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Preface

Approximation and Computation in Science and Engineering presents a wide
spectrum of research and research-survey papers in several subjects of pure and
applied mathematics with various applications. Emphasis is given to the study of
topics of approximation theory, functional equations and inequalities, fixed point
theory, numerical analysis, theory of wavelets, convex analysis, topology, opera-
tor theory, differential operators, fractional integral operators, integro-differential
equations, ternary algebras, super and hyper relators, variational analysis, discrete
mathematics, cryptography, and a variety of applications in interdisciplinary topics.
Several of these domains have a strong connection with both theories and problems
of linear and nonlinear optimization. Therefore, it is hoped that this collective
effort will be particularly useful to researchers who are focusing on applications
of theories and methods of the above-mentioned subjects for optimization. Overall,
the works published within this book will be of particular value for both theoretical
and applicable interdisciplinary research.

We would like to express our sincere thanks to the contributing authors of the
book chapters. We would also like to warmly thank the staff at Springer for their
valuable assistance throughout the preparation of this book.

Vari Attikis, Greece Nicholas J. Daras
Athens, Greece Themistocles M. Rassias
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Rearrangements, L-Superadditivity
and Jensen-Type Inequalities

Shoshana Abramovich

Abstract We deal here with the minimum and the maximum of

n∑

i=1

F (a2i−1, a2i ) , (a) ∈ R
2n

and of

n∑

i=1

F (ai, ai+1) , an+1 = a1, (a) ∈ R
n

obtained by using rearrangement techniques. The results depend on the arrangement
of (a) and are used in proving Jensen-type inequalities.

1 Introduction

We deal here with the minimum and the maximum of
∑n
i=1 F (a2i−1, a2i ) , (a) ∈

R
2n and

∑n
i=1 F (ai, ai+1) ,where an+1 = a1, (a) ∈ R

n when F (x, y), (x, y) ∈ R
2

is L-superadditive function. These extrema are obtained by using rearrangement
techniques. The results are used in proving Jensen-type inequalities.

In [5], the authors prove the following theorem:

Theorem A ([5, Lemma2]) Let yi ∈ R+, i = 1, . . . , 2n. Then, for t > 0, the
sum

∑n
i=1 ln (y2i−1y2i + t) gets its maximum value when (y) = (y1, . . . , y2n) is

arranged in a decreasing order.

S. Abramovich (�)
Department of Mathematics, University of Haifa, Haifa, Israel

© Springer Nature Switzerland AG 2022
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2 S. Abramovich

A generalization of this result is as follows:

Theorem B ([1, Theorem 2]) Let (a) = (a1, . . . , am) and (y) = (y1, . . . , y2n) be
sets of non-negative numbers, where (y) is given except its arrangements. Then,∑n
i=1 ln

[
(y2i−1y2i )

m + a1 (y2i−1y2i )
m−1 + . . .+ am

]
attains its maximum when

(y) is arranged in a decreasing order.

Definition 1 ([8, Page 150]) A real-valued function F defined on R
2 is said to be

L-superadditive if it satisfies the condition that

F (x + α, y)− F (x, y) is increasing in y for all x and all α > 0.

Corollary 1 ([7]) Let F have second partial derivatives. Then, ∂
∂y
F (x, y) is

increasing in x, which is equivalent to ∂2

∂x∂y
F (x, y) ≥ 0, if and only if F is L-

superadditive function.

For clarity, R+ and R++ are [0,∞) and (0,∞), respectively.
In the sequel, we show that the following arrangements of a given set of real

numbers have a role in getting our extrema.

Definition 2 For any (x) = (x1, . . . , xn) ∈ R
n, let

x[1] ≥ . . . ≥ x[n]

denote the terms of (x) in decreasing order, and let

(
x↓
) = (

x[1] . . . x[n]
)

denote the decreasing rearrangement of (x).
Similarly, let

x(1) ≤ . . . ≤ x(n)
denote the terms of (x) in increasing order, and let

(
x↑
) = (

x(1) . . . x(n)
)

denote the increasing rearrangement of (x).

Definition 3 ([4, 6]) An ordered set (x) = (x1, . . . , xn) of n real numbers is
arranged in symmetrical decreasing order if

x1 ≤ xn ≤ x2 ≤ . . . ≤ x[(n+2/2)] (1)
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or if

xn ≤ x1 ≤ xn−1 ≤ . . . ≤ x[(n+1/2)]. (2)

Definition 4 ([4, 6]) A circular rearrangement of an ordered set (x) is a cyclic
rearrangement of (x) or a cyclic rearrangement followed by inversion. For example,
the circular rearrangements of the ordered set (1, 2, 3, 4) are the sets

(1, 2, 3, 4) , (2, 3, 4, 1) , (3, 4, 1, 2) , (4, 1, 2, 3) ,

(4, 3, 2, 1) , (1, 4, 3, 2) , (2, 1, 4, 3) , (3, 2, 1, 4) .

Definition 5 ([4, 6]) A set (x) is arranged in circular symmetrical order if one of
its circular rearrangements is symmetrically decreasing.

Definition 6 ([4]) An ordered set (x) = (x1, . . . , xn) of n real numbers is arranged
in an alternating order if

x1 ≤ xn−1 ≤ x3 ≤ xn−3 ≤ . . . ≤ x[ n+1
2

] ≤ . . . ≤ x4 ≤ xn−2 ≤ x2 ≤ xn, (3)

or if

xn ≤ x2 ≤ xn−2 ≤ x4 ≤ . . . ≤ x[ n+1
2

] ≤ . . . ≤ xn−3 ≤ x3 ≤ xn−1 ≤ x1. (4)

Definition 7 ([4]) A set (x) is arranged in a circular alternating order if one of
its circular rearrangements is arranged in an alternating order.

We denote in the sequel
(
x↑
) = (

x(1) . . . x(n)
)
,
(
x↓
) = (

x[1] . . . x[n]
)
, (̃x) =

(̃x1, x̃2, . . . , x̃n) and (̂x) = (̂x1, x̂2, . . . , x̂n) to be the increasing order, the decreas-
ing order, the circular alternating order and the circular symmetrical order of a given
set (x) ∈ R

n, respectively.

2 L-Superadditivity Applications to Rearrangements

We extend Theorems A and B as follows:

Theorem 1 Let F (u, v) be a real function symmetric in u and v defined on α <
u, v < β, −∞ ≤ α < β ≤ ∞, and assume that

G(u, v,w) = F (u,w)− F (u, v) , α < u, v,w < β, (5)

is increasing in u for w ≥ v, that is, F is L-superadditive function. Then, for any
set (x) =(x1, x2, . . . , x2n−1, x2n), α < xi < β, i = 1, . . . , 2n, given except its
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arrangement, the inequalities

n∑

i=1

F
(
x(i), x[i]

) =
n∑

i=1

F
(
x(i), x(2n−i+1)

)
(6)

≤
n∑

i=1

F (x2i−1, x2i )

≤
n∑

i=1

F
(
x(2i−1), x(2i)

) =
n∑

i=1

F
(
x[2i−1], x[2i]

)

hold when
(
x↑
)
=
(
x(1), x(2), . . . , x(2n−1), x(2n)

)
is the increasing rearrangement

of (x) =(x1, x2, . . . , x2n−1, x2n), and
(
x↓
) = (

x[1] . . . x[2n]
)
is the decreasing

rearrangement of (x).

Proof We first prove that the minimum of
∑n
i=1 F (x2i−1, x2i ) is obtained when

x2i−1 = x(i), i = 1, . . . , n and x2i = x(2n−i+1), i = 1, . . . , n.
We may assume that x1 = x(1). If x2 	= x(2n), and x(2n) appears as x2j−1 or x2j ,

we may assume that x2j = x(2n) because of the symmetry of F (u, v). We now rear-

range (x) = (x1, x2, . . . , x2n−1, x2n) and get
(

x
′′) =

(
x
′′
1 , x

′′
2 , . . . , x

′′
2n−1, x

′′
2n

)
=

(
x(1), x(2n), . . . , x2j−1, x2, x2j+1, x2j+2, . . . , x2n

)
. We exchange here only the loca-

tions of x2 with x2j = x(2n) and compute the difference

n∑

i=1

F (x2i−1, x2i )−
n∑

i=1

F
(
x
′′
2i−1, x

′′
2i

)
(7)

= F (
x(1), x2

)+ F (
x2j−1, x(2n)

)− [
F
(
x(1), x(2n)

)+ F (
x2j−1, x2

)]

= F (
x2j−1, x(2n)

)− F (
x2j−1, x2

)− [
F
(
x(1), x(2n)

)− F (
x(1), x2

)]
.

As x2j−1 ≥ x(1) and x(2n) ≥ x2, we get by using the conditions of the theorem on
G(u, v,w) that

F
(
x2j−1, x(2n)

)− F (
x2j−1, x2

) ≥ [
F
(
x(1), x(2n)

)− F (
x(1), x2

)]
. (8)

From (7) and (8), we get that

n∑

i=1

F (x2i−1, x2i ) ≥
n∑

i=1

F
(
x
′′
2i−1, x

′′
2i

)
.

As a result, we get that the two terms x(1) and x(2n) appear as F
(
x(1), x(2n)

)
in

∑n
i=1 F

(
x
′′
2i−1, x

′′
2i

)
without increasing the sum

∑n
i=1 F (x2i−1, x2i ). We continue

now with the other 2n− 2 terms in
(

x
′′)

and by the same procedure bring x(2) and
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x(2n−1) next to each other in F . After at most n steps, we get the left-hand side of
inequalities of (6).

To get the maximum of
∑n
i=1 F (x2i−1, x2i ), we use the same procedure as in

the proof of its minimum.
Without loss of generality, we may assume that the minimal term in (x) is

x1 = x(1). If x2 	= x(2), but x2j = x(2), we create a new rearrangement
(

x
′)

=
(
x
′
1, x

′
2, . . . , x

′
2n−1, x

′
2n

)
in which x

′
2 = x(2) = x2j , and x

′
2j = x2, and all other

terms are as in (x).
We compute now the difference

n∑

i=1

F
(
x
′
2i−1, x

′
2i

)
−

n∑

i=1

F (x2i−1, x2i ) (9)

= F (
x(1), x(2)

)+ F (
x2j−1, x2

)− [
F
(
x(1), x2

)+ F (
x2j−1, x(2)

)]

= F (
x2j−1, x2

)− F (
x2j−1, x(2)

)− [
F
(
x(1), x2

)− F (
x(1), x(2)

)]
.

As it is given in (5) that G(u, v,w) is increasing in u when w ≥ v and as x2j−1 ≥
x(1) and x2 ≥ x(2), we get that

F
(
x2j−1, x2

)− F (
x2j−1, x(2)

)− [
F
(
x(1), x2

)− F (
x(1), x(2)

)] ≥ 0. (10)

From (9) and (10), we obtain that

n∑

i=1

F
(
x
′
2i−1, x

′
2i

)
−

n∑

i=1

F (x2i−1, x2i ) ≥ 0,

which means that the two smallest terms x(1) and x(2) appear as F
(
x(1), x(2)

)
in

∑n
i=1 F

(
x
′
2i−1, x

′
2i

)
without decreasing

∑n
i=1 F (x2i−1, x2i ).

Repeating now the procedure by bringing the two minimal terms x(3) and x(4) of
the remaining 2n− 2 xi th to be in the same F . After at most n similar steps, we get
the right-hand side of inequalities of (6).

This completes the proof of the theorem.

It is easy to see that the following functions satisfy Theorem 1.

Example 1 Let F (u, v) = 1
uv+1 , then according to Theorem 1, we get by simple

computations that

n∑

i=1

1

x(i)x(2n+1−i) + 1
≤

n∑

i=1

1

x2i−1x2i + 1
≤

n∑

i=1

1

x(2i−1)x(2i) + 1

when (x) ≥ (1).
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Example 2 Let f : R+ → R+ be increasing and convex function. Then,
F (u, v) = f (uv) satisfies Theorem 1.

Remark 1 Theorems A and B are special cases of the right-hand side of (6). Also,
in [10], the author shows that for L-superadditive function F the right-hand side of
(6) can be derived from [7].

Lately, Theorems 2 and 3 were proved in [4]. However, it was proved earlier in
[1] that the maximum of

∑n
i=1 F (xi, xi+1) , xn+1 = x1, is attained when (x) is

arranged in a circular symmetrical order (which generalizes a theorem in [6], there
on f (|x − y|) for concave decreasing f ). The proof uses the induction procedure.
It relies on the fact that if the n numbers (x1, x2, . . . , xn−1, xn) satisfy (1), then the
n− 1 numbers (x2, . . . , xn−1, xn) satisfy (2).

The arrangement of
∑n
i=1 F (xi, xi+1) , xn+1 = x1, for which its minimum

value is attained is stated in Theorem 2 and proved in [4, Theorem 1]. A brief
outline of this proof appears also in [2]. The proof uses the induction procedure.
The validity of the minimum value is assumed for the set of n − 2 numbers, and
it is shown that this implies its validity for the set of n numbers. This relies on the
fact that if the n numbers (x1, x2, . . . , xn−1, xn) satisfy (3), then the n− 2 numbers
(x2, . . . , xn−1) satisfy (4).

Theorem 2 ([4, Theorem 1]) Let F (u, v) be differentiable and symmetric real
function in u and v defined on α ≤ u, v,w ≤ β, and assume that

∂F (v, u)

∂v
≤ ∂F (v,w)

∂v

for u ≤ min (w, v).
Then, for any set (x) = (x1, x2, . . . , xn) , α ≤ xi ≤ β, i = 1, . . . , n, given except

its arrangements, the sum

n∑

i=1

F (xi, xi+1) , xn+1 = x1,

is maximal if (x) is arranged in a circular symmetrical order and minimal if (x) is
arranged in the circular alternating order as defined above.

Theorem 3 ([4, Theorem 2]) Let F = F (u, v) be a real function defined on α ≤
u, v ≤ β, which is symmetric in u and v. Then,

∑n
i=1 F (xi, xi+1) , where xn+1 =

x1, is maximal if (x) is arranged in a circular symmetrical order and minimal if (x)
is arranged in the circular alternating order in each of the following cases:

Case (a) F (x, y) = f (x + y), where f is convex on R+,
Case (b) F (x, y) = f (|x − y|) , where f is concave and decreasing on R+.
Case (c) F (x, y) = f ( x+y

2

)+f (∣∣ x−y
2

∣∣) , where f ′ is convex and differentiable
on R+ and f

′
(0) = 0,
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Case (d) F (x, y) = f
( x+y

2

) + C × ( x−y
2

)2
, where the constant C satisfies

C ≤ ϕ
′ ( xm+xj

2

)
, with 0 ≤ xm ≤ xj ≤ xi, i 	= m, j, i = 1, . . . , n, and

f (x) = xϕ (x) , and ϕ is twice differentiable and convex function on 0 ≤ x ≤ b.
Case (e) F (x, y) = f

( x+y
2

) + ϕ ′ ( x+y2

) ( x−y
2

)2
, where ϕ and ϕ

′
are twice

differentiable and convex on R+ and f (x) = xϕ (x).
Also, it has been proved lately in [2] that F (x, y) = xϕ ( y

x

)+yϕ
(
x
y

)
when ϕ is

concave on R+ and lim
x→0+

(
xϕ′ (x)− ϕ (x)) = 0 and in particular when F (x, y) =

xsyt + xtys , x, y, t, s ∈ R+ satisfy Theorem 2.

Theorem 4 ([2, Theorem 2.7]) If ϕ is a concave differentiable function on R+ and
lim
x→0+

(
xϕ′ (x)− ϕ (x)) = 0. Then, the inequalities

n∑

i=1

(
x̃iϕ

(
x̃i+1

x̃i

)
+ x̃i+1ϕ

(
x̃i

x̃i+1

))
(11)

≤
n∑

i=1

(
xiϕ

(
xi+1

xi

)
+ xi+1ϕ

(
xi

xi+1

))

≤
n∑

i=1

(
x̂iϕ

(
x̂i+1

x̂i

)
+ x̂i+1ϕ

(
x̂i

x̂i+1

))

hold where x̃n+1 = x̃1, xn+1 = x1 and x̂n+1 = x̂1.
If ϕ is a convex differentiable function on R+ and lim

x→0+

(
xϕ′ (x)− ϕ (x)) = 0,

then the reverse of inequalities of (11) holds.

Corollary 2 ([2, Theorem 2.8]) Let F (x, y) = xsyt + xtys .
(a) If x, y, s, t ∈ R+, then for (x) ∈ R

n+, the inequalities

n∑

i=1

(
x̃ti x̃

s
i+1 + x̃ti+1x̃

s
i

)
(12)

≤
n∑

i=1

(
xsi x

t
i+1 + xti+1x

s
i

)

≤
n∑

i=1

(
x̂ti x̂

s
i+1 + x̂ti+1x̂

s
i

)
,

hold, where x̃n+1 = x̃1, xn+1 = x1, x̂n+1 = x̂1, and (̃x) is the circular
alternating order of (x) and (̂x) is the circular symmetrical order of (x). In
particular, (12) holds when t + s = 1, 0 ≤ t ≤ 1.
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(b) If s ≤ 0, t ≥ 0, the reverse of (12) holds for (x) ∈ R
n++. In particular, the

reverse of (12) holds when t + s = 1, t ≥ 1.

Remark 2 It is easy to verify that in addition to Examples 1 and 2, the functions
F (x, y), which appear in Theorem 3 cases (a), (d) and (e), Theorem 4 and Corollary

2, are twice differentiable L-superadditive functions satisfying ∂2F(x,y)
∂x∂y

≥ 0, and
therefore also Theorem 1 holds.

3 Jensen-Type Inequalities and Rearrangements

Using the results of Sect. 2, we get in this section Jensen-type inequalities. The
methods employed here can be obtained similarly to those derived in [4, Section 3]
and [2] using Theorem 3 [4, Theorem 2].

We demonstrate and prove two refinements of Jensen-type inequalities and quote
one from [4]. For more inequalities related to Theorem 2, see [4, Section 3] and [2,
Theorem 2.11].

We first refine the Jensen inequality for convex function f : I → R, I ⊂ R,
which reads

n∑

i=1

aif (xi) ≥ f
(
n∑

i=1

aixi

)

for all ai ≥ 0, xi ∈ I , i = 1, . . . , n,
∑n
i=1 ai = 1. The refinement is obtained by

using Theorem 1 for the L-superadditive function F (x, y) = f (x + y) when f is
a convex function.

Theorem 5 Let f be a convex function on an interval, and let (x1, . . . , x2n) be a
given 2n real numbers. Then,

2n∑

i=1

f (xi)

2n
≥ 1

n

n∑

i=1

f

(
x(2i−1) + x(2i)

2

)
(13)

≥ 1

n

n∑

i=1

f

(
x2i−1 + x2i

2

)
≥ 1

n

n∑

i=1

f

(
x(i) + x(2n+1−i)

2

)

≥ f
(∑2n

i=1 xi

2n

)
.

Proof From the identity
∑2n
i=1

f (xi )
2n = 1

n

∑n
i=1

f (x(2i−1))+f (x(2i))
2 , as a result

of Jensen inequality, we get the first inequality in (13), and because of the L-
superadditivity of F (x, y) = f (x + y), we get the second and third inequalities
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of Equation (13). The last inequality follows again from the Jensen inequality for
convex functions.

We quote now some definitions and lemmas that we need for the theorems
presented below.

The following is a definition of the Jensen-type inequality for strongly convex
functions with modulus C.

Definition 8 ([9]) Let n ∈ N. The function f : I → R, I ⊂ R, is called strongly
convex with modulus C if for all xi ∈ I , and all ai ≥ 0, i = 1, . . . , n, such that∑n
i=1 ai = 1, the Jensen-type inequality

n∑

i=1

aif (xi)− f (x) ≥ C
n∑

i=1

ai (xi − x)2 ,

where C ≥ 0 and x = ∑n
i=1 aixi , holds.

Definition 9 ([3]) A real-valued function ψ1 defined on an interval [a, b) with 0 ≤
a < b ≤ ∞ is called 1-quasiconvex if it can be represented as the product of a
convex function ϕ and the function p (x) = x.

Corollary 3 A 1-quasiconvex function ψ1, as defined in Definition 9, satisfies the
inequalities

n∑

i=1

aiψ1 (xi) ≥ ψ1 (x)+ ϕ ′ (x)
n∑

i=1

ai (xi − x)2 (14)

≥ ψ1 (x)+ C
n∑

i=1

ai (xi − x)2 ,

where C ≤ minϕ
′
(xi), ai ≥ 0, i = 1, . . . , n,

∑n
i=1 ai = 1 and x =∑n

i=1 aixi .
If, in addition, ϕ is increasing, then ψ1 is also a strongly convex function.

