si) and R1
i = iO(A⊥

i + s′
i).

Let Pm,r be the following program:

Fig. 1. Program Pm,r

• Let P̂m,r = iO(Pm,r). Output ciphertext ct = (P̂m,r, r).

580 A. Coladangelo et al.

– Dec(ρsk, ct) → m/⊥ : on input ρsk = {|Ai,si,s′
i
〉}i∈[κ] and ct = (P̂m,r, r):

• For each i ∈ [κ], if ri = 1, apply H⊗n to the i-th state |Ai,si,s′
i
〉; if ri = 0,

leave the i-th state |Ai,si,s′
i
〉 unchanged. Denote the resulting state by ρ∗

sk.
• Evaluate the program P̂m,r on input ρ∗

sk in superposition; measure the
evaluation register and denote the outcome by m′. Output m′.

• Rewind by applying the operations in the first step again.

Correctness. Correctness and efficiency easily follow from the construction.
For security, we have the following theorem (proved in the full version)

(Fig. 1):

Theorem 14 (Regular Anti-Piracy). Assuming the existence of post-
quantum iO, one-way functions, compute-and-compare obfuscation for the class
of unpredictable distributions (as in Definition 3), and the strong monogamy-of-
entanglement property (Conjecture 1), the single-decryptor encryption scheme of
Construction 13 has regular γ-anti-piracy security for γ = 0.

Similarly, assuming the existence of post-quantum sub-exponentially secure
iO, one-way functions, the quantum hardness of LWE and assuming the
strong monogamy-of-entanglement property (Conjecture 1), the single-decryptor
encryption scheme of Construction 13 has regular γ-anti-piracy security for
γ = 0.

In the above theorem, the quantum hardness of LWE is used to
build compute-and-compare obfuscation for sub-exponentially unpredictable
distributions.

7 Copy-Protection of Pseudorandom Functions

In this section, we formally define copy-protection of pseudorandom functions.
Then, we describe a construction that essentially builds on the single-decryptor
encryption scheme described in Sect. 6.2 (together with post-quantum sub-
exponentially secure one-way functions and iO). We remark that all of the PRFs
that we use can be constructed from post-quantum one-way functions. We refer
the reader to [SW14] and the full version for further details.

7.1 Definitions

In what follows, the PRF F : [K] × [N] → [M], implicitly depends on a security
parameter λ. We denote by Setup(·) the procedure that samples a PRF key.

Definition 14 (Copy-Protection of PRF). A copy-protection scheme for a
PRF F : [K] × [N] → [M] consists of the following polynomial-time algorithms:

QKeyGen(K): takes a key K and outputs a quantum key ρK ;
Eval(ρK , x): takes a quantum key ρK and an input x ∈ [N]. It outputs a classical

string y ∈ [M].

Hidden Cosets and Applications to Unclonable Cryptography 581

A copy-protection scheme should satisfy the following properties:

Definition 15 (Correctness). There exists a negligible function negl(·), for all
λ, all K ← Setup(1λ), all inputs x,

Pr[Eval(ρK , x) = F (K,x) : ρK ← QKeyGen(K)] ≥ 1 − negl(λ) .

Note that the correctness property implies that the evaluation procedure has
an “almost unique” output. This means that the PRF can be evaluated (and
rewound) polynomially many times, without disturbing the quantum key ρK ,
except negligibly.

Definition 16 (Anti-Piracy Security). Let λ ∈ N
+. Consider the following

game between a challenger and an adversary A:

1. The challenger samples K ← Setup(1λ) and ρK ← QKeyGen(K). It gives ρK

to A;
2. A returns to the challenger a bipartite state σ on registers R1 and R2, as well

as general quantum circuits U1 and U2.
3. The challenger samples uniformly random u,w ← [N]. Then runs U1 on input

(σ[R1], u), and runs U2 on input (σ[R2], w). The outcome of the game is 1 if
and only if the outputs are F (K,u) and F (K,w) respectively.

Denote by CopyProtectionGame(1λ,A) a random variable for the output of
the game.

We say the scheme has anti-piracy security if for every polynomial-time quan-
tum algorithm A, there exists a negligible function negl(·), for all λ ∈ N

+,

Pr
[
b = 1, b ← CopyProtectionGame(1λ,A)

]
= negl(λ) .

7.2 Construction

In this section, we describe a construction of a copy-protection scheme for a class
of PRFs. We will eventually reduce security of this construction to security of
the single-decryptor encryption scheme of Sect. 6.2, and we will therefore inherit
the same assumptions.

Let λ be the security parameter. Our construction copy-protects a PRF F1 :
[Kλ] × [Nλ] → [Mλ] where N = 2n(λ) and M = 2m(λ), for some polynomials
n(λ) and m(λ), satisfying n(λ) ≥ m(λ) + 2λ + 4. For convenience, we will omit
writing the dependence on λ, when it is clear from the context. Moreover, F1

should be a puncturable extracting PRF with error 2−λ−1. Such PRFs exist
assuming post-quantum one-way functions.

Our copy-protection construction for F1, will make use of the following addi-
tional building blocks:

1. A puncturable extracting PRF F1(K1, ·) that accepts inputs of length n =
�0 + �1 + �2 and outputs strings of length m. It is extracting when the input
min-entropy is greater than m + 2λ + 4. By Theorem 3 in [SW14], assuming
one-way functions exist, as long as n ≥ m + 2λ + 4, F1 is a puncturable
extracting PRF with error less than 2−λ−1.

582 A. Coladangelo et al.

2. A puncturable statistically injective PRF F2(K2, ·) that accepts inputs of
length �2 and outputs strings of length �1. By Theorem 2 in [SW14], assum-
ing one-way functions exist, as long as �1 ≥ 2�2 + λ, F2 is a puncturable
statistically injective PRF with failure probability 2−λ.

3. A puncturable PRF F3(K3, ·) that accepts inputs of length �1 and outputs
strings of length �2. By Theorem 1 in [SW14], assuming one-way functions
exist, F3 is a puncturable PRF.

Note that PRF F1(K1, ·) is the PRF functionality we will copy-protect. The
PRFs F2(K2, ·), F3(K3, ·) are just building blocks in the construction.

In Figs. 2, 3, we describe a copy-protection construction for PRF F1.

Fig. 2. Quantum copy-protection scheme for PRFs.

The program P takes as input x and a list of �0 vectors v1, · · · , v�0 and has
two modes. If x is not in the sparse hidden trigger set (not passing the ‘if’ check
in the first line), the program is in the normal mode: it only outputs a PRF
evaluation of x if every vi is in the corresponding coset. Otherwise, the program
is in the hidden trigger mode. It will compute a circuit Q′ from the input x and
output Q′(v1, · · · , v�0). On almost all inputs except those sparse hidden triggers,
the program runs in its normal mode.

We obtain the following theorem (which we prove in the full version):

Theorem 15. Assuming the existence of post-quantum iO, one-way functions,
compute-and-compare obfuscation for the class of unpredictable distributions (as
in Definition 3), and the strong monogamy-of-entanglement property (Conjecture
1), our construction satisfies anti-piracy security (as in Definition 16).

Similarly, assuming the existence of post-quantum sub-exponentially secure
iO, one-way functions, the quantum hardness of LWE and assuming the strong
monogamy-of-entanglement property (Conjecture 1), our construction satisfies
anti-piracy security.

Hidden Cosets and Applications to Unclonable Cryptography 583

Fig. 3. Program P

Acknowledgements. A.C. is supported by the Simons Institute for the Theory of
Computing, through a Quantum Postdoctoral Fellowship. J. L., Q. L. and M. Z. are
supported by the NSF. J. L. is also supported by Scott Aaronson’s Simons Investigator
award. The authors are grateful for the support of the Simons Institute, where this
collaboration was initiated.

References

[Aar05] Aaronson, S.: Limitations of quantum advice and one-way communication.
In: Theory of Computing, vol. 1, no. 1, pp. 1–28 (2005). https://doi.org/
10.4086/toc.2005.v001a001

[Aar09] Aaronson, S.: Quantum copy-protection and quantum money. In: 2009
24th Annual IEEE Conference on Computational Complexity, pp. 229–
242. IEEE (2009)

[AC12] Aaronson, S., Christiano, P.: Quantum money from hidden subspaces. In:
Proceedings of the Forty-Fourth Annual ACM Symposium on Theory of
Computing, pp. 41–60. ACM (2012)

[ALL+20] Aaronson, S., Liu, J., Zhandry, M., Zhang, R., Liu, Q.: New approaches
for quantum copy-protection (2020)

[AP21] Ananth, P., La Placa, R.L.: Secure Software Leasing (2021)
[BB84] Bennett, C.H., Brassard, G.: Proceedings of the IEEE International Con-

ference on Computers, Systems and Signal Processing (1984)
[BDGM20] Brakerski, Z., Döttling, N., Garg, S., Malavolta, G.: Factoring and pairings

are not necessary for iO: circular-secure LWE suffices. Cryptology ePrint
Archive, Report 2020/1024 (2020). https://eprint.iacr.org/2020/1024

[BGMZ18] Bartusek, J., Guan, J., Ma, F., Zhandry, M.: Preventing zeroizing attacks
on GGH15. In: Proceedings of TCC 2018 (2018)

[BJL+21] Broadbent, A., Jeffery, S., Lord, S., Podder, S., Sundaram, A.: Secure
software leasing without assumptions (2021). arXiv: 2101.12739 [quant-
ph]

[BL19] Broadbent, A., Lord, S.: Uncloneable quantum encryption via random
oracles. In: IACR Cryptology ePrint Archive 2019, p. 257 (2019)

[BS16] Ben-David, S., Sattath, O.: Quantum tokens for digital signatures. arXiv
preprint arXiv:1609.09047 (2016)

https://doi.org/10.4086/toc.2005.v001a001
https://doi.org/10.4086/toc.2005.v001a001
https://eprint.iacr.org/2020/1024
http://arxiv.org/abs/2101.12739
http://arxiv.org/abs/1609.09047

584 A. Coladangelo et al.

[BW13] Boneh, D., Waters, B.: Constrained pseudorandom functions and their
applications. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013. LNCS,
vol. 8270, pp. 280–300. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-42045-0 15

[CMP20] Coladangelo, A., Majenz, C., Poremba, A.: Quantum copy-protection of
compute-and-compare programs in the quantum random oracle model
(2020). arXiv: 2009.13865 [quant-ph]

[FGH+12] Farhi, E., Gosset, D., Hassidim, A., Lutomirski, A., Shor, P.: Quantum
money from knots. In: Proceedings of the 3rd Innovations in Theoretical
Computer Science Conference, pp. 276–289 (2012)

[GGHW17] Garg, S., Gentry, C., Halevi, S., Wichs, D.: On the implausibility of
differing-inputs obfuscation and extractable witness encryption with aux-
iliary input. Algorithmica 79(4), 1353–1373 (2017)

[GGM86] Goldreich, O., Goldwasser, S., Micali, S.: How to construct random func-
tions. J. ACM 33(4), 792–807 (1986). ISSN: 0004–5411, https://doi.org/
10.1145/6490.6503

[GKW17] Goyal, R., Koppula, V., Waters, B.: Lockable obfuscation. In: 2017 IEEE
58th Annual Symposium on Foundations of Computer Science (FOCS),
pp. 612–621. IEEE (2017)

[Got02] Gottesman, D.: Uncloneable encryption. arXiv preprint quant-ph/0210062
(2002)

[GZ20] Georgiou, M., Zhandry, M.: Unclonable Decryption Keys. Cryptology
ePrint Archive, Report 2020/877 (2020). https://eprint.iacr.org/2020/877

[JLS20] Jain, A., Lin, H., Sahai, A.: Indistinguishability obfuscation from well-
founded assumptions. Cryptology ePrint Archive, Report 2020/1003
(2020). https://eprint.iacr.org/2020/1003

[Kan18] Kane, D.: Quantum money from modular forms (2018). arXiv preprint
arXiv:1809.05925

[KNY20] Kitagawa, F., Nishimaki, R., Yamakawa, T.: Secure Software Leasing from
Standard Assumptions (2020). arXiv: 2010. 11186 [quant-ph]

[Lut10] Lutomirski, A.: An online attack against Wiesner’s quantum money
(2010). In: arXiv preprint arXiv:1010.0256

[SW14] Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable
encryption, and more. In: Proceedings of the Forty-Sixth Annual ACM
Symposium on Theory of Computing, pp. 475–484 (2014)

[TFKW13] Tomamichel, M., Fehr, S., Kaniewski, J., Wehner, S.: A monogamy-
of-entanglement game with applications to device-independent quantum
cryptography. New J. Phys. 15(10), 103002 (2013)

[Wie83] Wiesner, S.: Conjugate coding. ACM Sigact News 15(1), 78–88 (1983)
[WW20] Wee, H., Wichs, D.: Candidate obfuscation via oblivious LWE sampling.

Cryptology ePrint Archive, Report 2020/1042 (2020). https://eprint.iacr.
org/2020/1042

[WZ17] Wichs, D., Zirdelis, G.: Obfuscating compute-and compare programs under
LWE. In: 2017 IEEE 58th Annual Symposium on Foundations of Com-
puter Science (FOCS), pp. 600–611. IEEE (2017)

[Zha19a] Zhandry, M.: Quantum lightning never strikes the same state twice.
In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11478,
pp. 408–438. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
17659-4 14

[Zha19c] Zhandry, M.: The magic of ELFs. J. Cryptol. 32(3), 825–866 (2019)

https://doi.org/10.1007/978-3-642-42045-0_15
https://doi.org/10.1007/978-3-642-42045-0_15
http://arxiv.org/abs/2009.13865
https://doi.org/10.1145/6490.6503
https://doi.org/10.1145/6490.6503
https://eprint.iacr.org/2020/877
https://eprint.iacr.org/2020/1003
http://arxiv.org/abs/1809.05925
http://arxiv.org/abs/2010
http://arxiv.org/abs/1010.0256
https://eprint.iacr.org/2020/1042
https://eprint.iacr.org/2020/1042
https://doi.org/10.1007/978-3-030-17659-4_14
https://doi.org/10.1007/978-3-030-17659-4_14

On Tight Quantum Security of HMAC
and NMAC in the Quantum Random

Oracle Model

Akinori Hosoyamada1,2(B) and Tetsu Iwata2

1 NTT Secure Platform Laboratories, Tokyo, Japan
akinori.hosoyamada.bh@hco.ntt.co.jp

2 Nagoya University, Nagoya, Japan
{hosoyamada.akinori,tetsu.iwata}@nagoya-u.jp

Abstract. HMAC and NMAC are the most basic and important con-
structions to convert Merkle-Damg̊ard hash functions into message
authentication codes (MACs) or pseudorandom functions (PRFs). In the
quantum setting, at CRYPTO 2017, Song and Yun showed that HMAC
and NMAC are quantum pseudorandom functions (qPRFs) under the
standard assumption that the underlying compression function is a
qPRF. Their proof guarantees security up to O(2n/5) or O(2n/8) quan-
tum queries when the output length of HMAC and NMAC is n bits.
However, there is a gap between the provable security bound and a sim-
ple distinguishing attack that uses O(2n/3) quantum queries. This paper
settles the problem of closing the gap. We show that the tight bound of
the number of quantum queries to distinguish HMAC or NMAC from
a random function is Θ(2n/3) in the quantum random oracle model,
where compression functions are modeled as quantum random oracles.
To give the tight quantum bound, based on an alternative formalization
of Zhandry’s compressed oracle technique, we introduce a new proof
technique focusing on the symmetry of quantum query records.

Keywords: Symmetric-key cryptography · Post-quantum
cryptography · Provable security · Quantum security · Compressed
oracle technique · HMAC · NMAC

1 Introduction

In recent years, post-quantum cryptography is one of the most active research
areas in cryptography. NIST is holding the standardization process for post-
quantum public-key schemes such as public-key encryption, key-establishment
algorithms, and signatures [28], and it is anticipated that currently used public-
key schemes (such as RSA-based schemes) will be replaced with post-quantum
ones in a near future. In the post-quantum era, it is desirable that we have some
mathematical evidence that symmetric-key schemes also have post-quantum
security. Studying post-quantum security of typical symmetric-key schemes is
c© International Association for Cryptologic Research 2021
T. Malkin and C. Peikert (Eds.): CRYPTO 2021, LNCS 12825, pp. 585–615, 2021.
https://doi.org/10.1007/978-3-030-84242-0_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-84242-0_21&domain=pdf
https://doi.org/10.1007/978-3-030-84242-0_21

586 A. Hosoyamada and T. Iwata

also an interesting problem from the view point of cryptographic theories,
and there have been a significant number of recent papers that focus on this
topic [14,18,21,32].

There exist two post-quantum security notions for cryptographic schemes:
standard security and quantum security [33]. If a scheme S is proven to be
secure in the setting where adversaries have quantum computers but they make
only classical queries to keyed oracles, S is said to have standard security. If S is
proven to be secure even if adversaries are allowed to make quantum superposed
queries to keyed oracles, S is said to have quantum security. Quantum security
is the ultimate security since, if S has quantum security, S satisfies arbitrary
intermediate security notions between standard security and quantum security1.

Message authentication codes (MACs) are the most important symmetric-
key schemes to achieve data integrity. Some of them including block cipher based
MACs such as CBC-MAC [5,7,22] and PMAC [8] do not have quantum security,
since there exist polynomial time attacks on them [23]. However, they have
standard security since their classical security proofs remain valid if adversaries
are allowed to make only classical queries to keyed oracles and the underlying
block ciphers are post-quantum secure.

On the other hand, classical security proofs are not necessarily applicable to
the (post-quantum) standard security for hash based MACs where the proofs
use idealized models such as the random oracle model (when underlying hash
functions are built on the Merkle-Damg̊ard construction, e.g., SHA-2 [26]) or the
ideal permutation model (when underlying hash functions are built on the sponge
construction, e.g., SHA-3 [27]). Since adversaries can implement compression
functions and permutations used in the hash functions on their own quantum
computers to make quantum queries, the security of hash based MACs should
be proven in the corresponding idealized quantum models such as the quantum
random oracle model (QROM) [9] or quantum ideal permutation model [2,21].

The main focus of this paper is to study the tight quantum pseudorandom
function security (qPRF security) of HMAC and its variant NMAC [4], which
are the most basic and important constructions to convert Merkle-Damg̊ard hash
functions into pseudorandom functions (PRFs) or MACs, in the QROM where
compression functions are modeled as quantum random oracles (QROs).

HMAC and NMAC. For a compression function h : {0, 1}m+n → {0, 1}n,
the Merkle-Damg̊ard construction MDh is defined as follows2: Let IV ∈ {0, 1}n

be a fixed public initialization vector. For each input message M ∈ {0, 1}∗, the
construction pads M (with a fixed padding function) and splits it into m-bit
message blocks M [1], . . . , M [�]. The state is first set as S0 := IV , and iteratively

1 Please do not confuse the notions of standard/quantum security with the standard
model or the quantum random oracle model. The two notions are independent of
the models, and it is possible that a scheme has quantum security in the standard
model or standard security in the quantum random oracle model.

2 n is the length of chaining values, and m is the length of message blocks.

On Tight Quantum Security of HMAC and NMAC 587

Fig. 1. HMAC and NMAC. Note that pad(M) = M [1]|| · · · ||M [�].

updated as Si+1 := h(M [i+1]||Si), and S� becomes the final output. We assume
m ≥ n, which is the case for usual concrete hash functions such as SHA-2.

For a key length k ≤ m, HMAC is defined to be the keyed function HMACh :
{0, 1}k × {0, 1}n × {0, 1}∗ → {0, 1}n such that HMACh(K, IV,M) := MDh(IV,
Kout||MDh(IV,Kin||M)). Here, Kin := (K||0m−k) ⊕ ipad, Kout := (K||0m−k) ⊕
opad, and ipad, opad ∈ {0, 1}m are fixed public constants such that ipad �= opad.
We sometimes write HMACh

K(IV,M) to denote HMACh(K, IV,M) for simplicity.
See also Fig. 1.

NMAC is a two-key variant of HMAC. Mathematically, it is a keyed function
NMACh : {0, 1}n ×{0, 1}n ×{0, 1}∗ → {0, 1}n defined by NMACh(K1,K2,M) :=
MDh(K2,MDh(K1,M)). Here, K1,K2 ∈ {0, 1}n are chosen independently and
uniformly at random.3 We sometimes write NMACh

K1,K2
(M) instead of NMACh

(K1,K2,M) for simplicity. See also Fig. 1.

Quantum Security of HMAC and NMAC

Simple Quantum Distinguishing Attacks on HMAC and NMAC. There are two
simple quantum attacks to distinguish HMAC from a random function. Suppose
that we are given an oracle O that is either of HMAC or a random function, in
addition to the quantum random oracle h.

The first attack is the one that tries to recover the secret key K. Once we
succeed in recovering the correct key K (when O is HMAC) or realizing that
there is no plausible candidate for K (when O a random function), we can
distinguish HMAC from a random function. Since the exhaustive key search of
k-bit keys can be done with O(2k/2) queries by using Grover’s algorithm [17], we
can distinguish HMAC from a random function with O(2k/2) quantum queries.

The second attack uses a collision for O. Suppose that the padding function
pad in the Merkle-Damg̊ard construction satisfies the condition that there exists
a function p : Z≥0 → {0, 1}∗ such that pad(M) = M ||p(|M |), which is the case
for usual hash functions such as SHA-2. First, we try to find M,M ′ ∈ {0, 1}m

such that O(M) = O(M ′), which can be done with O(2n/3) quantum queries by
using the BHT algorithm [11]. When we find such messages, we check whether
O(M ||0m) = O(M ′||0m) holds. This equality holds with a high probability if O
3 Note that there is no IV involved in NMAC and the key-length is always n+n = 2n.

588 A. Hosoyamada and T. Iwata

is HMAC, but it holds with a negligible probability if O is a random function.
Thus, we can distinguish HMAC from a random function with O(2n/3) quantum
queries.

In summary, HMAC can be distinguished with O(min{2n/3, 2k/2}) quantum
queries. The attacks are also applicable for NMAC, and O(min{2n/3, 22n/2}) =
O(2n/3) is an upper bound of the query complexity to distinguish NMAC.

Previous Results on Quantum Security of HMAC and NMAC. Song and Yun
proved that HMAC and NMAC become secure quantum pseudorandom func-
tions (qPRFs) against polynomial-time quantum adversaries in the standard
model under the assumption that h(·||K) : {0, 1}m → {0, 1}n is a qPRF when
K ∈ {0, 1}n is randomly chosen [32]. They for the first time showed that HMAC
and NMAC are secure even in the quantum setting, which has great importance
in theory because it enables domain extension for qPRFs.

Roughly speaking, their proof guarantees security up to O(2n/5) or O(2n/8)
quantum queries when the underlying function hK is ideally random for each
key K.4 In other words, Ω(2n/5) or Ω(2n/8) is currently the best proven lower
bound of quantum query complexity to distinguish HMAC or NMAC from a
random function.

Results in standard models and those in (quantum) random oracles are not
directly comparable, but there exists a large gap between the current best lower
bound and the upper bound O(2n/3) (when k is large enough) given in the above
distinguishing attacks.

The gap between Ω(2n/5) (or Ω(2n/8)) and O(2n/3) may not be significant in
an ideal world where adversaries are modeled as polynomial-time machines, but
it is indeed significant in the real world applications, which we explain below.

Closing the Gap. In the real world, closing the gap between Ω(2n/5) (or Ω(2n/8))
and O(2n/3) is relevant for the following reasons.

Recall that there exist two security notions in the quantum setting: quantum
security and standard security. The standard security of HMAC will have prac-
tical importance in a very near future because it is quite reasonable to assume
that an adversary has a quantum computer on which h is implemented, but the
attack target (HMAC) is implemented on a classical device.

Now, the problem is that exiting results guarantee the security of HMAC
and NMAC only up to O(2n/5) or O(2n/8) queries, not only for the quantum
security but also for the standard security (in the QROM). This is problematic
since when HMAC is instantiated with SHA-256, where n = 256, the security
is not guaranteed after about 2n/5 ≈ 252 (or 2n/8 ≈ 232) classical queries. It
is completely unacceptable in practice, as the number is modest even with the
current standard, and is too small to guarantee a longer term security.

4 Actually, the previous work [32] did not give concrete security bound, but we can
reasonably deduce that the security is guaranteed up to O(2n/8) quantum queries.
We have the bound O(2n/5) instead of O(2n/8) if we assume a conjecture. See
Section A of this paper’s full version [20] for details. .

On Tight Quantum Security of HMAC and NMAC 589

In theory, the security up to O(2n/3) queries can be guaranteed with the
previous result if the security parameter is changed from n to 5n/3 (or 8n/3),
by replacing the underlying hash function with the one with a longer output
length. However, in the real world, it requires many years to change parameters
or primitives of widely used symmetric-key cryptosystems such as HMAC, or
sometimes it is simply infeasible, as we illusrtare below:

– Some small IoT devices (e.g., RFID tags) need MACs but do not have enough
area for hardware implementation of primitives with large parameters.

– Some banking systems are still using Triple-DES although 20 years have
already passed after the standardization of AES [3]. This is because even
a small change (changing the block cipher) in financial systems is too costly.

– Artificial satellites require MACs to prevent accepting commands from mali-
cious attackers. Changing primitives embedded as hardware is infeasible after
satellites are launched into the outer space [31].

Hence, giving a precise security bound is relevant from a practical view point,
and is one of the most important topics to study in symmetric-key cryptography,
even if the improvement will be from O(2n/5) (or O(2n/8)) to O(2n/3).

We also note that there has been a long line of research to close the gap for
HMAC and NMAC in the classical setting, and it was eventually addressed by
Gazi et al. at CRYPTO 2014 [16] showing the upper bound and the matching
lower bound. However, the analysis in the quantum setting does not reach this
point, and closing the gap is important also from a theoretical view point.

1.1 Our Contributions

The main result of this paper is the following theorem, which shows that the
tight bound of the number of quantum queries to distinguish HMAC or NMAC
from a random function is in Θ(2n/3) (when k is large enough).

Theorem 1 (Lower bound, informal). Assume m ≥ n. Suppose that the
maximum length of messages that we can query to HMAC, NMAC, or a random
function RF (which is independent of h) is at most m · �. Then, the following
claims hold in the model where h is a quantum random oracle.

1. To distinguish HMAC from RF with a constant probability by making at most
Q queries to HMAC or RF and at most qh queries to h, qh · �5/3 + Q · �5/3 ≥
Ω(2n/3), or qh + Q · � ≥ Ω(2k/2) have to be satisfied.

2. To distinguish NMAC from RF with a constant probability by making at most
Q queries to NMAC or RF and at most qh queries to h, qh · �5/3 + Q · �5/3 ≥
Ω(2n/3) has to be satisfied.

Remark 1. Our tightness claim focuses on the number of quantum queries,
neglecting the effect of the lengths of the queries (see also Fig. 2). Nevertheless,
our result still has practical importance. For instance, when HMAC-SHA-256 is
used to authenticate TCP/IP packets on Ethernet, � < 32 always holds since

590 A. Hosoyamada and T. Iwata

Fig. 2. The area that our result guarantees security (the grey triangle). We claim
tightness of the bound for � = O(1).

Maximum Segment Size (MSS) is about 1500-byte. In such a use-case our result
guarantees about 85-bit security (2n/3 ≈ 285 for n = 256), while previous works
do only about 52-bit security or 32-bit security (in the QROM).

Remark 2. Some readers may think that results in the standard model are always
superior to those in the (Q)ROM, but we emphasize that the standard model
and (Q)ROM are theoretically incomparable.

To show the theorem, we use an alternative formalization [18,19] of Zhandry’s
compressed oracle technique [34]. One of the most difficult issues in proving secu-
rity of cryptographic schemes against quantum adversaries is to record quan-
tum queries to oracles. Zhandry [34] solved the issue by developing the com-
pressed oracle technique, which can be used to record queries to QROs and
efficiently simulate QROs. Intuitively, by using the technique, we can use the
classical lazy sampling for quantum random oracles to some extent. The tech-
nique is so powerful that it is used to prove security of many cryptographic
schemes [6,12,18,24,25,34]. However, efficient simulations of QROs are not nec-
essary when we focus on the number of quantum queries made by adversaries
and when their running time is irrelevant. Based on this observation, Hosoya-
mada and Iwata developed an alternative formalization of the compressed oracle
technique that achieved a simpler formalization by ignoring efficient simulations
of QROs and introducing notions of error terms, which is named recording stan-
dard oracle with errors (RstOE) [18,19]. Since our main focus is information
theoretic adversaries of which computational resources are unlimited except for
the number of quantum queries, we use RstOE instead of the original technique.

The technically hardest part to prove Theorem 1 is to show the indistin-
guishability of the function Fh

1 (u, v) := h(v, f(u)) from a random function, where
u ∈ {0, 1}n, v ∈ {0, 1}m, and f : {0, 1}n → {0, 1}n is a random function that
is independent of h. (Adversaries have a direct oracle access to the quantum
random oracle h, but only indirect access to f . That is, adversaries can query

On Tight Quantum Security of HMAC and NMAC 591

Fig. 3. F h
1 and F2. h is a quantum random oracle that adversaries can directly access.

f and g are random functions that are independent from h.

to f only through queries to Fh
1 , and cannot observe the output values of f . See

also Fig. 3.) Once we show the indistinguishability of Fh
1 , the remaining proofs

can be done with simpler proof techniques.
It turns out that previous techniques cannot be directly used to prove the

indistinguishability of Fh
1 . Thus we introduce a technique which we call equiva-

lent databases. We explain the details in the next subsection.

1.2 Technical Overview

Let us denote the distinguishing advantage of an adversary A between (pair
of) oracles (Oh

1 , h) and (O2, h) by Advdist
(Oh

1 ,h),(O2,h)(A), where h is a quantum
random oracle and Oh

1 depends on h. Let RF be a random function that is
independent of h. As mentioned above, the technically hardest part to show the
tight security bound of HMAC and NMAC is to show the following proposition5.

Proposition 1 (Technically hardest proposition to show, informal). If
A makes at most q queries to each oracle, Advdist

(F h
1 ,h),(RF,h) ≤ O(

√
q3/2n) holds.

Let F2 be the function defined by F2(u, v) := g(u, v, f(u)), where g : {0, 1}n ×
{0, 1}m × {0, 1}n → {0, 1}n is another random function (see also Fig. 3). Then,
since g is a random function, Advdist

(F h
1 ,h),(RF,h)(A) = Advdist

(F h
1 ,h),(F2,h)(A) holds.

In what follows, we present an overview of how we show

Advdist
(F h

1 ,h),(F2,h)(A) ≤ O(
√

q3/2n), (1)

instead of directly showing Proposition 1. For bit strings x and y, we identify
the concatenation x||y and the pair (x, y). 6

Following usual terminology on provable security in symmetric-key cryptol-
ogy, we call (direct) queries to h offline queries because h is an ideal model of a

5 In [34] Zhandry showed that F h
1 is indifferentiable from a QRO when h and g are

QROs. His result implies qPRF security of F h
1 up to O(2n/4) quantum queries, while

Proposition 1 guarantees security up to O(2n/3) queries. .
6 We consider F2 instead of RF so that there exists a useful correspondence between

“good” databases for F h
1 and those for F2, which we will elaborate later.

592 A. Hosoyamada and T. Iwata

public function that adversaries can compute offline. In addition, we call queries
to Fh

1 and F2 online queries because the oracles of Fh
1 and F2 model the keyed

functions that adversaries can compute only by making online queries.

Classical Proof Intuitions. If our goal were to show the indistinguishability
of Fh

1 and F2 in the classical setting, we could show it based on the following
idea by using the lazy sampling technique to f , g, and h:

If A cannot guess outputs of f , and outputs of f do not collide, then
the outputs of Fh

1 and F2 seem completely random and indistinguishable.

More precisely, a (classical) adversary A cannot distinguish Fh
1 and F2 as long

as the following two bad events hit and coll do not happen.7

hit: A succeeds in guessing a previous output of f and queries it to h. That is,
A has queried u||v′ to the online keyed oracle (Fh

1 or F2) before, and now
A queries v||f(u) to h (for some v ∈ {0, 1}m).

coll: A new output of f (which is sampled during an online query) happens to
collide with either of (a) a previous output of f , or (b) the least significant
n-bit ζ of a previous offline query v||ζ to h.

Our proof for the classical indistinguishability would be as follows: First, we
show that Fh

1 and F2 are completely indistinguishable as long as hit and coll do
not happen. Second, we show that Pr[hit] and Pr[coll] are small. Let colli denote
the event that coll happens at the i-th query. Then, by using the randomness
of outputs of f , we can show Pr [colli] ≤ O(i/2n) for each i, which implies that
Pr [coll] ≤ ∑

1≤i≤q Pr [colli] ≤ ∑
1≤i≤q O(i/2n) = O(q2/2n). Similarly, Pr [hit] ≤

O(q2/2n) can be shown. (Actually there exists a qualitative difference between
the proof for Pr [coll] ≤ O(q2/2n) and that for Pr [hit] ≤ O(q2/2n), which will be
explained later). Hence we can show Advdist

(F h
1 ,h),(F2,h)(A) ≤ Pr [coll] + Pr [hit] ≤

O(q2/2n) in the classical setting.

How to Show Quantum Indistinguishability? When we show the quantum
indistinguishability of Fh

1 and F2, it is natural to combine the above classical
idea with some quantum proof techniques developed in previous works. Indeed,
our first idea toward a quantum proof is to combine the above classical idea with
a quantum technique introduced in [18,19].8 However, actually it turns out that
they cannot be simply combined. The issue is attributed to our situation where
7 We use the symbols u and ζ to denote n-bit strings and v to denote an m-bit string.
8 In Zhandry’s paper that introduced the compressed oracle technique, quantum indif-

ferentiability of the fixed-input-length Merkle-Damg̊ad construction is proved [34].
Note that the variable-input-length Merkle-Damg̊ad construction that is used in
HMAC and NMAC is not indifferentiable in the random oracle model even in the
classical setting [13]. In addition, the security bound of the indifferentiability is
proved up to O(2n/4) (but not O(2n/3)) quantum queries in [34]. Thus, we start
from the proof technique used in [18,19] instead of [34].

On Tight Quantum Security of HMAC and NMAC 593

we have to deal with the bad event hit that “A’s offline query to h collides with
a previous output of f in the online oracle”.

Below, we explain (1) an overview of the previous quantum proof technique,
(2) what kind of issue arises if we combine the above classical idea with the
previous quantum technique, and that (3) we can solve the issue by introducing
a new proof technique which we name equivalent databases.

Proof Technique in [18,19]. The previous work [18,19] showed quantum indis-
tinguishability (Proposition 4 in [19]) of certain two oracles as follows:9

1. Suppose that random functions from which the oracles are built (in our case,
f , g, and h) are implemented by using RstOE so that we can use intuitions of
classical lazy sampling in quantum proofs to some extent (let Df , Dg, and Dh

denote databases associated with RstOE for f , g, and h, respectively, which
correspond to transcripts of queries in the classical setting).

2. Based on classical proof ideas of using good and bad events, define the notion
of good and bad for tuples of databases (in our case, (Df ,Dh) for Fh

1 and
(Df ,Dg,Dh) for F2) in such a way that
(a) There exists a one-to-one correspondence between good databases for one

oracle (in our case, good databases (Df ,Dh) for Fh
1) and good databases

for the other oracle (in our case, good databases (Df ,Dg,Dh) for F2).
(b) The behavior of one oracle (in our case, Fh

1) on a good database is the
same as that of the other oracle (in our case, F2) on the corresponding
good database.

3. By using (a) and (b), show that the oracles (in our case, the pairs of the oracles
(Fh

1 , h) and (F2, h)) are completely indistinguishable as long as databases are
good.

4. Show that the probability (in some sense) that good databases change to bad
databases is very small at each query.

Note that, unlike the setting, even if the record “x has been queried to f and
responded with y” is stored in a database Df for f , there is a possibility that
the record will be overwritten as “x has not been queried to f before”, or “x
has been queried to f and responded with y′” for some y′ such that y �= y′ 10.
Hence it is not necessarily trivial how to define good and bad databases in such
a way that we can formally prove both of (a) and (b) hold.

Next, we explain what kind of issue happens when we apply the above idea
to our situation. In short, the issue lies in the last one of the above four steps.
9 Some technical errors are contained in the Asiacrypt version of the previous work [18],

which are corrected in the revised version [19]. Our technical overview in this section
and formal proofs in later sections are based on the revised version. For completeness,
we do not rely on any propositions in [18,19] that is related to the technical errors
in [18]. The propositions from [18,19] that we use in this paper are the ones of
which correctness can be confirmed just by straightforward algebraic calculation
(Proposition 2 and Proposition 3).

10 This may seem somewhat strange, but some differences between quantum oracles
and classical oracles are explained by using this strange property.

594 A. Hosoyamada and T. Iwata

An Issue with Our Situation. In the previous work [18,19], each adversary
can access to only a single keyed oracle. Roughly speaking, a good database
changes to bad only when a fresh value x is (indirectly) queried to a random
function RF, and the newly sampled value y := RF(x) happens to collide with
an existing record in a database (i.e., a bad event that correspond to coll in our
situation).

On the other hand, in our situation, a good database also changes to bad
when an adversary succeeds to query v||ζ to h such that ζ collides with a
previous output of f (i.e., hit occurs).

This difference causes an issue to prove that the “bad” probability is small.
Unlike the lazy sampling that always chooses values uniformly at random, (quan-
tum) adversaries can choose offline (quantum) queries to h arbitrarily and adap-
tively. Thus, an adversary may have strong ability to succeed to cause hit, even
if the probability of coll is small.

Note that how to deal with adaptive queries to offline queries is not an easy
issue even in the classical setting. To reduce the arguments on adaptive queries
into those on non-adaptive arguments, sophisticated proof techniques such as
the coefficients H technique [29] are usually used.

How to Solve the Issue. Our key intuition to solve the issue is, for arbitrary
good database (Df ,Dh) for Fh

1 that an adversary A is trying to change to be
bad, there would be sufficiently many good databases (D′

f ,D′
h) that A cannot

distinguish from (Df ,Dh).
Suppose that (I) A is running relative to Fh

1 and h, and has made (i − 1)
queries in total, (II) both of the bad events coll and hit have not happened, and
(III) now A chooses a bit string ṽ||ζ̃ to query to h, trying to cause hit at the i-th
query.

Let Df and Dh be the current databases for f and h (before the i-th query).
Then there exist u1, . . . , us, α1, . . . , αs ∈ {0, 1}n (s ≤ i − 1) such that Df =
((u1, α1), . . . , (us, αs)). Intuitively, αj is equal to f(uj). Since bad events have
not happened yet, Df does not contain any collision (i.e., αi �= αj for i �= j).

Let hiti denote the event that hit occurs at the i-th query (to h). Then, hiti
occurs when A successfully chooses a value ṽ||ζ̃ such that ζ̃ = αj holds for some
j. Our current goal is to prove that Pr [hiti] is very small.

To achieve this goal, we show that Pr
[
hiti

∣∣∣A chooses ṽ||ζ̃
]

is very small for

arbitrary ṽ||ζ̃, by focusing on the freedom of the choices of the values f(u1) =
α1, . . . , f(us) = αs. Intuitively, even if the value αj(= f(uj)) in the element
(uj , αj) ∈ Df is replaced with another value α′

j , A does not notice since A
does not observe output values of f . This means that the choices of the values
f(u1) = α1, . . . , f(u) = αs have some degree of freedom, even after A has
chosen which value ṽ||ζ̃ to query to h. We use this degree of freedom to bound
the probability Pr

[
hiti

∣∣∣A chooses ṽ||ζ̃
]

(actually we will show a stronger result).
To provide a proof based on the above intuition, we introduce the notion of

equivalent databases as follows.

On Tight Quantum Security of HMAC and NMAC 595

Definition 1 (Equivalent database, informal). A (good) database (D′
f ,D′

h)
is said to be equivalent to (Df ,Dh) if |D′

f | = |Df |, |D′
h| = |Dh|, and (D′

f ,D′
h)

is equal to (Df ,Dh) except for the choices of the output values of f .

We present an example to illustrate the intuition on equivalent databases.
Let Df := ((u1, α1), (u2, α2)) and Dh := ((v1||α1, w1), (v

(1)
2 ||α2, w

(1)
2), (v(2)

2 ||α2,

w
(2)
2), (v3||ζ3, w3)). This corresponds to the situation where u1||v1, u2||v(1)

2 ,
u2||v(2)

2 have been queried to Fh
1 , and v3||ζ3 has been queried to h. See

also Fig. 4. The adversary observes that Fh
1 (u1||v1) = w1, Fh

1 (u2||v(1)
2) =

w
(1)
2 , Fh

1 (u2||v(2)
2) = w

(2)
2 , and h(v3||ζ3) = w3, but does not know the val-

ues α1 = f(u1) and α2 = f(u2). Suppose α1, α2, ζ3 are distinct, which
implies that (Df ,Dh) is a good database. Then, another good database
(D′

f ,D′
h) is equivalent to (Df ,Dh) if and only if there exist α′

1 and α′
2

such that α′
1, α

′
2, ζ3 are distinct, D′

f = ((u1, α
′
1), (u2, α

′
2)), and D′

h =

((v1||α′
1, w1), (v

(1)
2 ||α′

2, w
(1)
2), (v(2)

2 ||α′
2, w

(2)
2), (v3||ζ3, w3)).

Fig. 4. The situation that corresponds to the good database (Df , Dh). A has no infor-
mation on α1 and α2 expect that α1, α2, ζ3 are distinct. We say that another good
database (D′

f , D′
h) is equivalent to (D′

f , D′
h) if and only if (Df , Dh) is equal to (Df , Dh)

except for the choice of the values for α1 and α2.

Let Equiv(Df ,Dh) be the set of good databases that are equivalent to
(Df ,Dh). Then, intuitively, the following properties hold:

1. The probability that a database happens to become (Df ,Dh) (after A made
(i − 1) queries) is equal to the probability that the database happens to
become (D′

f ,D′
h), for any (D′

f ,D′
h) ∈ Equiv(Df ,Dh).

2. The ratio between (I) the number of (D′
f ,D′

h) ∈ Equiv(Df ,Dh) that leads to
the bad event hiti (i.e., αj = ζ̃ for some j) and (II) the size of the entire set
Equiv(Df ,Dh) is at most about ≈ |Df |/2n ≤ O(i/2n).11

11 This holds due to the following reasoning. For simplicity, assume that nothing has
been directly queried to h before, and Df has (i−1) entries (u1, α1), . . . , (ui−1, αi−1)
(other cases can be shown similarly). Then |Equiv(Df , Dh)| is equal to the num-
ber of choices of the tuple (α1, . . . , αi−1) such that αj �= αk for j �= k. Hence
|Equiv(Df , Dh)| =

(
2n

i−1

)
. In addition, the number of (D′

f , D′
h) ∈ Equiv(Df , Dh) such

that αj = ζ̃ for some j is (i − 1) · (
2n

i−2

)
. Thus the ratio is (i − 1) · (

2n

i−2

)
/
(

2n

i−1

)
=

(i−1)
(2n−i+2)

≤ O(i/2n).

596 A. Hosoyamada and T. Iwata

From the above two properties it follows that, for arbitrary ṽ||ζ̃ and arbitrary
good (Df ,Dh), Pr

[
hiti

∣∣∣A chooses ṽ||ζ̃ ∧ database is equivalent to (Df ,Dh)
]

≤
O (i/2n) holds. This implies that Pr [hiti] ≤ O(i/2n).

The above explanations are in fact based on classical intuitions. To show
they also work in the quantum setting, we carefully analyze quantum amplitude
(complex coefficients) of state vectors.

Finishing the Proof. Now we have Pr [hiti] ≤ O(i
2n) in the quantum setting.

We can also show Pr [colli] ≤ O(i
2n) with the technique in the previous work [18].

In the classical setting, the distinguishing advantage is upper bounded by
Advdist

(F h
1 ,h),(F2,h)(A) ≤ Pr [hit] + Pr [coll] ≤ ∑

1≤i≤q Pr [hiti] +
∑

1≤i≤q Pr [colli] .
On the other hand, roughly speaking, the quantum distinguishing advan-
tage is upper bounded by Advdist

(F h
1 ,h),(F2,h)(A) ≤ ∑

1≤i≤q

√
Pr [hiti] +

∑
1≤i≤q

√
Pr [colli]. Therefore, we obtain the bound as Advdist

(F h
1 ,h),(F2,h)(A) ≤

∑
1≤i≤q O

(√
i/2n

)
+

∑
1≤i≤q O

(√
i/2n

)
≤ O

(√
q3/2n

)
in the quantum set-

ting, instead of the classical bound O(q2/2n).
The intuition behind the notion of equivalent databases might seem simple or

even trivial, though, the important point is that we can provide a rigorous proof
that the intuition actually works in the quantum setting through RstOE. (Recall
that it was unclear how to record quantum queries before the development of
the compressed oracle technique.)

As we mentioned before, it is quite important to show the tight security
bound in symmetric cryptology because even the improvement from O(2n/5) (or
O(2n/8)) to O(2n/3) has significant importance in the real world. Bad events
like hit that an adversary succeeds to guess an output of a random function
often appear in classical provable security for symmetric-key cryptosystems. To
deal with such bad events when showing quantum tight security bounds, proof
techniques like our equivalent databases seem indispensable. We believe that our
technique broadens the applicability of quantum provable security in symmetric-
key cryptology.

1.3 Limitations and Future Directions

Our security bound is tight and any further improvement is impossible in terms
of the number of queries. However, there is a room for improvement in terms of
the length of messages. When an adversary makes a single classical query of very
long length (e.g., a message of m·2n/5 bits, or equivalently � = 2n/5) to the keyed
oracle of HMAC or NMAC, our result no longer guarantees any security. (Note
that this does not invalidate the practical importance of our result. See Remark
1 for details.) However, we do not find any quantum attack that actually breaks
the security of HMAC or NMAC by making only a few queries of which length is
O(m · 2n/5), and we expect that there does not exist such an attack. Improving
the security bound in terms of message lengths is an interesting future work.

On Tight Quantum Security of HMAC and NMAC 597

1.4 Related Works

There are various notions on quantum MAC security such as EUF-qCMA secu-
rity [10] and blind unforgeability [1]. There also exists another security notion
for one-time MAC security [15]. MACs built from qPRFs satisfy all these secu-
rity notions. Boneh and Zhandry showed that qPRFs become quantum secure
MACs (in the sense of EUF-qCMA) and showed quantum security of the Carter-
Wegman MACs [10]. Czajkowski et al. showed quantum security of random
sponge, which can be seen as a variant of CBC-MAC [14].

1.5 Paper Organization

Section 2 describes notation, definitions, and some basic lemmas used in later
sections. Section 3 gives an overview on the alternative formalization (RstOE)
of Zhandry’s compressed oracle technique. Section 4 gives the formal proof of
the technically most hardest proposition (Proposition 1) and introduces the new
proof technique. Section 5 shows quantum security bound of HMAC and NMAC.

2 Preliminaries

In this paper, all adversaries are quantum algorithms. In denotes the identity
operator on n-qubit quantum states. We often write just I instead of In when it
will cause no confusion. For a unitary operator U , we denote the operators U ⊗I
and I ⊗ U by the same symbol U , when it will cause no confusion. We identify
the set of bit strings {0, 1}n with the set of integers {0, 1, . . . , 2n − 1} for any
positive integer n. In addition, we identify the pair (x, y) ∈ {0, 1}m×{0, 1}n with
the concatenation x||y ∈ {0, 1}m+n. {0, 1}∗ denotes the set

∐∞
n=0{0, 1}n, where

{0, 1}0 denotes the set that includes only the empty string. For a positive integer
m, ({0, 1}m)+ denotes the set

∐∞
i=1{0, 1}im. td(·, ·) denotes the trace distance

function. For a vector |φ〉 and a positive integer n, we also denote |φ〉⊗ |0n〉 and
|0n〉 ⊗ |φ〉 by |φ〉, when it will cause no confusion.

2.1 Quantum Algorithms and Quantum Oracles

When we consider the computational resources of adversaries, we focus on the
number of queries made by adversaries, and we do not care about their running
time and memory usage (i.e., we consider quantum information theoretic adver-
saries). Here we describe how we model (oracle-aided) quantum algorithms and
quantum oracles in the case that each adversary is given an oracle access to a
single quantum oracle.

Following previous works (e.g., [9]), we model an (oracle-aided) quantum
algorithm A that makes at most q quantum queries to a single oracle as a
sequence of unitary operators (U0, U1, . . . , Uq), where Ui corresponds to A’s
offline computation after the i-th oracle query for i ≥ 1, and U0 corresponds
to A’s initial computation. In addition, the quantum state space of A is a tensor

598 A. Hosoyamada and T. Iwata

product Hquery ⊗Hanswer ⊗Hwork, where Hquery, Hanswer, and Hwork correspond
to the register to make queries to the oracle, the register to receive answers from
the oracle, and the register for A’s offline computations, respectively. After the
application of the final unitary operator Uq, A’s entire state is measured, and (a
part of) the measurement result (classical bit string) is returned as the output.
When A does not take any initial input, we assume that A’s initial state is set to
be |0s〉 for some positive integer s. When A takes a classical input x ∈ {0, 1}m,
we assume that A’s initial state is set to be |x〉 by convention. (This paper does
not treat the situation that A takes quantum states as inputs.)

A quantum oracle O is modeled as a tuple of unitary operator O, quantum
state space Hquery ⊗ Hanswer ⊗ Hstate, and a vector (initial state) |init〉 ∈ Hstate.
Here, the state space Hquery ⊗ Hanswer (i.e., the registers to send queries and
receive answers) is shared with adversaries, and Hstate is the oracle’s private
space that adversaries cannot access directly. O may be chosen randomly accord-
ing to a distribution at the beginning of each game.

When the adversary A runs relative to the quantum oracle O on input x,
the initial whole quantum state is |x〉 ⊗ |init〉. The whole quantum state just
before the i-th query is Ui−1OUi−2O · · · OU0 |x〉⊗ |init〉, and the whole quantum
state just before the final measurement is UqOUq−1O · · · OU0 |x〉 ⊗ |init〉. Let
z ← AO(x) denote the event that the quantum algorithm A returns z as the
final output when A takes x as an input and runs relative to O.

Example: Quantum oracle of a fixed function and a quantum random oracle.
According to the above model, the quantum oracle Of of a fixed function
f : {0, 1}m → {0, 1}n is modeled as follows: the state space of Of is empty.
The unitary operator Of that processes queries made to Of is defined by
Of : |x〉 |y〉 → |x〉 |y ⊕ f(x)〉 for all x ∈ {0, 1}m and y ∈ {0, 1}n.

In addition, a quantum random oracle (QRO) is defined to be the quantum
oracle such that, f : {0, 1}m → {0, 1}n is chosen uniformly at random at the
beginning of each game (for some m and n), and quantum oracle access to Of

is given to adversaries.
Even if a function f admits input messages M and M ′ of which lengths differ,

we assume that the quantum oracle of Of admits queries of superpositions of
M and M ′. In such a case, we assume that length |M | of each message M is
encoded with M . However, for ease of notation, we just write |M〉 instead of
|(|M |,M)〉 for each message M .

2.2 How to Model Accesses to Multiple Quantum Oracles

Suppose that an adversary A is given oracle accesses to multiple quantum ora-
cles O1, . . . ,Os, and A makes q queries to each oracle O1, . . . ,Os in a sequential
order. That is, for each 1 ≤ j < s, after A makes the i-th query to Oj , A
performs some offline computations, and then makes the i-th query to Oj+1.
Similarly, after A makes the i-th query to Os, A performs some offline computa-
tions, and then makes the (i+1)-th query to O1. Here we explain how to model

On Tight Quantum Security of HMAC and NMAC 599

the behavior of A and multiple quantum oracles O1, . . . ,Os as sequential appli-
cations of unitary operators, in the case that A makes queries in a sequential
order as above.

We assume that the oracles share a state space that is described as the tensor
product Hquery⊗Hanswer⊗Hstate. Here, Hquery⊗Hanswer is the partial state space
of A (thus the adversary and the oracles share the registers to send queries and
receive answers). Hstate is oracles’ private space that adversaries cannot access
directly.

For each quantum oracle Oi, let Oi denote the unitary operator to pro-
cess queries. We assume that the initial state of A is set to be |x〉 when
A takes x as an input (when A does not take any initial input, by conven-
tion we assume that the initial state of A is |0α〉 for some α). Let |init〉 be
the initial state of the oracles’ private space Hstate. Then we model that the
quantum state of A and the oracles before the final measurement becomes(∏q

j=1 Us,jOs · · · U1,jO1

)
U0 |x〉 ⊗ |init〉, where the adversary A is modeled as

the sequence of unitary operators (U0, U1,1, . . . , Us,1, U1,2, . . . , Us,q), and Ui,j

corresponds to the offline computation by A after the j-th query to Oi. By
z ← AO1,...,Os(x), we denote the event that A finally outputs the classical string
z when A takes x as an input and runs relative to the oracles O1, . . . ,Os.

The Model of Adversaries of Which Queries Are Not in a Sequential
Order. In the above model we considered the special case that the adversary
queries to oracles O1, . . . ,Os in a sequential order. However, even if an adversary
B (given oracle accesses to O1, . . . ,Os) does not make queries in such a sequential
order, the behavior of B can be captured with the above model: Suppose that B
makes at most qi quantum queries to Oi for each i, and s is a constant. Then,
we can make another adversary A such that A’s output distributions are the
same as that of B, and A makes O(max{q1, . . . , qs}) queries to each oracle in a
sequential order as in the above model, by appropriately increasing the number
of queries. Thus all reasonable adversaries are captured by the above model.

2.3 Security Advantages

Quantum Distinguishing Advantage. For quantum oracles O1, . . . ,Os

and O′
1, . . . ,O′

s, we define the quantum distinguishing advantage of an
adversary A by Advdist

(O1,...,Os),(O′
1,...,O′

s)
(A) :=

∣∣Pr
[
1 ← AO1,...,Os()

] − Pr
[
1 ← AO′

1,...,O′
s()

]∣∣∣ .

qPRF Advantage in QROM. Let h be a QRO and Fh
K be a keyed func-

tion that may depend on h. By the same symbol Fh
K we denote the quan-

tum oracle such that the key K is chosen at random, and the quantum ora-
cle access to Fh

K is given to adversaries. In addition, let RF be the quantum
oracle of a random function that is independent of h. Then, we define the

600 A. Hosoyamada and T. Iwata

quantum pseudorandom function advantage (qPRF advantage) of A on Fh
K by

AdvqPRF

F h
K

(A) := Advdist
(F h

K ,h),(RF,h)(A).
Here we introduce a basic proposition from a previous work [30] for later use.

Lemma 1 (Lemma 2.2 of [30]). Let h : {0, 1}m+n → {0, 1}n be a quan-
tum random oracle. For a random key K ∈ {0, 1}k (k < m + n), define
Fh

K : {0, 1}m+n−k → {0, 1}n by Fh
K(x) = h(x||K). Then, for each adversary

A that makes at most qh quantum queries to h, AdvqPRF

F h
K

(A) ≤ O
(
qh/2k/2

)

holds.

qPRG Advantage. Let h be a quantum random oracle and ρh : {0, 1}k1 →
{0, 1}k2 be a function that may depend on h. Then, we define the quantum PRG

advantage AdvqPRG
ρh (A) of A on ρh by AdvqPRG

ρh (A) :=
∣∣∣Pr

[
K1

$←− {0, 1}k1 :

1 ← Ah(ρh(K1))
] − Pr

[
K2

$←− {0, 1}k2 : 1 ← Ah(K2)
]∣∣∣ . In addition, we intro-

duce the following lemma for later use.

Lemma 2. Let h : {0, 1}m+n → {0, 1}n be a quantum random oracle, and
k ≤ m. Let Δ ∈ {0, 1}m and IV ∈ {0, 1}n be public constants such that Δ �= 0m.
Define ρh : {0, 1}k → {0, 1}2n by ρh(K) = h(K||0m−k||IV)||h((K||0m−k ⊕
Δ)||IV). Then, for any quantum adversary A that makes at most qh quantum
queries to h, AdvqPRG

ρh (A) ≤ O
(
qh/2k/2

)
holds.

Lemma 2 can easily be shown by slightly modifying the proof of Lemma 1
(Lemma 2.2 in [30]). See Section B of this paper’s full version [20] for details.

3 An Overview on How to Record Quantum Queries

Here, we give an overview of the recording standard oracle with errors [18,19],
which is an alternative formalization of Zhandry’s compressed oracle tech-
nique [34].

The Primal Definition of QRO. Let us begin with recalling the primal
definition of QRO (see Sect. 2 for details). A QRO is the quantum oracle such
that

1. a function f is chosen from Func({0, 1}m, {0, 1}n), the set of all functions
from {0, 1}m to {0, 1}n, uniformly at random, and

2. a quantum oracle access to f is given to adversaries.

Here, m and n are positive integers. Note that the quantum oracle of f
is described as the unitary operator Of that is defined by Of : |x〉 |y〉 →
|x〉 |y ⊕ f(x)〉 for all x ∈ {0, 1}m and y ∈ {0, 1}n. In the QROM, an adver-
sary A makes quantum queries to a QRO (and quantum queries to additional
oracles that may depend on the QRO) and finally returns some outputs.

On Tight Quantum Security of HMAC and NMAC 601

An Alternative View of QRO: The Standard Oracle. Here, let us define
a quantum oracle named the standard oracle, which is an alternative view of
QRO. First, suppose that each function f : {0, 1}m → {0, 1}n is encoded into
the 2m · (n + 1)-bit string (0||f(0))|| · · · ||(0||f(2m − 1)), and identify f with this
bit string12. Second, let stO be the unitary operator defined by

stO : |x〉 |y〉 ⊗ |S〉 → |x〉 |y ⊕ Sx〉 ⊗ |S〉 , (2)

where x ∈ {0, 1}m, y ∈ {0, 1}n, and S = (b0||S0)|| · · · ||(b2m−1||S2m−1) (bi ∈
{0, 1} and Si ∈ {0, 1}n for each i. Essentially, the operator stO does not act on
the register for bi for each i). Then we have stO |x〉 |y〉⊗|f〉 = |x〉 |y ⊕ f(x)〉⊗|f〉
for each function f .

Definition 2 (Standard oracle). The standard oracle is the quantum oracle
such that the initial state of the oracle is

∑
f

√
1/2n2m |f〉 and each quantum

query is processed with the unitary operator stO.

By the same symbol stO we denote not only the unitary operator (2) but also
the standard oracle if it will cause no confusion. The following lemma clearly
holds.

Lemma 3. For any quantum algorithm A and any possible output z (classical
bit string), Pr

[
z ← AQRO

]
= Pr

[
z ← AstO

]
holds.

The Recording Standard Oracle with Errors. Let IH, Utoggle, and CH be
the unitary operators that act on 2m · (n + 1)-qubit states defined by IH :=
(I ⊗ H⊗n)2

m

, Utoggle := (I1 ⊗ |0n〉 〈0n| + X ⊗ (In − |0n〉 〈0n|))2m

, and CH :=
(CH)2

m

. Here, X is the 1-qubit bit-flip operation such that X |b〉 = |b ⊕ 1〉 and
CH := |0〉 〈0| ⊗ In + |1〉 〈1| ⊗H⊗n. Let Uenc := CH ·Utoggle · IH and Udec := U∗

enc,
and define the unitary operator RstOE that acts on (m + n + (n + 1) · 2m)-qubit
quantum states by

RstOE := (Im+n ⊗ Uenc) · stO · (Im+n ⊗ Udec). (3)

Then the recording standard oracle with errors RstOE is defined as follows.

Definition 3 (Recording standard oracle with errors). The recording
standard oracle with errors is the quantum oracle such that its initial state is
|02m(n+1)〉 and each quantum query is processed with the unitary operator RstOE.

By the same symbol RstOE we denote not only the unitary operator (3) but also
the recording standard oracle with errors if it will cause no confusion.

12 Here, the bit “0” concatenated with each f(i) is redundant, but it is necessary so
that the notation for stO is compatible with that for the recording standard oracle
with errors introduced later.

602 A. Hosoyamada and T. Iwata

Intuition Behind the Definition of RstOE. RstOE is the composition of Udec, stO,
and Uenc. The first operator Udec decodes superpositions of databases into the
uniform superposition of all functions

∑
f

√
1/2n2m |f〉. The second stO responds

to queries in the same way as the original standard oracle. Finally, Uenc encodes
the uniform superposition of functions into a superposition of databases. Recall
that Uenc = CH ·Utoggle · IH. Intuitively, after the action of the first unitary oper-
ator IH, the register of the function f that corresponds to the value f(x) changes
to |0n〉 if adversary has no information on f(x), and changes to some non-zero
value if adversary has some information on f(x). If the value of the register is
non-zero, database should record the value of f(x). The second operator Utoggle

checks if the register is non-zero, and set bx := 1 to indicate that “the value of
f(x) should be recorded”. Finally, the third operator CH constructs a (superpo-
sition of) database D in such a way that the value f(x) is recorded in D if and
only if bx = 1.

Next, we give some notation used to describe the property of RstOE. Let D :=
(b0||y0)|| · · · ||(b2m−1||y2m−1) be a 2m ·(n+1)-bit bit string, where bi ∈ {0, 1} and
yi ∈ {0, 1}n for 0 ≤ i ≤ 2m − 1. We call D a valid database if ¬(bi = 0∧ yi �= 0n)
holds for all i. If bi = 0∧yi �= 0n holds for some i, we call D an invalid database.
Intuitively, a valid database D will be a quantum version of “transcript” for a
random oracle: bx = 1 ∧ yx = y implies that “the adversary queried x to the
random oracle before, and the query was responded with y”.

Let D = (b0||y0)|| · · · ||(b2m−1||y2m−1) be a valid database, and ID ⊂ {0, 1}m

be the set of indices such that i ∈ ID if and only if bi = 1. Then, we can define a
set SD ⊂ {0, 1}m × {0, 1}n from D by SD := {(i, yi)}i∈ID

. Similarly, if a subset
S ⊂ {0, 1}m × {0, 1}n satisfies the condition

x �= x′ for distinct elements (x, sx), (x′, sx′) ∈ S, (4)

we can define a valid database DS from S by DS := (b0||y0)|| · · · ||(b2m−1||y2m−1),
where bx = 1 and yx = sx if (x, sx) ∈ S and bx = 0 and yx = 0n otherwise. Each
of the maps D → SD and S → DS is the inverse of the other, and we identify
valid databases and the subsets that satisfy (4). Furthermore, we identify a set
S ⊂ {0, 1}m × {0, 1}n that satisfies (4) with the partially defined function fS

such that fS(x) = y if and only if (x, y) ∈ S, and fS(x) = ⊥ if (x, y) �∈ S for any
y. Particularly, we use the same symbol D to denote SD and fSD

.

Remark 3. Pay attention not to confuse the (valid) databases with the encoding
of functions f : {0, 1}m → {0, 1}n that is used when we defined the standard
oracle stO. The encoding of functions are used only in the definition of stO, but
the notion of databases are used throughout the rest of the paper.

By definition of RstOE, the proposition below immediately follows (see arguments
in Sect. 3 of [18,19] for details).

Proposition 2. The recording standard oracle with errors RstOE is completely
indistinguishable from the quantum random oracle. That is, for any quantum
algorithm A and any possible output z, Pr

[
z ← AQRO

]
= Pr

[
z ← ARstOE

]
holds.

On Tight Quantum Security of HMAC and NMAC 603

In addition, if we measure the database register of RstOE just before A makes the
i-th query, the database after the measurement contains at most (i − 1) entries.

The following proposition shows the main properties of RstOE that are shown
in the previous work [18,19].

Proposition 3 (Proposition 1 in [18,19]). Let x ∈ {0, 1}m and D = (b0||y0)||
· · · ||(b2m−1||y2m−1) be a valid database such that D(x) = ⊥ (in particular, bx = 0
and yx = 0n hold). In addition, for z �= 0n let D ∪ (x, z)invalid be the invalid
database D∪(x, z)invalid := (b′

0||y′
0)|| · · · (b′

2m−1||y′
2m−1) such that b′

t = bt ∧yt = y′
t

if t �= x, and bx = 0 ∧ yx = z.

1. For any y, α ∈ {0, 1}n, there exists a vector |ε1〉 such that

RstOE |x, y〉 ⊗ |D ∪ (x, α)〉 = |x, y ⊕ α〉 ⊗ |D ∪ (x, α)〉 + |ε1〉 (5)

and ‖|ε1〉‖ ≤ O(
√

1/2n) hold. More precisely,

|ε1〉 =
1√
2n

|x, y ⊕ α〉
⎛

⎝|D〉 −
⎛

⎝
∑

β∈{0,1}n

1√
2n

|D ∪ (x, β)〉
⎞

⎠

⎞

⎠ (6)

− 1√
2n

∑

β∈{0,1}n

1√
2n

|x, y ⊕ β〉 (|D ∪ (x, β)〉 − |Dinvalid
β 〉) (7)

+
1
2n

|x〉 |0̂n〉
⎛

⎝2
∑

β∈{0,1}n

1√
2n

|D ∪ (x, β)〉 − |D〉
⎞

⎠ (8)

holds, where |Dinvalid
β 〉 is a superposition of invalid databases for each β defined

by |Dinvalid
β 〉 =

∑
γ
=0n

(−1)β·γ
√
2n

|D ∪ (x, γ)invalid〉 and |0̂n〉 := H⊗n |0n〉.
2. For any y, there exists a vector |ε2〉 such that

RstOE |x, y〉 ⊗ |D〉 =
∑

α∈{0,1}n

1√
2n

|x, y ⊕ α〉 ⊗ |D ∪ (x, α)〉 + |ε2〉 (9)

and ‖|ε2〉‖ ≤ O(
√

1/2n) hold. More precisely,

|ε2〉 =
1√
2n

|x〉 |0̂n〉
⎛

⎝|D〉 −
∑

β∈{0,1}n

1√
2n

|D ∪ (x, β)〉
⎞

⎠ (10)

holds, where |0̂n〉 := H⊗n |0n〉.

604 A. Hosoyamada and T. Iwata

The first and second properties (especially, (5) and (9)) in this proposition corre-
spond to the classical intuition for lazy sampling such that, when x is queried to a
random function, (i) if x has been queried before and responded with α, respond
with α again, and (ii) if x has not been queried before, sample α uniformly at
random and respond with α, respectively. This intuition works well when the
initial state |x, y〉 ⊗ |D ∪ (x, α)〉 or |x, y〉 ⊗ |D〉 are not superposed. When the
initial states are superposed, the effect of the error terms |ε1〉 and |ε2〉 become
significant, and quantum-specific property such that “an entry (x, α) ∈ D is
deleted from D at a query” or “an entry (x, α) ∈ D is overwritten with another
data (x, α′) at a query” emerge.

4 Technical Proposition

The goal of this section is to show the following proposition, which is the tech-
nically hardest part to show quantum security of HMAC and NMAC.13 Once
we prove it, the remaining proofs for HMAC and NMAC can be shown by using
simpler techniques. See also Sect. 1.2 for proof intuition.

Proposition 4. Let h : {0, 1}m+n → {0, 1}n be a quantum random oracle. Let
f : {0, 1}n+m′ → {0, 1}n be a random function, and Fh

1 : {0, 1}n+m′ ×{0, 1}m →
{0, 1}n be the function defined by Fh

1 (u, v) := h(v, f(u)). Let A be an algorithm
that runs relative to the quantum oracle of Fh

1 and the quantum random oracle h,
or the quantum oracle of a random function RF and the quantum random oracle
h. Suppose that A makes at most qh quantum queries to h and Q quantum queries
to Fh

1 or RF. Let q := max{Q, qh}, and suppose that q is in o(2n/3). Then

AdvqPRF

F h
1

(A) ≤ O
(√

q3/2n
)

(11)

holds.

Let F2 be the function defined by F2(u, v) := g(u, v, f(u)), where g : {0, 1}n+m′ ×
{0, 1}m×{0, 1}n → {0, 1}n is another random function. Then, since g is a random
function, AdvqPRF

F h
1

(A) = Advdist
(F h

1 ,h),(F2,h)(A) holds. To simplify proofs, instead

of directly showing (11), we show that Advdist
(F h

1 ,h),(F2,h)(A) ≤ O
(√

q3/2n
)

holds.

4.1 Proof of Proposition 4

Here we give a proof for the case m′ = 0. The claims for m′ > 0 can be shown
in the same way. We assume that A makes queries to Fh

1 and h (or, F2 and
h) in a sequential order and model the adversary and oracles as in Sect. 2.2. In
particular, by convention we assume that A’s (2i − 1)-th query is made to Fh

1

(or F2) and 2i-th query is made to h for 1 ≤ i ≤ q. (For instance, A first queries

13 The proposition is a formal restatement of Proposition 1 in Sect. 1.2 for the case
u ∈ {0, 1}n+m′

.

On Tight Quantum Security of HMAC and NMAC 605

Fig. 5. Implementations of F h
1 and F2. “in” and “out” denote the registers to send

queries and receive answers, respectively. The dotted lines (and |Df 〉 , |Dh〉 , |Dg〉)
appear only when f, h, g are implemented with RstOE, which correspond to the
database registers.

to Fh
1 (or F2) and second queries to h.) We call queries to Fh

1 and F2 online
queries and queries to h offline queries since, in practical settings, computations
of h are done offline on adversaries’ (quantum) computers.

We assume that the unitary operators to process queries to Fh
1 and F2 are

implemented as follows:

Quantum Oracle of Fh
1 .

1. Take |u, v〉 |y〉 as an input, where u, y ∈ {0, 1}n and v ∈ {0, 1}m.
2. Query u to f and obtain

|u, v〉 |y〉 ⊗ |f(u)〉 . (12)

3. Query (v, f(u)) to h and add the answer into the y register to obtain

|u, v〉 |y ⊕ Fh
1 (u, v)〉 ⊗ |f(u)〉 . (13)

4. Uncompute Step 2 to obtain |u, v〉 |y ⊕ Fh
1 (u, v)〉 .

We assume that the quantum oracle of F2 is implemented in the same way as
Fh
1 , except that the query (v, f(u)) to h in Step 3 is replaced with the query

(u, v, f(u)) to g. See also Fig. 5.
We show the hardness of distinguishing Fh

1 and F2 by using the recording
standard oracle with errors (RstOE): We assume that the quantum oracles of
f , g, and h are implemented by using RstOE (quantum queries are processed
with RstOE). Let RstOEf , RstOEg, and RstOEh be the recording standard oracle
with errors for f , g, and h, respectively. We use the symbols Df , Dg, and Dh

to denote databases for f , g, and h, respectively. Then the unitary operator
OF h

1
(resp., OF2) to process queries to Fh

1 (resp., F2) can be decomposed as
OF h

1
= RstOE∗

f · RstOEh · RstOEf (resp., OF2 = RstOE∗
f · RstOEg · RstOEf). See

also Fig. 5 for the intuition about which registers the different RstOEs act.

Good and Bad Databases. Here we introduce the notion of good and bad
databases for Fh

1 and F2. When we use the symbols u, ζ, v, w, we assume that
u, ζ, w ∈ {0, 1}n and v ∈ {0, 1}m. We say that a pair of valid database (Df ,Dh)
for Fh

1 is good if and only if the following properties are satisfied.

606 A. Hosoyamada and T. Iwata

1. For each (u, ζ) ∈ Df , there exist v ∈ {0, 1}m and w ∈ {0, 1}n such that
((v, ζ), w) ∈ Dh.

2. For (u, ζ) and (u′, ζ ′) in Df such that u �= u′, ζ �= ζ ′ holds (there is no collision
for f).

We say that (Df ,Dh) is bad if it is not good.
Similarly, we say that a tuple of valid databases (Df ,Dg,Dh) for F2 is good

if and only if the following properties are satisfied.

1. For each (u, ζ) ∈ Df , there exist v ∈ {0, 1}m and w ∈ {0, 1}n such that
((u, v, ζ), w) ∈ Dg.

2. For each ((u, v, ζ), w) ∈ Dg, (u, ζ) ∈ Df .
3. For (u, ζ) and (u′, ζ ′) in Df such that u �= u′, ζ �= ζ ′ holds (i.e., there is no

collision for f).
4. For each ((v, ζ), w) ∈ Dh and (u′, ζ ′) ∈ Df , ζ �= ζ ′ holds (i.e., the most

significant n bits of inputs to h and the outputs of f do not collide).

We say that (Df ,Dg,Dh) is bad if it is not good.

Intuition Behind Good databases. Intuitively, a database (Df ,Dh) for Fh
1 is

defined to be good if and only if Df does not contain collisions (the second
condition on Fh

1). The first condition on Fh
1 is included so that a weird situation

such as “u has been queried to f , but (v, f(u)) has not been queried to h for
any v” will not happen for good databases. Similarly, a database (Df ,Dg,Dh)
for F2 is defined to be good if and only if Df does not contain collisions (the
third condition condition on F2) and the least significant n bits of inputs to
h do not collide with outputs of f (the fourth condition on F2). The first and
second conditions on F2 is included so that weird situations such as “u has been
queried to f , but (u, v, f(u)) has not been queried to g for any v” or “(u, v, ζ)
has been queried to g, but u has not been queried to f” will not happen for good
databases.

One-to-one Correspondence for Good Databases. For a good database
(Df ,Dg,Dh) for F2, let Dg
Dh be the valid database for h such that ((v, ζ), w) ∈
Dg
 Dh if and only if ((v, ζ), w) ∈ Dh or ((u, v, ζ), w) ∈ Dg for some u. Then
(Df ,Dg
 Dh) becomes a good database for Fh

1 . Let us denote (Df ,Dg
 Dh) by
[(Df ,Dg,Dh)]1. Then, it can easily be shown that the map [·]1 : (Df ,Dg,Dh) →
[(Df ,Dg,Dh)]1 = (Df ,Dg
Dh) is a bijection between the set of good databases
for F2 and that for Fh

1 . Let [·]2 denote the inverse map of [·]1.
The bijections extend to (partially defined) isometries between the state

spaces. Let HA be the state space of the adversary, and HDf Dh
(resp., HDf DgDh

)
be the state space of the databases for Fh

1 (resp., Fh
2). In addition, let V

(1)
good ⊂

HDf Dh
(resp., V

(2)
good ⊂ HDf DgDh

) be the subspace spanned by good databases.

Then, the linear map from HA ⊗V
(1)
good to HA ⊗V

(2)
good that maps |η〉⊗|Df ,Dh〉 to

|η〉 ⊗ |[Df ,Dh]2〉 for |η〉 ∈ HA and a good database (Df ,Dh) becomes an isom-
etry. We denote this isometry and its inverse also by [·]2 and [·]1, respectively.

On Tight Quantum Security of HMAC and NMAC 607

Equivalent Good Databases. Next, we define the notion of equivalent
databases. First, we define the notion for equivalent good databases for Fh

1 .
Let (Df ,Dh) be a good database for Fh

1 , and let

S := {ζ ∈ {0, 1}n|∃v, w s.t. ((v, ζ), w) ∈ Dh and (u, ζ) �∈ Df for all u} .

We say that another good database (D′
f ,D′

h) is equivalent to (Df ,Dh) if and
only if they are the same except for the output values of f , i.e., there exists a
permutation π on {0, 1}n such that

1. π(ζ) = ζ for all ζ ∈ S,
2. (u, ζ) ∈ Df if and only if (u, π(ζ)) ∈ D′

f , and
3. ((v, ζ), w) ∈ Dh if and only if ((v, π(ζ)), w) ∈ D′

h holds.

We define that a good database (D′
f ,D′

g,D
′
h) for F2 is equivalent to another

good database (Df ,Dg,Dh) in the same way, except that S is defined as
S := {ζ ∈ {0, 1}n|∃v, w s.t. ((v, ζ), w) ∈ Dh} and the following condition is addi-
tionally imposed.

3+. ((u, v, ζ), w) ∈ Dg if and only if ((u, v, π(ζ)), w) ∈ D′
g hold.

As explained in Sect. 1.2, intuitively, two good databases are defined to be
equivalent if and only if any adversary cannot distinguish them. By definition
of equivalent databases, if a good database (Df ,Dg,Dh) for F2 is equivalent to
another good database (D′

f ,D′
g,D

′
h), then D′

h = Dh holds.

Notations for State Vectors. Let |φ2i−1〉 be the whole quantum state just
before A’s i-th query to Fh

1 when A runs relative to Fh
1 and h. In addition, let

|φ2i〉 be the whole quantum state just before A’s i-th query to h when A runs
relative to Fh

1 and h. Define |ψ2i−1〉 and |ψ2i〉 similarly when A runs relative to
F2 and h. For ease of notation, let |φ2q+1〉 and |ψ2q+1〉 be the quantum states
just before the final measurement when A runs relative to (Fh

1 , h) and (F2, h),
respectively.

We will show that Proposition 4 follows from the proposition below.

Proposition 5. For each j = 1, . . . , 2q + 1, there exist |φgood
j 〉, |φbad

j 〉, |ψgood
j 〉,

and |ψbad
j 〉 that satisfy the following properties:

1. |φj〉 = |φgood
j 〉 + |φbad

j 〉 and |ψj〉 = |ψgood
j 〉 + |ψbad

j 〉.
2. |φgood

j 〉 ∈ HA ⊗ V
(1)
good and |ψgood

j 〉 ∈ HA ⊗ V
(2)
good.

3. |φgood
j 〉 =

[
|ψgood

j 〉
]

1
.

4. There exists a complex number a
(j)
uvyzDf DgDh

such that

|ψgood
j 〉 =

∑

u,v,y,z,Df ,Dg,Dh;
(Df ,Dg,Dh):good

a
(j)
uvyzDf DgDh

|u, v〉 |y〉 |z〉 ⊗ |Df ,Dg,Dh〉 (14)

608 A. Hosoyamada and T. Iwata

and a
(j)
uvyzDf DgDh

= a
(j)
uvyzD′

f D′
gD′

h
if (Df ,Dg,Dh) and (D′

f ,D′
g,D

′
h) are equiv-

alent, where (u, v), y, and z correspond to A’s register to send queries, to
receive answers from oracles, and for offline computations, respectively.14

5. For a good database (Df ,Dg,Dh) with non-zero coefficient in |ψgood
2i−1〉 (resp.,

in |ψgood
2i 〉), |Dg| ≤ i − 1, |Df | ≤ 2(i − 1), and |Dh| ≤ i − 1 hold (resp.,

|Dg| ≤ i, |Df | ≤ 2i, and |Dh| ≤ i − 1 hold).

6. ‖ |φbad
j 〉 ‖ ≤ ‖ |φbad

j−1〉 ‖ + O
(√

j/2n
)

and ‖ |ψbad
j 〉 ‖ ≤ ‖ |ψbad

j−1〉 ‖ + O
(√

j/2n
)

hold (we regard that ‖ |φbad
0 〉 ‖ = ‖ |ψbad

0 〉 ‖ = 0).

Intuitive Interpretation of Proposition 5. The first and second properties show
that |φj〉 and |ψj〉 are divided into good and bad components. The third property
shows that the good component of |φj〉 matches to that of |ψj〉 through the
isometry [·]1, which intuitively means that A cannot distinguish the two oracles
as long as databases are good. The fourth property shows that the coefficients of
equivalent databases are perfectly equal, which intuitively means that A cannot
distinguish equivalent good databases. The fifth property shows the upper bound
of the size of databases. The sixth property shows that the chance for good
databases change to bad is very small at each query.

Overview of the Proof of Proposition 5. The proposition is shown by induction on
j. The claim for j = 1 obviously holds by setting |φbad

1 〉 = |ψbad
1 〉 = 0. Inductive

steps are separated into two cases.

(Online queries): If the claim for j = 2i − 1 (i.e., before the i-th query to Fh
1

or F2) holds, then the claim for j = 2i (i.e., after the query) holds.
(Offline queries): If the claim for j = 2i (i.e., before the i-th query to h) holds,
then the claim for j = 2i + 1 (i.e., after the query) holds.

Proof for Online Queries. Recall that OF h
1

(resp., OF2) are decomposed as
OF h

1
= RstOE∗

f · RstOEh · RstOEf (resp., OF2 = RstOE∗
f · RstOEg · RstOEf). We

show that Properties 1–6 listed in Proposition 5 hold at each action of RstOEf ,
RstOEh (resp., RstOEg), and RstOE∗

f . A state vector after an action of RstOE
can be decomposed into three components.15

(i) The one that was (pre-)good before the action and still remains (pre-)good.
(ii) The one that was (pre-)good before the action but changed to bad.
(iii) The one that was already bad before the action.

