
Approximate Solution of Fredholm
Integral and Integro-Differential
Equations with Non-Separable Kernels

E. Providas

Abstract This chapter deals with the approximate solution of Fredholm integral
equations and a type of integro-differential equations having non-separable kernels,
as they appear in many applications. The procedure proposed consists of firstly
approximating the non-separable kernel by a finite partial sum of a power series
and then constructing the solution of the degenerate equation explicitly by a direct
matrix method. The method, which is easily programmable in a computer algebra
system, is explained and tested by solving several examples from the literature.

1 Introduction

Integral and integro-differential equations appear in many applications in sciences
and engineering. Integral equations have been studied extensively and there is today
accumulated knowledge which one can find in good treatises, see, for example,
[6, 10, 16]. Integro-differential equations are a less researched topic and usually
they occupy a separate chapter in integral equations text books [13, 15]. Integral
and Integro-differential equations are usually solved by numerical methods, see,
for example, the monograph [1]. Direct solution methods have also been used, as
it can be seen in the above-mentioned references, in the cases where the kernels
are degenerate. Recently, the author with his co-authors developed a direct matrix
method for solving exactly integro-differential equations with separable kernels [7–
9, 12]. However, in many engineering applications, such as nonlocal or gradient
elasticity [4, 5, 11, 14] and hydrodynamics [2], integral and integro-differential
equations emerge with non-separable kernels. The aim of this article is to propose a
procedure by which the non-separable kernel is approximated by a degenerate one
and then solving the integral or integro-differential equation explicitly by the direct
matrix method above.
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In Sect. 2, we present a direct matrix method for obtaining in closed form the
unique solution of the Fredholm integral equation

Iu(x) = u(x) −
∫ b

a

K(x, s)u(s)ds = f (x), x ∈ [a, b], (1)

where I : C[a, b] → C[a, b] is a linear operator, K(x, s) is a given kernel
function which is assumed to be continuous on the closed square Q(a, b) =
{(x, s) : a ≤ x ≤ b, a ≤ s ≤ b} and separable, f (x) ∈ C[a, b] is an input free
function, and u(x) is the unknown function describing the response of the system
modeled by (1). Also, we propose a technique for establishing uniqueness and
constructing in closed form the solution of the Fredholm integro-differential
equation

Bu(x) = Âu(x) −
∫ b

a

K(x, s)Âu(s)ds = f (x), x ∈ [a, b],

D(B) = D(Â), (2)

where Â : C[a, b] → C[a, b] is a bijective linear differential operator incorporating
initial or boundary conditions, and B : C[a, b] → C[a, b] is a linear operator with
D(B) = D(Â). As an example of equations of this kind, we refer to the case of
modeling the Euler-Bernoulli beams using Eringen’s integral formulation [14].

In Sect. 3, we find approximate solutions to Fredholm integral equations with
non-separable kernel functions K(x, s). The approach we follow consists of repre-
senting K(x, s) as a power series at a point and replacing K(x, s) in the integral
equation by the partial sum Kn(x, s) of the power series. The resulting degenerate
integral equation is then solved by the direct matrix method.

The same procedure is employed in Sect. 4 to acquire an approximate solution of
Fredholm integro-differential equations with non-separable kernels.

Finally, some conclusions regarding the efficiency of the method proposed are
quoted in Sect. 5.

2 Direct Matrix Methods

Let the integral equation (1) and assume that the kernel K(x, s) is a separable
function which has the specific form

K(x, s) =
n∑

k=1

gk(x)hk(s), x, s ∈ [a, b], (3)
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where gk(x), hk(s) ∈ C[a, b]. Also, it is assumed without loss of generality that
the sets of the functions {gk(x)} and {hk(x)} are linearly independent; otherwise,
the number of functions should be lessened. Then the integral equation (1) becomes

Iu(x) = u(x) −
n∑

k=1

gk(x)

∫ b

a

hk(s)u(s)ds = f (x), x ∈ [a, b]. (4)

We introduce the vector of functions

g = (
g1 g2 . . . gn

)
, gk = gk(x) ∈ C[a, b], k = 1, 2, . . . , n, (5)

and the vector of linear bounded functionals

�(u) =

⎛
⎜⎜⎜⎝

�1(u)

�2(u)
...

