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1  �Introducing the Normalized Difference Vegetation 
Index (NDVI)

Crops sit at the base of food chains, absorbing sunlight to fuel the photosynthetic 
reactions. The sunlight that plants absorb is referred to as Photosynthetically Active 
Radiation (PAR) and is measured as irradiance, in units of light quanta, integrated 
over the wavelength interval of 400 to 700  nm [1]. At wavelengths greater than 
about 750 nm incident light is preferentially scattered by leaves. This scattering is 
the reason that plants appear as bright objects in infrared photography. The transi-
tion between absorption and scattering causes the sharp jump in reflectance between 
the visible and near-infrared region of the reflectance spectrum known as the red 
edge (Fig. 1).
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The passive remote sensing of crops has a long and storied history which is 
entwined with the development of Earth Observing spectral radiometers in the latter 
half of the twentieth century (see [2] for a recent perspective). Early instruments 
measured radiance in a few multispectral bands spanning the visible and near-infra-
red region of the spectrum. It was evident that algebraically combining band data 
from these radiometers, to form so called vegetation indices and band ratios, 
increased the signal to noise content of the data greatly enhancing the observation 
of vegetation from space [3]. Studies in the 1970s and 1980s demonstrated how 
such data could be used to estimate vegetation parameters from space, including the 
leaf area index (LAI), defined as the ratio of the one-sided surface area of leaves to 
surface area of ground [4]. Global maps of vegetation phenology soon followed [5].

Note that in this early work there was a distinction between simple band ratios 
which are the division of bands, and vegetation indices (VIs) which are band func-
tions that feature differencing as the main operation [6]. Myneni et al.’s [7] theoreti-
cal work showed a functional relationship between VIs and the first derivative of the 
reflectance spectrum. The advantage of using the first derivative of a spectrum rather 
than the measured zero order values of a given wavelength band is that confounding 
variation due to constant offsets between observations (e.g., in time) of single bands, 
which could occur due to instrumental or target related factors, cancel out in differ-
ences [7, 8].

The best-known vegetation index is the normalized difference vegetation index 
(NDVI), which quantifies the strong contrast between photosynthetic light absorp-
tion in the visible region of the spectrum and scattering in the near-infrared (NIR) 

Fig. 1  Reflectance of potato canopy and soil. Canopy spectra present low reflectance in the visible 
due to absorption by pigments, and increased reflectance in the NIR due to scattering. The NDVI 
quantifies this difference. The soil spectrum is relatively constant across the shown interval, hence 
results in a much smaller NDVI relative to the potato. The Red and NIR band centres correspond 
to the METER NDVI band locations
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region [9, 10]. In simple terms, NDVI puts a single number on the red edge jump in 
the canopy spectrum, and is typically calculated using NIR and Red reflectance 
values as:

	
NDVI

NIR Red

NIR Red
�

�
� 	

(1)

The difference to which NDVI gives its name is in the numerator of Eq.  1, the 
denominator normalises difference values between −1 and 1. The normalisation 
makes NDVI potentially easier to interpret compared to the unbounded range pos-
sible with, for example, the simple ratio NIR/Red. The normalisation has also been 
suggested to reduce the effect of sensor degradation [3]. Crippen [11] suggested an 
interesting reason for the relative success of NDVI, he proposed that the NDVI was 
“self-perpetuating” as the established standard, having gathered sufficient user 
inertia.

The main limitation of the NDVI, which was already apparent in early applica-
tions [10], is referred to as the saturation effect, and denotes a non-linear asymptotic 
flattening, or loss of sensitivity, of the curve between NDVI and LAI (or biomass). 
The loss of sensitivity typically starts at LAI values ranging from 2–4 depending on 
the crop [12]. Further shortcomings of the NDVI were gradually revealed in the 
1980s using physically based methods.