14 To be precise, we have to use the symbol (v, ζ) instead of (u, v) when j = 2i since we
always use the symbol v||ζ to denote an input to h. However, here we use (u, v) to sim-

plify notations. In the proof we use the symbol a
(2i)
vζyzDf DgDh

instead of a
(2i)
uvyzDf DgDh

.
15 Pre-good databases are defined in the complete proof of Proposition 5 presented in

Section C of this paper’s full version [20].

On Tight Quantum Security of HMAC and NMAC 609

Roughly speaking, we define (i) to be a new good vector, and the sum of (ii)
and (iii) to be a new bad vector.16 Then Properties 1 and 5 of Proposition 5 can
easily be shown.

Intuitively, we defined good databases so that the behavior of the oracle of
Fh
1 on good databases will be the same for that of F2 on the corresponding

good databases. Thus we can show that Property 3 still holds for the new good
vectors by keeping track of how the coefficients of basis vectors change, using
Proposition 3.

The intuition for the proof of Property 4 is as follows. Let DB0 :=
(Df ,Dg,Dh) and DB1 := (D′

f ,D′
f ,D′

h) (resp., D̃B0 := (D̃f , D̃g, D̃h) and
D̃B1 := (D̃′

f , D̃′
f , D̃′

h)) be equivalent good databases in |ψgood
2i−1〉 (resp., |ψgood

2i 〉).
In addition, by pij we ambiguously denote the “probability” that DBi changes
to D̃Bj for i, j ∈ {0, 1} (pij has the information on the ratio of the coeffi-
cient of the vector corresponding to DBi and that of D̃Bj). Then we can show
pij = pi′j′ holds for all (i, j), (i′, j′) ∈ {0, 1}×{0, 1} by using symmetry of equiv-
alent databases and Proposition 3. Since the coefficients corresponding to DB0

and DB1 are equal due to Property 4 on |ψgood
2i−1〉, this implies that Property 4

also holds for |ψgood
2i 〉.

Property 6 is proven by showing the norm of the component (iii) is in
O(

√
i/2n). Intuitively, this corresponds to showing the probability that the

event coll in Sect. 1.2 happens at the query is O(i/2n). We carefully prove it
by using Proposition 3, taking into account that records in databases may be
deleted or overwritten.

Proof for Offline Queries. The proof for offline queries are similar17, except that
showing

∥∥(iii)
∥∥ ≤ O(

√
i/2n) corresponds to showing Pr [hiti] ≤ O(i/2n) in

Sect. 1.2. See the explanations around page 596 for the intuition on Pr [hiti] ≤
O(i/2n). To formally prove the bound, we use the inductive hypothesis that
Property 4 holds for j = 2i.

See Section C of this paper’s full version [20] for a complete proof.

Proof (of Proposition 4). Let trD1 (resp., trD2) denote the partial trace opera-
tions over the quantum states of the databases for (Fh

1 , h) (resp., (F2, h)). Then

Advdist
F h

1 ,F2
(A) ≤ td (trD1(|φ2q+1〉 〈φ2q+1|), trD2(|ψ2q+1〉 〈ψ2q+1|))

≤ td
(
trD1(|φgood

2q+1〉 〈φgood
2q+1|), trD2(|ψgood

2q+1〉 〈ψgood
2q+1|)

)
(15)

+
∥∥|φbad

2q+1〉
∥∥ +

∥∥|ψbad
2q+1〉

∥∥ (16)

16 To be more precise, we sometimes include small “good” terms into the new bad
vector so that the analysis will be easier.

17 Actually the proof for offline queries are even simpler because the offline oracle is just
a single random oracle h while the online oracles consist of two random functions.

610 A. Hosoyamada and T. Iwata

holds. By Property 3 of Proposition 5, the term (15) is equal to zero. In addition,
(16) ≤ ∑

1≤j≤2q+1 O
(√

j/2n
)

+
∑

1≤j≤2q+1 O
(√

j/2n
)

≤ O
(√

q3/2n
)

follows
from Property 6 of Proposition 5. Hence Proposition 4 follows. ��

5 Quantum Security Proofs for HMAC and NMAC

The goal of this section is to show the following proposition.

Proposition 6. Let h : {0, 1}m+n → {0, 1}n be a quantum random oracle.
Assume m ≥ n. Suppose that the padding function pad for the Merkle-Damg̊ard
construction is injective and there exists a function p : Z≥0 → {0, 1}∗ such
that pad(M) = M ||p(|M |)18. Let A be a quantum adversary that runs relative
to two quantum oracles Oh and h19 such that (i) |pad(M)| ≤ m · � for arbi-
trary M that A queries to Oh when Oh is HMACh

K or NMACh
K1,K2

, and (ii) A
makes at most Q queries to Oh and qh queries to h. Then AdvqPRF

HMACh
K

(A) ≤

O

(√
(qh+Q)3�5

2n + qh+Q�
2k/2

)
and AdvqPRF

NMACh
K1,K2

(A) ≤ O

(√
(qh+Q)3�5

2n

)
hold.

Recall that HMACh
K (resp., NMACh

K1,K2
) is the composition of the functions

MDh(IV,Kin||·) and MDh(IV,Kout||·) (resp., MDh(K1, ·) and MDh(K2, ·)). Let
us call the first (resp., second) function the inner function (resp., outer function).
In addition, let MD

′h : {0, 1}n × ({0, 1}m)+ → {0, 1}n be the function that is
defined in the same way as MDh but without padding. Then, to prove Proposition
6, it suffices to prove the claim in the case that the inner function of HMACh

K

(resp., NMACh
K1,K2

) is replaced with MD
′h(IV,Kin||·) (resp., MD

′h(K1, ·)) and
the lengths of messages queried by A is always a multiple of m and at most � ·m,
since this change does not decrease adversaries’ ability to distinguish.

Thus, in what follows, we prove Proposition 6 in the case where HMACh
K and

NMACh
K1,K2

are modified as above. We show it by introducing (2� + 2) games
G0,H , G0,N , Gi (1 ≤ i ≤ �), G′

i (1 ≤ i ≤ �).

Game G0,H . This is the game that the adversary is given oracle access to the
quantum oracle of HMACh

K , in addition to h.

Game G0,N . This is the game that the adversary is given oracle access to the
quantum oracle of NMACh

K1,K2
, in addition to h.

18 These conditions are satisfied for usual concrete hash functions such as SHA-2. Recall
that ({0, 1}m)+ is the set of bit strings of length positive multiple of m bits.

19 Oh will be HMACh
K , NMACh

K1,K2 , or a random function.

On Tight Quantum Security of HMAC and NMAC 611

Game Gi for 1 ≤ i ≤ �. In the game Gi, the adversary is given quantum
oracle access to the function Hh

i (in addition to h) that is defined as follows. Let
M := M [1]|| · · · ||M [j] (M [t] ∈ {0, 1}m for each t) be an input message for Hh

i .

1. If j < i, Hh
i (M) := gj(M) for a random function gj : {0, 1}mj → {0, 1}n.

2. If j = i, Hh
i (M) := fout(fi(M)) for a random function fi : {0, 1}mi → {0, 1}n

and fout : {0, 1}n → {0, 1}n.
3. If j > i, first Si := fi(M [1]|| · · · ||M [i]) is computed, and then St := h(M [t]||

St−1) is iteratively computed for i < t ≤ j, and finally Hh
i (M) is set as

Hh
i (M) := fout(Sj).

See also Fig. 6.

Fig. 6. Hh
i (M) in game Gi. Fig. 7. H

′h
i (M) in game G′

i.

Game G′
i for 1 ≤ i ≤ �. In the game G′

i, the adversary is given quantum
oracle access to the function H

′h
i (in addition to h) that is defined as follows.

Let M := M [1]|| · · · ||M [j] (M [t] ∈ {0, 1}m for each t) be an input for H
′h
i .

1. If j ≤ i, H
′h
i (M) := gj(M) for a random function gj : {0, 1}mj → {0, 1}n.

2. If j > i, first Si := fi(M [1]|| · · · ||M [i]) is computed, and then St := h(M [t]
||St−1) is iteratively computed for i < t ≤ j, and finally H

′h
i (M) is set as

H
′h
i (M) := fout(Sj). Here, fi : {0, 1}mi → {0, 1}n and fout : {0, 1}n →

{0, 1}n are random functions.

See also Fig. 7. Since the lengths of messages queried by A is at most m · �, G′
�

becomes the ideal game that A runs relative to a random function and h.
For the distinguishing advantage between G0,N and G1 and the distinguishing

advantage between G0,H and G1, the following two lemmas hold.

Lemma 4 (G0,N and G1). It holds that Advdist
(NMACh

K1,K2
,h),(Hh

1 ,h)(A) is in

O
(√

(qh + Q�)3/2n
)
.

612 A. Hosoyamada and T. Iwata

Lemma 5 (G0,H and G1). Advdist
(HMACh

K ,h),(Hh
1 ,h)(A) is in O(

√
(qh + Q�)3/2n

+ (qh + Q�)/2k/2).

It is straightforward to show that these lemmas follow from Lemma 1, Lemma 2,
and Proposition 4. See Section D and Section E of this paper’s full version [20]
for complete proofs.

For the distinguishing advantage between Gi and G′
i for 1 ≤ i ≤ �, the

following lemma holds.

Lemma 6 (Gi and G′
i). Advdist

(Hh
i ,h),(H

′h
i ,h)

(A) is in O(
√

q3�3/2n), where q =
max{Q, qh}.
Here we provide a rough proof overview. See Section F of this paper’s full ver-
sion [20] for details.

Proof Overview. First, let us slightly modify the definition of H
′h
i . For a mes-

sage M = M [1]|| · · · ||M [i] of length m · i, the value H
′h
i (M) was defined as

H
′h(M) := gi(M) for a random function gi, but here we re-define H

′h
i (M) :=

f ′
out(M,fi(M)), where f ′

out : {0, 1}mi × {0, 1}n → {0, 1}n is another random
function. This modification does not change the distribution of H

′h
i since f ′

out is
random.

Our proof strategy for Lemma 6 is similar to that for Proposition 4, and we
use RstOE to show the indistinguishability. In fact proving Lemma 6 is easier than
proving Proposition 4 because the following difference exists between Proposition
4 and Lemma 6.

1. In the proof of Proposition 4, a function to which adversaries can directly
query in one construction (i.e., h in Fh

1) is replaced with another function to
which adversaries can query only indirectly in the other construction (i.e., g
in F2).

2. On the other hand, in Lemma 6, a function to which adversaries can query
only indirectly in one construction (i.e., fout in Hh

i of Gi) is replaced with
another function to which adversaries can query only indirectly in the other
construction (i.e., f ′

out in H
′h
i of G′

i).

In the proof of Proposition 4, we had to assure that the probability that an
adversary directly queries to h a value that is recorded in a database is very
small (i.e., the probability of the bad event hit in Sect. 1.2 is very small). This is
the reason that we introduced the notion of equivalent databases. On the other
hand, in Lemma 6, adversaries can query to both of fout and f ′

out only indirectly
(adversaries do not have full control on inputs to fout and f ′

out). In particular, we
can define bad events in Lemma 6 in such a way that whether they happen or not
do not depend on the values of A’s queries, and their probability can be bounded
by using the randomness of outputs of random functions (like coll in Sect. 1.2).
Therefore we do not have to introduce the notion of equivalent databases in
Lemma 6. Hence it easier to prove Lemma 6 than to prove Proposition 4.

For the distinguishing advantage between G′
i and Gi+1 for 1 ≤ i < �, the

following lemma holds.

On Tight Quantum Security of HMAC and NMAC 613

Lemma 7 (G′
i and Gi+1). Advdist

(H
′h
i ,h),(Hh

i+1,h)
(A) is in O

(√
(qh + Q�)3/2n

)
.

Proof. Let f
′h
i+1 : {0, 1}m(i+1) → {0, 1}n be the function defined by f

′h
i+1(M [1]||

· · · ||M [i + 1]) := h(M [i + 1]||fi(M [1]|| · · · ||M [i])).
For an adversary A to distinguish (H

′h
i , h) from (Hh

i+1, h) that makes at most
Q quantum queries to H

′h
i or Hh

i+1 and at most qh quantum queries to h, we
construct another adversary B to distinguish (f

′h
i+1, h) and (fi+1, h) by making

O(Q) queries to f
′h
i+1 or fi+1 and O(qh + Q�) queries to h, as follows.

B is given a quantum oracle access to Oh, which is f
′h
i+1 or fi+1, in addition to

a quantum oracle access to h. First, B chooses functions g̃j : {0, 1}jm → {0, 1}n

for j = 1, . . . , i and fout : {0, 1}n → {0, 1}n uniformly at random, and runs A.
When A makes a query to the second oracle (which is supposed to be h), B
responds by querying to h. When A queries M = M [1]|| · · · ||M [j] to the first
oracle (which is supposed to be H

′h
i or Hh

i+1), B responds to A as follows:

1. If j ≤ i, B computes T = g̃j(M) by itself, and responds to A with T .
2. If j > i, B computes Si+1 := Oh(M), Su := h(M [u]||Su−1) for u = i+2, . . . , j,

and T := fout(Sj), by making queries to Oh and h. Then B responds to A
with T .

Finally, B returns A’s output as its own output.
Then B perfectly simulates H

′h
i or Hh

i+1 depending on whether Oh = f
′h
i+1 or

Oh = fi+1, which implies that Advdist
(H

′h
i ,h),(Hh

i+1,h)
(A) = Advdist

(f
′h
i+1,h),(fi+1,h)

(B).

In addition, B makes at most O(Q) quantum queries to f
′h
i+1 or fi+1 and O(qh +

Q�) quantum queries to h. Therefore

Advdist
(H

′h
i ,h),(Hh

i+1,h)
(A) = Advdist

(f
′h
i+1,h),(fi+1,h)

(B) ≤ O

(√
(qh + Q�)3

2n

)

(17)

follows from Proposition 4. ��
Proof (of Proposition 6). The claim of the proposition immediately follows from
Lemma 4, Lemma 5, Lemma 6, and Lemma 7. ��

Acknowledgements. The second author was supported in part by JSPS KAKENHI
Grant Number JP20K11675.

References

1. Alagic, G., Majenz, C., Russell, A., Song, F.: Quantum-access-secure message
authentication via blind-unforgeability. In: Canteaut, A., Ishai, Y. (eds.) EURO-
CRYPT 2020. LNCS, Part III, vol. 12107, pp. 788–817. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-45727-3 27

2. Alagic, G., Russell, A.: Quantum-secure symmetric-key cryptography based on
hidden shifts. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS,
Part III, vol. 10212, pp. 65–93. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-56617-7 3

https://doi.org/10.1007/978-3-030-45727-3_27
https://doi.org/10.1007/978-3-319-56617-7_3
https://doi.org/10.1007/978-3-319-56617-7_3

614 A. Hosoyamada and T. Iwata

3. ANSI: Retail Financial Services Symmetric Key Management Part 1: Using Sym-
metric Techniques. ANSI X9.24-1-2017 (2017)

4. Bellare, M., Canetti, R., Krawczyk, H.: Keying hash functions for message authen-
tication. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 1–15. Springer,
Heidelberg (1996). https://doi.org/10.1007/3-540-68697-5 1

5. Bellare, M., Kilian, J., Rogaway, P.: The security of cipher block chaining message
authentication code. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp.
341–358. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48658-5 32

6. Bindel, N., Hamburg, M., Hövelmanns, K., Hülsing, A., Persichetti, E.: Tighter
proofs of CCA security in the quantum random oracle model. In: Hofheinz, D.,
Rosen, A. (eds.) TCC 2019. LNCS, Part II, vol. 11892, pp. 61–90. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-36033-7 3

7. Black, J., Rogaway, P.: CBC MACs for arbitrary-length messages: the three-key
constructions. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 197–215.
Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44598-6 12

8. Black, J., Rogaway, P.: A block-cipher mode of operation for parallelizable message
authentication. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp.
384–397. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-46035-7 25

9. Boneh, D., Dagdelen, Ö., Fischlin, M., Lehmann, A., Schaffner, C., Zhandry, M.:
Random oracles in a quantum world. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT
2011. LNCS, vol. 7073, pp. 41–69. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-25385-0 3

10. Boneh, D., Zhandry, M.: Quantum-secure message authentication codes. In:
Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp.
592–608. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-
9 35

11. Brassard, G., HØyer, P., Tapp, A.: Quantum cryptanalysis of hash and claw-free
functions. In: Lucchesi, C.L., Moura, A.V. (eds.) LATIN 1998. LNCS, vol. 1380,
pp. 163–169. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0054319

12. Chiesa, A., Manohar, P., Spooner, N.: Succinct arguments in the quantum ran-
dom oracle model. In: Hofheinz, D., Rosen, A. (eds.) TCC 2019. LNCS, Part II,
vol. 11892, pp. 1–29. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
36033-7 1

13. Coron, J.-S., Dodis, Y., Malinaud, C., Puniya, P.: Merkle-Damg̊ard revisited: how
to construct a hash function. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621,
pp. 430–448. Springer, Heidelberg (2005). https://doi.org/10.1007/11535218 26

14. Czajkowski, J., Hülsing, A., Schaffner, C.: Quantum indistinguishability of random
sponges. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, Part II,
vol. 11693, pp. 296–325. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-26951-7 11

15. Garg, S., Yuen, H., Zhandry, M.: New security notions and feasibility results for
authentication of quantum data. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017.
LNCS, Part II, vol. 10402, pp. 342–371. Springer, Cham (2017). https://doi.org/
10.1007/978-3-319-63715-0 12

16. Gaži, P., Pietrzak, K., Rybár, M.: The exact PRF security of NMAC and HMAC.
In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, Part I, vol. 8616, pp.
113–130. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44371-
2 7

17. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: ACM
STOC 1996, Proceedings, pp. 212–219 (1996)

https://doi.org/10.1007/3-540-68697-5_1
https://doi.org/10.1007/3-540-48658-5_32
https://doi.org/10.1007/978-3-030-36033-7_3
https://doi.org/10.1007/3-540-44598-6_12
https://doi.org/10.1007/3-540-46035-7_25
https://doi.org/10.1007/978-3-642-25385-0_3
https://doi.org/10.1007/978-3-642-25385-0_3
https://doi.org/10.1007/978-3-642-38348-9_35
https://doi.org/10.1007/978-3-642-38348-9_35
https://doi.org/10.1007/BFb0054319
https://doi.org/10.1007/978-3-030-36033-7_1
https://doi.org/10.1007/978-3-030-36033-7_1
https://doi.org/10.1007/11535218_26
https://doi.org/10.1007/978-3-030-26951-7_11
https://doi.org/10.1007/978-3-030-26951-7_11
https://doi.org/10.1007/978-3-319-63715-0_12
https://doi.org/10.1007/978-3-319-63715-0_12
https://doi.org/10.1007/978-3-662-44371-2_7
https://doi.org/10.1007/978-3-662-44371-2_7

On Tight Quantum Security of HMAC and NMAC 615

18. Hosoyamada, A., Iwata, T.: 4-round Luby-Rackoff construction is a qPRP. In:
Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT 2019. LNCS, Part I, vol. 11921, pp.
145–174. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34578-5 6

19. Hosoyamada, A., Iwata, T.: 4-round Luby-Rackoff construction is a qPRP:
tight quantum security bound. IACR Cryptol. ePrint Arch. 2019/243, version
20200720:101411 (2020). (A revised version of [18].)

20. Hosoyamada, A., Iwata, T.: On tight quantum security of HMAC and NMAC in
the quantum random oracle model (2021). to appear on IACR Cryptology ePrint
Archive

21. Hosoyamada, A., Yasuda, K.: Building quantum-one-way functions from block
ciphers: Davies-Meyer and Merkle-Damg̊ard constructions. In: Peyrin, T., Gal-
braith, S. (eds.) ASIACRYPT 2018. LNCS, vol. 11272, pp. 275–304. Springer,
Cham (2018). https://doi.org/10.1007/978-3-030-03326-2 10

22. Iwata, T., Kurosawa, K.: OMAC: one-key CBC MAC. In: FSE 2003, Proceedings,
pp. 129–153 (2003)

23. Kaplan, M., Leurent, G., Leverrier, A., Naya-Plasencia, M.: Breaking symmetric
cryptosystems using quantum period finding. In: Robshaw, M., Katz, J. (eds.)
CRYPTO 2016. LNCS, Part II, vol. 9815, pp. 207–237. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53008-5 8

24. Liu, Q., Zhandry, M.: On finding quantum multi-collisions. In: Ishai, Y., Rijmen,
V. (eds.) EUROCRYPT 2019. LNCS, Part III, vol. 11478, pp. 189–218. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-17659-4 7

25. Liu, Q., Zhandry, M.: Revisiting post-quantum Fiat-Shamir. In: Boldyreva, A.,
Micciancio, D. (eds.) CRYPTO 2019. LNCS, Part II, vol. 11693, pp. 326–355.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26951-7 12

26. NIST: Secure Hash Standard (SHS). NIST FIPS PUB 180–4 (2015)
27. NIST: SHA-3 Standard: Permutation-Based Hash and Extendable-Output Func-

tions. NIST FIPS PUB 202 (2015)
28. NIST: Announcing request for nominations for public-key post-quantum crypto-

graphic algorithms. National Institute of Standards and Technology (2016)
29. Patarin, J.: The “coefficients H” technique. In: Avanzi, R.M., Keliher, L., Sica,

F. (eds.) SAC 2008. LNCS, vol. 5381, pp. 328–345. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-04159-4 21

30. Saito, T., Xagawa, K., Yamakawa, T.: Tightly-secure key-encapsulation mechanism
in the quantum random oracle model. In: Nielsen, J.B., Rijmen, V. (eds.) EURO-
CRYPT 2018. LNCS, Part III, vol. 10822, pp. 520–551. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-78372-7 17

31. Sanchez, I.A., Fischer, D.: Authenticated encryption in civilian space missions:
context and requirements. DIAC - Directions in Authenticated Ciphers (2012)

32. Song, F., Yun, A.: Quantum security of NMAC and related constructions. In: Katz,
J., Shacham, H. (eds.) CRYPTO 2017. LNCS, Part II, vol. 10402, pp. 283–309.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63715-0 10

33. Zhandry, M.: How to construct quantum random functions. In: FOCS 2012, Pro-
ceedings, pp. 679–687. IEEE (2012)

34. Zhandry, M.: How to record quantum queries, and applications to quantum indif-
ferentiability. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, Part
II, vol. 11693, pp. 239–268. Springer, Cham (2019). https://doi.org/10.1007/978-
3-030-26951-7 9

https://doi.org/10.1007/978-3-030-34578-5_6
https://doi.org/10.1007/978-3-030-03326-2_10
https://doi.org/10.1007/978-3-662-53008-5_8
https://doi.org/10.1007/978-3-030-17659-4_7
https://doi.org/10.1007/978-3-030-26951-7_12
https://doi.org/10.1007/978-3-642-04159-4_21
https://doi.org/10.1007/978-3-319-78372-7_17
https://doi.org/10.1007/978-3-319-63715-0_10
https://doi.org/10.1007/978-3-030-26951-7_9
https://doi.org/10.1007/978-3-030-26951-7_9

Quantum Collision Attacks on Reduced
SHA-256 and SHA-512

Akinori Hosoyamada1,2(B) and Yu Sasaki1

1 NTT Secure Platform Laboratories, Tokyo, Japan
{akinori.hosoyamada.bh,yu.sasaki.sk}@hco.ntt.co.jp

2 Nagoya University, Nagoya, Japan
hosoyamada.akinori@nagoya-u.jp

Abstract. In this paper, we study dedicated quantum collision attacks
on SHA-256 and SHA-512 for the first time. The attacks reach 38 and 39
steps, respectively, which significantly improve the classical attacks for 31
and 27 steps. Both attacks adopt the framework of the previous work that
converts many semi-free-start collisions into a 2-block collision, and are
faster than the generic attack in the cost metric of time-space tradeoff.
We observe that the number of required semi-free-start collisions can be
reduced in the quantum setting, which allows us to convert the previous
classical 38 and 39 step semi-free-start collisions into a collision. The
idea behind our attacks is simple and will also be applicable to other
cryptographic hash functions.

Keywords: Symmetric key cryptography · Hash function · SHA-256 ·
SHA-512 · Collision attack · Quantum attack · Conversion from
semi-free-start collisions

1 Introduction

Cryptographic hash functions take an arbitrary length message as input and
generate a fixed-length bit string. One of the most important security criteria is
collision resistance. For a hash function H : {0, 1}∗ → {0, 1}n, the complexity to
find two distinct values x1 and x2 such that H(x1) = H(x2) should be O(2n/2).
The collision resistance is a practically relevant notion. For example, Stevens
et al. [37], in their attack against SHA-1, forged two PDF documents with the
same hash digest that display different arbitrarily-chosen visual contents.

The SHA-2 family is one of the most important hash functions at the present
time, which is specified and standardized by NIST [32]. There are two core
algorithms; SHA-256 and SHA-512, depending on the word size. Moreover four
schemes are additionally specified depending on the output size. SHA-2 are used
in wide range of communication protocols such as TLS/SSL, SSH, and IPsec.
SHA-2 are also used by the digital currency such as Bitcoin. After the recent
break of SHA-1 [22], industry accelerated the migration to SHA-2.

c© International Association for Cryptologic Research 2021
T. Malkin and C. Peikert (Eds.): CRYPTO 2021, LNCS 12825, pp. 616–646, 2021.
https://doi.org/10.1007/978-3-030-84242-0_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-84242-0_22&domain=pdf
https://doi.org/10.1007/978-3-030-84242-0_22

Quantum Collision Attacks on Reduced SHA-256 and SHA-512 617

History of SHA-2 Cryptanalysis. SHA-2 received a massive amount of secu-
rity analysis. Preimage attacks were studied in [1,13,18,20] and a conversion to
pseudo-collisions was studied in [23]. Those would work relatively a large num-
ber of rounds, say 52 out of 64 steps of SHA-256 [20], while those only achieve
a marginal amount of speed up. Those are interesting theoretical results but
not strongly related to this research. As a non-random property, second-order
differential collisions defined over four distinct inputs were studied [3].

More relevant works to this research are the attempts to apply previous
collision finding techniques to SHA-2 or to find collisions on reduced-step SHA-
2. The challenge to find a collision on reduced-step SHA-2 was initiated by [31],
which found a collision on 19 out of 64 steps of SHA-224. This is a pioneering
work to construct differential characteristic only having a single local collision.
Then, this type of local collisions were manually optimized to find collisions of
21 steps of SHA-256 [33], and later improved to 22 steps [35], and to 24 steps and
extended to SHA-512 [17,36]. However, it was indicated that the local collision
by [33] could work only up to 24 rounds [17] and indeed this was the last work
for improving the manually detected local collision.

The most recent technical innovation is the development of automated differ-
ential characteristic search tools, which was initiated by Mendel et al. [27] to find
a collision on 27 steps of SHA-256. Because of the search space, the efficiency of
the algorithm is crucial for the automated search tool. Mendel et al. improved the
algorithm and presented a 31-step collision attack and a 38-step semi-free-start
collision attack against SHA-256 [29].1 This is the current best (semi-free-start)
collision attacks for SHA-256. The algorithm was further improved to apply
it to SHA-512 [10], SHA-512/224 and SHA-512-256 [7]. For SHA-512, 27-step
collisions and 39-step semi-free-start collisions [7] are the current best results.

Techniques for Finding SHA-2 Collisions. For the attack on SHA-256,
Mendel et al. [29] presented a framework to convert semi-free-start collision
attacks having some special property into a 2-block collision. The framework is
illustrated in Fig. 1. The attacker first analyzes the second block without fixing
IV for the second block, IVsecond. A semi-free-start collision attack that can
work for 2X choices, typically for any unfixed X bits, of IVsecond is located in
the second block. Then, the attacker tests 2n−X messages for the first block to
hit one of 2X choices of IVsecond, typically to hit the fixed n−X bits of IVsecond.
Finally, the attacker determines the rest part of the second block to generate a
2-block collision.

The cost for the first block is 2256−X for SHA-256. To be faster than the
birthday paradox, X must satisfy X > 128. To achieve such a semi-free-start
collision attack, the previous work [29] generated a differential characteristic
such that the characteristic can be satisfied for any value of the first five message
words. Hence, it achieves X = 160. (As explained later, those five message words
can be adjusted to achieve a fixed 160-bit internal state value for any 160 bits
of IVsecond.)

1 For readers who are not familiar with various types of collisions, we explain the dif-
ference among collisions, semi-free-stard collisions, and free-start collisions in Section
A of this paper’s full version [15].

618 A. Hosoyamada and Y. Sasaki

Fig. 1. Converting Semi-free-start Collisions into 2-block Collisions.

Dedicated Quantum Collision Attacks. Recently, it has been shown that
collision attacks on hash functions with quantum machines can break more
rounds than the attacks with classical machines [14]. Whether a hash function
is attacked or not is judged by comparing the complexity of the generic attack
(birthday paradox) and a dedicated attack. To find a collision, dedicated attacks
mostly apply differential cryptanalysis. With quantum machines, the speed of
finding a value satisfying a differential characteristic becomes a square root com-
pared to classical machines, while the speed of the generic collision attack cannot
be a square root of the birthday paradox, O(2n/4). Indeed, the tight bound of
the query complexity to find a collision was proven to be O(2n/3) [38]. As a
result, dedicated attacks can be stronger when quantum machines are available.
In fact, such cases were observed for AES hashing modes [9,14] and Gimli [11].

In the quantum setting, the generic attack complexity of finding collisions
depends on settings about the resource that an attacker can use. The previ-
ous work discussed three settings. In the first setting, a small (polynomial size)
quantum computer and a large (exponential size) qRAM. In the second setting, a
small (polynomial size) quantum computer and a large (exponential size) classi-
cal memory, In the third setting, efficiency of quantum algorithms are evaluated
by their time-space tradeoff.

In this paper, we focus on the third setting, of which details are as follows.
Note that we do not take error corrections into account and consider that the
running time of a quantum circuit is proportional to the depth of the circuit.

Cost metric of time-space tradeoff. The efficiency of an attack is evaluated by
the tradeoff between T and S, where T is the attack time complexity (or,
the depth of the quantum circuit) and S is the hardware size required for
the attack (i.e., S is the maximum size of quantum computers (or, width of
quantum circuits) and classical computers). S can be exponentially large, and
we do not make distinction between qubits for computation and qubits for
memory. Bernstein [2] observed that, when a classical computer of size S is
available, by using the parallel rho method [34] we can find a collision of a

Quantum Collision Attacks on Reduced SHA-256 and SHA-512 619

random function in time T = O(2n/2/S). There does not exist a quantum
attack on a random function that achieves a better tradeoff than this classi-
cal attack.2 Hence, a dedicated quantum collision attack on a concrete hash
function that uses a quantum computer of size S is considered to be valid if
its time complexity T is less than 2n/2/S.

The condition T < 2n/2/S is equivalent to T · S < 2n/2. Hence the effi-
ciency of a quantum attack in the time-space tradeoff metric is evaluated by the
multiplication of T and S, and the threshold for the attack to be valid is 2n/2.

Jaques and Schanck [19] showed that when error correction is necessary and
quantum memory is actively corrected, it is realistic to model that the cost of a
quantum attack is proportional to the multiplication of the depth and the width
of the quantum circuit used in the attack. Therefore, although we do not care
about error corrections in our complexity analysis, the cost metric of time-space
tradeoff is in fact reasonable from the view point of cost estimation including
quantum error correction (when quantum memory is actively corrected).

Research Challenge. The collision resistance of SHA-2 family in the quantum
setting has not been studied before.3 In fact, this is not a simple task. As men-
tioned before, the current differential characteristics for SHA-2 collision attacks
consist of a single local collision. The previous work showed [14] that the cost to
satisfy an uncontrolled part of the differential characteristic can be square root,
while the differential characteristic for SHA-2 does not have such a form. Thus
this issue deserves careful investigation.

Our Contributions. In this paper, we present quantum collision attacks on
SHA-256 and on SHA-512 that break more rounds than the attacks in the clas-
sical setting. Our attacks are valid in the time-space tradeoff cost metric. The
number of attacked steps is compared in Table 1.

To generate collisions, we follow the same approach as the previous work.
Namely, we locate a semi-free-start collision in the second block and find a
first-block message to hit one of IVs that is acceptable for the second block. In
the previous work, it is principally inevitable that the semi-free-start collision
attack must work for at least 2X choices of IVs, where X > 128 for SHA-256.
This is a strong requirement, which significantly restricts the search space to
find a suitable differential characteristic. We observe that if quantum machines
are available, we can construct an attack with an intuitive condition of X > 0 by
ignoring the constant factor. In practice, the constant factor cannot be ignored
and we will show a rigorous complexity analysis.

2 There is no proof that the bound O(2n/2/S) is the best, but achieving a better
bound is hard.

3 From the view point of provable security, there is a previous work that suggests that
the SHA-2 mode is reasonable in the quantum setting [16].

620 A. Hosoyamada and Y. Sasaki

Table 1. Comparison of the attack results. The quantum attacks on SHA-256 and SHA-
512 are faster than the generic attack as long as S < 212 and S < 26.6, respectively.

Target Setting Type Steps Complexity Reference

SHA-256 Classic Collision 28/64 Practical [29]
Classic Collision 31/64 265.5 [29]
Classic Semi-free-start collision 38/64 Practical [29]

Quantum Collision 38/64 2122/
√

S Sect. 5
SHA-512 Classic Collision 24/80 Practical [17,36]

Classic Collision 27/80 Practical [7]
Classic Semi-free-start collision 38/80 Practical [10]
Classic Semi-free-start collision 39/80 Practical [7]

Quantum Collision 39/80 2252.7/
√

S Sect. 6

For SHA-256, the previous work [29] found a differential characteristic with
X > 128 up to 31 steps, while unconditioned semi-free-start collisions could be
generated for 38 steps. Hence we start from the 38-step semi-free-start collision
example generated by [29] and slightly modify its message words so that semi-
free-start collisions can be generated for multiple IVs. We achieve X ≈ 20 for
38-step SHA-256. If we have a quantum computer of size S, the attack complexity
is about c · √

2256−20/S = 2122/
√

S, where c is a small constant and rigorous
analysis shows c ≈ 24. Because the generic attack cost under the time-space
metric is 2128/S, our attack is faster than the generic attack when S < 212.

For SHA-512, it seems difficult to build a differential characteristic with a lot
of degrees of freedom such as X > 256. In fact, the previous work [7] could not
apply the 2-block conversion, and the current strategy is limited to be a single-
block attack. In this paper, we observe that the 39-step semi-free-start collision
attack [7] can accept multiple choices of IV with some X that is much smaller
than 256, and will convert it into 2-block collision in the quantum setting.

As we mentioned before, the previous work [14] discussed three settings
depending on available computational resources. In fact our attacks are valid
only in the setting of time-space tradeoff because the time complexity exceed
the generic complexity in other settings. Nevertheless, we would like to remark
that dedicated attacks that are valid in this setting (including our attacks) are
always better than the generic attacks in other settings from the viewpoint of
time-space tradeoff. This is because the generic attacks in other settings have
time-space tradeoff T 2 · S = 2n, which is worse than the trade-off T · S = 2n of
the generic attack in our setting.4

4 The generic attacks in other two settings are the BHT algorithm [5] and the CNS
algorithm [6]. The BHT algorithm runs in time T = O(2n/3) and uses S = O(2n/3)
qRAM. The CNS algorithm runs in time T = O(22n/5) and uses no qRAM, but
requires S = O(2n/5) classical memory.

Quantum Collision Attacks on Reduced SHA-256 and SHA-512 621

Some readers may think that our attacks are invalid because the margin of
our attacks (compared to the generic attack) are too small while we do not take
the overhead for quantum computation, or their complexity does not signifi-
cantly outperform the classical complexity. However, security of symmetric-key
primitives is generally measured under the most vulnerable environment (they
must resist any attacks in any nitpicked setting like S = 1). The principle of
security under the most vulnerable environment makes it natural to ignore the
overhead because the overhead for quantum computation may drastically be
reduced by future technical developments. In addition, when reduced-step vari-
ants of symmetric-key primitives are analyzed, the most important factors is
the number of attacked steps rather than the attack cost. Our quantum attacks
break significantly more steps than the classical attacks.

Remark 1. For reference, we also provide discussions on comparison between our
attacks and a generic collision attack based on the multi-target preimage search.
See Section B of this paper’s full version [15] for details.

Future Directions. Due to its simplicity, we believe that the idea of our 2-block
quantum collision attacks is applicable to other cryptographic hash functions. It
will also be interesting to study optimizations of differential characteristics for
the classical semi-free-start collision attack with respect to the conversion to the
quantum collision attack. Some observations and initial work will be provided
in the last part of the paper.

Paper Organization. Section 2 is preliminaries. Section 3 explains the previous
collision and semi-free-start collision attacks. Section 4 explains our observation
that is used in our quantum attacks. Sections 5 and 6 show the attack algorithms
and their evaluations. Section 7 provides discussion toward future applications
of our attack idea. Finally, we conclude this paper in Sect. 8.

2 Preliminaries

For n-bit strings x and y, ¬x, x∧y, x∨y and x⊕y denote the bit-wise negation
of x, the bit-wise AND on x and y, the bit-wise OR on x and y, and the bit-
wise XOR on x and y, respectively. For an n-bit string x and a non-negative
integer m such that m ≤ n, x 	 m (resp., x ≫ m) denotes the m-bit right
shift operation on x (resp., the m-bit circular right shift operation on x). We
identify the set of n-bit strings {0, 1}n with the sets {0, . . . , 2n − 1} and Z/2n

Z.
x+y denotes the modular addition of x and y for x, y ∈ Z/2n

Z, unless otherwise
noted. Sometimes we use the symbol � instead of +. We assume that readers
are familiar with basics on quantum computation5.

5 Knowledge on quantum computations is required to fully understand our complex-
ity analysis, though, essentially the quantum algorithms we use are only the (paral-
lelized) Grover search, and we use them in an almost black-box manner.

622 A. Hosoyamada and Y. Sasaki

2.1 Specification of SHA-256 and SHA-512

SHA-256 and SHA-512 adopt the Merkle-Damg̊ard construction, and their com-
pression functions adopt the Davies-Meyer construction. Let w be the word size,
which is 32 for SHA-256 and 64 for SHA-512. The length of message blocks is
16w bits (512 bits for SHA-256 and 1024 bits for SHA-512), and the length of
chaining values and final outputs is 8w bits (256 bits for SHA-256 and 512 bits
for SHA-512).

Given a chaining value (or the initial value IV) H = (H0, . . . ,H7) ∈
({0, 1}w)8 and a message block M = (M0, . . . ,M15) ∈ ({0, 1}w)16, the output
value of the compression function f(H,M) is computed by iteratively updating
internal states as follows. The number of steps, which is denoted by r, is 64 for
SHA-256 and 80 for SHA-512.

1. (Message expansion.) Compute Wi (i = 0, . . . , r − 1) by

Wi :=

{
Mi for i = 0, . . . , 15,

σ1(Wi−2) + Wi−7 + σ0(Wi−15) + Wi−16 for i = 16, . . . , r − 1.

The functions σ0, σ1 : {0, 1}w → {0, 1}w are defined later.
2. (Iterative state updates.) Set st−1 := H. For i = 0, . . . , r − 1, update the

8w-bit state sti−1 = (Ai−1, Ai−2, Ai−3, Ai−4, Ei−1, Ei−2, Ei−3, Ei−4) to sti =
(Ai, Ai−1, Ai−2, Ai−3, Ei, Ei−1, Ei−2, Ei−3), where

Ei := Ei−4 + Ai−4 + Σ1(Ei−1) + IF(Ei−1, Ei−2, Ei−3) + Ki + Wi,

Ai := Σ0(Ai−1) + MAJ(Ai−1, Ai−2, Ai−3) + Ei − Ai−4.

The functions IF,MAJ : ({0, 1}w)3 → {0, 1}w and Σ0, Σ1 : {0, 1}w → {0, 1}w

are defined later. Ki is a step-dependent constant. Since the value of Ki does
not affect our attacks, we omit the value of Ki. See also Fig. 2.

3. Compute the next chaining value f(H,M) as f(H,M) := str−1 + H. (Only
here, the symbol “+” denotes the word-wise modular addition.)

The functions IF,MAJ : ({0, 1}w)3 → {0, 1}w are defined as

IF(x, y, z) = (x ∧ y) ⊕ ((¬x) ∧ z), MAJ(x, y, z) = (x ∧ y) ⊕ (y ∧ z) ⊕ (z ∧ x)

for both of SHA-256 and SHA-512. In addition, Σ0, Σ1, σ0, σ1 are defined by

Σ0(x) = (x ≫ 2) ⊕ (x ≫ 13) ⊕ (x ≫ 22),
σ0(x) = (x ≫ 7) ⊕ (x ≫ 18) ⊕ (x 	 3),
Σ1(x) = (x ≫ 6) ⊕ (x ≫ 11) ⊕ (x ≫ 25),
σ1(x) = (x ≫ 17) ⊕ (x ≫ 19) ⊕ (x 	 10)

Quantum Collision Attacks on Reduced SHA-256 and SHA-512 623

Fig. 2. This is an alternative representation of the state update function devised by
the previous work [27]. The operation “×(−1)” denotes the multiplication by (−1) in
Z/2w

Z.

for SHA-256, and

Σ0(x) = (x ≫ 28) ⊕ (x ≫ 34) ⊕ (x ≫ 39),
σ0(x) = (x ≫ 1) ⊕ (x ≫ 8) ⊕ (x 	 7),
Σ1(x) = (x ≫ 14) ⊕ (x ≫ 18) ⊕ (x ≫ 41),
σ1(x) = (x ≫ 19) ⊕ (x ≫ 61) ⊕ (x 	 6)

for SHA-512.
Let Wi,j denote bit j of Wi, where Wi,0 is the least significant bit and Wi,w−1

is the most significant bit. We also use the same notation to denote bit positions
for other variables such as Ai and Ei.

2.2 Quantum Computation

We use the quantum circuit model as the model of quantum computation. Let
H denote the Hadamard operator defined by H |b〉 =

∑
c∈{0,1}(−1)b·c |c〉 for

b ∈ {0, 1}. The quantum oracle of a function f : {0, 1}m → {0, 1}n is the
unitary operator Of defined by Of |x〉 |y〉 = |x〉 |y ⊕ f(x)〉 for x ∈ {0, 1}m and
y ∈ {0, 1}n.

Grover’s Algorithm. Grover’s algorithm [12] is the quantum algorithm to
solve the following database search problem.

Problem 1. Let F : {0, 1}n → {0, 1} be a function such that |F−1(1)| > 0. Given
a (quantum) oracle access to F , find x such that F (x) = 1.

624 A. Hosoyamada and Y. Sasaki

Let t := |F−1(1)|. We always consider the case that t/2n � 1. Though
O(2n/t) queries are required for classical algorithms to solve the problem,
Grover’s algorithm solves the problem only with O(

√
2n/t) quantum queries.

More precisely, suppose that there exists a quantum circuit that computes
F in time TF by using SF qubits (i.e., the depth and width of the circuit are
TF and SF , respectively). Then, Grover’s algorithm finds a solution in time
TF · (π/4) · √2n/t, by using SF + 1 qubits.

Details of Grover’s Algorithm. For a positive integer i, let Grov(F, i) be the
quantum algorithm that runs the following procedure:

1. Prepare the initial state |ψinit〉 := H⊗(n+1) |0n〉 |1〉.
2. Let θ be the value that satisfies sin2 θ = t/2n and 0 ≤ θ ≤ π/2. Apply the

unitary operator QF := −(H⊗n ⊗ I)(O0 ⊗ I)(H⊗n ⊗ I)OF iteratively i times
on |ψinit〉. Here, OF is the quantum oracle of F , and O0 is the operator such
that O0 |x〉 = (−1)δx,0n |x〉 (δx,y is Kronecker’s delta such that δx,y = 1 if
x = y and δx,y = 0 if x �= y).

3. Measure the resulting state Qi
F |ψinit〉, and output the most significant n bits.

Boyer et al. showed that, when we set the number of iterations i to be �π/4θ�,
the algorithm Grov(F, �π/4θ�) outputs x such that F (x) = 1 with a probability
at least 1 − t/N [4]. Since π/4θ ≤ π/(4 sin θ) = (π/4)

√
2n/t holds, the running

time of Grov(F, �π/4θ�) is at most TF · (π/4)
√

2n/t.

Remark 2. In the above arguments, we implicitly assume that t is known in
advance. If t is not known in advance, we have to perform a more sophisti-
cated procedure, which increases the total number of queries to F by a constant
factor [4].

Parallelization. When P ≥ 2 quantum computers are available, by running P
copies of Grov(F, �π/4θ

√
P �) in parallel, we can find a solution in time TF ·

π
4

√
2n/(t · P) with a probability at least 1 − 1/e (we always consider the case

that (t · P)/2n � 1). For completeness, we provide detailed explanations on the
success probability in Section C of this paper’s full version [15]

Cost Evaluation. As mentioned in Sect. 1, we evaluate the complexity of the
attacks in the setting of time-space tradeoff. We do not take costs of quantum
error corrections into account, and we consider that the running time of a quan-
tum circuit is proportional to the depth of the circuit.

In each attack, we assume that there exists an implementation of the attack
target primitive (i.e., SHA-256 or SHA-512) on a quantum circuit C, and we
regard that the unit of depth (resp., width) of quantum circuits is the depth
(resp., width) of C, so that our cost estimation will be independent from imple-
mentation methods of primitives.

In addition, we do not take communication costs into account. That is, we
assume that arbitrary two-qubit quantum gate can be applied to arbitrary pair
of qubits. The communication costs will not be significant in our attacks because

Quantum Collision Attacks on Reduced SHA-256 and SHA-512 625

we use quantum circuits just for running the Grover search (or, its simple par-
allelization) that requires only several times as much qubits as implementations
of SHA-2 use.

3 Previous Works

This section provides an overview on the collision attack on 31-step SHA-256
in [29], the semi-free-start collision attack on 38-step SHA-256 in [29], and the
semi-free-start collision attack on 39-step SHA-512 in [7,8].

3.1 Collision Attack on 31-Step SHA-256

The collision attack on 31-step SHA-256 in [29] finds a 2-block collision with time
complexity 265.5. Intuitively, a 2-block collision (M̃ ||M,M̃ ||M ′) (here, M̃,M,M ′

are in {0, 1}512, and M �= M ′) is constructed by searching for a random message
M̃ for the first block and a semi-free-start collision (M,M ′) for the second block
such that the output of the first block is the IV of the second block.

Semi-free-start collisions in the second block are constructed based on a local
collision that starts at step 5 and ends at step 18, which is found by using heuris-
tic automated search tools. The tool finds both of differential characteristics and
conditions for message pairs (M,M ′) at the same time. See Table 2 for the dif-
ferential characteristic and conditions for (M,M ′) shown in [29]. The meanings
of the notations in Table 2 are as follows:

1. “-” indicates that the bit associated with M at the position must be equal
to the corresponding bit associated with M ′.

2. “0” indicates that the bit at the position must be 0 for both of M and M ′.
3. “1” indicates that the bit at the position must be 1 for both of M and M ′.
4. “u” indicates that the bit at the position must be 1 for M and 0 for M ′.
5. “n” indicates that the bit at the position must be 0 for M and 1 for M ′.

See also Remark 3. For each i, by Ai, Ei,Wi we denote the words of internal
states and expanded messages as described in Sect. 2.1.

The authors of [29] also show an example of a semi-free-start collision of
31-step SHA-256 that satisfies the differential characteristic. See Table 6 of this
paper’s full version [15] for details.

Attack Procedure. Next, we describe the attack procedure. The important
features of the differential characteristic in Table 2 are summarized as follows:

1. Only seven message words (W5, . . . ,W9,W16,W18) have differences. Since
W0, . . . ,W4,W10, . . . ,W15 do not have differences, W17,W19,W26, . . . ,W30 do
not have differences, either. The differences at W20, . . . ,W25 need to be can-
celed out (see Table 3).

626 A. Hosoyamada and Y. Sasaki

Table 2. The 31-step differential characteristic for SHA-256 shown in [29].

2. No condition is imposed on the first five message words W0, . . . ,W4, thus
those can be chosen freely.

By using these properties, the authors of [29] first show an attack with complexity
299.5, and then show how to reduce the complexity to 265.5.

The First Attack with Complexity 299.5. Let f denote the (31-step) compression
function. The procedure of the collision attack with complexity 299.5 is as follows.

I. Use the automatic search tool to determine the message words W5, . . . ,W12

and the internal states from the beginning of step 5 to the end of step 12
(in the second block). Though W0, . . . ,W4 have not been chosen yet at this
step, the values of the variables E1, . . . , E4 and A−3, . . . , A4 are completely

Table 3. The position of the message words where non-zero differences appear. “©”
indicates that the word has non-zero difference. “×” indicates that the word is com-
puted from previous words with non-zero differences but the difference is canceled out.
(Wi is computed from Wi−2, Wi−7, Wi−15, and Wi−16 for i ≥ 16.)

Wi 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Difference © © © © ©

Wi 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Difference © © × × × × × ×

Quantum Collision Attacks on Reduced SHA-256 and SHA-512 627

determined by the internal state at the beginning of step 5 (see also Fig. 4
of this paper’s full version [15] for details). Note that A−1||A−2||A−3 cor-
respond to the 96 most significant bits of the initial value of the second
block.

II. Find a message M̃ for the first block such that the 96 most significant bits
of f(IV, M̃) is equal to A−1||A−2||A−3. Compute the (uniquely determined)
values W0, . . . ,W4 that is compatible with the chaining value f(IV, M̃) and
the state at the beginning of step 5.

III. Now, W0, . . . ,W12 have been chosen. Use degrees of freedom in
W13,W14,W15 to fulfill the conditions on E13, E14, E15, W16, and W18 (in
addition to the cancellation of differences at W20, . . . ,W25). If it fails, go
back to Step II.

Step II requires time 296. According to the authors of [29], Step I of the attack
takes only seconds, and Step III succeeds with a probability about 1/12 due to
the lack of degrees of freedom in W13,W14,W15, which was verified experimen-
tally. The total time complexity is estimated as 12 · 296 ≈ 299.5.

The Second Attack with Complexity 265.5. The attack complexity is reduced
from 299.5 to 265.5 by computing many solutions in Step I. The idea is as follows.
Suppose that � solutions can be found for Step I (they are stored in a list). Then,
the complexity of Step II can be reduced from 296 to 296/�. If a single solution
in Step I can be found in time TI , then the overall complexity of the attack
becomes TI · � + 12 · 296/�.

The authors of [29] claim that TI ≈ 225.5, and their experiments indicate
that they can expect � ≈ 234. Based on these observations, they deduced that a
collision can be found with complexity 225.5 · 234 + 12 · 296/234 ≈ 265.5.

3.2 Semi-Free-Start Collision Attack on 38-Step SHA-256

As well as the semi-free-start collisions in the 31-step collision attack, the semi-
free-start collision of 38-step SHA-256 in [29] is constructed based on a local
collision that starts at step 7 and ends at step 24, which are also found by using
the heuristic automated search tool.

See Table 4 for the differential characteristic and the conditions for confirming
message pairs shown in [29]. (See also Remark 3.) The semi-free-start collision of
38-step SHA-256 given in [29] is shown in Table 7 of this paper’s full version [15].

3.3 Semi-Free-Start Collision Attack on 39-Step SHA-512

The semi-free-start collision of 39-step SHA-512 in [7,8] is also constructed based
on a local collision that starts at step 8 and ends at step 26, which is also found
by using the heuristic automated search tool.

See Table 5 of this paper’s full version [15] for the differential characteristic
and the conditions for confirming message pairs shown in [8]. (See also Remark 3.)
The semi-free-start collision of 39-step SHA-512 given in [7,8] is shown in Table 8
of this paper’s full version [15].

628 A. Hosoyamada and Y. Sasaki

Table 4. The 38-step differential characteristic for SHA-256 shown in [29].

Remark 3. To be precise some bits in the differential characteristics in Tables 2,
4, and 5 of this paper’s full version [15] have additional conditions. They are
shown in the original papers [7,8,29] but we omit to show them because they
are not significantly relevant to the basic idea of our attacks.

4 Observations and Ideas for Quantum Collision Attacks

For SHA-256, the previous 38-step semi-free-start collision is not converted into
a collision while the 31-step semi-free-start collision is converted. For SHA-512,
the previous 39-step semi-free-start collision is not converted.

In Sect. 4.1, we explain details on the reason that the semi-free-start collisions
of 38-step SHA-256 and 39-step SHA-512 are not converted into collisions in the
classical setting, based on the explanation in [7,8]. In Sect. 4.2, we explain our
basic ideas on how to apply the conversion in the quantum setting.

4.1 Obstacles for Conversions in the Classical Setting

Summary of 31-Step SHA-256. Recall that the 31-step collision is obtained
by matching the IV produced from the first block and semi-free-start collisions
in the second block. Also recall that the attack consists of three steps.

Quantum Collision Attacks on Reduced SHA-256 and SHA-512 629

In Step II of the attack, the degrees of freedom in the message words
W0, . . . ,W4 are used to make the output of the first block and the local col-
lision in the second block compatible. Let α denote the number of free bits in
the message words that can be used to make those two values compatible. Since
W0, . . . ,W4 can be chosen freely, α = 5 · 32 = 160 holds. For a randomly chosen
M̃ and a single solution in Step I, the probability that they can be compatible
is 2α/2n.

If we have � solutions in Step I and if Step III succeeds with a probability p,
a randomly chosen M̃ leads to a collision with probability � ·(2α/2n) ·p. Thus the
time complexity T is estimated as T = 1

�·(2α/2n)·p = 2n/(� · 2α · p) (by ignoring
the complexity of Step I).

It is claimed in [29] that one can expect � = 234 and p ≈ 1/12 ≈ 2−3.5, and
the complexity 265.5 is obtained as T = 2256/(234 · 2160 · 2−3.5) = 265.5.

Remark 4. Let 2X be the number of IVs of the second block that will be com-
patible with the local collisions in the second block. Then, the time complexity
to find the first message block will be T = 2n/2X . The attack is valid as long as
X > n/2 = 128.

Lack of Degrees of Freedom in 38-Step SHA-256. We observe that in
the differential characteristic for the 38-step semi-free-start collision of SHA-256
(Table 4), almost all the bits of state variable Ei have conditions for i = 7, . . . , 20,
which implies that both of the values and the differences for W7, . . . ,W20 will
be fixed. When 16 successive message words are fixed, all the message words
are fixed (due to the message expansion). Thus, among the message words
W0, . . . ,W7 that can be used to make the first block and the local collision in
the second block compatible, only the two words W5 and W6 will have degrees
of freedom, and the number of free bits is α = 2 · 32 = 64 in total.

Thus the time complexity will be 2n/(� ·2α ·p)= 2192/(� · p) when � solutions
are available. Considering that � is about 234 for 31-step collisions, the complexity
will be larger than 2128 of the birthday paradox.

Remark 5. From another point of view, the 38-step semi-free-start collision can-
not be converted into a collision because X < 128.

Lack of Degrees of Freedom in 39-Step SHA-512. The 39-step semi-free-
start collision of SHA-512 in [8,29] cannot be converted into a collision for the
same reason.

In the differential characteristic (Table 5 of this paper’s full version [15]),
almost all bits of the internal state variable Ei have some conditions for i =
8, . . . , 22, which implies that both of the internal states and the message words
in steps 8–22 will be fixed. Due to the constraint derived from the message
expansion, only the single word W7 will have degrees of freedom among the first
8 message words that can be used to make the first block and the local collision
in the second block compatible (i.e., α = 64). In addition, � will not be large
since the differential characteristic has dense conditions for i = 8, . . . , 22. Thus
the time complexity 2n/(�·2α ·p) will be larger than 2256 of the birthday paradox.

630 A. Hosoyamada and Y. Sasaki

4.2 Observations and Ideas on Conversion in the Quantum Setting

As mentioned in Remark 4, X > n/2 must be satisfied to be a valid attack.
On the other hand, in the quantum setting of time-space tradeoff, it may be
possible to mount valid 2-block collision attacks even if X < n/2. For example,
assume that we can decrease the time complexity of 2-block collision attacks
from 2n/2X to

√
2n/2X by applying the Grover search and the Grover search

requires negligible memory. It becomes a valid quantum collision attack in the
setting of time-space tradeoff if

√
2n/2X < 2n/2, which is equivalent to X > 0.

Actually this idea is too naive and we cannot achieve a valid quantum attack in
such a simple way. Nevertheless, this idea shows the possibility of valid 2-block
quantum collision attacks with the Grover search.

With this in mind, we mount quantum collision attacks on 38-step SHA-256
and 39-step SHA-512 by converting the semi-free-start collisions into 2-block
collisions with the Grover search. To achieve this goal, we have to take the
following two points into account.

1. In the classical attack on 31-step SHA-256, by storing � solutions in Step I,
the complexity of Step II is decreased by the factor of �. This strategy works
well since memory is relatively cheap in the classical setting. On the other
hand, memory is expensive in the quantum setting of time-space tradeoff,
and memory-less algorithms are favorable.

2. In the classical attack on 31-step SHA-256, we can choose W0, . . . ,W4 freely
because those values do not affect the steps with dense conditions in the
differential characteristic (i.e., steps 5–12). On the other hand, in the attack
on 38-step SHA-256 (resp., 39-step SHA-512), we have to choose the message
words W0, . . . ,W6 (resp., W0, . . . ,W7) carefully because they affect on some
of the message words in the steps with dense conditions, i.e., W7, . . . ,W20

(resp., W8, . . . ,W22), through the message expansion.

We will set � = 1 to minimize the required memory size. On the choice of the
message words W0, . . . ,W6 for 38-step SHA-256, we observe the following.

We can modify W6 to another value Ŵ6 without changing W7, . . . ,W21 by
modifying Wj to Ŵj := Wj − (σ0(Ŵj+1) − σ0(Wj+1)) for j = 5, 4, . . . , 0 step
by step.

Indeed, if the value of W6 is changed to another value Ŵ6, then W21 and
W22 will be changed because Wi = σ1(Wi−2) + Wi−7 + σ0(Wi−15) + Wi−16

holds for i ≥ 16. However, the change of the value of W21 can be canceled
out by modifying W5 to Ŵ5 := W5 − (σ0(Ŵ6) − σ0(W6)). By modifying Wj to
Ŵj := Wj − (σ0(Ŵj+1) − σ0(Wj+1)) similarly for j = 4, . . . , 0, we can also keep
W20, . . . ,W16 unchanged. Since W7, . . . ,W15 are not affected by the modification
of W0, . . . ,W6, the words W7, . . . ,W15 are also kept unchanged.

We obtain a similar observation on the choice of the message words
W0, . . . ,W7 for 39-step SHA-512. That is, we can modify W7 to another value
Ŵ7 without changing W8, . . . ,W22, by modifying Wj to Ŵj := Wj −(σ0(Ŵj+1)−
σ0(Wj+1)) for j = 6, . . . , 0 step by step.

We mount quantum 2-block collision attacks based on these observations.

Quantum Collision Attacks on Reduced SHA-256 and SHA-512 631

Attack Idea. Here we explain basic ideas of our quantum attacks that are
common between 38-step SHA-256 and 39-step SHA-512. We will explain details
that are specific to each function in the next section.

Let i denote the number of the step where the local collision starts in the
differential characteristic (i = 7 for 38-step SHA-256 and i = 8 for 39-step
SHA-512). The attack procedure is as follows (see also Fig. 5 of this paper’s full
version [15]).

I. Find a pair of messages (M,M ′) and an initial value for the second block
that yield a semi-free-start collision. Let Sstart be the internal state at the
beginning of step i. For each j, let Wj and W ′

j denote message word j
expanded from M and M ′, respectively. Note that W0 = W ′

0, . . . ,Wi−1 =
W ′

i−1 hold.
II. With the Grover search, find a message M̃ (for the first block) that satisfies

the followings.
(a) Sstart and the input chaining value for the second block IVsecond

derived from M̃ can be compatible by modifying the message
words W0, . . . ,Wi−1,W

′
0, . . . ,W

′
i−1, while keeping the message words

Wi, . . . ,Wi+14,W
′
i , . . . ,W

′
i+14 unchanged. Let M̂ and M̂ ′ be the mes-

sages for the second block after the modification, i.e., M̂ :=
Ŵ0|| · · · ||Ŵi−1||Wi|| · · · ||W15 and M̂ ′ := Ŵ0|| · · · ||Ŵi−1||W ′

i || · · · ||W ′
15.

(b) Sstart and the modified message pair (M̂, M̂ ′) yield a collision at the end
of the second block.

III. By using M̃ found in Step II, perform the computations in Steps II-(a) and
II-(b) again to obtain the pair (M̂, M̂ ′) that yield a collision at the end
of the second block. (This step may seem redundant, but we separate this
step from Step II so that we can apply the Grover search on M̃ in Step II.)
Output (M̃ ||M̂, M̃ ||M̂ ′).

Step I of the above procedure corresponds to Step I of the classical collision
attack on 31-step SHA-256. We store only a single solution in Step I of our attack
so that the attack will be memory-less. Since only a single solution is required
in this step, we just use the values shown in the previous works (i.e., the values
M,M ′, h0 in Table 7 and Table 8 of this paper’s full version [15]).

Step II-(a) corresponds to Step II of the classical collision attack on 31-
step SHA-256. Step II-(b) corresponds to Step III of the classical collision
attack on 31-step SHA-256. We allow the remaining words Wi+15,Wi+16, . . .
and W ′

i+15,W
′
i+16, . . . to be changed since the steps with dense conditions are

up to i+14 and thus to probabilistically satisfy all the conditions from step i+15
by randomly changed Wi+15,Wi+16, . . . and W ′

i+15,W
′
i+16, . . . is not difficult.

Attack Complexity and Validity. Let F be the Boolean function to which Grover’s
algorithm is applied in Step II of our attack6. That is, F is defined by F (M̃) := 1
if and only if M̃ satisfies the two conditions II-(a) and II-(b). Let p be the proba-
bility that F (M̃) = 1 when we pick a message M̃ for the first block uniformly at
6 More precisely, we run Grov(F, �π/4θ�) in Step II, where θ = arcsin(

√
p).

632 A. Hosoyamada and Y. Sasaki

random. In addition, suppose that F can be implemented on a quantum circuit
of which width is SF and depth is TF .

The time complexity of Step I is negligible since we just use the values from
previous works. The time complexity of Step III is also negligible compared to
that of Step II. Thus the time complexity of our attacks is dominated by the
time complexity of the Grover search on F , which is at most TF · π

4

√
1/p.

If a quantum computer of size S(>SF) is available, the Grover search can
be parallelized7 and sped up by the factor of

√
S/SF , and the attack time

complexity becomes
(
TF · (π/4)

√
1/p

)
/
√

S/SF = TF · (π/4) ·
√

SF /pS. (1)

Let n be the output length of the hash function. Since the time complexity
of the generic attack is 2n/2/S when a quantum computer of size S is available,
our attack is valid as long as

TF · (π/4) ·
√

SF /pS < 2n/2/S (2)

holds.

Remark 6. When we run the same procedure in the classical setting, the Grover
search is replaced with the usual exhaustive search and the attack time complex-
ity will be (TF · SF)/p (here we do not consider parallelizations for simplicity).
Since the generic complexity is 2n/2, the attack becomes valid if and only if
(TF · SF)/p < 2n/2, which is equal to

p > (TF · SF)/2n/2. (3)

In particular, the classical attack is invalid if p < 2−n/2. On the other hand, the
condition (2) is equivalent to p > SF · (π2/16) · T 2

F /2n (when S = 1), and the
quantum attack may be valid even if p < 2−n/2.

5 Quantum Collision Attack on 38-Step SHA-256

This section shows a quantum collision attack on 38-step SHA-256 based on the
attack idea in Sect. 4.2.

Let (M,M ′) and h0 be the semi-free-start collision and the initial value shown
in the previous work (i.e., (M,M ′) and h0 in Table 7 of this paper’s full ver-
sion [15]). Let Wj and W ′

j denote message word j associated with M and M ′,
respectively. Recall that the local collision starts at step 7 in the differential
characteristic in Table 4. Let Sstart be the state at the beginning of step 7 that
is computed from (M,M ′) and h0.

Section 5.1 provides some observations on Step II of the quantum attack.
Section 5.2 provides an implementation of F and analyzes the depth and width
of the circuit of F . In Sect. 5.3 we analyze the total complexity when the quantum
attack is mounted with the implementation of F in Sect. 5.2.
7 See Sect. 2 for details on parallelization. We use the quantum computer of size S as

S/SF independent small quantum computers.

Quantum Collision Attacks on Reduced SHA-256 and SHA-512 633

5.1 Observation on Step II

We provide two observations.

First Observation. The internal state variables A−1, . . . , A6 and E3, . . . , E6 are
determined from Sstart = A6|| · · · ||A3||E6|| · · · ||E3. (These variables are com-
mon between M and M ′. See also Fig. 4 of this paper’s full version [15].)
There exists a tuple (Ŵ0, . . . , Ŵ6) that is compatible with IVsecond and
Sstart if and only if A−1 matches the most significant 32 bits of IVsecond.
If A−1 matches, A−2, A−3, A−4, E−1, . . . , E−4 are determined by the equation
IVsecond = A−1|| · · · ||A−4||E−1|| · · · ||E−4, and the message words Ŵ0, . . . , Ŵ6

are uniquely determined from A−4, . . . , A6 and E−4, . . . , E−1, E3, . . . , E6.

Second Observation. By exhaustively checking all the possible values for Ŵ6 ∈
{0, 1}32, we verified that there exist 1179647 (> 220) tuples (Ŵ0, . . . , Ŵ6) that
satisfy the following conditions.8

(i) Ŵj = Wj − (σ0(Ŵj+1) − σ0(Wj+1)) holds for j = 0, . . . , 5.
(ii) Sstart and the messages (M̂, M̂ ′) for the second block, where M̂ :=

Ŵ0|| · · · ||Ŵ6||W7|| · · · ||W15 and M̂ ′ := Ŵ0|| · · · ||Ŵ6||W ′
7|| · · · ||W ′

15, yield a
collision at the end of the second block.

Remark 7. From another point of view, the second observation shows that we
can make semi-free-start collisions for at least 220 initial values.

5.2 Implementation and Analysis of F

Below we provide an implementation of F and its analysis. In particular, we
show TF ≤ 6.8 and SF ≤ 3.9, where SF denotes the width of the quantum
circuit of F and TF denotes the running time (depth) of the circuit.

Implementation of F : Basic Idea. Before describing a formal implementa-
tion of F with notations of quantum computation, we give a basic idea behind
the implementation.

First, we compute the following values (from Table 7 of this paper’s full ver-
sion [15]) and store them into memory.

(a) The internal state Sstart at the beginning of step 7.
(b) The message words W0 = W ′

0, . . . ,W6 = W ′
6,W7, . . . ,W21,W

′
7, . . . W

′
21.

(c) The internal state variable A−1 that is uniquely determined from Sstart.

Note that these values are computed and stored before the start and kept
unchanged throughout the attack.

Given an input M̃ , the output value F (M̃) is computed as follows.

8 We actually implemented to count the number of semi-free-start collisions for all 232

choices of W6 and accordingly modified W5 . . . , W0.

634 A. Hosoyamada and Y. Sasaki

1. Compute the output of the first block from M̃ , and let IVsecond denote the
output.

2. Check if the condition that the most significant 32 bits of IVsecond is equal to
A−1 is satisfied. If it is satisfied, proceed to the next step. Otherwise output
0 and abort.

3. Compute the unique (Ŵ0, . . . , Ŵ6) that is compatible with IVsecond and Sstart.
4. Check if the following conditions are satisfied.

(i) Ŵj = Wj − (σ0(Ŵj+1) − σ0(Wj+1)) holds for j = 0, . . . , 5.
(ii) Sstart and the messages (M̂, M̂ ′) yield a collision at the end of the

second block, where M̂ := Ŵ0|| · · · ||Ŵ6||W7|| · · · ||W15 and M̂ ′ :=
Ŵ0|| · · · ||Ŵ6||W ′

7|| · · · ||W ′
15.

If both of (i) and (ii) are satisfied, output 1. Otherwise output 0.

Remark 8. When we implement a quantum circuit, each computational step has
to be reversible, and the running time of the circuit has to be independent from
inputs. We ignored such properties in the above explanations for simplicity but
they are taken into account in the formal description below.

Implementation of F : Formal Description. Let L be the list to store the
values explained in (a)–(c) above, and f be the 38-step compression function.
Given an input M̃ , the output value F (M̃) is computed as follows.

0. At the beginning, the quantum state is |M̃〉 |L〉 |y〉. (|y〉 is the single qubit
register where the value F (M̃) will be added.)

1. Compute the output of the first block from M̃ . Let IVsecond denote the output.
Check if A−1 is equal to the most significant 32 bits of IVsecond. If they are
equal, set b := 1. If they are not equal, set b := 0. The current quantum state
is |M̃〉 |L〉 |y〉 ⊗ |IVsecond〉 |b〉 .

2. Let IV′
second denote the concatenation of A−1 and the least significant 224

bits of IVsecond (IV′
second = IVsecond holds if b = 1). Compute the unique

(Ŵ0, . . . , Ŵ6) that is compatible with the initial chaining value IV′
second and

Sstart. The current quantum state is |M̃〉 |L〉 |y〉 ⊗ |IVsecond〉 |b〉 |Ŵ0, . . . , Ŵ6〉 .
3. Let M̂ denote Ŵ0|| · · · ||Ŵ6||W7|| · · · ||W15 and M̂ ′ denote Ŵ0|| · · · ||Ŵ6||W ′

7||
· · · ||W ′

15. Compute the values f(IV′
second, M̂), f(IV′

second, M̂
′). The current

quantum state is |M̃〉 |L〉 |y〉 ⊗ |IVsecond〉 |b〉 |Ŵ0, . . . , Ŵ6〉 |f(IV′
second, M̂)〉 |

f(IV′
second, M̂

′)〉.
4. Recall that F (M̃) = 1 if and only if b = 1 and the following (i) and (ii) hold.

(i) f(IV′
second, M̂) = f(IV′

second, M̂
′).

(ii) Ŵj = Wj − (σ0(Ŵj+1) − σ0(Wj+1)) holds for j = 0, . . . , 5.
Compute F (M̃) by checking if b = 1, and (i) and (ii) hold, and add the value
F (M̃) to the |y〉 register. The current quantum state is |M̃〉 |L〉 |y ⊕ F (M̃)〉⊗
|IVsecond〉 |b〉 |Ŵ0, . . . , Ŵ6〉 |f(IV′

second, M̂)〉 |f(IV′
second, M̂

′)〉 .
5. Uncompute Steps 1–3 to obtain |M̃〉 |L〉 |y ⊕ F (M̃)〉 .

Quantum Collision Attacks on Reduced SHA-256 and SHA-512 635

Analysis. We regard that the unit of depth (resp., width) of quantum circuits
is the depth (resp., width) required to implement 38-step SHA-256 that takes
1-block inputs. In particular, we regard that the depth required to compute a
single step of SHA-512 is equal to 1/38. Since the input length of 1-block SHA-
256 is 512 bits and the output length is 256 bits, at least 512+256 = 768 qubits
are required to implement the function on a quantum circuit.

Depth (TF). Step 1 of the implementation computes the compression function
once. The depth required to Step 2 is 7/38 since the message words in the
first 7 steps in the second block are computed in Step 2. Step 3 computes the
compression function twice. The cost of Step 4 is dominated by the computation
for (ii), of which cost is at most 6 steps of SHA-256. Thus the depth required
for Step 4 is at most 6/38. In summary, the depth required to implement Steps
1–4 is 1 + 7/38 + 2 + 6/38 ≤ 3.4. Since we have to perform uncomputations in
Step 5, we have TF ≤ 3.4 × 2 = 6.8.

Width (SF). The length of M̃ is 16 words. L contains data of 8+(7+15+15)+1 =
46 words in total. y is a single bit. Thus, (16 + 46) × 32 + 1 = 62 × 32 + 1
qubits are used in Step 0 of the implementation. Step 1 requires additional
8×32+1 qubits to store IVsecond and b. Step 2 requires additional 7×32 qubits
to store Ŵ0, . . . , Ŵ6. Step 3 requires additional (8 + 8) × 32 = 16 × 32 qubits to
store f(IVsecond, M̂) and f(IVsecond, M̂

′). Therefore, to store intermediate values
shown in the above implementation, (62+8+7+16)× 32+2 = 2978 qubits are
used in total. Hence we have SF ≤ 2978/768 ≤ 3.9.

Remark 9. On the estimation of the width SF , more ancilla qubits may be
required to compute the intermediate variables (such as IVsecond) used in the
implementation of F . However, we expect that they will be as much ancilla
qubits as required to implement 1-block 38-step SHA-256. In particular, we
expect that the ratio between the number of qubits to implement F and the
number of qubits to implement 1-block 38-step SHA-256 will be about 3.9, even
if we take the ancilla qubits to compute the intermediate variables into account.

Remark 10. Note that we could remove |L〉 from the computation since L is
a list of classical data and computations that depend on L can be executed
by classically controlling the gates. However, this has no consequence on the
Time-memory tradeoff sine it is just converting qubits into classical bits.

5.3 Total Complexity

This section analyzes the total complexity when the quantum attack in Sect. 4.2
is mounted with the implementation of F in Sect. 5.2.

Let p denote the probability that F (M̃) = 1 holds when M̃ is randomly
chosen. F (M̃) = 1 holds if and only if M̃ satisfies the conditions in the sec-
ond and fourth steps of the implementation of F . A random M̃ satisfies the
condition in the second step with probability 2−32. From the observation on

636 A. Hosoyamada and Y. Sasaki

Step II in Sect. 5.1, (i) and (ii) in the fourth step are satisfied with probability(
1179647/(232)7

)
> 220/2224. Therefore

p = 2−32 · (
1179647/(232)7

)
> 2−32 · (

220/2224
)

= 2−236 (4)

holds.
The attack time complexity can be computed as in Eq. (1). We showed

TF ≤ 6.8 and SF ≤ 3.9 in Sect. 5.2, and p > 2−236 in (4). Therefore, when
a quantum computer of size S is available, our attack finds a collision in time
6.8 · (π/4)

√
3.9/(2−236 · S) = 6.8π

√
3.9

4 · 2118/
√

S ≤ 2122/
√

S. In addition, the
attack time complexity 2122/

√
S is lower than the generic complexity 2128/S

when S < 212. Therefore our attack is valid as long as 3.9 ≤ S < 212.

Remark 11. Some may consider that our complexity analysis is invalid since
the first equality in (4) holds only if the output distribution of the first block
is exactly equal to the uniform distribution over {0, 1}256, which will not be
the case for 38-step SHA-256. However, still we can reasonably expect that the
analysis is valid. See Section D of this paper’s full version [15] for details.

6 Quantum Collision Attack on 39-Step SHA-512

This section shows a quantum collision attack on 39-step SHA-512 based on the
attack idea in Sect. 4.2.

Let (M,M ′) and h0 be the semi-free-start collision and the initial value shown
in the previous work (i.e., (M,M ′) and h0 in Table 8 of this paper’s full ver-
sion [15]). Let Wj and W ′

j denote message word j associated with M and M ′,
respectively.

The difference between the attack on 39-step SHA-512 from the one on 38-
step SHA-256 is summarized as follows.

1. The local collision starts from step 8 but not step 7 (we denote the internal
state at the beginning of step 8 by Sstart).

2. The probability p (= |F−1(1)|/2512) satisfies p > 2−498.4.
3. The implementation of F satisfies TF ≤ 6.8 and SF ≤ 4.1.

The attack finds a collision in time 2252.7/
√

S, which is valid when 4.1 < S < 26.6.
Section 6.1 provides some observations on Step II of the quantum attack.

Section 6.2 provides an implementation of F and analyzes the depth and width
of the circuit of F . In Sect. 6.3 we analyze the total complexity when the quantum
attack is mounted with the implementation of F in Sect. 6.2.

6.1 Observation on Step II

We provide two observations.

Quantum Collision Attacks on Reduced SHA-256 and SHA-512 637

First Observation. Given a chaining initial input value IVsecond, there always
exists a unique tuple (Ŵ0, . . . , Ŵ7) that is compatible with IVsecond and Sstart.
This is because the local collision starts at step 8 in the differential characteristic
for 39-step SHA-512 (see also Fig. 4 of this paper’s full version [15] for details).

Second Observation. We experimentally verified that there exist 13184 (>213.6)
tuples (Ŵ0, . . . , Ŵ7) that satisfies the following conditions.

(i) Ŵj = Wj − (σ0(Ŵj+1) − σ0(Wj+1)) holds for j = 0, . . . , 6.
(ii) Sstart and the messages (M̂, M̂ ′), where M̂ := Ŵ0|| · · · ||Ŵ7||W8|| · · · ||W15

and M̂ ′ := Ŵ0|| · · · ||Ŵ7||W ′
8|| · · · ||W ′

15, yield a collision at the end of the
second block.

(iii) Ŵ23,j = W23,j for j = 5, . . . , 29, where Ŵ23,j and W23,j are bit j of message
word 23 derived from M̂ and M , respectively.

The condition (iii) is added to decrease the search space for Ŵ7. We chose bit
5, bit 6, . . ., bit 29 because the differential characteristic (Table 5 of this paper’s
full version [15]) has strict conditions on these bit positions of E23.

Remark 12. From another view of point, the second observation shows that we
can make semi-free-start collisions for at least 213.6 initial values.

6.2 Implementation and Analysis of F

In what follows we provide description and analysis of the implementation of F
used in the attack on 39-step SHA-512 and show TF ≤ 6.8 and SF ≤ 4.1.

Implementation of F : Basic Idea. Since the basic idea of the implementation
is similar to that for 38-step SHA-256 in Sect. 5.2, here we only provide the
difference from Sect. 5.2.

In the attack on 39-step SHA-512, there always exists a unique tuple
(Ŵ0, . . . , Ŵ7) that is compatible with IVsecond and Sstart for arbitrary IVsecond

due to the first observation in Sect. 6.1. Therefore we skip the step (in the imple-
mentation of F in Sect. 5.2) to check if A−1 is equal to the most significant 32
bits of IVsecond.

Let M̃ be a message for the first block, and IVsecond be the initial vector for
the second block that is computed from M̃ . We define F (M̃) := 1 if and only if
the conditions (i)–(iii) in the second observation in Sect. 6.1 are satisfied for the
unique tuple (Ŵ0, . . . , Ŵ7) that is compatible with IVsecond and Sstart.

Formal Implementation of F . First, we compute the following values (from
Table 8 of this paper’s full version [15]) and store them into a list L.

(a) The internal state Sstart at the beginning of step 8.
(b) The message words W0 = W ′

0, . . . ,W7 = W ′
7,W8, . . . ,W22,W

′
8, . . . W

′
22,W23.

Given an input M̃ , the output value F (M̃) is computed as follows.

638 A. Hosoyamada and Y. Sasaki

0. At the beginning, the quantum state is |M̃〉 |L〉 |y〉. (|y〉 is the single qubit
register where the value F (M̃) will be added.)

1. Compute the output of the first block from M̃ . Let IVsecond denote the
output. The current quantum state is |M̃〉 |L〉 |y〉 ⊗ |IVsecond〉 .

2. Compute the unique (Ŵ0, . . . , Ŵ7) that is compatible with IVsecond and
Sstart. The current quantum state is |M̃〉 |L〉 |y〉 ⊗ |IVsecond〉 |Ŵ0, . . . , Ŵ7〉 .

3. Let M̂ denote Ŵ0|| · · · ||Ŵ7||W8|| · · · ||W15 and M̂ ′ denote Ŵ0|| · · · ||Ŵ7

||W ′
8|| · · · ||W ′

15. Compute f(IVsecond, M̂), f(IVsecond, M̂
′), and Ŵ23, where

Ŵ23 is word 23 derived from M̂ . The current quantum state is |M̃〉 |L〉 |y〉⊗
|IVsecond〉 |Ŵ0, . . . , Ŵ7〉 |f(IVsecond, M̂)〉 |f(IVsecond, M̂

′)〉 |Ŵ23〉 .
4. Recall that F (M̃) := 1 if and only if the following (i)–(iii) hold.

(i) f(IVsecond, M̂) = f(IVsecond, M̂
′).

(ii) Ŵj = Wj − (σ0(Ŵj+1) − σ0(Wj+1)) holds for j = 0, . . . , 6.
(iii) Ŵ23,j = W23,j holds for j = 5, . . . , 29
Compute F (M̃) by checking if (i)–(iii) hold, and add the value F (M̃)
to the |y〉 register. The current quantum state is |M̃〉 |L〉 |y ⊕ F (M̃)〉 ⊗
|IVsecond〉 |Ŵ0, . . . , Ŵ7〉 |f(IVsecond, M̂)〉 |f(IVsecond, M̂

′)〉 |Ŵ23〉 .
5. Uncompute Steps 1–3 to obtain |M̃〉 |L〉 |y ⊕ F (M̃)〉 .

