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1  �Introduction

Agricultural production undergoes increasing pressure from anthropogenically-
induced and natural changes, including rising population, conversion of food (cere-
als) into biofuels, increased protein demands and climatic extremes [1]. Through a 
fleet of Earth Οbservation (EO) satellites, National and International space agencies 
are determined to keep their fingers on the pulse of agricultural land and crop growth 
[2]. Among the objectives of the multiple EO satellite missions launched in the last 
five decades, primary importance has been given to observe agricultural and natural 
vegetation land covers [3–7]. The strong correlation between the response of vege-
tation in the visible and near-infrared spectrum and its biophysical activities led the 
preference towards optical sensors for crop growth monitoring [8].

Optical data from EO image time series at high temporal resolution can effec-
tively assist in vegetation monitoring over time as they provide key information 
about vegetation status over large areas. However, imagery acquired at a high tem-
poral resolution goes traditionally at the expense of a low spatial resolution, and EO 
missions dedicated to time series studies have long been restricted to the domain of 
wide swath that achieve global coverage on a near daily basis. For instance, the 
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Advanced Very High-Resolution Radiometer (AVHRR) was pioneering in time 
series studies for vegetation monitoring studies at regional to global scales for more 
than 25 years. AVHRR has been collecting a near-daily global coverage of coarse-
to-moderate spatial resolution (1 km and 8 km) providing a consistent time-series of 
temporally-composited observations [9–11]. As a marked improvement, the 
Moderate Resolution Imaging Spectrometer (MODIS) has provided, since the early 
2000s, an improved times-series of multispectral observations, acquiring a global 
coverage of multispectral imagery with a high temporal (daily) resolution, a higher 
spatial resolution (250–500 m) and seven land-related spectral bands for vegetation 
detection. MODIS data have become increasingly used for vegetation growth moni-
toring over large geographic regions [12, 13]. Yet, probably the most noteworthy 
pioneering mission for land applications is the Landsat series of satellite-based sen-
sors. Landsat has long been appropriate for many landscape characterization appli-
cations such as land cover classification, change detection and vegetation monitoring. 
It has a nominal 16-day temporal resolution and up to 30 m spatial resolution, with 
a data archive extending from the early 1970s to present. However, the usage of 
Landsat time series for crop growth monitoring has limitations because vegetation 
changes may occur more rapidly than the 16-day revisit time of Landsat. In addi-
tion, cloud cover contamination of the optical satellite observations further reduces 
the number of Landsat images available to adequately detect many seasonal 
events [8].

These pioneering monitoring missions paved the path for a diversity of dedicated 
EO land missions initiated by National and International space agencies with 
emphasis in exploiting the spatial, spectral, or temporal domain. With current and 
upcoming EO satellite missions, an ever-increasing amount of optical EO satellites 
are orbiting around the Earth, such as the Sentinel constellations on behalf of the 
joint ESA/European Commission initiative Copernicus and the NASA A-Train sat-
ellite constellations. With the operational super-spectral Copernicus’ Sentinel-2 
(S2) [14] and Sentinel-3 missions [15], as well as the recently launched and upcom-
ing imaging spectrometer missions [16–19], an unprecedented data stream for veg-
etation mapping and monitoring becomes available. For instance, the unprecedented 
frequency of S2 multispectral observations (every five days) with a spatial resolu-
tion of 20 m (up to 10 m for specific bands) captures rapid changes of agricultural 
land-cover from national to field scale, serving as a major support for environmental 
monitoring and agricultural subsidy control [14]. Hence, S2 time series allows for 
high-resolution coverage of large areas with systematic data acquisition with high-
frequency sampling during critical phases of the crop growth cycle [20]. The 
Sentinel-3 satellites even enable a short revisit time of less than two days for the 
optical sensor OLCI (Ocean and Land Colour Instrument), but it is a medium-
resolution imaging spectrometer as it provides a spatial resolution of 300 m [15], 
and thus is less suited for crop monitoring at field scale.

Having an unprecedented influx of optical time series data at disposal, an 
essential condition for using image data for further processing is that it requires 
to be spatially and temporally continuous, i.e., gap-free data. Unfortunately, in 
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reality this need is often unfulfilled, due to multiple causes: (1) inadequate cli-
matic conditions (clouds, snow, dust and aerosols), (2) instrumentation errors, 
(3) losses of data during data transmission or (4) low temporal resolution (i.e., 
long time needed to revisit and acquire data for the exact same location), among 
others. The causes above degrade the availability of spatial and temporal infor-
mation required to retrieve land surface properties. Therefore, the impact of 
missing data on quantitative research can be serious, leading to biased estimates 
of parameters, loss of information, decreased statistical power, increased stan-
dard errors, and weakened findings [21]. For this reason, spatiotemporal recon-
struction of gapped areas from satellite imagery is becoming crucial for 
monitoring purposes [22], including the knowledge of the life cycle of vegeta-
tion, i.e., vegetation phenology [23].

Another important remark is that, from an EO perspective, specific plant sea-
sonal events such as budbreak, leaf out, land leaf senescence, flowering and matu-
rity of cereal crops cannot be directly detected at the spatial resolution of satellite 
imagery. Instead, more general descriptors of vegetation dynamics termed ‘land 
surface phenology (LSP)’ are calculated [8]. LSP refers to the seasonal pattern of 
variation in vegetated land surfaces observed from remote sensing [24]. This is dis-
tinct from observations of individual plants or species, as space-based observations 
aggregate information on the timing of heterogeneous vegetation development over 
pixel-sized areas. This aggregation often disassociates the response signal of the 
landscape from that of the individual species; yet is important for representing land-
scape scale processes in biosphere atmosphere interaction and crop monitoring 
models [24]. LSP metrics are typically associated with general inter-annual vegeta-
tion changes interpretable from spectral remote sensing imagery such as start of 
greening/season (SOS), the peak of growing season, onset of senescence or end of 
the season (EOS), and growing season length [24, 25], as well as other transition 
stages (e.g., maturity and senescence) [5]. Therefore, this chapter provides an over-
view of the possibilities for calculation of these LSP metrics from time series images 
for crop monitoring purposes.

Altogether, when aiming to process time series data for calculation of LSP met-
rics and agricultural monitoring purposes, a critical aspect to deal with is that EO 
data is spatially and temporally discontinuous. This implies that the ability to pro-
cess irregular time series becomes indispensable for studying seasonal vegetation 
patterns. In this respect, this chapter aims to provide a general overview on agricul-
tural land monitoring by means of EO image time series analysis and subsequent 
LSP calculation. To do so, first an historical overview of EO satellites with optical 
sensors that are designed to monitor the phenology of agricultural lands is given. 
Second, solutions are offered on how to gap-fill time series image data and then to 
calculate LSP metrics. Third, the calculation of LSP metrics from MODIS and 1 km 
aggregated S2 data is presented for two demonstration areas characterized by differ-
ent dominant crop: corn and winter wheat. Finally, trends in EO missions and image 
time series processing are being discussed in the broader context of monitoring 
croplands’ phenology.
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2  �Satellite Sensors for Crop Phenology Monitoring

Although in the current era of EO missions time series processing has become stan-
dard practice in agriculture monitoring, it only recently reached maturity. Almost 
half a century was dedicated to overcoming challenges related to EO technology 
and optimizing for ideal temporal and spatial resolution. In this respect, this section 
intends to give a brief historical overview about EO satellite missions for agricul-
tural monitoring purposes. Afterwards, time series data from NASA and ESA flag-
ship missions for land applications are used for presenting crop monitoring 
demonstration cases.