Seller’s [6, 13] adapted the two stream (dual direction) radiative transfer formal-
ism used in atmospheric science to model maize NDVI as a function of vegetation 
structural and optical parameters such as the LAI. His work explored the non-linear 
relationship between NDVI and LAI, finding that non-linearity was amplified by 
bare ground in the sensor field of view. However, and unlike for LAI, Seller’s [6] 
went on to demonstrate a linear relationship between the fraction of absorbed PAR 
(fAPAR) and NDVI.  This result makes intuitive sense as the fraction of light 
absorbed by a canopy will also saturate at a given leaf area. Taken together his 
results can be interpreted as suggesting that NDVI is useful as a measure of near 
instantaneous productivity, which depends on fAPAR, but of limited use for LAI, or 
total biomass, in most green crops or forests due to the saturation effect.

It is tempting to assume that if NDVI is linearly related to fAPAR, then NDVI 
should also be related to foliar chlorophyll, which is the main light absorbing mol-
ecule, or nitrogen content which is used to build leaf proteins.1 However, as with 
LAI, the relationship between (red band) NDVI and chlorophyll content saturates at 
low chlorophyll values [14]. As Seller’s [13] work showed, it is more likely that 
NDVI is influenced by canopy structural factors such as the leaf angle distribution, 
especially at low LAI values. The dissociation between pigments and NDVI, was 
also confirmed in latter studies [15] who found no relationships of merit between 
pigment content and NDVI.

1 The use of chlorophyll to infer nitrogen is complicated by the fact that the ratio of total nitrogen 
to chlorophyll nitrogen varies substantially within a plant. More specifically sun leaves have less 
nitrogen allocated to chlorophyll than shade leaves.
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The limitations described above, which are further confounded by atmospheric 
effects, fractional cover sensitivity and variance in soil colour and brightness, moti-
vated the development of new and more complicated, in terms of mathematical 
formulae, VIs, designed to address these shortcomings [3, 12, 16]. These include the 
perpendicular and orthogonal vegetation indices where reflectance values in NIR-
Red space are projected onto the so-called soil line, with greater distances (projec-
tions) from the line representing increased vegetation fractions [3, 17].

An additional advance that was used as the foundation of NASA’s MODIS pro-
ductivity algorithm, was the Enhanced Vegetation Index (EVI) that corrects for soil 
effects and is less sensitive to saturation than the NDVI [18]. More recent tech-
niques for tracking productivity from space include Sun-induced Fluorescence 
(SIF) [19], and the NIRv index which is an adjusted form of NDVI whose derivation 
is rooted in Seller’s [6] theory and which aims to minimise the effects of back-
ground variation in the signal [20].

A further development related to vegetation indices is the use of multi-angular 
observations to characterise the anisotropy (directional dependency) of observa-
tions. For a sensor above a sunlit scene, the observable radiance is a function of the 
inherent optical properties of the objects within the scene, their structure and also 
the view and solar geometry, and the ratio of diffuse to direct radiation. The 
Bidirectional Reflectance Distribution Function (BRDF) is a theoretical concept 
that formalizes the directional dependency as a function of view and direct beam 
incident light angles. Most measurements of NDVI are therefore subject to direc-
tional artefacts, and care must be taken to compare data observed with differing 
geometrical configurations. However, as well as being a possible hindrance, reflec-
tance anisotropy can also be utilised to retrieve structural information, on for exam-
ple canopy clumping, from multi-angle reflectance data [21].

Although no longer at the cutting edge of satellite remote sensing, the use of 
NDVI persists and may even be growing [22, 23]. New remote and proximal (close 
to canopy) NDVI platforms and sensors differ from the relatively coarse resolution 
satellites of old, and include high resolution uncrewed aerial vehicles (UAVs) [24, 
25], field based robots [26], close contact spectral sensors mounted on mobile phe-
notyping platforms [27], active NDVI field sensing [22], and fleets of Earth 
Observing CubeSats [28]. Applications are also migrating from the traditional 
global photosynthesis prediction and change detection [2] to the rapidly evolving 
field scale commercial crop analytics, nutrient, and yield prediction [22] and pheno-
typing [27] disciplines which include a significant commercial element. A parallel 
and integrated development, is the uptake of data driven analytical modelling meth-
ods, referred to as machine learning, to relate NDVI or other optical data to crop 
parameters [29]. Such methods are useful as they can handle the vast amounts of 
data generated by high resolution imaging spectroscopy sensors to selectively arrive 
at accurate predictive models for e.g., chlorophyll content or LAI retrieval [30].

