
Springer Optimization and Its Applications 182 

Information and 
Communication 
Technologies for 
Agriculture—
Theme I: Sensors

Dionysis D. Bochtis · Maria Lampridi
George P. Petropoulos · Yiannis Ampatzidis
Panos M. Pardalos Editors



Springer Optimization and Its Applications

Volume 182

Series Editors
Panos M. Pardalos , University of Florida
My T. Thai , University of Florida

Honorary Editor
Ding-Zhu Du, University of Texas at Dallas

Advisory Editors
Roman V. Belavkin,  Middlesex University
John R. Birge, University of Chicago
Sergiy Butenko, Texas A&M University
Vipin Kumar, University of Minnesota
Anna Nagurney, University of Massachusetts Amherst
Jun Pei, Hefei University of Technology
Oleg Prokopyev, University of Pittsburgh
Steffen Rebennack, Karlsruhe Institute of Technology
Mauricio Resende, Amazon
Tamás Terlaky, Lehigh University
Van Vu, Yale University
Michael N. Vrahatis, University of Patras
Guoliang Xue, Arizona State University
Yinyu Ye, Stanford University

https://orcid.org/0000-0003-2824-101X
https://orcid.org/0000-0003-2824-101X


Aims and Scope
Optimization has continued to expand in all directions at an astonishing rate. New 
algorithmic and theoretical techniques are continually developing and the diffusion 
into other disciplines is proceeding at a rapid pace, with a spot light on machine 
learning, artificial intelligence, and quantum computing. Our knowledge of all 
aspects of the field has grown even more profound. At the same time, one of the 
most striking trends in optimization is the constantly increasing emphasis on the 
interdisciplinary nature of the field. Optimization has been a basic tool in areas not 
limited to applied mathematics, engineering, medicine, economics, computer 
science, operations research, and other sciences.

The series Springer Optimization and Its Applications (SOIA) aims to 
publish state-of-the-art expository works (monographs, contributed volumes, 
textbooks, handbooks) that focus on theory, methods, and applications of 
optimization. Topics covered include, but are not limited to, nonlinear optimization, 
combinatorial optimization, continuous optimization, stochastic optimization, 
Bayesian optimization, optimal control, discrete optimization, multi-objective 
optimization, and more. New to the series portfolio include Works at the 
intersection of optimization and machine learning, artificial intelligence, and 
quantum computing.

Volumes from this series are indexed by Web of Science, zbMATH, Mathematical 
Reviews, and SCOPUS.

More information about this series at http://www.springer.com/series/7393

http://www.springer.com/series/7393


Dionysis D. Bochtis  •  Maria Lampridi 
George P. Petropoulos  •  Yiannis Ampatzidis 
Panos Pardalos
Editors

Information  
and Communication 
Technologies for 
Agriculture—Theme I: 
Sensors



ISSN 1931-6828	         ISSN 1931-6836  (electronic)
Springer Optimization and Its Applications
ISBN 978-3-030-84143-0        ISBN 978-3-030-84144-7  (eBook)
https://doi.org/10.1007/978-3-030-84144-7

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature 
Switzerland AG 2022
This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether 
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of 
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and 
transmission or information storage and retrieval, electronic adaptation, computer software, or by similar 
or dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication 
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant 
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book 
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the 
editors give a warranty, expressed or implied, with respect to the material contained herein or for any 
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional 
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Editors
Dionysis D. Bochtis
Institute for Bio-economy  
and Agri-technology (iBO)
Centre for Research and Technology 
Hellas (CERTH)
Thessaloniki, Greece

George P. Petropoulos
Department of Geography
Harokopio University of Athens
Athens, Greece

Panos Pardalos 
Department of Industrial  
and Systems Engineering
University of Florida
Gainesville, FL, USA

Maria Lampridi
Institute for Bio-economy  
and Agri-technology (iBO)
Centre for Research and Technology 
Hellas (CERTH)
Thessaloniki, Greece

Yiannis Ampatzidis
Department of Agricultural  
and Biological Engineering
University of Florida
Immokalee, FL, USA

https://doi.org/10.1007/978-3-030-84144-7
https://orcid.org/0000-0003-2824-101X


v

Preface

This book was conceived by a need for an up-to-date knowledge source on sensor 
design, development, and application for monitoring agricultural production param-
eters. Agriculture is a multi-parametrical production system, and its production 
environment is extremely variable. To that effect, there is a necessity for developing 
cost-effective and high-accuracy sensors that cover diverse needs. Throughout an 
agricultural production cycle – from planting preparations to harvesting – the use of 
sensors can offer valuable information to farmers that can be utilized in decision-
making, increasing the efficiency of production while reducing the required inputs, 
with tangible benefits to the economy and the environment. The difficulties of man-
ual data collection processes along with the rapid technological developments have 
urged the adoption of sensing systems that are able to collect large sets of data at 
short time. To utilize the data collected from sensors, further processing is required 
with data analysis and visualization resulting to utility parameters (e.g., crop health, 
height, size) that can directly be used by farmers in the everyday decision-making 
process.

The first part of the book (Part I) presents an overview on the state of the art in 
sensing technologies applied in agricultural production, including remote and prox-
imal sensing, wireless sensors network systems, and IoT.  The chapter titled 
“Emerging Sensing Technologies for Precision Agriculture” elaborates on the 
latest advances of sensing technologies examining various categories of sensing 
systems that are used for agricultural applications. The chapter also examines the 
technologies that can be used in combination with sensing. For example, machine 
vision, combined with artificial intelligence, is utilized in a variety of agriculture-
related applications as for example for pest management and precision spraying or 
yield prediction.

The evolution of the spectral, spatial, and temporal resolution in satellite sensors 
has enhanced the interest of the scientific community in their use, as they are able to 
provide accurate estimations with respect to the properties of soil. In fact, during the 
last decades, the efficiency of soil spectroscopy has been thoroughly examined, 
while remote and proximal sensing techniques are now widely used to gather pri-
mary or secondary data for the assessment of soil properties, with various resolution 
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options depending on the field of application. Soil is considered as an important 
factor in the implementation of sustainable development goals (SDGs) as it is 
strongly connected to the efficient management of the Earth’s resources and directly 
connected to environmental degradation, climate change, and other challenges that 
the Earth is facing. Nevertheless, the assessment of soil condition is still a costly and 
time-consuming process. Earth observation technologies are a promising potential 
towards the monitoring and reporting of soil properties, providing valuable infor-
mation that can be utilized by various sectors. The chapter “Soil Reflectance 
Spectroscopy for Supporting Sustainable Development Goals” elaborates on the 
significance of soil conditions in realizing the SDGs, demonstrating how soil reflec-
tance spectroscopy can aid towards its evaluation at national to global level. Detailed 
literature examples are also presented on how soil reflectance spectroscopy is used 
for the estimation of soil properties including soil moisture, organic carbon/matter, 
and clay content. Lastly, the barriers and challenges in the utilization of Earth obser-
vation techniques for the monitoring of soil are discussed.

Regarding the monitoring of crop growth processes, nowadays the availability of 
proximal and remote sensing technology for monitoring plant growth is increasing 
at an unprecedented rate, allowing for faster and cost-effective assessments. The 
chapter titled “Proximal Sensing Sensors for Monitoring Crop Growth” pro-
vides a theoretical overview of various monitoring solutions available for precision 
agriculture with particular emphasis on variable rate fertilization. Different sensor 
platforms are reviewed, from drone cameras to tractor-mounted and hand-held 
devices up to sensors carried by robotic platforms. Use-cases from Estonia and 
Lithuania are also presented to illustrate the most common practices of proximal 
sensing implementation in the context of precision agriculture.

The second part (Part II) of the book refers to wireless sensor networks dedicated 
to agricultural production. Wireless sensor networks (WSNs) is the term used to 
describe a group of, usually large in number, sensors that are distributed over an 
area for collecting and transmitting information. Transmission can take place either 
among sensor, or between sensors, and one or more moderators and gateways, 
depending on the architecture of the network. The sensors can collect a variety of 
different types of data, for example, from environmental parameters (humidity, tem-
perature, and pressure) up to presence and movement data. The spread of IoT tech-
nologies has encouraged the use of WSNs in agriculture. The IoT concept involves 
the interaction of different technologies within a specific environment and includes 
all the processes that are used to manage the collected data. These technologies can 
include, among others, various types of devices, sensors, networks, actuators, rout-
ing protocols, as well as databases. The evolving network technology has increased 
the adoption of IoT systems. This adoption is expected to increase further, with the 
advent of 5G (fifth generation of mobile networks).

Through the implementation of wireless sensor networks, the capability of 
monitoring agricultural-related parameters is enabled along with the potential to 
remotely control the executed activities during the in-field processes. However, in 
real-life applications, the use of traditional network management techniques should 
be examined, considering specific characteristics of the sector. As a matter of fact, 
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for their use in agriculture, WSNs should be able to operate efficiently under mini-
mum energy consumption requirements. Considering this, high-end low-power 
wide-area network (LPWAN) radios, using protocols like LoRa, are constantly 
gaining ground, among the most promising technologies for the specific purpose. 
The LoRa protocol exhibits a plethora of benefits, including the ability to operate 
at long distances, with low energy consumption, also  
demonstrating immunity to noisy environments. The chapter “Experimental 
Performance Evaluation Techniques of LoRa Radio Modules and Exploitation 
for Agricultural Use” aims at improving the behavior of LoRa radio modules and 
presents a low-cost, generic, and flexible methodology that results in an easy-to-
use portable equipment enabling fast and satisfactory results with respect to accu-
racy. Towards that direction, innovative smartphone solutions are used to monitor 
and/or modify the operational traits of LoRa-equipped sensor nodes through sim-
ple commands that safeguard, that the procedures are user-friendly. A series of 
measurements were performed in realistic agricultural conditions, while the results 
obtained are in accordance with the underlying characteristics of the LoRa proto-
col. It is worth noting that the developed testbed infrastructure can be implemented 
in various scenarios. It can also be expanded to facilitate the communication tasks 
of typical agricultural applications such as autonomous irrigation systems.

The realization of WSNs in the agricultural sector is a complicated process due 
to the interaction of technological and biological entities. In the chapter titled 
“Evaluating the Performance of a Simulated Softwarized Agricultural Wireless 
Sensor Network,” the required specifications for creating a WSN for monitoring 
the activity of beef cattle are examined. The routing protocols RPL (routing proto-
col for low-power and lossy networks) and CTP (collection tree protocol) are 
assessed in the livestock use case. Additionally, proving that softwarization is a 
trend in the evolution of networks, the use of SDN (software-defined networking) 
together with the RPL was also examined, giving the best results while achieving 
the required specifications. The results also encourage the adoption of such systems 
in various agricultural domains for animal and crop production. However, the intro-
duction of IoT technologies should be accompanied with the use of the most 
resource-efficient routing protocols. Such routing protocols are essential in the case 
of smart farming approaches that employ autonomous processes for improved 
decision-making. Certain limitations of the work presented concern the unavailabil-
ity of open datasets and the difficulties in the interaction among the relevant stake-
holders, including Academia, indicating the importance of farmers’ familiarization 
with such innovative technologies.

Examining the progress of WSNs related to smart agriculture applications, the 
chapter “Smart Agriculture: A Low-Cost Wireless Sensor Network Approach” 
elaborates on the issues of accountability and accuracy of systems that are devel-
oped to monitor agricultural environmental parameters. In the literature review sec-
tion of the chapter, the different WSN technologies dedicated to smart agriculture 
applications along with the low-cost equipment that is used in frontier research are 
discussed. Additionally, various systems for synchronized monitoring are evaluated 
to select one for further examination. Further examining the potential of modern 
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smart agriculture, the work also elaborates a variety of schemes dedicated to envi-
ronmental monitoring, which aggregate sensor information from different locations. 
A relevant scheme includes the cloud/fog computing paradigm, which results in 
flexible WSNs that interact with a main cloud infrastructure via a fog computing 
network. Furthermore, the application of this cloud/fog architecture was also exam-
ined for its implementation in the prevention of natural hazards, such as wildfires, 
considering the system’s fast response time.

The third part of the book (Part III) is dedicated to remote sensing. Remote sens-
ing is the term used to describe the process in which the required information is 
collected through satellite images (Earth observation) or aircraft-based sensors. 
Remote sensing data are very useful in phenological trends monitoring as well as in 
the assessment of the influence of climate variability. Satellite images can facilitate 
field scale monitoring, providing information of the crop condition regionally, 
which is not feasible with the use of hand-held sensors because of their sampling 
restrictions. Over the last 50 years, the Earth observation technology has evolved 
and has been optimized with respect to temporal and spatial resolution. Earth obser-
vation in the context of monitoring agriculture has recently matured sufficiently, 
including missions that contribute to the time series processing of information. 
Several research and commercial satellites are covering the entire planet at various 
revisit frequencies and with various spatial resolutions (ranging from a few centi-
meters to hundreds of meters). In addition to the visible spectrum, many of these 
satellites can also collect data in the red edge, near-infrared, infrared, and thermal 
spectra, creating valuable data sets with respect to crop monitoring. Moving to 
lower levels of Earth observation, and when higher resolution than the one obtained 
by satellites is required, sensors placed on airplanes or unmanned aerial vehicles are 
used. Such sensors can deliver high spatial resolution measurements and are suit-
able for monitoring row crops or orchards where crops do not fully cover the surface 
of the soil.

The chapter titled “Potential of Sentinel-2 Satellite and Novel Proximal 
Sensor Data Fusion for Agricultural Applications” presents a comparative 
assessment of a ground-based proximal multispectral sensor, called Plant-O-Meter, 
and the images obtained from the Sentinel-2 satellite mission. The results demon-
strated that both instruments offer comparable results at specific growth stages of 
maize, rendering the Plant-O-Meter proximal sensor an efficient alternative to sat-
ellite images that can provide high spatial resolution images. The main advantage 
of the ground proximal system is that it can perform independently to weather 
conditions such as cloud coverage. Additionally, data from satellite images can be 
fused with proximal data collected from the Plant-O-meter sensor, adding value to 
the derived information, especially since satellite data usually need auxiliary inter-
pretation with ground-truth data. With respect to the spatial resolutions of the mea-
surements, the study demonstrated that the plant development stage plays an 
important role with respect to the accordance of the indices calculated from Plant-
O-Meter and Sentinel-2, especially since the first can provide information at plant 
level while the later at field or regional level. Over large areas, the vegetation grow-
ing stages can be assessed via the optical time series data at high temporal 
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resolutions gathered from Earth observation missions. The chapter “Trends in 
Satellite Sensors and Image Time Series Processing Methods for Crop 
Phenology Monitoring” elaborates on the latest trends in data collection about 
land surface phenology (LSP) metrics for the quantification of the key stages of 
crop growing seasons through image time series processing. The tendency in image 
time series processing is mostly focused on: (a) increasing spatial and temporal 
resolution by combining constellations of multiple satellites, (b) fitting multi-year 
and irregular time series data with machine learning algorithms, (c) time series 
fusing of various sources of data, and (d) developing the relevant software pack-
ages. The rapid increase in the availability of Earth observation data along with 
new data processing methods has resulted in the advancement of the quantification 
of LSP metrics. Within the work presented, the DATimeS toolbox is utilized in 
order to produce LSP for time series of MODIS and S2 data over both homogenous 
and heterogenous agricultural areas. The results indicate that for homogenous 
areas, the LSP parameters can be related to the main crop type and be calculated in 
a consistent manner. In the case of heterogenous areas, LSP parameters can be 
inconsistent, due to the complexity of the landscape, the temporal resolution varia-
tion, and the influence of cloud coverage.

The wide availability of unmanned aerial systems (UAS) technology coupled 
with the latest discoveries in image segmentation and classification has led to the 
emerging of new opportunities in agricultural and environmental sciences. Some of 
UAS’s key advantages include the ability for ad-hoc rapid and repetitive collections 
over small areas without almost any influence from the cloud cover in comparison 
to satellite solutions. However, here the challenge is the generation and execution of 
optimized flight plans in terms of minimizing the shadow effects and providing 
similar environmental conditions for repetitive flights and the best speed over image 
sharpness ratio. In the chapter “Drone Imagery in Support of Orchards Trees 
Vegetation Assessment Based on Spectral Indices and Deep Learning,” the 
combination of a deep learning approach for the tree crown delineation and RGB-
based vegetation indices generated by drone flights was used for assessing the tree 
vegetation health. The approach obtained very promising results in the case of the 
plum, apricot, and walnut trees, mostly because the orientation of the leaves of these 
trees is towards the camera and the spaces between leaves and branches are rela-
tively small. In contrast, less reliable results were obtained for olive trees due to the 
specific tree configuration with small leaves and large spaces between branches. 
Overall, the study demonstrates the real potential of drone applications for small to 
medium orchards.

The popularity of remote sensing was increased following the release of open-
access satellite images from various providers globally. Furthermore, the cost of use 
of unmanned aerial systems (UAS) has started to decrease, thus their utilization for 
field monitoring and mapping with the use of the appropriate sensors has become 
popular. Farmers, on the other hand, have started to familiarize with the potential of 
such systems, and they are incorporating their use for in-field hotspot insights. 
However, the most important drawback in the wide use of such systems is the high 
requirements for pre-processing of the data before they can be used in field. Also, 
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such passive systems are susceptive to exogenous factors such as weather and atmo-
spheric conditions. In parallel, and in many cases complementary to these technolo-
gies, on-the-spot sensing technologies have advanced during the last decades, 
offering both off-line and real-time monitoring solutions. However, there are still 
many limitations in their use in small- and medium-size farms, related among others 
to their high cost, the complexity of use, and their accuracy. This leaves room for 
improvements for the introduction of novel and more efficient proximal sensing 
solutions in terms of cost and applicability.

The fourth and last part of the book (Part IV) deals with the application of proxi-
mal sensing in agriculture. Proximal sensing is the term used for monitoring in short 
distance from the object of interest usually with the use of sensors placed on tractors 
or other vehicles. Proximal sensors offer a wide variety of advantages with respect 
to the spatial resolution (which can be in the range of millimeters to centimeters) 
and temporal independence since measurements can be scheduled at any time.

The normalized difference vegetation index (NDVI) is one of the most used and 
standardized indexes in crop production. The relatively simple NDVI formula and 
the ease of measurement, requiring only a near-infrared (NIR) and visible sensitive 
instrument, have led to a wide implementation of the index. NDVI can be produced 
from various data sources, from satellite images to close to canopy platforms and 
sensors including UASs, close-contact spectral sensors mounted on mobile pheno-
typing platforms, and active NDVI field sensing. The data processing itself has also 
been expanded from the simple photosynthesis prediction and change detection to 
advanced crop analytics, including nutrient, yield, and phenotyping prediction. In 
parallel, these processes have been enriched with machine learning approaches that 
are able to handle vast amounts of data generated by high-resolution imaging spec-
troscopy sensors to relate NDVI or other optical data to crop parameters. However, 
there is still a gap on bridging the physically based-knowledge together with the 
data-driven one, in field and plot scales. The chapter “What Does the NDVI Really 
Tell Us About Crops? Insight from Proximal Spectral Field Sensors” covers this 
issue of relating the historically grounded physically based theory to field-based 
sensing applications. Authors attempt to answer this question by analyzing proximal 
data acquired at high temporal and spectral resolution in two agricultural sites in 
Finland.

One of the key aspects for site-specific management within precision agriculture 
concept is field heterogeneity. On this aspect and for the lateral heterogeneity of the 
soil, electrical conductivity data provide reliable information that can be used 
directly and cost effectively. Apparent electrical conductivity data are correlated 
with parameters such as soil salinity, soil moisture content, and soil texture. Because 
soil fertility and yield depend on these parameters, there is also a link between 
apparent electrical conductivity and yield, while many scientists consider it one of 
the key features for delineating agricultural management zones. Additional infor-
mation regarding vertical heterogeneity (e.g., soil layering) helps to understand in 
more detail soil-moisture relationships, the interaction between soil and plants, as a 
means for selecting the right plant type in terms of appropriate root depth. To close 
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the gap between two- and three- dimensional soil data (lateral and vertical), several 
novel techniques including new instruments and inversion routines have been pro-
posed and developed. In the chapter “Geophysical Sensors for Mapping Soil 
Layers: A Comparative Case Study Using Different Electrical and 
Electromagnetic Sensors,” authors present a field study on the use of geophysical 
sensors to image lateral and vertical soil heterogeneity within the rooting zone of 
plants up to a depth range of 1–2 m.

The use of geoinformation tools has improved the management of pests and 
especially the mapping of pest populations hotspots. In the chapter “Geoinformation 
Technologies in Pest Management: Mapping Olive Fruit Fly Population in 
Olive Trees,” a novel methodological framework for the monitoring of olive-fruit 
pest populations is presented. The framework proposes the use of a locally installed 
network of traps in combination with geoinformation tools such as geographical 
information systems (GIS) and global positioning systems (GPS). The methodol-
ogy was practically tested in a typical Mediterranean olive grove in Crete, Greece. 
The concept presented enables the analysis of population data with the use of the 
technical tools that the GIS environments offer. The monitoring of the trap network 
provides valuable information with respect to the allocation and the number of 
traps in the area under monitoring. One of the main advantages of the methodologi-
cal framework is related to the mapping of the spatial and temporal variation in the 
population of pests, in the period when pest management occurs. In this manner, 
the effectiveness of spraying is increased, since specific spraying zones can be 
determined, a fact of significant importance especially in ecologically sensi-
tive areas.

Closing this part, and the entire book as well, in the chapter “In-Field 
Experiments for Performance Evaluation of a New Low-Cost Active 
Multispectral Crop Sensor,” a comparison, in real-conditions, between a newly 
develop multispectral device (named Plant-O-Meter) and a widely used and accepted 
commercial hand-held device (GreenSeeker) is attempted. The reference sensor was 
chosen since it works under the same principles as the tested sensor, while it is of 
low cost and has comparable measurement characteristics. The two sensors were 
evaluated in two test maize fields, and nitrogen (N) experiments were designed to 
simulate variations in canopy development, vigor, and greenness, to facilitate the 
comparison of the sensors’ performance in a wide range of expected readings. The 
NDVI was estimated for three maize hybrids with the use of both sensors at differ-
ent growth stages. According to the results, the best measuring time was between 
the V7 and V8 stage for both sensors. The overall results indicate an almost identical 
behavior of both sensors with a 1:1 ratio of accordance in measurements, demon-
strating the potential of the innovative sensor in plant canopy assessment for on-the-
spot variable rate fertilization.

Different aspects of sensors implementation in agricultural production (e.g., 
types of sensors, parameters monitoring, network types, connectivity, accuracy, reli-
ability, durability, and needs to be covered) are analyzed within the book context 
providing a variety of up-to-date information and knowledge on the topic. Given the 
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multi-regional distribution of the chapters, we hope that this book provides a “map-
ping” of the global status in advancement and development of prototyped and 
applied sensing solutions in agricultural production domain.

Thessaloniki, Greece� Dionysis D. Bochtis
Thessaloniki, Greece� Maria Lampridi   
Athens, Greece�   George P. Petropoulos
Immokalee, FL, USA�   Yiannis Ampatzidis
Gainesville, FL, USA� Panos Pardalos    
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Emerging Sensing Technologies 
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and Panos Pardalos

1  �Introduction

Farmers across the world are looking for ways to increase efficiency and productivity 
of the farms due to increasing demand of agricultural products and decreasing farm-
land. As the global population continues to rise, the biggest question that arises is 
how to produce enough food to feed every one of them. To solve this problem, farm-
ers need to find new ways to increase the production on existing farmlands and 
precision agriculture technologies might be the solution to this challenge.

Precision agriculture uses innovative technologies to increase crop yield while 
using lesser resources by establishing a decision management system, which uses 
data from the farm to control and estimate the number of resources required for a 
particular process with accuracy and precision. Precision agriculture is a rapidly 
developing area and emerging sensing technologies play an important role in it. 
Right from planting a plant to packing the end product, sensors are being used in 
several ways to increase the efficiency of a farm. The whole farming process can be 
categorized into different areas such as:

	1.	 Planting
	2.	 Soil management
	3.	 Nutrient and water management
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	4.	 Pest and diseases management
	5.	 Yield harvesting and post-harvest processing

There are numerous applications of several sensors in each of the above-
mentioned areas (Fig. 1). Some of the most commonly sensors in agriculture include 
optical sensors, airborne sensors, non-destructive sensors, positioning sensors, 
quality detection sensors, etc.

1.1  �Planting

The most commonly used sensor during planting is the global positioning system 
(GPS). GPS is used by the planting machines to plant crops in an efficient pattern so 
as to reduce the amount of fuel and time needed to navigate around the farm. The 
GPS can also be used for a better inventory management system to identify the loca-
tion of a specific plant(s).

Airborne sensors (e.g., RGB and multispectral cameras) are being used after 
planting to identify skips/gaps in the planting pattern so that the planting machine 
can go back and plant in the gaps (Fig. 2) which helps reduce the loss of farm area 
being used [1].

Fig. 1  Sensing technologies and their applications in agriculture

S. Kakarla et al.



5

1.2  �Soil Management

There are various parameters that come into play with soil. Farmers are concerned 
about the water/moisture levels and nutrient composition of soil layers. There are 
many geophysical sensors being used to measure moisture levels of the soil in real 
time, transmitting data into cloud which forms a sophisticated irrigation manage-
ment system. There are many spectral sensors being used to map different nutrients 
levels in the soil. These spectral sensors are sometimes integrated into unmanned 
aerial vehicles (UAVs) to help map the soil nutrient levels across large size farms.

There are also several geophysical sensors such as ground penetrating radar 
(GPR) and electromagnetic sensors that are being used for soil layer mapping and 
for creating 3D maps of the plant root system [2]. Other sensors can be used to 
measure soil water content and help determine various parameters such as evapo-
transpiration, groundwater recharge, etc. They can help growers efficiently run irri-
gation systems to maximize yield and also minimize the impacts of farming 
practices.

1.3  �Plant Health Management

Spectral sensors, such as multispectral and hyperspectral cameras, and artificial 
intelligence (AI) are used in the field for high throughput phenotyping, to identify 
plant health status and detect plant stress, and to determine plant nutrient concentra-
tion [3].

Unmanned aerial vehicles (UAVs) equipped with various types of sensors, such 
as RGB, multispectral and hyperspectral cameras, combined with AI can be used to 
scout individual plants and collect information about them such as plant health sta-
tus, leaf density, plant height and canopy size (Fig. 3), plant nutrient concentration 
(e.g., development of fertility maps; Fig.  4), etc. [4]. This information can help 
farmers with maintaining an efficient inventory system and track the progress of the 
farm and also identify “weak” spots in the farm, which can better manage with a 
better decision management system.

Fig. 2  UAV image showing skips detection in a sugarcane field
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Fig. 3  Agroview, a cloud- and AI-based application to analyze and visualize UAV collected data 
[4]. Example of citrus blocks in Florida, USA

Fig. 4  Agroview: Example of a fertility map for discrete N management zones (N ranges based on 
recommendations from the University of Florida’s Institute of Food and Agriculture)
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1.4  �Pests and Disease Management

Disease diagnosis by visual observation of symptoms can get complex due to the 
similarity of symptoms between various diseases. This complex nature can even 
confuse experienced personnel to misidentify a disease which can lead to further 
problems [5]. Optical sensors combined with machine learning have been utilized 
to distinguish between diseases using differences in reflectance, shape, color, and 
textural information that may not be visible to a naked eye [6].

Unmanned aerial vehicles (UAVs) equipped with various types of sensors, such 
as RGB, multispectral and hyperspectral cameras, combined with AI can be used to 
identify diseases in large scale farms rapidly and in low-cost compared to manual 
inspections [7].

Optical sensors like visual RGB cameras and LiDAR sensors are used to detect 
and identify different types of weeds and insects. These sensors are integrated with 
existing sprayers to decrease the use of chemicals by gathering data about the 
amount of weeds and pests present in the farm and there by controlling the amount 
of resources used according to the gathered data.

Conventional spraying technologies which are not equipped with any sensors 
spray all along their path irrespective of the presence of weeds/pests. Researchers 
have been employing new techniques with the help of optical sensors paired with 
artificial intelligence. For example, these smart sprayers detect and identify the type 
of weed and controls the spraying system in a way that it only sprays where a weed 
is present [8]. This will ultimately end up saving a lot of chemicals used by the 
farmer which in turn reduces the cost required for spraying. Another benefit of these 
smart sprayers is environmental protection, they reduce the amount of chemicals 
being used and the chemical drift off that is being carried into the water bodies and 
into the soil which will help preserve the quality of our natural resources and avoid 
phenomenon like red tide and other chemical disasters. Similar technologies have 
also been adopted to estimate the number of pests present in a farm which can sup-
port the farm prepare an efficient schedule of pesticide spraying [9].

These variable rate technologies (VRT) use sensors such as LiDAR, RGB or 
multispectral cameras, depth cameras, and GPS combined with powerful microcon-
trollers and novel algorithms that enable variable application of chemicals. These 
technologies automatically control the amount of chemicals applied based on pres-
ence of pests and diseases, plant health status, plant or soil nutrient concentration, 
etc. The sensors used in these technologies can detect several parameters such as the 
health status of the plants, plant height and canopy size, absence of plants, etc., 
which are all applied towards the decision making of the VRT system.

1.5  �Yield Harvesting and Post-Harvest

Optical sensors like multispectral, thermal, and RGB cameras are used to detect or 
predict the yield potential of the farms. These are also used to detect the quality, 
maturity, and the readiness of the product for harvesting purposes. Another 
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application of these sensors can be to count fruit/vegetable drops from plants/trees, 
which will enable the farmers to estimate the percentage of drops and estimate food 
wastage.

During the packing and processing of the products, computer vision is used for 
sorting products (e.g., fruit or vegetable) based on size, shape, and maturity. Smart 
and automated systems are used for categorizing products for further processing 
and production, and for disease/bruise detection, which in turn improves efficiency 
of the logistics and increase food safety. For example, Blasco [10] used computer 
vision (near infrared-NIR and fluorescent-FL imagery) to detect anthracnose and 
green mold, which are considered to be serious damage to skins of citrus fruit. This 
technology was used to sort fruits according to the presence of damages on fruits, 
which will ensure that only fruits with good quality reach the market. That can 
increase profits for growers.

2  �Types of Sensors

There are a wide range of sensors available in the market and there are various 
applications for each of these sensors. Below, several categories of sensing systems 
that are used in agriculture are presented.

2.1  �Remote Sensing

Remote sensing refers to the use of sensors to acquire information from an object 
(or area) without any contact with the target object. These sensors collect informa-
tion by measuring the reflection and radiation being emitted by the objects present 
in an area. The sensors are usually mounted on ground or aerial vehicles (e.g., UAV, 
aircraft, and satellite). Recently, unmanned aircraft systems (UAS) are being heav-
ily used by people around the world due to the relatively low cost of the equipment 
and their ability to cover large areas in shorter time when compared to manual 
observation. There are various types of spectral sensors that are integrated with 
UAS or ground based vehicles to collect various farm data by measuring several 
parameters across the electromagnetic spectrum.

2.2  �Computer Vision

Computer vision is the process of enabling computers to understand and analyze 
imagery and therefore process, detect, identify, and classify objects present in an 
imagery. Computer vision has been made possible due to the advancements in 
machine learning techniques (e.g., neural networks and deep learning). For 
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example, Costa et al. [11] utilized computer vision and deep learning, a Mask-
RCNN algorithm, for object detection and semantic segmentation for area estima-
tion of shuck, shell, and embryo on pecans to better understand the fruit growth 
curve. This study provided a faster and more reliable methodology to detect and 
estimate growth of pecan nuts throughout the season. Below, various sensing sys-
tems that are used for collecting images in precision agriculture applications are 
presented.

2.2.1  �RGB

Red, green, blue (RGB) sensors are commonly referred to as visual cameras that are 
widely used in everyday devices such as cellphones, webcams, etc. These sensors 
measure the reflectance in red, green and blue spectrum and provide users with an 
image. Unmanned aerial vehicles equipped with RGB cameras are flown over large-
scale fields collecting thousands of images. These collected images are thereby 
stitched together using photogrammetry techniques to produce a map of the entire 
field. These maps can be used for several precision agriculture applications. For 
example, they can be used to detect, identify, and count plants in a field, and to esti-
mate leaf density, plant health status [12], canopy size, tree height, etc. Ampatzidis 
et al. [4] developed a cloud-based application, called Agroview, to process, analyze, 
and visualize data collected from RGB cameras attached to UAVs (Figs. 3 and 4). 
This application, upon uploading the user collected images, processes the images 
and stitches them together into a map and can: (i) detect, count, and geo-locate 
plants and plant gaps (locations with dead or no plants); (ii) measure plant height 
and canopy size (plant inventory); (iii) develop plant health (or stress) maps; and 
(iv) estimate plant nutrient concentration and develop fertility maps. These maps 
can further be used for applications of variable rate technologies (e.g., variable rate 
fertilizer applicators). Technologies like Agroview can be used for plant inventory 
by saving over 70% of data collection cost and 90% of collection time.

2.2.2  �Multispectral

Multispectral sensors can provide data that human eyes cannot see, and which can-
not be captured by the RGB sensors. They usually provide reflectance data from 
near infrared spectrum in additional to the red, green, and blue spectrums. This 
information is very important for the calculation of the most widely used vegetation 
index called normalized difference vegetation index (NDVI). NDVI is being widely 
used by researchers across the world to identify the health status of various plants. 
It is measured on a scale of zero to one, where zero being the most stressed and one 
being a healthy plant. For example, Guan [13] used small UAVs for calculating high-
resolution normalized difference vegetation index (NDVI) values and subsequently 
correlate these values to fertilizer application levels and yield of rice and wheat 
crops. The NDVI values helped them differentiate the levels of fertilization levels in 
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the crops which indicated a potential for early detection of nitrogen deficiency. The 
color NDVI distribution maps of wide rice fields identified differences in stages of 
ripening and lodging-injury areas, which accorded with practical crop growth status 
from ground observation.

2.2.3  �Hyperspectral

Hyperspectral sensors are one of the most complex spectral sensors that are being 
used for agricultural applications. They are not being as widely used as the other 
spectral sensors due to very high cost of the equipment and the complex operating 
procedures. Contrary to the RGB and multispectral sensors, hyperspectral sensor 
collects reflectance data in continuous scans along a spectrum usually ranging from 
400 to 2400 nm. While the multispectral sensor collects the reflectance data over 
ranges of spectrum, hyperspectral sensor can collect reflectance data from a wave-
length range as narrow as 4 nm. Researchers have been using hyperspectral sensors 
combined with machine learning algorithms to correlate the reflectance data with 
various agricultural parameters. For example, hyperspectral sensors are being used 
to detect, identify, and distinguish diseases with similar visual symptoms, which can 
be a very complex task for a regular farm worker. For example, Abdulridha et al. 
[14] used both airborne and benchtop hyperspectral imagery to detect and distin-
guish bacterial spot (BS) and target spot (TS) diseases in tomato fields. Over 35 
vegetation indices were analyzed to select the most optimum wavelengths for dis-
ease detection and identification. Classification methods like multilayer perceptron 
neural network (MLP) and stepwise discriminant analysis (STDA) were compared 
to distinguish between various stages of the diseases and MLP method had higher 
classification rates than STDA method in all disease stages. The best vegetation 
indices to detect both the diseases were also determined. In a follow up study, 
Abdulridha et  al. [7] utilized machine learning models to identify and clasify 
Tomato yellow leaf curl, BS, and TS in two varieties of tomato using aerial (aka, 
UAV) and ground (lab-absed) hyperspectral imaging (Fig. 5).

2.2.4  �Thermal

Thermal sensors measure the energy radiated by an object at a wavelength corre-
sponding to its surface temperature. They can provide the users with surface tem-
perature of various objects present in a field. Thermal cameras are widely used in 
agriculture to estimate soil moisture and plant evapotranspiration for precision irri-
gation applications. For example, Soliman [15] used both airborne and handheld 
thermal sensors to estimate soil moisture content in vineyards where the soil was 
covered with grass. In this study, they evaluated the strength of relationships between 
soil moisture, mechanical resistance, and thermal inertia. They used data from both 
sensors to explore the effects of different field of views and the high inter-row tem-
perature variability. Despite the low resolution of airborne thermal sensor, it 
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performed better than estimates from the handheld thermal sensor. The results from 
this study were encouraging for future research on extending thermal remote sens-
ing of soil moisture in heterogeneous land cover regions. Thermal sensors can also 
be used with machine vision to detect fruits on trees [16].

2.2.5  �LiDAR

LiDAR sensors measure the distance to the objects around them by illuminating the 
target with laser light and calculating the time required for the light to return to the 
sensor. LiDAR sensors have been used historically to map digital elevation and 
surface models of the earth’s surface. LiDAR sensors are being used in agriculture 
for 3D modelling of the farms that can help farmers understand the terrains of the 
farm for an efficient implementation of irrigation system practices. They can also be 
used to measure various parameters such as crop height, crop density, canopy size, 
etc. (e.g., Fig. 6) These LiDAR sensors can be used both on ground based and air 
borne sensors (Fig. 7) for various applications.

2.3  �Synthetic Aperture Radar

Synthetic aperture radar (SAR) is a type of radar that is utilized to reconstruct two-
dimensional images. The distance the aircraft with the SAR device travels over a 
target in the time taken for the radar pulses to return to the antenna creates the large 

Fig. 5  (a) Benchtop Pika L 2.4 camera (Resonon Inc., Bozeman MT, USA) with leaves samples 
in the laboratory condition; (b) Unmanned aerial vehicle using hyperspectral sensing (same Pika L 
2.4 camera) to collect spectral reflectance data from susceptible and tolerant tomato plants infected 
with tomato yellow leaf curl. Ref. [7]

Emerging Sensing Technologies for Precision Agriculture



12

synthetic antenna aperture. Thus, it can have better resolution than comparatively 
small physical radar systems. This technology has a consistent spatial resolution 
over a range of views. It is usually attached to UAS and has been utilized in preci-
sion agriculture including estimating soil moisture, ground/foliage penetration, bio-
mass. For example, Ndikumana et al. [17] studied the capabilities of multitemporal 
radar images for rice height and dry biomass retrievals using Sentinel-1 C-band 
including dual-polarization VV (Vertical receive and Vertical transmit) and VH 
(Vertical receive and Horizontal transmit) data. To this end, they trained three types 
of machine learning models (multiple linear regression-MLR, support vector 
regression-SVR, and random forest-RF) to estimate rice height and dry biomass. 
Reisi-Gahrouei et al. [18] examined the use of MLR and artificial neural network 
(ANN) models to estimate the biomass for canola, corn, and soybeans using 
14 L-band polarimetric parameters of uninhabited aerial vehicle synthetic aperture 
radar (UAVSAR) data. Hosseini et al. [19] developed a neural network transfer 

Fig. 6  (a) Point cloud generated using LiDAR; (b) Trees detected using canopy height model 
(CHM) segmentation post processing

Fig. 7  UAV equipped with a LiDAR airborne sensor
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function between the biomass derived from SAR data and from optimal data. Its 
purpose is to facilitate the integration of optical and SAR derived biomass estimation.

Synthetic aperture radar is also used to characterize the bare or vegetated soils in 
agricultural environments. Sekertekin et al. [20] used three models, namely Dubois 
semi-empirical model, MLR, and water cloud model (WCM) for estimating surface 
soil moisture in vegetated agricultural fields. They examined the potential of L-band 
ALOS-2 and C band Sentinel-1 SAR data for estimations in a dry season. Mercier 
et al. [21] used SAR Sentinel-1 and optical Sentinel-2 times series data to monitor 
forest-agriculture mosaics. Nasirzadehdizaji et al. [22] aimed to investigate the sen-
sitivity of 10 parameters derived from multi-temporal Sentinel-1 SAR data to esti-
mate crop height and canopy coverage of maize, sunflower, and wheat.

3  �Wireless Sensor Networks

Sensors devices can be combined with the Internet of Things (IoT) technologies and 
Wireless Sensor Networks (WSN) in order to accomplish efficient energy manage-
ment. A WSN is typically connected to the cloud gathering data, analyzing it, mak-
ing predictions, and then assisting in intelligent decision making. In precision 
agriculture, WSNs can be used for better providing crop nutrients and reducing the 
number of agrochemicals that are needed to control pests and diseases. For irriga-
tion planning purposes, WSNs can be used to optimize water and electricity con-
sumption using state-of-the-art technologies leading to green agriculture while also 
increasing agricultural yield.

The WSN consists of a set of sensor nodes that collect various data. These data 
can include air humidity, temperature, rain, light, soil moisture, etc. These nodes are 
located in strategic spots of the field. The WSN also consists of a coordinator node 
that is in charge of gathering sensor data from the rest of the nodes and uploading it 
to the cloud. An analysis of the data received from the network’s sensors is then 
performed on the cloud. Subsequently, the coordinator node determines when and 
how the actuators (e.g., irrigation system) should be activated.

It is important to note that the communication between sensor nodes is facilitated 
by merging diverse sensors from simple (e.g., temperature, pressure, humidity) to 
more complicated (e.g., micro-radars, tracking, and images), thus, WSNs can take 
advantage of a wide range of surroundings to gather precise data. The cloud plat-
form, which is able to represent the received data and the system’s status with 
graphs and make forecasts, allows the user to easily take decisions and command 
the nodes. The forecasting can be based on the expected probability of precipitation 
retrieved from a local weather forecast API service in the case of an irrigation sys-
tem. The visualization is done in real-time and can be used to control every aspect 
of the deployed network.

The main challenges in setting up most WSNs is synchronization. In order to 
effectively monitor the sensor nodes, the acquired measurements must be corre-
lated. Approaches to deal with synchronization challenges include providing the 
sink node’s clock to the entire network as a point of reference. Other challenges 
include determining optimum deployment schemes, measurement periods, routing 
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protocols, energy efficiency, cost, communication range, scalability, and fault 
tolerance.

In light of the future arrival of 5G technologies, the research community is turn-
ing to alternative solutions such as proposed cloud/fog hybrid models. This way, the 
system can benefit from the 5G technologies’ very high speed and low latency in 
communications. For further enhancing PA and remote sensing, the systems of 
remote sensing are requiring an increasing amount of data to be processed from 
various areas. Consequently, machine learning methods and artificial intelligence 
algorithms are receiving greater attention. Optimization methods such as genetic 
algorithms are also employed to achieve a self-organizing, adaptive wireless sensor 
network design for energy management that takes into account communication and 
energy-conservation constraints while also guaranteeing maximum life span.

4  �Sensor Fusion

Sensor fusion can be defined as the ability to combine the inputs from multiple sen-
sors (usually low-cost sensors) to collect data that result in an increased accuracy; 
compared to the data being collected by individual sensor. For example, stereo-
scopic vision, the combination of two or more optical sensors, can be used to detect 
the distance between a sensor and an object. This technology is being used in har-
vesters to calculate the distance from the sensor to the detected object for accurate 
movement of robotic arms to pick the product(s). Barrero [23] used a fusion of RGB 
and multispectral sensors to detect Gramineae weeds in rice fields. This technology 
combines the texture information given by a high resolution RGB image and the 
reflectance information given by low resolution multispectral images to obtain a 
fused RGB-multispectral image with better weed discrimination features. The nor-
malized green red difference index (NGRDI) generated using multispectral imagery 
was fused with the RGB image that was able to accurately detect the weeds. Sankey 
et al. [24] used LiDAR and hyperspectral fusion to monitor the landscape changes 
in southwestern forests of USA using topography modelling.

5  �Conclusions

From planting a seed to harvesting the yield, sensors can help growers with provid-
ing critical information in every stage of the production. This information can be 
used by growers to make key decisions to increase application efficiencies and opti-
mize inputs usage. Remote sensing systems can provide growers with large sets of 
data in a very short time, compared to manual data collection processes. This can 
save growers both time and money. The data acquired from the sensors undergoes 
post processing and with the help of data analysis and visualization software, and 
hence growers can get information about various parameters like crop health, crop 
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size, crop height with just a few clicks. For example, advanced optical sensors are 
being used to detect and differentiate between diseases that have similar visual 
symptoms. Although an expensive process, scientists are working towards develop-
ing low-cost sensor models using information gathered from currently undergoing 
research.

Machine vision technologies combined with artificial intelligence have been also 
used in various applications such as pest detection, variable rate and precision agro-
chemical applications, and yield estimation and forecasting. Variable rate spraying 
technologies can detect the presence of pests and diseases, and adjust the amount of 
chemicals being sprayed according to the information processed by the sensing sys-
tem. This can help growers save chemicals, which in turn will save money and also 
minimize the negative environmental impact. Sensor devices can be merged with 
wireless sensor networks (WSN) and Internet of Things (IoT) technologies to 
achieve efficient energy management, real-time data collection, and precision 
decision-making.
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Soil Reflectance Spectroscopy 
for Supporting Sustainable Development 
Goals

Theodora Angelopoulou

1  �Introduction

Global economy depends on the goods and services provided by the natural 
environment. Soil as a natural resource is considered one of the most important 
components of the natural environment because it is our life support system and 
largely non-renewable [1, 2]. It also performs a number of key environmental, social 
and economic functions such as: biomass production, including agriculture and for-
estry; storing, filtering and transforming nutrients, substances and water; biodiver-
sity pool, for habitats, species and genes; it is the physical and cultural environment 
for humans and human activities; it is a source of raw materials; acts as a carbon 
pool; and is the archive of geological and archaeological heritage [3]. Despite soil’s 
significance, few initiatives have been adopted for its protection and conservation in 
the past years i.e., the Global Assessment of Soil Degradation (GLASOD) project 
that produced a world map of human-induced soil degradation [4] and the EU 
Thematic Strategy for Soil Protection in 2006 [5]. In 2012 at the United Nations 
conference in Rio de Janeiro member states decided to develop a set of Sustainable 
Development Goals (SDGs)1 to build upon the previous Millennium Development 
Goals in order to establish the UN High  – level Political Forum on Sustainable 
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Development. As a result, in 2015, the 2030 Agenda for Sustainable Development 
was adopted with 17 SDGs and 169 targets at its core [6]. Agriculture plays a very 
important role considering end of poverty and hunger, climate change adaptation 
and mitigation while sustaining natural resources and therefore lies in the heart of 
the 2030 Agenda for Sustainable development [7]. Although for most SDGs there is 
no direct link with soils, they can contribute in the realization of the SDGs. 
Specifically, SDGs two and three concern food security that could be addressed by 
promoting sustainable agriculture and SDG six (clean water and sanitation) is 
related with soil’s function of storing and filtering water. One of the most important 
SDG is about climate action and as it was highlighted by the “four per 1000 initia-
tive” an increase of 0.4% soil carbon stocks per year would significantly reduce the 
CO2 concentration in the atmosphere related to human activities [8] while SDG 15 
(Protect, restore and promote sustainable use of terrestrial ecosystems, sustainably 
manage forests, combat desertification, and halt and reverse land degradation and 
halt biodiversity loss) is directly related with soil conservation and sustainable man-
agement, hence soil protection.

Thus, monitoring soil’s condition is an imperative need to evaluate the progress 
made towards achieving soil protection and SDGs in particular. However, soil anal-
ysis is a time consuming and particularly costly procedure that could be character-
ized inefficient for large scale estimations. Therefore, an extensive need for 
optimizing the monitoring and recording capacity using big data analytics and accu-
rate measuring methods at low cost, needs to be developed [9]. Prediction of soil 
properties in a fast and accurate way is considered a necessity in order to overcome 
the lack of consistent soil property information. Advances in the past three decades, 
have contributed to significant progress in such predictions. With the development 
of geostatistics and the evolution of sensing techniques (satellite, airborne, in-situ 
and laboratory spectroscopy), soil properties can now be predicted with accuracy 
using novel tools and approaches such as digital soil mapping [10]. These tech-
niques are most frequently used and evaluated by soil scientists in the developed 
world. However, they could be also applied in regions where there is lack of knowl-
edge and infrastructure providing beneficial information for the specific areas. To 
this end, efforts have been established to address the collective need for more coor-
dinated Earth Observation (EO) based interoperable data and systems. One of these 
efforts is the Group on Earth Observations (GEO), created in 2005 to address the 
necessity for more comprehensive global data sets. GEO is a voluntary partnership 
of governments and international organizations coordinating efforts to build a 
Global Earth Observation System of Systems, (GEOSS) [11]. In addition to that, the 
European Union’s Earth Observation Programme Copernicus offers information 
services based on satellite Earth Observation and in situ (non-space) data for the 
benefit of European citizens. Specifically, the Copernicus Land Monitoring Service 
(CLMS) provides geographical, reliable and up-to-date information in six thematic 
areas: land, marine, atmosphere, climate change, emergency management and secu-
rity to a broad range of users in Europe and across the World in the field of environ-
mental terrestrial applications [12].
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The advantages of remote and proximal sensing EO techniques refer to the 
potential of large scale, cost effective and repeatable measurements that make them 
attractive for soil monitoring. The main principle underlying these techniques is 
energy  – matter interactions [13, 14]. Particularly, the reflected electromagnetic 
radiation of a material is measured and the reflectance is related to the wavelength, 
the materials’ surface and also to reflectance and emissivity characteristics, [15]. 
Specifically, in the Visible and Near Infra-Red (VNIR) region the distinct spectral 
signatures are caused by electronic transitions that are the result of overtones and 
combinations of fundamental vibrational bands due to the stretching and bending of 
N-H, O-H, and C-H bonds [16]. For that reason soil reflectance spectroscopy could 
be used for quantitative and qualitative analysis of soil properties and therefore after 
[17] several efforts for building soil spectral libraries in global, international and 
national level have initiated [18–21]. Data from spectral libraries could be eventu-
ally used as reference data for classes identification in multispectral and hyperspec-
tral images using classification algorithms. An SSL could be utilized to label 
unknown spectra by matching spectral signatures derived from satellite imagery 
enabling automatic identification and extraction of various objects and assist in 
proper selection of training pixels of the image [22].

2  �The Important Role of Soil in Supporting SDGs

Europe’s land is considered to be one of the most intensively used in the world. The 
way land is used has crucial impacts on the environment. Land resources are also 
affected by forest fires, extreme weather conditions, floods and droughts as a conse-
quence of climate change. Therefore, monitoring soil’s condition is essential for soil 
conservation that allows governments and society to identify problems, provide 
solutions and assess the progress made towards meeting the 2030 Agenda for 
Sustainable Development. Soil services are very important for supporting life on 
planet as they provide water and nutrients for plant growth, regulate the water cycle 
and are the second largest terrestrial carbon pool. It is estimated that in the EU 
around 75 billion tons of carbon is stored in soil. Hence, it plays a significant role in 
climate change mitigation and adaptation (Schils et  al., 2008). The European 
Environmental Agency’s (EEA) estimates reported that in 2017, EU’s CO2 emis-
sions were about 4.5 million tons and although is reported that there is an increase 
of Soil Organic Carbon (SOC) in EU, these estimates are considered highly uncer-
tain. The complexity of identifying the amount of SOC stocks is due to its constant 
change as it is a dynamic parameter that depends on the relationship between plants 
that capture carbon dioxide and release it back in the atmosphere. To prevent cli-
mate change consequences global warming should be below 2  °C and the 
Intergovernmental Panel on Climate Change (IPCC) suggests that greenhouse gas 
emissions from every sector should be reduced. A potential solution that is cost 
effective is improving soil’s quality. The Food and Agriculture Organization (FAO) 
reported that restoring degraded soils could remove up to 62 billion tons of carbon. 
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Though defining the relationships between climate change and soil quality is very 
complex and for that reason the results of hypothetical scenarios are more qualita-
tive than quantitative. Initiatives are starting to emphasize soil’s importance in cli-
mate change mitigation such as the EU thematic strategy for soil protection and the 
Paris agreement. While a recent EU regulation suggests that Member States should 
fully offset the sectors Greenhouse Gases (GHGs) from 2021 to 2030. To do so a 
consistent monitoring and reporting agenda should be implemented with the sup-
port of EEA which continues to develop knowledge for sustainable land manage-
ment and for that purpose uses data acquired from earth observation from the 
Copernicus Land Monitoring Service.

2.1  �Monitoring Soils for Optimization of Precision Agriculture

Precision agriculture (PA) involves the application of practices for better manage-
ment of the farm inputs such as herbicides, fertilizers, fuel and seeds by determining 
the right place and time [23]. The main goal is to increase the productivity and 
profitability of a farm system in the long term while preventing the excessive use of 
chemicals with targeted applications by providing information on the spatiotempo-
ral variability of soil and crop properties including environmental parameters [24]. 
PA bases its applicability on the use of technologies i.e., the use of sensors for map-
ping, monitoring and prediction of specific essential variables regarding crop yield, 
soil parameters, diseases and pests [25]. There is a global research interest during 
the past decades towards the use and development of the right technologies to sup-
port PA applications. Among these, remote and proximal sensing techniques in 
combination with geographical information systems (GIS) and global positioning 
systems (GPS) are evaluated for their efficiency to be used as tools for data acquisi-
tion and data analysis for their further implementation in decision support systems 
[26]. In the field of agriculture these techniques are increasingly used showing 
leveraging potentials due to the development of spectral, spatial and temporal reso-
lution of the sensors that has provided unpresented information about spectral char-
acteristics of soil properties.

Soils and plants are the main receivers of inputs in agriculture. Site specific man-
agement does not only have environmental but also economic impacts and therefore 
it could potentially be the main method of agricultural practices. Determining quan-
titatively and qualitative soil properties is of great importance for correct site-
specific applications and soil variability maps will be the way to determine soil 
inputs while also identifying possible issues apart from nutrient deficiencies such as 
soil erosion, soil salinity etc. at field, regional, national and global scales. Although 
some soil properties like soil texture could be considered stable over time, PA appli-
cations need continuous monitoring, therefore conventionally soil analysis is inad-
equate. For that reason, remote and proximal sensing techniques could be used as an 
alternative method for acquiring soil information. However, PA practices, have not 
been largely accepted from agricultural producers. Their adoption depends on the 
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provision of tangible examples of the economic and environmental benefits, clarifi-
cation that remote and proximal sensing techniques do not replace traditional meth-
ods but act supplementary, there must be consistent commitment for several growing 
seasons to lead to conclusion [27].

3  �Earth Observation Supporting SDGs

EO technologies can find application in various environmental research topics as 
biodiversity and wildlife trends; land use change monitoring; mitigating, and man-
aging the impact of natural disasters; natural resources sustainability, such as energy, 
freshwater, and agriculture; address emerging diseases and other health risks; and 
climate change adaptation and mitigation [28]. The World Summit on Sustainable 
Development Implementation in 2002, highlighted the need for coordinated obser-
vations relating to the state of the Earth. Acknowledging EO contribution for moni-
toring purposes the Group on Earth Observations (GEO) was established in February 
2005 by the Third Earth Observation Summit in Brussels. GEO is a global network 
that connects government institutions, academic and research institutions, data pro-
viders, businesses, engineers, scientists and experts to create innovative solutions to 
address global challenges at a time of data plethora [29].

The GEO community is creating a Global Earth Observation System of Systems 
(GEOSS) in order to integrate observing systems in a better manner while using 
common standards for data sharing; it also links the existing and forthcoming Earth 
observation systems while supporting the development of new ones. The amount of 
open data resources excides 400 million and are contributed from more than 150 
national and regional providers such as NASA and ESA; international organizations 
such as WMO and the commercial sector such as Digital Globe.

In September 2015, the United Nations (UN) General Assembly adopted the 
2030 Agenda for Sustainable Development that entails a plan of action for people 
the planet and prosperity. The 2030 Agenda features 17 Seventeen Sustainable 
Development Goals (SDGs) with 169 related targets and indicators which among 
others calls for public-private cooperation to exploit data from EO technologies 
[30]. Many of these goals either directly or indirectly concern land and soil and 
therefore their achievement is related to healthy soils and a sustainable land use. 
Specifically, SDG two – “End hunger, achieve food security and improved nutrition 
and promote sustainable agriculture” - is closely related to soil preservation. 
Restoring soil productivity and ecosystem functions in these contexts requires new 
ways of managing soil fertility such as innovative forms of precision agriculture that 
consider the diversity, heterogeneity and dynamics of smallholder farming systems. 
SDGs three and six are related to health issues. By protecting and enhancing the 
ability of the Earth’s soils to provide clean water in sufficient quantities for human-
ity, ecosystems and agriculture will be a key element for full filling these SDGs. The 
importance of soils in sullying, storing and filtering water is explained in Sect. 2. 
SDG 13  – “Take urgent action to combat climate change and its impacts”  – is 
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directly linked with soils as they are both affect and affected by climate change. It 
is suggested that improvements in soil management could result in reducing green-
house gas (GHG) emissions or increase soil carbon stock. Soil management can 
therefore be used as a climate mitigation option [31]. A step forward is to propose 
new SDG indicators based on new Essential Variables (EV). For example regarding 
Target 15.3 “By 2030, combat desertification, restore degraded land and soil, 
including land affected by desertification, drought and floods, and strive to achieve 
a land degradation-neutral world directly references degraded soil” has a single 
indicator 15.3.1 – “Proportion of land that is degraded over the total land area” 
that does not mention the quality of the soil in terms of soil variables. For that rea-
son, the Essential Agriculture Variables mentioned in Sect. 3.2, should include soil 
organic carbon and soil moisture together with soil type, soil degradation and soil 
productivity [32].

3.1  �Extracting Soil Information from Earth Observation

Accurate and timely information on soil’s condition at global or even local scale is 
a challenging task for soil scientists. Despite the importance of such data there are 
few countries with the required monitoring programs that are needed to achieve cur-
rent needs while many existing data sets are out of date. For example, the Harmonized 
World Soil Database [33] that provides information on world soil resources at 
approximately 1 km scale was last updated in 2013 and notes that the reliability of 
the information in the database is variable. In the same line, the best available esti-
mation of SOC stocks at the country level, The Global Soil Organic Carbon Map 
[34] has limitations as data provided by some countries are outdated. Therefore, 
specific issues that arise concern the accuracy of the data, the date the data were 
acquired and their spatial reference. The use of remote sensing technologies will 
provide information for inaccessible areas to improve incomplete spatial and the-
matic coverage of current regional and global soil databases. In this regard, optical 
remote sensing observations and in particular reflectance spectroscopy at the remote 
sensing scale, referred to as imaging spectroscopy (IS), or hyperspectral imaging, 
have shown to be powerful techniques for the quantitative determination and model-
ling of a range of soil properties. IS has been used since more than 20 years in vari-
ous soil applications such as evaluation and monitoring of soil quality and soil 
function (e.g., soil moisture and carbon storage), soil fertility and soil threats (e.g., 
acidification and erosion) and soil pedogenesis (i.e., soil formation and evolution). 
Further, soil degradation (salinity, erosion and deposition), soil mapping and clas-
sification, soil genesis and formation, soil contamination and soil hazards (swelling 
soils) are also important soil science issues nowadays examined with IS, enlarging 
the soil spectroscopy into the spatial domain from airborne to satellite platforms.

Soil analysis is very important as it provides valuable information for agriculture 
and environmental monitoring. However, conventionally is performed by wet chem-
ical analysis that is time consuming and costly while consumes a lot of chemical 
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products. As [35] refer in their study approximately 1.5 billion hectares are used 
globally as agriculture area and if two samples in two depths were gathered for 
every 5 ha this will resulted in 600 million soil samples. If for example these sam-
ples were measured for Soil Organic Matter (SOM), by the wet combustion method, 
the reagents used for such analysis would have a great ecological impact without 
proper disposal. In addition to that, the time needed for soil analysis is prohibitive 
for precision agriculture applications. What is more is that soil analysis is not free 
from errors as it could be affected by various factors regarding the reagents used and 
the process itself [36], while it was also observed that the accuracy of the results 
could be different among different laboratories or even at the same laboratory [37]. 
For that reason, alternatives of soil routine analysis started to be investigated such 
as remote and proximal sensing techniques in the VNIR- SWIR (Sort Wave Infrared) 
spectral region that are time and cost effective while environmental friendly and can 
predict several soil properties from one measurement [38].

Earth observation according to the Group on Earth Observations (GEO 2016), is 
the gathering of information about planet Earth’s physical, chemical and biological 
systems with the use of remote sensing instruments (e.g., onboard unmanned aerial 
vehicles (UAVs), drones, aircraft, and satellites), among others [39]. Because soil is 
characterized as a complex system with various constituents which contribute to 
variability in its physical and chemical composition over time and space, earth 
observation techniques could provide the ability of clustering several soil properties 
with a single measurement by utilizing data mining techniques [40]. The analysis is 
based on searching the interaction between the electromagnetic radiation and the 
active chemical groups also referred as chromophores [13]. For example different 
clay types in soil have shown distinct spectral signatures particularly in the short-
wave infrared region due to strong absorption of the SO4

2−,CO3
2− and OH− and 

combinations of fundamental features of H2O and CO2 for example [41]. In general 
electronic absorptions are highly associated with Fe-minerals such as hematite, bio-
tite, goethite, and olivine that also give distinctive colours in soil [42]. Despite the 
strong relationship between soil chromophores and the chemical and physical char-
acteristics of a material, this relationship is not straightforward due to the multivari-
ate and overlapping behaviour of spectral data [43].

Soil reflectance data can be acquired in various conditions i.e., in the laboratory, 
in the field and from the air and space. Laboratory measurements provide the most 
controlled conditions not being affected by variations in the viewing angle, illumi-
nation changes, soil moisture, soil roughness and ambient conditions that occur 
with in situ measurements. Spectral data acquisition from air and space has added 
hindrances as measurements are also affected by the low signal to noise ration and 
atmospheric attenuations [44]. Laboratory based measurements enable to under-
stand soil spectra physical and chemical principles while field spectroscopy is 
evolving to become a common tool for soil monitoring. Regarding the development 
of air and space born sensors bandwidth has significantly decreased with the advent 
of hyperspectral remote sensing and the forthcoming imagers will provide a lot of 
potentials in soil mapping [45]. The accuracy and field of application of these plat-
forms depends on their spectral, spatial and temporal resolution. Concisely, 
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satellites offer high spatial coverage but with lower spectral resolution than labora-
tory and in situ measurements that are also affected from external factors. However 
despite the poorer quantitative interpretation of satellite data they provide signifi-
cant assistance for environmental monitoring in large scales [46].

3.2  �Estimating Essential Agricultural Variables with EO 
Techniques the Cases of Soil Organic Carbon 
and Soil Moisture

The remote sensing community has recently been introduced to the concept of 
essential variables that refer to a minimum set of variables that are necessary for 
determining a systems state and development. In the light of the need for monitoring 
and reporting about earth’s ecosystems condition, the adoption of a commonly 
accepted essential set of parameters to succeed on achieving national and global 
sustainable goals is of great importance. In addition to that, the number of sensors 
that share the same characteristics is large and therefore there is a need for data 
harmonization and standardization in order to provide consistent and comparable 
information in a more comprehensive manner [47]. Regarding the agriculture sector 
the GEOGLAM initiative strengthens the ability to produce and distribute relevant, 
timely and accurate information using EO data at regional, national, and global 
level. In order to track essential aspects of agricultural production GEOGLAM sug-
gested the adoption of Essential Agricultural Variables (EAVs) [48]. Among these 
soil moisture content and soil organic carbon/matter are considered very important 
and hence are the most studied.

Soil moisture (SM) is a critical environmental parameter that is considered 
essential for agriculture monitoring because it links the energy and water exchange 
between the atmosphere and land surface and also provides information about 
groundwater conditions. SM is used in regional water cycle studies, irrigation man-
agement in agriculture, climate change and environmental monitoring and therefore 
it is an indispensable variable in terrestrial research [49]. Many approaches have 
been developed based on optical and thermal infrared remote sensing, by establish-
ing relationships between SM and soil reflectance or surface temperature, vegeta-
tion coverage and soil thermal properties [50]. As it was noticed by [51], the 
reflectance of water absorption bands is different from that of non-absorption bands 
and is used to establish the relationship between soil moisture. The general observa-
tion after experiments is that reflectance decreases with increasing SM content. 
Since then, many studies have focused in the specific matter and have established 
empirical relationships between soil reflectance and SM. For example, [52] found 
that the albedos of all dry soils were approximately two times greater than those of 
wet soils, except for sandy soils [53]. Analyzed the water absorption values in the 
near-infrared region and accurately estimated the SM of a large number of soil 
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samples. Εstimating soil moisture from the reflectance measurements could also be 
used prior estimating a soil property, to reduce its effect in the spectral signature.

Soil organic matter consists of organic constituents found in soil in various stages 
of decomposition such as tissues from dead plants and animals, materials less than 
2 mm in size, and soil organisms. SOM turnover plays a critical role in soil ecosys-
tem functioning and global warming. SOM is crucial for soil structure stabilization, 
retention and release of plant nutrients and the maintenance of water-holding capac-
ity. For these reasons it is characterized as a key indicator not only for agricultural 
productivity, but also for environmental resilience [1]. It was observed that soils’ 
reflectance at specific wavelengths could be correlated with organic components 
(cellulose, lignin, starch). SOC is a constituent of SOM and generally affects spec-
tral reflectance in the visible region, mainly at 550–700 nm due to change in soil 
colour, as the concentration increases the soil appears darker [54] and narrow peaks 
between 2100–2300  nm [55]. Specifically, [40] found that at the regions of 
1400–1900 nm the OH− groups have strong absorption features mainly due to soil 
water content, hydroxyls and clay content.

3.2.1  �Approaches for Soil Moisture and Soil Organic Carbon/Matter 
Estimation Using EO Techniques

An empirical method involves the use of statistical data generated from the EO 
measured data and the ground-based variable without being a well understood 
causal relationship. However these methods may not be reliable when they are used 
outside the conditions under which the relationship was established [56]. Soils 
reflectance in the VNIR- SWIR region has many overlapping absorptions caused by 
its constituents or by the soil structure itself and for that reason is characterized 
largely non-specific. In order to interpret these complex absorption patterns and cor-
relate them with soil properties we need to use various multivariate calibrations 
[57]. Primary, the scientific community uses linear regression to explain the rela-
tionships between soil reflectance and soil properties, while the most commonly 
used were and still are partial least squares regression (PLSR), principal component 
analysis (PCA) and multiple linear regression (MLR) among others [40, 53]. These 
techniques can deal with data comprised of large numbers of predictor variables that 
are highly collinear.

