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Abstract. The irrelevant information in documents poses a great chal-
lenge for machine reading comprehension (MRC). To deal with such a
challenge, current MRC models generally fall into two separate parts:
evidence extraction and answer prediction, where the former extracts
the key evidence corresponding to the question, and the latter predicts
the answer based on those sentences. However, such pipeline paradigms
tend to accumulate errors, i.e. extracting the incorrect evidence results in
predicting the wrong answer. In order to address this problem, we pro-
pose a Multi-Strategy Knowledge Distillation based Teacher-Student
framework (MSKDTS) for machine reading comprehension. In our app-
roach, we first take evidence and document respectively as the input ref-
erence information to build a teacher model and a student model. Then
the multi-strategy knowledge distillation method transfers the knowl-
edge from the teacher model to the student model at both feature and
prediction level through knowledge distillation approach. Therefore, in
the testing phase, the enhanced student model can predict answer sim-
ilar to the teacher model without being aware of which sentence is the
corresponding evidence in the document. Experimental results on the
ReCO dataset demonstrate the effectiveness of our approach, and further
ablation studies prove the effectiveness of both knowledge distillation
strategies.
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1 Introduction

Machine reading comprehension (MRC) is a task that enables machines to read
and understand natural language documents to answer questions. Since it well
indicates the ability of machines in interpreting natural language as well as
having a wide range of application scenarios, it has attracted extensive attention
from academia and industry over the recent years. Prevailing MRC datasets
define their tasks as either extracting spans from reference documents to answer
questions, such as SQuAD [28] and CoQA [29], or inferring answers based on
pieces of evidence from a given document, which is also referred to as non-
extractive MRC, including multiple-choice MRC [16,30], open domain question
answering [5] and so on.

Current MRC faces the significant challenge of the irrelevant information in
documents causing negative impact on answer predicting. Therefore, our aim
is to engage the model to focus on evidence sentences in documents and using
them to answer corresponding questions accurately. To illustrate, consider the
example shown in Fig. 1 (adapted from the ReCO dataset [35]). In this sample
document, only the evidence sentences have a significant impact on predicting
the answer; the other sentences are irrelevant information that may confuse the
model and preventing it from focusing on the evidence sentences, thus affecting
the correctness of answer predicting.

Fig. 1. Example of multiple-choice machine reading comprehension. The sentence in
green is the evidence sentence for answering the given question in this document, which
is of great importance. Other sentences contain irrelevant information, while potentially
negatively affecting the answer prediction. The sentence in blue is the evidence obtained
by manual annotation (summarized or paraphrased by the annotator). (Color figure
online)

Previous attempts mainly focused on the pipeline (coarse-to-fine) paradigm
[24,36]: first locating or generating the evidence sentences corresponding to the
question by an evidence extractor or generator, then the answer is predicted
based on it. Unfortunately, such a pipeline paradigm suffers from the problem
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of error accumulation. Besides, in real-world scenarios, the evidence supporting
the answer to the question is often implicitly present in the document and thus
not easily extracted or generated. For instance, 46% of the evidence sentences
could not be explicitly found in the documents in the ReCO dataset. Once the
evidence extractor or generator gets incorrect evidence, the result obtained by
the answer predictor is bound to be wrong.

In this paper, we attempt to engage the model to focus more on the evi-
dence sentences in the document rather than extracting them out. Thus we pro-
pose a Multi-Strategy Knowledge Distillation based Teacher-Student frame-
work (MSKDTS). In the training phase, we first take evidence and document
as the reference information to pretrain a teacher model and a student model,
respectively. Then, we incorporate multi-strategy knowledge distillation into the
teacher-student framework, which is the student model attempts to produce
teacher-like features and predicted answers through feature knowledge distilla-
tion and prediction knowledge distillation. Subsequently, in the testing phase, the
enhanced student model predicts the answer with only the document (unaware
of the evidence sentences). Hence, the whole process obviates the process of
explicitly evidence extraction, which naturally circumvents the accumulation of
errors in the conventional pipeline paradigm.