The emergence of the NDVI in new applications is probably due to the relative 
simplicity of the formula and the ease of measurement, requiring only an NIR and 
visible sensitive instrument. Obviously from the discussion above, the interpreta-
tion of NDVI is far from straightforward. Hence there is a gap that requires 
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bridging between decades of physically based knowledge derived from satellite 
remote sensing and the state of the art in field and plot scale data, which tends to a 
data driven focus. This chapter digs into the issue of relating the historical satellite-
derived theory [6] to new crop applications and sensors. This is achieved by analys-
ing proximal data acquired at high temporal and spectral resolution in two 
agricultural sites in Finland, to attempt to answer the question: what does NDVI 
and spectral reflectance data really tell us about crops in the field? For the sake of 
simplicity, the chapter is focused on point based spectral reflectance sensing. 
However, the lessons learned here are also applicable to well calibrated imaging 
spectroscopy data.

2  �Methods

2.1  �Sites, Sensors and Supporting Observations

Data were acquired from spectral reflectance sensors using proximal field and UAV 
platforms at two agricultural experimental sites in Finland shown in Fig. 2. The sen-
sors were designed to capture temporal and spectral variation, and the main sensor 
and site characteristics are listed in Table 1. The temporal dimension was investi-
gated using data collected at the Qvidja research site, in South Western Finland in 
2019 and the spectral dimension was investigated using data collected at the Viikki 
experimental field site in Helsinki in 2018, using a UAV platform.

The Qvidja estate site is an experimental grass site located in southwestern 
Finland. At this site, mainly timothy and meadow fescue grasses (Phleum pratense 
L. and Festuca pratensis Huds. respectively) grown in small 4 by 4 m plots under-
went differing fertilization treatments classified into four groupings: no 

Fig. 2  NDVI instrumentation and site locations. Left frame shows proximal METER NDVI sen-
sor above grasses at Qvidja site. The central frame shows site locations in southern Finland over-
laid on a PROBA-V satellite NDVI retrieval from July 2018. The right frame shows the UAV 
carrying the Piccolo-Doppio payload flying over the potato crop at Viikki, Helsinski

What Does the NDVI Really Tell Us About Crops? Insight from Proximal Spectral…



256

fertilization, 50% of optimal mineral fertilization, optimal mineral fertilization, and 
organic fertilization (For brevity, these categories are referred to as: No fertilization, 
50%, Optimised and Organic fertilization.). The plots were harvested at multiple 
times of year. METER (Pullman, WA, USA), formerly Decagon, NDVI Spectral 
Reflectance Sensors were deployed at the site during summer 2019. One sensor was 
placed over each treatment using a wood support structure with a view zenith angle 
of 45 ° which resulted in a ground instantaneous field of view (IFOV) major axis 
length of 2.9 m. These devices use the GSM network to transfer data from the field 
to a cloud service, which is subsequently visualised in a web browser and down-
loaded as text files for further processing. According to the METER specifications, 
the red and NIR bands are centred at 650 and 810 nm, with 10 nm FWHM. Data 
were collected at a 5-minute interval, and daily averaged between 10:00 and 17:00. 
Supporting LAI measurements and SPAD chlorophyll readings were also taken and 
are briefly mentioned in the results.