When EO satellites were first available in the 60s, it was recognized that the 
technology held considerable promise for agricultural monitoring [26]. NASA was 
pioneering with EO programs for agricultural monitoring purposes. Initial efforts 
involved the NASA LACIE and AgriSTARS programs in the 70s. They made sig-
nificant advances in crop monitoring but were seriously constrained by satellite data 
availability. At the beginning of EO missions, satellite optical data have been pri-
marily provided globally at coarse-resolution (c. 250 m–8 km) by systems specifi-
cally developed for land applications. This is especially true for the AVHRR sensors, 
launched back in the 80s. AVHRRs provided daily global observations, which rep-
resent one of the most critical features needed for agriculture monitoring, but they 
were limited by their low spatial resolution (1 km). It has long been recognized that 
when working on agriculture applications, a good temporal resolution is required, 
given that the crop phenology and conditions (e.g., water supply, pests, environmen-
tal) can change very quickly. To this end, the NASA Long Term Data Record 
(LTDR) contains gridded daily surface reflectance and brightness temperatures 
derived from processing of the data acquired by the AVHRR sensors onboard four 
NOAA polar-orbiting satellites: NOAA-7, -9, -11 and -14. The Version 4 contains 
improvements to geolocation, cloud masking and calibration, making the data 
record suitable for crop monitoring [27]. This product is still operational, and its 
usefulness has been demonstrated for a wide variety of applications such as snow 
cover estimation [28], agricultural modeling [27], Leaf Area Index (LAI) and 
Fraction of Absorbed Photosynthetically Active Radiation (FAPAR) retrieval [29, 
30], global vegetation monitoring [31, 32], burned area mapping [33] and albedo 
estimation products [34].

A next milestone involved the MODIS sensor on the Terra satellite. Since its 
launch in 2000, observations from the EOS/MODIS sensors have several of the key 
qualities needed for global agriculture monitoring such as global, daily coverage at 
coarse spatial resolution (250 m) and a suite of validated products. With MODIS 
onboard Terra (morning satellite) and Aqua (afternoon satellite) getting to the end 
of its operational life, it was high time to transition into new satellites. The Visible 
Infrared Imaging Radiometer Suite (VIIRS) onboard the Suomi National Polar-
orbiting Partnership (S-NPP) satellite provided continuity with MODIS from 2012 
[35, 36]. It overpasses once a day and during the afternoon, which decreases the 
chance of getting cloud-free observations, especially in the tropical regions. 
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However, the combination with the ESA Sentinel-3 satellite, that overpasses during 
the morning and has similar characteristics to MODIS, provides continuity to the 
successful and still valuable (due to its high temporal resolution) coarse resolution 
missions. Despite the advantage of the high revisit time, the main disadvantage of 
coarse to moderate resolution sensors is the spatial resolution that often mixes, in a 
given pixel, signals from different land cover types and crops. Stratifying a region 
into different crop types (commonly termed as crop masking) is an important step 
in developing EO-based agriculture models [37]. Such masks enable the isolation of 
the remotely sensed, crop-specific signal throughout the growing season, reducing 
the noise on the signal from other land cover or crop types [38]. In the United States 
(US), the US Department of Agriculture (USDA) generates a yearly national 
Cropland Data Layer (CDL) since 2007 [39] and Canada provides yearly national 
Annual Crop Inventory Maps (ACIM) since 2009 [40]. These masks are provided at 
the end of the growing season and no crop type masks are available for other coun-
tries. Therefore, generally EO-based agriculture models use static cropland or crop 
type masks.

The flagship moderate resolution NASA mission Landsat, with data going back 
to the 70s, was long used for agriculture monitoring, but with limitations mainly due 
to its low temporal resolution of 16 days. Coupled with the frequency of cloud 
cover, the revisit time for some regions is often worse. A number of studies have 
fused Landsat with MODIS data [41–43], and combined Landsat data with bio-
physical models [44, 45], leading to varying results in terms of errors as they are 
still constrained by the low temporal frequency of Landsat imagery. The launch of 
the ESA optical moderate resolution missions Sentinel-2A in 2015 and Sentinel-2B 
in 2017 have been revolutionary for the moderate agriculture monitoring. The 
increased temporal coverage and the new technologies offered by the Sentinel sys-
tems and their combination with NASA sensors, provides new opportunities for 
high temporal frequency moderate resolution remote sensing, enabling a new gen-
eration of agriculture products to be generated. Specifically, with the Sentinel-2A 
and -2B fusion with Landsat, it is now possible to achieve a temporal resolution of 
three to five days globally. In fact, recent studies leverage the combination of these 
satellites to address crop yield assessment at field scale [46–48]. Yet, simply having 
synergistic sensors on orbit is not sufficient for end users; the data products them-
selves must also be processed in such a way as to ease preprocessing and analysis 
burden. The Harmonized Landsat/Sentinel-2 (HLS) project [49] developed by 
NASA provides a surface reflectance product that combines observations from 
USGS/NASA’s Landsat-8 (LS8) and ESA’s Sentinel-2 (S2) satellites at moderate 
spatial resolution (30 m). The main goal is to provide a unique dataset based on both 
satellites’ data to improve the revisit time to three to five days depending on the lati-
tude. Along with a common atmospheric correction algorithm [50], geometric resa-
mpling to 30 m spatial resolution and geographic registration [49], the product is 
also corrected for Bidirectional Reflectance Distribution Function (BRDF) effects 
and band pass adjustment. Besides, the Sen2like tool [51] developed by ESA will 
provide analysis ready Harmonized LS8 and S2 data/products to the user. Using the 
S2 tiling system, the sen2like tool processes S2 Level-1 products and LS8 Level-1 

Trends in Satellite Sensors and Image Time Series Processing Methods for Crop…



204

products and create a harmonized surface reflectance data stack at 10 m spatial reso-
lution. Working on the same baseline principles as NASA HLS initiative, geometric, 
radiometric and image processing algorithms are applied. Recent studies took 
advantage of Landsat and S2 data to address crop yield assessment at a moderate 
spatial resolution [52, 53].

Recent advances in data acquisition and processing (e.g., cloud computing) are 
making possible the development of global high-to-moderate resolution data sets 
(10–30 m). Such global time series data will permit improved mapping of crop type, 
crop area and vegetation properties essential for regional implementation of moni-
toring strategies. Higher temporal frequency from multiple high-to-moderate reso-
lution satellites will also provide a better characterization of agronomic growth 
stages, with the consequent improvement of crop production modeling accuracy.