Our contributions are summarized as follows:

– We propose a teacher-student framework for MRC to address the issue of
irrelevant information in reference documents causing a negative impact on
answer inference.

– We propose a multi-strategy knowledge distillation approach in the teacher-
student framework, which transfers knowledge from the teacher model to the
student model at feature level and prediction level through feature knowledge
distillation and prediction knowledge distillation.

– We conducted experiments on the two testing sets of the ReCO dataset, the
results demonstrate the effectiveness of our approach, and further ablation
experiments prove the effectiveness of both knowledge distillation strategies.

2 Related Work

2.1 Machine Reading Comprehension

The task of machine reading comprehension (MRC) can well indicate the ability
of the machine to understand texts. Owing to the rapid development of deep
learning and the presence of many large-scale datasets, MRC is under the spot-
light in the field of natural language processing (NLP) in recent years. Depend-
ing on the format of questions and answers, the MRC datasets can be roughly
categorized into cloze-style [10,11], multiple-choice [16,30,35], span prediction
[15,28], and free form [9,23]. Lately, new tasks have emerged for MRC, such as
knowledge-based MRC [25], MRC with unanswerable questions [13,27,32] and
multi-passage MRC [37].
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To model human reading patterns, pipeline (coarse-to-fine) paradigm have
been proposed [2,19]. These models first extract the corresponding evidence from
the document and then predict the answer via such evidence. To train a evidence
extractor, current methods are mainly unsupervised methods [14,31], weakly
supervised methods [22] and reinforcement learning methods [2]. Besides, Niu
et al. [24] proposed a self-training method for MRC with soft evidence extraction,
which performs great on several MRC tasks. Moreover, there are supervised
methods [8,20] for extractive MRC by automatically generating evidence, which
can be adopted in non-extractive MRC by first generating the evidence, then
predicting the answer based on it. Last, Wang et al. [35] presents ReCO, a
multiple-choice dataset which manually annotated the evidence in the document,
which allows training the evidence extractor or generator in a supervised manner.

In order to engage the model focus more on the evidence, while excluding
the pipeline paradigm that inevitably leads to error accumulation, we propose a
end-to-end teacher-student framework in this paper.

2.2 Knowledge Distillation

Knowledge distillation [12] is an effective means of transferring knowledge over
from one model to another by mimicking the outputs of the original model.
Knowledge Consolidation Network [1] is proposed to address the problem of
catastrophic forgetting in the incremental event detection task by utilizing the
knowledge distillation method. To deploy huge neural machine translation mod-
els on edge devices, Wu et al. [38] combined layer-level supervision into the inter-
mediate layers of the original knowledge distillation framework. To cope with the
problem of performance degradation caused by utilizing lifelong language learn-
ing on different tasks, Chuang et al. [3] proposes an approach that assigns the
teacher model to first learn the new task and then passes the knowledge to the
lifelong language learning model via knowledge distillation.

Adversarial feature learning [6] is a method that renders the student model
with comparable feature extraction ability to the teacher model via Genera-
tive Adversarial Networks (GANs, Goodfellow et al. [7]). In order to tackle the
major challenge faced in event detection, namely ambiguity in natural language
expressions, Liu et al. [21] proposed an adversarial imitation based knowledge
distillation approach to learn the feature extraction ability from the teacher
model. Lample et al. [17] adopts adversarial feature learning to align features
extracted from different language auto-encoders for unsupervised neural machine
translation.

In our work, we incorporate multi-strategy knowledge distillation (feature
level with adversarial feature learning and prediction level) into the teacher-
student framework, bringing more attention to the evidence.

3 Methods

Figure 2 demonstrates the overall framework of MSKDTS, which aims to cope
with the irrelevant information in documents. MSKDTS is composed of three
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major parts, namely, the teacher model, the student model and the knowledge
distillation strategies. Documents and evidence sentences are concatenated with
queries and candidate answers respectively as the input to the teacher model and
the student model. Following encoding the input sequences and predicting the
answers, we utilize knowledge distillation to align the features and predictions
of the student model to the teacher model.