The second experimental site was located within the University of Helsinki’s 
Viikki campus in Helsinki, Finland. Here the potato variety Lady Felicia (Solanum 
tuberosum L.) was grown as row crops from seed in 2018. Two differing treatments 
were imposed: a paired drought treatment and a multi-level nutrient treatment. In 
the drought treatment, there were 10 plots of 6 m by 6 m, including a 1 m buffer, in 
total with a paired (treatment and control) sampling design where one of each pair 
was irrigated and the corresponding pair was under drought treatment. In the nutri-
ent plots, which were the same dimensions, there were four levels of nutrient addi-
tion. The four nutrient addition levels varied between two different levels of nitrogen 
fertilizer (YaraBela Suomensalpietari, Yara International, Norway) and two differ-
ent levels of general macronutrient fertilizer (Yara Mila Hevi3, Yara International, 
Norway) and were replicated four times. Due to the exceptionally good weather in 
Summer 2018, no rain exclusion was necessary to achieve the required drought effect.

For chlorophyll concentration ([Chl.]) sampling, leaves were picked during the 
measurement period and frozen until analysis. The frozen leaves were mixed with 
dimethyl sulfoxide (DMSO), which has been shown to be an effective solvent for 
chlorophyll and pigment analysis [31]. The samples were then homogenized and 

Table 1  Site and NDVI sensor characteristics. Note that there were many additional instruments 
operating at both sites, as both sets of observations were collected during heavily instrumented 
field campaigns

Site Crop
Experimental 
treatment

Dimension of 
interest

Sensor name and 
characteristics Platform

1. Qvidja, south 
western Finland 
60.2963, 
22.3945

Grasses 
(timothy 
and 
meadow 
fescue)

Fertilization Temporal METER (formerly 
Decagon) NDVI 
Spectral 
Reflectance Sensor

Small 
field 
supports

2. Viikki, 
Helsinki, 
60.2268, 
25.0180

Potatoes 
(Lady 
Felicia)

Drought and 
nutrient

Hyperspectral Piccolo Doppio 
hyperspectral 
DFOV spectrometer

Multi-
rotor 
UAV
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extracted in an oven for 4 h at 50 °C before analysis with a Shimadzu UV-1800 
spectrometer (Shimadzu Corporation, Japan). [Chl.] was estimated as total chloro-
phyll a and b on a leaf area basis.

UAV flights were conducted by Finnish Geospatial Research Institute’s (FGI) 
drone laboratory using a custom-built UAV based on a Gryphon Dynamics quad-
copter frame, a Pixhawk autopilot and Applanix APX-15-EI UAV positioning sys-
tem. The main payload of the UAV was a Piccolo Doppio (PD) Dual Field of View 
(DFOV) spectrometer system which uses the Cos-conical approach. This system is 
principally designed to retrieve SIF but also measures visible and near infrared radi-
ance and irradiance, which is the purpose to which it was deployed here. The PD is 
based around two Ocean Optics spectrometers (Ocean Optics/Insight, Dunedin, FL, 
USA), a Flame and QE Pro and a bifurcated fibre optic assembly manufactured by 
Alker Ltd. (Alker Fibre Optic Specialists Ltd., Surrey, UK). The PD DFOV system 
collects incident irradiance through a cosine corrected diffuser fore-optic attached 
to one fibre optic leg and upwelling radiance through a bare tipped optical fibre. In 
the present study both the irradiance and radiance fibre optic cables were mounted 
to a stabilising gimbal (Photohigher, Wellington, New Zealand) and upwelling radi-
ance was collected in the nadir view. Here data is presented from the Flame spec-
trometer, which has a usable spectral range of 400 to 950 nm, spectral sampling 
interval of 0.4 nm and a sampling band width (FWHM) of 1.3 nm. More details 
concerning the PD can be found in MacArthur et al. [32] and Atherton et al. [33].

The PD UAV flights were conducted on 25th July 2018 by hovering approxi-
mately 9 m above ground level for each of the plots. A 9 m height above canopy 
results in a top of canopy field of view diameter of 4 m, given the bare fiber IFOV 
angle of 25°. Repeats of 25 spectral radiance and irradiance samples were collected 
above each plot and subsequently averaged to estimate per plot reflectance. Per 
flight median optimised integration times were between 7–8 milliseconds for down-
welling and were between 12–14 milliseconds for upwelling.