The first studies were performed in controlled laboratory conditions and there-
fore the main concerning issue, apart from system configuration, was data process-
ing. In addition to that and as already mentioned, spectral data are also affected by 
various components in the soil, some directly connected to the estimated soil prop-
erty, and some not. Thus, the application of preprocessing algorithms on the spectra 
prior to developing the model can amplify relevant spectral features and can remove 
variability from light scattering effects. These techniques can be categorized in scat-
ter correction methods and spectral derivatives [58]. Authors like [59–61] evaluated 
the effect of several pre-processing techniques and concluded that they can improve 
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the obtained prediction accuracy. The most commonly used are the Savitzky-Golay 
first derivative, standard normal variates (SNV) and the continuum removed reflec-
tance (CRR) among others. Feature selection is also a very common practice to 
reduce the complexity of the spectral data and correlate soil properties with specific 
important wavelengths [62]. The selection of the most suitable pre-processing tech-
nique should be related to the subsequent modelling procedure. However, including 
additional factors to a model could have adverse effects by increasing its complexity 
and hence its robustness for future applications. There is also the case of applying 
the wrong type or too severe preprocessing technique that could remove important 
spectral information. However, it is difficult to determine the suitability of a prepro-
cessing technique before model validation [58]. Nevertheless spectroscopic labora-
tory measurements, similar to conventional analytical methods, need to be applied 
in a commonly accepted manner by the scientific community to allow comparison 
between them and for that reason [63] suggested the use of common standards and 
protocols.

Calibration methods are evaluated not only for their performance but also for 
their interpretability and computational time. When referring to regression in gen-
eral we include all these methods that attempt to fit a model to observed data to 
quantify the relationship between the response and predictor variables or to predict 
new values. To that end, PLSR is the most frequently used linear multivariate statis-
tical method mainly in the early years of soil spectroscopy [64–67] because it relates 
the response and predictor variables so that the model explains more of the variance 
in the response with fewer components, it is more interpretable, and the algorithm 
is computationally faster [68]. Meanwhile, the use of non-linear data mining tech-
niques has emerged in the last decade due to the rapid development in information 
and computer technology that has subsequently led to increase in data volume. 
Despite these advances there are still efforts to describe the complex relationships 
between these data, while the final goal is to use these models in remote sensing 
applications [69]. Neural Networks (NN) [70, 71], Multivariate Adaptive Regression 
Splines (MARS) [72, 73], Support Vector Machines (SVM), Random Forests [74, 
75], and the Cubist [76] are some of the most frequently used.

Numerous studies from early years have attempted to model soil’s reflectance 
with soil moisture content. Laboratory based methods have been developed either to 
estimate or correct soil moisture from soil reflectance. However, there are various 
approaches found in the literature considering the artificial wetting procedure in 
order to acquire different values of soil moisture content. A first approach is to rewet 
soil samples until they reach a near to saturation point (gravimetric soil moisture 
content θg ≈ 50%), and perform the measurements each day until the soil is in dry 
state (θg < 10%) [77]. A second approach is to apply known volumes of water in the 
soil samples and then perform the measurements [78] and the last and most time 
consuming approach is with the use of a pressure plate extractor to adjust soil mois-
ture to different levels under different designed potential levels [79]. There are also 
approaches that used spectral indices for SM estimation. Specifically, [80] devel-
oped the Normalized Difference Soil Moisture Index (NSMI) that was based on two 
reflectance values 1800  nm and 2119  nm because it was found that the SWIR 
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spectral region is the most promising for deducing soil moisture quantities from a 
combination of surface reflectance. Spectral indices could pave the path for rapid in 
field and remote sensing applications for soil moisture estimation [81]. Proposed 
two new spectral indices that are less sensitive to the quality of atmospheric correc-
tion like NSMI and WISOIL [82]; the Normalized Index of NSWIR domain for SM 
estimation from Linear correlation (NINSOL) and Normalized Index of NSWIR 
domain for SM estimation from Nonlinear correlation (NINSON). These indices 
are based in the 2000–2200 nm spectral region which is sensitive to soil texture 
variations. Recently, [83] have developed, a multilayer radiative transfer model of 
soil reflectance (MARMIT) to estimate soil water content which is an improvement 
of the Bach model [84], that could be applied on imaging spectroscopy data in the 
laboratory, but not yet in remote sensing data.

The use of airborne sensors has also been evaluated for SM estimation from early 
years for example [85] aimed to predict soil water content of a partially irrigated 
field using the AVIRIS airborne sensor with sufficient accuracy (R2 = 0.88) [86]. 
used the Airborne Prism Experiment (APEX) to collect airborne hyperspectral data 
by developing a new SM index similar to the existing NINSOL index that has appli-
cation to airborne and in field data. They concluded that an index requires wave-
length dependent, non-linear compensation which could be based on an external 
spectral SM dataset.

Satellite EO sensors for SM retrieval can be categorized to optical and thermal 
EO techniques, passive and active microwave – based methods and there is also the 
synergistic use of different types of EO data. Although these methods have proven 
the direct relationship of reflectance with SM or the indirect with vegetation spectral 
indices [87] optical remote sensing has limitations due to its inability to penetrate 
clouds and vegetation canopy while it is also affected by atmospheric conditions 
[88]. The use of thermal infrared based methods is more attractive as there are sev-
eral studies that relate thermal inertia with SM [89–91]. These methods rely on land 
surface temperature (LST) that is sensitive to SM content due to its impact on the 
surface heating process mainly on bare soil or sparse vegetation cover conditions 
[92]. Soil moisture retrieval using microwave sensors is based on the principle that 
the dielectric properties of soil-water mixture strongly affect the soil scattering and 
emission in the respective frequency range. Therefore a change in soil moisture will 
result in a measurable variation of the soil scattering and emission because the 
dielectric constant of the water is much higher than that of dry soil at the microwave 
bands [93]. In addition to that, microwave sensors are not limited by cloud cover 
and observations can be made any time of the day as they are independent of solar 
illumination. The influence of soil moisture is most prominent at low frequencies 
(∼10–1 GHz) while longer wavelengths allow for deeper penetration into the soil 
and reduce the influence of vegetation in attenuating soil’s moisture signal. Although 
active sensors provide higher spatial resolution than passive sensors, they are more 
affected by the local topography, soil roughness and vegetation cover [94]. The high 
spatial and temporal resolution of the spaceborne Synthetic Aperture Radar systems 
(SAR) has made them attractive for hydrological applications at regional scale [95]. 
suggested that L-band backscattering data could provide information on the spatial 
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distribution of SM content, while the C- band data could be proven grossly 
inadequate.

In the absence of detailed data regarding soil roughness, empirical models could 
be a viable approach for mapping SM content in flat areas with low vegetation 
cover. RADARSAT −1 satellite has the ability to acquire data at different incident 
angles that provides a better solution for separating SM and roughness signals [96]. 
exploited this multi angular approach using existing theoretical and empirical back-
scatter models and concluded that the Modified Dubois Model gave better results 
than the Oh Model. The Soil Moisture and Ocean Salinity (SMOS) proved to be 
very satisfying for global soil moisture retrieval based on L – band measurements 
for cases with low vegetation and low radio frequency interferences [97]. However, 
the spatial resolution of the abovementioned satellites is not adequate for SM esti-
mation at field scale. Sentinel 1 was launched in 2014 and is the first Earth observa-
tion satellite to be built for Europe’s Global Monitoring for Environment and 
Security (GMES) programme with a spatial resolution of 10 m. Within the frame-
work of the ESA-funded Sentinel-1 Soil Moisture Algorithm Development 
(S1-SMAD) project, an algorithm has been proposed and validated for its practica-
bility for deriving near-operational soil moisture content estimates. The algorithm 
was based on the inversion of an analytical electromagnetic model through an ANN 
and intensively validated considering several configurations taking into account the 
S1 acquisition modes. NDVI was also considered to be a key factor in determining 
a reliable SM content estimation, when only VV polarization is available [98].

To explore the potential of different sensors, [99] suggested that the synergist use 
of S1 and Sentinel −2 could reduce the uncertainty that is caused by vegetation 
cover and proposed multitemporal change detection approaches to address soil 
roughness effects. Similarly, [100] presented an innovative synergistic method com-
bining S1 microwave and Landsat-7/8 (L7/8) thermal data. The methodology was 
based on the thermal-derived soil evaporation efficiency to calibrate the radar back-
scatter and SM relationship. The comparison of S1 VV- and VH-polarized data, 
showed that the VV backscatter coefficient is more sensitive to SM variation, and 
the combined use of the two sensors provided better results for SM estimations, 
paving the path for further evaluation of the synergies between radar and optical 
data. The Sentinel-1 C band backscatter coefficient (σ°) is complementary to Soil 
Moisture Active and Passive (SMAP) L band, brightness temperature (TB) observa-
tions. Taking into account that SMAP observations provide higher sensitivity in soil 
moisture estimation on large scales while Sentinel-1 has better spatial resolution, 
joint Sentinel-1 and SMAP data assimilation was found to moderately improve soil 
moisture estimates [101].

The effects of different SOM content in spectral signature were observed over 
40 years ago [102] and since then many studies have moved towards SOM/SOC 
estimations using laboratory soil spectroscopy [53, 71, 103]. These efforts have 
tried to find the appropriate multivariate statistical method to model soil properties 
[104] using mostly the PLSR technique due to its low computational time and inter-
pretability. However studies showed that the relationship between soil properties 
and soil reflectance was not always linear and therefore the progress made in 
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machine learning algorithms has enabled their use in the respective field of applica-
tion showing most of the times better accuracy from linear methods [60, 105–107].

After the proven ability of the use of soil reflectance spectroscopy for soil prop-
erties estimation, in situ soil sensors have been created to be used as for handheld 
measurements or on board of vehicles. The various prototypes that have been devel-
oped are either now used commercially [108–110] or are still under development. 
Studies have shown that, specifically for SOC/SOM estimations, the measurements 
are affected by various factors. Apart from the uncontrolled external factors that 
were tried to be addressed by utilizing a closed chamber [111] there was also found 
that the presence of vegetation cover, straws [112], stones and soil moisture content 
[113] also affect the measurements. For that reason, it was preferred and suggested 
to make the measurements at seed bed level and with low moisture content and 
vegetation cover. The results are also promising, still external factors should be 
addressed either with the use of algorithms such as external parameter orthogonal-
ization (EPO) and direct standardization (DS) [114] or with better sensor 
configuration.

Remote sensing applications either from air or space have also been evaluated 
for SOC/SOM estimation. The use of airborne hyperspectral sensors provide the 
ability for large areas coverage because a single flight can have adequate duration 
and the flight could be also be scheduled according to weather conditions [115]. 
However, the flight cost does not allow very frequent operations. Although these 
measurements are affected by ambient conditions and need atmospheric corrections 
the results from their application are quite promising for digital soil mapping [116]. 
It was also reported that soil heterogeneity also affects measurements because the 
results could vary among different soil types: therefore it was suggested that split-
ting the dataset according to soil type, image number and region could be a possible 
solution [117]. One of the main factors that affect prediction models from airborne 
data is the vegetation cover. Since it is difficult to find large areas with bare soils, 
many efforts have been made to address this issue [118]. tried to estimate the bare 
soil fractional cover of an area however, the results were poor and significant infor-
mation about some areas’ SOC content was lost due to the high vegetation cover. 
Another proposed technique to remove vegetation influence from mixed pixel was 
the Residual Spectral Unmixing (RSU) [119]. This technique gave the ability to 
identify SOC field variations though in some cases SOC was over or underesti-
mated. To increase the bare soil sample area, [120] utilized the Iterative Spectral 
Mixture Approach. Despite the 45.4% increase of the sample area results were still 
poor. Considering that certain soil properties do not change over a short period of 
time, [121] used crop rotation to create multitemporal composites of airborne data 
again the low prediction of SOM strengthen the fact that there are multiple param-
eters that affect soil properties estimation like soil roughness which was also 
reported from [122]. When it comes to utilizing in situ spectral measurements com-
bined with airborne hyperspectral data, the acquisitions should be performed in 
close dates as suggested by [123]. However, to develop the prediction models soil 
sampling and analytical laboratory measurements are needed. Hence [55] aimed to 
make the most of the already developed soil spectral libraries and proposed a 
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bottom up approach. The concept of this approach is that instead of using chemi-
cally analyzed soil samples as independent variables a representative of the studied 
area subset from a large soil spectral library is utilized and the results were rela-
tive good.

The use of spaceborne EO data for soil properties estimation could be enhanced 
with the advent of the new (PRISMA) and forthcoming hyperspectral satellite sen-
sors (EnMAP, HyspIRI) [45]. Nonetheless there are efforts utilizing satellite data 
for SOM/SOC estimations [16]. was one of the first studies that evaluated the poten-
tial of Hyperion hyperspectral sensor for SOC estimation and concluded that the 
predictions were similar to those used in field spectral measurements. They also 
reported that the percentage of SOC content affected the model’s accuracy that was 
reduced at levels of SOC below 1% [124]. also investigated the potential of the 
multispectral Advanced Land Imager, (ALI) and Hyperion satellite sensors for 
SOM estimation with the latter presenting slightly lower RMSE. Vegetation cover 
should also be addressed because the spatial resolution of satellite sensors results in 
mixed pixels. To increase the bare soil area, [125] proposed the Geospatial Soil 
Sensing System (GEOS3) to develop a bare soil composite from Landsat 5 TM time 
series. Multi-temporal data from two optical sensors, RapidEye and Landsat 8, were 
also used in the study of [126] who reported a correlation between SOC content and 
elevation while June was the month were better accuracy was observed.

3.2.2  �Estimating Other Agronomic Variables (pH, Clay, and Others)

In the VNIR-SWIR region, many minerals show diagnostic absorption bands due to 
vibrational overtones, electronic transitions, charge transfer, and conduction pro-
cesses [127]. As already mentioned, different clay types have distinct spectral sig-
natures mainly in the SWIR region therefore soil clay content estimation has been 
well studied. Extracting reflectance values from remote sensing approaches is a 
more complex process than laboratory measurement; however, if the sensor is sensi-
tive enough and the atmospheric effects can be properly removed from the original 
data, this technique could be of great use for rapid quantitative mapping over large 
areas [128]. Conducted one of the first studies that evaluated the capability of the 
airborne DAIS-7915 (0.4–14 μm) sensor for soil properties estimation and reported 
that electrical conductivity (EC), although a featureless property, could be spec-
trally explained from field moisture content. The HyMAP sensor (400–2500 nm) 
was used by [129] for clay and CaCO3 estimation. They reported that scaling up 
laboratory measurements to airborne observations poses uncertainties due to lack of 
inconsistency of airborne spectral measurements and errors in correcting the atmo-
spheric effects. It was also reported that the presence of calcareous pebbles affected 
the estimates of CaCO3 [130]. Suggested that transferring a model built in labora-
tory conditions to airborne images could generate better prediction models than 
those obtained by the conventional model built from only HyMap spectra. In the 
same line, [131] explored the potential of transfer learning for soil clay mapping 
using hyperspectral imagery and a pre-trained CNN model developed from a large 
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number of spectra measured in the laboratory and provided results (R2 = 0. 60) sug-
gesting a new way to utilize large scale soil spectral libraries and hyperspectral data. 
Predictions of soil properties from the previous sensor were also computed by [132] 
for eight soil properties using PLSR.

The results showed the following: four out of the eight soil properties (CaCO3, 
iron, clay and CEC) were suitable for mapping using hyperspectral data, and both 
accurate local predictions and good representations of spatial structures were 
observed; and the application of prediction models using hyperspectral data over the 
study area provided statistical characterizations within field variations and vario-
grams that describe in details the short range soil variations [133]. assessed the 
effect of spectral resolution on clay topsoil property estimation by simulating artifi-
cial sensors (EnMap. HYPXIM, HyspIRI and HYPERION) and existing multispec-
tral sensors (ASTER, SENTINEL-2 MSI, LANDSAT-7 ETM+ and LANDSAT-8 
OLI). All these sensor simulations were based on real airborne hyperspectral VNIR-
SWIR data acquired over landscapes at a 5-m spatial resolution (AISA-DUAL 
hyperspectral sensor). The simulation of sensors allowed to assess the influence of 
the spectral resolution on the estimated soil property, independently to other speci-
fications (e.g., spatial resolutions, acquisition dates, signal to noise ratio). Analysis 
of the PLSR model performances highlighted the ASTER spectral configuration 
may allow for the estimation of clay content and pedological patterns of estimated 
clay content are preserved with spectral configurations up to 100/100 nm (the first 
number indicates the spectral resolution in the VNIR region and the second the 
spectral resolution in the SWIR region) and with the ASTER spectral 
configuration.

3.2.3  �Methods Exploiting Ancillary Information

In most cases measurements are very few and scattered in space and time, therefore 
estimating a targeted essential variable could be improved by deriving auxiliary 
information from other related categorical or continuous variables such as land use 
maps, a digital elevation model and/or remote and proximal sensing data [134]. 
Similarly, remote sensing data could be also used as auxiliary variables for soil 
properties prediction from proximal sensing and by this way, the advantage of high 
spectral resolution of proximal sensing can be combined with the high spatial reso-
lution of remote sensing [135].

Mapping soil properties in densely vegetated areas could, for example, be 
achieved by exploiting the indirect relations between vegetation and soil attributes. 
There are several vegetation indices as well as the use of time series to determine 
possible soil patterns. For that reason, data acquired from satellite sensors could also 
be used as auxiliary variables for mapping soil properties. Subsequently, the compli-
mentary use of various geostatistical methods combined with spectral data was 
proven to be more accurate than for example using only ordinary kriging in predict-
ing SOC spatial variability and led to the development of high-quality maps [76, 
136]. Biochemistry spectral indices based on wavelengths related to cellulose, starch 
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and lignin could be used for SOC prediction [137]. Mondal et al. [138] also reported 
the correlation of SOC distribution with indices and other remotely sensed variables 
i.e., brightness index (BI), greenness index (GI), wetness index (WI), normalized 
difference vegetation index (NDVI), vegetation temperature condition index (VTCI), 
digital elevation model (DEM), and slope and compound topographic index (CTI). 
A direct link was observed by [139] between NDVI and SOC which had a positive 
linear relationship [140]. Evaluated the potential of Sentinel −2 for SOC estimation 
using several spectral indices and band combinations and good correlations were 
found between SOC and B4, B5, B11 and B12 bands for a specific region.

4  �Remote Sensing for Soil Monitoring: Limitations 
and Ways Forward

Despite the several advantages remote sensing has i.e., being a nondestructive 
method, providing data systematically over large geographical areas, obtaining 
information about areas that are inaccessible, providing information that can be 
used in other domains and having large temporal resolution, there are still some 
limitations towards their establishment as fully acceptable methods [141]. A signifi-
cant hindrance is the need for consistent evaluation of the accuracy of the acquired 
data which is difficult since the evaluation depends on reliable and accurate ground 
measurements which are unavailable in many parts of the world. In addition to that, 
soil monitoring with conventional methods also entails errors that makes the corre-
lation between physical and spectral measurements more doubtful. There has also 
been described by many authors an evident decrease in accuracy when laboratory 
spectral measurements are compared to airborne and spaceborne data acquisitions. 
The decrease of the accuracy comes as result of the conditions the measurements 
are being conducted (controlled laboratory conditions versus measurements affected 
by environmental and atmospheric conditions), sample condition (dried, sieved 
samples versus undisturbed soil samples with different roughness and soil moisture 
content, crust, vegetation cover), and differences in spectral and spatial resolution 
[115, 128, 142].

Despite that, there is an increasing availability of handheld optical sensors, 
unmanned aerial vehicles, and high-resolution satellite imagery for precision agri-
culture applications that present new opportunities for soil monitoring. Handheld 
reflectance sensors have been used to show differences in growth trajectories under 
different tillage and irrigation schemes in wheat [143], a method that could be 
adapted to monitor resistance and recovery for other disturbances and systems. 
Furthermore, the increasing popularity of thermal imaging and multispectral or 
infrared sensors in high-throughput phenotyping for crop breeding suggests similar 
applications for near-real-time detection of crop stress and recovery. Integrated use 
of multiple remote sensing sources and increased remote sensing capacity can 
help overcome many of these known challenges, as long as data and product 
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requirements are clearly identified. The prioritization of new satellite missions asso-
ciated with freely accessible data for scientific use might indeed be facilitated by the 
formulation of clear, consensual demands from ecosystem researchers [144].

5  �Conclusions and Recommendations

The efficiency of soil spectroscopy has been largely investigated in the last decades 
with promising results. Remote and proximal sensing techniques could be used as 
primary or auxiliary data sources for soil properties estimation, depending on their 
spectral, spatial and temporal resolution and field of application. Advances in spec-
tral, spatial and temporal resolution of satellite sensors has turned the scientific 
interest towards their utilization and provided the opportunity for more accurate soil 
properties estimation. There are many studies that developed different methodolo-
gies for estimating soil parameters. Soil moisture estimation could be derived from 
the direct relationship between soli reflectance and different soil moisture contents 
or indirectly evaluating vegetation traits related to water stress. Additionally, there 
is the use of the thermal region of the spectrum which correlates soil moisture with 
the thermal properties of soil.

The most frequently used approaches are the thermal inertia and the temperature 
index method. However, the synergistic use of the VNIR-SWIR and thermal region 
could potentially provide more accurate results for SM estimations. Specifically, for 
satellite observations, the use of spectral indices such as NDVI have been used as 
proxies in vegetated areas either for direct estimation of SOC or to derive bare soil 
areas using time series. There are several efforts to estimate soil properties directly 
from their spectral signature due to their characteristic correlations with specific 
parts of the spectrum. These correlations are commonly described with linear statis-
tical techniques such as PLSR. As another option, data mining techniques that have 
the ability to explain non-linear relationships, have also been evaluated for soil 
properties estimation (SVM, ANN, Random Forests, and Cubist). Although these 
techniques have shown better performance from conventional statistical methods, 
they have the drawback of needing specific knowledge for their implementation and 
interpretation while needing a significant amount of data that are usually unavail-
able. Therefore, simpler models are recommended for small datasets. Feature selec-
tion should also be performed based on reliable predictors that will provide accurate 
information about a model’s interpretability in order to understand soils relationship 
with electromagnetic radiation. Machine learning techniques have still lower inter-
pretability compared to linear models for the reason that the latter have been well 
studied for longer period of time. Therefore, it is recommended, studies using 
machine learning techniques focus on interpreting the results rather than only pre-
senting their accuracy.

Technological advances in the field of agriculture include the development and 
use of different soil sensors. These innovations have given farmers information that 
allowed them to optimize their management capabilities, enhance their knowledge 
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about a fields condition while applying sustainable practices that lead to soil preser-
vation and environmental protection. It could increase farmer’s power by allowing 
site specific applications according to crop type, soil type and environmental condi-
tions with the ability to reduce inputs while maintain their yield production. Due to 
various spatial resolutions soil sensing offers, the acquired information could also 
be used by different scientific disciplines towards the development of new products 
and solutions while help in the implementation of new policies for soil protection, 
sustainable development, food security, nutrient and water managements and cli-
mate change mitigation and adaptation. Governments could also use data from 
remote and proximal sensing technologies in order to make important decisions 
about the policies they will adopt and how to work on national issues concerning 
agriculture.

Currently the main issues regarding the use of hyperspectral satellite sensors for 
soil applications concentrate on atmospheric corrections and sensor errors, the low 
signal to noise ratio, lower spectral resolution compared to laboratory spectroradi-
ometers and the absence of commonly accepted methodologies for soil properties 
estimations. To that end, in order to address these issues, there is a need for accurate 
and reliable data acquisition both for the sensors and for ground truth data, and 
international collaboration and development of commonly accepted protocols for 
processing the respected data. The volume of remote and proximal sensed data is 
large and therefore big data technologies should be further developed for the spe-
cific purposes. By these it is hoped to achieve quasi real time predictions that could 
have global, national, regional and farm applications. Towards systems automation 
there is a need for tools development that will enable rapid and accurate processing 
and visualization of the data with an easily interpretable manner that will in turn 
provide information directly to the farmer or policy makers. Building networks spe-
cifically for agricultural purposes will enable a constant data flow that will help to 
coordinate efforts for solving problems related to model’s accuracy and further spa-
tial analysis of agricultural parameters. For that reason, data interoperability will 
provide systems and services to have a clearer view about the context and meaning 
of the data.

To achieve the use of EO data in the field of agriculture for soil properties estima-
tions in a more efficient and manner interdisciplinary collaboration between soil 
scientists and the earth observation community is suggested as these scientific fields 
are inextricably linked and should work complementary. Knowledge must be shared 
through the education of scientists towards the advances in each field. Data should 
be easily accessible and at low cost or even freely available. Data processing and 
integration should be established for communities to benefit the most of EO tech-
nologies for achieving the sustainable development goals.
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1  �Introduction

Remote and proximal sensing technologies, coupled with global satellite position-
ing systems, provide the foundation for the digital innovation of agriculture. 
Seventeen (17) Sustainable Development Goals (SDGs) are at the heart of the 
2030 Agenda for Sustainable Development, which have been adopted by all United 
Nations Member States [1]. Precision farming in combination with proximal sens-
ing offers solutions to achieve the number of goals of the 2030 Agenda for 
Sustainable Development, such as SDG 2: Zero Hunger (“End hunger, achieve 
food security and improved nutrition, and promote sustainable agriculture”), SDG 
6: Clean Water (“Ensure availability and sustainable management of water and 
sanitation for all”), SDG 9: Industries, Innovation & Infrastructure (“Build resil-
ient infrastructure, promote inclusive and sustainable industrialization, and foster 
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innovation”), and SDG 15: Life on Land (“Protect, restore and promote sustain-
able use of terrestrial ecosystems, sustainably manage forests, combat desertifica-
tion, and halt and reverse land degradation, and halt biodiversity loss”) [2]. Digital 
Innovation Hubs (DIHs) play an essential role in providing relevant services for 
digital innovations in agriculture within the EU [3]. The Farm Sustainability Tool 
for Nutrients (FaST) will enable all EU farmers to use fertilizers sustainably and 
to better support them in implementing the green and digital agriculture transi-
tion [4].

1.1  �General Scope

The need to monitor and measure plants during growth, stems from the visual dif-
ferences between the plants growing in the field, which are observable by “naked 
eye”. In the beginning of this Chapter, we will give a brief overview of problems in 
the field, that can be detected by remote and proximal sensing. We will demonstrate 
that by looking at the differences in the field, it can be perceived that certain parts of 
the field have more suitable conditions for plant growth than other parts of the field. 
However, one cannot simply determine the magnitude of the difference in measur-
able units by visual observation. Also, in many cases, it is not possible to explain the 
causes of the problems simply by visual inspection.

In order to obtain unit-comparable results for differences in the field, appropriate 
measurement methods as well as different measuring devices need to be used. 
Today, there are many contact-, proximal-, and remote monitoring solutions for 
measuring the growth processes of plants in the field. The causes of plant growth 
limitations can be investigated by collecting discrete soil samples from the field in 
the different areas and determining the content of different nutrients in the soil in the 
laboratory. The same procedure can be conducted with plant samples to determine 
the uptake of nutrients. However, such measurements are very resource-intensive, 
time-consuming, and costly. Now-a-days the availability of proximal and remote 
sensing technology for monitoring plant growth is increasing at an unprecedented 
rate, allowing for faster and cheaper assessments. This Chapter will provide an 
overview of contact and proximal monitoring solutions currently available.

Proximal sensors can be hand-held, mounted on tractors, or attached to drones. 
Geo-spatial positioning is important for all proximal sensing applications to save 
results by location. Sensors mounted on agricultural machinery allow simultaneous 
measurements during specific management activities such as fertilization. It can be 
a cost-effective and time-savings solution to perform vegetation measurements 
while executing an ordinary field work of the cropping cycle. If the goal is not to 
collect information simultaneously with other field management activities, then it 
makes sense to use drone or satellite platforms for monitoring. Airborne and space-
borne data collection methods are more sensitive to weather conditions such as 
clouds, rain, and wind. Therefore, all methods have their strengths and weaknesses, 
and the most optimal solutions can be achieved by combining different sensors and 
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measurement methodologies. This Chapter will provide an overview of different 
monitoring platforms for precision agriculture, including autonomous platforms 
and robots. Use-cases from Estonia and Lithuania illustrate the most common usage.

2  �Problems in Fields That Can Be Detected by 
Proximal Sensing

Looking from the edge of the field, it often seems to the observer that everything is 
fine with the field and there are no major problems. Such a visual assessment from 
the edge of the field does not usually give an objective overview of the overall con-
dition of the field. In order to get an overview of the whole field, one should drive 
through this field closely with a tractor or a car, but this is again quite a time-
consuming and resource-intensive activity and also may cause undesirable compac-
tion of the field soil. Of course, if such a field monitoring activity is carried out in 
conjunction with a planned operation in the field, such as harrowing, crop protec-
tion, or fertilization, then it is beneficial because the farmer can carry out two neces-
sary operations at the same time. If this is not possible, then it is wise to use a drone, 
or satellite images to get an overview of the field. When the farmer gets a complete 
picture of the field from above, he can often be surprised that a field that he thought 
was in fine conditions, does not look so promising in every field spot. But what do 
these remote sensing images show and what can be done in the field with this 
information?

2.1  �Problems in Crop Emergence

One can get an idea of the first problems that have arisen in the field, already after 
the emergence of the crop. When taking an orthophoto or satellite image of a field 
and analyzing it, it can be noticed that there are areas in the field where there are no 
plants or only few individual plants have sprouted (Fig.  1). The reasons can, of 
course, be various; seed material of poor quality, incorrect sowing depth, drought, 
or due to varying soils.

2.2  �Agrotechnical Mistakes

Agrotechnical mistakes can also be detected after the emergence of the crop using drone 
or satellite images for monitoring. One can consider agrotechnical errors as problems in 
the field that the farmer could have avoided by choosing the right practices. For exam-
ple, inadequate tillage, which results in many tops and straw of previous crops 
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remaining in the topsoil. In the presence of excess straw in the seed layer, the seeds can-
not come into contact with the soil and are not able to germinate due to low moisture and 
insufficient soil contact. Similar problems are encountered when sowing excessively 
compacted and water-saturated soil, where the plant does not receive enough oxygen. 
Weeds can be also a major problem. If weed control has not been sufficient in previous 
years, weeds can displace a large proportion of the crop sown (Fig. 2).

2.3  �Overwintering Damage to the Crop Field

After sowing winter crops, the field can be in good condition and all sown seeds 
may germinate well. Problems can occur with water puddles accumulating in the 
field with autumn rains, where water does not seep into the soil due to the compac-
tion (Fig. 3). The same problem can occur with spring precipitation or snowmelt 
water that does not seep into the soil but remains in large puddles on the field sur-
face for a long time. In addition, plant diseases can affect large areas, e.g., snow 
mold, which in the spring may destroy plants within its area of occurrence. If such 
areas with damaged vegetation are abundant in the field, and their extent and loca-
tion have been identified by remote sensing, then it is worth considering differenti-
ated fertilization in the field. Differentiated fertilization saves on the use of fertilizers 

Fig. 1  Crop emergence disorders due to soil variations. (Photo by Toomas Tõrra)
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Fig. 2  Weeds have destroyed a large part of the winter turnip field. (Photo by Toomas Tõrra)

Fig. 3  Germination problems caused by excessive soil moisture in winter wheat. (Photo by 
Toomas Tõrra)

by applying fertilizer to areas with an optimal number of plants and reducing or not 
applying fertilizer to areas where there are no or few plants. By providing less fertil-
izer to an area where there are few plants, we protect the environment because there 
is no over-fertilization and no leaching of unused nutrients.
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3  �Precision Agriculture

Precision agriculture has been used for more than 30 years to optimize production 
costs, increase profitability, and reduce negative impacts on soil and the environ-
ment [5]. The main principle of precision agriculture is the adaptation of techno-
logical operations to the conditions of individual field locations. Precision agriculture 
is based on the ability to determine the spatial variability of a field and use this 
information for more targeted crop management. Some researchers describe preci-
sion farming as a complex set of farmers’ practices that can ensure the sustainability 
of agriculture based on four Rs: Right amount, Right application, Right place, and 
Right time [6–9].

Precision agriculture is a set of modern methods and technologies, first intro-
duced in North American soils and later spread to other countries [6]. Diacono et al. 
[6] review on the literature of the last two decades on precise agriculture methods 
for nitrogen fertilizer management in wheat crops, showed that the advantages of 
precise agricultural practices used in the production of cereals outweigh the disad-
vantages in order to improve crop yields and reduce agricultural risks to the environ-
ment. It has been found that the use of a fixed nitrogen rate for the whole field 
cannot be economically or ecologically sustainable. Precision fertilization can help 
solve excess or improper use of fertilizer.

Germanas [10] describes precision agriculture as a crop system managed by 
autonomous and operational information based on new or improved technologies. 
The most important are location systems and sensor technology for data acquisition. 
The collected and processed data is transmitted by special systems for plant fertil-
ization, spraying, etc. agricultural machinery, so that the necessary measures for the 
plants are precisely adapted to each area. Depending on the relationship between 
data acquisition, the decision made, and the impact measures used, precision farm-
ing relies on fundamentally different autonomous, operational, and mixed (autono-
mous and operational) data acquisition methods [10].

More and more manufacturers of tillage, sowing, fertilizing, crop protection, 
and harvesting equipment are offering machines with a variety of precision agricul-
tural accessories and sensor systems. Optoelectronic sensors mounted on the spray-
ers are able to detect weeds by separating them from the main plants, and sensors 
that determine the amount of biomass per unit area allow to automatically increase 
or decrease the rate of plant protection measures [11]. Soil samples can be taken 
automatically, and plant nutrient levels can be analyzed with multifunction sensors. 
Nitrogen sensors allow farmers to adjust the fertilizer rate depending on the color 
of the plant leaves. The lighter the color of the leaves compared to the standard leaf 
color of “saturated” plants, the more fertilizer, “hungry” plants receive. Fertilizer 
spreaders are guided by wind speed meters, which allow to compensate the wind 
resistance so that the fertilizer is spread evenly, according to the set rate. Using 
field map databases, the actual position of the machine in the field is recorded and 
the intensity of the spreading fertilizer flow at the field edges, inserts and protru-
sions is automatically reduced or increased without operator intervention [11]. By 
using resources more efficiently, precision agriculture can make agriculture more 
productive, sustainable, and reduce its negative impact on the environment [12].
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3.1  �Fertilization Effect on Environment

According to the United Nations (UN), in 2050 the population worldwide can reach 
up to 10 billion [13]. The rapidly growing population leads to a constantly growing 
demand for agricultural products. Plant nutrition is one of the most important fac-
tors in controlling the yield and quality of agricultural products [14, 15]. Therefore, 
organic and mineral fertilizers are used to enrich the soil with nutrients and make 
the most of the soil fertility. Typically, in temperate climates (USA and England), 
almost 40–60% of agricultural crops are grown using a variety of fertilizers [16, 17].

In recent years, fertilizer use has been growing exponentially around the world. 
In 2017, the global consumption of chemical and mineral fertilizers amounted to 
123  kg  ha−1, of which nitrogen (N) fertilizers accounted for an average of 70, 
P2O5–29 and K2O – 24 kg ha−1 [18]. Consumption of chemical fertilizers per hect-
are from 2002 to 2017 increased by about 30%. In Europe, the application of 
chemical and mineral fertilizers amounted to 79 kg ha−1 (52 N, 13 P2O5, 14 K2O) 
[18]. Intensive use of mineral fertilizers and improper application of fertilization 
technologies in agriculture have negative effects on both the environment and 
human health [6, 15, 19]. The main consequences of improper use of chemical 
fertilizers may be groundwater and surface water pollution, eutrophication of 
water bodies, accumulation of heavy metals and nitrates in plants, air pollution, 
imbalance of soil elements, salinity, deterioration of soil fertility and degradation 
[15, 20].

Although N fertilizer has increased crop yields, the over-application of N can 
have unintended negative economic and environmental consequences [19]. 
Concerning energy consumption by inputs, it is evident that among all inputs, fer-
tilizing (with nitrogen N, phosphorus and potassium) is the most energy consum-
ing one [21]. Management strategies to reduce N loss and increase crop N recovery 
have been studied extensively, including N fertilizer source, application method, 
timing of fertilizer application, tillage, N loss inhibitors (fertilizer additives), and, 
more recently, site-specific management to account for within-field crop N needs 
[22, 23]. Fertilization rates can be refined by using various monitoring tools. Plant 
spectral reflectance may provide the information needed to assess N supply 
[24, 25].

The recommended crop fertilization rates, for example, 150 to 180 kg N ha−1 for 
wheat, are often disregarded in intensive agriculture [26]. During the past half of the 
century, the continued increase in the use of nitrogen fertilizer and the intensity of 
production has exceeded the population growth [27], which led to nitrogen fertilizer 
accounting for 1.2% of greenhouse gas (GHG) emissions and of all the energy used 
worldwide [28–30]. In the future, GHG emissions from agriculture are expected to 
increase all over the world. However, because GHG emissions per 1 ha or 1 kg of 
produce largely depend on the nitrogen fertilizer application rates and crop yields, 
these amounts may be controlled, but it is necessary to research the impact of agri-
cultural technologies on greenhouse gas emissions [31].
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In agriculture, farming systems should be more sustainable in order to achieve 
economic and social benefits while preserving the environment [6]. Agricultural 
production with lower resources, optimal yields, increased re-source efficiency and, 
at the same time, low environmental pollution can be achieved through precision 
farming, including precision fertilization technologies. The willingness to adopt a 
precision agriculture variable rate fertilization technology is strongly affected by its 
cost, which can include a perception of both a high monetary cost and cost in the 
difficulty in the use of technology [32].

3.2  �Variable Rate Fertilization (VRF)

Fertilization is one of the most important technological operations in agricultural 
production. Traditionally, fertilizers are spread over the entire soil surface, regard-
less of changes in soil properties [33]. Variable rate fertilization is essential for the 
implementation of precision farming and ensuring the efficient use of fertilizers and 
the management of nutrients in the soil adapted to the conditions of individual field 
sites [34]. Precise variable rate fertilization technology allows for the application of 
different amounts of fertilizer, depending on soil fertility conditions and the needs 
of individual crop sites. The application of such a fertilization method allows to 
improve the efficiency of fertilizer use and reduce fertilizer leaching [35]. The goal 
of variable rate fertilization technology is to maximize crop yields by reducing the 
amount of fertilizer used, achieving an optimal cost-benefit ratio. The VRF method 
works well to take advantage of crop and soil variability, but this method has no 
greater value if the field is completely uniform. Variable rate fertilization is suitable 
for both liquid and granular fertilizers.

The first variable rate fertilization was implemented on a farm owned by the 
University of Minnesota in 1993–1994. The results of experimental studies showed 
that using variable rate fertilization increased plant yield by about 30% compared to 
traditional fertilization [20].

3.3  �Sensors for Precision Fertilization

Recent developments in observation technologies, geostatistical analysis, data 
aggregation, and interpolation methods have improved the accuracy and reliability 
of the determination of soil management zones, making it a viable strategy for com-
mercial agriculture [36]. For precision fertilization, three main methods are distin-
guished for estimating field variability: measurement of crop properties, 
measurement of soil properties, and measurement of crop yield [8]. Precision agri-
culture and variable rate fertilization are strongly linked to smart technologies: 
global satellite navigation system, geographic information systems, remote sensing, 
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harvest or soil mapping tools, machine vision, remote and proximal sensors that can 
measure or even predict crop and soil properties in real time [6, 34, 37–43].

Sensors and mapping are the basis for the application of basic variable rate tech-
nologies [40]. Each of these methods has its advantages and disadvantages. 
Therefore, a combination of both methods would be the best. Map-based variable 
rate application relies on the use of electronic maps that generate accurate informa-
tion about input rates applicable in individual field zones [40]. The mapping 
approach is usually based on the following information: soil type, soil color and 
structure, topography, crop yield, field monitoring data, and many other sources of 
information that can be adapted to a particular plant and location.

Models are developed in which prescription maps are applied for field applica-
tion of symbiotic nitrogen fixation (Fig. 4). Global Positioning System (GPS) spec-
tral images can be generated using different software algorithms, vegetative 
reflectance (e.g., normalized difference vegetation index-NDVI), other images 
obtained during plant vegetation, captured from satellites or drones. Such spectral 
images can be used to create control areas in the field, including soil properties and 
other data such as sensor data, soil sample analyzes, topography data, yield data, 
and other available historical data. Prescription maps of different plant fertilizer 
needs are created based on field area maps [5].

Thilakarathna and Raizada [5] presented a conceptual model (Fig. 5) that inte-
grates different precision farming tools together to improve symbiotic nitrogen fixa-
tion of legumes at field level using on-the-go variable management. Under this 
model, soil chemical and physical properties would be collected and analyzed using 
soil monitoring sensors mounted on tractors. Crop properties (e.g., plant N status) 
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would be collected using tractor-mounted sensors, similar to Green-Seeker NDVI, 
or satellite/Unmanned Aerial System (UAS) images. Legume measurements by 
sensors would be combined with spatial maps that would be generated using satel-
lite or airborne systems to program variable rates for a variety of field conditions.

Mozgeris et al. [24] stated that, the strategy of using ultralight aircraft as a sensor 
platform for precision agriculture aimed aerial imaging projects, outperforms the 
UAV-based and professional photogrammetric aerial photography solutions in terms 
of potential costs associated with the current service demand and supply conditions 
in Lithuania. This study investigates an imaging system based on a Rikola hyper-
spectral (HSI) and Nikon D800E (CIR) cameras installed on a manned ultralight 
aircraft Bekas Ch-32 for applications involving precision agriculture. The efficiency 
of this technical solution is compared with that of using Canon PowerShot SX260HS 
camera images acquired from helicopter-type unmanned aerial vehicle (UAV) to 
accomplish similar tasks. The criteria for comparison were the suitability of acquired 
images for modelling chlorophyll concentration in spring wheat and for estimating 
the normalized difference red edge (NDRE) index, which is conventionally obtained 
using OptRx proximal sensors.

Maps or positioning systems are usually not required for the application of vari-
able rates based on sensors. Sensors measure the properties of soil or plants as they 
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pass through the crop in real time [40]. However, in order to use the information 
obtained for the management of future crop areas for specific crops, sensor data 
should be recorded and presented under a geographical indication. Plant property 
sensors have the greatest potential because of their ability to detect crop needs (e.g., 
nitrogen) in real time during variable rate fertilization.

Sensor-based nitrogen management systems, compared to conventional farming 
practices, showed that the efficiency of nitrogen fertilizer use increased to 3.68 
times. Sensor systems saved between 10% and 80% of nitrogen fertilizer, and the 
residual nitrogen fertilizer in the soil was reduced by 30–50% without affecting 
wheat grain yield and quality [6].

4  �Proximal Measurement Sensors

4.1  �Soil Characteristics

With precision spreading technology, perhaps the most important data set is maps 
depicting changes in soil properties that affect plant growth and yield. The most 
commonly used properties for this purpose are the following [12, 44]:

•	 soil organic matter content, fractions labile and stable;
•	 soil organic carbon content;
•	 soil particle size (clay, loam and sand content);
•	 soil pH;
•	 soil structure;
•	 soil moisture;
•	 soil bulk density;
•	 soil compaction;
•	 soil porosity;
•	 soil macronutrient level (nitrogen, phosphorus, potassium);
•	 soil microelements content;
•	 soil temperature; and
•	 depth of any root restricting layers.

4.2  �Proximal Soil Sensors

Adamchuk et al. [45] divided various real-time soil sensors into main categories 
based on their design concepts, including electrical and electromagnetic, optical and 
radiometric data, mechanical, acoustic, pneumatic, and electrochemical soil sen-
sors. The authors added that most soil sensors are affected by more than one agro-
nomic properties of the soil. To explain the methods of the successful measurement 
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of soil properties by sensors, the following five categories of laboratory, stationary 
and real-time measurement sensors are named:

	1.	 Reflection-based soil sensors;
	2.	 Conductivity and resistance-based soil sensors;
	3.	 Passive radiometric soil sensors;
	4.	 Soil sensors based on force/strength;
	5.	 Electrochemical soil sensors.

One of the most promising and widely used research methods in precision agricul-
ture is the measurement of apparent soil electrical conductivity (EC), i.e., a mea-
surement of how much electrical current soil can conduct. The EC has become one 
of the most common tools for characterizing the spatial variability of a field because 
it is reliable and easy to measure [46]. In agricultural practice soil EC sensors are 
used to devise management zones, set soil sampling locations, create variable rate 
seeding prescriptions, better manage nitrogen applications, and improve irrigation 
prescriptions [47]. Soil EC enables to identify soil physic-chemical properties 
determining patterns of agricultural crop yield [48]. Friedman [49] divides the fac-
tors affecting EC to three main categories. The first category describes the bulk soil 
and defines the respective volumetric fractions occupied by the three phases and 
possible secondary structural configurations (aggregation): porosity, moisture con-
tent and structure. Factors in the second and third categories are the important solid 
particle quantifiers (particle shape and orientation, particle-size distribution, cations 
exchange capacity) and soil solution attributes, respectively.

The principle of determining the electrical conductivity of soil is widely applied 
to assess soil properties. One way to assess soil electrical conductivity is electro-
magnetic induction using a commercially available Geonics Ltd EM38 meter [44]. 
The transmitting coil induces a magnetic field, the strength of which varies with the 
depth of the soil. The ratio of magnetic field strength to soil depth can be altered to 
measure various soil depths up to 1.5 m. The take-up coil measures the currents in 
the soil and relates them to the electrical conductivity of the soil [12, 44]. Another 
commercially available soil electrical conductivity measuring device is the Veris 
MSP, which measures electrical conductivity while driving. A set of coulter elec-
trodes is used for this, transmitting an electrical signal through the soil [12, 44, 50].

The electrical conductivity of the soil is measured indirectly, i.e., the specific 
resistance of the soil is measured and converted into electrical conductivity EC (mS 
m−1). Using the specific electrical resistance measurement method, an electric cur-
rent is applied to the soil by current electrodes located on the soil surface, and a 
potential difference is measured in potential measurement electrodes located close 
to the current electrodes [51, 52].

With the same Veris MSP machine, pH and the amount of organic matter in the 
soil can be determined in the same run. An optical sensor built into the coulter of the 
machine measures the reflectance and absorption characteristics of the soil at a 
depth of 5 cm. The machine is equipped with a navigation system that records 
the location of the machine. The measurement values, together with the GPS 
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coordinates, are transmitted to the machine computer, where the field survey data 
medium is generated. Based on the obtained data, a preliminary map of soil organic 
matter is generated using the Veris FieldFusion platform [51, 53].

The soil pH value is a predictor of various chemical activities and a rough 
indica-tor of the plant availability of nutrients within the soil. Having the correct 
pH is crucial for the healthy plant’s growth as it will affect the amount of nutrients 
avail-able to plants. In Lithuania the study was carried out using the mobile unit 
Veris 3150 MSP equipped with the Soil pH Manager system. The Soil pH Manager 
consisted of three main components: a hydraulic soil sampling system, two anti-
mony pH electrodes, and a water wash system (Fig. 6). Selecting the lime rates 
according to the maps created by using the data of the unit, lime savings was about 
40% [54].

The amount of soil organic matter affects the efficiency of crop maintenance 
work. A device with optical sensors (Fig. 7) capable of automatically adjusting the 
amount of herbicides without a pre-prepared map or other input data was used to 
determine the amount of soil organic matter. This device with sensors is pulled or 
pushed through the soil [40, 44].

Due to different soil types, raw materials, soil and environmental factors such 
as water content, temperature, humidity, organic matter, topography and soil color, 
the performance of different sensors varies greatly due to the different results 
presented.

Fig. 6  Veris MSP machine with soil sensing system: 1 – scoop; 2 – mechanism of scoop lifting; 
3 – adapter; 4 – hog; 5 – pH sensors; 6 – water supply with nozzles; 7 – water tank; 8 – plant resi-
dues removal; 9 – furrow filling hoes; 10 – controller; 11 – data recorder; 12 – sensor of soil electri-
cal conductivity [50]
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4.3  �Proximal Crop Sensors

There are many different crop characteristics that can benefit from the use of proxi-
mal sensors. From the farmer’s point of view, the features that affect the yield as 
well as the quality of the crop are of the greatest interest. Another important aspect 
is the ability to solve problems where they can be identified and managed during the 
growing season. Biomass accumulation, crop water status, nutrient (especially 
nitrogen) deficiency, disease onset, and weed and insect infestation are all factors 
that crop growers may want to monitor throughout the season. A system of proximal 
sensors, in contrast to remote sensing, has the potential advantage that sensors on 
satellite and antenna platforms are more exposed to weather and clouds, which may 
limit the benefits of remote sensing during the critical plant growth season [12].

Passive and active light proximal sensors are distinguished. Passive sensors are 
dependent on sunlight, while active sensors, which have their own light sources, 
al-low the condition of crops to be assessed independently of ambient light condi-
tions [6, 55]. Commonly used commercial proximal sensors include the Yara 
N-Sensor® /FieldScan passive and FieldSpec® portable spectroradiometer, as well 
as the GreenSeeker® and “Crop Circle™” active sensors [12, 56, 57].

Active sensors such as the Trimble® GreenSeeker® crop sensing systems emit 
brief bursts of red and infrared light, and then measure the amount of each type of 
light that is reflected back to the sensor. This information is used to calculate the 
Normalized Difference Vegetation Index (NDVI), which is a direct indicator of the 
density of the foliage in the sensor’s view. Green plants absorb strongly red light 
and scatter infrared light so that in vegetated areas the reflectance of red light is 
reduced compared to bare soil while the reflectance of infrared light is increased. 
Trimble offers both GreenSeeker® crop sensing systems which can be mounted on 

Fig. 7  Scheme of an optical sensor for measuring soil organic matter [40, 44]
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agricultural machinery for a variable rate application and crop vigor mapping as 
well as handheld version (GreenSeeker, website assessed 11th June 2020 [56]. The 
handheld version is a very easy-to-use device with which NDVI measurements of 
vegetation can be made quickly and conveniently only by walking in the field. The 
results of using GreenSeeker Handheld Crop Sensor in a fertilization field trial 
experiment will be presented later in this book chapter in the Estonian use case.

The aim of the Aranguren et al. [58] study was to evaluate the usefulness of the 
proximal sensors Yara N-TesterTM and RapidScan CS-45  in diagnosing the N 
nutritional status of wheat after application of manure and sowing. The authors 
performed 3-year field trials using five different rates of mineral N fertilization 
(fertilization doses) (0, 40, 80, 120 and 160 g N ha−1). Proximal sensors were used 
during plant stem elongation before fertilization with mineral N. When any proxi-
mal sensor reading was 60–65% N, the optimal N rate for maximum yields was 
118 to 128 kg N ha−1. When the sensor readings were 85–90%, the optimal N rate 
was reduced to 100–110  kg  N  ha−1. Previous studies have shown that the Yara 
N-Tester™ (chlorophyll meter) and RapidScan CS-45 (ground-based active-light 
proximal sensor) readings were valuable indicators of N control in individual crop 
zones when assessing plant nutritional status, and measurements with these sen-
sors should be performed periodically to effectively monitor the N status of the 
crop [12, 58].

Padilla et al. [59] performed an analysis of three different types of proximal opti-
cal sensors (chlorophyll meters, reflectance sensors, and fluorescence-based flavo-
nols meters) for their use in N-state control in vegetable crops. Thanks to this 
analysis, the authors highlighted the possibilities of proximal optical sensors that 
can help control N in plants and the practical problems of their use. The choice of 
the optimal type of sensor in a particular situation, may depend on the crops grown, 
the condition of the crop, the specialization and management capabilities of the 
farm, the available agricultural machinery, and the expertise of the operator. 
Proximal reflectance sensors typically measure a large area of plant surface and can 
significantly reduce variability compared to sensors that typically measure small 
areas of individual leaves. Most reflection sensors and some fluorescence-based 
flavonol meters can perform continuous measurements while moving, thus connect-
ing large measurement areas. This is especially useful on large farms. Compared to 
passive plant surface reflection sensors, active sensors are not sensitive to exposure 
conditions, which is a noticeable practical advantage. Chlorophyll and fluorescent 
flavonol meters do not combine spurious signals from soil uncovered by plants or 
plant residues (unlike some plant surface reflection sensors), making them more 
suitable for early crop growth stages and widely distributed crops [59].

4.4  �Chlorophyll Meters

Chlorophyll meters belong to a group of optical sensors that undestructively esti-
mate the relative amount of chlorophyll per unit area of leaf surface area [60]. 
Chlorophyll absorbs visible light in 400  nm  – 700  nm spectral region but 
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chlorophyll content is also strongly associated with leaf N content, as most leaf N is 
present in the photosynthetic apparatus and enzymes involved in photosynthesis 
[55, 61–63]. Most chlorophyll meters are hand-held devices that are pressed to the 
surface of the leaves or measured right next to them. Chlorophyll meters provide a 
dimensionless value when measured that correlates strongly with the actual chloro-
phyll content [59, 60, 64].

Most chlorophyll meters determine the relative chlorophyll content of leaves by 
measuring leaf absorbance and transmittance of radiation. Red rays are absorbed 
by chlorophyll (Fig.  8a) and near-infrared (NIR) rays by chlorophyll transmits 
[59, 65]. The chlorophyll content increases as the absorption of red rays increases. 
The measurement values displayed by the chlorophyll meter then increase [63, 66, 
67]. Optical sensors of this type are called transmittance-based chlorophyll 
meters [59].

Another method for measuring leaf chlorophyll content is to determine the ratio 
of chlorophyll fluorescence emission using red and far-red radiation [59, 68–70] 
(Fig. 8b). The fluorescence ratio of red to very red chlorophyll is highly dependent 
on the chlorophyll content. Due to repeated reabsorption of chlorophyll on the leaf, 
this ratio decreases with increasing chlorophyll content [68]. Sensors using this 
measurement method are called fluorescence-based chlorophyll meters [59, 69].

4.5  �Reflectance Sensors for Nitrogen (N)

Sensors of this type assess the N state of the crop usually indirectly by measuring 
the chlorophyll sensitive wavelengths of absorbed and reflected rays from the crop 
foliage [59, 71–73]. When measured, proximal canopy reflection sensors are located 
close enough to the plant crop (e.g., 0.4–3.0 m). Green plant tissue typically absorbs 
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about 90% of visible rays with wave lengths between 390 and 750 nm due to pig-
ments and reflects rays with wavelengths around 750 to 1300 nm [74]. Due to the 
strong association between chlorophyll and N content the degree of absorbance and 
reflectance in the visible and NIR parts of the spectrum varies with the amount of N 
in the crop (Fig. 9a) [59]. Crops with N deficiency generally reflect more visible and 
reflect less NIR than crops with sufficient N [59, 63, 73].

Another method used to monitor the N state of the crop with proximal sensors is 
based on the relative flavonol content from fluorescence measurements [59, 69]. 
Flavonols are a class of polyphenolic compounds that are carbon-based secondary 
metabolites that increase in leaf levels under lower N supply conditions [75, 76]. 
Leaf flavonol content is generally inversely related to leaf chlorophyll content [61]. 
The relative amount of flavonols is calculated with flavonol meters using the chlo-
rophyll fluorescence screening method [77, 78]. The measurement principle is 
based on fluorescence radiation from the red to the outermost red-light spectrum 
[68, 79]. Flavonols accumulating in the epidermis of the leaf absorb significant 
amounts of UV radiation and reduce the radiation of far red chlorophyll fluores-
cence during UV radiation, but do not affect the radiation of far red chlorophyll 
fluorescence under red excitation (Fig. 9b). Flavonol content is calculated by com-
paring the fluorescence of distant red chlorophyll under red and ultraviolet light [61, 
78, 80]. Flavonol meters show a dimensionless value that is very strongly related to 
the actual amount of flavonols [59, 65, 69, 81]

Deeper knowledge of leaf and canopy reflection has given impetus to the wider 
application of remote sensing in agriculture. The application of remote sensing in 
agriculture starts with the observations of plant leaves, and then the obtained con-
nections and dependencies are applied to the canopy. Remote sensing tools have 
been designed so that the amount of pigment strongly affects the absorption 
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spectrum of leaves [71]. Figure 10 shows the absorption spectra of maize in the 
presence of dark green leaf and yellow green leaf.

4.6  �High-Resolution Spectrometers

Many crop sensors using the high-resolution electromagnetic spectrum have 
recently been used to describe crop properties. Such sensors may be passive, using 
reflected, scattered, or radiated energy, or active, using an internal pulsed or modu-
lated energy source and measuring the reflection or fluorescence of that source. The 
spectra of most interest to researchers and practitioners range from visible 
(400–700  nm), near-infrared (700–1300  nm), medium-infrared (1300–2500  nm) 
and thermal infrared regions (usually the main region of interest is 8000–14000 nm) 
[12]. The most important factors influencing light absorption and reflectance in the 
visible part of the spectrum are plant pigments such as chlorophyll, carotenoids, and 
anthocyanins. Cell structure, water content, and crop architecture influence crop 
reflection in the near-infrared region, and water content in leaves affects reflection 
in the medium-infrared region (Fig. 11) [12].

Often, absolute reflection at a given wavelength is not a very informative indica-
tor of plant stress. Reflection is related to various plant properties. The vegetation 
index provides an opportunity to draw conclusions about specific plant characteris-
tics and sources of stress. To determine plant properties, the vegetation index uses a 
reflection ratio in two or more spectral regions joined by an equation. More than 150 
vegetation indices are currently known [82], but the most widely known is the NDVI.

Fig. 10  Absorption spectra of maize leaves [71]
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4.7  �Yara N-Sensor

The electromagnetic sensors for commercial assessment of the N condition of field 
crops, the Yara N-Sensor, which is mounted on tractor and consists of two spectrom-
eters, one for scanning the crop on the side of the tractor (Fig. 12) and the other for 
measuring ambient light, is widely used, in real-time to correct the reflected signal 
at a selected wavelength from 450 to 900 nm [12, 55, 83]. Reflection is used to cal-
culate NDVI or other vegetation indices of interest. The tractor-mounted system 
uses an algorithm to calculate the optimal rate of N fertilizer in the scanned region 
and transmits this information to the controller to change the rate of N fertilizer use 
in real-time fertilizer application [12, 57]. Depending on the height of the plants, the 
crop can be scanned with a Yara N-Sensor approximately 3–4 m wide stripes to the 
left and right of the tramline. The sensors can be easily mounted on almost all spray-
ers and spreaders that can be adjusted electronically, regardless of manufacturer and 
type. The connection takes place via serial interfaces or via an Isobus adapter. The 
Yara N sensor is controlled from the driver’s cab using a multifunction display.

For research and commercial purposes, OptRx® integrated crop monitoring sen-
sor technology is used, using a three-spectrum sensor system to measure reflectance 
at 670, 730, and 780 nm [12]. One of the advantages of this sensor system using the 
red-edge NDRE spectrum (730 nm) instead of the red-spectrum in the NDVI equa-
tion is the higher sensitivity of the red-edge reflection to the crop chlorophyll and 
thus to the N content in the crop with high biomass content. The most competitive 
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Fig. 13  OptRx crop sensing for real-time variable rate applications [50, 85]

products typically use only the red wavelength, which is not sufficiently resistant to 
the high density of plant biomass [12, 85].

OptRx crop sensors (Fig. 13) measure and record plant data in real time using the 
reflection of the illuminating light of the plants. The sensors can be mounted on the 
entire beam of the unit to collect information when driving through the field. Data 
is recorded, systematized, and used for further analysis or real-time variable rate 
programs.
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5  �Autonomous Platforms in Precision Agriculture

One of the key elements of smart farming is farm management information systems 
that support the management of data collection and processing, monitoring, plan-
ning, decision making, documentation, and automation of farm operations. An 
increasing number of farm management information systems are now using the 
Internet of Things (IoT) technology to further optimize targeted business goals [86]. 
The IoT is the result of technological advances in many parallel and often overlap-
ping areas, including the results of ubiquitous and comprehensive computing, 
mobile telephony, telemetry and communication between machines, wireless sensor 
networks, mobile computers, and computer networks. The IoT complements cur-
rent information and communication technologies that already provide “anytime” 
and “anywhere” communication [86].

According to scientists [87], in order for modern agriculture to be sustainable, it 
is necessary to automate farming processes by combining sensors, robotics and arti-
ficial intelligence. New technological systems and materials, rapid progress of arti-
ficial intelligence and machine learning, the right speed and costs have increasing 
applicability in a commercial context. The diagram below (Fig.  14), in terms of 
intelligent technologies, illustrates the connections and subsystems for wide appli-
cation in agriculture.
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Commercial agricultural robots can already be seen running in the fields on both 
European and North American farms. The companies offer modern farmers innova-
tive agricultural machines that increase the efficiency of technological processes 
and reduce labor costs and negative environmental impact. Some robot manufactur-
ers focus on the robot itself, while others focus on its functionality, such as collect-
ing data on plant condition, measuring soil properties, weed recognition, or 
improving interaction with the tools used.

The use of robots in precision agriculture is mostly focused on soil sampling and 
mapping [88, 89]. Generating a sampling model is a very important task, so automa-
tion of the sampling process has advantages. In order to achieve higher efficiency 
and quality, automation of the whole soil sampling process is required [90]. A 
mobile robot platform has been developed at the Estonian University of Life 
Sciences (Fig. 15). Weighing 470 kg, this equipment is ideal for automating repeti-
tive light tasks commonly performed by humans, such as automatic measurements 
and soil sampling [89, 91]. Soil samples are highly dependent on the current situa-
tion and conditions in the field, which requires a higher frequency and accuracy of 
data collection. This automated and remotely controlled technology enables more 
frequent sampling than traditional human-operated manual methods. Experiments 
have shown that the current system is 50% faster than the traditional method [89].

Recently, robots in agriculture have been an important research and develop-
ment topic, which will play an increasingly important role in the future for various 
agricultural purposes and will be particularly useful in the application of precision 
agricultural technologies. Robots can be fitted with a very wide range of sensors 
that can be used for functions such as guidance, navigation, obstacle avoidance, 
crop and row detection, crop condition detection, and weed monitoring and con-
trol [38, 92]. The authors [38, 93] reviewed sensors mounted on agricultural 
machines and robots for monitoring and mapping various basic soil parameters. 
Sensors can be used to measure parameters such as soil quality and chemical 

Fig. 15  Universal mobile robot platform for soil sampling [91]
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composition (e.g., moisture content, nitrogen, and pH) and meteorological vari-
ables that affect crop growth, such as air temperature, relative humidity, precipita-
tion, sunlight, wind speed, and direction.

The Australian Center for Field Robotics at the University of Sydney has devel-
oped a Ladybird robot suitable for precision farming (Fig. 16) [38, 93]. This solar-
powered autonomous robot has an integrated GPS navigation system, forward and 
rear-facing LIDARs sensors, and a high-resolution digital video camera (Fig. 17). 
Thanks to the sensors mounted on the robot, it can independently drive through 
crops, identify and avoid obstacles, and detect crop rows. The height of the crop is 
determined by a laser sensor. The hyperspectral video camera captures infrared and 
ultraviolet data in the 400–900 nm wavelength range. The resulting spectral infor-
mation allows the system to determine the shape and color of the crop, and their 
spectral traces allow some conclusions to be drawn about crop health [38, 93].

The data obtained with the help of sensors can be used to spread the optimized 
amount of fertilizer. Vougioukas [94], notes that robotic precision spraying and 
fertilization operations are often performed using sensors rather than relying on 
existing maps. Bogue [38], draws attention to robotic agricultural machines and 
notes their important role in precision agriculture, as these and similar systems 
have been shown to increase yields while significantly reducing the amount of 
agrochemicals used.

A team of researchers [95] from the Free University of Bozen- Bolzano, Faculty 
of Science and Technology, Italy, presented a mobile robot sui-table for plants sens-
ing, that meets the following basic technical requirements: the ability to move 
quickly, off-road and turn manoeuvres on even or steep hills; is easily transported; 
individual crop monitoring sensors can be easily attached to it (Fig. 18). In addition 
to meet these requirements, the robot must ensure a high level of reliability and 

Fig. 16  Solar-powered robot developed in the Australian Center for Fields Robotics, University of 
Sydney [38]
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Fig. 17  Location of sensors on the robot [93]

Top lidar sensor

Bottom lidar sensor

Bottom OptRx sensor

Top OptRx sensor

Middle OptRx sensor

Tracked bins-carrier

Scan angle

OptRx - Crop Sensor

OptRx - Crop Sensor

OptRx - Crop Sensor

Scan angle

Fig. 18  Mobile robot equipped with sensors for precision agriculture [95]
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safety for the people around it and the environment as a whole, as safety for humans 
and the environment becomes increasingly important when considering a fully 
autonomous system that does not require any human intervention. This robot used a 
crawler chassis, which provides a wide range of versatility for this robot, excellent 
contact with the soil, which ensures high grip and low soil pressure. The remotely 
operated compact (length × width: 1.14 × 1.12 m) robot provides high lifting capac-
ity (500 kg), although its own mass is small (250 kg) [95].

The main problems faced by crop monitoring robots are lighting, background 
separation, and data manipulation [92]. Robotic technologies for plant monitoring 
and phenotyping are very similar, using a variety of sensors and vision systems to 
gather as much information as possible about the plants being monitored. One of the 
first robots to emerge was the autonomous phenotyping robot BoniRob [96], using 
multi-sensor data synthesis to measure crop density, uniformity, height, stem thick-
ness, and other parameters. An improved platform, BoniRob (Fig. 19), was later 
developed that can be used to implement precision spraying and soil hardness deter-
mination programs [97].

Accurate weed detection and identification is one of the key factors determining 
the effectiveness of a robotic weed control system. Using the Drop on Demand 
system, which accurately detects weeds in the plant row and selectively sprays her-
bicide droplets on the weed leaves, 100% efficiency has been achieved [98].