Fig. 2. The overall framework of MSKDTS. The model is composed of six component:
the teacher encoder Etea, the student encoder Estu, the discriminator D, the teacher
classifier Ctea, the student classifier Cstu and the prediction knowledge distillation
component K. In the training phase, we first take evidence and document as the input
reference information to pretrain the teacher model and the student model. Next, Estu

and D compete with each other through adversarial imitation strategy. In addition,
the probabilities of the answers predicted by Cstu and Ctea are aligned by a prediction
knowledge distillation approach K. In the final testing phase, documents are used as
input to the enhanced Estu and Cstu for answer prediction.

3.1 MRC Model

Our teacher-student framework mainly oriented towards the multiple-choice
MRC problem [16,30,35]. It is composed of a teacher model and a student model,
both of which consisting a BERT encoder and a multi-class classifier.

BERT Based Encoder. Etea and Estu are implemented using BERT [4], a multi-
layer bidirectional Transformer [34] encoder. Below illustrates several different
elements of the input to the BERT encoder and their representations:

– Document: A N-token document contains several sentences, distinct parts
of which describe different information, denoted as Xd = {w1, w2, . . . , wN},
where wi denotes a word in the document.

– Evidence: As the most critical information in inferring the correct answer,
the evidence is typically shorter than the document, denoting it by a M-token
(where M ≤ N) sequence as Xe = {w1, w2, . . . , wM}, where wi denotes each
word in the evidence sentences.

– Query: A L-token query is denoted as Xq = {w1, w2, . . . , wL}, where wi is a
word in the query.
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– Alternative Answers: To predict the correct answer from candidate
answers, we denote each candidate answer by Ai. We concatenate A1 to AU

using [OPT] as the input to the encoder. Note that, in BERT encoder, we
use a special token [unused1] as [OPT].

In accordance with the different inputs of the teacher model and the student
model, we concatenate these elements above and encode them with the BERT
encoder to obtain a context-sensitive representation for the input sequence:

1) For the teacher encoder (Etea), we concatenate candidate answers, query
and evidence as input by special tokens of BERT, obtaining an input represen-
tation with evidence sentences as reference information. In Fig. 3, we present an
example of the input sequence for the teacher encoder.

2) For the student encoder (Estu ), analogous to the teacher encoder, except
that the reference information is the document rather than the evidence sentence,
i.e., candidate answers, query, and document.

Fig. 3. The BERT input format of the teacher encoder (Etea).

Multi-class Classifier. The softmax classifier is applied as our multi-class clas-
sifier, both Ctea and Cstu, which is used to predict the correct answer from
the candidate answers. We take the output of the BERT encoder (Etea and
Estu, respectively), i.e., the encoded features, as the input of the classifier. The
hidden layer of [OPT] is used as the classification feature fo for each candidate
answer. The multi-class classifier takes these features as input and then computes
a prediction probability for each candidate answers as output. The prediction
probability P (A|E,C) for each candidate answer is computed as:

P (A|E,C) = softmax(W o · fo + bo) (1)

where E is Etea or Estu; C is Ctea or Cstu; A is the candidate answers; W o and
bo are trainable parameters of the multi-class classifier (either Ctea or Cstu).

3.2 Knowledge Distillation Strategies

This section demonstrates in detail of the multi-strategy knowledge distillation
in our model, which includes feature-level and prediction-level knowledge dis-
tillation, correspondingly, we build a discriminator D and a prediction distiller
K. They differ in that the input to D is the extracted feature vector (i.e., the
hidden layer of [OPT] mentioned in Sect. 3.1) obtained from either Etea or Estu,
whereas the input to K is the logit of the prediction probability from Ctea or
Cstu.



MSKDTS 215

Feature Knowledge Distillation. We adopt an adversarial feature learning
approach for feature level knowledge distillation, specifically, we apply a discrim-
inator D, a multi-layer perception (MLP) based binary classifier. It takes the
features obtained from Etea and Estu as the input then generates a probability
PD to distinguish the source of the input features. PD is calculated as:

PD = sigmoid(W s(tanh(W xfo + bx)) + bs) (2)

where sigmoid(∗) is the activation function that maps a scalar to a float number
between 0 and 1. A well-trained discriminator would output 1 for the features
from Etea and 0 for the features from Estu. W x, bx, W s, and bs are trainable
parameters of the discriminator. We use a two-layer MLP to enhance the repre-
sentativeness of our discriminator.