�n(u)

⎞
⎟⎟⎟⎠ , �k(u) =

∫ b

a

hk(s)u(s)ds, k = 1, 2, . . . , n, (6)

and write Eq. (4) as

Iu = u − g�(u) = f, (7)

where f = f (x), u = u(x) ∈ C[a, b].
For the solution of (7), we state and prove the next theorem where use is made of

the notations

�(g) =

⎡
⎢⎢⎢⎣

�1(g1) �1(g2) · · · �1(gn)

�2(g1) �2(g2) · · · �2(gn)
...

...
. . .

...

�n(g1) �n(g2) · · · �n(gn)

⎤
⎥⎥⎥⎦ , �(f ) =

⎛
⎜⎜⎜⎝

�1(f )

�2(f )
...

�n(f )

⎞
⎟⎟⎟⎠ , (8)

In is the n × n identity matrix and 0 the zero column vector. We note that

�(gN) = �(g)N, (9)

where N is an n × m, m ∈ N, constant matrix. Finally, it is recalled that a linear
operator P : C[a, b] → C[a, b] is said to be correct if P is bijective and its inverse
P −1 is bounded on C[a, b].
Theorem 1 In C[a, b], let the vectors g and � be defined as in (5) and (6),
respectively, and I : C[a, b] → C[a, b] be the linear operator

Iu = u − g�(u). (10)
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Then the operator I is bijective on C[a, b] if and only if

detW = det[In − �(g)] �= 0, (11)

and the unique solution of the integral equation Iu = f , for any f ∈ C[a, b], is
given by the formula

u = I−1f = f + gW−1�(f ). (12)

The operator I is correct.

Proof

(i) Let detW �= 0 and u ∈ kerI. Then,

Iu = u − g�(u) = 0, (13)

and by acting by the vector � on both sides of (13), we get

�(u − g�(u)) = [In − �(g)]�(u) = W�(u) = 0, (14)

which implies that �(u) = 0. Substitution into (13) yields Iu = u = 0, which
means that the kerI = {0} and hence the operator I is injective. Conversely,
we prove that if I is an injective operator then detW �= 0, or equivalently, if
detW = 0, then I is not injective. Let detW = 0. Then there exists a nonzero
vector c = col(c1, . . . , cn) such that Wc = 0. Let the element u0 = gc and
note that u0 �= 0; otherwise, u0 = gc = 0 implies Wc = [In − �(g)]c =
c − �(gc) = c = 0. From Eq. (13), we get

Iu0 = gc − g�(g)c = g[In − �(g)]c = gWc = g0 = 0, (15)

which means that kerI �= 0 and so I is not injective.

By applying now the vector � on Iu = f , we have

[In − �(g)]�(u) = W�(u) = �(f ). (16)

Since detW �= 0 it follows that �(u) = W−1�(f ) and hence

Iu = u − gW−1�(f ) = f, (17)

from where formula (12) is obtained. Moreover, since the input function f ∈
C[a, b] is arbitrary, we have R(I) = C[a, b] which means that I is bijective.

Lastly, in (12) the functionals �k are bounded on C[a, b] and hence the operator
I−1 is bounded. Thus, if the operator I is bijective then it is correct. ��
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Let now the mth order linear differential operator A : C[a, b] → C[a, b]:

Au = am(x)
dmu

dxm
+ am−1(x)

dm−1u

dxm−1 + · · · + a1(x)
du

dx
+ a0(x), (18)

where the coefficients ai(x) ∈ C[a, b], i = 0, . . . , m, am(x) �= 0, and Â :
C[a, b] → C[a, b] be a restriction of A on D(Â) by specifying initial or boundary
conditions. We assume that Â is a bijective operator and that the inverse Â−1 is
known. Further, let K(x, s) be degenerate as in (3), and the vectors g and � be as
in (5) and (6), respectively. Then the Fredholm integro-differential equation (2) can
be put in the form

Bu = Âu − g�(Âu) = f, D(B) = D(Â). (19)

The existence and uniqueness criteria and the solution of the integro-differential
equation (19) are provided by the following theorem.

Theorem 2 Let the restriction Â : C[a, b] → C[a, b] be a bijective linear operator
and Â−1 its inverse, the vectors g and � as in (5) and (6), respectively, and B :
C[a, b] → C[a, b] the linear operator

Bu = Âu − g�(Âu), D(B) = D(Â). (20)

Then the following statements are true:

(i) The operator B is bijective on C[a, b] if and only if

detW = det[In − �(g)] �= 0, (21)

and the unique solution to problem Bu = f , for any f ∈ C[a, b], is given by
the formula

u = B−1f = Â−1f + Â−1gW−1�(f ). (22)

(ii) If in addition the inverse operator Â−1 is bounded on C[a, b], then the operator
B correct.