3  �Time Series Processing for Crop Seasonality Monitoring

3.1  �Gap-Filling

An essential step for being able to use EO data for further processing such as LSP 
calculation, is converting raw data time series into spatio-temporal continuous data-
sets. To ensure this, gaps mostly provoked by clouds must be filled. Time series gap 
filling essentially refers to the prediction of missing values in time. Mostly, these 
missing values are located within the dataset time series, so in principle interpola-
tion methods to fill them up would suffice. It is therefore no surprise that interpola-
tions and fitting methods are commonly used as a first step in the time series 
processing. According to the recent review by [8], gap filling methods can be cate-
gorized into: (1) smoothing and empirical methods, (2) data transformations, and 
(3) curve fitting methods. From these three categories, the curve fitting methods are 
the most commonly used, with double logistic curves being a popular method for 
seasonality estimation [54–56]. This family of methods has expanded rapidly in the 
last few years with the emergence of adaptive machine learning regression algo-
rithms [57]. See also [57, 58] for a quantitative evaluation of these methods. Some 
machine learning methods proved to be particularly attractive; not only because of 
achieving higher accuracies when validated against a reference image, but also 
because of additional properties such as delivering uncertainty estimates (e.g. 
Gaussian processes regression: GPR). Most of these methods have been recently 
implemented into an in-house developed graphical user interface (GUI) toolbox, 
named DATimeS (Decomposition and Analysis of Time Series software) [57]. 
DATimeS has been developed to generate cloud-free composite maps from regular 
or irregular satellite time series. The novelty of the toolbox lies in expanding estab-
lished time series gap-filling methods with a diversity of advanced machine learning 
fitting algorithms. An overview of the gap-filling methods is provided in Table 1.

Here, a brief description of the toolbox is provided, as it will be used in subse-
quent calculation of phenology indicators. In short, DATimeS is developed as a 
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modular toolbox that can be applied to both, set of images and discrete time series 
data stored in a text file. An overview of the DATimeS’ modules contained in this 
first version (v.1.06) is shown in Fig. 1. The core machinery of DATimeS is the 
“Time Series Analysis” module, where the gap-filling methods can be selected, and 
subsequent phenology indicators can be computed. The user may choose whether to 
incorporate the smoothing function prior to the parameter estimation. Although a 

Table 1  Interpolation methods used for gap-filling

Gap-filling methods

Smoothing and Interpolation 
Methods

Linear, Polynomial, Nearest, Next, Previous, Pchip, 
Spline

Data Transformation Offset + Harmonic analysis
Offset + Harmonic analysis + Linear Term
Offset + Harmonic analysis + Linear Term
Offset + Harmonic Analysis using Sliding Window

Fitting methods (e.g., machine 
learning)

Bagging trees (BAGTREE)
Adaptive Regression Splines (ARES)
Boosting trees (BOOST)
k-nearest neighbors regression (KNNR)
Gaussian Process Regression (GPR)
Kernel Ridge Regression (KRR)
Locally-Weighted Polynomials (LWP)
Support Vector Regression (SVR)
Neural networks (NNIPL)
Random forests (RF2)
Boosting random trees (RF1)
Structured Kernel Ridge Regression with linear Kernel 
(SKRRlin)
Relevance Vector Machine (RVM)
Sparse Spectrum Gaussian Process Regression (SSGPR)
Structured Kernel Ridge Regression with RBF kernel 
(SKRRrbf )
Decision trees (TREE)
Variational Heteroscedastic Gaussian Process Regression 
(VHGPR)
Double Logistic curve
Whittaker

Fig. 1  Hierarchical design of DATimeS
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prior smoothing step may help in finding general patterns, it must be remarked that 
most fitting methods perform a time series anyhow, smoothing along with the fitting 
prediction. Before starting the gap-filling procedure, a compulsory step is to define 
the output time settings, i.e., the days to which cloud-free interpolated images will 
be generated (e.g., every 10 days). These composite products from operational land 
missions (e.g., AVHRR, MODIS, SPOT Vegetation (VGT)) are commonly used for 
subsequent LSP calculation [25, 59–61].

3.2  �LSP Calculation

A next step involves the calculation of the phenology indicators from the prepared 
cloud-free time series data, i.e., the LSP metrics. Numerous studies have dealt with 
the retrieval of phenological phases from remotely sensed data [55, 62–65]. LSP 
metrics quantification over croplands is widely used for yield estimation, or to 
improve management and timing of field works (planting, fertilizing, irrigating, 
crop protection or harvesting) [66, 67]. Distinct LSP metrics may be of interest to 
the scientific community, private companies and farmers, such as dates of start and 
end of the growing season (SOS and EOS, respectively), maximum peak, seasonal 
amplitude defined between the base level and the maximum value for each indi-
vidual season, length of the season, etc. [38, 68]. These LSP metrics are extremely 
sensitive to changes in vegetation cycles related to multiple factors such as climate 
anomalies or extreme weather events, which can have a profound impact in the 
agricultural production [69–71]. Hence, estimating LSP metrics is a convenient way 
to summarize seasonal information in a few comprehensive quantitative descriptors. 
However, it must be taken into account that these metrics are sensitive to the pro-
cessing data characteristics or methods used (e.g., gap-filling method, pixel size, 
time period of the time series). Therefore, outputs must be carefully analyzed (see 
also review in [8]), as will be further demonstrated in the case study.

In practice, LSP metrics are recommended to be derived after the interpolation 
step so that cloud-free composite images are created, and trends become evident for 
easy phenological metrics derivation. For this reason, DATimeS recommends LSP 
estimation as the next logical processing module after the gap-filling module, even 
if going directly to this step is also possible. In this module, the whole time series is 
first analyzed looking for possible multiple growing seasons.

Then, each individual season is processed separately to estimate the phenologi-
cal indicators (e.g., SOS and EOS) based on conventional threshold methods, analo-
gous to [68, 72–75]. The computational routine for LSP calculation follows multiple 
steps. It runs pixelwise, and for each pixel it: (1) extracts the time series, (2) identi-
fies automatically individual growing seasons within each year, (3) locates specific 
points within the growing season (e.g., SOS, EOS, peak), (4) computes seasonal 
integrals (area under the curve between SOS and EOS) and (5) stores the estimates 
in output ENVI or Tiff files. Three alternative methods have been implemented to 
calculate the SOS/EOS: (1) seasonal, (2) relative and (3) absolute amplitude. In the 
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former case, the SOS/EOS are identified where the left/right part of the curve 
reaches a fraction of the seasonal maximum amplitude along the rising/decaying 
part of the curve. The second approach is similar to the previous one, but now a 
mean amplitude is estimated considering the minimum/maximum values of all sea-
sons. Consequently, the SOS/EOS correspond to dates where the curve reaches a 
specific percentage of the reference amplitude. In the latter method, the SOS/EOS 
are determined when each growing season reaches the same fixed value.

4  �Demonstration Cases Time Series Processing

Having outlined the main principles of (1) EO missions dedicated to crop monitor-
ing, (2) gap-filling methods, and (3) LSP calculation, this section provides some 
time series demonstration cases with temporal data coming from the currently most 
successful optical missions at low and high spatial resolution, i.e. MODIS and S2 
acquisitions. The study focuses on the trade-off between revisit time and spatial 
resolution of each sensor and is carried out over two agricultural landscapes of the 
US, each one characterized by the presence of a different dominant crop type with 
specific phenological dynamics: winter wheat and corn.

