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Abstract This work addresses uncertainty quantification for optical structures. We
decouple the propagation of uncertainties by combining local surrogate models with
a scattering matrix approach, which is then embedded into a multifidelity Monte
Carlo framework. The so obtained multifidelity method provides highly efficient
estimators of statistical quantities jointly using different models of different fidelity
and can handle many uncertain input parameters as well as large uncertainties. We
address quasi-periodic optical structures and propose the efficient construction of
low-fidelity models by polynomial surrogate modeling applied to unit cells. We
recall the main notions of the multifidelity algorithm and illustrate it with a split
ring resonator array simulation, serving as a benchmark for the study of optical
structures. The numerical tests show speedups by orders of magnitude with respect
to the standard Monte Carlo method.

1 Introduction

Manufacturing on the nanometer-scale exhibits strong variability in the finally built
structures which should be addressed in a simulation based design approach. The
field of uncertainty quantification provides suitable tools to model and quantify
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uncertainties in the geometrical and material constitutive parameters. In this con-
tribution, we focus on the benchmark example of a split ring resonator (SRR)
array with random input data. In particular, we model uncertainties in the SRR
geometry with random variables and quantify the implied variation in the frequency
response of the system. Such quasi-periodic optical structures may feature a large
number of uncertain parameters which makes the application of many methods,
such as standard or even sparse Polynomial Chaos difficult, see [1] for instance.
We present a remedy by applying spectral polynomial expansions on the unit cell
level in the framework of the Scattering Matrix Approach (SMA) [2], which yields
a significant reduction of the computational effort. Since the coupled surrogate
model may be biased, we use a Multifidelity Monte Carlo (MFMC) method [3],
which combines different numericalmodels with different fidelity, to obtain efficient
statistical estimators. In particular, through limited recurrences to a high-fidelity
simulation of the entire structure, the MFMC method then corrects for possible
approximation errors in the low-fidelity data.

2 Decoupled Uncertainty Propagation with Scattering
Matrices

Our benchmark application is a simplified model of an array of coupled SRRs,
motivated by the research on optical metamaterials [4, 5]. It consists of a periodic,
but finite-size array of metallic SRR structures on a nanometer-scale, each of which
can be interpreted as a realization of a resonance circuit, with the ring and the
small gap acting as inductance and capacitance, respectively. More details on the
geometry and setup will be given in Sect. 4. Due to the unavoidable tolerances in
manufacturing of such small structures the geometric properties of each SRR will
slightly vary, and the periodicity of the array of coupled resonator will not be perfect
(see Figs. 54 and 57 in [5] for an illustration). Thus, we introduce a parameter vector
ycell,j ∈ Ξ ⊂ R

P , which models variations in the geometry or material of the
structure in cell j . The full input vector is then given as y = (yT

cell,1, . . . , y
T
cell,N )T ⊂

R
N ·P , and all results of the forward model depend on this input vector.
The structure is excited by a plane wave and the reflection and transmission

coefficients are evaluated. Translated into the language of dispersion analysis, the
array is expected to feature a number of bandgaps, i.e. intervals on the frequency (or
wavelength) axis where no transmission through the structure is possible. Both the
finite size of the arrays (in our case up to seven unit cells) and the parameter variation
in each SRR will have some influence on the corresponding limit frequencies.

The electromagnetic treatment of this application example requires the solution
of the wave equation with an appropriate excitation at the ports. From the field
solutions the amplitudes ai and bi of properly normalized incoming and outgoing
waves are determined. They are coupled by the scattering matrix S(jω),

(. . . bi(jω) . . .)T = S(jω) (. . . ai(jω) . . .)T ,
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with r(jω) = S11(jω) the reflection coefficient at the input port. Note that we omit
the frequency dependency of S in the following to enhance the readability.

For the discretization we apply the efficient Finite Integration Technique (FIT)
time-domain algorithm [6]. It relies on a three-dimensional Cartesian mesh and
allows calculating broadband results with single transient simulation runs (using
Discrete Fourier Transform on the signals). The calculation of scattering parameters
proceeds in two steps: First, the two-dimensional eigenvalue problem of the port
apertures is analyzed to obtain the field patterns and cutoff-frequencies of the so-
called waveguidemodes. Note that a lossfree model is considered here, and the array
of SRRs is transversally terminated by perfect electric and magnetic boundary con-
ditions. Second, these mode patterns and their well-known orthogonality properties
are used to both excite the three-dimensional structure and to extract the amplitudes
of the out-going waves at the ports. From one simulation run, one column of the
scattering matrix can be obtained. For further details on the FIT we refer to the
literature.