Hemispherical-conical reflectance factors (HCRF) were estimated as the ratio of 
upwelling radiance spectra, multiplied by π, to downwelling irradiance spectra [34]. 
Note that when measuring reflectance in the field, the observation depends on the 
atmospheric conditions, and in particular the diffuse to direct ratio of irradiance 
which influences the sampling of the BRDF [35, 36]. As such, measuring irradiance 
and radiance a small distance above the canopy target affects the resulting spectra 
due to atmospheric scattering and absorption in the path to the target. These points 
should be kept in mind when comparing data across sites and instruments.

The UAV was also used to collect RGB imagery which was processed to point 
clouds using AgiSoft Professional software (AgiSoft LLC, St. Petersburg, Russia). The 
imagery was collected using two Sony A7R II digital cameras with Sony FE 35 mm 
f/2.8 ZA Carl Zeiss Sonnar T* lens. They were mounted at +15° and − 15° oblique 
angles in a stabilized rack. The flights were carried out at a flight height of 50 m that 
resulted in a ground sample distance of 0.64 cm. A double grid setup with six north-
south flight lines and nine east-west flight lines were used to obtain a minimum of nine 
overlapping images over the entire area of interest. Protocols describing the photogram-
metric processing chain developed by FGI can be found in Viljanen et al. [37].

What Does the NDVI Really Tell Us About Crops? Insight from Proximal Spectral…
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2.2  �Data Processing and Analysis

Data collected at site 1 (Qvidja) required little extra processing except for daily 
statistics and quality control which were conducted in R 3.5.3 programming lan-
guage [38]. A field cross calibration was conducted between radiance and irradiance 
sensors using a near lambertian Spectralon panel on June 5th and these coefficients 
used to calculate reflectance. At site 2 (Viikki), NDVI was calculated by first inter-
polating reflectance spectra to a 1 nm wavelength scale and then applying Eq. 1 to 
PD data using the reflectance values at wavelengths 650 nm and 810 nm.

Leaf angle distributions were estimated from UAV retrieved photogrammetric 
point cloud normal vectors. The Average Leaf Inclination Angle (ALA) per plot, 
referenced to the upwards (zenith) pointing vector, was computed as a summary 
statistic from these angular distributions. A description of this new approach can be 
found in Xu et al. [39]. In this chapter, the Singular Value Decomposition method 
was not used, rather the pre-computed vectors from Agisoft software as a higher 
correlation was found between leaf angles and spectral data using the latter approach. 
Data below a single reference height (4.4 m above coordinate system zero level) 
were excluded due to shadow and soil contamination. Similar results were obtained 
when no height threshold was applied, however the resulting correlations with spec-
tral data were not as strong as when using the height filtered data. Linear correla-
tions between spectral data and other variables (e.g., ALA) were calculated using 
Pearson’s correlation coefficient.

3  �Results and Discussion

3.1  �Temporal Variability at Site 1

Figure 3 shows the time course of NDVI measurements during summer 2019 at the 
Qvidja site. There were two harvest periods which are marked on the figure at the 
start of June and mid-way through August. Post-harvest NDVI values were around 
0.6–0.7 rising to maxima of around 0.8 for the organic and optimized fertilized sites 
a few weeks after the harvest period. The fertilized sites show elevated NDVI for 
most of the time course. At end of the season, variance in each of the time-series is 
increased which could be due to the lower light levels at the end of the year.

In these grasses, NDVI clearly tracks growth post-harvest and differentiates 
between fertilized and untreated plots. As corroborating evidence, LAI increases 
were measured over the experimental period with highest values in the fertilized 
plots; data from a SPAD chlorophyll meter showed no increasing trends over the 
sampling period (data not shown). It is therefore probable that changes in NDVI 
related to an associated increase in the fraction and total amount of absorbed PAR 
by photosynthetic elements which was determined by the fractional coverage and 
also related, probably asymptotically, to LAI [6].