4.1  �Study Area and Data Acquisition

The US is one of the main producers and exporters of corn and wheat globally. In 
2016 the US was the leading wheat exporting country, shipping 14.8% of global 
wheat exports1. Wheat is produced in almost every state in the United States and 
winter wheat varieties dominate US production, representing between 70% and 80% 
of the total wheat production. The winter wheat is planted in the fall and harvested 
during June-July. Generally, wheat is rain-fed and just 7% of the national production 
is irrigated. The main wheat class is Hard Red Winter Wheat, which is grown pri-
marily in the Great Plains, with Kansas being the largest producing state. Besides, 
the US is a major player in the world corn trade market, with between 10% and 20% 
of its corn crop exported to other countries. Corn is grown in most U.S. States, but 
production is concentrated in the Heartland region (including Illinois, Iowa, Indiana, 
eastern portions of South Dakota and Nebraska, western Kentucky and Ohio, and the 
northern two-thirds of Missouri). Iowa and Illinois, the top corn-producing States, 
typically account for about one-third of the U.S. crop. The corn is planted during 
April-June and is harvested during September-November.

With the aim of performing a fair comparison of multispectral spatiotemporal 
information carried by high- and low spatial resolution multispectral imageries, i.e. 
S2 and MODIS, over corn and winter wheat, the Crop Data Layer (CDL) yearly 

1 http://www.worldstopexports.com/wheat-exports-country/
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produced by the National Agricultural Statistics Service (NASS) of the US 
Department of Agriculture (USDA) was analyzed, and selected two S2 tiles repre-
sentative of each crop type were selected.

4.1.1  �Crop Data Layer

The Crop Data Layer (CDL) is distributed by NASS since 2008 at 30 m as part of 
the official archive of county-level statistics on yield, area harvested and production 
that are available from the USDA National Agricultural Statistics Service (NASS) 
Quick Stats database2. It is a rasterized land cover map using field level training data 
from extensive ground surveys, farmer reports provided to the US Farm Service 
Agency (FSA), and remotely sensed data from Landsat Thematic Mapper (TM), 
Landsat Enhanced Thematic Mapper (ETM+) and Advanced Wide Field 
Sensor(AWiFS). These data are used in a decision tree classifier in order to produce 
a land cover classification that distinguishes between different crop types, including 
winter wheat [39, 76].

4.1.2  �MODIS and Sentinel-2 Surface Reflectance Time-Series

The time span chosen for the study was the year 2019 due to the availability in 
Google Earth Engine (GEE) [77] of S2 surface reflectance images over the US from 
December 2018 on. The first tile chosen is 11TLM, which is located in North West 
of US, in the South of Washington and contains mainly winter wheat cultivated 
areas. The second one is 15TVH, centered in North Iowa, with essentially corn and 
soybean crops. S2 data were downloaded from GEE in UTM projective coordinates. 
Limited by the spatial resolution of CDL, S2 information distributed at 20 m were 
gathered. Aside from the crop-of-interest spatial density, a second criterion for the 
selection of the two areas was their medium frequency level of cloudiness estimated 
by analyzing MODIS daily cloud mask. This way, the main advantages and draw-
backs of the shorter revisit time of coarse resolution MODIS imagery against the 
longer revisit time of high resolution S2 acquisitions can be assessed. Details about 
the spatial properties of the test sites are summarized in Fig. 2. The nine classes in 
the legend correspond to the most frequent classes within the two test-sites, among 
the 134 provided by USDA [78]. Tile 15TVH is essentially made up of two main 
classes, corn and soybeans; tile 11TLM presents a more heterogeneous scenario, 
with winter wheat being the dominant crop class after pasture. The landscape is 
further characterized by shrubland, but crops as spring wheat, alfalfa and potatoes 
are also cultivated. Grey and blue colors indicate urban and water areas, respectively.

The analysis of MODIS time series was based on MODIS daily surface reflec-
tance Collection 6 data (MOYD09GQ) distributed by the Land Processes Distributed 

2 http://www.nass.usda.gov/Quick_Stats/
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Active Archive Center3 (LPDAAC), which are gridded in the sinusoidal projection 
at 250m resolution. Additionally, the product MOYD0 was used 9GA to extract the 
geometry of observation illumination of each image. Since the nominal 250  m 
MODIS resolution decreases for the off-nadir observations and due to inaccurate 
registration [79], the 250 m surface reflectance was re-scaled to 1 km spatial resolu-
tion to mitigate that effect by aggregating 4 × 4 pixels. The wide swath MODIS 
sensor allows for near global coverage of the Earth every day. However, it has a 
16-day repeat cycle, which means that every day the geometry of observation is dif-
ferent and can include View Zenith Angles (v) of up to 65 degrees. As a conse-
quence, the surface reflectance that is defined for a given geometry of 
observation-illumination has different values every day. In order to normalize the 
BRDF effects on the surface reflectance, we used the VJB method [80, 81]. This 
method uses longer compositing periods (five years in [80]), than the MCD43 prod-
uct (16 days) [82], which reduces the noise in the normalized reflectance time series 
[83]. In this study, the nadir BRDF parameters at 1 km spatial resolution using the 
most recent five years (2012–2016) were derived.

3 https://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_table

Fig. 2  USDA land cover map of 2019 over S2 footprint @30m for tiles 11TLM (left) of 
Washington and 15TVH (right) of Iowa. The legend details the main classes within the two tiles, 
among the 134 defined by USDA. Green lines and greyish areas define US Counties and States 
limits, respectively. The cloudiness map along 2019 was estimated as percentage of per pixel 
MODIS cloudy acquisitions
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By using the daily surface reflectance (from both Aqua and Terra) and its angular 
conditions during the five-year period considered, the variables that define the 
BRDF shape (V and R in Equation (1)) are derived using the approach proposed by 
[81]. The MODIS dataset consists of daily acquisitions covering the whole US ter-
ritory during 2018 and 2019. For S2, a total amount of 237 and 158 partially cloudy 
or cloud-free images was collected for 11TLM and 15TVH, respectively. Despite 
the nominal revisit time of S2 being five days, 11TLM is fully covered by orbit 113 
and partially covered by orbits 70 and 13, whereas 15TVH is fully covered by orbit 
69 and partially covered by only orbit 112. This explains the different number S2 
images. Details about the dataset are reported in Table 2.

4.2  �Time Series Processing Over Croplands

As pointed out in Sect. 2, the main disadvantage of coarse to moderate resolution 
sensors is the spectral mixing from different land cover types and crops. In order to 
characterize the degree of homogeneity of coarse resolution pixels, the higher spatial 
resolution information provided by CDL map and S2 imagery can be exploited. First, 
a common coordinates’ reference must be defined to allow establishing a pixel-to-
pixel correspondence among the different information sources. MODIS data were 
cropped over S2 tiles 11TLM and 15TVH, projected to their corresponding UTM 
reference at 20 m using the nearest-neighbor interpolation, and finally aggregated at 
1 km. Similarly, CDL maps were projected onto S2 UTM reference at 20 m.