Theorems 6, 7 and 8 show the use of rearrangements for refinements of Jensen-
type inequality for 1-quasiconvex functions by using Corollary 1 and Theorem 1 for
the function

F (x, y) = f
(
x + y

2

)
+ ϕ ′

(
x + y

2

)(
x − y

2

)2

,

when f (x) = xϕ (x) and where ϕ and ϕ′ are convex. In this case, F (x, y) is L-
superadditive and therefore satisfies Theorem 1 as well as Theorem 2.

Theorem 6 Let xi , i = 1, . . . , 2n, n ∈ N, be a sequence of real non-negative
numbers, and let ϕ and ϕ

′
be convex on R+ and f (x) = xϕ (x), x ∈ R+. Then,
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denoting x = 1
2n

∑2n
j=1 xj , it yields that

(15)

2n∑

i=1

f (xi)− (2n− 1) f (x)− (2n− 1) ϕ
′
(x)

2n∑

i=1

1

2n
(xi − x)2

≥ 1

n

n∑

i=1

(
f

(
x(2i−1) + x(2i)

2

)
+ ϕ ′

(
x(2i−1) + x(2i)

2

)(
x(2i) − x(2i−1)

2

)2
)

≥ 1

n

n∑

i=1

(
f

(
x2i−1 + x2i

2

)
+ ϕ ′

(
x2i−1 + x2i

2

)(
x2i − x2i−1

2

)2
)

≥ 1

n

n∑

i=1

(
f

(
x(i) + x(2n+1−i)

2

)
+ ϕ ′

(
x(i)+ x(2n+1−i)

2

)(
x(2n+1−i)− x(i)

2

)2
)
.

If also

(16)

1

n

n∑

i=1

(
f

(
x(2i−1) + x(2i)

2

)
+ ϕ ′

(
x(2i−1) + x(2i)

2

)(
x(2i) − x(2i−1)

2

)2
)

≥ f (x)+ 1

2n
ϕ
′
(x)

2n∑

i=1

(xi − x)2 ,

then

2n∑

i=1

f (xi)− 2nf (x)− ϕ ′ (x)
2n∑

i=1

(xi − x)2 (17)

≥ 1

n

n∑

i=1

(
f

(
x(2i−1) + x(2i)

2

)
+ ϕ ′

(
x(2i−1) + x(2i)

2

)(
x(2i) − x(2i−1)

2

)2
)

−f (x)− ϕ ′ (x)
2n∑

i=1

1

2n
(xi − x)2 ≥ 0

refines Inequality (14).
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Proof

2n∑

i=1

f (xi) =
2n∑

i=1

f
(
x(i)

)
(18)

= 1

2n

2n∑

i=1

f
(
x(i)

)+ 2n− 1

2n

2n∑

i=1

f (xi)

= 1

n

n∑

i=1

f
(
x(2i−1)

)+ f (
x(2i)

)

2
+ 2n− 1

2n

2n∑

i=1

f (xi)

≥ 1

n

n∑

i=1

(
f

(
x(2i−1) + x(2i)

2

)
+ ϕ ′

(
x(2i−1) + x(2i)

2

)

×
(
x(2i) − x(2i−1)

2

)2
)

+ 2n− 1

2n

2n∑

i=1

f (xi)

≥ 1

n

n∑

i=1

(
f

(
x2i−1 + x2i

2

)
+ ϕ ′

(
x2i−1 + x2i

2

)(
x2i − x2i−1

2

)2
)

+ 2n− 1

2n

2n∑

i=1

f (xi)

≥ 1

n

n∑

i=1

(
f

(
x(i) + x(2n+1−i)

2

)
+ ϕ ′

(
x(i) + x(2n+1−i)

2

)

×
(
x(2n+1−i) − x(i)

2

)2
)

+ 2n− 1

2n

2n∑

i=1

f (xi) .

Indeed, Inequality (18) follows from Inequality (14) for ai = 1
2 , i = 1, 2.



12 S. Abramovich

Using again Inequality (14), this time for ai = 1
2n , i = 1, . . . , 2n, we get that the

inequalities

2n∑

i=1

f (xi)

≥ 1

n

n∑

i=1

(
f

(
x(2i−1) + x(2i)

2

)
+ ϕ ′

(
x(2i−1) + x(2i)

2

)(
x(2i) − x(2i−1)

2

)2
)

+2n− 1

2n

2n∑

i=1

f (xi)

≥ 1

n

n∑

i=1

(
f

(
x(2i−1) + x(2i)

2

)
+ ϕ ′

(
x(2i−1) + x(2i)

2

)(
x(2i) − x(2i−1)

2

)2
)

+ (2n− 1)
2n∑

i=1

(
f (x)+ ϕ ′ (x) 1

2n
(xi − x)2

)

≥ 1

n

n∑

i=1

(
f

(
x2i−1 + x2i

2

)
+ ϕ ′

(
x2i−1 + x2i

2

)(
x2i − x2i−1

2

)2
)

+ (2n− 1)
2n∑

i=1

(
f (x)+ ϕ ′ (x) 1

2n
(xi − x)2

)

≥ 1

n

n∑

i=1

(
f

(
x(i) + x(2n+1−i)

2

)
+ ϕ ′

(
x(i) + x(2n+1−i)

2

)(
x(2n+1−i) − x(i)

2

)2
)

+ (2n− 1)
2n∑

i=1

(
f (x)+ ϕ ′ (x) 1

2n
(xi − x)2

)

hold, from which Inequality (15) follows.
The first inequality in (15) can be rewritten as Inequality (17). Therefore, when

(16) holds, the inequality (17) refines (14) for ai = 1
2n , i = 1, . . . , 2n. This

completes the proof of the theorem.

Example 3 shows a case where (16) holds, and therefore in this case, (17) is a
refinement of (14):

Example 3 F (x, y) = f ( x+y
2

) + ϕ ′ ( x+y2

) ( x−y
2

)2
satisfies Theorem 3 Case (e)

for f (x) = x4 = xϕ (x), where ϕ (x) = x3. It is easy to check that for xi = i,
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i = 1, 2, 3, 4,

1

2

2∑

i=1

(
f

(
x(2i−1) + x(2i)

2

)
+ ϕ ′

(
x(2i−1) + x(2i)

2

)(
x(2i) − x(2i−1)

2

)2
)

≥ f (x)+ 1

4
ϕ
′
(x)

4∑

i=1

(xi − x)2 ,

and therefore (17) is a refinement of (14) in this case.

Similarly to Theorem 6, but this time using the L-superadditivity of F (x, y) =
f
( x+y

2

)+ ϕ ′ ( x+y2

) ( x−y
2

)2
as appears in Theorem 3 case (e), we get the following

theorem:

Theorem 7 ([4, Theorem 5]) Let xi , i = 1, . . . , n, n ∈ N, be a sequence of real
non-negative numbers, and let ϕ and ϕ

′
, be convex on R+ where f (x) = xϕ (x),

x ∈ R+ and x = 1
n

∑n
j=1 xj . Then,

n∑

i=1

f (xi)− (n− 1) f (x)− (n− 1) ϕ
′
(x)

n∑

i=1

1

n
(xi − x)2

≥ 1

n

n∑

i=1

(
f

(
x̂i + x̂i+1

2

)
+ ϕ ′

(
x̂i + x̂i+1

2

)(
x̂i − x̂i+1

2

)2
)

≥ 1

n

n∑

i=1

(
f

(
xi + xi+1

2

)
+ ϕ ′

(
xi + xi+1

2

)(
xi − xi+1

2

)2
)

≥ 1

n

n∑

i=1

(
f

(
x̃i + x̃i+1

2

)
+ ϕ ′

(
x̃i + x̃i+1

2

)(
x̃i − x̃i+1

2

)2
)
,

where x̃n+1 = x̃1, xn+1 = x1, x̂n+1 = x̂1.
If also

1

n

n∑

i=1

(
f

(
x̂i + x̂i+1

2

)
+ ϕ ′

(
x̂i + x̂i+1

2

)(
x̂i − x̂i+1

2

)2
)

≥ f (x)+ 1

n
ϕ
′
(x)

n∑

i=1

(xi − x)2 ,



14 S. Abramovich

then

n∑

i=1

f (xi)− nf (x)− ϕ ′ (x)
n∑

i=1

(xi − x)2

≥ 1

n

n∑

i=1

(
f

(
x̂i + x̂i+1

2

)
+ ϕ ′

(
x̂i + x̂i+1

2

)(
x̂i − x̂i+1

2

)2
)

−f (x)− ϕ ′ (x)
n∑

i=1

1

n
(xi − x)2 ≥ 0.

Theorem 8 (Using [4, Theorem 2, Case (d)]) Let xi , i = 1, . . . , n, n ∈ N, be a
sequence of real non-negative numbers, and let ϕ be convex on x ≥ 0 and f (x) =
xϕ (x). Let C ≤ minϕ

′
(xi), i = 1, . . . , n. Then, the 1-quasiconvex function f

(which is strongly convex when C ≥ 0) satisfies

n∑

i=1

f (xi)− (n− 1) f

(∑n
j=1 xj

n

)

−n− 1

n
ϕ
′
(∑n

j=1 xj

n

)
n∑

i=1

(
xi −

∑n
j=1 xj

n

)2

≥ 1

n

n∑

i=1

(
f

(
x̂i + x̂i+1

2

)
+ C ×

(
x̂i − x̂i+1

2

)2
)

≥ 1

n

n∑

i=1

(
f

(
xi + xi+1

2

)
+ C ×

(
xi − xi+1

2

)2
)

≥ 1

n

n∑

i=1

(
f

(
x̃i + x̃i+1

2

)
+ C ×

(
x̃i − x̃i+1

2

)2
)
,

where x̃n+1 = x̃1, xn+1 = x1, x̂n+1 = x̂1.
If, in addition,

1

n

n∑

i=1

(
f

(
x̂i + x̂i+1

2

)
+ C ×

(
x̂i − x̂i+1

2

)2
)

−
⎛

⎝f
(∑n

j=1 xj

n

)
+ C

n∑

i=1

1

n

(
xi −

∑n
j=1 xj

n

)2
⎞

⎠ ≥ 0,
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then

n∑

i=1

f (xi)− nf
(∑n

j=1 xj

n

)
− C ×

n∑

i=1

(
xi −

∑n
j=1 xj

n

)2

≥ 1

n

n∑

i=1

(
f

(
x̂i + x̂i+1

2

)
+ C ×

(
x̂i − x̂i+1

2

)2
)

−
⎛

⎝f
(∑n

j=1 xj

n

)
+ C

n∑

i=1

1

n

(
xi −

∑n
j=1 xj

n

)2
⎞

⎠ .

References

1. S. Abramovich, The increase of sums and products dependent on (y1, . . . , yn) by rearrange-
ment of this set. Israel J. Math. 5, 177–181 (1967)

2. S. Abramovich, Extended Heinz and Jensen type inequalities and Rearrangements, Operator
Theory, Advances and Applications, 282, 1–14 (2021)

3. S. Abramovich, L.-E. Persson, Fejer and Hermite-Hadamard type inequalities for N-
quasiconvex functions. Math. Notes 102(5), 599–609 (2017)

4. S. Abramovich, L-E. Persson, Rearrangements and Jensen type inequalities related to convex-
ity, superquadracity, strong convexity and 1-quasiconvexity. J. Math. Inequal 14(3), 641–659
(2020)

5. R.J. Daffin, A.C. Shaeffer, Refinement of an inequality of the brothers Markoff. Trans. Amer.
Math. Soc. 50, 517–528 (1941)

6. A.L. Lehman, Results on rearrangements. Israel J. Math. 1(1), 22–28 (1963)
7. G.G. Lorentz, An inequality for rearrangement. Amer. Math. Monthly 60, 176–179 (1953)
8. A.W. Marshal, I. Olkin, Inequalities: Theory of Majorization and Its Applications (Academic,

Cambridge, 1979)
9. C.P. Niculescu, L.E. Persson, Convex Functions and Their Applications: A Contemporary

Approach. CMS Books in Mathematics, 2nd edn. (Springer, Berlin, 2018)
10. Y. Rinott, Multivariate majorization and rearrangement inequalities with some applications to

probability and statistics. Israel J. Math. 15, 60–77 (1973)



Approximate Generalized Jensen
Mappings in 2-Banach Spaces

Muaadh Almahalebi, Themistocles M. Rassias, Sadeq Al-Ali,
and Mustapha E. Hryrou

Abstract Our aim is to investigate the generalized Hyers-Ulam-Rassias stability
for the following general Jensen functional equation:

n−1∑

k=0

f (x + bky) = nf (x),

where n ∈ N2, bk = exp( 2iπk
n
) for 0 ≤ k ≤ n − 1, in 2-Banach spaces by

using a new version of Brzdȩk’s fixed point theorem. In addition, we prove some
hyperstability results for the considered equation and the general inhomogeneous
Jensen equation

n−1∑

k=0

f (x + bky) = nf (x)+G(x, y).

1 Introduction and Preliminaries

In the middle of the 1960s, S. Gähler [10, 11] introduced the basic concepts of linear
2-normed spaces. In the following definitions and lemmas, we present some facts
concerning the linear 2-normed spaces.
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Definition 1 Let X be a real linear space with dimX > 1 and ‖., .‖ : X × X −→
[0,∞) be a function satisfying the following properties:

1. ‖x, y‖ = 0 if and only if x and y are linearly dependent,
2. ‖x, y‖ = ‖y, x‖,
3. ‖λx, y‖ = |λ|‖x, y‖,
4. ‖x, y + z‖ ≤ ‖x, y‖ + ‖x, z‖,

for all x, y, z ∈ X and λ ∈ R. Then the function ‖., .‖ is called a 2-norm on X, and
the pair (X, ‖., .‖) is called a linear 2-normed space. Sometimes, the condition (4)
is called the triangle inequality.

Example 1 For x = (x1, x2), y = (y1, y2) ∈ X = R
2, the Euclidean 2-norm

‖x, y‖R2 is defined by

‖x, y‖R2 = |x1y2 − x2y1| .

Lemma 1 Let (X, ‖., .‖) be a 2-normed space. If x ∈ X and ‖x, y‖ = 0, for all
y ∈ X, then x = 0.

Definition 2 A sequence {xk} in a 2-normed space X is called a convergent
sequence if there is an x ∈ X such that

lim
k→∞‖xk − x, y‖ = 0,

for all y ∈ X. If {xk} converges to x, write xk −→ x with k −→ ∞, and call x the
limit of {xk}. In this case, we also write limk→∞ xk = x.

Definition 3 A sequence {xk} in a 2-normed space X is said to be a Cauchy
sequence with respect to the 2-norm if

lim
k,l→∞‖xk − xl, y‖ = 0,

for all y ∈ X. If every Cauchy sequence in X converges to some x ∈ X, then X
is said to be complete with respect to the 2-norm. Any complete 2-normed space is
said to be a 2-Banach space.

Now, we state the following results as lemma (see [15] for the details).

Lemma 2 Let X be a 2-normed space. Then,

1.
∣∣‖x, z‖ − ‖y, z‖∣∣ ≤ ‖x − y, z‖ for all x, y, z ∈ X,

2. if ‖x, z‖ = 0 for all z ∈ X, then x = 0,
3. for a convergent sequence xn in X,

lim
n−→∞‖xn, z‖ =

∥∥∥ lim
n−→∞ xn, z

∥∥∥

for all z ∈ X.
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The stability problem of functional equations originated from a question of S.
M. Ulam [18] concerning the stability of group homomorphisms. D. H. Hyers [13]
gave a first affirmative partial answer to the question of Ulam for Banach spaces.
Hyers’ theorem was generalized by T. Aoki [2] for additive mappings and by Th. M.
Rassias [16] for linear mappings by considering an unbounded Cauchy difference.
A generalization of the Th. M. Rassias theorem was obtained by Găvruţa [12] by
replacing the unbounded Cauchy difference by a general control function in the
spirit of Th. M. Rassias’ approach.

Throughout this chapter, we will denote the set of natural numbers by N, the set
of real numbers by R with R+ := [0 , ∞), and the set of complex numbers by C.
By Nm, m ∈ N, we will denote the set of all natural numbers greater than or equal
to m.

Let R+ = [0,∞) the set of nonnegative real numbers. We write BA to mean the
family of all functions mapping from a nonempty set A into a nonempty set B.

Definition 4 Let X be a nonempty set, (Y, d) be a metric space, ε ∈ R
Xn+ , and F1,

F2 be operators mapping from a nonempty set D ⊂ YXn into YX
n
. We say that the

operator equation

F1ϕ(x1, . . . , xn) = F2ϕ(x1, . . . , xn), (x1, . . . , xn ∈ X) (1)

is ε-hyperstable provided that every ϕ0 ∈ D which satisfies

d (F1ϕ0(x1, . . . , xn),F2ϕ0(x1, . . . , xn)) ≤ ε(x1, . . . , xn), (x1, . . . , xn ∈ X)

fulfills Eq. (1).

J. Brzdȩk et al. [5] proved the fixed point theorem for a nonlinear operator in metric
spaces and used this result to study the Hyers-Ulam stability of some functional
equations in non-Archimedean metric spaces. In this work, they also obtained the
fixed point result in arbitrary metric spaces as follows:

Theorem 1 ([5]) Let X be a nonempty set, (Y, d) be a complete metric space, and
Λ : YX → YX be a non-decreasing operator satisfying the hypothesis

lim
n→∞Λδn = 0

for every sequence {δn}n∈N in YX with

lim
n→∞ δn = 0.

Suppose that T : YX → YX is an operator satisfying the inequality

d
(
Tξ(x),Tμ(x)

) ≤ Λ(Δ(ξ, μ))(x), ξ, μ ∈ YX, x ∈ X, (2)
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where Δ : YX × YX → R
X+ is a mapping which is defined by

Δ(ξ, μ)(x) := d(ξ(x), μ(x)) ξ, μ ∈ YX, x ∈ X. (3)

If there exist functions ε : X→ R+ and ϕ : X→ Y such that

d
(
(Tϕ)(x), ϕ(x)

)
≤ ε(x) (4)

and

ε∗(x) :=
∑

n∈N0

(
Λnε

)
(x) <∞ (5)

for all x ∈ X, then the limit

lim
n→∞

(
(T nϕ)

)
(x) (6)

exists for each x ∈ X. Moreover, the function ψ ∈ YX defined by

ψ(x) := lim
n→∞

(
(T nϕ)

)
(x) (7)

is a fixed point of T with

d
(
ϕ(x), ψ(x)

) ≤ ε∗(x) (8)

for all x ∈ X.
In 2013, Brzdȩk [4] gave the fixed point result by applying Theorem 1 as follows:

Theorem 2 Let X be a nonempty set, (Y, d) a complete metric space, and
f1, . . . , fs : X→ X and L1, . . . , Ls : X→ R+ be given mappings. Let Λ : RX+ →
R
X+ be a linear operator defined by

Λδ(x) :=
s∑

i=1

Li(x)δ(fi(x)), (9)

for δ ∈ R
X+ and x ∈ X. If T : YX → YX is an operator satisfying the inequality

d
(
Tξ(x),Tμ(x)

) ≤
s∑

i=1

Li(x)d
(
ξ(fi(x)), μ(fi(x))

)
, ξ, μ ∈ YX, x ∈ X,
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and a function ε : X→ R+ and a mapping ϕ : X→ Y satisfy

d (Tϕ(x), ϕ(x)) ≤ ε(x), (x ∈ X),

ε∗(x) :=
∞∑

k=0

Λkε(x) <∞, (x ∈ X),

then for every x ∈ X, the limit

ψ(x) := lim
n→∞T nϕ(x)

exists, and the function ψ ∈ YX so defined is a unique fixed point of T with

d (ϕ(x), ψ(x)) ≤ ε∗(x), (x ∈ X).

In the following theorem, we extend the fixed point theorem (Theorem 2) in 2-
Banach spaces.