Analysis. We regard that the unit of depth (resp., width) of quantum circuits
is the depth (resp., width) required to implement 39-step SHA-512 that takes
1-block inputs. In particular, we regard that the depth required to compute a
single step of SHA-512 is equal to 1/39. Since the input length of 1-block SHA-
512 is 1024 bits and the output length is 512 bits, at least 1024 + 512 = 1536
qubits are required to implement the function on a quantum circuit.

Depth (TF). Step 1 of the implementation computes the compression function
once. Since the message words in the first 8 steps in the second block are com-
puted in Step 2, the depth required for Step 2 is 8/39. Step 3 computes the
compression function twice. The cost of Step 4 is dominated by the computation
for (ii), which is at most 7 steps of SHA-512. Thus the depth required for Step
4 is at most 7/39. In summary, the depth required to implement Steps 1–4 is
1 + 8/39 + 2 + 7/39 ≤ 3.4. Since we have to perform uncomputations in Step 5,
we have TF ≤ 3.4 × 2 = 6.8.

Width (SF). The length of M̃ is 16 words. L contains data of 8+(8+15+15+1) =
47 words in total. y is a single bit. Thus, (16+47)×64+1 = 63×64+1 qubits are
used in Step 0 of the implementation. Step 1 requires additional 8×64 qubits to
store IVsecond. Step 2 requires additional 8×64 qubits to store Ŵ0, . . . , Ŵ7. Step
3 requires additional (8 + 8 + 1) × 64 = 17 × 64 qubits to store f(IVsecond, M̂),
f(IVsecond, M̂

′), and Ŵ23. Therefore, to store intermediate values shown in the
above implementation, (63+8+8+17)×64+1 = 6145 qubits are used in total.
Hence we have SF ≤ 6145/1536 ≤ 4.1.

Remark 13. On the estimation of the width SF , more ancilla qubits may be
required to compute the intermediate variables (such as IVsecond) used in the
implementation of F . However, we expect that they will be as much as ancilla

Quantum Collision Attacks on Reduced SHA-256 and SHA-512 639

qubits required to implement 2-block 39-step SHA-512. In particular, we expect
that the ratio between the number of qubits to implement F and the number of
qubits to implement 2-block 39-step SHA-512 will be as much as 4.1, even if we
take the ancilla qubits to compute the intermediate variables into account.

6.3 Total Complexity

Let p denote the probability that F (M̃) = 1 holds when M̃ is randomly chosen.
F (M̃) = 1 holds if and only if the conditions (i)–(iii) in the fourth step of the
implementation of F are satisfied. From the second observation on Step II in
Sect. 6.1, (i)–(iii) are satisfied with probability at least 213.6/(264)8. Therefore
p > 213.6/(264)8 = 2−498.4 holds.

The attack time complexity can be computed as in Eq. (1). We showed
TF ≤ 6.8 and SF ≤ 4.1 in Sect. 6.2, and p > 2−498.4 above. Therefore, when
a quantum computer of size S is available, our attack finds a collision in time
6.8 ·(π/4)

√
4.1/(2−498.4 · S) = 6.8

√
4.1π
4 ·2249.2/

√
S ≤ 2252.7/

√
S. In addition, the

attack time complexity 2252.7/
√

S is lower than the generic complexity 2256/S
when S < 26.6. Therefore our attack is valid as long as 4.1 ≤ S < 26.6.

7 Discussion

The previous sections exploited the existing semi-free-start collision attacks to
mount quantum collision attacks for SHA-256 and SHA-512. This brings the fol-
lowing two questions. First, is it possible to optimize differential characteristics
for the classical semi-free-start collision attack with respect to the conversion
to the quantum collision attack? Second, is it possible to extend the conversion
framework so that a wider class of the classical attack on other computation
structure can be converted into a quantum collision attack? This section answers
those questions. We hope those will provide future researchers with useful knowl-
edge to find new quantum collision attacks.

7.1 Towards Searching for New Semi-Free-Start Collision Attacks

The attacks on SHA-256 and SHA-512 in Sects. 5 and 6 directly used the dif-
ferential characteristics from the previous works, but it is possible to search
for new differential characteristics from scratch in future works to be optimized
in our conversion. More importantly, differential characteristics that cannot be
exploited in the classical setting may still be exploited in the quantum setting.

Properties Required for Differential Characteristics. Our conversion is
applied when the differential characteristic for the semi-free-collision attack sat-
isfies the following properties.

640 A. Hosoyamada and Y. Sasaki

Fig. 3. Form of Semi-free-start Collision Attacks that can be Converted into Collisions.

– The characteristic is dense, i.e. requiring many conditions, only in a relatively
small number of steps. Let FIXstart and FIXend be the input and output
state values of these steps, respectively.

– For multiple choices of IVsecond, it is possible to modify message words W0

to Ws−1 so that IVsecond and FIXstart are connected.
– The probability to satisfy the characteristic from FIXend is high enough to

be faster than the generic attack.

Given those, we can view that the characteristic is composed of three parts as
shown in Fig. 3.9

Properties for the Sparse Part. In our attacks on SHA-256 and SHA-512,
(almost) all the message words are fixed after modifying W0 to Ws−1, thus
degrees of freedom to satisfy the characteristic from FIXend to the end is pro-
vided by generating the first message block many times, which requires signif-
icant computational cost. Besides, the probability from FIXend is reasonably
high, thus the attack procedure could be provided without special attention.
Here we give a decent analysis with respect to the condition to be faster than
the generic attack, which should be taken into account for finding new charac-
teristic.

Suppose that the first k message words are independently chosen and the
dense part of the characteristic is located between step s and j − 1, where 0 <
s < j < k. Then, after modifying W0 to Ws−1 to connect IVsecond and FIXstart,
the attacker can still have degrees of freedom in message words Wj to Wk−1.
Let 2d and 2−p be the amount of degrees of freedom available to the attacker
and the probability of the differential characteristic in the remaining steps. If
d ≥ p, degrees of freedom in Wj to Wk−1 is sufficient, thus only the single choice
of IVsecond is sufficient to find a collision. This is advantageous because the cost
of computing the first block directly impacts to the overall attack complexity. If
9 In Sects. 5 and 6, we considered the special case where s is the number of the starting

step of a local collision.

Quantum Collision Attacks on Reduced SHA-256 and SHA-512 641

d < p, degrees of freedom in Wj to Wk−1 is insufficient, thus the generation of
IVsecond in the first block must be repeated multiple times.

Whether the attack can be faster than the generic attack depends on the
relationship between d and p. To evaluate the attack complexity, we first discuss
the complexity in the classical setting. Let 2f be the complexity to generate an
IVsecond.10 In the classical setting, when d ≥ p, the attacker needs to generate
a single choice of IVsecond and examine 2p choices of message words for the last
part of the characteristic. Hence, the attack complexity is 2f + 2p. When d < p,
the attacker needs to generate 2p−d choices of IVsecond and, for each of them,
examine 2d choices of message words for the last part of the characteristic. Hence,
the attack complexity is 2f · 2p−d + 2p−d · 2d, which is equal to 2f · 2p−d + 2p.
To be a valid attack, this complexity must be faster than the generic attack
complexity, which is 2n/2 in the classical setting. Hence, max(f, p) < n/2 when
d ≥ p and max(p, f + p − d) ≤ n/2 when d < p. The closed formula for both
cases is max(p, f + max(p − d, 0)) < n/2. Therefore, p < n/2 must be satisfied
in the classical setting, namely, the probability of the differential characteristic
for the last part cannot be smaller than 2−n/2.

The complexity evaluation in the quantum setting is as follows. When d ≥ p,
the cost for generating an IVsecond and examining 2p choices of message for the
last part of the characteristic decreases to

√
2f and

√
2p, respectively, by using

the Grover search. Hence the attack complexity becomes
√

2f+
√

2p. When d < p,
similarly we obtain quadratic speed up for each subroutine with the Grover
search, and the attack complexity decreases to

√
2f · 2p−d +

√
2p. A quantum

attack can be valid in the cost metric of time-space tradeoff if its complexity is
below 2n/2, i.e., max(p, f + max(p − d, 0)) < n. In particular, a quantum attack
can be valid even if p ≥ n/2, i.e., the probability of the differential characteristic
for the last part can be smaller than 2−n/2.

Note that d ≥ p may occur in practice. In fact, the 31-step (not 38-step) semi-
free-start collision attack by Mendel et al. against SHA-256 is exactly the case
with d ≥ p. As introduced in Sect. 3.1, the authors of [29] explained that Step III
succeeds with a probability about 1/12 due to the lack of degrees of freedom in
W13,W14,W15. However, if it is analyzed carefully, 1/12 is a part of probability
that the generated IVsecond is suitable, i.e. there are additional condition of 3.5
bits besides the match of the most significant 96 bits. The sparse characteristic
in Fig. 3 corresponds to the characteristic from Step 13 to 31 in Table 2. There
are 28 conditions on ΔE13 to ΔE16, thus p = 28.11 Degrees of freedom exist in
all bits of W13 to W15, thus d = 96. Hence, this is the case with d ≥ p.

Remark 14. Roughly speaking, the attack of Sect. 5 (resp., Sect. 6) is the case
with s = 7, j = 22, d = 0, p > 20, and f = 32 (resp., s = 8, j = 23, d = 0,
p > 13.6, and f = 0).

10 In other words, 2f is the complexity to find a first block message M that can be
connected to FIXstart.

11 While Table 2 shows only 26 conditions on ΔE13 to ΔE16, the original paper implies
two additional conditions. Hence we deduce that p = 28. See also Remark 3.

642 A. Hosoyamada and Y. Sasaki

Suitable Choice of s. The step index s is the border between the first and
the second part of the characteristic in Fig. 3, where the state value is fully fixed
after Step s. Suppose that the length of each message word is w-bit and the
internal state size of hash functions is t · w-bit. (In the case of SHA-256, w = 32
and t = 8.) Then the parameter f increases much and the attack may not work
if s is too small or too large compared to t. The reason is as follows.

If s is too small compared to t (e.g., s < t/2), then degrees of freedom in
W0, . . . ,Ws−1 become too small and the probability that a randomly chosen
IVsecond can be connected to FIXstart becomes too small. Hence the parameter
f becomes too large.

If s is too large (e.g., s > 2t), then the degrees of freedom in W0, . . . ,Ws−1

will remain enough. However, this time it may be unclear which choice of
W0, . . . ,Ws−1 is compatible with IVsecond and FIXstart for a random given
IVsecond, and the complexity to find a compatible choice becomes high. This
implies that the parameter f also increases in this case.

Therefore we expect that an index s that is close to t (e.g., t/2 < s < 2t)
will be suitable. (Indeed s is close to t in our attacks in Sects. 5 and 6.)

Remark on Memory. Memory is quite expensive in the quantum setting while
cheap in the classical setting.12 Thus differential characteristics that lead to
memory-less attacks but seem non-optimal in the classical setting are worth
investigating in the quantum setting.

7.2 Towards Application to Other Hash Functions

A natural question that arises after seeing our results is whether we can apply
the same idea to other hash functions by using similar differential character-
istics shown in previous works. In earlier sections we focused on semi-free-
start collisions on SHA-256 and SHA-512, which are single-branch hash func-
tions, but we do not have to restrict ourselves to semi-free-start collisions nor
single-branch hash functions: Differential characteristics for free-start collisions
or double-branch hash functions may also lead to quantum collision attacks if
their structures are close to Fig. 3.13

Indeed, some previous works use such differential characteristics. Examples
are the semi-free-start collision attack on reduced HAS-160 in [26], the free-start
collision attacks on reduced SHA-2 family in [7] and reduced SM3 in [28], and
the semi-free-start collision attacks on full RIPEMD-128 in [21] and reduced
RIPEMD-160 in [24,25,30]. The differential characteristics used in these attacks
look similar to Fig. 3 and they are found by using automated search tools in a
similar way to the differential characteristics that we used in Sects. 5 and 6.

12 The situation may change if we adopt the cost-metric that assumes the existence of
quantum RAM instead of the cost-metric of time-memory tradeoff, but we expect
that finding attacks that are valid in the latter is easier than finding ones valid in
the former.

13 Recall that a collision ((IV, M), (IV′, M ′)) for a compression function h is called a
semi-free-start collision if IV = IV′ and free-start collision if IV �= IV′.

Quantum Collision Attacks on Reduced SHA-256 and SHA-512 643

We investigated whether we could use those differential characteristics to
mount quantum 2-block collision attacks. We elaborate observations that we
obtained so far in Section G of this paper’s full version [15]. Unfortunately, we
have not succeeded yet, and with this respect, the analysis here is a failure report.
Nevertheless, we believe that those are valuable to report because we observe
that some of the applications are close to be valid collision attacks while others
are very far. By sharing the experience of those analysis, it would be possible to
search for new differential characteristics that satisfy properties in Sect. 7.1 in
order to break more rounds than classical collision attack.

8 Concluding Remarks

In this paper, we showed collision attacks on 38 and 39 steps of SHA-256 and
SHA-512, respectively, when the attacker can access to quantum machines under
the time-space tradeoff metric. The complexity is 2122/

√
S and 2252.7/

√
S where

S < 212 and S < 26.6 for SHA-256 and SHA-512, respectively.
Both attacks followed the same approach as the previous work, where a semi-

free-start collision attack that works for 2X choices of IVs (X > n
2) is converted

into a 2-block collision. We observed that even a small X may lead to an attack
faster than the generic one.

A possible future direction is to study applications to other cryptographic
hash functions. Since the idea behind our quantum collision attacks is very sim-
ple, we believe that it has broad applications. It will also be interesting to study
optimizations of differential characteristics for the classical semi-free-start colli-
sion attack with respect to the conversion to the quantum collision attack.

Acknowledgments. We thank anonymous reviewers for their insightful comments,
especially for pointing out errors in previous versions of the paper.

References

1. Aoki, K., Guo, J., Matusiewicz, K., Sasaki, Y., Wang, L.: Preimages for step-
reduced SHA-2. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp.
578–597. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10366-
7 34

2. Bernstein, D.J.: Cost analysis of hash collisions: will quantum computers make
SHARCS obsolete? In: SHARCS (2009)

3. Biryukov, A., Lamberger, M., Mendel, F., Nikolić, I.: Second-order differential
collisions for reduced SHA-256. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011.
LNCS, vol. 7073, pp. 270–287. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-25385-0 15

4. Boyer, M., Brassard, G., Høyer, P., Tapp, A.: Tight bounds on quantum searching.
Fortschritte der Physik: Prog. Phys. 46(4–5), 493–505 (1998)

5. Brassard, G., Høyer, P., Tapp, A.: Quantum cryptanalysis of hash and claw-free
functions. In: Lucchesi, C.L., Moura, A.V. (eds.) LATIN 1998. LNCS, vol. 1380,
pp. 163–169. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0054319

https://doi.org/10.1007/978-3-642-10366-7_34
https://doi.org/10.1007/978-3-642-10366-7_34
https://doi.org/10.1007/978-3-642-25385-0_15
https://doi.org/10.1007/978-3-642-25385-0_15
https://doi.org/10.1007/BFb0054319

644 A. Hosoyamada and Y. Sasaki

6. Chailloux, A., Naya-Plasencia, M., Schrottenloher, A.: An efficient quantum col-
lision search algorithm and implications on symmetric cryptography. In: Takagi,
T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10625, pp. 211–240. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-70697-9 8

7. Dobraunig, C., Eichlseder, M., Mendel, F.: Analysis of SHA-512/224 and SHA-
512/256. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9453, pp.
612–630. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48800-
3 25

8. Dobraunig, C., Eichlseder, M., Mendel, F.: Analysis of SHA-512/224 and SHA-
512/256. IACR Cryptology ePrint Archive 2016/374 (2016). The full version of
[7]

9. Dong, X., Sun, S., Shi, D., Gao, F., Wang, X., Hu, L.: Quantum collision attacks
on AES-like hashing with low quantum random access memories. In: Moriai, S.,
Wang, H. (eds.) ASIACRYPT 2020. LNCS, vol. 12492, pp. 727–757. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-64834-3 25

10. Eichlseder, M., Mendel, F., Schläffer, M.: Branching heuristics in differential colli-
sion search with applications to SHA-512. In: Cid, C., Rechberger, C. (eds.) FSE
2014. LNCS, vol. 8540, pp. 473–488. Springer, Heidelberg (2015). https://doi.org/
10.1007/978-3-662-46706-0 24

11. Flórez Gutiérrez, A., Leurent, G., Naya-Plasencia, M., Perrin, L., Schrottenlo-
her, A., Sibleyras, F.: New results on Gimli: full-permutation distinguishers and
improved collisions. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020. LNCS,
vol. 12491, pp. 33–63. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
64837-4 2

12. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: ACM
STOC 1996, pp. 212–219. ACM (1996)

13. Guo, J., Ling, S., Rechberger, C., Wang, H.: Advanced meet-in-the-middle preim-
age attacks: first results on full tiger, and improved results on MD4 and SHA-2. In:
Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 56–75. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-17373-8 4

14. Hosoyamada, A., Sasaki, Y.: Finding hash collisions with quantum computers by
using differential trails with smaller probability than birthday bound. In: Canteaut,
A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12106, pp. 249–279. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-45724-2 9

15. Hosoyamada, A., Sasaki, Y.: Quantum collision attacks on reduced SHA-256 and
SHA-512. IACR Cryptology ePrint Archive 2021/292 (2021). The full version of
this paper

16. Hosoyamada, A., Yasuda, K.: Building quantum-one-way functions from block
ciphers: Davies-Meyer and Merkle-Damg̊ard constructions. In: Peyrin, T., Gal-
braith, S. (eds.) ASIACRYPT 2018. LNCS, vol. 11272, pp. 275–304. Springer,
Cham (2018). https://doi.org/10.1007/978-3-030-03326-2 10

17. Indesteege, S., Mendel, F., Preneel, B., Rechberger, C.: Collisions and other non-
random properties for step-reduced SHA-256. In: Avanzi, R.M., Keliher, L., Sica,
F. (eds.) SAC 2008. LNCS, vol. 5381, pp. 276–293. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-04159-4 18

18. Isobe, T., Shibutani, K.: Preimage attacks on reduced tiger and SHA-2. In: Dunkel-
man, O. (ed.) FSE 2009. LNCS, vol. 5665, pp. 139–155. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-03317-9 9

https://doi.org/10.1007/978-3-319-70697-9_8
https://doi.org/10.1007/978-3-662-48800-3_25
https://doi.org/10.1007/978-3-662-48800-3_25
https://doi.org/10.1007/978-3-030-64834-3_25
https://doi.org/10.1007/978-3-662-46706-0_24
https://doi.org/10.1007/978-3-662-46706-0_24
https://doi.org/10.1007/978-3-030-64837-4_2
https://doi.org/10.1007/978-3-030-64837-4_2
https://doi.org/10.1007/978-3-642-17373-8_4
https://doi.org/10.1007/978-3-030-45724-2_9
https://doi.org/10.1007/978-3-030-03326-2_10
https://doi.org/10.1007/978-3-642-04159-4_18
https://doi.org/10.1007/978-3-642-03317-9_9

Quantum Collision Attacks on Reduced SHA-256 and SHA-512 645

19. Jaques, S., Schanck, J.M.: Quantum cryptanalysis in the RAM model: claw-finding
attacks on SIKE. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS,
vol. 11692, pp. 32–61. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
26948-7 2

20. Khovratovich, D., Rechberger, C., Savelieva, A.: Bicliques for preimages: attacks
on Skein-512 and the SHA-2 family. In: Canteaut, A. (ed.) FSE 2012. LNCS, vol.
7549, pp. 244–263. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-34047-5 15

21. Landelle, F., Peyrin, T.: Cryptanalysis of full RIPEMD-128. In: Johansson, T.,
Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 228–244. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9 14

22. Leurent, G., Peyrin, T.: SHA-1 is a shambles: first chosen-prefix collision on SHA-
1 and application to the PGP web of trust. In: Capkun, S., Roesner, F. (eds.)
USENIX Security 2020, pp. 1839–1856. USENIX Association (2020)

23. Li, J., Isobe, T., Shibutani, K.: Converting meet-in-the-middle preimage attack
into pseudo collision attack: application to SHA-2. In: Canteaut, A. (ed.) FSE
2012. LNCS, vol. 7549, pp. 264–286. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-34047-5 16

24. Liu, F., Dobraunig, C., Mendel, F., Isobe, T., Wang, G., Cao, Z.: New semi-free-
start collision attack framework for reduced RIPEMD-160. IACR Trans. Symmet-
ric Cryptol. 2019(3), 169–192 (2019)

25. Liu, F., Mendel, F., Wang, G.: Collisions and semi-free-start collisions for round-
reduced RIPEMD-160. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS,
vol. 10624, pp. 158–186. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-70694-8 6

26. Mendel, F., Nad, T., Schläffer, M.: Cryptanalysis of round-reduced HAS-160. In:
Kim, H. (ed.) ICISC 2011. LNCS, vol. 7259, pp. 33–47. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-31912-9 3

27. Mendel, F., Nad, T., Schläffer, M.: Finding SHA-2 characteristics: searching
through a minefield of contradictions. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT
2011. LNCS, vol. 7073, pp. 288–307. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-25385-0 16

28. Mendel, F., Nad, T., Schläffer, M.: Finding collisions for round-reduced SM3. In:
Dawson, E. (ed.) CT-RSA 2013. LNCS, vol. 7779, pp. 174–188. Springer, Heidel-
berg (2013). https://doi.org/10.1007/978-3-642-36095-4 12

29. Mendel, F., Nad, T., Schläffer, M.: Improving local collisions: new attacks on
reduced SHA-256. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013.
LNCS, vol. 7881, pp. 262–278. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-38348-9 16

30. Mendel, F., Peyrin, T., Schläffer, M., Wang, L., Wu, S.: Improved cryptanalysis of
reduced RIPEMD-160. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013. LNCS,
vol. 8270, pp. 484–503. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-42045-0 25

31. Mendel, F., Pramstaller, N., Rechberger, C., Rijmen, V.: Analysis of step-reduced
SHA-256. In: Robshaw, M. (ed.) FSE 2006. LNCS, vol. 4047, pp. 126–143. Springer,
Heidelberg (2006). https://doi.org/10.1007/11799313 9

32. National Institute of Standards and Technology: Secure Hash Standard (SHS).
FIPS PUB 180–4 (August 2015)

33. Nikolić, I., Biryukov, A.: Collisions for step-reduced SHA-256. In: Nyberg, K. (ed.)
FSE 2008. LNCS, vol. 5086, pp. 1–15. Springer, Heidelberg (2008). https://doi.
org/10.1007/978-3-540-71039-4 1

https://doi.org/10.1007/978-3-030-26948-7_2
https://doi.org/10.1007/978-3-030-26948-7_2
https://doi.org/10.1007/978-3-642-34047-5_15
https://doi.org/10.1007/978-3-642-34047-5_15
https://doi.org/10.1007/978-3-642-38348-9_14
https://doi.org/10.1007/978-3-642-34047-5_16
https://doi.org/10.1007/978-3-642-34047-5_16
https://doi.org/10.1007/978-3-319-70694-8_6
https://doi.org/10.1007/978-3-319-70694-8_6
https://doi.org/10.1007/978-3-642-31912-9_3
https://doi.org/10.1007/978-3-642-25385-0_16
https://doi.org/10.1007/978-3-642-25385-0_16
https://doi.org/10.1007/978-3-642-36095-4_12
https://doi.org/10.1007/978-3-642-38348-9_16
https://doi.org/10.1007/978-3-642-38348-9_16
https://doi.org/10.1007/978-3-642-42045-0_25
https://doi.org/10.1007/978-3-642-42045-0_25
https://doi.org/10.1007/11799313_9
https://doi.org/10.1007/978-3-540-71039-4_1
https://doi.org/10.1007/978-3-540-71039-4_1

646 A. Hosoyamada and Y. Sasaki

34. van Oorschot, P.C., Wiener, M.J.: Parallel collision search with application to hash
functions and discrete logarithms. In: ACM CCS 1994, pp. 210–218. ACM (1994)

35. Sanadhya, S.K., Sarkar, P.: 22-step collisions for SHA-2. CoRR abs/0803.1220
(2008)

36. Sanadhya, S.K., Sarkar, P.: New collision attacks against up to 24-step SHA-2.
In: Chowdhury, D.R., Rijmen, V., Das, A. (eds.) INDOCRYPT 2008. LNCS, vol.
5365, pp. 91–103. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-
89754-5 8

37. Stevens, M., Bursztein, E., Karpman, P., Albertini, A., Markov, Y.: The first col-
lision for full SHA-1. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol.
10401, pp. 570–596. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
63688-7 19

38. Zhandry, M.: A note on the quantum collision and set equality problems. Quantum
Info. Comput. 15(7–8), 557–567 (2015)

https://doi.org/10.1007/978-3-540-89754-5_8
https://doi.org/10.1007/978-3-540-89754-5_8
https://doi.org/10.1007/978-3-319-63688-7_19
https://doi.org/10.1007/978-3-319-63688-7_19

Succinct Arguments

Halo Infinite: Proof-Carrying Data
from Additive Polynomial Commitments

Dan Boneh1(B), Justin Drake2, Ben Fisch1, and Ariel Gabizon3

1 Stanford, Stanford, USA
dabo@stanford.edu

2 Ethereum Foundation, Zug, Switzerland
3 AZTEC Protocol, Bury Saint Edmunds, UK

Abstract. Polynomial commitment schemes (PCS) have recently been
in the spotlight for their key role in building SNARKs. A PCS provides
the ability to commit to a polynomial over a finite field and prove its
evaluation at points. A succinct PCS has commitment and evaluation
proof size sublinear in the degree of the polynomial. An efficient PCS
has sublinear proof verification. Any efficient and succinct PCS can be
used to construct a SNARK with similar security and efficiency charac-
teristics (in the random oracle model).

Proof-carrying data (PCD) enables a set of parties to carry out an
indefinitely long distributed computation where every step along the way
is accompanied by a proof of correctness. It generalizes incrementally ver-
ifiable computation and can even be used to construct SNARKs. Until
recently, however, the only known method for constructing PCD required
expensive SNARK recursion. A system called Halo first demonstrated
a new methodology for building PCD without SNARKs, exploiting an
aggregation property of the Bulletproofs inner-product argument. The
construction was heuristic because it makes non-black-box use of a con-
crete instantiation of the Fiat-Shamir transform. We expand upon this
methodology to show that PCD can be (heuristically) built from any
homomorphic polynomial commitment scheme (PCS), even if the PCS
evaluation proofs are neither succinct nor efficient. In fact, the Halo
methodology extends to any PCS that has an even more general prop-
erty, namely the ability to aggregate linear combinations of commitments
into a new succinct commitment that can later be opened to this linear
combination. Our results thus imply new constructions of SNARKs and
PCD that were not previously described in the literature and serve as a
blueprint for future constructions as well.

1 Introduction

A polynomial commitment scheme (PCS) enables a prover to commit to a poly-
nomial f ∈ F[X] of degree at most d. Later, given two public values x, y ∈ F,
the prover can convince a verifier that the committed polynomial f satisfies
y = f(x) and that f has degree at most d. This is done using a public coin
evaluation protocol called Eval. The PCS is said to be efficient if the verifier
c© International Association for Cryptologic Research 2021
T. Malkin and C. Peikert (Eds.): CRYPTO 2021, LNCS 12825, pp. 649–680, 2021.
https://doi.org/10.1007/978-3-030-84242-0_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-84242-0_23&domain=pdf
https://doi.org/10.1007/978-3-030-84242-0_23

650 D. Boneh et al.

runs in time o(d log |F|), and is said to be succinct if the commitment string and
the communication complexity of Eval is o(d log |F|).

This important concept was first introduced by Kate, Zaverucha, and Gold-
berg (KZG) [54], and has emerged as a key tool for building succinct and efficient
non-interactive argument systems called SNARKs [14]. A succinct and efficient
PCS can be used to compile an information theoretic interactive proof system
known as a Polynomial Interactive Oracle Proof [23] (PIOP), or equivalently
Algebraic Holographic Proofs [32]), into a SNARK. There are many examples
of efficient PIOPs for NP languages, where the verifier complexity is logarith-
mic or even constant in the size of the statement being proven. This construc-
tion paradigm led to several recent SNARK systems with improved character-
istics, including very efficient pre-processing SNARKs with a universal trusted
setup [32,42,59] or no trusted setup [23,34,55,63].

The original PCS, called the KZG PCS [54], is both efficient and succinct.
It is based on pairings and requires a linear size reference string generated by a
trusted setup (a recent improvement shrinks the size of the reference string [24]).
Another PCS, called the Bulletproofs PCS [19,22], does not require pairings or a
trusted setup, and is succinct, but is not efficient. Some schemes are both efficient
and succinct and do not require a trusted setup: DARK [23] is based on groups of
unknown order, and very recently Dory [57] uses pairing-based commitments and
generalized inner-product arguments [24]. A post-quantum efficient and succinct
PCS without trusted setup can be built using FRI [13,55,65]. In practice, these
schemes all have very different performance profiles and properties.

A proof-carrying data (PCD) system [15,35] is a powerful primitive that
is more general than a SNARK. Consider a distributed computation that
runs along a path of t ordered nodes. The computation is defined by a func-
tion F : F

�1 × F
�2 → F

�1 in which node i takes two inputs: the output
zi−1 ∈ F

�1 of node (i − 1), and a local input loci ∈ F
�2 . The node outputs

zi = F (zi−1, loci) ∈ F
�1 . A PCD system enables each node to provide a proof

to the next node which attests not only to the correctness of its local com-
putation, but also to the correctness of all prior computations along the path.
The work to produce/verify each local proof is proportional to the size of the
local computation and is independent of the length of the path. A PCD system
can be more generally applied to any distributed computation over a directed
acyclic graph of nodes. An important performance metric of a PCD system is
its recursion threshold : the minimum size complexity of F for which recursion is
possible. PCD is currently being used in practice to construct a “constant-size
blockchain” system [18,56], where the latest proof attests to the validity of all
state transitions (i.e., transactions) in the blockchain history.

PCD systems generalize incrementally verifiable computation (IVC), pro-
posed by Valiant [64], where a machine outputs a proof after each step of com-
putation that attests to the correct history of computation steps. This can be
used to construct SNARKs for succinct bounded RAM programs, which captures
many programs in practice that have a small memory footprint relative to their

Halo Infinite: Proof-Carrying Data from Additive Polynomial Commitments 651

running time. It is also theoretically sufficient for constructing preprocessing
SNARKs for arithmetic circuits [9].

1.1 Contributions

We define several abstract properties of a PCS and show that these abstract
properties are sufficient to construct powerful proof systems, including PCD and
IVC. These abstract constructions give a general and unified approach to under-
standing recent PCD constructions. We show that the PCS schemes mentioned
above satisfy some or all of our abstract properties. In some cases, instantiating
our abstract proof systems with these PCS schemes leads to new proof systems
that were not previously known. In fact, we could instantiate the PCS in two
different ways from any collision-resistant linear hash function h : Fd → G, one
that optimizes for the size of proofs passed along nodes of the PCD, and the
other that optimizes for prover time (i.e., the size of the recursive statement).1

We begin by defining an additive PCS as a simple refinement of a PCS,
where the space of commitment strings form a computational group G under
some binary operation add. Group elements must have representation size poly(λ)
in terms of the security parameter λ of the PCS and add must run in time poly(λ).
This means that it is possible to efficiently compute integer linear combinations
of commitments. Moreover, a second requirement is that the prover can efficiently
derive a valid opening string to open the linear combination of commitments to
the same linear combination of the underlying committed polynomials. Because
G is finite, the size of the linearly combined commitments is bounded, indepen-
dent of the number of summands or sizes of the integer coefficients. A trivial way
to impose a group structure on the commitment space of any PCS is to define G

as the group of formal linear combinations of commitment strings, however, this
trivial group is not bounded and therefore does not qualify the PCS as additive.

A useful property of an additive PCS is the ability to aggregate PCS evalua-
tions, akin to signature aggregation. We define two flavors of PCS aggregation
schemes: private and public. First, consider a tuple (C, x, y) ∈ G×F

2, where C
is a commitment to some polynomial f ∈ F

(<d)[X]. We say that the prover has a
witness for this tuple, if when the prover runs the Eval protocol with the verifier
on input (C, x, y), the verifier accepts with probability one. A (private) aggre-
gation scheme is an interactive protocol between a prover and a verifier where
the public input known to both is � tuples (C1, x1, y1), . . . , (C�, x�, y�) ∈ G×F

2,
and the public output is a single tuple (C∗, x∗, y∗) ∈ G × F

2. At the end of the
protocol, the verifier is convinced that if the prover has a witness for (C∗, x∗, y∗),
then it must also have witnesses for (Ci, xi, yi) for all i ∈ [�]. A private aggrega-
tion scheme is non-trivial if it is more efficient than running the Eval protocol
on the � + 1 tuples. It is efficient if the verifier complexity is sublinear in the
degree of the committed polynomials.

1 A homomorphism h : Zd → G that is collision-resistant modulo p suffices, i.e. finding
collisions where x �= y mod p is intractable.

652 D. Boneh et al.

A public aggregation scheme enables a prover who does not know the
witnesses for the � input tuples to aggregate the non-interactive proofs for these
tuples. This is also a two-party protocol where, for each i ∈ [�], both parties
receive a tuple (Ci, xi, yi) ∈ G×F

2 and a corresponding non-interactive proof πi.
The common output is a tuple (C∗, x∗, y∗) ∈ G × F

2 for which the prover has
a witness. The prover can subsequently produce a non-interactive proof for this
output tuple. Informally, a valid proof for the output tuple demonstrates the
validity of each input proof for the input tuples. As there is no information
asymmetry between the two parties, the protocol is only interesting if the verifier
does significantly less work than the prover.

A key theorem of this paper is that every additive PCS has an efficient
private aggregation scheme. In fact, the theorem is more general. It is possible
that a PCS is not additive, but there is still an efficient algorithm that takes
as input a list of � commitments along with � integer coefficient weights, and
outputs a new poly(λ)-size commitment in G to the linear combination of the
underlying committed input polynomials, along with a proof of correctness. We
call this a linear combination scheme (LCS). The LCS is efficient if the
verifier is sublinear in the degree of the committed polynomials. Moreover, if the
LCS verifier complexity is asymptotically faster than running the Eval verifier �
times, then we call the PCS linearly amortizable because it allows for opening
linear combinations of commitments with amortized efficiency gains. If the PCS
is additive it suffices to compute linear combinations of commitments over G and
no additional proof is required, hence every additive PCS is linearly amortizable.
We prove that:

Theorem 1.1 (informal). Every PCS that has an efficient linear combination
scheme has an efficient private aggregation scheme. Every succinct additive PCS
has an efficient public aggregation scheme.

The formal statement of this result is in Theorem 4.2 and Theorem 5.2. As
a concrete implication, we can take any linear collision-resistant hash function
h : F

d → G and build a trivial PCS where the evaluation proof outputs the
entire polynomial. Although this is not succinct, it is still additive and thus, as
the theorem states, it has an efficient private aggregation scheme. Additionally,
combining this hash function with a succinct protocol for proving pre-images of
h would give a succinct additive PCS, which has an efficient public aggregation
scheme. In fact, there exists a generic succinct protocol for proving pre-images
of h (Sect. 5).

The first part of the result (private aggregation, Theorem 4.2) is based on
a novel batched evaluation protocol for opening commitments to distinct poly-
nomials at distinct points. Previously, standard batched evaluation techniques
for homomorphic polynomial commitments included: (1) opening distinct com-
mitments at the same point, and (2) opening a single commitment at multiple
points. The first is accomplished by opening a random linear combination of the
original commitments. The second is accomplished by interpolating a degree-n
polynomial t over the n opening points such that the committed polynomial f is

Halo Infinite: Proof-Carrying Data from Additive Polynomial Commitments 653

equal to t over the domain H of these points, and proving that f − t is divisible
by the zero polynomial zH over this domain. The prover computes a commit-
ment Cq to the quotient polynomial q := f−t

zH
and proves that q · ZH = (f − t)

by opening Cq and Cf at a random challenge point. Both of these standard
batch evaluation protocols are single-round. We elegantly compose these two
approaches to get a two-round protocol for batch opening multiple polynomials
at multiple points. While the analysis of the standard batch evaluation protocol
for a multiple commitments at a common point is based on the invertibility of
a Vandermonde matrix, the analysis of our protocol relies on the invertibility of
the Hadamard product of a random Vandermonde matrix with a square matrix
of non-zero field elements (Lemma 4.7).

Our result for public aggregation (Theorem 5.2) leverages the generic private
aggregation scheme from Theorem 4.2 combined with a generic succinct proof
of knowledge of the classical homomorphism pre-image problem (Sect. 5), which
has its roots in the Bulletproofs protocol. Public aggregation is a factor O(log d)
more costly (in communication size) than private aggregation.

Aggregation schemes have a number of important applications to construct-
ing PCS-based SNARKs. First, aggregation schemes can be used for batch eval-
uation of polynomial commitments in order to reduce the work of the verifier
(Sect. 4). Second, in Sect. 6 we discuss a fascinating and powerful application
of PCS aggregation to recursive proof systems. This application generalizes a
construction by Bowe, Grigg, and Hopwood called Halo [21], which was also
formalized and generalized by Bünz et al. [26].

PCD and IVC from PCS aggregation. Suppose F : F� → F
� and we wish to

prove the correctness of t iterations of F , i.e. that F (t)(z0) = zt. It turns out that
given any succinct PCS with an efficient aggregation scheme, it is possible to con-
struct an efficient non-interactive proof system for this type of statement whose
proof size and verification complexity is proportional to the size and verification
complexity of the PCS on polynomials of degree |F |, completely independent of t.
As our results have shown, this includes any additive PCS and even non-additive
schemes that have an efficient linear combination scheme. Most significantly, the
PCS itself does not need to have efficient verification.

In fact, a PCS with an efficient aggregation scheme can be used to construct
a PCD system. Not only does this mean that PCD, IVC, and preprocessing
SNARKs can be constructed from any PCS with an efficient linear combina-
tion scheme, but we also expect this should lead to practical improvements over
the prior proof bootstrapping techniques [9,34] whenever the verification com-
plexity of the private aggregation is smaller than the verification complexity of
Eval. We leave concrete performance analysis for future work, although follow
up work [25] has already shown that the instantiation of PCD based on our
private aggregation scheme using a simple Pedersen hash function achieves an
order-of-magnitude reduction in the size of the recursive statement (reducing
the recursion threshold accordingly).

654 D. Boneh et al.

Theorem 1.2 (informal). PCD with proofs linear in the predicate size can be
constructed from any PCS that has an efficient linear combination scheme. PCD
with sublinear proofs can be constructed from any PCS with an efficient public
aggregation scheme.

In summary, our results pave the way for novel constructions of PCD, IVC,
and SNARKs with new efficiency and security characteristics by directing the
research effort towards PCS constructions that have the simple abstract additiv-
ity properties formalized in this paper. The constructions of PCD/IVC following
this methodology do require a heuristic security assumption because they involve
instantiating random oracles (more specifically, the Fiat-Shamir transform) with
concrete hash functions. All known constructions of PCD/IVC require heuris-
tic security (i.e., knowledge assumptions or concrete instantiations of random
oracles) and there is evidence that this is inherent [33].

1.2 Related Work

The construction of general purpose efficient SNARK systems is a hotly pursued
topic. There are many examples of such proof systems that work for any NP
relation [8,15,16,21,23,32,34,42,43,46,47,50,58–60,63]. In addition to the PCS
constructions mentioned earlier, there is also a scheme by Bootle et al. [19]
that achieves

√
n commitment size and Eval complexity based on any additively

homomorphic commitment, and a similar lattice-based construction by Baum
et al. [4,5]. In Sect. 5 we describe a construction of a PCS from any collision-
resistant homomorphism based on our succinct proof of homomorphism pre-
images (HPI) that has constant size commitment, logarithmic size proofs and
linear verification time.2 Attema and Cramer [2] described a generalization of
Bulletproofs to proving linear forms of Pedersen committed vectors, which is a
special case of our HPI protocol.

Constructions of IVC/PCD use recursive composition, which enables the
prover to prove knowledge of a proof that the verification algorithm would accept.
Until recently, constructions following this paradigm placed a complete descrip-
tion of the proof verifier inside the recursive statement. Thus, PCD was limited
to proof systems where the verifier description is sublinear in the statement
being proven (i.e., SNARKs) [12,15,34,64]. The Halo protocol [21,26] was the
first construction of PCD from an underlying inefficient proof system (combining
the Sonic PIOP [59] and the Bulletproofs PCS). There were two key ideas. The
first was, in our terminology, a public aggregation scheme for the Bulletproofs
PCS. The second was that the recursive statement can omit the inefficient por-
tion of the proof system’s verifier, i.e. the Eval verifier. The Eval proof inputs to
a PCD step are aggregated along with the output Eval proofs, and the recursive
statement only checks that aggregation was done correctly. This aggregates all

2 This can be combined with the technique of Bootle et al. [19] to get a PCS with√
n commitment size,

√
n verification time, and logarithmic proof size based on any

collision-resistant homomorphism. We do not include the details in this work.

Halo Infinite: Proof-Carrying Data from Additive Polynomial Commitments 655

Eval proofs into a single evaluation proof that is checked once at the end, amor-
tizing the cost of Eval verification over the distributed computation length (i.e.,
recursion depth). Bünz et al. [26] generalize this proof technique further using a
primitive they call SNARK accumulation schemes. They also define PCS accu-
mulation schemes, which can be combined with PIOP-based SNARKs to get a
SNARK accumulation scheme. Our notion of public aggregation coincides with
PCS accumulation. A small tweak to the definition of PCS accumulation we
call private accumulation coincides with private aggregation and can be used to
construct PCD with larger proofs (linear in the predicate size). Our results are
thus perfectly complementary.

2 Preliminaries

Basic notations. For an integer n ≥ 1, we write [n] to denote the set of integers
{1, . . . , n}. For any mathematical set S the notation |S| denotes the cardinality
of S. Unless specified otherwise, we use λ to denote the security parameter. We
say a function f(λ) is negligible in λ, denoted by negl(λ), if f(λ) = o(1/λc) for
all c ∈ N. We say an algorithm is efficient if it runs in probabilistic polynomial
time in the length of its input. We use poly(λ) to denote a quantity whose value
is bounded by a fixed polynomial in λ. For a field F, we use F(<d)[X] for the set of
polynomials in F[X] of degree at most d. We use {0, 1}∗ to denote binary strings
of arbitrary length and ε to denote the empty string. We may use the notations
Fp and Zp interchangeably to denote the unique prime field of characteristic
p. For modular arithmetic, we use the notation a ≡ b (mod n) to denote that
integers a, b ∈ Z are equivalent modulo n ∈ Z. The notation a mod n denotes
the unique integer b ∈ [0, n) such that a ≡ b (mod n).

For an abstract group, G denotes the set of elements in the group, and for
any g1, g2 ∈ G the element g1 + g2 is the result of applying the binary operation
to g1 and g2. The inverse of g ∈ G is denoted −g and g1 − g2 := g1 + (−g2).
For any n ∈ N and g ∈ G the element n · g is defined as adding n copies of
g. For n ∈ Z, n < 0, then n · g is defined as −(|n| · g). The group G is called
a computational group if there exist efficient algorithms for implementing the
addition and inversion operations.

Proofs of knowledge. An NP relation R is a subset of strings x,w ∈ {0, 1}∗

such that there is a decision algorithm to decide (x,w) ∈ R that runs in time
polynomial in |x| and |w|. The language of R, denoted LR, is the set {x ∈
{0, 1}∗ : ∃w ∈ {0, 1}∗ s.t. (x,w) ∈ R}. The string w is called the witness and
x the instance. An interactive proof of knowledge for an NP relation R
is a special kind of two-party interactive protocol between a prover denoted
P and a verifier denoted V, where P has a private input w and both parties
have a common public input x such that (x,w) ∈ R. Informally, the protocol
is complete if P(w) always causes V(pp, x) to output 1 for any (x,w) ∈ R. The
protocol is knowledge sound if there exists an extraction algorithm E called the
extractor such that for every x and adversarial prover A that causes V(pp, x) to

656 D. Boneh et al.

output 1 with non-negligible probability, E outputs w such that (x,w) ∈ R with
overwhelming probability given access3 to A.

Definition 2.1 (Interactive Proof with Efficient4 Prover). Let Setup(λ)
denote a non-interactive setup algorithm that outputs public parameters pp given
a security parameter λ. Let Π

(
P(w),V(pp, x)

)
denote a two-party interactive

protocol between P and V, where P has private input w and V has the common
public input (pp, x). Let 〈P(w),V(pp, x)〉 be a random variables that is the output
of V. All algorithms run in time poly(λ, |pp|, |x|, |w|). The pair (Setup,Π) is
called a proof of knowledge for relation R if for all non-uniform adversaries A
the following properties hold:

– Perfect Completeness.

Pr

[
(x, w) �∈ R or

〈P(w), V(pp, x)〉 = 1
:

pp ← Setup(λ)
(x, w) ← A(pp)

]
= 1

– Knowledge soundness [6] There exists a probabilistic oracle machine E called
the extractor such that for every adversarial interactive prover algorithm A
that is only given the public inputs (pp, x) and every x ∈ LR the following
holds: if 〈A(·),V(pp, x)〉 = 1 with probability ε(x) > negl(λ) then EA(pp, x)
with oracle access to A runs in time poly(|x|, λ) and outputs w such that
(x,w) ∈ R with probability 1 − negl(λ).

Forking lemmas. The following “forking lemma” is helpful for proving knowl-
edge soundness of multi-round public coin interactive protocols over an exponen-
tially large challenge space (i.e., where each verifier message is a uniform sample
from a space X that has size at least 2λ). It says that if the adversary succeeds
with non-negligible probability ε = 1/poly(λ), then there is an O(poly(λ))-time
algorithm for generating a tree of accepting transcripts defined as follows. For
an r-round protocol, an (n1, ..., nr)-tree of accepting transcripts for ni ≥ 0
is a tree where (i) every node v of the tree corresponds to a partial transcript trv,
(ii) every level-i node v has ni children nodes that correspond to continuations
of trv with distinct ith round challenges, and (iii) every leaf node corresponds
to a full transcript in which the verifier accepts. More generally, the property
that each pair of challenges on sibling nodes are distinct can be replaced with
any property π : X 2 → {0, 1} which outputs 1 on a random pair of challenges
with overwhelming probability. This forking lemma generalizes a similar lemma
by Bootle et al. [19]. We provide a proof in the full version.

3 The extractor can run A for any specified number of steps, inspect the internal state
of A, and even rewind A to a previous state.

4 A classical interactive proof does not require the prover to be efficient. However, our
definition of an interactive proof with efficient prover should also not be confused
with an interactive argument, which only requires soundness against efficient adver-
saries. In our definition, the prover is required to be efficient for correctness, but
soundness must hold against adversaries with unbounded running time.

Halo Infinite: Proof-Carrying Data from Additive Polynomial Commitments 657

Lemma 2.2 (Forking Lemma). Let (P,V) be an r-round public-coin inter-
active proof system and A an adversary that runs in expected time tA such
that 〈A(·),V(pp, x)〉 = 1 with probability ε on public input x and public param-
eters pp. Let {πi}r

i=1 be a set of properties πi : X 2 → {0, 1} such that
∀i Pr[π(x1, x2) = 1 : x1, x2 ←$ X] > 1−negl(λ). If r ∈ O(log λ) then for any con-
stants n1, ..., nr ∈ N there exists an algorithm T that runs in time poly(λ)·(tA/ε)
and with probability at least 1−negl(λ)/ε2 outputs an (n1, ..., nr)-tree of accepting
transcripts such that for i ∈ [1, r] all pairs of sibling-node challenges x1, x2 ∈ X
at level i satisfy πi(x1, x2) = 1.

Fiat-Shamir tranform. The Fiat-Shamir transform preserves knowledge
soundness for any constant-round public-coin interactive proof in the random
oracle model, i.e. when the “hash function” is modeled as a random oracle [45,62].
The interactive protocol must have a negligible soundness error. More gen-
erally, Fiat-Shamir preserves knowledge soundness for multi-round interactive
proofs that satisfy a property called state restoration soundness [11], also equiv-
alent to round-by-round soundness [27,52]. There are also special classes of
constant-round protocols for which the Fiat-Shamir transform can be instan-
tiated using correlation-intractable hash functions [27,28,53], or even simpler
non-cryptographic hash functions [29]. In general, the security of the Fiat-Shamir
transform applied to a knowledge-sound interactive proof system using a con-
crete hash function is heuristic. There are known examples where the transform
fails to preserve soundness.

Definition 2.3. A knowledge-sound interactive proof system (P,V) is FS com-
patible if there exists a hash family H such that the non-interactive proof system
(PFS,VFS) obtained from applying Fiat-Shamir using an explicit hash sampled
from H is knowledge-sound.

Zero Knowledge. An interactive proof satisfies honest verifier zero-
knowledge (HVZK) if there exists a simulator that does not have access to
the prover’s private witness yet can produce convincing transcripts between the
prover and an honest verifier that are statistically indistinguishable from real
transcripts. The Fiat-Shamir transform compiles public-coin proofs that have
HVZK into non-interactive proofs that have statistical zero-knowledge (for pos-
sibly malicious verifiers).

2.1 Polynomial Commitment Scheme (PCS)

A polynomial commitment scheme, or PCS, is a triple of PPT algorithms,
Setup, Commit, and Verify along with an evaluation protocol Eval, where:

– Setup(λ, d) → pp a deterministic algorithm that outputs public parameters
pp for committing to polynomials of degree d. The parameters pp include a
specification of an abelian commitment group G, as defined below.

658 D. Boneh et al.

– Commit(pp, f) → (C, open) outputs a commitment C ∈ G to the polynomial
f ∈ F

(<d)[X] and an opening “hint” open ∈ {0, 1}∗.

– Verify(pp, f, open,C) checks the validity of an opening hint open for a com-
mitment C ∈ G to the polynomial f ∈ F

(<d)[X] and outputs 1 (accept) or 0
(reject).

– Eval
(
P(f, open),V(pp,C, z, y)

)
→ (⊥, b) is a public-coin interactive protocol

between a prover who has the private input (f, open) for f ∈ F
(<d)[X] and

a verifier who has the common public input pp and (C, z, y) ∈ G × F
2. The

verifier outputs b ∈ {0, 1} and the prover has no output. The purpose of the
protocol is to convince the verifier that f(z) = y and deg(f) < d.

All the algorithms run in time polynomial in λ and d. Furthermore, a scheme
is correct if for all polynomials f ∈ F

(<d)[X] and all points z ∈ F, with proba-
bility 1 the verification Verify(pp, f, open,C) outputs 1 and likewise V outputs 1
in interaction with P in the Eval protocol on valid inputs.

Commitment group. A commitment group G is a computational group
accompanied by two PPT algorithms: if openf and openg are opening hints for
commitments Cf and Cg to polynomials f, g ∈ F

(<d)[X], then add∗(openf , openg

)

outputs an opening for Cf +Cg to the polynomial f+g and invert∗(openf) outputs
an opening for −Cf to the polynomial −f . This is a non-standard part of the
PCS definition and may appear overly restrictive. However, it does not reduce
the generality of a PCS. The default way to define G is the space of formal linear
combinations of commitments to elements of F(<d)[X]. The default add∗ would
simply be concatenation.

Explicit specification of G, add∗, and invert∗ is convenient for defining the
additivity properties of a PCS discussed in Sect. 3. This also serves to highlight
how additivity is merely a refinement on G. The existence of G, add∗, and invert∗

is not a distinguished property on its own.

Efficiency/Succinctness. If the Eval verifier runs in time o(d), i.e. sublinear in
the degree of the committed polynomial, then the PCS is called efficient. If both
the size of commitments and communication complexity of the Eval protocol are
o(d) then the scheme is called succinct.

A PCS could be succinct and not efficient. One example is a PCS based
on the Bulletproofs system [19,22]. Some PCS applications may have stricter
efficiency/succinctness requirements (e.g., polylog(d) length or run time). A non-
succinct PCS is only interesting if it is hiding, and only distinguished from a
regular hiding commitment scheme if it has a zero-knowledge evaluation protocol
(defined below).

Non-interactive. Eval An interactive PCS Eval protocol may be compiled into
a non-interactive Eval proof via the Fiat-Shamir transform. We use the notation
π ← NI-Eval

(
pp, f, open, C, x, y

)
and b ← VEval(pp, π, C, x, y). The PCS Eval may

already be non-interactive (e.g., KZG [54]) in which case Fiat-Shamir is not
needed.

Halo Infinite: Proof-Carrying Data from Additive Polynomial Commitments 659

Security properties. The scheme’s algorithms (Setup,Commit,Verify) must
be binding as a standard commitment scheme. Furthermore, the protocol Eval
should be complete and a proof of knowledge. Informally, this means that any
successful prover in the Eval protocol on common input (C, z, y) must know a
polynomial f(X) ∈ F

(<d)[X] such that f(z) = y and C is a commitment to
f(X). The two of these properties together also imply that the scheme is eval-
uation binding, which means that no efficient adversary can output pp and two
pairs (C, z, y) and (C, z, y′) where y = y′, and then succeed in Eval on both
pairs (C, z, y) and (C, z, y′). The requirement that Eval is a proof of knowledge
is stronger than evaluation binding alone, but is necessary for the application to
SNARKs.

Definition 2.4 (Binding PCS). A PCS is binding if for all PPT adversaries
A:

Pr

⎡
⎢⎢⎣b0 = b1 = 1 ∧ f0 �= f1 :

pp ← Setup(λ, d)
(f0, open0,C0, f1, open1,C1) ← A(pp)
b0 ← Verify(pp, f0, open0,C0)
b1 ← Verify(pp, f1, open1,C1)

⎤
⎥⎥⎦ ≤ negl(λ)

Definition 2.5 (Knowledge soundness). A PCS has knowledge sound-
ness if for all pp output by Setup(λ, d) and d ∈ N, the interactive public-coin
protocol Eval is a proof of knowledge for the NP relation REval(pp, d) defined as
follows:

REval(pp, d) =

{〈
(C, z, y), (f, open)

〉
:

f ∈ F
(<d)[X] ∧ f(z) = y

Verify(pp, f, open,C) = 1

}

Hiding and Zero Knowledge. A PCS scheme hiding if it satisfies the stan-
dard definition of a hiding commitment, i.e. commitments to distinct polynomials
are statistically indistinguishable. A PCS scheme is zero-knowledge if its Eval
protocol is a public-coin HVZK interactive proof for the relation REval(pp, d).

Bounded witness ZK. Eval The regular definition of a zero-knowledge PCS
scheme requires that the Eval protocol is a zero-knowledge proof for the relation
REval(pp, d). This means that Eval cannot leak any information at all about
the prover’s witness (f, open) for the commitment open, other than the public
statements f(z) = y, f ∈ F

(<d)[X], and open is valid. Some schemes, such as
DARK [23], do not satisfy this strongest definition of zero-knowledge, but rather
satisfy a weaker zero-knowledge PCS property that is generally sufficient in
practice. Let H be a set containing all possible opening hints and let N : H → R

be any non-negative efficiently computable function. Let {Eval(B) : B ∈ R}
denote a family of evaluation protocols that take an extra parameter B ∈ R. A
PCS satisfies bounded witness zero-knowledge for N if Eval(B) is a public-
coin HVZK interactive proof for the modified relation:

REval(pp, d, N , B) =

{〈
(C, z, y), (f, open)

〉
:

f ∈ F
(<d)[X] ∧ f(z) = y ∧ N (open) ≤ B

Verify(pp, f, open,C) = 1

}

660 D. Boneh et al.

“Relaxed” PCS openings. For any PCS scheme, the Verify function can be
relaxed such that it will accept an opening of the commitment t · Cf to the
polynomial h = t·f for a integer t ∈ Z as a valid opening of Cf to the polynomial
f .

Lemma 2.6. Let PCS = (Setup,Commit,Verify,Eval) denote a PCS for polyno-
mials over a field F of characteristic p. If the algorithm Verify is replaced with
an algorithm Verify∗ that accepts (f, (t, open),C) if and only if t = 0 mod p and
Verify accepts (h, open, t · C) where h = t · f , then the new PCS is still binding.

Proof. Suppose an adversary outputs openings (f1, (t1, open1)) and (f2,
(t2, open2)) to a commitment C such that Verify∗ accepts both and f1 = f2.
This implies that Verify accepts both (h1, open1, t1 · C) and (h2, open2, t2 · C)
where h1 = t1 ·f1 and h2 = t2 ·f2. Using the add∗ operation, it would be possible
to compute valid openings of t1t2 ·C to both t1h2 = t1t2 · f2 and t2h1 = t1t2 · f1.
Since f1 = f2 it follows that t1h2 = t2h1. Thus, this would contradict the binding
property of the original PCS. ��

Lemma 2.7. Given two vectors of commitments C,C∗ ∈ G
n, a system of

equations AC = C∗ for an integer matrix A ∈ Z
n×n that is invertible

over Fp, and a vector of openings of C∗ to a vector of polynomials f∗ =
(f∗

1 , ..., f∗
n) ∈ (F(<d)[X])n, there is an efficient algorithm to derive polynomi-

als f = (f1, ..., fn) ∈ (F(<d)[X])n, an integer t ∈ Z such that t = 0 mod p, and
openings for each t·Ci to the polynomial t·fi mod p such that A·f ≡ f∗ (mod p).

Proof. Since det(A) = 0, the matrix A is invertible over Q. Let A−1 denote the
inverse of A over Q and let I denote the identity matrix over Z. Set L to be the
matrix obtained by clearing the denominators of A−1, i.e. L = t · A−1 where
t = 0 is the least common multiple of all denominators of the rational entries of
A−1. We have t ·C = L ·A ·C = L ·C∗. From each linear combination of C∗, we
use add∗ to derive an opening of t · Ci to a polynomial gi = 〈Li, f∗〉 ∈ F[X]. Let
g = (g1, ..., gn). Finally, solve for the vector of polynomials f such that A · f = f∗

by computing A−1 mod p. Note that L · A · f = t · f = L · f∗. Thus, tfi = gi, for
which we have a valid opening of t · Ci. ��

3 Additive Polynomial Commitments

This section defines an additive PCS as a simple refinement of a PCS, where
the group of commitments is a computational group of bounded size. Recall
that in our definition from Sect. 2.1, a PCS includes a specification of a family
of commitment groups indexed by the parameters (λ, d). We remarked that this
is without loss of generality.

Definition 3.1. A PCS is additive if every abelian commitment group Gλ,d

determined by the public parameters pp ←$ Setup(λ, d) is a computational group
of size at most 2poly(λ). An additive PCS for polynomials in F

(<d)[X] is addi-
tively succinct if the size of Gλ,d is o(|F|d).

Halo Infinite: Proof-Carrying Data from Additive Polynomial Commitments 661

There may be a group G that satisfies the size constraints of Definition 3.1
but does not qualify as a commitment group but the add∗ operation only works
for a bounded number of operations. Examples include DARK and lattice-based
schemes [4,23]. We call them bounded additive.

Definition 3.2. A PCS over a field F is homomorphic if for any λ, d ∈ N the
parameters pp ← Setup(λ, d) determine two computational groups (G,H) and two
polynomial time computable homomorphisms φ : H → G and χ : H → F

(<d)[X]
such that the algorithm Verify(pp, f,C, open) returns 1 if and only if φ(open) = C
and χ(open) = f .

We call H the “hint” group. For a homomorphic PCS to be binding, the
homomorphism φ : H → G must be collision resistant over equivalence classes in
H/ker(χ) (i.e., finding x1, x2 ∈ H such that χ(x1) = χ(x2) and φ(x1) = φ(x2)
must be hard).

An additive PCS gives a homomorphic PCS. Any additive PCS over a
prime field F = Fp and commitment group G, can be efficiently transformed
into a non-hiding homomorphic PCS with the same commitment group G. The
transformation maintains succinctness if the PCS is additively succinct. The new
commitment algorithm will give a homomorphism φ : Zd → G.

3.1 Linear Combination Schemes

It is possible that a PCS is not additive, yet there is still an efficient scheme to
linearly combine polynomial commitments into a succinct aggregate commitment
and later open this at points.

Definition 3.3 (Linear Combination Scheme). A linear combination
scheme for a PCS with commitment group G is a public-coin interactive protocol
LinCombine defined as follows. Given any f ∈ F

(<d)[X]�, α ∈ F
�, C ∈ G

�, and a
vector of openings open = (open1, ..., open�) such that Verify(pp, fi, openi,Ci) = 1
for all i ∈ [�], the protocol LinCombine does:

LinCombine
(
P(f , open),V(pp,C,α)

)
→ (open∗, (C∗, b)

)
.

The public output is (C∗, b) ∈ G × {0, 1} where b ∈ {0, 1} indicates success
or failure. The private output is an opening open∗ for C∗ to the polynomial∑�

i=1 αi · fi. As for the security, LinCombine composed with Eval on the output
C∗ is a proof of knowledge for the relation:

RLinComb(pp, d) =

⎧⎨
⎩

〈
(C,C∗, α), (f, open, open∗)

〉
:

(C∗, (f, open∗)) ∈ REval(pp, d)
(C, (f, open)) ∈ REval(pp, d)
C =

∑
i αi · Ci

⎫⎬
⎭

The trivial linear combination scheme simply returns the linear combination
of the input commitments over the commitment group. This clearly satisfies the
security definition because C∗ = C in this case. When a scheme is additively

662 D. Boneh et al.

succinct then the trivial linear combination scheme is the most natural to use.
The purpose of a non-trivial LinCombine is to return a C∗ that is more succinct
than C. We call the scheme size-optimal if the aggregate commitment size is
bounded by the worst case size of commitments to polynomials of degree d.

We remark that every PCS has a relatively uninteresting generic size-optimal
linear combination protocol. The prover can simply compute a fresh commitment
C∗ to f =

∑�
i=1 αi · fi and run � + 1 instances of Eval on C∗ and each Ci at a

common random point ρ selected by the verifier. The verifier can check the linear
relation between the opening value of C∗ at ρ and opening values of the list of Ci

at ρ. This satisfies the security definition simply because the LinCombine protocol
itself is a proof of knowledge of an opening of C∗ to f and each Ci to fi such
that f =

∑
αi · fi. A linear combination scheme is interesting when it is more

efficient than this generic one.
We say that a linear combination scheme is efficient if the verifier complexity

in the protocol LinCombine is sublinear in the maximum degree of the input
polynomials.

3.2 PCS Examples and Their Additive Properties

The table below summarizes the properties of several schemes. All major PCS
constructions have efficient linear combination schemes, which beat the generic
one. The linear combination scheme (LCS) amortization ratio (column 3) indi-
cates the ratio of the communication/verification complexity of using the LCS to
prove the evaluation of a linear combination (i.e. run Eval on the output of the
LCS) versus the generic protocol of running � separate instances of Eval. This
ratio is most relevant for the efficiency of batch evaluation (Sect. 4). The com-
plexity ratio of the LCS verifier to the Eval verifier (column 5) is most relevant
for the efficiency5 of proof recursion (i.e., IVC/PCD) discussed in Sect. 6. The
parameter � is the number of polynomial commitments being linearly combined
and d is their maximum degree.

additive LCS amortization |VLinCombine| |VLinCombine|
|VEval|

Bulletproofs yes 1/� Oλ(�) �/Ω(d)

Dory yes 1/� Oλ(�) �/Ω(log d)

KZG yes 1/� Oλ(�) �/Ω(1)

DARK Bounded 1/� Oλ(�) �/Ω(log d)

FRI: a non-additive PCS. The Fast Reed-Solomon IOP of Proximity (FRI) [7]
is a protocol for proving that a committed vector in F

n is δ-close (in relative

5 The asymptotic ratio for KZG hides the fact that VEval involves a pairing operation
while VLinCombine has only � · λ curve additions and thus is cheaper for small �.

Halo Infinite: Proof-Carrying Data from Additive Polynomial Commitments 663

Hamming distance) to a Reed-Solomon (RS) codeword. FRI can be used to
construct a PCS that is post-quantum.

The FRI PCS is not additive by Definition 3.1, but it does have a protocol for
opening a random linear combination that achieves amortized efficiency ratio of
1
� + 1

Ω(log d) over � commitments, which can also be extended to achieve amortized
batch evaluation (e.g., Algorithm 8.2 of Aurora [10]).

4 Batch Evaluation and Private Aggregation

For the purpose of this section F := Fp, for some prime number p. It may be
possible to generalize our results to work over extension fields, but that is beyond
scope.

The batch evaluation problem. Let f1, . . . , f� ∈ F
(<d)[X] and let Ci be a

commitment to fi for i ∈ [�]. The verifier has pp and C1, . . . ,C�. For each i ∈ [�]
the verifier also has (zi,1, yi,1), . . . , (zi,�i

, yi,�i
) ∈ F

2. The prover wants to convince
the verifier that fi(zi,j) = yi,j for all i ∈ [�] and j ∈ [�i].

An alternative formulation of the batch evaluation problem is as follows. For
each i ∈ [�]:

– let Ωi = {zi,1, . . . , zi,�i
} ⊆ F, and

– let ti be the unique degree-(�i − 1) polynomial that satisfies ti(zi,j) = yi,j for
all j ∈ [�i].

The verifier has (Ci, Ωi, ti) for i ∈ [�]. The batch evaluation problem is for the
prover to convince the verifier that fi(x) = ti(x) for all i ∈ [�] and x ∈ Ωi. We
will use this formulation of the problem from now on.

When all the polynomials ti in the batch evaluation problem are identically
zero (i.e., ti ≡ 0 for all i ∈ [�]) then the problem is called batch zero testing.

Aggregation scheme. We define PCS proof aggregation, akin to signature
aggregation. The aggregation of tuples (C1, x1, y1), ..., (C�, x�, y�) is a single tuple
(C∗, x∗, y∗) such that running Eval to open C∗ ∈ G at point x∗ ∈ F to y∗ ∈ F

suffices to open each Ci ∈ G at xi ∈ F to yi ∈ F. Aggregation enables batch
evaluation, as shown in Fig. 1.

Definition 4.1 (Aggregation). Let PCS = (Setup,Commit,Verify,Eval)
denote a PCS with commitment group G. An aggregation scheme for PCS is
a public-coin interactive protocol Aggregate with public inputs C = (C1, ..., C�) ∈
G

�, x ∈ F
�, y ∈ F

�, and private inputs f ∈ F
(<d)[X]� and open =

(open1, ..., open�) such that Verify(pp, fi, openi,Ci) = 1 for all i ∈ [�]:

Aggregate
(
P(f , open),V(C,x,y)

)
→ ((open∗, f∗), (C∗, x∗, y∗, b))

The public output is a tuple in G×F
2×{0, 1} and |C∗| = poly(λ) independent

of �. The security requirement is that the batch evaluation protocol shown in Fig. 1
is a proof of knowledge for the relation:

RBatchEval(pp, d) =
{〈

(C,x,y), (f , open)
〉

: ((Ci, xi, yi), (fi, openi)) ∈ REval(pp, d)
}

664 D. Boneh et al.

As for correctness, if the inputs to P satisfy RBatchEval(pp, d) then V outputs
b = 1 and the private output (open∗, f∗) satisfies Verify(pp, f∗, open∗, C∗) = 1.

Fig. 1. A batch evaluation protocol for multiple commitments at multiple points based
on a PCS aggregation scheme.

Theorem 4.2. Any PCS that has a linear combination scheme LinCombine
(Definition 3.3) also has an aggregation scheme Aggregate (Definition 4.1) that
on � input commitments makes a single call to LinCombine on � + 2 commit-
ments with λ-bit integer coefficients. Both the prover and verifier do an addi-
tional O(� log �) operations in F, and the prover makes one call to Commit on
a polynomial of degree maxi{deg(fi)}. The additional communication is one G

element and two F elements.

Corollary 4.3. Every additive PCS (Definition 3.1) has an aggregation scheme
with prover complexity O(� log �) operations in F plus one Commit to a polyno-
mial of degree maxi{deg(fi)}, verifier complexity O(� log �) operations in F plus
O(� · λ) operations in G, and communication of one G element plus two F ele-
ments.

We will say that an aggregation scheme is efficient if the verifier complex-
ity of the protocol Aggregate is sublinear in the maximum degree of the input
polynomials. By Corollary 4.3, every additive PCS, and more generally any PCS
with an efficient linear combination scheme, has an efficient aggregation scheme.

Corollary 4.4. If a PCS has an efficient linear combination scheme then it has
an efficient aggregation scheme.

4.1 A Protocol for Batch Zero Testing

We first construct a general protocol for batch zero testing. Batch evaluation is a
simple generalization. The entire protocol is shown in Fig. 2. The communication
is comprised of one extra commitment and one evaluation protocol, independent
of the number of input polynomials k. In Theorem 4.5 we show that the protocol
is knowledge-sound.

The protocol preserves zero-knowledge. The zero-knowledge simulator for
this protocol samples ρ̃, r̃ ← F, computes an integer representative ẑ ∈ [0, p) for

Halo Infinite: Proof-Carrying Data from Additive Polynomial Commitments 665

z(r̃)−1, sets C̃q :=
∑k

i=1 ρ̃i−1zi(r̃) · ẑ · Ci, and sets C̃g :=
∑k

i=1 ρ̃i−1zi(r̃) · Ci −
z(r̃) · C̃q. If there exists an opening for each Ci then there exists an opening of
Ci − z(r̃) · (ẑ ·Ci) to the zero-polynomial, and thus there exists an opening of C̃g

to the zero-polynomial. The simulator calls the Eval simulator on public input
(C̃g, r̃, 0) to get a simulated transcript π̃. It output the final simulated transcript
(ρ̃, C̃q, r̃, π̃).

Fig. 2. A zero test for multiple polynomials on distinct sets: (Ci, openi) ←
Commit(pp, fi) and Ωi is a non-empty subset of F for all i ∈ [k]. The prover com-
putes openg from ρ, r, open1, . . . , openk (not shown).

Theorem 4.5. If Eval is knowledge sound, then the protocol in Fig. 2 is a proof
of knowledge for the relation:

RZTest(pp, d) :=

⎧⎨
⎩

〈
(C, Ω), (f , open)

〉
:
f = (f1, ..., fk) s.t.fi ∈ F

(<d)[X]
∀i ∈ [k]∀ω∈Ωifi(ω) = 0
∀i ∈ [k]Verify(pp,Ci, openi, fi) = 1

⎫⎬
⎭

The proof is included in the full version of this paper.

4.2 Batch Evaluation Protocol

The protocol for batch evaluation is a small generalization of the zero-testing
protocol in Fig. 2. Here, for i ∈ [k], the verifier has (Ci, Ωi, ti) where ti ∈ F

(<d)[X],

666 D. Boneh et al.

and needs to be convinced that fi(x) = ti(x) for all i ∈ [k] and all x ∈ Ωi. This
is the same as proving that every polynomial f̂i := fi − ti is zero on all of Ωi.
Thus, we can apply the protocol in Fig. 2 to f̂1, . . . , f̂k.

Naively, the verifier would need to compute a commitment to each f̂i, which
it can do from Ci and ti. However, we can optimize the verifier by observing that
the verifier only uses ti(X) to compute ti(r) for some random r ∈ F. Hence, we
can replace the verifier’s computation of C′ in Fig. 2 by instead computing C′ :=∑k

i=1 ρi−1zi(r) · (Ci − ti(r) ·C(1)) where C(1) is a commitment to the polynomial
f ≡ 1. In doing so, we save the verifier the work to compute commitments to
f̂1, . . . , f̂k.

Theorem 4.6. If Eval is knowledge sound, then the batch evaluation protocol
based on Fig. 2 is a proof of knowledge for the relation RBatchEval(pp, d).

The complete proof of Theorem 4.6 is included in the full version of this
paper. The proof applies the forking lemma (Lemma 2.2) to show that it is
possible to generate a depth-2 tree of 2k protocol transcripts where:

1. There are k distinct first-round challenges ρ1 = · · · = ρk = 0 mod p
2. For all i ∈ [k], two transcripts share the first-round challenge ρi and have

distinct second-round challenges ri and r′
i such that z(ri) = z(r′

i) = 0.
3. Letting V ∈ Z

k×k denote the Vandermonde matrix with jth row
(1, ρj , ..., ρ

k−1
j) and letting R ∈ Z

k×k be the matrix with (i, j)th coordinate
zi(rj), the Hadamard product of these matrices A := V ◦R is invertible over
Fp.

The first two conditions are easy to guarantee because collisions among first
round challenges occur with negligible probability, and similarly z(r) = z(r′) = 0
with overwhelming probability over r, r′ ←$

F. The third condition is guaranteed
by the fact (proven in Lemma 4.7) that if every entry of R is non-zero over Fp,
then for {ρj} sampled uniformly and independently the matrix A is invertible
with overwhelming probability. For {rj} sampled uniformly and independently,
zi(rj) = 0 mod p except with probability k

|F| .
For each of these transcripts, the Eval extractor is invoked to extract an

opening of each C′
j =

∑k
i=1 ρi−1

j zi(rj) ·Ci to a polynomial f ′
j . This gives a system

of equations that can be solved to obtain openings of the input commitments
(C1, ...,Ck) to polynomials (f1, ..., fk) = A−1 · (f ′

1, ..., f
′
k).

The protocol is still zero-knowledge if the PCS is hiding and Eval is zero-
knowledge. The description of the simulator is nearly identical to the simulator
for the protocol in Fig. 2 so we will not repeat the details.

Lemma 4.7. Let M be an n × n matrix over F
×
p . Let V be a random Van-

dermonde matrix over Fp, sampled uniformly and independent of A. Their
Hadamard product V ◦ M is invertible with probability at least 1 − n2

|F| .

Proof. Let V(X) denote the Vandermonde matrix over formal variables
X1, ...,Xn. Using the Leibnitz formula, det(V(X)) is an n-variate polynomial,

Halo Infinite: Proof-Carrying Data from Additive Polynomial Commitments 667

which is an alternating sum of n! distinct monomials. The determinant of the
Hadamard product, det(V(X)◦M) is also an alternating sum of n! distinct mono-
mials where the coefficient on each distinct monomial is a distinct summand of
the Leibnitz formula for det(M). All coefficients are non-zero since all entries
of A are non-zero. Therefore, this n-variate polynomial is not identically zero.
Let p(X1, ...,Xn) denote this polynomial, which has total degree less than n2. A
random Vandermonde matrix V is a random assignment x = (x1, ..., xn) to the n
variables X1, ...,Xn and thus det(V◦M) = p(x1, ..., xn). By the Schwartz-Zippel
lemma, the probability that p(x1, ..., xn) = 0 is at most n2

|F| . ��

4.3 Aggregation Scheme (proof of Theorem 4.2)

When the PCS has a linear combination scheme (Definition 3.3), then the pro-
tocol from Sect. 4.2 together with the linear aggregation protocol LinCombine
results in an aggregation scheme for the PCS. Concretely, the protocol on
public inputs C = (C1, ..., Ck) ∈ G

k, x = (x1, ..., xk) ∈ F
k, and y =

(y1, ..., yk) ∈ F
k with prover private inputs f = (f1, ..., fk) ∈ F

(<d)[X]k and
open = (open1, ..., openk) operates as follows:

Aggregate
(
P(f , open),V(C,x,y)

)
→ ((open∗, f∗), (C∗, x∗, y∗, b))

1. Let Ωi = {xi} for i ∈ [1, k], and let ti := yi.
2. Run the protocol in Sect. 4.2 with public inputs {(Ci, Ωi, ti)}i∈[k] and prover

private inputs {(fi, openi)}i∈[k] up until the point that P and V derive Cg, the
prover P has privately derived g(X), and the verifier V has sent the challenge
r ∈ F. Note that Cg is a linear combination of the input commitments C ,
the Cq sent during the protocol, and C(1) (the commitment to 1).

3. The prover and verifier will run LinCombine to produce a succinct commitment
C∗ to the same polynomial as Cg:

– Let C′ := (C1, ...,Ck,C(1),Cq)
– Let f ′ := (f1, ..., fk, 1, q) and let open′ = (open1, ..., openk, open(1), openq)
– For i ∈ [k] let αi := ρi−1 · zi(r) · fi, let αk+1 := −

∑k
i=1 ρi−1 · zi(r) · yi,

and let αk+2 := −z(r). Let α := (α1, ..., αk+2).
– Run the protocol
LinCombine

(
P(f ′, open′),V(pp,C′,α) → (open∗, (C∗, b)

)
.

– The prover’s private output is (open∗, g) and the verifier’s public output
is (C∗, r, 0, b).

In the case that (C∗, open∗) = (Cg, openg), i.e. the PCS is additive, then com-
posing this protocol with an Eval on Cg is a special case of the batch evaluation
protocol in Sect. 4.2, which by Theorem 4.6 is a proof of knowledge for relation
RBatchEval(pp, d). More generally, by the security property of the linear combi-
nation scheme LinCombine, composing the protocol with an Eval on (C∗, r, 0) is
equivalent to running Eval on (Cg, r, 0), i.e. it is a proof of knowledge of an open-
ing for Cg at the pair (r, 0). Thus, this provides the extractor from Theorem 4.6
with the same information it needs to extract an RBatchEval(pp, d) witness.

668 D. Boneh et al.

The prover complexity in the aggregation protocol is O(k log k) operations
in F using FFTs plus the complexity of a single call to Commit on a polynomial
of degree at most d. The verifier complexity is O(k log k) operations in F and
O(k · λ) operations in G.

5 Homomorphic PCS Public Aggregation

The aggregation scheme in Definition 4.1 requires the aggregator, who plays the
role of a prover, to know openings of all the input commitments. In a public
aggregation scheme, the aggregator isn’t required to know the openings of the
input commitments but performs more work than the verifier. We define public
aggregation only for a PCS with a non-interactive evaluation protocol NI-Eval.

The verifier in the Aggregate protocol receives NI-Eval proofs πi for each
(Ci, xi, yi) input tuple. The prover’s output is (open∗, f∗) and the verifier’s out-
put is (C∗, x∗, y∗, b). If the prover succeeds in the aggregation protocol (i.e., the
verifier outputs b = 1) and the verifier separately verifies the membership of
(C∗, x∗, y∗) in REval(pp, d) then it should be convinced that each input tuple is
also in REval(pp, d) with overwhelming probability.

Definition 5.1 (Public Aggregation). Let PCS = (Setup,Commit,Verify,
NI-Eval) denote a PCS with commitment group G and a non-interactive evalua-
tion protocol. A public aggregation scheme for PCS is a public-coin interactive
protocol Aggregate that has public inputs C = (C1, ..., C�) ∈ G

�, x ∈ F
�, y ∈ F

�,
and π = (π1, ..., π�):

Aggregate
(
P,V(pp,π,C,x,y)

)
→ ((open∗, f∗), (C∗, x∗, y∗, b))

In a correct scheme, if the inputs satisfy VEval(πi, Ci, xi, yi) = 1 for all i ∈ [�],
then the outputs satisfy b = 1 and Verify(pp, f∗, open∗, C∗) = 1. The soundness
requirement is that the following probability is negligible:

Pr

⎡
⎢⎢⎣

b ∧ VEval(π
∗, C∗, x∗, y∗) = 1

∃iVEval(pp, πi, Ci, xi, yi) �= 1
:

pp ← Setup(λ, d)

(C,x,y, π) ← A(pp)

((open∗, f∗), (C∗, x∗, y∗, b)) ← Aggregate
(P, V(pp, π ,C,x,y)

)
π∗ ← NI-Eval

(
pp, f∗, open∗, C∗, x∗, y∗)

⎤
⎥⎥⎦

A public aggregation scheme is efficient if the verifier complexity of the
protocol Aggregate is sublinear in the maximum degree of the input polynomials.

Theorem 5.2. There is a black-box compilation from any additive PCS over
a prime field F = Fp and commitment group G into a publicly aggregatable
homomorphic PCS with the same commitment group G. The overhead of the
new Eval is:

– Communication: O(log d) additional elements of G × F

– Prover: O((log p + λ) · n) additional operations in G

Halo Infinite: Proof-Carrying Data from Additive Polynomial Commitments 669

– Verifier: O(log d) additional operations in G × F

The public aggregation scheme complexity for � commitments is:

– Communication: One G element and two F elements.
– Prover: O(� log �) operations in F, O(log p · n) operations in G, and O(� · n)

multiplications of λ-bit integers
– Verifier: O(� log �) operations in F and O(� · λ) operations in G.

