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Abstract In this chapter, we study the Jaynes–Cummings model under multiphoton
excitation and in the general case of intensity-dependent coupling strength given by
an arbitrary function f . The Jaynes–Cummings theoretical model is of great interest
to atomic physics, quantum optics, solid-state physics, and quantum information
theory with several applications in coherent control and quantum information
processing. As the initial state of the radiation mode, we consider a squeezed
state, which is the most general Gaussian pure state. The time evolution of the
mean photon number and the dispersions of the two quadrature components of the
electromagnetic field are calculated for an arbitrary function f . The mean value of
the inversion operator of the atom is also calculated for some simple forms of the
function f .

1 Introduction

The Jaynes–Cummings model [1–3] is a theoretical model that describes the system
of a two-level atom interacting with a single mode of the quantum electromagnetic
field. The model is considered to be of great importance in quantum optics because it
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is the simplest solvable model that describes the interaction of radiation with matter.
The model allows for a fully quantum mechanical treatment of atoms interacting
with an electromagnetic field, thus revealing a number of novel features, in contrast
to the semi-classical approximation, in which only the atom is treated quantum
mechanically and the electromagnetic field is assumed to behave according to the
classical electromagnetic theory.

The mathematical formulation of the model is based on the Hamiltonian
formalism of the full system, which after the rotating wave approximation [3] it can
be expressed in terms of the inversion, raising, and lowering operators of the atom,
denoted by σ3, σ+, σ− and annihilation and creation operators a, a+ of the radiation
mode. The full system’s Hamiltonian consists of the atomic excitation Hamiltonian,
the free field Hamiltonian, and the Jaynes–Cummings interaction Hamiltonian:

H = 1

2
h̄ω0σ3 + h̄ωa+a + h̄λ(σ+a + σ−a+) (1)

Here ω0 is the transition frequency of the atom, and ω is the single mode
angular frequency. The parameter λ is the coupling constant for the radiation–atom
interaction. The operators σ3, σ+, σ− are 2 × 2 Pauli matrices

σ3 =
(

1 0
0 −1

)
, σ+ =

(
0 1
0 0

)
, σ− =

(
0 0
1 0

)
(2)

The σ and a obey the following algebra:

[σ3, σ±] = ±2σ±, [σ+, σ−] = σ3,
[
a, a+] = 1 (3)

σ+σ− = 1

2
(1 + σ3), σ−σ+ = 1

2
(1 − σ3), σ 2

3 = 1 (4)

In a series of articles [4–7], Sukumar, Buck, and Singh considered two general-
ized Jaynes–Cummings models with the following interaction Hamiltonians:

Hint = h̄λ(σ+a
√

a+a + σ−
√

a+aa+) (5)

Hint = h̄λ(σ+am + σ−a+m) (6)

We note that in the first model (5), the coupling strength depends on the number
operator n = a+a (or otherwise on the radiation intensity), whereas in the second
model (6), the transmission of the atom from one level to the other is accompanied
by the absorption or emission of m photons. The model described by Eq. (6) has
been studied by Nayak and Mohanty [8] with m = 2 in order to obtain the steady-
state photon statistics in a two-photon laser in which the decay of the lasing levels
was taken into account. In addition, Haroche et al. [9] have observed the two-photon
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laser emission in Rydberg atoms of Rb, and Eq. (6) has been also widely applied to
study the dynamics of the field and atomic variables in Rydberg atoms [10, 11].

Bartzis [12] has already studied the intensity-dependent two photon Jaynes–
Cummings model with interaction Hamiltonian

Hint = h̄λ(σ+a2
√

a+a + σ−
√

a+a a+2) (7)

and the Jaynes–Cummings model with atomic motion [13].
N. Nayak and V. Bartzis [14, 15] have also used the three-level and the two-

level Rydberg atom interacting with two nondegenerate modes, thus showing the
differences in the dynamics. In another work, Bartzis, Patargias, and Jannussis have
presented results in the case of one or two cavity modes interacting with both a
three-level atom and Kerr-like medium [16, 17].

The atomic spin squeezing of N two-level and three-level atoms has been
observed by Nayak et al. [18–20]. In recent years, more generalized Jaynes–
Cummings models have been proposed [21–29], and the intensity dependence has
also been considered in the work of Saha et al. [23]. In the case of multilevel atomic
systems and multiphoton processes, the theoretical description is easier using the
semi-classical approximation, for example, in potassium atoms in order to study
two-photon excitation, multiphoton emissions, and other nonlinear processes [30–
33].