Theorem 3 Let X be a nonempty set,
(
Y, ‖·, ·‖) be a 2-Banach space, g : X → Y

be a mapping such that the set g(X) ⊆ Y contains two linearly independent vectors,
and f1, . . . , fr : X → X and L1, . . . , Lr : X → R+ be given mappings. Suppose
that T : YX → YX and Λ : RX×X+ → R

X×X+ are two operators satisfying the
conditions

∥∥Tξ(x)−Tμ(x), g(z)
∥∥ ≤

r∑

i=1

Li(x)

∥∥∥ξ
(
fi(x)

)− μ(fi(x)
)
, g(z)

∥∥∥ (10)

for all ξ, μ ∈ YX, x, z ∈ X and

Λδ(x, z) :=
r∑

i=1

Li(x)δ
(
fi(x), z

)
, δ ∈ R

X×X+ , x, z ∈ X. (11)

If there exist functions ε : X ×X→ R+ and ϕ : X→ Y such that

∥∥∥Tϕ(x)− ϕ(x), g(z)
∥∥∥ ≤ ε(x, z) (12)

and

ε∗(x, z) :=
∞∑

n=0

(
Λnε

)
(x, z) <∞ (13)
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for all x, z ∈ X, then the limit

lim
n→∞

(
(T nϕ)

)
(x) (14)

exists for each x ∈ X. Moreover, the function ψ : X→ Y defined by

ψ(x) := lim
n→∞

(
(T nϕ)

)
(x) (15)

is a fixed point of T with

∥∥ϕ(x)− ψ(x), g(z)∥∥ ≤ ε∗(x, z) (16)

for all x, z ∈ X.
There are two other versions of Theorem 3 in 2-Banach space given in [1] and

[6]. In addition, Brzdȩk et al. [7] gave important related results in generalized metric
spaces. In this chapter, we discuss the generalized Hyers-Ulam-Rassias stability
problem for the following generalization of Jensen functional equation:

n−1∑

k=0

f (x + bky) = nf (x), (17)

where n ∈ N2 and bk = exp( 2iπk
n
) for 0 ≤ k ≤ n− 1, in 2-Banach spaces by using

Theorem 3 as a basic tool. The general solution and stability of this equation and its
generalizations were studied by numerous researchers; see, for example, [3, 8, 9, 14]
and [17].

2 Main Results

Let X be a complex normed space. We will denote by Aut(X) the family of all
automorphisms of X. Moreover, for each u ∈ XX, we write ux := u(x) for x ∈ X,
and we define u′ by u′x := x − ux for x ∈ X.
The following theorem is the main result concerning the stability of the functional
equation (17).

Theorem 4 LetX be a C-normed space, Y be a 2-Banach space, ε :
(
X \ {0}

)3 →
R+, and

l(X) :=
{
u ∈ Aut(X) : u′, (u′ + bku) ∈ Aut(X),

αu := nλ(u′)+
n−1∑

k=1

λ(u′ + bku) < 1
}
	= ∅ (18)
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where

λ(u) := inf
{
t ∈ R+ : ε(ux, uy, z) ≤ tε(x, y, z), ∀x, y, z ∈ X \ {0}

}

for all u ∈ Aut(X). Assume that f : X −→ Y satisfies the inequality

∥∥∥∥∥f (x + y)− nf (x)+
n−1∑

k=1

f (x + bky) , g(z)
∥∥∥∥∥ ≤ ε(x, y, z) (19)

for all x, y, z ∈ X \ {0} such that x+bky 	= 0 for 0 < k < n−1, where g : X→ Y

is a mapping such that the set g(X) ⊆ Y contains two linearly independent vectors.
Then, for each nonempty subset U ⊂ l(X) such that

u ◦ v = v ◦ u, ∀u, v ∈ U, (20)

there exists a unique function J : X −→ Y which satisfies Eq. (17) and

‖f (x)− J (x) , g(z)‖ ≤ ε̃(x, z) x, z ∈ X \ {0}, (21)

where

ε̃(x, z) := inf
{ε(u′x, ux, z)

1− αu : u ∈ U
}
x, z ∈ X \ {0}.

Proof Write X0 := X \ {0}, and let us fix u ∈ U. Replacing x with u′x and y with
ux in (19), we get

∥∥∥∥∥f (x)− nf (u
′x)+

n−1∑

k=1

f
(
(u′ + bku)x

)
, g(z)

∥∥∥∥∥ ≤ ε(u
′x, ux, z) := εu(x, z)

(22)

for all x, z ∈ X0. We define the operators Tu : YX0 → YX0 and Λu : RX0×X0+ →
R
X0×X0+ by

Tuξ(x) := nξ(u′x)−
n−1∑

k=1

ξ
(
(u′ + bku)x

)
, (23)

Λuδ(x, z) := nδ
(
u′x, z

)+
n−1∑

k=1

δ
(
(u′ + bku)x, z

)
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for all x, z ∈ X0, ξ ∈ YX0 and δ ∈ R
X0×X0+ . Then the inequality (22) becomes

∥∥∥f (x)−Tuf (x) , g(z)
∥∥∥ ≤ εu(x, z)

for all x, z ∈ X0 and u ∈ U.
The operator Λu has the form given by (11) with s = n and fn(x) = u′x,

fi(x) = (u′ + biu)x, Ln(x) = n, Li(x) = 1, i ∈ {1, 2, . . . , n − 1} for all x ∈ X0
and u ∈ U.
Further,

∥∥∥Tuξ(x)−Tuμ(x) , g(z)
∥∥∥ =

∥∥∥nξ(u′x)−
n−1∑

k=1

ξ
(
(u′ + bku)x

)− nμ(u′x)

+
n−1∑

k=1

μ
(
(u′ + bku)x

)
, g(z)

∥∥∥

≤ n
∥∥∥ξ(u′x)− μ(u′x) , g(z)

∥∥∥

+
n−1∑

k=1

∥∥∥ξ
(
(u′ + bku)x

)− μ((u′ + bku)x
)
, g(z)

∥∥∥

for all x, z ∈ X0, u ∈ U, and ξ, μ ∈ YX0 .
Note that, in view of the definition of λ(u),

ε(ux, uy, z) ≤ λ(u)ε(x, y, z), x, y, z ∈ X0.

By mathematical induction on s ∈ N, it is easy to show that

Λsuεu(x, z) ≤ αsuε(u′x, ux, z),

for all x, z ∈ X0 and all u ∈ U, where

αu = nλ(u′)+
n−1∑

k=1

λ(u′ + bku).

Hence,

ε∗(x, z) :=
∞∑

r=0

Λruεu(x, z) ≤ ε(u′x, ux, z)
∞∑

r=0

αru =
ε(u′x, ux, z)

1− αu <∞ (24)
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for all x, z ∈ X0. According to Theorem 3, there exists a unique solution Ju : X→
Y of the equation

Ju(x) = nJu(u′x)−
n−1∑

k=1

Ju
(
(u′ + bku)x

)
(25)

for all x ∈ X0 and all u ∈ U, which is a fixed point of Tu such that

∥∥∥Ju(x)− f (x) , g(z)
∥∥∥ ≤ ε(u

′x, ux, z)
1− αu (26)

for all x ∈ X0 and all u ∈ U. Moreover,

Ju(x) = lim
r→∞Truf (x)

for all x ∈ X0 and all u ∈ U.
To prove that Ju satisfies the functional equation (17) on X0, we just prove the

following inequality:

∥∥∥T r
u f (x + y)− nT r

u f (x)+
n−1∑

k=1

T r
u f (x + bky) , g(z)

∥∥∥ ≤ αruε(x, y, z) (27)

for all r ∈ N, all u ∈ U and all x, y, z ∈ X0 such that x + bky 	= 0.
Indeed, if r = 0, then (27) is simply (19). So, take r ∈ N1, and suppose that (27)
holds for r and x, y, z ∈ X0. Then, by using (23) and the triangle inequality, we
have

∥∥∥T r+1
u f (x + y)− nT r+1

u f (x)+
n−1∑

k=1

T r+1
u f (x + bky) , g(z)

∥∥∥

=
∥∥∥∥∥nT

r
u f

(
u′(x + y)

)
+ nT r

u f
(
bku(x + y)

)
−
n−1∑

k=1

T r
u f

(
(u′ + bku)(x + y)

)

−n2T r
u f (u

′x)+ n
n−1∑

k=1

T r
u f

(
(u′ + bku)x

)

+
n−1∑

k=1

{
nTruf

(
u′(x + bky)

)
−
n−1∑

k=1

Truf
(
(u′ + bku)(x + bky)

)}
, g(z)

∥∥∥∥∥

≤ n
∥∥∥∥∥T

r
u f

(
u′(x + y)

)
− nT r

u f (u
′x)+

n−1∑

k=1

T r
u f

(
u′(x + bky)

)
, g(z)

∥∥∥∥∥
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−
n−1∑

k=1

∥∥∥T r
u f

(
u′ + bku)(x + y)

)
− nT r

u f
(
(u′ + bku)x

)

+
n−1∑

k=1

T r
u f

(
(u′ + bku)(x + bky)

)
, g(z)

∥∥∥∥∥

≤ α ru
(
nε(u′x, u′y, z)+

n−1∑

k=1

ε
(
(u′ + bku)x, (u′ + bku)y, z

))

≤ α ru
(
nλ(u′)+

n−1∑

k=1

λ(u′ + bku)
)
ε(x, y, z)

= αr+1
u ε(x, y, z).

By induction, we have shown that (27) holds for all r ∈ N, all u ∈ U, and all
x, y, z ∈ X0 such that x + bky 	= 0. Letting r →∞ in (27), we get

n−1∑

k=0

Ju(x + bky) = nJu(x)

for all x, y ∈ X0 such that x + bky 	= 0 for 0 ≤ k ≤ n − 1. Thus, we have proved
that for every u ∈ U, there exists a function Ju : X0 → Y which is a solution of the
functional equation (17) on X0 and satisfies

∥∥∥f (x)− Ju(x) , g(z)
∥∥∥ ≤ ε(u

′x, ux, z)
1− αu

for all x, z ∈ X0. Next, we prove that each solution J : X → Y of (17) satisfying
the inequality

‖f (x)− J (x) , g(z)‖ ≤ L ε(v′x, vx, z), x, z ∈ X0 (28)

with some L > 0 and v ∈ U is equal to Jw for eachw ∈ U. So, fix v,w ∈ U, L > 0
and J : X→ Y a solution of (17) satisfying (28). Note that, by (26) and (28), there
is L0 > 0 such that

‖J (x)− Jw(x) , g(z)‖ ≤ ‖J (x)− f (x) , g(z)‖ + ‖f (x)− Jw(x) , g(z)‖

≤ L0
(
ε(v′x, vx, z)+ ε(w′x,wx, z)) ·

∞∑

r=0

αrw (29)

for all x, z ∈ X0. In other side, J and Jw are solutions of (25) because they satisfy
(17).
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We show that, for each j ∈ N,

‖J (x)− Jw(x) , g(z)‖

≤ L0
(
ε(v′x, vx, z)+ ε(w′x,wx, z)) ·

∞∑

r=j
αrw, (x, z ∈ X0). (30)

The case j = 0 is exactly (29). So fix γ ∈ N0, and assume that (30) holds for
j = γ . Then, in view of definition of λ(u),

∥∥J (x)− Jw(x) , g(z)
∥∥ =

∥∥∥nJ (w′x)−
n−1∑

k=1

J
(
(w′ + bkw)x

)

−nJw(w′x)+
n−1∑

k=1

Jw
(
(w′ + bkw)x

)
, g(z)

∥∥∥

≤ n∥∥J (w′x)− Jw(w′x) , g(z)
∥∥

+
n−1∑

k=1

∥∥J
(
(w′ + bkw)x

)− Jw
(
(w′ + bkw)x

)
, g(z)

∥∥

≤ n L0
(
ε(v′w′x, vw′x, z)+ ε(w′w′x,ww′x, z)) ·

∞∑

r=γ
αrw

+L0

n−1∑

k=1

(
ε
(
v′(w′ + bkw)x, v(w′ + bkw)x, z

)

+ε(w′(w′ + bkw)x,w(w′ + bkw)x, z
)) ·

∞∑

r=γ
αrw

≤ L0
(
ε(v′x, vx, z)+ ε(w′x,wx, z))

(
nλ(w′)+

n−1∑

k=1

λ(w′ + bkw)
)
·
∞∑

r=γ
αrw

= L0

(
ε(v′x, vx, z)+ ε(w′x,wx, z)

)
·

∞∑

r=γ+1

αrw.

Hence, we have shown (30). Now, letting j →∞ in (30), we get

J (x) = Jw(x) ∀x ∈ X0. (31)
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By similar method, we also prove that Ju = Jw for each u ∈ U, which yields

‖f (x)− Jw(x) , g(z)‖ ≤ ε(u
′x, ux, z)
1− αu x, z ∈ X0, u ∈ U.

This implies (21) with J := Jw and the uniqueness of J is given by (31).

In the following theorem, we prove the hyperstability of Eq. (17) in 2-Banach
spaces.

Theorem 5 Let X, Y , and ε be as in Theorem 4. Suppose that there exists a
nonempty set U ∈ l(X) such that u ◦ v = v ◦ u ∀u, v ∈ U and

{
infu∈U ε(u′x, ux, z) = 0 ∀x, z ∈ X0,∀u ∈ U

supu∈U αu < 1.
(32)

Then every f : X→ Y satisfying (19) is a solution of (17).

Proof Suppose that f : X → Y satisfies (19). Then, by Theorem 4, there exists a
mapping J : X→ Y which satisfies (17) and

‖f (x)− J (x) , g(z)‖ ≤ ε̃(x, z) ∀x, z ∈ X0.

In view of (32), ε̃(x, z) = 0 ∀x, z ∈ X0. This means that f (x) = J (x) ∀x ∈ X0,

whence

n−1∑

k=0

f (x + bky) = nf (x),

for all x, y ∈ X0 such that x + bky 	= 0 for 0 < k < n − 1 which implies that f
satisfies the functional equation (17) on X0.

3 Applications

In this section, we discuss some hyperstability results for Eq. (17) and the inhomo-
geneous functional equation

n−1∑

k=0

f (x + bky) = nf (x)+G(x, y). (33)

Namely, from Theorems 4 and 5, we can obtain the following corollaries as natural
results.
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Corollary 1 Let X, Y , and ε be as in Theorem 4 and G : X2 → Y . Suppose that

∥∥G(x, y) , g(z)
∥∥ ≤ ε(x, y, z), x, y, z ∈ X0, (34)

where g : X → Y is a mapping such that the set g(X) ⊆ Y contains two linearly
independent vectors, G(x0, y0) 	= 0 for some x0, y0 ∈ X0, and there exists a
nonemptyU ⊂ l(X) such that (20) and (32) hold. Then the inhomogeneous equation

n−1∑

k=0

f (x + bky) = nf (x)+G(x, y) (35)

for all x, y ∈ X0 such that x + bky 	= 0 for 0 < k < n− 1 has no solutions in the
class of functions f : X→ Y .

Proof Suppose that f : X→ Y is a solution to (35). Then

∥∥∥∥∥

n−1∑

k=0

f (x + bky)− nf (x) , g(z)
∥∥∥∥∥ =

∥∥nf (x)+G(x, y)− nf (x) , g(z)∥∥

= ∥∥G(x, y) , g(z)
∥∥

≤ ε(x, y, z),

for all x, y, z ∈ X0 such that x + bky 	= 0 for 0 < k < n − 1. Consequently, by
Theorem 5, f is solution of (17). Therefore,

G(x0, y0) =
n−1∑

k=0

f (x0 + bky0)− nf (x0) = 0,

which is contradiction.

Corollary 2 Let X, Y , and ε be as in Theorem 4. Assume that G : X2 → Y and
f : X→ Y satisfy the inequality

∥∥∥∥∥f (x + y)− nf (x)+
n−1∑

k=1

f (x + bky)−G(x, y) , g(z)
∥∥∥∥∥ ≤ ε(x, y, z) (36)

for all x, y, z ∈ X \ {0} such that x+bky 	= 0 for 0 < k < n−1, where g : X→ Y

is a mapping such that the set g(X) ⊆ Y contains two linearly independent vectors
and there exists a nonempty U ⊂ l(X) such that (20) and (32) hold. If the functional
equation (35) has a solution f0 : X→ Y , then f is a solution to (35).
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Proof In view of (36), we obtain that J := f − f0 satisfies (19). According to
Theorem 5, we conclude that J is a solution to Eq. (17). Therefore,

n−1∑

k=0

f (x + bky)− nf (x)−G(x, y) =
n−1∑

k=0

J (x + bky)+
n−1∑

k=0

f0(x + bky)

−nJ (x)− nf0(x)−G(x, y)
= 0,

for all x, y ∈ X0 such that x + bky 	= 0 for 0 < k < n− 1 which means that f is a
solution to (35).

Corollary 3 LetX and Y be aC-normed space and a 2-Banach space, respectively.
Assume that p, q ∈ R, p < 0, q < 0 and θ, r ≥ 0. If f : X→ Y satisfies

∥∥∥∥∥

n−1∑

k=0

f (x + bky)− nf (x) , g(z)
∥∥∥∥∥ ≤ θ

(
‖x‖p + ‖y‖q

)
‖z‖r (37)

for all x, y, z ∈ X0 such that x + bky 	= 0, then f satisfies the functional equation
(17) on X0.

Proof The proof follows from Theorem 5 by taking

ε(x, y, z) = θ
(
‖x‖p + ‖y‖q

)
‖z‖r , x, y, z ∈ X0,

with some real numbers θ, r ≥ 0, p < 0, and q < 0. For each m ∈ N, define
um : X0 → X0 by umx := −mx and u′m : X0 → X0 by u′mx := (1+m)x. Then

ε(umx, u�y, z) = ε(−mx,−�y, z)
= θ

(
‖−mx‖p + ‖−�y‖q

)
‖z‖r

= θ
(
mp ‖x‖p + �q ‖y‖q

)
‖z‖r

≤ (
mp + �q) θ

(
‖x‖p + ‖y‖q

)
‖z‖r

= (
mp + �q) ε(x, y, z)

for all x, y, z ∈ X0 such that x + bky 	= 0 with �,m ∈ N. Hence,

lim
m→∞ ε(u

′
mx, umy, z) ≤ lim

m→∞
(
(1+m)p +mq

)
ε(x, y, z)

= 0
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for all x, y, z ∈ X0 such that x+bky 	= 0. Then (32) is valid with λ(um) = mp+mq
for m ∈ N, and there exists n0 ∈ N such that m ≥ n0 and

n
(
(1+m)p + (1+m)q

)
+
n−1∑

k=1

(∣∣1+m+ bkm
∣∣p + ∣∣1+m+ bkm

∣∣q
)
< 1.

So, it easily seen that (18) is fulfilled with

U := {
um ∈ Aut X : m ∈ Nn0

}
.

Therefore, by Theorem 5, every f : X → Y satisfying (37) is a solution of the
functional equation (17) on X0.

Corollary 4 LetX and Y be aC-normed space and a 2-Banach space, respectively.
Assume that p, q ∈ R, p + q < 0, and θ, r ≥ 0. If f : X→ Y satisfies

∥∥∥∥∥

n−1∑

k=0

f (x + bky)− nf (x) , g(z)
∥∥∥∥∥ ≤ θ ‖x‖

p ‖y‖q ‖z‖r

for all x, y, z ∈ X0 such that x + bky 	= 0 for 0 < k < n − 1, then f satisfies the
functional equation (17) on X0.

Proof It is easily seen that the function ε given by

ε(x, y, z) = θ ‖x‖p ‖y‖q ‖z‖r x, y, z ∈ X\{0}

satisfies (32) and

ε(mx, �y, z) = θ ‖mx‖p ‖�y‖q ‖z‖r
= θmp�q ‖x‖p ‖y‖q ‖z‖r
= mp�qε(x, y, z)

for all x, y, z ∈ X0 such that x + bky 	= 0 with �,m ∈ N and �m 	= 0.
The remainder of the proof is similar to the proof of Corollary 3.

By an analogous conclusion, the function ε given by

ε(x, y, z) = θ
(
‖x‖p + ‖y‖q + ‖x‖p ‖y‖q

)
‖z‖r x, y, z ∈ X0,
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satisfies (32) and

ε(mx, �y, z) = θ
(
‖mx‖p + ‖�y‖q + ‖mx‖p ‖�y‖q

)
‖z‖r

= θ
(
mp ‖x‖p + �q ‖y‖p +mp�q ‖x‖p ‖y‖q

)
‖z‖r

≤
(
mp + �q +mp�q

)
ε(x, y, z)

for all x, y, z ∈ X0 such that x + bky 	= 0 with �,m ∈ N and �m 	= 0. So, we have
the following corollary.

Corollary 5 LetX and Y be aC-normed space and a 2-Banach space, respectively.
Assume that p < 0, q < 0, p + q < 0, and θ, r ≥ 0. If f : X→ Y satisfies

∥∥∥∥∥

n−1∑

k=0

f (x + bky)− nf (x) , g(z)
∥∥∥∥∥ ≤ θ

(‖x‖p + ‖y‖q + ‖x‖p ‖y‖q) ‖z‖r

for all x, y, z ∈ X0 such that x + bky 	= 0 for 0 < k < n − 1, then f satisfies the
functional equation (17) on X0.
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4. J. Brzdȩk, Stability of additivity and fixed point methods. Fixed Point Theory Appl. 2013, 265
(2013)
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The Asymptotic Expansion for a Class
of Convergent Sequences Defined
by Integrals

Dorin Andrica and Dan Ştefan Marinescu

Abstract We obtain the complete asymptotic expansion of the sequence defined
by

∫ 1
0 f (x)g(x

n)dx, where the functions f and g satisfy various conditions. The
main result is applied in Sect. 4 to find the complete asymptotic expansion of some
classical sequences.