Theorem 5.2 is proven in two parts. First, there is a simple transformation
from any additive PCS into a homomorphic PCS with the same commitment
group and opening group H = Z

n. Second, we present a compiler from any homo-
morphic PCS with opening group H = Z

n into a new homomorphic PCS together
with a public aggregation scheme that meets the performance requirements of
the theorem. A key ingredient is a protocol for succinct proof of knowledge of
homomorphism pre-image, which we present next.

5.1 A Succinct PoK for Homomorphism Pre-image

Let φ : Zn → G be any homomorphism where G is an abelian computational
group. We will present a succinct public-coin interactive proof of knowledge for
the following relation:

R∗
HPI(φ,G, p) = {((x ∈ Z

n, t ∈ Z), y ∈ G) : φ(x) = t · y ∧ t �= 0 mod p}

In the special case that pZ ⊆ ker(φ), e.g. when G has order p or is an
Fp-vector space, a proof of knowledge for this relation is equivalent to a proof
of knowledge for the standard homomorphism pre-image relation. In this case,
given a witness (x, t) for R∗

HPI it is possible to efficiently compute an integer
vector x′ such that φ(x′) = y by computing t̂ ∈ Z such that t̂ ≡ t−1 mod p and
setting x′ := t̂ · x.

Let {ei}i∈[n] denote the standard basis of Z
n and define gi := φ(ei). The

homomorphism φ may be rewritten as the Z-linear map φ(x) = 〈x,g〉 =
∑n

i=1 xi·
gi. We will use [[x]]g as a shorthand notation for 〈x,g〉 give x ∈ Z

n and g ∈ G
n.

Note the following two properties of [[·]]:
1. Decomposition If x = (xL,xR) for xL ∈ Z

n1 and xR ∈ Z
n2 such that

n1 + n2 = n and g = (gL,gR) for gL ∈ G
n1 and gR ∈ G

n2 , then [[x]]g =
[[xL]]gL

+ [[xR]]gR
.

2. Bilinearity If α, β ∈ Z, x ∈ Z
n,and g,h ∈ G

n then α[[x]]g + β[[x]]h =
[[αx]]g + [[βx]]h = [[x]]αg+βh

The public coin interactive proof is illustrated in Fig. 3. The verifier’s public-
coin challenges are sampled uniformly from the set X := [0, 2λ).

Correctness. If the prover follows the protocol honestly, then [[x]]g = [[xL]]gL
+

[[xR]]gR
, and:

y′ = yL + α2yR + αy = [[xL]]gR
+ [[α2xR]]gL

+ [[αxL]]gL
+ [[αxR]]gR

= [[x′]]gR
+ [[αx′]]gL

= [[x′]]gR+αgL

670 D. Boneh et al.

Fig. 3. A succinct interactive protocol for HPI. For simplicity n is a power of 2.

Thus, in each recursive round, if x is a valid witness for (y, n,g) then x′ is a
valid witness for (y′, n′,g′).

Theorem 5.3. The protocol in Fig. 3 is a proof of knowledge for the relation
R∗

HPI(φ,G, p).

Proof. Our analysis will show the protocol is a proof of knowledge for the relation
R∗

HPI([[·]],G, p). For simplicity we assume n is a power of 2. We define a knowledge
extractor E that runs with an adversary A who succeeds for public input (x, y,g)
with probability ε = 1/poly(λ). E begins by invoking the forking lemma to
generate a tree of accepting transcripts with the following characteristics:

– The tree has depth log n and branching factor 3. We will index nodes by
v ∈ [0, nlog 3).

– The root is labeled with the verifier’s input (y,g).
– Each non-leaf node v distinct from the root is labeled with a challenge αv

and a prover message (yv,0, yv,1).
– Each non-leaf node v has three children each labeled with three distinct ver-

ifier challenges. αv,1 = αv,2 = αv,3.
– Each leaf node v is labeled with a prover message xv ∈ Z.

Since the probability of collision on a pair of challenges sampled uniformly
from X is 1/2λ, by the forking lemma (Lemma 2.2) this tree-finding algorithm
runs for time polynomial in λ and succeeds excepts with negligible probability
in λ.

For any non-leaf node v with parent w and message pair (yv,0, yv,1) and
challenge αv define yv := yw,0 + α2

v · yw,1 + αv · yw. For any leaf node v the value

Halo Infinite: Proof-Carrying Data from Additive Polynomial Commitments 671

of yv is already defined by the transcript. For the root node rt define yrt := y,
where y is the input. We also define a value gv for every node v as follows: if v is
the root then gv := g, else if v has a parent w then gv := gw,0 + αv · gw,1 where
gw = (gw,0,gw,1) is the concatenation of equal length vectors gw,0,gw,1. If v is a
node on the ith level up from the leaves then gv ∈ G

2i

. Every component of gv

is a linear combination of the elements in g derived from challenges along a path
up the tree. Thus, for each gv the extractor also knows a matrix Uv ∈ Z

2i×n

such Uv ·g = gv. By construction, for every root to leaf path of nodes v1, ..., vlog n

the sequence of values (αvi
, yvi,0, yvi,1) form an accepting transcript between the

prover and verifier where (gvi
, yvi

) are the verifier’s local inputs in the ith round.
Moreover, the leaf node labels satisfy xv · gv = yv.

We will show that given this tree, the extractor can compute (tv,xv) ∈ Z×Z
n

for each node v such that [[xv]]g = tv · yv. In particular, this means that the
extractor obtains a witness (trt,xrt) ∈ Z×Z

n for y ∈ G such that [[xrt]]g = trt · y.
This is a valid pair for the relation R∗

HPI([[·]],Zn,G). The extractor begins at
the leaves. Every leaf node is already labeled with xv ∈ Z such that xv · gv =
xv ·Uv ·g = yv where Uv ∈ Z

1×n. The extractor sets xv := xv ·Uv. Next, suppose
the extractor has already successfully computed an (tv,xv) pair for all children
nodes of a node w. For ease of notation, temporarily let y1, y2, y3 denote the
yv values for the three children and α1, α3, α3 denote their respective challenge
labels. Similarly, let (xi, ti) ∈ Z

n × Z for i ∈ [3] denote the extracted labels
for the children nodes. By construction, yi = yw + α2

i yw,0 + αiyw,1 for i ∈ [3].
Defining A ∈ Z

3×3 to be the matrix with rows (1, α2
i , αi), T the diagonal matrix

with diagonal entries t1, t2, t3 = 0 mod p, and X ∈ Z
3×n the integer matrix with

rows x1, x2,x3, we can summarize the relations:

A ·

⎡

⎣
yw

yw,0

yw,1

⎤

⎦ =

⎡

⎣
y1
y2
y3

⎤

⎦ T ·

⎡

⎣
y1
y2
y3

⎤

⎦ =

⎡

⎣
[[x1]]g
[[x2]]g
[[x3]]g

⎤

⎦ = X · g

T is invertible over F. Since A is Vandermonde it is also invertible over F.
Therefore T·A is invertible over both F and Q. Setting d to be the least common
multiple of the denominators of all entries in (T · A)−1 over Q, there exists an
integer matrix P such that P · T · A = d · I, where I is the identity matrix. In
particular, we obtain d · yw = 〈P1,X · g〉. The extractor sets xw := 〈P1,X〉 and
tw := d, which now satisfies [[xw]]g = 〈xw,g〉 = tw · yw. ��

5.2 Publicly Aggregatable PCS (proof of Theorem 5.2)

The Halo [21] protocol contains a public aggregation protocol for the Bullet-
proofs PCS. Inspired by this idea, we show how the HPI protocol of Fig. 3 can
be used to compile any homomorphic PCS with opening group H = Z

n and
commitment group G into a publicly aggregatable homomorphic PCS with the
same commitment group G. Compared with the commitment size and Eval com-
plexity of the original PCS, the commitment size of the transformed PCS is the
same, the new Eval communication has an extra O(log d) elements of G, and

672 D. Boneh et al.

the verification overhead is O(log d) operations in G. Running the public aggre-
gation protocol on k commitments and evaluation points together with an Eval
on the aggregate commitment achieves an amortized verification complexity of
O(log k+λ+ VEval(λ,d)

k) where VEval(λ, d) is the Eval verifier complexity. Any addi-
tive/homomorphic scheme can first be compiled into a homomorphic PCS with
opening group Z

n, using the simple compiler described next.

Compiler 1: From Additive to Homomorphic. Given a non-hiding6 addi-
tive PCS (Setup, Commit, Verify, Eval) the new homomorphic non-hiding PCS
uses the same Setup,Verify, and Eval protocols, but commits to polynomials
using the pre-computed “basis” commitments (Ci, openi) ← Commit(pp,Xi−1)
for i ∈ [1, d]. The commitment to f ∈ F

(<d)[X] with coefficient vector represen-
tation f = (f̂0, ..., f̂d−1) ∈ [0, p)d is the group element C :=

∑d−1
i=0 f̂i · Ci. The

opening string open for C is the coefficient vector f .
By definition, C is a valid commitment to the polynomial f under the original

scheme with opening string open′ derived from the “basis” openings openi using
add∗ and the coefficients f . The evaluation protocol runs the original Eval using
open′. For some schemes (e.g., KZG and Bulletproofs) that are already homo-
morphic, the linear combination C would be identical to a fresh commitment to
f and thus open′ = open. In other words, the transformation described above
would have no effect.

The transformed scheme is a homomorphic PCS because C = φ(open) where
φ : Z

d → G is the homomorphism that maps v ∈ Z
d to

∑d
i=1 vi · Ci and

χ(open) = open mod p is the unique coefficient vector of f ∈ F
(<d)[X]. The new

scheme is also binding: given a collision f ′ = f mod p such that C = φ(f) = φ(f ′),
the algorithm add∗ could be used to derive openings of C to either f or f ′ from
the openi values, which contradicts the binding property of Commit.

Compiler 2: Homomorphic to publicly aggregatable. Denote the input
homomorphic PCS by PCS = (Setup,Commit,Verify,Eval). The output of the
compiler will be a scheme denoted PCS∗ = (Setup∗,Commit∗,Verify∗,Eval∗) that
will support public aggregation. Let H = Z

n for some n > d. By definition, there
are efficiently computable homomorphisms φ : Zn → G and χ : Zn → F

(<d)[X]
such that the output (C, open) ← Commit(pp, f) for any f ∈ F

(<d)[X] satisfies
C = φ(open) and f = χ(open).

For any v ∈ Z
n let fv := χ(v). Let Ĝ := G×F. For a point x ∈ F, define the

homomorphism φx : Zn → Ĝ as φx(v) := (φ(v), fv(x)). The new PCS algorithms
(Setup∗,Commit∗) are identical to (Setup,Commit). The algorithm Verify∗ is the
standard “relaxation” of Verify from Sect. 2.1: it accepts tuples (f, (t, open)) such
that φ(open) = t · C and χ(open) = t · f where t = 0 is an integer. The protocol
Eval∗ is transformed as follows:

Eval∗
(
P(f, open),V(C, x, y)

)
:

6 Since the PCS is non-hiding we may assume, without loss of generality, that the
commitment algorithm Commit is a deterministic function.

Halo Infinite: Proof-Carrying Data from Additive Polynomial Commitments 673

1. The prover/verifier run a modification of the HPI protocol from Fig. 3 with
PHPI(n, open, (C, y)) and VHPI(n, (C, y)) for the homomorphism φx : Zn → Ĝ.
The verifier stores the output (x′, (C′, y′)) ∈ Z×Ĝ and performs all verification
steps except for deriving g′ ∈ Ĝ or checking x′·g′ = (C′, y′). The prover derives
the coefficient vector u of the polynomial u(X) =

∏log n
i=1 (αi + X2i−1

) defined
by the verifier challenges, which satisfies φx(u) = g′ and φx(x′ · u) = x′ · g′ =
(C′, y′).

2. Run Eval
(
P(fx′·u, x′ ·u),V(C′, x, y′)

)
, where C′ is interpreted as a polynomial

commitment to fx′·u with opening x′ · u.

We provide only a sketch of the knowledge soundness analysis. Recall that
the extractor in the analysis of Theorem 5.3 succeeds assuming it has any labels
(tv,xv, yv) at the leaves of the tree such that [[xv]]g = tv · yv, i.e. φs(xv) = tv · yv

in this case. The knowledge extractor for Eval∗ begins by running the usual
extractor for PHPI, but calls the extractor for Eval to obtain a φx homomorphism
pre-image of (C′, y′). This is passed to the extractor for PHPI, which in turn
outputs a witness (t,v) ∈ Z×Z

n such that ((v, t), (C, y)) ∈ R∗
HPI(φx,Zn, Ĝ), i.e.

φx(v) = (t · C, t · y) and t = 0. Thus, φ(v) = t · C and fv(x) = t · y, so Verify∗

accepts (t−1fv, (t,v)) and t−1fv(x) = y, i.e. (t−1fv, (t,v)) is an REval witness
for (C, x, y).

The compiled PCS has the same commitment size since the commitment
algorithm is unchanged. The overhead in the Eval∗ communication is O(log d)
elements of Ĝ = G × F and the overhead in verification is O(log d) operations
in Ĝ (from Step 1). The prover overhead is O((λ + log B) · n) operations in Ĝ

assuming ||open||∞ < B (in Step 1) and O(n) integer multiplications to derive u
(also from Step 1). In the case that |G| = p the integer multiplications become
field multiplication modulo p.

If the input PCS Eval protocol is zero-knowledge and the prover/verifier run
the zero-knowledge variation of the HPI protocol between Pinit and Vinit then
Eval∗ is also zero-knowledge. If Eval is already non-interactive (or public-coin and
FS compatible) then Eval∗ is still public-coin and can be made non-interactive
by applying the Fiat-Shamir transform. We conjecture that the transformed
protocol is sound, which is true in the random oracle model for constant n [45].:

Conjecture 5.4. If Eval is FS compatible then protocol Eval∗ is FS compatible.

Comparison to Halo aggregation. The Halo aggregation protocol for the
Bulletproofs PCS uses the fact that the expensive part of verification is deriving
g′ = φ(u) and u(X) can be evaluated in time O(log d). The aggregator proves
correctness of g′ (interpreted as a commitment to u) by running the Bulletproofs
Eval to open it to u(s) at a random point s chosen by the verifier. Multiple
instances can be batched using private Eval aggregation. This works only because
u ∈ Zp and φ : Zn

p → G is collision-resistant. In a more general homomorphic
PCS with u ∈ Z

n, φ might only be collision-resistant over Z
n/ker(χ) and it

may be possible to open g′ to u(X) even when φ(u) = g′. The key observation

674 D. Boneh et al.

that allows us to generalize the aggregation protocol for any PCS is our novel
analysis of the HPI protocol (Theorem 5.3) which shows that the verifier does
not need to compute g′; it only needs a proof of knowledge that y′ is some linear
combination of g.

Public aggregation scheme. Each non-interactive proof returned by NI-Eval∗

has the form (πHPI, x
′, y′, πeval) where πHPI is the transcript from the first step,

(x′, y′) = (x′, (C′, t′)) ∈ Z × (G × F) is the verifier’s intermediate output in the
first step, and πEval is the non-interactive Eval proof from the second step for the
commitment C′ to the polynomial fx′·u. The vector x′ ·u can be computed from
the transcript πHPI.

The public aggregation scheme Aggregate takes public inputs C =
(C1, ...,Ck) ∈ G

k, s ∈ F
k, t ∈ F

k, and a vector of NI-Eval∗ proofs π = (π1, ..., πk)
where πi = (π(i)

HPI, x
′
i, y

′
i, π

(i)
eval):

Aggregate
(
P,V(pp,π,C, s, t)

)
→ ((open∗, f∗), (C∗, s∗, t∗, b))

The verifier does not check π
(i)
Eval for each i ∈ [k], and therefore is not yet

convinced that φsi
(x′

i ·ui) = y′
i. Instead, the aggregation prover/verifier run the

private aggregation protocol from Sect. 4.3 where the prover has private inputs
{fx′·ui

}k
i=1 and opening strings {x′ · ui}k

i=1 for each commitment C′
i such that

fx′·ui
(si) = t′i. The output of this private aggregation protocol determine the

prover’s outputs (open∗, f∗) and the verifier’s outputs (C∗, s∗, t∗, b).
By the soundness definition of the private aggregation scheme, if the prover

can succeed in the Eval protocol on public inputs (C∗, s∗, t∗) with non-negligible
probability then there exists a polynomial time knowledge extractor that obtains
an REval witness for each (C′

i, si, t
′
i), which includes a φsi

pre-image of y′
i =

(C′
i, t

′
i). These witnesses are then used to extract REval witnesses for each

(Ci, si, ti) as described above in the knowledge-soundness analysis for Eval∗.
The public aggregation scheme verification and communication inherits the

same complexity as the private aggregation protocol. From Theorem 4.2, the
generic scheme from Sect. 4.3 has verifier complexity O(k log k) operations in F

plus O(k · λ) operations in G and communication of one G element plus two
F elements. The prover complexity of the private aggregation subprotocol is
O(k log k) operations in F plus one Commit to a polynomial of degree at most d.
In addition, the prover must derive each integer vector ui, which requires O(k ·n)
integer multiplications. In the case that |G| = p the integer multiplications
become field multiplication modulo p.

6 SNARKs and IVC from PCS Aggregation

Bünz et al. [26] formally show how a concept they define called PCS accumu-
lation schemes can be used to construct a PCD system, generalizing the Halo
protocol [21]. We show that a PCS public aggregation scheme satisfies the defini-
tion of a PCS accumulation scheme [26]. Our full version contains a detailed and

Halo Infinite: Proof-Carrying Data from Additive Polynomial Commitments 675

self-contained exposition of IVC/PCD for path distributed computation directly
from PCS aggregation.

A PCS accumulation scheme enables PCD from plain-model “predicate-
efficient” SNARKs, defined as a SNARK with a polylogarithmic verifier that
is given an oracle for checking PCS Eval proofs. The PCD transformation does
not work if the SNARK involves calls to a random oracle, as it would require con-
cretely instantiating the random oracle. Unfortunately, we only know how to con-
struct “predicate-efficient” SNARKs in the random oracle model (e.g., [31,42]).
Hence, this result gives a heuristic construction of PCD from PCS accumulation.

PCS accumulation scheme. We show that a public aggregation scheme for
a PCS (Definition 5.1) satisfies the definition of an accumulation scheme for a
non-interactive PCS from [26]. We first review the definition of an accumulation
scheme. The definition has small syntactic differences from [26] due to syntactic
differences in our PCS definition.

Definition 6.1 (PCS accumulation). Let PCS = (Setup,Commit,Verify,
Eval) denote a PCS with a non-interactive Eval protocol given by a prover algo-
rithm PEval and verifier algorithm VEval. An accumulation scheme for PCS has
algorithms (G, I, P, V,D) with the syntax:

G(λ) → ppac
I(ppac, pppc) → (apk, avk, dk)
D(dk, acc) → bD

P (apk, [{Xi}k
i=1, {acci}�

i=1) → (acc, πV)
V (avk, {Xi}k

i=1, {acci}�
i=1, acc, πV) → bV

The scheme is complete if for any pppc and (apk, avk, dk) ← I(ppac, pppc)
and inputs ({Xi}k

i=1, [acci]�i=1) that satisfy VEval(pppc,Xi) = 1 for i ∈ [k]
and D(dk, acci) = 1 for all i ∈ [�], the accumulation scheme prover
P (apk, {Xi}k

i=1, {acci}�
i=1) outputs (acc, πV) such that D(dk, acc) = 1 and

V (avk, {Xi}k
i=1, {acci}�

i=1, acc, πV) = 1. For soundness, the following probability
is negligible in λ:

Pr

⎡
⎢⎣

V (avk, {Xi}k
i=1, {acci}�

i=1, acc, πV) = 1

D(dk, acc) = 1

∃i∈[k]VEval(pppc, Xi) �= 1 ∨ ∃i∈[�]D(dk, acci) �= 1

:

pppc ← Setup(λ, d), ppac ← G(λ)

(apk, avk, dk) ← I(ppac, pppc)

{Xi}k
i=1, {acci}�

i=1, acc, πV ← A(ppac, pppc)

⎤
⎥⎦

The fact that a non-interactive public aggregation scheme gives an accumu-
lation scheme is an immediate consequence of the definitions. The algorithms
G and I are trivial, setting all parameters to pppc. Each acc = (C, x, y, π)
is an Eval tuple. The prover P (pppc, {Xi}k

i=1, {acci}�
i=1) first sets C ∈ G

k+�

so that Ci = Xi for i ∈ [k] and Ci = acci−k for i > k, sets π so
that the ith and (i + k)th components are the Eval proofs in Xi and acci

respectively, and sets (s, t) ∈ F
k+� × F

k+� so that (si, ti) = (xi, yi) from
Xi for i ∈ [k] and from acci for i > k. It runs Aggregate(pppc,π,C, s, t)
to get (open∗, f∗,C∗, s∗, t∗, πagg) and Eval(open∗, f∗,C∗, s∗, t∗) to get π∗. It
returns πV := πagg and acc := (C∗, s∗, t∗, π∗). D(pppc, acc) calls the
Eval verifier. Finally, V (pppc, {Xi}k

i=1, {acci}�
i=1, acc, πagg) derives the tuples

676 D. Boneh et al.

(π,C, s, t), parses acc = (C∗, s∗, t∗, π∗), and runs the aggregation verifier
VAggregate(pppc,π,C, s, t,C∗, s∗, t∗, πagg).

Private accumulation. A small tweak to Definition 6.1 would make it com-
patible with private aggregation. The accumulation prover is additionally given
as inputs a vector of private states {sti}k+�

i=1 and outputs (st, acc, πV). The other
algorithms and the security definition are unchanged. Constructing this from a
private aggregation scheme, the state st will contain the prover’s private outputs
(open∗, f∗) and each sti contains an (openi, fi) pair.

The PCD compiler of [26] can be adapted to work with private aggregation
schemes as well. This only affects the proof size which has size O(N) because it
includes the “private” states (openings for polynomials of degree N). Intuitively,
the construction of PCD from [26] is not materially affected by using private
accumulation because each prover node in the DAG distributed computation
simply passes its private state to its target nodes as “advice”. The advice does
not impact the size of the recursive statement, which is only dependent on the size
of the accumulation verifier. This variation of the compiler was formally proven
in follow-up work [25]. To do so they formally define a “split-accumulation”
scheme, which coincides with our informal tweak.

Acknowledgments. This work was funded by NSF, DARPA, a grant from ONR,
and the Simons Foundation. Opinions, findings and conclusions or recommendations
expressed in this material are those of the authors and do not necessarily reflect the
views of DARPA.

References

1. Ajtai, M.: Generating hard instances of lattice problems (extended abstract). In:
STOC, pp. 99–108 (1996)

2. Attema, T., Cramer, R.: Compressed Σ-protocol theory and practical applica-
tion to plug & play secure algorithmics. In: Micciancio, D., Ristenpart, T. (eds.)
CRYPTO 2020, Part III. LNCS, vol. 12172, pp. 513–543. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-56877-1 18

3. Babai, L.: Local expansion of vertex-transitive graphs and random generation in
finite groups. In: 23rd ACM STOC, pp. 164–174 (May 1991)

4. Baum, C., Bootle, J., Cerulli, A., del Pino, R., Groth, J., Lyubashevsky, V.: Sub-
linear lattice-based zero-knowledge arguments for arithmetic circuits. In: Shacham,
H., Boldyreva, A. (eds.) CRYPTO 2018, Part II. LNCS, vol. 10992, pp. 669–699.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96881-0 23

5. Baum, C., Damg̊ard, I., Larsen, K.G., Nielsen, M.: How to prove knowledge of
small secrets. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part III. LNCS,
vol. 9816, pp. 478–498. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-53015-3 17

6. Bellare, M., Goldreich, O.: On defining proofs of knowledge. In: Brickell, E.F. (ed.)
CRYPTO 1992. LNCS, vol. 740, pp. 390–420. Springer, Heidelberg (1993). https://
doi.org/10.1007/3-540-48071-4 28

7. Ben-Sasson, E., Bentov, I., Horesh, Y., Riabzev, M.: Fast reed-solomon interactive
oracle proofs of proximity. In: ICALP 2018, pp. 14:1–14:17 (July 2018)

https://doi.org/10.1007/978-3-030-56877-1_18
https://doi.org/10.1007/978-3-319-96881-0_23
https://doi.org/10.1007/978-3-662-53015-3_17
https://doi.org/10.1007/978-3-662-53015-3_17
https://doi.org/10.1007/3-540-48071-4_28
https://doi.org/10.1007/3-540-48071-4_28

Halo Infinite: Proof-Carrying Data from Additive Polynomial Commitments 677

8. Ben-Sasson, E., Bentov, I., Horesh, Y., Riabzev, M.: Scalable zero knowledge with
no trusted setup. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019, Part III.
LNCS, vol. 11694, pp. 701–732. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-26954-8 23

9. Ben-Sasson, E., Chiesa, A., Genkin, D., Tromer, E.: Fast reductions from RAMs
to delegatable succinct constraint satisfaction problems: extended abstract. ITCS
2013, 401–414 (2013)

10. Ben-Sasson, E., Chiesa, A., Riabzev, M., Spooner, N., Virza, M., Ward, N.P.:
Aurora: transparent succinct arguments for R1CS. In: Ishai, Y., Rijmen, V. (eds.)
EUROCRYPT 2019, Part I. LNCS, vol. 11476, pp. 103–128. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-17653-2 4

11. Ben-Sasson, E., Chiesa, A., Spooner, N.: Interactive oracle proofs. In: Hirt, M.,
Smith, A. (eds.) TCC 2016, Part II. LNCS, vol. 9986, pp. 31–60. Springer, Heidel-
berg (2016). https://doi.org/10.1007/978-3-662-53644-5 2

12. Ben-Sasson, E., Chiesa, A., Tromer, E., Virza, M.: Scalable zero knowledge via
cycles of elliptic curves. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part
II. LNCS, vol. 8617, pp. 276–294. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-662-44381-1 16

13. Ben-Sasson, E., Goldberg, L., Kopparty, S., Saraf, S.: DEEP-FRI: Sampling outside
the box improves soundness. Cryptology ePrint Archive, Report 2019/336 (2019)

14. Bitansky, N., Canetti, R., Chiesa, A., Tromer, E.: From extractable collision resis-
tance to succinct non-interactive arguments of knowledge, and back again. ITCS
2012, 326–349 (2012)

15. Bitansky, N., Canetti, R., Chiesa, A., Tromer, E.: Recursive composition and boot-
strapping for SNARKS and proof-carrying data. In: 45th ACM STOC, pp. 111–120
(June 2013)

16. Bitansky, N., Chiesa, A., Ishai, Y., Ostrovsky, R., Paneth, O.: Succinct non-
interactive arguments via linear interactive proofs. TCC 2013, 315–333 (2013)

17. Blum, M., Evans, W.S., Gemmell, P., Kannan, S., Naor, M.: Checking the correct-
ness of memories. In: 32nd FOCS, pp. 90–99 (October 1991)

18. Bonneau, J., Meckler, I., Rao, V., Shapiro, E.: Coda: Decentralized cryptocurrency
at scale. Cryptology ePrint Archive, Report 2020/352 (2020)

19. Bootle, J., Cerulli, A., Chaidos, P., Groth, J., Petit, C.: Efficient zero-knowledge
arguments for arithmetic circuits in the discrete log setting. In: Fischlin, M., Coron,
J.-S. (eds.) EUROCRYPT 2016, Part II. LNCS, vol. 9666, pp. 327–357. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5 12

20. Bowe, S., Gabizon, A., Miers, I.: Scalable multi-party computation for zk-SNARK
parameters in the random beacon model. Cryptology ePrint Archive, Report
2017/1050 (2017)

21. Bowe, S., Grigg, J., Hopwood, D.: Halo: Recursive proof composition without a
trusted setup. Cryptology ePrint Archive, Report 2019/1021 (2019)

22. Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.: Bulletproofs:
short proofs for confidential transactions and more. In: 2018 IEEE Symposium on
Security and Privacy, pp. 315–334 (May 2018)

23. Bünz, B., Fisch, B., Szepieniec, A.: Transparent SNARKs from DARK compilers.
In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020, Part I. LNCS, vol. 12105, pp.
677–706. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45721-1 24

24. Bünz, B., Maller, M., Vesely, N.: Efficient proofs for pairing-based languages. Cryp-
tology ePrint Archive, Report 2019/1177 (2019)

25. Bünz, B., Chiesa, A., Lin, W., Mishra, P., Spooner, N.: Proof-carrying data without
succinct arguments. Cryptology ePrint Archive, Report 2020/1618 (2020)

https://doi.org/10.1007/978-3-030-26954-8_23
https://doi.org/10.1007/978-3-030-26954-8_23
https://doi.org/10.1007/978-3-030-17653-2_4
https://doi.org/10.1007/978-3-662-53644-5_2
https://doi.org/10.1007/978-3-662-44381-1_16
https://doi.org/10.1007/978-3-662-44381-1_16
https://doi.org/10.1007/978-3-662-49896-5_12
https://doi.org/10.1007/978-3-030-45721-1_24

678 D. Boneh et al.

26. Bünz, B., Chiesa, A., Mishra, P., Spooner, N.: Proof-carrying data from accumu-
lation schemes. Cryptology ePrint Archive, Report 2020/499 (2020)

27. Canetti, R., et al.: Fiat-Shamir: from practice to theory. In: 51st ACM STOC, pp.
1082–1090 (June 2019)

28. Canetti, R., Chen, Y., Reyzin, L., Rothblum, R.D.: Fiat-Shamir and correlation
intractability from strong KDM-secure encryption. In: Nielsen, J.B., Rijmen, V.
(eds.) EUROCRYPT 2018, Part I. LNCS, vol. 10820, pp. 91–122. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-78381-9 4

29. Chen, Y., Lombardi, A., Ma, F., Quach, W.: Does fiat-shamir require a crypto-
graphic hash function? Cryptology ePrint Archive, Report 2020/915 (2020)

30. Chiesa, A., Forbes, M.A., Spooner, N.: A zero knowledge sumcheck and its appli-
cations. Cryptology ePrint Archive, Report 2017/305 (2017)

31. Chiesa, A., Hu, Y., Maller, M., Mishra, P., Vesely, N., Ward, N.: Marlin: Prepro-
cessing zkSNARKs with universal and updatable SRS. Cryptology ePrint Archive,
Report 2019/1047 (2019)

32. Chiesa, A., Hu, Y., Maller, M., Mishra, P., Vesely, N., Ward, N.: Marlin: prepro-
cessing zkSNARKs with universal and updatable SRS. In: Canteaut, A., Ishai, Y.
(eds.) EUROCRYPT 2020, Part I. LNCS, vol. 12105, pp. 738–768. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-45721-1 26

33. Chiesa, A., Liu, S.: On the impossibility of probabilistic proofs in relativized worlds.
In: ITCS 2020, pp. 57:1–57:30 (January 2020)

34. Chiesa, A., Ojha, D., Spooner, N.: Fractal: post-quantum and transparent recur-
sive proofs from holography. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020,
Part I. LNCS, vol. 12105, pp. 769–793. Springer, Cham (2020). https://doi.org/
10.1007/978-3-030-45721-1 27

35. Chiesa, A., Tromer, E.: Proof-carrying data and hearsay arguments from sig-
nature cards. In: Proceedings of Innovations in Computer Science - ICS 2010,
Tsinghua University, Beijing, China, 5–7 January 2010, pp. 310–331 (2010). http://
conference.iiis.tsinghua.edu.cn/ICS2010/content/papers/25.html

36. Cooperman, G.: Towards a practical, theoretically sound algorithm for random
generation in finite groups (2002)

37. Dixon, J.: Generating random elements in finite groups. Electron. J. Comb. [elec-
tronic only] 15 (07 2008). https://doi.org/10.37236/818

38. Drake, J.: https://ethresear.ch/t/slonk-a-simple-universal-snark/6420
39. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and

signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp.
186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7 12

40. Fuchsbauer, G., Kiltz, E., Loss, J.: The algebraic group model and its applications.
In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part II. LNCS, vol. 10992,
pp. 33–62. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96881-0 2

41. Gabizon, A.: AuroraLight: Improved prover efficiency and SRS size in a sonic-like
system. Cryptology ePrint Archive, Report 2019/601 (2019)

42. Gabizon, A., Williamson, Z.J., Ciobotaru, O.: PLONK: Permutations over
lagrange-bases for oecumenical noninteractive arguments of knowledge. Cryptology
ePrint Archive, Report 2019/953 (2019)

43. Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs and
succinct NIZKs without PCPs. In: Johansson, T., Nguyen, P.Q. (eds.) EURO-
CRYPT 2013. LNCS, vol. 7881, pp. 626–645. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-38348-9 37

44. Goldreich, O., Goldwasser, S., Halevi, S.: Collision-free hashing from lattice prob-
lems. IACR Cryptology ePrint Archive (1996). http://eprint.iacr.org/1996/009

https://doi.org/10.1007/978-3-319-78381-9_4
https://doi.org/10.1007/978-3-030-45721-1_26
https://doi.org/10.1007/978-3-030-45721-1_27
https://doi.org/10.1007/978-3-030-45721-1_27
http://conference.iiis.tsinghua.edu.cn/ICS2010/content/papers/25.html
http://conference.iiis.tsinghua.edu.cn/ICS2010/content/papers/25.html
https://doi.org/10.37236/818
https://ethresear.ch/t/slonk-a-simple-universal-snark/6420
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/978-3-319-96881-0_2
https://doi.org/10.1007/978-3-642-38348-9_37
https://doi.org/10.1007/978-3-642-38348-9_37
http://eprint.iacr.org/1996/009

Halo Infinite: Proof-Carrying Data from Additive Polynomial Commitments 679

45. Goldreich, O., Krawczyk, H.: On the composition of zero-knowledge proof systems.
SIAM J. Comput. 9, 169–192 (1996)

46. Groth, J.: Short pairing-based non-interactive zero-knowledge arguments. In: Abe,
M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 321–340. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-17373-8 19

47. Groth, J.: On the size of pairing-based non-interactive arguments. In: Fischlin, M.,
Coron, J.-S. (eds.) EUROCRYPT 2016, Part II. LNCS, vol. 9666, pp. 305–326.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5 11

48. Groth, J.: On the size of pairing-based non-interactive arguments. Cryptology
ePrint Archive, Report 2016/260 (2016)

49. Groth, J., Kohlweiss, M., Maller, M., Meiklejohn, S., Miers, I.: Updatable and
universal common reference strings with applications to zk-SNARKs. In: Shacham,
H., Boldyreva, A. (eds.) CRYPTO 2018, Part III. LNCS, vol. 10993, pp. 698–728.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96878-0 24

50. Groth, J., Maller, M.: Snarky signatures: minimal signatures of knowledge from
simulation-extractable SNARKs. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017,
Part II. LNCS, vol. 10402, pp. 581–612. Springer, Cham (2017). https://doi.org/
10.1007/978-3-319-63715-0 20

51. H̊astad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom generator
from any one-way function. SIAM J. Comput. 28(4), 1364–1396 (1999)

52. Holmgren, J.: On round-by-round soundness and state restoration attacks. Cryp-
tology ePrint Archive, Report 2019/1261 (2019)

53. Kalai, Y.T., Rothblum, G.N., Rothblum, R.D.: From obfuscation to the security
of Fiat-Shamir for proofs. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part II.
LNCS, vol. 10402, pp. 224–251. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-63715-0 8

54. Kate, A., Zaverucha, G.M., Goldberg, I.: Constant-size commitments to polyno-
mials and their applications. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol.
6477, pp. 177–194. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-17373-8 11

55. Kattis, A., Panarin, K., Vlasov, A.: RedShift: Transparent SNARKs from list poly-
nomial commitment IOPs. Cryptology ePrint Archive, Report 2019/1400 (2019)

56. Labs, O.: Coda protocol (2018)
57. Lee, J.: Dory: Efficient, transparent arguments for generalised inner products and

polynomial commitments. Cryptology ePrint Archive, Report 2020/1274 (2020)
58. Lipmaa, H.: Progression-free sets and sublinear pairing-based non-interactive zero-

knowledge arguments. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 169–
189. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28914-9 10

59. Maller, M., Bowe, S., Kohlweiss, M., Meiklejohn, S.: Sonic: Zero-knowledge
SNARKs from linear-size universal and updatable structured reference strings.
ACM CCS 2019, 2111–2128 (2019)

60. Parno, B., Howell, J., Gentry, C., Raykova, M.: Pinocchio: nearly practical verifi-
able computation. In: 2013 IEEE Symposium on Security and Privacy, pp. 238–252
(May 2013)

61. Pippenger, N.: On the evaluation of powers and monomials. SIAM J. Comput. 9,
230–250 (1980)

62. Pointcheval, D., Stern, J.: Security proofs for signature schemes. In: Maurer, U.
(ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 387–398. Springer, Heidelberg
(1996). https://doi.org/10.1007/3-540-68339-9 33

https://doi.org/10.1007/978-3-642-17373-8_19
https://doi.org/10.1007/978-3-662-49896-5_11
https://doi.org/10.1007/978-3-319-96878-0_24
https://doi.org/10.1007/978-3-319-63715-0_20
https://doi.org/10.1007/978-3-319-63715-0_20
https://doi.org/10.1007/978-3-319-63715-0_8
https://doi.org/10.1007/978-3-319-63715-0_8
https://doi.org/10.1007/978-3-642-17373-8_11
https://doi.org/10.1007/978-3-642-17373-8_11
https://doi.org/10.1007/978-3-642-28914-9_10
https://doi.org/10.1007/3-540-68339-9_33

680 D. Boneh et al.

63. Setty, S.: Spartan: efficient and general-purpose zkSNARKs without trusted setup.
In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020, Part III. LNCS, vol.
12172, pp. 704–737. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
56877-1 25

64. Valiant, P.: Incrementally verifiable computation or proofs of knowledge imply
time/space efficiency. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 1–18.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78524-8 1

65. Vlasov, A., Panarin, K.: Transparent polynomial commitment scheme with polylog-
arithmic communication complexity. Cryptology ePrint Archive, Report 2019/1020
(2019)

https://doi.org/10.1007/978-3-030-56877-1_25
https://doi.org/10.1007/978-3-030-56877-1_25
https://doi.org/10.1007/978-3-540-78524-8_1

Proof-Carrying Data Without Succinct
Arguments

Benedikt Bünz1(B), Alessandro Chiesa2, William Lin2, Pratyush Mishra2,
and Nicholas Spooner3

1 Stanford University, Stanford, USA
benedikt@cs.stanford.edu

2 UC Berkeley, Berkeley, USA
{alexch,will.lin,pratyush}@berkeley.edu

3 Boston University, Boston, USA
nspooner@bu.edu

Abstract. Proof-carrying data (PCD) is a powerful cryptographic prim-
itive that enables mutually distrustful parties to perform distributed
computations that run indefinitely. Known approaches to construct PCD
are based on succinct non-interactive arguments of knowledge (SNARKs)
that have a succinct verifier or a succinct accumulation scheme.

In this paper we show how to obtain PCD without relying on
SNARKs. We construct a PCD scheme given any non-interactive argu-
ment of knowledge (e.g., with linear-size arguments) that has a split
accumulation scheme, which is a weak form of accumulation that we
introduce.

Moreover, we construct a transparent non-interactive argument of
knowledge for R1CS whose split accumulation is verifiable via a (small)
constant number of group and field operations. Our construction is proved
secure in the random oracle model based on the hardness of discrete log-
arithms, and it leads, via the random oracle heuristic and our result
above, to concrete efficiency improvements for PCD.

Along the way, we construct a split accumulation scheme for
Hadamard products under Pedersen commitments and for a simple poly-
nomial commitment scheme based on Pedersen commitments.

Our results are supported by a modular and efficient implementation.

Keywords: Proof-carrying data · Accumulation schemes · Recursive
proof composition

1 Introduction

Proof-carrying data (PCD) [CT10] is a powerful cryptographic primitive that
enables mutually distrustful parties to perform distributed computations that
run indefinitely, while ensuring that the correctness of every intermediate

The full version of this paper is available online [BCL+20].

c© International Association for Cryptologic Research 2021
T. Malkin and C. Peikert (Eds.): CRYPTO 2021, LNCS 12825, pp. 681–710, 2021.
https://doi.org/10.1007/978-3-030-84242-0_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-84242-0_24&domain=pdf
https://doi.org/10.1007/978-3-030-84242-0_24

682 B. Bünz et al.

state of the computation can be verified efficiently. A special case of PCD
is incrementally-verifiable computation (IVC) [Val08]. PCD has found applica-
tions in enforcing language semantics [CTV13], verifiable MapReduce computa-
tions [CTV15], image authentication [NT16], blockchains [Mina;KB20;BMRS20;
CCDW20], and others. Given the theoretical and practical relevance of PCD, it
is an important research question to build efficient PCD schemes from minimal
cryptographic assumptions.

PCD from Succinct Verification. The canonical construction of PCD
is via recursive composition of succinct non-interactive arguments (SNARGs)
[BCCT13;BCTV14;COS20]. Informally, a proof that the computation was exe-
cuted correctly for t steps consists of a proof of the claim “the t-th step of
the computation was executed correctly, and there exists a proof that the com-
putation was executed correctly for t − 1 steps”. The latter part of the claim
is expressed using the SNARG verifier itself. This construction yields secure
PCD (with IVC as a special case) provided the SNARG satisfies an adap-
tive knowledge soundness property (i.e., is a SNARK). Efficiency requires the
SNARK to have sublinear-time verification, achievable via SNARKs for machine
computations [BCCT13] or preprocessing SNARKs for circuit computations
[BCTV14;COS20].

Requiring sublinear-time verification, however, significantly restricts the
choice of SNARK, which limits what is achievable for PCD. These restrictions
have practical implications: the concrete efficiency of recursion is limited by the
use of expensive curves for pairing-based SNARKs [BCTV14] or heavy use of
cryptographic hash functions for hash-based SNARKs [COS20].

PCD from Accumulation. Recently, [BCMS20] gave an alternative con-
struction of PCD using SNARKs that have succinct accumulation schemes; this
developed and formalized a novel approach for recursion sketched in [BGH19].
Informally, rather than being required to have sublinear-time verification, the
SNARK is required to be accompanied by a cryptographic primitive that enables
“postponing” the verification of SNARK proofs by way of an accumulator that is
updated at each recursion step. The main efficiency requirement on the accumu-
lation scheme is that the accumulation procedure must be succinctly verifiable,
and in particular the accumulator itself must be succinct.

Requiring a SNARK to have a succinct accumulation scheme is a weaker
condition than requiring it to have sublinear-time verification. This has enabled
constructing PCD from SNARKs that do not have sublinear-time verification
[BCMS20], which in turn led to PCD constructions from assumptions and
with efficiency properties that were not previously achieved. Practitioners have
exploited this freedom to design implementations of recursive composition with
improved practical efficiency [Halo20;Pickles20].

Our Motivation. The motivation of this paper is twofold. First, can PCD
be built from a weaker primitive than SNARKs with succinct accumulation
schemes? If so, can we leverage this to obtain PCD constructions with improved
concrete efficiency?

Proof-Carrying Data Without Succinct Arguments 683

1.1 Contributions

We make theory and systems contributions that advance the state of the art for
PCD: (1) We introduce split accumulation schemes for relations, a cryptographic
primitive that relaxes prior notions of accumulation. (2) We obtain PCD from
any non-interactive argument of knowledge that satisfies this weaker notion of
accumulation; surprisingly, this allows for arguments with no succinctness what-
soever. (3) We construct a non-interactive argument of knowledge based on dis-
crete logarithms (and random oracles) whose accumulation verifier has constant
size (improving over the logarithmic-size verifier of prior accumulation schemes
in this setting). (4) We implement and evaluate constructions from this paper
and from [BCMS20].

We elaborate on each of these contributions next.

(1) Split accumulation for relations. Recall from [BCMS20] that an accu-
mulation scheme for a predicate Φ : X → {0, 1} enables proving/verifying that
each input in an infinite stream q1, q2, . . . satisfies the predicate Φ, by augment-
ing the stream with accumulators. Informally, for each i, the prover produces
a new accumulator acci+1 from the input qi and the old accumulator acci; the
verifier can check that the triple (qi, acci, acci+1) is a valid accumulation step,
much more efficiently than running Φ on qi. At any time, the decider can validate
acci+1, which establishes that for all j ≤ i it was the case that Φ(qj) = 1. The
accumulator size (and hence the running time of the three algorithms) cannot
grow in the number of accumulation steps.

We extend this notion in two orthogonal ways. First we consider relations
Φ : X × W → {0, 1} and now for a stream of instances qx1, qx2, . . . the goal is
to establish that there exist witnesses qw1, qw2, . . . such that Φ(qxi, qwi) = 1
for each i. Second, we consider accumulators acci that are split into an instance
part acci.x and a witness part acci.w with the restriction that the accumulation
verifier only gets to see the instance part (and possibly an auxiliary accumulation
proof pf). We refer to this notion as split accumulation for relations, and refer to
(for contrast) the notion from [BCMS20] as atomic accumulation for languages.

The purpose of these extensions is to enable us to consider accumulation
schemes in which predicate witnesses and accumulator witnesses are large while
still requiring the accumulation verifier to be succinct (it receives short predicate
instances and accumulator instances but not large witnesses). We will see that
such accumulation schemes are both simpler and cheaper, while still being useful
for primitives such as PCD.

See Sect. 2.1 for more on atomic vs. split accumulation, and the full version
for formal definitions.

(2) PCD via split accumulation. A non-interactive argument has a split
accumulation scheme if the relation corresponding to its verifier has a split accu-
mulation scheme (we make this precise later). We show that any non-interactive
argument of knowledge (NARK) having a split accumulation scheme where the
accumulation verifier is sublinear can be used to build a proof-carrying data
(PCD) scheme, even if the NARK does not have sublinear argument size. This

684 B. Bünz et al.

significantly broadens the class of non-interactive arguments from which PCD
can be built, and is the first result to obtain PCD from non-interactive arguments
that need not be succinct. Similarly to [BCMS20], if the NARK and accumula-
tion scheme are post-quantum secure, so is the PCD scheme. (It remains an open
question whether there are non-trivial post-quantum instantiations of these.)

Theorem 1 (informal). There is an efficient transformation that compiles any
NARK with a split accumulation scheme into a PCD scheme. If the NARK and
its split accumulation scheme are zero knowledge, then the PCD scheme is also
zero knowledge. Additionally, if the NARK and its accumulation scheme are
post-quantum secure then the PCD scheme is also post-quantum secure.

Similarly to all PCD results known to date, the above theorem holds in a
model where all parties have access to a common reference string, but no oracles.
(The construction makes non-black-box use of the accumulation scheme verifier,
and the theorem does not carry over to the random oracle model.)

A corollary of Theorem 1 is that any NARK with a split accumulation scheme
can be “bootstrapped” into a SNARK for machine computations. (PCD implies
IVC and, further assuming collision-resistant hashing, also efficient SNARKs for
machine computations [BCCT13].) This is surprising: an argument with decid-
edly weak efficiency properties implies an argument with succinct proofs and
succinct verification!

See Sect. 2.2 for a summary of the ideas behind Theorem 1, and the full
version for technical details.

(3) NARK with split accumulation based on DL. Theorem 1 motivates
the question of whether we can leverage the weaker condition on the argument
system to improve the efficiency of PCD. Our focus is on minimizing the cost
of the accumulation verifier for the argument system, because it is the only
component that is not used as a black box, and thus typically determines concrete
efficiency. Towards this end, we present a (zero knowledge) NARK with (zero
knowledge) split accumulation based on discrete logarithms, with a constant-size
accumulation verifier; the NARK has a transparent (public-coin) setup.

Theorem 2 (informal). In the random oracle model and assuming the hard-
ness of the discrete logarithm problem, there exists a transparent (zero knowl-
edge) NARK for R1CS and a corresponding (zero knowledge) split accumulation
scheme with the following efficiency:

NARK Split accumulation scheme

Prover time Verifier time Argument size Prover time Verifier time Decider time Accumulator size

O(M) G O(M) G O(1) G O(M) G O(1) G O(M) G |acc.x | = O(1) G + O(1) F

O(M) F O(M) F O(M) F O(M) F O(1) F O(M) F |acc.w | = O(M) F

Above, M denotes the number of constraints in the R1CS instance, G denotes
group scalar multiplications or group elements, and F denotes field operations or
field elements.

Proof-Carrying Data Without Succinct Arguments 685

The NARK construction from Theorem 2 is particularly simple: it is obtained
by applying the Fiat–Shamir transformation to a sigma protocol for R1CS based
on Pedersen commitments (and linear argument size). The only “special” fea-
ture about the construction is that, as we prove, it has a very efficient split
accumulation scheme for the relation corresponding to its verifier. By heuristi-
cally instantiating the random oracle, we can apply Theorem 1 (and [BCCT13])
to obtain a SNARK for machines from this modest starting point.

We find it informative to compare Theorem 2 and SNARKs with atomic
accumulation based on discrete logarithms [BCMS20]:

– the SNARK’s argument size is O(logM) group elements, much less than the
NARK’s O(M) field elements;

– the SNARK’s accumulator verifier uses O(logM) group scalar multiplications
and field operations, much more than the NARK’s O(1) group scalar multi-
plications and field operations.

Therefore Theorem 2 offers a tradeoff that minimizes the cost of the accumulator
at the expense of argument size. (As we shall see later, this tradeoff has concrete
efficiency advantages.)

Our focus on argument systems based on discrete logarithms is motivated
by the fact that they can be instantiated based on efficient curves suitable for
recursion: the Tweedle [BGH19] or Pasta [Hop20] curve cycles, which follow the
curve cycle technique for efficient recursion [BCTV14]. (In fact, as our construc-
tion does not rely on any number-theoretic properties of |G|, we could even use
the (secp256k1, secq256k1) cycle, where secp256k1 is the curve used in Bit-
coin.) This focus on discrete logarithms is a choice made for this paper, and we
believe that our ideas can lead to efficiency improvements to recursion in other
settings (e.g., pairing-based and hash-based arguments) and leave these to future
work.

See Sect. 2.3 for a summary of the ideas behind Theorem 1, and the full
version for technical details.

(4) Split accumulation for common predicates. We obtain split accumu-
lation schemes with constant-size accumulation verifiers for common predicates:
(i) Hadamard products (and more generally any bilinear function) under Peder-
sen commitments (see Sect. 2.5 for a summary and the full version for details);
(ii) polynomial evaluations under Pedersen commitments (see Sect. 2.6 for a sum-
mary and the full version for technical details). Split accumulation for Hadamard
products is a building block that we use to prove Theorem 1.

(5) Implementation and evaluation. We contribute a set of Rust libraries1

that realize PCD via accumulation via modular combinations of interchange-
able components: (a) generic interfaces for atomic and split accumulation; (b)
generic construction of PCD from arguments with atomic and split accumula-
tion; (c) split accumulation for our zkNARK for R1CS; (d) split accumulation
for Hadamard products under Pedersen commitments; (e) split accumulation

1 https://github.com/arkworks-rs/accumulation.

https://github.com/arkworks-rs/accumulation

686 B. Bünz et al.

for polynomial evaluations under Pedersen commitments; (f) atomic accumula-
tion for polynomial commitments based on inner product arguments and pair-
ings from [BCMS20]; (g) constraints for all the foregoing accumulation verifiers.
Practitioners interested in PCD will find these libraries useful for prototyping
and comparing different types of recursion (and, e.g., may help decide if current
systems based on atomic recursion [Halo20;Pickles20] are better off via split
recursion or not).

We additionally conduct experiments to evaluate our implementation. Our
experiments focus on determining the recursion threshold, which informally is
the number of constraints that need to be proved at each step of the recursion.
Our evaluation demonstrates that, over curves from the popular “Pasta” cycle
[Hop20], the recursion threshold for split accumulation of our NARK for R1CS
is as low as 52,000 constraints, which is at least 8.5× cheaper than the cost of
IVC constructed from atomic accumulation for discrete-logarithm-based proto-
cols [BCMS20]. In fact, the recursion threshold is even lower than that for IVC
constructed from prior state-of-the-art pairing-friendly SNARKs [Gro16]. While
this comes at the expense of much larger proof sizes, this overhead is attractive
for notable applications (e.g., incrementally-verifiable ledgers).

See the full version for more details on our implementation and evaluation,
respectively.

Remark 1 (concurrent work). A concurrent work [BDFG20] studies similar ques-
tions as this paper. Below we summarize the similarities and the differences
between the two papers.

Similarities. Both papers are study by the goal of reducing the cost of recursive
arguments. The main object of study in [BDFG20] is additive polynomial com-
mitment schemes (PC schemes), for which [BDFG20] considers different types
of aggregation schemes: (1) public aggregation in [BDFG20] is closely related to
atomic accumulation specialized to PC schemes from a prior work [BCMS20];
and (2) private aggregation in [BDFG20] is closely related to split accumulation
specialized to PC schemes from this paper. Moreover, the private aggregation
scheme for additive PC schemes in [BDFG20] is similar to our split accumula-
tion scheme for Pedersen PC schemes (overviewed in Sect. 2.6 and detailed in
the full version). The protocols differ in how efficiency depends on the n claims
to aggregate/accumulate: the verifier in [BDFG20] uses n + 1 group scalar mul-
tiplications while ours uses 2n. (Informally, [BDFG20] first randomly combines
claims and then evaluates at a random point, while we first evaluate at a random
point and then randomly combine claims.)

Differences. The two papers develop distinct, and complementary, directions.
The focus of [BDFG20] is to design protocols for any additive PC scheme

(and, even more generally, any PC scheme with a linear combination scheme),
including the aforementioned private aggregation protocol and a compiler that
endows a given PC scheme with zero knowledge.

In contrast, our focus is to formulate a definition of split accumulation for
general relation predicates that (a) we demonstrate suffices to construct PCD,

Proof-Carrying Data Without Succinct Arguments 687

and (b) in the random oracle model, we can also demonstrably achieve via a
split accumulation scheme based on Pedersen commitments. We emphasize that
our definitions are materially different from the case of atomic accumulation in
[BCMS20], and necessitate careful consideration of technicalities such as the fla-
vor of adaptive knowledge soundness, which algorithms can be allowed to query
oracles, and so on. Hence, we cannot simply rely on the existing foundations for
atomic accumulation of [BCMS20] in order to infer the correct definitions and
security reductions for split accumulation. Overall, our theoretical work enables
us to achieve the first construction of PCD without succinct arguments, and also
to obtain a novel NARK for R1CS with a constant-size accumulation verifier.

We stress that the treatment of accumulation at a higher level of abstraction
than for PC schemes is essential to prove theorems about PCD. In particular,
contrary to what is claimed as a theorem in [BDFG20], it is not known how to
build PCD from a PC scheme with an aggregation/accumulation scheme in any
model without making additional heuristic assumptions. This is because obtain-
ing a NARK from a PC scheme using known techniques requires the use of a ran-
dom oracle, which we do not know how to accumulate. In contrast, we construct
PCD in the standard model starting directly from an aggregation/accumulation
scheme for a NARK, and no additional assumptions. Separately, the security of
our accumulation scheme for a NARK in the standard model is an assumption,
which is conjectured based on a security proof in the ROM.

Another major difference is that we additionally contribute a comprehen-
sive and modular implementation of protocols from [BCMS20] and this paper,
and conduct an evaluation for the discrete logarithm setting. This supports the
asymptotic improvements with measured improvements in concrete efficiency.

2 Techniques

We summarize the main ideas behind our results. In Sect. 2.1 we discuss our
new notion of split accumulation for relation predicates, and compare it with
the notion of atomic accumulation for language predicates from [BCMS20]. In
Sect. 2.2 we discuss the proof of Theorem 1. In Sect. 2.3 we discuss the proof
of Theorem 2; for this we rely on a new result about split accumulation for
Hadamard products, which we discuss in Sect. 2.5. Then, in Sect. 2.6, we discuss
our split accumulation for a Pedersen-based polynomial commitment, which can
act as a drop-in replacement for polynomial commitments used in prior SNARKs,
such as those of [BGH19]. Finally, in Sect. 2.7 we elaborate on our implemen-
tation and evaluation. Figure 1 illustrates the relation between our results. The
rest of the paper contains technical details, and we provide pointers to relevant
sections along the way.

2.1 Accumulation: Atomic vs Split

We review the notion of accumulation from [BCMS20], which we refer to as
atomic accumulation, and then describe the weaker notion that we introduce,
which we call split accumulation.

688 B. Bünz et al.

Fig. 1. Diagram showing the relation between our results. Gray boxes within a result
are notable subroutines.

Atomic Accumulation for Languages. An accumulation scheme for a lan-
guage predicate Φ : X → {0, 1} is a tuple of algorithms (P,V,D), known as the
prover, verifier, and decider, that enable proving/verifying statements of the
form Φ(q1) ∧ Φ(q2) ∧ · · · more efficiently than running the predicate Φ on each
input.

This is done as follows. Starting from an initial (“empty”) accumulator acc1,
the prover is used to accumulate the first input q1 to produce a new accumulator
acc2 ← P(q1, acc1); then the prover is used again to accumulate the second input
q2 to produce a new accumulator acc3 ← P(q2, acc2); and so on.

Each accumulator produced so far enables efficient verification of the predi-
cate on all inputs that went into the accumulator. For example, to establish that
Φ(q1) ∧ · · · ∧ Φ(qT) = 1 it suffices to check that:

– the verifier accepts each accumulation step: V(q1, acc1, acc2) = 1,
V(q2, acc2, acc3) = 1, and so on; and

– the decider accepts the final accumulator: D(accT) = 1.

Qualitatively, this replaces the naive cost T · |Φ| with the new cost T · |V| + |D|.
This is beneficial when the verifier is much cheaper than checking the predicate
directly and the decider is not much costlier than checking the predicate directly.
Crucially, the verifier and decider costs (and, in particular, the accumulator size)
should not grow with the number T of accumulation steps (which need not be
known in advance).

The properties of an accumulation scheme are summarized in the following
informal definition, which additionally includes an accumulation proof used to
check an accumulation step (but is not passed on).

Definition 1 (informal). An accumulation scheme for a predicate Φ : X →
{0, 1} consists of a triple of algorithms (P,V,D), known as the prover, verifier,
and decider, that satisfies the following properties.

– Completeness: For every accumulator acc and predicate input q ∈ X, if
D(acc) = 1 and Φ(q) = 1, then for (acc�, pf�) ← P(acc, q) it holds that
V(q, acc, acc�, pf�) = 1 and D(acc�) = 1.

– Soundness: For every efficiently-generated old accumulator acc, predicate
input q ∈ X, new accumulator acc�, and accumulation proof pf�, if D(acc�) =

Proof-Carrying Data Without Succinct Arguments 689

1 and V(q, acc, acc�, pf�) = 1 then, with all but negligible probability, Φ(q) =
1 and D(acc) = 1.

The above definition omits many details, such as the ability to accumulate
multiple accumulators [accj]mj=1 and multiple predicate inputs [qi]ni=1 in one step,
the optional property of zero knowledge (enabled by the accumulation proof pf�),
the fact that P,V,D should receive keys apk, avk, dk generated by an indexer
algorithm that receives the specification of Φ, and others. We refer the reader to
[BCMS20] for more details.

The aspect that we wish to highlight here is the following: in order for the
verifier to be much cheaper than the predicate (|V| � |Φ|) it must be that the
accumulator itself is much smaller than the predicate (|acc| � |Φ|) because the
verifier receives the accumulator as input. (And if the accumulator is accompa-
nied by a validity proof pf then this proof must also be small.)

We refer to this setting as atomic accumulation because the entirety of the
accumulator is treated as one short monolithic string. In contrast, in this paper
we consider a relaxation where this is not the case, and will enable us to obtain
new instantiations that lead to new theoretical and practical results.

Split Accumulation for Relations. We propose a relaxed notion of accumu-
lation: a split accumulation scheme for a relation predicate Φ : X × W → {0, 1}
is again a tuple of algorithms (P,V,D) as before. Split accumulation differs from
atomic accumulation in that: (a) an input to Φ consists of a short instance part
qx and a (possibly) long witness part qw; (b) an accumulator acc is split into a
short instance part acc.x and a (possibly) long witness part acc.w; (c) the verifier
only needs the short parts of inputs and accumulators to verify an accumulation
step, along with a short validity proof instead of the long witness parts.

As before, the prover is used to accumulate a predicate input qi = (qxi, qwi)
into a prior accumulator acci to obtain a new accumulator and validity proof
(acci+1, pfi+1) ← P(qi, acci). Different from before, however, we wish to establish
that given instances qx1, . . . , qxT there exist (more precisely, a party knows)
witnesses qw1, . . . , qwT such that Φ(qx1, qw1) ∧ · · · ∧ Φ(qxT , qwT) = 1. For this
it suffices to check that:

– the verifier accepts each accumulation step given only the short instance parts:
V(qx1, acc1.x, acc2.x, pf2) = 1, V(qx2, acc2.x, acc3.x, pf3) = 1, and so on; and

– the decider accepts the final accumulator (made of both the instance and
witness part): D(accT) = 1.

Again the naive cost T · |Φ| is replaced with the new cost T · |V|+ |D|, but now it
could be that an accumulator is, e.g., as large as |Φ|; we only need the instance
part of the accumulator (and predicate inputs) to be short.

The security property of a split accumulation scheme involves an extractor
that outputs a long witness part from a short instance part and proof, and is
reminiscent of the knowledge soundness of a succinct non-interactive argument.
Turning this high level description into a working definition requires some care,

690 B. Bünz et al.

however, and we view this as a contribution of this paper.2 Informally the security
definition could be summarized as follows.

Definition 2 (informal). A split accumulation scheme for a predicate
Φ : X × W → {0, 1} consists of a triple of algorithms (P,V,D) that satisfies the
following properties.

– Completeness: For every accumulator acc and predicate input q = (qx, qw) ∈
X × W , if D(acc) = 1 and Φ(q) = 1, then for (acc�, pf�) ← P(q, acc) it holds
that V(qx, acc.x, acc�.x, pf�) = 1 and D(acc�) = 1.

– Knowledge: For every efficiently-generated old accumulator instance acc.x,
old input instance qx, accumulation proof pf�, and new accumulator acc�,
if D(acc�) = 1 and V(qx, acc.x, acc�.x, pf�) = 1 then, with all but negligible
probability, an efficient extractor can find an old accumulator witness acc.w
and predicate witness qw such that Φ(qx, qw) = 1 and D((acc.x, acc.w)) = 1.

One can verify that split accumulation is indeed a relaxation of atomic accu-
mulation: any atomic accumulation scheme is (trivially) a split accumulation
scheme with empty witnesses. Crucially, however, a split accumulation scheme
alleviates a major restriction of atomic accumulation, namely, that accumulators
and predicate inputs have to be short.

Next, in Sect. 2.2 we show that split accumulation suffices for recursive com-
position (which has surprising theoretical consequences) and then in Sect. 2.3 we
present a NARK with split accumulation scheme based on discrete logarithms.

2.2 PCD from Split Accumulation

We summarize the main ideas behind Theorem 1, which obtains proof-carrying
data (PCD) from any NARK that has a split accumulation scheme. To ease
exposition, in this summary we focus on IVC, which can be viewed as the special
case where a circuit F is repeatedly applied. That is, we wish to incrementally
prove a claim of the form “FT (z0) = zT ” where FT denotes F composed with
itself T times.

Prior Work: Recursion via Atomic Accumulation. Our starting point
is a theorem from [BCMS20] that obtains PCD from any SNARK that has an
atomic accumulation scheme. The IVC construction implied by that theorem is
roughly follows.

– The IVC prover receives a previous instance zi, proof πi, and accumulator
acci; accumulates (zi, πi) with acci to obtain a new accumulator acci+1 and
accumulation proof pfi+1; and generates a SNARK proof πi+1 of the following
claim expressed as a circuit R (see Fig. 2, middle box): “zi+1 = F (zi), and

2 By “working definition” we mean a definition that we can provably fulfill under
concrete hardness assumptions in the random oracle model, and, separately, that
provably suffices for recursive composition in the plain model without random
oracles.

Proof-Carrying Data Without Succinct Arguments 691

there exist a SNARK proof πi, accumulator acci, and accumulation proof
pfi+1 such that the accumulation verifier accepts ((zi, πi), acci, acci+1, pfi+1)”.
The IVC proof for zi+1 is (πi+1, acci+1).

– The IVC verifier validates an IVC proof (πi, acci) for zi by running the
SNARK verifier on the instance (zi, acci) and proof πi, and running the accu-
mulation scheme decider on the accumulator acci.

In each iteration we maintain the invariant that if acci is a valid accumulator
(according to the decider) and πi is a valid SNARK proof, then the computation
is correct up to the i-th step.

Note that while it would suffice to prove that “zi+1 = F (zi), πi is a valid
SNARK proof, and acci is a valid accumulator”, we cannot afford to do so.
Indeed: (i) proving that πi is a valid proof requires proving a statement about
the argument verifier, which may not be sublinear; and (ii) proving that acci is
a valid accumulator requires proving a statement about the decider, which may
not be sublinear. Instead of proving this claim directly, we “defer” it by having
the prover accumulate (zi, πi) into acci to obtain a new accumulator acci+1. The
soundness property of the accumulation scheme ensures that if acci+1 is valid
and the accumulation verifier accepts ((zi, πi), acci, acci+1, pfi+1), then πi is a
valid SNARK proof and acci is a valid accumulator. Thus all that remains to
maintain the invariant is for the prover to prove that the accumulation verifier
accepts; this is possible provided that the accumulation verifier is sublinear.

Our Construction: Recursion via Split Accumulation. Our construction
naturally extends the above idea to the setting of NARKs with split accumula-
tion schemes. Indeed, the only difference to the above construction is that the
proof πi+1 generated by the IVC prover is for the statement “zi+1 = F (zi),
and there exist a NARK proof instance πi.x, an accumulator instance acci.x,
and an accumulation proof pfi+1 such that the accumulation verifier accepts
((zi, πi.x), acci.x, acci+1.x, pfi+1)”, and accordingly the IVC verifier runs the
NARK verifier on ((zi, acci.x), πi) (in addition to running the accumulation
scheme decider on the accumulator acci). This is illustrated in Fig. 2 (lower
box). Note that the circuit R itself is unchanged from the atomic case; the dif-
ference is in whether we pass the entire proof and accumulators or just the x
part.

Proving that this relaxation yields a secure construction is more complex.
Similar to prior work, the proof of security proceeds via a recursive extraction
argument, as we explain next.

For an atomic accumulation scheme ([BCMS20]), one maintains the following
extraction invariant: the i-th extractor outputs (zi, πi, acci) such that πi is valid
according to the SNARK, acci is valid according to the decider, and FT−i(zi) =
zT . The T -th “extractor” is simply the malicious prover, and we can obtain
the i-th extractor by applying the knowledge guarantee of the SNARK to the
(i+1)-th extractor. That the invariant is maintained is implied by the soundness
guarantee of the atomic accumulation scheme.

For a split accumulation scheme, we want to maintain the same extraction
invariant; however, the extractor for the NARK will only yield (zi, πi.x, acci.x),

692 B. Bünz et al.

and not the corresponding witnesses. This is where we make use of the extraction
property of the split accumulation scheme itself. Specifically, we interleave the
knowledge guarantees of the NARK and accumulation scheme as follows: the i-
th NARK extractor is obtained from the (i+1)-th accumulation extractor using
the knowledge guarantee of the NARK, and the i-th accumulation extractor is
obtained from the i-th NARK extractor using the knowledge guarantee of the
accumulation scheme. We take the malicious prover to be the T -th accumulation
extractor.

From Sketch to Proof. In the full version we give the formal details of our
construction and a proof of correctness. In particular, we show how to construct
PCD, a more general primitive than IVC. In the PCD setting, rather than each
computation step having a single input zi, it receives m inputs from different
nodes. Proving correctness hence requires proving that all of these inputs were
computed correctly. For our construction, this entails checking m proofs and m
accumulators. To do this, we extend the definition of an accumulation scheme
to allow accumulating multiple instance-proof pairs and multiple “old” accumu-
lators.

We also note that the application to PCD leads to other definitional con-
siderations, which are similar to those that have appeared in previous works
[COS20;BCMS20]. In particular, the knowledge soundness guarantee for both
the NARK and the accumulation scheme should be of the stronger “multi-
instance witness-extended emulation with auxiliary input and output” type used
in previous work. Additionally, the underlying construction of split accumula-
tion achieves only expected polynomial-time extraction (in the ROM), and so
the recursive extraction technique requires that we are able to extract from
expected-time adversaries.

Remark 2 (knowledge soundness for PCD vs. IVC). The proof of security for
PCD extracts a transcript one full layer at a time. Since a layer consists of many
nodes, each with an independently-generated proof and accumulator, a standard
“single-instance” extraction guarantee is insufficient in general. However, in the
special case of IVC, every layer consists of exactly one node, and so single-
instance extraction does suffice.

Remark 3 (flavors of PCD). The recent advances in PCD from accumulation
achieve weaker efficiency guarantees than PCD from succinct verification, and
formally these results are incomparable. (Starting from weaker assumptions they
obtain weaker conclusions.) The essential feature that all these works achieve is
that the efficiency of PCD algorithms is independent of the number of nodes in
the PCD computation, which is how PCD is defined. That said, prior work on
PCD from succinct verification [BCCT13;BCTV14;COS20] additionally guar-
antees that verifying a PCD proof is sublinear in a node’s computation; and
prior work on PCD from atomic accumulation [BCMS20] merely ensures that a
PCD proof has size (but not necessarily verification time) that is sublinear in a
node’s computation. The PCD scheme obtained in this paper does not have these
additional features: a PCD proof has size that is linear in a node’s computation.

Proof-Carrying Data Without Succinct Arguments 693

Fig. 2. Comparison of circuits used to realize recursion with different techniques.

2.3 NARK with Split Accumulation Based on DL

We summarize the main ideas behind Theorem 2, which provides, in the discrete
logarithm setting with random oracles, a (zero knowledge) NARK for R1CS that
has a (zero knowledge) split accumulation scheme whose accumulation verifier
has constant size (more precisely, performs a constant number of group scalar
multiplications, field operations, and random oracle calls).

Recall that R1CS is a standard generalization of arithmetic circuit satisfia-
bility where the “circuit description” is given by coefficient matrices, as specified
below. (“◦” denotes the entry-wise product.)

Definition 3 (R1CS problem). Given a finite field F, coefficient matrices
A,B,C ∈ F

M×N, and an instance vector x ∈ F
n, is there a witness vector w ∈

F
N−n such that Az ◦ Bz = Cz for z := (x,w) ∈ F

N?

We explain our construction incrementally. In Sect. 2.3.1 we begin by describ-
ing a NARK for R1CS that is not zero knowledge, and a “basic” split accumula-
tion scheme for it that is also not zero knowledge. In Sect. 2.3.2 we show how to
extend the NARK and its split accumulation scheme to both be zero knowledge.
In Sect. 2.3.3 we explain why the accumulation scheme described so far is limited
to the special case of 1 old accumulator and 1 predicate input (which suffices
for IVC), and sketch how to obtain accumulation for m old accumulators and
n predicate inputs (which is required for PCD); this motivates the problem of
accumulating Hadamard products, which we subsequently address in Sect. 2.5.

We highlight here that both the NARK and the accumulation scheme are
particularly simple compared to other protocols in the SNARK literature (espe-
cially with regard to constructions that enable recursion!), and view this as a
significant advantage for potential deployments of these ideas in the real world.

694 B. Bünz et al.

2.3.1 Without Zero Knowledge
Let ck = (G1, . . . , GM) ∈ G

M be a commitment key for the Pedersen commitment
scheme with message space F

M, and let Commit(ck, a) :=
∑

i∈[M] ai · Gi denote
its commitment function. Consider the following non-interactive argument for
R1CS:

The NARK’s security follows from the binding property of Pedersen commit-
ments. (At this point we are not using any homomorphic properties, but we will
in the accumulation scheme.) Moreover, denoting by K = Ω(M) the number of
non-zero entries in the coefficient matrices, the NARK’s efficiency is as follows:

NARK prover time NARK verifier time NARK argument size

O(M) G O(M) G O(1) G
O(K) F O(K) F O(N) F

The NARK may superficially appear useless because it has linear argument
size and is not zero knowledge. Nevertheless, we can obtain an efficient split
accumulation scheme for it, as we describe next.3

The predicate to be accumulated is the NARK verifier with a suitable split
between predicate instance and predicate witness: Φ takes as input a predicate
instance qx = (x,CA, CB, CC) and a predicate witness qw = w, and then runs
the NARK verifier with R1CS instance x and proof π = (CA, CB, CC , w).4

An accumulator acc is split into an accumulator instance acc.x =
(x,CA, CB, CC , C◦) ∈ F

n × G
4 and an accumulator witness acc.w = w ∈ F

N−n.
The accumulation decider D validates a split accumulator acc = (acc.x, acc.w)
as follows: set z := (x,w) ∈ F

N; compute the vectors zA := Az, zB := Bz, and
zC := Cz; and check that the following conditions hold:

CA
?
= Commit(ck, zA) , CB

?
= Commit(ck, zB) , CC

?
= Commit(ck, zC) , C◦

?
= Commit(ck, zA ◦ zB) .

3 We could even “re-arrange” computation between the NARK and the accumulation
scheme, and simplify the NARK further to be the NP decider (the verifier receives
just the witness w and checks that the R1CS condition holds). We do not do so
because this does not lead to any savings in the accumulation verifier (the main
efficiency metric of interest) and also because the current presentation more nat-
urally leads to the zero knowledge variant described in Sect. 2.3.2. (We note that
the foregoing rearrangement is a general transformation that does not preserve zero
knowledge or succinctness of the given NARK.).

4 For now we view the commitment key ck and coefficient matrices A, B, C as hard-
coded in the accumulation predicate Φ; our definitions later handle this more
precisely.

Proof-Carrying Data Without Succinct Arguments 695

Note that the accumulation decider D is similar, but not equal, to the NARK
verifier.

We are left to describe the accumulation prover and accumulation verifier.
Both have access to a random oracle ρ. For adaptive security, queries to the
random oracle should include a hash τ of the coefficient matrices A,B,C and
instance size n, which can be precomputed in an offline phase. (Formally, this is
done via the indexer algorithm of the accumulation scheme, which receives the
coefficient matrices and instance size, performs all one-time computations such
as deriving τ , and produces an accumulator proving key apk, an accumulator
verification key avk, and a decision key dk for P, V, and D respectively.)

The intuition for accumulation is to set the new accumulator to be a random
linear combination of the old accumulator and predicate input, and use the
accumulation proof to collect cross terms that arise from the Hadamard product
(a bilinear, not linear, operation). This naturally leads to the following simple
construction.

PρAS(acc, (qx, qw)):

1. zA := A·(qx.x, qw.w), zB := B·(qx.x, qw.w).
2. z′

A := A · (acc.x.x, acc.w.w), z′
B := B ·

(acc.x.x, acc.w.w).
3. pf := Commit(ck, zA ◦ z′

B + z′
A ◦ zB).

4. β := ρAS(τ, acc.x, qx, pf).
5. acc�.x.x := acc.x.x + β · qx.x.
6. acc�.x.CA := acc.x.CA + β · qx.CA.
7. acc�.x.CB := acc.x.CB + β · qx.CB.
8. acc�.x.CC := acc.x.CC + β · qx.CC .
9. acc�.x.C◦ := acc.x.C◦ + β · pf + β2 · qx.CC .

10. acc�.w.w := acc.w.w + β · qw.w.
11. Output (acc�, pf).

VρAS(acc.x, qx, acc�.x, pf):

1. β := ρAS(τ, acc.x, qx, pf).

2. acc�.x.x
?
= acc.x.x + β · qx.x.

3. acc�.x.CA
?
= acc.x.CA + β ·

qx.CA.

4. acc�.x.CB
?
= acc.x.CB + β ·

qx.CB.

5. acc�.x.CC
?
= acc.x.CC + β ·

qx.CC .

6. acc�.x.C◦
?
= acc.x.C◦ +β ·pf+

β2 · qx.CC .

The efficiency of the split accumulation scheme can be summarized by the
following table:

Accumulation prover time Accumulation verifier time Decider time Accumulator size

O(M) G 4 G
5 O(M) G |acc.x| = 4 G+ n F

O(K) F O(n) F O(K) F |acc.w| = (N− n) F
1 RO 1 RO – –

The key efficiency feature is that the accumulation verifier only performs 1 call
to the random oracle, a constant number of group scalar multiplications, and
field operations. (More precisely, the verifier makes n field operations, but this
does not grow with circuit size and, more fundamentally, is inevitable because
the accumulation verifier must receive the R1CS instance x ∈ F

n as input.)
5 The verifier performs 4 group scalar multiplication by computing β ·qx.CC and then

β · pf + β2 · qx.CC = β · (pf + β · qx.CC) via another group scalar multiplication.
Further it is possible to combine CA and CB in one commitment in both the NARK
and the accumulation scheme. This reduces the group scalar multiplications in the
verifier to 3, and the accumulator size to 3 G + n F.

696 B. Bünz et al.

2.3.2 With Zero Knowledge
We explain how to add zero knowledge to the approach described in the previous
section.

First, we extend the NARK to additionally achieve zero knowledge. For this
we construct a sigma protocol for R1CS based on Pedersen commitments, which
is summarized in Fig. 3; then we apply the Fiat–Shamir transformation to it to
obtain a corresponding zkNARK for R1CS. Here the commitment key for the
Pedersen commitment is ck := (G1, . . . , GM,H) ∈ G

M+1, as we need a spare
group element for the commitment randomness. The blue text in the figure
represents the “diff” compared to the non-zero-knowledge version, and indeed if
all such text were removed the protocol would collapse to the previous one.

Second, we extend the split accumulation scheme to accumulate the modified
protocol for R1CS. Again the predicate being accumulated is the NARK verifier
but now since the NARK verifier has changed so does the predicate. A zkNARK
proof π now can be viewed as a pair (π1, π2) denoting the prover’s commitment
and response in the sigma protocol. Then the predicate Φ takes as input a predi-
cate instance qx = (x, π1) ∈ F

n ×G
8 and a predicate witness qw = π2 ∈ F

N−n+4,
and then runs the NARK verifier with R1CS instance x and proof π = (π1, π2).

An accumulator acc is split into an accumulator instance acc.x =
(x,CA, CB, CC , C◦) ∈ F

n × G
4 (the same as before) and an accumulator wit-

ness acc.w = (w, σA, σB, σC , σ◦) ∈ F
N−n+4. The decider is essentially the same

as in Sect. 2.3.1, except that now the four commitments are computed using the
corresponding randomness in acc.w.

The accumulation prover and accumulation verifier can be extended, in a
straightforward way, to support the new zkSNARK protocol; we provide these
in Fig. 4, with text in blue to denote the “diff” to accumulate the zero knowledge
features of the NARK and with text in red to denote the features to make
accumulation itself zero knowledge. There we use ρNARK to denote the oracle used
for the zkNARK for R1CS, which is obtained via the Fiat–Shamir transformation
applied to a sigma protocol (as mentioned above); for adaptive security, the
Fiat–Shamir query includes, in addition to π1, a hash τ := ρNARK(A,B,C, n) of
the coefficient matrices and the R1CS input x ∈ F

n (this means that the Fiat–
Shamir query equals (τ, qx) = (τ, x, π1)).

Note that now the accumulation prover and accumulation verifier are each
making 2 calls to the random oracle, rather than 1 as before, because they have
to additionally compute the sigma protocol’s challenge.

2.3.3 Towards General Accumulation
The accumulation schemes described in Sects. 2.3.1 and 2.3.2 are limited to a
special case, which we could call the “IVC setting”, where accumulation involves
1 old accumulator and 1 predicate input. However, the definition of accumulation
requires supporting m old accumulators [accj]mj=1 = [(accj .x, accj .w)]mj=1 and n

predicate inputs [(qxi, qwi)]
n
i=1, for any m and n. (E.g., to construct PCD we

set both m and n equal to the “arity” of the compliance predicate.) How can we
extend the ideas described so far to this more general case?

Proof-Carrying Data Without Succinct Arguments 697

Fig. 3. The sigma protocol for R1CS that underlies the zkNARK for R1CS.

Fig. 4. Accumulation prover and accumulation verifier for the zkNARK for R1CS.

The zkNARK verifier performs two types of computations: linear checks and
a Hadamard product check. We describe how to accumulate each of these in the
general case.

– Linear checks. A split accumulator acc = (acc.x, acc.w) in Sect. 2.3.2
included sub-accumulators for different linear checks: x,CA, CB, CC in acc.x
and w, σA, σB, σC in acc.w. We can keep these components and simply

698 B. Bünz et al.

use more random coefficients or, as we do, further powers of the ele-
ment β. For example, in the accumulation prover P a computation such
as acc�.x.x := acc.x.x + β · qx.x is replaced by a computation such as
acc�.x.x :=

∑m
j=1β

j−1 · accj .x.x +
∑n

i=1β
m+j−1 · qxi.x.