Proof

(i) Set Âu = y, y ∈ C[a, b], and express Bu = f as

y − g�(y) = f. (23)

This is an integral equation of the type (7). From Theorem 1 follows that
Eq. (23) has a unique solution if and only if

detW = det[In − �(g)] �= 0, (24)
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and that its unique solution is given by

y = f + gW−1�(f ). (25)

Acting by the operator Â−1 on both sides of (25), we get

Â−1y = Â−1f + Â−1gW−1�(f ). (26)

and hence

u = Â−1f + Â−1gW−1�(f ), (27)

which is the solution formula (22). Furthermore, since f ∈ C[a, b] is arbitrary,
we have R(B) = C[a, b] which means that B is bijective.

(ii) Suppose that (21) is true and that the operator Â−1 is bounded on C[a, b]. Then
by (i) the operator B is bijective and the unique solution to Bu = f is given
by (22). Additionally, in (22) the operator Â−1 and the functionals �1, . . . , �n

are bounded on C[a, b] and hence the operator B−1 is bounded too. Therefore
the operator B is correct.

��

3 Approximate Solution of Integral Equations with
Non-Separable Kernels

Let the integral equation (1) and suppose the kernel function K(x, s) is non-
separable, but it can be represented as a power series in s at a point s0 such that

K(x, s) =
∞∑

k=0

pk(x)(s − s0)
k, (28)

where the functions pk(x) are continuous functions. We truncate this series and take
the partial sum of the first n + 1 terms, namely

Kn(x, s) =
n+1∑
k=1

pk−1(x)(s − s0)
k−1. (29)

We replace the kernel K(x, s) in (1) by (29) to obtain the degenerate Fredholm
integral equation

Inũ(x) = ũ(x)−
n+1∑
k=1

pk−1(x)

∫ b

a

(s−s0)
k−1ũ(s)ds = f (x), x ∈ [a, b], (30)
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where In : C[a, b] → C[a, b] is a linear operator. Further, we define the vectors

g = (
g1 g2 . . . gn+1

) = (
p0(x) p1(x) . . . pn(x)

)
, (31)

and

�(ũ) =

⎛
⎜⎜⎜⎝

�1(ũ)

�2(ũ)
...

�n+1(ũ)

⎞
⎟⎟⎟⎠ , �k(ũ) =

∫ b

a

(s − s0)
k−1ũ(s)ds, k = 1, 2, . . . , n + 1,

(32)
and write Eq. (30) in the compact form

Inũ = ũ − g�(ũ) = f. (33)

The solution ũ = I−1
n f of (33) can be obtained by applying Theorem 1. This

solution is an approximate solution to (1) having a non-separable kernel K(x, s)

which was expressed as in (29).
An estimation of the error |u − ũ| can be found by using standard analysis

techniques [6, 16]. A similar procedure would have resulted if we had used a power
series in x or a double power series.

Example 1 Let us derive an approximate solution of the Fredholm integral equation
of the second kind

u(x) −
∫ 1/2

0
e−x2s2u(s)ds = f (x), 0 ≤ x ≤ 1

2
, (34)

for any f (x) ∈ C[0, 1
2 ]. The kernel is non-separable and therefore we take its Taylor

series expansion in the variable s (or in x) about the point 0, viz.

K(x, s) = e−x2s2 = 1 − x2s2 + 1

2
x4s4 − 1

6
x6s6 · · ·

=
∞∑

k=0

(−1)k

k! x2ks2k.

By taking the partial sum

Kn(x, s) =
n+1∑
k=1

(−1)k−1

(k − 1)! x
2(k−1)s2(k−1),



700 E. Providas

and placing it in (34), we get the companion equation

ũ(x) −
n+1∑
k=1

(−1)k−1

(k − 1)! x
2(k−1)

∫ 1/2

0
s2(k−1)ũ(s)ds = f (x), 0 ≤ x ≤ 1

2
. (35)

We define the vectors

g = (
g1(x) g2(x) . . . gn+1(x)

) =
(
1 −x2 . . .

(−1)n

n! x2n
)

,

and

�(ũ(s)) =

⎛
⎜⎜⎜⎝

�1(ũ(s))

�2(ũ(s))
...