2010 AMS Subject Classification Primary 26A42, Secondary 28A20

1 Introduction

Let (an)n≥1 be a sequence of real numbers. Following Poincaré (see, e.g., [8, 10,

25]), a series
∑∞
j=1

bj

nj
, convergent or divergent, is called a complete asymptotic

expansion of the sequence (an)n≥1 if for each integer k ≥ 0, we have

an =
k∑

j=1

bj

nj
+ o( 1

nk
) as n→∞,

where we have used the Landau “little-o” symbol. In this case, we also write

an ∼
∞∑

j=1

bj

nj
as n→∞,

and the numbers b0, b1, . . . , are called the coefficients of the expansion.
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Previously, several authors have studied the behavior of some sequences defined
by Riemann integrals obtaining the limit and the first two convergence orders. Let
us review few such results.

One of the most popular result in this direction is so-called Riemann-Lebesgue
lemma which asserts that if g : [0,∞) → R is a continuous and T -periodic
function, then for any continuous function f : [a, b] → R, where 0 ≤ a < b,
the following relation holds:

lim
n→∞

∫ b

a

f (x)g(nx)dx = 1

T

∫ T

0
g(x)dx

∫ b

a

f (x)dx.

For the proof, we refer to [11] (in special case a = 0, b = T ) and [23]. In the paper
[2], we have proved that a similar relation holds for all continuous and bounded
functions g : [0,∞)→ R having finite Cesaro mean.

In the paper [2] (see also the book [21]), the authors proved that given a
continuous and T -periodic function g : [0,∞) → R having continuous derivative
on the interval [0, T ], then for every function f ∈ C1[0, T ], the following relation
holds:

lim
n→∞

∫ T

0
f (x)g(nx)dx = 1

T
(f (T )− f (0))

(
G(T )−

∫ T

0
G(x)dx

)
,

where G(x) = ∫ T
0 g(t)dt .

The same authors have obtained in [3] the following result. If f : [0,∞) → R

is continuous such that the limit limx→∞ xf (x) exists and is finite, then

lim
n→∞

∫ a

1
f (xn)dx =

∫ ∞

1

f (x)

x
dx,

for every a > 1.
Another result given by the same authors [4] is the following. Consider the

continuous function f : [0, 1] → R such that limx↘0
f (x)
x

exists and is finite.
Then for any continuous function f : [0, 1] → R, the following relation holds:

lim
n→∞ n

∫ 1

0
g(x)f (xn)dx = g(1)

∫ 1

0

f (x)

x
dx,

In the papers [9, 16] and [17], the following result is proved with small variations.
If f : [0, 1] → R is continuous and g : [0, 1] → R is continuously differentiable,
then

lim
n→∞ n

∫ 1

0
xnf (xn)g(x)dx = g(1)

∫ 1

0
f (x)dx.
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The second order of convergence of
∫ 1

0 x
nf (xn)g(x)dx is obtained in [20] in the

special case g = 1. More precisely, the following result is proved. If f : [0, 1] → R

is continuous, then

∫ 1

0
xnf (xn)dx = 1

n

∫ 1

0
f (x)dx + 1

n2

∫ 1

0
f (x) ln xdx + o

(
1

n3

)
.

The complete asymptotic expansion of
∫ 1

0 h(x
n)dx is obtained in the paper [18].

If h : [0, 1] → R is continuous on the interval [0, 1] and differentiable at 0, then

∫ 1

0
h(xn)dx ∼ h(0)+

∞∑

j=0

1

nj+1j !
∫ 1

0
(ln t)j

h(t)− h(0)
t

dt as n→∞. (1)

Clearly, when h(x) = xf (x), x ∈ [0, 1], where the function f is continuous on
[0, 1] and differentiable at 0, from this formula, one obtains the complete asymptotic
expansion of

∫ 1
0 x

nf (xn)dx as

∫ 1

0
xnf (xn)dx ∼

∞∑

j=0

1

nj+1j !
∫ 1

0
(ln t)j h(t)dt as n→∞.

The main purpose of this paper is to extend formula (1). In Sect. 3, we obtain the
complete asymptotic expansion of the sequence defined by

∫ 1
0 f (x)g(x

n)dx, where
the functions f and g satisfy various conditions. We apply the main result to find in
Sect. 4 the complete asymptotic expansion of some classical sequences.

2 Preliminaries

We need the following helpful results. The first is so-called the bounded conver-
gence theorem formulated in 1885 by C. Arzelá for Riemann integrable functions
[5] and, independently, in 1897 by W. F. Osgood for continuous functions [19].

Theorem 1 Let f : [a, b] → R be a function and (fn)n≥1, fn : [a, b] → R be
sequence of functions such that the following conditions are satisfied :

(i) For every n ≥ 1, fn is Riemann integrable on the interval [a, b];
(ii) For every x ∈ [a, b], we have limn→∞ fn(x) = f (x);
(iii) There is a constant M such that |fn(x)| ≤ M , for all x ∈ [a, b] and every

n ≥ 1;
(iv) The function f is Riemann integrable.
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Then

lim
n→∞

∫ b

a

fn(x)dx =
∫ b

a

f (x)dx.

For the standard proof and some historical issues of this result, we refer to the
book of S. Lang [13]. For a simple elementary proof, we refer to the paper [14] and
for some interesting comments and extensions to [24].

Lemma 1 Let g : [0, 1] → R be a Riemann integrable function on the interval
[0, 1]. Then, for every positive integer n ≥ 1, the function un : [0, 1] → R, defined
by un(x) = g(xn), is Riemann integrable on the interval [0, 1].
Proof Because the function g is Riemann integrable, it is bounded; hence, the
function un is bounded. We will show that the setD(un) of points where the function
un is discontinuous has zero Lebesgue measure. It is easy to see that g is continuous
at x0 if and only if un is continuous at n

√
x0, that is, D(un) = { n√x : x ∈ D(g)}.

Now, we can assume that D(un) ⊂ (0, 1]. We can write

D(un) = D(un) ∩ (0, 1] = D(un) ∩ ∪∞k=1

[
1

k
, 1

]

= ∪∞k=1(D(un) ∩
[

1

k
, 1

]
) = ∪∞k=1(Dk(un),

whereDk(un) = D(un)∩[ 1
k
, 1]. It suffices to prove that every setDk(un) is of zero

Lebesgue measure. In this respect, observe that the setDkn(g) = D(g)∩[ 1
kn
, 1] has

zero Lebesgue measure, as a subset of D(g). Therefore, for every ε > 0, there is a
sequences of open intervals

(
I km

)
m≥1 , I

k
m =

(
akm, b

k
m

) ⊂ [ 1
kn
, 1] such thatDkn(g) ⊂

∪∞m=1I
k
m and

∞∑

m=1

l(I km) =
∞∑

m=1

(bkm − akm) <
ε

nkn−1 .

Denoting J km = ( n
√
akm,

n
√
bkm), we obtain Dk(un) = n

√
Dkn(g) ⊂ ∪∞m=1J

k
m. Using

the inequalities akm, b
k
m ≥ k−n, it follows

∞∑

m=1

l(J km) =
∞∑

m=1

(
n

√
bkm − n

√
akm

)
=

∞∑

m=1

bkm − akm
n
√
(bkm)

n−1 + · · · + n
√
(akm)

n−1

< nkn−1
∞∑

m=1

(
bkm − akm

)
< nkn−1 ε

nkn−1 = ε;
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hence, Dk(un) has zero measure, and the desired result is obtained from the
Lebesgue integrability criterion. �

The following general result, extending Lemma 1, was proved by elementary
methods in the paper [7]. It was only stated in [15, Proposition 2].

Theorem 2 Let f : [a, b] → R and g : [c, d] → R be two functions satisfying the
following conditions :

(i) f ([a, b]) ⊂ [c, d];
(ii) The function f is continuous;
(iii) The function f is differentiable on the open interval (a, b) and its derivative is

continuous;
(iv) f ′(x) 	= 0, for all x ∈ (a, b);
(v) The function g is Riemann integrable on [c, d].
Then, the composition function g ◦ f is Riemann integrable on the interval [a, b].

3 The Main Results

In what follows, assume that the functions f, g : [0, 1] → R are Riemann integrable
on the interval [0, 1]. From Lemma 1, the sequence given by

∫ 1

0
f (x)g(xn)dx, n ≥ 1 (2)

is well-defined because a product of two Riemann integrable functions is Riemann
integrable. The next result is in the spirit of Lemma 1 in [3].

Proposition 1 If the function g is continuous at 0, then

lim
n→∞

∫ 1

0
f (x)g(xn)dx = g(0)

∫ 1

0
f (x)dx.

Proof Let (fn)n≥1 be the sequence of functions fn : [0, 1] → R defined by
fn(x) = f (x)g(xn), n ≥ 1. Then, we have

lim
n→∞ fn(x) =

{
f (x)g(0) if x ∈ [0, 1)
f (1)g(1) if x = 1.

(3)

Clearly, the hypotheses in Theorem 1 are verified; hence, the relation

lim
n→∞

∫ 1

0
f (x)g(xn)dx = g(0)

∫ 1

0
f (x)dx

holds. �
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For a function h : [0, 1] → R, which is differentiable at 0, consider the function
h∗ defined by

h∗(t) =
{
h′(0) if t = 0
h(t)−h(0)

t
if t ∈ (0, 1]. (4)

The following result gives, under supplementary assumptions, the first asymp-
totic order for the limit in Proposition 1.

Proposition 2 If the functions f, g are continuous on the interval [0, 1], and the
function g is differentiable at 0, then

lim
n→∞ n[

∫ 1

0
f (x)g(xn)dx − g(0)

∫ 1

0
f (x)dx] = f (1)

∫ 1

0
g∗(x)dx.

Proof Obviously, the function g∗ is continuous; therefore, the integral in the right-
hand side is well-defined. On the other hand, we have

n

[∫ 1

0
f (x)g(xn)dx − g(0)

∫ 1

0
f (x)dx

]
= n

[∫ 1

0
f (x)(g(xn)− g(0))dx

]

= n
∫ 1

0
f (x)xng∗(xn)dx =

∫ 1

0

n
√
xf ( n

√
x)g∗(x)dx.

Because

lim
n→∞

n
√
xf ( n

√
x)g∗(x) =

{
0 if x = 0

f (1)g∗(x) if x ∈ (0, 1], (5)

it follows that the hypotheses in Theorem 1 are fulfilled; hence, the desired
conclusion holds. �

In what follows, we are interested to determine, under additional assumptions, all
asymptotic convergence orders of the sequence defined by (1). For a positive integer
k, consider f ∈ Ck+1[0, 1] and g a continuous function on the interval [0, 1] which
is differentiable at 0. For i = 1, . . . , k + 2, define the functions fi : [0, 1] → R by
f1 = f and

fi+1(x) = [xfi(x)]′, x ∈ [0, 1].

Also, we introduce the functions g0, g1, . . . , gk+1 : [0, 1] → R by g0 = g and
gi+1(x) =

∫ x
0 g

∗
i (t)dt , for all i ≥ 0 and for every x ∈ [0, 1].

Consider the infinite matrix A = (aji ), having real entrances defined by a1
i = 1

for all i = 1, 2, . . ., aj1 = 0 for all j = 2, 3, . . . ,, and aji+1 = ja
j
i + aj−1

i for
all i = 1, 2, . . . , and j = 2, 3, . . .. Clearly, the matrix A is inferior triangular,
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and its entrances verify a nonlinear recursive relation of order 1. We will prove the
following formula for aji :

a
j
i =

(−1)j

j ! sj,i ,

where

sj,i =
j∑

u=0

(−1)u
(
j

u

)
ui.

In order to prove the above relation, we need the following auxiliary result proved
in [1]

Lemma 2 For every i, j , the following relation holds:

sj,i+1 = j (sj,i − sj−1,i ).

Proof Let us observe that

(ex − 1)j =
j∑

k=0

(−1)j−k
(
j

k

)
ekx =

j∑

k=0

(−1)j−k
(
j

k

)( ∞∑

u=0

1

u!k
uxu

)

=
∞∑

u=0

(−1)j

u! sj,ux
u.

Considering the derivative, we have

j (ex − 1)j−1ex =
∞∑

u=1

(−1)j

u! usj,ux
u−1.

That is,

j
[
(ex − 1)j + (ex − 1)j−1

]
=

∞∑

u=1

(−1)j

u! usj,ux
u−1;

hence,

j

( ∞∑

u=0

(−1)j

u! sj,ux
u +

∞∑

u=0

(−1)j−1

u! sj−1,ux
u

)
=

∞∑

u=1

(−1)j

u! usj,ux
u−1.
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Identifying the coefficient of xi in both sides of the above equality, we get the
desired relation. �

To prove the relation aji = (−1)j

j ! sj,i , let us define the infinite matrix B = (bji ),
where bji = (−1)j

j ! sj,i . Clearly, we have b1
i = 1 = a1

i for all i = 1, 2, . . . and

b
j

1 = 0 = a
j

1 for all j = 2, 3, . . .. Now, it suffice to show that the entries of the

matrix (bji ) satisfy the same recursive relation. Indeed, according to the relation in
Lemma 2, we have

b
j

i+1=
(−1)j

j ! sj,i+1= (−1)j

j ! j (sj,i−sj−1,i ) = jbji +
(−1)j−1

(j − 1)! sj−1,i = jbji +bj−1
i ,

and we are done.
According to the well-known formulas due by Euler, we have (see also [6])

a
j
i =

(−1)j

j ! sj,i =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if 0 ≤ i < j
1 if i = j
j (j+1)

2 if i = j + 1
j (j+1)(j+2)(3j+1)

24 if i = j + 2
j2(j+1)2(j+2)(j+3)

48 if i = j + 3
j (j+1)(j+2)(j+3)(j+4)(15j3+30j2+5j+1)

1152 if i = j + 4.

In order to prove the above formulas, we may consider the expansion

(ex − 1)j =
(
x + 1

2!x
2 + 1

3!x
3 + · · ·

)j
= xj + j

2
xj+1 + j (3j + 1)

24
xj+2

+ j
2(j + 1)

48
xj+3 + j (15j3 + 30j2 + 5j + 1)

1152
xj+4 + · · · ,

and identify the coefficients in the two series

(ex − 1)j =
∞∑

i=0

(−1)j

i! sj,ix
i =

∞∑

i=j

(−1)j

i! sj,ix
i =

∞∑

i=j

(−1)j

j !(j + 1) · · · i sj,ix
i

=
∞∑

i=j

a
j
i

(j + 1) · · · i x
i .

That is, we have the general formula

a
j
i = (j + 1) · · · i · αji ,
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where αji is the coefficient of xi in the expansion (x + 1
2!x

2 + 1
3!x

3 + · · · )j , and

obviously we have αji = 0 if i < j .
In what follows, we denote by Ak+2 the block square matrix of dimension (k +

2) × (k + 2) obtained from the infinite matrix A in the upper left position. For
instance, for k = 0, we have

A2 =
(

1 0
1 1

)
.

For k = 1, we obtain

A3 =
⎛

⎝
1 0 0
1 1 0
1 3 1

⎞

⎠ .

For k = 2 and k = 3, we obtain

A4 =

⎛

⎜⎜⎝

1 0 0 0
1 1 0 0
1 3 1 0
1 7 6 1

⎞

⎟⎟⎠ ,

respectively

A5 =

⎛

⎜⎜⎜⎜⎜⎝

1 0 0 0 0
1 1 0 0 0
1 3 1 0 0
1 7 6 1 0
1 15 25 10 1

⎞

⎟⎟⎟⎟⎟⎠
.

Generally, we have the block formula

Ak+2 =

⎛

⎜⎜⎝
Ak+1 0k+1,1

a1
k+2 · · · ak+2

k+2

⎞

⎟⎟⎠ .

Lemma 3 With the above notations, for all i = 1, . . . , k + 2, and for every x ∈
[0, 1], the following result holds:

fi(x) =
k+2∑

j=1

a
j
i x
j−1f (j−1)(x).
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Proof We proceed by induction on i. If i = 1, then we have f1(x) = f (x) =∑k+2
j=1 a

j
i x
j−1f (j−1)(x) = f (x), since a1

1 = 1 and aj1 = 0 for all j = 2, . . . , k+ 2.
Suppose that the relation holds for i, where i ∈ {1, . . . , k}. Taking into account the
definition, for every x ∈ [0, 1], we can write

fi+1(x) = [xfi(x)]′ = (
k+2∑

j=1

a
j
i x
jf (j−1)(x))′

=
k+2∑

j=1

(ja
j
i x
j−1f (j−1)(x)+ aji xjf (j)(x)) =

k+2∑

j=1

a
j

i+1x
j−1f (j−1)(x),

because of the recursive relations satisfied by the entrances of the matrix A defined
before the statement. If we have i = k + 1, then the passing to i + 1 is doing in the
same way. �
Theorem 3 Under the above conditions, the following relation holds:

∫ 1

0
f (x)g(xn)dx − g(0)

∫ 1

0
f (x)dx =

k+1∑

i=1

(−1)i−1

ni
fi(1)gi(1)

+ (−1)k+1

nk+1

∫ 1

0
gk+1(x

n)fk+2(x)dx.

Proof By successively integration by parts, and using the relation g1(0) = 0, we
obtain

∫ 1

0
f (x)g(xn)dx − g(0)

∫ 1

0
f (x)dx =

∫ 1

0
[g(xn)− g(0)]f (x)dx

=
∫ 1

0
g∗0(xn)xn−1xf (x)dx= 1

n

∫ 1

0
(g1(x

n))′(xf (x))dx= 1

n
(g1(x

n))(xf (x))|10

−
∫ 1

0
g1(x

n)f2(x)dx = 1

n
g1(1)f1(1)−

∫ 1

0
g1(x

n)f2(x)dx

= 1

n
g1(1)f1(1)− 1

n
[
∫ 1

0
g∗1(xn)xn−1xf2(x)dx] = 1

n
g1(1)f1(1)

− 1

n
[1
n
g2(1)f2(1)− 1

n

∫ 1

0
g2(x

n)f3(x)dx] = 1

n
g1(1)f1(1)

− 1

n2 g2(1)f2(1)+ 1

n2

∫ 1

0
g2(x

n)f3(x)dx].

Continuing this process and using the relation gi(0) = 0, we obtain the desired
formula. �
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Remark 1 Using Lemma 2, the conclusion of Theorem 3 becomes

∫ 1

0
f (x)g(xn)dx − g(0)

∫ 1

0
f (x)dx =

k+1∑

i=1

(−1)i−1

ni
(

k+1∑

j=1

a
j
i f
(j−1)(1))gi(1)

+ (−1)k+1

nk+1

∫ 1

0
gk+1(x

n)fk+2(x)dx.

The following application is given in Theorem 2 in the paper [4].

Corollary 1 Let f : [0, 1] → R be a function of classC1[0, 1], and let h : [0, 1] →
R be a continuous function. Then

lim
n→∞ n[

∫ 1

0
f (x)h(xn)dx − f (1)

∫ 1

0
h(x)dx] = −(f (1)+ f ′(1))

∫ 1

0

H(x)

x
dx,

where H(x) = ∫ x
0 h(t)dt .

Proof Let us consider k = 0 in Theorem 2 and the function g : [0, 1] → R

defined by g(x) = xh(x). Then, we have f1(x) = f (x) and f2(x) = f (x) +
xf ′(x), g0(x) = g(x) = xh(x), g1(x) =

∫ x
0 (t)dt. Applying the result in Theorem

2 and using the relation g(0) = 0, we obtain

∫ 1

9
xnf (x)h(xn)dx =

∫ 1

0
f (x)g(xn)dx − g(0)

∫ 1

0
f (x)dx = 1

n
f1(1)g1(1)

− 1

n

∫ 1

0
g1(x

n)f2(x)dx = 1

n
f1(1)

∫ 1

0
h(t)dt

− 1

n

∫ 1

0
(f (x)+ xf ′(x))g1(x

n)dx;

hence,

n

[∫ 1

0
f (x)h(xn)dx − f (1)

∫ 1

0
h(x)dx

]
= n

∫ 1

0
(f (x)+ xf ′(x))g1(x

n)dx.