– Hadamard product check. A split accumulator acc = (acc.x, acc.w) in
Sect. 2.3.2 also included a sub-accumulator for the Hadamard product check:
C◦ in acc.x and σ◦ in acc.w. Because a Hadamard product is a bi linear oper-
ation, combining two Hadamard products via a random coefficient led to a
quadratic polynomial whose coefficients include the two original Hadamard
products and a cross term. This is indeed why we stored the cross term in
the accumulation proof pf. However, if we consider the cross terms that arise
from combining more than two Hadamard products (i.e., when m + n > 2)
then the corresponding polynomials do not lend themselves to accumulation
because the original Hadamard products appear together with other cross
terms. To handle this issue, we introduce in Sect. 2.5 a new subroutine that
accumulates Hadamard products via an additional round of interaction.

2.4 On Proving Knowledge Soundness

In order to construct accumulation schemes that fulfill the type of knowledge
soundness that we ultimately need for PCD (see Sect. 2.2), we formulate a
new expected-time forking lemma in the random oracle model, which is infor-
mally stated below. In our setting, (q, b, o) ∈ L if o = ([qxi]ni=1, acc, pf) is such
that D(acc) = 1 and, given that ρ(q) = b, the accumulation verifier accepts:
Vρ([qxi]ni=1, acc.x, pf) = 1.

Lemma 1 (informal). Let L be an efficiently recognizable set. There exists an
algorithm Fork such that for every expected polynomial time algorithm A and
integer N ∈ N the following holds. With all but negligible probability over the
choice of random oracle ρ, randomness r of A, and randomness of Fork, if Aρ(r)
outputs a tuple (q, b, o) ∈ L with ρ(q) = b, then ForkA,ρ(1N , q, b, o, r) outputs
[(bj , oj)]Nj=1 such that b1, . . . , bN are pairwise distinct and for each j ∈ [N] it
holds that (q, bj , oj) ∈ L.

This forking lemma differs from prior forking lemmas in three significant
ways. First, it is in the random oracle model rather than the interactive setting
(unlike [BCC+16]). Second, we can obtain any polynomial number of accept-
ing transcripts in expected polynomial time with only negligible loss in success
probability (unlike forking lemmas for signature schemes, which typically extract
two transcripts in strict polynomial time [BN06]). Finally, it holds even if the
adversary itself runs in expected (as opposed to strict) polynomial time. This is
important for our application to PCD where the extractor in one recursive step
becomes the adversary in the next. This last feature requires some care, since
the running time of the adversary, and in particular the length of its random
tape, may not be bounded.

Moreover, in our security proofs we at times additionally rely on an expected-
time variant of the zero-finding game lemma from [BCMS20] to show that if a

Proof-Carrying Data Without Succinct Arguments 699

particular polynomial equation holds at a point obtained from the random oracle
via a “commitment” to the equation, then it must with overwhelming probability
be a polynomial identity. For more details, see the full version.

2.5 Split Accumulation for Hadamard Products

We construct a split accumulation scheme for a predicate ΦHP that considers
the Hadamard product of committed vectors. For a commitment key ck for
messages in F

�, the predicate ΦHP takes as input a predicate instance qx =
(C1, C2, C3) ∈ G

3 consisting of three Pedersen commitments, a predicate witness
qw = (a, b, ω1, ω2, ω3) consisting of two vectors a, b ∈ F

� and three opening ran-
domness elements ω1, ω2, ω3 ∈ F, and checks that C1 = CM.Commit(ck, a;ω1),
C2 = CM.Commit(ck, b;ω2), and C3 = CM.Commit(ck, a ◦ b;ω3). In other words,
C3 is a commitment to the Hadamard product of the vectors committed in C1

and C2.

Theorem 3 (informal). The Hadamard product predicate ΦHP has a split accu-
mulation scheme ASHP that is secure in the random oracle model (and assuming
the hardness of the discrete logarithm problem) where verifying accumulation
requires 5 group scalar multiplications and O(1) field operations per claim, and
results in an accumulator whose instance part is 3 group elements and witness
part is O(
) field elements. Moreover, the accumulation scheme can be made zero
knowledge at a sub-constant overhead per claim.

Below we summarize the ideas behind this result. Our construction directly
extends to accumulate any bilinear function (see Remark 4).

A Bivariate Identity. The accumulation scheme is based on a bivariate poly-
nomial identity, and is the result of turning a public-coin two-round reduction
into a non-interactive scheme by using the random oracle. Given n pairs of vec-
tors [(ai, bi)]ni=1, consider the following two polynomials with coefficients in F

�:

a(X,Y) :=
∑n

i=1X
i−1Y i−1ai and b(X) :=

∑n
i=1X

n−ibi .

The Hadamard product of the two polynomials can be written as

a(X,Y) ◦ b(X) =
∑2n−1

i=1 Xi−1ti(Y) where tn(Y) =
∑n

i=1Y
i−1ai ◦ bi .

The expression of the coefficient polynomials {ti(Y)}i�=n is not important;
instead, the important aspect here is that a coefficient polynomial, namely tn(Y),
includes the Hadamard products of all n pairs of vectors as different coefficients.
This identity is the starting point of the accumulation scheme, which informally
evaluates this expression at random points to reduce the n Hadamard products
to 1 Hadamard product. Similar ideas are used to reduce several Hadamard
products to a single inner product in [BCC+16;BBB+18].

Batching Hadamard Products. We describe a public-coin two-round reduc-
tion from n Hadamard product claims to 1 Hadamard product claim. The veri-
fier receives n predicate instances [qxi]ni=1 = [(C1,i, C2,i, C3,i)]ni=1 each consisting

700 B. Bünz et al.

of three Pedersen commitments, and the prover receives corresponding predi-
cate witnesses [qwi]ni=1 = [(ai, bi, ω1,i, ω2,i, ω3,i)]ni=1 containing the corresponding
openings.

– The verifier sends a first challenge μ ∈ F.
– The prover computes the product polynomial a(X,μ) ◦ b(X) =

∑2n−1
i=1 Xi−1ti(μ) ∈ F

�[X]; for each i ∈ [2n − 1] \ {n}, computes the com-
mitment Ct,i := CM.Commit(ck, ti; 0) ∈ G; and sends to the verifier an accu-
mulation proof pf := [Ct,i, Ct,n+i]n−1

i=1 .
– The verifier sends a second challenge ν ∈ F.
– The verifier computes and outputs a new predicate instance qx = (C1, C2, C3):

C1 =
∑n

i=1ν
i−1μi−1C1,i ,

C2 =
∑n

i=1ν
n−iC2,i ,

C3 =
∑n−1

i=1 νi−1Ct,i + νn−1∑n
i=1μ

i−1C3,i +
∑n−1

i=1 νn+i−1Ct,n+i .

– The prover computes and outputs a corresponding predicate witness qw =
(a, b, ω1, ω2, ω3):

a :=
∑n

i=1ν
i−1μi−1ai ω1 :=

∑n
i=1ν

i−1μi−1ω1,i ,

b :=
∑n

i=1ν
n−ibi ω2 :=

∑n
i=1ν

n−iω2,i ,

ω3 := νn−1∑n
i=1μ

i−1ω3,i .

Observe that the new predicate instance qx = (C1, C2, C3) consists of com-
mitments to a(ν, μ), b(ν), a(ν, μ) ◦ b(ν) respectively, and the predicate witness
qw = (a, b, ω1, ω2, ω3) consists of corresponding opening information. The prop-
erties of low-degree polynomials imply that if any of the n claims is incorrect
(there is i ∈ [n] such that ΦHP(qxi, qwi) = 0) then, with high probability, so is
the output claim (ΦHP(qx, qw) = 0).

Split Accumulation. The batching protocol described above yields a split
accumulation scheme for ΦHP in the random oracle model. An accumulator acc
has the same form as a predicate input (qx, qw): acc.x has the same form as
a predicate instance qx, and acc.w has the same form as a predicate witness
qw. The accumulation decider D simply equals ΦHP (this is well-defined due to
the prior sentence). The accumulation prover and accumulation verifier are as
follows.

– The accumulation prover P runs the interactive reduction by relying on the
random oracle to generate the random verifier messages (i.e., it applies the
Fiat–Shamir transformation to the reduction), in order to produce an accu-
mulation proof pf as well as an accumulator acc = (qx, qw) whose instance
part is computed like the verifier of the reduction and witness part is com-
puted like the prover of the reduction.

– The accumulation verifier V re-derives the challenges using the random oracle,
and checks that qx was correctly derived from [qxi]ni=1 (also via the help of
the accumulation proof pf).

Proof-Carrying Data Without Succinct Arguments 701

The construction described above is not zero knowledge. One way to achieve
zero knowledge is for the accumulation prover to sample a random predicate
input that satisfies the predicate, accumulate it, and include it as part of the
accumulation proof pf. In our construction we opt for a more efficient solution,
leveraging the fact that we are not actually interested in accumulating the ran-
dom predicate input.

Efficiency. The efficiency claimed in Theorem 3 is evident from the construc-
tion. The (short) instance part of an accumulator consists of 3 group elements,
while the (long) witness part of an accumulator consists of O(
) field elements.
The accumulator verifier V performs 2 random oracle calls, 5 group scalar mul-
tiplication, and O(1) field operations per accumulated claim.

Security. Given an adversary that produces Hadamard product claims
[qxi]ni=1 = [(C1,i, C2,i, C3,i)]ni=1, a single Hadamard product claim qx =
(C1, C2, C3) and corresponding witness qw = (a, b, ω1, ω2, ω3), and an accumu-
lation proof pf that makes the accumulation verifier accept, we need to extract
witnesses [qwi]ni=1 = [(ai, bi, ω1,i, ω2,i, ω3,i)]ni=1 for the instances [qxi]ni=1. Our
security proof works in the random oracle model, assuming hardness of the dis-
crete logarithm problem.

In the proof we apply our expected-time forking lemma twice (see Sect. 2.4
for a discussion of this lemma and the full version for details including a corollary
that summarizes its double invocation). This lets us construct a two-level tree of
transcripts with branching factor n on the first challenge μ and branching factor
2n − 1 on the second challenge ν. Given such a transcript tree, the extractor
works as follows:

1. Using the transcripts corresponding to challenges {(μ1, ν1,k)}k∈[n] we extract

-element vectors [ai]ni=1, [bi]ni=1 and field elements [ω1,i]ni=1, [ω2,i]ni=1 such that
[ai]ni=1 and [bi]ni=1 are committed in [C1,i]ni=1 and [C2,i]ni=1 under randomness
[ω1,i]ni=1 and [ω2,i]ni=1, respectively.

2. Define a(X,Y) :=
∑n

i=1 Xi−1Y i−1ai ∈ F
�[X,Y] and b(X) :=

∑n
i=1 Xn−ibi ∈

F
�[X], using the vectors extracted above; then let ti(Y) be the coefficient

of Xi−1 in a(X,Y) ◦ b(X). For each j ∈ [n], using the transcripts corre-
sponding to challenges {(μj , νj,k)}k∈[2n−1], we extract field elements [τ (j)

i]2n−1
i=1

such that tn(μj) is committed in
∑n−1

i=1 μi−1
j C3,i under randomness τ

(j)
n and

[ti(μj), tn+i(μj)]n−1
i=1 are committed in pf(j) := [C(j)

t,i , C
(j)
t,n+i]

n−1
i=1 under ran-

domness [τ (j)
i , τ

(j)
n+i]

n−1
i=1 respectively.

3. Compute the solution [ω3,i]ni=1 to the linear system {τ
(j)
n =

∑n−1
i=1 μi−1

j ω3,i}j∈[n]. Together with the relation {tn(μj) =
∑n−1

i=1 μi−1
j ai ◦

bi}j∈[n], we deduce that C3,i is a commitment to ai ◦ bi under randomness
ω3,i for all i ∈ [n].

4. For each i ∈ [n], output qwi := (ai, bi, ω1,i, ω2,i, ω3,i).

Remark 4 (extension to any bilinear operation). The ideas described above
extend, in a straightforward way, to accumulating any bilinear operation of

702 B. Bünz et al.

committed vectors. Let f : F� × F
� → F

m be a bilinear operation, i.e., such
that: (a) f(a + a′, b) = f(a, b) + f(a′, b); (b) f(a, b + b′) = f(a, b) + f(a, b′);
(c) α · f(a, b) = f(αa, b) = f(a, αb). Let Φf be the predicate that takes as
input a predicate instance qx = (C1, C2, C3) ∈ G

3 consisting of three Ped-
ersen commitments, a predicate witness qw = (a, b, ω1, ω2, ω3) consisting of
two vectors a, b ∈ F

� and three opening randomness elements ω1, ω2, ω3 ∈ F,
and checks that C1 = CM.Commit(ck�, a;ω1), C2 = CM.Commit(ck�, b;ω2), and
C3 = CM.Commit(ckm, f(a, b);ω3). The Hadamard product ◦ : F� ×F

� → F
� is a

bilinear operation, as is the scalar product 〈·, ·〉 : F� ×F
� → F. Our accumulation

scheme for Hadamard products works the same way, mutatis mutandis, for a
general bilinear map f .

2.6 Split Accumulation for Pedersen Polynomial Commitments

We construct an efficient split accumulation scheme ASPC for a predicate ΦPC that
checks a polynomial evaluation claim for a “trivial” polynomial commitment
scheme PCPed based on Pedersen commitments (see Fig. 5). In more detail, for a
Pedersen commitment key ck for messages in F

d+1, the predicate ΦPC takes as
input a predicate instance qx = (C, z, v) ∈ G × F × F and a predicate witness
qw = p ∈ F

≤d[X], and checks that C = CM.Commit(ck, p), p(z) = v, and
deg(p) ≤ d. In other words, the predicate ΦPC checks that the polynomial p of
degree at most d committed in C evaluates to v at z.

Fig. 5. PCPed is a trivial polynomial commitment scheme based on the Pedersen com-
mitment scheme CM.

Theorem 4 (informal). The (Pedersen) polynomial commitment pred-
icate ΦPC has a split accumulation scheme ASPC that is secure in the random
oracle model (and assuming the hardness of the discrete logarithm problem). Ver-
ifying accumulation requires 2 group scalar multiplications and O(1) field addi-
tions/multiplications per claim, and results in an accumulator whose instance
part is 1 group element and 2 field elements and whose witness part is d field
elements. (See Table 1)

One can use ASPC to obtain a split accumulation scheme for a different NARK;
see Remark 5 for details.

Proof-Carrying Data Without Succinct Arguments 703

In Table 1 we compare the efficiency of our split accumulation scheme ASPC

for the predicate ΦPC with the efficiency of the atomic accumulation scheme
ASIPA [BCMS20] for the equivalent predicate defined by the check algorithm of
the (succinct) PC scheme PCIPA based on the inner-product argument on cyclic
groups [BCC+16;BBB+18;WTS+18]. The takeaway is that the accumulation
verifier for ASPC is significantly cheaper than the accumulation verifier for ASIPA.

Technical details are in the full version; in the rest of this section we sketch
the ideas behind Theorem 4.

Table 1. Efficiency comparison between the atomic accumulation scheme ASIPA for
PCIPA in [BCMS20] and the split accumulation scheme ASPC for PCPed in this work.
Above G denotes group scalar multiplications or group elements, and F denotes field
operations or field elements.(†: ASIPA relies on knowledge soundness of PCIPA, which
results from applying the Fiat–Shamir transformation to a logarithmic-round protocol.
The security of this protocol has only been proven via a superpolynomial-time extractor
[BMM+19] or in the algebraic group model [GT20].)

Accumulation Type Assumption Accumulation Accumulation Accumulation Accumulator size

scheme prover (per claim) verifier (per claim) decider instance witness

ASIPA [BCMS20] atomic DLOG + RO †
O(log d) G

O(d) F

[+O(d) G per accumulation]

O(log d) G

O(log d) F

O(log d) RO

O(d) G

O(d) F

1 G

O(log d) F
0

ASPC

[this work]
split DLOG + RO

O(d) G

O(d) F

2 G

O(1) F

2 RO

O(d) G

O(d) F

1 G

2 F
d F

First we describe a simple public-coin interactive reduction for combining
two or more evaluation claims into a single evaluation claim, and then explain
how this interactive reduction gives rise to the split accumulation scheme. We
prove security in the random oracle model, using an expected-time extractor.

Batching Evaluation Claims. First consider two evaluation claims
(C1, z, v1) and (C2, z, v2) for the same evaluation point z (and degree d). We can
use a random challenge α ∈ F to combine these claims into one claim (C ′, z, v′)
where C ′ := C1 + αC2 and v′ := v1 + αv2. If either of the original claims does
not hold then, with high probability over the choice of α, neither does the new
claim. This idea extends to any number of claims for the same evaluation point,
by taking C ′ :=

∑
i αiCi and v′ :=

∑
i αivi.

Next consider two evaluation claims (C1, z1, v1) and (C2, z2, v2) at (possibly)
different evaluation points z1 and z2. We explain how these can be combined
into four claims all at the same point. Below we use the fact that p(z) = v if
and only if there exists a polynomial w(X) such that p(X) = w(X) · (X −z)+v.

Let p1(X) and p2(X) be the polynomials “inside” C1 and C2, respectively,
that are known to the prover.

1. The prover computes the witness polynomials w1 := p1(X)−v1
X−z1

and

w2 := p2(X)−v2
X−z2

and sends the commitments W1 := Commit(w1) and
W2 := Commit(w2).

704 B. Bünz et al.

2. The verifier sends a random evaluation point z∗ ∈ F.
3. The prover computes and sends the evaluations y1 := p1(z∗), y2 := p2(z∗),

y′
1 := w1(z∗), y′

2 := w2(z∗).
4. The verifier checks the relation between each witness polynomial and the

original polynomial at the random evaluation point z∗:

y1 = y′
1 · (z∗ − z1) + y′

1 and y2 = y′
2 · (z∗ − z2) + y′

2 .

Next, the verifier outputs four evaluation claims for p1(z∗) = y1, p2(z∗) =
y2, w1(z∗) = y′

1, w2(z∗) = y′
2:

(C1, z
∗, y1) , (C2, z

∗, y2) , (W1, z
∗, y′

1) , (W2, z
∗, y′

2) .

More generally, we can reduce m evaluation claims at m points to 2m evaluation
claims all at the same point.

By combining the two techniques, one obtains a public-coin interactive reduc-
tion from any number of evaluation claims (regardless of evaluation points) to a
single evaluation claim.

Split Accumulation. The batching protocol described above yields a split
accumulation scheme for ΦPC in the random oracle model. An accumulator acc
has the same form as a predicate input: the instance part is an evaluation claim
and the witness part is a polynomial. Next we describe the algorithms of the
accumulation scheme.

– The accumulation prover P runs the interactive reduction by relying on
the random oracle to generate the random verifier messages (i.e., it applies
the Fiat–Shamir transformation to the reduction), in order to combine the
instance parts of old accumulators and inputs to obtain the instance part of a
new accumulator. Then P also combines the committed polynomials using the
same linear combinations in order to derive the new committed polynomial,
which is the witness part of the new accumulator. The accumulation proof pf
consists of the messages to the verifier in the reduction, which includes the
commitments to the witness polynomials Wi and the evaluations yi, y

′
i at z∗

of pi, wi (that is, pf := [(Wi, yi, y
′
i)]

n
i=1).

– The accumulation verifier V checks that the challenges were correctly com-
puted from the random oracle, and performs the checks of the reduction (the
claims were correctly combined and that the proper relation between each
yi, y

′
i, zi, z

∗ holds).
– The accumulation decider D reads the accumulator in its entirety and checks

that the polynomial (the witness part) satisfies the evaluation claim (the
instance part). (Here the random oracle is not used.)

Efficiency. The efficiency claimed in Theorem 4 (and Table 1) is evident from
the construction. The accumulation prover P computes n + m commitments to
polynomials when combining n old accumulators and m predicate inputs (all
polynomials are for degree at most d). The (short) instance part of an accumu-
lator consists of 1 group element and 2 field elements, while the (long) witness

Proof-Carrying Data Without Succinct Arguments 705

part of an accumulator consists of O(d) field elements. The accumulator decider
D computes 1 commitment (and 1 polynomial evaluation at 1 point) in order to
validate an accumulator. Finally, the cost of running the accumulator verifier V
is dominated by 2(n + m) scalar multiplication of the linear commitments.

Security. Given an adversary that produces evaluation claims [qxi]ni=1 =
[(Ci, zi, vi)]ni=1, a single claim qx = (C, z, v) and polynomial qw = s(X) with
s(z∗) = v to which C is a commitment, and accumulation proof pf that makes
the accumulation verifier accept, we need to extract polynomials [qwi]ni=1 =
[pi(X)]ni=1 with pi(zi) = vi to which Ci is a commitment. Our security proof (in
the full version) works in the random oracle model, assuming hardness of the
discrete logarithm problem.

In the proof, we apply our expected-time forking lemma (see Sect. 2.4) to
obtain 2n polynomials [s(j)]2n

j=1 for the same evaluation point z∗ but distinct
challenges αj , where n is the number of evaluation claims. The checks in the
reduction procedure imply that s(j)(X) =

∑n
i=1 αi

jpi(X) +
∑n

i=1 αn+i
j wi(X),

where wi(X) is the witness corresponding to pi(X); hence we can recover the
pi(X), wi(X) by solving a linear system (given by the Vandermonde matrix
in the challenges [αj]2n

j=1). We then use an expected-time variant of the zero-
finding game lemma from [BCMS20] (see the full version) to show that if a
particular polynomial equation on pi(X), wi(X) holds at the point z∗ obtained
from the random oracle, it must with overwhelming probability be an identity.
Applying this to the equation induced by the reduction shows that, with high
probability, each extracted polynomial pi satisfies the corresponding evaluation
claim (Ci, zi, vi).

Remark 5 (from PCPed to an accumulatable NARK). If one replaced the
(succinct) polynomial commitment scheme that underlies the preprocessing
zkSNARK in [CHM+20] with the aforementioned (non-succinct) trivial Peder-
sen polynomial commitment scheme then (after some adjustments and using our
Theorem 4) one would obtain a zkNARK for R1CS with a split accumulation
scheme whose accumulation verifier is of constant size but other asymptotics
would be worse compared to Theorem 2.

First, the cryptographic costs and the quasilinear costs of the NARK and
accumulation scheme would also grow in the number K of non-zero entries in the
coefficient matrices, which can be much larger than M and N (asymptotically
and concretely). Second, the NARK prover would additionally use a quasilinear
number of field operations due to FFTs. Finally, in addition to poorer asymp-
totics, this approach would lead to a concretely more expensive accumulation
verifier and overall a more complex protocol.

Nevertheless, one can design a concretely efficient zkNARK for R1CS based
on the Pedersen PC scheme and our accumulation scheme for it. This natu-
rally leads to an alternative construction to the one in Sect. 2.3 (which is instead
based on accumulation of Hadamard products), and would lead to a slightly more
expensive prover (which now would use FFTs) and a slightly cheaper accumu-
lation verifier (a smaller number of group scalar multiplications). We leave this
as an exercise for the interested reader.

706 B. Bünz et al.

2.7 Implementation and Evaluation

We elaborate on our implementation and evaluation of accumulation schemes
and their application to PCD.

The Case for a PCD Framework. Different PCD constructions offer dif-
ferent trade-offs. The tradeoffs are both about asymptotics (see Remark 3) and
about practical concerns, as we review below.

– PCD from sublinear verification [BCCT13;BCTV14;COS20] is typically
instantiated via preprocessing SNARKs based on pairings.6 This route offers
excellent verifier time (a few milliseconds regardless of the computation at
a PCD node), but requires a private-coin setup (which complicates deploy-
ment) and cycles of pairing-friendly elliptic curves (which are costly in terms
of group arithmetic and size).

– PCD from atomic accumulation [BCMS20] can, e.g., be instantiated via
SNARKs based on cyclic groups [BGH19]. This route offers a transparent
setup (easy to deploy) and logarithmic-size arguments (a few kilobytes even
for large computations), using cycles of standard elliptic curves (more efficient
than their pairing-friendly counterparts). On the other hand, this route yields
linear verification times (expensive for large computations) and logarithmic
costs for accumulation (increasing the cost of recursion).

– PCD from split accumulation (this work) can, e.g., be instantiated via NARKs
based on cyclic groups. This route still offers a transparent setup and allows
using cycles of standard elliptic curves. Moreover, it offers constant costs for
accumulation, but at the expense of argument size, which is now linear.

It would be desirable to have a single framework that supports different PCD con-
structions via a modular composition of simpler building blocks. Such a frame-
work would enable a number of desirable features: (a) ease of replacing older
building blocks with new ones; (b) ease of prototyping different PCD con-
structions for different applications (which may have different needs), thereby
enabling practitioners to make informed choices about which PCD construction
is best for them; (c) simpler and more efficient auditing of complex cryptographic
systems with many intermixed layers. (Realizing even a single PCD construction
is a substantial implementation task.); and (d) separation of “application” logic
from the underlying recursion via a common PCD interface. Together, these
features would enable further industrial deployment of PCD, as well as making
future research and comparisons simpler.

Implementation. The above considerations motivated our implementation
efforts for PCD. Our code base has two main parts, one for realizing accumu-
lation schemes and another for realizing PCD from accumulation (the latter is
integrated with PCD from succinct verification under a unified PCD interface).

6 Instantiations based on hashes are also possible [COS20] but are (post-quantum and)
less efficient.

Proof-Carrying Data Without Succinct Arguments 707

– Framework for accumulation. We designed a modular framework for (atomic
and split) accumulation schemes, and use it to implement, under a common
interface, several accumulation schemes: (a) the atomic accumulation scheme
ASAGM in [BCMS20] for the PC scheme PCAGM; (b) the atomic accumulation
scheme ASIPA in [BCMS20] for the PC scheme PCIPA; (c) the split accumulation
scheme ASPC in this paper for the PC scheme PCPed; (d) the split accumulation
scheme ASHP in this paper for the Hadamard product predicate ΦHP; (e) the
split accumulation scheme for our NARK for R1CS. Our framework also
provides a generic method for defining R1CS constraints for the verifiers of
these accumulation schemes; we leverage this to implement R1CS constraints
for all of these accumulation schemes.

– PCD from accumulation. We use the foregoing framework to implement a
generic construction of PCD from accumulation. We support the PCD con-
struction of [BCMS20] (which uses atomic accumulation) and the PCD con-
struction in this paper (which uses split accumulation). Our code builds on,
and extends, an existing PCD library.7 Our implementation is modular: it
takes as ingredients an implementation of any NARK, an implementation of
any accumulation scheme for that NARK, and constraints for the accumula-
tion verifier, and produces a concrete PCD construction. This allows us, for
example, to obtain a PCD instantiation based on our NARK for R1CS and
its split accumulation scheme.

Evaluation for DL Setting. When realizing PCD in practice the main goal
is to “minimize the cost of recursion”, that is, to minimize the number of con-
straints that need to be recursively proved in each PCD step (excluding the con-
straints for the application) without hurting other parameters too much (prover
time, argument size, and so on). We evaluate our implementation with respect
to this goal, with a focus on understanding the trade-offs between atomic and
split accumulation in the discrete logarithm setting.

The DL setting is of particular interest to practitioners, as it leads to systems
with a transparent (public-coin) setup that can be based on efficient cycles of
(standard) elliptic curves [BGH19;Hop20]; indeed, some projects are develop-
ing real-world systems that use PCD in the DL setting [Halo20;Pickles20]. The
main drawback of the DL setting is that verification time (and sometimes argu-
ment size) is linear in a PCD node’s computation. This inefficiency is, however,
tolerable if a PCD node’s computation is not too large, as is the case in the
aforementioned projects. (Especially so when taking into account the disadvan-
tages of PCD based on pairings, which involves relying on a private-coin setup
and more expensive curve cycles.)

We evaluate our implementation to answer two questions: (a) how efficient is
recursion with split accumulation for our simple zkNARK for R1CS? (b) what is
the constraint cost of split accumulation for PCPed compared to atomic accumu-
lation for PCIPA? All our experiments are performed over the 255-bit Pallas curve
in the Pasta cycle of curves [Hop20], which is used by real-world deployments.

7 https://github.com/arkworks-rs/pcd.

https://github.com/arkworks-rs/pcd

708 B. Bünz et al.

– Split accumulation for R1CS. Our evaluation demonstrates that the cost of
recursion for IVC with our split accumulation scheme for the simple NARK
for R1CS is low, both with zero knowledge (∼ 99×103 constraints) and with-
out (∼ 52 × 103 constraints). In fact, this cost is even lower than the cost
of IVC based on highly efficient pairing-based circuit-specific SNARKs. Fur-
thermore, like in the pairing-based case, this cost does not grow with the size
of computation being checked. This is much better than prior constructions
of IVC based on atomic accumulation for PCIPA in the DL setting, as we will
see next.

– Comparison of accumulation for PC schemes. Several (S)NARKs are built
from PC schemes, and the primary cost of recursion for these is determined
by the cost of accumulation for the PC scheme. In light of this we compare
the costs of two accumulation schemes:

• the atomic accumulation scheme for the PC scheme PCIPA [BCMS20];
• the new split accumulation scheme for PCPed.

Our evaluation demonstrates that the constraint cost of the ASPC accumu-
lation verifier is 8 to 20 times cheaper than that of the ASIPA accumulation
verifier. In Fig. 6 we report the asymptotic cost of |V| (the constraint cost of
V) in ASIPA, ASPC, and ASR1CS.8

We note that the cost of all the aforementioned accumulation schemes is
dominated by the cost of many common subcomponents, and so improvements

Fig. 6. Comparison of the constraint cost of the accumulation verifier V in ASIPA, ASPC,
and ASR1CS when varying the number of constraints (for ASR1CS) or the degree of the
accumulated polynomial (for ASIPA and ASPC) from 210 to 220. Note that the cost of
accumulating PCIPA and PCPed is a lower bound on the cost of accumulating any SNARK
built atop those, and this enables comparing against the cost of ASR1CS.

8 This comparison is meaningful because the cost of accumulating polynomial com-
mitments provides a lower bound on the cost accumulating SNARKs that rely on
these PC schemes.

Proof-Carrying Data Without Succinct Arguments 709

in these subcomponents will preserve the relative cost. For example, applying
existing techniques [Halo20;Pickles20] for optimizing the constraint cost of ellip-
tic curve scalar multiplications should benefit all our schemes in a similar way.

Acknowledgements. This research was supported in part by the Ethereum Founda-
tion, NSF, DARPA, a grant from ONR, and the Simons Foundation. Nicholas Spooner
was supported by DARPA under Agreement No. HR00112020023.

References

[BBB+18] Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.:
Bulletproofs: short proofs for confidential transactions and more. In: S& P
2018 (2018)

[BCC+16] Bootle, J., Cerulli, A., Chaidos, P., Groth, J., Petit, C.: Efficient zero-
knowledge arguments for arithmetic circuits in the discrete log setting. In:
Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp.
327–357. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-
49896-5 12

[BCCT13] Bitansky, N., Canetti, R., Chiesa, A., Tromer, E.: Recursive composition
and bootstrapping for SNARKs and proof-carrying data. In: STOC 2013
(2013)

[BCL+20] Bünz, B., Chiesa, A., Lin, W., Mishra, P., Spooner, N.: Proof-carrying
data without succinct arguments. In: IACR Cryptol. ePrint Arch. (2020).
https://eprint.iacr.org/2020/1618

[BCMS20] Bünz, B., Chiesa, A., Mishra, P., Spooner, N.: Proof-carrying data from
accumulation schemes. In: TCC 2020 (2020)

[BCTV14] Ben-Sasson, E., Chiesa, A., Tromer, E., Virza, M.: Scalable zero knowledge
via cycles of elliptic curves. Algorithmica 79(4), 1102–1160 (2016). https://
doi.org/10.1007/s00453-016-0221-0

[BDFG20] Boneh, D., Drake, J., Fisch, B., Gabizon, A.: Halo Infinite: Recursive zk-
SNARKs from any Additive Polynomial Commitment Scheme. Cryptology
ePrint Archive, Report 2020/1536

[BGH19] Bowe, S., Grigg, J., Hopwood, D.: Halo: Recursive Proof Composition with-
out a Trusted Setup. Cryptology ePrint Archive, Report 2019/1021

[BMM+19] Bünz, B., Maller, M., Mishra, P., Tyagi, N., Vesely, P.: Proofs for Inner
Pairing Products and Applications. Cryptology ePrint Archive, Report
2019/1177

[BMRS20] Bonneau, J., Meckler, I., Rao, V., Shapiro, E.: Coda: Decentralized Cryp-
tocurrency at Scale. Cryptology ePrint Archive, Report 2020/352

[BN06] Bellare, M., Neven, G.: Multi-signatures in the plain public-Key model and
a general forking lemma. In: CCS 2006 (2006)

[CCDW20] Chen, W., Chiesa, A., Dauterman, E., Ward, N.P.: Reducing Participation
Costs via Incremental Verification for Ledger Systems. Cryptology ePrint
Archive, Report 2020/1522

[CHM+20] Chiesa, A., Hu, Y., Maller, M., Mishra, P., Vesely, N., Ward, N.: Marlin:
Preprocessing zkSNARKs with Universal and Updatable SRS. In: EURO-
CRYPT 2020 (2020)

[COS20] Chiesa, A., Ojha, D., Spooner, N.: Fractal: Post-Quantum and Transparent
Recursive Proofs from Holography. In: EUROCRYPT 2020 (2020)

https://doi.org/10.1007/978-3-662-49896-5_12
https://doi.org/10.1007/978-3-662-49896-5_12
https://eprint.iacr.org/2020/1618
https://doi.org/10.1007/s00453-016-0221-0
https://doi.org/10.1007/s00453-016-0221-0

710 B. Bünz et al.

[CT10] Chiesa, A., Tromer, E.: Proof-Carrying Data and Hearsay Arguments from
Signature Cards. In: ICS 2010 (2010)

[CTV13] Chong, S., Tromer, E., Vaughan, J.A.: Enforcing Language Semantics Using
Proof-Carrying Data. Cryptology ePrint Archive, Report 2013/513

[CTV15] Chiesa, A., Tromer, E., Virza, M.: Cluster computing in zero knowledge.
In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057,
pp. 371–403. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-
662-46803-6 13

[Gro16] Groth, J.: On the size of pairing-based non-interactive arguments. In: Fis-
chlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp.
305–326. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-
49896-5 11

[GT20] Ghoshal, A., Tessaro, S.: Tight State-Restoration Soundness in the Alge-
braic Group Model. Cryptology ePrint Archive, Report 2020/1351

[Halo20] Bowe, S., Grigg, J., Hopwood, D.: Halo2 (2020). https://github.com/zcash/
halo2

[Hop20] Hopwood, D.: The Pasta Curves for Halo 2 and Beyond. https://
electriccoin.co/blog/the-pasta-curves-for-halo-2-and-beyond/

[KB20] Kattis, A., Bonneau, J.: Proof of Necessary Work: Succinct State Ver-
ification with Fairness Guarantees. Cryptology ePrint Archive, Report
2020/190

[Mina] O(1) Labs. “Mina Cryptocurrency”. https://minaprotocol.com/
[NT16] Naveh, A., Tromer, E.: PhotoProof: cryptographic image authentication

for any set of permissible transformations. In: S& P 2016 (2016)
[Pickles20] O(1) Labs. Pickles. https://github.com/o1-labs/marlin

[Val08] Valiant, P.: Incrementally verifiable computation or proofs of knowledge
imply time/space efficiency. In: Canetti, R. (ed.) TCC 2008. LNCS, vol.
4948, pp. 1–18. Springer, Heidelberg (2008). https://doi.org/10.1007/978-
3-540-78524-8 1

[WTS+18] Wahby, R.S., Tzialla, I., Shelat, A., Thaler, J., Walfish, M.: Doubly- effi-
cient zkSNARKs without trusted setup. In: S& P 2018 (2018)

https://doi.org/10.1007/978-3-662-46803-6_13
https://doi.org/10.1007/978-3-662-46803-6_13
https://doi.org/10.1007/978-3-662-49896-5_11
https://doi.org/10.1007/978-3-662-49896-5_11
https://github.com/zcash/halo2
https://github.com/zcash/halo2
https://electriccoin.co/blog/the-pasta-curves-for-halo-2-and-beyond/
https://electriccoin.co/blog/the-pasta-curves-for-halo-2-and-beyond/
https://minaprotocol.com/
https://github.com/o1-labs/marlin
https://doi.org/10.1007/978-3-540-78524-8_1
https://doi.org/10.1007/978-3-540-78524-8_1

Subquadratic SNARGs in the Random
Oracle Model

Alessandro Chiesa1(B) and Eylon Yogev2,3

1 UC Berkeley, Berkeley, USA
alexch@berkeley.edu
2 BU, Boston, USA

3 TAU, Tel Aviv, Israel

Abstract. In a seminal work, Micali (FOCS 1994) gave the first suc-
cinct non-interactive argument (SNARG) in the random oracle model
(ROM). The construction combines a PCP and a cryptographic commit-
ment, and has several attractive features: it is plausibly post-quantum;
it can be heuristically instantiated via lightweight cryptography; and it
has a transparent (public-coin) parameter setup. However, it also has a
significant drawback: a large argument size.

In this work, we provide a new construction that achieves a smaller
argument size. This is the first progress on the Micali construction since
it was introduced over 25 years ago.

A SNARG in the ROM is (t, ε)-secure if every t-query malicious prover
can convince the verifier of a false statement with probability at most ε.
For (t, ε)-security, the argument size of all known SNARGs in the ROM
(including Micali’s) is Õ((log(t/ε))2) bits, even if one were to rely on con-
jectured probabilistic proofs well beyond current techniques. In practice,
these costs lead to SNARGs that are much larger than constructions
based on other (pre-quantum and costly) tools. This has led many to
believe that SNARGs in the ROM are inherently quadratic.

We show that this is not the case. We present a SNARG in the ROM
with a sub-quadratic argument size: Õ(log(t/ε) · log t). Our construction
relies on a strong soundness notion for PCPs and a weak binding notion
for commitments. We hope that our work paves the way for understand-
ing if a linear argument size, that is O(log(t/ε)), is achievable in the
ROM.

Keywords: Succinct arguments · Random oracle · Probabilistically
checkable proofs

1 Introduction

A succinct non-interactive argument (SNARG) is a cryptographic proof system
for non-deterministic languages whose communication complexity is “succinct”
in the sense that it is sublinear in the witness size (or even in the size of the
computation that checks the witness). In the last decade, SNARGs have drawn

c© International Association for Cryptologic Research 2021
T. Malkin and C. Peikert (Eds.): CRYPTO 2021, LNCS 12825, pp. 711–741, 2021.
https://doi.org/10.1007/978-3-030-84242-0_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-84242-0_25&domain=pdf
https://doi.org/10.1007/978-3-030-84242-0_25

712 A. Chiesa and E. Yogev

the attention of researchers from multiple communities, being a fundamental
cryptographic primitive that has found applications in the real world.

A central goal in the study of SNARGs is improving their efficiency,
which may include improving prover time, argument size, or verifier time.
For example, achieving small argument size is crucial in real-world applica-
tions where SNARGs are broadcast in a peer-to-peer network and redun-
dantly stored at every network node (as in privacy-preserving digital currencies
[BCG+14,Ele14]).

SNARGs in the ROM. The goal of this paper is to improve the argument
size of SNARGs in the random oracle model (ROM). A SNARG in the ROM
is (t, ε)-secure if every malicious prover that makes at most t queries to the
random oracle can convince the verifier of a false statement with probability
at most ε (over the choice of random oracle). There are two known approaches
to construct SNARGs in the ROM: the Micali transformation [Mic00] (building
on [Kil92,FS86]), which uses probabilistically checkable proofs (PCPs); and the
BCS transformation [BCS16], which uses public-coin interactive oracle proofs
(IOPs). Both approaches adopt the same paradigm:

[
information-theoretic

proof

]
+

[
cryptographic commitment

with local opening

]
=⇒ SNARG.

Informally, they compile an information-theoretic proof system (PCP or IOP)
into a SNARG by relying on a cryptographic commitment scheme that supports
local openings. The commitment scheme is a Merkle tree, and each local opening
is a path from the desired leaf to the root.

Quadratic Argument Size. In both approaches, the argument size is quadratic
in the desired security. If the random oracle has output length λ, then compiling
a PCP/IOP with proof length l over alphabet Σ and query complexity q leads
to an argument of size that is (up to constants):

q · log |Σ|︸ ︷︷ ︸
information-theoretic proof

+ q · λ · log l︸ ︷︷ ︸
cryptographic commitment

.

The term q · log |Σ| is the cost of the information-theoretic proof, and the
term q · λ · log l is the cost of the cryptographic commitment (q authentica-
tion paths each consisting of log l digests of size λ). To achieve (t, ε) security,
the oracle output size is set to λ = O(log(t/ε)), and the soundness error of
the PCP/IOP must be O(ε/t). For example, a PCP with this soundness error
can be obtained by repeating O(log(t/ε)) times the verifier of any constant-
query constant-soundness base PCP. This leads to a PCP with query complex-
ity q = O(log(t/ε)), and in turn to a quadratic argument size: Õ((log(t/ε))2).
The quadratic complexity is due to the cost of the cryptographic commitment
(while, for a small enough alphabet, the cost of the information-theoretic proof
is linear).

One might hope to reduce the number of queries of the PCP/IOP to overcome
this “quadratic barrier”, at the expense of a larger alphabet (even an alphabet
of size 2O(λ) would have a negligible effect on the argument size). However,

Subquadratic SNARGs in the Random Oracle Model 713

using state-of-the-art PCPs (e.g., [DHK15]) or even conjectured PCPs (e.g.,
fulfilling the sliding scale conjecture [BGLR93]) would only shave off a log l
factor in the number of queries. Any PCP/IOP that has fewer queries would
violate standard complexity-theoretic assumptions, e.g., the exponential-time
hypothesis [GH98,CY20].

If one relies on cryptography with “more structure” then better argu-
ment sizes are possible. Known SNARGs based on bilinear groups (e.g.,
[Gro10,GGPR13,BCI+13]) have optimal size: O(log(t/ε)), which translates to a
few hundred bytes in practice. Similarly, known SNARGs based on cyclic groups
or unknown-order groups (e.g., [BCC+16,BBB+18,BFS20]) are almost as short:
O(log(t/ε) · log n) (here n is the size of the computation being proved), which
translates to just a few kilobytes in practice. This has led to the belief that
SNARGs that solely rely on a random function (the random oracle) are funda-
mentally long.

While the inferior asymptotics of argument sizes of SNARGs in the ROM
have not prevented useful applications,1 they do lead to relatively large concrete
sizes (tens to hundreds of kilobytes in practice), which makes them undesirable
for many other applications.

This state of affairs is unfortunate because SNARGs in the ROM have several
attractive features. First, SNARGs in the ROM are to date the most efficient
approach for post-quantum security, and so achieving post-quantum SNARGs
with (public verification and) optimal argument size remains an open problem.2

Moreover, by heuristically instantiating the random oracle with a suitable cryp-
tographic hash function, one obtains SNARGs that are lightweight (no public-key
cryptography is used) and easy to deploy (users only need to agree on which hash
function to use without having to rely on a trusted party to sample a structured
reference string).

1.1 Breaking the Quadratic Barrier

Since it seems implausible to improve the query complexity of the PCP/IOP, how
could we reduce the argument size? One way would be to reduce the overhead
of the commitment scheme. This would be an amazing achievement on its own
but currently seems out of reach (and, in fact, many believe that improving the
commitment scheme is impossible). Another way would be to completely deviate
from the paradigm of constructing SNARGs from PCPs/IOPs. However, [CY20]
tells us that any SNARG in the ROM inherently contains an IOP with closely
related parameters. In light of this, the motivating question of our work is: is
the quadratic barrier of SNARGs in the ROM inherent or, instead, one can do
better by achieving subquadratic, or even linear, argument size?

1 E.g., to increase throughput in peer-to-peer systems such as Ethereum via “roll-up”
architectures [Eth].

2 Known approaches based on lattices achieve privately-verifiable SNARGs with opti-
mal size [BISW17,BISW18] or publicly-verifiable SNARGs with square-root com-
munication complexity [BBC+18].

714 A. Chiesa and E. Yogev

A New Paradigm. In this work, we show how to go beyond the quadratic
barrier by changing the interplay between the information-theoretic proof and
the cryptographic compiler. Instead of asking for better soundness with fewer
queries, we rely on a stronger soundness notion of the PCP with the same
number of queries: we compile these strong PCPs into SNARGs without using a
commitment. The commitment is relaxed with a weak notion of binding that is
coupled with our strong soundness notion for the PCP. In particular, the SNARG
prover might not be committed to any location of a proof string. Informally, our
approach can be summarized as follows:

[
strong information
theoretic proof

]
+

[
weak cryptographic

commitment

]
=⇒ subquadratic

SNARG .

Results. We use this paradigm to construct the first SNARGs in the ROM of
subquadratic size.

Theorem 1. There exists a SNARG for NP in the random oracle model that
achieves argument size Õ(log(t/ε) · log t) with soundness error ε against t-query
adversaries.

Our construction is the first progress on the Micali construction since it was
introduced over 25 years ago. Our construction relies solely on a random oracle
and so is plausibly post-quantum secure. Previous SNARGs in the ROM have
been proven to be secure in the quantum random oracle model [CMS19], and we
leave it for future work to adapt these technique to our construction.

The argument size that we achieve, while better than quadratic, is still far
from the lower bound of Ω(log(t/ε)). In particular, our work leaves open the
intriguing question:

Are there SNARGs in the ROM that have argument size O(log(t/ε))?

We hope that our work will lead to a better understanding of this fundamental
question, where a positive answer is likely to have significant practical benefits.

1.2 Concrete Efficiency

Our new construction achieves argument sizes that are not only asymptotically
smaller but also concretely smaller: we obtain up to 2× improvement in argument
size over Micali’s construction for an illustrative instantiation across different
values of t and ε. Moreover, the running times of the verifier and the prover of
our construction are essentially the same as in Micali’s construction.

In more detail, Micali’s construction is typically instantiated with a PCP
whose verifier is repeated many times to reduce soundness error to O(ε/t).
Looking ahead, our construction requires PCPs that satisfy a stronger notion
of soundness that (as we will prove) is satisfied by repeated PCPs. Thus, con-
veniently, we can instantiate both the Micali construction and our construction

Subquadratic SNARGs in the Random Oracle Model 715

via the same class (repeated PCPs), and in particular we can directly compare
their argument sizes.

For example, in Table 1 we demonstrate the arguments sizes for various values
of t and ε. We instantiate both constructions with the same repetition of a “base”
PCP with soundness error 1/2, query complexity 3, and proof length 230 over a
binary alphabet. By repeating the PCP verifier log 1

2
t
ε times, the amplified PCP

has soundness error εPCP ≤ ε/t and 3 log 1
2

t
ε queries.

Table 1. Comparison of argument sizes between the Micali construction (in red) and
our construction (in blue), for different settings of (t, ε). Both constructions are based
on the same illustrative PCP.

log t − log ε

64 96 128 160

64
180KB

131KB
≈ 1.37× 257KB

164KB
≈ 1.57× 346KB

188KB
≈ 1.84× 448KB

219KB
≈ 2.05×

96
293KB

237KB
≈ 1.24× 389KB

272KB
≈ 1.43× 498KB

317KB
≈ 1.57× 618KB

361KB
≈ 1.71×

128
432KB

357KB
≈ 1.21× 547KB

415KB
≈ 1.32× 674KB

473KB
≈ 1.42× 814KB

533KB
≈ 1.53×

160
597KB

513KB
≈ 1.16× 730KB

585KB
≈ 1.25× 876KB

659KB
≈ 1.33× 1032KB

730KB
≈ 1.41×

2 Techniques

We summarize the main ideas behind our main result (Theorem 1).

2.1 The Micali Construction Is Inherently Quadratic

We review the SNARG construction of Micali [Mic00] and explain why its argu-
ment size is quadratic.

The Micali Construction. Micali [Mic00] combined ideas from Fiat and
Shamir [FS86] and Kilian [Kil92] in order to compile any probabilistically check-
able proof (PCP) into a corresponding SNARG. Informally, the SNARG prover
uses the random oracle to Merkle hash the PCP to a short root that acts as a
short commitment to the PCP string; then, the SNARG prover uses the random
oracle to derive randomness for the PCP verifier’s queries; finally, the SNARG
prover outputs an argument that includes the Merkle root, answers to the PCP
verifier’s queries, and authentication paths for each of those answers (which act

716 A. Chiesa and E. Yogev

as local openings to the commitment). The SNARG verifier re-derives the PCP
verifier’s queries from the Merkle root and then runs the PCP verifier with the
provided answers, ensuring that those answers are indeed authenticated.

On the Output Length of the Random Oracle. As mentioned in the intro-
duction, the argument size in the Micali construction is Õ(q · λ), ignoring low-
order terms; moreover, under standard complexity assumptions, the number of
queries must be q = Ω(log(t/ε)) (up to low-order terms) even if using conjec-
tured “best possible” PCPs. What about the oracle output size λ? If we were
to set λ = O(log t) then we would obtain the argument size Õ(log(t/ε) · log t)
claimed in Theorem 1. However, the Micali construction is not secure in this
regime, as we now explain.

Consider the following attack. A cheating prover selects an arbitrary Merkle
root; uses the random oracle to derive PCP randomness from this Merkle root;
finds a PCP string that satisfies the PCP verifier for this choice of PCP ran-
domness; computes the Merkle tree on this PCP string; and hopes that the
resulting Merkle root equals the Merkle root that was previously chosen. A suc-
cess would constitute an “inversion”. If this did not work, the cheating prover
re-tries until he succeeds (or runs out of queries). If we want the construction
to be (t, ε)-secure, then any t-query attack can succeed with probability at most
ε. However, the described attack would succeed with probability roughly t · 2−λ

which gives us the lower bound λ = Ω(log(t/ε)) (for the Micali scheme to be
secure we actually need to set λ = Ω(log(t2/ε))).

Looking Beyond the Micali Construction. Our goal is to change the
construction such that we can set the output length of the random oracle to
λ = Õ(log t). This means that a cheating prover in this regime may find inver-
sions or collisions in the random oracle. In particular, a Merkle tree with this
choice of λ is not a commitment scheme (e.g., a collision will allow him to open
in different ways). Therefore, we will need to find ways to handle this new class
of attacks and, in particular, prevent the inversion attack described above.

2.2 Our Construction

Our construction shares features with the Micali construction: the argument
prover constructs a PCP string; commits to this PCP string using the ran-
dom oracle; derives PCP randomness (and thus PCP queries) from the resulting
commitment again using the random oracle; and outputs the commitment and
certified answers to each PCP query.

At the same time, our construction differs from the Micali construction in sev-
eral crucial ways. In the sequel, we describe the differences and provide intuition
for why these differences are useful towards reducing argument size. In subse-
quent subsections, we will provide more information about how we establish the
security of our construction.

(1) Chopped tree. The argument prover commits to the PCP string via a
chopped Merkle tree: the Merkle tree is computed layer by layer from the leaves

Subquadratic SNARGs in the Random Oracle Model 717

but stops at a specific stop layer i∗. In the Micali construction, the stop layer is
i∗ = 0 (a single vertex called the Merkle root); in our construction, the stop layer
is (roughly) i∗ = log q (where q is the query complexity of the PCP), which con-
sists of 2i∗

vertices that we collectively call a Merkle cap.3. The argument prover
then uses the Merkle cap similarly to a Merkle root in the Micali construction: it
derives PCP randomness from the Merkle cap by using the random oracle (in a
single query); and subsequently authenticates answers to PCP queries via paths
that are truncated at layer i∗.

As the stop layer i∗ increases, argument size increases as well. In the extreme,
if i∗ = log l (the stop layer is the leaf layer), then the argument contains the entire
PCP string. In our construction, we set (roughly) i∗ = log q, in which case the
argument size is (almost) the same as when i∗ = 0 (for the same output size of
the random oracle). Intuitively, if the argument prover supplies q authentications
paths then, with high probability, most of the vertices in layer log q would have
been already included, so that truncating the paths to layer log q and including
in the argument all the digests in layer log q does not affect argument size by
much. (This is not just asymptotically: our experiments show that this has a
negligible effect on the argument size in practice as well.)

Our main observation is that as the stop layer increases, security increases
as well. In the Micali construction, a single inversion of the Merkle root breaks
the scheme: the attacker selects an arbitrary Merkle root, derives corresponding
PCP randomness (and thus PCP queries), finds a PCP string that makes the
PCP verifier accept with that PCP randomness, computes a (full) Merkle tree on
this PCP string, and hopes that the resulting root equals the previously selected
root. If the root has output size λ, this takes about 2λ attempts (which is roughly
2λ queries). In contrast, in our construction, an inversion of a single vertex in
the Merkle cap affects only a 1/q fraction of the PCP string, which (in general)
is not a winning strategy for a cheating prover. To emulate the prior strategy,
the attacker would need to invert all q vertices in the Merkle cap, which is much
harder.

(2) Domain separation. The Micali construction involves two random oracles:
an oracle for computing the Merkle tree, and another oracle for deriving PCP
randomness. (See [Mic00].) In our construction, we use domain separation to
“split up” the oracle for the Merkle tree into a separate oracle for each vertex in
the (in our case, chopped) Merkle tree. To compute the digest located in position
j of layer i in the tree, the argument prover uses the prefix (i, j) in the query
to the tree oracle. This does not increase argument size (the indices i and j are
known so are not included in the argument) and has essentially no effect on the
prover time and verifier time.

This domain separation is crucial for security because, without it, a cheating
prover could recycle a single inversion or collision many times. For example, the
cheating prover could find a collision in a leaf vertex between the values 0 and
1 and then re-use the same collision for all leaves to compute a Merkle tree for

3 Equivalently, the Merkle cap is an ordered list of Merkle roots for smaller sub-trees.

718 A. Chiesa and E. Yogev

which any location can be opened to 0 or 1. This is insecure, e.g., for any PCP
over the binary alphabet.

(3) Permuting the proof. In our construction, the argument prover ran-
domly permutes the PCP string before applying the (chopped) Merkle tree.
This requires a random permutation Perm : [l] → [l] that is also known to the
argument verifier, and can be derived via the Luby–Rackoff construction from
the random oracle (see Sect. 4.1). Thus, if the PCP verifier wishes to read the
i-th symbol of the PCP string, the Perm(i)-th leaf should be accessed. This mod-
ification also does not increase argument size and has a negligible effect on the
time complexity of the argument prover and argument verifier (each permutation
call translates to a few calls to the random oracle).

Permuting the PCP string creates the effect of a PCP with uniform random
queries. This property ensures that there is no “weak” block of symbols in the
PCP. Indeed, recall that we chopped the Merkle tree in order to have a Merkle
cap instead of a Merkle root, so that if a cheating prover makes a single inversion
then this will affect only a small block of the PCP string. However, if all the
PCP queries were to this block, then the cheating prover could still win with
this single inversion. In contrast, since queries are random (after applying the
permutation), we are guaranteed that, with high probability, the queries are
(roughly) spread evenly across different blocks.
(4) Robust PCPs. Our construction is designed to work with PCPs that satisfy
a stronger soundness notion, which we call permuted robust soundness. This
notion is similar to the standard property of (strong) robust soundness of PCPs,
which captures the probability of being within a particular (block-wise) distance
from a satisfying proof. To fit our proof, we augment the standard notion to
additionally consider a permutation that randomizes the proof locations so that
queries are spread across blocks.

While we rely on strong soundness notions of PCPs, we show that repeated
PCPs satisfy this stronger notion. That is, one can take a base PCP, and repeat it
to amplify the soundness. What we show is that not only the soundness is ampli-
fied, but the PCP also satisfies the stronger notion of permuted robust soundness
(with corresponding parameters). Intuitively, this notion lets us argue the con-
struction’s security even when the prover finds a small number of collisions or
inversions. The next subsections are dedicated to the precise notion of permuted
robust soundness, how to achieve it in repeated PCPs, and how we use it in our
proof of security.

2.3 Permuted Robust Soundness

We describe permuted robust soundness, the PCP soundness notion that we use
for our construction.

Given a block size parameter b ∈ N, we view a PCP string Π ∈ Σ l as
divided into blocks of size b, that is, as Π ∈ (Σ l/b)b. We denote by Δb(Π,Π ′)
the block-wise distance between two PCP strings Π and Π ′ (i.e., the number
of blocks of symbols on which they differ); more generally, given a permutation

Subquadratic SNARGs in the Random Oracle Model 719

Perm : [l] → [l], we denote by ΔPerm
b (Π,Π ′) this block-wise distance when the two

PCP strings are permuted according to Perm (and after are divided into blocks
for measuring distance).

The soundness is defined by the following game.

Game 1. The game Gper receives as input a PCP verifier V, an instance x, a
block size parameter b ∈ N, an allowed distance parameter d ∈ N, and a cheating
prover P̃. The game Gper(V,x, b, d, P̃) works as follows:
1. Sample a random permutation Perm : [l] → [l], and give it to P̃.
2. P̃ outputs a PCP string Π ∈ Σ l.
3. Sample PCP randomness ρ ∈ {0, 1}r, and give it to P̃.
4. P̃ outputs another PCP string Π ′ ∈ Σ l.
5. The game outputs 1 if and only if ΔPerm

b (Π, Π ′) ≤ d and VΠ′
(x; ρ) = 1.

Definition 1. A PCP (P,V) for a relation R has permuted robust sound-
ness error εper(x, b, d) if for every instance x /∈ L(R), block size b ∈ N, distance
bound d ∈ N, and malicious prover P̃,

Pr
[
Gper(V,x, b, d, P̃) = 1

]
≤ εper(x, b, d) .

Why We Need Permuted Robust Soundness. Before we continue with the
security analysis of our construction, we give intuition for how permuted robust
soundness is helpful towards security.

Consider the following strategy for a cheating prover, which captures the
main ideas in our proof. The prover: selects a PCP string; permutes it according
to the random permutation; commits to it via a chopped Merkle tree; and then
derives PCP randomness, and thus PCP queries, from the resulting Merkle cap.
Each vertex in the Merkle cap is itself a Merkle root for a subtree whose leaves
are a block of the PCP string. By inverting a root in the Merkle cap, the cheat-
ing prover has complete control on the corresponding block. In particular, the
cheating prover can find the minimal set of blocks to modify so to make the PCP
verifier accept, and inverts the roots for these blocks. The success probability
is (roughly) his probability of successfully inverting all these roots. Thus, it is
important that no block has many queries, which is why we use the permutation.

In other words, the cheating prover’s success probability depends on the
distance of the PCP string to an accepting PCP string, where the distance is
defined by the block-wise Hamming distance (after the permutation). This is why
we need the PCP to have a robust notion of soundness where the probability
that a PCP string is close to being accepting is smaller as this distance is smaller.
For any constant k, we will bound the probability that the cheating prover can
invert k roots, and then compare this with the probability that a proof will be
of distance k from an accepting proof.

This is a high-level approach of how to handle this specific attack. However,
a cheating prover has a wide range of strategies: find collisions and inversions in
arbitrary locations in the chopped Merkle tree; create multiple trees from which
to choose from, and derive many different PCP query sets; and try to combine
all of the above. The permuted robust soundness is the notion that our proof is
built on, however, we will need to somehow address all possible prover strategies.

720 A. Chiesa and E. Yogev

2.4 Repeated PCPs Satisfy Permuted Robust Soundness

Our main technical lemma regarding permuted robust soundness states that any
repeated PCP satisfies the (strong notion of) permuted robust soundness. Note
that for constructing SNARGs, the underlying PCP must have an exponentially
small soundness error. We know how to build such PCPs only by repeating some
base PCP multiple times. Here, we show that in addition to improving the stan-
dard soundness, repetition improves the permuted robust soundness of the PCP.
Intuitively, for a repeated PCP the distance of a PCP string to an accepting PCP
string is proportional to the number of repetitions that reject it, and different
repetitions are likely to query different blocks (due to the permutation). This is
a simple generic way to construct PCPs suitable for our SNARG construction,
which suffices for our asymptotic result and also is useful for concrete efficiency.

In more detail, the κ-wise repetition of a PCP system (P,V), denoted
(Pκ,Vκ), is the PCP system obtained by setting Pκ := P (the PCP string does
not change) and setting Vκ to run V on κ independent choices of randomness.
We prove the following lemma.

Lemma 1. Let (P,V) be a PCP with soundness error εbase, proof length l (over
any alphabet), and query complexity q; moreover, suppose that each location in
the PCP string is queried with probability at most p. For every κ ∈ N such that
b ≥ κ ·q ·ε−1

base and p ≤ (8b ·κ)−1, (Pκ,Vκ) has strong permuted robust soundness
error

εper(x, b, d) ≤ e1.2·d

d!
· bd · εbase(x)κ .

The formal statement of the lemma and its proof are in Sect. 5. Below we
provide an overview of (a simplified version of) this lemma.

Recall that if the base PCP has soundness error εbase then its κ-wise repeti-
tion has soundness error εκ

base. This soundness error is for a PCP string that is
fixed before the κ samples of PCP randomness are drawn. Here we are instead
interested in the probability that the PCP string is d blocks away from convinc-
ing the PCP verifier. That is, the cheating prover can arbitrarily change any d
blocks after learning the PCP randomness (and, in particular, derive the queried
locations).

How much power does this give to the cheating prover? To understand this,
we first need to see how the queries are distributed among the blocks. Since
we assume that no proof location is queried with too high probability, a typical
query set will have all queries distinct (or at least have only a few colliding
queries). Then the random permutation will randomize query locations, as if
they had been uniform random queries. In sum, queries will be mostly spread
out evenly across blocks.

For even further simplicity here, let us assume that no two queries land in the
same block. (This is possible as the total number of queries κ · q is less than b.)
In this case, the prover can change at most d blocks after seeing the queries and
can affect the output of at most d out of the κ repetitions. Without assuming
any additional property about the underlying PCP, changing a single query

Subquadratic SNARGs in the Random Oracle Model 721

within a repetition might suffice to convince the PCP verifier. Thus we cannot
expect soundness better than εκ−d

base . Moreover, the cheating prover chooses which
d blocks to change adaptively after seeing all query locations, which grants the
cheating prover additional power.

To bound the soundness error we fix in advance a choice of d repetitions
among the κ repetitions that the prover controls; the remaining κ − d iterations
each contribute a multiplicative factor of soundness error εbase. By a union bound
over all choices of the d iterations, we get the expression:

(
κ

d

)
· εκ−d

base ≤ κd

d!
· εκ−d

base =
1
d!

·
(

κ

εbase

)d

· εκ
base ≤ bd

d!
· εκ

base .

This expression is better than what we set out to prove. The additional term
e1.2d in Lemma 1 comes from removing the simplifying assumptions used above.
Without those assumptions, the cheating prover may gain an advantage when a
block contains queries from more than one repetition: (i) queries might collide
before the permutation is applied, and these queries will be mapped to the
same (random) location by the permutation; (ii) even distinct queries might be
mapped to the same block after the permutation (and this is likely to happen).
The full proof must take these into account, which complicates the expressions
above and introduces the additional term e1.2d.

Remark 1 (repetition of a robust PCP). Lemma 1 shows that the repetition of
any PCP satisfies permuted robust soundness. This will let us instantiate our
SNARG construction based on the repetition of any PCP, retaining maximal
freedom in choosing parameters of the PCP, without worrying about additional
properties of the PCP. Nevertheless, we could also consider the repetition of
a PCP that is already somewhat robust (in the standard sense), which would
improve the soundness expression in the lemma. For example, suppose that in
every local view of the PCP string we need to change at least two answers to
make the PCP verifier accept. For this case we expect the soundness of the
repeated PCP to be close to ε

κ−d/2
PCP , instead of εκ−d

PCP . We leave it for future work
to derive the analogue of Lemma 1 for robust PCPs.

2.5 The Cap Soundness Game

In order to obtain a security analysis of our construction, we introduce an inter-
mediate information-theoretic game, called cap soundness game, that enables us
to model the effects of attacks against our construction. The intermediate game
then leaves us with two tasks: reduce the security of our construction to winning
the cap soundness game (see Sect. 2.7); and reduce winning the cap soundness
game to breaking the permuted robust soundness of the PCP (see further below).

The Game. The cap soundness game has several inputs: a PCP verifier V;
an instance x (which we will usually omit from the description); an integer λ
(modeling the random oracle’s output size); a stop layer i∗; a malicious prover

722 A. Chiesa and E. Yogev

P̃ to play the game; a query budget t ∈ N; a collision budget tcol ∈ N; and a
inversion budget tinv ∈ N. We denote this game by Gcap(V,x, λ, i∗, P̃, t, tcol, tinv).

The Graph G. The game is played on a graph G = (V,E) that represents
the chopped Merkle trees constructed by the adversary so far. Letting d be the
height of a full Merkle tree, vertices in G are the union V := Vi∗ ∪ V1 ∪ · · · ∪ Vd

where Vi are the vertices of level i of the tree: for every i ∈ {i∗, . . . , d− 1}, Vi :=
{(i, j, h) : j ∈ [2i], h ∈ {0, 1}λ} is level i; and Vd := {(d, j, h) : j ∈ [2d], h ∈ Σ}
is the leaf level. The indices i and j represent the location in the tree (vertex
j in level i) and the string h represents either a symbol of the PCP (if in the
leaf level) or an output of the random oracle (if in any other level). Edges in G
are hyperedges that keep track of which inputs are “hashed” together to create
a given output. That is, elements in the edge set E of G are chosen from the
collection E below, which represents an edge between two vertices in level i + 1
and their common parent in level i:

E =

⎧⎨
⎩(u, v0, v1) :

u = (i, j, h) ∈ Vi

v0 = (i + 1, 2j − 1, h0) ∈ Vi+1

v1 = (i + 1, 2j, h1) ∈ Vi+1

⎫⎬
⎭ .

The set of valid caps consists of all possible lists of vertices in Vi∗ that consist a
full layer of vertices:

C :=
{(

(i∗, 1, h1), . . . , (i∗, 2i∗
, h2i∗)

)
: h1, . . . , h2i∗ ∈ {0, 1}λ

}
.

Playing the Game. The game starts with the graph G empty (E = ∅),
and proceeds in rounds; moreover, the game samples a random permutation
Perm : [l] → [l] and gives it to the adversary. After that, in each round, provided
there is enough query budget t left, the adversary chooses between two actions:
(i) add an edge to E from the set E , provided the edge is allowed; (ii) obtain the
PCP randomness for a given Merkle cap. We discuss each in more detail.

– Adding edges. When the prover adds to E an edge (u, v0, v1) ∈ E the query
budget is reduced t ← t − 1. Moreover, the collision and inversion budgets
may also be reduced if the edge creates a collision or inversion, as described
below.

• Collisions. If the edge (u, v0, v1) collides with an edge (u, v′
0, v

′
1) that

is already in E, the game charges a unit of collision budget by setting
tcol ← tcol − 1. Note that the game charges a single unit for each collision
edge, and multi-collisions are allowed. Thus, a k-wise collision costs k − 1
units of tcol. This makes the collision budget versatile in that, for example,
a budget of 2 can be used to create two 2-wise collisions or one 3-wise
collision.

• Inversions. If the edge (u, v0, v1) is added when u is not free (defined
next), the game charges a unit of inversion budget by setting tinv ← tinv−1.
The vertex u is free if it is not already connected to a vertex in a level
closer to the cap, i.e., if u ∈ Vi then for every w ∈ Vi−1 and u′ ∈ Vi it holds

Subquadratic SNARGs in the Random Oracle Model 723

that (w, u, u′) /∈ E. (Note that the game would not charge an inversion if
these edge where added in reverse order, though, as that would not have
been an inversion.)

– Deriving randomness. The prover submits a cap (v1, . . . , v2i∗) ∈ C, and the
game samples new PCP randomness ρ. The pair

(
(v1, . . . , v2i∗), ρ

)
is added

to a mapping Rand. (The prover is not allowed to submit a cap that already
appears in the mapping Rand.) This costs a unit of the query budget, so when
this happens the query budget is reduced t ← t − 1.

Winning the Game. When it decides to stop playing, the prover outputs a
cap (v1, . . . , v2i∗) ∈ C and a PCP string Π ∈ Σ l. The prover wins the game if
the following two conditions hold.

– The PCP verifier accepts the PCP string Π when using the randomness asso-
ciated to (v1, . . . , v2i∗). That is, VΠ(x; ρ) = 1 for ρ := Rand[(v1, . . . , v2i∗)].
(If Rand has no randomness for this cap then the prover loses.)

– The PCP string Π is consistent with the cap (v1, . . . , v2i∗) in the graph
G. That is, if the PCP verifier queries location j of Π, then the leaf
u = (d, j,Π[Perm(j)]) ∈ Vd is connected to a vertex in the cap (v1, . . . , v2i∗)
in G. (The collection E of possible edges ensures that the j-th leaf can be
connected to at most one vertex in a cap, the one corresponding to the first
i∗ bits of the index j.)

We denote by εcap(i∗, t, tcol, tinv) the maximum winning probability in the cap
soundness game, with stop layer i∗, by any adversary with query budget t, col-
lision budget tcol, and inversion budget tinv.

From Permuted Robust Soundness to Cap Soundness. We reduce the
soundness of a cheating prover in the cap soundness game to the soundness in
the permuted robust soundness game.

Lemma 2. Let (P,V) be a PCP for a relation R with permuted robust sound-
ness error εper(b, d). Then, (P,V) has cap soundness error

εcap(i∗, t, tcol, tinv) ≤ t · 2tcol · εper(b = 2i∗
, d = tinv) .

The proof of the lemma is somewhat technical and is provided in Sect. 6.
Here we provide some intuition on the above expression. The term εper(b =
2i∗

, d = tinv) comes from the fact that if the attacker can make tinv inversions
then it suffices for the attacker to commit to a PCP string that is within a block-
size distance of tinv from an accepting PCP string (and the blocks have size 2i∗

since that is the number of leaves under a vertex in the cap). The multiplicative
factor 2tcol comes from the fact that if the attacker can find tcol collisions then
the attacker can open up to 2tcol PCP strings for the same cap (as each collision
doubles the number of PCP strings that could be consistent with the same cap).
The further multiplicative factor t comes from the fact that the attacker can
re-try its strategy roughly t times.

724 A. Chiesa and E. Yogev

2.6 Scoring Oracle Queries

The cap soundness game lets us bound the success probability of an adversary
given specific budgets. But what budgets should we use when analyzing a cheat-
ing argument prover? For this, we rely on an analysis tool introduced in [anon
citation]: a scoring function for the query trace of an algorithm in the random
oracle model. For convenience and completeness, we review this notion below.

Intuitively, the score of a query trace “counts” the number of collisions and
inversions in a way that reflects the probability of that event occurring. The
lower the probability, the higher the score. This enables us to translate our
claims about cheating argument provers into claims about cheating cap sound-
ness provers, where a high score is translated to a high budget. A strategy that
uses a large budget has a higher chance of winning the cap soundness game, but
the probability of achieving a corresponding high score is low, and our goal is to
balance these two.

The scoring function is separately defined for collisions and for inversions, as
motivated below.

– Scoring collisions. The score of a k-wise collision is set to be k − 1 (assuming
k is maximal within the query trace); in particular, a 2-wise collision gets a
score of 1. Note that two pairwise collisions and one 3-wise collision both get
the same score of 2, even though the latter is less likely to occur. This aligns
with our proof since two pairwise collisions yield four possible proof strings,
while a 3-wise collision yields only three possible proof strings.

– Scoring inversions. Scoring inversions is done by simply counting the number
of inversions in the query trace. We now elaborate on what is considered
an inversion in the query trace. Recall that queries to the random oracle
designated for the (chopped) Merkle tree are compressing: a query is of the
form x = (x1, x2) ∈ {0, 1}λ × {0, 1}λ and an answer is y ∈ {0, 1}λ. Instead,
queries to the random oracle designated for deriving PCP randomness are of
the form x ∈ {0, 1}2i∗ ·λ and an answer is ρ ∈ {0, 1}r. For inversions we only
consider tree queries, and note that a given tree query may invert one of the
two components in a previous tree query or may invert (the one component
of) a previous randomness query. Hence, a tree query performed at time j
with answer y is an inversion if there exist a previous tree query (at time
j′ < j) of the form x = (x1, x2) with x1 = y or x2 = y, or a previous
randomness query x with x = y.

The precise definitions of scores and the proof of the following lemma are pro-
vided in the full version:

Lemma 3. For any t-query algorithm that queries the random oracle and every
k ∈ N:

1. Pr [collision score > k] ≤
(

t2

2·2λ

)k

;

2. Pr [inversion score > k] ≤ 1
k! · (

2t
2λ

)k
.

Subquadratic SNARGs in the Random Oracle Model 725

2.7 Concluding the Proof of Theorem 1

We are left with putting pieces together to derive the argument size. To this end,
we first establish the soundness error of our construction, and then the argument
size will follow.

Soundness of Our Construction. We show that our construction is sound
given any PCP with permuted robust soundness. Recall that permuted robust-
ness soundness depends on the distance d (Sect. 2.3). In our construction the
quantity that matters is an associated worst-case ratio: we say that the PCP
has permuted robustness ratio β(b) if

max
d∈{0,1,...,b}

εper(x, b, d + 1)
εper(x, b, d)

≤ β(b) .

Then, we show the following lemma.

Lemma 4. Suppose our construction is instantiated with a random oracle with
output size λ, and a PCP with soundness error εPCP and permuted robustness
ratio β(b) with stop layer i∗. If λ ≥ 2 log t + log β(b = 2i∗

) + 3 then our con-
struction has soundness error ε(t) ≤ t · εPCP against t-query adversaries.

In our soundness analysis we consider every possible query trace score and
also the probability that the cheating argument prover achieves that score (see
Sect. 2.6). For any integer k ∈ N we consider the event of the cheating argu-
ment prover produces a query trace that has either collision score or inversion
score exactly k. We show that, conditioned on the cheating prover producing a
query trace of score k, there is a related adversary that wins the cap soundness
game with the same probability and budget k (the precise statement is given in
Claim 6). Informally,

Pr
[

verifier
accepts

∣∣∣∣ score k

]
≤ εcap(i∗, t, k, k) .

We consider an infinite sum over k, and for each value of k we bound the
probability of the adversary getting a score of k multiplied by the maximum
winning probability in the cap soundness game given budgets tcol = k and tinv =
k. This infinite sum converges to the soundness expression stated in Lemma 4,
provided that λ ≥ 2 log t + log β + 3.

In more detail, this approach could be over-simplified via the following equa-
tions (for simplicity here we are not careful with constants). First, using Lemma 3
we obtain that the probability that the collision or inversion score equals k is
bounded by the sum of the two probabilities:

Pr[score of k] ≤ 2 ·
(

2t2

2λ

)k

.

726 A. Chiesa and E. Yogev

This lets us express the success probability of the cheating prover as an infinite
sum conditioned on getting a score of k, for any k ∈ N:

Pr

[
verifier
accepts

]
≤

∞∑
k=0

Pr

[
verifier
accepts

∣∣∣∣ score of k

]
· Pr[score of k]

≤
∞∑

k=0

εcap(i
∗, t, k, k) · Pr[score of k] ≤

∞∑
k=0

O

(
t · 2k · εper(k) ·

(
2t2

2λ

)k
)

≤
∞∑

k=0

O

(
t · 2k · βk · εPCP ·

(
2t2

2λ

)k
)

= O(t · εPCP) ·
∞∑

k=0

(
4β · t2

2λ

)k

= O (t · εPCP) .

The last equality follows from the fact that
∑∞

k=0

(
4β·t2
2λ

)k

= O(1) since λ ≥
2 log t + log β + 3.

Argument Size of our Construction. We choose an appropriate PCP and
obtain the argument size claimed in Theorem 1. Recall that Lemma 4 tells us
that the soundness error of our construction is t · εPCP provided that the random
oracle output size satisfies λ ≥ 2 log t + log β + 3; in particular, to achieve (t, ε)
security, we need the PCP soundness error to be εPCP = ε/t.

Towards this end, we apply Lemma 1 to any constant-query constant-
soundness PCP (over a small alphabet), where the probability of querying each
proof location is not too high, as required by the lemma (most PCP constructions
satisfy this requirement). We get that its κ-wise repetition has permuted robust-
ness ratio β(b) = O

(bd+1·εκ
base

bd·εκ
base

)
= O(b) for a block size b. The block size depends

on the number of repetitions, the query complexity, and the soundness of the
base PCP (where the last two are constant), and thus we have that b = O(κ).
To achieve the desired PCP soundness error, we set the number of repetitions
to be κ = O(log(t/ε)); hence the number of queries is q = O(log(t/ε)). Finally,
we set stop layer according to Lemma 4 to be i∗ = O(log b).

The argument contains the Merkle cap (which has size 2i∗ · λ), PCP query
answers (which have total size q · log |Σ|), and the authentication paths (which
have total size q · λ · log(l/2i∗

)). The argument size thus is

|argument| = 2i∗ · λ + q · log |Σ| + q · λ · log(l/2i∗
) = O(q · λ · log(l/q))

= O

(
log

t

ε
·
(

log t + log log
t

ε

)
· log

l

log(t/ε)

)
= Õ

(
log

t

ε
· log t

)
,

where the last equality hides log log t
ε and log l factors (as we assume that l =

poly(n) where n is the input length).

Achieving Concrete Efficiency. In order to achieve concrete efficiency (e.g.,
the numbers reported in Table 1), our security analysis improves on the above
expression by showing that the hidden constant (in the big-O notation) in the
soundness expression can be replaced with the constant 1.

To achieve this, it does not suffice simply to pay attention to the constants
in the computations, but we need to separately count the queries performed to a

Subquadratic SNARGs in the Random Oracle Model 727

tree oracle and to a PCP randomness oracle. The PCP randomness oracle has a
long input length (it maps 2i∗ ·λ bits to λ bits). Therefore, we count each query
to it as 2i∗

queries. This is aligned with how one would implement such an oracle
using domain extension ([Mer89,Dam89]). Thus, in the full proof, we introduce
two new parameters ttree and trnd such that it always holds that t = ttree+2i∗ ·trnd.
Hence the full proof contains similar expressions as above, where in some cases,
t is replaced with either ttree, trnd, or their (weighted) sum.

3 Definitions

Relations. A relation R is a set of tuples (x,w) where x is the instance and
w the witness. The corresponding language L = L(R) is the set of x for which
there exists w such that (x,w) ∈ R.

Random Oracles. We denote by U(λ) the uniform distribution over func-
tions ζ : {0, 1}∗ → {0, 1}λ (implicitly defined by the probabilistic algorithm that
assigns, uniformly and independently at random, a λ-bit string to each new
input). If ζ is sampled from U(λ), we call ζ a random oracle.

Oracle Algorithms. We restrict our attention to oracle algorithms that are
deterministic since, in the random oracle model, an oracle algorithm can obtain
randomness from the random oracle. Given an oracle algorithm A and an oracle
ζ ∈ U(λ), queries(A, ζ) is the set of oracle queries that Aζ makes. We say that
A is t-query if |queries(A, ζ)| ≤ t for every ζ ∈ U(λ).

3.1 Probabilistically Checkable Proofs

We provide standard notations and definitions for probabilistically checkable
proofs (PCPs) [BFLS91,FGL+91,AS98,ALM+98]. Let PCP = (P,V) be a pair
where P, known as the prover, is an algorithm, and V, known as the verifier, is
an oracle algorithm. We say that PCP is a PCP for a relation R with soundness
error εPCP if the following holds.

– Completeness.
For every (x,w) ∈ R, letting Π := P(x,w) ∈ Σ l, Prρ∈{0,1}r [VΠ(x; ρ) = 1] =
1.

– Soundness.
For every x /∈ L(R) and malicious proof Π̃ ∈ Σ l, Prρ∈{0,1}r [VΠ̃(x; ρ) = 1] ≤
εPCP(x).

Above, Σ is a finite set that denotes the proof’s alphabet, and l is an integer that
denotes the proof’s length. We additionally denote by q the number of queries
to the proof made by the verifier. All of these complexity measures are implicitly
functions of the instance x.

728 A. Chiesa and E. Yogev

Definition 2. Let Δ be an absolute distance measure. We say that PCP has
(strong) robustness soundness error εPCP with respect to Δ if for every
instance x /∈ L(R), proof string Π ∈ Σ l, and (absolute) distance parameter
d ∈ [b],

Pr
ρ∈{0,1}r

[
∃Π ′ s.t. VΠ′

(x; ρ) = 1 and Δ(Π,Π ′) ≤ d
]

≤ εPCP(x, d) .