J. Atherton et al.
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Variation in the NDVI is driven by canopy scattering which occurs principally in 
the NIR, and soil reflectance which occurs across all wavelengths [6, 13]. To explore 
these issues further, the focus shifts to the second site where variability across space 
using a UAV-based hyperspectral instrument was observed.

3.2  �Spectral-Spatial Variability at Site 2

When retrieved proximally from a UAV platform, there was a negative relationship 
between Average Leaf inclination Angle (ALA) and NDVI in the potato crops at site 
2 (Pearson’s r =  − 0.77, Fig. 4). Further, those plots under greatest water deficit 
presented the largest ALA and smallest NDVI values. This results chimes with pre-
vious research where the link between canopy structure and NDVI under water 
limited conditions has been highlighted, and where NDVI is referred to as a struc-
tural vegetation index [40].

Water limitation causes a lack of leaf turgidity, commonly referred to as wilting, 
resulting in greater leaf inclination angles and hence larger plot-wise ALA. This 
shift towards an erectophile distribution influences the NDVI due to the increased 
canopy gap fraction both within and between crop rows. Increasing the gap fraction 
exposes a greater proportion of soil, increasing the contribution of soil reflectance 
to the total signal. An increase in gap fraction also increases the distance between 
scattering and absorbing leaf elements and changes the canopy shadowing proper-
ties. It is not possible to separate between all these factors using the NDVI alone, 
here hyperspectral data is instructional.

ALA is correlated with canopy scale reflectance (Fig. 5) across large parts of the 
visible and NIR spectrum. However, both the strength and sign of the correlation 
(Fig. 5 lower panel) is dependent on wavelength. Visible reflectance is positively 
correlated with ALA, whereas in the NIR the sign switches to a negative correlation 
of increased magnitude. This can be explained by the interacting effects of light 
scattering by soil and vegetation. In sections of the visible region, soil is of higher 
reflectivity than vegetation (Fig. 1). Increasing the ALA means that the sensor FOV 
contains a higher proportion of soil background, resulting in the positive 

Fig. 3  Time-series of proximally sensed NDVI of grasses undergoing nutrient treatments at 
Qvidja estate site, Southwestern Finland. Data are daily averaged
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correlation. In contrast, in the NIR region scattering in the sensor FOV is dominated 
by canopy leaves [6]. An increase in ALA reduces the probability that a photon is 
scattered in the direction of the nadir pointing sensor, resulting in a negative correla-
tion at those wavelengths greater than approximately 700 nm. These results com-
bine to decrease reflectance under water stressed conditions in the NIR, due to 
lessening leaf scattering, but increase reflectance in much of the visible region due 
to increased soil scattering. This result is in contradiction to Moran et al. [41] who 
found water related scattering decreases in the visible and NIR regions.

Returning to the NDVI, then it appears that variation in the index is caused by the 
interplay of soil and canopy scattering. Although these mechanisms have opposite 
signs of correlation with the structural variable ALA, they both decrease the NDVI 
relative to increasing ALA (loss of turgidity) due to the mathematical formulation 
of the index. This is because NDVI can be reduced due to either an increase in red 
reflectance, caused by soil scattering, or by a decrease in NIR reflectance, caused by 
a reduction in leaf scattering. However, just because NDVI responds to ALA does 
not mean NDVI is an optimal remote estimator of ALA. Note that NIR reflectance 
has slightly higher correlation with ALA relative to NDVI (Fig.  5 lower panel). 
Further, Zou and Mõttus [42] found that although NDVI was related to ALA in 
crops, other indices demonstrated stronger correlations.