The ability to precisely separate weeds from crop plants is a very important task 
for the ecoRobotix robot by adapting it to a precision spraying system for plant 
protection products. According to the manufacturers, this robot makes it possible to 
detect and destroy weeds with up to 95% accuracy. Using a video camera, RTK-
GPS systems, sensors and artificial intelligence to analyze the images, this weed 

Fig. 19  Robot BoniRob. (Photo by the authors from the Agritechnica exhibition 2019)
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control robot can detect and locate weeds in and between rows as it moves through 
the crop field. Thereafter, two robotic arms capable of performing up to 4000 move-
ments per minute can spray each detected weed with a very low dose of herbi-
cide [99].

The self-propelled electric robot Dino (Fig. 20) of the agricultural robot develop-
ers Naïo Technologies can mechanically kill weeds in the rows and rows of vegeta-
bles. The weed control solution is based on deep learning technology that allows the 
machine to recognize key plants and weeds regardless of their color, variety, and 
growth stage [100].

With video cameras and RTK-GPS systems, the robot Dino is able to accurately 
and in real-time determine the location of plants in rows. Although Dino’s first pur-
pose was precision mechanical weed control, it could be called an autonomous crop 
care robot when it installed additional intelligent systems. In addition to precision 
weeding, the robot has extensive capabilities in data collection, as it can count 
plants, estimate their size, calculate the date of harvest, future thinning operations, 
or fertilize [100].

French manufacturer Carre crop care robot Anatis (Fig. 21), using different sen-
sors, a built-in camera and a GPS system, analyzes each individual soil area, col-
lects data on soil and air humidity, temperature, plant density, growth stage, weeds 
or other undetected objects. All this collected data can be monitored by the farmer 
in real time on a smartphone or tablet, and then analyzed while the appropriate deci-
sions are made [101].

The decision that a robot should be as versatile as possible and capable of per-
forming several different agricultural tasks is followed by most research centers and 
commercial enterprises [102, 103]. The Danish-developed robot Robotti (Fig. 22) 
can independently perform various agricultural tasks, such as crop monitoring, sow-
ing, planting, fertilizing, weed control, or harvesting. Video camera systems (RGB, 

Fig. 20  Robot Dino. (Photo by the authors from the Agritechnica exhibition 2019)
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Fig. 21  Carre Anatis. (Photo by the authors from the Agritechnica exhibition 2019)

Fig. 22  Agrointelli Robotti. (Photo by the authors from the Agritechnica exhibition 2019)

NIR, LiDar, Thermal, etc.) and sensors can determine various crop characteristics: 
leaf area index, vegetation index, plant germination, height, color, weed density, etc. 
However, the ability to perform each task properly and accurately results in more 
complex hardware and software and the need for a variety of sensors [92, 103].

The ability of robots to move as close to plants as possible is a particularly 
important step in precision farming as the accuracy of the data obtained increases. 
With much smaller dimensions, lighter and manageable sensor and data analysis, 
robots are better suited to individual soil characteristics research and plant care 
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compared to traditional tractors. Robotics in agriculture enables a return to small-
scale farming practices. Collecting data with smart sensors can make it easier for 
farmers to monitor relevant soil and plant characteristics, maintain their good condi-
tion and productivity, while adapting to changing environmental conditions.

6  �Estonian Use Case of N-Fertilization with GreenSeeker 
Handheld Crop Sensor

A fertilization experiment was conducted at the Rõhu Experimental Station 
(58°21.3´N, 26°31.3´E) of Estonian University of Life Sciences on spring wheat 
(Fig. 23). A mean annual precipitation of this region is 680 mm and mean annual 
temperature 5.8 °C (Estonian Weather Service, average of 1981–2010). The size of 
a trial field was 1 ha and the size of each treatment plot was 20 m2 (2 m × 10 m). 
Mineral nitrogen treatments were 0, 40, 80, 120, 160 and 200 kg N ha−1. The soil of 
the field site is Glossic Retisol with sandy loam texture.

The aim of this experiment was to examine the relationship between NDVI and 
the fertilization rate set with Greenseeker, and how fertilization rate affects yield in 
years with different weather conditions. GreenSeeker Handheld Crop Sensor was 
used to assess NDVI (Fig. 24)

To calculate the fertilizer application rates, fertilizer tables have been prepared 
for the most cultivated crops (Fig. 25). To calculate the optimal fertilizer rate, a 
reference area is used in the field that has received the maximum amount of nitrogen 
fertilizer during or after sowing. Based on the NDVI of the reference area receiving 
the maximum nitrogen fertilizer and the NDVI of the area waiting to be fertilized, a 

Fig. 23  Fertilization experiment trial fields at Rõhu Experimental Station. (Photo by Toomas Tõrra)
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Fig. 24  GreenSeeker 
Handheld Crop Sensor. 
(Photo by Toomas Tõrra)

Fig. 25  Calculation of fertilizer rate based on NDVI measured with GreenSeeker

coefficient is obtained by multiplying the amount of fertilizer required to obtain the 
maximum yield. This gives the fertilization rate for the area to be fertilized.

The experiment was conducted in 2 years (2017 and 2018). Summer 2018 was 
unusually warm, and a severe drought occurred. Long-term (1981–2010) average 
precipitation for July is 72  mm in this region. Precipitations in July 2017 were 
57 mm but in July 2018 only 23 mm. Precipitations in May 2017 were 28 mm but 
in May 2018 only 10 mm (long-term average for May is 56 mm). In June, precipita-
tion was 65 mm in both 2017 and 2018 (long-term average 84 mm in June).

The results of these 2 years clearly show the great impact of the weather. If there 
is no precipitation during the vegetation period, as it was in 2018, then the plant will 
not be able to absorb the nutrients given to the field and the development of plants 
will be inhibited, and this is also reflected in the NDVI reading (Fig. 26). At the 
same time, in 2017 there was enough rainfall during the vegetation period and the 
plants absorbed well the nutrients given by fertilizers, which is also reflected in the 
stable growth of NDVI, as the fertilization rate increased. Similar to the increase in 
NDVI as the fertilization rate increases (Fig. 26), there is also an increase in yield 
according to the increase in fertilization rate (Fig. 27). A comparison of both figures 
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shows similar behavior for both NDVI and yield with a similar increase with 
increasing nitrogen rate. Measurements show that higher yields can be expected as 
NDVI increases. Although the yield depends largely on weather conditions, by mea-
suring NDVI we can predict the yield both in drought year and during year with 
increased precipitation. In the drought year, the NDVI reading on the same N back-
ground as well as the yield was lower than the results on the same N level in the 
rainier year. For example, in 2017, at the fertilization level N 80 kg ha−1 NDVI was 
0.74 and a yield was 5.3 t ha−1, while in 2018, N 80 kg ha−1 treatment had a NDVI 
of 0.67 and a yield of 3.5 t ha−1.

Fig. 26  Spring wheat NDVI measured with GreenSeeker at different fertilization levels in 2 years 
2017 and 2018

Fig. 27  Spring wheat yield at different fertilization levels in 2017 and 2018
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7  �Experience of Precision Farming in Lithuania – Use Cases

Modern precision farming systems have become more widespread in the last decade. 
Precision spraying and fertilization technologies are the most widely used. In 
assessing the soil properties, the application of phosphorus, potassium and other 
fertilizers necessary for the growth of plants is performed using a variable fertiliza-
tion rate according to the individual field areas and the amounts of nutrients deter-
mined in them. According to the soil properties, the main fertilization with nitrogen 
fertilizers is also performed, only later when the plants grow, additional nitrogen 
fertilization is performed by scanning the crop. This subsection presents the relevant 
results of precision fertilization research carried out in Lithuania in 2014–2019 in 
different locations, including descriptions of the equipment used.

7.1  �Measurement of Soil Electrical Conductivity

Electrical conductivity is the ability of a material to transmit an electric current and 
is usually expressed in millis Siemens per meter (mS m−1) [104]. Soil electrical 
conductivity is a measure that correlates with soil properties that affect crop produc-
tivity, including soil structure, cation exchange capacity, drainage conditions, 
organic matter levels, salinity, and subsoil properties.

The electrical conductivity of the soil varies depending on the amount of mois-
ture that is retained by the soil particles. Thus, electrical conductivity strongly cor-
relates with soil particle size and structure. Saline soils and clay have high 
conductivity, silt has medium conductivity, sand has low conductivity [12, 104, 105].

First, when driving an SUV around the field under study, the boundaries of the 
field are measured, and the exact size of the field is determined. Soil scanning was 
performed using an EM-38 MK-2 electrical conductivity scanner to determine soil 
differences in the field (Fig. 28). In Lithuania, measurements of soil electrical con-
ductivity were performed by driving off-road Toyota Hilux technological tracks 
every 30 m and towing the device EM38-MK2 mounted on a plastic sled, which was 
placed in a plastic case to protect from adverse environmental conditions (Fig. 29).

After measuring the electrical conductivity of the soil in the field, all the col-
lected information on the electrical conductivity of the field soil, from the computer 
Panasonic CF-19 (Fig.  30) in the SUV, was sent to the office computer via the 
Internet using a 4G connection. In the office, sent information, using the Convert 
EM38-MK2 program was converted to a CSV file. Further, using the QGIS pro-
gram, 3-hectare polygons (zones) were formed, which were similar to soil struc-
tures. The generated polygons were transferred back to the Panasonic CF-19 in the 
SUV computer in digital shp format.

In 2012, measurements of the electrical conductivity of the selected study field 
were performed, and the distribution of the total field height was determined as well 
(Fig. 31). Electrical conductivity ranged from 57.9 to 64.1 mS m−1. The largest part 
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Fig. 28  Apparent electrical conductivity in different soils (Figure redesigned by the authors 
according to Stafford [12]

Fig. 29  Mobile determination of field boundaries and soil electrical conductivity: 1 – GPS antenna 
on the SUV roof; 2 – Trimble EZ-Guide 250 navigation mounted inside the SUV on the wind-
shield; 3 – Electrical conductivity meter EM38-MK2 (Figure made by the authors)

(24%) of the field electrical conductivity was 64.1. These measurements can be eas-
ily linked to the readings of the GPS navigation system, which in this particular field 
showed that the altitude of the field varied from 45.6 to 51.6 m.

7.2  �Automated Soil Sampling

Soil sampling was performed using Agricon SUV equipment (Fig. 32). The opera-
tor performs soil sampling according to the formed polygons of the same structure 
while driving through the field using the trajectory of the letter “Z” (Fig.  33). 
Samples are taken with a grooved needle mounted on the end of an automatically 
operated mechanical arm. From 12 to 20 subsamples are taken per soil sample. 
Sampling with automatic equipment is about 30% more efficient than sampling 
with stopping. Each time the needle is inserted into the soil to a depth of about 
20–30 cm, the mechanical hand returns to its original position and the soil in the 
needle groove is pushed out into the box. The equipment has a total five boxes that 
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Fig. 30  Data acquisition equipment: 1 – GPS antenna for data collection from EM38-MK2 equip-
ment and recording of sampling trajectories. GPS antenna Navilock 602U for transmission of 
position and altitude data to Panasonic CF-19 computer; 2 – Panasonic Toughbook CF-19 in the 
docking station (Figure made by the authors)
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Fig. 31  Measured electrical conductivity of the test field (The figure was prepared by the authors)
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Fig. 32  Automatic soil sampling equipment: 1 – Needle with internal notch for soil sampling; 
2 – Automatically operated mechanical hand; 3 – Needle cleaning mechanism; 4 – Box for collect-
ing soil samples (five boxes) (Figure made by the authors)
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Fig. 33  Field sampling using the Z trajectory (The figure was prepared by the authors)

hold individual taken samples of different soil property zones. One box holds 300 to 
500 g of soil.

One operator can take 60 to 100 subsamples non-stop, i.e., five samples. When 
all the boxes have been filled with soil, the operator removes the soil in each box and 
packs it into individual plastic bags with a bar code on them, which records all the 
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necessary information about the sample: 1 – the coordinates of the sampling point; 
2 – information about the researched field; 3 – operator who took the sample; 4 – 
date and time of sampling. For soil testing, all this collected information was sent to 
a laboratory accredited in Germany by Agrolab GmbH. One operator can take sam-
ples from approximately 200 ha per day.

Tests for pH, magnesium (Mg), potassium (K) and phosphorus (P) of the main 
elements are performed as standard. Mg and pH tests are performed by CaCl2 
method, K and P – CAL method. (Extraction of calcium acetate lactate (CAL) in 
Germany [106, 107] is a standard soil test method for determining the P and K value 
of available phosphorus and forms the basis for P and K fertilization recommenda-
tions [108].

The results of the tests obtained from the laboratory in digital format in PDF and 
CSV are sent to Agricon’s head office in Germany, where the information obtained 
is uploaded to the Agriport online program to an account created for a specific farm. 
It takes about 30 working days from sampling to receipt of test results. Fertilization 
recommendations are also provided along with the results of soil analyses. Based on 
the crop rotation planned in a specific field and the expected yield of each crop, a 
4-year fertilization plan for pH, P, K, Mg and fertilization maps for the spreader 
computer in pfb, shp and iso formats is created. The Agriport program provides 
opportunities to independently plan crop rotation, create a fertilization plan and 
prepare digital fertilization maps for the spreader computer. The program shows the 
results of specific field soil studies and maps of the distribution of pH, Mg, K and P 
elements. It is also possible to see the soil sampling trajectories and the information 
of the tests performed at each sampling point and the need for elements. The 
research results in the program are presented both in pure form and in the form 
of oxides.

7.3  �Changes of Mineral Fertilizer Elements in Soil Using VRF

For the application of mineral fertilizers in a specific field at a variable rate, accord-
ing to the maps, an agricultural unit consisting of a tractor, a mineral fertilizer 
spreader and a fertilization computer-terminal was used (Fig. 34).

The change of mineral fertilizers in the soil was observed in the field of 57.98 ha 
of farmer Majauskas R. farm in Antagyne village, Kaunas district, Lithuania 
(55°11´N, 23°86´ E). Initial soil surveys were conducted in 2012. It was found that 
according to the distribution of phosphorus in the soil in the whole field, the largest 
part (32 and 26%) was formed by B+ and B- soil groups, in which the phosphorus 
content in the soil varied from 3.2 to 5.6 mg 100 g−1 (Fig. 35).

After the implementation of fertilization at a variable rate in a 4-year crop rota-
tion and repeated phosphorus studies in the soil, it was found that the whole field 
became significantly more uniform in terms of phosphorus distribution (Fig. 35). In 
2016, in the same field, the largest part (60%) was formed by one C-group soil, in 
which the phosphorus content ranged from 5.1 to 5.9 mg 100 g−1.
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Fig. 34  Variable rate of fertilizer application according to fertilization maps equipment: 1 – Rauch 
spreader terminal CCI 100 (Muller); 2 – Mineral fertilizer spreader Rauch Axis-H; 3 – John Deer 
6630 tractor (The figure was prepared by the authors)

Fig. 35  Distribution of phosphorus in the soil in 2012 and 2016 using VRF (The figure was pre-
pared by the authors)

Fig. 36  Potassium distribution in the soil in 2012 and 2016 using VRF (The figure was prepared 
by the authors)

In the same field, similar studies were performed with the distribution of potas-
sium in the soil (Fig. 36). If in 2012 the distribution of potassium in the field was 
quite uneven, it mostly belonged to groups B and C, 41% and 37%, respectively. As 
much as 12% of the soil in this field belonged to the lowest group A, according to 
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which the potassium content was less than 10 mg 100 g−1. After 4 years of precision 
fertilization, this field became much more uniform in terms of potassium distribu-
tion in the soil, at most 62% belonged to class D, according to which the potassium 
content in the soil varied from 14.3 to 20.7 mg 100 g−1.

Magnesium distribution maps demonstrate exceeded element amount in all field 
and no fertilizer application have been made (Fig.  37), then after four years the 
whole field (100%) according to the magnesium distribution was one E soil group. 
It was calculated that will be enough for 4-year crop rotation yield.

When assessing the influence of the variable rate of precision fertilization on the 
soil pH distribution maps, no major differences were observed. Both in 2012 and 
after 4 years, the soil belonged to the same D- group on average (Fig. 38).

7.4  �Nitrogen Fertilization at a Variable Rate Using Yara 
N-Sensors

In 2019, 40 operating Yara sensors were used in Lithuania, which worked on an area 
of about 50,000  ha. This Yara N-Sensor system is most widely used in central 
Lithuania (Fig. 39), where soils are the most fertile and farmers receive the highest 

Fig. 37  Magnesium distribution in soil in 2012 and 2016 without any application (The figure was 
pre-pared by the authors)

Fig. 38  Soil pH distribution in 2012 and 2016 using VRF (The figure was prepared by the authors)
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income from crop production. Over 250 trials have been conducted on farms over 
the past 10 years, comparing fertilization at a constant rate with fertilization at a 
variable rate using a Yara N-Sensor.

In most agricultural fields, nitrogen uptake is not uniform across the field, as it is 
highly dependent on soil water regime, particle size distribution, nitrogen leaching, 
nitrogen uptake by other key elements (e.g., phosphorus, potassium, pH) quantity. 
Agricultural plants mirror the real situation in the soil. Yara N-Sensor equipment is 
used to reduce nitrogen uptake differences in individual field locations. With this 
equipment it is possible to see up to 1000 times better than with the human eye, so 
even for a uniform-looking field, thanks to this sensor, fertilizer differences between 
different parts of the field can be as much as tens of kilograms of active substance. 
The Yara N-Sensor scans the crop and determines how much N (kg ha−1) is absorbed 
by the plants, after the N-fertilization program performs the calculation and sends 
the calculated fertilizer variable rate to the spreader computer. It is one of the mod-
ern precision farming systems that determines the exact location in the field and can 
decide in real time where and how much N fertilizer should be spread.

Experimental research was carried out in different Lithuanian farms in 
2018–2020. The nitrogen sensor was mounted on the roof of the tractor (Fig. 40). 
The computer terminal with N-fertilization program is mounted in the tractor cab. 
The nitrogen sensor measures in both directions at a 45-degree angle (Fig. 41), so it 
only sees plants. In this way, the influence of soil and smaller weeds in the rows is 
avoided than when measured directly from the top, especially in the early stages of 

Fig. 39  Distribution of Yara N-Sensor use in Lithuania in 2019 (The figure was prepared by the 
authors)
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Fig. 40  Equipment used for precision spreading of nitrogen fertilizers: 1 – Yara N-Sensor ALS; 
2  – Agricon TOUCH800 terminal (Muller computer); 3  – John Deer 6630 tractor; 4  – Yara 
N-fertilization software (The figure was prepared by the authors)

Fig. 41  Nitrogen fertilizer application using a 45-degree Yara N-Sensor ALS [84]

plant development. The accuracy of the sensor is about 93%, which does not depend 
on the plant variety, growth phase or plant crop density. The program used for nitro-
gen fertilization is based on agronomic algorithms, which, depending on the plant 
and growth stage, decide what rate of N fertilizer should be given to the plant 
according to the condition of the crop at a specific location.

The principle of N-sensor measurement is based on the measurement of the far-
red wavelength. Band-pass filters with 730, 760, 900 and 970 nm center wavelength 
are used. These wavebands have been identified as optimal for determining the 
nutritional status of the crop [109]. The xenon light sent the light to the crop area 
and if the reflected into the optics wavelength is short, then photosynthesis is active 
in that field location, which means that the plants have sufficient nitrogen supply 
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and vice versa. The N-sensor simultaneously measures not only the intensity of 
photosynthesis but also the biomass of the plant crop at a specific field location. 
According to the N-sensor, the terminal display shows how much nitrogen (kg ha−1) 
has been uptaken in the plants at a specific field location.

The Yara N-sensor is used during plant vegetation for additional two fertiliza-
tions and for qualitative 3rd or 4th fertilization in cereals. In oil seed rape this equip-
ment is used for first and second fertilization. If the rapeseed biomass is no more 
than 60% dead in the spring compared to the autumn biomass, can be used N-sensor, 
and if more, we use N-application map made according a biomass map of the rape-
seed field scanned from the autumn. In addition to conventional nitro-gen fertiliza-
tion, the N-sensor can also be used for: N (liquid, granular) fertilization, cereals, 
oilseed rape, corn, potatoes, as well as for spraying growth regulators, fungicides, 
desiccants.

7.5  �VRF Maps for N-Fertilization Using Proximal Sensors

7.5.1  �N-Fertilization Maps for Winter Wheat

Experimental research was carried out in 2019  in Joniskis district in the field 
(56°18´ N, 23°64´ E) of Kurmaiciai agricultural company, where winter wheat 
was grown. The total field area is 10.72 ha. Studies of nitrogen uptake by whole 
crop using Yara N-Sensor ALS were performed and mapped (Fig. 42). N-uptake 
data showed that the worst plants absorbed nitrogen in areas at the edges of the 
field. The main reasons why these areas had a harder time absorbing nitrogen may 
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Fig. 42  N-uptake map in winter wheat crop in 2019 May 30 (The figure was prepared by the 
authors)
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have been less favorable physical properties of the soil for plants to grow, higher 
soil hardness.

Based on the data obtained for N-uptake, a recommended winter wheat nitrogen 
fertilization map (Fig. 43) for variable fertilization was created. The average recom-
mended fertilization rate was 41 kg N ha−1, the standard deviation was 7.2 kg N ha−1. 
In the central part of the field there were zones where the recommended rate of 
additional fertilization was up to two times lower than the average and up to three 
times lower than at the edge of the field.

The winter wheat crop was harvested on July 24, 2019. Yields of winter wheat 
ranged from 4.9 to 7.54 t ha−1 in the field (Fig. 44). The average yield of this field 
was 6.30 t ha−1.

The yield results obtained showed that the highest winter wheat yields were 
found in the central part of the field, where N-uptake was highest and recommended 
additional N-fertilization rates were lowest. Due to more frequent machine move-
ments and stronger soil compaction, the field margins gave the lowest yield, in some 
cases less than 4.9 t ha−1, although the recommended rates of additional N fertiliza-
tion were higher than average. In total, such a low yield of winter wheat was 7% of 
the total field area.

No direct relationship has been established between the yield of cereals and the 
amount of N fertilizer applied. One year we can spread 150  N  kg ha−1 and get 
8 t ha−1 of winter wheat, but the next year we can spread 180 N kg ha−1, but we will 
get a lower yield of 6.5 t ha−1 of winter wheat. Precipitation and temperature usually 
determine the availability of nitrogen in the soil to plants and its uptake during 
vegetation.
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Fig. 43  Recommended N-fertilization map of winter wheat in 2019 May 30 (The figure was pre-
pared by the authors)
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Fig. 44  Map of the winter wheat harvest July 2019 (The figure was prepared by the authors)

21 - 72 kg N/ha

72 - 78 kg N/ha

78 - 84 kg N/ha

84 - 90 kg N/ha

90 - 96 kg N/ha

96 - 102 kg N/ha

102 - 111 kg N/ha

3,5%

2,6%

5,8%

16,0%

31,3%

24,0%

16,8%

0 300 600 m

Fig. 45  N-uptake map in winter oilseed rape crop in 2019 October 8 (The figure was prepared by 
the authors)

7.5.2  �N-Fertlization Maps for Winter Rapeseed

The latest research was carried out in 2019–2020 in the field (55°92´ N, 23°91´ E) 
of Navickas A. farm in Pakruojis district, where winter oilseed rape was grown. The 
field area is 17.46 ha. After sowing and winter rape germination, in 2019 October 8 
the N-uptake was evaluated using Yara N-Sensor ALS equipment (Fig.  45). The 
average N-uptake in the field was found to be 93 kg N ha−1. The minimum and 
maximum N-uptake varied from 21 to 111 kg N ha−1. The standard deviation was 
10.0 kg N ha−1.

In the spring of 2020 (March 15), fertilization was performed according to the 
N-fertilization map (Fig. 46). The main statistics of the N-fertilization map were as 
follows: mean 86 kg N ha−1, standard deviation 7.6 kg N ha−1.

After 20 days (April 5), a repeat study of N-uptake was performed, and a map 
was drawn (Fig. 47). The average N-uptake of winter wheat crop was found to be 
52 kg N ha−1, with a standard deviation of 8.8 kg N ha−1. Based on the obtained data, 
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Fig. 46  Additional fertilization of winter oilseed rape according to the N-fertilization map in 2020 
March 15 (The figure was prepared by the authors)
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Fig. 47  N-uptake map in winter oilseed rape crop in 2020 April 5 (The figure was prepared by the 
authors)

a recommended nitrogen fertilization map (Fig. 48) was created for the whole field 
fertilization at a variable rate. According to the map, it is recommended to fertilize 
in different places from 70 to 130 kg N ha−1 of N-fertilizer. The average recom-
mended fertilization rate was 107 kg N ha−1, the standard deviation was 7.5 kg N ha−1.

70,0 - 92,5 kg N/ha

92,5 - 96,5 kg N/ha

96,5 - 100,5 kg N/ha

100,5 - 104,5 kg N/ha

104,5 - 108,5 kg N/ha
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Fig. 48  Recommended N-fertilization map of winter oilseed rape in 2020 April 5 (The figure was 
prepared by the authors)
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Spring N-uptake map showed that 70% of the field was in the limits of 
10 kg N ha−1 uptake. It became more even after the N-application based on autumn 
rape scanning map.

As with winter wheat in the previous study, a similar trend was also observed in 
this field, with the N-fertilization program recommending a higher fertilizer rate in 
areas with lower winter rapeseed nitrogen uptake. However, an inverse relationship 
has been found that in areas with particularly low nitrogen uptake, additional nitro-
gen fertilization is no longer recommended, as no higher yield increase is expected.

Many years of experience have shown that, from an economic point of view, 
variable rate fertilization with a variable rate of Yara N-Sensor can increase signifi-
cant economic benefits, e.g. for cereals this benefit starts from 60 Eur ha−1, for 
rapeseed it ranges from 60 to 90 Eur ha−1. If this equipment is also used for precise 
application of growth regulators and fungicides, then the total economic effect of 
using the N-Sensor can increase up to 100–120 Eur ha−1. The main reasons for the 
economic benefits are the following advantages: 80–100% lower crop lodging, 
12–20% higher combine productivity, 10% fuel savings at harvest, more even crop, 
40% more uniform protein, up to 30 kg ha−1 better nitrogen balance (less need for 
additional nitrogen than taken by crop), 0–14% savings in nitrogen fertilizers, 3–7% 
higher yields, reduced disease prevalence, lower drying costs, 5 days earlier har-
vesting due to harvest more even mature [110–116].

7.6  �N-Fertilization with Yara N-Tester

It is recommended to apply the fertilization rate for the main fertilization in early 
spring from 30 to 80 kg N ha−1, depending on the condition of the crop, pre-sowing 
crop, nitrogen content in the soil after winter. Yara N-tester readings for plant 
N-monitoring can be used to determine the timing and rate of additional fertilization 
for winter wheat. This method makes it possible to reduce nitrogen losses and per-
form fertilization according to the precise needs of the plants, depending on how 
much N is needed at a given moment, rather than as much as is written in the text-
books or as much as appears from the eye.

In order to use the fertilizer efficiently and optimally, taking into account the 
price of the fertilizer and the potential damage of fertilization to the environment, it 
is very important to know the right time and the exact rate before applying N fertil-
ization. Fertilizing plants when they are not needed, loses the effectiveness of N 
fertilizers. In addition, unused nitrogen from plants can leach into groundwater or 
evaporate, leading to severe pollution. In case of using too much N fertilizer, the 
plants may lodge spread the disease in the crop.

The exact time and rate of additional fertilization can be determined with a 
Yara N-tester (Fig. 49), which is used to measure the intensity of photosynthesis 
and the amount of chlorophyll present in the leaves of plants. Before the measure-
ment, the plant species, variety and growth phase are selected. After selecting a 
location corresponding to the average of the field and measuring 30 fully 
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developed leaves of different plants, the nitrogen demand per kg N ha−1 of active 
substance for a specific cereal variety is immediately displayed on the screen of 
the device. There are about a thousand different plant variety corrections in this 
device. The correction shows how one plant variety differs from another, as an 
example it can be given that with one N-tester unit value one N demand can be 
close to zero and another variety with the same unit value nitrogen demand can be 
as much as 45 kg N ha−1.

The exact timing of additional fertilization can be determined from observations 
of photosynthesis in plants, termed N-monitoring. In the spring, during the plant 
phases (BBCH-30-51), an average field-specific place is selected for N-monitoring. 
A flag or other clearly visible observation point shall then be inserted in the area 
reflecting the average of the crop in that field. From that day onwards, measure-
ments shall be made every 3 days with an N-tester and an N-monitoring table shall 
be completed, recording regularly every 3 days the growth phase of the plants, the 
N-tester’s readings in units (e.g., 650), average precipitation and temperature, and 
the amount of fertilized nitrogen in the active substance.

The principle of measuring the device itself is not complicated. With this device, 
the reflected red and infrared wavelengths in the leaves of a plant are measured, 
which determines the intensity of photosynthesis and the amount of chlorophyll in 
the leaf of the plant. The device automatically calculates the wavelength and imme-
diately displays the nitrogen demand in kg N ha−1.

In Lithuania, in the spring of 2019, the farmer’s winter wheat field (56°12´ N, 
22°91´ E) was monitored with an N-tester and additional nitrogen fertilization was 
performed accordingly. Figure 50 presents the results of N-monitoring, which show 
how the adjusted values of the N-tester over time and when next additional nitrogen 
fertilization was applied. In this figure, it is also possible to see on what day and how 
much precipitation fell and at which N-tester values N is considered to be optimal.

According to the N-monitoring schedule, the most suitable fertilization time for 
the plant can be predicted. To avoid higher measurement errors of the device, it is 
recommended to fertilize with sulfur as the main spring fertilizer, as this is the 
second element, after nitrogen, that has the greatest effect on plant photosynthesis. 

Fig. 49  Yara N-tester for additional fertilization to determine nitrogen demand and time (The 
figure was prepared by the authors)
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In addition, measurements are not recommended if the plants are sprayed with pes-
ticides, as the plants are under stress and the measurements may not reflect the true 
situation of photosynthesis. In this case, one should wait a few days before 
measuring.

8  �Adoption of Precision Agricultural Technologies

The application of precision farming is closely related to new agronomic and agro-
engineering knowledge, knowledge of new information technologies, farm charac-
teristics, available agricultural machinery, farmer and farm worker education, 
machine service, agronomic consulting, national agricultural policy and economic 
incentive to purchase state-of-the-art agricultural machinery, farm opportunities for 
additional investment and learning.

One of the most important factors in introducing elements of precision farming 
technology is farm size [117, 118]. Say et al. [118] argue that countries with larger 
farms tend to use precision agricultural technologies much faster. Based on the 
results of an analysis of research conducted in Germany, it was found that the 
sociodemographic and farm characteristics have a significant influence on the adop-
tion of precision agriculture in crop farms [119]. The results of the analysis showed 
that the probability of precision farming adoption in crop farms increases if the 
farmer’s experience in crop production is more than 16 years or less than 5 years 
[119]. These are two groups of farmers, one of whom is educated and experienced 
farmers, the other group is made up of young transferees with knowledge of smart 

Fig. 50  Additional winter wheat fertilization according to N-tester N-monitoring (The figure was 
prepared by the authors)
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information technologies. Torbett et al. [120] published in their work that experi-
enced farmers over the age of 50 tend to implement more precision farming techno-
logical operations on their farm. However, the results of the study analysis of other 
authors [121, 122] demonstrated that age has a negative impact on the application 
of precision farming technologies. Younger farmers with long-term insights are 
more likely to associate the modernization of their farms with smart precision tech-
nologies. Vecchio et al. [122] also found a positive interaction between the level of 
education and the adoption of precise agricultural technologies. The results of their 
study demonstrate that individuals adapting to new technologies have a high level of 
education, with almost two-thirds of such individuals having a master’s degree.

Kernecker et al. [123] conducted a survey of farmers who do not apply precision 
farming technologies and found that the main reasons for non-application are high 
investment costs, too complex to use, technology not appropriate for farm context 
and size, added value is unclear and lack of access to live demonstrations of preci-
sion agriculture with neutral contact.

A survey was also conducted in Lithuania, the analysis of which showed that the 
majority of the respondents face problems in implementing precision farming sys-
tems due to inaccurate identification of equipment or inability of farmers to use it 
properly [124]. The adoption of precision technologies in agriculture is also influ-
enced by the size of farms. Smaller farms find it more difficult to absorb more 
innovative technologies and have more problems trying to adapt them to farm activ-
ities. Large farms, meanwhile, are easy to innovate and face far fewer problems in 
managing them. This may be explained by the fact that large farms employ more 
skilled workers and are more focused on companies that disseminate innovation. In 
addition, it can be observed that farmers managing farms of more than 500 ha are 
much more likely to have problems due to incompatibility of engineering equip-
ment. This can be explained by the fact that such farmers, when installing the most 
modern and innovative equipment, purchase equipment from different manufactur-
ers, which is still complicated to communicate with each other [124].

9  �Conclusions

Precision agriculture is a set of technologies consisting of: automatic steering, 
telematics and permanent tramline systems for agricultural machinery, precision 
tillage, variable rate seeding, crop spraying and harvesting machines, and also 
robots controlled by ground, aircraft or satellite sensor signals. In addition, preci-
sion agriculture includes methods and tools for collecting soil samples, analyzing 
soil and plant properties, and harvest mapping. The main goals of precision agricul-
ture are the efficient and safe use of fuel, fertilizers, seeds, plant protection products 
and at the same time improving the quality of products, increasing the competitive-
ness of farms.

In precision agriculture, three components are most important: obtaining and 
accumulating comprehensive data, interpreting, and analyzing it and also making 
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and implementing decisions at the right place and time. In a precision farming sys-
tem, most processes are followed by continuous control sensors that provide accu-
rate and relevant information throughout the process. Currently, proximal sensors 
are the most widely used to measure soil, plant condition, fertilization need, and 
yield. Using the obtained data, the technological parameters of agricultural machin-
ery are adjusted during the work in order to use resources more efficiently: the 
consumption of fertilizers, pesticides, fuel and time are optimized.

In conventional agriculture, fertilizers and other chemicals are spread in the 
fields at the same rate. However, in most cases, the properties of the soil and plants 
in the sub-region of the field are significantly different, which results in too much or 
too little amounts of chemicals being applied in individual parts of the field. This 
problem can be solved by using one of the tools of precision agriculture, i.e., a vari-
able rate technology based on the application of variable fertilization rates depend-
ing on the local needs of the soil and/or plants.

Balancing plant nutrient supply and uptake is necessary not only to optimize 
plant growth and economic returns, but also to reduce negative impacts on the envi-
ronment and humans. It has been attempted to set recommended rates for variable 
rate fertilization to ensure crop demand, farm profitability, and environmental qual-
ity, and many studies have proposed various ways to optimize plant fertilization 
strategies. To this end, measuring equipment is being developed and tested, part of 
which is already commercialized and placed on the market by various 
manufacturers.

In recent years, non-invasive methods for the determination of nutrients (mainly 
nitrogen) in crops in the field have been developed and used quite rapidly. Most of 
these methods work depending on the optical properties of the plants, which are 
affected by water content, leaf aging, disease damage, and nutrients accumulated in 
the plants. The most commonly studied optical parameters of plants are: reflection 
of light rays from the leaf surface, transmission of rays through the leaves, and fluo-
rescence of chlorophyll and polyphenols. In practice, multispectral proximal reflec-
tion sensors for optical properties of plants are commonly used, mounted on a 
tractor or agricultural machinery, that scans a relatively narrow field band. Remote 
field scanning with manned or unmanned aerial vehicles (drones) is promising. By 
scanning the entire field area, more accurate maps of plant properties can be 
obtained. Hyperspectral sensors can also be used in an aircraft. Most of the remote 
sensing sensors used in practice are multispectral, i.e., capturing radiation in broad 
spectral bands-wider than 40 nm with a center of sensitivity coinciding with the 
blue, green, red and near-infrared zones. Remote sensing based on hyperspectral 
scanning is designed to collect reflection data in very narrow spectral bands (about 
10 nm) in various spectral ranges. The use of hyperspectral cameras is also very 
promising in soil properties studies.

There are currently a number of measuring instruments on the market based on 
leaf permeability (SPAD Konica Minolta), chlorophyll fluorescence in leaves (Dualex 
Dynamax Inc., MiniVeg N Sensor Fritzmeier), light reflection from plants surface 
assessment (GreenSeeker NTech Industrines, Yara N sensor YARA International 
ASA, CropScan Cropscan Inc., FieldSpec ASD Inc., ISARIA Fritzmeier, CropSensor 
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Fritzmeier/Claas Agrosysytems, CropCircle Holland Scientific, CropSpec Topcon, 
OptRx AgLeader), satellite image data (QuickBird, etc.).

Recently, the development of a precision farming system has focused on creating 
of agricultural robots and research into their use. The robots can be equipped with 
various sensors that are used to monitor meteorological conditions, soil and plant 
condition (parameters). In addition, robots for sowing, planting, spraying, weed 
identification and eradication have been developed and are being further improved. 
It is safe to say that in the future, robots will play an increasingly important role in 
the cultivation technologies of various agricultural crops.

As the progress of precision agriculture is fundamentally dependent on the prog-
ress of the production of intelligent agricultural machinery, research and develop-
ment of various sensors, “large data” processing programs, artificial intelligence 
and autonomous agricultural machines are establishing rapidly.

The elements of precision agriculture are still applied only in fragments not only 
in agricultural enterprises and farmers’ farms in the Baltic States but also in other 
European countries. Maps of agrochemical properties of plants and soil are usually 
made and used to fertilize individual field areas with different fertilizer rates. 
Farmers often face problems with the interpretation and use of the obtained infor-
mation: yield, fertilization, maps of harmful organisms and soil agrochemical prop-
erties, therefore it is necessary to conduct complex research of precise agricultural 
technological processes, implementation of their results and training of specialists 
in this field. Although precision farming, with its intelligent technologies and equip-
ment, has great potential, but its implementation is too slow for the reasons 
listed above.
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1  �Introduction

In the twenty-first century agricultural productivity should be vastly increased to 
cover the nutrition demands of the earth’s population under harsh and deteriorating 
environmental conditions which directly impact the quantity and quality of the 
crops [1]. Furthermore, the nature of the agricultural tasks is rapidly evolving and is 
very demanding, requiring network coverage, in wide rural areas with scarce or 
even inexistent communication infrastructures, and resilient signals that can travel 
through plants or warehouses. To tackle these issues, the agricultural practices have 
to become more productive and “climate-smart”, by successfully exploiting a vari-
ety of existing and emerging technologies [2]. Thankfully, the progress in 
Information and Communication Technologies (ICT) allows for significant improve-
ments in agri-production [3] and can have a considerable impact on efficiency, resil-
ience and inclusion [4], as innovations such as the Internet of Things, Cloud 
Computing and Big Data are revolutionizing agriculture.

The modern wireless sensor networks (WSN) provide the capability of sensing 
and remotely controlling several environmental parameters and activities, including 
tasks related to agricultural farms, greenhouses, or production processes, and thus 
affecting almost every field of life. It must be noted though that, when working with 
real-world agricultural applications, many traditional network management tech-
niques and protocols should be reconsidered. Indeed, the WSN should be able to 
meet the primary goals of optimizing the efficiency of the network and minimizing 
the energy use [5]. Into this concept, amongst the most promising network 
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technologies are the high-end Low-Power Wide-Area Networks (LPWAN) [6] 
radios, using protocols like LoRa [7]. Indeed, the latter protocol meets the above-
mentioned requirements as it is able to operate at long distances, consumes low 
energy and exhibits immunity to noisy environments.

These characteristics of the LoRa protocol made it suitable for many innovative 
applications, either in its pure version or in its LoRaWAN derived one [8]. Many of 
these applications have a strong impact on agriculture. The only tradeoff is the lim-
ited available bandwidth that the LoRa protocol is achieving, which cannot exceed 
a few kbps for longer distances [9], but even under this limitation the specific proto-
col is still valuable for the type of applications that have low data rate and long 
distance coverage requirements. The performance of LoRa is satisfactory especially 
when the 3 km distance limit is not exceeded [10].

The key factor for LoRa performance is the Chirp Spread-Spectrum (CSS PHY) 
modulation schema which is described in the IEEE Low-Rate Wireless Personal 
Area Networks (LRWPANs) standard 802.15.4 [11]. The chirp modulation is the 
method of transmitting symbols by encoding them into multiple signals of increas-
ing or decreasing radio frequencies. Because of the changing frequencies, chirp-
modulated signals are fairly robust to multi-path interference, fading, and Doppler 
shifts [12]. By increasing the bandwidth, and thus the number of “chirps” per sym-
bol, signals will be transmitted over longer distances, as more information is trans-
mitted per bit.

The important quantities according to the relevant specification [12] for the LoRa 
protocol can be described as:

•	 Spreading Factor (SF): The value of SF varies from seven to 12 and defines the 
number of chirps used to encode a bit. The higher SF values lead to more chirps 
used to represent each symbol. On the other hand, lower spreading factor values 
mean a higher data rate and thus more chirps are sent per second;

•	 Bandwidth (BW): The bandwidth is of dominant importance as a parameter of 
the LoRa modulation. Indeed, the BW is the range of frequencies that are avail-
able for transmission. Larger BW allows transmission at higher data rates, with 
shorter time “on-the-air” and lower sensitivity;

•	 Coding Rate (CR): The LoRa modulation schema also includes forward error 
correction (FEC) bits. This is achieved by encoding each “pure” 4-bit quantity 
with redundancies, actually into 5-bit, 6-bit, 7-bit, or even 8-bit transmission 
units. This bit redundancy allows the LoRa signal to tackle short interferences, 
with greater interference values to require greater CR ratios.

In order to successfully apply the communication benefits of the promising LoRa 
protocol, in real-world and large-scale applications, a meticulous testing and tuning 
of the LoRa modules is required. For this reason, many research works are focusing 
on the idiosyncrasies of the LoRa protocol and try to evaluate or optimize its perfor-
mance [10, 13, 14].

Thankfully, this testing process does not always have to be demanding, in terms 
of the hardware and software components needed. Indeed, the appearance of low-
cost credit card-sized computers, usually comprising open hardware 
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implementations, ranging from arduino uno [15] units to raspberry pi [16] ones, can 
be used to orchestrate the scenarios for measuring the performance of various wire-
less radio modules. These systems can be combined with specific electronic compo-
nents or even with conventional smart phone devices to form a simple, flexible and 
lightweight testbed for evaluating and/or modifying the behavior of the radio inter-
faces of interest. Apart from this, a wide variety of special software, either based on 
textual (e.g., Arduino IDE [17–19]) or visual programming methods (e.g., [20–22]), 
are addressing the programming of these credit card-sized systems. Even the behav-
ior of the accompanying mobile phone/tablet devices is addressed in a similar man-
ner, by tools like the MIT App Inventor [23]. These methods make even people with 
entry-level programming, able to create satisfactory software applications.

The experimental setup being presented involves components that are measuring 
the performance of LoRa interfaces during their activity, mainly in terms of radio 
coverage, energy consumption and packet losses. The whole methodology is based 
on and extends the techniques described in [24] and it is targeted at providing the 
means for an easy but yet effective way of collecting (and processing) radio-specific 
measurements of satisfactory accuracy. The measuring equipment and methods 
being presented are suitable for educational purposes or for use by not very experi-
enced personnel. The impact of the LoRa radio status modifications (at short dis-
tances) is being verified by a suitable electromagnetic radiation meter instrument 
which is able to measure the surface power density at a given distance from the 
antenna. The radio behavior (e.g. transmit power, modulation characteristics, packet 
rate) can be controlled and monitored using simple commands, via a smart phone. 
Furthermore, the payload of the LoRa protocol packets, exchanged between the 
source and the destination node, can be modified to contain useful information, 
from signal level adjustment commands to time stamp and data loss ratio reports. 
This method has successfully been used in packet-switched network cases [25]. The 
performance evaluation techniques, described in this paper are tailored to be in pace 
with the LoRa idiosyncrasy but they can also be applied to other protocol testing 
cases, easily, because of the generic components and methods being used. For better 
comparison reasons, along with the LoRa specific results, indicative results involv-
ing Wi-Fi [26] radio modules are reported.

Apart from presenting performance evaluation techniques and results, this work 
also reports on the feasibility of the LoRa radios to carry out simple remote sensing 
and action tasks, by extending the basic measuring infrastructures, through typical 
examples in the area of agriculture. Following this introductory section, the rest of 
this chapter is organized as follows. Section 2 explains the design principles of the 
proposed measuring tools and their extensions. Section 3 provides characteristic 
implementation and measurement methodology details. Section 4 is dedicated to 
the evaluation of the proposed system, techniques and results. Finally, in Sect. 5, the 
description of this work ends with summarizing remarkable comments and present-
ing work plans for the future.
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2  �Design Overview

In order to evaluate the performance of the LoRa protocol two identical LoRa radio 
transceiver modules were used, in the form of arduino shields [27], to be fitted on 
two corresponding adruino uno units. The accompanying software [28] was also 
studied, in order to implement a simple client – server schema for communication 
among these radios. Methods for modifying the transmit power, the packet size, the 
inter-packet distance and for collecting parameters such as the Received Signal 
Strength Indicator (RSSI) [29], the packet error rate or the module’s power con-
sumption have been designed as well.

In order for things to become more efficient, the packets directed from the client 
(at the user’s end) to the server (at the farm’s end) were designed to contain, into 
their payload, additional commands for modifying the operating parameters (e.g., 
the transmit power) of the LoRa radio shield on the server. The replies sent back to 
the client also contain additional information reflecting the radio status of the server 
(e.g., the RSSI values). This technique was also extended to carry real world com-
mand requests (and the proper replies) for controlling farm-related actions, like 
watering the plants, or sensing actions and asking the status of environmental 
parameters (e.g., the soil humidity or its salinity level).

Although the user’s commands can be provided through buttons and switches 
connected on the arduino unit, a raspberry pi unit was used to provide the necessary 
functionality to support user’s intervention with the sensor nodes, via a conventional 
tablet or a smart phone device extending methods described in [24]. The hiring of a 
raspberry pi unit allowed for more sophisticated, and thus computationally demand-
ing, processing operations such as database storage or web-based AI services [30] 
support (e.g. voice commands interpretation). The raspberry pi is a much more pow-
erful unit than the arduino uno and their roles can be seen rather as complementary 
ones than competing ones.

On the other hand, the considerable gap between their potential, leaves plenty of 
space for other credit-card sized devices to flourish, like the ones based on the 
ESP8266 [31] or the ESP32 architecture. Indeed, instead of the raspberry pi, in the 
experimental and monitoring testbed being presented the WeMos board [32], an 
ESP8266-derived unit, can be used for quite simple tasks. The WeMos board is 
smaller than the raspberry pi, consumes less energy and also has a Wi-Fi built-in. In 
this regard, the latter board can be used to intercept the smart phone-derived mes-
sages from the user and to perform the bridging with the arduino/dragino system, 
via the serial interface, and other typical storage and processing tasks. Even beyond 
that, as the WeMos has a very similar pinout to the arduino uno, it looks and works, 
in many cases, like an arduino board and thus, it can replace this unit as well. A wide 
variety of sensor and actuator shields, manufactured for the arduino platform, can 
be exploited, with the LoRa dragino shield not to be an exception. More specifically, 
with minor jumper changes and by using the arduino IDE (Integrated Development 
Environment  – IDE) environment for programming, at the human’s end (client 
device), the system of a raspberry pi unit, plus an arduino uno, plus a LoRa shield, 

D. Loukatos et al.



105

can be replaced by a WeMos unit equipped with a LoRa dragino shield, which is a 
more compact and cost effective arrangement, for a variety of comparatively simple 
measuring and processing scenarios.

A typical instance of the proposed architecture, allowing the realization of both 
LoRa protocol related performance evaluation actions and meaningful farming 
activities monitoring and controlling, is depicted in Fig. 1. The left part of this figure 
is dedicated to functions at the user’s (i.e., the farmer’s) end while the right part is 
dedicated to functions taking place at the farm’s end.

3  �Implementation Details and Measurement Methodology

In pace with the guidelines described in [24], the measurement process can be 
divided into three stages. The first stage is responsible for adjusting the experimen-
tal configuration settings. The second stage is dedicated to the recording of the 
activity during the LoRa radio modules interaction. For better results, during this 
stage, the fast-varying actions of interest are repeated many times (the number of 
repetitions is fixed or computed at the end of the process) before the recording pro-
cess is completed. By inspecting the aggregate quantities, at the end of the process, 
interesting and quite accurate results are extracted, without the need for a short-term 
time granularity and its increased cost [33]. The third stage is responsible for col-
lecting the results from the LoRa-equipped sensor nodes to the monitoring device 

Fig. 1  A typical architecture allowing for both LoRa protocol performance evaluation actions and 
for farming activities monitoring and control
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(e.g., the smart phone) and, possibly, for further data processing or delivery to a 
database or a web server.

Providing further details, educationally fruitful code was written to program the 
accompanying mobile phone/tablet devices, using tools like the MIT App Inventor, 
to tackle the communication tasks with the raspberry pi (or the WeMos) unit. This 
communication is based on a Hypertext Transfer Protocol (HTTP) message request-
reply mechanism or on even faster counterparts that are implemented using the User 
Datagram Protocol (UDP) protocol. Bluetooth radio is also an option of more lim-
ited capabilities. The MIT App Inventor is an excellent programming environment 
that is based on visual blocks. By using this package, even quite inexperienced 
programmers can create fluent software applications. Despite the fact that similar 
environments have mostly been used on an educational basis involving primary and 
secondary school students [34], their potential has also been tested in more compos-
ite and demanding scenarios with satisfactory results [35, 36].

The use of a tablet or a smart phone device to monitor and control the whole 
experimental process can be seen as really valuable feature, if the harsh agricultural 
field measurement conditions are taken into account. The mobile application imple-
mented by using the App Inventor environment has a main screen layout that allows 
for a flexible configuration and monitoring of the LoRa nodes, in a manner that is 
very familiar to the modern people. The initial design of this layout and the actual 
result on the smart phone or the tablet device, are shown on the left and the right part 
of Fig. 2.

Fig. 2  The main screen layout of the mobile application allowing for a flexible configuration and 
monitoring of the LoRa nodes
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The mobile application provides to the user fluent configuration options for the 
most critical operational parameters of the LoRa modules, namely: the transmit 
power (TXP), the spreading factor (SF), the bandwidth (BW) and the coding rate 
(CR). Furthermore, the traffic flow can also be adjusted via the packet rate (PktRate) 
and the packet size (PktSize) parameters. In terms of visual programming tech-
niques buttons, edit boxes, check boxes, labels and scroll bar controls have been 
used to facilitate the interaction between the human and the LoRa radio modules. 
Invisible components like timers (for estimating the period of the testing) and Web 
objects (for providing HTTP access between mobile device and raspberry pi or 
WeMos equipped node) have been used as well.

More specifically, after establishing communication with the node, a typical 
measurement process requires setting and passing the proper values for the configu-
ration parameters. These parameters are passed to the “client” node, via the Wi-Fi 
interface in the form of HTTP requests, (at human’s end) and then are forwarded to 
the remote “server” node (at farm’s) end, via the LoRa interface. It is the remote 
node that first alters its operational state, while the client node updates its configura-
tion last. After this step is accomplished, the “TestNode” button is enabled and, if 
pressed, a countdown timer is triggered, providing information for the remaining 
duration of the experiment. During the experiment a large (and constant) number of 
packets, at the defined rate, are generated and directed towards the remote node. On 
completion of the experiment or if the “GetResults” button is pressed the proper 
results are shown on the screen of the mobile device. These results typically include 
the average RSSI record, the packet loss ratio indicator or even the achieved packet 
rate and the energy spent per each packet being transmitted. The RSSI and packet 
losses metrics are based on measurements taken at the remote node, while the data 
rate and the energy metrics are based on measurements at the “client” node. In gen-
eral, the results are directed from the “server” node to the “client” node, via LoRa 
packets, while the “client” node delivers these data to the mobile device (i.e., the 
smart phone or the tablet) in the form of HTTP reply messages. Additional function-
ality tackling the issues of getting and storing the GPS (Global Positioning System) 
coordinates of each valid measurement along with the metrics of interest has been 
implemented as well, as part of an extended version of the mobile application. As 
the experimental portable equipment is intended for long distance measurements, 
under potentially harsh conditions in rural areas, the whole process has been kept as 
straightforward and simple as possible.

From the code aspect that runs on the testing nodes, in case of the raspberry pi 
based implementation, the necessary testing or monitoring commands, generated by 
the tablet or the smart phone device of the user and intercepted by the Wi-Fi inter-
face of the raspberry pi, are forwarded through the USB connection to the arduino 
uno unit (via suitable code written in python) and finally to the LoRa modules 
through the RadioHead API (Application Programming Interface), and vice versa. 
Each valid command is served by a corresponding case handler routine that exploits 
the potential of the radio modules being interconnected. In case of the WeMos based 
implementation (programmed using the arduino IDE -Integrated Development 
Environment- environment and special additional environment and library 
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components), the necessary testing or monitoring commands are circulating through 
the Wi-Fi interface of the WeMos device towards the pairing LoRa modules, through 
the RadioHead API, and vice versa. The code has been written so as to allow the 
Wi-Fi equipped node at the human’s end (i.e., the raspberry pi or the WeMos node) 
to automatically establish a link with the mobile device of the user, with the latter 
device to act as an access point. This setup provides independence from fixed infra-
structures. The LoRa radio modules at both ends were configured via the RadioHead 
library so as to send packets in a simple “unreliable” manner. This option means that 
the LoRa system will not to perform packet retransmissions, after unsuccessful 
packet delivery, and thus the process of estimating the energy spent for packet trans-
mission actions can provide more accurate results. Additional software parts were 
programmed to provide detailed current consumption and packet transmission time 
readings to the end-user application.

The whole implementation (MIT App Inventor part) is following an event driven 
philosophy and comprises of several blocks. Figure 3 highlights exactly the role of 
these visual code blocks providing the mobile application functionality.

The corresponding arrangement for the experimental equipment for the client 
node (at the human’s end), for the raspberry pi – arduino interconnection case, is 
shown in Fig. 4. This interconnection is feasible via a USB cable of type-A and 
type-B plugs. This solution is intercepted by the Linux OS based operating system 
of the raspberry pi unit (i.e., the raspbian distribution) as a serial connection/device, 
typically under the name “/dev/ttyACM0”. The native serial port that both the rasp-
berry pi and the arduino uno units have can be used as well, to reduce the energy 
being consumed by the arduino part, at the cost of increased wiring complexity. 
Alternatively, the hiring of a WeMos board to host the LoRa shield and to provide 
interaction with the operator (user’s end), instead of the raspberry pi – arduino com-
bination, resulted in reduced energy consumption and more compact layouts.

The nodes that participate in the measurement process combine raspberry pi with 
arduino boards (or WeMos based equivalents) and LoRa dragino shields and all 
these components are fixed on wooden bases at the top of wooden rods. These 
wooden parts are forming a capital “T”-shaped lightweight structure, which is very 
practical, increases portability and eliminates the electromagnetic interference that 
might lead to erroneous recordings. The wooden rods are long enough to provide an 
approximate 2.0 m elevation from the ground level for the LoRa transceiver mod-
ules, if necessary. The corresponding arrangement for the experimental equipment 
(for the WeMos – arduino case) is shown in Fig. 5, while Fig. 6 depicts these devices 
in action.

Furthermore, there are two additional components that are worth highlighting. 
The first one is a TM-195 RF Field Strength Meter [37]. This instrument intercepts 
any transmit power modification of the LoRa modules by measuring the surface 
power density (in μW cm−2) at a specific distance from the radio module. Any exter-
nal radio source should be eliminated or be subtracted from the readings. To ease 
this constraint, most measurements can refer to the LoRa module at the farm’s end, 
that has no Wi-Fi radios nearby. The second component is an LTC4150 Coulomb 
counter [38], which is able to measure (aggregate) mAh of consumption as it 
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generates an interrupt every time that 0.0001707 Ah passes through it. The power is 
measured at electric charge level. This module is connected between the supply 
main and the arduino uno unit (or the WeMos unit) hosting the LoRa shield and 
reports to the arduino, its overall power consumption. Constant quantities (i.e., the 

Fig. 3  Indicative visual blocks implementing the mobile application functionality
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Fig. 4  The experimental arrangement for the client node (at human’s end) equipment (raspberry 
pi – arduino case)

Fig. 5  Experimental arrangement for both client and server node equipment (WeMos  – ardu-
ino case)
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consumption of the LoRa module at idling) are subtracted to provide accurate esti-
mations of the exact amount of energy spent during the activity phase.

As already mentioned, the measuring infrastructure can be slightly modified to 
provide remote control and monitoring of various sensor or actuator units. The main 
limitation is that the data rate to be supported has to be only a few kbps. Furthermore, 
only small packets are allowed (i.e., packets with less than 230 bytes payload, 
approximately or even with less than 50 bytes payload, for larger distance coverage 
specifications).

Provided that the network traffic is sparse enough, a wide variety of actuators can 
be supported; among these are ventilation motors, water pumps, electric (solenoid) 
valves and lamps. Typically, the commands arriving to the server node are inter-
preted in general purpose input/output [39] actions, which in turn are used to fire the 
necessary motor driving equipment. This driving equipment can be conventional 
relays or more reliable solid-state relays, for simple on-off operation. In case of 
variable operation, the driving circuits should be more complex involving pulse 
width modulation – PWM [40] and/or phase control – PFC [41], methods, with the 
latter to be applicable to alternating current – AC-powered systems.

Similarly, the farm-specific information can be acquired by a variety of sensors 
(e.g., measuring humidity, luminosity, distance, position or temperature) connected 
with the server node (at the farm’s end) using its GPIO pins. A large variety of 

Fig. 6  The experimental measurement equipment, comprising of LoRa modules, in action
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interfacing protocols is supported by the system for communicating with the sen-
sors (e.g., serial, I2C, SPI, single digital or analog inputs).

Figure 7 depicts typical equipment used during the experiments, involving sen-
sors and actuators that are meaningful for agricultural tasks, along with LoRa 
equipped nodes. The arduino uno unit has been replaced with the larger and pin 
compatible arduino mega unit that offer more connectivity options.

4  �Evaluation of Methods, Results and Discussion

This section presents characteristic measurements taken using the above-mentioned 
methodology, highlights strengths and weaknesses of the LoRa technology and 
reports on the feasibility of the proposed testbed to assist in typical agricultural 
monitoring tasks. The most interesting case is using the SF7 and BW125kHz con-
figuration, which is the default setting for devices using the open-source LoRa 
implementation.

The first set of measurements is focusing on the Received Signal Strength 
Indicator – RSSI evaluation, for various distances between the LoRa radio modules 
participating in the experiments and for various transmit power level settings. The 
top left part of Fig. 8 depicts the RSSI values, intercepted by a LoRa module (blue 
points) as a function of the distance from the pairing LoRa module. Both LoRa 

Fig. 7  Typical equipment used during the experiments, involving sensors and actuators that are 
meaningful for agricultural tasks, along with LoRa equipped nodes
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radios had their transmit power adjusted to 10 dBm, while the spreading factor (SF) 
parameter was set to seven, the bandwidth (BW) was 125 kHz and the coding rate 
(CR) was 4/5. The RSSI measurement process was repeated using the Wi-Fi radio 
module of the raspberry pi board and an access point. The results for the Wi-Fi case 
are indicated by red points in the top left part of Fig. 8. The signal attenuation is less 
intense with the LoRa links, which are able for much longer distance communica-
tion as they can reach sensitivity levels of −140 dBm, while the Wi-Fi links usually 
stop before the −100 dBm border. The top right part of Fig. 8 depicts the RSSI 
measurements acquired using the LoRa radios, for distances from 50 m to 350 m 
and for transmit power levels of 5 dBm (in grey), 10 dBm (in red) and 15 dBm (in 
blue), respectively, at presence of some trees and buildings, in the university cam-
pus. By inspecting this graph, which shares the same vertical axis scale with the left 
graph, an almost 5  dBm offset is recorded, corresponding to these consecutive 
power settings, for the same distance between the radios. The bottom part of Fig. 8 
depicts the surface power density, as intercepted by the TM-195 power meter, as a 
function of distance (in cm) from the LoRa radio module, while transmitting at 
3 kbps and at 5 dBm. The vast decrease in the power density values being measured, 
over the distance from the transmitting LoRa equipped node (client), highlights the 
energy demanding nature of the wireless communications and the importance of 
having transceivers of high sensitivity.

Fig. 8  Top left: The RSSI over the distance from the source, for LoRa and Wi-Fi transceivers. Top 
right: RSSI measurements over the distance, for different transmit power levels. Bottom: The sur-
face power density as a function of distance from the source
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The impact of typical LoRa-specific parameter combinations on the actual radio 
traffic characteristics was further evaluated. More specifically, the top left part of 
Fig. 9 shows the RSSI graph of the LoRa signal, as it is intercepted by the server 
node (at the farm’s end), as a function of the distance from the client LoRa node (at 
the user’s end), for two different cases: (a) with SF 7, BW 125 kHz, CR 4/8 and TXP 
10 dBm and (b) with all parameters as in (a) except BW, which is now set at 250 kHz. 
As depicted in Fig. 9, the second case exhibits worse RSSI values. This deteriora-
tion of 3  dB, approximately, in the reception signal as the bandwidth increases, 
results in achieving shorter maximum communication distances. This behavior is 
one of the theoretically expected tradeoffs that the hunger for faster data rates (i.e., 
under increased bandwidth) has. The top left part of Fig. 9 also includes two shorter 
curves corresponding to the case where the above-mentioned settings (i.e., for 
125 kHz and 250 kHz) were used for taking measurements inside the orchard at the 
university campus, between the trees. The case with the 125 kHz bandwidth selec-
tion keeps almost constant distance from its 250 kHz counterpart. In the orchard, the 
LoRa signals exhibit an approximate reception drop of 9 dBm, compared with the 
corresponding open space cases.

The bottom right part of Fig. 9 shows the time required for the transmission of 
each consecutive LoRa packet frame (time “on-the-air” or “airtime”) as a function 
of the packet payload size (in Bytes), for different spreading factor (SF) values, with 
the bandwidth parameter at 125 kHz. More specifically, these times varied drasti-
cally from below 50  ms to above 2  s per packet, according to the selected 

Fig. 9  Top left: The drop in RSSI values as the bandwidth increases, for LoRa transceivers, in 
open air and in orchard environment. Bottom right: The time “on-the-air” as a function of packet 
payload size, for different spreading factor values
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configuration. The increase in the SF results in better noise immunity (i.e., the LoRa 
packets to be intercepted at weaker RSSI levels) at the cost of drastic reduction in 
the data rates being achieved. Indeed, higher SF implies result in fewer chirps per 
second and thus fewer data to be encoded per second. In contrast with transmissions 
at lower SF values, sending the same amount of data at higher SF requires more time.

The packet losses during the experiments using the LoRa radios were quite low. 
More specifically, at typical distances (e.g., 250 m – 350 m) and at presence of veg-
etation, the losses did not exceed 5% for packet delivery trials at low power (i.e., 
5 dBm), they further dropped below 2%, for trials at higher power (i.e., 10 dBm), 
and even became negligible for transmissions near the maximum power (i.e., 
20  dBm). At long distances (e.g., 5  km) and line-of-sight (LoS) conditions, at 
10 dBm transmit power, the losses for spreading factor 7 were 10% approximately. 
By further increasing the signal immunity to noise, by a selection of spreading fac-
tor 11, the packet losses dropped to 3%, approximately. In both cases, at 5 km, the 
measured RSSI values slightly above −100 dBm, for the narrow bandwidth selec-
tion of 125  kHz which achieved better results. By increasing the power at the 
20 dBm level, the losses dropped below 2%, even for the worst case of the SF7 
setting selection.

Further power specific results are depicted in Fig. 10. These results involve the 
TM-195 power meter readings and the recordings provided by the LTC4150 

Fig. 10  Top left: The surface power density, at constant distance from the LoRa module, for vari-
ous transmit power levels. Top right: The relation of the surface power density over the power 
consumption. Bottom: Energy required for transmission per packet, for different radio settings
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Coulomb counter which has been properly attached on the arduino (or the 
WeMos) unit.

More specifically, the surface power density, in μW cm−2, at constant and short 
distance (i.e., 5 cm, approximately) from the LoRa transceiver module, while trans-
mitting at high constant rate (3 kbps, approximately), for various transmit power 
level arrangements (i.e., from 5 dBm to 20 dBm), is depicted at the top left part of 
Fig.  10. The corresponding chart of the surface power density over the average 
power consumption is depicted at the top right part of Fig. 10 and reveals the linear 
relation between the power being consumed and the power being emitted into the 
surrounding space. The average power consumption of the LoRa module, in mA, 
during the packet transmissions is calculated after subtracting the idle state values. 
More specifically, as indicated by processing of the LTC4150-generated measure-
ments, the LoRa shield, along with the hosting arduino uno unit, consumed at about 
60 mA, while the LoRa module itself, at idling state, at about 7 mA.

The bottom part of Fig. 10 depicts the energy amount, in mJ, required to send one 
packet of 15 B payload. These measurements were performed using a WeMos unit 
equipped with an LTC4150 counter module and a LoRa dragino shield, configured 
at the most frequently used radio setting of 125 kHz bandwidth and at a transmit 
power level of 10 dBm. The LTC4150, via providing interrupts, is exploited by the 
WeMos, which through the sum of electric charge being spent for the delivery of a 
specific and large number of packets, at constant supply voltage, calculates the total 
energy being spent. The energy per packet is calculated from this total energy 
mount, after subtracting the system’s energy amount at idling for the same time 
period duration and dividing by the number of packets being transmitted during this 
period. The energy amount per packet drastically varies according to the SF param-
eter selection. Indeed, as already discussed, sending the same amount of data at 
higher SF requires more time, which means that the radio system should be active 
for a longer period and thus is consuming more energy. Furthermore, while trans-
mitting with higher CR values (i.e., 4/8 instead of 4/5) this amount of energy 
becomes even greater, because more bits are added to the packet for redundancy 
purposes. The energy values being calculated are in accordance with other research 
works [13, 14] studying the same phenomenon. The increased energy amount per 
packet is attributed to the fact that, apart from the payload bytes, the header and the 
CRC bytes should be sent as well, and also to the extra processing that the prepara-
tion and delivery of each packet requires by the hosting board (i.e., by the 
WeMos unit).