Standard soundness corresponds to the case where Δ is the Hamming dis-
tance and εPCP(x, 0) = εPCP(x) for some error function εPCP(x) and εPCP(x, d) =
1 for any d > 0. The standard notion of robust soundness is a special case of
Definition 2, corresponding to the case where εPCP(x, d) = εPCP(x) for d in some
interval [0, d∗] and εPCP(x, d) = 1 for d > d∗.

3.2 Non-interactive Arguments in the Random Oracle Model

We consider non-interactive arguments in the random oracle model (ROM),
where security holds against query-bounded, yet possibly computationally-
unbounded, adversaries. Recall that a non-interactive argument typically con-
sists of a prover algorithm and a verifier algorithm that prove and validate state-
ments for a binary relation, which represents the valid instance-witness pairs.

Let ARG = (P, V) be a tuple of (oracle) algorithms. We say that ARG is a
non-interactive argument in the ROM for a relation R with (t, ε)-security if, for
a function λ : N × (0, 1) → N, the following holds for every query bound t ∈ N

and soundness error ε ∈ (0, 1).

– Completeness. For every (x,w) ∈ R,

Pr
[
V ζ(x, π) = 1

∣∣∣∣ ζ ← U(λ(t, ε))
π ← P ζ(x,w)

]
= 1 .

– Soundness. For every x /∈ L(R) with |x| ≤ t and t-query P̃ ,

Pr
[
V ζ(x, π) = 1

∣∣∣∣ ζ ← U(λ(t, ε))
π ← P̃ ζ

]
≤ ε .

The argument size s := |π| is a function of the desired query bound t and
soundness error ε. So are the running time pt of the prover P and the running
time vt of the verifier V .

4 Our Construction

We describe our construction of a (succinct) non-interactive argument from a
PCP. Let (P,V) be a PCP system for the desired relation, with proof length
l over an alphabet Σ and query complexity q; for notational convenience, we
set d := �log l�. The construction is additionally parametrized by a stop layer

Subquadratic SNARGs in the Random Oracle Model 729

i∗ ∈ {0, 1, . . . , d − 1}, which we will set in the analysis (looking ahead, 2i∗
will

be roughly the number of queries in the PCP).

The Oracles in Our Construction. The algorithms below are granted access
to three oracles:

1. a tree oracle ζtree : {0, 1}2λ → {0, 1}λ, which hashes two elements to one;
2. a PCP randomness oracle ζrnd : {0, 1}2i∗ ·λ → {0, 1}r, which hashes 2i∗

ele-
ments to r bits, where r is the randomness complexity of the PCP verifier
V;

3. a random permutation Perm : [l] → [l], over the locations of a PCP string.

In our analysis, we assume that these oracle are available; all of them can be
derived from a single random oracle ζ : {0, 1}∗ → {0, 1}∗. First, using domain
separation one can create multiple random oracles from a single one. The second
oracle has a larger domain, which is derived via domain extension (for example,
using the Merkle–Damg̊ard iterated construction [Mer89,Dam89]). The third is
derived via Feistel networks, as discussed in Sect. 4.1.

Since the oracles have different input lengths, the cost for querying each
oracle differs. We consider a query to the tree oracle as a single query to the
random oracle (i.e., reducing a single unit from the cheating prover’s query
budget). The PCP randomness oracle hashes 2i∗

elements and thus its cost will
be 2i∗

accordingly. We consider queries to the random permutation to be “free”.
That is, a cheating prover can completely query the permutation oracle with no
change to its query budget (this makes our result stronger).

We describe the argument prover P and then the argument verifier V of the
tuple ARG = (P, V).

Argument Prover. The argument prover P takes as input an instance x and
a witness w, and computes an argument π as follows.

1. Run the PCP prover P on (x,w) to obtain a PCP string Π ′ ∈ Σ l.
2. Use the permutation Perm to permute this PCP string and obtain Π such

that Π[i] = Π ′[Perm(i)].
3. Use the random oracle ζtree to Merkle commit to Π, as follows:

– For every j ∈ [l], set the j-th leaf hd,j := Πj ∈ Σ.
– For i = d − 1, d − 2, . . . , i∗: for j ∈ [2i], compute

hi,j := ζtree(i‖j‖hi+1,2j−1‖hi+1,2j) ∈ {0, 1}λ.
– Set the Merkle cap h := {hi∗,j ∈ {0, 1}λ}j∈[2i∗].

4. Derive randomness ρ := ζrnd(h) ∈ {0, 1}r and simulate the PCP verifier V on
input (x; ρ) and PCP string Π; this execution induces q query-answer pairs
(j1, a1), . . . , (jq, aq) ∈ [l] × Σ.

5. Output
π :=

(
h, (j1, a1, p1), . . . , (jd, ad, pd)

)
(1)

where p1, . . . , pd are the authentication paths for the query-answer pairs
(j1, a1), . . . , (jq, aq), truncated at level i∗ of the tree.

730 A. Chiesa and E. Yogev

Argument Verifier. The argument verifier V takes as input an instance x and
a proof π (of the form as in Eq. 1), and computes a decision bit as follows.

1. derive randomness ρ := ζrnd(h) for the PCP verifier from the Merkle cap h;
2. check that the PCP verifier V, on input (x; ρ) and by answering a query to

jr with ar, accepts;
3. check that p1, . . . , pd are authentication paths of (j1, a1), . . . , (jd, ad) relative

to the Merkle cap h.

Argument Size. The argument π contains the Merkle cap h ∈ {0, 1}2i∗ ·λ, a
(log |Σ|)-bit answer for each of q queries, and q authentication paths. This totals
to an argument size that is

2i∗ · λ + q · log |Σ| + q · λ · log(l/2i∗
) . (2)

Each of the q queries in [l] comes with an authentication path containing the
log(l/2i∗

) siblings of vertices on the path from the query to the Merkle cap,
which amounts to λ · log(l/2i∗

) bits. (More precisely, log |Σ| + λ · (log(l/2i∗
) − 1)

bits since the first sibling is a symbol in Σ rather than an output of the random
oracle.)

As noted in earlier works (e.g., [BBHR19,BCR+19]) parts of the information
across the q authentication paths is redundant, and the argument size can be
reduced by pruning : the prover includes in π the minimal set of siblings to
authenticate the q queries as a set. All concrete argument sizes that we report
in Table 1 already account for this straightforward optimization.

Remark 2 (salts for zero knowledge and more). The security analysis that we
present in this paper (see Sect. 7) works even if all the vertices in the tree are
“salted”, which means that an attacker may include an arbitrary string σi,j ∈
{0, 1}λ in the query that obtains the digest hi,j , for any i ∈ {0, 1, . . . , d− 1} and
j ∈ [2i]. That is, our results hold against strong attacks (the attacker can obtain
multiple random digests hi,j for any given indices i and j). Salts are useful for
showing additional properties of SNARGs in the random oracle model, and in
particular, to achieve zero-knowledge[BCS16,IMSX15].

4.1 Implementing the Random Permutation

We discuss how to implement the random permutation given the random oracle.
We need a pseudorandom permutation over the domain [l], where l is the length
of the PCP. There are multiple ways to do this, and here we use Feistel networks,
also known as also known as Luby–Rackoff permutations [HR10,LR88,NR99].
These constructions are parameterized by a number of Feistel rounds r; each
round calls the random oracle once, and the more rounds, the better the secu-
rity. In particular, for any algorithm performing q queries, the advantage in
distinguishing it from a truly random permutation is exponentially small. In our
case, the “adversary” performing the queries is the PCP verifier, which performs

Subquadratic SNARGs in the Random Oracle Model 731

non-adaptive queries. We do not need to fool the cheating prover of the argu-
ment scheme. The only goal of the permutation is to spread the PCP queries
into evenly divided blocks. We use the following theorem.

Theorem 2 ([HR10, Theorem 3]). The Feistel permutation over [l] with r

rounds has distinguishing advantage at most q
r+1

(
4q
l

)r
, for any non-adaptive

q-query algorithm.

In particular, setting r to be large enough (and recalling that q is merely
the number of queries in the PCP), we can set the distinguishing probability
to be extremely small with negligible effect on our proof, and thus we omit
these terms and perm our analysis under the assumption of a truly random
permutation. For our theoretical needs, the theorem above suffices. Even setting
concrete parameters, the number of rounds needed is relatively small. However,
there are several other alternatives with different concrete performance. One
example is to use DES (recall that we do not need to hide the key from the
cheating prover) or to use other standards such as FFX [BRS10].

5 Permuted Robust Soundness

Definition 3 (Block distance). Let Π,Π ′ ∈ Σ l be two strings, and consider
them divided to b blocks. That is, we view them as Π,Π ′ ∈ (Σ l/b)b. Define
Δb(Π,Π ′) to be the block-wise distance between Π and Π ′ (i.e., the number of
blocks of symbols on which they differ).

Moreover, for any permutation Perm, we define ΔPerm
b similarly where we first

permute the order according to Perm and then divide to blocks.

Game 3. The permuted robust soundness game is parametrized by a PCP ver-
ifier V, an instance x, a positive integer b, and a non-negative integer d. We
denote by Gper(V,x, b, d, P̃) the boolean random variable denoting whether a
malicious prover P̃ wins in this game, according to the description below.

1. Perm is sampled as a random permutation over [l].
2. P̃ outputs a proof string Π ∈ Σ l.
3. P̃ receives a random string ρ ∈ {0, 1}r, which represents randomness for the PCP

verifier.
4. P̃ outputs a proof string Π ′ ∈ Σ l.
5. The game outputs 1 if and only if VΠ′

(x; ρ) = 1, and ΔPerm
b (Π, Π ′) ≤ d.

Definition 4. A PCP (P,V) for a relation R has permuted robust sound-
ness error εper(x, b, d) if for every instance x /∈ L(R), integers b, d, and mali-
cious prover P̃,

Pr
[
Gper(V,x, b, d, P̃) = 1

]
≤ εper(x, b, d) .

The PCP has permuted robustness ratio β (with respect to b) if for any d ∈
{0, 1, . . . , b} it holds that:

εper(x, b, d + 1) ≤ β · εper(x, b, d) .

732 A. Chiesa and E. Yogev

Lemma 5 (restatement of Lemma 1). Let (P,V) be a PCP with soundness
error εbase, length l, and query complexity q, and assume each location is queried
with probability at most p. Let κ ∈ N and let (P,V)κ be the κ-repeated version
of (P,V). If b ≥ κ ·q ·ε−1

base, and p ≤ (8b ·κ)−1 then (P,V)κ has strong permuted
robust soundness error

εper(x, b, d) ≤ e1.2·d

d!
· bd · εκ

base .

Moreover, the robustness ratio is β ≤ 2.33 · b.
Using the above lemma, we can plug in a PCP with soundness error 1/2 that

uses 3 queries, with proof length l and get the following corollary.

Corollary 1. For any κ ∈ N , there is a PCP (P,V) that has query complexity
q = 3κ and has permuted robust ratio

β ≤ 2.33 · κ · 3 · 2 = 14κ .

6 Cap Soundness

We define a PCP soundness game that we call cap soundness game. The game
is played on a graph G = (V,E) that represents the Merkle tree in the Micali
construction. The game starts out with the graph being empty (E = ∅), and the
PCP adversary can iteratively choose one of several actions, with some budget
limitations that constrain how many collisions and inversions the PCP adversary
can create in the Merkle tree. We stress that this game is information-theoretic,
and can be viewed as an abstract modeling of the effects of these attacks in the
real world. The edges are in fact hyperedges in order to keep track of which inputs
are “hashed” together to create a specific output. Below we introduce definitions
for describing the game, and then relate winning this game to winning the reverse
soundness game.

Definition 5. Let d, i∗, and λ be positive integers, and Σ a finite alphabet. The
vertex set V is the union Vi∗ ∪ · · · ∪ Vd where Vd := {(d, j, h) : j ∈ [2d], h ∈ Σ}
and, for every i ∈ {i∗, . . . , d − 1}, Vi := {(i, j, h) : j ∈ [2i], h ∈ {0, 1}λ}. We
consider graphs of the form G = (V,E) where E is a set of (hyper)edges chosen
from the following collection:

E =

⎧⎨
⎩(u, v0, v1) :

u = (i, j, h) ∈ Vi

v0 = (i + 1, 2j − 1, h0) ∈ Vi+1

v1 = (i + 1, 2j, h1) ∈ Vi+1

⎫⎬
⎭ .

For an edge e = (u, v0, v1), we call u its base vertex and v0, v1 its children
vertices. We also define:

– the edges of a base vertex u = (i, j, h) are edges(u) := {(u, v0, v1) ∈ E :
v0, v1 ∈ Vi+1};

Subquadratic SNARGs in the Random Oracle Model 733

– the level of an edge e, denoted level(e), is i if its base vertex has the form
u = (i, j, h).

Each leaf of the graph, namely, a vertex u = (d, j, h) at level d is associated
to a symbol, h. A collection of leaves thus determine a string whose location j
is the symbol of the j-th leaf.

Definition 6. Let G = (V,E) be a graph over the vertex set V as in Definition 5.

– A vertex ud ∈ Vd is connected in G to a vertex u
 ∈ V
 if there exist vertices
ud−1, . . . , u
+1 such that, for all i ∈ {d, d − 1, . . . , � + 1}, ui ∈ Vi and there is
an edge e ∈ E such that ui, ui−1 ∈ e.

– A vertex v ∈ Vi is free in G if for every u ∈ Vi−1 and v′ ∈ Vi it holds that
(u, v, v′) /∈ E.

Notice that the connectivity concerns only paths that begin at any leaf (a
vertex at level d) and move directly towards the vertex u
. That is, at each step
on the path, the level decreases by 1. Moreover, a vertex at level i is free if there
is no edge that connects it to a vertex at level i − 1.

Definition 7. Let G = (V,E) be a graph over the vertex set V as in Definition 5,
and let Perm be a permutation. A string s ∈ (Σ ∪ {⊥})l is consistent with G
with respect to Perm if for every j ∈ [l] such that s[j] �= ⊥ there exists a vertex
vPerm(j) = (d, Perm(j), h) ∈ Vd such that h = s[j] and vPerm(j) is connected some
u ∈ Vi∗ in G. In such a case we write Consistent(G, Perm, s) = 1.

Game 4. The cap soundness game is parametrized by a PCP verifier V, an
instance x, and an integer λ. The game receives as input a malicious prover P̃, a
root budget trnd ∈ N, a tree budget ttree ∈ N, a collision budget tcol ∈ N, and an
inversion budget tinv ∈ N, which we denote Gcap(V,x, λ, P̃, i∗, trnd, ttree, tcol, tinv).
The game works as follows:

– Initialization:
1. Set E := ∅ to be an empty edge set for the graph G = (V, E).
2. Set Rand to be an empty mapping from V to verifier randomness.
3. Perm is a sampled as a uniformly random permutation over [l] and given to the

prover P̃.
– Round: P̃ chooses one of the following options until it decides to exit.

• Option ADD: P̃ submits a vertex u = (i, j, h) ∈ V with i ∈ {i∗, . . . , d − 1}
and strings h0, h1.
1. Set the (hyper)edge e := (u, v0, v1) where v0 := (i + 1, 2j − 1, h0) ∈ Vi+1

and v1 := (i + 1, 2j, h1) ∈ Vi+1.
2. If u is not free then tinv ← tinv − 1.
3. If |e(u)| ≥ 1 then tcol ← tcol − 1.
4. Add e = (u, v0, v1) to E.
5. ttree ← ttree − 1.

• Option RND: P̃ submits a cap vertex vh ∈ Vi∗ .
1. If Rand already contains an entry for vh then set ρ ← Rand[vh].
2. If Rand does not contain an entry for vh then sample ρ ∈ {0, 1}r at random

and set Rand[vh] ← ρ.

734 A. Chiesa and E. Yogev

3. trnd ← trnd − 1.
4. ρ is given to P̃.

– Output: P̃ outputs a cap v1, . . . , v2i∗ ∈ Vi∗ and leaf vertices v1, . . . , vq ∈ Vd.
– Decision: P̃ wins if all checks below pass.

1. Construct a PCP string Π ∈ (Σ ∪ {⊥})l: for every r ∈ [q], parse the r-th leaf
vertex as vr = (d, j, h) and set Π[Perm(j)] := h ∈ Σ; set Π[j] := ⊥ for all
other locations.

2. Retrieve PCP randomness for this root vertex: ρ∗ ← Rand[vh].
3. Check that the PCP verifier accepts: VΠ(x; ρ∗) = 1.
4. Check that Π is consistent in G w.r.t. Perm: Consistent(G, Perm, Π) = 1.
5. Check that P̃ is within budget: tcol ≥ 0, tinv ≥ 0, trnd ≥ 0, and ttree ≥ 0.

Definition 8. A PCP (P,V) for a relation R has cap soundness error
εcap(x, λ, i∗, trnd, ttree, tcol, tinv) if for every x /∈ L(R), output size λ ∈ N, mali-
cious prover P̃, stop layer i∗, and budgets trnd, tcol, tinv ∈ N,

Pr
[
Gcap(V,x, λ, P̃, i∗, trnd, ttree, tcol, tinv) = 1

]
≤ εcap(x, λ, i∗, trnd, ttree, tcol, tinv) .

Lemma 6 (restatement of Lemma 2). Let (P,V) be a PCP for a relation
R with permuted robust soundness error εPCP with respect to distance Δb for
parameter b, and suppose it has uniformly random queries. Then, (P,V) has
cap soundness error

εcap(x, λ, i∗, trnd, ttree, tcol, tinv) ≤ trnd · 2tcol · εper(x, b = 2i∗
, d = tinv) .

The lemma is proved in the full version.

7 Soundness Based on Permuted Robust Soundness

Theorem 5 (restatement of Lemma 4). Suppose that our construction
(described in Sect. 4) is instantiated with:

1. a PCP with soundness εPCP and permuted robustness ratio β(b);
2. a random oracle with output size λ; and
3. stop layer i∗.

Then, provided that λ ≥ 2 log t+log β(2i∗
)+3, the construction has a soundness

error ε(t) against t-query adversaries that is bounded as follows:

ε(t) ≤ t · εPCP .

Using this soundness analysis along with concrete PCPs, we get the following
corollary:

Corollary 2 (restatement of Theorem 1). Our construction implies a
SNARG for NP in the random oracle model that has (t, ε)-security with an argu-
ment size of

O
(

log(t/ε) · (log t + log log(t/ε)
) · log(l/ log(t/ε))

)
. (3)

We prove the theorem in Sect. 7.1 and the corollary in Sect. 7.2.

Subquadratic SNARGs in the Random Oracle Model 735

7.1 Proof of Theorem 5

Fix t ∈ N. Let P̃ be a t-query cheating argument prover. Note that P̃ can make
queries to the randomness oracle ζrnd and tree oracle ζtree (or the permutation
but we are giving these queries to the cheating prover for free). Recall that the
randomness oracle trnd has a larger domain size and thus has cost 2i∗

. For any
choice of positive integers trnd and ttree such that 2i∗ · trnd + ttree ≤ t, below we
condition on the event that P̃ makes trnd queries to ζrnd and ttree queries to ζtree.
For any such choice, we obtain the same upper bound (independent of the choice
of trnd and ttree), and hence conclude that the bound holds for the distribution
of trnd and ttree implied by P̃ .

We rely on the claim below, which states that a cheating argument prover
can be transformed into a cheating PCP prover for the cap soundness game
with a small loss, when the budgets for collisions and inversions correspond to
the corresponding scores of the trace of the argument prover.

Claim 6. There is an efficient transformation T such that, for every cheating
argument prover P̃ , the cheating PCP prover P̃ := T(P̃) satisfies the following
condition for every k ∈ N:

Pr

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

V
ζ
(x, π) = 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ζ ← U(λ)

π ← P̃ ζ

trrnd ← queriesrnd(P̃ , ζ)

trtree ← queriestree(P̃ , ζ)

|trrnd| = trnd, |trtree| = ttree
scorecol(trtree) ≤ k

scoreinv(trtree) ≤ k

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

≤ Pr
[
Gcap(V,x, λ, P̃, i

∗
, trnd, ttree, k, k) = 1

]
.

(4)

Above queriesrnd(P̃ , ζ) and queriestree(P̃ , ζ) respectively denote the queries by P̃
to the oracles ζrnd and ζtree obtained from ζ via domain separation.

The proof of Claim 6 is given at the end of this proof.
We use the oracle scoring lemma to obtain a bound that will be useful in the

analysis further below; we also use the assumption that λ ≥ 2 log t + log β + 3
and the fact that t ≥ ttree. The bound holds for any choice of a parameter k ∈ N.

736 A. Chiesa and E. Yogev

∞∑
k=0

2
k · β

k · Pr[scoreinv(trtree) = k ∨ scorecol(trtree) = k]

≤ 1 +
∞∑

k=1

(2β)
k ·

(
1

k!
·
(

2t · ttree

2λ

)k

+

(
t2tree
2 · 2λ

)k)

= 1 +
∞∑

k=1

1

k!
·
(

4t · ttree · β

2λ

)k

+
∞∑

k=1

(
t2tree · β

2λ

)k

≤ 1 +
∞∑

k=1

1

k!
·
(

4ttree

23 · t

)k

+
∞∑

k=1

(
ttree

23 · t

)k

(since λ ≥ 2 log t + log β + 3)

≤ 1 +
ttree

t
·

∞∑
k=1

1

k!
·
(

4

23

)k

+
ttree

t
·

∞∑
k=1

(
1

23

)k

≤ 1 + 0.65 · ttree

t
+ 0.15 · ttree

t

≤ 1 +
ttree

t
.

Using the above bound, we conclude the following:

Pr

[
V

ζ
(x, π) = 1

∣∣∣∣
ζ ← U(λ)

π ← P̃ ζ

]

≤
∞∑

k=0

Pr
[
Gcap(V,x, λ, P̃, i

∗
, trnd, ttree, k, k) = 1

]
·

Pr[scoreinv(trtree, trrnd) = k ∨ scorecol(trtree) = k] (by Claim 6)

≤
∞∑

k=0

εcap(x, λ, i
∗
, trnd, ttree, k, k)·

Pr[scoreinv(trtree, trrnd) = k ∨ scorecol(trtree) = k] (by Definition 8)

≤
∞∑

k=0

trnd · 2k · εper(x, 2
i∗

, k)·

Pr[scoreinv(trtree, trrnd) = k ∨ scorecol(trtree) = k] (by Lemma 6)

≤
∞∑

k=0

trnd · 2k · β
k · εper(x, 2

i∗
, 0)·

Pr[scoreinv(trtree, trrnd) = k ∨ scorecol(trtree) = k] (since β is the robustness ratio)

≤
∞∑

k=0

trnd · 2k · β
k · εPCP(x)·

Pr[scoreinv(trtree, trrnd) = k ∨ scorecol(trtree) = k] (since εper(x, 2i∗
, 0) = εPCP(x))

= trnd · εPCP(x) ·
∞∑

k=0

2
k · β

k·

Pr[scoreinv(trtree, trrnd) = k ∨ scorecol(trtree) = k]

≤ trnd · εPCP(x) ·
(
1 +

ttree

t

)
(using the bound proved above)

= t · εPCP(x) .

This concludes the proof of the theorem, giving an upper bound on the soundness
error.

We are left to prove the claim used in the proof above.

Subquadratic SNARGs in the Random Oracle Model 737

Proof (Proof of Claim 6). For the sake of simplicity of the proof, we will assume
the following two conditions that are without loss of generality:

– (No duplicate queries): The cheating argument prover P̃ does not make dupli-
cate queries to the random oracle. This can be achieved by having P̃ store the
answers to prior queries, and making only new queries to the random oracle,
and has no effect on the rest of the proof. Recall that we are considering the
Micali construction with salts (see Remark 2), which means that the afore-
mentioned “no duplicate query” condition implies that the prover does not
make the same query with the same salt but can make the same query with
a different salt (as that results in a different input to the random oracle).

– (Self-verifying): The cheating prover, before submitting his final proof, runs
the verify to check that it accepts, and otherwise submits a ⊥ symbol. This
can be achieved by having P̃ run the verifier at the end of its execution.
Admittingly, this is not completely without loss of generalization, as this
might cost a few additional queries. However, this has a negligible effect on
the query complexity and on our results and we omit it.

We use P̃ to construct a PCP prover P̃ that plays in the cap soundness
game Gcap (Game 4). The PCP prover P̃ simulates the argument prover P̃ and,
whenever P̃ performs a query x to the random oracle, P̃ performs one of the
following actions depending on x.

– Root query: x is a query in {0, 1}λ to the PCP randomness oracle ζrnd.
1. Construct the root vertex vh := (0, 1, x) ∈ V0.
2. Submit, via Option RND in Gcap, the root vertex vh.
3. Receive from Gcap a random string ρ ∈ {0, 1}r for the PCP verifier.
4. Send ρ to P̃ .

– Tree query: x is a query (i, j, h0, h1, σ) to the tree oracle ζtree with indices
i ∈ {0, 1, . . . , d − 1} and j ∈ [2i], strings h0, h1 in {0, 1}λ or Σ (depending on
i) and salt σ ∈ {0, 1}λ.
1. Sample a random h ∈ {0, 1}λ and set u := (i, j, h) ∈ Vi;
2. Submit u, h0, h1 via Option ADD in Gcap;
3. Send h to P̃ .

– Other query: x is a query that does not fit either case above.
1. Sample a random h ∈ {0, 1}λ and send h to P̃ .

At the end of its simulation, P̃ outputs a proof π that is parsed as in Eq. 1. The
cheating prover P̃ outputs the root vertex vh := (0, 1,h) where h is the root
contained in π and also outputs the leaf vertices {vr}r∈[q] where vr := (d, jr, ar)
specifies the location jr ∈ [l] and answer ar ∈ Σ in π for the r-th query. We now
argue that the constructed PCP prover P̃ satisfies Eq. 4.

Perfect Simulation. We claim that the PCP prover P̃ performs a perfect
simulation of the argument prover P̃ , in that P̃ gives values to P̃ that are
identically distributed as the answers from a random oracle ζ. We argue this for
(well-formed) queries to ζrnd and queries to ζtree; any other types of queries are
trivially uniformly random because that is how P̃ answers in the third bullet.

738 A. Chiesa and E. Yogev

First, if P̃ issues a query x to the randomness oracle ζrnd, then P̃ replies with
the randomness ρ received from the cap soundness game Gcap, which is uniformly
distributed.

Second, suppose that P̃ issues a query x to the tree oracle ζtree. Since P̃ ’s
queries are distinct, either of i, j, h0, h1 are new elements, in which case no value
h has been assigned; or the salt σ is new (the salt allows P̃ to get new randomness
for the same choice of i, j, h0, h1).

When P̃ Wins then P̃ Wins. We claim that the PCP prover P̃ wins the
cap soundness game whenever the argument prover P̃ convinces the argument
verifier V .

Suppose that V ζ(x, π) = 1 for the proof π output by P̃ and the (partial)
random oracle ζ implied by the randomness of the simulation and cap soundness
game. Let ρ∗ ← Rand[vh] where vh is the root vertex output by P̃ and Rand is
the table maintained by the cap soundness game.

We can deduce the following two items, which mean that P̃ wins up to budget
constraints.

– VΠ(x; ρ∗) = 1 where Π is the PCP proof with value ar ∈ Σ at location
jr ∈ [l] for every r ∈ [q], and the value ⊥ at all other locations. This is
because if the argument verifier V accepts then the underlying PCP verifier
V also accepts: V on instance x and randomness ρ∗ accepts when, for every
r ∈ [q], the answer to query jr is the value ar.

– For every r ∈ [q], the leaf vertex vr is connected in G to the root vertex vh
(G is the graph maintained by the cap soundness game), provided that P̃ has
queried all vertices in the authentication paths in the final proof π (which we
assumed is the case). This is because p1, . . . , pq in π are valid authentication
paths for the query-answer pairs (j1, a1), . . . , (jq, aq) with respect to the root
h in π (and the oracle ζ), and thus all the edges between the leaf vertices
{vr}r∈[q] and the root vertex vh are in the graph.

The Budget of P̃ Suffices. We left to argue that the budgets given to P̃ suffices
for the cap soundness game to accept. Let εk be the success probability of the
argument prover P̃ conditioned on scorecol(trtree) ≤ k and scoreinv(trtree) ≤ k
where trrnd is P̃ ’s trace of queries to the randomness oracle ζrnd and trtree is P̃ ’s
trace of queries to the tree oracle ζtree (with |trrnd| = trnd and |trtree| = ttree).

Consider any fixed oracle ζ that contributes to εk, i.e., P̃ wins and the scores
are at most k. There is a one-to-one mapping of the values of the oracle ζ to the
random values in the simulation that make P̃ win within the required budget of
k. The mapping is done in a natural way because P̃ does a perfect simulation of
P̃ : the randomness used by the simulation for query x (either tree of root query)
corresponds to the value of the random oracle on query x.

Hence, we only need to show that when the scores are bounded by k then
the budgets for the cap soundness game suffice to win the game.

– If scorecol(trtree) ≤ k then we know that P̃ has found at most k collisions in
trtree. In this case, P̃ submits the same number of collisions as P̃ because it
imitates its queries. Thus, the collision budget will suffice for the simulation.

Subquadratic SNARGs in the Random Oracle Model 739

– If scoreinv(trtree) ≤ k then we know that P̃ has performed at most k “almost
inversions” in trtree and trrnd together. In this case, P̃ simulates the same
queries and will use Option INV at most k times. Thus, the inversion budget
will suffice for the simulation.

– Since P̃ performs at most trnd queries to the randomness oracle ζrnd and at
most ttree queries to the tree oracle ζtree, then Π̃ will perform the same amount
of queries to Option RND and Option ADD respectively. ��

7.2 The Argument Size

We prove Corollary 2. Fix t and ε. As a base PCP, we take any constant query,
constant soundness PCP over a binary (or small) alphabet of polynomial length l.
We amplify the soundness by repeating κ = O(log(t/ε)) times, and get soundness
εPCP = O(ε/t), and query complexity q = O(log(t/ε)). By Corollary 1, we get
that the repeated PCP has permuted robustness ratio β = O(κ) = O(log(t/ε)),
with b = O(κ), and 2i∗

= O(q). Thus, we need to set

λ = 2 log t + log β + 3 = O(log t + log log(t/ε)) .

Plugging this in the argument size formula given in Eq. 2, we get that the argu-
ment size is:

2i∗ · λ + q · log |Σ| + q · λ · log(l/2i∗
) =

O (log(t/ε) · (log t + log log(t/ε)) · log(l/ log(t/ε))) .

Acknowledgments. Alessandro Chiesa is funded by the Ethereum Foundation and
Eylon Yogev is funded by the ISF grants 484/18, 1789/19, Len Blavatnik and the
Blavatnik Foundation, The Blavatnik Interdisciplinary Cyber Research Center at Tel
Aviv University, and The Raymond and Beverly Sackler Post-Doctoral Scholarship.
This work was done (in part) while the second author was visiting the Simons Institute
for the Theory of Computing.

References

[ALM+98] Arora, S., Lund, C., Motwani, R., Sudan, M., Szegedy, M.: Proof verifica-
tion and the hardness of approximation problems. J. ACM 45(3), 501–555
(1998). Preliminary version in FOCS ’92

[AS98] Arora, S., Safra, S.: Probabilistic checking of proofs: a new characterization
of NP. J. ACM 45(1), 70–122 (1998). Preliminary version in FOCS ’92

[BBB+18] Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.: Bul-
letproofs: short proofs for confidential transactions and more. In: Proceed-
ings of the 39th IEEE Symposium on Security and Privacy, S&P ’18, pp.
315–334 (2018)

[BBC+18] Baum, C., Bootle, J., Cerulli, A., del Pino, R., Groth, J., Lyubashevsky, V.:
Sub-linear lattice-based zero-knowledge arguments for arithmetic circuits.
In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10992,
pp. 669–699. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
96881-0 23

https://doi.org/10.1007/978-3-319-96881-0_23
https://doi.org/10.1007/978-3-319-96881-0_23

740 A. Chiesa and E. Yogev

[BBHR19] Ben-Sasson, E., Bentov, I., Horesh, Y., Riabzev, M.: Scalable zero knowl-
edge with no trusted setup. In: Boldyreva, A., Micciancio, D. (eds.)
CRYPTO 2019. LNCS, vol. 11694, pp. 701–732. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-26954-8 23

[BCC+16] Bootle, J., Cerulli, A., Chaidos, P., Groth, J., Petit, C.: Efficient zero-
knowledge arguments for arithmetic circuits in the discrete log setting. In:
Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp.
327–357. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-
49896-5 12

[BCG+14] Ben-Sasson, E., et al.: Zerocash: decentralized anonymous payments from
Bitcoin. In: Proceedings of the 2014 IEEE Symposium on Security and
Privacy, SP ’14, pp. 459–474 (2014)

[BCI+13] Bitansky, N., Chiesa, A., Ishai, Y., Paneth, O., Ostrovsky, R.: Succinct non-
interactive arguments via linear interactive proofs. In: Sahai, A. (ed.) TCC
2013. LNCS, vol. 7785, pp. 315–333. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-36594-2 18

[BCR+19] Ben-Sasson, E., Chiesa, A., Riabzev, M., Spooner, N., Virza, M., Ward,
N.P.: Aurora: transparent succinct arguments for R1CS. In: Ishai, Y.,
Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11476, pp. 103–128.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17653-2 4

[BCS16] Ben-Sasson, E., Chiesa, A., Spooner, N.: Interactive oracle proofs. In: Hirt,
M., Smith, A. (eds.) TCC 2016. LNCS, vol. 9986, pp. 31–60. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-53644-5 2

[BFLS91] Babai, L., Fortnow, L., Levin, L.A., Szegedy, M.: Checking computations in
polylogarithmic time. In: Proceedings of the 23rd Annual ACM Symposium
on Theory of Computing, STOC ’91, pp. 21–32 (1991)

[BFS20] Bünz, B., Fisch, B., Szepieniec, A.: Transparent SNARKs from DARK com-
pilers. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol.
12105, pp. 677–706. Springer, Cham (2020). https://doi.org/10.1007/978-
3-030-45721-1 24

[BGLR93] Bellare, M., Goldwasser, S., Lund, C., Russell, A.: Efficient probabilistically
checkable proofs and applications to approximations. In: Proceedings of the
25th Annual ACM Symposium on Theory of Computing, STOC 93, pp.
294–304 (1993)

[BISW17] Boneh, D., Ishai, Y., Sahai, A., Wu, D.J.: Lattice-based SNARGs and their
application to more efficient obfuscation. In: Coron, J.-S., Nielsen, J.B.
(eds.) EUROCRYPT 2017. LNCS, vol. 10212, pp. 247–277. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-56617-7 9

[BISW18] Boneh, D., Ishai, Y., Sahai, A., Wu, D.J.: Quasi-optimal SNARGs via linear
multi-prover interactive proofs. In: Nielsen, J.B., Rijmen, V. (eds.) EURO-
CRYPT 2018. LNCS, vol. 10822, pp. 222–255. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-78372-7 8

[BRS10] Bellare, M., Rogaway, P., Spies, T.: The FFX mode of operation for format-
preserving encryption. NIST Submission 20, 19 (2010)

[CMS19] Chiesa, A., Manohar, P., Spooner, N.: Succinct arguments in the quantum
random oracle model. In: Hofheinz, D., Rosen, A. (eds.) TCC 2019. LNCS,
vol. 11892, pp. 1–29. Springer, Cham (2019). https://doi.org/10.1007/978-
3-030-36033-7 1

https://doi.org/10.1007/978-3-030-26954-8_23
https://doi.org/10.1007/978-3-662-49896-5_12
https://doi.org/10.1007/978-3-662-49896-5_12
https://doi.org/10.1007/978-3-642-36594-2_18
https://doi.org/10.1007/978-3-642-36594-2_18
https://doi.org/10.1007/978-3-030-17653-2_4
https://doi.org/10.1007/978-3-662-53644-5_2
https://doi.org/10.1007/978-3-030-45721-1_24
https://doi.org/10.1007/978-3-030-45721-1_24
https://doi.org/10.1007/978-3-319-56617-7_9
https://doi.org/10.1007/978-3-319-78372-7_8
https://doi.org/10.1007/978-3-030-36033-7_1
https://doi.org/10.1007/978-3-030-36033-7_1

Subquadratic SNARGs in the Random Oracle Model 741

[CY20] Chiesa, A., Yogev, E.: Barriers for succinct arguments in the random oracle
model. In: Pass, R., Pietrzak, K. (eds.) TCC 2020. LNCS, vol. 12551, pp.
47–76. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64378-
2 3

[Dam89] Damg̊ard, I.B.: A design principle for hash functions. In: Brassard, G. (ed.)
CRYPTO 1989. LNCS, vol. 435, pp. 416–427. Springer, New York (1990).
https://doi.org/10.1007/0-387-34805-0 39

[DHK15] Dinur, I., Harsha, P., Kindler, G.: Polynomially low error PCPs with poly-
loglog n queries via modular composition. In: Proceedings of the 47th
Annual ACM Symposium on Theory of Computing, STOC ’15, pp. 267–276
(2015)

[FGL+91] Feige, U., Goldwasser, S., Lovász, L., Safra, S., Szegedy, M.: Approximating
clique is almost NP-complete (preliminary version). In Proceedings of the
32nd Annual Symposium on Foundations of Computer Science, SFCS ’91,
pp. 2–12 (1991)

[FS86] Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identi-
fication and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986.
LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987). https://doi.org/
10.1007/3-540-47721-7 12

[GGPR13] Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs
and succinct NIZKs without PCPs. In: Johansson, T., Nguyen, P.Q. (eds.)
EUROCRYPT 2013. LNCS, vol. 7881, pp. 626–645. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-38348-9 37

[GH98] Goldreich, O., H̊astad, J.: On the complexity of interactive proofs with
bounded communication. Inf. Process. Lett. 67(4), 205–214 (1998)

[Gro10] Groth, J.: Short pairing-based non-interactive zero-knowledge argu-
ments. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp.
321–340. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-
17373-8 19

[HR10] Hoang, V.T., Rogaway, P.: On generalized feistel networks. In: Rabin, T.
(ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 613–630. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-14623-7 33

[IMSX15] Ishai, Y., Mahmoody, M., Sahai, A., Xiao, D.: On zero-knowledge
PCPs: Limitations, simplifications, and applications (2015). http://www.
cs.virginia.edu/∼mohammad/files/papers/ZKPCPs-Full.pdf

[Kil92] Kilian, J.: A note on efficient zero-knowledge proofs and arguments. In:
Proceedings of the 24th Annual ACM Symposium on Theory of Computing,
STOC ’92, pp. 723–732 (1992)

[LR88] Luby, M., Rackoff, C.: How to construct pseudorandom permutations from
pseudorandom functions. SIAM J. Comput. 17(2), 373–386 (1988)

[Mer89] Merkle, R.C.: One way hash functions and DES. In: Brassard, G. (ed.)
CRYPTO 1989. LNCS, vol. 435, pp. 428–446. Springer, New York (1990).
https://doi.org/10.1007/0-387-34805-0 40

[Mic00] Micali, S.: Computationally sound proofs. SIAM J. Comput. 30(4), 1253–
1298 (2000). Preliminary version appeared in FOCS ’94

[NR99] Naor, M., Reingold, O.: On the construction of pseudorandom permuta-
tions: Luby-Rackoff revisited. J. Cryptol. 12(1), 29–66 (1999)

[Ele14] Electric Coin Company. Zcash Cryptocurrency (2014). https://z.cash/
[Eth] Ethereum. ZK-Rollups. https://docs.ethhub.io/ethereum-roadmap/layer-

2-scaling/zk-rollups/

https://doi.org/10.1007/978-3-030-64378-2_3
https://doi.org/10.1007/978-3-030-64378-2_3
https://doi.org/10.1007/0-387-34805-0_39
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/978-3-642-38348-9_37
https://doi.org/10.1007/978-3-642-17373-8_19
https://doi.org/10.1007/978-3-642-17373-8_19
https://doi.org/10.1007/978-3-642-14623-7_33
http://www.cs.virginia.edu/~mohammad/files/papers/ZKPCPs-Full.pdf
http://www.cs.virginia.edu/~mohammad/files/papers/ZKPCPs-Full.pdf
https://doi.org/10.1007/0-387-34805-0_40
https://z.cash/
https://docs.ethhub.io/ethereum-roadmap/layer-2-scaling/zk-rollups/
https://docs.ethhub.io/ethereum-roadmap/layer-2-scaling/zk-rollups/

Sumcheck Arguments and Their
Applications

Jonathan Bootle1(B), Alessandro Chiesa2, and Katerina Sotiraki2

1 IBM Research – Zurich, Zurich, Switzerland
jbt@zurich.ibm.com

2 UC Berkeley, Berkeley, USA
{alexch,katesot}@berkeley.edu

Abstract. We introduce a class of interactive protocols, which we call
sumcheck arguments, that establishes a novel connection between the
sumcheck protocol (Lund et al. JACM 1992) and folding techniques for
Pedersen commitments (Bootle et al. EUROCRYPT 2016).

We define a class of sumcheck-friendly commitment schemes over mod-
ules that captures many examples of interest, and show that the sum-
check protocol applied to a polynomial associated with the commitment
scheme yields a succinct argument of knowledge for openings of the com-
mitment. Building on this, we additionally obtain succinct arguments for
the NP-complete language R1CS over certain rings.

Sumcheck arguments enable us to recover as a special case numer-
ous prior works in disparate cryptographic settings (discrete logarithms,
pairings, groups of unknown order, lattices), providing one framework to
understand them all. Further, we answer open questions raised in prior
works, such as obtaining a lattice-based succinct argument from the SIS
assumption for satisfiability problems over rings.

Keywords: Sumcheck protocol · Succinct arguments · Scalar-product
protocol

1 Introduction

Sumcheck Protocols. The sumcheck protocol is an interactive proof intro-
duced in [LFKN92] that has played a fundamental role in the theory of proba-
bilistic proofs in complexity theory (e.g., [BFL91,BFLS91,GKR08]) and, more
recently, in cryptography. The sumcheck protocol has been used widely in
a line of works on succinct arguments [CMT12,VSBW13,Wah+17,ZGKPP17,
WTSTW18,XZZPS19,Set20]. One of the main benefits of the sumcheck protocol
is that, in certain settings, the prover can be implemented in a linear number of
operations [Tha13] or as a streaming algorithm [CMT12]; this avoids operations
such as the Fast Fourier Transform (common in other succinct arguments) that

The full version of this paper is available at https://eprint.iacr.org/2021/333.

c© International Association for Cryptologic Research 2021
T. Malkin and C. Peikert (Eds.): CRYPTO 2021, LNCS 12825, pp. 742–773, 2021.
https://doi.org/10.1007/978-3-030-84242-0_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-84242-0_26&domain=pdf
https://eprint.iacr.org/2021/333
https://doi.org/10.1007/978-3-030-84242-0_26

Sumcheck Arguments and Their Applications 743

are costly in time and in memory. The sumcheck protocol also satisfies strong
soundness properties that facilitate arguing the security of the Fiat–Shamir trans-
formation in the plain model [CCHLRR18], which is notoriously hard to ana-
lyze for other interactive proofs. Moreover, variants of the sumcheck protocol
have spawned lines of research: the univariate sumcheck [BCRSVW19] was used
in numerous succinct arguments [BCGGRS19,ZXZS20,CHMMVW20,COS20,
CFFQR20,BFHVXZ20]; and the sumcheck protocol for tensor codes [Mei13]
was used to obtain probabilistic proofs with linear-size proofs [BCGRS17,RR20]
and linear-time provers [BCG20,BCL20].

Folding Techniques. Separately, a line of works starting with [BCCGP16]
constructs succinct arguments based on folding techniques for Pedersen com-
mitments in the discrete logarithm setting. Informally, to prove knowledge of a
long message opening a given Pedersen commitment, the prover engages with
the verifier in a reduction that halves the message length by folding the mes-
sage “around” a verifier challenge. This can be repeatedly applied until the
message length is small enough to send the message directly. Beyond commit-
ment openings, [BCCGP16] give protocols for scalar-product relations, which
lead to succinct arguments for NP languages such as arithmetic circuit satisfi-
ability. These succinct arguments can be realized via a linear number of group
scalar multiplications, or alternatively as streaming algorithms [BHRRS20].

Folding techniques, subsequently improved in [BBBPWM18], have been
deployed in cryptocurrencies (Monero [Mon] and PIVX [Piv]) and are widely
used thanks to popular open-source libraries [dalek18,Adj]. These practical appli-
cations have motivated careful analyses of concrete security [JT20], which facil-
itates setting security parameters in applications.

Folding techniques have been adapted to work in other cryptographic set-
tings, such as bilinear groups [LMR19], unknown-order groups [BFS20], and
lattices [BLNS20]. They have also been formulated in more abstract settings:
[BMMTV19] study sufficient properties of commitment schemes that enable fold-
ing techniques; and [AC20,ACF20,ACR20,BDFG20] study folding techniques
for general group homomorphisms.

Folding techniques for Pedersen (and related) commitments are arguably not
fully understood, despite the numerous works and applications mentioned above.
For example, they are typically used as non-interactive arguments after the Fiat–
Shamir transformation is applied to the (public-coin) interactive argument. Yet
the security of this non-interactive argument, even in the random oracle model,
has only been proven via a superpolynomial-time extractor [BMMTV19] or in
the algebraic group model [GT20]. Moreover, almost all succinct arguments are
obtained via some type of probabilistic proof (and there are settings where this
is inherent [RV09,CY20]) but no such probabilistic proof is evident in folding
techniques.

A Connection? The sumcheck protocol and folding techniques seem rather dif-
ferent protocols but they share several common features. Both protocols have a
prover that can be realized via a linear number of operations [Tha13,BCCGP16],
or alternatively as a streaming algorithm [CMT12,BHRRS20]; moreover, both

744 J. Bootle et al.

protocols satisfy similar notions of strong soundness [CCHLRR18,GT20], which
facilitate proving useful security properties. Are these similarities mere coinci-
dences?

1.1 Our Results

We introduce a class of interactive protocols, sumcheck arguments, that estab-
lishes a novel connection between the sumcheck protocol and folding techniques
for Pedersen commitments. This provides a single framework to understand
numerous prior works in disparate cryptographic settings (prime-order groups,
bilinear groups, unknown-order groups, lattices) and also enables us to answer
open questions raised in prior works. We elaborate on these contributions below,
and summarize the underlying technical ideas in Sect. 2.

(1) Sumcheck arguments. Recall that the sumcheck protocol is an interactive
proof for statements of the form

∑
ω∈H� p(ω) = τ for a given summation domain

H, �-variate polynomial p, and claimed sum τ . While typically stated for poly-
nomials over finite fields, the sumcheck protocol works for polynomials over any
module M over a ring R (given certain mild conditions). Let Σ[R,M,H, �, τ, C, p]
denote the sumcheck protocol for the statement

∑
ω∈H� p(ω) = τ when H ⊆ R,

τ ∈ M , and p ∈ M [X1, . . . , X�], and the verifier uses the challenge set C ⊆ R
to sample each round’s challenge. (We explain later on in Sect. 2.1 why the sum-
ncheck protocol over modules involves a given challenge set for the verifier.)

A sumcheck argument is, informally, a sumcheck protocol used to succinctly
prove knowledge of openings for certain commitments (you run the sumcheck
reduction followed by a cryptographic analogue of the consistency check). We
say that a commitment scheme CM is sumcheck-friendly if the statement “I
know m of length n such that CM.Commit (ck,m) = cm” can be rewritten as the
statement “I know m of length n such that

∑
ω∈{−1,1}log n fCM(pm(ω), pck(ω)) =

cm” where the message polynomial pm(X) is over an R-module M, the key
polynomial pck(X) is over an R-module K, and the combiner function fCM maps
M × K to an R-module C (and is such that fCM(pm(X), pck(X)) is a polynomial
over C). We observe that commitment schemes of interest are sumcheck-friendly,
including various forms of Pedersen commitments (we elaborate on this later).
Our main result is to construct a knowledge extractor for the sumcheck protocol
applied to such statements, provided CM is invertible (a certain property that
we discuss later on).

Theorem 1 (informal). Let CM be a sumcheck-friendly commitment scheme
that is invertible. Let cm be a commitment to a message m using a commitment
key ck. Then (a straightforward extension of)

Σ
[
R,M = C,H = {−1, 1}, � = log n, τ = cm, C, p = fCM(pm, pck)

]

is an interactive argument of knowledge for an opening to cm with respect to ck
with knowledge error O(log n

|C|), where the polynomial in the numerator depends
on CM. The round complexity is O(log n) and the communication complexity is

Sumcheck Arguments and Their Applications 745

O(log n) elements in C. Moreover, if fCM is a bilinear function, then the prover
and verifier complexity is dominated by O(n) operations in C.

The above informal statement omits many technical details, such as com-
mitment randomness and relaxed notions of commitment opening necessary to
express settings over lattices. Moreover, the informal statement fixes certain
choices (such as choosing the summation domain H = {−1, 1} and � = log n
variables).

As we demonstrate in the full version of this paper, well-known folding tech-
niques from prior works can be viewed, perhaps surprisingly, as special cases of
a sumcheck argument. We remark that while the usual security notion of the
sumcheck protocol is an unconditional soundness guarantee, the security notion
that we establish for a sumcheck argument is a knowledge guarantee, proved
from CM’s invertibility. In turn invertibility may hold unconditionally or under
certain hardness assumptions (we give examples of this in Sect. 2.3.2).1

(2) Succinct arguments for R1CS over rings. Building on sumcheck argu-
ments, we obtain zero-knowledge succinct arguments for satisfiability problems
defined over rings. This is in contrast to most prior succinct arguments, which
support satisfiability problems defined over prime-order fields (which are the
“scalar fields” associated to underlying cryptographic prime-order groups). This
extension is motivated by the fact that certain computations are more efficiently
expressed over certain rings (e.g., approximate arithmetic [CCKP19]), and par-
allels prior lines of work for secret-sharing schemes and multiparty computation
protocols [CFIK03,CDESX18,ACDEY19,Abs+20] for supporting computations
defined over rings.

We focus on the ring variant of the NP-complete problem known as rank-1
constraint satisfiability (R1CS), which is a widely used generalization of arith-
metic circuit satisfiability. We obtain a zero-knowledge succinct argument for
R1CS over any ring R• with suitable algebraic properties, assuming the hard-
ness of the bilinear relation assumption over a related ring, which is a natural
generalization of assumptions such as the DL assumption, the SIS assumption,
and others.

Definition 1 (informal). The R1CS problem asks: given a ring R•, coefficient
matrices A,B,C ∈ Rn×n

• each containing at most m = Ω(n) non-zero entries,
and an instance vector x over R•, is there a witness vector w over R• such that
z := (x,w) ∈ Rn

• and Az ◦ Bz = Cz? (Here “◦” denotes the entry-wise product
of vectors over R•.)

Theorem 2 (informal). Let R be a ring, M be an R-module, C ⊆ R a challenge
space, and I ⊆ R an ideal. If pairwise differences in C have suitable pseudoin-
verses in R• := R/I and the bilinear relation assumption holds over M , then
there is a zero-knowledge succinct argument of knowledge for the R1CS problem
over R•. For n × n coefficient matrices with at most m non-zero entries, the
1 Thus sumcheck arguments are distinct from direct algebraic generalizations of the

sumcheck protocol to rings [CCKP19].

746 J. Bootle et al.

argument has knowledge error O(log n
|C|), round complexity O(log n), communica-

tion complexity O(log n) elements of M and O(1) elements of R, and prover and
verifier complexity dominated by O(m) operations in R and O(n) operations in
M .

One immediate application of our result is to lattice cryptography. Prior work
used folding techniques to obtain (zero-knowledge) succinct arguments of knowl-
edge for lattice commitments [BLNS20], but left open the question of obtaining
succinct arguments for NP-complete problems relevant to lattices.2

Our Theorem 2 directly implies a solution to this open question. This may
be surprising because the knowledge extractor for a sumcheck argument over
lattices finds only a relaxed opening of a (sumcheck-friendly and invertible) com-
mitment; this relaxed extraction occurs in many other lattice-based arguments
of knowledge. This notwithstanding we still derive from it a knowledge extractor
for the R1CS problem.

Corollary 1 (informal). Let R := Z[X]/〈Xd+1〉 for d a power of 2. Let p and q
be primes with q sufficiently larger than p. Assuming hardness of the SIS problem
over R/qR, there is an argument of knowledge for R1CS over R• := R/pR with
knowledge-soundness error O(log n

d), round complexity O(log n), communication
complexity dominated by O(log n) elements of R/qR, and prover and verifier
complexity dominated by O(m) operations in R• and O(n) operations in R/qR.

Our new lattice-based argument system shows that one can succinctly prove
general relations over rings pertinent to lattice cryptography, despite the fact
that most lattice-based proofs of knowledge suffer from relaxed soundness prop-
erties. This allows users to prove statements about lattice-based encryption and
signature schemes directly over their native rings rather than having to convert
them into statements tractable for other proof systems, which often leads to
computational overheads in practical schemes [BCOS20].

Moreover, Corollary 1 contributes a new succinct argument that is plausibly
post-quantum, adding to a surprisingly short list of such candidates. (Prior con-
structions of post-quantum succinct arguments are from hash functions [CMS19,
CMSZ21] or lattice knowledge assumptions [BISW17,BISW18,GMNO18].) An
intriguing question left open by our work is whether the security reduction of
the construction in Corollary 1 can be carried out against an efficient quantum
adversary.

Finally, returning to Theorem 2, having a single construction of a zero-
knowledge succinct argument over general rings may simplify future practical
applications. Our theorem enables having a single abstract implementation that
can be debugged and audited once and for all, and can then be instantiated
over disparate algebraic settings depending on an application’s needs, by simply
specifying the desired ring.

2 This differs from using lattices to instantiate the collision-resistant hash function
in Kilian’s PCP-based protocol [Kil92], because this would not lead to a succinct
argument for computations expressed over relevant rings.

Sumcheck Arguments and Their Applications 747

(3) On instantiations. By instantiating the sumcheck-friendly commitment
CM in Theorem 1 we obtain succinct arguments of knowledge for different rela-
tions of interest, as we now explain.

As a simple example, the Pedersen commitment scheme can be formulated
in an abstract setting where messages and group generators are replaced by
elements of appropriate rings or modules. This generalized Pedersen commitment
scheme satisfies the conditions in Theorem 1, either unconditionally or under the
same assumptions that imply its binding properties. Our sumcheck argument for
the generalized Pedersen commitment scheme thus yields succinct protocols for
opening Pedersen commitments in different settings, such as prime-order groups,
bilinear groups, unknown-order groups, and lattices.

We also study instantiations that capture richer functionalities.

– Linear-function commitments: the commitment includes a commitment to the
scalar product of a public (query) message and a secret message. This draws
inspiration from [AC20] which considers linear-function commitments in the
prime-order group setting, bilinear group setting, and strong RSA setting.

– Scalar-product commitments: the commitment includes a commitment to the
scalar product of two secret parts of the message. This draws inspiration
from [BCCGP16,BBBPWM18,BMMTV19] which consider bilinear commit-
ment schemes for prime-order or bilinear groups. Proving knowledge of an
opening implies that the commitment was correctly computed, and therefore
in this case that a scalar-product relation is satisfied. These scalar-product
commitments in fact underlie our proof of Theorem 2 based on Theorem 1.

In Fig. 1 we provide a comparison between succinct arguments with comparable
efficiency in prior works, classified by type of relation and algebraic setting. The
table demonstrates that our sumcheck arguments recover all prior types of rela-
tions and all algebraic settings as special cases, and additionally contribute new
combinations that were not achieved before.

1.2 New Connections and New Opportunities

The novel connection between folding techniques and the sumcheck protocol,
captured by our sumcheck arguments, casts many aspects of prior works in a
new light. Below we provide several examples.

– [BCCGP16] describes folding techniques for splitting a long vector into more
than two pieces before folding, to allow trading argument size for round com-
plexity. This corresponds to running a sumcheck argument using polynomials
of fewer variables and higher individual degree.

– [BBBPWM18] improves the efficiency of folding techniques via a more com-
plicated use of verifier challenges. This corresponds to running a sumcheck
argument using a different evaluation domain, and where the sumcheck prover
sends polynomials expressed in a different monomial basis.

– [CHJKS20] gives weighted inner-product arguments to improve concrete effi-
ciency. This corresponds to a sumcheck argument for weighted-sums of poly-
nomial evaluations (see the full version of the paper for details).

748 J. Bootle et al.

Fig. 1. Comparison of prior works that use folding techniques to achieve succinct argu-
ments of knowledge, and also our sumcheck arguments. The rows from top to bottom
indicate increasingly more general types of commitment (and so a result in a row
directly implies a result in all rows above it). The columns indicate different crypto-
graphic settings in which the commitments are constructed (along with corresponding
sufficient cryptographic assumptions). Results spanning multiple columns indicate an
abstraction that simultaneously captures all those settings. We see that our work cap-
tures all prior settings and types of commitments, and also achieves functionalities and
settings that were left open by prior works.

– [PLS19] gives a zero-knowledge version of folding techniques that achieves
better concrete efficiency by using less prover randomness. This relates to
derandomizing a zero-knowledge sumcheck argument.

– [BMMTV19,BFS20] consider subprotocols for delegating expensive verifier
computation to the prover. This corresponds to delegating polynomial evalua-
tion, to help the verifier outsource evaluating the commitment key polynomial.
Sumcheck arguments neatly conceptualize the role of polynomials in folding
protocols and simplify the task of applying delegation protocols in other set-
tings (see discussed further in the full version).

– Like [BMMTV19,ACF20,BDFG20], sumcheck arguments capture optimiza-
tions of folding techniques that compress several target commitment values
into one (e.g., the optimization from [BCCGP16] to [BBBPWM18]) as sum-
check arguments applied to alternative commitment schemes.

We expect that other folding techniques such as [ACR20,Lee20] can also be
viewed as sumcheck arguments.

Looking ahead, the new perspective offered by sumcheck arguments, with the
sumcheck protocol at their core, makes it easier to explore new design options and
optimizations for succinct arguments, especially so for those that have already
been studied for the (information-theoretic) sumcheck protocol.

Existing analyses of the sumcheck protocol may also inspire analogous ones
for sumcheck arguments. For example, the sumcheck protocol can be made non-
interactive via the Fiat–Shamir transformation, where the verifier’s messages
are replaced by the outputs of a hash function. Jawale et al. [JKKZ20] show
that the result is a non-interactive argument provided the hash function is lossy
correlation-intractable (and construct such hash functions based on the LWE
assumption). This seems to provide a starting point for studying the security of
sumcheck arguments under the Fiat–Shamir transformation.

Sumcheck Arguments and Their Applications 749

1.3 Related Work

Folding Techniques. Figure 1 summarizes the main relationship between sum-
check arguments for sumcheck-friendly commitments and prior work that uses
folding techniques. Below we additionally discuss the prior works that have stud-
ied folding techniques for abstract commitment schemes and homomorphisms.

Bünz et al. [BMMTV19] present folding techniques for doubly-homomorphic
commitments over prime-order groups, which are both key-homomorphic and
message homomorphic. These can capture non-linear relations such as scalar-
product relations under computational assumptions.

Attema, Cramer, and Fehr [ACF20] present folding techniques for pre-images
of general group homomorphisms over prime-order groups. These were extended
from prime-order groups to Z-modules in [BDFG20], who also noted that a
Z-module homomorphism could be phrased as a Pedersen-like function. These
techniques give proofs for homomorphisms and linear relations, without using
computational assumptions.

Both general group homomorphisms and doubly-homomorphic commitment
schemes are special cases of sumcheck-friendly commitment schemes. Our work
also finds the same distinction between proofs and arguments: our sumcheck
argument for “linear” commitment schemes such as the generalized Pedersen
commitment scheme (and linear-function commitments) do not require compu-
tational assumptions, whereas our sumcheck argument for “quadratic” commit-
ment schemes require computational assumptions.

Reductions from NP-Complete Problems. Attema and Cramer [AC20] con-
struct zero-knowledge succinct arguments for NP-complete relations by (i) using
secret-sharing techniques to interactively reduce NP statements to linear rela-
tions (under computational assumptions), and then (ii) relying on succinct argu-
ments for linear relations. This “linearization” requires the prover to perform
polynomial arithmetic on high-degree polynomials, and hence an efficient real-
ization would likely rely on FFTs. FFTs require linear space-complexity for the
prover, and prevent the prover from being implemented in logarithmic space as
in the sumcheck protocol [CMT12] or other succinct arguments based on folding
protocols [BHRRS20]. In contrast, we reduce NP statements to bilinear relations
such as scalar-product relations, and then rely on succinct arguments for scalar
products; this reduction can be performed via a linear number of cryptographic
operations, and without relying on FFTs.

1.4 Concurrent Work

Attema, Cramer, and Kohl [ACK21] construct zero-knowledge succinct argu-
ments for NP based on the SIS assumption, using folding techniques for lattices.
As with [AC20], their construction uses secret-sharing techniques which are likely
to rely on FFTs and lead to a prover with large space complexity. Moreover, the
techniques in [ACK21] are for lattices, while our techniques based on sumcheck

750 J. Bootle et al.

arguments provide a general framework in which lattices are a special case. Addi-
tionally, [ACK21] give a detailed analysis of the knowledge error of their lattice-
based folding techniques, which was not present in [BLNS20], and establish that
the knowledge error can be reduced using parallel repetition.

Albrecht and Lai [AL21] study a variant of the folding techniques in
[BLNS20], instantiated in a different choice of ring which offers exact proofs
(rather than proofs with relaxed knowledge extraction) and various efficiency
advantages. Like [ACK21], they also analyze the knowledge error of their fold-
ing techniques, and prove results relating relaxed extraction to ring structure.
We are optimistic that their ideas can be incorporated into our sumcheck-based
framework.

Ganesh, Nitulescu, and Soria-Vazquez [GNS21] model NP relations over rings
and give a generic construction of designated-verifier zero-knowledge SNARKs
using techniques related to prior lattice-based SNARK constructions [BISW17,
BISW18,GMNO18].

Block et al. [BHRRS21] study a variant of the commitment scheme of [BFS20]
in groups of unknown order that is compatible with a streaming formalism, and
give space-efficient arguments for NP languages. We are optimistic that their
ideas can be incorporated into our sumcheck-based framework.

2 Techniques

We summarize the main ideas behind our results. The first few subsections are
dedicated to explaining sumcheck arguments (Theorem 1) in several steps of
progressive generality. In Sect. 2.1 we describe the sumcheck protocol for poly-
nomials over modules. Then in Sect. 2.2 we present a succinct zero-knowledge
argument for Pedersen commitments based on the sumcheck protocol. In Sect. 2.3
we show how to lift this protocol to any “sumcheck-friendly” commitment, but
still in the setting of prime-order groups. Finally in Sect. 2.4 we explain the main
considerations in generalizing further to commitments over rings, and in Sect. 2.5
we give an example of how commitments can be formulated in this framework.
After that we turn our attention to our other contributions. In Sect. 2.6 we dis-
cuss a generic scalar-product protocol built from sumcheck arguments, and then
in Sect. 2.7 we explain how it enables us to obtain zero-knowledge succinct argu-
ments for R1CS over rings (Theorem 2 and in particular Corollary 1). In the full
version, we also discuss how we obtain polynomial commitment schemes over
rings from sumcheck arguments.

2.1 Sumcheck Protocol Over Modules

The sumcheck protocol [LFKN92] directly extends to work with polynomials
over modules. The prover PSC and verifier VSC receive a sumcheck instance xSC =
(R,M,H, �, τ, C), where R is a ring, M is a module over R, H is a subset of R,
� is a number of variables, τ ∈ M is a claimed sum, and C ⊆ R is a sampling
set (more about this below). The prover PSC additionally receives a polynomial

Sumcheck Arguments and Their Applications 751

p ∈ M [X1, . . . , X�] such that
∑

ω∈H� p(ω) = τ . The protocol has � rounds and
works as follows.

1. For i = 1, . . . , �:
(a) PSC sends to VSC the polynomial qi(X) :=

∑
ωi+1,...,ω�∈H p(r1, . . . ,

ri−1,X, ωi+1, . . . , ω�) ∈ M [X];
(b) VSC sends to PSC a random challenge ri ← C.

2. VSC checks that
∑

ω1∈H q1(ω1) = τ and, for i ∈ {2, . . . , �}, that∑
ωi∈H qi(ωi) = qi−1(ri−1).

3. If the checks pass then VSC sets v := q�(r�) ∈ M and outputs the tuple
((r1, . . . , r�), v).

The security guarantee of the sumcheck protocol, which requires C to be a sam-
pling set, is given below.

Definition 2. We say that C ⊆ R is a sampling set for the R-module M if
for every distinct c1, c2 ∈ C the map that sends m ∈ M to (c1 − c2) · m ∈ M is
injective.

Lemma 1. Let xSC = (R,M,H, �, τ, C) be a sumcheck instance and a polynomial
p ∈ M [X1, . . . , X�] of total degree d. If C is a sampling set for M then the
following holds.

– Completeness. If
∑

ω∈H� p(ω) = τ then Prr←C� [〈PSC(xSC, p), VSC(xSC; r)〉 =
(r, p(r))] = 1.

– Soundness. If
∑

ω∈H� p(ω) �= τ then, for every P̃SC,
Prr←C� [〈P̃SC, VSC(xSC; r)〉 = (r, p(r))] < �d

|C| .

Above 〈A, VSC(xSC; r)〉 is the output of VSC(xSC) when interacting with algorithm
A using randomness r.

The lemma directly follows from a generalization of the Schwartz–Zippel
lemma over modules.

Lemma 2. Let R be a ring, M an R-module, and f ∈ M [X1, . . . , X�] a non-zero
polynomial of total degree D. If C is a sampling set for M then Prr←C� [f(r) =
0] ≤ D

|C| .

The proof of Lemma 2 follows the same approach as the usual inductive
proof of the standard Schwartz–Zippel lemma. The properties of C are used to
establish that a polynomial f ∈ M [X] of degree D has at most D roots in C,
which in turn is used in the base case and in the inductive step.

The sumcheck protocol in the special case when M = R has been used before,
e.g., in [CCKP19].

752 J. Bootle et al.

2.2 Sumcheck Argument for Pedersen Commitments

We describe a cryptographic protocol for proving knowledge of an opening of a
Pedersen commitment, whose main subroutine is the sumcheck protocol. We refer
to such a protocol as a sumcheck argument. Note that for now we ignore the goal
of zero knowledge, and instead focus on achieving communication complexity
that is much smaller than (indeed, logarithmic in) the message whose knowledge
is being proved.

Definition 3. We index the entries of a vector v of length n = 2� via
binary strings (i1, . . . , i�) ∈ {0, 1}�, and define the corresponding polynomial
pv(X1, . . . , X�) :=

∑
i1,...,i�∈{0,1} vi1,...,i�

Xi1
1 · · · Xi�

� .

Protocol 1: sumcheck argument for Pedersen commitments

For n = 2�, the prover and verifier receive as input a commitment key
G ∈ G

n and commitment C ∈ G. The prover also receives as input an
opening a ∈ F

n such that C = 〈a,G〉.
The prover and verifier engage in a sumcheck protocol for the instance

xSC := (R = F, M = G, H = {−1, 1}, � = log n, τ = 2�C, C = F)

where the prover uses the polynomial p(X) := pa(X) ·pG(X). After the end
of the sumcheck protocol, the prover learns r ∈ F

� and the verifier learns
(r, v) ∈ F

� × G. Then the prover computes and sends pa(r) ∈ F to the
verifier, and the verifier computes pG(r) ∈ G and checks that pa(r) ·pG(r) =
v.

We begin by explaining why Protocol 1 is mathematically well-defined. The
“multiplication” operation implicit in the expression pa(X) · pG(X), which maps
F[X1, . . . , X�] × G[X1, . . . , X�] → G[X1, . . . , X�], is a natural extension of the
scalar multiplication operation a·G which maps F×G → G. For example, consider
the polynomials p1(X) = a + a′ · X ∈ F[X] and p2(X) = G+ X ·G′ ∈ G[X], and
let r ∈ F. The product of p1(r) and p2(r) can be written as follows:

p1(r) · p2(r) = (a + a′r) · (G + r · G′) = a · (G + r · G′) + a′r · (G + r · G′)

= a · G + ar · G′ + a′r · G + a′r2 · G′

= a · G + r · (a · G′ + a′ · G) + r2 · (a′ · G′) ,

where the second and third equalities follow from the bilinear properties of scalar
multiplication.3 This holds for any r ∈ F, and so it makes sense to define the
“scalar multiplication” of p1(X) and p2(X):

p1(X) ·p2(X) = (a+a′X) · (G+X ·G′) := a ·G+X · (a ·G′ +a′ ·G)+X2 · (a′ ·G′) .

3 For any a, a′ ∈ F and G,G′ ∈ G we have (a + a′) ·G = a ·G+ a′ ·G and a · (G+G′) =
a · G + a · G′.

Sumcheck Arguments and Their Applications 753

The polynomial pa(X) · pG(X), whose coefficients lie in G, is defined this way.
Completeness of Protocol 1 follows from the fact that

∑
ω∈{−1,1}n pa(ω) ·

pG(ω) = 2�〈a,G〉. Indeed, each contribution to
∑

ω∈{−1,1}� pa(ω) · pG(ω) corre-
sponds to the monomials of pa(X) · pG(X) of the form X2i1

1 · · · X2i�

� . The coeffi-
cient of X2i1

1 · · · X2i�

� in pa(X) · pG(X) arises from a multiplication of the mono-
mials in the terms ai1,...,i�

Xi1
1 · · · Xi�

� and Gi1,...,i�
Xi1

1 · · · Xi�

� , which multiply to
give ai1,...,i�

· Gi1,...,i�
· X2i1

1 · · · X2i�

� . Thus,
∑

ω∈{−1,1}� pa(ω) · pG(ω) = 2�〈a,G〉.
The security guarantee of Protocol 1 is different from that of the sumcheck

protocol. The sumcheck protocol has a soundness guarantee: if the polynomial p
does not have the claimed sum τ then the verifier accepts with small probability.
In contrast, Protocol 1 has a knowledge soundness guarantee: there exists an
extractor that, given a suitable collection of accepting transcripts for a given
commitment key G and commitment C, efficiently finds an opening a such that
C = 〈a,G〉.

This difference makes sense: any given Pedersen commitment C can always
be expressed as a scalar product of some opening a and the commitment key
generators G; in fact, there are many different possible openings a for which this
is true! Therefore, soundness is not a meaningful notion for Protocol 1.

The security guarantee is summarized by the following lemma, whose proof
we sketch in Sect. 2.2.1.

Lemma 3 (informal). Protocol 1 satisfies the following for every key G ∈ G
n

and commitment C ∈ G.

– Completeness. For every a ∈ F
n such that C = 〈a,G〉,

Pr[〈P(G,C, a),V(G,C)〉 = 1] = 1.
– Knowledge soundness. Given a suitable tree of accepting transcripts for
V(G,C), one can efficiently extract an opening a ∈ F

n such that C = 〈a,G〉.
Perhaps surprisingly, Protocol 1 is equivalent to the “split-and-fold” knowl-

edge protocol for Pedersen commitments introduced in [BCCGP16] (we describe
this equivalence in the full version of the paper). Moreover, knowledge soundness
can be established without relying on any computational assumptions, a fact that
was noted for the “split-and-fold” knowledge protocol in [ACF20,BDFG20].

2.2.1 Proof Sketch of Lemma 3
We discuss knowledge soundness. The extractor takes as input 3� accepting tran-
scripts arranged in a 3-ary tree of depth �, with each path from the root to the leaf
identified by a choice of verifier randomness r1, . . . , r� ∈ F. For i ∈ [�], the node at
layer i−1 corresponding to path r1, . . . , ri−1 ∈ F is labeled with the message sent
by the prover given challenges r1, . . . , ri−1 and has three children nodes each cor-
responding to a distinct challenge r

(j)
i ∈ F. For i ∈ [�], a prover message for the

layer i−1 is a quadratic polynomial qi[r1, . . . , ri−1] ∈ G[X] sent by the prover in
the sumcheck protocol given challenges r1, . . . , ri−1; and a prover message for the
layer � is an opening w[r1, . . . , r�] ∈ F sent by the prover after the sumcheck pro-
tocol. Since transcripts are accepting, we know that:

∑
ω1∈{−1,1} q1(ω1) = 2�C;

754 J. Bootle et al.

for i ∈ {2, . . . , �},
∑

ω∈{−1,1} qi[r1, . . . , ri−1](ω) = qi−1[r1, . . . , ri−2](ri−1); and
w[r1, . . . , r�] · pG(r1, . . . , r�) = q�[r1, . . . , r�−1](r�).

The extractor works inductively, processing each layer of the tree starting
from the �-th layer and moving upwards towards the root. For i = �, . . . , 1 and
for every path (r1, . . . , ri−1) ∈ F

i−1 in the transcript tree with children {r
(j)
i }j∈[3],

the extractor works as follows.

1. Let G[r1, . . . , ri−1] ∈ G
n/2i−1

be the coefficients of pG(r1, . . . , ri−1,Xi, . . . , X�),
and let G0[r1, . . . , ri−1] and G1[r1, . . . , ri−1] be the coefficients for monomials
without Xi and with Xi respectively. For j ∈ [3], let G′[r1, . . . , ri−1, r

(j)
i] :=

G[r1, . . . , ri−1] + r
(j)
i · G1[r1, . . . , ri−1] ∈ G

n/2i

be the coefficients of
pG(r1, . . . , ri−1, r

(j)
i ,Xi+1, . . . , X�).

2. We inductively know, for each j ∈ [3], an opening w[r1, . . . , ri−1, r
(j)
i] ∈

F
n/2i

to the commitment qi[r1, . . . , ri−1](r
(j)
i) ∈ G with respect to the key

G′[r1, . . . , ri−1, r
(j)
i]:

〈w[r1, . . . , ri−1, r
(1)
i],G′[r1, . . . , ri−1, r

(1)
i]〉 = qi[r1, . . . , ri−1](r

(1)
i) ,

〈w[r1, . . . , ri−1, r
(2)
i],G′[r1, . . . , ri−1, r

(2)
i]〉 = qi[r1, . . . , ri−1](r

(2)
i) ,

〈w[r1, . . . , ri−1, r
(3)
i],G′[r1, . . . , ri−1, r

(3)
i]〉 = qi[r1, . . . , ri−1](r

(3)
i) .

3. Since the polynomial qi[r1, . . . , ri−1] is quadratic, we can use linear alge-
bra on the above three equations to compute a quadratic polynomial
π[r1, . . . , ri−1] ∈ F

n/2i−1
[X] such that 〈π[r1, . . . , ri−1](X),G[r1, . . . , ri−1]〉 =

qi[r1, . . . , ri−1](X). Then we can obtain an opening w[r1, . . . , ri−1] ∈ F
n/2i−1

such that 〈w[r1, . . . , ri−1],G[r1, . . . , ri−1]〉 =
∑

ω∈{−1,1}qi[r1, . . . , ri−1](ω).
Observe that:
– If i > 1, the verifier’s checks imply that

∑
ω∈{−1,1} qi[r1, . . . , ri−1](ω) =

qi−1[r1, . . . , ri−2](ri−1), and so w[r1, . . . , ri−1] is an opening to the commit-
ment qi−1[r1, . . . , ri−2](ri−1) under the key G[r1, . . . , ri−1].

– If i = 1 (this is the last iteration) then the verifier’s checks imply that∑
ω1∈{−1,1} q1(ω1) = 2�C, and so w is an opening to the commitment 2�C

under the key G. Dividing by 2� yields the desired opening.

A key ingredient of the knowledge extractor is the ability to double the
length of known openings by manipulating multiple transcripts for a given recur-
sion round. The Pedersen commitment, being a homomorphism into G, allows
this unconditionally. Jumping ahead, this property of a commitment scheme,
which we call invertibility, may require computational assumptions, and is a
central component of our sumcheck argument for the general setting of sumcheck-
friendly commitments (see Sects. 2.3 and 2.4).

2.3 Sumcheck Argument for Sumcheck-Friendly Commitments

We explain how to formulate a sumcheck argument for proving knowledge of an
opening for any commitment scheme that satisfies certain functionality and secu-
rity properties. We proceed in two steps: in Sect. 2.3.1 we focus on the special

Sumcheck Arguments and Their Applications 755

case of scalar product protocols under Pedersen commitments to gain intuition,
and then in Sect. 2.3.2 we extend this to apply to a sumcheck-friendly commit-
ment.

2.3.1 Scalar-Products Under Pedersen Commitments
In Sect. 2.2 we have seen how to construct a sumcheck argument for Pedersen
commitments. We now write a sumcheck argument that proves knowledge of
openings of two Pedersen commitments such that the scalar product of the two
openings is a publicly-known value. That is, we obtain a knowledge protocol
for the commitment scheme CM that, given a commitment key (G,H), maps a
message (a, b) to

CM.Commit
(
(G,H), (a, b)

)
:= (〈a,G〉, 〈b,H〉, 〈a, b〉) .

Protocol 2: sumcheck argument for scalar-products under Peder-
sen commitments

For n = 2�, the prover and verifier receive as input commitment keys
G,H ∈ G

n, commitments Ca,Cb ∈ G and target value t ∈ F. The prover
also receives as input openings a, b ∈ F

n such that Ca = 〈a,G〉, Cb = 〈b,H〉
and t = 〈a, b〉. (I.e., such that CM.Commit

(
(G,H), (a, b)

)
= (Ca,Cb, t).)

The prover and verifier engage in a sumcheck protocol for the instance
xSC := (R = F,M = G × G × F,H = {−1, 1}, � = log n, τ =
(2�Ca, 2�Cb, 2�t), C = F) where the prover uses the polynomial p(X) :=(

pa(X) ·pG(X), pb(X) ·pH(X), pa(X) ·pb(X)
)

∈ (G×G×F)[X1, . . . , X�].

After the end of the sumcheck protocol, the prover learns r ∈ F
� and the

verifier learns (r, v) ∈ F
�×(G×G×F). Then the prover computes and sends

pa(r), pb(r) ∈ F to the verifier, and the verifier computes pG(r), pH(r) ∈ G

and checks that (pa(r) · pG(r), pb(r) · pH(r), pa(r) · pb(r)) = v.

Similarly to Sect. 2.2, the first and second components of the polynomial p(X)
are well-defined because of the bilinearity of scalar multiplication from F×G to
G; moreover, the third component of p(X) is well-defined because it involves the
product of two polynomials over F.

Protocol 2 is complete because

∑

ω∈{−1,1}�

pa(ω)pG(ω) = 2
�〈a, G〉 ,

∑

ω∈{−1,1}�

pb(ω)pH (ω) = 2
�〈b, H〉 ,

∑

ω∈{−1,1}�

pa(ω)pb(ω) = 2
�〈a, b〉 .

Moreover, one can show that Protocol 2 satisfies the following knowledge-
soundness property: there exists an extractor that, given a suitable collec-
tion of accepting transcripts for a given commitment key (G,H) and com-
mitment C = (Ca,Cb, t), efficiently finds an opening (a, b) such that C =
CM.Commit((G,H), (a, b)), assuming that the discrete logarithm problem is hard

756 J. Bootle et al.

over G. Proving knowledge soundness follows a similar approach to that for Pro-
tocol 1 sketched in Sect. 2.2.1. The main difference is that “inverting” from a level
to the previous one involves not only solving linear equations to find openings of
commitments corresponding to the first two components of the polynomial p(X),
but also arguing that the scalar-product of these openings equals the third com-
ponent of the polynomial p(X). This step relies on the hardness of the discrete
logarithm problem over G (which one may have assumed anyway to make the
commitment binding). This is different from Protocol 1, where no assumptions
were necessary to establish knowledge soundness, and intuitively is because the
commitment scheme involves a quadratic, rather than linear, computation on
the message.

2.3.2 Extending to Any Sumcheck-Friendly Commitment
The commitments used in Protocols 1 and 2 are examples of a sumcheck-friendly
commitment scheme. Below we give an informal definition (which omits techni-
calities such as how commitment randomness is handled).

Definition 4 (informal). Let F be a prime-order field and let M,K,C be F-
linear spaces. A commitment scheme CM is sumcheck-friendly if there exists
an efficient function fCM : M×K → C such that for every commitment key ck and
message m it holds that CM.Commit (ck,m) =

∑
ω∈H� fCM(pm(ω), pck(ω)) where:

(i) H ⊆ F is a domain and � ∈ N a number of variables; (ii) pm(X) ∈ M[X] can
be efficiently obtained from the message m (and, conversely, m can be efficiently
obtained from pm(X)); (iii) pck(X) ∈ K[X] can be efficiently obtained from the
commitment key ck; (iv) fCM(pm(X), pck(X)) ∈ C[X] is a polynomial.

We can obtain an opening protocol for CM via a sumcheck argument.

