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Abstract. In the paper, we present a ‘pre-training ’+‘post-training ’
+‘fine-tuning ’ three-stage paradigm, which is a supplementary frame-
work for the standard ‘pre-training ’+‘fine-tuning ’ language model app-
roach. Furthermore, based on three-stage paradigm, we present a lan-
guage model named PPBERT. Compared with original BERT architec-
ture that is based on the standard two-stage paradigm, we do not fine-
tune pre-trained model directly, but rather post-train it on the domain or
task related dataset first, which helps to better incorporate task-awareness
knowledge and domain-awareness knowledge within pre-trained model,
also from the training dataset reduce bias. Extensive experimental results
indicate that proposed model improves the performance of the baselines
on 24 NLP tasks, which includes eight GLUE benchmarks, eight Super-
GLUE benchmarks, six extractive question answering benchmarks. More
remarkably, our proposed model is a more flexible and pluggable model,
where post-training approach is able to be plugged into other PLMs that
are based on BERT. Extensive ablations further validate the effectiveness
and its state-of-the-art (SOTA) performance. The open source code, pre-
trained models and post-trained models are available publicly.

Keywords: BERT · Pre-training · Post-training · SQuAD · GLUE ·
SuperGLUE

1 Introduction

Recently, the introduction of pre-trained language models (PLMs), including GPT
[18], BERT [3], and ELMo [17], among many others, has achieved tremendous
success to the natural language processing (NLP) research. Typically, the basic
structure of such a model consists of two successive stages, one step during the
pre-training phase and another step during the fine-tuning phase. During the pre-
training phase it pre-trains on unsupervised dataset firstly, then during the fine-
tuning phase it fine-tunes on downstream supervised NLP tasks. Up to now, these
models obtained the best performance on various NLP tasks. Some of the most
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prominent examples are BERT, and BERT based SpanBERT [5], ALBERT [8].
These PLMs are trained on the large unsupervised corpus through some unsuper-
vised training objectives. However, it is not obvious that the model parameters
which is obtained during unsupervised pre-training phase can be well-suited to
support the this kind of transfer learning. Especially during the fine-tuning phase,
for the target NLP task only a small amount of supervised text data is available,
fine-tuning the pre-trained model are potentially brittle. And for the pre-trained
model, supervised fine-tuning requires substantial amounts of task-specific super-
vised training dataset, not always available. For example, in GLUE benchmark
[25], Winograd Schema dataset [9] have only 634 training data, too small for fine-
tuning natural language inference (NLI) task. Moreover, although PLMs, such
BERT, can learn contextualized representations across many NLP tasks (to be
task-agnostic), which leverages PLMs alone still leaves the domain-specific chal-
lenges unresolved (BERT are trained on general domain corpora only, and cap-
ture a general language knowledge from training dataset, but lack domain or task-
specific data severely). For example, in financial domain, they often contain unique
vocabulary information, such as stock, bond type, and the sizes of labeled data are
also very small (even only few hundreds of samples). In the paper, to overcome the
aforementioned issues, we proposed a novel three-stage BERT (called PPBERT)
architecture, in which we add a second stage of training, that is ‘post-training ’,
to improving the original BERT architecture model.

Typically there are two directions to pursue new state-of-art in the post
pre-trained PLMs era. One is to construct novel neural network architecture
model based on PLMs, like BERTserini [26] and BERTCMC [15]. Other app-
roach is to optimize pre-training, like GPT 2.0 [18], MT-DNN [10], SpanBERT
[5], and ALBERT [8]. In the paper, we present another novel method to improve
the PLMs. We present a ‘pre-training ’+‘post-training ’+‘fine-tuning ’ three-
stage paradigm and further present a language model named PPBERT. Com-
pared with original BERT architecture that is based on the standard ‘pre-
training ’+‘fine-tuning ’ PLMs approach, we do not fine-tune pre-trained mod-
els directly, but rather post-train them on the domain or task related train-
ing dataset first, which helps to better incorporate task-awareness knowledge
and domain-awareness knowledge within pre-trained model, also in the training
dataset can reduce bias. More specifically, our framework involves three sequen-
tial stages: pre-training stage using on large-scale corpora (see Subsect. 2.1),
post-training stage using the task or domain related datasets via multi-task con-
tinual learning method (see Subsect. 2.2), and fine-tuning stage using target
datasets, even with little labeled samples or without labeled samples (see Sub-
sect. 2.3). Thus, PPBERT can benefits from the regularization effect since it
leverages cross-domain or cross-task data, which helps model generalize better
with limited data and adapt to new domains or tasks better.