In this work, we continue the generalization of the Jaynes–Cummings model by
considering the interaction Hamiltonian that has the form

Hint = h̄λ(σ+amf (a+a) + σ−f (a+a) a+m) (8)

This Hamiltonian describes a multiphoton process, since the transmission of the
atom from one level to the other is accompanied by absorption or emission of m

photons. In addition, the coupling strength in Eq. (8) is intensity dependent with
the dependency described by an arbitrary function f(a+a). In the standard Jaynes–
Cummings model, the coupling strength is considered to have a constant value.
However, it is reasonable to assume that the coupling strength depends on the
intensity since radiation intensity is observed to depend on time. As initial state of
the radiation mode, we consider a squeezed state [34–40], the most general Gaussian
pure state, which is defined as

|α, z〉 = S(z)D(α)|0〉 (9)

where D(α) = exp(αa+ − α∗a) is the Weyl displacement operator and

S(z) = exp

[
1

2
(za2 − z∗a+2)

]
, z = re-iθ (10)

represents the squeeze operator.
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In the n-representation, the squeeze state takes the form [35]

|α, z〉 =
∑
n

Cn|n〉,

Cn = 1√
n!μ

(
ν

2μ

)n/2

Hn

[
α(2μν)−1/2

]
exp

[
−1

2
|α|2 + ν∗

2μ
α2
]

(11)

where μ = cosh r , v = eiθ sinh r
The mean photon number for a squeezed state has the form

n̄ = |α̂|2 + |ν|2, where α̂ = μ∗α − να∗ (12)

The two quadrature components are defined as

X1 = 1

2
(a + a+) (13)

X2 = 1

2i
(a − a+) (14)

Consequently, the electric field of the radiation mode has the form

E(t) = X1cosωt + X2sinωt (15)

The dispersions of X1 and X2 for a squeezed state with θ = 0 are

〈(ΔX1)
2〉 = 1

4
e−2r (16)

〈(ΔX2)
2〉 = 1

4
e2r (17)

The squeezing phenomenon is observed in Eqs. (16) and (17), since the quantum
noise is lower in one quadrature component than that of the coherent state
(〈(ΔXi)

2〉 = 1/4, i = 1,2) and higher in the other.

2 Time Evolution of the Atom Inversion Operator

In order to compute the time evolution of the system, we use Eq. (8) for the
interaction, and the Hamiltonian of our model takes the form

H = h̄ω

(
a+a + m

2
σ3

)
+ h̄Δ

2
σ3 + h̄λ(σ+amf (a+a) + σ−f (a+a)a+m) (18)

where Δ = ω0 − mω.
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We can define the operators

C = a+a + m

2
σ3 (19)

B = h̄λ(σ+amf (a+a) − σ−f (a+a)a+m) (20)

D = h̄λ(σ+amf (a+a) + σ−f (a+a)a+m) (21)

so finally the Hamiltonian (18) takes the form

H = h̄ωC + h̄Δ

2
σ3 + D (22)

It is easy to prove that [C,H ] = [C,B] = 0, [σ3, B] = 2D, [σ3,D] = 2B

For the calculation of the time evolution of the operator σ3 (represents the atom
population inversion), we will work in the Heisenberg picture. The Heisenberg
equations of motion for the operators σ3 and B are

ih̄σ̇3 = [σ3,H ] = [σ3,D] = 2B (23)

ih̄Ḃ = [B,H ] = −h̄ΔD + [B,D] (24)

The commutator of B and D is calculated to be

[B,D] = h̄2λ2
{
σ3
[
amf (a+a), f (a+a)a+m

]
+ + [

amf (a+a), f (a+a)a+m
]}
(25)

where the symbol [, ]+ represents the anticommutator.
So solving the above system of Eqs. (23) and (24), we obtain the following

differential equation for σ3:

σ̈3 =2Δ

h̄
(H − h̄ωC − h̄Δ

2
σ3)

− 2λ2
{
(σ3 + 1)amf 2(a+a)a+m + (σ3 − 1)f (a+a)a+mamf (a+a)

}
(26)

The differential equation (26) cannot be solved in general for any arbitrary func-
tion f (a+a) so in the following discussion, we present the solution considering
the two simple cases of f (a+a)=1 and f (a+a)=