But, from Proposition 1, we have

lim
n→∞

∫ 1

0
(f (x)+ xf ′(x))g1(x

n)dx = g1(0)
∫ 1

0
(f (x)+ xf ′(x))dx = 0;
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therefore, using Proposition 2, it follows

lim
n→∞

∫ 1

0
(f (x)+ xf ′(x))g1(x

n)dx = (f (1)+ f ′(1))
∫ 1

0
g∗1(x)dx

= (f (1)+ f ′(1))
∫ 1

0

H(x)

x
dx,

and we are done. �
Corollary 2 In the hypotheses of Theorem 3, there exists a convergent sequence
(an)n≥1 of real numbers such that

∫ 1

0
f (x)g(xn)dx = g(0)

∫ 1

0
f (x)dx +

k+1∑

i=1

(−1)i−1

ni
fi(1)gi(1)+ an

nk+2 .

Proof From Proposition 2, we have

lim
n→∞ n

∫ 1

0
gk+1(x

n)fk+2(x)dx = fk+2(1)
∫ 1

0
g∗k+1(x)dx.

Let us consider an = (−1)k+1n
∫ 1

0 gk+1(x
n)fk+2(x)dx, and the desired property

follows via Theorem 3. �
Remark 2 The result in Corollary 1 shows that

∫ 1

0
f (x)g(xn)dx = g(0)

∫ 1

0
f (x)dx +

k+1∑

i=1

(−1)i−1

ni
fi(1)gi(1)+ o

(
1

nk+1

)
.

Corollary 3 If the function f is of class C∞[0, 1], then
∫ 1

0
f (x)g(xn)dx = g(0)

∫ 1

0
f (x)dx +

∞∑

i=1

(−1)i−1

ni
fi(1)gi(1).

Proof Just apply Corollary 1. �
Remark 3

(1) If in Corollary 1, we consider f (x) = 1, x ∈ [0, 1], then we get the asymptotic
formula

∫ 1

0
g(xn)dx = g(0)+

∞∑

i=1

(−1)i−1

ni
gi(1),

which appears in a different form in the paper [18] (see also formula (1)).
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(2) If in Corollary 1, we consider g(x) = x, x ∈ [0, 1], then we get gi(x) = x

for i = 1, 2, . . ., hence gi(1) = 1, i = 1, 2, . . ., and we obtain the following
asymptotic formula:

∫ 1

0
xnf (x)dx =

∞∑

i=1

(−1)i−1fi(1)

ni
.

(3) If in Corollary 1, we consider f (x) = 1, g(x) = xh(x), x ∈ [0, 1], where h is
continuous on [0, 1], then we obtain the main result in [18].

4 The Complete Asymptotic Expansion of Some Classical
Sequences

4.1 The Sequence an = 1 − 1
2 + 1

3 − ···+ (−1)(n−1)

n

Let us consider the functions f (x) = 1
x+1 , g(x) = x, x ∈ [0, 1]. We have

∫ 1

0

xn

x + 1
dx = (−1)n−1(1− 1

2
+ 1

3
− · · · + (−1)(n−1)

n
− ln 2).

Using the result in Corollary 2, we obtain the formula

1− 1

2
+ 1

3
− · · · + (−1)n−1

n
= ln 2+

∞∑

i=1

(−1)n+i

ni
fi(1)gi(1) = ln 2

+
∞∑

i=1

(−1)n+i

ni
fi(1).

In order to get an explicit formula, we need to determine the sequence
f1(1), f2(1), . . .. After simple computation, we get f1(1) = 1

2 , f2(1) = 1
4 , f3(1) =

0, f4(1) = − 1
8 , . . . , and we can continue this process. It follows

1− 1

2
+ 1

3
− · · · + (−1)(n−1)

n
= ln 2+ (−1)n+1 1

2n
+ (−1)n+2 1

4n2

− (−1)n+4 1

8n4 + o
(

1

n4

)
= ln 2+ (−1)n

(
− 1

2n
+ 1

4n2 −
1

8n4

)
+ o

(
1

n4

)
.



48 D. Andrica and D. Ş. Marinescu

4.2 Other Expansion for an = 1 − 1
2 + 1

3 − ···+ (−1)(n−1)

n

If g(x) = x and f belongs to Ck+1[0, 1], then there exists a convergent sequence
(an)n≥1 such that

∫ 1

0
f (x)xndx = D1

n
+ D2

n2
+ · · · + Dk

nk
+ an

nk+1
, n ≥ 1,

where

Di = (−1)i−1
[
a1
i f
(0)(1)+ a2

i f
(1)(1)+ · · · + aii f (i−1)(1)

]

= (−1)i−1
i∑

k=1

(−1)k

k! (

k∑

j=1

(
k

j

)
ki)f (k−1)(1).

If f (x) = 1
x+1 , then we obtain the result in [22]. In this case, f (p)(1) = (−1)pp!

2p+1 ,

and it follows

Di = (−1)i−1
i∑

k=1

aki f
(k−1)(1)

= (−1)i−1
i∑

k=1

(−1)k−1(k − 1)!
2k

· (−1)k

k!

⎛

⎝
k∑

j=1

(−1)j
(
k

j

)
j i

⎞

⎠

= (−1)i−1
i∑

k=1

1

2k

k∑

j=1

(−1)j
(
k − 1

j − 1

)
j i−1 = Ci,

using the notation in [12].
Therefore,

∫ 1

0

xn

x + 1
dx = D1

n
+ D2

n2
+ · · · + Dk

nk
+ an

nk+1
, n ≥ 1.

Because

∫ 1

0

xn

x + 1
dx = (−1)n

(
ln 2−

n∑

k=1

(−1)(k−1)

k

)
,
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it follows

ln 2−
n∑

k=1

(−1)(k−1)

k
= (−1)n

(
D1

n
+ D2

n2
+ · · · + Dk

nk
+ an

nk+1

)
,

and then

| ln 2−
n∑

k=1

(−1)(k−1)

k
| = D1

n
+ D2

n2 + · · · +
Dk

nk
+ an

nk+1 .

Remark 4

(1) As it is mentioned in [12], Ulrich Abel has noted that it is possible to generalize
the result to obtain the asymptotic expansion

∣∣∣∣∣ln(1− x)+
n∑

k=1

xk

k

∣∣∣∣∣ ∼ |x|
k
∞∑

k=1

Ck(x)

nk
, −1 ≤ x < 1,

where the coefficients Ck(x) are given by

Ck(x) =
k∑

i=1

1

(1− x)i
i−1∑

j=0

(−1)j
(
i − 1

j

)
jk−1.

(2) In Tauraso (Personal communication, 2014) is given a different proof obtained
by using the Euler-Maclaurin summation formula

n∑

k=1

1

k
− ln n = γ + 1

2n
−

m∑

k=1

Bk

k
· 1

nk
+ o

(
1

nm

)
,

where γ is the well-known Euler-Mascheroni constant and Bk are the Bernoulli
numbers.

4.3 The Sequence bn = 1 − 1
3 + 1

5 − ···+ 1
4n+1

Let us consider the functions f (x) = 1
x2+1

, g(x) = x, x ∈ [0, 1]. In this case, we
have

∫ 1

0

x4n+2

x2 + 1
dx = 1− 1

3
+ 1

5
− · · · + 1

4n+ 1
− π

4
.
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Using the result in Corollary 2 and the fact that gi(1) = 1, i = 1, 2, . . ., we obtain
the formula

1− 1

3
+ 1

5
− · · · + 1

4n+ 1
= π

4
+

∞∑

i=1

(−1)i−1

(4n+ 1)i
fi(1).

After simple computation, we get f1(1) = 1
2 , f2(1) = 0, f3(1) = − 1

2 , . . . , and we
can continue this process. It follows

1− 1

3
+ 1

5
− · · · + 1

4n+ 1
= π

4
+ 1

2(4n+ 1)
− 1

2(4n+ 1)3
+ o

(
1

(4n+ 1)3

)
.

4.4 The Sequence cn = 1 − 1
1! + 1

2 − +···+ (−1)n

n!

If we consider the functions f (x) = ex, g(x) = x, x ∈ [0, 1], then we get the
integral In =

∫ n
0 e

xxndx, n = 0, 1, . . .. A simple integration by parts gives the
recursive formula In + nIn−1 = e, where I0 = e − 1. It follows

In = (−1)nn!e
(

1− 1

1! +
1

2
− · · · + (−1)n

n!
)
+ (−1)n+1n!.

Using the result in Corollary 2 and the relations gi(1) = 1, i = 1, 2, . . . , we obtain
the formula

(−1)nn!e
(

1− 1

1! +
1

2
− · · · + (−1)n

n!
)
+ (−1)n+1n! =

∞∑

i=1

(−1)i−1

ni
fi(1).

That is,

1− 1

1! +
1

2
− · · · + (−1)n

n! = 1

e
+ 1

e

∞∑

i=1

(−1)n+i−1

nin! fi(1).

In this case, we have f1(1) = e, f2(1) = 2e, f3(1) = 5e, f4(1) = 15e, . . . . It
follows

1− 1

1!+
1

2
−· · ·+ (−1)n

n! = 1

e
+(−1)n

(
1

nn! −
2

n2n! +
5

n3n! −
15

n4n!
)
+o

(
1

n4n!
)
,

and the expansion can be improved.
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4.5 The Sequence en = 1 + 1
1! + 1

2! + ···+ 1
n!

If we consider the functions f (x) = e−x, g(x) = x, x ∈ [0, 1], then we get the
integral Jn =

∫ 1
0 e

xxndx, n = 0, 1, . . .. A simple integration by parts gives the
recursive formula Jn − nJn−1 = − 1

e
, where J0 = 1− 1

e
. It follows

Jn = −n!
e

(
1+ 1

1! +
1

2
+ · · · + 1

n!
)
+ n!;

hence, from Corollary 2 and the relations gi(1) = 1, i = 1, 2, . . ., we obtain the
formula

1+ 1

1! +
1

2
+ · · · + 1

n! = e − e
∞∑

i=1

(−1)i−1

nin! fi(1).

For this choice of functions, we have f1(1) = 1
e
, f2(1) = 0, f3(1) = − 1

e
, f4(1) =

− 1
e
, . . . . It follows

1+ 1

1! +
1

2
+ · · · + 1

n! = e −
1

nn! +
1

n3n! +
1

n4n! + o
(

1

n4n!
)
,

and the expansion can be improved.
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9. C. Corduneanu, D.-Ş. Marinescu, I. Serdean, On the problem XII.9 in Recreaţii Matematice.
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Weak Pseudoprimality Associated
with the Generalized Lucas Sequences

Dorin Andrica, Ovidiu Bagdasar, and Michael Th. Rassias

Abstract Pseudoprimes are composite integers which share properties of the prime
numbers, and they have applications in many areas, as, for example, in public-
key cryptography. Numerous types of pseudoprimes are known to exist, many
of them defined by linear recurrent sequences. In this material, we present some
novel classes of pseudoprimes related to the generalized Lucas sequences. First,
we present some arithmetic properties of the generalized Lucas and Pell–Lucas
sequences and review some classical pseudoprimality notions defined for Fibonacci,
Lucas, Pell, and Pell–Lucas sequences and their generalizations. Then we define
new notions of pseudoprimality which do not involve the use of the Jacobi symbol
and include many classical pseudoprimes. For these, we present associated integer
sequences recently added to the Online Encyclopedia of Integer Sequences, identify
some key properties, and propose a few conjectures.
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1 Introduction

Let a and b be integers. The generalized Lucas (Un(a, b))n≥0 and their companion,
the generalized Pell–Lucas sequences (Vn(a, b))n≥0 (often denoted by (Un)n≥0 and
(Vn)n≥0 for simplicity), are defined by

Un+2 = aUn+1 − bUn, U0 = 0, U1 = 1, n = 0, 1, . . . , (1)

Vn+2 = aVn+1 − bVn, V0 = 2, V1 = a, n = 0, 1, . . . . (2)

The general term of these sequences can be written explicitly in terms of the Binet-
type formulae below

Un = α
n − βn
α − β = 1√

D

(
αn − βn) , n = 0, 1, . . . , (3)

Vn = αn + βn, n = 0, 1, . . . , (4)

where D = a2 − 4b 	= 0 and α = a+√D
2 , β = a−√D

2 are the roots of the quadratic
equation z2− az+ b = 0. By Viéte’s relations, one obtains that α+ β = a, αβ = b
and α − β = √D.

Notice that the formula (3) could also be expressed using bivariate cyclotomic
polynomials in α and β [15, p. 99], as

Un =
∏

d|n,d≥2

Φd(α, β),

where

Φd(α, β) =
n∏

j=1,gcd(j,n)=1

(α − ζ jβ)

and ζ is a primitive n-th root of unity. As Φd(α, β) is an integer for d ≥ 2, this
formula is useful in the study arithmetic properties of the integers Un. Similarly for
Vn, if ω is an n-th root of −1, we have

Vn =
∏

d|n
Φd(α, ωβ),

The utility of this formula is limited, as Φd(α, ωβ) is not an integer.
The Binet-type formulae extend to negative indices, and we have

U−n = 1√
D

(
α−n − β−n) = − 1

bn
Un, V−n = α−n + β−n = 1

bn
Vn, n ≥ 0.
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Note that Un and Vn are integers for all n ∈ Z, if and only if |b| = 1, and for this
reason, we will focus on this case. These sequences are called balanced and have
interesting divisibility properties [13].

For b = −1, if k is a positive real number, then we obtain the k-Fibonacci and
k-Lucas numbers for Fk,n = Un(k,−1) and Lk,n = Vn(k,−1), where D = k2 + 4.
Clearly, for k = 1, we get the Fibonacci and Lucas numbers Fn = Un(1,−1) and
Ln = Vn(1,−1) with D = 5, and for k = 2, we recover the Pell and Pell–Lucas
numbers Pn = Un(2,−1) andQn = Vn(2,−1), where D = 8.

When b = 1, the integersUn(a, 1) have interesting combinatorial interpretations,
while Vn(a, 1) are linked to the number of solutions for certain Diophantine equa-
tions [3], as well as to important classes of polynomials, including the Chebyshev
polynomials of the first and second kinds [2, Chapter 2.2].

Some density results concerning these sequences are obtained in [7], together
with results allowing the identification of generalized Lucas and Pell–Lucas num-
bers. The theorems below concerning arithmetic properties of the generalized Lucas
and Pell–Lucas sequences have been proved in [3].

Theorem 1 (Theorem 3.1, [3]) Let p be an odd prime, k a non-negative integer,
and r an arbitrary integer. If b = ±1 and a is an integer such thatD = a2−4b > 0
is not perfect square, then the sequences Un and Vn defined by (1) and (2) satisfy
the following relations:

(1) 2Ukp+r ≡
(
D

p

)
UkVr + VkUr (mod p);

(2) 2Vkp+r ≡ D
(
D

p

)
UkUr + VkVr (mod p),

where
(
D
p

)
is the Legendre symbol [1].

Theorem 2 (Theorem 3.5, [3]) Let p be an odd prime, and let k > 0 and a be
integers so that D = a2 + 4 > 0 is not a perfect square. If Un = Un(a,−1),
Vn = Vn(a,−1), then

1. U
kp−

(
D
p

) ≡ Uk−1 (mod p);
2. V

kp−
(
D
p

) ≡
(
D
p

)
Vk−1 (mod p).

Theorem 3 (Theorem 3.7, [3]) Let p be an odd prime, and let k > 0 and a be
integers so that D = a2 − 4 > 0 is not a perfect square. If Un = Un(a, 1), Vn =
Vn(a, 1), then the following relations hold:

1. U
kp−

(
D
p

) ≡
(
D
p

)
Uk−1 (mod p);

2. V
kp−

(
D
p

) ≡ Vk−1 (mod p).
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Applying Theorem 1 for k = 1 and r = 0, we obtain

Up ≡
(
D

p

)
(mod p); (5)

Vp ≡ a (mod p). (6)

Also, since U0 = 0 and V0 = 2, and by using k = 1 in Theorems 2 and 3, one has

U
p−

(
D
p

) ≡ 0 (mod p); (7)

V
p−

(
D
p

) ≡ 2

(
D

p

) 1−b
2

. (8)

These relations were known even by E. Lucas (see, e.g., [28]).
In this paper, we define pseudoprimality notions related to the generalized Lucas

sequences. These are related to the Fibonacci pseudoprimes of level k defined by
Andrica et al. [6], which were further generalized and analyzed in the recent papers
by Andrica and Bagdasar [4, 5].

In Sect. 2, we present some classical pseudoprimality notions. In Sect. 3, we
investigate the generalized Bruckman–Lucas pseudoprimes (previously known for
Lucas sequences). In Sect. 4, we define the weak generalized Lucas pseudoprimes
which do not require the Jacobi symbol. Combining these two notions, we define the
weak generalized Lucas–Bruckner pseudoprimes explored in Sect. 5. Throughout
this material, we review numerous recent entries to the Online Encyclopedia of
Integer Sequences (OEIS) [26] and formulate some conjectures.

As indicated in recent studies, there could be many possible links between these
pseudoprimality notions and public key cryptography [19], computational number
theory [20], and IT security [27].

2 Some Pseudoprimality Properties

Pseudoprimes are composite numbers which under certain conditions behave as
the prime numbers, which have applications in the factorization of large integers,
primality testing, and public-key cryptography. Numerous classes of pseudoprimes
are defined by recurrent sequences.
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2.1 Classical Pseudoprimes Involving Generalized Lucas
Sequences

Many pseudoprimality notions involving generalized Lucas sequences (Un(a, b))n≥0
and (Vn(a, b))n≥0 defined by (1) and (2) are based on the relations (5), (6), (7), and
(8). For historical details and pseudoprimality tests for generalized Lucas sequences,
one may check the papers [8, 9] or the classical books by Ribenboim [21, 22].

Definition 1 A composite integer n is called a Lucas pseudoprime of parameters a
and b if gcd(n, b) = 1 and n divides U

n−
(
D
n

), where
(
D
n

)
is the Jacobi symbol.

More divisibility results involving sequences Un and Vn are found in [8, Section 2].

Proposition 1 If n is an odd composite number such that gcd(n, 2abD) = 1, then
any two of the following statements imply the other two.

1. Un ≡
(
D
n

)
(mod n);

2. Vn ≡ V1 = a (mod n);
3. U

n−
(
D
n

) ≡ U0 = 0 (mod n);

4. V
n−

(
D
n

) ≡ 2b
1−

(
D
n

)

2 (mod n) (valid whenever gcd(n,D) = 1).

Grantham [16] unified many notions of pseudoprimality under the name of
Frobenius pseudoprimes. Rotkiewicz [24] presents several types of Lucas and
Frobenius pseudoprimes, together with detailed historical information.

2.2 Fibonacci and Bruckman–Lucas Pseudoprimes

For a prime p ≥ 3, from (5) and (7) applied for a = 1 and b = −1, we obtain

Fp ≡
(p

5

)
(mod p); (9)

Fp−( p5 ) ≡ 0 (mod p). (10)

By the law of quadratic reciprocity, we have

(p
5

)
=

(
5

p

)
.

A composite number n is called a Fibonacci pseudoprime if n | Fn−( n5 ).
The even such pseudoprimes are indexed as A141137 in OEIS [26] (where each
sequence is indexed by a six-digit A-code), while the odd Fibonacci pseudoprimes

https://oeis.org/A141137
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indexed as A081264 start with the terms

323, 377, 1891, 3827, 4181, 5777, 6601, 6721, 8149, 10877, 11663, 13201, 13981,

15251, 17119, 17711, 18407, 19043, 23407, 25877, 27323, 30889, 34561, 34943,

35207, 39203, 40501, 50183, 51841, 51983, 52701, 53663, 60377, . . . .

By the relations (6) and (8) applied for a = 1 and b = −1, we obtain

Lp ≡ 1 (mod p); (11)

Lp−( p5 ) ≡ 2
(p

5

)
(mod p). (12)

A composite integer n satisfying n | Ln − 1 is called a Bruckman–Lucas
pseudoprime. The sequence is indexed in the OEIS as A005845 and begins with

705, 2465, 2737, 3745, 4181, 5777, 6721, 10877, 13201, 15251, 24465, 29281, 34561,

35785, 51841, 54705, 64079, 64681, 67861, 68251, 75077, 80189, 90061, 96049, . . . .

In 1964, Lehmer [18] proved that Fibonacci and Bruckman–Lucas pseudoprimes
are infinite, while Bruckman [11] showed that Bruckman–Lucas pseudoprimes are
odd.

Other classes of pseudoprimes are defined by combining multiple properties. For
example, a composite integer n is a Fibonacci–Bruckner–Lucas pseudoprime if it
satisfies n | Fn−( p5 ) and n | Ln − 1. These numbers give the sequence A212424

4181, 5777, 6721, 10877, 13201, 15251, 34561, 51841, 64079, 64681, 64681, 67861,

68251, 75077, 90061, 96049, 97921, 100127, 113573, 118441, 146611, 161027, . . . .