A technique to reduce the computational cost in the analysis of periodic
structures is to decompose the SRR array into its single unit cells and to calculate
separate scattering matrices S(i) for each of them. The final concatenation of these
single-cell results can be accomplished by switching to the transfer matrices T(i)

which map the wave amplitudes of the right hand side of each cell to the left hand
side (rather than from input to output quantities as with S). For a system with 2
ports:

(
b1

b2

)
= S

(
a1

a2

)
↔

(
b1

a1

)
= T

(
a2

b2

)
with T =

(
S12 − S11S

−1
21 S22 S11S

−1
21

−S−1
21 S22 S−1

21

)
.

Extended formulas for larger S,T, which take several port-modes into account, can
easily be derived. Using transfer matrices, the total system behavior of N cells is
simply given by a matrix multiplication T = T(1) · . . . · T(N). This approach has
been used previously in [2, 7] and is referred to as SMA.

This procedure has the intrinsic weakness that the coupling between the unit
cells is not governed by a single waveguide mode alone, but an unknown number
of higher modes may contribute. Of course, the coupling of modes at frequencies
below their cutoff-frequency decreases rapidly with increasing spatial distance of
the single SRRs. However, especially if there are resonances within the frequency
range of interest (which clearly is the case for the SRRs as one of their working
principles), this systematic error may become significant. In theory an extension of
the SMA to an arbitrary number of couplingmodes is straight-forward.However, the
required number (and/or selection) of modes is sometimes hard to estimate a-priori,
and the calculation of the extended transfer matrix increases the computational cost.
Our approach removes any possible systematic error introduced in the coupling, by
treating the SMA-based predictions as low-fidelity data and by correcting them with
a couple of time domain solutions of the entire structure.
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Non-intrusive Uncertainty Quantification (UQ) usually requires the repeated
evaluation of the scattering matrices S(y) for different values of the inputs y. Even
with SMA the computational cost to evaluate a large number of sample points using
the FITmight become prohibitive. Hence, we propose to construct a surrogatemodel
for a unit cell of the periodic structure. In particular, we use a spectral collocation
method, i.e. an approximation

S(j)(ycell,j ) ≈ Suc;C(ycell,j ) :=
C∑

i=1

S(j)
(
y(i)
cell,j

)
Ψi(ycell,j ) (1)

where uc is short for unit cell and j = 1, . . . , N refers to an arbitrary unit cell of the
structure. Also, {y(i)

cell,j }Ci=1 ⊂ Ξ denotes a set of collocation points, e.g. Chebyshev
nodes, and Ψi denote the corresponding barycentric Lagrange polynomials. We
emphasize that the same surrogate model is employed for all cells. It can be
straightforwardly employed to obtain a surrogate of the full structure based on the
SMA as (after transformation into T matrices)

T(y) ≈ TC(y) := Tuc;C(ycell,1) · . . . · Tuc;C(ycell,N). (2)

We also emphasize that (2) can be evaluated with negligible computational cost. In
order to highlight the efficiency of the proposed combination of SMA and spectral
surrogates for the unit cell, we give a few comments on the alternative approach,
i.e. spectral approximation of the full structure. Due to spectral convergence
properties, global polynomial approximations can be highly efficient, even up to a
moderately large number of parameters (e.g., up to 10–20) using adaptive sparse
approximations, see e.g. [1]. However, these methods still suffer from the so-
called curse-of-dimensionality, i.e. the rapid growth of computational cost w.r.t.
the number of parameters. As the full structure has a significant larger number of
parameters, i.e. by a factor of N , this would quickly result in a very large number
of simulation runs. Additionally, the computational cost for each model evaluation
would also be significantly larger, when the full structure is considered instead of a
single unit cell.

3 Multifidelity Monte Carlo

MFMC generalizes the multilevel Monte Carlo approach, which was recently used
in [8] for a high-frequency application. MFMC simulation combines low-fidelity
models of different kinds, without quantifiedmodel errors, into an efficient sampling
framework. By sampling the high-fidelity model at least one time, the MFMC
approach provides an unbiased estimator. Moreover, a low variance and hence, a
low root-mean-square error, is realized through optimal model management and the
resulting estimator is typically much more efficient than the standard Monte Carlo
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(MC) estimator. TheMFMCmethodologywas introduced in a series of papers [3, 9]
and is now well-established. Hence, in the following we limit ourselves to the key
aspects and refer to the literature for a more complete introduction into the field.