Fig. 4  Average Leaf inclination Angle (ALA) per plot Vs NDVI for a combination of water and 
nutrient treatment potato plots. Drought treatment plots with wilted leaves tend to the bottom right 
of the plot, with relatively high ALA and low NDVI values. NDVI error bars are one sample stan-
dard deviation of batch means
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The two mechanisms discussed above, which control the NDVI in the potato 
crop, do not directly2 relate to photosynthetic light absorption at the leaf scale. In 
this case variation in leaf optical properties, and by extension chlorophyll, is largely 
immaterial to NDVI which is under the control of variance in canopy scale topol-
ogy. The breakdown of the relationship between pigment content and NDVI under 
water limited conditions has previously been noted and alternative indices applied 
for chlorophyll and nitrogen estimation such as the MERIS terrestrial chlorophyll 
index that focus specifically on the red edge region [15]. Note that, in addition to the 
relevance to field data discussed in the current chapter, retrieval of chlorophyll from 
space is currently a major goal in satellite remote sensing [43].

Clearly broadband NDVI cannot be used to estimate leaf properties such as chlo-
rophyll content in the water limited case. However, the results shown in Fig. 5 sug-
gest that a sensor with differing band location could potentially be used to infer 
pigment content. Figure 5 shows a clear correlation between canopy reflectance and 
foliar chlorophyll concentration in the red edge close to 700 nm, and in the green 
region where correlation with ALA is minimal. In contrast, the NDVI bands fall 
squarely in the soil-structure dominated spectral regions (Fig. 5 top panel). As an 
interesting aside, the empirical results shown in the top panel of Fig.  5 closely 
resemble the model predictions found in Fig. 1 of Zou and Mõttus [44].

2 As an indirect effect, wilting does reduce absorbed PAR, but this mechanism is a canopy rather 
than leaf scale process.

Fig. 5  Spectral correlation with structural (ALA) and leaf level ([Chl.]) variables. Top panel 
shows the square of Pearson’s correlation coefficient between spectral reflectance (HCRF) and 
variables, and bottom panel shows Pearson’s correlation between spectral reflectance (HCRF) and 
variables. Vertical lines mark the location of NDVI bands
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To summarise the above, NDVI does respond to water deficit. However, this 
response is due to structural changes in the canopy, not variance in pigments or leaf 
optical properties. These results suggest that, whilst care must be taken in interpre-
tation, NDVI can indeed be used as an indicator of water stress capturing water 
related variation in soil and canopy scattering properties in the red and NIR bands 
respectively.

4  �Conclusions and Outlook

At both sites, the NDVI conveyed information relating to canopy structure. At the 
first site, the NDVI followed post-harvest grass development, differentiating 
between nutrient treatments (Fig. 3). At the second site, NDVI responded to water 
limitation in potatoes via variation in canopy scattering but was unrelated to pig-
ment content (Figs. 4 and 5). Therefore, reflectance in the red-edge or green region 
is required to relate canopy observations to leaf pigments, especially under condi-
tions of structural variance caused by water limitation.

At the two study sites, area integrated point data were used to investigate vari-
ance in canopy reflectance in the temporal and spatial dimensions. Such data are 
useful as a robust empirical benchmark and are potential candidates for the valida-
tion of CubeSat-based NDVI and LAI retrievals. However, the future of field spec-
troscopy lies in high spatial resolution imagery [24]. Once properly calibrated, such 
systems can probe variance in ecosystem processes at the individual plant scale 
across the field. So how best to capitalize on our current knowledge going forward 
in this direction?

The application of mature radiative transfer codes to estimate biophysical param-
eters (e.g., pigment content) from multi-angular UAV data is an avenue under cur-
rent investigation [45]. However, it is worth emphasising that the spatial scales that 
data is now generated at are unprecedented and call for the development of new 
physically based tools and models. Verrelst [30] discusses options for hybrid imag-
ing spectroscopy approaches combining physically based remote sensing with data 
driven methods which is an interesting avenue of future research. The method of 
radiosity [46, 47], which models the canopy as a collection of planar canopy ele-
ments throughout 3D space, is a worthwhile avenue of research to revisit in this 
direction. Following from this, perhaps the most interesting direction of research is 
the extension of imaging spectroscopy into the 3rd spatial dimension and the oppor-
tunities that this affords [48].
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