The detailed training process of D will be elaborated in Sect. 3.3.

Prediction Knowledge Distillation. Apart from adversarial feature learning
for feature level knowledge distillation, we propose a prediction level knowledge
distillation. It enables the prediction probability of Cstu imitates those of Ctea,
thereby improving its answer prediction ability. We adopt the knowledge distil-
lation method proposed by Hinton et al. [12], whose specific approach in this
framework is demonstrated in Sect. 3.3.

3.3 Overall Training Procedure

Our training process can be summarized into two phases, namely the pretraining
phase and the fine-tuning phase. The overall training procedure is demonstrated
in Algorithm 1.

Algorithm 1. The Overall Training Procedure
Input: Training Data (x, x∗, y)
1: Pretrain the teacher model (Etea,Ctea), the student model (Estu,Cstu), and the

discriminator (D)
2: Freeze Etea and Ctea

3: repeat
4: Freeze D
5: Unfreeze Estu and Cstu

6: Updata Estu and Cstu using Eq.8
7: if the remainder of the batch number to k is 0 then
8: Unfreeze D
9: Freeze Estu and Cstu

10: Update D using Eq.5
11: end if
12: until convergence
Output: An enhanced student model
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The Pre-trainig Phase. In the pre-training phase, we first train the teacher
model and the student model using the evidence and the documents as reference
information, respectively. Then the discriminator is trained using the outputs of
Etea and Estu.

First, we train the teacher model (i.e., concatenating Etea and Ctea) which
is well aware of the evidence sentences. Its loss function is calculated as:

Ltea = −
U∑

i=1

yi log(P (Ai|Etea, Ctea)) (3)

where yi is the label for the i-th answer Ai.
Then, the student model (i.e., concatenating Estu and Cstu) is trained, which

is not aware of the evidence, it takes the entire document instead of evidence
sentences as reference information, thus implicitly introducing considerable irrel-
evant information. Its loss function is calculated as:

Lstu = −
Y∑

i=1

yi log(P (Ai|Estu, Cstu)) (4)

where yi is the label for the i-th answer Ai.
In the final step, we keep the parameters of Etea and Estu unchanged to train

the discriminator by treating the feature vector obtained from Etea as positive
examples (label 1) and those from Estu as negative examples (label 0). In this
process, the loss function of training the discriminator is calculated as:

LD = max
D

Ex∼X [log(D(fo,tea))] + Ex∗∼X∗ [log(1 − D(fo,stu))] (5)

where fo,tea is the features of the teacher encoder and fo,stu is the features of
the student encoder.

The Fine-Tuning Phase. In the fine-tuning phase, we aim to enhance the fea-
ture extraction ability of Estu and the answer prediction ability of Cstu, in other
words, in document-only cases, we expect the encoder to ignore the irrelevant
information as much as possible, focusing more on the evidence sentences.

To enhance the feature extraction ability of Estu, we employ the pretrained
D, which can well distinguish between Etea and Estu, to conduct adversarial
training with Estu. The loss of Estu is computed as:

Lafl = −y log(D(fo,stu)) (6)

where y is the label of the output of Estu given to D during adversarial feature
learning. Therefore, in order for Estu to produce features similar to those pro-
duced by Etea, we set y = 1, i.e., we expect the features extracted by Estu to
be recognized by D as those extracted by Etea.

After k batches of fine-tuning Estu, the accuracy of D decreases and fails
to distinguish well between the outputs obtained from Estu and Etea, then we



MSKDTS 217

retrain D using the same loss LD as in the pretraining phase. Iteratively fine-
tune Estu as well as retrain D until the training process converges. The training
procedure is shown in Algorithm 1.