Protocol 3: sumcheck argument for sumcheck-friendly commit-
ments

For n = 2�, the prover and verifier receive as input commitment key ck and
commitment cm. The prover also receives as input an opening m such that
cm = CM.Commit (ck,m).

The prover and verifier engage in a sumcheck protocol for the instance

xSC := (R = F,M = C,H, �, τ = cm, C = F)

where the prover uses the polynomial pm,ck(X) := fCM(pm(X), pck(X)). At
the end of the sumcheck protocol, the prover learns r ∈ F

� and the verifier
learns (r, v) ∈ F

�×C. Then the prover computes and sends pm(r) to the veri-
fier, and the verifier computes pck(r) and checks that fCM(pm(r), pck(r)) = v.

The above opening protocol for the sumcheck-friendly commitment scheme
CM has perfect completeness, and also has knowledge soundness if CM is invert-
ible (a property that we discuss shortly).

Sumcheck Arguments and Their Applications 757

Theorem 3 (informal). Let CM be a sumcheck-friendly commitment scheme.
If CM is invertible then Protocol 3 is an opening protocol for CM: there exists an
extractor that given a key ck, commitment cm, and a suitable tree of accepting
transcripts for (ck, cm), finds an opening m such that cm = CM.Commit (ck,m).

Completeness. The sumcheck-friendly property tells us that cm =∑
ω∈H� fCM(pm(ω), pck(ω)), so the completeness of Protocol 3 follows from the

completeness of the sumcheck protocol.

Knowledge Soundness. Since m can be efficiently obtained from pm(X), it
suffices for the extractor to recover, from the tree of transcripts, a polynomial
pm(X) such that cm =

∑
ω∈H� fCM(pm(ω), pck(ω)).

The proof strategy is similar to the one described in Sect. 2.2.1: the extractor
proceeds layer by layer, starting from the leaf layer of the tree of transcripts
and continuing to the root; for each node in a particular layer, the extractor
computes a polynomial obtained from the polynomials associated to the node’s
children. The desired polynomial pm(X) is the polynomial associated to the root
of the tree.

The invertibility property facilitates progress from children to parents, and
states that given enough openings for a commitment of a layer one can find an
opening of a commitment of the previous layer.

Definition 5 (informal). CM is K-invertible if there exists an efficient algo-
rithm I satisfying the following. Suppose that I receives i ∈ [�], challenge vector
(r1, . . . , ri−1) ∈ F

i−1, distinct challenges r
(1)
i , . . . , r

(K)
i ∈ F, opening polynomials

p1, . . . , pK ∈ M[Xi+1, . . . , X�], and commitment polynomial q(X) ∈ C[X] such
that

∀ j ∈ [K] , q(r
(j)
i) =

∑

ωi+1,...,ω�∈H

fCM

(
pj(ωi+1, . . . , ω�), pck(r1, . . . , ri−1, r

(j)
i , ωi+1, . . . , ω�)

)
.

(1)

Then I outputs an opening polynomial p ∈ M[Xi, . . . , X�] such that
∑

ωi∈H

q(ωi) =
∑

ωi,...,ω�∈H

fCM

(
p(ωi, . . . , ω�), pck(r1, . . . , ri−1, ωi, . . . , ω�)

)
. (2)

The above definition omits technicalities such as the fact that the inputs
to the inverter should be restricted to be efficiently generated by an adversary
(given the commitment key ck) and the fact that input and output opening
polynomials should be restricted to be “admissible” (partial evaluations of pm
for some m).

The extractor receives a K-ary tree of accepting transcripts for (ck, cm). In
more detail, for every i ∈ [�] and (r1, . . . , ri−1) ∈ F

i−1, qi[r1, . . . , ri−1] ∈ C[X]
is the polynomial corresponding to the path (r1, . . . , ri−1) in the transcript tree
(the prover’s polynomial in the i-th round of the sumcheck protocol for these
challenges); moreover, for every (r1, . . . , r�) ∈ F

�, w[r1, . . . , r�] ∈ C is the opening

758 J. Bootle et al.

corresponding to the path (r1, . . . , r�) in the transcript tree (sent by the prover
after the sumcheck protocol for these challenges). Every transcript is accepting,
so we know that for every (r1, . . . , r�) ∈ F

� it holds that

∑

ω1∈H

q1(ω1) = cm ,

⎧
⎨

⎩
∑

ω∈H

qi[r1, . . . , ri−1](ω) = qi−1[r1, . . . , ri−2](ri−1)

⎫
⎬

⎭
i∈{2,...,�}

,

and fCM(w[r1, . . . , r�], pck(r1, . . . , r�), 1) = q�(r�) .

The extractor iterates over the whole tree, proceeding with i =
�, . . . , 1. In the iteration for a path (r1, . . . , ri−1) ∈ Ci−1 with children
{r

(j)
i }j∈[K], the extractor uses the inverter I to transform polynomials

{p[r1, . . . , ri−1, r
(j)
i]}j∈[K] in M[Xi+1, . . . , X�] that satisfy Eq. (1) into a new

polynomial p[r1, . . . , ri−1] in M[Xi, . . . , X�] that satisfies Eq. (2). The initial
polynomials {p[r1, . . . , r�]}(r1,...,r�)∈C� are the constant polynomials correspond-
ing to the opening values {w[r1, . . . , r�]}(r1,...,r�)∈C� . The fact that transcripts
are accepting ensures that the initial polynomials satisfy the required condition,
and that each produced polynomial satisfies the invertibility condition for the
prior layer.

After all these iterations the extractor has found a polynomial p in
M[X1, . . . , X�] such that

∑
ω1∈H q1(ω1) =

∑
ω∈H� fCM(p(ω), pck(ω)); again by

the accepting condition we know that
∑

ω1∈H q1(ω1) = cm so we deduce that
cm =

∑
ω∈H� fCM(p(ω), pck(ω)), and the desired polynomial is p.

Whence Invertibility? Invertibility is incomparable to the commitment’s bind-
ing property. For example, the Pedersen commitment scheme is unconditionally
invertible (see Sect. 2.2.1), whereas invertibility for the scalar-product commit-
ment scheme in Protocol 2 relies on the hardness of the discrete logarithm prob-
lem. In Sect. 2.5 we elaborate on how to establish invertibility for different choices
of commitment schemes.

Examples. Protocol 3 captures sumcheck arguments for several commitment
schemes.

– The Pedersen commitment scheme (used in Protocol 1) is sumcheck-friendly
because, for the function fCM(a,G) := 2−�a · G, for every commitment
key G ∈ G

n and message a ∈ F
n it holds that CM.Commit(G, a) =∑

ω∈H� fCM(pa(ω), pG(ω)), where H := {−1, 1}, � := log n, and pa(X), pG(X)
are the multilinear polynomials induced by a,G respectively. (See Definition
3.)

– The scalar-product commitment scheme (used in Protocol 2) is sumcheck-
friendly because, for the function fCM((a, b), (G,H)) := 2−�(a ·G, b ·H, a · b), for
every commitment key (G,H) ∈ G

n×G
n and message (a, b) ∈ F

n×F
n it holds

that CM.Commit((G,H), (a, b)) =
∑

ω∈H� fCM((pa(ω), pb(ω)), (pG(ω), pH(ω))),
where H := {−1, 1}, � := log n, and pa(X), pb(X), pG(X), pH0

(X) are the
multilinear polynomials induced by a, b,G,H respectively. (See Definition 3.)

Sumcheck Arguments and Their Applications 759

More generally, all inner-product commitments in [BMMTV19] are sumcheck-
friendly; this includes pairing-based commitment schemes appearing in works
such as [LMR19]. Below we describe inner-product commitments via the notion
of sum-bilinear commitments, which is easier to work with in our setting.

Definition 6. A commitment scheme CM is sum-bilinear over a finite field F

if the key, message, and commitment spaces are F-linear spaces and the following
properties hold for all commitment keys ckL, ckR ∈ K

n, and messages mL,mR ∈
M

n:

CM.Commit (ckL+ ckR,mL+mR) = CM.Commit (ckL,mL) + CM.Commit (ckR,mL)

+ CM.Commit (ckL,mR) + CM.Commit (ckR,mR) and

CM.Commit (ckL‖ckR,mL‖mR) = CM.Commit (ckL,mL) + CM.Commit (ckR,mR) .

Claim (informal). If CM is sum-bilinear then CM is sumcheck-friendly.

Proof sketch. The first property allows us to “lift” the commitment function to
a polynomial. For the function fCM(a,G) = 2−�CM.Commit(G; a), it holds that
for every message a ∈ M

n and commitment key G ∈ K
n

fCM(pa(X), pG(X)) = 2−�CM.Commit
(
pG(X), pa(X)

)

= 2−�
∑

i,j∈{0,1}�

CM.Commit
(
Gj , ai

)
· Xi1+j1

1 · · · Xi�+j�

�

where � := log n, and pa(X), pG(X) are the multilinear polynomials
induced by a,G via Definition 3. The second property implies that∑

ω∈H� fCM(pa(ω), pG(ω)) = CM.Commit (ck,m) for H = {−1, 1}. ��

2.4 Extending Sumcheck Arguments to Modules

We have so far discussed sumcheck arguments for sumcheck-friendly commit-
ment schemes involving a prime-order group and its scalar field. Yet sumcheck
arguments can be formulated more generally to capture commitments in other
settings, such as groups of unknown order [BFS20] and lattices [BLNS20]. We
explain the changes for this generalization, and how they affect completeness
and knowledge soundness.

Modules, Norms, Slackness. To motivate the considerations that arise, we
find it helpful to first recall the Pedersen commitment scheme in other crypto-
graphic settings (ignoring for now randomness for hiding).

– Pedersen over groups of unknown order. Let G be a group of unknown
order and let q, p > 2 be primes that satisfy certain conditions (determined
by the type of instantiation of G). A Pedersen commitment is computed
as CM.Commit(G, a) = 〈a,G〉 ∈ G where the commitment key G equals
(1 · G, q · G, . . . , qn−1 · G) for a random group element G ∈ G and the mes-
sage a is a vector in

(
(−p−1

2 , p−1
2) ∩ Z

)n
.

760 J. Bootle et al.

– Pedersen over lattices. Let R be a normed ring and let BSIS be a norm bound of
“short” ring elements; a popular choice is R = Zq[X]/〈Xd + 1〉 and short ring
elements in R(BSIS), i.e. elements of R with norm at most BSIS, for a suitable
BSIS. A Pedersen commitment is computed as CM.Commit(G, a) = 〈a,G〉 where
G is a matrix of random ring elements and a is a vector of short ring elements.

These examples suggest that we need to consider algebraic structures that are
not necessarily rings but whose scalars are over a ring, and so we rely on the
notion of modules over a ring. Moreover, we need to take into account the norms
of openings. Finally, we will only be able to extract a “relaxed” opening for a
given commitment, which differs from a regular opening in two ways: (i) the
opening might have larger norm than an honestly committed value; (ii) the
opening might not satisfy the commitment equation but only a related equa-
tion parametrized by a slackness c, which we model via an opening algorithm
CM.Open that additionally takes c as input. ‘This is similar to what happens for
Schnorr protocols in these settings, as we explain in Sect. 2.5.

Extending the Sumcheck-Friendly Property. We extend the definition of
a sumcheck-friendly commitment scheme (Definition 4) as follows: (i) the spaces
M,K,C are modules over the same ring R; (ii) the summation domain is a
subset H of R; (iii) a message polynomial pm(X) is over the module M; (iv) a
key polynomial pck(X) is over the module K; (v) the combiner function fCM maps
M × K (and a slackness factor) to the module C; (vi) the summation condition
now involves an efficient predicate φsc and is as follows:

CM.Commit (ck,m) =
∑

ω∈H�fCM(pm(ω), pck(ω), 1) and for every slackness c

CM.Open (ck,m, cm, c) = 1 ⇔ φsc

(
cm,

∑
ω∈H�fCM(pm(ω), pck(ω), c), c

)
= 1 .

(Thus Definition 4 is the special case where M,K,C are F-linear, R = F, φsc

checks equality of cm and the sum, and there are no slackness factors.)

Extending Sumcheck Arguments. In the sumcheck argument for a commit-
ment scheme that is sumcheck-friendly according to the extended definition, we
must additionally ensure that: (i) we use a challenge set C ⊆ R for the sumcheck
protocol that satisfies certain properties (discussed further below) that facilitate
proving knowledge soundness; (ii) we use norm bounds for commitment open-
ings, so the underlying ring R and the module M must be equipped with a norm.
With these in mind, we now rewrite Protocol 3 for the more general setting
(differences in blue), which will allow us to capture the different cryptographic
settings.

Protocol 4: sumcheck argument for sumcheck-friendly commit-
ments (over modules)

For n = 2�, the prover and verifier receive as input commitment key ck and
commitment cm. The prover also receives as input an opening m such that
‖pm(X)‖ ≤ BC and cm = CM.Commit (ck,m).

Sumcheck Arguments and Their Applications 761

The prover and verifier engage in a sumcheck protocol for the instance

xSC := (R,M = C,H, �, τ = cm, C)

where the prover uses the polynomial pm,ck(X) := fCM(pm(X), pck(X), 1). At
the end of the sumcheck protocol, the prover learns r ∈ R� and the verifier
learns (r, v) ∈ R� ×C. Then the prover computes and sends w := pm(r) to
the verifier. Finally the verifier computes pck(r), checks that ‖w‖ ≤ BSA

(for BSA discussed in the completeness property below), and checks that
fCM(w, pck(r), 1) = v.

Completeness. This follows similarly as in the special case considered in
Sect. 2.3.2, with the main difference that the norm bounds must be set so that
they hold for any valid execution of the protocol. We need that for any message m
(in the message space of the given commitment key ck) such that ‖pm(X)‖ ≤ BC

and challenge vector r ∈ C� it holds that ‖pm(r)‖ ≤ BSA. An explicit expression
for BSA can be computed in a straightforward way from the maximum norm of
a challenge in C, the number of variables � of pm(X), the degree of pm(X), and
BC (a bound on the maximum norm of a coefficient in pm(X)).

Knowledge Soundness. We wish to prove that Protocol 4 is an opening proto-
col for CM: given a tree of accepting transcripts for the commitment key ck and
commitment cm, we can extract a corresponding (relaxed) opening m. Similarly
to Sect. 2.3.2, we argue knowledge soundness based on an invertibility property
that generalizes the prior one (Definition 5); the challenge set C is now part of
the property.

Definition 7 (informal) CM is (K,N, ξ)-invertible if there exists an efficient
algorithm I satisfying the following. Suppose that I receives i ∈ [�], challenge
vector (r1, . . . , ri−1) ∈ Ci−1, distinct challenges r

(1)
i , . . . , r

(K)
i ∈ C, opening poly-

nomials p1, . . . , pK ∈ M[Xi+1, . . . , X�], commitment polynomial q(X) ∈ C[X],
and slackness c such that ∀ j ∈ [K],

φsc

⎛
⎝q(r

(j)
i),

∑
ωi+1,...,ω�∈H

fCM

(
pj(ωi+1, . . . , ω�), pck(r1, . . . , ri−1, r

(j)
i , ωi+1, . . . , ω�), c

)⎞
⎠= 1 .

Then I outputs an opening polynomial p ∈ M[Xi, . . . , X�] of norm at most N ·
maxj∈[K] ‖pj‖ such that

φsc

⎛
⎝ ∑

ωi∈H

q(ωi),
∑

ωi,...,ω�∈H

fCM

(
p(ωi, . . . , ω�), pck(r1, . . . , ri−1, ωi, . . . , ω�), ξ · c

)⎞
⎠ = 1 .

Theorem 4 If the sumcheck-friendly commitment scheme CM is (K,N, ξ)-
invertible then Protocol 4 is an opening protocol for CM: there exists an extractor
that given a commitment key ck, commitment cm for a message with norm bound

762 J. Bootle et al.

BC, and a K-ary tree of accepting transcripts for (ck, cm), finds an opening m
with norm ‖pm(X)‖ ≤ N �BSA such that CM.Open

(
ck, cm,m, ξ�

)
= 1.

Note that since the extractor works over a tree of depth �, the final loss in
norm and slackness involves � factors of N and ξ respectively. Technical details
for our sumcheck argument are given in the full version of the paper. The final
definition of invertibility that we use (related to Definition 5) has an extra param-
eter BINV, which is an absolute upper bound on the norm of a relaxed opening
for which invertibility can hold.

The slackness loss ξ depends on the cryptographic setting, and in the settings
that we consider, ξ �= 1 in the lattice and in the GUO setting.

2.5 Instantiations of Sumcheck-Friendly Commitments

Our main theorem on sumcheck arguments (Theorem 1) applies to any sumcheck-
friendly commitment that is invertible. Below, we summarize how to construct
such commitment schemes; details are provided in the full version of the paper.

– In Sect. 2.5.1 we introduce secure bilinear modules.
– In Sect. 2.5.2 we explain how to construct a (generalized) Pedersen commit-

ment scheme from a secure bilinear module, and give intuition for why it is
sumcheck-friendly and invertible. In the technical sections, we also discuss
other commitment schemes, which capture linear functions and scalar prod-
ucts.

– In the full version of the paper, we outline how to instantiate secure bilinear
modules in different cryptographic settings: (i) prime-order groups; (ii) bilinear
groups; (iii) unknown-order groups; and (iv) lattices.

2.5.1 Secure Bilinear Modules
A bilinear module M = (R,ML,MR,MT, e) consists of a ring R, three modules
ML,MR,MT over R, and a non-degenerate bilinear map e : ML × MR → MT;
moreover, R and ML are equipped with norms. For notational simplicity we
denote e(a,G) as 〈a,G〉 and define M(B) := {m ∈ M such that ‖m‖ ≤ B}.

A bilinear-module generator is a tuple BM = (Setup,KeyGen) where:
BM.Setup (given a security parameter and length parameter n) samples a bilin-
ear module M, integer h ∈ N, and auxiliary string aux; and BM.KeyGen (given
BM.Setup’s output) samples a vector G = (G0,G1) in Mn+h

R .
A bilinear-module generator BM is secure if it satisfies the following.

– It satisfies the bilinear relation assumption: for a norm bound BBRA specified in
aux and given G ← BM.KeyGen, it is hard to find a non-zero a ∈ Mn+h

L (BBRA)
such that 〈a,G〉 = 0. (This is a natural generalization of the discrete logarithm
assumption, the SIS assumption, and others.)

– The integer h is hiding: there is a distribution UML on Mh
L such that, for every

a ∈ Mn
L , the following two random variables are statistically close:

{
(G, 〈a,G0〉 + 〈r,G1〉)

∣∣∣∣
G ← BM.KeyGen

r ← UML

}
and

{
(G, 〈r,G1〉)

∣∣∣∣
G ← BM.KeyGen

r ← UML

}
.

Sumcheck Arguments and Their Applications 763

– The string aux specifies a norm bound BC such that BC ≤ BBRA.
– The string aux specifies pseudoinverse parameters (C, ξ,N) for (R,MT): for

every m,m∗ ∈ MT, a ∈ R, and distinct c1, c2 ∈ C, if (c1 − c2)m = am∗ then
there exists (and one can efficiently find) r ∈ R such that ξm = rm∗ and
‖r‖ ≤ N‖a‖.

2.5.2 Sumcheck-Friendly Commitments over Bilinear Modules
We use secure bilinear-module generators to construct several sumcheck-friendly
commitment schemes that are invertible: a generalized Pedersen commitment
scheme , as well as commitment schemes that capture linear functions and scalar
products . Below we restrict our technical overview to the Pedersen commitment
scheme. Details of the other commitment schemes can be found in the full version
of the paper.

Definition 8 (informal) Let BM = (Setup,KeyGen) be a secure bilinear-
module generator and consider an output (M, h, aux) of BM.Setup (for a message
length n) and an output G = (G0,G1) ∈ Mn

R ×Mh
R of BM.KeyGen. The (general-

ized) Pedersen commitment scheme for messages of length n has messages
of the form a ∈ Mn

L (BC), and a commitment is computed as C := 〈a,G0〉+〈ρ,G1〉,
where ρ is sampled appropriately from Mh

L (BC). An opening with slackness c ∈ R
for a commitment C ∈ MT under the commitment key (G0,G1) ∈ Mn

R × Mh
R is a

vector (a, ρ) ∈ Mn
L (BBRA) × Mh

L (BBRA) such that c · C = 〈a,G0〉 + c · 〈ρ,G1〉.
The Pedersen commitment scheme is binding under the bilinear relation

assumption (which holds because BM is secure) and is hiding by the property of
h (which also holds because BM is secure). Moreover, the Pedersen commitment
scheme is (unconditionally) sumcheck-friendly; this can be argued in a similar
way as for the usual Pedersen commitment scheme (over prime-order groups).

Establishing invertibility, however, is more challenging. Rather than specif-
ically discussing invertibility of the Pedersen commitment, in this informal
overview we describe how the fact that BM is secure enables us to (straight-
forwardly) obtain an extraction algorithm for the (suitably generalized) Schnorr
protocol. This protocol is a simple zero-knowledge argument of knowledge for
a commitment opening of a given Pedersen commitment, and the extractor is
asked to produce a (possibly relaxed) opening for the commitment given two
accepting transcripts sharing the same first message. The considerations that
arise when establishing knowledge soundness of the (non-succinct) Schnorr pro-
tocol are loosely related to, though technically simpler than, those that arise
when establishing invertibility for the Pedersen commitment scheme (which in
turns leads to succinct arguments of knowledge via our sumcheck arguments).

Definition 9 (informal) In the Schnorr protocol for the (generalized) Ped-
ersen commitment scheme, the prover and verifier receive a key G = (G0,G1) ∈
Mn+h

R , commitment C ∈ MT and norm bound BC; and the prover additionally
receives as witness a message a ∈ Mn

L (BC) and randomness ρ ∈ Mh
L (BC) such

that 〈a,G0〉 + 〈ρ,G1〉 = C. The prover and verifier interact as follows:

764 J. Bootle et al.

– the prover samples b ∈ Mn+h
L (κ‖C‖BC), where ‖C‖ := maxr∈C ‖r‖, and sends

t := 〈b,G〉 ∈ MT;
– the verifier sends a random challenge r ∈ C;
– the prover sends the response s := r · (a, ρ)+ b ∈ Mn+h

L if ‖s‖ ≤ (κ− 1)‖C‖BC

(otherwise aborts);
– the verifier accepts if 〈s,G〉 = r · C + t and ‖s‖ ≤ (κ − 1)‖C‖BC.

The parameter κ is chosen such that b “masks” (a, ρ). We discuss how to
choose κ in Sect. 2.6, where similar considerations arise in other protocols; here,
instead, we focus on discussing knowledge extraction. The extractor recovers an
opening of C from two accepting transcripts (t, r1, s1) and (t, r2, s2) sharing the
same first message t but with distinct challenges r1 and r2. First, subtracting
the verification equation for one transcript from that of the other transcript
shows that 〈s1 − s2,G〉 = (r1 − r2) · C. The fact that BM is secure implies that
(C, ξ,N) are pseudoinverse parameters for (R,MT), so we can compute an r ∈ R
such that ξ · C = r〈s1 − s2,G〉 with ‖r‖ ≤ N . Therefore, the extractor has
found a relaxed opening (a′, ρ′) := r(s1 − s2) such that 〈a′,G0〉 + 〈ρ′,G1〉 = ξ ·C
with ‖(a′, ρ′)‖ ≤ N2(κ − 1)‖C‖BC. (And we see that the norm BC must satisfy
N2(κ − 1)‖C‖BC ≤ BBRA.)

The norm computations above ignore expansion factors that appear when
computing the norms of expressions that involve the multiplication of ring and
module elements (see the full version of the paper for details).

2.6 Succinct Argument for Scalar Products over Rings

We explain how to use sumcheck arguments to obtain zero-knowledge succinct
arguments of knowledge for scalar-product relations over rings. This involves
choosing a specific sumcheck-friendly commitment to plug in to Theorem 1, and
also carefully using randomness to achieve zero knowledge (which is not a guar-
antee of Theorem 1). Afterwards, in Sect. 2.7 we explain how to build on this to
prove Theorem 2.

We first introduce the notion of protocol-friendly bilinear-module generator.
A bilinear-module generator BM is protocol-friendly if it satisfies the following.

– BM is secure (see Sect. 2.5.1).
– ML is not merely an R-module but also a ring itself (so that scalar products

over ML are defined).4

– The string aux specifies κ ∈ N such that BM is masking-friendly (i.e., for every
B ∈ N with BC ≤ B ≤ BBRA/κ and a ∈ Mn

L (B), {a + b}b←Mn
L (κB) is close to

uniform).
– The string aux specifies an ideal I such that multiplication by ξ (which is part

of the pseudoinverse parameters (C, ξ,N) also in aux) is invertible modulo I.

The instantiations of bilinear-module generators given in the full version of
this paper are also protocol-friendly.
4 In the pairing setting where ML is not a ring, we define scalar-product commitments

differently. See the full version for details.

Sumcheck Arguments and Their Applications 765

– Prime-order groups: BM.Setup additionally outputs κ := ∞ and I := {0}.
This means that the argument supports scalar products over ML/I = Fq, the
scalar field of a prime-order group G.

– Bilinear groups: BM.Setup additionally outputs κ := ∞ and I := {0}. This
means that the argument supports scalar products over ML/I = G1 (alterna-
tively, G2), a source group in the bilinear group.

– GUO setting: BM.Setup additionally outputs κ := O(2λ) and I := nZ for
n ∈ Z whose prime factors are greater than or equal to p. This means that the
argument supports scalar products over ML/I = Z/nZ for any n satisfying
these conditions.

– Lattice setting: BM.Setup additionally outputs κ := O(dn) and I := nZ for
odd n �= −1, 1. This means that the argument supports scalar products over
ML/I = Z/nZ for any n satisfying these conditions.

The commitment scheme that we consider has two-part messages and includes
a commitment to their scalar-product; it is the extension of the scalar-product
commitment from Sect. 2.3.1 to bilinear modules.

Definition 10 (informal) Let BM = (Setup,KeyGen) be a protocol-friendly
bilinear-module generator. The (generalized) scalar-product commitment
scheme for messages of length n has messages of the form (a, b) ∈
Mn

L × Mn
L such that ‖a‖, ‖b‖ ≤ BC, and commitment keys of the form

(G0,G1,H0,H1,U0,U1) ∈ Mn+h
R ×Mn+h

R ×M1+h
R . A commitment is computed by

sampling ρa, ρb, ρt ∈ Mh
L (BC) and computing

(
〈a,G0〉 + 〈ρa,G1〉, 〈b,H0〉 + 〈ρb,H1〉, 〈a, b〉 · U0 + 〈ρt,U1〉

)

In other words, a commitment is the tuple consisting of three generalized Peder-
sen commitments: for the first part of the message a, for the second part of the
message b, and for their scalar product 〈a, b〉 ∈ ML.

A valid opening for a commitment (Ca,Cb,Ct) ∈ M3
T with keys

(G0,G1,H0,H1U0,U1) ∈ Mn+h
R × Mn+h

R × M1+h
R and slackness c ∈ R is a vector

(a, b, ρa, ρb, ρt) ∈ Mn
L (BBRA) × Mn

L (BBRA) × M3h
L (BBRA) such that

c2 · C =
(
c · 〈a,G0〉 + c2 · 〈ρa,G1〉, c · 〈b,H0〉 + c2 · 〈ρb,H1〉, 〈a, b〉 · U0 + c2〈ρt,U1〉) .

The generalized scalar-product commitment scheme is binding under the
bilinear relation assumption. Moreover, it is sumcheck-friendly (unconditionally).
The proof of invertibility follows from algebraic manipulations analogous to the
case of generalized Pedersen commitments discussed in Sect. 2.5; though note
that establishing invertibility in this case requires computational assumptions
(even in the discrete logarithm setting as discussed in Sect. 2.3.1).

We give a zero-knowledge succinct argument of knowledge for the following
relation related to the scalar-product of committed messages, which we denote
by RCMSP.

Definition 11 (informal) The committed scalar-product relation RCMSP(c,BC)
are the pairs (x,w) where:

766 J. Bootle et al.

– The instance x contains
• a protocol-friendly bilinear-module generator BM;
• commitment keys (G0,G1,H0,H1,U0,U1) ∈ Mn

R ×Mh
R ×Mn

R ×Mh
R ×MR×Mh

R ;
• commitments Ca,Cb,Ct ∈ MT.

– The witness w = (a, ρa, b, ρb, t, ρt) ∈ M2n+1+3h
L is such that

‖a‖, ‖ρa‖, ‖b‖, ‖ρb‖, ‖t‖, ‖ρ‖ ≤ BC and
• (a, ρa) is a valid opening of the Pedersen commitments Ca with slackness c;
• (b, ρb) is a valid opening of the Pedersen commitments Cb with slackness c;
• (t, ρt) is a valid opening of the Pedersen commitment Ct with slackness c2

and t = 〈a, b〉 mod I.

The relation reasons about scalar-product relations over the quotient ring
R• = ML/I (ML modulo I) for the ideal I ⊆ ML specified in aux. In cer-
tain settings, such as the lattice and GUO setting, we only extract openings
to commitments with slackness c �= 1, we choose I so that we can “cancel out”
the slackness c modulo I as part of knowledge extraction algorithms and prove
exact scalar-product relations over R•. We now summarize the scalar-product
argument; details can be found in the full version.

The prover begins by computing a commitment C ∈ MT to 〈a, b〉 ∈ ML,
which may not be equal to t ∈ ML. Then the prover and verifier engage in
the these sub-protocols: (i) an interactive reduction masking the three Pedersen
commitments to a, b, t, converting them into a single scalar-product commitment;
(ii) a sumcheck argument to prove knowledge of an opening to the scalar-product
commitment; and (iii) a consistency check that the committed values 〈a, b〉 and
t equal modulo I.

Reduction to a Sumcheck Argument. The prover samples masking values
ya and yb to rerandomize the commitments to a, b, 〈a, b〉: the prover sends com-
mitments to ya and yb, and also to v1 := 〈a, yb〉 + 〈b, ya〉 and v0 := 〈ya, yb〉
(which depend only on a, b, ya, yb). Then the verifier sends to the prover a ran-
dom challenge α ∈ C. Then the prover computes ea := αa+ya, eb := αb+yb, and
〈ea, eb〉 = α2〈a, b〉 + αv1 + v0. The openings of the rerandomized commitments
do not leak any information about a or b, and so the prover can safely send the
corresponding commitment randomness to the verifier. Finally, the prover and
verifier engage in a sumcheck argument on the scalar-product commitment con-
sisting of the commitments to ea, eb, and 〈ea, eb〉. Since the sumcheck argument
is invoked on inputs that have been masked, zero knowledge is ensured (i.e., no
information about the witness w = (a, ρa, b, ρb, t, ρt) is revealed) even though
the sumcheck argument itself is not zero knowledge.

Checking Consistency Modulo I. The sumcheck argument merely convinces
the verifier that the prover knows a witness for the scalar-product commitment
(Ca,Cb,C), while the verifier additionally wants to know that the openings of C
and Ct are equal modulo I. For this, we rely on a protocol on the commitments
to 〈a, b〉 and t to check that they are equivalent modulo I. First, before receiving
the verifier’s challenge α, the prover samples a masking value ζ, and sends to
the verifier its Pedersen commitment Cζ and its reduction ζ mod I (in the clear);

Sumcheck Arguments and Their Applications 767

after receiving α the prover sends to the verifier the value v̄ := α · (〈a, b〉− t)+ ζ.
The verifier then checks that v̄ = ζ mod I, and that v̄ is a valid opening for the
commitment to α · (〈a, b〉 − t) + ζ (for appropriate commitment randomness).
Intuitively, if v̄ = α · (〈a, b〉 − t) + ζ for two distinct values of α, then one can
solve linear equations to deduce that ξ · (〈a, b〉 − t) = 0 mod I. Then, since
multiplication by the constant ξ from the pseudoinverse parameters (C, ξ,N)
is invertible modulo I (this is required by the protocol-friendly property), we
conclude that 〈a, b〉 = t mod I.

2.7 Succinct Argument for R1CS over Rings

We explain the main ideas behind Theorem 2, which provides a zero-knowledge
succinct argument of knowledge for R1CS over rings. Recall that the R1CS
problem over a ring R• asks: given coefficient matrices A,B,C ∈ Rn×n

• and
an instance vector x over R•, is there a witness vector w over R• such that
z := (x,w) ∈ Rn

• satisfies Az ◦ Bz = Cz? To a first order, Theorem 2 is proved
by reducing the R1CS problem over R• to several scalar-product sub-problems
over R•, and then relying on the zero-knowledge succinct argument for scalar
products in Sect. 2.6. This implies that we support R1CS over the rings supported
in that section: R• = ML/I, where ML is the left module of a protocol-friendly
bilinear module, and I ⊆ ML is an ideal. As with our scalar-product arguments,
I is used to cancel out slackness factors and prove exact relations. Below we
summarize the reduction from R1CS to scalar products.

The prover P sends commitments to the full assignment z ∈ Rn
• and to its

linear combinations zA, zB ∈ Rn
• . Then P is left to convince the verifier V that

the committed information satisfies these conditions:

zA = Az , zB = Bz , zA ◦ zB = Cz , x is a prefix of z .

To reduce the first three conditions, the verifier V sends a structured challenge
vector r. Multiplying on the left by rᵀ reduces the first three conditions to
〈r, zA〉 = 〈rA, z〉, 〈r, zB〉 = 〈rB , z〉, 〈r ◦ zA, zB〉 = 〈rC , z〉; here we defined
rA := rᵀA, rB := rᵀB, and rC := rᵀC. Moreover, to reduce the last condition,
the verifier V sends a random challenge vector s of the same length as x; padding
s with zeroes to get s′ of the same length as z, we have 〈s′, z〉 = 〈s, x〉. Note that
both parties can each individually compute rA, rB , rC by right-multiplying r by
A,B,C respectively, and also both parties can each individually compute 〈s, x〉.

Next, the prover P sends a commitment to z′
A := r ◦ zA, and also commit-

ments to α := 〈rA, z〉, β := 〈rB , z〉, and γ := 〈rC , z〉. Then the prover and
verifier engage in scalar-product sub-protocols (described in Sect. 2.6) to verify
these 7 scalar products (recall each party can compute 〈s, x〉):

〈r, zA〉 = α
〈rA, z〉 = α

,
〈r, zB〉 = β
〈rB , z〉 = β

,
〈z′

A, zB〉 = γ
〈rC , z〉 = γ

, 〈s′, z〉 = 〈s, x〉 .

The prover and verifier use an additional challenge vector y and 2 further scalar-
product sub-protocols to check that 〈z′

A, y〉 = 〈zA, r ◦ y〉, which shows that z′
A

was correctly computed from zA and r.

768 J. Bootle et al.

All commitments in the protocol are hiding, and hence do not leak any infor-
mation about the witness vector w. Hence the zero-knowledge property of the
above protocol directly reduces to the zero-knowledge property of the scalar-
product sub-protocols.

We conclude by noting that if we instantiate the bilinear module with lat-
tices then Theorem 2 gives Corollary 1: a zero-knowledge succinct argument of
knowledge for R1CS based on the SIS assumption.

Technical details can be found in the full version of the paper.

Acknowledgments. This research was supported in part by a donation from the
Ethereum Foundation. Part of the work was conducted while the first author was
employed by UC Berkeley, and part while employed by IBM Research – Zurich, sup-
ported by the SNSF ERC Transfer Grant CRETP2-166734 – FELICITY.

References

[AC20] Attema, T., Cramer, R.: Compressed Σ-protocol theory and practical
application to plug & play secure algorithmics. In: Proceedings of the
40th Annual International Cryptology Conference, CRYPTO 2020, pp.
513–543 (2020)

[ACDEY19] Abspoel, M., Cramer, R., Damg̊ard, I., Escudero, D., Yuan, C.: Effi-
cient information-theoretic secure multiparty computation over Z/pk

Z

via Galois rings. In: Hofheinz, D., Rosen, A. (eds.) TCC 2019. LNCS,
vol. 11891, pp. 471–501. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-36030-6 19

[ACF20] Attema, T., Cramer, R., Fehr, S.: Compressing proofs of k-out-of-n
partial knowledge. IACR Cryptology ePrint Archive, Report 2020/753
(2020)

[ACK21] Attema, T., Cramer, R., Kohl, L.: A compressed Σ-protocol theory
for lattices. Cryptology ePrint Archive, Report 2021/307 (2021)

[ACR20] Attema, T., Cramer, R., Rambaud, M.: Compressed sigma-protocols
for bilinear circuits and applications to logarithmic-sized transparent
threshold signature schemes. IACR Cryptology ePrint Archive, Report
2020/1447 (2020)

[AL21] Albrecht, M.R., Lai, R.W.F.: Subtractive sets over cyclotomic rings:
Limits of schnorr-like arguments over lattices. Cryptology ePrint
Archive, Report 2021/202 (2021)

[Abs+20] Abspoel, M., et al.: Asymptotically good multiplicative LSSS over
Galois rings and applications to MPC over Z/pk

Z. In: Moriai, S., Wang,
H. (eds.) ASIACRYPT 2020. LNCS, vol. 12493, pp. 151–180. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-64840-4 6

[Adj] URL: https://github.com/adjoint-io/bulletproofs
[BBBPWM18] Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.:

Bulletproofs: Short proofs for confidential transactions and more. In:
Proceedings of the 39th IEEE Symposium on Security and Privacy,
S&P 2018, pp. 315–334 (2018)

https://doi.org/10.1007/978-3-030-36030-6_19
https://doi.org/10.1007/978-3-030-36030-6_19
https://doi.org/10.1007/978-3-030-64840-4_6
https://github.com/adjoint-io/bulletproofs

Sumcheck Arguments and Their Applications 769

[BCCGP16] Bootle, J., Cerulli, A., Chaidos, P., Groth, J., Petit, C.: Efficient zero-
knowledge arguments for arithmetic circuits in the discrete log set-
ting. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS,
vol. 9666, pp. 327–357. Springer, Heidelberg (2016). https://doi.org/
10.1007/978-3-662-49896-5 12

[BCG20] Bootle, J., Chiesa, A., Groth, J.: Linear-time arguments with sublinear
verification from tensor codes. In: Pass, R., Pietrzak, K. (eds.) TCC
2020. LNCS, vol. 12551, pp. 19–46. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-64378-2 2

[BCGGRS19] Ben-Sasson, E., Chiesa, A., Goldberg, L., Gur, T., Riabzev, M.,
Spooner, N.: Linear-size constant-query IOPs for delegating computa-
tion. In: Hofheinz, D., Rosen, A. (eds.) TCC 2019. LNCS, vol. 11892,
pp. 494–521. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-36033-7 19

[BCGRS17] Ben-Sasson, E., Chiesa, A., Gabizon, A., Riabzev, M., Spooner, N.:
Interactive oracle proofs with constant rate and query complexity. In:
Proceedings of the 44th International Colloquium on Automata, Lan-
guages and Programming, ICALP 2017, pp. 40:1–40:15 (2017)

[BCL20] Bootle, J., Chiesa, A., Liu, S.: Zero-knowledge succinct arguments
with a linear-time prover. IACR Cryptology ePrint Archive, Report
2020/1527 (2020)

[BCOS20] Boschini, C., Camenisch, J., Ovsiankin, M., Spooner, N.: Efficient post-
quantum snarks for RSIS and RLWE and their applications to privacy.
In: Proceedings of the 11th International Conference on Post-Quantum
Cryptography, PQCrypto 2020, pp. 247–267 (2020)

[BCRSVW19] Ben-Sasson, E., Chiesa, A., Riabzev, M., Spooner, N., Virza, M., Ward,
N.P.: Aurora: Transparent succinct arguments for R1CS. In: Proceed-
ings of the 38th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, EUROCRYPT 2019, pp.
103–128 (2019). Full version available at https://eprint.iacr.org/2018/
828

[BDFG20] Boneh, D., Drake, J., Fisch, B., Gabizon, A.: Halo Infinite: Recursive
zk-SNARKs from any additive polynomial commitment scheme. IACR
Cryptology ePrint Archive, Report 2020/1536 (2020)

[BFHVXZ20] Bhadauria, R., Fang, Z., Hazay, C., Venkitasubramaniam, M., Xie, T.,
Zhang, Y.: Ligero++: a new optimized sublinear IOP. In: Proceed-
ings of the 27th ACM Conference on Computer and Communications
Security, CCS 2020, pp. 2025–2038 (2020)

[BFL91] Babai, L., Fortnow, L., Lund, C.: Non-deterministic exponential time
has two-prover interactive protocols. Computational Complexity, vol.
1, pp. 3–40 (1991). Preliminary version appeared in FOCS 1990

[BFLS91] Babai, L., Fortnow, L., Levin, L.A., Szegedy, M.: Checking compu-
tations in polylogarithmic time. In: Proceedings of the 23rd Annual
ACM Symposium on Theory of Computing, STOC 1991, pp. 21–32
(1991)

[BFS20] Bünz, B., Fisch, B., Szepieniec, A.: Transparent SNARKs from DARK
compilers. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020.
LNCS, vol. 12105, pp. 677–706. Springer, Cham (2020). https://doi.
org/10.1007/978-3-030-45721-1 24

https://doi.org/10.1007/978-3-662-49896-5_12
https://doi.org/10.1007/978-3-662-49896-5_12
https://doi.org/10.1007/978-3-030-64378-2_2
https://doi.org/10.1007/978-3-030-64378-2_2
https://doi.org/10.1007/978-3-030-36033-7_19
https://doi.org/10.1007/978-3-030-36033-7_19
https://eprint.iacr.org/2018/828
https://eprint.iacr.org/2018/828
https://doi.org/10.1007/978-3-030-45721-1_24
https://doi.org/10.1007/978-3-030-45721-1_24

770 J. Bootle et al.

[BHRRS20] Block, A.R., Holmgren, J., Rosen, A., Rothblum, R.D., Soni, P.:
Public-coin zero-knowledge arguments with (almost) minimal time and
space overheads. In: Pass, R., Pietrzak, K. (eds.) TCC 2020. LNCS,
vol. 12551, pp. 168–197. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-64378-2 7

[BHRRS21] Block, A.R., Holmgren, J., Rosen, A., Rothblum, R.D., Soni, P.: Time-
and space-efficient arguments from groups of unknown order. In: Pro-
ceedings of the 41st Annual International Cryptology Conference,
CRYPTO 2021 (2021)

[BISW17] Boneh, D., Ishai, Y., Sahai, A., Wu, D.J.: Lattice-based SNARGs
and their application to more efficient obfuscation. In: Coron, J.-
S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10212, pp.
247–277. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
56617-7 9

[BISW18] Boneh, D., Ishai, Y., Sahai, A., Wu, D.J.: Quasi-optimal SNARGs
via linear multi-prover interactive proofs. In: Nielsen, J.B., Rijmen, V.
(eds.) EUROCRYPT 2018. LNCS, vol. 10822, pp. 222–255. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-78372-7 8

[BLNS20] Bootle, J., Lyubashevsky, V., Nguyen, N.K., Seiler, G.: A non-PCP
approach to succinct quantum-safe zero-knowledge. In: Micciancio,
D., Ristenpart, T. (eds.) CRYPTO 2020. LNCS, vol. 12171, pp.
441–469. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
56880-1 16

[BMMTV19] Bünz, B., Maller, M., Mishra, P., Tyagi, N., Vesely, P.: Proofs for inner
pairing products and applications. Cryptology ePrint Archive, Report
2019/1177 (2019)

[CCHLRR18] Canetti, R., Chen, Y., Holmgren, J., Lombardi, A., Rothblum, G.N.,
Rothblum, R.D.: Fiat-Shamir from simpler assumptions. Cryptology
ePrint Archive, Report 2018/1004 (2018)

[CCKP19] Chen, S., Cheon, J.H., Kim, D., Park, D.: Verifiable computing for
approximate computation. IACR Cryptology ePrint Archive, Report
2019/762 (2019)

[CDESX18] Cramer, R., Damg̊ard, I., Escudero, D., Scholl, P., Xing, C.:
SPDZ2k : efficient MPC mod 2k for dishonest majority. In: Shacham,
H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10992, pp.
769–798. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
96881-0 26

[CFFQR20] Campanelli, M., Faonio, A., Fiore, D., Querol, A., Rodŕıguez, H.:
Lunar: a toolbox for more efficient universal and updatable zkSNARKs
and commit-and-prove extensions. Cryptology ePrint Archive, Report
2020/1069 (2020)

[CFIK03] Cramer, R., Fehr, S., Ishai, Y., Kushilevitz, E.: Efficient multi-party
computation over rings. In: Proceedings of the 22nd Annual Interna-
tional Conference on Theory and Application of Cryptographic Tech-
niques, EUROCRYPT 2003, pp. 596–613 (2003)

[CHJKS20] Chung, H., Han, K., Ju, C., Kim, M., Seo, J.H.: Bulletproofs+: Shorter
proofs for privacy-enhanced distributed ledger. Cryptology ePrint
Archive, Report 2020/735 (2020)

https://doi.org/10.1007/978-3-030-64378-2_7
https://doi.org/10.1007/978-3-030-64378-2_7
https://doi.org/10.1007/978-3-319-56617-7_9
https://doi.org/10.1007/978-3-319-56617-7_9
https://doi.org/10.1007/978-3-319-78372-7_8
https://doi.org/10.1007/978-3-030-56880-1_16
https://doi.org/10.1007/978-3-030-56880-1_16
https://doi.org/10.1007/978-3-319-96881-0_26
https://doi.org/10.1007/978-3-319-96881-0_26

Sumcheck Arguments and Their Applications 771

[CHMMVW20] Chiesa, A., Hu, Y., Maller, M., Mishra, P., Vesely, N., Ward, N.: Marlin:
Preprocessing zkSNARKs with universal and updatable SRS. In: Pro-
ceedings of the 39th Annual International Conference on the Theory
and Applications of Cryptographic Techniques, EUROCRYPT 2020,
pp. 738–768 (2020)

[CMS19] Chiesa, A., Manohar, P., Spooner, N.: Succinct arguments in the quan-
tum random oracle model. In: Hofheinz, D., Rosen, A. (eds.) TCC 2019.
LNCS, vol. 11892, pp. 1–29. Springer, Cham (2019). https://doi.org/
10.1007/978-3-030-36033-7 1

[CMSZ21] Chiesa, A., Ma, F., Spooner, N., Zhandry, M.: Post-quantum succinct
arguments. Cryptology ePrint Archive, Report 2021/334 (2021)

[CMT12] Cormode, G., Mitzenmacher, M., Thaler, J.: Practical verified compu-
tation with streaming interactive proofs. In: Proceedings of the 4th
Symposium on Innovations in Theoretical Computer Science, ITCS
2012, pp. 90–112 (2012)

[COS20] Chiesa, A., Ojha, D., Spooner, N.: Fractal: post-quantum and trans-
parent recursive proofs from holography. In: Proceedings of the 39th
Annual International Conference on the Theory and Applications of
Cryptographic Techniques, EUROCRYPT 2020, pp. 769–793 (2020)

[CY20] Chiesa, A., Yogev, E.: Barriers for succinct arguments in the random
oracle model. In: Pass, R., Pietrzak, K. (eds.) TCC 2020. LNCS, vol.
12551, pp. 47–76. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-64378-2 3

[GKR08] Goldwasser, S., Kalai, Y.T., Rothblum, G.N.: Delegating computation:
interactive proofs for muggles. In: Proceedings of the 40th Annual
ACM Symposium on Theory of Computing, STOC 2008, pp. 113–122
(2008)

[GMNO18] Gennaro, R., Minelli, M., Nitulescu, A., Orrù, M.: Lattice-based zk-
SNARKs from square span programs. In: Proceedings of the 25th ACM
Conference on Computer and Communications Security, CCS 2018, pp.
556–573 (2018)

[GNS21] Ganesh, C., Nitulescu, A., Soria-Vazquez, E.: Rinocchio: SNARKs for
ring arithmetic. Cryptology ePrint Archive, Report 2021/322 (2021)

[GT20] Ghoshal, A., Tessaro, S.: Tight state-restoration soundness in the
algebraic group model. Cryptology ePrint Archive, Report 2020/1351
(2020)

[JKKZ20] Jawale, R., Kalai, Y.T., Khurana, D., Zhang, R.: SNARGs for bounded
depth computations and PPAD hardness from sub-exponential LWE.
IACR Cryptology ePrint Archive, Report 2020/980 (2020)

[JT20] Jaeger, J., Tessaro, S.: Expected-time cryptography: generic tech-
niques and applications to concrete soundness. In: Pass, R., Pietrzak,
K. (eds.) TCC 2020. LNCS, vol. 12552, pp. 414–443. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-64381-2 15

[Kil92] Kilian, J.: A note on efficient zero-knowledge proofs and arguments.
In: Proceedings of the 24th Annual ACM Symposium on Theory of
Computing, STOC 1992, pp. 723–732 (1992)

[LFKN92] Lund, C., Fortnow, L., Karloff, H.J., Nisan, N.: Algebraic methods for
interactive proof systems. J. ACM 39(4), 859–868 (1992)

https://doi.org/10.1007/978-3-030-36033-7_1
https://doi.org/10.1007/978-3-030-36033-7_1
https://doi.org/10.1007/978-3-030-64378-2_3
https://doi.org/10.1007/978-3-030-64378-2_3
https://doi.org/10.1007/978-3-030-64381-2_15

772 J. Bootle et al.

[LMR19] Lai, R.W.F., Malavolta, G., Ronge, V.: Succinct arguments for bilin-
ear group arithmetic: practical structure-preserving cryptography. In:
Proceedings of the 26th ACM Conference on Computer and Commu-
nications Security, CCS 2019, pp. 2057–2074 (2019)

[Lee20] Lee, J.: Dory: Efficient, transparent arguments for generalised inner
products and polynomial commitments. Cryptology ePrint Archive,
Report 2020/1274 (2020)

[Mei13] Meir, O.: IP = PSPACE using error-correcting codes. SIAM J. Com-
put. 42(1), 380–403 (2013)

[Mon] URL: https://github.com/monero-project/monero/tree/master/src/
ringct

[PLS19] del Pino, R., Lyubashevsky, V., Seiler, G.: Short discrete log proofs for
FHE and ring-LWE ciphertexts. In: Proceedings of the 22nd Interna-
tional Conference on Practice and Theory of Public-Key Cryptography,
PKC 2019, pp. 344–373 (2019)

[Piv] Pivx implementation of bulletproofs. https://github.com/PIVX-
Project/PIVX/tree/Bulletproofs/src/libzerocoin

[RR20] Ron-Zewi, N., Rothblum, R.: Local proofs approaching the witness
length. In: Proceedings of the 61st Annual IEEE Symposium on Foun-
dations of Computer Science, FOCS 2020 (2020)

[RV09] Rothblum, G.N., Vadhan, S.: Are PCPs inherent in efficient argu-
ments? In: Proceedings of the 24th IEEE Annual Conference on Com-
putational Complexity, CCC 2009, pp. 81–92 (2009)

[Set20] Setty, S.: Spartan: efficient and general-purpose zksnarks without
trusted setup. In: Proceedings of the 40th Annual International Cryp-
tology Conference, CRYPTO 2020, pp. 704–737 (2020)

[Tha13] Thaler, J.: Time-optimal interactive proofs for circuit evaluation. In:
Proceedings of the 33rd Annual International Cryptology Conference,
CRYPTO 2013, pp. 71–89 (2013)

[VSBW13] Vu, V., Setty, S., Blumberg, A.J., Walfish, M.: A hybrid architec-
ture for interactive verifiable computation. In: Proceedings of the 34th
IEEE Symposium on Security and Privacy, Oakland 2013, pp. 223–237
(2013)

[WTSTW18] Wahby, R.S., Tzialla, I., Shelat, A., Thaler, J., Walfish, M.: Doubly-
efficient zkSNARKs without trusted setup. In: Proceedings of the 39th
IEEE Symposium on Security and Privacy, S&P 2018, pp. 926–943
(2018)

[Wah+17] Wahby, R.S., et al.: Full accounting for verifiable outsourcing. In: Pro-
ceedings of the 24th ACM Conference on Computer and Communica-
tions Security, CCS 2017, pap. 2071–2086 (2017)

[XZZPS19] Xie, T., Zhang, J., Zhang, Y., Papamanthou, C., Song, D.: Libra:
succinct zero-knowledge proofs with optimal prover computation. In:
Proceedings of the 39th Annual International Cryptology Conference,
CRYPTO 2019, pp. 733–764 (2019)

https://github.com/monero-project/monero/tree/master/src/ringct
https://github.com/monero-project/monero/tree/master/src/ringct
https://github.com/PIVX-Project/PIVX/tree/Bulletproofs/src/libzerocoin
https://github.com/PIVX-Project/PIVX/tree/Bulletproofs/src/libzerocoin

Sumcheck Arguments and Their Applications 773

[ZGKPP17] Zhang, Y., Genkin, D., Katz, J., Papadopoulos, D., Papamanthou,
C.: vSQL: verifying arbitrary SQL queries over dynamic outsourced
databases. In: Proceedings of the 38th IEEE Symposium on Security
and Privacy, S&P 2017, pp. 863–880 (2017)

[ZXZS20] Zhang, J., Xie, T., Zhang, Y., Song, D.: Transparent polynomial del-
egation and its applications to zero knowledge proof. In: Proceedings
of the 41st IEEE Symposium on Security and Privacy, S&P 2020, pp.
859–876 (2020)

[dalek18] Dalek cryptography. A pure-Rust implementation of Bulletproofs
using Ristretto (2018)

An Algebraic Framework for Universal
and Updatable SNARKs

Carla Ràfols1,2(B) and Arantxa Zapico1

1 Universitat Pompeu Fabra, Barcelona, Spain
carla.rafols@upf.edu

2 Cybercat, Barcelona, Spain

Abstract. We introduce Checkable Subspace Sampling Arguments, a
new information theoretic interactive proof system in which the prover
shows that a vector has been sampled in a subspace according to the ver-
ifier’s coins. We show that this primitive provides a unifying view that
explains the technical core of most of the constructions of universal and
updatable pairing-based (zk)SNARKs. This characterization is extended
to a fully algebraic framework for designing such SNARKs in a modu-
lar way. We propose new constructions of CSS arguments that lead to
SNARKs with different performance trade-offs.

1 Introduction

Zero-Knowledge proofs [23], and in particular, non-interactive ones [7] have
played a central role in both the theory and practice of cryptography. A long
line of research [22,25,26,32,34] has led to efficient pairing-based zero-knowledge
Succinct Non-interactive ARguments of Knowledge or SNARKs. These argu-
ments are succinct, in fact, they allow to prove that circuits of arbitrary size are
satisfied with a constant-size proof. They are also extremely efficient concretely
(3 group elements in the best construction for arithmetic circuits [26]).

Despite this impressive performance, some aspects of these constructions of
SNARKs are still unsatisfactory. Probably the most problematic and not fully
solved issue is their reliance on long trusted, structured, and circuit dependent
parameters (a circuit dependent SRS, for structured reference string).

Albeit the significant research effort in finding alternatives to bypass the need
of a trusted third party by constructing transparent arguments, i.e. in the uni-
form random string model (URS) [2–4,8,11,15,39,40], pairing-based SNARKs

C. Ràfols—This paper is part of a project that has received funding from the European
Union’s Horizon 2020 research and innovation programme under grant agreement No
856879.
A. Zapico—The project that gave rise to these results received the support of
a fellowship from la Caixa Foundation (ID100010434). The fellowship code is
LCF/BQ/DI18/11660052. This project has received funding from the European
Union’s Horizon 2020 research and innovation programme under the Marie Skodowska-
Curie grant agreement No.71367.

c© International Association for Cryptologic Research 2021
T. Malkin and C. Peikert (Eds.): CRYPTO 2021, LNCS 12825, pp. 774–804, 2021.
https://doi.org/10.1007/978-3-030-84242-0_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-84242-0_27&domain=pdf
https://doi.org/10.1007/978-3-030-84242-0_27

An Algebraic Framework for Universal and Updatable SNARKs 775

such as [26] still seem the most practical alternative in many settings due to their
very fast verification, which is a must in many blockchain applications. On the
other hand, multiparty solutions for the problem are not fully scalable [9,10].

As an alternative to a trusted SRS, Groth et al. [27] define the updatable
model, in which the SRS can be updated by any party, non-interactively, and
in a verifiable way, resulting in a properly generated structured reference string
where the simulation trapdoor is unknown to all parties if at least one is honest.
Further, they propose a construction where the SRS is universal and can be used
for arbitrary circuits up to a maximum given size.

Arithmetic Circuit Satisfiability can be reduced to a set of quadratic and
affine constraints over a finite field. The quadratic ones are universal and can be
easily proven in the pairing-based setting with a Hadamard product argument,
the basic core of most zkSNARKS constructions starting from [22]. On the other
hand, affine constraints are circuit-dependent, and it is a challenging task to
efficiently prove them with a universal SRS [13,14,16,19,20,33,37,38].

In Groth et al. [27] they are proven via a very expensive subspace argument
that requires a SRS quadratic in the circuit size and a preprocessing step that is
cubic. Sonic [33], the first efficient, universal, and updatable SNARK, gives two
different ways to prove the affine constraints, a fully succinct one (not so effi-
cient) and another one in the amortized setting (very efficient). Follow-up work
(most notably, Marlin [14], Plonk [20], Lunar [13]) has significantly improved
the efficiency in the fully succinct mode.

There is an important trend in cryptography, that advocates for construct-
ing protocols in a modular way. One reason for doing so is the fact that, by
breaking complicated protocols into simpler steps, they become easier to ana-
lyze. Ishai [28] mentions comparability as another fundamental motive. Specially
in the area of zero-knowledge, given the surge of interest in practical construc-
tions, it is hard not to lose sight of what each proposal achieves. As Ishai puts
it: “one reason such comparisons are difficult is the multitude of application sce-
narios, implementation details, efficiency desiderata, cryptographic assumptions,
and trust models”.

Starting from Sonic, all the aforementioned works on universal and updatable
zkSNARKs follow this trend. More concretely, they first build an information-
theoretic proof system, that is then compiled into a full argument under some
computational assumptions in bilinear groups. The main ingredient of the com-
piler is a polynomial commitment [12,30,31]. However, the information theoretic
component is still very complex and comparison among these works remains dif-
ficult, for precisely the same reasons stated by Ishai. In particular, it is hard to
extract the new ideas in each of them in the complex description of the argu-
ments, that use sophisticated tricks for improving efficiency, as well as advanced
properties of multiplicative subgroups of a finite field or bivariate Lagrange inter-
polation. Further, it is striking that all fully succinct arguments are for restricted
types of constraints (sums of permutations in Sonic, sparse matrices in Marlin,
and Lunar1) or pay a price for additive gates (Plonk). A modular, unified view

1 The number of non-zero entries of the matrices that encode linear constraints cannot
exceed the size of some multiplicative group of the field of definition.

776 C. Ràfols and A. Zapico

of these important works seems essential for a clearer understanding of the tech-
niques. In turn, this should allow for a better comparison, more flexibility in
combining the different methods, and give insights on current limitations.

Our Contributions. We propose an algebraic framework that takes a step fur-
ther in achieving modular constructions of universal and updatable SNARKs.
We identify the technical core of previous work as instances of a Checkable Sub-
space Sampling (CSS) Argument. In this information-theoretic proof system, two
parties, prover and verifier, on input a field F and a matrix M ∈ F

Q×m, agree on
a polynomial D(X) encoding a vector d in the row space of M. The interesting
part is that, even though the coefficients of the linear combination that define
d are chosen by the verifier’s coins, the latter does not need to perform a linear
(in Q, the number of rows) number of operations in order to verify that D(X)
is correct. Instead, this must be demostrated by the prover.

With this algebraic formulation, it is immediate to see that a CSS argument
can be used as a building block for an argument of membership in linear spaces.
Basically, given a matrix M, we can prove that some vector y is orthogonal to the
rows of M by sampling, after y is declared, a sufficiently random vector d in the
row space of M and checking an inner product relation, namely, whether d·y = 0.
The purpose of a CSS argument is to guarantee that the sampling process can
be checked by the verifier in sublinear time without sacrificing soundness.

Naturally, for building succinct proofs, instead of y,d, the argument uses
polynomial encodings Y (X) and D(X) (which are group elements after the
compilation step). To compute the inner product of this encoded vectors, we
introduce a new argument in Sect. 3, which is specific to the case where the
polynomials are encoded in the Lagrange polynomial basis, but can be easily
generalized to the monomial basis. The argument is a straightforward applica-
tion of the univariate sumcheck of Aurora [5]. However, we contribute a general-
ized sumcheck (that works not only for multiplicative subgroups of finite fields),
with a completely new proof that relates it with polynomial evaluation at some
fixed point v.

These building blocks can be put together as an argument for the language
of Rank1 constraint systems. For efficiency, we stick to R1CS-lite, a variant
recently proposed by Lunar, which is slightly simpler but still NP-complete. Our
final construction can be instantiated with any possible choice of CSS scheme, so
in particular it can essentially recover the construction of Marlin and Lunar by
isolating the CSS argument implicit in these works, or the amortized construc-
tion of Sonic. We hope that this serves to better identify the challenge behind
building updatable and universal SNARKs, and allow for new steps in improving
efficiency, as well as more easily combining the techniques.

In summary, we reduce R1CS constraint systems to three algebraic relations:
an inner product, a Hadamard product and a CSS argument. We think this
algebraic formulation is very clear, and also makes it easier to relate advances
in universal and updatable SNARKS with other works that have used a similar
language, for example, the arguments for inner product of [8], of membership in
linear spaces [29], or for linear algebra relations [24].

An Algebraic Framework for Universal and Updatable SNARKs 777

Finally, we give several constructions of CSS arguments. In Sect. 5.3, we start
from the representation of a matrix W as bivariate polynomial introduced in [14],
and present an alternative that comes from applying a linearization step to it.
The result is a CSS for sparse matrices, that compared to [13,14], at a minimial
increase in communication cost, significantly reduces the SRS. We study several
extensions of this argument, for example, to sums of sparse matrices. We also
identify a simple building block that allows for a modular construction. In the full
version we discuss how these CSS arguments result in zkSNARKs with different
performance trade-offs.

1.1 Related Work

Bivariate Polynomial Evaluation Arguments. As mentioned before, the
complexity of building updatable and universal zkSNARKs protocols is mainly
caused by proving affine constraints. A natural way to encode them is through a
bivariate public polynomial P (X,Y); in order to avoid having a quadratic SRS,
this polynomial can only be given to the verifier evaluated or partially evaluated
in the field. The common approach is to let the verifier chose arbitrary field
elements x, y and having the prover evaluate and send σ = P (y, x). The challenge
is to prove that the evaluation has been performed correctly. In Sonic [33], this
last step is called a signature of correct computation [36] and can be performed
by the prover or by the verifier with some help from an untrusted third party.
The drawback of the first construction is that, while still linear, prover’s work
is considerably costly; also, linear constraints are assumed to be sparse and the
protocol works exclusively for a very particular polynomial P (X,Y). The second
construction is interesting only in some restricted settings where the same verifier
checks a linear amount of proofs for one circuit. Marlin [14] bases its construction
on the univariate sum-check protocol of Aurora [5] and presents a novel way to
navigate from the naive quadratic representation P (X,Y) to a linear one. This
approach results in succinct prover and verifier work, but restricts their protocol
to the case where the number of non-zero entries of matrix W is bounded by
the size of some multiplicative subgroup of the field of definition. Lunar [13] uses
the same representation as Marlin but improves on it, among other tweaks by
introducing a new language (R1CS-lite) that can also represent arithmetic circuit
satisfiability, but has a lighter representation than other constraint systems.
Plonk [20] does not use bivariate polynomials or require sparse matrices but
the SRS size depends on the number of both multiplicative and additive gates.
Plonk, Marlin and Lunar use the Lagrange interpolation basis to commit to
vectors. Claymore [38] presents a modular construction for zkSNARKs based
on similar algebraic building blocks but in the monomial basis: inner product,
Hadamard product and matrix-vector product arguments. The latter also uses
an implicit CSS argument.

Information Theoretic Proof Systems. These previous works all follow the
two step process described in the introduction and build their succinct argu-
ment by compiling an information theoretically secure one. Marlin introduces

778 C. Ràfols and A. Zapico

Algebraic Holographic proofs, that are variation of interactive oracle proofs
(IOPs) [6]. Holographic refers to the fact that the verifier never receives the
input explicitly (otherwise, succinctness would be impossible), but rather its
encoding as an oracle computed by an indexer or encoder. The term algebraic
refers to the fact that oracles are low degree polynomials, and malicious provers
are also bound to output low degree polynomials. This is similar to the notion
of Idealised Low Degree protocols of Plonk. Lunar refines this model by intro-
ducing Polynomial Holographic IOPs, which generalize these works mostly by
allowing for a fine grained analysis of the zero-knowledge property, including
degree checks, and letting prover and verifier send field elements.

Polynomial Commitments. Polynomial commitments allow to commit to a
polynomial p(X) ∈ F[X], and open it at any point x ∈ F. As it is common, we will
use a polynomial commitment based on the one by Kate et al. [30]. Sonic gave a
proof of extractability of the latter in the Algebraic Group Model [18], and Marlin
completed the proof to make the commitments usable as a standalone primitive,
and also have an alternative construction under knowledge assumptions. Both
Marlin and Plonk considered versions of polynomial commitments where queries
in the same point can be batched together. For this work, we use the definitions
presented in [14].

Work |srsu| |srsW| |π| KeyGen Derive Prove Verifier

Sonic [33] G1 4N – 20 4N 36n 273n 7P

G2 4N 3 – 4N – –

F – – 16 – O(m log m) O(m log m) O(l + log m)

Plonk [20] G1 3N∗ 8 7 3N∗ 8n + 8a 11n + 11a 2P

G2 1 1 – – – –

F – – 7 – O((n + a) log(n + a)) O((n + a) log(n + a)) O(l + log(n + a))

Marlin [14] G1 3M 12 13 3M 12m 14n + 8m 2P

G2 2 2 – – – –

F – – 8 – O(m log m) O(m log m) O(l + log m)

Lunar [13] G1 M – 10 M – 8n + 3m 7P

G2 M 27 – M 24m –

F – – 2 – O(m log m) O(m log m) O(l + log m)

This work G1 M 4 11 M 6m 8n + 4m 2P

G2 1 1 – – – –

F – – 4 – O(m log m) O(m log m) O(l + log m)

Comparison with state of the art universal and updatable zkSNARKs. n: number of multiplicative

gates, a: number of additive gates, m = |F| + |G|, where F,G are the matrices that describe the

linear relations for the left and right inputs, respectively. N, A, M : maximum supported values for

n, a, m. N∗ = M + A.

Untrusted Setup. The original constructions of pairing-based zkSNARKs cru-
cially depend for soundness on a trusted setup, although, as was shown in [1,17],
the zero-knowledge property is still easy to achieve when the setup is sub-
verted. Groth et al. introduced the updatable SRS model in [27] to address
the issue of trust in SRS generation. There are several alternatives to achieve
transparent setup and constant-size proofs, but all of them have either linear

An Algebraic Framework for Universal and Updatable SNARKs 779

verifier [2,5,8,11], or work only for very structured types of computation [3,39].
An exception is the work of Setty [37]. Concretely, its approach is less efficient in
terms of proof size and verification complexity compared to recent constructions
of updatable and universal pairing-based SNARKs.

2 Preliminaries

A bilinear group gk is a tuple gk = (q,G1,G2,GT , e,P1,P2) where G1,G2 and
GT are groups of prime order q, the elements P1,P2 are generators of G1,G2

respectively, e : G1 × G2 → GT is an efficiently computable, non-degenerate
bilinear map, and there is an efficiently computable isomorphism between G1 and
G2. Elements in Gγ , are denoted implicitly as [a]γ = aPγ , where γ ∈ {1, 2, T}
and PT = e(P1,P2). With this notation, e([a]1, [b]2) = [ab]T .

For n ∈ N, [n] is the set of integers {1, . . . , n}. Vectors and matrices are
denoted in boldface. Given two vectors a, b, their Hadamard product is denoted
as a ◦ b, and their inner product as a · b. The subspace of polynomials of degree
at most d in F[X] is denoted as F≤d[X]. Given a matrix M, |M| refers to the
number of its non-zero entries.

2.1 Constraint Systems

Formally, we will construct an argument for the universal relation R′
R1CS-lite,

an equivalent of the relation RR1CS-lite introduced in Lunar [13]. The latter is
a simpler version of Rank 1 Constraint Systems, it is still NP complete and
encodes circuit satisfiability in a natural way:

Definition 1. (R1CS-lite) Let F be a finite field and m, l, s ∈ N. We define the
universal relation R1CS-lite as:

RR1CS-lite =

⎧
⎨

⎩

(R, x,w) :=
(
(F, s,m, l,F,G),x,w

)
:

F,G ∈ F
m×m,x ∈ F

l−1,w ∈ F
m−l, s = max{|F|, |G|},

and for c := (1,x,w), (Fc) ◦ (Gc) = c

⎫
⎬

⎭
.

As an equivalent formulation of this relation, we use the following:

R′
R1CS-lite =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(R, x,w) :=
(
(F, s, m, l,F,G), x, (a′, b′)

)
: F,G ∈ F

m×m, x ∈ F
l−1,

a′, b′ ∈ F
m−l, s = max{|F|, |G|}, and for a := (1, x, a′), b := (1, b′)

(
I 0 −F
0 I −G

)
⎛

⎝
a
b

a ◦ b

⎞

⎠ = 0

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

.

To see they are equivalent, observe that, if in R′
R1CS-lite we define the vector

c = a ◦ b, the linear equation reads as a = Fc and b = Gc. A formal proof is
a direct consequence of the proof that arithmetic circuit satisfiability reduces to
R1CS-lite found in Lunar ([13]).

780 C. Ràfols and A. Zapico

2.2 zkSNARKs

Let R be a family of universal relations. Given a relation R ∈ R and an instance
x we call w a witness for x if (x,w) ∈ R, L(R) = {x| ∃w : (x,w) ∈ R} is the
language of all the x that have a witness w in the relation R, while L(R)is the
language of all the pairs (x,R) such that x ∈ L(R).

Definition 2. A Universal Succinct Non-Interactive Argument of Knowledge is
a tuple of PPT algorithms (KeyGen,KeyGenD,Prove,Verify,Simulate) such that:

– (srsu, τ) ← KeyGen(R): On input a family of relations R, KeyGen outputs a
universal structured common reference string srsu and a trapdoor τ ;

– srsR ← KeyGenD(srsu,R): On input R ∈ R, this algorithm outputs a relation
dependent SRS that includes srsu;

– π ← Prove(R, srsR, (x,w)): On input the relation, srsR and a pair (x,w) ∈ R,
it outputs a proof π;

– 1/0 ← Verify(srsR, x, π): Verify takes as input srsR, the instance x and the proof
and produces a bit expressing acceptance (1), or rejection (0);

– πsim ← Simulate(R, τ, x): The simulator has the relation R, the trapdoor τ and
the instance x as inputs and it generates a simulated proof πsim,

and that satisfies completeness, succinctness and ε-knowledge soundness as
defined below.

Definition 3. Completeness holds if an honest prover will always convince an
honest verifier. Formally, ∀ R ∈ R, (x,w) ∈ R,

Pr

[
(srsu, τ) ← KeyGen(R)

Verify(srsR, x, π) = 1 srsR ← KeyGenD(srsu,R)
π ← Prove(R, srsR, (x,w))

]

= 1.

Definition 4. Succinctness holds if the size of the proof π is poly(λ + log |w|)
and Verify runs in time poly(λ + |x| + log |w|).
Definition 5. ε-knowledge soundness captures the fact that a cheating prover
cannot, except with probability at most ε, create a proof π accepted by the veri-
fication algorithm unless it has a witness w such that (x,w) ∈ R. Formally, for
all PPT adversaries A, there exists a PPT extractor E such that:

Pr

⎡

⎢
⎢
⎢
⎣

(srsu, τ) ← KeyGen(R)
R ← A(srsu)

(x,w) /∈ R ∧ Verify(srsR, x, π) = 1 srsR ← KeyGenD(srsu,R)
(x, π) ← A(R, srsR)
w ← E(srsR, x, π)

⎤

⎥
⎥
⎥
⎦

≤ ε.

Definition 6. (KeyGen,KeyGenD,Prove,Verify,Simulate) is zero-knowledge (a
zkSNARK) if for all R ∈ R, instances x and PPT adversaries A.

Pr

[
(srsu, τ) ← KeyGen(R)

A(R, srsR, π) = 1 srsR ← KeyGenD(srsu,R)
π ← Prove(R, srsR, (x,w))

]

≈

An Algebraic Framework for Universal and Updatable SNARKs 781

Pr

[
(srsu, τ) ← KeyGen(R)

A(R, srsR, πsim) = 1 srsR ← KeyGenD(srsu,R)
πsim ← Simulate(R, τ, x)

]

.

Updatability. We will say a universal zkSNARK is updatable if srsu is updatable
as defined in [21]. We remark their result states that this is the case if srsu consists
solely of monomials.

2.3 Polynomial Holographic Proofs

In this paper, we use the notion of Polynomial Holographic Interactive Oracle
Proofs (PHP), recently introduced by Campanelli et al. [13]. It is a refinement
and quite similar to other notions used in the literature to construct SNARKs
in a modular way, such as Algebraic Holographic Proofs (AHP) [14] or idealized
polynomial protocols [20].

A proof system for a relation R is holographic if the verifier does not read
the full description of the relation, but rather has access to an encoding of the
statement produced by some holographic relation encoder, also called indexer,
that outputs oracle polynomials. In all these models, the prover is restricted to
send oracle polynomials or field elements, except that, for additional flexibility,
the PHP model of [13] also lets the prover send arbitrary messages. In PHPs,
the queries of the verifier are algebraic checks over the polynomials sent by the
verifier, as opposed to being limited to polynomial evaluations as in AHPs.

The following definitions are taken almost verbatim from [13].

Definition 7. A family of polynomial time computable relations R is field
dependent if each relation R ∈ R, specifies a unique finite field. More precisely,
for any pair (x,w) ∈ R, x specifies the same finite field FR (simply denoted as F

if there is no ambiguity).

Definition 8 (Polynomial Holographic IOPs (PHP)). A Polynomial
Holographic IOP for a family of field-dependent relations R is a tuple PHP =
(rnd, n,m, d, ne, I,P,V), where rnd, n,m, d, ne : {0, 1}∗ → N are polynomial-time
computable functions, and I,P,V are three algorithms that work as follows:

– Offline phase: The encoder or indexer I(R) is executed on a relation
description R, and it returns n(0) polynomials {p0,j}n(0)j=1 ∈ F[X] encoding
the relation R and where F is the field specified by R.

– Online phase: The prover P(R, x,w) and the verifier VI(R)(x) are executed
for rnd(|R|) rounds, the prover has a tuple (R, x,w) ∈ R, and the verifier
has an instance x and oracle access to the polynomials encoding R. In the
i-th round, V sends a message ρi ∈ F to the prover, and P replies with m(i)
messages {πi,j ∈ F}m(i)

j=1 , and n(i) oracle polynomials {pi,j ∈ F[X]}n(i)j=1, such
that deg(pi,j) < d(|R|, i, j).

– Decision phase: After the rnd(|R|)-th round, the verifier outputs two sets of
algebraic checks of the following type:

782 C. Ràfols and A. Zapico

• Degree checks: to check a bound on the degree of the polynomials sent
by the prover. More in detail, let np =

∑rnd(|R|)
k=1 n(k) and let (p1, . . . , pnp

)
be the polynomials sent by P. The verifier specifies a vector of integers
d ∈ N

np , which satisfies the following condition

∀k ∈ [np] : deg(pk) ≤ dk.

• Polynomial checks: to verify that certain polynomial identities hold
between the oracle polynomials and the messages sent by the prover. Let
n∗ =

∑rnd(|R|)
k=0 n(k) and m∗ =

∑rnd(|R|)
k=0 m(k), and denote by (p1, . . . , pn∗)

and (π1, . . . , πn∗) all the oracle polynomials (including the n(0) ones
frrom the encoder) and all the messages sent by the prover. The veri-
fier can specify a list of ne tuples, each of the form (G, v1, . . . , vn∗), where
G ∈ F[X,X1, . . . , Xn∗ , Y1, . . . , Ym∗] and every vk ∈ F[X]. Then a tuple
(G, v1, . . . , vn∗) is satisfied if and only if F (X) ≡ 0 where

F (X) := G
(
X, {pk(vk(X))}k=1,...,n∗ , {πk}k=1,...,m∗

)
.

The verifier accepts if and only if all the checks are satisfied.

Definition 9. A PHP is complete if for any triple (R, x,w) ∈ R, the checks
returned by VI(R) after interacting with the honest prover P(R, x,w), are satisfied
with probability 1.

Definition 10. A PHP is ε-sound if for every relation-instance tuple (R, x) /∈
L(R) and polynomial time prover P∗ we have

Pr
[
〈P∗,VI(R)(x)〉 = 1

]
≤ ε.

Definition 11. A PHP is ε-knowledge sound if there exists a polynomial time
knowledge extractor E such that for any prover P∗, relation R, instance x and
auxiliary input z we have

Pr
[
(R, x,w) ∈ R : w ← EP∗

(R, x, z)
]

≥ Pr
[
〈P∗(R, x, z),VI(R)(x)〉 = 1

]
− ε,

where E has oracle access to P∗, it can query the next message function of P∗

(and also rewind it) and obtain all the messages and polynomials returned by it.

Definition 12. A PHP is ε-zero-knowledge if there exists a PPT simulator S
such that for every triple (R, x,w) ∈ R, and every algorithm V∗, the following
random variables are within ε-statistical distance:

View (P(R, x,w),V∗) ≈c View
(
SV∗

(R, x)
)

,

where View (P(R, x,w),V∗) consists of V∗’s randomness, P’s messages (which
do not include the oracles) and V∗’s list of checks, while View

(SV∗
(R, x)

)
consists

of V∗’s randomness followed by S’s output, obtained after having straightline access to
V∗, and V∗’s list of checks.

An Algebraic Framework for Universal and Updatable SNARKs 783

We assume that in every PHP scheme there is an implicit maximum degree
for all the polynomials used in the scheme. Thus, we include only degree checks
that differ from this maximum. In all our PHPs, the verifier is public coin.

The following definition captures de fact that zero-knowledge should hold
even when the verifier has access to a bounded amount of evaluations of the poly-
nomials that contain information about the witness. Let Q be a list of queries;
we say that Q is (b,C)-bounded for b ∈ N

np and C a PT algorithm, if for every
i ∈ [np], |{(i, z) : (i, z) ∈ Q}| ≤ bi, and for all (i, z) ∈ Q, C(i, z) = 1.

Definition 13. A PHP is (b,C)-zero-knowledge if for every triple (R, x,w) ∈
R, and every (b,C)-bounded list Q, the follow random variables are within ε
statistical distance:

(
View

(P(F,R, x,w),V), (pi(z))(i,z)∈Q
) ≈ε S (F,R, x,V(F, x),Q) ,

where the pi(X) are the polynomials returned by the prover.

Definition 14. A PHP is honest-verifier zero-knowledge with query bound b if
there exists a PT algorithm C such that PHP is (b,C)-zero-knowledge and for all
i ∈ N, Pr[C(i, z) = 0] is negligible, where z is uniformly sampled over F.

2.4 Cryptographic Assumptions

Once we compile the PHP through a polynomial commitment into a zkSNARK,
the latter will achieve its security properties in the Algebraic Group Model of
Fuchsbauer et al. [18]. In this model adversaries are restricted to be algebraic,
namely, when an adversary A gets some group elements as input and outputs
another group element, it can provide some algebraic representation of the latter
in terms of the former.

Definition 15 (Algebraic Adversary). Let G be a cyclic group of order p.
We say that a PPT adversary A is algebraic if there exists an efficient extractor
EA that, given the inputs ([x1], . . . , [xm]) of A, outputs a representation z =
(z1, . . . , zm)� ∈ F

m, where F is the finite field of p elements, for every group
element [y] in the output of A such that:

Advalg
G,A(λ) =

⎡

⎣
[y] ← A([x1], . . . , [xm]), z ← EA([y], [x1], . . . , [xm]),

and [y] �=
m∑

j=1

zj [xj]

⎤

⎦ = negl(λ).

The security of our final argument for R1CS-lite (after compilation) is proven
in the algebraic group model under the following assumption:

Definition 16 (q-dlog Asymmetric Assumption). The q(λ)-discrete loga-
rithm assumption holds for gk ← G(1λ) if for all PPT algorithm A

Advq−dlog
gk,A (λ) = Pr [x ← A(gk, [x]1,2, . . . , [xq]1,2)] = negl(λ).