The interpolated CDL was then used to calculate the percentage of each land 
cover class within each MODIS 1 km pixel. A qualitative description of the homo-
geneity of MODIS pixels is given in the 1 km land cover maps shown in images (a) 
and (b) of Fig. 3. For their generation, the 3 most likely classes at pixel level were 
taken into account. Denoting them ordered by probability as Cl1, Cl2 and Cl3, the 
RGB composite was obtained by weighing the color coding of the three classes with 
the corresponding percentages. The visual comparison of the land cover maps at 
20 m (Fig. 2) and 1 km indicates that a dominant class can be still identified at 
MODIS scale. Yet, the less saturated colors point out the presence of a non-negligible 
class mixing. The higher the mixing, the more relevant the difference between 

Table 2  MODIS Terra/Aqua and S2A/B imagery information over the two test-sites

Sensor Start date End date
Number of 
images

Full 
coverage 
orbit

Partially 
coverage orbit

Spatial 
resolution

MODIS 
T/A

1/1/2018 31/12/2019 730 – – 1 km

S2A/B 
11TLM

13/12/2018 10/01/2020 244 113 70/13 20 m

S2A/B 
15TVH

13/12/2018 10/01/2020 166 69 112 20 m
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MODIS and S2 spectra is. A quantitative estimation of this mixing effect is pro-
vided by the Gini-Simpson Index (GSI) [84, 85]. The GSI essentially quantifies how 
many different types of classes the pixel of interest contains, and is computed as the 
complement of the sum of squared N-member fractions of classes:

	
GSI x y p x y

i

N

i
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, ,� � � � � � �
�1

2
1

	
(1)

where (x, y) denotes the coordinates of MODIS pixel’s center, Nc is the total number 
of CDL classes within the pixel and pi is the fraction of the area covered by the ith 

Fig. 3  Synthetic Land cover map @1km of 11TLM (a) and 15TVH (b) tiles based on USDA land 
cover product @30m weighted by the probability of classes Cl1, Cl2 and Cl3 within MODIS pixels. 
In (c) and (d) the corresponding GSI maps are showcased
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class. The result obtained for the area corresponding to the two S2 tiles are shown 
in Fig. 3c, d. The closer GSI to zero, the purer the pixel is, i.e. a dominant class 
characterizes the pixel. Conversely, a higher GSI denotes a heterogeneous 1  km 
pixel where multiple classes are present with comparable percentages. Over the lat-
ter ones, the interpretation of coarse resolution imagery deserves special attention, 
as the information they contain cannot be transferred directly to individual classes. 
To clarify this concept, we use the Difference Vegetation Index (DVI).

DVI is a non-normalized parameter simply defined as the difference between the 
near-infrared and the red bands, with the main advantage to describe the evolution 
in time of crop phenology avoiding saturation effects often detected with other nor-
malized indexes such as NDVI [86]. Accordingly, five DVI time series at 1 km from 
the two imagery sources were generated. The first two ones are the MODIS DVI 
from the BDRF-corrected MODIS, and the S2 DVI obtained by simply upscaling 
the S2 product to 1 km. Besides, for each 1 km pixel the three classes with the high-
est probability were selected and the S2 DVI value of 20 m pixels belonging to each 
of them separately was averaged. The corresponding DVI at 1 km for pixel (x,y) at 
time t was hence obtained as follows:
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(2)

where NpClk indicates the number of 20 m pixels (xi, yi) within the 1 km pixel cen-
tered in (x, y) and belonging to the class Clk, with k = 1, 2, 3. Examples of the five-
time series obtained for almost pure and heterogeneous pixels of corn and winter 
wheat are shown in Figs. 4 and 5, respectively.

In general, an analogous temporal evolution of DVI from MODIS (blue triangle) 
and upscaled S2 (magenta circle) images for the two crop types can be observed on 
both homogeneous and heterogeneous pixels, confirming both the effectiveness of 
the BDRF correction and the accuracy of the datasets spatial alignment. In terms of 
time sampling, the lower sampling rate of S2 does not seem to affect the reconstruc-
tion of the overall shape of vegetation dynamics significantly. Yet, quantitative 
assessments of phenology descriptors are required to estimate the real effect on 
vegetation characterization. As expected, over pixels characterized by GSI close to 
zero the coarse resolution imagery mimics faithfully the evolution of the dominant 
classes (blue asterisks). There, the 1 km information can be used directly to infer 
crop properties, being spurious contributions from the rest of classes negligible. On 
the contrary, pixels characterized by higher degrees of heterogeneity are not able to 
provide a direct description of the crop-type of interest, being the information 
drifted apart from the pure time series as far as it becomes less dominant within the 
pixels. For them, unmixing approaches are mandatory if reliable vegetation evolu-
tion is to be retrieved, and if only coarse resolution imagery is available the solution 
comes with accepting an additional loss of spatial details. A successful solution has 
been put forward in [87], where spectral unmixing is carried out with an Ordinary 
Least Square method at US County level and provides a unique crop-type time 
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series at US county level. Overall, this hypothesis is fully satisfied for irrigation 
crops such as corn, and the county-level characterization is also representative of 
crop behaviors at 1 km. This can be observed in the normalized 2D histograms of 
DVI time series at 1 km for the tile 15TVH, shown in Fig. 6.

The corn region time series at 1 km was obtained by averaging at 1 km scale only 
S2 pixels labeled as corn in the USDA land cover map. A minimum crop-type 

Fig. 4  DVI Time series over almost pure corn pixel (a), more abundant but not dominant corn 
pixel (b, c) @1km from MODIS, S2 and S2-based pure classes (mean value ± 1 standard deviation 
with the 1 km pixel)

Trends in Satellite Sensors and Image Time Series Processing Methods for Crop…



214

percentage threshold of 20% was also applied to filter out noisy information. The 
results over the four counties entirely covered by the tile 15TVH of Iowa (Hancock, 
Cerro Gordo, Franklin, and Wright) show that minimum differences are detectable 
in the temporal evolution of the DVI, being the time sample dispersion slightly 
higher just during the start and end of season. Because of the corn dominance, 
smooth temporal profiles with a clear phenology can be detected.

Fig. 5  DVI Time series over almost pure winter wheat pixel (a), more abundant but not dominant 
Winter Wheat pixel (b) @1km from MODIS, S2 and S2-based pure classes (mean value ± 1 stan-
dard deviation with the 1km pixel)

L. Pipia et al.
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Conversely, when applying the same analysis to winter wheat fields of tile 
11TLM, a significant spreading of time series during the whole evolution of the 
crop in the two counties of Washington (Frankin and Walla Walla) can be observed. 
Whereas the bare soil period before seeding and after harvest are stable overall the 
tile, the magnitude of the phenological evolution of this crop type turns out to be 
dependent on the specific 1 km pixel selected for the analysis. The larger spread 
suggests a more heterogeneous land cover with variations in phenology due to dif-
ferent crop types and natural vegetation. These two contrasting land covers show the 
case for an in depth systematic and quantitative analysis, i.e., as done by the LSP 
calculation.