We adopt a probabilistic approach to represent uncertainty, where y represents
a realization of a random vector Y. Let g(Y) denote an output quantity derived
from the simulated frequency response. MC simulation is then based on a sample
{Yi , g(Yi )}Ki=1, which can be used to estimate for instance the mean value of the
model output. The mean value approximation and its mean-square error read

E[g(Y)] ≈ ĝK := 1

K

K∑
i=1

g(Yi ), E[|E[g(Y)] − ĝK |2] = V[g(Y)]
K

. (3)

Following [9], we consider a model family {g(i)}Mi=1, where g(1) represents the
high-fidelity model, and g(i) for i ≥ 2 represent low-fidelity models, obtained for
instance by SMA in combination with surrogate modeling. The MFMC estimator
samples all models and combines the results into a single estimator as

E[g] ≈ ĝMFMC = ĝ
(1)
K(1) +

M∑
i=2

αi

(
ĝ

(i)

K(i) − ĝ
(i)

K(i−1)

)
,

where ĝ
(i)

K(i) denotes the standard MC estimator based on the sample

{Yj , g
(i)(Yj )}K(i)

j=1 and 0 < K(1) ≤ K(2) ≤ . . . ≤ K(M).
In place of low-fidelity error control, the model management of MFMC employs

the Pearson correlation coefficient ρ1,i between the high-fidelity model g(1) and the
low-fidelity model g(i). In particular, low-fidelity models with a high ρ1,j and a low
computational cost wi are sampled extensively. For a given computational budget
B, MFMCminimizes the mean-square error by appropriately choosing αi,K

(i), see
[9] for details. With σi = V[g(i)(Y)]1/2, the resulting estimator is unbiased with a
mean-square-error of

E[|ĝMFMC − E[g(Y)]|2] = σ 2
1

K(1)
+

M∑
i=2

( 1

K(i−1)
− 1

K(i)

)
(α2

i σ
2
i − 2αiρ1,iσ1σi).

(4)

4 Numerical Examples

We apply the UQ methods presented in the previous section to the benchmark
problem of an SRR array introduced in the beginning of Sect. 2. First, we give some
details on the considered numerical models, before investigating the performance of
the proposed UQ methodology.
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Fig. 1 Numerical model of SRR array. Depicted is only one cell out of seven. (a) Unit cell of size
1 µm×0.6 µm×0.6 µm. Red boundaries indicate the ports. (b) Geometry specification. Thickness:
20 nm. Uncertain longitudinal length L of SRR element
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Fig. 2 Broadband scattering parameter for different realizations of SRR array. Dashed vertical
lines indicate respective limit frequencies of considered bandgaps. Dotted line refers to −3 dB line

We consider a SRR array with N = 7 cells. The employed Cartesian grid as well
as the geometric dimensions (taken from [4], except for the enlarged cell size) are
presented in Fig. 1, where we consider an uncertain longitudinal length L(j) of each
SRR element in the range of 320 nm± 15 nm. Hence, the random vector Y is given
as (L(1), . . . , L(N))T , where L(j), j = 1, . . . , N are assumed to be independent
and identically uniformly distributed. Figure 2 presents a broadband scattering
parameter, in particular the fundamental reflection coefficient |S11|, for different
realizations of the structure. Two bandgaps can be observed, which can be defined
by their limit frequencies, where the scattering parameter drops below −3 dB. The
corresponding bandwidths bi and center frequencies fc,i , where i ∈ {1, 2} refers
to the first or second bandgap, can be computed from S11 in a post-processing
step. For brevity, we restrict ourselves to the computation of the mean value of the
center frequencies E[fc,i ] in the following. However, very similar findings hold for
the bandwidths bi as well. We further note that for some parameter sample points
some additional resonances within the second bandgap appear which are due to
the slightly detuned resonances in the series of SRRs. This effect is ignored in
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Table 1 Employed numerical models of SRR array for MFMC study. The last two columns show
the estimated correlation coefficients for both bandgaps

Symbol Model Cost wi ρ1,i for fc,1 ρ1,i for fc,2

g(1) Full model (FIT, 2 · 105 time-steps) 197.50 s 1.000000 1.000000

g(2) Full model (FIT, 2 · 104 time-steps) 11.25 s 0.999236 0.998035

g(3) SMA (FIT, 1 port-mode) 9.64 s 0.999943 0.968376

g(4) SMA (FIT, 2 port-modes) 115.47 s 0.999998 0.999998

g(5) SMA + unit cell surrogate (1 port-mode) 0.006 s 0.999943 0.967540

g(6) SMA + unit cell surrogate (2 port-modes) 0.026 s 0.999998 0.999886

the following evaluation of the MLMC algorithm and only the outer limits of this
bandgap are considered.