Bruckman [10] showed that there are infinitely many Fibonacci–Bruckner–Lucas
pseudoprimes. These numbers correspond to the Frobenius pseudoprimes for the
quadratic equation x2 − x − 1 [14, 24]. By Bruckman’s result [11], it follows that
all the Fibonacci–Bruckner–Lucas pseudoprimes are odd.

2.3 Pell and Pell–Lucas Pseudoprimality

Similar notions of primality and pseudoprimality have been defined for Pell and
Pell–Lucas numbers. In the proof, we will use Euler’s identity which states that(

8
p

)
=

(
2
p

)
= (−1)

p2−1
8 [1, Theorem 9.1.2]. For a prime number p, the following

relations are obtained from (5), (7), (6), and (8) applied for a = 2 and b = −1 (see

https://oeis.org/A081264
https://oeis.org/A005845
https://oeis.org/A212424
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Corollary 4.2 and Proposition 4.4 [3])

Pp ≡
(

2

p

)
= (−1)

p2−1
8 (mod p);

P
p−

(
2
p

) ≡ 0 (mod p);

Qp ≡ 2 (mod p);

Qp−( p2 ) ≡ 2

(
2

p

)
= 2(−1)

p2−1
8 (mod p).

An odd composite integer n is called a Pell pseudoprime if n divides P
n−(−1)

n2−1
8

.

The Pell pseudoprimes indexed as A099011 in OEIS start with the terms

169, 385, 741, 961, 1121, 2001, 3827, 4879, 5719, 6215, 6265, 6441, 6479, 6601,

7055, 7801, 8119, 9799, 10945, 11395, 13067, 13079, 13601, 15841, 18241, 19097,

20833, 20951, 24727, 27839, 27971, 29183, 29953, 31417, 31535, 34561, 35459, . . . .

In 1986, Kiss, Phong, and Lieuwen [17] showed that this sequence is infinite.
A composite integer n which satisfies the relation n | Qn − 2 is called a Pell–

Lucas pseudoprime (see [2, Chapter 3.2] and [3]). The odd such pseudoprimes are
indexed as A330276 in OEIS and start with the terms

169, 385, 961, 1105, 1121, 3827, 4901, 6265, 6441, 6601, 7107, 7801, 8119, 10945,

11285, 13067, 15841, 18241, 19097, 20833, 24727, 27971, 29953, 31417, 34561,

35459, 37345, 37505, 38081, 39059, 42127, 45451, 45961, 47321, 49105, . . . .

It has been conjectured that this sequence is infinite (see [2] and [3]).
The even Pell–Lucas pseudoprimes starting with

4, 8, 16, 24, 32, 48, 64, 72, 96, 120, 128, 144, 168, 192, 216, 240, 256, 264, 272, 288,

336, 360, 384, 432, 480, 504, 512, 528, 544, 576, 600, 648, 672, 720, 768, 792, 816,

840, 864, 960, 1008, 1024, 1056, 1080, 1088, 1152, 1176, 1200, 1296, . . . ,

were indexed as A335668. The sequence of odd and even Pell–Lucas pseudoprimes
recover A270345, which is defined in OEIS as the sequence of composite integers
n for which n | P0 + P1 + · · · + Pn−1. The two different interpretations of this
sequence have suggested the following result.

Theorem 4 If n is composite, then n | Qn− 2 if and only if n | (P0+ · · · +Pn−1).

https://oeis.org/A099011
https://oeis.org/A330276
https://oeis.org/A335668
https://oeis.org/A270345
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Proof If m, k are non-negative integers, then by using the Binet-like formula for
Pell numbers and the sum of geometric series, we immediately get [12]

m∑

i=0

Pk+i = 1

4
(Qk+m+1 −Qk) .

When k = 0 and m = n− 1, we obtain thatQn − 2 = 4(P0 + · · · + Pn−1). By this
identity, the conclusion holds when n is odd. Whenever n | P0 + · · · + Pn−1, we
also have n | Qn − 2.

We now prove that whenever n is even and n | Qn− 2, then n | P0+ · · ·+Pn−1.
Let n = 2mM , where m ≥ 1 and M is odd. Since Qn = (1 +

√
2)n + (1 −√2)n,

one can find the integers an and bn with the properties

(1+√2)n = an + bn
√

2, (1−√2)n = an − bn
√

2.

We deduce thatQn = 2an, and moreover, we have the relation

an − 1 =
(
n

2

)(√
2
)2 +

(
n

4

)(√
2
)4 + · · · +

(
n

2l

)(√
2
)2l + · · · +

(√
2
)n
.

It is sufficient to prove that once n = 2mM | Qn − 2, we have 2m+1M | an − 1.
Clearly, this is trivial for the odd factor M; hence, one requires to prove that the
divisibility relation 2m+1 | an − 1 holds.

First, for l ≥ m+ 1, it easily follows that 2m+1 | (n2l
) (√

2
)2l

.

We now have to prove that

2m+1 |
(
n

2

)(√
2
)2 +

(
n

4

)(√
2
)4 + · · · +

(
n

2m

)(√
2
)2m

. (13)

For k = 1, . . . , m, we have 2k ≤ 2m ≤ 2m; hence, gcd(2m, n− l) = gcd(2m, l)
for all l = 1, . . . , 2k − 1. For k = 1, . . . , m, we get k = 2rkRk , with rk ≥ 0 and
Rk ≥ 1 odd. By the above property, we deduce that the power of 2 in the binomial
coefficient

(
n

2k

)
= n(n− 1) · · · (n− 2k + 1)

1 · 2 · · · (2k − 1) · 2k
= (n− 1)(n− 2) · · · (n− 2k + 1)

1 · 2 · · · (2k − 1)
· n

2k

can be computed as m− (rk + 1). For each k = 1, . . . , m, we may write

(
n

2k

)(√
2
)2k = 2mkMk = 2m+k−(rk+1)Mk, (14)

whereMk is odd.
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We now show that m1 = m2 = m and that mk ≥ m+ 1 for k ≥ 3. For k = 1, we
have r1 = 0 and R1 = 1, which gives m1 = m. Also, for k = 2, one obtains r2 = 1
and R2 = 1, which yields m2 = m+ 2− (1+ 1) = m. Therefore,

(
n

2

)(√
2
)2 +

(
n

4

)(√
2
)4 = 2m (M1 +M2) .

Whenever k ≥ 3, one has rk ≥ 2 and Rk ≥ 3; hence, 2rkRk ≥ rk + 2; therefore,

mk = m+ 2rkRk − (rk + 1) ≥ m+ 1.

We deduce that 2m+1 divides all the terms in (14) for k = 3, . . . , m.
SinceM1 andM2 are both odd, we conclude that (13) holds. �
An odd composite integer n is called a Pell–Pell–Lucas pseudoprime if it satisfies

n | P
n−(−1)

n2−1
8

and n | Qn − 2.

The list of such pseudoprimes is indexed as A327652 and starts with

169, 385, 961, 1121, 3827, 6265, 6441, 6601, 7801, 8119, 10945, 13067, 15841, 18241,

19097, 20833, 24727, 27971, 29953, 31417, 34561, 35459, 37345, 38081, 39059, . . . .

It has been conjectured that this sequence is infinite [3].

3 Generalized Bruckman–Lucas Pseudoprimes

Proposition 1 motivates the following notion.

Definition 2 A composite integer n is said to be a generalized Bruckman–Lucas
pseudoprime of parameters a and b if n | Vn(a, b)− a.

For b = ±1 and (a, b) 	= (1, 1), there are infinitely many odd composite integers
n with Vn ≡ a (mod n) [23], so there are infinitely many generalized Bruckner–
Lucas pseudoprimes.

3.1 Results for b = −1

We obtained known integer sequences for b = −1, a = 1 (Bruckman–Lucas
pseudoprimes) and for b = −1, a = 2, while the others were new. We first present
sequences of odd terms.

https://oeis.org/A327652
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• a = 1. We obtain the Bruckman–Lucas pseudoprimes indexed A005845.
• a = 2. Here we get the odd Pell–Lucas pseudoprimes A330276.
• a = 3. The sequence Vn(3,−1) gives the 3-Lucas sequences A006497. The odd

numbers n for which n | Vn(3,−1) − 3 are indexed as A335669. The first few
are

33, 65, 119, 273, 377, 385, 533, 561, 649, 1105, 1189, 1441, 2065, 2289, 2465,

2849, 4187, 4641, 6545, 6721, 11921, 12871, 13281, 14041, 15457, 16109, . . . .

• a = 4. The sequence Vn(4,−1) is A014448 for which Vn(4,−1) = L(3n). The
odd composite integers n for which n | Vn(4,−1)− 4 starting with the terms

9, 85, 161, 341, 705, 897, 901, 1105, 1281, 1853, 2465, 2737, 3745, 4181, 4209,

4577, 5473, 5611, 5777, 6119, 6721, 9701, 9729, 10877, 11041, 12209, 12349, . . . ,

were indexed as A335670.
• a = 5. The sequence Vn(5,−1) is A087130, related to the fifth metallic mean.

The odd composite numbers n for which n | Vn(5,−1)− 5 start with

9, 27, 65, 121, 145, 377, 385, 533, 1035, 1189, 1305, 1885, 2233, 2465, 4081,

5089, 5993, 6409, 6721, 7107, 10877, 11281, 11285, 13281, 13369, 13741, . . . ,

were added to OEIS as A335671.
• a = 6. The sequence Vn(6,−1) recovers A085447. The odd composite numbers
n for which n | Vn(6,−1)− 6 are indexed as A338078 and start with

57, 185, 385, 481, 629, 721, 779, 1121, 1441, 1729, 2419, 2737, 5665, 6721,

7471, 8401, 9361, 10465, 10561, 11285, 11521, 11859, 12257, 13585, 14705, . . . .

• a = 7. The sequence Vn(7,−1) is A086902. The odd composite numbers n for
which n | Vn(7,−1) − 7 have been indexed as A338079. The sequence starts
with

25, 51, 91, 161, 265, 325, 425, 561, 791, 1105, 1113, 1325, 1633, 1921, 1961, 2001,

2465, 2599, 2651, 2737, 3445, 4081, 4505, 4929, 7345, 7685, 8449, 9361, . . . .

Now we present some sequences of even pseudoprimes obtained for b = −1.

• a = 1. A classical result by Bruckman [11] shows that this set is empty.
• a = 2. As seen in Section 2.3, in this case, we obtain A335668 in OEIS.
• a = 3. The even numbers n ≤ 25000 for which n | Vn − 3 are n = 4, 116, 938.
• a = 4. The even numbers n ≤ 10000 for which n | Vn − 4 are n = 14, 1442.
• a = 5. The even numbers n ≤ 15000 for which n | Vn − 5 is n = 22.

https://oeis.org/A005845
https://oeis.org/A330276
https://oeis.org/A006497
https://oeis.org/A335669
https://oeis.org/A014448
https://oeis.org/A335670
https://oeis.org/A087130
https://oeis.org/A335671
https://oeis.org/A085447
https://oeis.org/A338078
https://oeis.org/A086902
https://oeis.org/A338079
https://oeis.org/A335668
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• a = 6. The even numbers n ≤ 15000 for which n | Vn − 6 are n =
4, 682, 1436, 8618.

• a = 7. The first even numbers for which n | Vn − 7 are

4, 8, 22, 88, 472, 5588, 10408, 20648, 34568, 123076, 1783976, 3677228, 4609418,

4857688, 6027208, 9906578, 16508152, 19995308, 20226572, 32039062, . . . ,

indexed in OEIS as A338310.

3.2 Results for b = 1

• a = 3. The sequence Vn(3, 1) = L2n is the bisection of Lucas numbers A005248.
The odd composite numbers n for which n | Vn(3, 1)− 3 start with

15, 105, 195, 231, 323, 377, 435, 665, 705, 1443, 1551, 1891, 2465, 2737, 2849,

3289, 3689, 3745, 3827, 4181, 4465, 4879, 5655, 5777, 6479, 6601, 6721, . . . .

We have added this sequence to OEIS A335672.
• a = 4. The sequence Vn(4, 1) is A003500, starting with

2, 4, 14, 52, 194, 724, 2702, 10084, 37634, 140452, 524174, 1956244, 7300802,

27246964, 101687054, 379501252, 1416317954, 5285770564, 19726764302, . . . .

The composite integers n for which n | Vn(4, 1)− 4 are indexed as A335673.

10, 209, 230, 231, 399, 430, 455, 530, 901, 903, 923, 989, 1295, 1729, 1855, 2015,

2211, 2345, 2639, 2701, 2795, 2911, 3007, 3201, 3439, 3535, 3801, 4823, . . . .

The odd such numbers are indexed as A330206, where they are called Chebyshev
pseudoprimes to base 2. The even terms are not yet indexed in OEIS.

• a = 5. The sequence Vn(5, 1) is indexed as A003501 and starts with the terms

2, 5, 23, 110, 527, 2525, 12098, 57965, 277727, 1330670, 6375623, 30547445, . . . .

The odd composite numbers n for which n | Vn(5, 1) − 5 recover the sequence
A335674 and start with the terms

15, 21, 35, 105, 161, 195, 255, 345, 385, 399, 465, 527, 551, 609, 741, 897, 1105,

1295, 1311, 1807, 1919, 2001, 2015, 2071, 2085, 2121, 2415, 2737, 2915, . . . .

https://oeis.org/A338310
https://oeis.org/A005248
https://oeis.org/A335672
https://oeis.org/A003500
https://oeis.org/A335673
https://oeis.org/A330206
https://oeis.org/A003501
https://oeis.org/A335674
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• a = 6. The sequence Vn(6, 1) is A003499, starting with

2, 6, 34, 198, 1154, 6726, 39202, 228486, 1331714, 7761798, 45239074, . . . .

The first few odd numbers n for which n | Vn(6, 1)− 6 recover A337233 and are

35, 119, 169, 385, 741, 779, 899, 935, 961, 1105, 1121, 1189, 1443, 1479, 2001,

2419, 2555, 2915, 3059, 3107, 3383, 3605, 3689, 3741, 3781, 3827, 4199, 4795, . . . .

• a = 7. The sequence Vn(7, 1) is indexed as A056854 and starts with the terms

2, 7, 47, 322, 2207, 15127, 103682, 710647, 4870847, 33385282, 228826127,

1568397607, 10749957122, 73681302247, 505019158607, 3461452808002, . . . .

This represents the quadrisection of Lucas numbers, i.e., Vn = L4n. The odd
numbers n for which n | Vn(7, 1) − 7 define A338082 added to OEIS and start
with

9, 15, 21, 35, 45, 63, 99, 105, 195, 231, 315, 323, 329, 369, 377, 423, 435, 451, 595,

665, 705, 805, 861, 903, 1081, 1189, 1443, 1551, 1819, 1833, 1869, 1891, 1935, . . . .

Now we present some sequences of even pseudoprimes obtained for b = 1.

• a = 3. The even numbers satisfying n | Vn − 3 were indexed as A337777

4, 44, 836, 1364, 2204, 7676, 7964, 9164, 11476, 12524, 23804, 31124, 32642,

39556, 73124, 80476, 99644, 110564, 128876, 156484, 192676, 199924, . . . .

• a = 4. The even numbers 3 ≤ n ≤ 36000 for which n | Vn − 4 are

10, 230, 430, 530, 9890, 35626.

• a = 5. The even numbers 3 ≤ n ≤ 30000 for which n | Vn − 5 are

6554, 11026, 26506.

• a = 6. The even numbers for which n | Vn − 6 give A338311 and start with

4, 14, 28, 164, 434, 574, 1106, 5084, 5572, 7874, 8386, 13454, 13694, 19964,

21988, 33166, 39934, 40132, 95122, 103886, 113918, 148994, 157604, 215326, . . .

The combination of even and odd sequences is not currently indexed.

https://oeis.org/A003499
https://oeis.org/A337233
https://oeis.org/A056854
https://oeis.org/A338082
https://oeis.org/A337777
https://oeis.org/A338311
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4, 14, 28, 35, 119, 164, 169, 385, 434, 574, 741, 779, 899, 935, 961, 1105, 1106,

1121, 1189, 1443, 1479, 2001, 2419, 2555, 2915, 3059, 3107, 3383, 3605, . . . .

• a = 7. The even numbers satisfying n | Vn − 7 recover A338312 starting with

4, 8, 10, 20, 40, 44, 104, 136, 152, 170, 190, 232, 260, 286, 442, 580, 740, 836,

890, 1364, 1378, 1990, 2204, 2260, 2584, 2626, 2684, 2834, 3016, 3160, 3230,

3926, 4220, 4636, 5662, 6290, 7208, 7384, 7540, 7676, 7964, 8294, 8420, 9164,

9316, 9320, 10070, 11476, 12524, 14824, 15224, 17324, 19720, . . .

Remark 1 Direct calculations can show that the following identities hold true:

Vn(1,−1) = Ln, Vn(3, 1) = L2n, Vn(7, 1) = L4n.

4 Weak Generalized Lucas Pseudoprimes

By Proposition 1, whenever p is prime, one has

Up ≡
(
D

p

)
(mod p).

Clearly, U2
p ≡ 1 (mod p), and we can define some weak pseudoprimality notions

for generalized Lucas and Pell–Lucas sequences Un(a, b) and Vn(a, b).

Definition 3 A composite integer n for which n | U2
n − 1 is called a weak

generalized Lucas pseudoprime of parameters a and b.

Theorem 5 If Un = Un(a, b) with b = ±1. If a is even, then the weak generalized
Lucas pseudoprimes n ≥ 3 are all odd.

Proof By the recurrence relation (1), we have

Un+2 + bUn = aUn+1, n ≥ 0. (15)

Since a is even and b = ±1, we deduce that Un and Un+2 have the same parity. As
U0 = 0 and U1 = 1, it follows that U2m is even, and U2m+1 is odd, for all m ≥ 0.
Therefore, the divisibility relation n | U2

n − 1 may only hold when n is odd. �
In particular, for (a, b) = (1,−1) and (a, b) = (2,−1), one obtains the

following new notions of pseudoprimality.

Definition 4 A composite integer n satisfying the property n | F 2
n − 1 is called

weak Fibonacci pseudoprime.

https://oeis.org/A338312
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The first few odd composite numbers in this list are

231, 323, 377, 1443, 1551, 1891, 2737, 2849, 3289, 3689, 3827, 4181, 4879, 5777,

6479, 6601, 6721, 7743, 8149, 9879, 10877, 11663, 13201, 13981, 15251, 15301, . . . .

The first even numbers with this property are

4, 8, 14, 22, 26, 34, 38, 46, 58, 62, 74, 82, 86, 88, 94, 106, 118, 122, 134, 142, 146, 158,

166, 178, 194, 202, 206, 214, 218, 226, 254, 262, 274, 278, 298, 302, 314, 326, 334, 346, . . . .

These sequences are indexed in OEIS as A337231 and A337232, respectively.

Conjecture 1 Results for n ≤ 20000 suggest that these numbers are square-free.

Definition 5 A composite integer n satisfying the property n | P 2
n − 1 is called a

weak Pell pseudoprime.

By Theorem 5, all weak Pell pseudoprimes are odd, and the first few terms are

35, 119, 169, 385, 741, 779, 899, 935, 961, 1105, 1121, 1189, 1443, 1479, 2001, 2419,

2555, 2915, 3059, 3107, 3383, 3605, 3689, 3741, 3781, 3827, 4199, 4795, 4879, . . . .

This sequence contains the squares 169 and 961 and is indexed A337233 in OEIS.
Notice that this sequence also has some other interpretations.

4.1 Results for b = −1

We now present some sequences of odd numbers.

• a = 3. In this case, (Un)n≥0 is indexed as A006190, called bronze Fibonacci
sequence, used for enumerating classes of fatty acids [25] and starts with

0, 1, 3, 10, 33, 109, 360, 1189, 3927, 12970, 42837, 141481, . . . .

The sequence of odd integers n for which n | U2
n − 1 starts with

9, 33, 55, 63, 99, 119, 153, 231, 385, 399, 561, 649, 935, 981, 1023, 1071, 1179,

1189, 1199, 1441, 1595, 1763, 1881, 1953, 2001, 2065, 2255, 2289, 2465, 2703,

2751, 2849, 2871, 3519, 3599, 3655, 3927, 4059, 4081, 4187, 5015, 5151, . . . .

This sequence was added to OEIS as A337234.

https://oeis.org/A337231
https://oeis.org/A337232
https://oeis.org/A337233
https://oeis.org/A006190
https://oeis.org/A337234
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• a = 4. The sequence Un(4,−1) is A001076. The sequence of odd composite
integers n for which n | U2

n − 1 was added to OEIS as A337236 and starts with

9, 63, 99, 119, 161, 207, 209, 231, 279, 323, 341, 377, 391, 549, 589, 671, 759, 779,

799, 897, 901, 1007, 1159, 1281, 1443, 1449, 1551, 1853, 1891, 2001, 2047, 2071,

2379, 2407, 2501, 2737, 2743, 2849, 2871, 2961, 3069, 3289, 3689, 3827, . . . .