Sum up, on a wide variety of tasks our proposed post-training process out-
performs existing BERT benchmark, and achieved better performance on small
dataset and domain-specific tasks in particular substantially. Specifically, we
compared our model with BERT baselines on GLUE and SuperGLUE bench-
mark tasks and consistently significantly outperform BERT on all of 16 tasks
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(8 GLUE tasks and 8 SuperGLUE tasks), increasing by the GLUE average score
of 87.02, showing an absolute improvement of 2.97 over BERT; showing an abso-
lute improvement of 5.55, pushing the SuperGLUE to 74.55. More remarkably,
our model is a more flexible and pluggable. The post-training appoach can be
straight plugged into other PLMs based on BERT. In our ablation studies, we
plug the post-training strategy into original BERT (i.e., PPBERT) and its vari-
ant, ALBERT (called PPALBERT), respectively. Our approaches advanced the
SOTA results for five popular question answering datasets, surpassing the pre-
vious pre-trained models by at least 1 point in absolute accuracy. Moreover,
through further ablation studies, the best model obtains SOTA results on small
datasets (1/20 training set). All of these clearly demonstrate our proposed three-
stage paradigms exceptional generalization capability via post-training learning.

Fig. 1. An illustration of the architecture for our PPBERT, which is a ‘pre-training ’-
‘post-training ’-then-‘fine-tuning ’ three-stage BERT. Compared with standard BERT
architecture that has the two-stage ‘pre-training ’-then-‘fine-tuning ’, we do not directly
fine-tune pre-trained models, but rather add a second stage of training (called ‘post-
training ’). More specifically, during the pre-training stage, we first on the large-scale
dataset conduct unsupervised pre-training, and then during the post-training stage
post-train pre-trained models on the task or domain related dataset, and last during
the fine-tuning stage conduct fine-tuning on downstream supervised NLP tasks.

2 The Proposed Model: PPBERT

As shown in Fig. 1, the standard BERT is built based on two-stage paradigm
architecture, ‘pre-training ’+‘fine-tuning ’. Compared traditional pre-training
methods, PPBERT does not fine-tune the pre-trained model directly after pre-
training, but rather continues to post-train the pre-trained model on the task or
domain related corpus, helping to reduce bias. During post-training processing
our proposed PPBERT framework can continuously update pre-trained model.
The architecture of our PPBERT architecture is shown in Fig. 1.

2.1 Pre-training

The training procedure of our proposed PPBERT has 2 processing: pre-training
stage and post-training stage. As BERT outperforms most existing models,
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we do not intend to re-implement it but focus on the second training stage: Post-
training. The pre-training processing follows that of the BERT model. We first
use original BERT and further adopt a joint post-training method to enhance
BERT. Thus, our proposed PPBERT is more flexible and pluggable, where post-
training approach is able to be plugged into other language models based on
BERT, such as ALBERT [8], SpanBERT [5], not only applied to original BERT.

2.2 Post-training

Compared with original BERT architecture that has two-stage paradigm, ‘pre-
training ’+‘fine-tuning ’, we do not fine-tune pre-trained model, but rather first
post-train the model on the task or domain related training dataset directly. We
add a second training stage, that is ‘post-training ’ stage, on an intermediate
task before target-task fine-tuning.

Training Details. In the post-training stage, its aims to train the pre-trained
model on the task or domain related annotated data continuously, to learn task
knowledge or domain knowledge from different post-training tasks by keeping
updating the pre-trained model. Thus, it brings a big challenge: How to train
these post-training tasks in a continual way, and more efficiently post-train a
new task without forgetting the knowledge that is learned before.

