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Abstract Motivated by the task to design quench protection systems for super-
conducting magnets in particle accelerators we address a coupled field/circuit
simulation based on a magneto-quasistatic field modeling. We investigate how a
waveform relaxation of Gauß-Seidel type performs for a coupled simulation when
circuit solving packages are used that describe the circuit by the modified nodal
analysis. We present sufficient convergence criteria for the coupled simulation of
FEM discretised field models and circuit models formed by a differential-algebraic
equation (DAE) system of index 2. In particular, we demonstrate by a simple
benchmark system the drastic influence of the circuit topology on the convergence
behavior of the coupled simulation.

1 Introduction

Lumped circuit models, such as modified nodal analysis (MNA), are well-
established in electrical engineering. However, they neglect the spatial dimension
and therefore distributed phenomena like the skin effect. For certain devices, this
may lead to inaccuracies of unacceptable magnitude in the simulation, e.g. for
electric machines [14] or the quench protection system of superconducting magnets
in particle accelerators [1]. These cases call for field/circuit coupling [2, 16].
To solve such coupled systems, it is often advisable to use waveform relaxation
(WR) [7], since this iterative method allows for dedicated step sizes and suitable
solvers for the different subsystems, and even for the use of proprietary blackbox
solvers. The coupled field/circuit model considered here is a DAE in the time
domain after space discretisation of the field system. It is well-known that WR
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can suffer from instabilities for DAEs unless an additional contraction criterion is
satisfied [7, 12]. This work presents coupled field/circuit models, which are DAEs
of index 2 [5], for the case where WR is convergent and the case where it diverges.
Furthermore, generalizing a convergence criterion of [12], a topological and easy-
to-check criterion is provided. Finally, we present numerical simulations verifying
the topological convergence criterion.

2 Field/Circuit Model

To describe the electromagnetic (EM) field part, we consider a magnetoquasistatic
approximation of Maxwell’s equations in a reduced magnetic vector potential
formulation [4]. This leads to the curl-curl eddy current partial differential equation
(PDE). The circuit side is formulated with the MNA [6]. For the numerical
simulation of the coupled system, the method of lines is used with a finite element
(FE) discretisation. Altogether, this leads to a time-dependent coupled system of
DAE initial value problems (IVPs), described by

Mȧ + K(a)a − Xim = 0, X�ȧ = vc, (1)

E(x)ẋ + f (t, x) = Pim, P�x − vc = 0. (2)

The first Eq. (1) represents the space-discrete field model based on the matrices

(M)ij =
∫

Ω

σωi · ωj dV, (K(a))ij =
∫

Ω

ν(a)∇ × ωi · ∇ × ωj dV , (3)

which follow from the Ritz-Galerkin approach using a finite set of Nédélec basis
functions ωi [10] defined on the domain Ω ; σ denotes the space-dependent
electric conductivity and ν(a) the magnetic reluctivity that can additionally depend
nonlinearly on the unknown magnetic vector potential a. The current through the
field device is described by im. The excitation matrix is computed from a winding
density function χj modelling the j -th stranded conductor [15] as

(X)ij =
∫

Ω

χj · ωi dV . (4)

Definition 1 A function f : Rn → R
n is strongly monotone and a square matrix

M(x) is uniformly positive definite, if

∃μf : (x2 − x1)
�(f (x2) − f (x1)) ≥μf ‖x2 − x1‖2, ∀x1, x2 ∈ R

n,

∃μM : y�M(x)y ≥μM‖y‖2, ∀x ∈ R
n, y ∈ R

m.

The space-discretization is supposed to meet the following properties.
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Assumption 2 It holds (a) M is symmetric, (b) the matrix pencil λM + K is
symmetric and positive definite for λ > 0, (c) X has full column rank and (d) the
function a 
→ K(a)a is strongly monotone.