The data rate values provided by the LoRa radios, compared with ones provided 
by the Wi-Fi radios, were considerably lower, especially with greater spreading fac-
tor values and narrow bandwidth. Even data rates even as low as 2–3 kbps, forming 
packets of 100 B to 200 B every half a second, are sometimes above the potential of 
the client – server communication needs. The delivery of much smaller packets is 
favored and suggested for the specific radio. The bandwidth utilization by the LoRa 
radios should follow additional fair policies like the 1% “on-the-air” time limitation 
[42] that applies to the total transmission time. However, most of the typical agricul-
tural applications in a small-scale farm are lightweight enough to be satisfied by this 
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low duty-cycle limitation. Indeed, the system of the two LoRa radios used during 
the experiments was adequate to carry typical commands for activating an electric 
pump or reporting on the soil humidity level, at a sparse time granularity, in packets 
containing a few bytes each. Such a system can be used on a permanent basis for 
farm activities monitoring, possibly assisted by a faster (but much more energy 
demanding) radio link (i.e., an IEEE802.11 link), if a high bandwidth is necessary 
to carry critical information (e.g., video streaming), in case of emergency triggers.

Finally, another interesting to mention issue, is the positive impression that the 
whole smart-phone assisted implementation and measurement process made on the 
students of agricultural engineering participating in the experiments. Indeed, the 
mobile devices are something that newer generations are very familiar with. 
Furthermore, the easy-to-use and portable nature of the equipment being used, 
along with its capability of long-range metrics gained good comments and assisted 
in better understanding the idiosyncrasies of the LoRa radio protocol. For these 
reasons, a more meticulous and well-documented evaluation of the potential bene-
fits that the techniques being presented may have for the educational process will be 
necessary in the future.

5  �Conclusions and Future Work

This paper presented a low-cost, generic and flexible methodology for evaluating 
and/or modifying the behavior of LoRa radio modules, forming easy-to-use and 
portable equipment, which is capable of getting fast results of satisfactory accuracy. 
The experimental testbed being described is exploiting innovative smart phone 
industry derived components and thus is providing the necessary user friendliness 
to monitor/modify the operational characteristics of LoRa-equipped sensor nodes, 
via simple commands. A pair of LoRa radio modules, hosted upon two arduino uno 
units (or similar counterparts), is the core of the measurement and control system. 
A satisfactory set of measurements were possible due to the embodiment of suitable 
additional electronic modules. Indeed, apart from the design and implementation 
details, characteristic measurement results, referring to radio coverage, packet 
losses and energy consumption are also reported. These results are in line with the 
underlying idiosyncrasies of the LoRa protocol and in accordance with similar 
research works. Many of the measurement series were performed in realistic, in 
terms of agriculture, conditions. The proposed testbed infrastructure was also fur-
ther extended to be useful in real world scenario conditions, as it can easily be modi-
fied to serve the communication tasks of typical agricultural applications having 
sparse traffic requirements, like activating an electric pump or reporting on the soil 
humidity level.

The methodology being presented, due to its generic and modular design, has 
hardware agnostic features and thus, can be easily adapted, in the future, to provide 
a rich set of measurements for a large variety of LPWAN modules, able to serve a 
wider set of agricultural tasks. Furthermore, the discussed characteristics of the 
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whole implementation, that allow for interaction via conventional smart phones, 
make the overall experimental setup ideal for use by not very experienced personnel 
and educationally beneficial for the students of agricultural engineering. The posi-
tive impact that the implementation and the measurement process had on the partici-
pants should be further evaluated and documented, for improving the educational 
process and students future careers.
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1  �Introduction

Wireless Sensor Networks (WSNs) can be defined as a group of sensors, generally 
of a large number, spread over a specific area to collect and share information among 
them and with a gateway [1]. Different types of data can be collected, such as envi-
ronmental variables (temperature, relative humidity, pressure, and vibration), pres-
ence, and movement of objects, among others.

Some of their main advantages over wired sensor networks are the reduced num-
ber of wires and cables, reducing infrastructure costs and problems, and increased 
flexibility of the networks used. In the specific case of agricultural production, they 
have been used on a variety of segments, such as vineyards [2], greenhouses [3], 
irrigation management [2], among others.

Of specific interest for this work are the uses of WSNs on animal production. 
There are several uses in the literature, such as monitoring animal feeding and ani-
mal welfare in confinement production [4]. Fewer works are describing their use on 
extensive pasture beef cattle production activities. WSNs can improve the gains of 
animal production farms due to better animal health and welfare management, bet-
ter feeding, and productivity control.

Due to the Internet of Things (IoT) paradigm, an increasing number of WSNs 
have been adopted for farming activities [5]. This paradigm can be defined as how 
different technologies interact with each other in a specific environment [6], and 
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includes devices, sensors, actuators, networks, routing protocols, databases as well 
as the processes to manage the data lifecycle using all those devices and processes. 
According to Dogra, Jha and Jain [7], 5G (Fifth Generation of Mobile Networks) 
and beyond will also increase the adoption of IoT technologies in many domains, 
which may include farm production.

Nevertheless, most papers on IoT implementation are on areas outside of the 
animal production domain, and most deal with theoretical aspects related to data 
collection, processing, storing, and access. Data routing, responsible for the proto-
cols and processes needed for data transmission throughout the WSNs and IoT 
devices [8], is rarely studied in-depth in this domain.

For this reason, some routing protocols will be analyzed on the current work on 
an important scenario for animal production on extensive pastures: cattle weighing 
in the field. Better daily measurements of animals could help improve productivity 
and predict diseases. The daily measurements obtained in the field could be used, 
together with the more precise periodic measurements collected during vaccination 
procedures, on machine learning models to improve productivity.

The Collection Tree Protocol (CTP) and the IPv6 Routing Protocol for Low-
Power and lossy networks (RPL), two of the most traditional routing protocols, will 
be evaluated, together with Software-Defined Networking (SDN). The last is an 
alternative, proposed for communication routing in the last years and has obtained 
considerably good results compared to the previous two [9].

The main objective of the present research is to evaluate the Packet Delivery Rate 
(PDR) and latency, two very important metrics for data routing, for cattle weighing 
in the field with WSN, considering the CTP and RPL protocols, as well as SDN. The 
main research question explored in this work is: “Is there a difference between rout-
ing protocols and methods for PDR and latency for cattle weighing in the field using 
WSN (Wireless Sensor Network)? If so, which is the best one?”. This will be 
achieved through computer simulations of the routing protocols over the WSN.

This work is organized as follows: Section 2 contains a description of the main 
concepts used in this work, based on the state of the art literature; Sect. 3 contains 
the steps of the methodology used; Sect. 4 contains the main results obtained from 
the simulation and their analysis; Sect. 5 contains a discussion of the impacts of the 
results; and Sect. 6 contains the conclusions of the work, including its main limita-
tions and future works.

2  �Related Work

In this section, the main concepts that are important for conducting the simulation 
and the analyses are introduced: Sect. 2.1 contains a description of the main papers 
related to IoT implementation in the agricultural domain; Sect. 2.2 contains a 
description of the routing protocols used, including their main differences; and Sect. 
2.3 contains a description of the SDN technology and its many uses.
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2.1  �IoT in the Agricultural Domain

The demand for animal-based food products is expected to increase by up to 70% 
by 2050 [10]. To meet such demand in a way that has a minimal impact on the envi-
ronment and improves the quality and performance of livestock farming, the imple-
mentation of new technologies is required.

With the popularity of the IoT, WSNs have widely been researched. With the 
sensors’ real-time monitoring and tracking functions, they can collect distributed 
data, analyze yielding, monitor agriculture environment conditions, decrease agri-
cultural cost, and improve farm production. However, sensor nodes in agriculture 
may dynamically connect to the networks due to sensors powering off, unstable 
wireless signals affected by bad weather, distance, or movement, affecting network 
stability. Besides, with the adoption of precision agriculture with mobile autono-
mous vehicles carrying multi-sensors and precision livestock farming with moni-
tored animals and systems, sensor nodes’ connectivity may change frequently. 
Therefore, the stability and reliability of sensor network communication is an 
important topic nowadays [11].

Thus, IoT has a good potential to improve agribusiness, but connectivity is still a 
critical issue. 5G comes as a newly emerged communication and solution platform 
for rural areas. The authors Marchese, Moheddine, and Patrone [12] describe the 
integration of IoT devices, UAVs (Unmanned Aerial Vehicles), and satellites in the 
5G environment. They state that solutions to extend the Internet connectivity to 
smart farming and smart villages, among other 5G application scenarios, need to go 
beyond the terrestrial infrastructure, and also that IoT and UAVs are promising in 
the agriculture field to monitor and control crop parameters and increase the quality 
and quantity of food.

The authors Fernandez, Vidal, and Valera [13] argue that, from the 5G concept, 
the agriculture IoT slice might be used to monitor and deliver relevant information 
in smart farming applications, e.g., values of temperature or humidity in different 
regions of a crop field. In this case, functions able to process high volumes of data 
may be required in nodes allocated in cloud computing infrastructures close to the 
core network.

IoT smart farming solutions may also integrate two services, one to control the 
humidity in some vineyards and another one to manage autonomous UAVs opera-
tions used for cattle surveillance. There are not important latency requirements in 
the first use case, and hence, everything can be deployed in the cloud infrastructure. 
In the second use case, there are significant latency requirements, and some parts of 
the solution may initially be deployed in the central cloud, while some others at the 
edge (e.g., in base stations or even in the UAVs themselves). By doing this, a cost-
effective solution is built to offer the functionality of an IoT gateway in IoT sce-
narios where network infrastructures are insufficient (or simply unavailable) to 
support data communications with IoT devices over a delimited geographic area 
(e.g., a remote area in smart farming applications).
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AlZu’bi et al. [14] propose an automatic and unsupervised smart irrigation sys-
tem under a hardware implementation to accurately validate the proposed machine 
learning techniques and optimized equations. IoT sensors are attached in and around 
the proposed prototype to transfer the plants’ environment status wirelessly. A smart 
irrigation system is implemented based on the analysis of the WSNs and the pre-
defined environmental status for each plant under 5G.

When it comes to livestock production in general, one of the most critical aspects 
involves the management of feeding and drinking inside the farm, in a way that 
animals can stay healthy and may experience optimal weight gain, which is based 
on feed conversion ratio and energy expenditure. For that, the main requirement is 
related to the correct association of important production parameters with each ani-
mals’ ID, such as weight, food, and water consumption over time (to obtain feed 
conversion ratio).

In free-range cattle-raising farms, the traditional methods involve weighing the 
animals once or a few times over the year, usually during vaccination or general 
herd health procedures, in which animals have to go through cattle crushes. If the 
animals could be weighed more often and without the need for human interaction, 
aspects such as farm management, animal welfare, and productivity would be ben-
efited [15].

Works have been developed for the automated acquisition of individual animal 
mass by using depth images [16, 17]. Although this is very promising for confine-
ments, its use for in-field weighing is still expensive due to many sensors and the 
use of high bandwidth of the deployed network.

The weighing of animals in grazing farms implies difficulties related to the large 
distances and the high number of animals that are usually observed. In this sense, 
the use of load cells next to the drinking troughs seems to be the best solution since 
it can detect both the animal’s weight and water consumption. Concerning the gran-
ularity of measurements, it is capable of performing at least a few measurements a 
day, associated with the moments that the animals stay at the drinking troughs, and 
provides an automatic measurement, eliminating the need for human interaction. 
However, for that to work correctly, the network must provide a consistent and effi-
cient connection between the nodes and the central point or gateway.

A critical aspect of IoT technologies and WSNs in the agricultural domain is the 
data routing protocol used. The next section contains a discussion of data routing 
protocols, focusing on the two main protocols analyzed in this work: CTP and RPL.

2.2  �Routing Protocols

According to Simon Carbajo et al. [18], WSNs are limited in communication by the 
range of their radio modules. Thus, they need to form networks to transfer data from 
distant points. In this way, routing protocols are primary enablers of WSNs, and 
these require the implementation of reliable and energy-efficient mechanisms to 
maximize the reliability and availability of the network.
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As most domains have specific requirements, it is vital to understand the ade-
quate requirements and which routing protocol would be the most beneficial to use 
when studying the implementation of technologies in a specific domain. Section 4 
contains a discussion of the main requirements for the use case analyzed in this 
work, while the next subsections contain discussions of the two routing protocols 
that will be simulated: Collection Tree Protocol or CTP and IPv6 Routing Protocol 
for Low power and Lossy Networks or RPL.

2.2.1  �Collection Tree Protocol (CTP)

CTP is a tree-based routing protocol where a designated root, or set of roots, adver-
tises itself and creates routing trees by spreading its gradients [19]. This protocol 
computes and maintains routes to one or more sinks, building and maintaining mini-
mal cost trees with the sink as root, an adequate organization for converging exclu-
sive traffic patterns [19].

CTP is responsible for broadcast communication and root discovery. It uses a 
component named link estimator to estimate the quality of a link with another 
neighbor node by sending and receiving acknowledgments for a series of pack-
ets [20].

CTP is a two-mechanism WSN routing protocol that offers high resilience to 
changes in topology: (i) route validation through data traffic to quickly detect incon-
sistencies in network topology; and (ii) the sending of control packages with adap-
tive periodicity to apply route repair mechanisms [21]. It is designed to quickly 
detect top-level cycling and recover from inconsistencies caused by high network 
dynamism [22].

According to Marques [22], CTP’s route validation mechanism uses data packets 
to validate network topology and detect cycles. Cycle detection occurs by using data 
packets containing a metric to estimate the distance between the sending node and 
the receiving node measured in the number of hops. A cycle is detected when a node 
receives a packet whose distance from the sender to the recipient node is less than 
or equal to the distance from the node in question to the destination node. A topol-
ogy repair mechanism is activated to correct this cycle [21].

Root nodes establish their gradient using a cost metric called Expected 
Transmission Count (ETX). It is a bidirectional single-hop link quality computation 
metric between two neighboring nodes that estimate the link quality based on the 
number of successfully delivered unicast packets between two given nodes from an 
acknowledgment of received packets [18].

For such computation, the PDR metric is used. It is calculated at the receiver 
node in terms of the division of Received Packets (RP) by Sent Packets (SP), as fol-
lows in Eq. 1 [23]:

	
PDR

RP

SP
=

	
(1)
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The value computed in Eq. 1 is also defined as in-quality, which is the quality from 
node Y to node Z measured by node Z by counting the successfully received packets 
from Y among all transmitted. It is also called PDRdown. For the actual ETX esti-
mation, the out-quality is also needed. This is the in-quality estimated by node Y 
and is defined as PDRup at node Z. Then, node Z can calculate ETX, as shown in 
Eq. 2 [23]:

	
ETX

PDRdown PDRup
�

�
1

	

(2)

Besides the CTP, the other protocol that will be analyzed in this work is the 
RPL. This will be described in more depth in the next subsection.

2.2.2  �IPv6 Routing Protocol for Low Power and Lossy Networks (RPL)

RPL is a routing protocol that has been standardized by the Internet Engineering 
Task Force (IETF). It is widely used as a routing protocol for WSNs because it 
allows the usage of the Internet Protocol version 6 (IPv6) protocol on IoT devices. 
This enables a wide range of devices to be addressable over the Internet, consider-
ably more than with the current IPv4 [22].

IETF specified the IPv6 over Low power Wireless Personal Area Networks 
(6LoWPAN) standard, which supports the idea of applying IPv6 even to the small-
est machines. In this way, devices with limited hardware resources, typical in WSN, 
can participate in the IoT [23].

RPL uses a function known as Objective Function Zero (OF0) to assemble the 
topology and define the routing [20]. It uses the Destination-Oriented Directed 
Acyclic Graph (DODAG) concept to structure the topology formed by nodes in 
the WSNs.

There are two types of nodes in the WSNs that run RPL: (i) the first type is the 
sink node, which is responsible for initiating topology construction by disclosing its 
DODAG with DODAG Information Object (DIO) control messages. Sink nodes are 
usually pre-defined before the WSNs operation; (ii) the second type includes the 
nodes responsible for collecting and transmitting data (source nodes), hop-by-hop, 
towards the sink node. Source nodes also transmit DIO messages for topology 
maintenance [22].

RPL observes the node energy consumption to route packets by considering 
node neighbors’ energy level before picking them as possible parents. Two units of 
information are used: (i) the type of the node, which indicates how it is supplied 
with power; and (ii) the Energy Estimation (EE). The RPL metric specification 
defines three possible states for the first: powered, on batteries, and scavenger. Such 
nodes report a maximum EE value and, in general, are preferable during parent 
selection.
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If a network device is powered, it may be the root node connected to a personal 
computer or a special data collector (e.g. cluster-heads in hierarchical routing). If a 
node is on batteries, RPL computes the EE value using Eq. 3 [23]. The POWERnow 
value is the remaining energy, and POWERmax is the power estimation reported at 
boot up. However, if a node derives energy from external sources, it may report EE 
as a quantity value computed by dividing the amount of power that the node has 
acquired by the power consumed. This may be a poor estimation of how much load 
a node experiences in a certain period [23].

	
EE

POWERnow

POWERmax
� �100

	
(3)

RPL also prevents routing loops by computing a node’s position relative to other 
nodes concerning the DODAG root. This metric approximates the expected number 
of transmissions until a data packet reaches the gateway node. A node that is one 
hop away from the root, with excellent signal strength and little interference, may 
have an ETX equal to 1. Another node with a less reliable connection to the root will 
have a higher ETX [23].

Besides implementing CTP and RPL protocols on a simulated WSN in the agri-
cultural domain, this work analyses the use of Software-Defined Networking (SDN) 
technology. The next section describes this technology, its importance, and its 
main uses.

2.3  �Software-Defined Networking (SDN)

The issues of routing flexibility and provision of security services can potentially be 
addressed by the SDN, a technology approach for WSN and IoT, which can provide 
infrastructure sharing. This leads to lower operating costs, improved resource man-
agement, higher flexibility, and overall system sustainability.

The improvement in resource management is related to network resources (band-
width, buffer allocation, among others), node management (battery level, tasks 
being performed, among others), and application management. The application 
manager knows which tasks are being performed by each node, what data is sent to 
which collector, what is the detection rate, which sensors are used by each task, and 
several other essential tasks [9].

Using SDN, a single controller or group of controllers may provide data routing 
control plan services for a larger number of nodes, thus allowing a system-wide 
view of network resources. The SDN enables data to be dynamically routed on a 
flow-by-stream basis, using source and destination information, then adapting to 
possible topology changes, providing better speeds and latency, eliminating poten-
tial bottleneck architectures and flexibility on network management [24].

According to Salman et al. [25], the SDN general architecture consists of four 
planes or layers: data, control, management, and application, separated from each 
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other, as illustrated in Fig. 1. This architecture provides network flexibility, dyna-
mism, and management capabilities. SDN centralized control cannot be compared 
to a central telecommunications switch. Hence, SDN centralization is more logical 
than a physical concept [25].

The idea of a control plane and a data plane segregation involves a whole new 
way of networking when it becomes open, along with the intersection of open 
source and SDN. Building all this new virtualization technology, and bringing it to 
companies and the world, has created the need for a type of network 
programming.

Salman et al. [25] state that many technology leaders, governments, and research-
ers are making efforts to develop solutions that allow the broad deployment of 
IoT. Thus, the massive amount of data generated, the large scale of the network, 
concerns about security and privacy, the new requirements in terms of Quality of 
Service (QoS), and the heterogeneity in this ubiquitous network of networks, make 
its implementation a challenging task. SDN, a new network paradigm, has shown its 
usefulness in reducing management complexities in today’s networks. Besides, the 
SDN presented effective security solutions by taking a global view of the network.

The control plane consists of the SDN controller, which has the role of network 
orchestration. Most of the calculations are done there, which gives it particular 
importance, being the “brain” of the network. The data plane consists of network 
devices (routers, switches, sensors, among others) responsible for simple matching 
operations to know how to forward packets. These simple devices forward all pack-
ets to the controller that they do not know how to act on. OpenFlow, the first stan-
dardized southbound interface, presented the central vision of the network’s 
programming effectiveness. However, limiting the SDN to OpenFlow is an inap-
propriate limitation of the SDN horizons.

Fig. 1  SDN basic 
architecture
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At the top of the control layer, there is the application layer. The communication 
between the control and application layers is carried out through the northbound 
interfaces. These interfaces, which provide the application with access to data col-
lected from the network, offer most of the benefits of SDN. Control is fully distrib-
uted. Thus, reconfiguring the network and adding new features will be exhausting if 
done traditionally. Using SDN, this task becomes much more straightforward: cen-
tralized control provides the controller with a global view of the network, allowing 
it to hide management complexities and have more control over the entire network.

Margi et al. [9] also point out that a service orchestrator can use the SDN control-
ler’s centralized view to decide whether to admit new tasks or not. It can also use 
information related to the underlying communication technology to select the pack-
et’s path. For example, in heterogeneous IoT scenarios, devices may have two or 
more radios. The SDN controller will know the radios and use the different link 
layers to select the routes that meet the application requirements.

The next section contains a description of the main steps used in the methodol-
ogy and the software used for the implementation of the simulations.

3  �Methodology

The methodology adopted in this work consists of two main steps:

	1.	 Requirements gathering for the implementation of WSN for cattle weighing on 
the farm;

	2.	 Simulation of the routing protocols CTP and RPL and the SDN technology 
for a WSN defined by the requirements identified in step 1. Three scenarios were 
simulated: (i) using the CTP protocol; (ii) using the RPL protocol; and (iii) using 
the RPL protocol and the SDN technology.

The network simulations were conducted using the COOJA (Contiki OS Java) 
software. This is a WSNs simulator that focuses on simulating real hardware plat-
forms and contains several network topologies models [26]. Due to compatibility 
and practicality reasons, the Instant Contiki virtual machine was chosen for the 
model implementation.

Table 1 contains the parameters of the simulation and the versions of the soft-
ware used. These simulations were used to estimate the latency and PDR of the 
WSN on the three scenarios described above.

An essential definition of WSN simulation is the topology of the network. Fig. 2 
illustrates the elementary topology used as a basis for the simulations [28]. It is 
important to note that only the behavior of Mesh 1 was simulated, as the problem 
addressed follows on the category of edge computing problems. The topologies 
used for the simulation on COOJA are illustrated in Figs. 3 and 4, and their main 
difference is related to the use of SDN technology for data routing.
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Table 1  Parameters used in the simulations and software versions

Variable Attribution Variable Attribution

Metrics Latency and packet delivery 
rate

Radio-propagation 
model

UDGM distance 
loss

Time of each 
simulation

12 min PHY layer IEEE 802.15.4

Simulation speed 100% COOJA v1.8
Type of nodes Tmote sky; Statics Ubuntu v18.04
Routing protocols CTP, RPL Qt Creator v5.8
RDC/CCR NullRDC/128 Hz Instant Contiki v3.0
MAC layer CSMA it-SDN [27] v0.3

Fig. 2  The elementary topology for computational structure, based on WSN and 5G networks

Fig. 3  Simulated topology without SDN and with node 1 as the sink node
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In the next section, the results of both step 1 (requirements gathering for the use 
case) and step 2 (simulation of the use case, considering the different routing proto-
cols and SDN technology) are analyzed.

4  �Results

Table 2 summarizes the requirements gathered for the use case through an extensive 
literature review. They will be discussed in the following paragraphs.

Two essential requirements for the implementation of WSN for cattle weighing 
on the pastures are developed and discussed in the present work: (i) a high network 
efficiency, due to the difficulty of communication between nodes; and (ii) high 
topology flexibility, with redundancies, due to problems related to node failure.

The IoT technologies [29], such as sensors, actuators, and the network, should 
provide full coverage of all the beef cattle production processes. They should collect 
and transmit data of all the relevant processes along the entire supply chain. This 
would increase both processes’ control, efficiency, and decision making.

Real-time monitoring of livestock indexes related to animal weight gain, disease 
detection, and control is of particular interest to the farmers. These can improve 
decision-making related to different processes involved in animal production, such 

Fig. 4  Simulated topology with SDN and with node 1 as the master and node 2 as the sink

Requirements

1. High network efficiency
2. High topology flexibility
3. Weekly or daily automatic data collection of animal weight and water consumption
4. Weekly or daily transmission of the data collected
5. Individual identification of the animal

Table 2  Requirements gathered for using WSN for cattle weighing in the farm
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as feeding, use of supplements, vaccination, among others. Nevertheless, it is con-
siderably difficult to estimate those indexes on grass-fed cattle, as the animals are 
spread over a wide area.

In animal weighing, which is essential for defining activities related to providing 
feed and water for the animals and evaluating their body weight gain, this is even 
more problematic. The use of WSN on the farm, as specified in Sect. 2, would help 
to increase the number of data points, improving the velocity and effectiveness of 
decision making.

Therefore, two critical related requirements for improving decision making 
related to cattle weighing are: (i) automatic data collection of animal weight and 
water consumption throughout the animal’s life, if possible, weekly or daily; and (ii) 
transmission of the data collected on a weekly or daily basis.

The research by Norton and Berckmans [30] and Condotta et al. [16] evaluated 
the use of automated camera-based systems to monitor animal behavior. Specific 
activities analyzed were related to diseases and individual animal mass. Nevertheless, 
even though this could be incorporated in the use case analyzed in this work, it 
would be costly to transmit images on the field and the investment needed on 
equipment.

Therefore, using an automatic weighing system specially designed to open field, 
grass-fed cattle by using a weighing scale (usually composed of load cells) placed 
next to cattle drinking troughs is proposed. This would allow for individual animal’s 
weighing and identification tag collection daily. Additionally, it would improve 
monitoring water consumption by the herd.

The individual identification of the animal is essential to allow for better decision 
making. This is the last requirement that was identified in the present research. 
Throughout the next paragraphs, the computer simulation results of the proposed 
system for cattle weighing in the pasture, with weight plates on the water spots, are 
further described. The main focus of the present work is to evaluate the routing 
protocols and the SDN technology to transmit information between the nodes of the 
WSN. In this sense, further descriptions of the proposed system are out of the scope 
of the present chapter and will be published in a specific research paper.

Table 3 contains the results of the simulations implemented. As described in 
Sect. 3, two quality metrics were considered: PDR and latency. Two of the scenarios 
considered protocols without the use of SDN, and one considered the use of RPL 
associated with SDN. It is possible to observe that, although the PDR does not differ 
significantly among the scenarios, the latency shows a considerable decrease from 
scenarios 1 to 2 and from 2 to 3. The use of RPL together with SDN, in our specific 
use case, provided the lowest latency, by a considerable margin (48% lower than 

Table 3  Results of the simulations, considering PDR and latency on the different scenarios

Scenario PDR (%) Latency (ms)

1. CTP 98 132
2. RPL 99 107
3. RPL + SDN 99 56
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scenario 2 and 58% lower than scenario 1. One of the main reasons that explain 
these results is the centralized control and dynamic behavior of the WSN.

SDN can improve the results of the RPL due to the separation between the data 
plane (executed by sensor nodes) and the control plane (executed by the controller). 
Thus, a simple protocol defined to allow nodes to learn the shortest path towards the 
(closest) sink(s), to discover the neighboring nodes, and to periodically report local 
information to the controller (through the sink), could fulfill the requirements for 
this use case.

Therefore, it is possible to observe that the use of SDN, together with the RPL 
protocol, is the implementation that shows the best results for transmitting informa-
tion on the use case of the implementation of WSN for cattle weighing in the farm. 
Also, through the use of this routing protocol, the system proposed fulfills all the 
requirements identified.

The next section contains a discussion of the main topics related to the imple-
mentation of the proposed system, the implementation of the SDN technology and 
the RPL protocol, and how this can impact other use cases in the agricultural 
domain, both on animal and vegetable production.

5  �Discussion

WSN has emerged as a new type of distributed system, with applications in different 
areas such as target tracking, environment monitoring, traffic management, among 
others. Special mechanisms at the network layer are required to achieve reliable 
communication and guarantee a high delivery ratio with energy and memory 
efficiency.

As a result, the RPL routing protocol was specified and developed to overcome 
such requirements. The protocol is an end-to-end IP-based solution, which does not 
need the translation of gateways to address nodes within the network from the out-
side world, and it dynamically adapts the sending rate of routing control messages, 
which can be frequently generated only if the network is in unstable conditions [23]. 
In the simulations conducted in this work, the performance improvement was 
observed by using the RPL protocol instead of the CTP. This increase in perfor-
mance is more pronounced with the use of SDN.

SDN has the potential to simplify network management. According to the Open 
Network Foundation [31], SDN addresses the fact that conventional networks’ 
static architecture is inadequate for the dynamic computing and storage needs of 
today’s data centers and operator environments. The benefits of improved manage-
ment, greater flexibility, and sustainability tend to be the main reasons for choosing 
SDN over RPL. Additionally, situations in which the sensor nodes are attached to 
the animals, and therefore need dynamic allocation, should also benefit from adopt-
ing SDN technology.

The results presented in this work show that it is technically feasible to use SDN 
in cattle weighing and even other agricultural scenarios. The lower latencies 
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obtained mean shorter response times, and consequently, the running applications 
become more reliable. This means that applications running in such network situa-
tions will experience better response times, thus enabling specific and high-demand 
uses, such as triggers or alarms for dangerous situations.

However, before a real deployment, a pilot test study is necessary to analyze and 
manage the challenges associated with network scalability, as increasing the num-
ber of nodes raises the challenges that SDN must face. Other aspects should also be 
explored, such as the type of hardware and software involved, as well as the evalu-
ation of initial costs and improvement of operating costs, given that it demands the 
implementation of physical structure, such as exchanging routers and gateways for 
others that are capable of virtualization and software function control.

Another issue that should be researched in more depth is the use of mobile nodes 
on the WSN, a requirement for several use cases. One example would be if some 
animals carried sensors besides the static nodes on the farm’s water spots. Concerning 
larger network sizes, one approach that can be taken for better performance is to 
organize the more extensive network into smaller clusters and to use distributed and 
hierarchical controllers.

In a more profound proposition, it is essential to mention that SDN can support 
the implementation of machine learning techniques and advanced analysis of the 
data collected [32]. This requires a coherent combination of intelligence with human 
control and supervision, software-controlled automated operational processes, and 
underlying programmable infrastructure. In this way, the networks will adapt, self-
configure, monitor, repair, and optimize by constantly evaluating changes in their 
automatic routines and better reallocating resources according to the traffic patterns.

Centralized cloud computing has a global view of the network, but it is not suit-
able for applications that require low latency, real-time operation, and high-quality 
data for Artificial Intelligence services. On the other hand, the main goal of edge 
computing is to extend the functions of cloud computing to the edges of the network 
[24]. Because of its proximity to end-users and its decentralized deployment, edge 
computing can support quality applications and services that present requirements 
such as real-time execution, low latency, and high mobility with location recogni-
tion. This makes it more suitable for applications that generally do not have enough 
computing and storage resources, such as those on the farms. The distributed cloud 
computing allows for real-time data analysis on IoT networks with SDN.

The network slicing or segregation, an essential and vital aspect of 5G, is a solu-
tion for improving performance, reliability, energy efficiency, and economics 
towards implementing various 5G requirements and verticals. 5G radio access and 
its core networks are expected to be based on an SDN and NFV infrastructure that 
can orchestrate resources and control the network to provide efficient, flexible, and 
scalable services.

Internet Service Providers (ISPs) can implement slicing without 5G, but this will 
become much more prevalent with 5G and its emerging specifications, which 
require partitioning of data, control, and management plans to separate the environ-
ments that will be created. Thus, by serving individual customers or providing spe-
cific services, it gives ISP the opportunity to more easily support multi-tenancy, 
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specific customers, and use cases, to meet each slice’s unique SLA (Service Level 
Agreement) at different levels with guaranteed QoS. In this sense, the role of a hori-
zontal and dynamic end-to-end 5G network orchestrator becomes critical to extend 
the concept of network softwarization, which must occur along the entire network 
(mesh 1 and mesh 2 in Fig. 2) to offer higher performance for the users (humans or 
machines) by using the best ISP available in each instant of communication accord-
ing to the lower cost and consumption of network resources.

The 5G horizontal end-to-end orchestration may bring interesting and excellent 
results to the worldwide society:

•	 Improve sustainability, as all resources of 5G networks will be better harnessed, 
and smart applications can actually, effectively and simultaneously exist, mini-
mizing the consumption of energy;

•	 Ensure the fulfillment of the requirements of each application and, therefore, 
better service qualities and user experience;

•	 Offer flexibility for new business models, which will imply new services with 
better competition, and consequently, better prices to users, among others.

The next section contains the final remarks of this work. It also contains its main 
limitations and suggestions for future works.

6  �Conclusions

The implementation of WSNs in the agricultural domain, especially on animal pro-
duction, has several specific requirements compared to other domains. In this work, 
the main requirements for the implementation of WSN on an important monitoring 
activity for beef cattle were identified. A system was proposed using WSN to weigh 
the animals, and the RPL and CTP routing protocols were evaluated through com-
puter simulations. The use of SDN together with RPL was also evaluated, providing 
the best results in terms of latency and fulfilling all the requirements identified. 
Softwarization is a trend in the networks of the future.

The used methodology can be adapted for other use cases in the agricultural 
domain, both for animal and vegetable production. With the implementation of IoT 
technologies in this domain, evaluating and implementing the most resource-
efficient routing protocols will be essential. In smart farming scenarios, this is an 
essential component of implementing autonomous processes and improving deci-
sion making. It will also be vital for correctly implementing 5G technologies.

The main limitations of this work are related to: (i) lack of open and available 
datasets for analyzing data routing on grass-fed beef cattle production; and (ii) the 
difficulty of implementing the WSN with the different routing protocols in field 
conditions due to the lack of interaction between academia and the agents of the 
beef cattle value chain. Future works are related to: (i) conducting experiments in 
the field to validate the results obtained; (ii) developing other important use cases on 
the agricultural domain, both for animal and vegetable production; and (iii) consid-
ering the possible impact of 5G technologies on data transmission on the farm.
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1  �Introduction

In the context of the increasing number of the world’s population and ever-increasing 
rates of environmental pollution, issues regarding the ability to meet living and 
nutritional needs come to light [1]. Taking into account the modern technological 
and scientific tendency for the development of Internet of Things (IoT) environ-
ments and of Information Communication Technologies (ICT) their involvement in 
the field of agriculture is also imperative [2–4]. For a better understanding, the IoT 
consists of a set of things, such as sensors, mobile phones tags, cameras etc., which 
interact with each other and exchange data, while ICT enables users to handle, store, 
access, and transmit information [5, 6].

Agricultural production processes contribute significantly to the sustenance of 
the human population. Especially the olive trees cultivation is of utmost importance 
for the nutrition. It is worth noting that olive groves have various sensitivities, with 
temperature and humidity playing a leading role in their health [7–9]. Consequently, 
the need for real-time monitoring and dissemination of environmental parameters is 
emerging, especially considering their contribution in decision-making methods 
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related to crop management, providing immediate and appropriate response, and 
meeting the requirements of precision agriculture [10].

The achievement of real-time monitoring and dissemination is facilitated by the 
involvement of Wireless Sensor Networks (WSNs) [11]. More specifically, the sen-
sors in a WSN are small but powerful devices that can serve the needs of agricultural 
activities. The very same types of devices can be used as “things” on IoT or as “fog 
devices” on a cloud/fog computing environment.

In a system, which combines IoT environments, WSN technology and cloud 
computing enablers, it is necessary to take into consideration a plethora of issues. 
One of them is the selection of suitable, efficient, and low-cost equipment, as it is 
extremely important for the overall performance of the system because it deter-
mines the system’s accountability and durability [12, 13].

Moreover, the selected equipment can affect the accuracy and synchronization 
of sensor measurements which is one more issue of major importance. In more 
detail, network synchronization is considered necessary, in order to offer time-
correlated measurements from remote nodes. Therefore, synchronization enables 
the process of knowledge extraction, allowing the end user to interpret the results 
produced and act [14].

With the goal of achieving synchronized measurements, a simple synchroniza-
tion scheme is described later in this chapter. This scheme provides synchronized 
measurements, using the clock of the network’s sink as a reference point and 
enabling precision agriculture. It should be emphasized that this synchronization 
scheme uses as few transmissions as possible to save energy and elongate the net-
work’s lifetime, while also serving as a baseline for more complicated approaches. 
Despite the simplicity of the scheme, its evaluation through a previously conducted 
experimentation process confirms its suitability [15].

Additionally, it is very important to establish a cloud/fog computing environ-
ment, as it provides storage, networking and computing capabilities close to the end 
user [16, 17]. Thus, in large-scale deployment, the presence of cloud servers and fog 
devices is essential. In greater detail, cloud servers are characterized by increased 
computational capabilities and are located in large data centers [18]. Fog devices 
acquire similar, even though of less power, attributes and are located closer to the 
end user, facilitating data handling, and minimizing response time [18].

A cloud/fog network architecture that meets the above requirements and can be 
used in olive groves is described in Sect. 4. The selected latency adjustable architec-
ture is capable of dynamically mapping the system behavior, allowing the identifi-
cation of olive groves’ needs. It is noteworthy, that based on the literature, latency 
can be considered as a critical factor for defining early environmental conditions 
[17]. The evaluation process of the selected architecture from a previous study is 
also presented, indicating its usefulness [19].

In addition to the need of monitoring environmental conditions, a major and 
unforeseen danger is the occurrence of a natural disaster, such as a flood, earthquake 
or wildfire, which is a complex phenomenon [20–23]. The need to deal with such 
disasters can be met by expanding the selected cloud/fog network architecture. This 
potential is analyzed in Sect. 4.
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The rest of this chapter is organized as follows. An overview of wireless sensing 
technologies in smart agriculture is presented in Sect. 2. The synchronization 
scheme under consideration is described in Sect. 3, including its experimental eval-
uation, while Sect. 4 specifies the selected cloud/fog network architecture. Finally, 
conclusions and future work are drawn in Sect. 5.

2  �Wireless Sensing Technologies in Smart Agriculture

This section presents a wide variety of WSN applications in agriculture as well as a 
basic overview of some fundamental technologies that have propelled the domain, 
transforming it into one of the most trending topics in ongoing, frontier research. 
Furthermore, a certain selection of technologies is thoroughly examined, as it is 
particularly prevalent in the literature, and is also utilized by the studies examined 
in the sequel.

2.1  �Related Work

WSNs have been the subject of numerous scientific studies, and rightly so, since 
they are among the most promising technologies of the twenty-first century. Their 
use has been expanded to a variety of areas, particularly to IoT applications. More 
specifically, some of their properties, such as self-configuration, self-diagnosis, 
self-heal, and self-organization, make them ideal in food industry and smart agricul-
ture [24]. WSNs, in conjunction with the rapidly evolving IoT paradigm, promise to 
provide a plethora of benefits to advance the domain of agriculture, even in develop-
ing countries, by enabling applications through a low-cost, energy-efficient, and 
wireless infrastructure [25, 26].

The technology behind WSNs has been preferred to meet a multitude of pur-
poses. To start with, one study in this field uses the capacity of these networks to 
monitor humidity levels in real time, in order to enrich the irrigation process at a 
soccer stadium, in areas of the soil where the humidity is below a certain limit [27]. 
In addition, another study proposes a system for greenhouses, which aims to ensure 
ideal conditions, in order to avoid the development of pests and weeds that are 
favored in such artificial environments [28].

Yoo at al. deploy a WSN-based architecture in a greenhouse, which is capable of 
automatically detecting and altering relevant conditions, such as temperature and 
humidity, through sensor and actuator nodes [29]. This setup is experimentally eval-
uated in a melon greenhouse, proving to be effective, while the authors provide a 
variety of issues that were encountered during deployment, such as reduced com-
munication range due to interference, premature battery exhaustion due to hardware 
inconsistencies, etc. Moreover, another WSN architecture is proposed, which is 
deployed in a pepper vegetable greenhouse, where temperature, humidity and 
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lighting are monitored to provide optimal conditions for pepper cultivation [30]. 
The goal is for farmers to first receive data from the sensors and then take the appro-
priate measures for their crops.

WSNs are equally appropriate in greenhouses, as well as outdoors environments, 
where more parameters need to be considered, since the latter are exposed to uncon-
trolled environmental conditions. Díaz et al. (2011) provide a well-rounded over-
view of WSN deployment scenarios regarding outdoor agricultural monitoring, 
through which they identify all distinct phases that need to be considered in such 
applications [31]. The phases are compiled into a well laid-out methodology for 
WSN applications focusing on agriculture and they cover topics such as terrain 
considerations, architecture, implementation, and maintenance. Shinghal et  al. 
(2017) design and deploy a WSN application to improve potato crop production by 
adjusting the irrigation system and taking into account various parameters, such as 
the depth of water, soil water tension and system capacity [32].

Aside from monitoring environmental parameters, additional considerations 
need to be made in natural environments. For instance, the deployment of a WSN 
application for crop protection by diverting animal intrusions is presented in [33]. 
The developed system attempts to spot and divert animal intrusions by employing 
four different types of nodes, each specialized in the tasks of detecting intrusions, 
diverting them using sounds and lights, as well as keeping track of their activity, 
occurrence, and frequency.

2.2  �Equipment Overview

An important aspect to consider during the development stages of a system for the 
purposes of agricultural applications, is the utilized equipment [34]. The latter must 
be adjusted in order to meet the requirements of a system that is often exposed to 
harsh conditions (e.g., heavy rainfall, intense wind, bright sunlight, corrosive mois-
ture). Also, the application-specific requirements, in terms of computational power, 
energy and wireless communication quality, are the main contributing factors to 
determining the most suitable per-application equipment. Finally, a system devel-
oped for agricultural applications must take into account the low-cost factor since 
on-field deployments usually require multiple devices in order efficiently monitor a 
large field [12, 13].

Along the years, the utilized equipment ranges in terms of price and capabilities 
[35]. Also, depending on the application’s requirements, the hardware needs to be 
adjusted, thus the employed equipment among different applications comprises 
variant models of micro-controllers and antennas. Agriculture-specific applications, 
which require a system deployment on large fields, need to utilize hardware with 
low specifications (lowering the required cost and ensuring wider land coverage) for 
the collection of environmental measurements. In the case where further processing 
of the data is required, the information is then relayed back to a central node, 
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hereafter referred to as sink, which usually includes higher cost and computational 
capabilities.

An essential part of agriculture oriented WSN systems is the information col-
lected by the utilized sensors, which vary depending on the application [36, 37]. The 
most commonly measured information is soil moisture and temperature, air humid-
ity, ultraviolet (UV) radiation, plant’s leaves wetness and air CO2 levels. This infor-
mation can potentially aid in the evaluation of a field’s health, which in turn might 
help prevent any future threats to plants or fruit production. Many different models 
of these sensors exist, all ranging in price, features and measurement accuracy [38].

Custom-designed hardware can potentially offer many additional benefits, 
including low power consumption and low development cost [37]. Such systems are 
called System on a Chip (SoC) design, which accommodate all necessary compo-
nents (sensors, antennas and microcontrollers) in a single-board design. The com-
plexity they introduce to the system, though, limits their widespread use. IoT 
applications usually include pre-designed hardware built specifically for such proj-
ects, thus allowing the designer to focus on properly collecting and distributing the 
data from each sensory device. Due to the low price, ease of configuration and vari-
able models, a flexible alternative refers to the Arduino prototyping platform, which 
shows potential in this direction, offering capabilities that can be exploited to moni-
tor variant properties of a field, like air humidity and soil moisture [39, 40].

A vital component for the proper operation of the system is the antenna, which is 
responsible for interconnecting all separate, remote nodes into one common net-
work. Data in this network can be transferred at desired points of interest (e.g., the 
network’s sink node). Each agricultural application design, and consequently the 
antenna of choice, focuses on the requirements each field might introduce. For 
example, large fields require low transmission radio frequencies in order to mini-
mize weak signal points throughout the area [39]. Contrary, in cases where close 
range communication is preferred or required for data collection, close proximity 
higher frequency communication antennas are utilized accordingly [40]. Literature 
contains a multitude of different antennas each employing variable characteristics 
for WSN applications [41–43]. A few examples include transceivers like CC2420 
and MC1319x, Bluetooth-enabled antennas like BlueCore and, also, Zigbee-based 
XBee antennas.

The literature, especially the last decade’s, shows that many research activities 
lean towards the utilization of the Arduino prototyping platform and the Zigbee 
antennas, which can be configured to operate seamlessly together [44]. Such appli-
cations include, but are not limited to, soil and air parameters’ monitoring for preci-
sion agriculture, autonomous irrigation systems based on plant’s requirements, 
intrusion detection, scheduling of farming activities (e.g., harvesting, irrigation, 
fertilization, etc.), and farm cost-based maintenance of the collected information 
[39, 45–49].
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2.3  �Selected Low-Cost Equipment

The systems described in this study (Sects. 3 and 4) utilize various low-cost elec-
tronic components. These systems are based on the Arduino prototyping platform1, 
which is responsible for the measurement sensing procedure. For a WSN to exist, 
wireless communication must be enabled, which is accomplished by using the 
XBee-PRO S2C module2. The XBee modules cannot be placed on the Arduino pro-
totyping platform directly, therefore an Arduino Wireless SD Shield3 is used. These 
components are selected due to their simplicity, ease of use, extensive documenta-
tion, and large community of followers, all of which can significantly expedite and 
assist the development phase. A comparison between the costs of the various com-
ponents and the characteristic of antennas is conducted in the literature, further 
showcasing why they stand out [50, 51]. Ergo, this equipment is considered quite 
versatile and suitable for fast prototyping, making it ideal for research and industry 
agents alike.

2.3.1  �Arduino

The base component of the systems considered in the sequel is the Arduino proto-
typing platform, which consists of a wide variety of available boards, each defined 
by a wide range of specifications in terms of hardware and software. The presented 
experiments make use of two variations of this platform: (i) the Arduino Uno Rev. 
34 board; and (ii) the Arduino Mega 25605 board.

While the Arduino Uno is the most well-known Arduino board for beginners in 
the world of electronics, the Arduino Mega 2560 exceeds the capabilities of Arduino 
Uno. The main reasons for a researcher to choose the Arduino Mega instead of the 
Arduino Uno are the amount of SRAM and the number of Input/Output pins. The 
complete set of specifications for the particular Arduino boards, are encased in 
Table 1.

2.3.2  �Arduino Wireless SD Shield and XBee

The Arduino Wireless SD Shield6 is used as an intermediary between the Arduino 
board and the wireless antenna, which also enhances the capabilities of a node by 
giving it the capacity to store the produced data into a micro Secure Digital (SD) 

1 https://arduino.cc
2 https://tinyurl.com/y5posdyh
3 https://store.arduino.cc/arduino-wirelss-sd-shield
4 https://store.arduino.cc/arduino-uno-rev3
5 https://store.arduino.cc/mega-2560-r3
6 https://store.arduino.cc/arduino-wirelss-sd-shield
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card. The wireless communication of the WSN’s nodes is handled by the Digi 
XBee-PRO S2C7 module. In order for the wireless module to communicate with the 
Arduino board, Serial Communication in various baud rates ranging from 9600 to 
115,200 bps is utilized. The Digi XBee-PRO S2C module operates in a license free 
Industrial, Scientific and Medical Band of 2.4–2.5 GHz and its maximum transmis-
sion rate is 250  Kbps. Moreover, it facilitates three different protocols, namely: 
802.15.4, DigiMesh and Zigbee. These protocols are in turn based on the IEEE 
802.15.4 protocol, which is built on top of Carrier Sense Multiple Access with 
Collision Avoidance (CSMA/CA) protocol. The modules fill in the role of transceiv-
ers since their energy consumption is low. In particular, in transmit mode the energy 
consumption8 is 120 mA, whereas in idle/receive mode the consumption is 31 mA 
respectively.

Zigbee Protocol

The considered systems make use of the Zigbee9 protocol, which provides high reli-
ability, low power consumption and high security. The particular protocol is built 
for mesh networks, augmenting them with automated routing, ad-hoc network 

7 https://www.digi.com/products/models/xbp24cz7wit-004
8 https://tinyurl.com/y5posdyh
9 https://tinyurl.com/y5posdyh

Table 1  The specifications of the Arduino Uno and the Arduino Mega

Component Arduino Uno Rev. 3 Arduino Mega 2560

Microcontroller ATmega328P ATmega2560
Operating Voltage 5 V 5 V
Input Voltage (recommended) 7–12 V 7–12 V
Input Voltage (limit) 6–20 V 6–20 V
Digital I/O Pins 14 (6 PWM output) 54 (14 PWM output)
Analog Input Pins 6 16
DC Current per I/O Pin 20 mA 20 mA
DC Current for 3.3V Pin 50 mA 50 mA
Flash Memory 32 KB 256 KB
Boot Loader 0.5 KB 8 KB
SRAM 2 KB 8 KB
EEPROM 1 KB 4 KB
Clock Speed 16 MHz 16 MHz
LED_BUILTIN 13 13
Length 68.6 mm 101.52 mm
Width 53.4 mm 53.3 mm
Weight 25 g 37 g
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creation, and self-healing. With that said, it comprises three (3) different types of 
devices, these being: (i) Coordinator; (ii) Routers; and (iii) End Devices.

Coordinator

The Coordinator is responsible for the initialization of the network. While in this 
phase, the Coordinator establishes the operating channel and the Personal Area 
Network (PAN) ID for the entire network. Afterwards, it allows Routers and End 
Devices to join the network, at which point it assigns to them a unique 16-bit identi-
fier, called Network Address. It is noteworthy that the Zigbee protocol allows only 
one Coordinator per PAN ID. During network operation, the Coordinator’s func-
tionality becomes similar to a Router.

Routers

In order for a Router to participate in a Zigbee network, it must first discover and 
join a valid network. After the join process is complete, the Router takes up respon-
sibilities of routing data-packets from and to other nodes in the network. A Router 
is also responsible for allowing new devices to join their associated network, e.g., 
other Routers and End Devices.

End Devices

When a network node (either the Coordinator or a Router) enables an End Device to 
join the network, the former becomes the parent of the latter. The parent of the End 
Device then, acts as a buffer for the data-packets that are addressed to the specific 
End Device. This renders the End Devices capable of going into low power modes 
(“sleep” state) to minimize their energy consumption, a factor that is essential for 
applications where the available energy is limited.

2.3.3  �Raspberry Pi 3

The Raspberry Pi 3 Model B10 is a low-cost credit-card sized computer with low 
energy consumption. Its board comes with a Quad-Core 64-bit processor running at 
1.2GHz11 and 1GB of RAM. Hence, Raspberry Pi is a fully assembled computer, 
that supports a wide variety of operating systems. The operating system itself is 
installed on a microSD card. A noteworthy attribute of a Raspberry Pi is the 

10 https://www.raspberrypi.org/products/raspberry-pi-3-model-b/
11 https://www.raspberrypi.org/products/raspberry-pi-3-model-b/
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connectivity it provides via USB ports, which makes it a suitable candidate for host-
ing gateway properties in a WSN-based environment [52].

2.3.4  �Sensors and Others

In the research area of WSNs, a variety of applications are developed in order to 
tackle daily problems in various agricultural domains [36]. In order for the applica-
tions to be functional, sensing of various climate phenomena is necessary, these 
being namely temperature, relative humidity, soil moisture and UV radiation. 
Further, the utilization of an accelerometer is common practice in such applications, 
in order to detect unauthorized node movements, caused by human intervention, 
animal intrusion or misplacement due to extreme weather conditions (e.g., 
strong wind).

With that said, to obtain these measurements a set of commonly used sensors are 
presented here. The air temperature and relative humidity degrees can be monitored 
by the RHT-0312 sensor, whereas the soil moisture levels can be obtained using the 
YL-6913 sensor. The VEML-607014 is popular for measuring the UV radiation, 
while the MPU-605015 accelerometer is used for detecting node movements. In 
Fig. 1, a fully assembled node, using the above modules, is depicted.

Moreover, to prolong a WSN’s lifetime, a power bank is often employed to pro-
vide power to a node in a reliable fashion. In fact, it is considered a good practice 
for the power bank to feature a solar panel (or an alternative power source), in order 
to further elongate the WSN’s lifespan. Another welcoming attribute refers to its 
resistance to extreme weather conditions in order to avoid malfunctions caused by 
environmental agents, e.g., atmospheric corrosion. A power bank, that satisfies all 
the aforementioned attributes, is the Sandberg Outdoor Solar Powerbank16 with a 
capacity of 16,000 mAh. Note that, besides the power bank, all the other parts of the 
node need also protection against the weather elements, which is commonly accom-
plished by enclosing all the electronic parts in an appropriate case.

3  �Synchronized Monitoring

In this section, the need for synchronized monitoring is highlighted and the methods 
used to achieve it are discussed. Additionally, a simple synchronization scheme is 
investigated as an efficient, network-based means of acquiring time-correlated 

12 https://www.sparkfun.com/products/10167
13 https://www.oddwires.com/yl-69-soil-hygrometer-humidity-soil-moisture-detection-sensor/
14 https://www.vishay.com/ppg?84277
15 https://www.invensense.com/products/motion-tracking/6-axis/mpu-6050/
16 https://sandberg.it/en-mt/product/Outdoor-Solar-Powerbank-16000
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measurements. Finally, a set of experiments is presented to evaluate the effective-
ness of this simple synchronization scheme in a realistic setting.

3.1  �Related Work

Zhang et al. (2002) provide a detailed overview of technologies related to precision 
agriculture [53]. One of the thematic fields covered by this study concerns temporal 
variability, which determines the effectiveness of the monitoring and decision-making 
process. Consequently, there is a need for knowledge of the physical time point, dur-
ing which a measurement is generated. One option to find the relevant timestamp—
which is associated with each measurement and comes from the device that carries it 
out—is to use the Internet. However, Internet connection cannot be achieved on 
WSNs because of their limitations in size, cost, and power consumption.

Each WSN node owns a local clock to track time, which is characterized by a 
degree of accuracy. Accuracy is largely determined by the manufacturing parame-
ters of the device and is commensurate with its cost and energy consumption rates. 
More precisely, greater accuracy equates to higher costs and higher levels of energy 
consumption [54]. As for the Arduino microcontroller, its clock depends entirely on 
how long the device has been active.

Since each device is equipped with its own clock, it is necessary to associate the 
timestamps with a point in physical time so that human interpretation can be 

Fig. 1  A fully assembled node, in right side of the figure, an Arduino Uno Rev. 3 is depicted with 
all its components that allow wireless communication (i.e. Wireless SD Shield and Digi XBee PRO 
S2C module). In the left side of the figure, the aforementioned sensors are also depicted namely, 
(a) the first part of the YL-69 sensor, (b) the MPU-6050 accelerometer, (c) the VEML-6070 sensor 
and (d) the RHT-03 sensor
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possible. However, it is worth noting that the timestamps are likely to be of no use, 
if the acquired timestamp indications, associated with a common point in time, are 
completely different. In the case of WSNs, the nodes that make up a network and are 
scattered over an area are almost impossible to start functioning at the same time. 
As a result, their clocks are desynchronized and so supplementation of measure-
ments by these nodes is considered pointless.

As for achieving correlation with physical time, Global Positioning System 
(GPS) modules are commonly used, which provide satellite-related measurements 
over time [55]. However, supplying the nodes of a WSN with GPS modules is a 
costly process and perhaps problematic, in terms of signal loss, when deployed in 
suburban areas. Correlation can also be achieved with the help of an external mea-
suring device. Such a device could be a remote server or even a laptop.

As already stated, most WSNs include a sink node, responsible for collecting the 
measured data from the entire network and subsequently relaying/delivering them 
to the outside world. Given this role, it is reasonable to specify the sink’s clock as 
the reference point for the correlation of the other nodes’ clock, since the sink’s 
clock can be associated with a point in physical time through an external device, 
such as a laptop or a fog device [56]. In this way, there is no need to associate the 
clock of each node separately with physical time.

The synchronization process is certainly demanding. In greater detail, the need 
for communication-based synchronization is reinforced in the case of time-keeping 
clock devices, as these devices’ indications are known to differ gradually, especially 
when exposed to extreme environmental conditions [57, 58]. Regarding the equip-
ment used and presented in Sect. 2.3, the Arduino microcontroller resonator operat-
ing at 16 MHz, loses tens of seconds per day [59]. This performance is quite poor 
for time-critical applications. In fact, the clock discrepancy, even though small, 
indicates that it is not enough to perform the synchronization process only once, but 
on the contrary, it needs to take place frequently to account for accumulated 
inaccuracy.

Whether the need for clock synchronization arises for the purpose of time stamp-
ing or process synchronization, various approaches focusing on WSN synchroniza-
tion have been presented over the years. One of the most well-known is Flooding 
Time Synchronization Protocol, which exploits timestamping at the Medium Access 
Control (MAC) layer, which is then forwarded to the rest of the network, with clock 
inaccuracies being corrected on a per-node basis along the way [60].

A similar recent approach, found in Skiadopoulos et  al. (2019), validates the 
effectiveness of the MAC layer timestamping solutions [61]. However, one major 
challenge, that arises, is that most applications do not have access to the lower levels 
of the networking protocol, deeming these approaches hard to exploit. One interest-
ing approach, that addresses this challenge, achieves high accuracy by utilizing both 
external hardware (in this case Real Time Clocks) and signals sent by the radio 
module to time transmissions [62]. There are also other approaches, which require 
multiple rounds of communication in order to increase precision [63]. Yet, these are 
particularly costly in terms of energy consumption, leading to a reduction in net-
work lifetime.
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3.2  �A Simple Synchronization Scheme

A synchronization scheme for smart agriculture applications should be designed 
with minimum energy cost as a priority. This is especially true, if one considers the 
pinpoint accurate synchronization that is achievable through more complex 
approaches and the fact that such a high degree of accuracy is redundant in the vast 
majority of applications. As such, a very simple scheme is considered in this chap-
ter, requiring only a single broadcast transmission to achieve adequate synchroniza-
tion accuracy across the network in order to obtain time-correlated measurements. 
Its simplicity it the key enabler which makes this scheme interesting to study, as it 
serves as a baseline for just about any other synchronization approach.

In the considered network, consisting of nodes as presented in Sect. 2.3, each 
node maintains its own local clock, which represents the node’s uptime. The sink 
node, corresponding to the Coordinator device type, is responsible for collecting the 
entire network’s measurements, which are then transmitted to an external device via 
serial connection, at which point they are correlated to physical time. Thus, it is suf-
ficient to provide the Coordinator’s clock to all remote nodes as a reference point, in 
order for the latter to correlate their clocks according to the former’s time. All nodes, 
aside from the one executing an action, are referred to as remote.

Let t be a point in physical time, when the Coordinator’s and remote node𝑖’s 
clock is tc and ti, respectively. The simplest way to propagate the Coordinator’s 
clock tc to the network is through a broadcast transmission, which is a common 
operation in the Zigbee protocol. Once a remote node i has acquired the Coordinator’s 
clock tc, it is possible to calculate the difference Δti between the acquired and its 
own clock ti, i.e.,

	 �t t ti c i� � 	

Do note that Δti may be negative, if the remote node was powered on before the 
Coordinator, which does not impact subsequent calculations, but should be taken 
into account during implementation by using signed integers. The propagation of 
the Coordinator’s clock is depicted in Fig. 2a.

Under normal conditions, the difference Δti is assumed to remain constant for 
each node i in the passage of time and can be used to estimate the Coordinator’s 
clock. Consider a later point in time t´=t+r, where r>0 is the elapsed time since t. 
Remote node i is capable of estimating the Coordinator’s clock t´c by adding the 
previously computed difference Δti to its current clock t´i, that is

	 t t tc i i
� �� � � 	

To illustrate this, consider the case where a remote node i starts operating five sec-
onds (5 s) before the Coordinator. Clearly at any point in time, the remote node’s 
clock will be ahead of the Coordinator’s by five seconds. Therefore, the node simply 
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needs to have a way of finding out the initial difference, which is accomplished 
through the described scheme. This example is visually depicted in Fig. 2b.

However, there is a major issue in one of the assumptions made, that complicates 
this process. The node difference Δti for each node i does not remain constant as 
time goes on. Indeed, jitter, which is inherent in time-keeping devices due to manu-
facturing parameters, that influence clock frequency, results in actual time differ-
ence gradually deviating from Δti. In order to tackle this issue, it is possible to 
repeat the synchronization process, so that Δti can be recomputed, taking this devia-
tion into account. The period between synchronizations Tsync is determined by the 
utilized hardware’s accuracy and the application’s requirements. The issue of grad-
ual time difference deviation, due to clock jitter and its resolution through recurring 
synchronization events, is graphically illustrated in Fig. 3a.

To further clarify how Tsync may vary across different situations, some specific 
applications are considered next. The most important factors to acknowledge are the 
parameters being monitored, their variability across time and the cost of inaccu-
rately measuring them. A secondary concern, which is hardware specific, is the 
clock’s accuracy; the more accurate the clock, the less frequent the need for syn-
chronization. For instance, consider the application of olive grove irrigation and 
health monitoring.

The parameters that are most commonly monitored (temperature, relative humid-
ity, etc.) are relatively predictable across short time spans, while the risk of identify-
ing a disease or the cost of initiating irrigation a few milliseconds later is quite low. 
Trends across longer time spans are more relevant, making synchronization require-
ments low, and so Tsync can be unusually high in these cases. On the other hand, in 
wildfire monitoring, similar parameters are monitored, but their effects on how the 
fire spreads can be dramatic, while the cost of not measuring these in a timely man-
ner can incur resounding costs in crops and potentially human lives; thus, Tsync 
would have to be exceedingly low in such circumstances.

Fig. 2  A showcase of the considered synchronization scheme: (a) The network’s Coordinator 𝑐 
broadcasts its clock to all other nodes. (b) Example of remote node 𝑖 powering on five seconds (5 
s) before the Coordinator
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Another problem that requires attention, as it results in a certain degree of inac-
curacy and has not yet been addressed, relates to the fact that providing remote 
nodes with the Coordinator’s clock, through a transmission, requires time, which is 
not accounted for in the considered scheme. In particular, the Coordinator’s clock tc 
is not being updated, while it is being transmitted and forwarded to the rest of the 
network. Transmission delays are both hardware and software specific. For instance, 
MAC protocols often employ random delays to avoid collisions, the various hard-
ware components need time to pass around data at certain transfer rates, etc.; all 
contributing to the accumulation of transmission delays. In conjunction with the 
fact that these delays are often not deterministic, the task of accurately identifying 
them is intricate.

Synchronization inaccuracy caused by transmission delays is also proportional 
to the distance between a remote node and the Coordinator. For simplicity, suppose 
that the overall time required for the successful transmission and reception of a mes-
sage between two adjacent nodes (always) lasts one second (1 s), which is certainly 
an exaggeration. The Coordinator initiates the synchronization process at a certain 
point in time by broadcasting a message containing its clock tc. Each remote node 
t´=t+r within the Coordinator’s transmission range, i.e., each 1-hop neighbor, 
receives the clock and calculates the difference Δti, which is already off by one sec-
ond (1 s). These same nodes forward the message identically, so it still contains tc, 
to their adjacent nodes; the Coordinator’s 2-hop neighbors. Their difference Δti will 
now be off by two seconds (2 s), when compared to the Coordinator’s actual clock. 
Thus, intuitively, the synchronization inaccuracy of nodes d hops away from the 
Coordinator will be d×tTX, where tTX denotes the transmission delay between two 
adjacent nodes. This behavior is showcased in Fig. 3b.

Fig. 3  Issues associated with the simple synchronization scheme: (a) Gradual deviation of time 
difference between two nodes due to clock jitter. (b) Nodes further away from the Coordinator are 
guaranteed to have a larger synchronization error than those that are closer in large networks
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Fundamentally, most communication-based clock synchronization approaches 
attempt to deal with the presented issues, which can be summarized as: (i) accu-
rately computing the initial clock offset, or Δti, while minimizing propagation error; 
and (ii) accounting for the gradual synchronization error caused by different clock 
frequencies. The considered synchronization scheme attempts to deal with the latter 
in a rather simplistic manner but does not incorporate any mechanisms to address 
the former. However, the point of the particular synchronization scheme is to evalu-
ate its effectiveness in practical applications, as it is the most basic of available 
approaches and it can serve as a baseline for more advanced ones, while maintain-
ing a low energy cost requirement.

3.3  �Experimental Evaluation in Olive Groves

In the sequel, an experimental evaluation of the considered synchronization scheme 
is described, which was carried out in [76]. This evaluation aims to showcase the 
scheme’s effectiveness in providing measurements that are accurately correlated to 
physical time. To evaluate the synchronization scheme’s effectiveness, when operat-
ing under realistic conditions, a WSN consisting of 30 nodes was deployed on an 
olive grove situated in Chalidiata, Corfu, Greece. In particular, the network com-
prised 29 Routers hosted on Arduino Uno boards and a single Coordinator hosted 
on an Arduino Mega. An installation site inside the olive grove is showcased in 
Fig. 4. This is almost an ideal use case for the considered synchronization scheme, 
due to the lenient requirements for synchronization accuracy.

Regarding the deployment, nodes were set up in a star topology, with the 
Coordinator being a single hop away from all nodes. This minimized the accumula-
tion of synchronization error per hop, which is important in real applications, but it 
doesn’t enable further studying of the scheme’s performance. Nonetheless, the 
results were collected from an experiment that lasted roughly 17 min. The synchro-
nization process was repeated every Tsync=100s, while remote nodes forwarded an 
indication of their clocks at intervals of 10 s, starting from the time they were pow-
ered on. When the Coordinator received a message from a remote node, which 
included the node’s estimated timestamp and a handful of environmental measure-
ments, the message was immediately stored on a micro-SD card along with the 
Coordinator’s actual timestamp.