Inspired by [2,22] and [16], which show Continual Learning can train the
model with several tasks in sequence, but we find that, standard Continual
Learning method trains the model with only one task at each time with the
demerit that it is easy to forget the knowledge previously learned. Also con-
currently, inspired by [10,12] and [4,13], which show Multi-task Learning can
allow the use of different training corpus to train sub-parts of neural networks,
but we find that, although Multi-task Learning could train multiple tasks at the
same time, it is necessary that all customized pre-training tasks are prepared
before the training could proceed. So this method takes as much time as con-
tinual learning does, if not more. So we present a multi-task continual learning
method to tackle with this problem. More specifically, whenever a new post-
training task comes, the multi-task continual learning method first utilizes the
parameters that is previously learned to initialize the model, and then simulta-
neously train the newly-introduced task together with the original tasks, which
will make sure that the learned parameters can encode the knowledge that is
previously learned. More crucially, during post-training we allocate each task K
training iterations, and then further assign these K iterations for each task to
different stages of training. Also concurrently, instead of updating parameters
over a batch, we divide a batch into more sub-batches and accumulate gradi-
ents on those sub-batches before parameter updates, which allows for a smaller
sub-batch to be consumed in each iteration, more conducive to iterating quickly
by using distributed training. As a result, proposed PPBERT can continuously
update pre-trained model using the multi-task continual learning method. So we
can guarantee the efficiency of our post-training without forgetting the knowl-
edge that is previously trained.
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Post-training Datasets. As discussed above, fine-tuning processing has main
challenges, on the target task directly, as follows: i) during the fine-tuning phase,
there is only a small amount of supervised training data, fine-tuning the pre-
trained model are potentially brittle; ii) for the pre-trained model, its super-
vised fine-tuning requires substantial amounts of task-specific supervised train-
ing dataset, limited and indirect, not always available; iii) leveraging BERT
alone leaves the domain or task-specific questions unresolved. To enhance the
performance of pre-trained model, we need to effectively fuse task knowledge
(from related NLP tasks supervised data) or domain knowledge (from related
in-domain supervised data). As a common NLP task, Questions and Answers
(QA), to get the answer based on a question, requires reasoning on facts relevant
to the given question and deep semantic understanding of document. Thus, a
large-scale QA supervised corpus can benefit most NLP tasks. Similarly, NLI task
(a.k.a. RTE) and sentiment analysis (SA) are also two important and basic tasks
for natural language understanding. Eventually, we use QA dataset (CoQA), NLI
dataset (SNLI) and SA dataset (YELP) as post-training datasets. We post-train
our model on CoQA, SNLI and YELP data simultaneously.

In this work, for generality and wide applicability of our proposed PPBERT,
we use only CoQA, SNLI and YELP as post-training datasets. Note that, because
PPBERT adopts the effective multi-task continual learning training method
(Sect. 2.2), its post-training datasets are easily scalable, which is meant to be
combined further with other datasets, including domain specific data.

2.3 Fine-Tuning

In fine-tuning processing, we first initialize PPBERT model with the post-trained
parameters, and then use supervised dataset from specific tasks to further fine-
tune. In general, for each downstream task, after being fine-tuned it has its own
fine-tuned models.

3 Experiments

3.1 Tasks

To evaluate our proposed approach, we use a comprehensive experiment tasks,
as follows:

i) in Sect. 3, eight tasks in the GLUE benchmark [25] and eight tasks in the
SuperGLUE benchmark [24];

ii) in Sect. 4, five question answering tasks, two natural language inference
tasks and two tasks in domain adaptation, financial sentiment analysis and finan-
cial question answering.

We expect that these NLP tasks will benefit from proposed ‘pre-
training ’+‘post-training ’+‘fine-tuning ’ three-stage paradigm particularly.

3.2 Datasets

This subsection briefly describes the datasets.
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GLUE. The General Language Understanding Evaluation (GLUE) benchmark
[25] is a collection of eight datasets to evaluate NLU tasks. GLUE1 consists
of a series of NLP task datasets (See Table 1), including: Corpus of Linguistic
Acceptability (CoLA), Multi-genre Natural Language Inference (MNLI), Rec-
ognizing Textual Entailment (RTE), Quora Question Pairs (QQP), Semantic
Textual Similarity Benchmark (STS-B), Stanford Sentiment Treebank (SST-2),
Question Natural Language Inference (QNLI), Microsoft Research Paraphrase
Corpus (MRPC).

Table 1. Summary of the GLUE benchmark.

Corpus Task #Train #Dev #Test Metrics

CoLA Acceptability 8.5k 1k 1k Matthews corr
STS-B Similarity 7k 1.5k 1.4k Pearson/Spearman corr
QQP Paraphrase 364k 40k 391k Accuracy/F1
MRPC Paraphrase 3.7k 408 1.7k Accuracy/F1
SST-2 Sentiment 67k 872 1.8k Accuracy
QNLI QA/NLI 108k 5.7k 5.7k Accuracy
MNLI NLI 393k 20k 20k Accuracy
RTE NLI 2.5k 276 3k Accuracy
Notes: The details of GLUE benchmark. The #Train, #Dev and #Test
denote the size of the training set, development set and test set of corre-
sponding corpus respectively.