�n+1(ũ(s))

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

∫ 1/2
0 ũ(s)ds∫ 1/2

0 s2ũ(s)ds
...∫ 1/2

0 s2nũ(s)ds

⎞
⎟⎟⎟⎟⎠ ,

and write (35) as

Inũ(x) = ũ(x) − g(x)�(ũ(s)) = f (x). (36)

Then, we construct the matrix

�(g) =

⎡
⎢⎢⎢⎣

�1(g1(s)) �1(g2(s)) · · · �1(gn+1(s))

�2(g1(s)) �2(g2(s)) · · · �2(gn+1(s))
...

...
. . .

...

�n+1(g1(s)) �n+1(g2(s)) · · · �n+1(gn+1(s))

⎤
⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

�1(1) �1(−s2) · · · �1

(
(−1)n

n! s2n
)

�2(1) �2(−s2) · · · �2

(
(−1)n

n! s2n
)

...
...

. . .
...

�n+1(1) �n+1(−s2) · · · �n+1

(
(−1)n

n! s2n
)

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

∫ 1/2
0 ds − ∫ 1/2

0 s2ds · · · (−1)n

n!
∫ 1/2
0 s2nds

∫ 1/2
0 s2ds − ∫ 1/2

0 s4ds · · · (−1)n

n!
∫ 1/2
0 s2(n+1)ds

...
...

. . .
...

∫ 1/2
0 s2nds − ∫ 1/2

0 s2(n+1)ds · · · (−1)n

n!
∫ 1/2
0 s4nds

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

and thus the matrix
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W = In+1 − �(g).

If detW �= 0, then Eq. (36) has exactly one solution. To obtain the solution, we put
up the vector

�(f ) =

⎛
⎜⎜⎜⎝

�1(f )

�2(f )
...

�n+1(f )

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

∫ 1/2
0 f (s)ds∫ 1/2

0 s2f (s)ds
...∫ 1/2

0 s2nf (s)ds

⎞
⎟⎟⎟⎟⎠ ,

and by Theorem 1 compute

ũ = f + gW−1�(f ).

Let f (x) = 1 [10]. Then for n = 2, n = 4, and n = 6, we have

K2(x, s) = 1 − x2s2 + 1

2
x4s4,

K4(x, s) = 1 − x2s2 + 1

2
x4s4 − 1

6
x6s6 + 1

24
x8s8,

K6(x, s) = 1 − x2s2 + 1

2
x4s4 − 1

6
x6s6 + 1

24
x8s8 − 1

120
x10s10 + 1

720
x12s12,

and the approximate solutions

ũ2 = 1.993199 − 0.082541x2 + 0.006183x4,

ũ4 = 1.993198 − 0.082541x2 + 0.006183x4 − 0.000368x6 + 0.000018x8,

ũ6 = 1.993198 − 0.082541x2 + 0.006183x4 − 0.000368x6 + 0.000018x8

−7.309486 × 10−7x10 + 2.576526 × 10−8x12,

respectively, where all coefficients have been rounded up to six decimal digits. The
results are in very good agreement with those obtained in [10] where the same
problem has been solved for n = 2.

Example 2 Consider the inhomogeneous Fredholm integral equation

u(x) − 1

2

∫ 1

−1
sin

(πsx

2

)
u(s)ds = f (x), −1 ≤ x ≤ 1, (37)

where f (x) ∈ C[−1, 1]. The kernel is non-separable, but it can be represented in
Taylor series in x (or in s) about the point 0, namely



702 E. Providas

K(x, s) = sin
(πsx

2

)
= πsx

2
− π3s3x3

48
+ π5s5x5

3840
· · ·

=
∞∑

k=0

(−1)k
π2k+1s2k+1x2k+1

22k+1(2k + 1)! .

After replacing K(x, s) in (37) with the partial sum

Kn(x, s) =
n+1∑
k=1

(−1)k−1π2k−1s2k−1x2k−1

22k−1(2k − 1)! ,

we get the auxiliary equation

ũ(x) − 1

2

n+1∑
k=1

(−1)k−1 π2k−1x2k−1

22k−1(2k − 1)!
∫ 1

−1
s2k−1ũ(s)ds = f (x), −1 ≤ x ≤ 1.

(38)
We set up the vectors

g = (
g1(x) g2(x) . . . gn+1(x)

) = 1

2

(
πx
2 −π3x3

48 . . . (−1)n π2n+1x2n+1

22n+1(2n+1)!
)

,

and

�(ũ(s)) =

⎛
⎜⎜⎜⎝

�1(ũ(s))

�2(ũ(s))
...