The difference between the Coordinator’s and the remote nodes’ clocks Δt is 
depicted in Fig. 5. Incoming indications are grouped into windows of 10 s, so that 
the time difference Δt, for all 29 remote nodes’ indications, is included in each win-
dow. The mean Δt is relatively stable, fluctuating between approximately 170 ms 
and 250 ms, even during the last stages of the experiment. Maximum values of Δt 
are also upper bounded at approximately 500 ms. This indicates the overall stability 
and effectiveness of the synchronization scheme: a simple broadcast transmission is 
capable of accomplishing timestamped measurements, achieving high precision 
compared to a lot of external hardware, such as Real Time Clocks.
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Fig. 4  An installation site on the olive grove, featuring multiple Arduino Uno boards within their 
protective cases scattered around an olive tree

Fig. 5  The mean and maximum values of time difference Δt between remote nodes and the 
Coordinator. Each data point represents the mean and maximum values of a window, containing a 
single Δt measurement from each of the 29 remote nodes
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Interestingly, the slope of Δt follows a downward trend, which seems to spike 
every 10 measurements, then gradually decrease again. These resets are caused by 
the synchronization event being repeated every 100 s. The time difference Δt at the 
reset points is partly due to the transmission delay tTX, which is not accounted for. 
The downwards trend, after the synchronization event takes place, indicates that 
remote nodes’ clocks tick slower than that of the Coordinator’s. The consistency of 
this trend is peculiar, and it is unclear why it occurs. Nevertheless, two factors to 
consider here regarding this behavior include: (i) the fact that the Coordinator is 
hosted on an Arduino Mega, featuring different processing characteristics than the 
Arduino Uno boards; and (ii) that it is also burdened with an increased workload, 
due to receiving more messages, having to store received measurements on an SD 
card etc.

As indicated by Fig. 6, where the distribution of the time difference Δt between 
all remote nodes’ and the Coordinator’s clock is depicted, Δt values are mostly 
clustered between 150 ms and 300 ms. A few further descriptive statistics are pro-
vided to further illustrate the stability of the synchronization scheme. The Δt values 
have a mean of �T ms� 208 295. , a standard deviation of 76.906 ms, a median of 
230 ms, as well as a 25th and 75th percentile of 167 ms and 251 ms, respectively. 
Overall, it should be evident that despite its simplicity, the considered synchroniza-
tion scheme is capable of providing adequately accurate timestamps fairly 
consistently.

Besides, it should be noted that the study, in which these experiments were con-
ducted, utilized a serial baud rate of 9600 bps [15]. This parameter affects the rate 
at which symbols are transmitted over a serial connection, i.e., the rate of 

Fig. 6  Distribution of Δt values received from all remote nodes
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communication between the Arduino microcontroller and the XBee module, lead-
ing to the creation of major bottlenecks in the transmission and reception of mes-
sages. With that said, the baud rate can go as high as 115,200 bps, which was 
estimated to reduce transmission delay by more than 90%. Thus, it should be appar-
ent that the timestamping precision of even the simplest synchronization schemes is 
capable of surpassing the performance of most other hardware-based approaches, 
enabling even extremely time-critical applications, such as wildfire monitoring, 
hydroponic cultivation and olive grove irrigation scheduling [64–66].

4  �Advanced Monitoring Architecture

The synchronization of WSN-based systems for agricultural applications is an 
important step towards the collection of reliable data. Equally important is also the 
system’s monitoring architecture which can potentially enable the advanced opera-
tions capable of processing and cross-referencing information collected from mul-
tiple WSNs and finally delivering the result to the farmer’s personal device. This 
section goes through related work on advanced monitoring architectures. 
Additionally, it details a cloud/fog architecture, which aims at minimizing the sys-
tem’s response time. The efficacy of the presented architecture is evaluated based on 
olive grove deployment-specific requirements. Finally, directions for future work 
are drawn in the final part, exploring the special case of wildfires, which by nature 
demand stringent monitoring and robust data handling.

4.1  �Related Work

In most cases, the volume of data produced in the field is enormous, making storage 
and preprocessing a difficult task for the end user. Advances in cloudification offer 
a promising solution in this regard, as cloud systems provide storage, networking, 
and processing power, while being more flexible than a personal computer. Further, 
the requirements for low latency and high mobility have pushed the functionality of 
the cloud to the edges of the network, augmenting its overall performance and lead-
ing to reduced latency [67].

To this end, the wide proliferation and adoption of IoT and smart devices have 
paved the way for greater elasticity, by offloading cloud computational demanding 
processes and resources in closer proximity to the end user, alleviating the overall 
system’s capacity utilization, while increasing accessibility. Ergo, the cloud/fog 
computing paradigm has come into light, increasing data-handling efficiency, and 
minimizing response time [17, 18, 68]. In the near future, due to the expected 
increase in the number of sensors on the field and the generated data, the need for 
instant decisions with low power consumption will be even more prevalent, thus, 
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making cloud/fog approaches an excellent candidate for realizing such applications 
in various domains, precision agriculture included [69].

With that in mind, Guardo et al. (2018) have proposed a framework for agricul-
ture, which showcases that the cloud/fog architecture can be used effectively in 
time-sensitive agricultural devices [17]. Evaluation is carried out with respect to the 
performance gain this framework brings about. Additionally, some information pro-
cessing occurs at the fog device as a form of load balancing, which further reduces 
response times, when compared to cloud-only systems.

The number of WSNs has also substantially increased with the rise of IoT, as 
they constitute a fundamental structural component for these kinds of implementa-
tions. Several platforms have been developed around the cloud architecture and the 
use of WSNs for monitoring the field [70]. One example is a multidisciplinary sys-
tem, named “ArgoCloud”, that utilizes cloud and mobile computing for transferring, 
storing and preprocessing data acquired from sensors, with the goal of assisting in 
crop fertilization [71].

Despite the aforementioned benefits, it is evident that most farmlands do not 
have unlimited network information resources for monitoring. Given this restric-
tion, another study proposes a creative service process, based on the cloud comput-
ing platform of the IoT, which is able to improve the current cloud-to-physical 
networking, along with the computing speed of the IoT [72]. Experimental results 
highlight that, under the considered IoT service platform, the cost of network trans-
mission can be effectively reduced, allowing large areas with limited network 
resources to use agricultural monitoring automation.

The WSNs are useful beyond their role in agriculture and crop monitoring. More 
specifically, WSNs can be employed for other purposes, like decision making and 
predictions related to wildfires in forests and rural regions. One study in this field 
has shown, through a number of conducted simulations, that WSNs can better detect 
and predict a fire, in comparison to conventional methods, such as satellite imag-
ery [73].

At this point, especially for systems responsible for extreme phenomena, like 
wildfire monitoring, an important WSN-related challenge, which has been studied 
by a plethora of researchers (e.g., [74]), needs to be acknowledged. This refers to 
the minimization of energy consumption due to limited battery life. However, a 
regular grid with homogeneous deployment can minimize the power consumption, 
allowing the detection of forest fire outbreaks early on, while ensuring the system’s 
sustainability [75].

4.2  �Cloud/Fog Architecture

In Sect. 3.2 a simple synchronization scheme, utilized by a WSN for smart agricul-
ture applications, is analyzed. Yet, when it comes to large-scale deployments over 
vast areas, it is quite common to separate the nodes into many WSNs instead of 
deploying just one. This is practical because it is easier to monitor smaller sections 
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of an enormous area, i.e., in case of a fire hazard it is clearer to spot the point of 
origin. On other occasions it is simply the result of having a significant distance 
between two groups of sensors that cannot communicate with each other, creating 
two independent WSNs. Therefore, the crucial issue of how the data of all these 
WSNs can be collected, stored, and processed effectively, as a whole, arises.

A simple cloud/fog architecture is adopted in many similar installations, like 
those presented in the previous subsection. This architecture has been broadly uti-
lized, even in other fields (vehicular applications, health, and fitness applications, 
etc.), for its simplicity and ability to adapt to the application’s specific requirements. 
It is for these reasons that the aforementioned architecture is proper for environmen-
tal overseeing, such as olive grove monitoring. Noteworthy is the fact that this archi-
tecture has already been used in many agricultural applications, where its utilization 
targets time-sensitive needs of olive groves [19]. The considered cloud/fog architec-
ture for agricultural monitoring consists of three layers, as graphically presented 
in Fig. 7.

At the top layer (Cloud Layer), a central infrastructure is formed by utilizing 
cloud computing services of the deployed servers, that in turn form a complete data 
center infrastructure. These servers can be used both as storage and computational 
units and are responsible for the overall system administration. Since the integration 
and maintenance of the servers is quite expensive and their location (in network 
distance) is generally not close to the end users, the fog computing paradigm is 

Fig. 7  The three-layered cloud/fog architecture: the server is on the first layer, the WNSs are 
located in the bottom layer, which consist of sink nodes and sensor nodes, and the fog devices are 
found in the middle one
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adopted, creating an intermediate layer (Fog Layer) between the end users and the 
Cloud Layer.

Fog devices provide similar services with the cloud servers, but they usually 
offer less computational capabilities, which makes them cheaper and more flexible 
than their cloud counterparts. For the case at hand, the Fog Layer comprises small 
single-board computers, such as Raspberry Pis, and it is responsible for processing 
the data collected by the WSNs and/or relaying it to the Cloud Layer through wide 
area network connectivity.

The bottom layer (End Users), includes the deployed WSNs, along with the vari-
ous people that manage them and exploit them, such as researchers, farmers, envi-
ronmental agencies, etc., through various devices, like smart phones or computers. 
The WSNs, in turn, are synthesized by a plethora of sensor nodes. Section 2.3 pres-
ents some components commonly used for actuating the nodes, rendering them 
energy-efficient and low-cost. Furthermore, their installation does not harm or dis-
turb the flora and the fauna of the ecosystem, making them an ideal hardware solu-
tion for hosting agricultural applications.

Since most of these systems are created for real-world applications, it is vital to 
evaluate their effectiveness, in regard to smart agricultural applications and reliable 
monitoring, by putting them to the test, under real use-case scenarios. One of the 
important aspects of an agricultural application architecture is the time needed by 
the system to respond in case of an emergency. In other words, the time needed for 
a data packet, encapsulating critical information regarding a serious ongoing event 
(e.g., wildfire or animal intrusion), to reach the fog device or the cloud, plus the time 
it takes for the data packet to be successfully processed and the generated system 
decision to travel back to the bottom layer. Clearly, this time must be kept as low as 
possible, in order for the end users or the corresponding WSN to proceed into 
swiftly dealing with the issue and launching appropriate countermeasures, whether 
these being a speaker making a loud noise to scare the animals away or a siren to 
alert the authorities about the fire outbreak. These are just two potential use case 
scenarios. Obviously, there exist many more. Therefore, it is vital to assess the sys-
tem’s performance, in dealing with similar affairs, based on a pertinent evalua-
tion metric.

4.3  �Evaluation

The evaluation process usually takes place by conducting experimental runs prior to 
large-scale deployment, to early detect faulty modules and optimize the functional-
ity. In particular, the tests can be carried out either in a controlled environment using 
real equipment, such as a lab, where different environmental conditions can be sim-
ulated, or outdoors, where the WSNs can be implemented in real-world conditions 
to determine whether the selected architecture is indeed practical.

Since it is important to assess the time needed for the system to respond to an 
important issue, a performance evaluation metric based on the response time is 
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exceptionally useful. One such metric is the Round Trip Time (RTT), which indi-
cates the time needed for a data packet, generated at a WSN node, to reach the 
overseeing fog device or cloud data center, be processed accordingly, and travel 
back to the same node. The three-layered architecture was evaluated using the 
aforementioned metric, in order to determine the quality of services it can poten-
tially provide and how it fairs when considering time-sensitive scenarios in olive 
grove applications [19].

The conducted experiments comprised a few WSNs, with each WSN’s sink node 
being linked through a serial cable with a Raspberry Pi, acting as a fog device. The 
experiments took place in different buildings of the Ionian University’s facilities, 
within closed, controlled laboratory conditions, emulating the considered three lay-
ered cloud/fog architecture. The response time varied based on different values of P, 
where P is the probability for a data packet to be processed either in a fog device or 
in the cloud server. In the former case, a system decision was generated in the Fog 
Layer, and was directly transmitted back towards the node, that initially generated 
the data, through the local area network. In contrast, during the latter case, where 
the data processing took place in the Cloud Layer, the generated system decision 
was first transmitted to the fog devices, which in turn relayed it to the appropriate 
WSN and the initial node.

A complete breakdown of the above behavior is presented in Fig. 8. Initially, a 
node of a WSN forwards a generated data packet to its sink node, which stores the 
data and forwards the data packet to the fog device, that manages the corresponding 
WSN. The fog device, upon reception, based on a random probability P, either pro-
cesses the data packet locally (i.e., when P>p) or forwards it to the cloud (i.e., when 
P<p) respectively. The same route, inverted, is followed by the system to send the 

Fig. 8  The total time needed for an RTT of a packet transmission. 𝑇fo represents the time required 
for a device to forward the data packet, 𝑇trans represents the duration necessary for a data packet 
transmission from one device to another and lastly 𝑇process shows the necessary time for a data 
packet to be processed
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processed data back to the WSN node, where the data originated, so it can be further 
managed by the end users’ devices.

Understandably, RTT is a suitable performance evaluation metric for applica-
tions, that require fast responses and actions on special occasions. Agricultural 
applications are no exception, especially when it comes to prominent matters, such 
as the protection of crops against various threats. The following subsection focuses 
on the case study of olive groves to better contextualize the adjustable character, in 
terms of RTT, of the three-layered cloud/fog architecture, in order to deal with haz-
ardous events.

To evaluate the system’s effectiveness, a case study that includes multiple experi-
mentation procedures, is revisited and examined in regard to the system’s properties 
described earlier in the current section [19]. The system in this case has been 
adjusted to meet the requirements of an olive grove deployment. The main goal of 
the conducted experiments is to evaluate the system in terms of response time and 
effective load balancing. It is worth mentioning that, while highly accurate synchro-
nization is not a prerequisite for a system designed for olive grove deployment, 
sufficient response time for hazardous events’ detection (i.e., wildfires) is required, 
in order to prevent destruction as soon as possible.

The first experiment aims at evaluating the fog/cloud response time according to 
the proposed functionality. More specifically, the system includes six (6) different 
WSNs, which contain a total of 28 nodes. Three different fog devices handle the 
data packets (i.e., the measurements) created from all WSNs. When a fog device 
receives a data packet, it decides whether to proceed in the necessary calculations or 
relay the packet to the server. This decision is taken based on a probability P (prob-
ability for the packet to remain inside the fog device for processing), where P ∈ [0, 
1], incremented by 0.1. In the case where P is smaller than a randomly selected 
value from the fog device, the packet is calculated remotely in the server, otherwise 
it is processed inside the fog device.

With that said, the lowest RTT values (lower values are translated to faster 
response time) are observed for P = 1 (i.e., when all packets are processed by the fog 
device), while the highest RTT values are calculated for P = 0 (i.e., when all packets 
are relayed to the server). Figure 9 depicts the results for both 5 s and 25 s intervals 
between node measurement sensing. It is apparent, that the RTT’s curve behaves 
similarly for both occasions, thus, the system is able to handle an increased number 
of packets without compromising the system’s credibility, which means that the 
crop monitoring procedure can be carried out with low latency, even under stressful 
situations, requiring high frequency of environmental readings.

The next experiment concentrates on evaluating the system’s load balancing 
mechanics. The latter aids in the proper adaptation of the system during peak times, 
when an increased number of packets, that require processing, are produced. The 
main aim is to determine if the fog devices are adequately equipped to handle such 
circumstances, by conforming the system’s processing behavior to avoid congestion 
from building up. In order to achieve this, time is split into distinct time steps (t) and 
two packet boundaries are employed inside the fog devices. In the case where the 
fog devices acquire less than or equal to 10 packets per t (lower bound), they are 
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considered underloaded, consequently, retaining the received packets for local pro-
cessing, as opposed to having 15 or more packets (upper bound), in which case they 
considered overloaded, and they begin sending packets to the server for processing. 
In this way, the system is able to balance the packet load throughout between the 
Fog and the Cloud Layers (i.e., cloud server and fog devices).

Specifically, to achieve the two actions dynamically (i.e., server packet forward-
ing and local processing), each time the upper bound is violated, the probability P is 
decayed by 0.05, otherwise if the data packet generation rate infringes upon the 
lower bound, the server forwarding is cut down in order to free up server resources. 
Figure 10 depicts the packet load in all three fog devices and the server. It is observed 
that the configured window [10, 15] indeed manages to capture most of the data 
packets within the given thresholds, indicating that the employed fog mechanism is 
sufficiently driving the load balancing procedure. In fact, the results clearly visual-
ize the system’s ability to control the generated workload. Note that the spikes that 
appear on Fog 3 are purely attributed to the fact that less nodes are connected to it 
(i.e., less packets are created for each time step), thus allowing it to distribute the 
load in a more controlled fashion compared to the rest.

4.4  �Potential Future Applications: The Case of Wildfires

As already made clear, the issue of wildfires is a recurring threat to agriculture. To 
provide some context, Greece is heavily afflicted by wildfires during the summer 
seasons. In 2007, the country was hit by three consecutive tempestuous heat waves 

Fig. 9  The mean Round Trip Times for each WSN and each Fog Device are presented in a single 
diagram for both 5 s and 25 s experiments
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with temperatures raging over 46 °C, which in conjunction with low relative humid-
ity, resulted in wildfires spreading allover Greece. According to the European Space 
Agency17, Greece’s wildfire activity during the summer of 2007 was more intense 
than other European countries over the last decade. In fact, the number of wildfires 
rose up to 11,996, resulting in 675,000 acres of burned land. According to Greece’s 
Fire Brigade (GFB)18 recent official statistics, 8006 forest fires have been recorded 
in 2018 alone. To put this in more perspective, 174 wildfires were recorded just on 
Corfu Island, an area of barely 236 square miles.

As such, a large number of studies focuses on the issue of preventing, detecting, 
monitoring and managing wildfires using modern technological tools. For instance, 
methods have been developed for quantifying a region’s vulnerability to fire, inform-
ing residents and farmers of fire risk [76, 77]. Most WSN-based applications spe-
cifically target sufficient monitoring and early detection, hoping to minimize 
damage [78–80]. WSNs have also been studied as a means of preventing and miti-
gating forest fires through irrigation scheduling, which requires an efficient WSN 
architecture to be effective [81].

Accordingly, an application combining most of these facets, while also fulfilling 
the duties of a typical agricultural application, is anything but unfathomable. Most 
applications, focusing on wildfires and forest fires, utilize, among others, relative 
humidity, soil moisture and temperature sensors for their purposes; sensors already 
ubiquitous in agricultural applications. By combining an efficient cloud/fog 

17 https://tinyurl.com/y86zoxy7
18 https://tinyurl.com/yaberpnf

Fig. 10  The packet loads measured during the experiment on all fog devices and the Server while 
the former distributed the packet load to the latter according to the current requirements
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architecture with ideas and techniques presented throughout this entire chapter, 
including synchronization, an extremely capable and robust system can be devel-
oped, that is highly equipped to monitor the field, to yield improved product quality, 
as well as to minimize wildfire risk with appropriate detection or countermeasure 
methods. In the sequel, one such potential system is described, analyzing the differ-
ent mechanisms that are integrated in each of the architecture’s layers and their 
effects on the system’s performance.

Starting from the top layer, maps outlining the sensing region’s fire vulnerability 
are required. It is not uncommon for local authorities of particularly vulnerable 
regions to provide these maps. For instance, Greece’s General Secretariat for Civil 
Protection (GSCP)19 publishes a map depicting the risk of a fire outbreak for all 
regions of Greece on a daily basis during the firefighting season. A comprehensive 
fire risk metric can be estimated (e.g., through machine learning models) for each 
employed WSN, combining regional geographical and fire risk maps with other 
relevant metrics, such as time of day and previous measurements acquired by the 
WSNs themselves [77]. This metric, being frequently updated, can be included in 
the reply to each acquired data packet; i.e., the second half of the RTT described in 
the previous subsections.

Continuing with the bottom layer, it is extremely important for all acquired envi-
ronmental metrics to be accurately timestamped, in order to improve the results of 
the fire risk estimation process. Synchronization can be used to provide timestamp-
ing, while also enabling sleep mode scheduling to minimize energy consumption, 
without sacrificing the system’s sensing and routing capabilities, as argued in [81]. 
Furthermore, the fire risk metric received from the top layer can be used to adjust 
the measurement reading frequency of each WSN’s nodes; an idea previously 
explored in [82]. When the fire risk is high, measurements should be more frequent 
to account for changes in the environment that contribute to fire spread, such as 
wind speed and direction. Actions aiming for fire prevention and mitigation, such as 
irrigation, can be performed as well, if the risk is extreme. On the other hand, when 
the fire risk is low, the measurement sensing period can be spread out to conserve 
energy levels.

Finally, the middle layer can be used to balance the load between the top and 
bottom layers. When the fire risk is great, a higher load is expected to originate from 
the WSNs, leading to lower responsiveness, at the time when it is most critical. To 
combat this, the probability P of each fog device forwarding acquired data packets 
to the cloud can be dynamically shifted in an inversely proportional manner, based 
on the estimated fire risk, as well. When fire risk is high, P should be lower to coun-
teract the increased load, while still providing fire risk metrics through the fog 
devices, although perhaps less accurate, as only local WSN information is available. 
Conversely, if the risk is low and the expected load is low, P may be increased to 
improve future estimation accuracy. Adjusting this probability P has already proven 

19 https://www.civilprotection.gr/en/daily-fire-prediction-map
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to be an effective mechanism at reducing RTT when the load is high, offering agility 
and flexibility.

The described system incorporates a state-of-the-art architecture and multiple 
techniques to form an overall well-rounded and fully fleshed-out application. It is 
capable of monitoring environmental conditions that affect crops and those that 
contribute to wildfire outbreak. As such, it can also be used for fire detection and 
prevention, while dynamically adjusting its behavior to improve performance with 
respect to multiple metrics, including energy efficiency, timestamping accuracy and 
RTT. All this can be accomplished using low-cost components, as previously out-
lined, highlighting the efficacy and potential of WSN applications in the domain of 
smart agriculture.

5  �Conclusions and Future Directions

Following the advancements of WSNs in the field of smart agriculture, this chapter 
has focused on covering vital issues regarding the accountability and accuracy of 
systems that monitor agricultural environmental parameters.

Primarily, various wireless sensor applications and fundamental WSN technolo-
gies used in the field of smart agriculture were discussed in the respective literature 
review section. The low-cost equipment, utilized in frontier research, was then 
explicitly covered and the selected low-cost equipment used in the works that the 
current study focuses on, was thoroughly discussed.

Several schemes for synchronized monitoring were reviewed, which achieved 
synchronization either with the help of hardware or software components. Further, 
based on the literature, a particular simple synchronization scheme was selected and 
explored. This scheme achieves the correlation of its system measurements with 
actual physical time, by using the sink node’s clock as a reference point to align 
sensors measurements.

The study, then, referenced the experimental evaluation of the described syn-
chronization scheme, in which the considered WSN was deployed in an olive grove 
on the Island of Corfu, proving the simple synchronization scheme to be effective 
and accurate for monitoring. In the course of time, more sophisticated synchroniza-
tion techniques are possible to be considered for these kinds of applications, in 
order to further improve the synchronization inaccuracies. One can also expect that 
future technological solutions will resolve to more capable low-cost equipment. In 
that vein, the applications will be able to incorporate more advanced antennas, 
which will further reduce energy consumption.

Additionally, to further explore the capacities of modern smart agriculture, the 
study also focused on covering various environmental monitoring architectures, 
which can collect sensor information from different locations, perform more 
advance operations and deliver the results to the appropriate parties, involved in the 
farming process. One such architecture employs the cloud/fog computing paradigm, 
which forms flexible WSNs that communicate with a main cloud infrastructure 
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through a fog computing network (consisting of microcontrollers), allowing for 
real-time monitoring of environmental factors in time sensitive agricultural applica-
tions. It typically keeps the load at better capacity and has higher throughput. The 
evaluation metric, that is mostly used for determining its response time is RTT, as it 
measures the overall time needed for a packet to travel across the system.

To demonstrate the performance of such a system, a robust prototype demo of a 
three-layered cloud/fog architecture was also discussed, which was deployed in the 
facilities of the Ionian University to evaluate the system’s performance [19]. This 
architecture features a homogeneous ability to dynamically control the network’s 
latency and the load balance, which allows for the system’s robust operation. Indeed, 
the results proved the system to be highly promising for agricultural applications. 
The average throughput showed to be consistently high and the average response 
time faster compared to cloud-only systems.

Following the olive grove solution, this cloud/fog architecture was further stud-
ied in the light of natural hazard prevention, another time sensitive application, 
which could be considered due to the system’s fast response time. Wildfires, is a 
natural disaster that frequently afflicts large areas of Greece, causing indescribable 
damage. By incorporating the cloud/fog architecture and additional techniques, the 
study discusses the potential of an application for detecting wildfires. Such an appli-
cation would be possible, due to the operational adaptability of the system, by 
dynamically changing the number of generated packages to reduce the network’s 
load, in order to reserve energy, when the risk of a fire is estimated to be low, and 
respectively adjust it under the circumstances of danger.

It is a question of future research to investigate the efficiency and throughput of 
alternative sensor modules for various environments such as, for example, cameras 
that can capture audiovisual footage or even soil pH trackers. The intermediate goal 
would be the autonomous adjustability of the cloud/fog architectures to counterbal-
ance implications and hazards imposed by system failures throughout the system’s 
entities, e.g., the fog devices. Finally, a particularly useful feature would be web 
interfaces, to provide farmers with the ability to remotely manage the system, in a 
user-friendly way, via various platforms.

In closing, the direction of cloud/fog architectures holds significant value, thus, 
making this kind of implementations, highly promising for the future of smart agri-
culture. It is clear, that due to the lack of research in the field, actions towards the 
establishment of unified guidelines are necessary, to allow for a better understand-
ing of the needs of the involved stakeholders. Such guidelines may include behavior 
optimization for the dynamic modification of the system’s characteristics to deal 
with various other agricultural aspects, but also to support emerging technologies, 
such as future 5G standards, and bridge the gap among different agricultural scien-
tific disciplines and environmental domains. In fact, the inherently generic nature of 
the cloud/fog system makes its future adaptation to numerous technological changes 
easily attainable.
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1  �Introduction

Precision agriculture (PA) is often defined as a farming approach in which decisions 
are made at a high resolution according to the actual needs of the plants at each loca-
tion. Precision agriculture is commercially practiced since the early 1990’s [1] when 
the yield monitors with georeferencing capability became commercially available 
[2]. There are several definitions of PA. Fountas et al. [3] defined PA as “the man-
agement of spatial and temporal variability in the fields using Information and 
Communications Technologies (ICT)”. Khosla [4] referred to the five “R’s” of PA 
which correspond to the application of inputs in agricultural systems at the “Right 
time”, at the “Right amount” and to the “Right place” [5], using “the Right Source”, 
and the “Right manner” [4].

In practice, in order to address all the aspects of PA, fields and plants are moni-
tored using a variety of sensing technologies and decisions concerning fertilizer and 
pesticide application as well as irrigation, are adjusted accordingly. PA management 
systems show significant advantages compared to traditional farming such as 
increased application efficiency, and minimal environmental footprint of agricul-
tural applications [6–9]. However, recent advances in technology provide an 
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unprecedented opportunity for further development. Remote and proximal sensing 
using optical sensors are gaining popularity in crop production systems in the 
framework of PA applications. Nowadays, there is vast number of optical sensors 
recording the data about crops at different spatial, radiometric, and temporal resolu-
tions. Both remote and in-field sensors are used for monitoring plant deficiency for 
nutrients and water, plant health status and soil condition [10]. Regarding the plat-
form carrying the sensor and the sensors’ proximity from the target (Fig. 1), they 
can be divided into three general categories, namely:

	1.	 satellite-based sensors;
	2.	 airborne and unmanned aerial vehicles (UAV)-mounted sensors;
	3.	 ground-based proximal sensors.

1.1  �Satellite-Based Sensors

The first and the uppermost level is remote sensing, where information is derived 
from satellite images. In recent studies, satellite data are increasingly used to moni-
tor agricultural fields since they present a powerful tool for monitoring phenological 
trends and assessing the effect of climate variability. Compared to hand-held optical 
sensors, satellite images offer a valuable perspective at the field-scale, revealing 
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Fig. 1  Pictorial display of sensing platforms with regard to distance from target and coverage
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regional crop conditions that are difficult to detect from ground manual measure-
ments due to limited sampling capabilities [11]. This is by far the most scalable 
sensing technology, as satellites such as Sentinels by the European Space Agency 
(ESA) [12], Landsats by the National Aeronautics and Space Administration 
(NASA) [13] and many other commercial satellites, are covering the whole planet 
at different revisit frequencies providing images at spatial resolutions that may 
range from few decimeters to hundreds of meters (depending on the satellite and the 
sensor). Besides the visible range of the electromagnetic spectrum, many satellite 
sensors also employ red edge, near-infrared, infrared, and thermal domains, making 
them particularly valuable for crop monitoring [14]. Atzberger [15] pointed out that 
satellite remote sensing shows great potential for monitoring vegetation dynamics 
due to large spatial coverage and frequent revisit time. Satellite remote sensing has 
been used in agriculture since the 1970’s when the first Landsat satellite was 
launched. Over the period of nearly half a century, the resolution of satellite images, 
as well as the revisit frequency, increased dramatically [1]. Today, a variety of dif-
ferent satellites are used for agricultural monitoring purposes, including Planet sat-
ellites with a resolution of up to 3 m, RapidEye with 5 m resolution and Pleiades 
with 50 cm resolution, each having a daily revisit time. However, a big drawback of 
the aforementioned commercial satellites is that the images are not free of charge 
and the cost of monitoring are thus prohibitively high for the majority of the farms.

In the last decade ESA and NASA changed their policies and made certain satel-
lite imagery available to the public at no cost [16, 17]. Landsat’s 40-year long 
archive is now freely available and the same holds for the state-of-the-art Earth 
observation program Copernicus operated by ESA on behalf of the European 
Commission. These led to an increased interest of the agricultural community 
towards satellite remote sensing in the previous years. Still, a few meters resolution 
of freely available satellite imagery may not be sufficient for precise monitoring of 
individual plants and could make the detection of fine differences within the field 
difficult. Another drawback of optical satellite sensors is the weather dependency. 
Clouds can heavily obscure images making them sometimes useless and that pres-
ents a serious challenge especially in rainy parts of Western Europe and North 
America. Satellites working in microwave domain like Sentinel-1 and TanDEM-X 
can, to a certain level, assist in this case since their signal penetrates clouds due to a 
different working principle. However, the information collected is different com-
pared to the optical sensors and this is still an area of active research [18, 19].

1.2  �Airborne- and Drone-Based Sensors

At the second level, when higher resolution is needed, sensors carried by aircrafts 
or, more recently, unmanned aerial vehicles (UAVs) can be used. They can provide 
precise measurements at high spatial resolution (a few cm) and are an ideal tool for 
crops that need detailed images for monitoring [20], such as orchards and vineyards, 
or any crops that do not fully cover the ground surface at the critical stage of image 
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acquisition. The high cost of lifting an aircraft, the costs of equipment and opera-
tion, or the limited flight time of UAVs due to battery power limitations, are just 
some of the challenges in this category which make these solutions less scalable 
than satellite-based applications. However, there is an obvious and equally rising 
interest of the agricultural community in these techniques, with the UAV and the 
UAV-mounted sensors industry showing rapid growth [21].

1.3  �Ground-Based Proximal Sensors

Ground-based proximal sensing is performed by sensors at a relatively short dis-
tance from the object of interest. Hand-held devices or sensors mounted on tractors 
and other vehicles are usually referred to as proximal sensors, here referred as 
ground-based proximal sensors. Their limitation is the small area coverage [22], but 
they also have significant advantages, such as high spatial resolution and indepen-
dent choice of the time of acquisition. The typical spatial resolution of proximal 
sensing is in the range from millimeters to centimeters, as opposed to remote sens-
ing that typically has resolution in the range from decimeters to hundreds of meters 
[23]. Another advantage is that their measurements are not compromised by cloudi-
ness, in case of active sensors, and are ideal for practical applications such as on-
the-go variable rate fertilization [24].

Active proximal sensors are independent of illumination conditions, since they 
emit their own light, and can operate under cloudy conditions or even at night. 
Furthermore, they do not require calibration to reflectance because the light source 
is known and constant [25]. However, the same is not applicable for passive sensors. 
Differences in environmental conditions between the start and end of measurement 
[26] occur due to time consuming character of ground-based sensing and this can 
reflect on losing precision in these types of measurements. Over the years, various 
different optical proximal sensors found practical applications, such as the Soil 
Plant Analysis Development (SPAD) chlorophyll meter (Konica Minolta Inc., 
Osaka, Japan), Hydro N-sensor (Yara International ASA, Oslo, Norway), 
GreenSeeker (Tribmle Inc., CA, USA), Crop Circle (Holland Scientific, NE, USA), 
CropScan (Next Instruments, Sydney, Australia), Analytical Spectral Devices 
(ASD) FieldSpec (ASD Inc., CO, USA), etc. Although they are least scalable, prox-
imal sensors provide accurate assessment of the plants’ growth, which is linked to 
photosynthetic activity and chlorophyll content [27], level of evapotranspiration 
[28], crops’ nitrogen status [7, 29, 30], and yield [8, 31].

1.4  �Vegetation Indices

The development of low-cost sensors, as well as the aforementioned liberalization 
of data access by data providers such as the ESA and NASA, have paved the way 
for the acquisition of vast amounts of sensor data. Compatibility studies between 
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datasets acquired by different sensors are necessary prior to any kind of data fusion 
in practice. These studies are usually relying on the calculation of vegetation indices 
(VIs) that are the base for analyzing growth and vigor of vegetation. Vegetation 
index is a combination of different spectral bands in which information about 
reflected electromagnetic radiance from vegetation canopy is stored.

Satellite and hand-held sensors are usually multispectral sensing devices operat-
ing in the visible (red, green, and blue) and infrared wavelengths, which are espe-
cially interesting for agricultural monitoring. Due to variable lighting conditions or 
scanning angles among two or more measurement dates, absolute values of single 
band measurements are seldom used. On the other hand, relative difference between 
different bands is more stable as the additive effect of illumination on the response 
may be approximated as equal throughout the spectrum. For this reason, vegetation 
indices (VIs) have been developed in order to relate the reflected electromagnetic 
radiance from the canopy with the canopies’ characteristics [32].

VIs are more widely used than absolute reflectance values in remote sensing 
algorithms for monitoring crop characteristics because of their simplicity and the 
ease of data processing [11]. Light of different parts of the electromagnetic (EM) 
spectrum acts differently when in contact with vegetation. In this regard, e.g., infra-
red light is reflected by mesophyll tissue whereas red light is absorbed by chloro-
phyll. Hence, their ratio will give high values for actively growing vegetation in 
contrast to stressed vegetation or other types of surfaces [33]. Due to the increase in 
biomass, changes of near-infrared radiation reflected from the canopy are the great-
est during the growing season, whereas visible light shows lower variation mostly 
related to absorption of light by photosynthetic and photoprotective pigments [32]. 
Usage of VIs is very dependable on instruments and platforms that are recording 
this data [34].

Various VIs have been used for assessing different phenomena, such as plants’ 
vegetation characteristics (NDVI, [35]), available soil moisture (NDWI, [36]), 
drought intensity (NMDI, [37] etc. Today, NDVI is most widely used, but it has its 
limitations with most important the fact that it reaches saturation when the canopy 
is dense, usually at the end of the growing season [38]. Generally, there is no perfect 
VI that could be used for all phenomena, all crops and all regions, and because of 
that, a variety of indices are used in scientific applications. The VIs can be affected 
by the canopy structure, leaf angles and their spatial distribution, plant row orienta-
tion, atmospheric conditions, which all together strongly influence canopy reflec-
tance. They are generally mathematical expressions of the reflectance using just a 
few specific spectral bands and at a single angle of observation (usually nadir sensor 
orientation), which leads to an under-exploitation of the full spectral and directional 
ranges available when using new generation sensors [39].

This might, however, change in the future by utilizing other techniques that are 
rising in trend nowadays. As it is usually the case with data-driven decision-support 
systems and monitoring applications, the more data collected, the better. Nowadays, 
new approaches for data analysis are gaining popularity, providing the ability to 
analyze massive amounts of data and information. The essence of Big Data Analytics 
and Machine Learning is to acquire a huge quantity of data and leave it to the algo-
rithm to find the hidden dependencies between them. Literature that convers 
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machine learning for agriculture was recently reviewed by [40] who reported that 
over 60% of the studies were related to crop management. Hence, a likely pathway 
in Agriculture 4.0 is, among other, the utilization of VIs and Artificial Intelligence.

1.5  �Inter-Comparison

Although proximal and remote sensing were extensively studied for assessing crop 
dynamics [41], direct inter-comparison between satellite remote sensing and proxi-
mal sensors with respect to the crop monitoring has rarely been discussed. Bausch 
and Khosla [42] compared QuickBird satellite-derived indices with ground-based 
Exotech radiometer-derived indices and found good correlation, with the highest 
agreement in green normalized difference vegetation index normalized for refer-
ence area (NGNDVI). Caturegli et al. [43] tested ground-based multispectral mea-
surements (using Licor spectroradiometer and GreenSeeker) and GeoEye-1 satellite 
images for estimating nitrogen status of turfgrasses. Comparing NDVI values 
acquired from these instruments, the highest Pearson correlation coefficient was 
found between GreenSeeker and satellite derived NDVI (r ≈ 1). Yang et al. [44] 
found moderate linear correlation (r  >  0.7) between NDVI measured from 
Formosat-2 satellite images and ground portable spectroradiometer GER-2600. 
Wagner and Hank [45] revealed Pearson correlation coefficient of 0.85 between 
RapidEye and YARA-N sensor-derived Red Edge Inflection Point (REIP). Necessary 
modification was made in RapidEye measurements using YARA-N sensor-based 
model, so that the REIP could be calculated. Bu et al. [46] confirmed that yields of 
sugar beetroot, spring wheat, corn and sunflower can be predicted with GreenSeeker, 
Crop Circle and RapidEye red and red-edge imagery.

The use of VIs is of great importance in monitoring crop dynamics and predict-
ing end-of-season yield from mid-season canopy reflectance measurements. Hence, 
it is essential to quantify the level of similarity between different sensor measure-
ments prior to data fusion. Jackson and Huete [47] pointed that caution is needed 
when comparing VIs obtained by different sensors because of the differences 
between sensors’ band-response functions, the differences in the fields of view, and 
the type of data, raw or transformed, acquired by each sensor.

In this chapter, 17 different indices were analyzed and their importance for crop 
monitoring, their stability and applicability on a large scale were discussed. VIs 
were derived from measurements made with a recently developed, active, multi-
spectral proximal sensor named Plant-O-Meter (POM) and compared to VIs derived 
from Sentinel-2. The first practical value of this research lies in the fact that POM 
measurements could serve as the ground-truth for calibration of satellite images in 
large-scale applications. In this way, data with coarser spatial resolution and lower 
accuracy could be fine-tuned to fit the field measurements and provide higher accu-
racy results for broader areas swept by the satellite. Additionally, the motivation 
behind this research was to correlate measurements from a novel device with mea-
surements widely used in modern research purposes. Nevertheless, both sensors 
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represent modern optical instruments that are likely to find broader use in the near-
term future.

2  �Materials and Methods

The present study was carried out during the 2018 growing season at a commercial 
field located in Begeč (45° 14′ 32.712” N and 19° 36′ 21.486″ E), near Novi Sad, in 
Vojvodina (Serbian province) (Figs. 2 and 5). The study area covers a geographical 
area of 6 ha. The experimental field’s soil properties were favorable for maize pro-
duction showing high content of humus and nutrients, and neutral to slightly alka-
line reaction, typical characteristics of the chernozem soils which are dominant in 
the area. The climate of Vojvodina is moderate continental, with cold winters and 
hot and humid summers with huge range of extreme temperatures and nonequal 
distribution of rainfall per month [48]. The mean annual air temperature is 11.1 °C 

Fig. 2  Location of the test site shown by the red dot
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and the cumulative annual precipitation is about 606 mm according to climate data 
from the period 1949–2006 [49]. During maize growing season (from April 1 to 
September 30), the total cumulative precipitation was about 398 mm, which was 
10% more than the 1970–2018 period average [50].

During maize sowing season, extremely dry and warm weather was recorded. 
Increased daily air temperatures in late April and early May accelerated maize 
development stages. However, the period from June to August was more humid and 
warmer compared to the average climatic conditions of the region. The soil condi-
tions regarding soil moisture content were monitored using a wireless network of 
soil moisture sensors; three sensor nodes installed in specific locations according to 
soil apparent electrical conductivity zones. The crop was irrigated after seeding to 
enhance germination and support growth during the initial growth stages. Two addi-
tional irrigations were supplied in critical stages when the water demand is high; in 
June after V6 growth stage when rapid growth occurs and in August during grain 
filling stages. On the other hand, September was significantly dry, which was par-
ticularly favorable for maize crop allowing for the grain to mature and dry. The 
meteorological data, (air temperature and precipitation) were acquired from the offi-
cial web portal of the Hydro-meteorological Service of the Republic of Serbia.1 The 
field was sown with “Exxupery” (by RAGT Semences, France, FAO 560) maize 
hybrid (Zea mays L.) widely adopted by farmers in Europe. Maize field was sown on 
April 15, 2018 for the major cropping season. Seeding was done in 300 m long rows, 
at the plant distance of 0.2 m within rows and 0.7 m between rows. Maize was grown 
using common agronomic practices to avoid any nutrient deficiencies and other 
unfavorable conditions. A total of 300 kg ha−1 of composite granular synthetic fertil-
izer (15:15:15; N-P-K) was applied at planting. The field was harvested when the 
majority of plants reached full maturity, on September 30, 2018.

2.1  �Plant-O-Meter

In-field proximal measurements were performed using POM sensor, an active crop 
sensor, recently developed by the BioSense Institute (Republic of Serbia). It is a 
multispectral sensing device emitting at four wavelengths of the electromagnetic 
spectrum: blue – 465 nm, green – 535 nm, red – 630 nm and near-infrared – 850 nm 
and measuring the amount of energy reflected by the target. Based on these mea-
surements, a number of vegetation indices can be calculated. As previously 
explained, these indices represent combinations of surface reflectance at two or 
more wavelengths and they have been adopted with the aim to highlight particular 
properties of the scanned plants [51]. The multispectral source is developed using 
four super bright LED dices that emit radiation at the defined wavelengths and have 
been attached on a surface mounted technology (SMT) chip, Fig. 3.

1 www.hidmet.gov.rs
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The reflected light is detected by a silicon PIN photodiode BPX 61 [52] with 
supporting electronics for filtering and amplifying the useful signal as well as for 
providing immunity to ambient light up to 10,000 lux. This photodiode-based detec-
tor module sequentially receives the reflected spectrum and sends the raw data to the 
microcontroller which averages the measurements and sends the data via Bluetooth 
to Android-operated device such as tablet, smartphone or similar. All further pro-
cessing is performed using the processor of the Android device through a specially 
designed Android application. Each measurement is georeferenced using the inter-
nal antenna of the Android device (which typically support GPS, GLONASS, or 
Beidou systems). Based on these inputs, VIs are calculated and displayed on the 
screen through the POM Android interface. The application has two operat-
ing modes:

	1.	 stationary measurements used for recording unique georeferenced measure-
ments of specific locations in the field, and

	2.	 continuous measurement intended for mapping the plants’ canopy or soil reflec-
tance in the field.

More detailed information about POM sensor (Fig. 4) and its operating princi-
ples can be found in the dedicated paper [53].

During the field ground-based proximal measurements, the POM was used to 
scan the whole length of every tenth row by walking along the rows, holding the 
sensor directly on top of the crop row with the scanning footprint perpendicular to 
the row direction. The measuring frequency was 1 Hz, which roughly corresponded 
to 1 m distance between the POM record points along the row. POM measurements 
were performed at four different dates and were carried out in the following stages 

Fig. 3  SMT multispectral 
source with four 
wavelengths: 850, 630, 535 
and 465 nm
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of maize development: 6-leaf growth stage (V6), beginning of tasseling (VT),  
silking (R1) and at the end of blister stage (R2), (Table 1).

2.2  �Sentinel-2

Sentinels are series of space missions of the European Union’s Copernicus  
programme which was created for monitoring the Earth’s environment [54]. Each 
mission is specifically designed and is using different technology to collect various 
type of information about Earth’s land, water, and atmosphere. Sentinels −1, −2, −3 
and -5P have currently been launched. Sentinel-2 is a constellation of two identical 
satellites A and B, launched respectively on June 23, 2015, and March 7, 2017. They 
fly at the average altitude of 786 km, in the same orbit phased at 180° to each other 
[55], thus having joint revisit time of 5 days at the equator. Sentinel-2’s swath width 
is 290 km, and it images the Earth’s surface between 56° S and 84° N latitude. 
Mission lifespan is designed to last for 7 years.

Each Sentinel-2 satellite carries an optical multispectral instrument that provides 
images in 13 spectral bands with spatial resolutions of either 10, 20, or 60 m [56]. ESA 
delivers Sentinel-2 images either as Level-1C or Level-2A products, which both repre-
sent radiometrically and geometrically corrected images, where Level-2A in addition to 

Fig. 4  Plant-O-Meter and specially developed Android application

Table 1  Corresponding acquisition dates for POM and Sentinel-2 and development stage of maize

POM date Sentinel-2 date Crop development stage

01.06.2018 30.05.2018 6-leaf (V6)
21.06.2018 24.06.2018 (cloudy) Tassel (VT)
04.07.2018 14.07.2018 Silking (R1)
26.07.2018 29.07.2018 Blister (R2)

M. Pandžić et al.
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Level-1C includes atmospheric correction. Products used in our study, are Bottom-of 
Atmosphere Level-2A products. The bands used in the study are the blue (490 nm), 
green (560 nm), red (665 nm) and near infra-red (NIR) (842 nm), with a 10 m resolu-
tion, and the narrow NIR (865 nm) with a 20 m resolution. With respect to POM mea-
surement dates, corresponding cloud-free satellite images were downloaded and 
processed. Atmospherically corrected images were downloaded from the official 
Copernicus Open Access Hub2 and processed using the official Sentinel-2 Toolbox [57] 
and QGIS software [58]. Acquisition dates for Sentinel-2 images are given in Table 1 
and operating wavelengths are given in Table 2.

2.3  �Data Analysis

Since the narrow NIR band of Sentinel-2 images was only available at 20 m resolu-
tion, all images were resampled using the nearest neighbor method. Thus, the blue, 
green, red and NIR bands from Sentinel-2 images were down-sampled from 10 m 
to 20 m resolution.

Due to the higher resolution of POM measurements compared to Sentinel-2 
images, i.e. several POM measurements points fell within a single Sentinel-2 image 
pixel (Fig. 5), all POM measurements inside a Sentinel-2 pixel were averaged. By 
employing this, there was only one corresponding value per POM spectral band for 
each single image pixel. Hence, 1-to-1 comparison between measurements of the 
two sensors was achieved. Using different spectral band combinations, various indi-
ces were calculated (Table 3).

Linear regression analysis was elaborated, using the Statistica 13 [71] statistical 
software, to define the relationship between the VIs calculated from the POM mea-
surements and from the Sentinel-2 satellite images. Since Sentinel-2 datasets 
include two separate bands for the NIR spectrum, the effect of using either one of 
them in the calculation of the indices was studied. Therefore, the analysis was per-
formed twice: (1) using the wide range NIR band from Sentinel-2 datasets, and (2) 
using the narrow NIR band.

At the second phase of data analysis, pixels that were confirmed as outliers 
were manually excluded from further analysis. Those were either border pixels, 

2 https://scihub.copernicus.eu/

Table 2  Operating wavelengths for POM and Sentinel-2

Plant-O-Meter Sentinel-2 [nm]
Band name Wavelengths range [nm] Central wavelength [nm] Bandwidth [nm]

Blue 450–465 490 65
Green 520–535 560 35
Red 620–630 665 30
NIR 830–870 Wide 842 115

Narrow 865 20

Potential of Sentinel-2 Satellite and Novel Proximal Sensor Data Fusion for Agricultural…
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contaminated by the features outside the field, or pixels contaminated by other 
objects located inside the parcel (Fig. 6). Linear regression analysis was also per-
formed in the outlier-free dataset (after removing the contaminated pixels) to export 
the final results.

3  �Results and Discussion

The analysis of the Sentinel-2 image acquired on 24 June 2018, provided poor 
results due to the significant effect of a layer of clouds over the experimental field. 
Therefore, this date was excluded from the analysis. This is a good example of the 
constraints of the use of optical satellite images as they highly depend on the weather 
[1]. Sentinel-2 provides two measurements in the NIR channel: wide (785–900 nm) 
and narrow (855–875  nm) range. Therefore, the analysis was performed twice, 
using the wide range NIR band and narrow NIR band, for the calculation of indices 
acquired from Sentinel-2 images. In the initial analysis the full dataset regarding the 
study area, for each of the three useable measurement dates, was used. Regression 
analysis revealed significant positive correlations between the indices derived from 
Sentinel-2 satellite images and Plant-O-Meter measurements acquired at V6 growth 
stage (01-06-2018) before the plants entering the reproductive stages. However, the 
coefficient of determination (r2) was considerably low ranging from 0.22 (weakest 
relationship for EVI) to 0.46 (strongest relationship for NDVInarrow, NDVI calculated 
using narrow NIR band from Sentinel-2, and PNDVInarrow, PNDVI calculated using 
narrow NIR band from Sentinel-2). This was attributed to the existence of contami-
nated pixels within the dataset that behaved as outliers in the analysis. Those pixels 

Fig. 5  Sentinel-2 image of the experimental field in Begeč at 20 m resolution where yellow dots 
represent POM measurement points

M. Pandžić et al.
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were therefore removed, and the regression analysis was repeated with the outlier-
free datasets (Fig. 6).

The final linear regression analysis provided an insight of which indices calcu-
lated using POM are in better agreement with the same ones calculated using 
Sentinel-2 satellite images. The differences were mainly due to the deviations in the 
operating wavelengths for the two sensors and in the different sensitivity of each 
sensor at different bands. According to the statistical analysis, using the narrow 
range NIR in calculations of Sentinel-2 indices provided better correlation to the 
POM indices (Table 5; Fig. 7b) as compared to the results using the wide range NIR 
(Table 4; Fig.  7a). In the regression between indices calculated from Sentinel-2, 
using the wide range NIR band (Table  4) for the first date of measurement (V6 
growth stage; 01-06-2018), the coefficient of determination (r2) ranged between 
0.325 (for EVI) and 0.700 (for RBNDVI) while the root mean square error (RMSE) 
ranged from 0.905 (for SR) to 0.014 (for NLI). In the analysis using the Sentinel-2’s 
narrow band NIR, the coefficient of determination (r2) was better, ranging between 

Fig. 6  Study field with contaminated pixels (white), pixels used in the analysis (pale red) and 
POM measurement points (pale yellow); (Google Maps, Imagery ©2020 CNES/Airbus, Maxar 
Technologies, Map data ©2020)

Potential of Sentinel-2 Satellite and Novel Proximal Sensor Data Fusion for Agricultural…
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Table 5  Coefficient of determination (r2) and Root Mean Square Error (RMSE) from the 
regression between indices calculated from Sentinel-2, using the narrow range NIR band, and POM

Date 01-06-2018 04-07-2018 26-07-2018
r2 RMSE r2 RMSE r2 RMSE

NDVI 0.710 0.069 0.162 0.100 0.045 0.103
SR 0.644 0.863 0.135 4.791 0.058 5.615
IPVI 0.696 0.042 0.162 0.050 0.045 0.052
NDVIg 0.630 0.059 0.106 0.217 0.012 0.224
NDVIb 0.676 0.099 0.044 0.101 0.002 0.141
SIPI 0.579 0.522 0.057 0.265 0.001 0.264
EVI 0.344 0.176 0.003 0.715 0.000 1.312
GSAVI 0.627 0.093 0.108 0.331 0.012 0.339
GOSAVI 0.629 0.060 0.107 0.218 0.012 0.225
GCI 0.595 0.515 0.094 5.015 0.032 5.349
NLI 0.493 0.014 0.116 0.006 0.097 0.004
TDVI 0.702 0.106 0.167 0.096 0.043 0.098
WDRVI 0.677 0.114 0.153 0.243 0.052 0.261
GRNDVI 0.683 0.057 0.178 0.248 0.029 0.260
GBNDVI 0.696 0.056 0.095 0.255 0.017 0.293
RBNDVI 0.728 0.124 0.136 0.162 0.022 0.200
PNDVI 0.710 0.076 0.151 0.274 0.028 0.313
Average 0.603 0.175 0.110 0.733 0.028 0.842

Table 4  Coefficient of determination (r2) and Root Mean Square Error (RMSE) from the 
regression between indices calculated from Sentinel-2, using the wide range NIR band, and POM

Date 01-06-2018 04-07-2018 26-07-2018
r2 RMSE r2 RMSE r2 RMSE

NDVI 0.680 0.075 0.162 0.093 0.036 0.093
SR 0.612 0.905 0.147 4.283 0.045 4.616
IPVI 0.668 0.045 0.162 0.047 0.036 0.046
NDVIg 0.616 0.058 0.102 0.209 0.008 0.210
NDVIb 0.652 0.103 0.050 0.096 0.000 0.134
SIPI 0.546 0.527 0.059 0.266 0.000 0.267
EVI 0.325 0.182 0.002 0.719 0.000 1.327
GSAVI 0.614 0.091 0.105 0.319 0.008 0.318
GOSAVI 0.615 0.058 0.103 0.210 0.008 0.210
GCI 0.574 0.500 0.087 4.625 0.028 4.611
NLI 0.478 0.014 0.124 0.006 0.060 0.004
TDVI 0.672 0.115 0.167 0.091 0.034 0.089
WDRVI 0.648 0.120 0.156 0.226 0.041 0.230
GRNDVI 0.659 0.062 0.177 0.236 0.022 0.239
GBNDVI 0.676 0.061 0.097 0.244 0.008 0.274
RBNDVI 0.700 0.131 0.143 0.152 0.010 0.184
PNDVI 0.686 0.082 0.155 0.259 0.017 0.288
Average 0.580 0.179 0.111 0.677 0.020 0.736
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0.344 (for EVI) and 0.728 (for RBNDVI) while the root mean square error (RMSE) 
ranged from 0.863 (for SR) to 0.014 (for NLI). This was expected since the measur-
ing range of the narrow NIR band of Sentinel-2 and NIR band of POM, are 
much closer.

The results for the two measurements during the reproductive stages, silking 
stage (R1) and blister stage (R2), provided poor results. This is attributed to the fact 
that after tasselling, the measurements showed considerably lower correlation 
between the two sensors explained by the mixture of colours after the tassels appear, 
and the different shades of the canopy from green to yellow as the plants approach 
maturity. Due to the large difference in the spatial resolution of the measurements of 
the two sensors in the study, this random mixture of colours affected the results of 
each sensor differently. The regression results showed low correlation between indi-
ces derived by the two sensing systems, showing the coefficient of determination (r2) 
lower than 0.178 (Tables 4 and 5). Therefore, these results are not discussed further.

The POM measurements acquired at the V6 growth stage showed good correla-
tion with Sentinel-2 results, mainly due to the uniformity of the colour of the area 
scanned in the field, which at this stage consists of crop canopy leaves (green 
colour). With 6 leaves fully developed, the leaf area covered a significant propor-
tion of the ground without significant overlapping of the vegetation. According to 
literature, this is the most appropriate stage for remotely sensing the maize crop 
as this is when the highest spatial variability in the reflectance measurements is 
observed [72].

Concerning the NDVI, which is the most widely used vegetation index [31, 32, 
73], the linear regression showed significant correlation between the POM and 
Sentinel-2 derived datasets at V6 growth stage for both using the narrow NIR band 
(r2 =0.710, RMSE=0.069; Table 5, Fig. 7b) and the wide NIR band (r2 =0.680, 
RMSE=0.075; Table 4, Fig. 7a) showing an almost 1:1 relationship; the slope of the 
linear model approached 1 and the constant approached 0 (Fig. 7). The correlation 
would probably increase if the resolution of the satellite imagery was greater and if 
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Fig. 7  Linear regression between the NDVI calculated from POM measurements and Sentinel-2 
satellite images using wide (a) and narrow (b) NIR bands, at V6 maize growth stage
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the different crop type was scanned which allows minimal reflectance of soil, such 
as turfgrasses, as reported in [43]. Apart from NDVI, most of the indices showed 
significant correlations with RBNDVI showing the highest coefficient of determina-
tion (r2 =0.728) followed by NDVI and PNDVI (r2 =0.710), and TDVI (r2 =0.702), 
(Table 5, Fig. 7b and Fig. 8 – right). This result suggests that RBNDVI, NDVI, 
PNDVI, and TDVI calculated using POM are more similar to the Sentinel-2 derived 
image results and are therefore more preferable to be used in studies that involve 
both POM (ground-based proximal) and Sentinel-2 (satellite remote) sensors. 
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The overall results of this study suggest that the POM active proximal multispec-
tral sensor can serve as a good alternative to the Sentinel-2 satellite sensor, having 
the benefits that the active proximal sensors offer, high spatial resolution, flexibility 
in the measurement timing and independence from cloudiness [46]. In addition, 
satellite data often need auxiliary ground-truth data for correcting the image inter-
pretation [23], and therefore combined use of Sentinel-2 imagery and POM mea-
surements could provide added value in contrast to single source derived information. 
Attention should be paid to the time of sensing as the measurements acquired by the 
two different sensing systems (ground-based proximal and satellite-based remote) 
are dissimilar when the canopy is irregular and the cops’ surface shows variability 
in structure and color, due to the large difference of the spatial resolution.

4  �Conclusions

The present work shows a comparative study among a ground-based proximal mul-
tispectral sensor (named Plant-O-Meter) and satellite images from Sentinel-2 mis-
sion. Both instruments operate in similar range of specific wavelengths, enabling 
the calculation of various spectral indices which could be valuable for monitoring 
crop properties. According to the results, ground-based proximal sensing provides 
comparable results to the indices calculated from Sentinel-2 satellite images at cer-
tain growth stages of maize. Therefore, Plant-O-Meter active proximal sensor can 
be an alternative to satellite images, providing measurements at high spatial resolu-
tion. This system operates independently of weather and illumination conditions 
overcoming the limitations that passive optical sensors are facing, such as cloudi-
ness, an important limiting factor of satellite remote sensing. Also, since satellite 
data usually need auxiliary ground-truth data for image interpretation, data fusion 
of Sentinel-2 imagery and POM measurements may provide added value in contrast 
to single source derived information.

On the other hand, POM provides information on plant level, while Sentinel-2 is 
more scalable and can provide information on field or regional level. The plant 
development stage plays an important role in the agreement between the indices 
derived by POM and Sentinel-2 due to the large difference in spatial resolution of 
the measurements. Satisfactory agreement between the indices calculated from the 
two sensing systems was achieved at progressed growth stages (V6, with 6 fully 
developed leaves emerged) of maize and before entering the reproductive stages. 
After the emergence of tassels, the regression between the two datasets provided 
poor results due to the uneven spatial distribution of the canopy growth and color 
mixture of leaves and tassels. The results can also apply to other crops; however, 
additional studies are needed to validate the relationship at the different develop-
ment stages according to the physiological specifications of each individual crop.

Further use cases may involve the POM proximal crop sensor mounted on trac-
tors or pivot irrigation systems which would, independently or in combination with 
Sentinel-2 data, enable decision making for variable rate irrigation, fertilization, or 
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fertigation. In addition, the data provided by the two sensing systems will be used 
for developing and testing algorithms for early- and late-season yield prediction. 
With an estimated market price below 500 € and a planned commercialization for 
POM, and in combination with free access to Sentinel-2 data and web applications 
that utilize satellite data [74], farmers will have an ultimate possibility to apply 
precision agriculture regardless the size and market share of their business.
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Trends in Satellite Sensors and Image Time 
Series Processing Methods for Crop 
Phenology Monitoring
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1  �Introduction

Agricultural production undergoes increasing pressure from anthropogenically-
induced and natural changes, including rising population, conversion of food (cere-
als) into biofuels, increased protein demands and climatic extremes [1]. Through a 
fleet of Earth Οbservation (EO) satellites, National and International space agencies 
are determined to keep their fingers on the pulse of agricultural land and crop growth 
[2]. Among the objectives of the multiple EO satellite missions launched in the last 
five decades, primary importance has been given to observe agricultural and natural 
vegetation land covers [3–7]. The strong correlation between the response of vege-
tation in the visible and near-infrared spectrum and its biophysical activities led the 
preference towards optical sensors for crop growth monitoring [8].

Optical data from EO image time series at high temporal resolution can effec-
tively assist in vegetation monitoring over time as they provide key information 
about vegetation status over large areas. However, imagery acquired at a high tem-
poral resolution goes traditionally at the expense of a low spatial resolution, and EO 
missions dedicated to time series studies have long been restricted to the domain of 
wide swath that achieve global coverage on a near daily basis. For instance, the 
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Advanced Very High-Resolution Radiometer (AVHRR) was pioneering in time 
series studies for vegetation monitoring studies at regional to global scales for more 
than 25 years. AVHRR has been collecting a near-daily global coverage of coarse-
to-moderate spatial resolution (1 km and 8 km) providing a consistent time-series of 
temporally-composited observations [9–11]. As a marked improvement, the 
Moderate Resolution Imaging Spectrometer (MODIS) has provided, since the early 
2000s, an improved times-series of multispectral observations, acquiring a global 
coverage of multispectral imagery with a high temporal (daily) resolution, a higher 
spatial resolution (250–500 m) and seven land-related spectral bands for vegetation 
detection. MODIS data have become increasingly used for vegetation growth moni-
toring over large geographic regions [12, 13]. Yet, probably the most noteworthy 
pioneering mission for land applications is the Landsat series of satellite-based sen-
sors. Landsat has long been appropriate for many landscape characterization appli-
cations such as land cover classification, change detection and vegetation monitoring. 
It has a nominal 16-day temporal resolution and up to 30 m spatial resolution, with 
a data archive extending from the early 1970s to present. However, the usage of 
Landsat time series for crop growth monitoring has limitations because vegetation 
changes may occur more rapidly than the 16-day revisit time of Landsat. In addi-
tion, cloud cover contamination of the optical satellite observations further reduces 
the number of Landsat images available to adequately detect many seasonal 
events [8].

These pioneering monitoring missions paved the path for a diversity of dedicated 
EO land missions initiated by National and International space agencies with 
emphasis in exploiting the spatial, spectral, or temporal domain. With current and 
upcoming EO satellite missions, an ever-increasing amount of optical EO satellites 
are orbiting around the Earth, such as the Sentinel constellations on behalf of the 
joint ESA/European Commission initiative Copernicus and the NASA A-Train sat-
ellite constellations. With the operational super-spectral Copernicus’ Sentinel-2 
(S2) [14] and Sentinel-3 missions [15], as well as the recently launched and upcom-
ing imaging spectrometer missions [16–19], an unprecedented data stream for veg-
etation mapping and monitoring becomes available. For instance, the unprecedented 
frequency of S2 multispectral observations (every five days) with a spatial resolu-
tion of 20 m (up to 10 m for specific bands) captures rapid changes of agricultural 
land-cover from national to field scale, serving as a major support for environmental 
monitoring and agricultural subsidy control [14]. Hence, S2 time series allows for 
high-resolution coverage of large areas with systematic data acquisition with high-
frequency sampling during critical phases of the crop growth cycle [20]. The 
Sentinel-3 satellites even enable a short revisit time of less than two days for the 
optical sensor OLCI (Ocean and Land Colour Instrument), but it is a medium-
resolution imaging spectrometer as it provides a spatial resolution of 300 m [15], 
and thus is less suited for crop monitoring at field scale.

Having an unprecedented influx of optical time series data at disposal, an 
essential condition for using image data for further processing is that it requires 
to be spatially and temporally continuous, i.e., gap-free data. Unfortunately, in 
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reality this need is often unfulfilled, due to multiple causes: (1) inadequate cli-
matic conditions (clouds, snow, dust and aerosols), (2) instrumentation errors, 
(3) losses of data during data transmission or (4) low temporal resolution (i.e., 
long time needed to revisit and acquire data for the exact same location), among 
others. The causes above degrade the availability of spatial and temporal infor-
mation required to retrieve land surface properties. Therefore, the impact of 
missing data on quantitative research can be serious, leading to biased estimates 
of parameters, loss of information, decreased statistical power, increased stan-
dard errors, and weakened findings [21]. For this reason, spatiotemporal recon-
struction of gapped areas from satellite imagery is becoming crucial for 
monitoring purposes [22], including the knowledge of the life cycle of vegeta-
tion, i.e., vegetation phenology [23].

Another important remark is that, from an EO perspective, specific plant sea-
sonal events such as budbreak, leaf out, land leaf senescence, flowering and matu-
rity of cereal crops cannot be directly detected at the spatial resolution of satellite 
imagery. Instead, more general descriptors of vegetation dynamics termed ‘land 
surface phenology (LSP)’ are calculated [8]. LSP refers to the seasonal pattern of 
variation in vegetated land surfaces observed from remote sensing [24]. This is dis-
tinct from observations of individual plants or species, as space-based observations 
aggregate information on the timing of heterogeneous vegetation development over 
pixel-sized areas. This aggregation often disassociates the response signal of the 
landscape from that of the individual species; yet is important for representing land-
scape scale processes in biosphere atmosphere interaction and crop monitoring 
models [24]. LSP metrics are typically associated with general inter-annual vegeta-
tion changes interpretable from spectral remote sensing imagery such as start of 
greening/season (SOS), the peak of growing season, onset of senescence or end of 
the season (EOS), and growing season length [24, 25], as well as other transition 
stages (e.g., maturity and senescence) [5]. Therefore, this chapter provides an over-
view of the possibilities for calculation of these LSP metrics from time series images 
for crop monitoring purposes.