As for prediction level knowledge distillation, the output logit of each sample
of Ctea and Cstu are denoted as v and v∗, respectively. The prediction knowledge
distillation is calculated as:

Lpkd = −
U∑

i=1

τi(v∗) log(τi(v))

τi(v∗) =
ev∗

i /Ω

∑U
j=1 ev∗

j /Ω
, τi(v) =

evi/Ω

∑U
j=1 evj/Ω

(7)

where Ω is a hyper-parameter, which is usually set to be greater than 1 (e.g.
Ω = 2) in our experiments to increase the weights of small values; U is the
number of classes; Lpkd is designed to encourage the prediction of the student
model to match the prediction of the teacher model.

In the fine-tuning phase, the total loss of the student model is:

Lstu all = Lstu + αLafl + βLpkd (8)

where α and β are two hyper-parameters. If α and β are very large, the model
will focus more on learning knowledge from the teacher model, rather than
the ground-truth labels. Noting that, the parameters of D, Etea, Ctea are kept
unchanged while fine-tuning the components of the student model.

After completing the two knowledge distillation approaches above, we
obtained an enhanced student model that has successfully learned the knowl-
edge of the teacher model and is able to predict accurate answers using only the
documents as reference information.

4 Experiments

4.1 Datasets

We conduct experiments on a recently proposed MRC dataset, ReCO [35] to
evaluate the validity of our model. To the best of our knowledge, this is the only
large-scale multiple-choice MRC dataset with manually labeled evidence. ReCO
contains 300k document-query pairs, each of them is manually labeled with
evidence. It is worth noting that, during the annotation process, for 46% samples,
the annotators paraphrase or highly summarize the key sentences according to
their understanding, resulting in a situation that not all evidence sentences can
be found in its corresponding document.

In ReCO, three candidate answers are available for each query. In order to
obtain the correct answer, strong inference capability of the model is required.
The dataset contains 280k training samples and 20k test samples, which are
further divided into testing set A (TestA) and testing set B (TestB). TestB is the
complement to TestA in terms of quantity, and can certify the validity of the
model more adequately.
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4.2 Baseline

To evaluate the capability of MRC models and select well-performing teacher
and student models in our framework, we adopt several strong baselines that
perform well on many MRC tasks:

BiDAF [31]: BiDAF uses LSTM as its encoder, and models the relationship
between the question and the answer by a bidirectional attention mechanism.

BiDAF* [26,31]: BiDAF* replaces the traditional word embedding in
BiDAF with ELMO (a language model trained on unsupervised data), which
yields better results.

BERT [4]: A multi-layer bidirectional Transformer, which is pretrained on
large unlabeled data, has outperformed state-of-the-art models in many NLP
tasks.

ALBERT [18]: ALBERT is an improved version of BERT, which reduces
the overall number of parameters, speeds up the training process, and is better
than BERT in many aspects.

Since the evidence sentences in the 46% samples in the ReCO dataset could
not be explicitly found in the corresponding documents, we use generation mod-
els as evidence generators in the pipeline baselines instead of extraction models.

Enc2Dec [33]: We designed a coarse-to-fine framework based on the encoder-
decoder framework. This model encodes documents with an LSTM encoder and
then generates evidence by an LSTM decoder.

Enc2Dec* [33]: In addition to the Enc2Dec model, we adopt the BERT
encoder in the encoder-decoder framework.

4.3 Experimental Setup and Evaluation Metrics

We use ALBERT-base from HuggingFace’s Transformer library1 as the encoder
for our MRC model. For both teacher model and student model as well as the
discriminator D, the learning rate is set to 2e−5, batch size set to 4, hyper-
parameters α and β are chosen from [0–100], specified as α = 0.5 and β = 20,
with temperature coefficient Ω = 2. Since D can easily learn and distinguish the
features obtained from different encoders, we randomly sample 10,000 training
samples each time to train D. We retrain the discriminator every k = 3000
batches. All hyper-parameters are obtained by grid search in the validation
process.

Following the previous work [35], we use accuracy as our metric to evaluate
whether each sample is correctly classified.