An overview of the employed numerical models as well as the corresponding
computational costs (measured in computation time for an in-house MATLAB
implementation on a standard workstation) is given in Table 1. For the full FIT
model g(1) we terminate the time stepping procedure if either the energy decays to
−120 dB or a maximum number of 2 · 105 time-steps is reached. The low-fidelity
model g(2) is obtained by restricting the maximum number of time-steps to 2 · 104.
The low-fidelity models g(3) and g(4) are obtained by the SMA approach. For g(3)

only the propagating fundamental TEM mode is considered, while g(4) additionally
takes the evanescent first TM mode into account. The selection of suitable models is
based on a pilot run (with a small sample) and model selection techniques, see also
[3, 9].

The construction of the respective unit cell surrogate models for g(5) and g(6) in
the offline-phase is based on C = 7 Chebyshev nodes, which are well-established
non-equidistant interpolation nodes. Note that other choices are equally feasible,
Gauss-Legendre nodes for instance. Surrogate modeling requires some additional
computational effort, which, however, only needs to be invested once. Also, in
this case, even a single model evaluation of g(1) requires a larger computational
effort than constructing the surrogate models. Hence, we will neglect this cost
here, for simplicity. We further note that the evaluation times of all models scale
approximately linear w.r.t. to an eventually increased number of cells N , while
the offline-cost for the surrogate models is independent of N . Accordingly, similar
MFMC results, as presented in the following for N = 7, are also expected for SRR
arrays with a different number of cells. Exemplarily, this has been confirmed for
N = 14 numerically. However, we note that for larger models some care has to
be taken regarding the concatenation within the SMA, since the multiplication of
transfer matrices can become numerically unstable.

In order to evaluate the performance of the proposed methodology for the

considered benchmark problem, we draw an input sample {Yi}K̃i=1 of size K̃ =
500 and employ each model g(j) to compute the corresponding output samples
{g(j)(Yi )}K̃i=1, j = 1, . . . , 6. The correlation coefficients with the high-fidelity
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Fig. 3 Estimated RMSE for different MC and MFMC variants, see Table 1

model g(1) are then estimated as shown in Table 1. It can be observed that all low-
fidelity models show a strong correlation with the high-fidelity model.

We employ anMFMC implementationwhich is based on the open-sourceMatlab
library github.com/pehersto/mfmc, see [9]. In the following, we will compare the
root-mean-square-errors (RMSEs) of MC and MFMC for given computational bud-
getsB, which can both be accurately estimated based on the samples {g(j)(Yi )}K̃i=1,
as explained in the following. The RMSE of standardMC on the high-fidelity model
g(1) is obtained by (3), where K is given by B

w1
and the variance is replaced by the

MC estimate for the variance using {g(1)(Yi )}K̃i=1. This is shown in Fig. 3 in blue
color. Similarly, the RMSE of MFMC can be estimated according to (4), as shown
in black color in Fig. 3. We note that the proposed approach yields speedups by
several orders of magnitude w.r.t. standard MC (for a fixed accuracy).

We note that the MFMC algorithm sorts out some models, as, for example, g(2)

and g(3) have a smaller correlation with the high-fidelity model than the surrogate
model g(6) but a higher computational cost. For completeness, we additionally show
the convergence of MFMC using only g(1) and g(j), j ∈ {2, . . . , 6} with dashed
lines in Fig. 3. As expected, in all cases this approach performs better than MC
but worse than the combination of models chosen by the MFMC algorithm. It can
be observed that, for both bandgaps, mainly the proposed unit cell surrogate models
lead to the tremendous efficiency gains.While for the first bandgap considering only
one port-mode could also be sufficient, for the second bandgap it is clearly necessary
to consider two port-modes for the SMA. This is expected as the first bandgap is
mainly governed by the fundamental resonance of the SRRs itself, whereas for the
second one the mutual coupling between the cells play a larger role.

Finally, we show that the high-fidelity model evaluations within the MFMC
framework are indeed required to remove the biasing error. If one would apply
a standard MC method on the surrogate model g(6) solely (instead of g(1))
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the associated error is represented by the dotted red line in Fig. 3. Both error
contributions, the sampling and the biasing error, are estimated again with a Monte
Carlo sample.

5 Conclusions

We have presented an uncertainty propagation technique for quasi-periodic optical
structures with random influences, which combines surrogatemodeling of unit cells,
SMA andMFMC. The resultingmultifidelity approach can significantly improve the
efficiency of Monte Carlo sampling. In particular speedups by orders of magnitude
were obtained for a split ring resonator. The proposed method exhaustively samples
unit cell models which are combined through the scattering matrix approach and
hence, can be evaluated efficiently. Only a single unit cell surrogate was required
which significantly reduced the number of uncertain parameters and hence, the
computational complexity. The surrogate-SMA data was then corrected with a few
time domain simulations of the entire structure to obtain unbiased estimates of the
bandgap properties.
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