Altogether, when aiming to process time series data for calculation of LSP met-
rics and agricultural monitoring purposes, a critical aspect to deal with is that EO 
data is spatially and temporally discontinuous. This implies that the ability to pro-
cess irregular time series becomes indispensable for studying seasonal vegetation 
patterns. In this respect, this chapter aims to provide a general overview on agricul-
tural land monitoring by means of EO image time series analysis and subsequent 
LSP calculation. To do so, first an historical overview of EO satellites with optical 
sensors that are designed to monitor the phenology of agricultural lands is given. 
Second, solutions are offered on how to gap-fill time series image data and then to 
calculate LSP metrics. Third, the calculation of LSP metrics from MODIS and 1 km 
aggregated S2 data is presented for two demonstration areas characterized by differ-
ent dominant crop: corn and winter wheat. Finally, trends in EO missions and image 
time series processing are being discussed in the broader context of monitoring 
croplands’ phenology.
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2  �Satellite Sensors for Crop Phenology Monitoring

Although in the current era of EO missions time series processing has become stan-
dard practice in agriculture monitoring, it only recently reached maturity. Almost 
half a century was dedicated to overcoming challenges related to EO technology 
and optimizing for ideal temporal and spatial resolution. In this respect, this section 
intends to give a brief historical overview about EO satellite missions for agricul-
tural monitoring purposes. Afterwards, time series data from NASA and ESA flag-
ship missions for land applications are used for presenting crop monitoring 
demonstration cases.

When EO satellites were first available in the 60s, it was recognized that the 
technology held considerable promise for agricultural monitoring [26]. NASA was 
pioneering with EO programs for agricultural monitoring purposes. Initial efforts 
involved the NASA LACIE and AgriSTARS programs in the 70s. They made sig-
nificant advances in crop monitoring but were seriously constrained by satellite data 
availability. At the beginning of EO missions, satellite optical data have been pri-
marily provided globally at coarse-resolution (c. 250 m–8 km) by systems specifi-
cally developed for land applications. This is especially true for the AVHRR sensors, 
launched back in the 80s. AVHRRs provided daily global observations, which rep-
resent one of the most critical features needed for agriculture monitoring, but they 
were limited by their low spatial resolution (1 km). It has long been recognized that 
when working on agriculture applications, a good temporal resolution is required, 
given that the crop phenology and conditions (e.g., water supply, pests, environmen-
tal) can change very quickly. To this end, the NASA Long Term Data Record 
(LTDR) contains gridded daily surface reflectance and brightness temperatures 
derived from processing of the data acquired by the AVHRR sensors onboard four 
NOAA polar-orbiting satellites: NOAA-7, -9, -11 and -14. The Version 4 contains 
improvements to geolocation, cloud masking and calibration, making the data 
record suitable for crop monitoring [27]. This product is still operational, and its 
usefulness has been demonstrated for a wide variety of applications such as snow 
cover estimation [28], agricultural modeling [27], Leaf Area Index (LAI) and 
Fraction of Absorbed Photosynthetically Active Radiation (FAPAR) retrieval [29, 
30], global vegetation monitoring [31, 32], burned area mapping [33] and albedo 
estimation products [34].

A next milestone involved the MODIS sensor on the Terra satellite. Since its 
launch in 2000, observations from the EOS/MODIS sensors have several of the key 
qualities needed for global agriculture monitoring such as global, daily coverage at 
coarse spatial resolution (250 m) and a suite of validated products. With MODIS 
onboard Terra (morning satellite) and Aqua (afternoon satellite) getting to the end 
of its operational life, it was high time to transition into new satellites. The Visible 
Infrared Imaging Radiometer Suite (VIIRS) onboard the Suomi National Polar-
orbiting Partnership (S-NPP) satellite provided continuity with MODIS from 2012 
[35, 36]. It overpasses once a day and during the afternoon, which decreases the 
chance of getting cloud-free observations, especially in the tropical regions. 
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However, the combination with the ESA Sentinel-3 satellite, that overpasses during 
the morning and has similar characteristics to MODIS, provides continuity to the 
successful and still valuable (due to its high temporal resolution) coarse resolution 
missions. Despite the advantage of the high revisit time, the main disadvantage of 
coarse to moderate resolution sensors is the spatial resolution that often mixes, in a 
given pixel, signals from different land cover types and crops. Stratifying a region 
into different crop types (commonly termed as crop masking) is an important step 
in developing EO-based agriculture models [37]. Such masks enable the isolation of 
the remotely sensed, crop-specific signal throughout the growing season, reducing 
the noise on the signal from other land cover or crop types [38]. In the United States 
(US), the US Department of Agriculture (USDA) generates a yearly national 
Cropland Data Layer (CDL) since 2007 [39] and Canada provides yearly national 
Annual Crop Inventory Maps (ACIM) since 2009 [40]. These masks are provided at 
the end of the growing season and no crop type masks are available for other coun-
tries. Therefore, generally EO-based agriculture models use static cropland or crop 
type masks.

The flagship moderate resolution NASA mission Landsat, with data going back 
to the 70s, was long used for agriculture monitoring, but with limitations mainly due 
to its low temporal resolution of 16 days. Coupled with the frequency of cloud 
cover, the revisit time for some regions is often worse. A number of studies have 
fused Landsat with MODIS data [41–43], and combined Landsat data with bio-
physical models [44, 45], leading to varying results in terms of errors as they are 
still constrained by the low temporal frequency of Landsat imagery. The launch of 
the ESA optical moderate resolution missions Sentinel-2A in 2015 and Sentinel-2B 
in 2017 have been revolutionary for the moderate agriculture monitoring. The 
increased temporal coverage and the new technologies offered by the Sentinel sys-
tems and their combination with NASA sensors, provides new opportunities for 
high temporal frequency moderate resolution remote sensing, enabling a new gen-
eration of agriculture products to be generated. Specifically, with the Sentinel-2A 
and -2B fusion with Landsat, it is now possible to achieve a temporal resolution of 
three to five days globally. In fact, recent studies leverage the combination of these 
satellites to address crop yield assessment at field scale [46–48]. Yet, simply having 
synergistic sensors on orbit is not sufficient for end users; the data products them-
selves must also be processed in such a way as to ease preprocessing and analysis 
burden. The Harmonized Landsat/Sentinel-2 (HLS) project [49] developed by 
NASA provides a surface reflectance product that combines observations from 
USGS/NASA’s Landsat-8 (LS8) and ESA’s Sentinel-2 (S2) satellites at moderate 
spatial resolution (30 m). The main goal is to provide a unique dataset based on both 
satellites’ data to improve the revisit time to three to five days depending on the lati-
tude. Along with a common atmospheric correction algorithm [50], geometric resa-
mpling to 30 m spatial resolution and geographic registration [49], the product is 
also corrected for Bidirectional Reflectance Distribution Function (BRDF) effects 
and band pass adjustment. Besides, the Sen2like tool [51] developed by ESA will 
provide analysis ready Harmonized LS8 and S2 data/products to the user. Using the 
S2 tiling system, the sen2like tool processes S2 Level-1 products and LS8 Level-1 
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products and create a harmonized surface reflectance data stack at 10 m spatial reso-
lution. Working on the same baseline principles as NASA HLS initiative, geometric, 
radiometric and image processing algorithms are applied. Recent studies took 
advantage of Landsat and S2 data to address crop yield assessment at a moderate 
spatial resolution [52, 53].

Recent advances in data acquisition and processing (e.g., cloud computing) are 
making possible the development of global high-to-moderate resolution data sets 
(10–30 m). Such global time series data will permit improved mapping of crop type, 
crop area and vegetation properties essential for regional implementation of moni-
toring strategies. Higher temporal frequency from multiple high-to-moderate reso-
lution satellites will also provide a better characterization of agronomic growth 
stages, with the consequent improvement of crop production modeling accuracy.

3  �Time Series Processing for Crop Seasonality Monitoring

3.1  �Gap-Filling

An essential step for being able to use EO data for further processing such as LSP 
calculation, is converting raw data time series into spatio-temporal continuous data-
sets. To ensure this, gaps mostly provoked by clouds must be filled. Time series gap 
filling essentially refers to the prediction of missing values in time. Mostly, these 
missing values are located within the dataset time series, so in principle interpola-
tion methods to fill them up would suffice. It is therefore no surprise that interpola-
tions and fitting methods are commonly used as a first step in the time series 
processing. According to the recent review by [8], gap filling methods can be cate-
gorized into: (1) smoothing and empirical methods, (2) data transformations, and 
(3) curve fitting methods. From these three categories, the curve fitting methods are 
the most commonly used, with double logistic curves being a popular method for 
seasonality estimation [54–56]. This family of methods has expanded rapidly in the 
last few years with the emergence of adaptive machine learning regression algo-
rithms [57]. See also [57, 58] for a quantitative evaluation of these methods. Some 
machine learning methods proved to be particularly attractive; not only because of 
achieving higher accuracies when validated against a reference image, but also 
because of additional properties such as delivering uncertainty estimates (e.g. 
Gaussian processes regression: GPR). Most of these methods have been recently 
implemented into an in-house developed graphical user interface (GUI) toolbox, 
named DATimeS (Decomposition and Analysis of Time Series software) [57]. 
DATimeS has been developed to generate cloud-free composite maps from regular 
or irregular satellite time series. The novelty of the toolbox lies in expanding estab-
lished time series gap-filling methods with a diversity of advanced machine learning 
fitting algorithms. An overview of the gap-filling methods is provided in Table 1.

Here, a brief description of the toolbox is provided, as it will be used in subse-
quent calculation of phenology indicators. In short, DATimeS is developed as a 
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modular toolbox that can be applied to both, set of images and discrete time series 
data stored in a text file. An overview of the DATimeS’ modules contained in this 
first version (v.1.06) is shown in Fig. 1. The core machinery of DATimeS is the 
“Time Series Analysis” module, where the gap-filling methods can be selected, and 
subsequent phenology indicators can be computed. The user may choose whether to 
incorporate the smoothing function prior to the parameter estimation. Although a 

Table 1  Interpolation methods used for gap-filling

Gap-filling methods

Smoothing and Interpolation 
Methods

Linear, Polynomial, Nearest, Next, Previous, Pchip, 
Spline

Data Transformation Offset + Harmonic analysis
Offset + Harmonic analysis + Linear Term
Offset + Harmonic analysis + Linear Term
Offset + Harmonic Analysis using Sliding Window

Fitting methods (e.g., machine 
learning)

Bagging trees (BAGTREE)
Adaptive Regression Splines (ARES)
Boosting trees (BOOST)
k-nearest neighbors regression (KNNR)
Gaussian Process Regression (GPR)
Kernel Ridge Regression (KRR)
Locally-Weighted Polynomials (LWP)
Support Vector Regression (SVR)
Neural networks (NNIPL)
Random forests (RF2)
Boosting random trees (RF1)
Structured Kernel Ridge Regression with linear Kernel 
(SKRRlin)
Relevance Vector Machine (RVM)
Sparse Spectrum Gaussian Process Regression (SSGPR)
Structured Kernel Ridge Regression with RBF kernel 
(SKRRrbf )
Decision trees (TREE)
Variational Heteroscedastic Gaussian Process Regression 
(VHGPR)
Double Logistic curve
Whittaker

Fig. 1  Hierarchical design of DATimeS
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prior smoothing step may help in finding general patterns, it must be remarked that 
most fitting methods perform a time series anyhow, smoothing along with the fitting 
prediction. Before starting the gap-filling procedure, a compulsory step is to define 
the output time settings, i.e., the days to which cloud-free interpolated images will 
be generated (e.g., every 10 days). These composite products from operational land 
missions (e.g., AVHRR, MODIS, SPOT Vegetation (VGT)) are commonly used for 
subsequent LSP calculation [25, 59–61].

3.2  �LSP Calculation

A next step involves the calculation of the phenology indicators from the prepared 
cloud-free time series data, i.e., the LSP metrics. Numerous studies have dealt with 
the retrieval of phenological phases from remotely sensed data [55, 62–65]. LSP 
metrics quantification over croplands is widely used for yield estimation, or to 
improve management and timing of field works (planting, fertilizing, irrigating, 
crop protection or harvesting) [66, 67]. Distinct LSP metrics may be of interest to 
the scientific community, private companies and farmers, such as dates of start and 
end of the growing season (SOS and EOS, respectively), maximum peak, seasonal 
amplitude defined between the base level and the maximum value for each indi-
vidual season, length of the season, etc. [38, 68]. These LSP metrics are extremely 
sensitive to changes in vegetation cycles related to multiple factors such as climate 
anomalies or extreme weather events, which can have a profound impact in the 
agricultural production [69–71]. Hence, estimating LSP metrics is a convenient way 
to summarize seasonal information in a few comprehensive quantitative descriptors. 
However, it must be taken into account that these metrics are sensitive to the pro-
cessing data characteristics or methods used (e.g., gap-filling method, pixel size, 
time period of the time series). Therefore, outputs must be carefully analyzed (see 
also review in [8]), as will be further demonstrated in the case study.

In practice, LSP metrics are recommended to be derived after the interpolation 
step so that cloud-free composite images are created, and trends become evident for 
easy phenological metrics derivation. For this reason, DATimeS recommends LSP 
estimation as the next logical processing module after the gap-filling module, even 
if going directly to this step is also possible. In this module, the whole time series is 
first analyzed looking for possible multiple growing seasons.

Then, each individual season is processed separately to estimate the phenologi-
cal indicators (e.g., SOS and EOS) based on conventional threshold methods, analo-
gous to [68, 72–75]. The computational routine for LSP calculation follows multiple 
steps. It runs pixelwise, and for each pixel it: (1) extracts the time series, (2) identi-
fies automatically individual growing seasons within each year, (3) locates specific 
points within the growing season (e.g., SOS, EOS, peak), (4) computes seasonal 
integrals (area under the curve between SOS and EOS) and (5) stores the estimates 
in output ENVI or Tiff files. Three alternative methods have been implemented to 
calculate the SOS/EOS: (1) seasonal, (2) relative and (3) absolute amplitude. In the 
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former case, the SOS/EOS are identified where the left/right part of the curve 
reaches a fraction of the seasonal maximum amplitude along the rising/decaying 
part of the curve. The second approach is similar to the previous one, but now a 
mean amplitude is estimated considering the minimum/maximum values of all sea-
sons. Consequently, the SOS/EOS correspond to dates where the curve reaches a 
specific percentage of the reference amplitude. In the latter method, the SOS/EOS 
are determined when each growing season reaches the same fixed value.

4  �Demonstration Cases Time Series Processing

Having outlined the main principles of (1) EO missions dedicated to crop monitor-
ing, (2) gap-filling methods, and (3) LSP calculation, this section provides some 
time series demonstration cases with temporal data coming from the currently most 
successful optical missions at low and high spatial resolution, i.e. MODIS and S2 
acquisitions. The study focuses on the trade-off between revisit time and spatial 
resolution of each sensor and is carried out over two agricultural landscapes of the 
US, each one characterized by the presence of a different dominant crop type with 
specific phenological dynamics: winter wheat and corn.

4.1  �Study Area and Data Acquisition

The US is one of the main producers and exporters of corn and wheat globally. In 
2016 the US was the leading wheat exporting country, shipping 14.8% of global 
wheat exports1. Wheat is produced in almost every state in the United States and 
winter wheat varieties dominate US production, representing between 70% and 80% 
of the total wheat production. The winter wheat is planted in the fall and harvested 
during June-July. Generally, wheat is rain-fed and just 7% of the national production 
is irrigated. The main wheat class is Hard Red Winter Wheat, which is grown pri-
marily in the Great Plains, with Kansas being the largest producing state. Besides, 
the US is a major player in the world corn trade market, with between 10% and 20% 
of its corn crop exported to other countries. Corn is grown in most U.S. States, but 
production is concentrated in the Heartland region (including Illinois, Iowa, Indiana, 
eastern portions of South Dakota and Nebraska, western Kentucky and Ohio, and the 
northern two-thirds of Missouri). Iowa and Illinois, the top corn-producing States, 
typically account for about one-third of the U.S. crop. The corn is planted during 
April-June and is harvested during September-November.

With the aim of performing a fair comparison of multispectral spatiotemporal 
information carried by high- and low spatial resolution multispectral imageries, i.e. 
S2 and MODIS, over corn and winter wheat, the Crop Data Layer (CDL) yearly 

1 http://www.worldstopexports.com/wheat-exports-country/
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produced by the National Agricultural Statistics Service (NASS) of the US 
Department of Agriculture (USDA) was analyzed, and selected two S2 tiles repre-
sentative of each crop type were selected.

4.1.1  �Crop Data Layer

The Crop Data Layer (CDL) is distributed by NASS since 2008 at 30 m as part of 
the official archive of county-level statistics on yield, area harvested and production 
that are available from the USDA National Agricultural Statistics Service (NASS) 
Quick Stats database2. It is a rasterized land cover map using field level training data 
from extensive ground surveys, farmer reports provided to the US Farm Service 
Agency (FSA), and remotely sensed data from Landsat Thematic Mapper (TM), 
Landsat Enhanced Thematic Mapper (ETM+) and Advanced Wide Field 
Sensor(AWiFS). These data are used in a decision tree classifier in order to produce 
a land cover classification that distinguishes between different crop types, including 
winter wheat [39, 76].

4.1.2  �MODIS and Sentinel-2 Surface Reflectance Time-Series

The time span chosen for the study was the year 2019 due to the availability in 
Google Earth Engine (GEE) [77] of S2 surface reflectance images over the US from 
December 2018 on. The first tile chosen is 11TLM, which is located in North West 
of US, in the South of Washington and contains mainly winter wheat cultivated 
areas. The second one is 15TVH, centered in North Iowa, with essentially corn and 
soybean crops. S2 data were downloaded from GEE in UTM projective coordinates. 
Limited by the spatial resolution of CDL, S2 information distributed at 20 m were 
gathered. Aside from the crop-of-interest spatial density, a second criterion for the 
selection of the two areas was their medium frequency level of cloudiness estimated 
by analyzing MODIS daily cloud mask. This way, the main advantages and draw-
backs of the shorter revisit time of coarse resolution MODIS imagery against the 
longer revisit time of high resolution S2 acquisitions can be assessed. Details about 
the spatial properties of the test sites are summarized in Fig. 2. The nine classes in 
the legend correspond to the most frequent classes within the two test-sites, among 
the 134 provided by USDA [78]. Tile 15TVH is essentially made up of two main 
classes, corn and soybeans; tile 11TLM presents a more heterogeneous scenario, 
with winter wheat being the dominant crop class after pasture. The landscape is 
further characterized by shrubland, but crops as spring wheat, alfalfa and potatoes 
are also cultivated. Grey and blue colors indicate urban and water areas, respectively.

The analysis of MODIS time series was based on MODIS daily surface reflec-
tance Collection 6 data (MOYD09GQ) distributed by the Land Processes Distributed 

2 http://www.nass.usda.gov/Quick_Stats/
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Active Archive Center3 (LPDAAC), which are gridded in the sinusoidal projection 
at 250m resolution. Additionally, the product MOYD0 was used 9GA to extract the 
geometry of observation illumination of each image. Since the nominal 250  m 
MODIS resolution decreases for the off-nadir observations and due to inaccurate 
registration [79], the 250 m surface reflectance was re-scaled to 1 km spatial resolu-
tion to mitigate that effect by aggregating 4 × 4 pixels. The wide swath MODIS 
sensor allows for near global coverage of the Earth every day. However, it has a 
16-day repeat cycle, which means that every day the geometry of observation is dif-
ferent and can include View Zenith Angles (v) of up to 65 degrees. As a conse-
quence, the surface reflectance that is defined for a given geometry of 
observation-illumination has different values every day. In order to normalize the 
BRDF effects on the surface reflectance, we used the VJB method [80, 81]. This 
method uses longer compositing periods (five years in [80]), than the MCD43 prod-
uct (16 days) [82], which reduces the noise in the normalized reflectance time series 
[83]. In this study, the nadir BRDF parameters at 1 km spatial resolution using the 
most recent five years (2012–2016) were derived.

3 https://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_table

Fig. 2  USDA land cover map of 2019 over S2 footprint @30m for tiles 11TLM (left) of 
Washington and 15TVH (right) of Iowa. The legend details the main classes within the two tiles, 
among the 134 defined by USDA. Green lines and greyish areas define US Counties and States 
limits, respectively. The cloudiness map along 2019 was estimated as percentage of per pixel 
MODIS cloudy acquisitions
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By using the daily surface reflectance (from both Aqua and Terra) and its angular 
conditions during the five-year period considered, the variables that define the 
BRDF shape (V and R in Equation (1)) are derived using the approach proposed by 
[81]. The MODIS dataset consists of daily acquisitions covering the whole US ter-
ritory during 2018 and 2019. For S2, a total amount of 237 and 158 partially cloudy 
or cloud-free images was collected for 11TLM and 15TVH, respectively. Despite 
the nominal revisit time of S2 being five days, 11TLM is fully covered by orbit 113 
and partially covered by orbits 70 and 13, whereas 15TVH is fully covered by orbit 
69 and partially covered by only orbit 112. This explains the different number S2 
images. Details about the dataset are reported in Table 2.

4.2  �Time Series Processing Over Croplands

As pointed out in Sect. 2, the main disadvantage of coarse to moderate resolution 
sensors is the spectral mixing from different land cover types and crops. In order to 
characterize the degree of homogeneity of coarse resolution pixels, the higher spatial 
resolution information provided by CDL map and S2 imagery can be exploited. First, 
a common coordinates’ reference must be defined to allow establishing a pixel-to-
pixel correspondence among the different information sources. MODIS data were 
cropped over S2 tiles 11TLM and 15TVH, projected to their corresponding UTM 
reference at 20 m using the nearest-neighbor interpolation, and finally aggregated at 
1 km. Similarly, CDL maps were projected onto S2 UTM reference at 20 m.

The interpolated CDL was then used to calculate the percentage of each land 
cover class within each MODIS 1 km pixel. A qualitative description of the homo-
geneity of MODIS pixels is given in the 1 km land cover maps shown in images (a) 
and (b) of Fig. 3. For their generation, the 3 most likely classes at pixel level were 
taken into account. Denoting them ordered by probability as Cl1, Cl2 and Cl3, the 
RGB composite was obtained by weighing the color coding of the three classes with 
the corresponding percentages. The visual comparison of the land cover maps at 
20 m (Fig. 2) and 1 km indicates that a dominant class can be still identified at 
MODIS scale. Yet, the less saturated colors point out the presence of a non-negligible 
class mixing. The higher the mixing, the more relevant the difference between 

Table 2  MODIS Terra/Aqua and S2A/B imagery information over the two test-sites

Sensor Start date End date
Number of 
images

Full 
coverage 
orbit

Partially 
coverage orbit

Spatial 
resolution

MODIS 
T/A

1/1/2018 31/12/2019 730 – – 1 km

S2A/B 
11TLM

13/12/2018 10/01/2020 244 113 70/13 20 m

S2A/B 
15TVH

13/12/2018 10/01/2020 166 69 112 20 m

L. Pipia et al.
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MODIS and S2 spectra is. A quantitative estimation of this mixing effect is pro-
vided by the Gini-Simpson Index (GSI) [84, 85]. The GSI essentially quantifies how 
many different types of classes the pixel of interest contains, and is computed as the 
complement of the sum of squared N-member fractions of classes:

	
GSI x y p x y
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where (x, y) denotes the coordinates of MODIS pixel’s center, Nc is the total number 
of CDL classes within the pixel and pi is the fraction of the area covered by the ith 

Fig. 3  Synthetic Land cover map @1km of 11TLM (a) and 15TVH (b) tiles based on USDA land 
cover product @30m weighted by the probability of classes Cl1, Cl2 and Cl3 within MODIS pixels. 
In (c) and (d) the corresponding GSI maps are showcased
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class. The result obtained for the area corresponding to the two S2 tiles are shown 
in Fig. 3c, d. The closer GSI to zero, the purer the pixel is, i.e. a dominant class 
characterizes the pixel. Conversely, a higher GSI denotes a heterogeneous 1  km 
pixel where multiple classes are present with comparable percentages. Over the lat-
ter ones, the interpretation of coarse resolution imagery deserves special attention, 
as the information they contain cannot be transferred directly to individual classes. 
To clarify this concept, we use the Difference Vegetation Index (DVI).

DVI is a non-normalized parameter simply defined as the difference between the 
near-infrared and the red bands, with the main advantage to describe the evolution 
in time of crop phenology avoiding saturation effects often detected with other nor-
malized indexes such as NDVI [86]. Accordingly, five DVI time series at 1 km from 
the two imagery sources were generated. The first two ones are the MODIS DVI 
from the BDRF-corrected MODIS, and the S2 DVI obtained by simply upscaling 
the S2 product to 1 km. Besides, for each 1 km pixel the three classes with the high-
est probability were selected and the S2 DVI value of 20 m pixels belonging to each 
of them separately was averaged. The corresponding DVI at 1 km for pixel (x,y) at 
time t was hence obtained as follows:
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where NpClk indicates the number of 20 m pixels (xi, yi) within the 1 km pixel cen-
tered in (x, y) and belonging to the class Clk, with k = 1, 2, 3. Examples of the five-
time series obtained for almost pure and heterogeneous pixels of corn and winter 
wheat are shown in Figs. 4 and 5, respectively.

In general, an analogous temporal evolution of DVI from MODIS (blue triangle) 
and upscaled S2 (magenta circle) images for the two crop types can be observed on 
both homogeneous and heterogeneous pixels, confirming both the effectiveness of 
the BDRF correction and the accuracy of the datasets spatial alignment. In terms of 
time sampling, the lower sampling rate of S2 does not seem to affect the reconstruc-
tion of the overall shape of vegetation dynamics significantly. Yet, quantitative 
assessments of phenology descriptors are required to estimate the real effect on 
vegetation characterization. As expected, over pixels characterized by GSI close to 
zero the coarse resolution imagery mimics faithfully the evolution of the dominant 
classes (blue asterisks). There, the 1 km information can be used directly to infer 
crop properties, being spurious contributions from the rest of classes negligible. On 
the contrary, pixels characterized by higher degrees of heterogeneity are not able to 
provide a direct description of the crop-type of interest, being the information 
drifted apart from the pure time series as far as it becomes less dominant within the 
pixels. For them, unmixing approaches are mandatory if reliable vegetation evolu-
tion is to be retrieved, and if only coarse resolution imagery is available the solution 
comes with accepting an additional loss of spatial details. A successful solution has 
been put forward in [87], where spectral unmixing is carried out with an Ordinary 
Least Square method at US County level and provides a unique crop-type time 
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series at US county level. Overall, this hypothesis is fully satisfied for irrigation 
crops such as corn, and the county-level characterization is also representative of 
crop behaviors at 1 km. This can be observed in the normalized 2D histograms of 
DVI time series at 1 km for the tile 15TVH, shown in Fig. 6.

The corn region time series at 1 km was obtained by averaging at 1 km scale only 
S2 pixels labeled as corn in the USDA land cover map. A minimum crop-type 

Fig. 4  DVI Time series over almost pure corn pixel (a), more abundant but not dominant corn 
pixel (b, c) @1km from MODIS, S2 and S2-based pure classes (mean value ± 1 standard deviation 
with the 1 km pixel)
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percentage threshold of 20% was also applied to filter out noisy information. The 
results over the four counties entirely covered by the tile 15TVH of Iowa (Hancock, 
Cerro Gordo, Franklin, and Wright) show that minimum differences are detectable 
in the temporal evolution of the DVI, being the time sample dispersion slightly 
higher just during the start and end of season. Because of the corn dominance, 
smooth temporal profiles with a clear phenology can be detected.

Fig. 5  DVI Time series over almost pure winter wheat pixel (a), more abundant but not dominant 
Winter Wheat pixel (b) @1km from MODIS, S2 and S2-based pure classes (mean value ± 1 stan-
dard deviation with the 1km pixel)

L. Pipia et al.
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Conversely, when applying the same analysis to winter wheat fields of tile 
11TLM, a significant spreading of time series during the whole evolution of the 
crop in the two counties of Washington (Frankin and Walla Walla) can be observed. 
Whereas the bare soil period before seeding and after harvest are stable overall the 
tile, the magnitude of the phenological evolution of this crop type turns out to be 
dependent on the specific 1 km pixel selected for the analysis. The larger spread 
suggests a more heterogeneous land cover with variations in phenology due to dif-
ferent crop types and natural vegetation. These two contrasting land covers show the 
case for an in depth systematic and quantitative analysis, i.e., as done by the LSP 
calculation.

4.3  �LSP Calculation Over Croplands

The two test cases presented in the section above (e.g. see Fig. 6) have been pro-
cessed by DATimeS in order to estimate the LSP metrics. To do so, first gaps due to 
cloud cover were filled by means of a machine learning (ML) fitting method over 
the temporal data. The ML algorithm Gaussian processes regression (GPR) was 
chosen because of excellent fitting performances (see [57, 58] for a quantitative 
analysis of over 20 gap-filling algorithms). As such, cloud-free DVI maps were 
reconstructed on a five-days basis for the year 2019. Subsequently, the LSP metrics 
can be reliably calculated.

The LSP metrics were calculated for the following three time series products:

Fig. 6  Normalized 2D histograms of corn (tile: 15TVH) and winter wheat (tile: 11TLM) DVI 
time series at 1 km grouped by County
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•	 S2Cl1: Sentinel-2 data at 1 km obtained by averaging only pixels labeled as the 
dominant crop at MODIS scale, according to the CDL map. Thus, this represents 
the time series of pure dominant crop within each MODIS pixel;

•	 S2: Sentinel-2 data at 1 km resolution;
•	 MODIS: MODIS data at the nominal 1 km resolution.

Starting with the homogeneous corn fields dataset, general LSP results are 
reported in Table 3. The mean values for all the pixels are provided, as well as the 
associated standard deviation (SD). Considering the pure corn crop S2CL1 as refer-
ence, it can be noticed that the S2 and MODIS data at 1km provide similar statistics, 
with especially the S2 product providing analogous values as the S2CL1. The con-
sistency can be explained by the dominance of corn fields in the S2 tile. The consis-
tency of the LSP metrics among the three time series products can probably be 
better expressed by calculating the mean absolute deviation (MAD) and its disper-
sion, as displayed in Table 4. Differences are low, especially when comparing the 
S2CL1 against the S2 product, meaning that for this more homogeneous region both 
S2 and MODIS datasets provide consistent temporal information.

When repeating the same exercise for the more heterogeneous landscape with 
winter wheat as dominant crop (Table 5), it becomes apparent that the consistency 
among the S2 and MODIS information somewhat degrades. This especially holds 
for EOS and consequent LOS with more than a month difference. On the other 
hand, the MV, Amp and day MV seem more robust, suggesting that the mismatch 
took only place in identifying the EOS. In general, the S2 dataset resembles closer 
the S2Cl1 dataset, as is also quantified by the Area between SOS and EOS. The dif-
ferences between S2 and MODIS are also revealed by calculating the mean absolute 
deviation against S2Cl1 (Table 6); the differences with MODIS are up to two twice 
as large as compared to S2. Altogether, it suggests that the MODIS dataset is harder 

Table 3  Mean and standard deviation (SD) of phenological indicators estimated from S2, S2Cl1 
and MODIS over 1km-pixel whose Cl1 corresponded to corn (tile 15TVH). SOS, EOS and Day 
MV are in DOY 2019

SOS EOS LOS MV Amp. Day MV Area

S2Cl1 168.7±8.0 278.0±8.5 110.5±11.6 0.3±0.1 0.3±0.1 222.0±8.6 25.6± 4.3
S2 167.8±10.0 278.7±8.2 109.8±13.1 0.4±0.1 0.4±0.1 224.2±8.9 28.5±4.1
MODIS 164.9±11.4 279.7±5.2 113.8±12.7 0.4±0.1 0.4±0.1 225.1±6.1 31.1± 3.3

Table 4  Mean absolute deviation (MAD) and standard deviation (MSD) of MAD estimated from 
S2, S2Cl1 and MODIS over 1km-pixel whose Cl1 corresponded to corn (tile 15TVH). SOS, EOS 
and Day MV are in DOY 2019

SOS EOS LOS MV Amp. Day MV Area

S2Cl1 vs. S2 5.3±6.8 5.6±7.1 7.5±9.0 0.1±0.1 0.0±0.1 5.6±7.0 3.8±3.7
S2Cl1 vs. MODIS 6.7±8.1 6.9±8.3 8.5±10.0 0.1±0.1 0.1±0.1 7.2±8.2 6.1±5.2
S2 vs. MODIS 6.4±7.9 5.6±7.0 8.0±9.5 0.0±0.1 0.0± 0.1 5.5±7.0 4.2±4.8
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to interpret in view of the phenology of the dominant crop, winter wheat, due to the 
larger heterogeneity in croplands and patches of natural vegetation.

Figure 7 shows the maps for the more homogeneous region dominated by corn 
fields (tile 15TVH), and Fig. 8 shows the maps for the more heterogeneous land-
scape dominated by winter wheat (tile 11TLM). Masked areas correspond to water 
or urban pixels.

Starting with the corn field maps, LSP metrics maps reveal that the region is 
highly spatially and temporally homogeneous. This is probably best visible in the 
SEOS and EOS maps. All three maps show the same pattern with a pronounced 
SOS around DOY 165–169 (half of June) and EOS around DOY 278 (beginning of 
October). These numbers are in agreement with the typical corn growing patterns in 
the Corn belt region [88]. The maximum DVI value (MV) and amplitude show 
some more variation. Here slight discrepancies between S2 and MODIS can be 
noticed, with S2 closer to the reference maps of S2Cl1. The thin blue line in some of 
the S2 maps is due to border artifacts of those S2 captures covering the tile only 
partially, which generate local discontinuities in time that ripple along the pixel time 
series and affect LSP estimation. In order to eliminate these effects, these partial 
acquisitions should be either filtered out from the collection or processed with mor-
phological erosion operators to modify the boundary contours.

Table 5  Mean and standard deviation (SD) of phenological indicators estimated from S2, S2Cl1 
and MODIS over 1km-pixel whose Cl1 corresponded to winter wheat (tile 11TLM). SOS, EOS 
and Day MV are in DOY 2019

In order to 
display and 
interpret 
specific spatial 
patterns, the 
maps of the 
LSP metrics 
over the two 
study sites turn 
out to be very 
useful SOS EOS LOS MV Amp. Day MV Area

S2Cl1 90.6±10.0 235.7±27.8 144.2±31.0 0.3±0.1 0.3±0.1 145.0±11.8 22.2±6.3
S2 88.2±8.6 220.4±30.3 131.7±31.5 0.3±0.1 0.2±0.1 145.7±14.2 20.8±7.5
MODIS 84.7±17.4 261.9±18.4 172.3±29.2 0.3±0.1 0.3±0.1 148.4±13.8 31.1±8.8

Table 6  Mean absolute deviation (MAD) and standard deviation (MSD) of MAD estimated from 
S2, S2Cl1 and MODIS over 1km-pixel whose Cl1 corresponded to winter wheat (tile 11TLM). 
SOS, EOS and Day MV are in DOY 2019

SOS EOS LOS MV Amp. Day MV Area

S2Cl1 vs. S2 6.0±7.8 14.3±19.7 15.7±20.3 0.0±0.1 0.1±0.1 6.6±10.2 4.7±6.2
S2Cl1 vs. MODIS 12.6±16.4 27.5±20.1 27.1±19.4 0.1±0.1 0.1±0.1 9.3±12.7 10.7±10.8
S2 vs. MODIS 11.8±16.5 24.5±22.7 24.1±23.2 0.0±0.1 0.1±0.1 7.2±10.2 11.7±11.0
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Fig. 7  LSP indicators for the year 2019 estimated from S2Cl1, S2 and MODIS at 1km-pixel over 
a more homogeneous agricultural region (tile 15TVH). SOS, EOS and Day MV are in DOY 2019. 
Masked areas correspond to water or urban pixels

L. Pipia et al.
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Fig. 8  Phenological indicators for the year 2019 estimated from S2Cl1, S2 and MODIS at 1km-
pixel over a more heterogeneous agricultural region (tile 11TLM). SOS, EOS and Day MV are in 
DOY 2019. Masked areas correspond to water or urban pixels
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Conversely, the more heterogeneous landscape with croplands of winter wheat 
but also grasslands and shrubland, display more inconsistencies in the LSP metrics 
maps among the three data sources. While SOS still provides consistent patterns, 
with a SOS around DOY 85–91 (end of March), the EOS map is remarkably less 
consistent. Here, S2 still provides the same patterns as S2Cl1 (EOS half of 
September), while the MODIS data shows a systematic later EOS (end of 
September). Noteworthy is that S2Cl1 maximum values (MV) and amplitude (Amp) 
maps provide regions with more pronounced higher values than S2 and MODIS. Both 
S2 and MODIS deliver smoother, more blurred maps, which again must be attrib-
uted to the greater heterogeneity in vegetation cover.

Finally, in order to improve the understanding of the LSP maps, it is worth 
inspecting the temporal profiles of the three data sources more closely, and relating 
them to the land cover heterogeneity, i.e., as expressed by the Gini-Simpson index 
(GSI). Figure 9 shows the temporal profiles of the three data sources for two pixels 
with contrasting GSA values: low for a corn field pixel and high for a winter wheat 
pixel. These temporal profiles help also to understand how the LSP indicators are 
calculated.

When having a closer look to the homogeneous corn fields (Fig. 9, left), the tem-
poral profiles for S2Cl1, S2 and MODIS are shown in the top. A first observation is 
that the MODIS dataset is generally spikier, which is likely due to the higher tem-
poral resolution, with more chances of observing inconsistencies, e.g., due to unde-
tected cloud issues such as partial cloud cover. Regardless of the noise, the general 
temporal patterns of the three data products resemble closely. Accordingly, when 
the phenology indicators are calculated, they are alike. That is also shown in the 
individual calculation of SOS and EOS for each data source (see Fig. 9 underneath). 
For three data sources the SOS and EOS were identified at about the same dates. 
Conversely, for the more heterogeneous winter wheat landscape with a high GSI 

Fig. 9  Phenological indicators estimated from S2Cl1, S2 and MODIS for corn (low-GSI) [left] 
and for winter wheat (high GSI) [right]
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(Fig. 9, right) the temporal profile of the wheat crop (S2Cl1) follows a distinct pat-
tern when compared to MODIS and S2 at 1 km patterns. Winter wheat has an earlier 
peak as opposed to the other phenology patterns. A closer inspection of the indi-
vidual SOS and EOS calculations reveals that both MODIS and S2 express a 
smoother and longer pattern due to mixture of vegetation types (summer crops, 
grasslands or shrublands) with subsequent similar identification of SOS and 
EOS. The result suggests that independently of source, dataset at 1 km should be 
less related to crop phenology quantification and thus more care is required when 
interpreting this information towards crop monitoring.

5  �Discussion

Having outlined a general overview of EO missions and time series processing tech-
nique applied to crop monitoring, this section provides a brief overview of a few 
ongoing trends with respect to satellite-based crop monitoring. They are summa-
rized into the following topics: (1) trends in EO missions; (2) trends in gap-filling 
methods; (3) trends in time series data fusion, and (4) trends in time series software.

When it comes to EO imagery for crop monitoring purposes, a trade-off has to be 
made between spatial and temporal resolution. It does not come as a surprise that 
spatial resolution is a key factor to consider in phenology detection, given that 
medium to coarse spatial resolution imagery from sensors such as MODIS or 
Sentinel-3 are comprised of pixels containing a heterogeneous mosaic of multiple 
land cover types with varying phenological signals [8]. The impact of heterogeneity 
has been demonstrated here for the winter wheat case within MODIS pixels. Hence, 
coarse resolution data limits the extraction of specific phenological stages for spe-
cific land cover types given this sub-pixel land cover heterogeneity [89, 90]. 
However, in the extensive review by [8], it was also argued that the spectral-temporal 
signal at the coarse spatial sale is more stable over longer periods of time because 
the land cover composition within pixels at a resolution of 1 km or lower remains 
relatively static from year to year compared to higher spatial resolution pixels (e.g., 
S2) that detect common short-term land cover changes such as crop rotations. The 
study presented here just analyzes one growing season for one year, and therefore 
that statement cannot be confirmed, yet it is true that nominal S2 resolution (20 m) 
is well able to capture crop rotations (see also [57, 58]). At the same time, there is 
an ongoing tendency to move towards maximizing spatial and temporal resolution 
by making use of multiple satellites. i.e., constellations. This was first initiated with 
the two similar NASA satellites (Terra and Aqua) that both are equipped with the 
MODIS sensor [91]. The same concept of launching multiple satellites was repeated 
with the two S2 and Sentinel-3 constellations [92]. Progressing further along this 
trend, worth noting is the recent CubeSat initiative from Planet Labs, a private Earth 
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imaging company4. For the last few years Planet Labs designed and launched a 
constellation of CubeSats of more than 100 units. It forms the largest satellite con-
stellation in the world that provides a complete image of Earth once per day at 
3–5 m spatial resolution. Their goal is to image the entirety of the planet daily to 
monitor changes and pinpoint trends. With such an unprecedented richness of spa-
tiotemporal information, first initiatives are underway to estimate phenology stages 
at fine spatial resolution over the US Corn Belt and so provide significant advance-
ment to crop monitoring and precision agriculture [93].

When it comes to EO imagery time series processing, there is a strong ongoing 
trend towards embracing artificial intelligence methods. Particularly the machine 
learning (ML) fitting algorithms entered as attractive alternatives of conventional 
gap-filling functions. Not only may ML methods lead to more accurate reconstruc-
tions (see [57, 58] for a quantitative comparison), but they are also adaptive towards 
unevenly spaced data over multiple seasons. The GPR used in this chapter is of 
special interest, as its associated uncertainty estimate provides per-pixel informa-
tion of the gap-filling confidence. Typically, the longer the gap between two con-
secutive input samples, the higher the uncertainty. Another interesting method is 
Whittaker smoother, being almost as accurate as GPR and much faster (results not 
shown). Its adaptive fitting performance was already earlier reported [56, 94]. It 
must also be remarked that the multiple provided gap-filling techniques offer, to a 
greater or lesser extent, different performances. Each method has its own advan-
tages and drawbacks, which depend strongly on the characteristics of the input time 
series [8, 94], i.e., a method that fits well with some data can be unsuited for a dif-
ferent set of data points. Concerning the appropriate length of time series, even if 
there is no limit of amount of data, the accuracy of the time series reconstruction 
increases with the data size. The main limitation of the interpolation module is the 
high time consuming and computational cost of specific algorithms. Although not 
the slowest method within the family of ML fitting methods (see [57]), also GPR 
becomes computationally inefficient in its standard per-pixel usage when process-
ing time series of full images, mainly due to GPR training rather than fitting step. To 
mitigate this computational burden, it was recently proposed to substitute the per-
pixel optimization step with the creation of a cropland-based pre-calculations for 
the GPR hyperparameters θ [95], which basically rule the way training samples 
contribute to time series reconstruction depending on their distribution along the 
time axis. The results of this optimized approach showed that accuracies were on 
the same order (at most 12% RMSE degradation), whereas processing time acceler-
ated about 90 times. The alternative option of using the same hyperparameters for 
all the pixels within the complete scene was further evaluated. It led to similar over-
all accuracies over crop areas and computational performance. Hence, it means that 
calculating in advance and fixing θ substantial gain in run-time can be achieved in 
time series reconstruction while maintaining the advantages of GPR, i.e., a high 
accuracy and provision of associated uncertainties.

4 https://www.planet.com/
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While in this chapter only single-source imagery time series datasets were 
addressed, among the most exciting progress in time series analysis involves multi-
source data fusion. Data fusion is being increasingly used to generate time series 
with high temporal and spatial resolutions [41, 96]. Data fusion algorithms are 
expected to generate fine resolution synthetic images based on infrequent observa-
tions at fine resolution and relatively frequent coarse remote sensing data with rela-
tively higher temporal resolution [8]. ML methods are particularly promising for 
data fusion, and one of the most attractive fusion methods involves the multi-output 
(MO) version of GPR (MOGPR). This MOGPR approach was firstly introduced in 
[58] to fuse optical (S2) and radar (Sentinel-1) data for improved spatiotemporal 
reconstruction of vegetation products such as leaf area index (LAI). This approach 
proved to be particularly advantageous for long gapped time series, such as pro-
longed cloud clover, where optical data alone notoriously fails. Hence, the data 
from cloud-penetrating radar technology kicks in as complementary information, 
although the relationship between radar and vegetation phenology is less obvious, 
and strongly depends on structural properties. The absolute novelty of the solution 
proposed in [58] is that the parameters of the trained model implicitly predict the 
meaningfulness of any fusion approach: they quantify the amount of information 
shared between the two-time series and rule the interaction of low- and high-
frequency GPs for output reconstruction. Moreover, the LAI data gap filling 
described in [58] is only one example of MOGPR possible applications. In fact, 
with MOGPR multiple datasets can be fused, so to say, that is not restricted to two 
data sources. Any set of time series collection can be entered into the MOGPR, i.e., 
the use of variables from multiple optical and radar data sources, coming from mul-
tiple satellite missions, e.g., Landsat, SPOT, the Sentinels, MODIS, can be envis-
aged, as long as they all share a certain amount of information and are georeferenced 
on a common grid. This data is nowadays easily accessible on cloud-based plat-
forms such as the Google Earth Engine. Accordingly, in the present era of freely 
available, continuous multi-source satellite data streams, there is no doubt that fused 
time series processing will become indispensable in producing accurate cloud-free 
data and subsequent vegetation phenology monitoring.

Finally, to the benefit of the broader community and users in the agricultural sec-
tor, another interesting trend is that increasingly dedicated software packages 
become available for image time series processing and phenology-related studies. 
As reviewed by [8], the best known, and first software package is TIMESAT [68]. 
Subsequent software packages are variations and extensions of it or written in other 
(open-source) languages, such as: Phenological Parameters Estimation Tool (PPET 
[97]), enhanced TIMESAT [98], TimeStats [99], Phenosat [100], HANTS [101], 
CropPhenology [102] and QPhenoMetrics [103]. These software tools provide free 
functionalities for the reconstruction of time series data and extraction of pheno-
logical information customized with a number of user-defined input parameters 
based on time series data (e.g., vegetation indices). They are applicable in data 
reconstruction providing multiple common data gap-filling methods like logistic 
models, Savitzky–Golay, asymmetric Gaussian functions, piecewise regression, 
Fourier transforms etc. and generally perform well in general LSP extraction (e.g., 
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SOS, EOS) providing common extraction methods, e.g., threshold method and 
inflection method [8]. It must hereby be remarked that all these software packages 
include the same established gap-filling algorithms. Apart from being equipped 
with these algorithms, the newly presented DATimeS software package [57] com-
plements with a suite of versatile ML fitting algorithms. In comparison to other time 
series software packages, DATimeS is state of the art, through the: (1) ability to 
process unevenly spaced satellite image time series; (2) possibility to select over 
multiple ML fitting methods for time series prediction (some methods include asso-
ciated uncertainties, e.g., GPR); (3) option to fuse multiple data sources with 
MOGPR, and (4) provision and analysis of phenological indicators over multiple 
growing seasons.5

6  �Conclusions

Satellite imagery has become an essential source of information to enable monitor-
ing agricultural lands. Specifically, optical data from EO image time series at high 
temporal resolution can assist in seasonal crop monitoring, as it provides key infor-
mation about vegetation growing stages over large areas. In this chapter, the ongo-
ing trends in image time series processing for the extraction of information about 
land surface phenology (LSP) metrics to quantify the key moments of the crop 
growing season is discussed. Identified trends go in the directions of: (1) a tendency 
towards constellation of multiple satellites to reach both a high spatial and temporal 
resolution; (2) adopting machine learning algorithms for fitting multi-year and 
irregular time series data sources; (3) time series fusion of multiple data sources, 
and (4) development of dedicated software packages. With the unprecedented avail-
ability of EO data and advanced image processing methods, these trends eventually 
lead to improved quantification of LSP metrics, e.g., start and end of season, but 
also metrics more related to crop biomass or yield, such as amplitude and area. By 
making use of the newly developed DATimeS toolbox, the LSP calculation for time 
series of MODIS and S2 data at 1 km resolution over predominantly (1) homoge-
neous and (2) heterogeneous agricultural landscapes has been carried out. It is con-
cluded that LSP metrics can be consistently calculated and related to the dominant 
crop type over a homogeneous landscape. Conversely, heterogeneous regions show 
some discrepancies in the LSP metrics, which may be a consequence of the more 
complex landscape with varying phenological behaviors of croplands and natural 
vegetation, combined with the different temporal resolution of the two sensors ana-
lyzed and the role of cloud cover herein. Altogether, given the extraordinary flexibil-
ity of current processing algorithms and toolboxes, it can be safely concluded that 
the same level of maturity is reached in exploiting optical EO data in the temporal 
domain as in the spatial and spectral domains.

5 The toolbox can be freely downloaded at https://artmotoolbox.com/
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Drone Imagery in Support of Orchards 
Trees Vegetation Assessment Based 
on Spectral Indices and Deep Learning
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1  �Introduction

The increase in the availability of drone technology, coupled with the latest discov-
eries in image segmentation and classification, has to lead to the emerging of new 
opportunities for researches from environmental sciences. Ultra-high spatial resolu-
tion imagery offers excellent advantages over the classical very-high spatial resolu-
tion satellite imagery. Some of its key advantages include its ability for rapid and 
repetitive collections over small areas without almost any influence from the cloud-
cover distribution. Very important for drone imagery collection is to plan and apply 
an optimised flight plan that will minimise the shadow effect, will offer similar 
environmental conditions for repetitive flights and will have the best speed over 
image sharpness ratio [1, 2].

Over the years, the detection and classification of crown trees raised much inter-
est for the scientists from the forest and environmental sciences, due to their essen-
tial role for landscape ecology and forestry management [1, 3–5]. Approximately a 
decade ago, detection of individual trees was focused on Lidar coupled with 
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high-resolution ortho imagery or hyperspectral images [3, 5, 6], more recent 
advances in Unmanned Aerial Vehicles determined a graduated shift towards 
Structure from Motion application [7, 8]. The mapping techniques applied to indi-
vidual trees detection also made the same technological switch from pixel classifi-
cation [6] to object-based image analysis and lately to convolutional neural networks 
(CNN or deep learning methods) [9–18]. For forestry management, particular inter-
est was also shown in the advantages offered by the high and ultra-high spatial reso-
lution images coupled with Lidar data for mapping the morphometrical characteristics 
of each tree [19].

Besides crown trees delineation and trees classification, an essential part of the 
trees health assessment is the extraction and estimation of vegetation indices (VI). 
These VI are exploiting the differences between the visible spectrum (RGB) and 
the near-infrared spectrum (NIR) [20–22]. Due to this relationship between green, 
red and near-infrared spectrum, the state of vegetation health facilitates estima-
tions and comparisons between individual trees with similar morphometrical 
characteristics. Even though the absence of information from the near-infrared 
spectrum can have an impact on the vegetation indices, it has been proven that it 
is possible to estimate reliable VI only from visible spectrum [20] and further the 
vegetation heath per tree.

Having a spatial distribution of the health of the trees gives the orchard managers 
valuable insight information. Trees health vegetation is based on detecting the tree 
crown, classify the tree according to the fruit species, extract the VI for each tree 
and use spatial statistics to identify the trees which are under development.

Building on the advantages of drone technology and the latest deep learning 
algorithms, the present study aims at assessing the combined use of ML techniques 
with spectral VIs derived from visible cameras mounted on drones, to be used as a 
proxy to characterise vegetation health of individual trees in an orchard field. To 
achieve this, several UAV flights were performed over two sites located in Greece 
and Romania with different environmental characteristics. For consistence and 
comparability, the same methodology was applied for both sites. Samples for each 
tree species were collected by manual digitizing the crown of each tree. Further, 
object instance segmentation techniques were used for training and detecting indi-
vidual crown trees. The crown trees were crossintersected with the vegetation indi-
ces and based on their mean values, the z-score was applied to estimate the health 
state of each tree.

2  �Methodology

To accomplish the study objectives, several image processing methods were imple-
mented to the acquired drone data. The tree’s crown was extracted by applying a 
deep learning object instance segmentation method. For mapping, the vegetation 
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health, VI from visible spectrum (Red, Green and Blue) were used. These indices 
were chosen due to the non-constraint of using a multispectral camera, less afford-
able at the time the study was done. Further, to map each tree’s health state several 
statistical methods were applied, to identify the under-developed and over-
developed trees.

2.1  �Tree Crown Detection and Classification

Each crown tree was spatially delineated by applying deep learning methods. Due 
to the aim of identifying the height and width of each tree, the Mask R-CNN algo-
rithm [23, 24] was used, a widely used method for object instance segmentation. 
This method combines object detection with pixel classification methodologies to 
accurately locate an object and to accurately separate the object from the back-
ground. Thus, the tree is not only delimited by a bounding box, but it is also separate 
by other objects by drawing a contour that matches the crown. By applying Mask 
R-CNN, we achieved the goal of spatially delineate the crown tree without any 
impact or negative influence from the ground features. Similar approaches, but 
using a Single Shot Detector (SSD) were applied for the detection and classification 
of individual trees [25].

For the estimation of the height and the width of each tree, the polygons obtained 
in the crown tree delineation step were intersected with the normalised digital sur-
face model (n-DSM), and making the difference between the maximum and mini-
mum n-DSM pixel values.

2.2  �Vegetation Indices (VIs)

Vegetation indices for assessing the state of trees health have been widely used in 
forestry and ecological studies [21]. Vegetation indices are designed to exploit the 
significant different behaviour of vegetation in the spectrum range from blue to 
near-infrared. For the current study, we focused on the use of only vegetation 
indices that are created with spectral intervals collected in the visible spectrum, 
respectively red, green and blue. The reason for this choice is related to the avail-
ability of infrared sensors mounted of drone, which, at the time this chapter was 
written, there were not widely available for consumer graded drones. Even though 
these indices do not take into consideration the infrared spectrum, excellent results 
were obtained in the past [20], which led to their extensive use in the crop studies 
[26, 27].
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2.2.1  �VARI – Visible Atmospherically Resistant Index

The VARI index (see Eq. 1), based on the atmospherically resistant vegetation index 
[28], makes use of the blue channel to account for the water vapours presents in the 
air. Thus, VARI index is less sensitive to atmospheric effects and suitable for assess-
ing the state of the vegetation health.

	
VARI

Green Red

Green Red Blue
�

�
� � 	

(1)

2.2.2  �GLI – Green Leaf Index

The GLI index (see Eq. 2) [29], in comparison with the VARI index, was specially 
designed to work with imagery obtained from an RGB camera, and it is focused 
on giving more weight to the Green spectrum.
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Green Red Green Blue

Green Red Blue
�

�� � � �� �
�� � � �2

	

(2)

2.3  �Tree Health Assessment

To assess the vegetation health of each tree, the standard score or also known as 
z-score was used, using the mean values for both GLI and VARI vegetation indices. 
All the trees that had standard scores below and over 1.96 standard deviation points 
were considered as having a low vegetation health state or a very high vegetation 
health state

	
Standardscore

Value Mean

Stddev
�

�

	

(3)

3  �Study sites

To satisfy the study objectives, two sites of entirely different environments, one 
located in Romania and one in Greece were chosen to assess the suitability of VI 
indices obtained from drone’s imagery for trees vegetation health estimation. Each 
site was surveyed with a different drone. For the Romanian site, a DJI Phantom 4 
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with an RGB with a resolution of 12MP was used. For the Greek site, a DJI Matrice 
100 with Parrot Sequoia drone with an RGB camera with 16 MP resolution was used.

3.1  �Romanian Study Site (No 1)

The study area is located in the centre of the Romanian Plain, northeast of Bucharest, 
Romania (coordinates 44°30´07´N and 26°15´45´E – Fig. 1). The research was car-
ried out at the Belciugatele Didactic Resort/Moara Domnească Horticultural Farm, 
which is owned by the University of Agronomic Sciences and Veterinary Medicine 
in Bucharest. The orchard surface is structured on native and foreign fruit species 
(walnut, plum, apricot, apple), where the evolution of the trees is monitored accord-
ing to the climatic, pedological, hydrological characteristics. This region is charac-
terised by a temperate climate, with western, southern Mediterranean and eastern 
arid influences. Summers are hot, with average monthly air temperatures of 
20–22 °C [30], with maximum temperatures that can exceed 39–40 °C. More than 
half of the amount of precipitation falls in the warm season (375–400 mm), and 
about 200 mm fall in the cold season.

Fig. 1  Mora Domneasca orchard location (site no 1)
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An area of about 19 ha was surveyed, covered with three different fruit species: 
plums, apricots and walnuts. The trees are planted in rows with northwest-southeast 
orientation. The rows density is different, with a distance between 4 m in a row and 
5 m between rows for plums and apricots and 8 m per row and 10 m between rows 
for walnuts.

•	 Plum trees (7 ha) predominantly with Stanley, Centenar and Anna Spath. Plum 
trees have an early flowering, from late March to early April and, depending on 
the variety planted and its particularities, harvesting can be done from July to the 
end of September.

•	 Apricot trees (6 ha) with predominant Dacia and Tudor varieties, having an early 
flowering (in March), and harvesting takes place in late June and early July.

•	 Walnut trees (6 ha) with the Romanian varieties Vâlcea and Jupânești; flowering 
takes place from April to May, and harvesting takes place at the end of September.

3.2  �Greek Study Site (No 2)

The study site of this research is Lygourio, which is a small Greek town located in 
the centre of Argolis prefecture (coordinates: 37°36´N 23°02´E – Fig. 2). It is built 
under the shadow of Arachnaion Mountain, near the Ancient Theatre of Epidaurus. 
Lygourio area is famous for the production of extra virgin olive oil, having been 
certified as Protected Designation of Origin (PDO). “Lygourio-Asklipiou”. The cli-
mate is characterised as the typical Mediterranean, with hot, dry summers and mild, 
wet winters, while the average annual temperature of the region is 18.6 °C and the 
mean annual rainfall is 460.9 mm. Olive trees within this region flower during April 
and establish final fruit set in June. Harvesting occurs from October to December, 
followed by pruning (late January to March), in order to maximise light interception 
and maintain access to all tree canopies. The selected orchard extends into a hilly 
area (about 310 meters above sea level), resulting in high inclination percentage of 
the terrain. Thus, olive tree planting arrangement on grades facilitates the cultiva-
tion management and reduces the risk of erosion and desertification.

3.3  �Drone Images Acquisition

For the Romanian study site, the aerial images were acquired with a DJI Phantom 4 
quadcopter. Several flights with images having different spatial resolutions, ranging 
from 2 to 10 cm, were flown in the spring and summer seasons, close to the harvest-
ing period. The flights during the spring period captured the degree of the flowering 
of the trees in different stages of flowering and, at the same time, measurements 
were made of the width of the crown (we extracted the tree height and crown width), 
distance and height of the trees. Only the summer images were used for the cur-
rent study.
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For the Greek study site, the drone data acquisition occurred over a 1.4 ha olive 
orchard, which included 210 productive olive trees (over 35 years old) and 50 newly 
planted ones (about 3 years old), according to a non-linear plantation. Data were 
collected in early October 2017, when olive fruit colour had reached an optimum 
hue, before the commencement of harvesting.

4  �Results and Discussion

4.1  �Trees Detection Using Deep Learning

Mask R-CNN algorithm was used for crown trees detection and delineation, imple-
mented in ArcGIS Python API using Pytorch and Fast.ai. The training and valida-
tion datasets were produced by manually digitising all the trees from both study 
sites (see Table 1). Each dataset was split into two datasets using 70% of the trees 
for training and the rest of 30% for validation datasets. This was done automatically 
for each epoch, hence with each epoch randomly selected trees were used for vali-
dation and training. In total, for each site, a number of 50 epochs were used to train 
the algorithm. For tree crown detection, we used ArcGIS Pro version 2.5, where the 
detection tool makes use of the trained CNN. Each tree was detected on an image 
chip with a weight and height of 128 pixels. The final datasets were obtained by 

Fig. 2  Lygourio orchard location (site no 2)
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applying a dissolve algorithm based on the geometry and on the specie of the 
detected trees. All the trees that shared a boundary and had the same species were 
dissolved into one tree. This algorithm allowed us to obtain excellent crown detec-
tion per tree (see Fig. 3).

For site no 1 located in Romania, an accuracy of 0.95 for tree crown detection 
(Fig. 3a), 0.83 for the plum tree, 0.84 for apricot tree and 0.85 for the nuts tree was 
reached. For the Greek site no 2, the accuracy for tree crown detection was a bit 
lower of 0.73 (Fig. 3b). Because for the site no 2 there was only one tree species, 
there was no need to calculate per specie accuracy.

In some areas, trees were detected as several close polygons that share a bound-
ary (see the middle of Fig. 3 for both a and b parts), and they were not joined into 
one single polygon. This was caused by the detection algorithm that identifies parts 
of one tree as being other tree specie. This issue can be solved by modifying the 
dissolve algorithm to take into account the species with the highest overlap between 
the overlapping polygons. Another option would be to have an operator to decide in 
which species the tree belongs, but in this case, the entire procedure will not be 
completely automated. Even though it can have an impact on the overall accuracy 
of the tree vegetation health assessment, this impact is expected to be very low 
because the confusion between species is made for apricot and plum trees, which 
have very similar characteristics.

Some trees, during the dissolving step, were joined together into one single big 
tree. This issue appears where the trees are closely located, and the algorithm is not 
able to separate the crowns of each individual tree. Even though the result has an 
impact on the overall accuracy for tree crown detection as a number, it does not play 
an essential role in the vegetation health status assessment. This argument is sup-
ported by the high similarities between close trees, part of the same species.

For olive trees located in the site no 2, the low accuracy for tree crown detection 
is mostly caused by the low number of samples available for the present study. Even 
though the number of trees was not high, by applying image transformation tech-
niques common for deep learning studies, we managed to increase the number of 
samples to a few thousands of image chips. The same algorithm was applied to site 
no 1 located in Romania. The specific structure of the olives trees, having small 
leaves and large spaces between branches, played an important influence in the 
crown detection process. This made that some bushes to be confused as small olive 
trees and mapped by the algorithm as young olive trees. Similar, olive trees located 
at the border of the study area were partially mapped or mapped from several poly-
gons closely located and sharing a common border. These issues were reduced by 

Table 1  The number of trees available for each orchard and for each tree specie

Site location Total trees Specie Training Validation

Romania 799 Walnut 560 239
Romania 2209 Apricot 1546 663
Romania 3231 Plum 2262 969
Greece 205 Olive 144 61
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applying the same dissolve algorithm used in the case of the site no 1. The signifi-
cant difference between the dissolve made for site no 1 and site no 2 was the absence 
of the species, hence for site no 2 the polygons were dissolved with a common 
border only by their geometry. As expected, the dissolving step created artificial big 
olive trees where the branches of the closed tree were touching.

Fig. 3  Trees detection using Mask R-CNN deep learning algorithm. (a) site no 1 (plum and apri-
cot trees); (b) site no 2 (olive trees)
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For both sites, the algorithm managed very well to distinguish between the shad-
ows generated by the trees and the exact position of the crown tree. This was pos-
sible to achieve due to the high number of samples that were generated during the 
training process. Some trees were partially detected, mostly in the Greek site 
because of the high similarity between shrubs and olive trees.

4.2  �Trees Vegetation Health Assessment

Although both vegetation indices were processed, after the poor results obtained for 
VARI index, we decided to drop the analysis for this index. For each tree, the spatial 
cross-intersection between the tree crown and the VARI and GLI rasters made pos-
sible the extraction of the following statistics per tree: mean, maximum, minimum 
and standard deviation values for the GLI index. The z-score was calculated for the 
mean values, as the mean values provide a more accurate description of the spatial 
distribution of the pixel values inside a crown tree. Also, the mean GLI values per 
tree were less influenced by the size of the trees. The standard deviation for each 
tree was bellowed 1e-3, meaning that the mean values are representative from a 
statistical point of view.

The vegetation health state was assessed for three statistical confidence thresh-
olds: 90%, 95% and 99%. Under the normal distribution assumption, we considered 
that all the trees with a z-score below a value of −1.65 have poor vegetation health 
and those with a z-score value above 1.65 have good vegetation health for a p-value 
lower or equal to 0.1 (at 90% statistical confidence). Furthermore, all trees with 
values for z-score bellow −1.96 and above 1.96 were considered with poor or good 
vegetation health for a p-value lower or equal to 0.05. The 99% statistical confi-
dence for the vegetation health per tree was considered for z-score values which 
were bellow −2.57 and above 2.57.

In accordance with Table  2, the analysis presents a very good correspondence 
between the number of trees mapped and the number of trees detected by Mask R-CNN.

In the case of the Greek study site, approximately 92% of the mapped trees were 
considered with average vegetation health, a percentage very similar with the one 
(approximately 94%) calculated for the detected trees (Fig. 4). A good agreement is 
also for the number of trees identified with good vegetation health, for statistical 
confidence equal or above 90%, where the mapped trees have 3%, and the detected 
trees have 4%. A slightly bigger difference is recorded for the trees having a poor 
vegetation health status, for statistical confidence equal or above 90%. In this case, 
5% of the mapped trees were identified with poor vegetation health, and only 2% of 
the detected trees were considered with poor vegetation health. The difference can 
be explained by the fact that olive trees have larger spaces between branches and 
these spaces were delineated only for the detected trees dataset and not for the 
mapped trees dataset. Overall, a very good agreement between the assessment of the 
vegetation health for the mapped and detected trees, is considered.
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In the case of the study site no 1 (Romania), the overall agreement between both 
datasets, mapped and detected trees, remains similar with the one recorded for the 
site no 2 (Greece). This good agreement is proof that the methodology is stable, and 
it can be extrapolated to different environments.