SuperGLUE. Similar to GLUE, the SuperGLUE benchmark [24] is a new
benchmark that is more difficult language understanding task datasets2, includ-
ing: BoolQ, CommitmentBank (CB), Choice of Plausible Alternatives (COPA),
Multi-Sentence Reading Comprehension (MultiRC), Reading Comprehension
with Commonsense Reasoning (ReCoRD), Recognizing Textual Entailment
(RTE), Words in Context (WiC), Winograd Schema Challenge (WSC).

SQuAD. The Stanford Question Answering Dataset (SQuAD) is one of the
most popular machine reading comprehension challenges datasets. SQuAD is
a typical extractive machine reading comprehension task, including a question
and a paragraph of context. Its aim is to give a text span extracted from the
document based on the given question. SQuAD consists of two versions: SQuAD
[20] (in this version, the provided document always contains an final answer)
and SQuAD v2.0 [19] (in this version, some questions are not answered from the
provided document).
1 https://gluebenchmark.com/.
2 https://super.gluebenchmark.com/.

https://gluebenchmark.com/
https://super.gluebenchmark.com/
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Financial Datasets. To better demonstrate the generality of our post-training
approach, we further perform domain adaptation experiments on two financial
tasks, FiQA sentiment analysis (SA) dataset and FiQA question answering (QA)
dataset. As part of the companion proceedings for WWW’18 conference, [14]
released two very small financial datasets (FiQA).

Additional Benchmarks. As shown in Table 6, we present additional datasets
for extractive question answering tasks, including RACE [7], NewsQA [23],
TrivaQA [6], HotpotQA [28]. More details are provided in the supplementary
materials.

Table 2. The overall performance of PPBERT and the comparison against BERT
models on GLUE benchmark.

BASE model LARGE model
Test Set Dev Set Test Set

Task Human Perf. BERT† PPBERT‡ BERT† PPBERT‡ BERT† PPBERT‡

CoLA 66.4 52.1 52.3 60.6 61.3 60.5 61.1
SST-2 97.8 93.5 94.6 93.2 95.7 94.9 95.7
MRPC 86.3/80.8 84.8/88.9 85.7/89.2 88.0 89.6 85.4/89.3 87.2/90.2
STS-B 92.7/92.6 87.1/85.8 87.6/86.5 90.0 91.3 87.6/86.5 90.5/89.8
QQP 59.5/80.4 89.2/71.2 88.8/73.0 91.3 92.2 89.3/72.1 90.6/73.9
MNLI 92.0/92.8 84.6/83.4 85.9/85.1 86.6 88.7 86.7/85.9 88.3/88.4
QNLI 91.2 90.5 92.2 92.3 93.8 92.7 93.7
RTE 93.6 66.4 72.3 70.4 84.2 70.1 80.3
(Avg) 85.94 80.00 81.53 (1.53 ↑) 84.05 87.02 (2.97 ↑) 82.45 85.03 (2.58 ↑)

Notes: The results on GLUE benchmark [25], where the results on test set are
scored by the GLUE evaluation server and the results on dev set are the median
of three experimental results. The metrics for these tasks are shown in Table 1.
Purple-colored texts indicate the results on par with or pass human performance.
‡ indicates our proposed model. † indicates original model BERT [3].

Table 3. Results on SuperGLUE benchmark.

Single Model BoolQ CB COPA MultiRC ReCoRD RTE WiC WSC (Avg)
Human Perf.§ 89.0 95.8/98.9 100.0 81.8/51.9 91.7/91.3 93.6 80.0 100.0 89.79
BERT§ 77.4 75.7/83.6 70.6 70.0/24.1 72.0/71.3 71.7 69.6 64.4 69.00
PPBERT (ours) 80.3 81.4/86.9 74.2 76.5/40.7 78.7/77.5 77.4 72.9 68.7 74.55

Notes: All results are based on a 24-layer architecture (LARGE model).
PPBERT results on the development set are a median over three runs. Model
references: §: ([24]).
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3.3 Experimental Results

We evaluate the proposed PPBERT on two popular NLU benchmarks: GLUE
and SuperGLUE. We compare PPBERT with standard BERT model and demon-
strate the effectiveness of with ‘post-training ’.