�n+1(ũ(s))

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

∫ 1
−1 sũ(s)ds∫ 1
−1 s3ũ(s)ds

...∫ 1
−1 s2n+1ũ(s)ds

⎞
⎟⎟⎟⎟⎠ ,

and write (38) as

Inũ(x) = ũ(x) − g(x)�(ũ(s)) = f (x). (39)

Then, we form the matrix

�(g) =

⎡
⎢⎢⎢⎣

�1(g1(s)) �1(g2(s)) · · · �1(gn+1(s))

�2(g1(s)) �2(g2(s)) · · · �2(gn+1(s))
...

...
. . .

...

�n+1(g1(s)) �n+1(g2(s)) · · · �n+1(gn+1(s))

⎤
⎥⎥⎥⎦

and compute the matrix

W = In+1 − �(g).
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If detW �= 0, then Eq. (39) admits exactly one solution. By setting up the vector

�(f ) =

⎛
⎜⎜⎜⎝

�1(f )

�2(f )
...

�n+1(f )

⎞
⎟⎟⎟⎠ ,

we can determine the solution from Theorem 1, which is

ũ = f + gW−1�(f ).

Let f (x) = x3 [16], which is continuous in [−1, 1]. Then, for n = 2, n = 4, and
n = 6, we get

K2(x, s) = πsx

2
− π3s3x3

48
+ π5s5x5

3840
,

K4(x, s) = K2(x, s) − π7s7x7

645120
+ π9s9x9

185794560
,

K6(x, s) = K4(x, s) − π11s11x11

81749606400
+ π13s13x13

51011754393600
,

and the approximate solutions

ũ2(x) = 0.565621x + 0.847692x3 + 0.014047x5,

ũ4(x) = 0.565421x + 0.847751x3 + 0.014042x5 − 0.000660x7 + 0.000019x9,

ũ6(x) = 0.565421x + 0.847751x3 + 0.014042x5 − 0.000660x7 + 0.000019x9

−3.627733 × 10−7x11 + 5.024528 × 10−9x13,

respectively, where the coefficients have been rounded up to six decimal places.
The same problem is solved in [16] for n = 2 using other techniques such as the
resolvent kernel, Simpson’s rule, or Gaussian quadrature. The results obtained here
for n = 2 are identical with those reported in [16] with six decimal digits.

4 Approximate Solution of Integro-Differential Equations
with Non-Separable Kernels

Let the integro-differential equation (2) with a kernel function K(x, s) which is
non-separable, but it can be expanded in a power series in x at a point x0

K(x, s) =
∞∑

k=0

hk(s)(x − x0)
k, (40)
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where the functions hk(s) are continuous functions. We consider the partial sum of
the first n + 1 terms

Kn(x, s) =
n+1∑
k=1

hk−1(s)(x − x0)
k−1, (41)

and place it in (2) instead ofK(x, s). As a result, we obtain the degenerate Fredholm
integro-differential equation

Bnũ(x) = Âũ(x) −
n+1∑
k=1

(x − x0)
k−1

∫ b

a

hk−1(s)Âũ(s)ds = f (x), x ∈ [a, b],
(42)

where Bn : C[a, b] → C[a, b] is a linear operator with D(Bn) = D(Â). Define the
vectors

g = (
g1 g2 . . . gn+1

) = (
1 x − x0 . . . (x − x0)

n
)
, (43)

and

�(Âũ) =

⎛
⎜⎜⎜⎝

�1(Âũ)

�2(Âũ)
...

�n+1(Âũ)

⎞
⎟⎟⎟⎠ , �k(Âũ) =

∫ b

a

hk−1(s)Âũ(s)ds, k = 1, 2, . . . , n + 1,

(44)
and formulate Eq. (42) as

Bnũ = Âũ − g�(Âũ) = f. (45)

By using Theorem 2, we can compute the solution ũ = B−1
n f of (45), which

is an approximate solution of Eq. (2) having the non-separable kernel K(x, s)

approximated by (41).
As before, an evaluation of the error |u − ũ| can be found by using standard

analysis techniques [6, 16]. A similar procedure results if one uses a power series in
s or a double power series.

Example 3 Consider the Fredholm integro-differential equation

u′(x) −
∫ 1

0
exsu′(s)ds = f (x), 0 ≤ x ≤ 1, u(0) = 1, (46)

for an input function f (x) ∈ C[0, 1]. By means of v(x) = u(x) − 1, we can
transform this equation to the following one with a homogeneous condition
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v′(x) −
∫ 1

0
exsv′(s)ds = f (x), 0 ≤ x ≤ 1, v(0) = 0. (47)

The kernel is non-separable, but it can be represented as Taylor series in x (or in s)
about 0 as

K(x, s) = exs = 1 + sx + 1

2
s2x2 + 1

6
s3x3 + · · ·

=
∞∑

k=0

skxk

k! .