The biggest difference, in terms of percentage of the trees identified with an aver-
age vegetation health status, is recorded for the walnut trees (Fig. 5). Here, approxi-
mate 64% of the mapped trees were identified with normal vegetation health in 
comparison with approximate 90% of the detected trees mapped with the same 
vegetation health status. We believe that this remarkable difference is mostly caused 

Table 2  Tree health assessment for both study sites. The table presents the number of trees and 
their vegetation health for both detected and mapped trees

Site 
location Specie

99% 
poor

95% 
poor

90% 
poor Average

90% 
good

95% 
good

99% 
good Total

Mapped Greece Olive 3 7 189 1 4 1 205
Romania Walnut 143 137 507 799

Apricot 5 9 2068 91 36 2209
Plum 3 18 2982 99 96 32

Detected Greece Olive 1 3 253 6 5 268
Romania Walnut 3 18 727 22 20 10 800

Apricot 69 60 1932 51 28 2152
Plum 2 21 3257 144 127 14 3565

Fig. 4  Trees selected with a good or a low health state of the vegetation for the site no 2. The trees 
with good vegetation health are marked in red, and the ones with low vegetation health are marked 
in blue. From left to right, the images present the orthoimage with the spatial distribution of the 
olive trees; the olive trees detected by Mask R-CNN and mapped by their vegetation health status; 
the olive trees manually mapped and their vegetation health status
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Fig. 5  Trees selected with a good or a low health state of the vegetation for site no 1. The trees 
with good vegetation health are marked in red, and the ones with low vegetation health are marked 
in blue. From left to right, the images present: the orthoimage with he spatial distribution if the 
trees; the trees detected by Mask R-CNN and mapped by their vegetation health status; the trees 
manually mapped and their vegetation health status. From bottom to top, the images present: plum 
trees, apricot trees and walnut trees
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by the structure of the walnut’s crown, that made the algorithm detect one big tree 
instead of several trees. This issue caused by the crown trees identification influ-
enced the mean GLI value, hence leading to an overestimate of the number of trees 
with an average vegetation health status. For the mapped trees dataset no trees were 
identified having a good vegetation health status in comparison to the detected trees, 
where the percentage is approximate 7%. The same noticeable difference as in the 
normal vegetation health is recorded for the trees identified with a poor vegetation 
health status. In the case of the mapped trees dataset, approximate 35% of the trees 
were identified having poor vegetation health in comparison to approximately 2% 
identified by the detected trees having similar vegetation health status. These values 
are calculated for statistical confidence equal to or above 90%.x.

Very similar results are also recorded for the apricot and plum trees. These spe-
cies have a similar spectral response, with apricot having a slightly smaller reflec-
tance in the green spectrum. For both species, the percentage of the trees identified 
with a normal vegetation health status is close to 90% with differences of about 2%. 
The apricot trees, for the detected dataset, have approximately 6% of the trees iden-
tified with a poor vegetation heath in comparison with the mapped dataset were the 
percentage is 1%.

5  �Conclusions

In this study, the combination of deep learning for tree crown delineation and veg-
etation indices was used for assessing the tree vegetation health. Using deep learn-
ing for tree crown delineation and tree detection gave outstanding results and proved 
to be reliable for future studies. The use of vegetation indices extracted from an 
RGB camera mounted on drones, also proved to return reliable results for mapping 
and to assess the trees health status.

Very good results were obtained in the case of the plum, apricot and walnut trees, 
mostly because these trees have the leaves oriented towards the camera and the 
spaces between leaves and branches are much smaller in comparison with the 
olives trees.

Less reliable results were obtained for olive trees crown delineation because of 
its specific texture with small leaves and large spaces between branches. The signal 
received from the ground had an essential influence in the assessment of the vegeta-
tion health status by increasing the GLI index mean values with a small fraction.

The similar agreement for the mapped and detected trees for both case studies, 
located in different environmental conditions, proves that the methodology pre-
sented in the current study is robust and can be applied with good results in areas 
with different environmental conditions. Computational time is acceptable, with 
less than 24 h necessary to compute the images and calculate the z-score values per 
tree, having a good perspective to be considered for future developments as an oper-
ational product.
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We anticipate having an outstanding improvement in future studies if a multi-
spectral camera, collecting at least one band in the near-infrared spectrum, will be 
used for producing the vegetation indices used in the assessment of tree vegetation 
health status. The VI indices produced with a multispectral camera will provide 
more accurate information in the green and near-infrared spectrum, related to the 
content of chlorophyll and leaf coverage, and hence a better estimate of the vegeta-
tion health status.

Overall, the study demonstrates the real potential of drone applications and deep 
learning methods for spatial and temporal rapid assessment of trees vegetation heath 
In comparison with the acquisition of high-resolution satellite imagery, the use of 
drone technology is cost-effective and more suitable for small to medium orchards. 
The increase of accessibility to this technology from the cloud and personal smart-
phones will make this approach less computationally intensive than it is now, and it 
is expected that the farmers will have the tools for optimal management of the 
orchards.
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1  �Introducing the Normalized Difference Vegetation 
Index (NDVI)

Crops sit at the base of food chains, absorbing sunlight to fuel the photosynthetic 
reactions. The sunlight that plants absorb is referred to as Photosynthetically Active 
Radiation (PAR) and is measured as irradiance, in units of light quanta, integrated 
over the wavelength interval of 400 to 700  nm [1]. At wavelengths greater than 
about 750 nm incident light is preferentially scattered by leaves. This scattering is 
the reason that plants appear as bright objects in infrared photography. The transi-
tion between absorption and scattering causes the sharp jump in reflectance between 
the visible and near-infrared region of the reflectance spectrum known as the red 
edge (Fig. 1).
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The passive remote sensing of crops has a long and storied history which is 
entwined with the development of Earth Observing spectral radiometers in the latter 
half of the twentieth century (see [2] for a recent perspective). Early instruments 
measured radiance in a few multispectral bands spanning the visible and near-infra-
red region of the spectrum. It was evident that algebraically combining band data 
from these radiometers, to form so called vegetation indices and band ratios, 
increased the signal to noise content of the data greatly enhancing the observation 
of vegetation from space [3]. Studies in the 1970s and 1980s demonstrated how 
such data could be used to estimate vegetation parameters from space, including the 
leaf area index (LAI), defined as the ratio of the one-sided surface area of leaves to 
surface area of ground [4]. Global maps of vegetation phenology soon followed [5].

Note that in this early work there was a distinction between simple band ratios 
which are the division of bands, and vegetation indices (VIs) which are band func-
tions that feature differencing as the main operation [6]. Myneni et al.’s [7] theoreti-
cal work showed a functional relationship between VIs and the first derivative of the 
reflectance spectrum. The advantage of using the first derivative of a spectrum rather 
than the measured zero order values of a given wavelength band is that confounding 
variation due to constant offsets between observations (e.g., in time) of single bands, 
which could occur due to instrumental or target related factors, cancel out in differ-
ences [7, 8].

The best-known vegetation index is the normalized difference vegetation index 
(NDVI), which quantifies the strong contrast between photosynthetic light absorp-
tion in the visible region of the spectrum and scattering in the near-infrared (NIR) 

Fig. 1  Reflectance of potato canopy and soil. Canopy spectra present low reflectance in the visible 
due to absorption by pigments, and increased reflectance in the NIR due to scattering. The NDVI 
quantifies this difference. The soil spectrum is relatively constant across the shown interval, hence 
results in a much smaller NDVI relative to the potato. The Red and NIR band centres correspond 
to the METER NDVI band locations
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region [9, 10]. In simple terms, NDVI puts a single number on the red edge jump in 
the canopy spectrum, and is typically calculated using NIR and Red reflectance 
values as:

	
NDVI

NIR Red

NIR Red
�

�
� 	

(1)

The difference to which NDVI gives its name is in the numerator of Eq.  1, the 
denominator normalises difference values between −1 and 1. The normalisation 
makes NDVI potentially easier to interpret compared to the unbounded range pos-
sible with, for example, the simple ratio NIR/Red. The normalisation has also been 
suggested to reduce the effect of sensor degradation [3]. Crippen [11] suggested an 
interesting reason for the relative success of NDVI, he proposed that the NDVI was 
“self-perpetuating” as the established standard, having gathered sufficient user 
inertia.

The main limitation of the NDVI, which was already apparent in early applica-
tions [10], is referred to as the saturation effect, and denotes a non-linear asymptotic 
flattening, or loss of sensitivity, of the curve between NDVI and LAI (or biomass). 
The loss of sensitivity typically starts at LAI values ranging from 2–4 depending on 
the crop [12]. Further shortcomings of the NDVI were gradually revealed in the 
1980s using physically based methods.

Seller’s [6, 13] adapted the two stream (dual direction) radiative transfer formal-
ism used in atmospheric science to model maize NDVI as a function of vegetation 
structural and optical parameters such as the LAI. His work explored the non-linear 
relationship between NDVI and LAI, finding that non-linearity was amplified by 
bare ground in the sensor field of view. However, and unlike for LAI, Seller’s [6] 
went on to demonstrate a linear relationship between the fraction of absorbed PAR 
(fAPAR) and NDVI.  This result makes intuitive sense as the fraction of light 
absorbed by a canopy will also saturate at a given leaf area. Taken together his 
results can be interpreted as suggesting that NDVI is useful as a measure of near 
instantaneous productivity, which depends on fAPAR, but of limited use for LAI, or 
total biomass, in most green crops or forests due to the saturation effect.

It is tempting to assume that if NDVI is linearly related to fAPAR, then NDVI 
should also be related to foliar chlorophyll, which is the main light absorbing mol-
ecule, or nitrogen content which is used to build leaf proteins.1 However, as with 
LAI, the relationship between (red band) NDVI and chlorophyll content saturates at 
low chlorophyll values [14]. As Seller’s [13] work showed, it is more likely that 
NDVI is influenced by canopy structural factors such as the leaf angle distribution, 
especially at low LAI values. The dissociation between pigments and NDVI, was 
also confirmed in latter studies [15] who found no relationships of merit between 
pigment content and NDVI.

1 The use of chlorophyll to infer nitrogen is complicated by the fact that the ratio of total nitrogen 
to chlorophyll nitrogen varies substantially within a plant. More specifically sun leaves have less 
nitrogen allocated to chlorophyll than shade leaves.
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The limitations described above, which are further confounded by atmospheric 
effects, fractional cover sensitivity and variance in soil colour and brightness, moti-
vated the development of new and more complicated, in terms of mathematical 
formulae, VIs, designed to address these shortcomings [3, 12, 16]. These include the 
perpendicular and orthogonal vegetation indices where reflectance values in NIR-
Red space are projected onto the so-called soil line, with greater distances (projec-
tions) from the line representing increased vegetation fractions [3, 17].

An additional advance that was used as the foundation of NASA’s MODIS pro-
ductivity algorithm, was the Enhanced Vegetation Index (EVI) that corrects for soil 
effects and is less sensitive to saturation than the NDVI [18]. More recent tech-
niques for tracking productivity from space include Sun-induced Fluorescence 
(SIF) [19], and the NIRv index which is an adjusted form of NDVI whose derivation 
is rooted in Seller’s [6] theory and which aims to minimise the effects of back-
ground variation in the signal [20].

A further development related to vegetation indices is the use of multi-angular 
observations to characterise the anisotropy (directional dependency) of observa-
tions. For a sensor above a sunlit scene, the observable radiance is a function of the 
inherent optical properties of the objects within the scene, their structure and also 
the view and solar geometry, and the ratio of diffuse to direct radiation. The 
Bidirectional Reflectance Distribution Function (BRDF) is a theoretical concept 
that formalizes the directional dependency as a function of view and direct beam 
incident light angles. Most measurements of NDVI are therefore subject to direc-
tional artefacts, and care must be taken to compare data observed with differing 
geometrical configurations. However, as well as being a possible hindrance, reflec-
tance anisotropy can also be utilised to retrieve structural information, on for exam-
ple canopy clumping, from multi-angle reflectance data [21].

Although no longer at the cutting edge of satellite remote sensing, the use of 
NDVI persists and may even be growing [22, 23]. New remote and proximal (close 
to canopy) NDVI platforms and sensors differ from the relatively coarse resolution 
satellites of old, and include high resolution uncrewed aerial vehicles (UAVs) [24, 
25], field based robots [26], close contact spectral sensors mounted on mobile phe-
notyping platforms [27], active NDVI field sensing [22], and fleets of Earth 
Observing CubeSats [28]. Applications are also migrating from the traditional 
global photosynthesis prediction and change detection [2] to the rapidly evolving 
field scale commercial crop analytics, nutrient, and yield prediction [22] and pheno-
typing [27] disciplines which include a significant commercial element. A parallel 
and integrated development, is the uptake of data driven analytical modelling meth-
ods, referred to as machine learning, to relate NDVI or other optical data to crop 
parameters [29]. Such methods are useful as they can handle the vast amounts of 
data generated by high resolution imaging spectroscopy sensors to selectively arrive 
at accurate predictive models for e.g., chlorophyll content or LAI retrieval [30].

The emergence of the NDVI in new applications is probably due to the relative 
simplicity of the formula and the ease of measurement, requiring only an NIR and 
visible sensitive instrument. Obviously from the discussion above, the interpreta-
tion of NDVI is far from straightforward. Hence there is a gap that requires 
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bridging between decades of physically based knowledge derived from satellite 
remote sensing and the state of the art in field and plot scale data, which tends to a 
data driven focus. This chapter digs into the issue of relating the historical satellite-
derived theory [6] to new crop applications and sensors. This is achieved by analys-
ing proximal data acquired at high temporal and spectral resolution in two 
agricultural sites in Finland, to attempt to answer the question: what does NDVI 
and spectral reflectance data really tell us about crops in the field? For the sake of 
simplicity, the chapter is focused on point based spectral reflectance sensing. 
However, the lessons learned here are also applicable to well calibrated imaging 
spectroscopy data.

2  �Methods

2.1  �Sites, Sensors and Supporting Observations

Data were acquired from spectral reflectance sensors using proximal field and UAV 
platforms at two agricultural experimental sites in Finland shown in Fig. 2. The sen-
sors were designed to capture temporal and spectral variation, and the main sensor 
and site characteristics are listed in Table 1. The temporal dimension was investi-
gated using data collected at the Qvidja research site, in South Western Finland in 
2019 and the spectral dimension was investigated using data collected at the Viikki 
experimental field site in Helsinki in 2018, using a UAV platform.

The Qvidja estate site is an experimental grass site located in southwestern 
Finland. At this site, mainly timothy and meadow fescue grasses (Phleum pratense 
L. and Festuca pratensis Huds. respectively) grown in small 4 by 4 m plots under-
went differing fertilization treatments classified into four groupings: no 

Fig. 2  NDVI instrumentation and site locations. Left frame shows proximal METER NDVI sen-
sor above grasses at Qvidja site. The central frame shows site locations in southern Finland over-
laid on a PROBA-V satellite NDVI retrieval from July 2018. The right frame shows the UAV 
carrying the Piccolo-Doppio payload flying over the potato crop at Viikki, Helsinski
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fertilization, 50% of optimal mineral fertilization, optimal mineral fertilization, and 
organic fertilization (For brevity, these categories are referred to as: No fertilization, 
50%, Optimised and Organic fertilization.). The plots were harvested at multiple 
times of year. METER (Pullman, WA, USA), formerly Decagon, NDVI Spectral 
Reflectance Sensors were deployed at the site during summer 2019. One sensor was 
placed over each treatment using a wood support structure with a view zenith angle 
of 45 ° which resulted in a ground instantaneous field of view (IFOV) major axis 
length of 2.9 m. These devices use the GSM network to transfer data from the field 
to a cloud service, which is subsequently visualised in a web browser and down-
loaded as text files for further processing. According to the METER specifications, 
the red and NIR bands are centred at 650 and 810 nm, with 10 nm FWHM. Data 
were collected at a 5-minute interval, and daily averaged between 10:00 and 17:00. 
Supporting LAI measurements and SPAD chlorophyll readings were also taken and 
are briefly mentioned in the results.

The second experimental site was located within the University of Helsinki’s 
Viikki campus in Helsinki, Finland. Here the potato variety Lady Felicia (Solanum 
tuberosum L.) was grown as row crops from seed in 2018. Two differing treatments 
were imposed: a paired drought treatment and a multi-level nutrient treatment. In 
the drought treatment, there were 10 plots of 6 m by 6 m, including a 1 m buffer, in 
total with a paired (treatment and control) sampling design where one of each pair 
was irrigated and the corresponding pair was under drought treatment. In the nutri-
ent plots, which were the same dimensions, there were four levels of nutrient addi-
tion. The four nutrient addition levels varied between two different levels of nitrogen 
fertilizer (YaraBela Suomensalpietari, Yara International, Norway) and two differ-
ent levels of general macronutrient fertilizer (Yara Mila Hevi3, Yara International, 
Norway) and were replicated four times. Due to the exceptionally good weather in 
Summer 2018, no rain exclusion was necessary to achieve the required drought effect.

For chlorophyll concentration ([Chl.]) sampling, leaves were picked during the 
measurement period and frozen until analysis. The frozen leaves were mixed with 
dimethyl sulfoxide (DMSO), which has been shown to be an effective solvent for 
chlorophyll and pigment analysis [31]. The samples were then homogenized and 

Table 1  Site and NDVI sensor characteristics. Note that there were many additional instruments 
operating at both sites, as both sets of observations were collected during heavily instrumented 
field campaigns

Site Crop
Experimental 
treatment

Dimension of 
interest

Sensor name and 
characteristics Platform

1. Qvidja, south 
western Finland 
60.2963, 
22.3945

Grasses 
(timothy 
and 
meadow 
fescue)

Fertilization Temporal METER (formerly 
Decagon) NDVI 
Spectral 
Reflectance Sensor

Small 
field 
supports

2. Viikki, 
Helsinki, 
60.2268, 
25.0180

Potatoes 
(Lady 
Felicia)

Drought and 
nutrient

Hyperspectral Piccolo Doppio 
hyperspectral 
DFOV spectrometer

Multi-
rotor 
UAV
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extracted in an oven for 4 h at 50 °C before analysis with a Shimadzu UV-1800 
spectrometer (Shimadzu Corporation, Japan). [Chl.] was estimated as total chloro-
phyll a and b on a leaf area basis.

UAV flights were conducted by Finnish Geospatial Research Institute’s (FGI) 
drone laboratory using a custom-built UAV based on a Gryphon Dynamics quad-
copter frame, a Pixhawk autopilot and Applanix APX-15-EI UAV positioning sys-
tem. The main payload of the UAV was a Piccolo Doppio (PD) Dual Field of View 
(DFOV) spectrometer system which uses the Cos-conical approach. This system is 
principally designed to retrieve SIF but also measures visible and near infrared radi-
ance and irradiance, which is the purpose to which it was deployed here. The PD is 
based around two Ocean Optics spectrometers (Ocean Optics/Insight, Dunedin, FL, 
USA), a Flame and QE Pro and a bifurcated fibre optic assembly manufactured by 
Alker Ltd. (Alker Fibre Optic Specialists Ltd., Surrey, UK). The PD DFOV system 
collects incident irradiance through a cosine corrected diffuser fore-optic attached 
to one fibre optic leg and upwelling radiance through a bare tipped optical fibre. In 
the present study both the irradiance and radiance fibre optic cables were mounted 
to a stabilising gimbal (Photohigher, Wellington, New Zealand) and upwelling radi-
ance was collected in the nadir view. Here data is presented from the Flame spec-
trometer, which has a usable spectral range of 400 to 950 nm, spectral sampling 
interval of 0.4 nm and a sampling band width (FWHM) of 1.3 nm. More details 
concerning the PD can be found in MacArthur et al. [32] and Atherton et al. [33].

The PD UAV flights were conducted on 25th July 2018 by hovering approxi-
mately 9 m above ground level for each of the plots. A 9 m height above canopy 
results in a top of canopy field of view diameter of 4 m, given the bare fiber IFOV 
angle of 25°. Repeats of 25 spectral radiance and irradiance samples were collected 
above each plot and subsequently averaged to estimate per plot reflectance. Per 
flight median optimised integration times were between 7–8 milliseconds for down-
welling and were between 12–14 milliseconds for upwelling.

Hemispherical-conical reflectance factors (HCRF) were estimated as the ratio of 
upwelling radiance spectra, multiplied by π, to downwelling irradiance spectra [34]. 
Note that when measuring reflectance in the field, the observation depends on the 
atmospheric conditions, and in particular the diffuse to direct ratio of irradiance 
which influences the sampling of the BRDF [35, 36]. As such, measuring irradiance 
and radiance a small distance above the canopy target affects the resulting spectra 
due to atmospheric scattering and absorption in the path to the target. These points 
should be kept in mind when comparing data across sites and instruments.

The UAV was also used to collect RGB imagery which was processed to point 
clouds using AgiSoft Professional software (AgiSoft LLC, St. Petersburg, Russia). The 
imagery was collected using two Sony A7R II digital cameras with Sony FE 35 mm 
f/2.8 ZA Carl Zeiss Sonnar T* lens. They were mounted at +15° and − 15° oblique 
angles in a stabilized rack. The flights were carried out at a flight height of 50 m that 
resulted in a ground sample distance of 0.64 cm. A double grid setup with six north-
south flight lines and nine east-west flight lines were used to obtain a minimum of nine 
overlapping images over the entire area of interest. Protocols describing the photogram-
metric processing chain developed by FGI can be found in Viljanen et al. [37].
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2.2  �Data Processing and Analysis

Data collected at site 1 (Qvidja) required little extra processing except for daily 
statistics and quality control which were conducted in R 3.5.3 programming lan-
guage [38]. A field cross calibration was conducted between radiance and irradiance 
sensors using a near lambertian Spectralon panel on June 5th and these coefficients 
used to calculate reflectance. At site 2 (Viikki), NDVI was calculated by first inter-
polating reflectance spectra to a 1 nm wavelength scale and then applying Eq. 1 to 
PD data using the reflectance values at wavelengths 650 nm and 810 nm.

Leaf angle distributions were estimated from UAV retrieved photogrammetric 
point cloud normal vectors. The Average Leaf Inclination Angle (ALA) per plot, 
referenced to the upwards (zenith) pointing vector, was computed as a summary 
statistic from these angular distributions. A description of this new approach can be 
found in Xu et al. [39]. In this chapter, the Singular Value Decomposition method 
was not used, rather the pre-computed vectors from Agisoft software as a higher 
correlation was found between leaf angles and spectral data using the latter approach. 
Data below a single reference height (4.4 m above coordinate system zero level) 
were excluded due to shadow and soil contamination. Similar results were obtained 
when no height threshold was applied, however the resulting correlations with spec-
tral data were not as strong as when using the height filtered data. Linear correla-
tions between spectral data and other variables (e.g., ALA) were calculated using 
Pearson’s correlation coefficient.

3  �Results and Discussion

3.1  �Temporal Variability at Site 1

Figure 3 shows the time course of NDVI measurements during summer 2019 at the 
Qvidja site. There were two harvest periods which are marked on the figure at the 
start of June and mid-way through August. Post-harvest NDVI values were around 
0.6–0.7 rising to maxima of around 0.8 for the organic and optimized fertilized sites 
a few weeks after the harvest period. The fertilized sites show elevated NDVI for 
most of the time course. At end of the season, variance in each of the time-series is 
increased which could be due to the lower light levels at the end of the year.

In these grasses, NDVI clearly tracks growth post-harvest and differentiates 
between fertilized and untreated plots. As corroborating evidence, LAI increases 
were measured over the experimental period with highest values in the fertilized 
plots; data from a SPAD chlorophyll meter showed no increasing trends over the 
sampling period (data not shown). It is therefore probable that changes in NDVI 
related to an associated increase in the fraction and total amount of absorbed PAR 
by photosynthetic elements which was determined by the fractional coverage and 
also related, probably asymptotically, to LAI [6].
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Variation in the NDVI is driven by canopy scattering which occurs principally in 
the NIR, and soil reflectance which occurs across all wavelengths [6, 13]. To explore 
these issues further, the focus shifts to the second site where variability across space 
using a UAV-based hyperspectral instrument was observed.

3.2  �Spectral-Spatial Variability at Site 2

When retrieved proximally from a UAV platform, there was a negative relationship 
between Average Leaf inclination Angle (ALA) and NDVI in the potato crops at site 
2 (Pearson’s r =  − 0.77, Fig. 4). Further, those plots under greatest water deficit 
presented the largest ALA and smallest NDVI values. This results chimes with pre-
vious research where the link between canopy structure and NDVI under water 
limited conditions has been highlighted, and where NDVI is referred to as a struc-
tural vegetation index [40].

Water limitation causes a lack of leaf turgidity, commonly referred to as wilting, 
resulting in greater leaf inclination angles and hence larger plot-wise ALA. This 
shift towards an erectophile distribution influences the NDVI due to the increased 
canopy gap fraction both within and between crop rows. Increasing the gap fraction 
exposes a greater proportion of soil, increasing the contribution of soil reflectance 
to the total signal. An increase in gap fraction also increases the distance between 
scattering and absorbing leaf elements and changes the canopy shadowing proper-
ties. It is not possible to separate between all these factors using the NDVI alone, 
here hyperspectral data is instructional.

ALA is correlated with canopy scale reflectance (Fig. 5) across large parts of the 
visible and NIR spectrum. However, both the strength and sign of the correlation 
(Fig. 5 lower panel) is dependent on wavelength. Visible reflectance is positively 
correlated with ALA, whereas in the NIR the sign switches to a negative correlation 
of increased magnitude. This can be explained by the interacting effects of light 
scattering by soil and vegetation. In sections of the visible region, soil is of higher 
reflectivity than vegetation (Fig. 1). Increasing the ALA means that the sensor FOV 
contains a higher proportion of soil background, resulting in the positive 

Fig. 3  Time-series of proximally sensed NDVI of grasses undergoing nutrient treatments at 
Qvidja estate site, Southwestern Finland. Data are daily averaged
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correlation. In contrast, in the NIR region scattering in the sensor FOV is dominated 
by canopy leaves [6]. An increase in ALA reduces the probability that a photon is 
scattered in the direction of the nadir pointing sensor, resulting in a negative correla-
tion at those wavelengths greater than approximately 700 nm. These results com-
bine to decrease reflectance under water stressed conditions in the NIR, due to 
lessening leaf scattering, but increase reflectance in much of the visible region due 
to increased soil scattering. This result is in contradiction to Moran et al. [41] who 
found water related scattering decreases in the visible and NIR regions.

Returning to the NDVI, then it appears that variation in the index is caused by the 
interplay of soil and canopy scattering. Although these mechanisms have opposite 
signs of correlation with the structural variable ALA, they both decrease the NDVI 
relative to increasing ALA (loss of turgidity) due to the mathematical formulation 
of the index. This is because NDVI can be reduced due to either an increase in red 
reflectance, caused by soil scattering, or by a decrease in NIR reflectance, caused by 
a reduction in leaf scattering. However, just because NDVI responds to ALA does 
not mean NDVI is an optimal remote estimator of ALA. Note that NIR reflectance 
has slightly higher correlation with ALA relative to NDVI (Fig.  5 lower panel). 
Further, Zou and Mõttus [42] found that although NDVI was related to ALA in 
crops, other indices demonstrated stronger correlations.

Fig. 4  Average Leaf inclination Angle (ALA) per plot Vs NDVI for a combination of water and 
nutrient treatment potato plots. Drought treatment plots with wilted leaves tend to the bottom right 
of the plot, with relatively high ALA and low NDVI values. NDVI error bars are one sample stan-
dard deviation of batch means
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The two mechanisms discussed above, which control the NDVI in the potato 
crop, do not directly2 relate to photosynthetic light absorption at the leaf scale. In 
this case variation in leaf optical properties, and by extension chlorophyll, is largely 
immaterial to NDVI which is under the control of variance in canopy scale topol-
ogy. The breakdown of the relationship between pigment content and NDVI under 
water limited conditions has previously been noted and alternative indices applied 
for chlorophyll and nitrogen estimation such as the MERIS terrestrial chlorophyll 
index that focus specifically on the red edge region [15]. Note that, in addition to the 
relevance to field data discussed in the current chapter, retrieval of chlorophyll from 
space is currently a major goal in satellite remote sensing [43].

Clearly broadband NDVI cannot be used to estimate leaf properties such as chlo-
rophyll content in the water limited case. However, the results shown in Fig. 5 sug-
gest that a sensor with differing band location could potentially be used to infer 
pigment content. Figure 5 shows a clear correlation between canopy reflectance and 
foliar chlorophyll concentration in the red edge close to 700 nm, and in the green 
region where correlation with ALA is minimal. In contrast, the NDVI bands fall 
squarely in the soil-structure dominated spectral regions (Fig. 5 top panel). As an 
interesting aside, the empirical results shown in the top panel of Fig.  5 closely 
resemble the model predictions found in Fig. 1 of Zou and Mõttus [44].

2 As an indirect effect, wilting does reduce absorbed PAR, but this mechanism is a canopy rather 
than leaf scale process.

Fig. 5  Spectral correlation with structural (ALA) and leaf level ([Chl.]) variables. Top panel 
shows the square of Pearson’s correlation coefficient between spectral reflectance (HCRF) and 
variables, and bottom panel shows Pearson’s correlation between spectral reflectance (HCRF) and 
variables. Vertical lines mark the location of NDVI bands
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To summarise the above, NDVI does respond to water deficit. However, this 
response is due to structural changes in the canopy, not variance in pigments or leaf 
optical properties. These results suggest that, whilst care must be taken in interpre-
tation, NDVI can indeed be used as an indicator of water stress capturing water 
related variation in soil and canopy scattering properties in the red and NIR bands 
respectively.

4  �Conclusions and Outlook

At both sites, the NDVI conveyed information relating to canopy structure. At the 
first site, the NDVI followed post-harvest grass development, differentiating 
between nutrient treatments (Fig. 3). At the second site, NDVI responded to water 
limitation in potatoes via variation in canopy scattering but was unrelated to pig-
ment content (Figs. 4 and 5). Therefore, reflectance in the red-edge or green region 
is required to relate canopy observations to leaf pigments, especially under condi-
tions of structural variance caused by water limitation.

At the two study sites, area integrated point data were used to investigate vari-
ance in canopy reflectance in the temporal and spatial dimensions. Such data are 
useful as a robust empirical benchmark and are potential candidates for the valida-
tion of CubeSat-based NDVI and LAI retrievals. However, the future of field spec-
troscopy lies in high spatial resolution imagery [24]. Once properly calibrated, such 
systems can probe variance in ecosystem processes at the individual plant scale 
across the field. So how best to capitalize on our current knowledge going forward 
in this direction?

The application of mature radiative transfer codes to estimate biophysical param-
eters (e.g., pigment content) from multi-angular UAV data is an avenue under cur-
rent investigation [45]. However, it is worth emphasising that the spatial scales that 
data is now generated at are unprecedented and call for the development of new 
physically based tools and models. Verrelst [30] discusses options for hybrid imag-
ing spectroscopy approaches combining physically based remote sensing with data 
driven methods which is an interesting avenue of future research. The method of 
radiosity [46, 47], which models the canopy as a collection of planar canopy ele-
ments throughout 3D space, is a worthwhile avenue of research to revisit in this 
direction. Following from this, perhaps the most interesting direction of research is 
the extension of imaging spectroscopy into the 3rd spatial dimension and the oppor-
tunities that this affords [48].

Acknowledgments  Laura Heimsch is thanked for her help in the field and LK acknowledges 
Business Finland’s (project number 6905/31/2018) funding of the Qvidja study. Niko Viljanen is 
thanked for processing point clouds. Anu Riikonen is thanked for her help with the Viikki experi-
mental plot. The measurements at Viikki were funded by Academy of Finland project decision 
number 304097. Regarding satellite data shown in Fig. 2: “The products were generated by the 
Global Land Service of Copernicus, the Earth Observation programme of the European 
Commission. The research leading to the current version of the product has received funding from 
various European Commission Research and Technical Development programs. The product is 
based on PROBA-V data provided by ESA and distributed by VITO NV”.

J. Atherton et al.



263

References

	 1.	McCree, K.J., 1971. The action spectrum, absorptance and quantum yield of photosynthesis in 
crop plants. Agricultural Meteorology, 9, pp.191-216.

	 2.	Ryu, Y., Berry, J.A. and Baldocchi, D.D., 2019. What is global photosynthesis? History, uncer-
tainties and opportunities. Remote sensing of environment, 223, pp.95-114.

	 3.	Bannari, A., Morin, D., Bonn, F. and Huete, A.R., 1995. A review of vegetation indices. 
Remote sensing reviews, 13(1-2), pp.95-120.

	 4.	Wiegand, C.L., Richardson, A.J. and Kanemasu, E.T., 1979. Leaf Area Index Estimates for 
Wheat from LANDSAT and Their Implications for Evapotranspiration and Crop Modeling 1. 
Agronomy Journal, 71(2), pp.336-342.

	 5.	 Justice, C.O., Townshend, J.R.G., Holben, B.N. and Tucker, E.C., 1985. Analysis of the 
phenology of global vegetation using meteorological satellite data. International Journal of 
Remote Sensing, 6(8), pp.1271-1318.

	 6.	Sellers, P.J., 1985. Canopy reflectance, photosynthesis and transpiration. International journal 
of remote sensing, 6(8), pp.1335-1372.

	 7.	Myneni, R.B., Hall, F.G., Sellers, P.J. and Marshak, A.L., 1995. The interpretation of spectral 
vegetation indexes. IEEE Transactions on Geoscience and Remote Sensing, 33(2), pp.481-486.

	 8.	Curran, P.J., Dungan, J.L. and Gholz, H.L., 1990. Exploring the relationship between reflec-
tance red edge and chlorophyll content in slash pine. Tree physiology, 7(1-2-3-4), pp.33-48.

	 9.	Rouse, J. W., Haas, R. W., Schell, J. A., Deering, D. W. and Harlan, J. C., 1974. Monitoring 
the vernal advancement and retrogradation (Greenwave effect) of natural vegetation NASA/
GSFCT Type III Final Report, Greenbelt, MD, USA.

	10.	Tucker, C.J., 1979. Red and photographic infrared linear combinations for monitoring vegeta-
tion. Remote Sensing of Environment, 8(2), pp.127-150.

	11.	Crippen, R.E., 1990. Calculating the vegetation index faster. Remote sensing of Environment, 
34(1), pp.71-73.

	12.	Carlson, T.N. and Ripley, D.A., 1997. On the relation between NDVI, fractional vegetation 
cover, and leaf area index. Remote sensing of Environment, 62(3), pp.241-252.

	13.	Sellers, P.J., 1987. Canopy reflectance, photosynthesis, and transpiration, II. The role of bio-
physics in the linearity of their interdependence. Remote sensing of Environment, 21(2), 
pp.143-183.

	14.	Gitelson, A.A., Kaufman, Y.J. and Merzlyak, M.N., 1996. Use of a green channel in remote 
sensing of global vegetation from EOS-MODIS.  Remote sensing of Environment, 58(3), 
pp.289-298.

	15.	Eitel, J.U.H., Long, D.S., Gessler, P.E. and Hunt, E.R., 2008. Combined spectral index to 
improve ground-based estimates of nitrogen status in dryland wheat. Agronomy journal, 
100(6), pp.1694-1702.

	16.	Rondeaux, G., Steven, M. and Baret, F., 1996. Optimization of soil-adjusted vegetation indi-
ces. Remote sensing of environment, 55(2), pp.95-107.

	17.	Richardson, A.J. and Wiegand, C.L., 1977. Distinguishing vegetation from soil background 
information. Photogrammetric engineering and remote sensing, 43(12), pp.1541-1552.

	18.	Huete, A., Didan, K., Miura, T., Rodriguez, E.P., Gao, X. and Ferreira, L.G., 2002. Overview 
of the radiometric and biophysical performance of the MODIS vegetation indices. Remote 
sensing of environment, 83(1-2), pp.195-213.

	19.	Mohammed, G.H., Colombo, R., Middleton, E.M., Rascher, U., van der Tol, C., Nedbal, L., 
Goulas, Y., Pérez-Priego, O., Damm, A., Meroni, M. and Joiner, J., Cogliati, S., Verhoef, W., 
Malenovský, Z., Gastellu-Etchegorry, J.P., Miller, J.R., Guanter, L., Moreno, J.  Moya, I., 
Berry, J.A., Frankenberg, C. and Zarco-Tejada, P.J. 2019. Remote sensing of solar-induced 
chlorophyll fluorescence (SIF) in vegetation: 50 years of progress. Remote sensing of environ-
ment, 231, p.111177.

	20.	Badgley, G., Field, C.B. and Berry, J.A., 2017. Canopy near-infrared reflectance and terrestrial 
photosynthesis. Science advances, 3(3), p.e1602244.

What Does the NDVI Really Tell Us About Crops? Insight from Proximal Spectral…



264

	21.	Chen, J.M., Liu, J., Leblanc, S.G., Lacaze, R. and Roujean, J.L., 2003. Multi-angular optical 
remote sensing for assessing vegetation structure and carbon absorption. Remote Sensing of 
Environment, 84(4), pp.516-525.

	22.	Franzen, D., Kitchen, N., Holland, K., Schepers, J. and Raun, W., 2016. Algorithms for in-
season nutrient management in cereals. Agronomy Journal, 108(5), pp.1775-1781.

	23.	Xue, J. and Su, B., 2017. Significant remote sensing vegetation indices: A review of develop-
ments and applications. Journal of Sensors,.

	24.	Aasen, H., Honkavaara, E., Lucieer, A. and Zarco-Tejada, P.  J., 2018. Quantitative remote 
sensing at ultra-high resolution with UAV spectroscopy: a review of sensor technology, mea-
surement procedures, and data correction workflows. Remote Sensing, 10(7), p.1091

	25.	Manfreda, S., McCabe, M.F., Miller, P.E., Lucas, R., Pajuelo Madrigal, V., Mallinis, G., Ben 
Dor, E., Helman, D., Estes, L., Ciraolo, G. and Müllerová, J., Tauro, F., De Lima, M.I., De 
Lima, J.L.M.P., Maltese, A., Frances, F., Caylor, K., Kohv, M., Perks, M., Ruiz-Pérez, G., Su, 
Z., Vico, G. and Toth, B., 2018. On the use of unmanned aerial systems for environmental 
monitoring. Remote sensing, 10(4), p.641.

	26.	Bai, G., Ge, Y., Scoby, D., Leavitt, B., Stoerger, V., Kirchgessner, N., Irmak, S., Graef, G., 
Schnable, J. and Awada, T., 2019. NU-Spidercam: A large-scale, cable-driven, integrated sens-
ing and robotic system for advanced phenotyping, remote sensing, and agronomic research. 
Computers and Electronics in Agriculture, 160, pp.71-81.

	27.	Enciso, J., Maeda, M., Landivar, J., Jung, J. and Chang, A., 2017. A ground based platform for 
high throughput phenotyping. Computers and Electronics in Agriculture, 141, pp.286-291.

	28.	Houborg, R. and McCabe, M.F., 2018. Daily Retrieval of NDVI and LAI at 3 m Resolution via 
the Fusion of CubeSat, Landsat, and MODIS Data. Remote Sensing, 10(6), p.890.

	29.	Condorelli, G.E., Maccaferri, M., Newcomb, M., Andrade-Sanchez, P., White, J.W., French, 
A.N., Sciara, G., Ward, R. and Tuberosa, R., 2018. Comparative aerial and ground based high 
throughput phenotyping for the genetic dissection of NDVI as a proxy for drought adaptive 
traits in durum wheat. Frontiers in plant science, 9, p.893.

	30.	Verrelst, J., Malenovský, Z., Van der Tol, C., Camps-Valls, G., Gastellu-Etchegorry, J.P., Lewis, 
P., North, P. and Moreno, J., 2019. Quantifying vegetation biophysical variables from imaging 
spectroscopy data: a review on retrieval methods. Surveys in Geophysics, 40(3), pp.589-629.

	31.	Wellburn, R.W., 1994. The spectral determination of chlorophylls a and b, as well as total 
carotenoids, using various solvents with spectrophotometers of different resolution. Journal of 
plant physiology, 144(3), pp.307-313.

	32.	MacArthur, A, Robinson, I, Rossini, M, Davis, N and MacDonald, K, 2014. A dual-field-of-
view spectrometer system for reflectance and fluorescence measurements (Piccolo Doppio) 
and correction of etaloning. Proceedings of the Fifth International Workshop on Remote 
Sensing of Vegetation Fluorescence. European Space Agency, Fifth International Workshop 
on Remote Sensing of Vegetation Fluorescence, Paris, United Kingdom, 22-24 April 2014.

	33.	Atherton, J., MacArthur, A., Hakala, T., Maseyk, K., Robinson, I., Liu, W., Honkavaara, 
E. and Porcar-Castell, A., 2018, July. Drone Measurements of Solar-Induced Chlorophyll 
Fluorescence Acquired with a Low-Weight DFOV Spectrometer System. In IGARSS 
2018-2018 IEEE International Geoscience and Remote Sensing Symposium, pp.8834-8836. 

	34.	Hakala, T., Markelin, L., Honkavaara, E., Scott, B., Theocharous, T., Nevalainen, O., Näsi, R., 
Suomalainen, J., Viljanen, N., Greenwell, C. and Fox, N., 2018. Direct reflectance measure-
ments from drones: sensor absolute radiometric calibration and system tests for forest reflec-
tance characterization. Sensors, 18(5), p.1417.

	35.	Schaepman-Strub, G., Schaepman, M.E., Painter, T.H., Dangel, S. and Martonchik, J.V., 2006. 
Reflectance quantities in optical remote sensing—Definitions and case studies. Remote sens-
ing of environment, 103(1), pp.27-42.

	36.	Stuckens, J., Somers, B., Verstraeten, W.W., Swennen, R. and Coppin, P., 2009. Evaluation 
and normalization of cloud obscuration related BRDF effects in field spectroscopy. Remote 
Sensing, 1(3), pp.496-518.

J. Atherton et al.



265

	37.	Viljanen, N., Honkavaara, E., Näsi, R., Hakala, T., Niemeläinen, O. and Kaivosoja, J., 2018. 
A novel machine learning method for estimating biomass of grass swards using a photogram-
metric canopy height model, images and vegetation indices captured by a drone. Agriculture, 
8(5), p.70.

	38.	R Core Team, 2019. R: A language and environment for statistical computing. R Foundation 
for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/

	39.	Xu, S., Zaidan, M.A., Honkavaara, E., Hakala, T., Viljanen, N., Porcar-Castell, A., Liu, Z. and 
Atherton, J., 2020. On the Estimation of the Leaf Angle Distribution from Drone Based 
Photogrammetry. In IGARSS 2020-2020 IEEE International Geoscience and Remote Sensing 
Symposium, pp.4379-4382.

	40.	 Ihuoma, S.O. and Madramootoo, C.A., 2017. Recent advances in crop water stress detection. 
Computers and Electronics in Agriculture, 141, pp.267-275.

	41.	Moran, M.S., Pinter Jr, P.J., Clothier, B.E. and Allen, S.G., 1989. Effect of water stress on the 
canopy architecture and spectral indices of irrigated alfalfa. Remote sensing of environment, 
29(3), pp.251-261.

	42.	Zou, X. and Mõttus, M., 2017. Sensitivity of common vegetation indices to the canopy struc-
ture of field crops. Remote Sensing, 9(10), p.994.

	43.	Croft, H., Chen, J.M., Wang, R., Mo, G., Luo, S., Luo, X., He, L., Gonsamo, A., Arabian, 
J., Zhang, Y. and Simic-Milas, A., Noland, T.L., He, Y., Homolová, L., Malenovský, Z., Yi, 
Q. Beringer, J. Amiri, R. Hutley, L., Arellano, P., Stahl, C., Bonal, D., 2020. The global distri-
bution of leaf chlorophyll content. Remote Sensing of Environment, 236, p.111479.

	44.	Zou, X. and Mõttus, M., 2015. Retrieving crop leaf tilt angle from imaging spectroscopy data. 
Agricultural and Forest Meteorology, 205, pp.73-82.

	45.	Roosjen, P.P., Brede, B., Suomalainen, J.M., Bartholomeus, H.M., Kooistra, L. and Clevers, 
J.G., 2018. Improved estimation of leaf area index and leaf chlorophyll content of a potato crop 
using multi-angle spectral data–potential of unmanned aerial vehicle imagery. International 
journal of applied earth observation and geoinformation, 66, pp.14-26.

	46.	Borel, C.C., Gerstl, S.A. and Powers, B.J., 1991. The radiosity method in optical remote sens-
ing of structured 3-D surfaces. Remote Sensing of Environment, 36(1), pp.13-44.

	47.	Qin, W. and Gerstl, S.A., 2000. 3-D scene modeling of semidesert vegetation cover and its 
radiation regime. Remote Sensing of Environment, 74(1), pp.145-162.

	48.	Aasen, H., Burkart, A., Bolten, A. and Bareth, G., 2015. Generating 3D hyperspectral infor-
mation with lightweight UAV snapshot cameras for vegetation monitoring: From camera cali-
bration to quality assurance. ISPRS Journal of Photogrammetry and Remote Sensing, 108, 
pp.245-259.

What Does the NDVI Really Tell Us About Crops? Insight from Proximal Spectral…

http://www.R-project.org/


267© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
D. D. Bochtis et al. (eds.), Information and Communication Technologies for 
Agriculture—Theme I: Sensors, Springer Optimization and Its Applications 182, 
https://doi.org/10.1007/978-3-030-84144-7_11

Geophysical Sensors for Mapping Soil 
Layers – A Comparative Case Study Using 
Different Electrical and Electromagnetic 
Sensors

Erika Lück, Julien Guillemoteau, Jens Tronicke, Jana Klose, 
and Benjamin Trost

1  �Introduction

In smart farming and precision agriculture, site-specific management is based, 
among other things, on information about field heterogeneity, which can be obtained 
from plant observations, and on soil variability resulting, for example, from data of 
geophysical measurements. Electrical conductivity data provide reliable informa-
tion that can be used to image lateral field heterogeneities fast and cost-effectively ] 
[1]. In many studies, apparent electrical conductivity (ECa) data are correlated with 
parameters such as salinity [2, 3], soil moisture [4–6], and soil texture [7–9]. 
Because soil fertility and yield depend on these parameters, there are also studies 
linking ECa to yield [8, 10–13]. Particularly, Vitharana et al. Vitharana et al. [14] 
and Van Meirvenne et al. [15] concluded in their studies that ECa can be one of the 
key features for delineating agricultural management zones.

In a first step, ECa data are usually used to image lateral soil heterogeneity over 
an integrated depth interval of approximately 1–2 m below Earth’s surface. Today, 
ECa maps are increasingly used to optimize the location of soil sampling points 
[16, 17], to establish management zones [18–20] and to explain the variability of 
biomass and yield [21–23]. Additional information regarding vertical heterogeneity 
(e.g., soil layering including depths of layers) helps, for example, to understand in 
more detail soil-moisture relationships, the interaction between soil and plants, to 
select plant types with appropriate root depth, and to optimize the operation of agri-
cultural machines.
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To close the gap between two- and three- dimensional (2D and 3D) soil data, 
several novel techniques have been evaluated [24–26] including new instruments 
and inversion routines. Today, various multi-channel electromagnetic (EM) systems 
(such as DUALEM, Dualem.com, Canada; CMD-Explorer, GF-instruments, Czech 
Republic and Topsoil Mapper, Geoprospectors, Austria) as well as multi-frequency 
EM-systems (such as Profiler EMP-400, GSSI, USA; GEM-2 Geophex Ltd., USA) 
are available to measure simultaneously with different depth sensitivities. 
Furthermore, different systems with galvanically coupled electrodes are used to 
obtain 3D soil information [27–30]. Further recent developments include 1D inver-
sion routines to reconstruct conductivity-depth-functions from EM and direct cur-
rent (DC) data [31–38], as well as quasi-2D/3D using 1D inversion with lateral 
constraints [39–41] and full 3D inversion routines [42] to generate 2D and 3D sub-
surface conductivity models.

Data quality and consistency are critical when performing an inversion of mea-
sured ECa data into conductivity models. Sufficient data quality can be achieved by 
suppressing or eliminating noisy data and performing shift corrections [43, 44]. In 
the past, drift in electromagnetic data was often considered as a major problem and 
the need for stable instruments has been formulated [45]. Many modern instruments 
(including the DUALEM system used in this study) are equipped with a tempera-
ture stabilization. Studies investigating drift-related phenomena for the DUALEM 
sensor have been carried out by Hampe [46]. He found a minor drift of ~4 mS m−1 
only at the beginning of his measurements (20 min after strong temperature changes) 
for one of the four channels of this system. Moreover, persistent minor temperature 
drifts can be significantly reduced using a non-conductive thermal insulator [47]. 
Consistent data means that all channels of an instrument are calibrated and the rela-
tion between several channels is only influenced by their individual depth-sensitivity 
function and soil stratigraphy. To evaluate different sensors and interpretations, the 
resulting conductivity-depth models are typically compared with:

	1.	 Direct-push measurements [8, 42, 48];
	2.	 Results from boreholes soil sampling [30];
	3.	 Conductivity models obtained using other sensors [49–51].

In practice, a particular challenge is to map soils with only minor conductivity 
contrasts. This corresponds to a typical situation in northern Germany, where often 
sandy and loamy soils with small-scale heterogeneities characterize the landscape. 
The thickness of the sand cover varies and thus also the water holding capacity 
within the rooting zone of the plant. In addition to small contrasts, low conductivi-
ties with average values between 10 and 20 mS m−1 make the application of the 
electromagnetic induction method (EMI) particularly difficult in such environ-
ments. In the case study presented here, the DUALEM-21 system (Dualem, Inc., 
Canada) is used on a sandy soil with small variability, to evaluate the potential of 
this sensor for such environments. The study examines to what extent the 
DUALEM-21 is a suitable tool for mapping lateral and vertical changes in soil prop-
erties at the field scale. For comparison and evaluation, DC geoelectrical measure-
ments with fixed static electrodes along three transects and direct soil sampling 
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including texture analysis are used. Furthermore, the results of ECa mapping are 
compared with the results obtained using the multi-array direct current (DC) system 
Geophilus [28]. To complete the frequency range of electrical (static) and electro-
magnetic (10 kHz) geophysical methods, the results of a 250 MHz GPR (ground-
penetrating radar) survey performed at our field site are also considered.

2  �Materials and Methods

2.1  �Site Characteristics

The field site is a 0.85-hectare test field in Marquardt (52°27´50˝ N, 12°57´31˝ E) 
located about 30 km west of Berlin, Germany (Fig. 1a). At a height of 42 meters 
above sea level, the field shows a flat terrain with a slight topographic increase of 
3  m from north-west to south-east. The glacial embossed site is located in the 
Havelland region – about 150 m east of the river Wublitz, a branch of the river Havel 
(Fig.  1b). The topsoil is a sandy loam, and the bedrock consists of glacial till. 
Because the soil was formed by glacial and postglacial deposits, it is characterized 
by small-scale variabilities with only minor variations in soil texture. The data were 
collected in April 2016. At this time, the volumetric water content in the topsoil, as 
measured with a TDR probe, varied between 12 and 18%.

Today, the field site (Fig. 1c) is part of a research site operated by the Leibniz 
Institute for Agricultural Engineering and Bioeconomy (ATB) to develop sensor-
based approaches for precision agriculture and horticulture. In the years before, the 

Fig. 1  Location of the study site. (a) about 30 km west of Berlin in north-east-Germany (data 
source: GLOBE1 [52]), (b) near the river Wublitz (data source: OpenStreetMap [53]) and (c) in the 
Fieldlab for Digital Agriculture operated by the ATB. The test field is highlighted by a red rectangle
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field served as an orchard test site of the Federal Plant Variety Office of Germany. 
To ensure that natural soil heterogeneity is depicted instead of a former experimen-
tal design, the test field was uniformly managed since 2015.

2.2  �Data Acquisition

2.2.1  �ECa Mapping with DUALEM-21

The DUALEM-21 is a Slingram-based electromagnetic induction sensor that oper-
ates at a source frequency of 9 kHz. With four receiver coils in horizontal coplanar 
(HCP) and perpendicular (PERP) orientation (Fig. 2a), four different depth sensi-
tivities are realized [54]. While the out-of-phase data are mainly influenced by the 

Fig. 2  Geophysical techniques used in this study. (a) DUALEM-21 – an electromagnetic system 
with one transmitter (TX) and four receiver coils (RX), (b) Geophilus – a kinematic DC (direct 
current) system. Distance between source dipole and receiver dipoles increases stepwise from 
b = 0.5 m to b = 3.0 m, (c) Ground-penetrating radar mounted on a nonmetallic cart, and (d) Static 
DC measurements along a transect with fixed electrodes arranged as an equatorial dipole-dipole-
array as used by the Geophilus system
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subsurface electrical conductivity [55], information about the magnetic soil proper-
ties is contained in the in-phase component [56–60]. In this study, only out-of-phase 
data are considered.

During field measurements, the DUALEM instrument was mounted on a metal-
free cart (Fig. 2a) and moved manually across the field with a line spacing of ~5 m. 
Therefore, the spatial point distribution of the resulting DUALEM dataset shows a 
higher inline sample point density than in crossline direction. A sampling interval of 
0.1 s resulted in an inline point spacing of ~10 cm (Table 1). Although the DUALEM 
is equipped with an internal non-differential global positioning system (GPS), a 
more precise positioning (in the order of several cm) was realized by a total station 
with an automatic tracking option and a prism mounted on the cart [61]. As a by-
product, this strategy also provides a detailed digital terrain model (DTM) of the 
surveyed area.

The data were collected using a so-called zigzag mode. Because the spatial sen-
sitivity for perpendicular coil orientations of the DUALEM is not symmetrical in 
the inline direction, it would be better to collect the data in parallel mode. Due to the 
relatively large profile spacing compared to the footprint of the DUALEM, this is 
not critical for the presented data.

2.2.2  �ECa Mapping with Geophilus

Geophilus [28] is a DC sensor and works with rolling electrodes arranged as an 
equatorial dipole-dipole array (Fig.  2b) pulled by a cross country vehicle. All 
seven dipoles (one source dipole and six receiver dipoles termed channel 1 to 
channel 6) show the same dipole length of 1 m and a spacing to the neighbouring 
dipoles of b = 0.5 m. In contrast to previous published Geophilus specifications 
[28], a modified Geophilus sensor was used in this study. The electronics were 
replaced by an industrial instrument known as Expert Vibro (Delphin Technology, 
Germany), and the electrical coupling of the electrodes has been modified by the 
Geophilus company (Geophilus GmbH, Germany). An additional gamma sensor, 
which measures the total counts of gamma radiation, is added to the system to 
limit the ambiguity in the interpretation of the measured electrical conductivity 
data. Although gamma radiation data have also been measured, only the electrical 
conductivity data are considered in this study.

For the data set measured on our field site, the distance between the tracks was 
~5  m (i.e., comparable to our DUALEM dataset). The inline data point spacing 

Table 1  Field parameters of the geophysical surveys performed at the field site

DUALEM Geophilus GPR

Crossline spacing ~5 m ~5 m ~1 m
Inline spacing 0.06–0.10 m 1.43 m 0.06 m
Number of channels 4 6 1 Time series
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depends on the driving velocity of the vehicle and the used sampling frequency. 
With a velocity of ~5.5 km h−1 and a sampling frequency of 1 Hz, an inline point 
spacing of ~1.5 m was achieved (Table 1, Fig. 3b). In order to georeference the 
measured data, a differential GPS with an accuracy of ~0.5 m was used.

2.2.3  �DC Measurements with Static Electrodes Along 
Reference Transects

Typically, the data quality of kinematic surveys is lower than that of static measure-
ments. In order to evaluate the results of the mobile sensors used, small-scale mea-
surements were carried out along three selected transects using conventional static 
geoelectrics with fixed electrodes (Fig. 2d) and an inline point spacing of 0.5 m. A 
GeoTom system (GeoLog, Germany) was used, and 100 electrodes were arranged 
as an equatorial dipole-dipole array with identical geometry as used for the 
Geophilus survey. In Fig. 3a, the position and the orientation of the transects 1, 2, 
and 3 are shown together with the data-point locations of the DUALEM survey, 
where the direction of these transects is indicated by arrows.

2.2.4  �Ground-Penetrating Radar

In order to complete the frequency spectrum of electromagnetic methods, the field 
was also mapped with ground-penetrating radar (GPR). GPR is useful to image the 
topography of internal soil horizons as well as artificial objects (e.g., drainage pipes 
and other utilities) if there is a contrast in dielectric permittivity. A pulseEKKO 
system (Sensors & Software, Canada) with 250 MHz shielded antennas was used. 
The antennas were mounted with an offset of 0.38 m on the same cart used for 
DUALEM surveying. Thus, also the GPR measurements have been performed man-
ually and georeferenced by the positioning data as measured by an auto-tracking 

Fig. 3  Field design of geophysical measurements. (a) DUALEM traces (black lines) and DC 
reference transects (red lines) including numbers for identification and arrows indicating the direc-
tion of the transects. The points of soil sampling are shown as grey dots, (b) Geophilus traces. 
Numbered locations of soil sampling are given in red and (c)Transects of the GPR survey. The 
much higher coverage is visible. The locations of CMP soundings are shown as red points and the 
position of the selected profile shown later is highlighted by a red line
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total station. The GPR data were recorded at a much higher spatial density com-
pared to our DUALEM and Geophilus data (Table 1) and, thus, the GPR positioning 
data were used to generate an elevation model of our study site. The data represent 
relative elevation values in relation to the fixed position of the total station. Four 
additional CMP (common mid-point) measurements were carried out (red points in 
Fig. 3c) to derive subsurface velocity information as needed, for example, to convert 
travel times into depths.

2.3  �Data Processing

Due to the different positioning methods, the original coordinate systems are differ-
ent for both mobile electrical sensors. By means of a coordinate transformation, the 
positions of the Geophilus measurements (WGS coordinates) are transformed into 
the local system used for DUALEM surveying and for all other datasets. In order to 
identify the test field, for example on an aerial photograph of the research site, the 
local coordinate system was later rotated so that the y-axis points  towards geo-
graphic north. For all sensors, the offset between the GPS receiver or prism and the 
individual electrodes, coils or antennas has been corrected and individual latency 
corrections have been applied.

For data denoising different strategies have been used. The evaluation of 
DUALEM data quality is mainly based on drift analysis, on comparing readings at 
points of crossing lines, and on the resulting conductivity-depth models. To estimate 
noise amplitudes, the original raw measurements are compared to slightly smoothed 
time series after removing a strong anomaly caused by a water pipe in the North of 
the field. From this, the short-period noise of DUALEM is estimated to be in the 
order of 0.1–0.2 mS m−1. This is in the range of the value published by the producer 
(± 0.25) and also in accordance with the results presented by Hampe [46].

For the Geophilus data, useful criteria for noise reduction and detecting outliers 
are, for example, the signal frequency at the potential electrodes, the measured 
phase angle and the standard deviation at each point. Because for DC measurements 
the measured voltage decreases with increasing electrode spacing, the Geophilus 
near-surface data (channels 1 and 2) are less noisy than the larger offset channels 
sensitive to greater depths (channels 3 to 6). Thus, in our study the number of outli-
ers increases from 8.8% for channel 1 and 11.5% for channel 2 to 28.7% for channel 
4 and 39.6% for channel 6. Because there was a problem with the data recorded by 
channel 5, this channel was not considered for further analysis. To ease the compari-
son of all sensor data, the resistivity values determined with DC geoelectrics 
(Geophilus data and data measured with static electrodes) were converted into 
conductivities.

While only minor processing was necessary for the DUALEM data, the raw 
Geophilus data stored many outliers which had to be removed. After removing iso-
lated spikes caused by small metallic objects in the DUALEM data and erroneous 
Geophilus data, a zero-phase second order polynomial smoothing filter was applied 
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to the time series of the mobile ECa sensor data. The filter window size was adjusted 
in such a way that smoothing was carried out for both data sets over a similar dis-
tance of ~8 m. The ECa data measured with the mobile sensors were gridded on a 
regular grid of 0.5 × 0.5 m and smoothed with a 2D-Gaussian filter.

The DUALEM data along the reference transects 2 and 3 were extracted from 
these ECa maps. Their inversion is performed by an in-house nonlinear 1D inver-
sion program [34] and, later, the results are compared with the conductivity depth 
models resulting from the conventional DC surveys with fixed electrodes. These DC 
data were inverted using both 1D and 2D assumptions. An in-house program was 
used for the nonlinear point-by-point 1D inversion [35]. The 2D inversion was car-
ried out with the commercial software package RES2DINV (Geotomo soft-
ware; [62]).

The focus of this study is on methods for mapping electrical properties. In addi-
tion, the potential of GPR was studied to image lateral soil heterogeneity and com-
pare the imaged patterns to the conductivity maps. Before the GPR data were 
combined into a 3D cube, profile-wise standard processing (DC removal, zero-time 
correction, dewow, frequency filtering and spherical divergence correction) was 
applied. The 3D data set was gridded on a regular grid of 0.25 × 0.25 m covering an 
area of 83 × 100 m. The third coordinate of the data cube is the time axis. For inter-
pretation, selected time slices of amplitude and energy were used.

2.4  �Soil Sampling and Soil Texture Analysis

The various electrical methods provide information regarding subsurface architec-
ture and parameter distributions (such as electrical conductivity maps), but do not 
allow to directly infer soil type and soil texture. Ground-truth data are typically 
needed for such a more detailed interpretation of geophysical parameter models. To 
gather such ground-truth data, 12 bore holes (red points in Fig. 3b) were drilled 
along the transects 2 and 3 (red lines in Fig. 3a). Two sampling points were always 
realized close to each other at 1 m. Soil samples were taken up to 1 m depth. The 
cores were divided into samples depending on visible soil discontinuities. Due to 
the partly weak contrasts in the material, the subdivision into depth intervals was 
not always easy and, thus, bears the potential of subjectivity. The number of samples 
varies between two and four for each sampling location. The soil samples were 
analyzed in the laboratory in terms of particle size distribution using sieve analysis 
and a laser diffractometer for clay and silt content.

Finally, the conductivity-depth models are interpreted and evaluated by compar-
ing these models with the horizons visible in the drill cores (up to 1 m depth) and 
with the results of soil texture analysis. The soil is classified in terms of particle size 
distribution using the DIN standard 4022 (slightly modified Atterberg [63] scheme) 
to distinguish eight classes with a logarithmic grain size scale between 2  μm 
and 2 mm.
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3  �Results

First, the maps and cross sections of our measured data are presented. Then, all 
conductivity depth models obtained after data inversion are compared to our 
soil data.

3.1  �Lateral Soil Heterogeneity

The ECa maps image mainly the lateral variability within the field (Fig. 4). While 
the eastern part of the field shows only small differentiation in ECa data, the western 
part is characterized by a more distinct anomaly with high ECa values. The anoma-
lies within the field are associated with a variable thickness of the sand cover. In 
areas with higher ECa, the sand cover is thinner than in low-conductive areas. When 
comparing the patterns of the conductivity maps with the derived digital terrain 
model (DTM; Fig. 4g), most of the anomalies are not visible in the topography. 
However, it can be noticed that the general increase in terrain height towards the 
southeast correlates with an overall decrease in ECa values.

The main difference between EM- and DC-sensors is their different sensitivity to 
high conductive objects. The conductivity maps measured with the DUALEM 
(Fig. 4a–d) show a strong linear anomaly in the northern part of the site which is 
related to a metallic water pipe. In the vicinity of the pipe, it is difficult to see soil 
variability. South of the pipe, all conductivity maps show a similar anomaly pattern 
assumed to be related to soil heterogeneity. With exception of the linear anomaly 

Fig. 4  Maps of ECa and DTM. (a), (b), (c), and (d) DUALEM data measured with the given coil 
orientation, (e) and (f) Geophilus data measured with b = 0.5 m (Channel 1) and b = 1.0 m (Channel 
2), and (g) DTM derived from total station positioning data
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related to the pipe, EM and DC maps show similar patterns. A simple cross-
correlation was calculated to quantify this similarity (Table  2). Here, the region 
around the pipe was not considered to calculate the correlation coefficients.

The differences in the correlation coefficients can be explained by different verti-
cal and horizontal sensitivities of the individual sensor configurations. For each 
sensor, the maps in Fig. 4 are arranged in row with increasing depth of sensitivity 
from left to right. All conductivity maps are plotted with the same color scale to 
provide an idea of the changes with the depth. The range is between 2 and 15 mS 
m−1, which is typical for sandy soils in northern Germany. Obviously, at the 
Marquardt field site the conductivities generally increase with depth.

Figure 5 shows time-slices extracted from the GPR data cube and the ECa map 
of the DUALEM PERP2 configuration for comparison. Because GPR data are 
recorded at each point over a time window of 100 ns, this method is better suited to 
differentiate between different depths. Focusing on ground wave arrivals, Fig. 5a 
illustrates the near-surface structures within the uppermost soil layer. A regular 
diagonal pattern dominates the map which is not visible in the DTM. This pattern is 
related to differences in soil density (caused by the deep ploughing 1 year before our 

Table 2  Correlation coefficients calculated between the ECa data measured with DUALEM and 
Geophilus. In the last column, the correlation of ECa data with the GPR energy slice (extracted 
from the GPR cube between 25 and 30 ns) is given

PERP1 PERP2 HCP1 HCP2 Channel1 Channel2 GPR

PERP1 1 0.95 0.90 0.70 0.90 0.91 −0.30
PERP2 0.95 1 0.92 0.80 0.88 0.90 −0.39
HCP1 0.90 0.92 1 0.88 0.90 0.92 −0.29
HCP2 0.70 0.80 0.88 1 0.74 0.76 −0.24
Channel1 0.90 0.88 0.90 0.74 1 0.95 −0.27
Channel2 0.91 0.90 0.92 0.76 0.95 1 −0.29
GPR −0.30 −0.39 −0.29 −0.24 −0.27 −0.29 1

Fig. 5  GPR time slices of amplitudes and energy. (a) Amplitudes at 3 ns (ground wave) to map 
structures within the uppermost soil layer, (b) Energy for the time window between 15 and 25 ns, 
(c) Energy for the time window between 25 and 30, and (d) DUALEM – ECa map of the PERP2 
configuration. The high conductive areas labelled with letters A to E correspond to areas of low 
GPR energy in Fig. 5c
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measurements), which are probably also related to soil moisture variations. The 
traces at the edges of the field are caused by topography effects (headland). Fig. 5b 
depicts the energy (i.e., squared amplitudes) summed in a time window between 15 
and 25 ns. Using the velocity of 0.085 m ns−1 resulting from our CMP surveys, this 
corresponds to a depth range between 0.64 and 1.06 m. The regular pattern from the 
topsoil is still visible. The linear anomaly in the northern part of the field is caused 
by the metallic water pipe, which is also detected by the DUALEM (Fig. 5d). The 
energy map shown in Fig. 5c gives an idea about the depth of penetration of the GPR 
waves. The squared amplitudes are summed in a time window between 25 and 
30 ns. Using a velocity of 0.085 m ns−1, this corresponds to a depth range between 
1.06 and 1.27 m. Because electrical conductivity is controlling GPR attenuation, the 
lateral heterogeneity of GPR energy correlates negatively with the conductivity map 
shown in Fig. 5d. For better illustration, the highly conductive areas of the DUALEM 
data are marked as zones A-E. These zones are visible in the GPR data as zones with 
lower energy. Due to the higher spatial resolution and the smaller footprint of the 
GPR data, the GPR image is not as smooth as the ECa map.