4.3  �LSP Calculation Over Croplands

The two test cases presented in the section above (e.g. see Fig. 6) have been pro-
cessed by DATimeS in order to estimate the LSP metrics. To do so, first gaps due to 
cloud cover were filled by means of a machine learning (ML) fitting method over 
the temporal data. The ML algorithm Gaussian processes regression (GPR) was 
chosen because of excellent fitting performances (see [57, 58] for a quantitative 
analysis of over 20 gap-filling algorithms). As such, cloud-free DVI maps were 
reconstructed on a five-days basis for the year 2019. Subsequently, the LSP metrics 
can be reliably calculated.

The LSP metrics were calculated for the following three time series products:

Fig. 6  Normalized 2D histograms of corn (tile: 15TVH) and winter wheat (tile: 11TLM) DVI 
time series at 1 km grouped by County
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•	 S2Cl1: Sentinel-2 data at 1 km obtained by averaging only pixels labeled as the 
dominant crop at MODIS scale, according to the CDL map. Thus, this represents 
the time series of pure dominant crop within each MODIS pixel;

•	 S2: Sentinel-2 data at 1 km resolution;
•	 MODIS: MODIS data at the nominal 1 km resolution.

Starting with the homogeneous corn fields dataset, general LSP results are 
reported in Table 3. The mean values for all the pixels are provided, as well as the 
associated standard deviation (SD). Considering the pure corn crop S2CL1 as refer-
ence, it can be noticed that the S2 and MODIS data at 1km provide similar statistics, 
with especially the S2 product providing analogous values as the S2CL1. The con-
sistency can be explained by the dominance of corn fields in the S2 tile. The consis-
tency of the LSP metrics among the three time series products can probably be 
better expressed by calculating the mean absolute deviation (MAD) and its disper-
sion, as displayed in Table 4. Differences are low, especially when comparing the 
S2CL1 against the S2 product, meaning that for this more homogeneous region both 
S2 and MODIS datasets provide consistent temporal information.

When repeating the same exercise for the more heterogeneous landscape with 
winter wheat as dominant crop (Table 5), it becomes apparent that the consistency 
among the S2 and MODIS information somewhat degrades. This especially holds 
for EOS and consequent LOS with more than a month difference. On the other 
hand, the MV, Amp and day MV seem more robust, suggesting that the mismatch 
took only place in identifying the EOS. In general, the S2 dataset resembles closer 
the S2Cl1 dataset, as is also quantified by the Area between SOS and EOS. The dif-
ferences between S2 and MODIS are also revealed by calculating the mean absolute 
deviation against S2Cl1 (Table 6); the differences with MODIS are up to two twice 
as large as compared to S2. Altogether, it suggests that the MODIS dataset is harder 

Table 3  Mean and standard deviation (SD) of phenological indicators estimated from S2, S2Cl1 
and MODIS over 1km-pixel whose Cl1 corresponded to corn (tile 15TVH). SOS, EOS and Day 
MV are in DOY 2019

SOS EOS LOS MV Amp. Day MV Area

S2Cl1 168.7±8.0 278.0±8.5 110.5±11.6 0.3±0.1 0.3±0.1 222.0±8.6 25.6± 4.3
S2 167.8±10.0 278.7±8.2 109.8±13.1 0.4±0.1 0.4±0.1 224.2±8.9 28.5±4.1
MODIS 164.9±11.4 279.7±5.2 113.8±12.7 0.4±0.1 0.4±0.1 225.1±6.1 31.1± 3.3

Table 4  Mean absolute deviation (MAD) and standard deviation (MSD) of MAD estimated from 
S2, S2Cl1 and MODIS over 1km-pixel whose Cl1 corresponded to corn (tile 15TVH). SOS, EOS 
and Day MV are in DOY 2019

SOS EOS LOS MV Amp. Day MV Area

S2Cl1 vs. S2 5.3±6.8 5.6±7.1 7.5±9.0 0.1±0.1 0.0±0.1 5.6±7.0 3.8±3.7
S2Cl1 vs. MODIS 6.7±8.1 6.9±8.3 8.5±10.0 0.1±0.1 0.1±0.1 7.2±8.2 6.1±5.2
S2 vs. MODIS 6.4±7.9 5.6±7.0 8.0±9.5 0.0±0.1 0.0± 0.1 5.5±7.0 4.2±4.8
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to interpret in view of the phenology of the dominant crop, winter wheat, due to the 
larger heterogeneity in croplands and patches of natural vegetation.

Figure 7 shows the maps for the more homogeneous region dominated by corn 
fields (tile 15TVH), and Fig. 8 shows the maps for the more heterogeneous land-
scape dominated by winter wheat (tile 11TLM). Masked areas correspond to water 
or urban pixels.

Starting with the corn field maps, LSP metrics maps reveal that the region is 
highly spatially and temporally homogeneous. This is probably best visible in the 
SEOS and EOS maps. All three maps show the same pattern with a pronounced 
SOS around DOY 165–169 (half of June) and EOS around DOY 278 (beginning of 
October). These numbers are in agreement with the typical corn growing patterns in 
the Corn belt region [88]. The maximum DVI value (MV) and amplitude show 
some more variation. Here slight discrepancies between S2 and MODIS can be 
noticed, with S2 closer to the reference maps of S2Cl1. The thin blue line in some of 
the S2 maps is due to border artifacts of those S2 captures covering the tile only 
partially, which generate local discontinuities in time that ripple along the pixel time 
series and affect LSP estimation. In order to eliminate these effects, these partial 
acquisitions should be either filtered out from the collection or processed with mor-
phological erosion operators to modify the boundary contours.

Table 5  Mean and standard deviation (SD) of phenological indicators estimated from S2, S2Cl1 
and MODIS over 1km-pixel whose Cl1 corresponded to winter wheat (tile 11TLM). SOS, EOS 
and Day MV are in DOY 2019

In order to 
display and 
interpret 
specific spatial 
patterns, the 
maps of the 
LSP metrics 
over the two 
study sites turn 
out to be very 
useful SOS EOS LOS MV Amp. Day MV Area

S2Cl1 90.6±10.0 235.7±27.8 144.2±31.0 0.3±0.1 0.3±0.1 145.0±11.8 22.2±6.3
S2 88.2±8.6 220.4±30.3 131.7±31.5 0.3±0.1 0.2±0.1 145.7±14.2 20.8±7.5
MODIS 84.7±17.4 261.9±18.4 172.3±29.2 0.3±0.1 0.3±0.1 148.4±13.8 31.1±8.8

Table 6  Mean absolute deviation (MAD) and standard deviation (MSD) of MAD estimated from 
S2, S2Cl1 and MODIS over 1km-pixel whose Cl1 corresponded to winter wheat (tile 11TLM). 
SOS, EOS and Day MV are in DOY 2019