4.4 Results

We list the following Research Questions (RQ) as guidelines for experimentation
in our work:

1 https://huggingface.co/.

https://huggingface.co/
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– RQ1: How well did the MRC models perform before incorporating the knowl-
edge distillation strategies, and which model we select to be the teacher or
student model?

– RQ2: Is there a significant improvement in performance after applying our
proposed MSKDTS framework, and does the MSKDTS framework outper-
form the traditional pipeline paradigm?

– RQ3: Whether the feature knowledge distillation we designed can effectively
improve the performance by enabling Estu to imitate the output features of
Etea?

– RQ4: Will the prediction knowledge distillation strategy we employ be effec-
tive in improving the performance of the student model?

Teacher and Student Models. To answer RQ1, this section shows the per-
formance of several baseline models when inputting documents or evidence as
reference information, and compares the performance of different baselines to
select the teacher and student models in the MSKDTS framework.

Table 1. Experimental results on the development set (Dev), testing set A (TestA)
and testing set B (TestB) of the ReCO dataset. The second/third column shows the
result of these models when taking evidence/documents as inference information input
in both training and testing phases. Bold indicates the best model. BERTb and BERTl

denotes BERT base and BERT large, respectively. ALBERTtiny and ALBERTb denotes
ALBERT tiny and ALBERT base, respectively.

Teacher (Evidence) Student (Document)

Dev TestA TestB Dev TestA TestB

Random [35] 33.3 33.3 33.3 33.3 33.3 33.3

BiDAF [31] 68.9 68.3 67.9 55.7 55.8 56.1

BiDAF* [26,31] 70.3 70.9 71.1 58.4 58.9 58.6

BERTb [4] 73.8 73.4 72.8 61.4 61.1 62.0

BERTl [4] 76.3 77.0 76.4 65.5 65.3 65.8

ALBERTtiny [18] 70.9 70.4 71.3 63.1 62.7 62.4

ALBERTb [18] 77.2 77.6 77.0 68.2 68.4 69.1

Human - 91.5 - - 88.0 -

Table 1 shows the performance of several baseline models when evidence and
documents are used as reference information input, respectively. Comparing the
results in Table 1, we can see that irrelevant information in the documents does
have a negative effect on answer prediction (for every model except random,
the performance with evidence as reference information input is superior to the
performance with documents as reference information input), so evidence has
a facilitating effect on answer prediction. Also, the results in Table 1 show that
there is a gap between predicting answers by documents and by evidence even
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for human, which proves the importance of evidence in machine reading com-
prehension.

From the results, we can see that ALBERTb achieves the best performance
and can outperform other BERT-based models when taking evidence and doc-
ument as reference information input, therefore, we choose ALBERTb as both
our teacher and student models.

The teacher model outperforms the student model by 9.2% and 7.9% on
TestA and TestB, respectively. Since the student model is designed to imitate the
behavior of the teacher model in our approach, the performance of the student
model cannot exceed that of the teacher model, i.e., the performance of the
teacher model is the upper bound of our framework, and the lower bound should
be the student model without fine-tuning.

Results on Real Test Scenarios. To answer RQ2, we compared our approach
with the pipeline paradigm and the teacher model and student model (which is
not fine-tuned with our knowledge distillation strategies) as upper and lower
bounds.

Table 2. Experimental results on the development set (Dev), testing set A (TestA),
testing set B (TestB). Enc2Dec(*) + ALBERTb is MRC models with evidence generator
(pipeline paradigm).

Dev TestA TestB

Lower bound 68.2 68.4 69.1

Enc2Dec + ALBERTb 68.6 68.9 69.3

Enc2Dec* + ALBERTb 68.9 69.0 69.6

MSKDTS (Ours) 71.3 71.0 70.8

Upper bound 77.2 77.6 77.0

To validate the effectiveness of MSKDTS, we tested the performance of the
enhanced student model in real scenarios. In real scenarios, the evidence in the
documents is not annotated, and the enhanced student model needs to predict
the results directly based on the documents as reference information.

From the experimental results in Table 2, we can see that:
First, our student model achieves the best performance, outperforming all

the baseline models that do not use evidence. This demonstrates that the
multi-strategy knowledge distillation approach we proposed enables the student
encoder to effectively imitate the output features of the teacher encoder, can
focus on the evidence sentences in the documents.