3.2  �Information About Soil Stratification

As a first approximation, the mean values of the ECa maps (Fig. 4) can be used for 
a rough stratigraphic interpretation. As the values in northern part of the field are 
strongly affected by the pipe and not by the soil, the mean, median and standard 
deviation (Std) values were calculated only for the area south of the pipe (Table 3). 
With increasing depth of investigation, the apparent electrical conductivities 
increase from ~4 mS m−1 to ~11 mS m−1 as demonstrated by the mean and median 
values for the different configurations. The standard deviation mainly contains 
information about lateral variabilities within a certain depth range. An increase in 
standard deviation with depth indicates an increase of soil differentiation with depth 
and possibly also an increase of noise.

Table 3  Statistics of ECa values for the considered mobile sensor configurations. The standard 
deviation (Std) is given as a measure of heterogeneity within a specific soil volume depending on 
the individual sensitivity function of the considered sensor configuration

Mean [mS m−1] Median [mS m−1] Std [mS m−1]

DUALEM PERP 1.1 3.9 3.7 1.1
DUALEM PERP 2.1 6.8 6.7 1.5
DUALEM HCP 1 9.2 8.9 1.7
DUALEM HCP 2 10.8 10.8 1.7
Geophilus 1 5.9 5.4 2.1
Geophilus 2 8.2 7.3 3.4
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3.3  �Two-Dimensional Conductivity Models Along 
Reference Transects

The conductivity models along the reference transects (Fig. 6) resulting from 1D 
and 2D inversion of static DC and DUALEM data confirm the trend of increasing 
conductivity with depth. Up to a depth of 1.5 m, all models indicate a two-layer case 
with varying thickness of the high-resistive top layer. Transect 2 shows a basin-like 
structure in the middle of the profile. In the western part of the field (transect 3), a 
high conductive layer can be found close to the surface. The thickness of the low 
conductive top layer increases towards the edges of the profile. These soil structures 
are imaged similarly by both methods.

One main difference between the DC and EM models is that the pipe related 
anomaly is not visible in the DC data. The EM data are strongly influenced by this 
anomaly at the beginning of transect 2. This is explained by the theory of the meth-
ods. If the sensitivity of DC is inversely proportional to the conductivity, the EM 
sensitivity is the opposite.

3.4  �GPR Transects

Figure 7 is an example illustrating the quality of our GPR data. This profile was 
measured close to the position of two CMP surveys (Fig. 3c) running from NNW to 
SSE and is representative for the data collected at this site. The profile is dominated 
by the air- and ground-wave arrivals up to ~10 ns and by strong hyperbolic curves 
at times >10 ns (marked in Fig. 7b by red arrows). These hyperboles are caused by 
a 60 cm deep ploughing in 2014, more than 1 ½ year before our field work. No 
further sharp reflections are visible within the upper 1–2 m.

Fig. 6  Conductivity depth models along transects 2 (a–c) and 3 (d–f). (a) and (d) 1D (1 dimen-
sional) inversion of equatorial dipole-dipole DC data acquired with fixed electrodes, (b) and (e) 2D 
inversion of static DC data using RES2DINV, and (c) and (f) point-by-point non-linear 1D inver-
sion of DUALEM data. The positions of the soil sampling are shown by vertical bars. The numbers 
of the sampling points for texture analysis are shown in (a) and (d)
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3.5  �Soil Texture as Ground-Truth Data

The results of our texture analysis are summarized in Table 4. Fine and medium 
sands are the main components of our soil samples (75%). The silt content is 
between 15 and 30%. Comparing these data with the German manual of soil map-
ping [64], the main soil types are Su2, Sl2, and Su3. ‘S’ is the symbol for sand, ‘u’ 
for silt and ‘l’ for loam. That means, sand dominates everywhere, and silt and loam 
content vary. Su2 is a medium silty sand with silt content between 10 and 25% and 
Su3 has a higher silt content (25–40%). The clay content of both is less than 5%.

In general, the grain size distributions for the individual soil samples are very 
similar (Fig. 8). The cumulative curves illustrate the differences between top and 

Fig. 7  GPR transect in the western part of the field close to the position of two CMP surveys. (a) 
Travel time section, and (b) Depth section calculated using a velocity of 0.085 m ns−1 as derived 
from CMP surveying. Prominent hyperboles are marked with red arrows

Table 4  Statistics of measured particle size fractions (all samples) of clay, silt, and sand up to 
1 m depth

Diameter 
[mm]

Minimum content 
[%]

Maximum content 
[%]

Mean content 
[%]

Std 
[%]

Coarse sand 0.6–2.0 2.9 6.9 4.4 0.8
Medium 
sand

0.2–0.6 27.4 52.3 36.3 5.5

Fine sand 0.06–0.2 22.4 38.9 33.3 3.6
Coarse silt 0.02–0.06 2.4 6.6 4.3 1.1
Medium silt 0.006–0.02 4.1 9.6 5.7 1.1
Fine silt 0.002–0.006 7.2 15.8 10.8 2.0
Clay <0.002 1.7 6.8 3.5 1.3
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bottom soil. While only one topsoil sample is available for each drilling point (from 
the surface up to a depth of ~30–50 cm), there are sometimes several soil samples 
for the sub-soil due to layered sequences. Clay and silt content increase with depth. 
The mean clay content varies between 2.5% for the topsoil and 4.5% for the bottom 
layer. The differences for fine silt (9.2% within the topsoil and 12.2% for greater 
depths) are more distinctive than for medium (4.9% and 6.5%) and coarse silt (3.7% 
and 5.0%).

The variability of the thickness of the top layer and also the spatial variability in 
soil texture is illustrated in Fig. 9a, where the sum of clay, fine and medium silt 
contents is plotted as a function of depth. The results of all 12 positions were 
arranged together along one line. While in the eastern part of the field (at points 3 
and 4) the content of fine particles is low within the upper meter, the other depth 
profiles show a clear increase of fine particles with depth. Furthermore, an increase 
of soil variability with depth can be noticed (increasing Std values in Table 3). The 
differentiation in the topsoil is less clear than in the bottom soil (Table 5). This con-
firms the increasing variability in ECa data with depth, which was found for 
DUALEM and for Geophilus data.

A comparison of the texture data and the conductivity models shows that the 
stratigraphy recognized in the soil data is also visible in the conductivity models. 
The three conductivity depth models (Fig. 9b–d) are similar at the respective posi-
tions but differ slightly depending on the used instrument and the applied inversion 
routine. Overall, the site is characterized by increasing conductivities with depth, 
while the thickness of the low conductive top layer varies. In the western part of the 
field (point 7–12, transect 3), it shows a thickness of only a few decimeters, while 
along transect 2 (point 1–6) it is characterized by a thickness >0.5 m. The similarity 
of neighboring points with a distance of 1 m is obvious.

The conductivity models achieved from the 1D inversion of the DUALEM data 
and from the 2D inversion of the DC data show similar correlations with the texture 
data (Table 6). There is a negative correlation with the coarser soil components (sum 
of coarse silt, sand, and gravel) and a positive one with the fine particles.

Fig. 8  Grain size distribution (absolute and cumulative) for all individual soil samples
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Table 5  Statistics of measured particle size fractions (all samples) of clay, fine silt, and medium 
silt differentiated for top and bottom soil

Diameter 
[mm]

Depth 
[m]

Minimum 
content [%]

Maximum 
content [%]

Mean 
content [%]

Std 
[%]

Clay <0.002 0–0.4 1.7 3.8 2.5 0.5
0.6–1.0 2.6 6.8 4.5 1.1

Fine silt 0.002–0.006 0–0.4 7.2 10.8 9.1 1.1
0.6–1.0 8.8 15.8 12.3 1.8

Medium 
silt

0.006–0.02 0–0.4 4.1 6.6 4.9 0.8
0.6–1.0 4.9 9.6 6.3 0.9

Fine 
particles

<0.02 0–0.4 13.9 20.3 16.6 1.9
0.6–1.0 17.4 28.6 23.2 2.9

Fig. 9  Depth profiles at the sampling points 1–12 along the reference transects 2 and 3. The sam-
pling positions are given in Fig. 3a. (a) Silt (fine and medium) and clay content from the soil tex-
ture analysis, (b) Conductivity-depth models from the 1D inversion of static DC data, (c) 
Conductivity-depth models from the 2D inversion of static DC data, and (d) Conductivity-depth 
models from the 1D inversion of DUALEM data
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4  �Discussion

The main advantage of electromagnetic induction sensors is their ability to perform 
non-contact measurements and their overall good data quality. For DC geoelectrics, 
the galvanic coupling between the electrodes and the ground is influenced by the 
local ground conditions and, thus, data quality might vary from point to point. 
Especially for dry or hard topsoil, it becomes difficult to achieve sufficiently good 
data quality with mobile electrodes. Because the contact resistances are easier to 
control when measuring with static electrodes, measurements with static electrodes 
were carried out along individual transects to evaluate our DUALEM data and the 
resulting conductivity models.

Proximal multi-receiver systems, like DUALEM-21 and Geophilus, have a great 
potential for detailed imaging not only regarding lateral soil variability but also in 
view of soil stratification at the field scale. Here, the distances between coils or 
electrodes mainly determine the depth sensitivity of the data. When using more than 
one receiver coil or more than one pair of potential electrodes, information can be 
received about changes in electrical parameters even with the depth. How well the 
conductivity models reflect the reality, depends among other things, on the contrasts 
in physical parameters and on the quality and consistency of the measured data. A 
direct comparison of ECa data measured with different sensors is only of limited 
significance due to different spatial sensitivities, the integrated volumes, and the 
differences in physics between the methods and arrays used. DUALEM and DC 
data were inverted, and the resulting conductivity models were compared along the 
transects. For the test site in Marquardt, all electrical conductivity models, regard-
less of the used sensor and inversion algorithm, show a tendency of increasing val-
ues with depth. This increase in electrical conductivity can be explained by 
increasing content of fine particles with depth, as found with the texture analysis of 
soil samples. All of our data and models indicate a rather homogeneous top layer 
and an increasing differentiation with depth.

As with all geophysical methods, the quality of GPR data depends on the con-
trasts in the physical parameters and on the surveying parameters. The choice of the 
antenna frequency is always a compromise between depth penetration and resolu-
tion. With the 250 MHz antennas used, we could not depict any continuous reflector 
within the depth of investigation (approximately ~1.5 m at our site). However, the 
GPR data confirmed the patterns known from our ECa maps and also imaged traces 
of previous deep ploughing that were not visible with any of the other methods 
used. In addition, the depth of the water pipe in the north of the field could be 
determined.

Table 6  Correlation coefficients between soil texture (from all reference points) and conductivity-
depth models (from different datasets and inversion routines)

Grain size DC 1D inversion DC 2D inversion DUALEM 1D inversion

<0.002 mm 0.31 0.34 0.45
<0.006 mm 0.40 0.46 0.47
>0.006 mm −0.42 −0.50 −0.56
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5  �Conclusion

A field study on the use of geophysical sensors to image lateral and vertical soil 
heterogeneity within the rooting zone of plants up to a depth of 1-2 m was pre-
sented. It was shown that partly similar and partly complementary information 
could be obtained with the instruments used. Even if the methods that have been 
used are suitable for mapping the electrical conductivity, the instruments differ both 
in their depth sensitivity and in their sensitivity to conductive or resistive zones. 
While the DC method is most sensitive to electrical resistivity (the inverse value of 
conductivity), the electromagnetic induction method is most sensitive to electrical 
conductivity, and GPR reflections can be observed when there are some contrasts in 
permittivity. The best choice of a sensor depends on the site-specific differentiation 
in soil parameters. Without prior knowledge of the field, a multi-sensor approach is 
recommended. Furthermore, it was shown that the DUALEM is a feasible tool to 
image soil heterogeneity and soil stratification also in sandy soils with low conduc-
tivity values.

Multichannel sensors like DUALEM-21 or Geophilus are powerful tools to 
depict three-dimensional soil structures. Inversion routines exist to transform multi-
channel ECa data into conductivity depth models. Consistent data with sufficient 
data quality are required to map layers and depths correctly. To ensure consistency 
of data, a regular check of the sensor calibration is necessary.

When geophysical sensors are used to map soil heterogeneity and to derive soil 
maps for smart farming, differences caused by previous cultivation (e.g., fertiliza-
tion, irrigation or ploughing) might influence the outcome. The previous field setup 
of the farmer, which is not related to the natural soil properties, can hinder a mean-
ingful interpretation of the measured physical parameters. A non-uniform agricul-
tural management can lead to differences in plant growth and thus to differences in 
soil moisture and therefore also to differences in electrical conductivities.

At the end, for the test field in Marquardt, it can be concluded that the area is 
comparatively homogeneous and, therefore, is well suited for further agricultural 
experiments such as fertilizer tests.
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1  �Introduction

Agricultural production is highly dependent on climate and is adversely affected by 
anthropogenic climate change and increasing climate variability [1]. Losses in agri-
cultural production are predicted to be intensified due to future climate changes, 
which may pose serious threat to food security and economic development of the 
human societies [2, 3]. An abiotically stressful environment in a changing climate is 
anticipated to affect negatively the diversity and abundance of insect pests and the 
damage caused in economically important agricultural crops [4]. Therefore, protec-
tion of agricultural yield from pest aggravation in the context of global climate 
change has been the focal point of ecological research [5]. Vulnerability of agricul-
ture can be reduced through adaptation measures and tools aiming to increase cli-
mate variability [2]. In this respect, interest in forecasting models is radically 
growing among entomologists to predict the environmental suitability for new and 
invading agricultural insect pests. Early predictions on the future pest distribution 
and abundance through forecasting models may allow improving preparedness to 
combat episodes of serious insect pests by creating viable pest management strate-
gies well in advance. In this respect, models are regarded as key priority to support 
a better understanding and prediction of both insect population dynamics and 
growth potential under diverse environmental conditions [6, 7]. Improved 

A. Papafilippaki (*) · G. Stavroulakis 
Department of Environmental and Natural Resources Engineering, Hellenic Mediterranean 
University, Laboratory of Water and Soil Quality Control, Chania, Crete, Greece
e-mail: npapafilippaki@hmu.gr; gstav@chania.teicrete.gr; gstav@hmu.gr 

G. P. Petropoulos (*) 
Department of Geography, Harokopio University of Athens, Athens, Greece
e-mail: gpetropoulos@hua.gr

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-84144-7_12&domain=pdf
https://doi.org/10.1007/978-3-030-84144-7_12#DOI
mailto:npapafilippaki@hmu.gr
mailto:gstav@chania.teicrete.gr
mailto:gstav@hmu.gr
mailto:gpetropoulos@hua.gr


290

knowledge on the basic physiological aspects of insects’ growth and of their growth 
population, in relation to environmental factors, form a sound basis for successful 
pest management in varied agro-ecological conditions [8].

Olive (Olea europaea L) is a crop of great economic and social importance of all 
countries located around the Mediterranean basin. Olives and olive oil can be con-
sidered the most significant constituents of the Mediterranean diet due to their ben-
eficial effects on human health which have been associated with the well-balanced 
fatty acid composition and the presence of vitamins and natural antioxidants [9]. 
Pest infestation consists one of the main threats for the olive production as it dam-
ages the olive-fruit [10]. Bactrocera or Dacus oleae, (Gmelin), (Diptera, Tephritidae), 
so called olive-fruit fly (Fig. 1) is the most serious threat of olive trees, as it can 
cause massive damage to olive production in all Mediterranean countries [11]. It is 
a monophagous species. In nature, the adult female which bears a distinct ovary, 
lays multiple eggs in olive fruits where the larvae are developed. Its biological cycle 
includes three to four generations a year in most areas, including Greece. Depending 
on the geographical region on which it grows, it overwinters as an adult in sheltered 
areas or as a nymph on the ground. When the fruit approaches its final size and 
becomes soft then the female opens the spawning hole with its ovary and inserts the 
egg into the mesocarp. Generally, it introduces one egg per fruit, but in cases of very 
dense population of olive trees or few fruits, more than one ovulation per fruit can 
be observed. The hatching larva then digs a hole in the mesocarp and is the one that 
causes the damage, devouring the mesocarp, making the fruit unsuitable for eating 
and at the same time reducing the quality of the olive oil. Most fruit flies are 
monophagous or stenophagous and breed in fruits or seedpods of their host plant 
[12, 13]. The olive fruit fly is considered one of the most serious pests of olives since 
it causes enormous damages both in quality and quantity of olive oil production. 
Particularly, the larvae of the third stage greatly reduce olive yield since they cause 
a removing of a significant proportion of the olive pulp. Also, when the olive fruit 
fly infestation is great, intense fruit fall is observed, negatively affecting the oil pro-
duction. In addition, the holes dug by the larvae favor the establishment of olive 
anthracnose (C. gloeosporioides), an important phytosanitary problem of olive 
groves [9]. Furthermore, the abundance as well as the distribution of cold intolerant 

Fig. 1  Bactocera oleae (olive fruit fly) and McPhail glass type trap [10]
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pests such as olive fruit fly could be greatly affected by climate change and espe-
cially global warming [14].

To monitor olive-fruit fly population in the field, the classic approach is to use the 
McPhail glass type trap (Fig. 1), in which ammonia salt or hydrolyzed protein is 
used to attract the insects. This approach has been used successfully in practice for 
many years in order to monitor olive-fruit fly infestation and its population varia-
tions in an olive grove. The efficiency of this trap exceeds a radius of 20 m and is 
increasing under conditions of low relative humidity and high temperature. The 
main preventive measure implemented by the state agricultural division to reduce 
olive trees infestation from olive-fruit fly includes early bait spraying with special-
ized insecticides (organophosphates or pyrethrinoids) applied from the ground (in 
Greece), which usually takes place during the summer and early autumn period of 
each year. This precautionary measure aims at attracting and eventually destroying 
the olive fruit fly before it begins to lay eggs. The number and timing of bait spray-
ing depends on the evolution of the population which is monitored with the traps 
[12, 15]. Although bait spraying is considered an environmentally friendly control 
practice against olive fruit fly, often causes surface and groundwater pollution or the 
detected residues in olives and olive oil may threaten human health [16].

The advent of geoinformation technology in agriculture, particularly of 
Geographic Information Systems (GIS), Remote Sensing and Global Positioning 
Systems (GPS), has opened up new paths for analysing spatial patterns in insect 
populations [8]. It allows analysis of georeferenced data on insects and has proved 
as an emerging technology in area-wide pest management because many dimen-
sions of insect ecology have a spatial component [17]. Recent advantages in com-
putational science have also made it easier to process in short time periods large 
amount of data in an efficient way and at variable spatial scales using advanced 
algorithms readily available in many software platforms managing such data. The 
recent developments in GIS and geostatistics have made it easier to analyse com-
plex spatial patterns of insect species and also help in delineation of agri-ecological 
hotspots and future areas of pest risk [18].

In purview of the above, this study aims at demonstrating how the combined use 
of an olive-fruit fly trap network can be used synergistically with geoinformation - 
in particular the use of GIS and GPS - as a cost-effective and operational approach 
in providing information on insects’ population in the field. For this purpose, as a 
case study the Keritis hydrological basin located in Crete, Greece, is used, an area 
representative of typical Mediterranean conditions cultivated primarily by olive trees.

2  �Experimental Set Up

The study area was the hydrological Basin of Keritis (Fig. 2), which covers a total 
area of ​​176 km2. It is a typical Mediterranean characteristics site, located in the 
northern central part of the province of Kydonia in the prefecture of Chania, with 
the direction of the North-South axis and at an average distance from the city of 
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Chania, about 15 km. It is one of the most important hydrological basins in the pre-
fecture of Chania and also of key economic value to the wider area due to olive oil 
production. The southern part of the catchment area is a part of the mountain range 
of Lefka Ori. The northern part is flat, with rich vegetation and aquifer. The area 
also includes the wetland of Agyia Lake and belongs to the European wetland pro-
tection network Natura 2000 (code: GR 4340006), hosting rare species of flora and 
fauna. The main crops in the basin area include olive and citrus trees.

In the area, an operational network of olive - fruit fly traps has been set up and 
operated by the local stuff of the Municipal Department. In our study, data from this 
operational network in August 2006 has been used to demonstrate the practical use 
of the technique presented next in mapping olive- fruit fly population.

3  �Methods

Firstly, GPS devices were used to record the location of each trap which was part of 
the olive- fruit fly traps network. The location of these trap sites was recorded with 
the assistance of the local stuff of the Municipal Department who had also previ-
ously installed the traps network. The trap location data from the GPS was subse-
quently entered in a GIS environment. In this study, the ArcGIS software (ESRI) 
was used, but equally any other software with similar capabilities may be used. The 

Fig. 2  Location of the Keritis hydrological basin in Chania, Crete
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traps location data were also enriched with auxiliary information which included, 
apart from the olive-fruit fly population data, some descriptive characteristics of 
each sampling location. Next, these files were converted to Google Earth-compatible 
format (i.e., KML) and subsequently the traps network was overlaid into the high-
resolution Google Earth image available for our study area, as shown in Fig.  3 
below. This map allowed obtaining an overview of the spatial distribution and den-
sity of the traps network over the studied area.

Following this step, the data about the number of insects per trap collected by the 
staff that had installed the traps in a frequency of 5 days was entered in the GIS 
environment (ArcGIS). In addition, the GIS database was populated with additional 
information that was available for the studied region from a previous research work 
conducted in the area. This included the following:

•	 The boundaries of the Keritis hydrological basin;
•	 The boundaries of the Municipal Districts of the wider area;
•	 The hydrographic network of the area;
•	 The elevation isolines available at a space of 20 m;
•	 Satellite photos of the area with a spatial resolution of 1 m (available from previ-

ous study in the area).

From the number of insects recorded in the traps, several maps were created at 
different time intervals that depicted the spatial-temporal change of the olive-fruit 
fly population [19]. These maps were derived from the point measurements (traps) 

Fig. 3  Traps location in our experimental area shown in Google Earth
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with the implementation of spatial interpolation using the Kriging technique and a 
cell size 20 × 20 m. The Kriging interpolation technique is possible to be integrated 
into a GIS model which can use data from an automated McPhail trap (number of 
insects) as inputs [10]. The automated McPhail trap subsystem could also be inte-
grated with an automatic spraying subsystem in a united pest monitoring and opti-
mized bait-sprays system [20].

In order to evaluate the olive-fruit fly population in areas of close proximity to 
water (e.g., wetlands, or river channels), the hydrographic network of the area was 
used to create a polygon file with a buffer zone of 200 m from the riverbed (Fig. 4). 
To control the population of the insects in areas with northern exposure, another 
raster file was created from the elevation data with a resolution also of 20 m (Fig. 5). 
From the intersection of the above thematic levels with the level of the traps, it was 
possible to identify which traps were located near the areas which were covered by 
water and which are in a northern exposure.

4  �Results & Discussion

The olive-fruit fly population mapping which was obtained from the implementa-
tion of geoinformation technologies such as GIS and GPS in combination with the 
standard approach of traps network is a valuable tool to assist a more efficient pest 
control and allow also a conservative use of pesticides in the field. Agronomists 
involved in the implementation of pesticides against olive-fruit fly infestation as 
well as farmers can easily be informed by the GIS platform results (even online, 
since this platform can work as a simple web-GIS platform) about the pest popula-
tion on time and make immediate decisions about whether, when and where to spray 
(as for example seen in Fig. 6). The collected data can be stored on a shared website 
from where anyone interested in this information can access it.

The map showing the olive fruit fly traps network, one of the early mapping 
products of the approach demonstrated herein, can offer valuable information on the 
insects’ population interpretation maps. It can also inform procedures on pesticide 
implementation, as it shows whether the distribution of traps per municipal district 
is uniform or uneven. For example, in our study area, in regions such as Lakkoi 
(Fig. 7) the olive trees are almost the only crop that is being cultivated. On the other 
hand, in areas such as Fournes, the olive trees plantation does not cover the whole 
district. Thus, in the latter case, pesticides implementation can be easily controlled 
with the help of Google Earth or very high-resolution satellite or aerial images. 
Such information can also help in acquiring information about tree properties (e.g., 
tree distances, crown size), an approach that can potentially be supported by field 
visits as well, in order to enhance accuracy (as shown in Fig. 8). In areas where the 
distribution of traps is spatially uniform, a much clearer picture emerges on the 
spatio-temporal distribution of the pest population.

The spatio-temporal change of the population in the studied area in August 2006 
is shown in Figs. 9a and 9b below, which is an example of olive fruit fly population 
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Fig. 4  Traps located in a distance of 200 m on either side of the river streams
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Fig. 5  Traps located in areas with northern exposure of the study area
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Fig. 6  Illustration of trap locations and the number of the insects in the easy-to-use environment 
of Google Earth

Fig. 7  Evaluation of the olive-fruit flydistribution in the borders of the Lakkoi local districts. As 
it can be observed there are no traps set up in the northern part of the district
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map produced for the studied area for two selected dates just before and after spray-
ing. The areas shown on the map in green, are areas with low pest population, while 
areas in orange or red show a high population. As it can be observed, between 
Fig. 8a and b there is a decrease in the insect population due to spraying, while at 
the same time it seems that the spraying in areas of Fournes was inefficient since 
there was no reduction in the population. Also, the results illustrated in Figs. 9a and 
9b suggest that the spraying can be applied locally in the areas where high popula-
tion appears without taking into account only the average population per Municipal 
District as it is applied until present time.

It is well-known that the microclimatic conditions of a given area play a signifi-
cant role on olive-fruit fly population growth, especially during summer. The insect 
growth is favoured in areas with mild temperature and high relative humidity such 
as areas with northern exposure and areas near rivers. Comparing the average num-
ber of traps in the areas with northern exposure and other traps shows that the traps 
in the northern exposure have an increased number of insects (map 4). Also, the 
traps located at 200 m on either side of the watercourse have an increased number 
of insect’s captures (see Fig. 4). Furthermore, Table 1 shows the average popula-
tions of olive-fruit fly in traps located in a northern exposure, within a 200 m radius 
from rivers and in areas without special microclimatic conditions (such as high rela-
tive humidity or lower temperatures) before and after spraying. According to this 
table, the insect population was decreased by 57% in areas with north aspect, 50% 
in areas near rivers and 82% in the areas without special environmental conditions. 
The traps average number of olive-fruit flies confirm that the major limiting factor 

Fig. 8  An illustration of the olive-fruit flytraps distribution in the area of Fournes. As it can be 
observed, there are no traps in some areas but those areas are cultivated with citrus which are char-
acterised by a smaller crown and shorter planting distances
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Fig. 9a  Distribution of population before spraying (2006/8/21). The different colors illustrate the 
number of insects captured in the traps
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Fig. 9b  Distribution of population after spraying (2006/8/26). The different colors illustrate the 
number of insects captured in the traps
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for the population growth is the low relative humidity in combination to high tem-
peratures, since the pest number per trap was the lowest both before and after spray-
ing. These results suggest that the use of pesticides in this area should be implemented 
only when they are imperative, due to the high risk of surface water contamination. 
Dangerous zones can be converted within the GIS platform to Google Earth-
compatible files and be subsequently displayed in it so that instantaneous satellite 
imagery guides the spraying from the ground teams. This can be an important strat-
egy which can significantly help in protecting the water resources of the area.

All in all, the modelling framework presented herein clearly demonstrates the 
added value of geoinformation tools in pest management and in particular in the 
delineation of pest population hotspots. This approach could be of key practical 
value in assessing the effects of climate change on insect abundance, geographic 
distribution and severity of incidence under an array of environmental conditions. It 
has immense ecological applications to address various insect-related problems rel-
evant to crops yield production. Furthermore, it can be transferable to the mapping 
of other entomological diseases to olive trees or other crops.

However, the presented approach, as any other modelling framework, cannot be 
used as a panacea to all the pest problems; rather it should be seen as a useful means 
for getting fist-hand knowledge about the intricacies of the issue and building up an 
approach to resolve it. In that respect, we note that our approached can also be fur-
ther expanded in multiple directions. For example, the use of wireless sensing cam-
eras, or wireless traps could be accommodated, in the future, in the framework, 
which would minimise or even eliminate the field visits to the network traps and 
thus the cost of operating such system. Furthermore, the collected data could be 
built in a web-GIS database installed in a cloud or a local server. The latter would 
allow a wide distribution via the internet of all the collected data and the quick com-
munication of any analysis products to the end users provided directly to them (e.g., 
in their smartphones or via email).

Evidently, it is of urgent need today to develop tools and approaches that will 
allow us to respond to the increasing frequency of the diversity and abundance of 
insect pests and ultimately the extent of damage caused in economically important 
agricultural crops. In this context, the development of reliable and robust opera-
tional methodologies for quantifying their extent and for providing information on 
the risk of occurrence is essential. Hence, it is of vital importance to build a holistic 

Table 1  Average number of insects catches in traps before and after spraying located in areas 
without special microclimatic conditions (common areas) (1), in areas of northern exposure (2) 
and in areas within a radius of 200 m from rivers (3)

Average number of insects Before spraying After spraying

Common areas (1) 11 4
Areas of northern exposure (2) 21 9
Areas within a radius of 
200 m from rivers (3)

22 11
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approach for assessing the impacts of potentially increasing frequency and severity 
of extreme pest diseases events associated with global change to agriculture, includ-
ing the development of robust economic models. The development of such products 
and tools constitutes a valuable and indispensable tool for tackling these problems 
at different scales, from local to global extents.

5  �Conclusions

In this study a new methodology framework was presented for monitoring olive-
fruit fly population and its changes based on the use of a locally installed pest trap 
network combined with geoinformation technologies, specifically GIS and 
GPS. The potential of the approach was demonstrated under real conditions in a 
typical Mediterranean olive groves field located in Crete, Greece.

As it was shown, the approach allows analysing the population data with all the 
technical tools and functionalities offered in a GIS environment. From the mapping 
of the trap network and the population mapping, valuable conclusions can be drawn 
for the uniformity of the distribution of traps in the studied area as well as for the 
improvement of the number and location of the traps. The cartography of the spatio-
temporal change of the population for the entire period of the insecticide implemen-
tation allows the control of the effectiveness of the sprays per region. This offers us 
the ability to identify the specific zones requiring spraying around ecologically sen-
sitive areas (rivers, lake, Natura 2000 area, organic crops), in which special care 
must be taken when spraying, thus assisting also environmental protection. The 
mapping of trap locations, the number of traps and ecologically sensitive zones in a 
form compatible with free online programs (Google Earth) and also the quick dis-
semination of these data to the public, provides everyone the opportunity to be 
involved in the study of the collected data in near real-time. At the same time, it 
supports the decision-making process on time even for the GIS non-expert.

In summary, this study advocates the promising potential of geoinformation in 
mapping the spatial and temporal change of olive-fruit fly population and also in 
evaluating the relationship between entomological and geographical parameters 
(distance from rivers, northern exposure). This technology has the potential to allow 
a targeted and conservative use of pesticides in the field, maximizing the economic 
benefits for both the government and the farmer and it also has a great potential of 
expandability with other contemporary technologies and not only.
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Multispectral Crop Sensor

Aristotelis C. Tagarakis, Marko Kostić, Natasa Ljubičić, Bojana Ivošević, 
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1  �Introduction

Maize (Zea mays L.) is an important crop in the world with an estimated production 
area of 194 million hectares in 2017 and an average yield of 5.9  Mg  ha−1 [1]. 
Obviously, there are a lot of possibilities for gaining higher quantities of harvested 
product, especially if considering the increasing trends of maize production during 
the past decades (Fig.  1). However, the yield increase was mainly achieved by 
genetically altering the crop, by producing improved hybrids, and by optimizing the 
cultivation practices [2]. To reach higher yields and higher economic feasibility of 
maize crop, fertilization management plays a critical role, and nitrogen (N) is con-
sidered as the most essential element in plant mineral nutrition [3].

Currently agricultural production is greatly depended on the use of N fertilizers, 
especially in cereal crops [4]. The physiological role of N in plants is of great impor-
tance, particularly in maize grown for grain which is highly demanding to nitrogen 
fertilizer [5], as N is essential element in grain protein and its sufficiency leads to 
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improved grain yield and quality. Therefore, care must be taken to supply the plants 
with the appropriate rate of N fertilizer which would ensure sufficient uptake, while 
minimizing N losses avoiding groundwater and surface water contamination. 
According to Raun and Johnson [6], about 67% of the applied N fertilizer in the 
cereal production is lost as result of denitrification, surface runoff, volatilization, and 
leaching. Consequently, the assessment of the usage of the N applied to the crop in 
the form of fertilizer, is one of the most important aspects in plant nutrition and is 
referred in literature as the N use efficiency. One of the methods for the assessment 
of N use efficiency was defined by López-Bellido et al. [7] as the ratio of grain yield 
achieved to the amount of the N fertilizer applied. Many different approaches of N 
fertilizer rate calculation were established to increase N use efficiency which were 
based on potential yield, soil organic matter content, soil mineralization potential [8] 
and other aspects of crop production. Other actions for increasing the efficiency of 
the N fertilizer application lie on selecting the correct agronomic practices, such as 
choosing the appropriate N fertilizer source and the correct timing of N application 
and following the proper N application techniques for each specific crop.

During the last decades, the development of sensing technologies and sensing 
systems for agricultural use aims to overcome the limitations of traditional agricul-
ture. Traditionally, farming was heavily influenced by the subjective point of view of 
individual actors with no true knowledge of the actual status of the dominant factors 
that influence crop growth, yield and quality. Site-specific field management is a 
higher level of decision-making strategy putting into focus information gathering 
and analyzing techniques in the context of a newly introduced farming management 
approach named Precision Agriculture (PA). It is often defined as a farming approach 
in which decisions are made at a high resolution according to the actual needs of the 
plants at each location. During the course of development of PA, several definitions 
were reported in literature. Gemtos et. al. [9] defined PA as “the management of 
spatial and temporal variability in the fields using Information and Communications 
Technologies (ICT)”. The International Society of Precision Agriculture (ISPA) has 
recently recognized the following as the official definition of PA: “Precision 
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Fig. 1  Average yield trend for the years 1961–2018. (Source: Ref. [1])
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Agriculture is a management strategy that gathers, processes and analyzes tempo-
ral, spatial and individual data and combines it with other information to support 
management decisions according to estimated variability for improved resource use 
efficiency, productivity, quality, profitability and sustainability of agricultural pro-
duction” [10]. Robert [11] referred to the three “R’s” of PA which correspond to the 
application of inputs in agricultural systems at the “Right time”, at the “Right 
amount” and to the “Right place” while later on Khosla added another two “R’s” 
corresponding to the use of “the Right Source”, and the “Right manner”[12]. PA is 
commercially practiced since the early 1990’s [13] when the Global Positioning 
Systems (GPS) and the first yield monitors with georeferencing capability became 
commercially available [14].

In practice, in order to address all the aspects of PA, fields and plants are moni-
tored using a variety of sensing technologies and decisions concerning fertilizer, 
pesticide, irrigation and field operations are adjusted accordingly. PA management 
systems show significant advantages compared to traditional farming such as 
increased application efficiency, and minimal environmental footprint of agricul-
tural applications [15–18]. Recent advances in technology provide an unprece-
dented opportunity for further development and advanced use of PA. Remote and 
proximal sensing using optical sensors are gaining popularity in crop production 
systems in the framework of PA applications. Nowadays, there is vast number of 
optical sensors recording the data about crops at different spatial, radiometric and 
temporal resolutions. Both remote and in-field sensors are used for monitoring 
plant health status, detecting deficiencies of nutrients and water, and soil condition.

Remote sensing includes different types of sensing devices which are mainly 
divided in two categories based on the measuring principles; (a) active sensors 
which carry their own source of light, emitting at certain ranges of the spectrum 
and measuring the reflectance from the targeted surface [5] and (b) passive sen-
sors which use natural source of light and therefore measure the reflectance of the 
solar radiation from the plants. Passive sensors’ measurements depend highly on 
the sun exposure, cloudiness, architecture and reflective characteristics of scanned 
objects that could jeopardize recording stability in time, especially if large fields 
are measured requiring a significant amount of time [19, 20]. The main advantage 
of active proximal sensors, as opposed to the passive systems, is their indepen-
dence from illumination conditions, since they emit their own light, making fea-
sible to operate under cloudy conditions or even at night. Furthermore, active 
sensing systems do not require calibration because the light source is known and 
constant [21].

Remote sensing systems can also be categorized based on the platform carrying 
the sensor; (a) satellite based remote sensing systems, (b) aerial vehicle or unmanned 
aerial vehicle (UAV) mounted proximal sensing systems and, (c) ground-based 
proximal sensing systems. The systems described in categories a and b are mainly 
passive while most of the sensing systems included in category c are active. This is 
mainly due to the close proximity to the canopy that the active sensing devices need 
to be positioned in order to adequately illuminate the sensing surface. Typically, the 
spatial resolution of proximal sensing is in the range from millimeters to 
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centimeters, as opposed to remote sensing (satellite systems) that typically has reso-
lution in the range from decimeters to hundreds of meters [22].

Site-specific crop management relies on cutting-edge sensing and decision-
making technologies in which maximum productivity per unit of input and used 
land area are dominant criteria. In order to achieve the aforementioned, field activi-
ties must be spatio-temporal adaptive considering previously determined in-field 
conditions and specific requirements of the specific crop. Modern crop management 
is certainly related to the data collection methods hence information validity and 
usability in the decision-making process. The complexity of crop monitoring and 
modeling is the limiting factor for implementation of all the postulates of site-
specific cropping concept. Remote sensing provides the opportunity to rapidly 
acquire data concerning crops’ canopy characteristics. Remote sensing using 
satellite-derived data has been used in agriculture since 1970’s when the first 
Landsat satellite was launched. However, the very low spatial resolution and the 
high cost of image acquisition restricted the use to only a few specialized applica-
tions. Over the period of nearly half a century, the spatial resolution, as well as the 
revisit frequency, increased dramatically [13]. In addition, during the last decade 
ESA and NASA have made available to general public certain satellite imagery at 
no cost [23, 24] leading to increased interest of the agricultural community towards 
satellite remote sensing. Therefore, having satellite imagery of sufficient resolution 
at greatly reduced cost, made remote sensing a popular approach for monitoring 
field and crop status. However, the satellite remote sensing approach is not very 
handy when more detailed spatial information is required particularly in tree and 
vegetable crops and in small sized fields. In addition, pre-processing and analysis of 
the data is prerequisite, making this source of data impractical for on-the-go in-field 
applications.

This study focused on the performance evaluation of a recently developed active 
multispectral sensor. Therefore, this chapter emphasizes on the use of ground-based 
proximal sensors in agriculture. Ground-based proximal sensing is performed by 
sensors at a relatively short distance from the object of interest. These types of sens-
ing systems are hand-held, tractor-mounted or vehicle-mounted, or may facilitate 
both options. The main limitation of the ground-based proximal sensors is the small 
area coverage [25]. On the other hand, they show significant advantages, such as 
high spatial resolution and independent choice of the time of acquisition, since their 
measurements are not compromised by cloudiness or differences in illumination 
conditions, in the case of active sensors. Therefore, these sensors are ideal for prac-
tical applications such as on-the-go variable rate N applications [5, 26, 27]. To that 
end, numerous studies have been conducted with the aim to develop algorithms that 
employ multispectral crop sensing systems for nutrition management. The majority 
of these algorithms employ yield potential as a benchmark for calculation of the 
additional amount of fertilizer that needs to be side dressed. However, their robust-
ness shows fluctuations due to the temporal variability that yield potential shows as 
it is highly dependable to the annual precipitation, temperature, relative humidity, 
and other climate parameters [28]. These algorithms are used to process the signal 
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acquired by the sensors and calculate, in real-time, the amount of fertilizer that 
needs to be applied at the specific location being scanned. After prescribing the 
amount of fertilizer to be applied, the application system receives the signal to 
change the rate according to the calculations.

As already mentioned, the majority of the proximal sensors are active, having 
their own source of light emitting at certain wavelengths and measuring the reflec-
tance from the target. Simple handling makes them suitable for a wide range of 
applications on different crops, and instant data can be collected following a non-
destructive sampling method [29, 30]. Therefore, active proximal sensors have 
become very popular for crop status diagnostic. The results of numerous studies 
on such sensors offer a vast number of models which could be used in the predic-
tion of maize maturity, yield potential, plant health estimation, etc. [31]. Spectral 
analysis of reflected waves from plant canopy is valuable in the recognition of 
spectral “fingerprints”, which help identify some biotic or abiotic processes that 
are otherwise undetectable by human or machine. Furthermore, active multispec-
tral sensors show great potential in rapid spatial assessment of nitrogen (N) status 
of growing plants in early season which provide adequate precondition for opti-
mization of nitrogen management [32]. Therefore, active proximal sensing has 
been increasingly used in agriculture for assessing crop status and growth and has 
proved to be promising approach for end-of-season yield estimation in a large 
range of crops [33]. Most active proximal sensors, measure the reflectance of 
specific spectra of light, typically in the visible and the near-infrared, from the 
plant canopy providing a range of vegetation indices such as the Normalized 
Difference Vegetation Index (NDVI; [34]). The NDVI is the most widely used 
index for deriving yield estimates [35]. Apart from the in-season yield estimation, 
NDVI has also been related to nitrogen status, chlorophyll content, biomass, and 
leaf area, at micro and macro scale [27, 36].

Yield estimation from mid-season spectral canopy measurements is of particular 
importance since it is the first step in the development of an algorithm for real-time 
variable rate N applications [37]. The timing of sensing, in terms of growth stage, 
greatly impacts the accuracy of yield predictions from sensor data [38]. Previous 
studies in maize defined V7–V8 as the growth stages that provide the highest accu-
racy of end-of-season yield estimation and V6 as the stage with the highest vari-
ability in NDVI measurements [33, 38], important elements for maximizing the 
benefit of variable rate fertilization.

Raun et al. [39] introduced a new index approach to be used for end-of-season 
yield estimations from mid-season measurements and for on-the-go variable rate fer-
tilization. This new index named Estimated Yield (EY) was defined as the sum of the 
NDVI measurements between two mid-season acquisition dates divided by the cumu-
lative Growing Degree Days (GDD) from sensing day 1 to sensing day 2 (Eq. 1).

	
EY

NDVI NDVI

GDD
T T=
+( )1 2

	
(1)
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Where: EY is the In Estimated Yield, NDVIT1 and NDVIT2 are the Normalized 
Difference Vegetation Index measured at sensing day 1 and sensing day 2 respec-
tively, and GDD is defined as the cumulative growing degree days.

This modified index was an improvement in the use of vegetation indices for 
yield estimations [5]. This new index was further modified to derive a simplified and 
more applicable approach named In Season Estimated Yield (INSEY; [15]) (Eq. 2).

	
INSEY

NDVI

DAPDAP =
	

(2)

Where: INSEYDAP is the In Season Estimated Yield using the days after planting, 
NDVI is the Normalized Difference Vegetation Index, DAP is the number of Days 
After Planting for days with GDD>0, and GDD is defined as the growing degree days.

Another expression of INSEY is the INSEYGDD which uses the GDD to normalize 
the NDVI measurements (Eq. 3).

	
INSEY

NDVI

GDDGDD =
	

(3)

Where: INSEYGDD is the In Season Estimated Yield using GDD, NDVI is the 
Normalized Difference Vegetation Index, and GDD is defined as the cumulative 
growing degree days from planting to sensing.

Teal et al. [40] compared different models that used INSEYGDD, and INSEYDAP 
showing similarly good results in the prediction of end-of-season yield. These new 
approaches normalize the NDVI measurements across time and various environ-
mental conditions [40], accounting for the growing conditions from the time of 
planting to sensing and providing an estimate of the N uptake per day [41] and the 
biomass produced per day [38].

The timing of data acquisition plays an important role in the accuracy of the yield 
prediction form mid-season NDVI measurements. In studies conducted in maize 
crop, V6 to V8 (Ritchie scale; [42] were defined as the growth stages that provide 
good estimation of end-of-season yield and are early enough to perform corrective 
management practices [33, 43].

Over the years, various different proximal sensors found practical applications in 
the agricultural sector. The first devices developed, such as SPAD meter (Konica 
Minolta Inc., Osaka, Japan) had limited automations and therefore demanded man-
ual work for data acquisition. With the rising of PA applications, new generation of 
proximal sensors were developed providing the option to perform continuous mea-
surements in the field with limited input by the operator. Sensing systems such as 
Yara N-sensor (Yara International ASA, Oslo, Norway), GreenSeeker (Tribmle Inc., 
CA, USA), Crop Circle (Holland Scientific, NE, USA), CropScan (Next Instruments, 
Sydney, Australia) etc., are fully automated and provide the options of automated 
mapping and real time variable rate fertilizer applications. All these proximal 
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sensors provide accurate assessment of the plants’ growth, which can be linked to 
photosynthetic activity and chlorophyll content [44], level of evapotranspiration 
[45], crops’ nitrogen status [5, 15, 46], and yield [43, 44].

Most active proximal sensors vary in central wavelengths or bandwidths for cal-
culating indices such as the NDVI [47, 48]. Therefore, this study was conducted to 
evaluate the performance of the recently developed active multispectral proximal 
sensor Plant-O-Meter in real field conditions, and compare it with the GreenSeeker 
handheld, a widely accepted commercial crop sensor extensively used in literature. 
The main objectives of this study were to: (1) define the relationship between the 
NDVI measurements derived from the two sensors, (2) determine the specific 
growth stage at which the sensors provide more reliable end-of-season yield estima-
tion under the specific climatic conditions of Vojvodina region, and (3) define the 
ability of Plant-O-Meter to estimate end-of-season yield from mid-season canopy 
measurements as compared to the GreenSeeker handheld sensor device.

2  �Materials and Methods

2.1  �Field Trials and Experimental Design

The present study was carried out at two experimental fields located approximately 
80 km apart. The first trial was located in Ravno Selo (45.423614N, 19.618609E, 
Calcic Chernozem soil type; referred in the text as Field-1), in northern Vojvodina, 
while the second in Bajmok (45.962249N, 19.409621E, Gleyic Chernozem soil 
type; referred in the text as Field-2), in central part of Vojvodina region, in Serbia. 
The dominant soil types in Vojvodina region are characterized as Chernozems. 
These soils have good structure and stability of soil aggregates ensuring good per-
meability [19]. The total porosity of this type of soil is approximately 50% includ-
ing about 20% of macropores and 30% of micropores. In general, these soils are 
fertile with high content in soil organic carbon [49] and are suited to optimally fulfill 
the soil functions, thus they consist ideal soils for growing arable and other crops, 
providing high yield potentials [50].

At each experimental field, three maize hybrids of different maturity classes and 
length of vegetation period were sown, namely P9537 (FAO 340), P9911 (FAO 450) 
and P0412 (FAO 530), here referred as Hybrid-1, Hybrid-2 and Hybrid-3 respec-
tively. The fields were sown at 70  cm of inter-row spacing and 20  cm spacing 
between plants in the row. The study included five different N treatments (0, 50, 
100, 150 and 200 kg N ha−1) applied pre-plant by incorporating granular urea (46% 
N). These treatments were incorporated in the experiment in order to create vari-
ability in maize growth which subsequently corresponded to yield variability reflect-
ing the effect of N availability according to the rate of N applied in each plot. 
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Henceforward, the two multispectral sensors were utilized to measure the crop 
canopy properties several times during maize crop vegetative stages. The aim was 
to capture the variability produced artificially by the N treatments, reflecting the 
effect of N sufficiency or deficiency on final yield. This information would help 
farmers make better decisions for in-field management.

The experiment was conducted following a randomized complete block design 
(RCBD) with three replications. Each plot contained four 12 m long rows of maize 
(Fig. 2). Only the central part, 6 m long, of the two middle rows was measured and 
harvested, while the plants located in the side rows and in the remaining 3 m at the 
beginning and at the end of the rows in the plots served as guard plants.

2.2  �Sensor Measurements and Sensor Description

Two active proximal sensors were used to measure NDVI at V5, V6 and V8 growth 
stages of maize; the GreenSeeker hand-held (Trimble Inc., CA, USA) and a recently 
developed active multispectral optical sensor named Plant-O-Meter (BioSense 
Institute, Serbia).

GreenSeeker (Fig. 3a) is an active hand-held sensor, which emits light and mea-
sures the reflectance at 660 nm (R) and 770 nm (NIR) calculating the NDVI [51]. 
In-field reflectance measurements were taken by holding the GreenSeeker sensor 
approximately 60 cm above the crop canopy, with the sensing footprint perpendicu-
lar to the row direction, manually recording four average measurements from the 
measuring area in each plot.

Fig. 2  Experimental 
design of a single maize 
hybrid
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Plant-O-Meter (Fig. 3b) is an active sensor equipped with an integrated multi-
spectral source that comprises light sources emitting at four indicative wavelengths 
(465 nm; Blue, 535 nm; Green, 630 nm; Red and 850 nm; Infrared) and senses the 
energy reflected from the plant canopy. The sensor records the reflectance for each 
band separately providing the ability to calculate more than 20 different indices. It 
connects to any Android device and uses its processing and storing capacity for data 
logging and processing. In addition, it uses the device’s GPS antenna to georefer-
ence the measurements. The interface also supports connection to external Bluetooth 
GPS antenna maximizing the georeferencing accuracy. Detailed information con-
cerning the working principles and specifications of the Plant-O-Meter device is 
provided in Kitić et al. [52]. In-field reflectance measurements were taken by hold-
ing the Plant-O-Meter approximately 60 cm above the crop canopy with the sensing 
footprint perpendicular to the row direction and scanning the whole length of the 
two middle rows in continuous mode which supports continuous mapping of the 
sensor’s measurements. The data acquisition frequency was 1  Hz which corre-
sponded to approximately 1 measurement every 0.9 m if travelling on average at 
walking speed. The central part, i.e., 6 m of each measured row (two middle rows 
per plot), was selected after processing the data using GIS software. The NDVI 
measurements with both instruments were made close to noon, between 11:00 a.m. 
and 1:00 p.m. for more consistent environmental conditions (illumination, tempera-
ture, relative humidity etc.) between the measurements.

In this study, the GreenSeeker hand-held device was used as a reference sensor 
in order to assess the operability and accuracy of the recently developed 

Fig. 3  The two handheld active proximal sensors used in the study; (a) GreenSeeker handheld and 
(b) Plant-O-Meter
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Plant-O-Meter multispectral sensor. The main reason for selecting GreenSeeker 
hand-held for this purpose was that it works using the same operating principles, it 
is relatively low cost, and has similar measuring characteristics to the Plant-O-
Meter. In addition, the GreenSeeker hand-held is a widely used, commercial, and 
well accepted by the scientific community, canopy sensor. Therefore, it serves as a 
good reference for comparison.

2.3  �Harvest

Due to the small size of the experimental plots, it was impossible to use maize har-
vester equipped with yield monitor; thus, harvest was performed manually. At the 
stage of full maturity, the plants from the central part, 6 m long, of the two middle 
rows in each plot were hand-harvested by manually picking all developed ears and 
collecting in pre-labelled bags. The gross weight of each plot was measured using a 
handheld digital scale and the content of each bag was shelled to calculate the net 
grain weight. A GAC® 2500-INTL Grain Analysis Computer (Dickey-John, IL, 
U.S.A.) was used to measure grain moisture content and the final yield was normal-
ized at 14% moisture content.

2.4  �Data Analysis

Descriptive statistics and analysis of variance (ANOVA) were performed on the 
yield datasets to find possible differences between the three different varieties used 
in the study. Pearson’s correlation was used to define the relationship between yield 
and NDVI derived from Plant-O-Meter and GreenSeeker crop sensors measure-
ments acquired at V5, V6 and V8 growth stages of maize. The datasets from both 
fields were joined based on the growth stage, regardless the date of data acquisition. 
Then, the unified dataset was used for the correlation analysis. The statistical analy-
ses were performed using the Statistica 12 software (Dell Software, TX, USA).

Further in the study, the sensor measurements were transformed to INSEYDAP 
dividing the NDVI by the days after planting as recommended by previous studies 
[15, 33]. The use of INSEY adjusted the sensor measurements to the specific grow-
ing conditions of each field from planting until sensing. Additionally, it facilitated 
the joining of data from both fields into a unified dataset for the final regression 
analysis. Linear regression analysis was used to define the relationships between the 
INSEY and end-of-season yield for each growth stage. This analysis was very use-
ful to define the growth stage when the most reliable estimation of end-of-season 
yield could be acquired from the mid-season crop canopy measurements using the 
two multispectral sensors.

Linear regression models were also used to define the relationship between the 
GreenSekeer and Plant-O-Meter NDVI measurements. Since the purpose of this 
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analysis was the direct comparison between the two sensors scanning, almost simul-
taneously, the same canopy surfaces, all the scanning data from all growth stages 
were used.

3  �Results and Discussion

3.1  �Descriptive Statistics and Analysis of Variance

According to the descriptive statistics of the yield datasets (Table  1), variability 
(Variance and Coefficient of Variance) of average end-of-season yield was consider-
ably higher in Field-1 as compared to Field-2. This indicates that the different N 
fertilization rates had greater impact on yield in Field-1 which was more responsive 
to N fertilizer application. In addition, Field-2 showed considerably higher yields 
compared to Field-1 for all maize hybrids used in the study. The higher fertility in 
Field-2 explains the lower response of the maize plants to N fertilization. Hybrid-3 
provided the highest average yield followed by Hybrid-2, while Hybrid-1 had the 
lowest yield. These results were consistent for both fields and according to ANOVA 
results the yield differences between hybrids within each field were statistically sig-
nificant (p < 0.05) with the exception of the yield differences between Hybrid-2 and 
Hybrid-3 in Field-1. In that specific case, yield of Hybrid-3 was higher than Hybrid-2, 
consistent with the results in Field-2, but the difference was not statistically signifi-
cant as result of the lowest response to N application in Field11. The results in 
Table 1 revealed relatively weak impact of applied N on the final grain yield. This 
would be followed by enough N which had been mineralized from soil organic mat-
ter or that deposited in the rainfall to meet all of the plant N needs. In open field 
crops, great N losses (over 50%) are often caused by well-known soil processes such 
as denitrification, volatilization or fixation depending on soil conditions, fertilizer 
application method and weather conditions [53].

Table 1  Descriptive statistics and analysis of variance (ANOVA) results of end-of-season yield 
(Mg ha−1) for the three maize varieties used in the study and for each field

Hybrid Min Max Mean Std. Dev. Var. C.V. (%)

Field-1 1 9.5 13.8 12.10a† 1.3 1.6 10.4
2 11.9 15.5 13.32b 1.1 1.2 8.5
3 12.3 15.5 13.75b 1.0 1.1 7.7

Field-2 1 10.4 14.1 13.17a 1.0 1.1 7.1
2 13.1 15.8 14.49b 0.8 0.6 5.7
3 15.0 17.5 16.10c 0.8 0.6 4.7

†Within each field, means followed by the same letter are not significantly different (p < 0.05)
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3.2  �Weather

Concerning the climatic and weather conditions, minimum temperature (Tmin; 
Fig. 4a) in Field-1 was somewhat lower for the growing season of maize. On the 
other hand, the average maximum temperature (Tmax) was quite similar at both 
fields. The highest average min and max temperatures were recorded, as expected, 
in August.
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Fig. 4  Time charts of minimum and maximum monthly average temperature and cumulated pre-
cipitation (monthly) for the two experimental locations during maize growing season in 2018
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In addition, precipitation showed a quite favorable trend for maize production 
throughout the 2018 growing season. After sowing, there was adequate precipita-
tion for emergence and for the initial stages of maize growth. Then, precipitation 
increased during the rapid growth stages, when there is high water demand, and 
decreased during the reproductive stages reaching the minimum close to maturity. 
Distribution of precipitation was probably better in Field-2 with the maximum 
cumulative precipitation occurring during July contrary to Field-1 where the wettest 
month was June. This fact, in conjunction with the differences in soil properties are 
the main factors leading to increased yield potential in Field-1.

3.3  �Correlation Analysis

Pearson’s correlation analysis revealed the relationship between NDVI derived 
from Plant-O-Meter and GreenSeeker measurements, and end-of-season yield 
(Table 2). The canopy reflectance measurements took place at three different stages 
of maize growth, V5, V6 and V8, in both fields. These stages were selected as they 
proved, in several studies, to provide adequate estimation of end-of-season yield 
whilst being early enough to facilitate corrective actions [33, 40]. According to the 
results, all Plant-O-Meter measurements were significantly correlated to yield 
(p < 0.01) showing an increasing trend as the growth stage proceeded. Similarly, the 
GreenSeeker measurements showed stronger correlation at V8 stage. In this case, 
the relationship between GreenSeeker NDVI acquired at V6 and V8 stages and 
Yield was statistically significant (p < 0.01) but this was not the case for the mea-
surements acquired at V5.

In addition, the strongest correlation between Plant-O-Meter and GreenSeeker 
NDVI measurements were acquired at V8 (r = 0.853; p < 0.01) followed by V6 
(r = 0.780; p < 0.01) growth stages while at V5 the correlation was non-significant. 
These results suggest that the level of uncertainty introduced by random detection 
of soil surface had significant effect on the measurements. During the early growth 

Table 2  Relationship between NDVI derived from Plant-O-Meter and GreenSeeker measurements, 
acquired at V5, V6, and V8 growth stages of maize, and end-of-season yield (Pearson’s correlation)

Plant-O-Meter GreenSeeker
Yield V5 V6 V8 V5 V6 V8

Yield 1
Plant-O-meter V5 0.719a 1

V6 0.867a 0.792a 1
V8 0.892a 0.773a 0.883a 1

GreenSeeker V5 0.359 0.171 0.454b 0.301 1
V6 0.741a 0.780a 0.799a 0.743a 0.549a 1
V8 0.863a 0.808a 0.767a 0.853a 0.225 0.677a 1

aCorrelation is significant at the 0.01 level
bCorrelation is significant at the 0.05 level
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stages when the plants’ leaf area was small, the proportion of soil in the sensor’s 
field of view introduced noise to the system affecting the NDVI readings. This effect 
was higher for the GreenSeeker sensor due to the significantly lower spatial resolu-
tion of the measurements. The increased noise in data acquisition of the GreenSeeker 
sensor at V5 stage was also reflected on the relationship with yield.

3.4  �Linear Regression Analysis

Regression analysis between INSEY and end of season yield showed that for both 
sensors, good yield estimation can be achieved at V6 – V8 growth stages. This find-
ing is in agreement with the results of Tagarakis and Keterings [33] who defined V6 
as the earliest growth stage for accurate yield estimations. In our study, the most 
accurate estimation of yield for both sensors were achieved at V8 growth stage; 
coefficient of determination (R2) was 0.8 and 0.75 for Plant-O-Meter and 
GreenSeeker respectively (Fig. 5). This is consistent with the findings of previous 
studies [40]. In general, Plant-O-Meter provided better estimation of end-of-season 
yield for all three maize growth stages. However, the measurements with the 
GreenSeeker sensor were performed manually, providing only four measurements 
in each experimental plot, unlike the Plant-O-Meter which, sensing using the 

Fig. 5  Relationship between end-of-season yield and In-Season Estimated Yield (INSEYDAP) 
measured using the Plant-O-Meter (a) and the GreenSeeker (b) at V5, V6 and V8 maize 
growth stages
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mapping mode, provided a significantly larger number of measurements per plot 
leading to greater accuracy. Therefore, the current results need to be further investi-
gated in various environmental and climatic conditions and at more detailed tempo-
ral and spatial resolution for both sensors.

Regression analysis was also used to directly compare the Plant-O-Meter and 
GreenSeeker sensors’ measurements. Since the only purpose of this analysis was 
the direct comparison of the results derived by the two sensors, all the datasets, from 
each field of study for all the timings of measuring, were combined and analyzed 
together as one unified dataset. This way, the number of samples in the statistical 
analysis increased significantly leading to more reliable results. According to the 
analysis, the results confirmed a strong relationship between the NDVI measure-
ments from the two sensors (R2  =  0.89), for both Field-1 and Field-2 datasets 
(Fig. 6). This finding suggests that the relationship between the NDVI measure-
ments derived from Plant-O-Meter, were similar to the ones derived from 
GreenSeeker regardless the location where the measurements were taken from.

In a second phase, the datasets from the two fields were combined into a unified 
dataset and the regression analysis was repeated. The results were similar to the 
analysis from each field separately, confirming the strong relationship between the 
measurements of the two sensors (Fig. 7), despite the fact that they measure canopy 
reflectance at different wavelengths. GreenSeeker is one of the most widely used 
commercial active proximal sensors with a vast number of scientific studies proving 
its reliability for in-field canopy measurements and for real-time applications in a 
range of crops. Considering that Plant-O-Meter performed equally well to the 
GreenSeeker, the results of this study suggest that the new low-cost sensor shows 
great potential to be used for on-the-go variable rate applications as it performs 
similarly to the GreenSeeker in real field conditions.

This was the first trial for in-field testing of the Plant-O-Meter multispectral 
active proximal sensor. The results revealed its potential to estimate end-of-season 
yield form mid-season canopy measurements which is the first step in the 

Fig. 6  Relationship between NDVI measured using the Plant-O-Meter (y axis) and NDVI mea-
sured using the GreenSeeker (x axis). Data derived from (a) Field-1, and (b) Field-2
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development of an algorithm for variable rate nitrogen applications [37]. Further 
studies in a range of crops are needed to ensure the Plant-O-Meter’s reliability for 
extended commercial use. In addition, the sensor’s operability and reliability need 
to be further evaluated in different environmental conditions to ensure its stability in 
adverse environments.

4  �Future Prospects for Development

Active proximal sensors, such as the GreenSeeker and the Plant-O-Meter presented 
here, are promising tools for predicting end-of-season yield and N requirements in 
arable crops. So far, the main drawbacks limiting the adoption of such sensing sys-
tems by the farmers were the high cost and the complexity of use. Therefore, our 
effort was focused on the development of a low-cost sensing system using a farmer-
friendly interface in order to maximize the adoption by the farmers. Towards that 
direction, Plant-O-Meter crop sensor offers a wide range of possibilities for plant 
status detection and could potentially work as a useful tool for decision making and 
for variable rate N fertilizer applications. Additional N rate trials are set in order to 
evaluate Plant-O-Meter’s usage in different crops and to develop algorithms for 
variable rate N application. The studies are initially focused in the two main arable 
crops, maize and wheat, with the intention to expand to other crops as well.

After finalizing the development and evaluation stage, the system will be avail-
able for commercial use. The expectations are to receive wide acceptance by the 

Fig. 7  Relationship between NDVI measured using the Plant-O-Meter (y axis) and NDVI mea-
sured using the GreenSeeker (x axis). Data derived from both fields combined
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farmers due to simplification of the data acquisition process, the extended modes of 
operation, and the affordable cost pushing up the farmers’ enthusiasm for modern-
ization regarding the engagement of sophisticated tools in crop production.

During the performance evaluation of Plant-O-Meter in laboratory and field con-
ditions several directions for potential improvements of the device’s performance 
have emerged. In that sense, future research and development will focus on the fol-
lowing aspects:

•	 Automatic calibration. Currently the device is calibrated by manually adjusting 
potentiometers controlling the current supplied to the LEDs. This calibration can 
only be performed by trained personnel. Future plans include using digital poten-
tiometers which can be set by the microcontroller making the calibration process 
automated, minimizing the maintenance costs;

•	 Measurement of the emitted radiation from the LEDs. This feature would pro-
vide the ability to measure absolute values of emitted and reflected signals, 
increasing the number of supported vegetation indices;

•	 Adjusting the Plant-O-Meter to tractors or other agricultural machinery. For this 
upgrade, a mechanical module for attaching the sensor to the tractor should be 
designed. In addition, an appropriate communication module, ideally following 
the ISOBUS standards, will be developed.

5  �Conclusions and Outlook

In this study, Plant-O-Meter hand-held device was tested in real, outdoor environ-
ment for measuring maize canopy properties, as compared to the GrenSeeker hand-
held commercial crop sensor. Optimal field conditions (precipitation, temperature, 
and soil fertility) during the maize growing season reduced the influence of applied 
N on the final yield. However, useful information was extracted by the datasets 
acquired from the two fields of the study. Based on the present findings reliable end-
of-season yield estimation was attained measuring the mid-season NDVI between 
V7 and V8 growth stage of maize. The overall results indicated that NDVI obtained 
using GreenSeeker were quite similar to the NDVI measured by the Plant-O-Meter 
showing an almost 1:1 relationship. In addition, both sensors provided good estima-
tion of end-of-season yield. The precision of yield estimation was maximized for 
the measurements acquired at V8 growth stage of maize crop. This applies to both 
sensors and for both locations. The Plant-O-Meter provided slightly better estima-
tion of end-of-season yield especially for the measurements performed earlier in the 
season (V5 and V6 stages). However, this needs to be further investigated since the 
data attained with the Plant-O-Meter had significantly higher spatial resolution 
compared to the GreenSeeker data which were recorded manually. Nevertheless, the 
results indicated that Plant-O-Meter exhibits strong potential for accurate plant can-
opy measurements and for real time variable rate fertilization applications in maize.
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Considering that the optimal stage for measuring NDVI depends on the environ-
mental conditions, further studies in more diverse conditions are needed to test and 
evaluate Plant-O-Meter’s performance in all possible field conditions. This will 
enrich the database resulting to the final equation for end-of-season yield estimation 
using mid-season crop canopy measurements. Defining the equation for yield esti-
mation is the first step for developing algorithm for real time variable rate applica-
tions. In addition, similar studies should be performed in various crops in order to 
increase the applicability of the system. Since it is an active sensor, it is not depen-
dent on illumination sources of the measuring environment (e.g. sunlight for out-
door measurements, artificial light for indoor measurements, etc.). Therefore, it can 
be a useful tool for indoor environments such as greenhouses, while it is suitable for 
night-time measurements. Furthermore, the low cost and the ease of use of the 
Plant-O-Meter sensor are expected to make it a reliable and affordable solution for 
everyone, even for small and medium size farmers, that wish to take active part in 
smart farming. In large-scale agricultural production, Plant-O-Meter measurements 
can serve as auxiliary data, or as ground-truth, for remote sensing data applications.
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