The assumptions are in agreement with previous formulation in the literature, e.g.
[3, 15]. The first Assumption 2a follows naturally if a Ritz-Galerkin formulation (3)
is chosen. The second Assumption 2b will be guaranteed by appropriate boundary
and gauging conditions. Thirdly, the full column rank Assumption 2c follows from
the fact that the columns are discretisations of different coils that are located in
spatially disjoint subdomains. Finally, the monotonicity Assumption 2d follows
from the strong monotonicity of the underlying nonlinear material law, i.e. the BH-
curve [13]. In general, the field model is a multiport element such that the circuit
coupling is established via multiple currents and voltages, i.e., vector-valued im and
vc. However, for simplicity of notation we assume a two-terminal device in the
following.

The circuit Eq. (2) can be expanded into

E(x) =
⎛
⎜⎝
LC(e) 0 0

0 −L(iL) 0

0 0 0

⎞
⎟⎠ , f (t, x) =

⎛
⎜⎝

gR(e) + ALiL + AV iV + qi (t)

A�
Le

A�
V e − qv(t)

⎞
⎟⎠ , P =

⎛
⎜⎝

Am

0

0

⎞
⎟⎠

(5)

using the definitions LC(e) := ACC(A�
Ce)A�

C , gR(e) := ARg(A�
Re) and x =

(e, iL, iV ) where A� are the usual incidence matrices and L(·), C(·) are state-
dependent square matrices describing inductances and capacitances. The position
of the field device in the circuit is described by Am, and the voltage over the device
by vc. The function g(·) describes the voltage–current relation of resistive elements
and qi, qv are the input current and voltage. Finally, x collects all node potentials
e, currents through branches with voltage sources iV and inductors iL. The circuit
system shall fulfill the following properties:

Assumption 3 It holds (a) g, C and L are Lipschitz continuous, g is strongly
monotone and C, L are uniformly positive definite, (b) qi and qv are continuously
differentiable, (c) AV has full column rank and

(
AC AV AR AL

)
has full row rank.

Assumption 3a reflects the global passivity of the respective elements [8]. Con-
sidering well-known relations between incidence matrices and circuit topology,
Assumption 3c excludes the electrically forbidden configurations of loops of
voltage sources and cutsets of current sources [5].
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3 Waveform Relaxation and Convergence

We consider the Gauß-Seidel WR method. Applied to the coupled system (1)–(2)
for given consistent initial values, this yields the scheme

Mȧk + K(ak)ak − Xikm = 0, X�ȧk = vk−1
c , (6)

E(xk)ẋk + f (t, xk) = Pikm, P�xk − vk
c = 0. (7)

The coupling variables are the current through and the voltage over the field device
im and vc, where ikm is computed in (6) and is then given to (7) as input, and vice
versa for vk

c . The superscript k denotes the iteration index. A common choice for the
initial guess v0c is constant extrapolation of the initial value.

We shall proceed as follows:

1. Lemmata 4 and 6 provide a DAE-decoupling of the EM field DAE (1) and the
MNA DAE (2), respectively.

2. Definition 5 introduces the concept of parallel CVR paths. Assuming their
existence and exploiting the previous decoupling Lemmata, Lemma 7 yields a
DAE-decoupling of the coupled WR iteration (6)–(7). Notably, it reveals the
structure of its inherent ODE, given by φ in Eq. (11).

3. The convergence Theorem 8 is a simple consequence of the previous Lemmata;
it shows that the existence of parallel CVR paths guarantees convergence of the
WR scheme (6)–(7).

For visual reasons, we shall write column vectors as (a, b, c).

Lemma 4 Let Assumption 2 hold. Then, for a given source term vc, there exists a
coordinate transformation (w, u) = T −1a and a system of the form

u̇ + A1u = A2vc, w = Bu, im = G1u + G2vc (8)

such that (a, im) solves Eq. (1) if and only if (u,w, im) solves Eq. (8).

Proof For better readability and shortness we present the proof only for the slightly
more restrictive case where X�M = 0, which is usually satisfied.