• a = 5. The sequence (Un)n≥0 satisfies Un = A052918(n − 1), for n ≥ 1. The
sequence of odd integers n for which n | U2

n − 1 recovers A337237 and starts
with

9, 15, 25, 27, 35, 45, 65, 75, 91, 121, 135, 143, 175, 225, 275, 325, 385, 455, 533,

595, 615, 675, 935, 1035, 1107, 1325, 1359, 1431, 1495, 1547, 1573, 1935, . . . .

• a = 6. The sequence Un(6,−1) is A005668. The sequence of odd integers n for
which n divides U2

n − 1 recovers A338080 and starts with

9, 57, 63, 143, 171, 247, 323, 399, 407, 481, 629, 703, 721, 779, 899, 927, 1121,

1239, 1407, 1441, 1463, 1703, 1729, 2419, 2529, 2639, 2737, 3289, 3367, 3689,

4081, 4847, 4879, 4921, 5291, 5339, 5871, 6061, 6479, 6489, 6601, 6721, . . . .

• a = 7. The sequence (Un)n≥0 is linked to A054413 and starts with

0, 1, 7, 50, 357, 2549, 18200, 129949, 927843, 6624850, 47301793, . . . .

The sequence of odd integers n for which n | U2
n − 1 recovers A338081 given

by

21, 25, 35, 49, 51, 65, 85, 91, 119, 147, 161, 175, 221, 231, 245, 325, 357, 377, 391,

399, 425, 455, 539, 559, 561, 575, 595, 629, 637, 759, 791, 833, 1001, 1105, 1127,

1225, 1247, 1295, 1309, 1495, 1547, 1633, 1763, 1775, 1921, 2001, 2015, . . . .

We now present sequences of even pseudoprimes for b = −1. By Theorem 5,
when a is even, all weak generalized Lucas pseudoprimes are odd.

• a = 3. The composite even integers n for which n | U2
n − 1 start with

4, 8, 16, 68, 1208, 1424, 3056, 3824, 3928, 20912, 52174, 63716, 88708, 123148,

161872, 582224, 887566, 17083292, 18900412, 34648888, 39991684, 44884912, . . . .

This sequence was added A337235.

https://oeis.org/A001076
https://oeis.org/A337236
https://oeis.org/A052918
https://oeis.org/A337237
https://oeis.org/A005668
https://oeis.org/A338080
https://oeis.org/A054413
https://oeis.org/A338081
https://oeis.org/A337235
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• a = 5. The composite even numbers for which n | U2
n − 1 recover sequence

A338313 in OEIS, which starts with the terms

4, 8, 16, 32, 68, 248, 268, 544, 1328, 4216, 4768, 9112, 9376, 12664, 20128,

22112, 24536, 25544, 30488, 43262, 61574, 125792, 148004, 304792, 398248, . . . .

• a = 7. The composite even numbers n ≤ 15000 for which n | U2
n − 1 are

4, 8, 356, 716, 12626.

4.2 Results for b = 1

Notice that for b = 1, a = 1, and D = −3, the sequences (Un)n≥0 and (Vn)n≥0
have the period 6, as follows:

0, 1, 1, 0,−1,−1, 0, 1, 1, 0,−1,−1, 0, 1, 1, 0,−1,−1, 0, 1, 1, 0, . . .

2, 1,−1,−2,−1, 1, 2, 1,−1,−2,−1, 1, 2, 1,−1,−2,−1, 1, 2, 1,−1, . . . .

Also, for b = 1, a = 2, and D = 0, one obtains Un = n and Vn = 2, for n =
0, 1, 2, . . . .

• a = 3. The sequence (Un)n≥0 starts with the terms

0, 1, 3, 8, 21, 55, 144, 377, 987, 2584, 6765, 17711, 46368, 121393, 317811, . . . ,

representing the bisection of Fibonacci numbers, i.e., Un = F2n A001906. The
odd composite integers n for which n | U2

n − 1 generate A338007 and start with

9, 21, 63, 99, 231, 323, 329, 369, 377, 423, 451, 861, 903, 1081, 1189, 1443, 1551,

1819, 1833, 1869, 1891, 2033, 2211, 2737, 2849, 2871, 2961, 3059, 3289, . . . .

• a = 4. The sequence (Un)n≥0 starts with the terms

0, 1, 4, 15, 56, 209, 780, 2911, 10864, 40545, 151316, 564719, 2107560, . . . ,

indexed as A001353. The sequence of odd composite integers n which satisfy
the relation n | U2

n − 1 recovers A338008, starting with

35, 65, 91, 209, 455, 533, 595, 629, 679, 901, 923, 989, 1001, 1241, 1295, 1495,

1547, 1729, 1769, 1855, 1961, 1991, 2015, 2345, 2431, 2509, 2555, 2639, . . . .

https://oeis.org/A338313
https://oeis.org/A001906
https://oeis.org/A338007
https://oeis.org/A001353
https://oeis.org/A338008
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• a = 5. The sequence (Un)n≥0 starts with the terms

0, 1, 5, 24, 115, 551, 2640, 12649, 60605, 290376, 1391275, 6665999, . . . ,

and is indexed as A004254. The sequence of positive integers n for which the
number n divides U2

n − 1 gives A338009 and starts with

25, 55, 115, 209, 253, 275, 319, 391, 425, 527, 551, 575, 713, 715, 775, 779, 935,

1105, 1111, 1265, 1705, 1807, 1919, 2015, 2035, 2071, 2575, 2627, 2893, 2915, . . . .

• a = 6. The sequence (Un)n≥0 starts with the terms

0, 1, 6, 35, 204, 1189, 6930, 40391, 235416, 1372105, 7997214, 46611179, . . . ,

indexed as A001109. The sequence of odd composite integers n for which we
have n | U2

n − 1 gives A338010 and starts with the terms

9, 35, 51, 55, 77, 85, 119, 153, 169, 171, 187, 209, 261, 319, 369, 385, 451, 531,

551, 595, 649, 715, 741, 779, 899, 935, 961, 969, 989, 1105, 1121, 1189, 1241, . . . .

• a = 7. The sequence (Un)n≥0 starts with the terms

0, 1, 7, 48, 329, 2255, 15456, 105937, 726103, 4976784, 34111385, . . . ,

and recovers A004187. The sequence of positive integers n for which n divides
U2
n − 1 gives A338011 and starts with

49, 161, 323, 329, 377, 451, 539, 989, 1081, 1127, 1189, 1771, 1819, 1891, 2009,

2033, 2047, 2303, 2737, 2849, 3059, 3289, 3619, 3653, 3689, 3827, 4181, . . . .

We now present some sequences of even pseudoprimes for b = 1. By Theorem 5,
when a is even, all weak generalized Lucas pseudoprimes are odd.

• a = 3. The composite even integers n for which n | U2
n − 1 give A337782

4, 8, 44, 104, 136, 152, 232, 286, 442, 836, 1364, 1378, 2204, 2584, 2626, 2684,

2834, 3016, 3926, 4636, 5662, 7208, 7384, 7676, 7964, 8294, 9164, 9316, . . . .

• a = 5. The composite even numbers n for which n | U2
n − 1 give A338314

4, 8, 76, 104, 116, 296, 872, 1112, 1378, 2204, 2774, 2834, 3016, 4472, 5174, 5624,

6364, 6554, 8854, 9164, 9976, 10564, 11026, 11324, 11476, 12644, 14356, . . . .

https://oeis.org/A004254
https://oeis.org/A338009
https://oeis.org/A001109
https://oeis.org/A338010
https://oeis.org/A004187
https://oeis.org/A338011
https://oeis.org/A337782
https://oeis.org/A338314
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• a = 7. The composite even numbers n for which n | U2
n − 1 give A337783

4, 8, 16, 44, 104, 136, 152, 164, 176, 232, 286, 442, 496, 656, 836, 856, 976, 1072,

1364, 1378, 1394, 1804, 1826, 2204, 2248, 2584, 2626, 2684, 2834, 3016, 3268,

3536, 3926, 4264, 4346, 4636, 5084, 5104, 5146, 5662, 7208, 7216, 7384, . . . .

5 Weak Generalized Lucas–Bruckner Pseudoprimes

Since Vp ≡ a (mod p), we may also introduce the following notion, which
combines the notions discussed in Sects. 3 and 4.

Definition 6 A composite integer n for is called a weak generalized Lucas–
Bruckner pseudoprime of parameters a and b if it satisfies the relations n | U2

n − 1
and n | Vn − a.

Clearly, this definition does not involve the Jacobi symbol. Rotkiewicz [23] proved
that when b = ±1 and (a, b) 	= (1, 1), there are infinitely many odd composite
numbers n satisfying simultaneously the relations 1, 2, and 3 from Proposition 1.

If n is an odd composite number satisfying the three relations gcd(n, 2abD) = 1,
Un ≡

(
D
n

)
(mod n), and Vn ≡ V1 = a (mod n), then U2

n ≡ 1 (mod n); hence, n is a
weak generalized Lucas pseudoprime. We obtain the following result.

Proposition 2 There are infinitely many weak generalized Lucas–Bruckner pseu-
doprimes.

For (a, b) = (1,−1) and (a, b) = (2,−1), one obtains the following notions.

Definition 7 A composite integer n is called a weak Fibonacci–Lucas–Bruckner
pseudoprime if it satisfies the relations n | F 2

n − 1 and n | Ln − 1.

Since the Bruckman–Lucas numbers satisfying n | Ln − 1 start with the values

705, 2465, 2737, 3745, 4181, 5777, 6721, 10877, 13201, 15251, . . . ,

the first few weak Fibonacci–Lucas–Bruckner pseudoprimes are

2737, 4181, 5777, 6721, 10877, 13201, 15251, 29281, 34561, 51841, 64079, 64681,

67861, 68251, 75077, 80189, 90061, 96049, 97921, 100127, 105281, 113573, . . . .

This sequence is indexed to OEIS as A337625.

Definition 8 The composite integers n which satisfy the properties n | P 2
n − 1 and

n | Qn − 2 are called weak Pell–Lucas–Bruckner pseudoprimes.

https://oeis.org/A337783
https://oeis.org/A337625
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This sequence only has odd terms, and it is indexed as A330276 (see Sect. 2.3). The
numbers in this sequence are also called NSW pseudoprimes.

Conjecture 2 If the integer n satisfies n | Qn − 2, then we also have n | P 2
n − 1.

In other words, a composite integer n is a Pell–Lucas pseudoprime if and only if
it is a weak Pell–Lucas–Bruckner pseudoprime.

5.1 Results for b = −1

We begin with some sequences of odd numbers, recently indexed to OEIS.

• a = 3. The first odd composite numbers satisfying n | U2
n − 1 and n | Vn− 3 are

33, 119, 385, 561, 649, 1189, 1441, 2065, 2289, 2465, 2849, 4187, 6545, 12871,

13281, 14041, 16109, 18241, 22049, 23479, 24769, 25345, 28421, 31631, . . . .

This sequence corresponds to A337626.
• a = 4. The first odd composite numbers such that n | U2

n − 1 and n | Vn − 4 are

9, 161, 341, 897, 901, 1281, 1853, 2737, 4181, 4209, 4577, 5473, 5611, 5777, 6119,

6721, 9701, 9729, 10877, 11041, 12209, 12349, 13201, 13481, 14981, 15251, . . . .

This sequence corresponds to A337627.
• a = 5. The first odd composite numbers for which n | U2

n − 1 and n | Vn − 5 are

9, 27, 65, 121, 385, 533, 1035, 4081, 5089, 5993, 6721, 7107, 10877, 11285,

13281, 13741, 14705, 16721, 18901, 19601, 19951, 20705, 24769, 25345, . . . .

This sequence was added to OEIS as A337628.
• a = 6. The first odd composite numbers satisfying n | U2

n − 1 and n | Vn− 6 are

57, 481, 629, 721, 779, 1121, 1441, 1729, 2419, 2737, 6721, 7471, 8401, 9361,

10561, 11521, 11859, 12257, 15281, 16321, 16583, 18849, 24721, 25441, . . . .

This sequence is indexed to OEIS as A337629.
• a = 7. The first odd composite numbers such that n | U2

n − 1 and n | Vn − 7 are

25, 51, 91, 161, 325, 425, 561, 791, 1105, 1633, 1921, 2001, 2465, 2599, 2651,

2737, 7345, 8449, 9361, 10325, 10465, 10825, 11285, 12025, 12291, 13021, . . . .

This sequence recovers the OEIS sequence A337630.

https://oeis.org/A330276
https://oeis.org/A337626
https://oeis.org/A337627
https://oeis.org/A337628
https://oeis.org/A337629
https://oeis.org/A337630
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We now present sequences of even pseudoprimes with b = −1. From Theorem 5,
when a is even, all weak generalized Lucas pseudoprimes are odd.

• a = 3. For n smaller that 20000, the only even composite integer which satisfies
the relations n | U2

n − 1 and n | Vn − 3 is n = 4.
• a = 5. There are no even numbers 3 ≤ n ≤ 15000 which satisfy the relations
n | U2

n − 1 and n | Vn − 5.
• a = 7. The even numbers 3 ≤ n ≤ 15000 for which n | U2

n − 1 and n | Vn − 7
are only n = 4 and n = 8.

5.2 Results for b = 1

We present examples for a = 3, 4, 5, 6, 7, starting with sequences having odd terms.
All these sequences are new and have been recently added to OEIS.

• a = 3. The odd composite numbers with n | U2
n −1 and n | Vn−3 are A337231

231, 323, 377, 1443, 1551, 1891, 2737, 2849, 3289, 3689, 3827, 4181, 4879, 5777,

6479, 6601, 6721, 7743, 8149, 9879, 10877, 11663, 13201, 13981, 15251, . . . .

• a = 4. The odd composite numbers with n | U2
n − 1 and n | Vn − 4 recover

A337778

209, 455, 901, 923, 989, 1295, 1729, 1855, 2015, 2345, 2639, 2701, 2795, 2911,

3007, 3439, 3535, 4823, 5291, 5719, 6061, 6767, 6989, 7421, 8569, 9503, . . . .

• a = 5. The odd composite numbers with n | U2
n −1 and n | Vn−5 are A337779

527, 551, 1105, 1807, 1919, 2015, 2071, 2915, 3289, 4031, 4033, 4355, 5291, 5777,

5983, 6049, 6061, 6479, 6785, 7645, 8695, 9361, 9889, 11285, 11663, 11951, . . . .

• a = 6. The odd composite numbers with n | U2
n−1 and n | Vn−6 give A337233

35, 119, 169, 385, 741, 779, 899, 935, 961, 1105, 1121, 1189, 1443, 1479, 2001,

2419, 2555, 2915, 3059, 3107, 3383, 3605, 3689, 3741, 3781, 3827, 4199, . . . .

• a = 7. The odd composite numbers such that n | U2
n − 1 and n | Vn − 7 are

A337781

323, 329, 377, 451, 1081, 1189, 1819, 1891, 2033, 2737, 2849, 3059, 3289, 3653,

3689, 3827, 4181, 4879, 5671, 5777, 6479, 6601, 6721, 8149, 8533, 8557, . . . .

https://oeis.org/A337231
https://oeis.org/A337778
https://oeis.org/A337779
https://oeis.org/A337233
https://oeis.org/A337781


Weak Pseudoprimality Associated with the Generalized Lucas Sequences 73

We now present some sequences of pseudoprimes of even numbers for b = 1. By
Theorem 5, when a is even, all weak generalized Lucas pseudoprimes are odd.

• a = 3. The even integers for which n | U2
n − 1 and n | Vn − 3 recover A337777

4, 44, 836, 1364, 2204, 7676, 7964, 9164, 11476, 12524, 23804, 31124, 32642,

39556, 73124, 80476, 99644, 110564, 128876, 156484, 192676, 199924, . . . .

• a = 5. The even numbers 3 ≤ n ≤ 15000 for which n | U2
n − 1 and n | Vn − 5

are

6554, 11026, 26506.

• a = 7. The even numbers 3 ≤ n ≤ 20000 satisfying n | U2
n − 1 and n | Vn − 7

recover the sequence indexed as A337782, which starts with the terms

4, 8, 44, 104, 136, 152, 232, 286, 442, 836, 1364, 1378, 2204, 2584, 2626, 2684,

2834, 3016, 3926, 4636, 5662, 7208, 7384, 7676, 7964, 8294, 9164, 9316, . . .

6 Conclusions and Future Work

Here we summarize the newly indexed sequences related to the weak pseudoprimal-
ity notions presented in this paper, for which we also propose some conjectures.

The following abbreviations will be used in the tables.

• gBL-psp: generalized Bruckner–Lucas pseudoprimes, i.e., n with Vn ≡ a (mod
n);

• w-gL-psp: weak generalized Lucas pseudoprimes, i.e., n with U2
n ≡ 1 (mod n);

• w-gBL-psp: weak generalized Bruckman–Lucas pseudoprimes, i.e., integers n
satisfying the properties Vn ≡ a (mod n) and U2

n ≡ 1 (mod n).

Table 1 shows OEIS [26] indices for (Un(a, b))n≥0, (Vn(a, b))n≥0 obtained for
b = −1 and a = 1, . . . , 7, and the corresponding gBL-psp, w-gL-psp and w-gBL-
psp sequences of odd pseudoprimes.

Table 2 presents OEIS [26] indices for (Un(a, b))n≥0, (Vn(a, b))n≥0 obtained for
b = 1 and a = 3, . . . , 7, and the corresponding gBL-psp, w-gL-psp and w-gBL-psp
pseudoprimes.

Conjecture 3 The odd integers n satisfying the relation n | U2
n (1,−1) − 1 recover

the odd integers for which one has n | U2
n (3, 1) − 1 and n | Vn(3, 1) − 3, indexed

A337231. Since Un(3, 1) = F2n and Vn(3, 1) = L2n, it means that n | F 2
n − 1 if

and only if n | F 2
2n − 1 and n | L2n − 3.

https://oeis.org/A337777
https://oeis.org/A337782
https://oeis.org/A337231


74 D. Andrica et al.

Table 1 OEIS indices of sequences (Un(a, b))n≥0, (Vn(a, b))n≥0 and pseudoprime sequences
obtained for b = −1 and a = 1, . . . , 7

(a, b) D Un(a, b) Vn(a, b) gBL-psp w-gL-psp w-gBL-psp

(1,−1) 5 A000045 A000032 A005845 A337231 A337625

(2,−1) 8 A000129 A002203 A330276 A337233 A330276

(3,−1) 13 A006190 A006497 A335669 A337234 A337626

(4,−1) 20 A001076 A014448 A335670 A337236 A337627

(5,−1) 29 A052918 A087130 A335671 A337237 A337628

(6,−1) 40 A005668 A085447 A338078 A338080 A337629

(7,−1) 53 A054413 A086902 A338079 A338081 A337630

Table 2 OEIS indices for the sequences (Un(a, b))n≥0, (Vn(a, b))n≥0 and for the pseudoprime
sequences obtained for b = 1 and a = 3, . . . , 7

(a, b) D Un(a, b) Vn(a, b) gBL-psp w-gL-psp w-gBL-psp

(3, 1) 5 A001906 A005248 A335672 A338007 A338007

(4, 1) 12 A001353 A003500 A335673 A338008 A337778

(5, 1) 21 A004254 A003501 A335674 A338009 A337779

(6, 1) 32 A001109 A003499 A337233 A338010 A337233

(7, 1) 45 A004187 A056854 A338082 A338011 A337781

Conjecture 4 The set of odd integers n satisfying n | P 2
n − 1 where Pn is the nth

Pell number is the set of odd integers for which n | U2
n − 1 and n | Vn − 6 when

a = 6 and b = 1. The sequence is indexed A337233. In this case, Un is A001109
satisfying Un = P2n

2 , while Vn is A003499, given by Vn = 2Tn(3), where Tn are the
Chebyshev polynomials of first kind. Moreover, it seems that for a = 6 and b = 1,
if n | Vn − 6, then n | U2

n − 1.

Remark 2 1◦ The sequence A335673 contains both even and odd terms.

We also formulate two conjectures for some sequences of even integers.

Conjecture 5 The set of even numbers n satisfying n | U2
n (3, 1)− 1 coincides with

the set of even numbers for which n | U2
n (7, 1) − 1 and n | Vn(7, 1) − 7. Since

Un(7, 1) = F4n and Vn(7, 1) = L4n, this means that n | F 2
2n − 1 if and only if

F 2
4n − 1 and n | L4n − 3. This represents A337782.