GLUE Results. We evaluated performance on GLUE benchmark, with the
large models and the base models of each approach. We reports the results of
each method on the development dataset and test dataset. The detailed exper-
imental results on GLUE are presented in Table 2. As illustrated in the BASE
models columns of Table 2, PPBERTBASE achieves an average score of 81.53,
and outperforms standard BERTBASE on all of the 8 tasks. As shown, in test
dataset parts of LARGE models sections in Table 2, PPBERTLARGE outperform
BERTLARGE on all of the 8 tasks and achieves an average score of 85.03. We
also observe similar results in the dev set column, achieveing an average score
of 87.02 on the dev set, a 2.97 improvement over BERTLARGE. From this data
we can see that PPBERTLARGE matched or even outperformed human level.

SuperGLUE Results. Table 3 shows the performances on 8 SuperGLUE tasks.
As shown in Table 3, it is apparent that PPBERT outperforms BERT on 8 tasks
significantly. The main gains from PPBERT are in the MultiRC (+6.5) and in
ReCoRD (+6.7), both accounting for the rise in PPBERT’s GLUE score. Also,
as Table 3 shows, there is a huge gap between human performance (89.79) and
the performance of PPBERT (74.55).

Overall Trends. Table 2 and Table 3 respectively show our results on GLUE
and SuperGLUE with and without ‘post-training ’. As shown, we compare pro-
posed method to standard BERT benchmarks on 16 baseline tasks, and find
on every task our proposed PPBERT outperforms BERT. Since in pre-training
phase PPBERT has the same architecture and pre-training objective as standard
BERT, the main gain is attributed to ‘post-training ’ in post-training phase.
If we consider the gains, especially PPBERT is better at natural language infer-
ence and question answering tasks, and is not good at syntax-oriented task. In
GLUE benchmark (we also observe similar results in SuperGLUE), for example,
i) for the question answering tasks (QNLI, MultiRC, ReCoRD) and the natu-
ral language inference tasks (MNLI and RTE), we achieves significant accuracy
gain of at least 1 point improvement. ii) for sentiment task (SST-2), although
we observe a smaller gain (+0.8), it is mainly because the accuracy has been
already high, a reasonable score (obtained a accuracy score of 95.7); iii) for
simple sentence task, we observe the smallest gain (+0.2) on all tasks in the
syntax-oriented (CoLA) task. Besides, this mirrors results also reported in [1],
who show that few pre-training tasks other than language modeling offer any
advantage for CoLA. iv) for MRPC and RTE tasks, as shown in Table 2 and
Table 3, what is interesting in the results is that we find consistent improvements
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after post-training This reveals that the learned PPBERT representation by ‘pre-
training ’+‘post-training ’ allows much more effective domain adaptation than
the BERT representation by ‘pre-training ’ only.

4 Ablation Study and Analyses

4.1 Cooperation with Other Pre-trained LMs

Our proposed PPBERT is a more flexible and pluggable, where post-training
approach can be plugged into other PLMs based on BERT, not only applied
to original BERT model. We further validate the performance of PPBERT
when ‘post-training ’ appoach on different pre-trained LMs. We compare post-
training by plugging it into original BERT (i.e., PPBERT) and and its variant,
ALBERT (called PPALBERT) pre-trained LMs, respectively. Also, we further
post-train the most recent proposed PPALBERT with one additional QA dataset
(SearchQA), and call it PPALBERTLARGE-QA.

Comparisons to SOTA Models. We evaluate our models on the popular
SQuAD benchmark (Sect. 3.2). Performance of each model is evaluated on the
two standard metric values: F1 score and exact match (EM) score. F1 score
measures the precision and recall, and less strict than then EM score. EM score
measures whether the model output exactly matches the ground answers.

Table 4. Comparison with state-of-the-art results on the Dev set of SQuAD.

SQuAD1.1 SQuAD2.0
Single Model EM/F1 EM/F1
Human Perf. 82.3/91.2 86.8/89.5
ALBERTBASE [8] 82.1/89.3 76.1/79.1
BERTLARGE [3] 84.1/90.9 79.0/81.8
XLNetLARGE [27] 89.0/94.5 86.1/88.8
RoBERTaLARGE [11] 88.9/94.6 86.5/89.4
ALBERTLARGE [8] 89.3/94.8 87.4/90.2
PPBERTLARGE (ours) 85.2/92.1 82.2/84.8
PPALBERTLARGE (ours) 89.6/95.0 87.6/90.4
PPALBERTLARGE-QA (ours) 89.7/95.1 87.7/90.5