SOS EOS LOS MV Amp. Day MV Area

S2Cl1 vs. S2 6.0±7.8 14.3±19.7 15.7±20.3 0.0±0.1 0.1±0.1 6.6±10.2 4.7±6.2
S2Cl1 vs. MODIS 12.6±16.4 27.5±20.1 27.1±19.4 0.1±0.1 0.1±0.1 9.3±12.7 10.7±10.8
S2 vs. MODIS 11.8±16.5 24.5±22.7 24.1±23.2 0.0±0.1 0.1±0.1 7.2±10.2 11.7±11.0
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Fig. 7  LSP indicators for the year 2019 estimated from S2Cl1, S2 and MODIS at 1km-pixel over 
a more homogeneous agricultural region (tile 15TVH). SOS, EOS and Day MV are in DOY 2019. 
Masked areas correspond to water or urban pixels

L. Pipia et al.
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Fig. 8  Phenological indicators for the year 2019 estimated from S2Cl1, S2 and MODIS at 1km-
pixel over a more heterogeneous agricultural region (tile 11TLM). SOS, EOS and Day MV are in 
DOY 2019. Masked areas correspond to water or urban pixels
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Conversely, the more heterogeneous landscape with croplands of winter wheat 
but also grasslands and shrubland, display more inconsistencies in the LSP metrics 
maps among the three data sources. While SOS still provides consistent patterns, 
with a SOS around DOY 85–91 (end of March), the EOS map is remarkably less 
consistent. Here, S2 still provides the same patterns as S2Cl1 (EOS half of 
September), while the MODIS data shows a systematic later EOS (end of 
September). Noteworthy is that S2Cl1 maximum values (MV) and amplitude (Amp) 
maps provide regions with more pronounced higher values than S2 and MODIS. Both 
S2 and MODIS deliver smoother, more blurred maps, which again must be attrib-
uted to the greater heterogeneity in vegetation cover.

Finally, in order to improve the understanding of the LSP maps, it is worth 
inspecting the temporal profiles of the three data sources more closely, and relating 
them to the land cover heterogeneity, i.e., as expressed by the Gini-Simpson index 
(GSI). Figure 9 shows the temporal profiles of the three data sources for two pixels 
with contrasting GSA values: low for a corn field pixel and high for a winter wheat 
pixel. These temporal profiles help also to understand how the LSP indicators are 
calculated.

When having a closer look to the homogeneous corn fields (Fig. 9, left), the tem-
poral profiles for S2Cl1, S2 and MODIS are shown in the top. A first observation is 
that the MODIS dataset is generally spikier, which is likely due to the higher tem-
poral resolution, with more chances of observing inconsistencies, e.g., due to unde-
tected cloud issues such as partial cloud cover. Regardless of the noise, the general 
temporal patterns of the three data products resemble closely. Accordingly, when 
the phenology indicators are calculated, they are alike. That is also shown in the 
individual calculation of SOS and EOS for each data source (see Fig. 9 underneath). 
For three data sources the SOS and EOS were identified at about the same dates. 
Conversely, for the more heterogeneous winter wheat landscape with a high GSI 

Fig. 9  Phenological indicators estimated from S2Cl1, S2 and MODIS for corn (low-GSI) [left] 
and for winter wheat (high GSI) [right]
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(Fig. 9, right) the temporal profile of the wheat crop (S2Cl1) follows a distinct pat-
tern when compared to MODIS and S2 at 1 km patterns. Winter wheat has an earlier 
peak as opposed to the other phenology patterns. A closer inspection of the indi-
vidual SOS and EOS calculations reveals that both MODIS and S2 express a 
smoother and longer pattern due to mixture of vegetation types (summer crops, 
grasslands or shrublands) with subsequent similar identification of SOS and 
EOS. The result suggests that independently of source, dataset at 1 km should be 
less related to crop phenology quantification and thus more care is required when 
interpreting this information towards crop monitoring.

5  �Discussion

Having outlined a general overview of EO missions and time series processing tech-
nique applied to crop monitoring, this section provides a brief overview of a few 
ongoing trends with respect to satellite-based crop monitoring. They are summa-
rized into the following topics: (1) trends in EO missions; (2) trends in gap-filling 
methods; (3) trends in time series data fusion, and (4) trends in time series software.

When it comes to EO imagery for crop monitoring purposes, a trade-off has to be 
made between spatial and temporal resolution. It does not come as a surprise that 
spatial resolution is a key factor to consider in phenology detection, given that 
medium to coarse spatial resolution imagery from sensors such as MODIS or 
Sentinel-3 are comprised of pixels containing a heterogeneous mosaic of multiple 
land cover types with varying phenological signals [8]. The impact of heterogeneity 
has been demonstrated here for the winter wheat case within MODIS pixels. Hence, 
coarse resolution data limits the extraction of specific phenological stages for spe-
cific land cover types given this sub-pixel land cover heterogeneity [89, 90]. 
However, in the extensive review by [8], it was also argued that the spectral-temporal 
signal at the coarse spatial sale is more stable over longer periods of time because 
the land cover composition within pixels at a resolution of 1 km or lower remains 
relatively static from year to year compared to higher spatial resolution pixels (e.g., 
S2) that detect common short-term land cover changes such as crop rotations. The 
study presented here just analyzes one growing season for one year, and therefore 
that statement cannot be confirmed, yet it is true that nominal S2 resolution (20 m) 
is well able to capture crop rotations (see also [57, 58]). At the same time, there is 
an ongoing tendency to move towards maximizing spatial and temporal resolution 
by making use of multiple satellites. i.e., constellations. This was first initiated with 
the two similar NASA satellites (Terra and Aqua) that both are equipped with the 
MODIS sensor [91]. The same concept of launching multiple satellites was repeated 
with the two S2 and Sentinel-3 constellations [92]. Progressing further along this 
trend, worth noting is the recent CubeSat initiative from Planet Labs, a private Earth 
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imaging company4. For the last few years Planet Labs designed and launched a 
constellation of CubeSats of more than 100 units. It forms the largest satellite con-
stellation in the world that provides a complete image of Earth once per day at 
3–5 m spatial resolution. Their goal is to image the entirety of the planet daily to 
monitor changes and pinpoint trends. With such an unprecedented richness of spa-
tiotemporal information, first initiatives are underway to estimate phenology stages 
at fine spatial resolution over the US Corn Belt and so provide significant advance-
ment to crop monitoring and precision agriculture [93].