Second, to compare with the pipeline model, we train an encoder-decoder
model that generates the evidence sentences for each testing sample. The per-
formance of Enc2Dec and Enc2Dec* on the two testing sets is much weaker than
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our fine-tuned student model. Our model outperforms Enc2Dec* by 2.0% and
1.2% on TestA and TestB, respectively.

Third, there is still a gap between our approach and the teacher model, which
shows that it is still a significant challenge of how to engage the model to focus
on the evidence sentences from the documents.

The Effect of Feature Knowledge Distillation. To answer RQ3, we study
the effect of feature knowledge distillation in this section.

Table 3. Experimental results on the development set (Dev), testing set A (TestA)
and testing set B (TestB) to verify the effect of feature knowledge distillation.

Dev TestA TestB

MSKDTS 71.3 71.0 70.8

MSKDTS (k = 10000) 71.0 70.5 70.6

MSKDTS (k = 50000) 70.6 70.3 70.2

MSKDTS-AFL+COSINE 70.7 70.6 70.4

MSKDTS-AFL 70.2 70.1 69.8

We conducted three experiments to demonstrate the effectiveness of adver-
sarial feature learning as a feature knowledge distillation strategy: 1) Testing the
performance of the MSKDTS framework with different hyper-parameters (when
the update frequency k = 10000 and k = 50000 of the discriminator D). 2)
Testing the performance of the MSKDTS framework replacing adversarial fea-
ture learning with the cosine similarity loss between the features of the teacher
model and those of the student model (denoted as MSKDTS-AFL+COSINE),
which enables the two features to have the same angle in the high dimensional
space. 3) Testing the performance of the MSKDTS framework without any fea-
ture knowledge distillation strategies (denoted as MSKDTS-AFL). Table 3 shows
the results of these models.

From these results, we can see that: 1) Our approach outperforms all variants,
which proves the effectiveness of our feature knowledge distillation strategy. 2)
For k = 10000 and k = 50000, the performance degradation is caused by poor
discriminator performance due to updating the discriminator after a larger num-
ber of batches. 3) The cosine similarity loss causes a performance degradation
with −0.4% and −0.4% on TestA and TestB due to features learned based on
specific distances is prone to be approximated from a certain aspect (angle) in
the high dimensional space, which may result in a loss of semantic information.
4) In the absence of feature knowledge distillation, the performance degrades
significantly due to the lack of proximity to the features of the teacher model.

The Effect of Prediction Knowledge Distillation. To answer RQ4, we
study the effect of the prediction knowledge distillation in this section.
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Table 4. Experimental results on the development set (Dev), testing set A (TestA),
testing set B (TestB) to verify the effect of prediction knowledge distillation.

Dev TestA TestB

MSKDTS 71.3 71.0 70.8

MSKDTS-PKD+KL 70.9 70.5 70.3

MSKDTS-PKD 69.7 69.9 70.1

As shown in Table 4, we use KL-divergence (MSKDTS-PKD+KL) to replace
the knowledge distillation loss. This variant causes performance degradation due
to the absence of the temperature coefficient Ω in the knowledge distillation
loss. Therefore, it is difficult for the model to learn small logit values and affects
the knowledge distillation ability. Compared to the model without Prediction
Knowledge Distillation, our model achieves significant improvement. It demon-
strates the effectiveness of prediction knowledge distillation. Compared to the
student model trained with document only (without fine-tuning), it verifies that
the simultaneous use of feature knowledge distillation and prediction knowledge
distillation can effectively improve the performance.

5 Conclusion

We propose a Multi-Strategy Knowledge Distillation based Teacher-Student
framework (MSKDTS) for MRC to address the challenges posed by irrelevant
information in documents for answer prediction. The teacher-student framework
naturally circumvents the error accumulation problem in the traditional pipeline
paradigm and the knowledge distillation strategies enhance the model capability
at the feature and prediction levels. Experiments on the ReCO dataset demon-
strate the effectiveness of our approach.
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