Notes: Results on SQuAD 1.1/2.0 development dataset.
Best scores are in bold texts, and the previous best scores
are underlined.
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Table 4 details performance gains when exploiting each of the three post-
trained LMs on SQuAD datasets (two versions, respectively). As shown in
Table 4, on the SQuAD dev dataset (version 1.1), compared with BERT base-
line, adding post-training stage improves the EM by 1.1 points (84.1→85.2),
and F1 1.2 points (90.9→92.1). Similarly, PPALBERTLARGE also outperforms
ALBERTLARGE baseline, by 0.3 EM and 0.2 F1. Especially, PPALBERTLARGE-
QA using further post-training relatively improves 0.1 EM and 0.1 F1 over PPAL-
BERTLARGE, respectively. We also observe similar results on SQuAD v2.0 devel-
opment set. The most recent proposed PPALBERT sets a new state-of-the-art,
achieving 87.7 EM and 90.5 F1.

Performance on Other QA and NLI Tasks. Furthermore, extensive exper-
iments on six NLP tasks about semantic relationship are conducted, including
two natural language inference benchmarks (QNLI and MNLI-m, both from
GLUE), and four extractive question answering benchmarks (TriviaQA, RACE,
HotpotQA and NewsQA). All benchmarks except RACE, we use the same fine-
tuning method as SQuAD. Different from others, RACE is a multiple-choice
QA dataset. The experimental results for PPALBERT are shown in Table 5. As
depicted in Table 5, both PPALBERTLARGE and PPALBERTLARGE-QA achieve
state-of-the-art accuracy across all settings. Overall, as expected, only utilizing
‘pre-training ’ is inferior to our proposed ‘pre-training ’-then-‘post-training ’
method. The experimental results (Sect. 4.1 and Sect. 4.1) described above, indi-
cate that our two stage training paradigm is very flexible, and proposed post-
training appoach could be easily plugged into other PLMs. More remarkably, we
achieve new SOTA performances on existing baselines.

Table 5. Performance on six QA and NLI tasks.

Single Model NewsQA TrivaQA HotpotQA RACE QNLI MNLI-m

BERTLARGE
† 68.8 77.5 78.3 72.0 92.3 86.6

SpanBERTLARGE
† 73.6 83.6 83.0 - 93.3 87.0

RoBERTaLARGE
‡ - - - 83.2 94.7 90.2

ALBERTLARGE
§ - - - 86.5 95.2 90.4

PPALBERTLARGE (ours) 74.6 84.3 83.4 86.7 95.6 90.7
PPALBERTLARGE-QA (ours) 74.8 84.5 83.5 86.8 95.9 90.9

Notes: The details of NewsQA, TrivaQA, HotpotQA and RACE are shown in
Table 6. QNLI and MNLI-m are from GLUE. Model references: †: ([5]), ‡: ([11]),
§: ([8]).
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Table 6. The details of QA datasets.

Dataset Lang. #Query #Documents Query Documents Answer type

SQuAD 1.1† EN 100K 536 CS Wiki Span of words
SQuAD 2.0‡ EN 150K 500 CS Wiki Span of words
NewsQA [23] EN 100K 10K CS CNN Span of words
HotpotQA [28] EN 78K 113k CS Wiki Span/substring of words
TrivaQA [6] EN 40K 660K TW Wiki./Web doc Span/substring of words
RACE [7] EN 870K 50K EE EE Multiple-choice
CoQA [21] EN 127K 8K CS QA Dialog Span/substring of words
Notes: CS denotes Crowdsourced. TW denotes Trivia websites. EE denotes
English exam. Model references: †: ([20]), ‡: ([19]).

5 Conclusion

In the paper, we present a ‘pre-training ’+‘post-training ’+‘fine-tuning ’
three-stage paradigm and a language model named PPBERT based on the
three-stage paradigm, which is a supplementary framework for the standard
‘pre-training ’+‘fine-tuning ’ two-stage architecture. Our proposed three-stage
paradigm helps to incorporate task-awareness knowledge and domain knowledge
within pre-trained model, also reduce the bias in the training corpus. PPBERT
can benefits from the regularization effect since it leverages cross-domain or
cross-task data, which helps model generalize better with limited data and adapt
to new domains or tasks better. With the latest PLMs as baseline and encoder
backbone, PPBERT is evaluated on 24 well-known benchmarks, which outper-
formS strong baseline models and obtains new SOTA results. We hope this work
can encourage further research into the language models training, and the future
works involve the choice of other transfer learning sources such as CV etc.
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