784 C. Ràfols and A. Zapico

3 Generalized Univariate Sumcheck

In this section, we revisit the sumcheck of Aurora [5]. As presented there, this
argument allows to prove that the sum of the evaluations of a polynomial in some
multiplicative2 set H of a finite field F sum to 0. We generalize the argument to
arbitrary sets H ⊂ F, solving an open problem posed there. Additionally, we give
a simpler proof of the same result by connecting the sumcheck to polynomial
evaluation and other basic properties of polynomials.

Given some finite field F, let H be an arbitrary set of cardinal m, with some
predefined canonical order, and hi refers to the ith element in this order. The
ith Lagrange basis polynomial associated to H is denoted by λi(X). The vector
λ(X) is defined as λ(X)� = (λ1(X), . . . , λm(X)). The vanishing polynomial of
H will be denoted by t(X). When H is a multiplicative subgroup, the following
properties are known to hold:

t(X) = Xm − 1, λi(X) =
hi

m

(Xm − 1)
(X − hi)

, λi(0) =
1
m

,

for any i = 1, . . . , m. This representation makes their computation particu-
larly efficient: both t(X) and λi(X) can be evaluated in O(log m) field operations.

We prove a generalized sumcheck theorem below, and derive the sumcheck of
Aurora as a corollary for the special case where H is a multiplicative subgroup.
The intuition is simple: let P1(X) be a polynomial of arbitrary degree in F[X],
and P2(X) =

∑m
i=1 λi(X)P1(hi). Note that P1(X), P2(X) are congruent modulo

t(X), and the degree of P2(X) is at most m− 1. Then, when P2(X) is evaluated
at an arbitrary point v ∈ F, v /∈ H, P2(v) =

∑m
i=1 λi(v)P1(hi). Thus, P2(v) is

“almost” (except for the constants λi(v)) the sum of the evaluations of P1(hi).
Multiplying by a normalizing polynomial, we get rid of the constants and obtain
a polynomial that evaluated at v is the sum of any set of evaluations of interest.
The sum will be zero if this product polynomial has a root at v.

Theorem 1 (Generalized Sumcheck). Let H be an arbitrary subset of some
finite field F and t(X) the vanishing polynomial at H. For any P (X) ∈ F[X], S ⊂
H, and any v ∈ F, v /∈ H,

∑
s∈S P (s) = σ if and only if there exist polynomials

H(X) ∈ F[X], R(X) ∈ F≤m−2[X] such that

P (X)NS,v(X) − σ = (X − v)R(X) + t(X)H(X),

where NS,v(X) =
∑

s∈S λs(v)−1λs(X) and λs(X) is the Lagrange polynomial
associated to s and the set H.

2 In fact, the presentation is more general as they also consider additive cosets, but
we stick to the multiplicative case which is the one that has been used in other
constructions of zkSNARKs.

An Algebraic Framework for Universal and Updatable SNARKs 785

Proof. Observe that P (X) =
∑

h∈H
P (h)λh(X) mod t(X). Therefore,

P (X)NS,v(X) − σ =
(∑

h∈H

P (h)λh(X)
)(∑

s∈S
λs(v)−1λs(X)

)
− σ

=
(∑

s∈S
P (s)λs(v)−1λs(X)

)
− σ mod t(X).

Let Q(X) =
(∑

s∈S P (s)λs(v)−1λs(X)
)

−σ. Note that Q(v) =
∑

s∈S P (s)−σ.
Thus,

∑
s∈S P (s) = σ if and only if Q(X) is divisible by X−v. The claim follows

from this observation together with the fact that Q(X) is the unique polynomial
of degree m − 1 that is congruent with P (X)NS,v(X) − σ. ��
Lemma 1. If S = H is a multiplicative subgroup of F, NH,0(X) = m.

Proof. Recall that, as H is a multiplicative subgroup, λi(0) = 1/m for all i =
1, . . . ,m. Therefore, NH,0(X) =

∑m
i=1 λi(0)−1λi(X) = m

∑m
i=1 λi(X) = m. ��

As a corollary of Lemma 1 and the Generalized Sumcheck, we recover the uni-
variate sumcheck: if H is a multiplicative subgroup,

∑
h∈H

P (h) = σ if and only
if there exist polynomials R(X),H(X) with deg(R(X)) ≤ m − 2 such that
P (X)m − σ = XR(X) + t(X)H(X).

3.1 Application to Linear Algebra Arguments

Several works [5,13,14] have observed that R1CS languages can be reduced to
proving a Hadamard product relation and a linear relation, where the latter con-
sists on showing that two vectors x,y are such that y = Mx, or equivalently,
that the inner product of (y,x) with all the rows of (I,−M) is zero. When matri-
ces and vectors are encoded as polynomials for succinctness, for constructing a
PHP it is necessary to express these linear algebra operations as polynomial
identities.

For the Hadamard product relation, the basic observation is that, for any
polynomials A(X), B(X), C(X), the equation

A(X)B(X) − C(X) = H(X)t(X), (1)

holds for some H(X) if and only if (A(h1), . . . , A(hm)) ◦ (B(h1), . . . , B(hm)) −
(C(h1), . . . , C(hm)) = 0. In particular, A(X) = a�λ(X), B(X) = b�λ(X)
encode vectors a, b, then C(X) mod t(X) encodes a◦b. This Hadamard product
argument is one of the main ideas behind the zkSNARK of Gentry et al. [22]
and follow-up work.

For linear relations, the following Theorem explicitly derives a polynomial
identity that encodes the inner product relation from the univariate sumcheck.
This connection in a different formulation is implicit in previous works [5,13,14].

786 C. Ràfols and A. Zapico

Theorem 2 (Inner Product Polynomial Relation). For some k ∈ N, let
y = (y1, . . . ,yk), yi = (yij), d = (d1, . . . ,dk) be two vectors in F

km, yi,di ∈ F
m,

and H a multiplicative subgroup of F of order m. Then, y · d = 0 if and only
if there exist H(X), R(X) ∈ F[X], R(X) of degree at most m − 2 such that the
following relation holds:

Y (X) · D(X) = XR(X) + t(X)H(X), (2)

where Y (X) = (Y1(X), . . . , Yk(X)) is a vector of polynomials of arbitrary degree
such that Yi(hj) = yij for all i = 1, . . . , k, j = 1, . . . , m, and D(X) =
(D1(X), . . . , Dk(X)) is such that Di(X) = d�

i λ(X).

Proof. Since Yi(hj) = yij , for all i, j, Yi(X) = y�
i λ(X) mod t(X). There-

fore, Yi(X)Di(X) = (y�
i λ(X))(d�

i λ(X)) mod t(X), and by the aforemen-
tioned properties of the Lagrange basis, this is also congruent modulo t(X)
to (yi ◦ di)�λ(X). Therefore,

Y (X) · D(X) =
k∑

i=1

Yi(X)Di(X) =
k∑

i=1

(yi ◦ di)�λ(X)

=

(
k∑

i=1

(yi ◦ di)�
)

λ(X) mod t(X).

By Theorem 1,
((∑k

i=1(yi ◦di)�)λ(X)
)
NH,0(X) is divisible by X if and only if

the sum of the coordinates of
∑k

i=1(yi◦di) is 0. The implication is also true after
dividing by NH,0(X) = m. The jth coordinate of

∑k
i=1(yi ◦ di) is

∑k
i=1 yijdij ,

thus the sum of all coordinates is
∑m

j=1

∑k
i=1 yijdij = y ·d, which concludes the

proof. ��
In the rest of the paper H will always be a multiplicative subgroup, both for

simplicity (as NH,0 = m), and efficiency (due to the properties that Lagrange and
vanishing polynomials associated to multiplicative subgroups have). However,
Theorem 2 can be easily generalized to arbitrary sets H (just multiplying the
left side of Eq. (2) by NH,0).

4 Checkable Subspace Sampling: Definition
and Implications

In a Checkable Subspace Sampling (CSS) argument prover and verifier interac-
tively agree on a polynomial D(X) representing a vector d in the row space of
a matrix M. The fiber of the protocol is that D(X) is calculated as a linear
combination of encoding of the rows of M with some coefficients determined by
the verifier, but the verifier does not need to calculate D(X) itself (this would
require the verifier to do linear work in the number of rows of M). Instead, the

An Algebraic Framework for Universal and Updatable SNARKs 787

prover can calculate this polynomial and then convince the verifier that it has
been correctly computed.

Below we give the syntactical definition of Checkable Subspace Sampling.
Essentially, a CSS scheme is similar to a PHP for a relation RM, except that the
statement (cns,D(X)) is decided interactively, and the verifier has only oracle
access to the polynomial D(X). A CSS scheme can be used as a building block
in a PHP, and the result is also a PHP.

Definition 17 (Checkable Subspace Sampling, CSS). A checkable subspace
sampling argument over a field F defines some Q,m ∈ N, a set of admissible
matrices M, a vector of polynomials β(X) ∈ (F[X])m, a coinspace C, a sampling
function Smp : C → F

Q, and a relation:

RCSS,F =
{ (

M, cns,D(X)
)

: M ∈ M ⊂ F
Q×m,D(X) ∈ F[X], cns ∈ C,

s = Smp(cns), and D(X) = s�Mβ(X)

}

.

For any M ∈ M, it also defines:

RM =
{(

cns,D(X)
)

:
(
M, cns,D(X)

) ∈ RCSS,F

}
.

It consists of three algorithms:

– ICSS is the indexer: in an offline phase, on input (F,M) returns a set WCSS of
n(0) polynomials {p0,j(X)}n(0)

j=1 ∈ F[X]. This algorithm is run once for each
M.

– Prover and Verifier proceed as in a PHP, namely, the verifier sends field
elements to the prover and has oracle access to the polynomials outputted by
both the indexer and the prover; this phase is run in two different stages:

• Sampling: PCSS and VCSS engage in an interactive protocol. In some
round, the verifier sends cns ← C, and the prover replies with D(X) =
s�Mβ(X), for s = Smp(cns).
• ProveSampling: PCSS and VCSS engage in another interactive protocol to
prove that (cns,D(X)) ∈ RM.

– When the proving phase is concluded, the verifier outputs a bit indicating
acceptance or rejection.

The vector β(X) = (β1(X), . . . , βm(X)) defines an encoding of vectors as
polynomials: vector v is mapped to the polynomial v�β(X) =

∑m
i=1 viβi(X).

When using a CSS for constructing an argument of membership in linear spaces
as in the next section, we choose a characterization of inner product that is
compatible with Lagrange polynomials. Thus, in this work, βi(X) is defined as
λi(X), the ith Lagrange polynomial associated to some multiplicative subgroup
H of F. Still, it also makes sense to consider also CSS arguments for other
polynomial encodings, e.g. the monomial basis or Laurent polynomials.

We require a CSS argument to satisfy the following security definitions:

Perfect Completeness. If both prover and verifier are honest the output of the
protocol is 1:

788 C. Ràfols and A. Zapico

Pr
[
〈PCSS(F,M, cns),VWCSS

CSS (F)〉 = 1
]

= 1.

where the probability is taken over the random coins of prover and verifier.

Soundness. A checkable subspace sampling argument (ICSS,PCSS,VCSS) is ε-
sound if for all M and any polynomial time prover P∗

CSS:

Pr

[
D∗(X) �= s�Mβ(X) (cns, D∗(X)) ← Sampling〈P∗

CSS(F,M, cns), VWCSS(F)〉;
s = Smp(cns); 〈P∗

CSS(F,M, cns), VWCSS
CSS (F)〉 = 1

]
≤ ε.

The soundness of the CSS argument will ensure that the vector is sampled as
specified by the coins of the verifier so the prover cannot influence its distribution.
For a CSS argument to be useful, we additionally need that distribution induced
by the sampling function is sufficiently “good”. This is a geometric property that
can be captured in the Elusive Kernel property defined below.

Definition 18. A CSS argument is ε-elusive kernel3 if

max
t∈FQ,t �=0

Pr
[
s · t = 0 s = Smp(cns); cns ← C] ≤ ε.

In practice, for most schemes, s is a vector of monomials or Lagrange basis
polynomials evaluated at some point x = cns, and this property is an immediate
application of Schwartz-Zippel lemma, so we will not explicitly prove it for most
of our CSS arguments.

4.1 Linear Arguments from Checkable Subspace Sampling

In this section we build a PHP for the universal relation of membership in linear
subspaces:

RLA =
{
(F,W,y) : W ∈ F

Q×km,y ∈ F
km s.t. Wy = 0

}
,

using a CSS scheme as building block. That is, given a vector y, the argument
allows to prove membership in the linear space W⊥ = {y ∈ F

km : Wy = 0}.
Although relation RLA is polynomial-time decidable, it is not trivial to construct
a polynomial holographic proof for it, as the verifier has only an encoding of W
and y.

A standard way to prove that some vector y is in W⊥ is to let the verifier
sample a sufficiently random vector d in the row space of matrix W, and prove
y ·d = 0. Naturally, the vector y must be declared before d is chosen. We follow
this strategy to construct a PHP for RLA, except that the vector d is sampled
by the prover itself on input the coins of the verifier through a CSS argument.

As we have seen in Sect. 2.1, it is natural in our application to proving R1CS
to consider matrices in blocks. Thus, in this section we prove membership in W⊥

where the matrix is written in k blocks of columns, that is, W = (W1, . . . ,Wk).

3 The name is inspired by the property of t-elusiveness of [35].

An Algebraic Framework for Universal and Updatable SNARKs 789

The vectors y,d ∈ F
km are also written in blocks as y� = (y�

1 , . . . ,y�
k) and

d� = (d�
1 , . . . ,d�

k).
Each block of W, as well as the vectors y,d can be naturally encoded, respec-

tively, as a vector of polynomials or a single polynomial multiplying on the
right by λ(X). However, we allow for additional flexibility in the encoding of y:
our argument is parameterized by a set of valid witnesses WY and a function
EY : WY → (F[X])k that determines how y is encoded as a polynomial. Thanks
to this generalization we can use the argument as a black-box in our R1CS-lite
construction. There, valid witnesses are of the form (a, b,a ◦ b) and, for effi-
ciency, its encoding will be (A(X) = a�λ(X), B(X) = b�λ(X), A(X)B(X)),
which means that the last element does not need to be sent.

The argument goes as follows. The prover sends a vector of polynomials
Y (X) encoding y. The CSS argument is used to delegate to the prover the
sampling of d�

i , i = 1, . . . , k in the row space of Wi. Then, the prover sends
D(X) together with a proof that y · d = 0. For this inner product argument to
work, we resort to Theorem 2 that guarantees that, if EY is an encoding such
that if EY (y) = Y (X), then Yi(hj) = yij , the inner product relation holds if and
only if the verification equation is satisfied for some Ht(X), Rt(X).

Because of the soundness property of the CSS argument, the prover cannot
influence the distribution of d, which is sampled according to the verifier’s coins.
Therefore, if Y (X) passes the test of the verifier, y is orthogonal to d. By the
Elusive Kernel property of the CSS argument, d will be sufficiently random. As
it is sampled after y is declared, this will imply that y is in W⊥.

Fig. 1. Argument for proving membership in W⊥, parameterized by the polynomial
encoding EY : WY → F[X]k, and the set WY ⊂ F

km.

790 C. Ràfols and A. Zapico

Theorem 3. When instantiated using a CSS scheme with perfect completeness,
and when the encoding EY : WY → F[X]k satisfies that, if EY (y) = Y (X), then
Yi(hj) = yij, the PHP of Fig. 1 has perfect completeness.

Proof. By definition, D(X) = (s�W1λ(X), . . . , s�Wkλ(X)), for s =
Samp(cns). Note that this is because the k instances of the CSS scheme are run
in parallel and the same coins are used to sample each of the di. Thus, D(X)
is the polynomial encoding of d = (s�W1, . . . , s

�Wk) = s�W. Therefore, if
y is in W⊥, d · y = s�Wy = 0. By the characterization of inner product, as
explained in Sect. 3, this implies that polynomials Ht(X), Rt(X) satisfying the
verification equation exist. ��
Theorem 4. Let CSS be ε-sound and ε′-Elusive Kernel, and EY : WY → F[X]k

an encoding such that if EY (y) = Y (X), Yi(hj) = yij. Then, for any polynomial
time adversary A against the soundness of PHP of Fig. 1:

Adv(A) ≤ ε′ + kε.

Further, the PHP satisfies 0-knowledge soundness.

Proof. Let Y ∗(X) = (Y ∗
1 (X), . . . , Y ∗

k (X)) be the output of a cheating P∗
LA and

y∗ = (y∗
1 , . . . ,y

∗
k) the vector such that Y ∗

i (hj) = y∗
ij . As a direct consequence of

Theorem 2, Y ∗(X) · D(X) = XRt(X) + t(X)Ht(X) only if y∗ · d = 0, where d
is the unique vector d such that D(X) = (d�

1 λ(X), . . . ,d�
k λ(X)).

On the other hand, the soundness of the CSS scheme guarantees that, for
each i, the result of sampling Di(X) corresponds to the sample coins sent by the
verifier, except with probability ε. Thus, the chances that the prover can influence
the distribution of D(X) so that so that y∗ · d = 0 are at most kε. Excluding
this possibility, a cheating prover can try to craft y∗ in the best possible way
to maximize the chance that y∗ · d = 0. Since d� = s�W, and in a successful
attack y∗ /∈ W⊥, we can see that this possibility is bounded by the probability:

max
y ∗ /∈W⊥

Pr

⎡

⎣
cns ← C;

d · y∗ = 0 s = Smp(cns);
d = s�W

⎤

⎦ = max
y ∗ /∈W⊥

Pr

[
cns ← C;

s�Wy∗ = 0 s = Smp(cns)

]

Since s�Wy∗ = s · (Wy∗), and Wy∗ �= 0, this can be bounded by ε′, by the
elusive kernel property of the CSS scheme.

For knowledge soundness, define the extractor E as the algorithm that runs
the prover and, by evaluating Yi(X) in {hj}m

j=1 for all i ∈ [k], recovers y. If the
verifier accepts with probability greater than ε′+kε, then y is such that Wy = 0
with the same probability. ��

Extension to Other Polynomial Encodings. As mentioned, the construction is
specific to the polynomial encoding defined by interpolation. However, the only
place where this plays a role is in the check of equation (3). Now, if the polyno-
mial encoding β(X)� associated to the CSS argument for W was set to be
for instance the monomial basis, i.e. β(X)� = (1,X, . . . ,Xm−1), the argu-
ment can be easily modified to still work. It suffices to choose the “reverse”

An Algebraic Framework for Universal and Updatable SNARKs 791

polynomial encoding for y, that is define Y (X) = (y�
1 β̃(X), . . . ,y�

k β̃(X)),
where β̃(X)� = (Xm−1, . . . , X, 1), and require the prover to find Rt(X),Ht(X),
with Rt(X) of degree at most m − 2 such that:

Y (X) · D(X) = Rt(X) + XmHt(X). (3)

Indeed, observe that this check guarantees that Y (X) · D(X) does not have
any term of degree exactly m − 1, and the term of degree m − 1 is exactly∑k

i=1 yi · di = y · d.

4.2 R1CS-lite from Linear Arguments

In this section we give a PHP for R1CS-lite by combining our linear argument
with other well known techniques. In this section, W is the block matrix defined
in Sect. 2.1.

Fig. 2. PHP for R′
R1CS-lite from PHP for RLA. The PHP for RLA should

be instantiated for WY = {(a, b, a ◦ b) : a, b ∈ F
m}, E(a, b, a ◦ b) =

(a�λ(X), b�λ(X), (a�λ(X))(b�λ(X))).

Theorem 5. When instantiated with a complete, sound and knowledge sound
linear argument, the PHP of Fig. 2 satisfies completeness, soundness and
knowledge-soundness.

Proof. Completeness follows directly from the definition of A′(X), B′(X), A(X),
B(X) and completeness of the linear argument. Soundness and knowledge sound-
ness hold if the linear argument is sound as well, because Vlite accepts if VLA

accepts, meaning W(̇a, b,a ◦ b)� = 0 and R′
R1CS-lite holds, and for extraction it

suffices to use the extractor of the linear argument. ��

792 C. Ràfols and A. Zapico

4.3 Adding Zero Knowledge

To achieve zero-knowledge, it is common to several works on pairing-based
zkSNARKS [13,14,22] to randomize the polynomial commitment to the witness
with a polynomial that is a multiple of the vanishing polynomial. That is, the
commitment to a vector a is A(X) =

∑
aiλi(X)+t(X)h(X), where t(X), λi(X)

are defined as usual, and the coefficients of h(X) are the randomness. In [22],
h(X) can be constant, since the commitment A(X) in the final argument is eval-
uated at a single point. In other works where the commitment needs to support
queries at several point values, h(X) needs to be of higher degree. In Marlin, it is
suggested to choose the degree according to the number of oracle queries to max-
imimize efficiency, and in Lunar this idea is developed into a fine-grained analysis
and a vector with query bounds is specified for the compiler. Additionally, for
this technique, the prover needs to send a masking polynomial to randomize the
polynomial R(X) of the inner product check. The reason is that this polynomial
leaks information about (A(X), B(X), A(X)B(X)) · D(X) mod t(X).

In this section, we show how to add zero-knowledge to the PHP for R1CS-
lite of Sect. 4.2 without sending additional polynomials. The approach is natural
and a similar technique has also been used in [38]. Let (bA, bB , bRt

, bHt
) be the

tuple of bounds on the number of polynomial evaluations seen by the verifier
after compiling for the polynomials A(X), B(X), Rt(X),Ht(X). To commit to
a vector y ∈ F

m, we sample some randomness r ∈ F
n, where n is a function of

(bA, bB , bRt
, bHt

) to be specified (a small constant when compiling). The cardinal
of H is denoted by m̃ in this section. A commitment is defined in the usual way
for the vector (y, r), i.e.

∑m
i=1 yiλi(X) +

∑m+n
i=m+1 riλi(X), and, naturally, we

require m + n ≤ m̃. Our idea is to consider related randomness for A(X), B(X)
so that the additional randomness sums to 0 and does not interfere with the
inner product argument. The novel approach is to enforce this relation of the
randomness by adding one additional constraint to W. The marginal cost of
this for the prover is minimal. Starting from the PHP of Fig. 2 we introduce the
changes described in Fig. 3.

Fig. 3. Modification of the PHP for R′
R1CS-lite to achieve zero-knowledge. The omitted

parts are identical.

An Algebraic Framework for Universal and Updatable SNARKs 793

Theorem 6. With the modification described in Fig. 3 the PHP of Fig. 2
is perfectly complete, sound, knowledge-sound, perfect zero-knowledge and
(bA, bB , bRt

, bHt
)-bounded honest-verifier zero-knowledge if n ≥ (

bA+bB +bRt
+

bHt
+ 1

)
/2, and n ≥ max(bA, bB).

Proof. The only difference with the previous argument is the fact that the matrix
of constraints has changed, which is now W̃. For completeness, observe that the
additional constraint makes sure that

∑n
i=1 ra,i + rb,i = 0, and an honest prover

chooses the randomness such that this holds. On the other hand, the sumcheck
theorem together with this equation guarantee that the randomness does not
affect the divisibility at 0 of (Ã(X), B̃(X), Ã(X)B̃(X)) · D(X) mod t(X).

For soundness, note that W̃
(
ã�, b̃�, (ã ◦ b̃)�), is equivalent to 1) a =

F(a ◦ b), 2) b = G(a ◦ b), and 3)
∑n

i=1 ra,i + rb,i = 0, for a := (1,x,a′)
b := (1l, b

′). This is because the first two blocks of constraints have 0s in the
columns corresponding to ra, rb, and the other way around for the last constraint.
Therefore, by the soundness of the linear argument

∑n
i=1 ra,i + rb,i = 0, and the

randomness does not affect divisibility at 0 of (A(X), B(X), A(X)B(X))�·D(X)
mod t(X), so the same reasoning used for the argument of Fig. 2 applies.

Perfect zero-knowledge of the PHP is immediate, as all the messages in the
CSS procedure contain only public information and the rest of the information
exchanged are oracle polynomials.

We now prove honest-verifier bounded zero-knowledge. The simulator is sim-
ilar to [13] (Th. 4.7), but generalized to the distribution of D(X) induced by
the underlying CSS scheme. The simulator gets access to the random tape of
the honest verifier and receives x and the coins of the CSS scheme, as well as a
list of its checks. It creates honestly all the polynomials of the CSS argument,
since these are independent of the witness.

For an oracle query at point γ, the simulator samples uniform random values
A′

γ , B′
γ , Rγ,t in F and declares them, respectively, as A′(γ), B′(γ), Rt(γ). It then

defines the rest of the values to be consistent with them. More precisely, let
D(X)� = s�Wλ(X) = (Da(X),Db(X),Dab(X)) be the output of the CSS
argument, which the simulator can compute with the CSS coins. Then, the
simulator sets:

Aγ = A′
γtl(γ) +

l∑

i=1

xiλi(γ), Bγ = B′
γtl(γ) + 1,

pγ = Da(γ)Aγ + Db(γ)Bγ + Dab(γ)AγBγ Htγ = (pγ − γRt,γ)/t(γ),

where Qγ for Q ∈ {A′, B′, Rt,Ht} is declared as Q(γ). The simulator keeps a
table of the computed values to answer consistently the oracle queries.

We now argue that the queries have the same distribution as the evaluations
of the prover’s polynomials if all the queries γ are in F\H. Since the verifier is
honest, and |H| is assumed to be a negligible fraction of the field elements, we
can always assume this is the case. In this case, the polynomial encoding of ra, rb

acts as a masking polynomial for A′(X), B′(X), Rt(X),Ht(X) and taking into
account that

∑n
i=1 ra,i + rb,i = 0 to have the same distribution it is sufficient

794 C. Ràfols and A. Zapico

that 2n − 1 ≥ bA + bB + bRt
+ bHt

, and n ≥ max(bA + bB), as stated in the
theorem. Therefore, bounded zero-knowledge is proven. ��

4.4 Combining CSS Schemes

Since a CSS scheme outputs a linear combination of the rows of a matrix M,
different instances of a CSS scheme can be easily combined with linear opera-

tions. More precisely, given a matrix M that can be written as
(
M1

M2

)

, we can

use a different CSS arguments for each Mi
4 Since all current constructions of

CSS arguments have limitations in terms of the types of matrices they apply
to, this opens the door to decomposing the matrix of constraints into different
blocks that admit efficient CSS arguments. For instance, matrices with a few
very dense constraints (i.e. with very few rows with a lot of non-zero entries)
and otherwise sparse could be split to use the scheme for sparse matrices of
Sect. 3 for one part, and the trivial approach (where one polynomial for each
row is computed by the indexer, and the verifier can sample the polynomial
D(X) computing the linear combination itself) for the rest. That is, one reason
to divide the matrix M into blocks is to have a broader class of admissible matri-
ces. Another reason is efficiency, since if a block that is either 0 or the identity
matrix, the verifier can open the polynomial D(X) itself, saving on the number
of polynomials that need to be sent. More specifically, for our final construction,

we will often split a matrix into two blocks of m rows, M =
(
M1

M2

)

, use the same

CSS argument for each matrix with the same coins, and combine them to save
on communication. More precisely, if s = Smp(cns), and D1(X) = s�M1λ(X)
and D2(X) = s�M2λ(X) are the polynomials associated to M1,M2, we will
modify the CSS argument so that it sends D1(X) + zD2(X) for some challenge
z chosen by the verifier, instead of D1(X) and D2(X) individually. Note that
D1(X) + zD2(X) = (s�, zs�)Mλ(X), that is, this corresponds to a CSS argu-
ment where the sampling coefficients depend on z also.

This cannot be done generically, it depends on the underlying CSS argument
and the type of admissible matrices. Intuitively, this modification corresponds
to implicitly constructing a CSS argument for the matrix M1 + zM2, so it is
necessary that: a) the polynomials computed by the indexer of the CSS argument
for M1,M2 can be combined, upon receiving the challenge z, to the CSS indexer
polynomials of M1+zM2, and b) that M1+zM2 is an admissible matrix for this
CSS argument. For instance, if M1,M2 has K non-zero entries each, and the
admissible matrices of a CSS instance must have at most K non-zero entries,
then M1 + zM2 is not generally an admissible matrix. We will be using this
optimization for our final PHP for sparse matrices, and we will see there that
these conditions are met in this case.

4 The naive approach would run both CSS arguments in parallel, but savings might
be possible batching the proofs.

An Algebraic Framework for Universal and Updatable SNARKs 795

5 Constructions of Checkable Subspace Sampling
Arguments

Given the results of the previous sections, for our R1CS-lite argument it is suf-
ficient to design a CSS argument for matrices M ∈ F

m×m and then use it on
all the blocks of W. In this section, we give several novel CSS arguments for
different types of square matrices.

We consider two disjoint sets of roots of unity, H,K of degree m and K,
respectively. For H we use the notation defined in Sect. 3. The elements of K

are assumed to have some canonical order, and we use k� for the
th element in
K, μ�(X) for the
th Lagrangian interpolation polynomial associated to K, and
u(X) for the vanishing polynomial.

Matrices M ∈ F
m×m can be naturally encoded as a bivariate polynomial as

P (X,Y) = α(Y)�Mβ(X), for some α(Y) ∈ F[Y]m,β(X) ∈ F[X]m. Let m�
i be

the ith row of M, and Pi(X) = m�
i β(X). Then,

P (X,x) = α(x)�Mβ(X) =
m∑

i=1

αi(x)Pi(X).

That is, the polynomial P (X,x) is a linear combination of the polynomials asso-
ciated to the rows of M via the encoding defined by β(X), with coefficients
αi(x). This suggests to define a CSS scheme where, in the sampling phase, the
verifier sends the challenge x and the prover replies with D(X) = P (X,x), and,
in the proving phase, the prover convinces the verifier that D(X) is correctly
sampled from coins x. This approach appears, implicitly or explicitly, in Sonic
and most follow-up work we are aware of.

In Sonic, α(Y),β(X) are vectors of Laurent polynomials. In Marlin, Lunar
and in this work, we set α(Y) = λ(Y), and β(X) = λ(X). The choice of
β(X) is to make the encoding compatible with the inner product defined by the
sumcheck, and the choice of α(Y) is necessary for the techniques used in the
proving phase of the CSS scheme that will be detailed in this Section.

For the proving phase, the common strategy is to follow the general template
introduced in Sonic: the verifier samples a challenge y ∈ F, checks that D(y) is
equal to a value σ sent by the prover, and that σ = P (y, x) (through what is
called a signature of correct computation, as in [36]). This proves that D(X) =
P (X,x). The last one is the challenging step, and is in fact, the main technical
novelty of each of the mentioned previous works. In all of them, this is achieved
by restricting the sets of matrices M to have a special structure: in Sonic they
need to be sums of permutation matrices, and in Marlin, as later also Lunar,
arbitrary matrices with at most K non-zero entries.

This section is organized as follows. We start by giving an overview of our new
techniques in Sect. 5.1. In Sect. 5.2, we explain our basic CSS scheme, that works
only for matrices with at most one non-zero element per column. In Sect. 5.3,
we see how to compose these checks to achieve a CSS argument for arbitrary
sparse matrices M. In Sect. 5.4, we give an extension of the basic construction
that can be used to generalize the CSS argument from basic matrices to sums

796 C. Ràfols and A. Zapico

of basic matrices without increasing the communication complexity. In the full
version we explain how this can be used to extend the CSS argument for sparse
matrices to matrices that are sums of sparse matrices without increasing the
communication complexity.

5.1 Overview of New Techniques

Our main result of this section is a CSS scheme for any matrix M = (mi,j) ∈
F

m×m of at most K non-zero entries. Assuming the non-zero entries are ordered,
this matrix can be represented, as proposed in Marlin, by three functions v : K →
F, r : K → [m], c : K → [m] such that P (X,Y) =

∑K
�=1 v(k�)λr(k�)(Y)λc(k�)(X),

where the
th non-zero entry is v(k�) = mr(k�),c(k�). If the matrix has less than
K non-zero entries v(k�) = 0, for
 = |M| + 1, . . . , K, and r(k�), c(k�) are defined
arbitrarily. We borrow this representation but design our own CSS scheme by
following a “linearization strategy”.

To see that P (y, x) is correctly evaluated, we observe that it can be written
as:

P (y, x) =
(
λr(k1)(x), . . . , λr(kK)(x)

) · (v(k1)λc(k1)(y), . . . , v(kK)λc(kK)(y)
)
.

We define low degree extensions of each of these vectors respectively as:

ex(X) =
K∑

�=1

λr(k�)(x)μ�(X), ey(X) =
K∑

�=1

v(k�)λc(k�)(y)μ�(X).

If the prover can convince the verifier that ex(X), ey(X) are correctly computed,
then it can show that P (y, x) = σ by using the inner product argument to prove
that the sum of ex(X)ey(X) mod t(X) at K is σ.

Observe that ex(X) = λ(x)�Mxμ(X), ey(X) = λ(y)�Myμ(X), for some
matrices Mx,My with at most one non-zero element per column. To prove they
are correctly computed it suffices to design a CSS argument for these simple
matrices. This can be done in a much simpler way than in Marlin (and as in
Lunar, that uses a similar technique), who prove directly that a low degree exten-
sion of ex(X)ey(X) is correctly computed (intuitively, theirs is a quadratic check
that requires the indexer to publish more information, as verifiers can only do
linear operations in the polynomials output by it). Still, our technique is similar
to theirs: given an arbitrary polynomial ex(X) =

∑K
�=1 v(k�)λf(k�)(x)μ�(X), for

some function f : K → [m], we can “complete” the Lagrange λf(k�)(x) with the
missing term (x−hf(k�)) to get the vanishing polynomial t(x). The key insight is
that the low degree extension of these “completing terms” is x − v1(X), where
v1(X) =

∑K
�=1 hf(k�)μ�(X) can be computed by the indexer.

The encoding for sparse matrices requires K to be at least |M|, and generat-
ing a field with this large multiplicative subgroup can be a problem. In the full
version, we consider a generalization to matrices M of a special form with spar-
sity KV , for any V ∈ N. The interesting point is that communication complexity
does not grow with V , and only the number of indexer polynomials grows (as

An Algebraic Framework for Universal and Updatable SNARKs 797

2V + 2). This generalization is constructed from the argument for sums of basic
matrices presented in Sect. 5.4.

We stress the importance of the linearization step: it not only allows for a
simple explanation of underlying techniques for the proving phase, but also for
generalizations such as the one in Sect. 5.4.

5.2 CSS Argument for Simple Matrices

Our basic building block is a CSS argument for matrices M = (mij) ∈ F
m×K

with at most one non-zero value in each column, in particular, |M| ≤ K. We
define two functions associated to M, v : K → F, f : K → [m]. Given an element
k� ∈ K, v(k�) = mf(k�),� �= 0, i.e., function v outputs the only non zero value
of column
 and f the corresponding row; if such a value does not exist set
v(k�) = 0 and f(k�) arbitrarily. We define the polynomial P (X,Y) such that
D(X) = P (X,x) as P (X,Y) = λ(Y)�Mμ(X). Observe that, by definition of v
and f, P (X,Y) =

∑K
�=1 v(k�)λf(k�)(Y)μ�(X).

Fig. 4. A simple CSS scheme for matrices with at most one non-zero element per
column.

Theorem 7. The argument of Fig. 4 satisfies completeness and perfect sound-
ness.

Proof. When evaluated in any k� ∈ K, the right side of the verification equation
is t(x)v2(k�) = t(x)v(k�)hf(k�)m

−1. Completeness follows from the fact that the
left side is:

D(k�)(x − v1(k�)) =
(
v(k�)λf(k�)(x)

)(
x − hf(k�)

)
= t(x)v(k�)m−1hf(k�).

For soundness, note that the degree of D(X) is at most K − 1 and that the left
side of the verification is D(k�)(x − v1(k�)), so D(k�) = t(x)v(k�)m−1hf(k�)(x −
hf(k�))

−1 = v(k�)λf(k�), for all k� ∈ K. Thus, D(X) =
∑K

�=1 v(k�)λf(k�)μ�(X). ��

798 C. Ràfols and A. Zapico

5.3 CSS Argument for Sparse Matrices

In this section, we present a CSS argument for matrices M that are sparse
without any restriction on the non-zero entries per column. We assume
a set of roots of unity K such that |M| ≤ K and define P (X,Y) =
∑K

�=1 v(k�)λr(k�)(Y)λc(k�)(X). As explained in the overview, P (y, x) can be writ-
ten as the inner product of two vectors that depend only on x and y, and the low
degree extensions of these vectors, ex(X), ey(X), are nothing but the encodings
of new matrices Mx and My in F

m×K that have at most one non-zero element
per column, so the basic CSS of Sect. 5.2 can be used to prove correctness.

Theorem 8. The argument of Fig. 5 satisfies completeness and (2K + 1)/|F|-
soundness.

Proof. Completeness follows immediately and thus we only prove soundness.
Although it does so in a batched form, the prover is showing that the following
equations are satisfied,

ex(X)(x − vr(X)) = t(x)m−1vr(X) + Hu,x(X)u(X)

ey(X)(y − v1,c(X)) = t(y)v2,c(X) + Hu,y(X)u(X)

Kex(X)ey(X) − σ = XRu(X) + u(X)Hu,x,y(X),

Now, since all the left terms of the equations are defined before the verifier
sends z, by the Schwartz-Zippel lemma, with all but probability 3/|F|, the verifier
accepts if and only such Hu,x(X),Hu,y(X),Hu,x,y(X), Ru(X) exist.

Assuming they do, the rest of the proof is a consequence of (1) soundness of
the protocol in Fig. 4, which implies that ex(X), ey(X) correspond to the correct
polynomials modulo u(X), and (2) Lemma 2 (see below) shows that if the last
equation is satisfied, and ex(X), ey(X) coincide with the honest polynomials
modulo u(X), then σ = P (y, x). Because the prover sends D(X) before receiving
y and D(y) = σ, from the Schwartz-Zippel lemma we have that, except with
negligible probability, P (X,x) = D(X) and the argument is sound. ��

Lemma 2. Given ex(X), ey(X) such that ex(X) =
∑K

�=1 λr(k�)(x)μ�(X) and
ey(X) =

∑K
�=1 v(k�)λc(k�)(y)μ�(X), P (y, x) =

∑K
�=1 v(k�)λc(k�)(y)λr(k�)(x) = σ

if and only if there exist polynomials Ru(X) ∈ F≤m−2[X],Hu,x,y(X) such that:

ex(X)ey(X) − σ/K = XRu(X) + Hu,x,y(X)u(X).

Proof. Note that ex(X)ey(X) =
K∑

�=1

v(k�)λc(k�)(y)λr(k�)(x)μ�(X) mod u(X). By

the univariate sumcheck (Lemma 1), ex(X)ey(X)−σ/K is divisible by X if and
only if P (y, x) = σ, which concludes the proof. ��

An Algebraic Framework for Universal and Updatable SNARKs 799

Fig. 5. CSS argument for M, with K such that |M| ≤ |K|.

5.4 CSS Argument for Sums of Basic Matrices

In this section, we use M for a matrix in F
m×K that can be written as

∑V
i=1 Mi,

with each Mi having at most one non-zero element in each column. We define
two functions associated to each Mi, vi : K → F, fi : K → [m] as in Sect. 5.2.
This type of matrices will be used to design a generalization of the CSS argument
for sums of sparse matrices in the full version.

Define P (X,Y) = λ(Y)�Mμ(X), and D(X) = P (X,x). Observe that
P (X,Y) =

∑V
i=1

∑K
�=1 vi(k�)λfi(k�)(Y)μ�(X). Let S� = {fi(k�) : i ∈ [V]}, and

Sc
� = [K] − S�. The intuition is that, since there are at most V non zero vi(k�)

for each
, we can factor as:

P (k�, x) =
V∑

i=1

vi(k�)λfi(k�)(x) =
∏

s∈Sc
�

(x − hs)R�(x),

where R�(X) is a polynomial of degree V . So, to “complete” P (k�, x) to be a
multiple of t(x), we need to multiply it by

∏
s∈S�

(x − hs), and the result will be

800 C. Ràfols and A. Zapico

t(x)R�(x). The trick is that Î�(Y) =
∏

s∈S�
(Y −hs), and R�(X) are polynomials

of degrees V , V − 1, respectively. Thus, if the indexer publishes the coefficients
of these polynomials in the monomial basis, they can be reconstructed by the
verifier with coefficients 1, x, . . . , xV .

Fig. 6. A CSS scheme for matrices with at most V non-zero elements per column.

Theorem 9. The argument of Fig. 6 satisfies completeness and perfect sound-
ness.

Proof. When evaluated in any k� ∈ K, the right side of the verification equation
is:

t(x)R̂x(x) =
t(x)

m

V∑

i=1

vi(k�)hfi(k�)

∏

s∈S�−{fi(k�)}
(x − hs)

=

V∑

i=1

vi(k�)
hfi(k�)

m

t(x)

x − hfi(k�)

∏

s∈S�

(x − hs) =
∏

s∈S�

(x − hs)
V∑

i=1

vi(k�)λfi(k�)
(x).

The left side of the equation is D(k�)Îx(k�) =
(∑V

i=1 vi(k�)λfi(k�)(x)
)

(∏
s∈S�

(x − hs)
)
, so completeness is immediate. For soundness, if the verifier

accepts D(X), then D(k�)Îx(k�) = t(x)R̂x(k�) and Îx(k�) = Î�(x), therefore:

An Algebraic Framework for Universal and Updatable SNARKs 801

D(k�) = Î�(x)−1t(x)R̂�(x) =
(∏

s∈Sc
�

(x − hs)
)
R̂x(x) =

V∑

i=1

vi(k�)λfi(k�)(x).

We conclude that D(X) = P (X,x) mod u(X). Since both have degree at most
K − 1, soundness is proven. ��

6 A zkSNARK for R1CS-lite

The PHP for R1CS-lite can be compiled to a (zk)SNARK for this relation via
standard techniques. Formally, since we have used the model of PHPs, this fol-
lows from Theorem 6.1 in [13]. Concretely, when using for compilation the poly-
nomial commitment presented in Marlin (the variant secure in the AGM) and
our PHP for R1CS-lite, the theorem states that it is sufficient to prove that the
PHP is honest-verifier bounded zero-knowledge, where the bound for each oracle
polynomial is the number of oracle queries plus one.

The universal SRS of the zkSNARK will be srsu =
({[τ i]1}ρ

i=1, [τ]2
)
, and the

derived one srsW consists of the evaluation in x of the polynomials that ICSS

outputs. Prover and Verifier instantiate Plite and Vlite (for the PHP of Fig. 2
that achieves zero-knowledge through the changes presented in Fig. 3), and all
oracle polynomials output by Plite are translated into polynomials evaluated (in
the source group) at τ . For all degree checks with deg(p) < dg, dg < ρ, the
prover sends a single extra polynomial and field element, while checks for dg ≥ ρ
are for free. For each polynomial equation, prover sends extra field elements
corresponding to evaluations (or openings) of some of the polynomials involved
on it (maximum one per quadratic term, due to the procedure stated in [20]
attributed to M. Maller). There are several ways to do this compilation check,
but to optimize efficiency the choices are quite standard (for instance, only A′(X)
or B′(X), should be opened). All the openings at one point as well as the degrees
of the opened polynomials can be proven with one group element and verified
with one pairing. Prover’s work includes running Plite as well as the computation
of the polynomial commitment opening procedures. Verifier work is also Vlite plus
the (batched) verification procedure of the polynomial commitments. The vector
of queries is (bA, bB , bRt

, bHt
) = (1, 0, 1, 0).

On the other hand, we write the matrix W that expresses the constraints as:

W =

⎛

⎝
Im 0m×n 0m×m 0m×n −F 0m×n

0m×m 0m×n Im 0m×n −G 0m×n

0�
m 1�

n 0�
m 1�

n 0�
m×m 0�

m×n

⎞

⎠ =

⎛

⎝
I′ 0 F′

0 I′ G′

w w 0

⎞

⎠ ,

where I′,F′,G′ are of size m × (m + n), w is a row vector of length m + n.
Our PHP is built generically for any CSS scheme, but concrete efficiency

depends on the specifics of the latter and also how the blocks of rows of W are
combined into it. The last constraint will always be treated separately (to exploit
the symmetry of the other blocks), and because of its simple form, the verifier
can compute the corresponding D(X) = (

∑m+n
i=m+1 λi(x),

∑m+n
i=m+1 λi(x), 0) itself,

802 C. Ràfols and A. Zapico

and combine it with the rest by adding (see Sect. 4.4). Below we discuss concrete
costs of each of the CSS arguments for the other two blocks.

For the sparse matrice construction of Fig. 5, we assume that K ≥ 2m, which
sets ρ = K − 1. This eliminates the degree checks for ex(X), ey(X), Ru(X).
Assuming K ≥ |F| + |G|, the indexer is run for a matrix F + ZG, where Z is
a variable and thus outputs one polynomial vr(X), one polynomial v1,c(X) but
two polynomials vF

2,c(X), vG
2,c(X) that will let the verifier construct v2,c(X) =

vF
2,c(X) + zvG

2,c(X) after choosing challenge z. For I′ it is not necessary to run a
CSS argument, as for this block the corresponding polynomial D(X) is DI′(X) =∑m

i=1 λi(x)λi(X) and thus DI′(y) can be calculated by the verifier in log m time
as (xt(y) − yt(x))/(x − y) −∑m+n

i=m+1 λi(x)λi(y).

References

1. Abdolmaleki, B., Baghery, K., Lipmaa, H., Zajac, M.: A subversion-resistant
SNARK. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017, Part III. LNCS,
vol. 10626, pp. 3–33. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
70700-6 1

2. Ames, S., Hazay, C., Ishai, Y., Venkitasubramaniam, M.: Ligero: lightweight sub-
linear arguments without a trusted setup. In: Thuraisingham, B.M., Evans, D.,
Malkin, T., Xu, D. (eds) ACM CCS 2017, Dallas, TX, USA, 31 October–2 Novem-
ber 2017, pp. 2087–2104. ACM Press (2017)

3. Ben-Sasson, E., Bentov, I., Horesh, Y., Riabzev, M.: Scalable, transparent, and
post-quantum secure computational integrity. Cryptology ePrint Archive, Report
2018/046 (2018). https://eprint.iacr.org/2018/046

4. Ben-Sasson, E., Bentov, I., Horesh, Y., Riabzev, M.: Scalable zero knowledge with
no trusted setup. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019, Part III.
LNCS, vol. 11694, pp. 701–732. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-26954-8 23

5. Ben-Sasson, E., Chiesa, A., Riabzev, M., Spooner, N., Virza, M., Ward, N.P.:
Aurora: transparent succinct arguments for R1CS. In: Ishai, Y., Rijmen, V. (eds.)
EUROCRYPT 2019, Part I. LNCS, vol. 11476, pp. 103–128. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-17653-2 4

6. Ben-Sasson, E., Chiesa, A., Spooner, N.: Interactive Oracle Proofs. In: Hirt, M.,
Smith, A. (eds.) TCC 2016-B, Part II. LNCS, vol. 9986, pp. 31–60. Springer, Hei-
delberg (2016). https://doi.org/10.1007/978-3-662-53644-5 2

7. Blum, M., Feldman, P., Micali, S.: Non-interactive zero-knowledge and its applica-
tions (extended abstract). In: 20th ACM STOC, Chicago, IL, USA, 2–4 May 1988,
pp. 103–112. ACM Press (19888)

8. Bootle, J., Cerulli, A., Chaidos, P., Groth, J., Petit, C.: Efficient zero-knowledge
arguments for arithmetic circuits in the discrete log setting. In: Fischlin, M., Coron,
J.-S. (eds.) EUROCRYPT 2016, Part II. LNCS, vol. 9666, pp. 327–357. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5 12

9. Bowe, S., Gabizon, A., Green, M.D.: A multi-party protocol for constructing the
public parameters of the Pinocchio zk-SNARK. In: Zohar, A., Eyal, I., Teague, V.,
Clark, J., Bracciali, A., Pintore, F., Sala, M. (eds.) FC 2018. LNCS, vol. 10958,
pp. 64–77. Springer, Heidelberg (2019). https://doi.org/10.1007/978-3-662-58820-
8 5

https://doi.org/10.1007/978-3-319-70700-6_1
https://doi.org/10.1007/978-3-319-70700-6_1
https://eprint.iacr.org/2018/046
https://doi.org/10.1007/978-3-030-26954-8_23
https://doi.org/10.1007/978-3-030-26954-8_23
https://doi.org/10.1007/978-3-030-17653-2_4
https://doi.org/10.1007/978-3-662-53644-5_2
https://doi.org/10.1007/978-3-662-49896-5_12
https://doi.org/10.1007/978-3-662-58820-8_5
https://doi.org/10.1007/978-3-662-58820-8_5

An Algebraic Framework for Universal and Updatable SNARKs 803

10. Bowe, S., Gabizon, A., Miers, I.: Scalable multi-party computation for zk-SNARK
parameters in the random beacon model. Cryptology ePrint Archive, Report
2017/1050 (2017). http://eprint.iacr.org/2017/1050

11. Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.: Bulletproofs:
short proofs for confidential transactions and more. In: 2018 IEEE Symposium on
Security and Privacy, San Francisco, CA, USA, 21–23 May 2018, pp. 315–334.
IEEE Computer Society Press (2018)

12. Bünz, B., Fisch, B., Szepieniec, A.: Transparent SNARKs from DARK compilers.
In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020, Part I. LNCS, vol. 12105, pp.
677–706. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45721-1 24

13. Campanelli, M., Faonio, A., Fiore, D., Querol, A., Rodŕıguez, H.: Lunar: a tool-
box for more efficient universal and updatable zkSNARKs and commit-and-prove
extensions. Cryptology ePrint Archive, Report 2020/1069 (2020). https://eprint.
iacr.org/2020/1069

14. Chiesa, A., Hu, Y., Maller, M., Mishra, P., Vesely, N., Ward, N.: Marlin: prepro-
cessing zkSNARKs with universal and updatable SRS. In: Canteaut, A., Ishai, Y.
(eds.) EUROCRYPT 2020, Part I. LNCS, vol. 12105, pp. 738–768. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-45721-1 26

15. Chiesa, A., Ojha, D., Spooner, N.: Fractal: Post-quantum and Transparent
Recursive Proofs from Holography. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT
2020, Part I. LNCS, vol. 12105, pp. 769–793. Springer, Cham (2020). https://doi.
org/10.1007/978-3-030-45721-1 27

16. Daza, V., Ràfols, C., Zacharakis, A.: Updateable inner product argument with
logarithmic verifier and applications. In: Kiayias, A., Kohlweiss, M., Wallden, P.,
Zikas, V. (eds.) PKC 2020, Part I. LNCS, vol. 12110, pp. 527–557. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-45374-9 18

17. Fuchsbauer, G.: Subversion-zero-knowledge SNARKs. In: Abdalla, M., Dahab, R.
(eds.) PKC 2018, Part I. LNCS, vol. 10769, pp. 315–347. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-76578-5 11

18. Fuchsbauer, G., Kiltz, E., Loss, J.: The algebraic group model and its applications.
In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part II. LNCS, vol. 10992,
pp. 33–62. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96881-0 2

19. Gabizon, A.: AuroraLight: improved prover efficiency and SRS size in a sonic-like
system. Cryptology ePrint Archive, Report 2019/601 (2019). https://eprint.iacr.
org/2019/601

20. Gabizon, A., Williamson, Z.J., Ciobotaru, O.: PLONK: permutations over
lagrange-bases for oecumenical noninteractive arguments of knowledge. Cryptology
ePrint Archive, Report 2019/953 (2019). https://eprint.iacr.org/2019/953

21. Garg, S., Mahmoody, M., Masny, D., Meckler, I.: On the round complexity of OT
extension. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part III. LNCS,
vol. 10993, pp. 545–574. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-96878-0 19

22. Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs and
succinct NIZKs without PCPs. In: Johansson, T., Nguyen, P.Q. (eds.) EURO-
CRYPT 2013. LNCS, vol. 7881, pp. 626–645. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-38348-9 37

23. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proofs. SIAM J. Comput. 18(1), 186–208 (1989)

24. Groth, J.: Linear algebra with sub-linear zero-knowledge arguments. In: Halevi, S.
(ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 192–208. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-03356-8 12

http://eprint.iacr.org/2017/1050
https://doi.org/10.1007/978-3-030-45721-1_24
https://eprint.iacr.org/2020/1069
https://eprint.iacr.org/2020/1069
https://doi.org/10.1007/978-3-030-45721-1_26
https://doi.org/10.1007/978-3-030-45721-1_27
https://doi.org/10.1007/978-3-030-45721-1_27
https://doi.org/10.1007/978-3-030-45374-9_18
https://doi.org/10.1007/978-3-319-76578-5_11
https://doi.org/10.1007/978-3-319-96881-0_2
https://eprint.iacr.org/2019/601
https://eprint.iacr.org/2019/601
https://eprint.iacr.org/2019/953
https://doi.org/10.1007/978-3-319-96878-0_19
https://doi.org/10.1007/978-3-319-96878-0_19
https://doi.org/10.1007/978-3-642-38348-9_37
https://doi.org/10.1007/978-3-642-38348-9_37
https://doi.org/10.1007/978-3-642-03356-8_12

804 C. Ràfols and A. Zapico

25. Groth, J.: Short pairing-based non-interactive zero-knowledge arguments. In: Abe,
M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 321–340. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-17373-8 19

26. Groth, J.: On the size of pairing-based non-interactive arguments. In: Fischlin, M.,
Coron, J.-S. (eds.) EUROCRYPT 2016, Part II. LNCS, vol. 9666, pp. 305–326.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5 11

27. Groth, J., Kohlweiss, M., Maller, M., Meiklejohn, S., Miers, I.: Updatable and
universal common reference strings with applications to zk-SNARKs. In: Shacham,
H., Boldyreva, A. (eds.) CRYPTO 2018, Part III. LNCS, vol. 10993, pp. 698–728.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96878-0 24

28. Ishai, Y.: Zero-knowledge proofs from information theoretic proof systems.
In Zkproofs Blog (2020). https://zkproof.org/2020/08/12/information-theoretic-
proof-systems/

29. Jutla, C.S., Roy, A.: Shorter Quasi-adaptive NIZK proofs for linear subspaces. In:
Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part I. LNCS, vol. 8269, pp. 1–20.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-42033-7 1

30. Kate, A., Zaverucha, G.M., Goldberg, I.: Constant-size commitments to polyno-
mials and their applications. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol.
6477, pp. 177–194. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-17373-8 11

31. Kattis, A., Panarin, K., Vlasov, A.: RedShift: transparent SNARKs from list poly-
nomial commitment IOPs. Cryptology ePrint Archive, Report 2019/1400 (2019).
https://eprint.iacr.org/2019/1400

32. Kilian, J.: A note on efficient zero-knowledge proofs and arguments (extended
abstract). In: 24th ACM STOC, Victoria, BC, Canada, 4–6 May 1992, pp. 723–
732. ACM Press (1992)

33. Maller, M., Bowe, S., Kohlweiss, M., Meiklejohn, S.: Sonic: zero-knowledge
SNARKs from linear-size universal and updatable structured reference strings.
In: Cavallaro, L., Kinder, J., Wang, X., Katz, J. (eds.) ACM CCS 2019, 11–15
November 2019, pp. 2111–2128. ACM Press (2019)

34. Micali, S.: The knowledge complexity of interactive proofs. SIAM J. Comput.
30(4), 1253–1298 (2000)

35. Morillo, P., Ràfols, C., Villar, J.L.: The Kernel matrix Diffie-Hellman assumption. In:
Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016, Part I. LNCS, vol. 10031, pp. 729–
758. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53887-6 27

36. Papamanthou, C., Shi, E., Tamassia, R.: Signatures of correct computation. In:
Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 222–242. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-36594-2 13

37. Setty, S.: Spartan: efficient and general-Purpose zkSNARKs without trusted setup.
In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020, Part III. LNCS, vol.
12172, pp. 704–737. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
56877-1 25

38. Szepieniec, A., Zhang, Y.: Polynomial IOPs for linear algebra relations. Cryptology
ePrint Archive, Report 2020/1022 (2020). https://eprint.iacr.org/2020/1022

39. Wahby, R.S., Tzialla, I., Shelat, A., Thaler, J., Walfish, M.: Doubly-efficient
zkSNARKs without trusted setup. In: 2018 IEEE Symposium on Security and
Privacy, San Francisco, CA, USA, 21–23 May 2018, pp 926–943. IEEE Computer
Society Press (2018)

40. Xie, T., Zhang, J., Zhang, Y., Papamanthou, C., Song, D.: Libra: succinct zero-
knowledge proofs with optimal prover computation. In: Boldyreva, A., Micciancio,
D. (eds.) CRYPTO 2019. LNCS, vol. 11694, pp. 733–764. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-26954-8 24

https://doi.org/10.1007/978-3-642-17373-8_19
https://doi.org/10.1007/978-3-662-49896-5_11
https://doi.org/10.1007/978-3-319-96878-0_24
https://zkproof.org/2020/08/12/information-theoretic-proof-systems/
https://zkproof.org/2020/08/12/information-theoretic-proof-systems/
https://doi.org/10.1007/978-3-642-42033-7_1
https://doi.org/10.1007/978-3-642-17373-8_11
https://doi.org/10.1007/978-3-642-17373-8_11
https://eprint.iacr.org/2019/1400
https://doi.org/10.1007/978-3-662-53887-6_27
https://doi.org/10.1007/978-3-642-36594-2_13
https://doi.org/10.1007/978-3-030-56877-1_25
https://doi.org/10.1007/978-3-030-56877-1_25
https://eprint.iacr.org/2020/1022
https://doi.org/10.1007/978-3-030-26954-8_24

Author Index

Aaronson, Scott 526
Alagic, Gorjan 497
Alon, Bar 436
Ananth, Prabhanjan 346
Au, Man Ho 251

Bartusek, James 406, 467
Beyne, Tim 41
Boneh, Dan 649
Bootle, Jonathan 742
Brakerski, Zvika 497
Bünz, Benedikt 681
Burdges, Jeffrey 157

Chatterjee, Rohit 282
Chia, Nai-Hui 315
Chiesa, Alessandro 681, 711, 742
Chung, Hao 436
Chung, Kai-Min 315, 346, 436
Coladangelo, Andrea 406, 467, 556

Ding, Jintai 70
Ding, Zhimin 251
Drake, Justin 649
Dulek, Yfke 497

Esgin, Muhammed F. 251

Fisch, Ben 649

Gabizon, Ariel 649
Garg, Sanjam 282
Garillot, François 127

Hajiabadi, Mohammad 282
Hosoyamada, Akinori 585, 616
Huang, Mi-Ying 436

Iwata, Tetsu 585

Khurana, Dakshita 282, 406, 467
Kılınç Alper, Handan 157
Kondi, Yashvanth 127

Lee, Yi 436
Liang, Xiao 282

Lin, William 681
Liu, Jiahui 526, 556
Liu, Joseph K. 251
Liu, Qipeng 526, 556
Liu, Yanyi 11

Ma, Fermi 406, 467
Malavolta, Giulio 282
Mishra, Pratyush 681
Mohassel, Payman 127

Nick, Jonas 189
Nikolaenko, Valeria 127

Pandey, Omkant 282
Pass, Rafael 11
Petzoldt, Albrecht 70
Placa, Rolando L. La 346

Ràfols, Carla 774
Rosulek, Mike 94
Rotem, Lior 222
Roy, Lawrence 94
Ruffing, Tim 189

Sasaki, Yu 616
Schaffner, Christian 497
Segev, Gil 222
Seurin, Yannick 189
Shen, Yu-Ching 436
Shiehian, Sina 282
Shmueli, Omri 375
Sotiraki, Katerina 742
Spooner, Nicholas 681

Tao, Chengdong 70
Teague, Vanessa 3

Yamakawa, Takashi 315
Yogev, Eylon 711
Yuen, Tsz Hon 251

Zapico, Arantxa 774
Zhandry, Mark 526, 556
Zhang, Ruizhe 526

	Preface
	Organization
	Contents – Part I
	Invited Talk
	Which E-Voting Problems Do We Need to Solve?
	References

	Award Papers
	On the Possibility of Basing Cryptography on EXP=BPP
	1 Introduction
	1.1 Connections Between OWFs and Kolmogorov Complexity
	1.2 Characterizing Average-Case Hardness of Levin-Kolmogorov Complexity
	1.3 Space-Bounded Notions of Kolmogorov Complexity
	1.4 Concurrent Works
	1.5 Outline

	2 Preliminaries
	2.1 One-Way Functions
	2.2 Levin's Notion of Kolmogorov Complexity
	2.3 Average-Case Complexity
	2.4 Computational Indistinguishability
	2.5 Pseudorandom Generators
	2.6 Conditionally Entropy-Preserving PRGs

	3 2-Sided Error Average-Case Hardness of MKtP and OWFs
	3.1 OWFs from Two-Sided Error Avg-Case Hardness of MKtP
	3.2 Two-Sided Error Avg-Case Hardness of MKtP from ioOWFs

	4 Errorless Avg-Case Hardness of MKtP and EXP=BPP
	5 On the Implication MKtPAvgnegBPP-3muMKtPHeurnegBPP
	6 Characterizing Cryptography in Log-Space
	6.1 Space-Bounded Kolmogorov Complexity
	6.2 The Characterization
	6.3 Log-Space Computable ioOWFs from Avg-Case Hardness of MKSP[O(logn))]
	6.4 Average-Case Hardness of MKSP[O(logn)] from ioOWFs in Log-Space

	References

	Linear Cryptanalysis of FF3-1 and FEA
	1 Introduction
	2 Preliminaries
	3 Linear Distinguishers
	3.1 Linear Approximations
	3.2 FEA-1 and FEA-2
	3.3 FF3-1
	3.4 Cost Analysis and Experimental Verification

	4 2 Distinguishers
	4.1 Multidimensional Linear Approximations
	4.2 Distinguisher Based on Pearson's 2 Statistic
	4.3 Cost Analysis and Experimental Verification

	5 Message Recovery Attacks
	5.1 Left-Half Recovery for FEA-1 and FF3-1
	5.2 Cost Analysis and Experimental Verification
	5.3 Right-Half Recovery and Application to FEA-2

	6 Key-Recovery Attack on FEA-1
	6.1 Recovering K_a, 1 and the Internal Constants _i
	6.2 Recovering the Round Keys
	6.3 Recovering All Round Keys

	7 Conclusion
	References

	Efficient Key Recovery for All HFE Signature Variants
	1 Introduction
	2 Multivariate Cryptography
	2.1 The HFEv- Signature Scheme
	2.2 Previous Attacks on HFE

	3 Preliminaries
	3.1 Equivalent Keys
	3.2 The MinRank Problem
	3.3 Matrix Representation of HFEv- Keys

	4 Our Key Recovery Attack on HFEv-
	4.1 Recovering an Equivalent Linear Transformation S
	4.2 Recovering Equivalent Maps F and T
	4.3 Complexity of the Attack
	4.4 Discussion

	5 Possible Speed up Using Support Minus Modeling
	6 Application to GeMSS
	7 Conclusion
	A Example of the Attack
	A.1 Recovering S

	References

	Three Halves Make a Whole? Beating the Half-Gates Lower Bound for Garbled Circuits
	1 Introduction
	1.1 Our Results
	1.2 Related Work

	2 Preliminaries
	2.1 Circuits
	2.2 Garbling Schemes
	2.3 Circular Correlation Robust Hashes

	3 A Linear-Algebraic View of Garbling Schemes
	3.1 The Basic Linear Perspective
	3.2 Row-Reduction Techniques
	3.3 Half-Gates

	4 High-Level Overview of Our Scheme
	4.1 Observation #1: Get the Most Out of the Oracle Queries
	4.2 Observation #2: Increase Dimension by Slicing Wire Labels
	4.3 Observation #3: Randomize and Hide the Evaluator's Coefficients

	5 Details: Slicing and Dicing
	5.1 Choosing the Matrices
	5.2 Garbling the Control Bits
	5.3 The Construction
	5.4 Security Proof
	5.5 Discussion

	6 Optimizations
	6.1 Optimizing Control Bit Encryptions
	6.2 Optimizing Computation

	7 The Linear Garbling Lower Bound
	8 Open Problems
	References

	Signatures
	Threshold Schnorr with Stateless Deterministic Signing from Standard Assumptions
	1 Introduction
	1.1 Practical Concerns: Determinism and Statelessness
	1.2 Why Is Stateless Deterministic Threshold Signing Challenging?
	1.3 Desiderata
	1.4 This Work

	2 Related Work
	3 Our Techniques
	3.1 What Existing Proof Technologies Suit Our Task?

	4 Organization
	5 Preliminaries
	5.1 Garbling Schemes and Zero-Knowledge

	6 Exponentiation Garbling Gadget
	7 Committed OT from UC Commitments
	7.1 Committed OT from Preprocessable UC Commitments

	8 Provable Nonce Derivation
	8.1 A Privacy Amplifying Optimization
	8.2 Estimated Efficiency

	9 Multiparty Dishonest Majority Threshold Signing
	9.1 Efficiency

	References

	Two-Round Trip Schnorr Multi-signatures via Delinearized Witnesses
	1 Introduction
	1.1 Related Work

	2 Preliminaries
	2.1 Notations
	2.2 Security Definitions
	2.3 Multi-signature Schemes vs. the k-Sum Problem

	3 Delinearized Witness Multi-signature (DWMS)
	4 Entwined Sum Problem
	5 Security Proof of DWMS
	6 Conclusion
	A Rank of a Random Matrix
	References

	MuSig2: Simple Two-Round Schnorr Multi-signatures
	1 Introduction
	1.1 Our Contribution
	1.2 Concurrent Work

	2 Technical Overview
	2.1 The Challenge of Constructing Two-Round Schemes
	2.2 Our Solution
	2.3 Proving Security
	2.4 A More Efficient Solution in the Algebraic Group Model
	2.5 Algebraic OMDL: A Falsifiable Variant of OMDL

	3 Preliminaries
	3.1 Syntax and Security Definition of Multi-signature Schemes

	4 The Multi-Signature Scheme MuSig2
	5 Security of MuSig2 in the ROM
	5.1 Security Proof

	References

	Tighter Security for Schnorr Identification and Signatures: A High-Moment Forking Lemma for -Protocols
	1 Introduction
	1.1 Our Contributions
	1.2 Paper Organization

	2 Preliminaries
	3 Our Assumption: d-Moment Hardness
	4 Tighter Security for -Protocols and Identification Schemes
	5 Tighter Security for Signature Schemes
	6 Implications to the Schnorr and Okamoto Schemes
	6.1 The Schnorr Identification and Signature Schemes
	6.2 The Okamoto Identification and Signature Schemes

	References

	DualRing: Generic Construction of Ring Signatures with Efficient Instantiations
	1 Introduction
	1.1 DualRing: New Generic Construction of Ring Signature
	1.2 Efficient Instantiations of DualRing
	1.3 Our Contributions

	2 Related Work
	3 Preliminaries
	4 Security Model
	5 DualRing: Generic Ring Signature Construction
	5.1 AOS Ring Signature
	5.2 Canonical Identification
	5.3 Our Construction: DualRing

	6 DualRing-EC: Our Succinct DL-based Ring Signature
	6.1 Sum Arguments of Knowledge
	6.2 Logarithmic Size DL-based Ring Signature
	6.3 Efficiency Analysis

	7 DualRing-LB: Our Lattice-Based Ring Signature
	7.1 Lattice-Based Canonical Identification
	7.2 Efficiency Analysis of DualRing-LB

	8 Conclusion
	References

	Compact Ring Signatures from Learning with Errors
	1 Introduction
	1.1 Our Results
	1.2 Background
	1.3 Technical Overview
	1.4 Related Existing Work

	2 Preliminaries
	2.1 Learning with Errors
	2.2 Correlation Intractable Hash Functions
	2.3 Public Key Encryption
	2.4 Blum's Raw Protocol
	2.5 Maliciously Circuit Private FHE
	2.6 Somewhere Perfectly Binding Hash
	2.7 Ring Signatures

	3 Compact Witness Extractable Commitments
	3.1 Definition
	3.2 Construction

	4 Compact Relaxed ZAPs for Extended NPcoNP
	4.1 Definition
	4.2 Construction

	5 Compact LWE-Based Ring Signature Scheme
	5.1 Construction
	5.2 Unforgeability
	5.3 Anonymity

	References

	Quantum Cryptography
	A Black-Box Approach to Post-Quantum Zero-Knowledge in Constant Rounds
	1 Introduction
	1.1 Our Results
	1.2 Technical Overview
	1.3 Related Work

	2 Preliminaries
	2.1 Post-Quantum One-Way Functions and Collapsing Hash Functions
	2.2 Commitment
	2.3 Interactive Proof and Argument
	2.4 Quantum Rewinding Lemma

	3 Extraction Lemma
	4 Post-quantum epsilon-Zero-Knowledge Proof and Argument
	4.1 Construction
	4.2 Statistical Soundness
	4.3 Quantum Black-Box epsilon-Zero-Knowledge
	4.4 Instantiation from Collapsing Hash Function

	References

	On the Concurrent Composition of Quantum Zero-Knowledge
	1 Introduction
	1.1 Our Contributions
	1.2 Guide to the Reader

	2 Concurrent Quantum ZK Proof Systems: Definitions
	2.1 Bounded Concurrent QZK for NP
	2.2 Bounded Concurrent QZK for QMA
	2.3 Quantum Proofs of Knowledge
	2.4 Intermediate Tool: Quantum Witness-Indistinguishable Proofs for NP

	3 Bounded Concurrent QZK for NP
	3.1 Bounded Concurrent QZK for NP
	3.2 Construction

	4 Quantum Proofs of Knowledge
	4.1 Standalone Quantum Proofs of Knowledge
	4.2 Construction of (Standalone) QZKPoK

	5 Bounded Concurrent QZK for QMA
	5.1 Bounded Concurrent QZK for QMA

	References

	Multi-theorem Designated-Verifier NIZK for QMA
	1 Introduction
	1.1 Results
	1.2 Technical Overview
	1.3 Related Work
	1.4 Subsequent Work

	2 Preliminaries
	2.1 Cryptographic Tools

	3 Non-interactive Zero-Knowledge Protocol
	3.1 Soundness
	3.2 Zero Knowledge

	References

	On the Round Complexity of Secure Quantum Computation
	1 Introduction
	1.1 Our Results
	1.2 Paper Organization

	2 Technical Overview
	2.1 Quantum Background
	2.2 Why Is Malicious Security Hard to Achieve?
	2.3 A Garbling Scheme for C+M Circuits
	2.4 A Three-Message Protocol with Malicious Security
	2.5 Application: Reusable MDV-NIZK for QMA
	2.6 Challenges in Achieving a Two-Round Protocol in the Quantum Setting
	2.7 A Two-Round Protocol with Pre-processing
	2.8 The Multi-party Setting
	2.9 Two Round 2PQC Without Pre-processing: Challenges and Possibilities

	3 Quantum Non-interactive Secure Computation
	3.1 Useful Lemmas
	3.2 The Protocol
	3.3 Security

	References

	Round Efficient Secure Multiparty Quantum Computation with Identifiable Abort
	1 Introduction
	1.1 Our Results
	1.2 Our Techniques
	1.3 Roadmap

	2 Preliminaries
	3 The Model of Computation
	3.1 Security with Packet Drops
	3.2 The Hybrid Model

	4 Statement of Our Main Result
	5 Sequential Authentication
	6 Authenticated Routing
	6.1 The Authenticated Routing Protocol

	7 Magic State Preparation
	7.1 T Magic State Preparation Protocol

	8 Secure Delegation of the Computation – Preparation
	9 Secure Delegation of the Computation – Computation
	10 Secure Computation of a Quantum Circuit with Packet Drops
	References

	One-Way Functions Imply Secure Computation in a Quantum World
	1 Introduction
	1.1 Our Results
	1.2 Related Work
	1.3 Concurrent and Independent Work

	2 Technical Overview
	2.1 Recap: Quantum Oblivious Transfer from Commitments
	2.2 Our Construction: A High-Level Overview
	2.3 Making Any Quantum (or Classical) Commitment Equivocal
	2.4 An Extractability Compiler for Equivocal Commitments
	2.5 Putting It Together: From Commitments to Secure Computation

	3 Preliminaries
	4 A Quantum Equivocality Compiler
	4.1 Equivocality
	4.2 Extractability

	5 Quantum Extractable Commitments
	5.1 Extractability

	6 Quantum Oblivious Transfer from Extractable and Equivocal Commitments
	6.1 Definitions for Oblivious Transfer with Quantum Communication
	6.2 Our Construction
	6.3 Receiver Security

	References

	Impossibility of Quantum Virtual Black-Box Obfuscation of Classical Circuits
	1 Introduction
	1.1 Related Work
	1.2 Our Contributions
	1.3 Open Questions
	1.4 Structure of This Work

	2 Preliminaries
	2.1 Notation
	2.2 Classical and Quantum Virtual-Black-Box Obfuscation
	2.3 Quantum Fully Homomorphic Encryption
	2.4 Point Functions and Compute-and-Compare Functions
	2.5 Recovering the Input of a Quantum Circuit

	3 FHE with Decomposable Public Keys
	3.1 Instantiation from Bootstrapped Schemes
	3.2 Instantiation from Any Leveled (Q)FHE

	4 Impossibility with Respect to Dependent Auxiliary Information
	4.1 Classical Obfuscation of Compute-and-Compare Functions
	4.2 An Unobfuscatable Circuit Class
	4.3 Impossibility Proof

	5 Impossibility Without Auxiliary Information
	A Proof of Lemma 2.9
	B Auxiliary Lemmas for Theorem 5.1
	References

	New Approaches for Quantum Copy-Protection
	1 Introduction
	1.1 This Work
	1.2 Technical Overview
	1.3 Other Related Works
	1.4 Concurrent and Independent Work

	2 Preliminaries
	2.1 Quantum Computation
	2.2 Quantum Oracle Algorithm
	2.3 Direct-Product Problem and Quantum Signature Tokens
	2.4 Testing Quantum Programs: Measurement Implementation

	3 Learning Game Definitions
	3.1 Unlearnability
	3.2 Copy-Protection
	3.3 Copy-Detection
	3.4 Watermarking Primitives with Public Extraction

	4 Approximating Threshold Implementation
	5 Quantum Copy-Protection Scheme
	5.1 Correctness and Efficiency
	5.2 Anti-Piracy Security

	6 Quantum Copy-Detection
	6.1 Construction
	6.2 Efficiency and Correctness
	6.3 Security

	References

	Hidden Cosets and Applications to Unclonable Cryptography
	1 Introduction
	1.1 Our Results

	2 Technical Overview
	2.1 Computational Direct Product Hardness for Coset States
	2.2 Unclonable Decryption
	2.3 Copy-Protecting PRFs

	3 Preliminaries
	3.1 Compute-and-Compare Obfuscation

	4 Coset States
	4.1 Definitions
	4.2 Direct Product Hardness
	4.3 Monogamy-of-Entanglement Property
	4.4 Conjectured Strong Monogamy Property

	5 Tokenized Signature Scheme from iO
	5.1 Definitions
	5.2 Tokenized Signature Construction

	6 Single-Decryptor Encryption
	6.1 Definitions
	6.2 Construction from Strong Monogamy Property

	7 Copy-Protection of Pseudorandom Functions
	7.1 Definitions
	7.2 Construction

	References

	On Tight Quantum Security of HMAC and NMAC in the Quantum Random Oracle Model
	1 Introduction
	1.1 Our Contributions
	1.2 Technical Overview
	1.3 Limitations and Future Directions
	1.4 Related Works
	1.5 Paper Organization

	2 Preliminaries
	2.1 Quantum Algorithms and Quantum Oracles
	2.2 How to Model Accesses to Multiple Quantum Oracles
	2.3 Security Advantages

	3 An Overview on How to Record Quantum Queries
	4 Technical Proposition
	4.1 Proof of Proposition 4

	5 Quantum Security Proofs for HMAC and NMAC
	References

	Quantum Collision Attacks on Reduced SHA-256 and SHA-512
	1 Introduction
	2 Preliminaries
	2.1 Specification of SHA-256 and SHA-512
	2.2 Quantum Computation

	3 Previous Works
	3.1 Collision Attack on 31-Step SHA-256
	3.2 Semi-Free-Start Collision Attack on 38-Step SHA-256
	3.3 Semi-Free-Start Collision Attack on 39-Step SHA-512

	4 Observations and Ideas for Quantum Collision Attacks
	4.1 Obstacles for Conversions in the Classical Setting
	4.2 Observations and Ideas on Conversion in the Quantum Setting

	5 Quantum Collision Attack on 38-Step SHA-256
	5.1 Observation on Step II
	5.2 Implementation and Analysis of F
	5.3 Total Complexity

	6 Quantum Collision Attack on 39-Step SHA-512
	6.1 Observation on Step II
	6.2 Implementation and Analysis of F
	6.3 Total Complexity

	7 Discussion
	7.1 Towards Searching for New Semi-Free-Start Collision Attacks
	7.2 Towards Application to Other Hash Functions

	8 Concluding Remarks
	References

	Succinct Arguments
	Halo Infinite: Proof-Carrying Data from Additive Polynomial Commitments
	1 Introduction
	1.1 Contributions
	1.2 Related Work

	2 Preliminaries
	2.1 Polynomial Commitment Scheme (PCS)

	3 Additive Polynomial Commitments
	3.1 Linear Combination Schemes
	3.2 PCS Examples and Their Additive Properties

	4 Batch Evaluation and Private Aggregation
	4.1 A Protocol for Batch Zero Testing
	4.2 Batch Evaluation Protocol
	4.3 Aggregation Scheme (proof of Theorem 4.2)

	5 Homomorphic PCS Public Aggregation
	5.1 A Succinct PoK for Homomorphism Pre-image
	5.2 Publicly Aggregatable PCS (proof of Theorem 5.2)

	6 SNARKs and IVC from PCS Aggregation
	References

	Proof-Carrying Data Without Succinct Arguments
	1 Introduction
	1.1 Contributions

	2 Techniques
	2.1 Accumulation: Atomic vs Split
	2.2 PCD from Split Accumulation
	2.3 NARK with Split Accumulation Based on DL
	2.4 On Proving Knowledge Soundness
	2.5 Split Accumulation for Hadamard Products
	2.6 Split Accumulation for Pedersen Polynomial Commitments
	2.7 Implementation and Evaluation

	References

	Subquadratic SNARGs in the Random Oracle Model
	1 Introduction
	1.1 Breaking the Quadratic Barrier
	1.2 Concrete Efficiency

	2 Techniques
	2.1 The Micali Construction Is Inherently Quadratic
	2.2 Our Construction
	2.3 Permuted Robust Soundness
	2.4 Repeated PCPs Satisfy Permuted Robust Soundness
	2.5 The Cap Soundness Game
	2.6 Scoring Oracle Queries
	2.7 Concluding the Proof of Theorem 1

	3 Definitions
	3.1 Probabilistically Checkable Proofs
	3.2 Non-interactive Arguments in the Random Oracle Model

	4 Our Construction
	4.1 Implementing the Random Permutation

	5 Permuted Robust Soundness
	6 Cap Soundness
	7 Soundness Based on Permuted Robust Soundness
	7.1 Proof of Theorem 5
	7.2 The Argument Size

	References

	Sumcheck Arguments and Their Applications
	1 Introduction
	1.1 Our Results
	1.2 New Connections and New Opportunities
	1.3 Related Work
	1.4 Concurrent Work

	2 Techniques
	2.1 Sumcheck Protocol Over Modules
	2.2 Sumcheck Argument for Pedersen Commitments
	2.3 Sumcheck Argument for Sumcheck-Friendly Commitments
	2.4 Extending Sumcheck Arguments to Modules
	2.5 Instantiations of Sumcheck-Friendly Commitments
	2.6 Succinct Argument for Scalar Products over Rings
	2.7 Succinct Argument for R1CS over Rings

	References
	References

	An Algebraic Framework for Universal and Updatable SNARKs
	1 Introduction
	1.1 Related Work

	2 Preliminaries
	2.1 Constraint Systems
	2.2 zkSNARKs
	2.3 Polynomial Holographic Proofs
	2.4 Cryptographic Assumptions

	3 Generalized Univariate Sumcheck
	3.1 Application to Linear Algebra Arguments

	4 Checkable Subspace Sampling: Definition and Implications
	4.1 Linear Arguments from Checkable Subspace Sampling
	4.2 R1CS-lite from Linear Arguments
	4.3 Adding Zero Knowledge
	4.4 Combining CSS Schemes

	5 Constructions of Checkable Subspace Sampling Arguments
	5.1 Overview of New Techniques
	5.2 CSS Argument for Simple Matrices
	5.3 CSS Argument for Sparse Matrices
	5.4 CSS Argument for Sums of Basic Matrices

	6 A zkSNARK for R1CS-lite
	References

	Author Index