We equivalently transform the field DAE with new coordinates T α = a:

T �MT α̇ + T �K(T α)T α − T �Xim = 0,

X�T α̇ = vc.
(9)

The transformation matrix T := (Tker X T⊥) is constructed such that the columns
of Tker and T⊥ form a basis of kerM ∩ kerX� and (kerM)⊥, respectively. It
is nonsingular indeed, since its construction and Assumption 2 combined with
XT M = 0 guarantee that imX ⊥ imTker and imT⊥ ⊥ im(Tker X).
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With α = (w, u) and u = (u1, u2), the transformed DAE (9) has the detailed
form

T �
kerK(T α)Tkerw + T �

kerK(T α)(X T⊥)u = 0,

X�K(T α)T α − X�Xim = 0,

T �⊥ MT⊥u̇2 + T �⊥ K(T α)T α = 0,

X�Xu̇1 = vc.

The underlined matrices are nonsingular due to Assumption 2, and Eq. (8) is
obtained by inversion and insertion.

Definition 5 A CVR path in a circuit is a path which consists of only capacitances,
voltages sources and resistances. An element has a parallel CVR path, if its incident
nodes are connnected by a CVR path.

Lemma 6 Let Assumption 3 hold. Then, for a given source term im, there exists a
coordinate transformation (y, z1, z2) = T −1x and a system of the form

ẏ = f0(t, y, z, z2, u), z1 = g1(t, y, z2, ż2, u), z2 = g2(t) + QPim, (10a)

vc = P�T (y, z1, z2) (10b)

with f0, g1, g2 uniformly globally Lipschitz continuous ∀t and g2 ∈ C1 such that

1. (x, vc) solves Eq. (2) if and only if (y, z1, z2, vc) solves Eq. (10),
2. QP = 0 if each EM field element has a parallel CVR-path.

A detailed proof can be found in [11], where Q is shown to have the form (Q1 ∗ ∗)

with imQ1 = ker(AC AV AR)�. Hence, if each field element has a parallel CVR-
path, each column of Am can be written as a sum of columns of (AC AV AR) and it
follows Q1Am = 0, thus QP = 0.

Lemma 7 Let Assumptions 2 and 3 hold. If each EM field element has a parallel
CVR path, then there exists a coordinate transformation (r, s) = T −1(a, x) and a
system of the form

ṡk = φ(t, sk, sk−1), rk = ϕ(t, sk) (11)

with φ uniformly globally Lipschitz continuous ∀t and φ, ϕ continuous such that
(ak, ikm, xk, vk

c ) solves Eqs. (6)–(7) if and only if (sk, rk) solves Eq. (11).
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Proof We apply Lemmata 4, 6 to the iterated subsystems (6), (7). This yields an
equivalent system

u̇k = −A1u
k + A2v

k−1
c , wk = Buk, ikm = G1u

k + G2v
k−1
c ,

(12)

ẏk = f0(t, y
k, zk, zk

2, u
k), zk

1 = g1(t, y
k, zk

2, ż
k
2, u

k), zk
2 = g2(t), (13)

vk
c = P�T (yk, zk

1, z
k
2).

(14)

Since each field element has a parallel CVR path, zk
2 = g(t) does not depend on uk

anymore.
We insert vk−1

c = P�xk−1 = P�T (yk−1, zk−1
1 , zk−1

2 ) and zk−1
1 and zk−1

2 therein
to obtain, with g̃1(t, y

k−1, uk−1) = g1(t, y
k−1, g2(t), ġ2(t), u

k−1),

u̇k = φ2(t, u
k, yk, uk−1, yk−1) := −A1u

k + A2P
�T (yk−1, g̃1(t, y

k−1, uk−1), g2(t)).

Insertion of zk
1, z

k
2, ż

k
2 into f0 yields

ẏk = φ1(t, u
k, yk) := f0(t, y

k, g1(t, y
k, g2(t), ġ2(t), u

k), g2(t), u
k).