When it comes to EO imagery time series processing, there is a strong ongoing 
trend towards embracing artificial intelligence methods. Particularly the machine 
learning (ML) fitting algorithms entered as attractive alternatives of conventional 
gap-filling functions. Not only may ML methods lead to more accurate reconstruc-
tions (see [57, 58] for a quantitative comparison), but they are also adaptive towards 
unevenly spaced data over multiple seasons. The GPR used in this chapter is of 
special interest, as its associated uncertainty estimate provides per-pixel informa-
tion of the gap-filling confidence. Typically, the longer the gap between two con-
secutive input samples, the higher the uncertainty. Another interesting method is 
Whittaker smoother, being almost as accurate as GPR and much faster (results not 
shown). Its adaptive fitting performance was already earlier reported [56, 94]. It 
must also be remarked that the multiple provided gap-filling techniques offer, to a 
greater or lesser extent, different performances. Each method has its own advan-
tages and drawbacks, which depend strongly on the characteristics of the input time 
series [8, 94], i.e., a method that fits well with some data can be unsuited for a dif-
ferent set of data points. Concerning the appropriate length of time series, even if 
there is no limit of amount of data, the accuracy of the time series reconstruction 
increases with the data size. The main limitation of the interpolation module is the 
high time consuming and computational cost of specific algorithms. Although not 
the slowest method within the family of ML fitting methods (see [57]), also GPR 
becomes computationally inefficient in its standard per-pixel usage when process-
ing time series of full images, mainly due to GPR training rather than fitting step. To 
mitigate this computational burden, it was recently proposed to substitute the per-
pixel optimization step with the creation of a cropland-based pre-calculations for 
the GPR hyperparameters θ [95], which basically rule the way training samples 
contribute to time series reconstruction depending on their distribution along the 
time axis. The results of this optimized approach showed that accuracies were on 
the same order (at most 12% RMSE degradation), whereas processing time acceler-
ated about 90 times. The alternative option of using the same hyperparameters for 
all the pixels within the complete scene was further evaluated. It led to similar over-
all accuracies over crop areas and computational performance. Hence, it means that 
calculating in advance and fixing θ substantial gain in run-time can be achieved in 
time series reconstruction while maintaining the advantages of GPR, i.e., a high 
accuracy and provision of associated uncertainties.

4 https://www.planet.com/
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While in this chapter only single-source imagery time series datasets were 
addressed, among the most exciting progress in time series analysis involves multi-
source data fusion. Data fusion is being increasingly used to generate time series 
with high temporal and spatial resolutions [41, 96]. Data fusion algorithms are 
expected to generate fine resolution synthetic images based on infrequent observa-
tions at fine resolution and relatively frequent coarse remote sensing data with rela-
tively higher temporal resolution [8]. ML methods are particularly promising for 
data fusion, and one of the most attractive fusion methods involves the multi-output 
(MO) version of GPR (MOGPR). This MOGPR approach was firstly introduced in 
[58] to fuse optical (S2) and radar (Sentinel-1) data for improved spatiotemporal 
reconstruction of vegetation products such as leaf area index (LAI). This approach 
proved to be particularly advantageous for long gapped time series, such as pro-
longed cloud clover, where optical data alone notoriously fails. Hence, the data 
from cloud-penetrating radar technology kicks in as complementary information, 
although the relationship between radar and vegetation phenology is less obvious, 
and strongly depends on structural properties. The absolute novelty of the solution 
proposed in [58] is that the parameters of the trained model implicitly predict the 
meaningfulness of any fusion approach: they quantify the amount of information 
shared between the two-time series and rule the interaction of low- and high-
frequency GPs for output reconstruction. Moreover, the LAI data gap filling 
described in [58] is only one example of MOGPR possible applications. In fact, 
with MOGPR multiple datasets can be fused, so to say, that is not restricted to two 
data sources. Any set of time series collection can be entered into the MOGPR, i.e., 
the use of variables from multiple optical and radar data sources, coming from mul-
tiple satellite missions, e.g., Landsat, SPOT, the Sentinels, MODIS, can be envis-
aged, as long as they all share a certain amount of information and are georeferenced 
on a common grid. This data is nowadays easily accessible on cloud-based plat-
forms such as the Google Earth Engine. Accordingly, in the present era of freely 
available, continuous multi-source satellite data streams, there is no doubt that fused 
time series processing will become indispensable in producing accurate cloud-free 
data and subsequent vegetation phenology monitoring.

Finally, to the benefit of the broader community and users in the agricultural sec-
tor, another interesting trend is that increasingly dedicated software packages 
become available for image time series processing and phenology-related studies. 
As reviewed by [8], the best known, and first software package is TIMESAT [68]. 
Subsequent software packages are variations and extensions of it or written in other 
(open-source) languages, such as: Phenological Parameters Estimation Tool (PPET 
[97]), enhanced TIMESAT [98], TimeStats [99], Phenosat [100], HANTS [101], 
CropPhenology [102] and QPhenoMetrics [103]. These software tools provide free 
functionalities for the reconstruction of time series data and extraction of pheno-
logical information customized with a number of user-defined input parameters 
based on time series data (e.g., vegetation indices). They are applicable in data 
reconstruction providing multiple common data gap-filling methods like logistic 
models, Savitzky–Golay, asymmetric Gaussian functions, piecewise regression, 
Fourier transforms etc. and generally perform well in general LSP extraction (e.g., 
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SOS, EOS) providing common extraction methods, e.g., threshold method and 
inflection method [8]. It must hereby be remarked that all these software packages 
include the same established gap-filling algorithms. Apart from being equipped 
with these algorithms, the newly presented DATimeS software package [57] com-
plements with a suite of versatile ML fitting algorithms. In comparison to other time 
series software packages, DATimeS is state of the art, through the: (1) ability to 
process unevenly spaced satellite image time series; (2) possibility to select over 
multiple ML fitting methods for time series prediction (some methods include asso-
ciated uncertainties, e.g., GPR); (3) option to fuse multiple data sources with 
MOGPR, and (4) provision and analysis of phenological indicators over multiple 
growing seasons.5

6  �Conclusions

Satellite imagery has become an essential source of information to enable monitor-
ing agricultural lands. Specifically, optical data from EO image time series at high 
temporal resolution can assist in seasonal crop monitoring, as it provides key infor-
mation about vegetation growing stages over large areas. In this chapter, the ongo-
ing trends in image time series processing for the extraction of information about 
land surface phenology (LSP) metrics to quantify the key moments of the crop 
growing season is discussed. Identified trends go in the directions of: (1) a tendency 
towards constellation of multiple satellites to reach both a high spatial and temporal 
resolution; (2) adopting machine learning algorithms for fitting multi-year and 
irregular time series data sources; (3) time series fusion of multiple data sources, 
and (4) development of dedicated software packages. With the unprecedented avail-
ability of EO data and advanced image processing methods, these trends eventually 
lead to improved quantification of LSP metrics, e.g., start and end of season, but 
also metrics more related to crop biomass or yield, such as amplitude and area. By 
making use of the newly developed DATimeS toolbox, the LSP calculation for time 
series of MODIS and S2 data at 1 km resolution over predominantly (1) homoge-
neous and (2) heterogeneous agricultural landscapes has been carried out. It is con-
cluded that LSP metrics can be consistently calculated and related to the dominant 
crop type over a homogeneous landscape. Conversely, heterogeneous regions show 
some discrepancies in the LSP metrics, which may be a consequence of the more 
complex landscape with varying phenological behaviors of croplands and natural 
vegetation, combined with the different temporal resolution of the two sensors ana-
lyzed and the role of cloud cover herein. Altogether, given the extraordinary flexibil-
ity of current processing algorithms and toolboxes, it can be safely concluded that 
the same level of maturity is reached in exploiting optical EO data in the temporal 
domain as in the spatial and spectral domains.

5 The toolbox can be freely downloaded at https://artmotoolbox.com/
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