Let the partial sum

Kn(x, s) =
n+1∑
k=1

sk−1xk−1

(k − 1)! ,

which when is placed in (47) instead of K(x, s) yields the auxiliary equation

ṽ′(x) −
n+1∑
k=1

xk−1
∫ 1

0

sk−1

(k − 1)! ṽ
′(s)ds = f (x), 0 ≤ x ≤ 1. (48)

Take the operator Â : C[0, 1] → C[0, 1] to be

Âṽ(x) = ṽ′(x), D(Â) = {ṽ(x) ∈ C1[0, 1] : ṽ(0) = 0},

which is bijective and its inverse is

Â−1f (x) =
∫ x

0
f (s)ds, f (x) ∈ C[0, 1].

Set up the vectors

g = (
g1(x) g2(x) . . . gn+1(x)

) = (
1 x . . . xn

)
,

and

�(Âṽ(s)) =

⎛
⎜⎜⎜⎜⎜⎜⎝

�1 (Âṽ(s))

�2 (Âṽ(s))

...

�n+1 (Âṽ(s))

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

∫ 1
0 Âṽ(s)ds

∫ 1
0 s Âṽ(s)ds

...

∫ 1
0

sn

n! Âṽ(s)ds

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,
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and write (48) as

Âṽ(x) − g(x)�(Âṽ(s)) = f (x). (49)

Form the matrix

�(g) =

⎡
⎢⎢⎢⎣

�1(g1(s)) �1(g2(s)) · · · �1(gn+1(s))

�2(g1(s)) �2(g2(s)) · · · �2(gn+1(s))
...

...
. . .

...

�n+1(g1(s)) �n+1(g2(s)) · · · �n+1(gn+1(s))

⎤
⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎣

�1(1) �1(s) · · · �1(s
n)

�2(1) �2(s) · · · �2(s
n)

...
...

. . .
...

�n+1(1) �n+1(s) · · · �n+1(s
n)

⎤
⎥⎥⎥⎦

and then the matrix

W = In+1 − �(g).

If detW �= 0, then Eq. (49) has exactly one solution. To obtain the solution, we
construct the vector

�(f ) =

⎛
⎜⎜⎜⎜⎜⎜⎝

�1 (f )

�2 (f )

...

�n+1 (f )

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

∫ 1
0 f (s)ds

∫ 1
0 sf (s)ds

...

∫ 1
0

sn

n! f (s)ds

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

and by Theorem 2 compute

ṽ = Â−1f + Â−1gW−1�(f ) and then ũ = ṽ + 1.

Let

f (x) = ex + 1 − ex+1

x + 1
, 0 ≤ x ≤ 1,

as in a comparable problem in [3]. Then Eq. (46) admits the exact solution u(x) =
ex . We take Taylor series expansions for both K(x, s) and f (x) in x around 0. For
n = 2, we have
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K2(x, s) = 1 + sx + 1

2
s2x2, f2(x) = 2 − e − (e − 3)x2

2
,

and analogous expressions for n = 4 and n = 8. The corresponding solutions are as
follows

ũ2 = 1.0 + 1.184093x + 0.542764x2 + 0.175518x3,

ũ4 = 1.0 + 1.005793x + 0.501306x2 + 0.166926x3 + 0.041710x4 + 0.008340x5,

ũ8 = 1.0 + 1.000001x + 0.500000x2 + 0.166667x3 + 0.0416667x4

+0.008333x5 + 0.001389x6 + 0.000198x7 + 0.000025x8 + 0.000003x9,

respectively, where all coefficients have been rounded up to six decimal digits. The
results are of high accuracy and agree with the exact solution u(x) = ex .

5 Conclusions

An efficient matrix procedure for solving Fredholm integral and integro-differential
equations has been presented. The procedure involves the approximation of the
non-separable kernel by a degenerate one, such as the partial sum of a power
series, and the application of a direct matrix method to obtain the solution. We
have programmed the method into Maxima computer algebra system and solved
several example problems. In all cases the results obtained are of very high accuracy.
The novelty and the main advantage of the method is the management of the
computations involved and that it can be repeated many times with easiness and
a large number of terms of the series.
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