Hence, defining sk := (uk, yk) and φ := (φ1, φ2), the sequence (uk, yk) is given
implicitly by an ODE recursion of the form ṡk = φ(t, sk, sk−1).

The algebraic constraint of Eq. (11) is obtained with rk = (wk, ik, zk
1, z

k
2, v

k
c ),

sk = (uk, yk) and

ϕ(t, s) = (Bu,Gu, g1(t, y, g2(t), ġ2(t), u), g2(t)).

Clearly, (sk, rk) solves Eq. (11) if and only if α̃k := (uk,wk, ikm, yk, zk
1, z

k
2, v

k
c )

solves Eqs. (12)–(14), and α̃k solves (12)–(14) if and only if (ak, ikm, xk, vk
c ) solves

Eqs. (6)–(7).

We deduce the main result of this work:

Theorem 8 If each EM field element of the coupled system (1)–(2) has a parallel
CVR path, then the WR scheme (6)–(7) is uniformly convergent to the exact solution
of (1)–(2).

Proof The ODE part of Eq. (11) is a WR scheme for ODEs with Lipschitz
continuous vector field φ. It is well-known that such schemes are unconditionally
convergent on bounded time intervals [7]. The convergence of sk clearly implies
the convergence of (sk, rk) defined by (11). Due to the equivalence provided by
Lemma 7, it follows that the original scheme (6)–(7) is convergent.
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Remark 9 The convergence result holds for arbitrary continuous initial guesses x0

and for bounded intervals of arbitrary size, see e.g. [7, 11].

Remark 10 The MNA decoupling given in Lemma 6 shows that g1 depends on
z2 and the derivative ż2. Hence, the system is most sensitive to perturbations of z2.
The input of the EM field subsystem in the WR scheme is in fact a perturbation.
Therefore, the condition QP = 0 from Lemma 6 is crucial to derive Theorem 8.
If at least one EM field element has no parallel CVR path, then QP �= 0. Then,
analogously to Lemma 7 and its proof, we find ṡk = φ(t, sk, sk−1, ṡk−1), which is
guaranteed to converge only if φ is contractive in ṡk−1, see [7, 11].

4 Numerical Examples

To illustrate the convergence behaviour of the WR scheme according to the derived
criteria, we consider the toy example circuits in Fig. 2a and b. Both are described
with MNA (2) and the (arbitrary) parameters R = 1Ω , L = 5H, C = 1F, is(t) =
sin(2t) + 5 sin(20t) and vs(t) = sin(t) + sin(20t) are set. The eddy current Eq. (1)
is solved on the single phase isolation transformer shown in Fig. 1. For simplicity,
a zero current is imposed on the secondary coil (dark orange) and only the primary
coil is coupled to the circuit.

The WR algorithm is applied on the simulation time window I = [0 0.8] s
and the internal time integration is performed with the implicit Euler scheme
with time step size δt = 10−2 s. The theoretical result is illustrated by the
successful simulation, see Fig. 3a, of the model shown in Fig. 2a which satisfies the
convergence criterion of Theorem 8. However, numerical simulations of the model
shown in Fig. 2b show that WR can diverge indeed if the criterion is not satisfied
(Fig. 3).

Fig. 1 Single phase isolation
transformer
(‘MyTransformer’), see [9]

Primary coil
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Fig. 2 Field/circuit coupling with model from Fig. 1 (CVR path is dashed). (a) Convergent case.
(b) Divergent case
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Fig. 3 Monolithic (“mon”) and WR solution for k = 1, 2 iterations. (a) Convergent case. (b)
Divergent case

5 Conclusions

In this work, we have presented a space-discretised coupled field/circuit model,
which is a DAE of index 2, and a simulation of this model by means of WR.
Furthermore, we have provided an easy-to-check topological convergence criterion
for a class of coupled DAE/DAE systems of index 2.
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