√
a+a. For these cases, Eq. (26)

takes the form

σ̈3 + ω′2σ3 = 2Δ

h̄
(H − h̄ωC) (27)

where ω′2 =
{

4λ2κ(κ − 1) · · · (κ + 1 − m) + Δ 2 for f (a+a) = 1
4λ2κ2(κ − 1) · · · (κ + 1 − m) + Δ 2 for f (a+a) = √

a+a

}

and κ = C + 1
2m.
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The operator C is a constant of motion, so the solution of the above equation is

σ3(t) = σ3(0)cosω′t + 2B(0)

ih̄ω′ sinω′t + 2Δ

h̄ω′2 (H − h̄ωC)(1 − cosω′t) (28)

We suppose that the atom is initially at the excited state and the field in a squeezed
state; thus, the solution takes the form

〈σ3(t)〉 =
∑
n

{
Δ 2

ω′2
n

+
(

1 − Δ 2

ω′2
n

)
cosω′

nt

}
|Cn|2 (29)

where ω′2
n =

{
4λ2κn(κn − 1) · · · (κn + 1 − m) + Δ 2 for f (a+a) = 1

4λ2κn
2(κn − 1) · · · (κn + 1 − m) + Δ 2 for f (a+a) = √

a+a

}

and κn = n + m.

3 Field Statistics of the Generalized Intensity-Dependent
Multiphoton Jaynes–Cummings Model

The Hamiltonian of the system is given by Eq. (18). We define the operators

C = a+a + m

2
σ3 (30)

N = Δ

2
σ3 + λ(σ+amf (a+a) + σ−f (a+a)a+m) (31)

We easily can prove that

[C,N] = [H,N] = [H,C] = 0 (32)

Consequently, the time evolution operator can be written in the form

U(t, 0) = e(−i/h̄)Ht = e−iωCte−iNt ≡ U1(t, 0)U2(t, 0) (33)

In the two-dimensional atomic subspace, the matrix representation of the opera-
tors U1 and U2 has the form

U1(t, 0) = e−iωα+αt
∞∑

n=0

(− imωt
2 )n

n! σ
(n)
3 (34)

or

U1(t, 0) = e−iωα+αt

(
e

−imωt
2 0

0 e
imωt

2

)
(35)
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Similarly, we can prove that operator

U2(t, 0) = e−iNt =
∞∑

n=0

(−it)n

n! N(n) (36)

has the following form:

U2(t, 0) =
(

K L

M Q

)
(37)

where K, L, M, and Q are calculated as

K =cos

⎧⎨
⎩t

√
Δ 2

4
+ λ2amf 2(a+a)a+m

⎫⎬
⎭

− i
Δ

2

sin

{
t

√
Δ 2

4 + λ2amf 2(a+a)a+m

}
√

Δ 2

4 + λ2amf 2(a+a)a+m

(38)

L = −iλ
sin

{
t

√
Δ 2

4 + λ2amf 2(a+a)a+m

}
√

Δ 2

4 + λ2amf 2(a+a)a+m

amf (a+a) (39)

M = −iλ
sin

{
t

√
Δ 2

4 + λ2a+mf 2(a+a + m)am

}
√

Δ 2

4 + λ2a+mf 2(a+a + m)am

f (a+a)a+m (40)

Q =cos

⎧⎨
⎩t

√
Δ 2

4
+ λ2a+mf 2(a+a + m)am

⎫⎬
⎭

+ i
Δ

2

sin

{
t

√
Δ 2

4 + λ2a+mf 2(a+a + m)am

}
√

Δ 2

4 + λ2a+mf 2(a+a + m)am

(41)

In addition, from Eq. (33), the operator U(t, 0) is written as

U(t, 0) = e−iωa+a

(
Ψ Z

Y W

)
(42)
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where Ψ = e
−imωt

2 K Z = e
−imωt

2 L Y = e
imωt

2 M W = e
imωt

2 Q

We can easily show that

UU+ = U+U = 1

Assuming that the atom is initially the excited state, we have the density operator of
the field as

ρf (t) = Tratom

{
U(t, 0)

(
ρf (0) 0

0 0

)
U+(t, 0)

}

= e−iωa+at

⎡
⎣
⎛
⎝cos

[
t

√
Δ 2

4 + λ2 (a+a+m)!
(a+a)! f 2(a+a + m)

]

−i Δ
2

sin

[
t

√
Δ 2

4 +λ2 (a+a+m)!
(a+a)! f 2(a+a+m)

]
√

Δ 2
4 +λ2 (a+a+m)!

(a+a)! f 2(a+a+m)

⎞
⎠ ρf (0)

⎛
⎝cos

[
t

√
Δ 2

4 + λ2 (a+a+m)!
(a+a)! f 2(a+a + m)

]

+i Δ
2

sin

[
t

√
Δ 2

4 +λ2 (a+a+m)!
(a+a)! f 2(a+a+m)

]
√

Δ 2
4 +λ2 (a+a+m)!

(a+a)! f 2(a+a+m)

⎞
⎠

+λ2
sin

[
t

√
Δ 2

4 +λ2 (a+a)!
(a+a−m)! f

2(a+a)

]
√

Δ 2
4 +λ2 (a+a)!

(a+a−m)! f
2(a+a)

f (a+a)a+mρf (0)amf (a+a)

sin

[
t

√
Δ 2

4 +λ2 (a+a)!
(a+a−m)! f

2(a+a)

]
√

Δ 2
4 +λ2 (a+a)!

(a+a−m)! f
2(a+a)

⎤
⎦ eiωα+αt

(43)

We consider as initial state of the system a squeezed state (9–11). So we can
calculate the matrix elements of ρf (t) in the |n〉-basis
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〈n|ρf (t)|n′〉 = CnC
∗
n′e−iω(n−n′)t

⎛
⎝cos

[
t

√
Δ 2

4 + λ2 (n+m)!
(n)! f 2(n + m)

]

−i Δ
2

sin

[
t

√
Δ 2

4 +λ2 (n+m)!
(n)! f 2(n+m)

]
√

Δ 2
4 +λ2 (n+m)!

(n)! f 2(n+m)

⎞
⎠×

×
⎛
⎝cos

[
t

√
Δ 2

4 + λ2 (n′+m)!
(n′)! f 2(n′ + m)

]

+i Δ
2

sin

[
t

√
Δ 2

4 +λ2 (n′+m)!
(n′)! f 2(n′+m)

]
√

Δ 2
4 +λ2 (n′+m)!

(n′)! f 2(n′+m)

⎞
⎠+

+λ2Cn−mC∗
n′−m

e−iω(n−n′)t f (n)f (n′)

×
√

n!n’!
(n−m)!(n′−m)!

sin

[
t

√
Δ 2

4 +λ2 (n)!
(n−m)! f 2(n)

]
√

Δ 2
4 +λ2 (n)!

(n−m)! f 2(n′)

×
sin

[
t

√
Δ 2

4 +λ2 (n′)!
(n′−m)! f

2(n′)
]

√
Δ 2

4 +λ2 (n′)!
(n′−m)! f

2(n′)

(44)

Finally, the time evolution of the mean photon number is calculated as

n = Trfield
[
a+aρf (t)

] =
∑
n

n〈n|ρf (t)|n〉 (45)

We next consider the time of the dispersions of the quadrature operators

X1 = 1

2
(a + a+) (46)

X2 = 1

2i
(a − a+) (47)

which are finally calculated to have the form

〈(ΔX1)
2〉 = 1

4

{
1 +∑

n

[
2n〈n|ρf (t)|n〉 + √

(n + 1)(n + 2)(〈n + 2|ρf (t)|n〉 + 〈n|ρf (t)|n + 2〉)]

− (
∑
n

[√n + 1(〈n + 1|ρf (t)|n〉 + 〈n|ρf (t)|n + 1〉)])2
}

(48)



100 V. Bartzis et al.

〈(ΔX2)
2〉 = 1

4

{
1 +∑

n

[
2n〈n|ρf (t)|n〉 − √

(n + 1)(n + 2)(〈n + 2|ρf (t)|n〉 + 〈n|ρf (t)|n + 2〉)]

+ (
∑
n

[√n + 1(〈n + 1|ρf (t)|n〉 − 〈n|ρf (t)|n + 1〉)])2
}

(49)

4 Conclusions

The mathematical formalism for the generalized intensity-dependent multiphoton
Jaynes–Cummings model is presented for an arbitrary mathematical function f
describing the dependency on the intensity. The time evolution of the mean value of
the atom inversion operator is calculated for two simple cases of the function f . The
mean photon number and the dispersions of the two quadrature components are also
calculated for an arbitrary function f in the case of a squeezed state as initial state
of the electromagnetic field.
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