Conjecture 6 The set of even numbers n satisfying n | U2
n − 1 and n | Vn − 3

coincides with the set of even integers for which n | Vn − 3. Since Un(3, 1) = F2n,
while Vn(3, 1) = L2n, this entails that n | F 2

2n − 1 and n | L2n − 3 if and only
if n | L2n − 3. Alternatively, one could prove that whenever is even, whenever
n | L2n − 3, we also have n | F 2

2n − 1. This sequence represents A337777.
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12. Z. Čerin, G.M. Gianella, On sums of Pell numbers. Acc. Sc. Torino - Atti Sci. Fis. 141, 23–31

(2007)
13. K.-W. Chen, Y.-R. Pan, Greatest common divisors of shifted Horadam sequences. J. Integer

Sequences 23 (2020). Article 20.5.8.
14. R. Crandall, C. Pomerance, Prime Numbers: A Computational Perspective, 2nd edn. (Springer,

Berlin, 2005)
15. G. Everest, A. van der Poorten, I. Shparlinski, T. Ward, Recurrence Sequences. Mathematical

Surveys and Monographs, vol. 104 (American Mathematical Society, Providence, 2003)
16. J. Grantham, Frobenius pseudoprimes. Math. Comput. 70, 873–891 (2000)
17. P. Kiss, B.M. Phong, E. Lieuwens, On Lucas pseudoprimes which are products of s primes,

in Fibonacci Numbers and Their Applications, ed. by A.N. Philippou, G.E. Bergum, A.F.
Horadam, vol. 1 (Dordrecht, Reidel, 1986), pp. 131–139

18. E. Lehmer, On the infinitude of Fibonacci pseudoprimes. Fibonacci Quart. 2, 229–230 (1964)
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Finite Shift-Invariant Subspaces of
Periodic Functions: Characterization,
Approximation, and Applications

Nikolaos Atreas

Abstract We discuss approximations of square integrable periodic functions by
their projections in finite shift-invariant subspaces and highlight the role of principal
shift invariance. We also show how we may produce a variety of sampling
representations based on finite frame theory and we discuss some applications.

1 Introduction

Let L2 := L2(T) be the space of all measurable square integrable periodic functions
on T := R/Z with usual inner product 〈·, ·〉L2 and norm ‖ · ‖2, and let �2(IN) (or
simply �2 if the index set is clear from the context) be the space of all complex
valued sequences over the index set IN = {0, . . . , N − 1} with standard inner
product 〈·, ·〉�2 and norm ‖ · ‖�2 . Clearly, every element of �2 can be considered
as an N -periodic sequence over Z.

For any N ∈ N, we say that a subspace VN ⊂ L2 is 1
N

-shift-invariant, if for any
f ∈ VN , we have that τn/Nf := f (· − n

N
) ∈ VN , for all n ∈ IN . The simplest case,

VN(φ) = span
{
τn/Nφ : n = 0, . . . , N − 1

}
, (1)

which is generated from shifts of a single function φ ∈ L2, is called an 1
N

-principal
shift-invariant subspace of L2. In other words,

VN(φ) =
{
f =

N−1∑

n=0

cf (n)φ(· − n/N) : cf = (cf (n)) ∈ �2

}
.
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Shift invariance is important because it exploits nicely properties of Fourier analysis.
Many spaces encountered in approximation theory are generated by shifts of one or
more generators, e.g., in wavelet theory. Associated with any shift-invariant space
VN and any function f ∈ L2 is the unique best term approximation error

E(f, VN) = ‖f − PNf ‖2,

where

PN : L2 → VN

is the orthogonal projection from L2 onto VN . We mention here that the Fourier
coefficients of a function f ∈ L1 are defined by

f̂ (n) =
∫

T

f (γ )e−2πinγ dγ, n ∈ Z.

In addition, we define by ĉ = (̂cj )j∈IN the discrete Fourier transform of a complex
valued sequence c ∈ �2:

ĉj =
N−1∑

k=0

cke
−2πijk/N , j ∈ IN .

The inverse discrete Fourier transform of ĉ is computed from the formula

ck = 1

N

N−1∑

j=0

ĉj e
2πijk/N , k ∈ IN .

Below, we review results from [6] in the periodic setting, involving a characteri-
zation for elements in VN (and VN(φ)), and we see how approximation properties
of VN are reduced to the study of approximation properties of a suitable principal
shift-invariant subspace of VN . For f, g ∈ L2, we define a sequence

([
f̂ , ĝ

]
N

)
n∈IN

by

[
f̂ , ĝ

]
N
(n) =

∑

l∈Z
f̂ (n+ lN)ĝ(n+ lN).

Then, it is easy to show that

f ⊥ VN ⇐⇒ 〈f, g(·−k/N)〉L2 = 0 ⇐⇒ [
f̂ , ĝ

]
N
(n) = 0, ∀g ∈ VN and for any n ∈ IN .
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Therefore, for the case of a principal shift-invariant space VN(φ), we immediately
obtain

f ⊥ VN(φ)⇐⇒
[
f̂ , φ̂

]
N
(n) = 0, ∀n ∈ IN .

Let Ωφ =
{
n ∈ IN :

[
φ̂, φ̂

]
N
(n) 	= 0

}
, and let

(
ĉf (n)

)
n∈IN be such that

ĉf (n) =
[
f̂ , φ̂

]
N
(n)

[
φ̂, φ̂

]
N
(n)
, n ∈ Ωφ. (2)

Then we may prove the following modification of [6, Theorem 2.9, page 793]:

Proposition 1 For any f ∈ L2(T), we have

f ∈ VN(φ)⇐⇒ f̂ (n) = ĉf (n)φ̂(n), ∀n ∈ Z, (3)

where ĉf = (ĉf (n)) is a N -periodic sequence in Z, whose elements ĉf (n) are
defined in (2) for n ∈ Ωφ , whereas ĉf (n) can be arbitrarily defined for n /∈ Ωφ .
Proof

f ∈ VN(φ)⇐⇒ f =
N−1∑

k=0

cf (k)φ
( · − k

N

)⇐⇒ f̂ (n) = ĉf (n)φ̂(n), ∀n ∈ Z.

Hence,

f̂ (n+ lN) = ĉf (n)φ̂(n+ lN), ∀n ∈ IN and for all l ∈ Z, (4)

so

∑

l∈Z
f̂ (n+ lN)φ̂(n+ lN) = ĉf (n)

∑

l∈Z
|φ̂(n+ lN)|2, ∀n ∈ Ωφ.

Therefore, ĉf (n) =
[
f̂ ,φ̂

]
N
(n)[

φ̂,φ̂
]
N
(n)
, ∀n ∈ Ωφ. If n /∈ Ωφ , then by (4) we obtain f̂ (n +

lN) = 0 ∀l and so, ĉf (n) can be arbitrarily defined.

Remark 1 As we showed in the proof of Proposition (1), the definition of ĉf may
be not unique. However, whenever the set {φ(· − n/N) : n ∈ IN } is a basis for
its span VN(φ), then

∑
l∈Z |φ̂(n + lN)|2 	= 0 ∀n ∈ IN ; hence, Ωφ = IN , and the

representation of ĉf is unique.

Remark 2 We notice here that the orthogonal complement V ⊥N of VN is an 1
N

shift-
invariant space as well. If f ∈ V ⊥N , then τk/Nf ∈ V ⊥N as well; otherwise, we would
have contradiction.
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Now we can prove the following:

Proposition 2 Let PN be the orthogonal projector from L2 onto an 1
N
-shift-

invariant space VN as above. Define by PN(W) to be the image of the restriction of
PN on a subspace W of L2. Let UN(f ) be a principal 1

N
-shift-invariant subspace

of L2, associated with some function f ∈ L2. Then:

PN(UN(f )) = VN(PNf )

and so, for any element g ∈ UN(f ), we have

P̂Ng(n) = ĉg(n)P̂Nf (n), ∀n ∈ Z,

where ĉg is some N -periodic sequence.

Proof For any g ∈ UN(f ), we have

PN(g) =
N−1∑

k=0

cg(k)PNf (· − k/N) ∈ VN(PNf );

hence, PN(UN(f )) ⊆ VN(PNf ). The reverse inclusion is proved in a similar
manner. By taking the discrete Fourier transform and use (3), we obtain the result.

Proposition 3 ([6, Theorem 3.3, pg 797]) Let PgN be the orthogonal projection
from L2 onto a principal 1

N
-shift-invariant subspace UN(g) of L2, and let PN :

L2 → VN be the above orthogonal projection. Then, for any f ∈ L2, we have

‖f − PNf ‖2 ≤ ‖f − PNPgNf ‖2 ≤ ‖f − PNf ‖2 + ‖f − PgNf ‖2. (5)

Proof According to the previous proposition, the image of PNP
g
N is exactly

VN(PNg) which is a subspace of VN . Hence, the first inequality is immediately
obtained. Now, for the second inequality, we have

‖f −(PNP gN)f ‖2 ≤ ‖f −PNf ‖2+‖PN‖‖f −PgNf ‖2 ≤ ‖f −PNf ‖2+‖f −PgNf ‖2.

Assume now that g0 ∈ L2 is a function whose Fourier transform ĝ0 = (ĝ0(n))n∈Z
is non-vanishing only for n ∈ {−(N −1)/2, . . . , (N −1)/2}, if n is odd, or only for
n ∈ {−N/2+ 1, . . . , N/2}, if n is even. Then, by using (2) and by using Parseval’s
identity, we obtain the following estimate for the best term approximation error:

‖f − Pg0
N f ‖2

2 =
∑

n∈Z
|f̂ (n)|2

(
1− |ĝ0(n)|2[

ĝ0, ĝ0
]
N
(n)

)2 =
∑

|n|>N/2
|f̂ (n)|2. (6)

Now the following theorem is a direct consequence of Proposition 3:
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Theorem 1 Let g0 be a square integrable function on T as in (6), and let PN, P
g0
N

be the above orthogonal projections. Then:

lim
N→∞‖f − PNf ‖2 = 0 ⇐⇒ lim

N→∞‖f − PNP
g0
N f ‖2 = 0.

In other words, the space VN is dense in L2(T) if and only if its principal 1
N
-shift-

invariant subspace VN(PNg0) is dense in L2(T).

Proof
⇒: We use (6) together with the second inequality of (5) to obtain the result.
⇐: It is a direct application of the first inequality in (5).

The above theorem highlights the role of principal shift invariance for approximat-
ing square integrable periodic functions. Therefore, for the rest of this work, we
are concerned with alternate representations for functions in principal shift spaces.
From now on, we consider

N = pq

for some pair (p, q) of natural numbers. We aim to provide a wide variety of
representations for functions f ∈ VN(φ) in the following form:

f =
r−1∑

j=0

p−1∑

k=0

〈f,ψj (· − k/p)〉L2 Sj (· − k/p), (7)

with respect to a finite set {Sj }r−1
j=0 ⊂ VN(φ) of generators, whose corresponding

set of dual generators is Ψ = {ψj }r−1
j=0 ⊂ VN(φ). Equation (7) can be considered

as an average sampling formula [1, 13]. Reconstruction schemes similar to (7)
were first studied by Papoulis on spaces of band-limited functions [11], and then
the results were extended to infinite shift-invariant subspaces of L2(R) by using
the theory of Riesz bases and z-transform techniques [5, 7–9, 14, 15]. Since in a
wide variety of applications we consider time-limited signals and we use a finite
number of samples for reconstruction (i.e., we work with spaces of type (1)), the
existence of (7) is useful because it not only serves as a reconstruction equation
for time-limited signals in VN(φ) but at the same time it gives us the opportunity
to design and implement representations with desirable properties; see Sect. 4 for
details. Our main tool toward (7) is finite frame theory [2, 4, 12]. Indeed, the
spanning set TNφ = {τk/Nφ : k = 0, . . . , N − 1} is a finite frame for VN(φ).
The space VN(φ) is isomorphic with a subspace W of �2, and so the existence
of a stable decomposition (7) is related with the ability of expressing the set of

sampled values LΨ (f ) =
{
〈f,ψj (· − k/p)〉L2 : 0 ≤ j < r, 0 ≤ k < p

}

as frame coefficients of some sequence cf ∈ W with respect to an appropriate
frame for W . Then our problem is transformed into constructing an appropriate
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frame for W , and the simplicity of this construction dictates the simplicity of (7).
In Sect. 2, we obtain a canonical frame decomposition of the isomorphic image of
VN(φ) into �2; see Propositions 4 and 5 for details. Based on this result, in Sect. 3,
we prove (7); see Theorem 2. Finally, in Sect. 4, we present some applications of
(7). More specifically, we construct sampling generators with desirable properties
and a communication packet network with erasures [3, 10].

2 Shift-Invariant Frames for Subspaces of �2(IN)

Let N = pq be a natural number as above, E ⊆ IN = {0, . . . , N − 1} and H =
(hj )

r−1
j=0 ⊂ �2(IN). In this section, we establish necessary and sufficient conditions

such that the shift-invariant set

TqH = {τkqhj = hj (· − kq) : j = 0, . . . , r − 1, k = 0, . . . , p − 1}

is a frame for the subspace

WE =
{
c ∈ �2(IN) : ĉj = 0 for all j ∈ E}. (8)

Let

S : �2(IN )→ �r2(Ip) : c �→ Sc = x = (x0, . . . , xr−1) : xj =
(〈c, τkqhj 〉�2(IN )

)p−1
k=0

be the operator associated with the above set TqH , where

�r2(Ip) =
{
c = (c0, . . . , cr−1) : cj ∈ �2(Ip)

}

is a Hilbert space with inner product 〈c,d〉�r2(Ip) =
∑r−1
j=0〈cj , dj 〉�2(Ip). Then the

adjoint operator of S is defined by

S∗ : �r2(Ip)→ �2(IN) : x �→ S∗x =
r−1∑

j=0

p−1∑

k=0

xj,kτkqhj .

For the above selection of E, we consider the sets

En =
{
m ∈ Iq = {0, . . . , q − 1} : n+mp /∈ E}, n = 0, . . . , p − 1 (9)

and we define the |En| × |En| Gram matrices

Gn,H = J ∗n,H Jn,H , (10)
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where

Jn,H =
{(
Jn,H

)
j,m

= ĥj (n+ pm) : hj ∈ H, m ∈ En
}

(11)

and J ∗n,H is the Hermitian transpose of Jn,H . Then we have

Proposition 4 Under the above definitions and assumptions, the set TqH is a frame
for WE if and only if rank(Jn,H ) = |En| for every n = 0, . . . , p − 1, provided
that the set of generators H consists of at least r ≥ max{|En|}p−1

n=0 elements. The

optimal frame bounds are A = Nd−
p

and B = Nd+
p

, respectively, where d− and d+
are the smallest and biggest positive real numbers over the set of eigenvalues of all
Gramian matrices Gn,H .

Proof Let hj ∈ H ⊂ WE . Taking into account (9), for any c ∈ WE , we have

‖Sc‖2
�r2(Ip)

= 1

p
‖Ŝc‖2

�r2(Ip)
= 1

p

r−1∑

j=0

p−1∑

n=0

∣∣∣
q−1∑

m=0

ĉn+mpĥj (n+mp)
∣∣∣
2

= 1

p

r−1∑

j=0

p−1∑

n=0

( ∑

m,m′∈En
ĉn+mpĥj (n+mp)̂hj (n+m′p)̂cn+m′p

)

= 1

p

p−1∑

n=0

ĉnJ ∗n,H Jn,H ĉ∗n =
1

p

p−1∑

n=0

ĉnGn,H ĉ∗n, (12)

where ĉn =
{
ĉn+pm : m ∈ En

}
are 1× |En| row vectors and Gn,H are |En| × |En|

Gramian matrices as in (10).
Suppose that rank(Jn,H ) = |En| for every n = 0, . . . , p − 1. Then necessarily

r ≥ max{|En|}p−1
n=0 . Let d− and d+ be the minimum and the maximum values over

the set of all eigenvalues of all positive definite matrices Gn,H . Then the right-hand
side of the last equality of (12) is bounded by

d−

p

p−1∑

n=0

‖̂cn‖2
�2(En)

≤ 1

p

p−1∑

n=0

ĉnGn,H ĉ∗n ≤
d+

p

p−1∑

n=0

‖̂cn‖2
�2(En)

as a result of Rayleigh-Ritz theorem. Since c ∈ WE , we have ‖̂cn‖2
�2(En)

=
‖̂cn‖2

�2(Iq )
, and so by using this observation, the above double inequality becomes

d−N
p

‖c‖2
�2(IN )

= d
−

p
‖̂c‖2

�2(IN )
≤ ‖Sc‖2

�r2(Ip)
≤ d

+

p
‖̂c‖2

�2(IN )
= d

+N
p

‖c‖2
�2(IN )

.

Therefore, the set TqH is a frame forWE , and the frame bounds are optimal.
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Suppose now that the set TqH is a frame for WE , but rank(Jn0,H ) < |En0 | for
some index 0 ≤ n0 ≤ p − 1. If NGn0,H

is the kernel of Gn0,H considered as an

operator from �2(En0) to �2(En0), then there exist an element
{
ak : k ∈ En0

} ∈
NGn0,H

and consequently an element

c ∈ WE : ĉm =
{
ak, m = n0 + pk (k ∈ En0)

0, elsewhere

such that ‖Sc‖2
�r2(Ip)

= 0. Therefore, the set TqH is not a frame for WE ,

contradiction.

If the set TqH is a frame for WE , then it is well known that its corresponding frame
operator

(S∗S) : WE → WE : S∗Sc =
r−1∑

j=0

p−1∑

k=0

〈c, τkqhj 〉�2(IN )τkqhj

is invertible onWE . Let

Tq
H † = {τkqh†

j : h†
j ∈ H †, k = 0, . . . , p − 1}

is the canonical dual frame of TqH produced from a set of dual generators

H † = {h†
j = (S∗S)−1hj : hj ∈ H }.

Proposition 5 Let
(

TqH ,T
q

H †

)
be a pair of canonical dual frames for WE . Then,

every dual generator h†
j ∈ H † can be computed from its discrete Fourier transform

by the formula

ĥ
†
j (l) =

⎧
⎨

⎩
0, l ∈ E(
J

†
Mod(l,p),H

)

j,[ l
p
], l /∈ E , l = 0, . . . , N − 1, (13)

where

J
†
n,H = Jn,H (J ∗n,H Jn,H )−1, (n = 0, . . . , p − 1).

Note that the symbol [x] is used to denote the floor of a real number x.
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Proof Let h†
j = (S∗S)−1hj , i.e., hj = (S∗S)h†

j . Then, using the above definition
of S∗S and working in the Fourier domain, we have

ĥj (l) = ̂
(S∗Sh†

j )l
=
r−1∑

j ′=0

( p−1∑

k=0

〈h†
j , τkqhj ′ 〉�2(IN )e

−2πikl/p
)
ĥj ′(l).

By substituting l = n+pm : n ∈ Ip, m ∈ En (see (9)) and using Parseval equality,
we obtain

ĥj (n+ pm) =
r−1∑

j ′=0

( ∑

m′∈En
ĥ

†
j (n+ pm′)̂hj ′(n+ pm′)

)
ĥj ′(n+ pm)

=
∑

m′∈En
ĥ

†
j (n+ pm′)

( r−1∑

j ′=0

ĥj ′(n+ pm′)̂hj ′(n+ pm)
)
.

Then, from (11), the above equality can be written in matrix form by

Jn,H = J †
n,H (J

∗
n,H Jn,H )

where J †
n,H =

{(
J

†
n,H

)
j,m

= ĥ†
j (n + pm), h†

j ∈ H †, m ∈ En
}
. The rest follow

easily.

3 Stable Reconstruction on Vφ

Let VN(φ) be a principal shift-invariant space as in (1) and

Kφ =
{
n ∈ {0, . . . , N − 1} :

∑

l∈Z
|φ̂(n+ lN)|2 = 0

}
.

In this section, we obtain simple stable reconstruction formulas (7) based on the fact
that the space VN(φ) is isomorphic with the subspaceWKφ (see (8) for the particular
selection E = Kφ). This fact allows us to use the frame expansions of the previous
section as the main tool for our construction. By definition, the space VN(φ) can be
considered as the range of the operator

U : WKφ → VN(φ) : f =
N−1∑

n=0

cnφ
( · − n

N

)
,

i.e., U is invertible. Based on this observation, we can prove the following:
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Proposition 6 Let U be as above. If H = {hj } ⊂ WKφ is a finite set and if G =
{gj = Uhj : hj ∈ H }, then the set Tq/NG = {τkq/Ngj : gj ∈ G, k = 0, . . . , p − 1}
is a frame for Vφ , if and only if the set TqH is a frame forWKφ .

Proof Let TqH be a frame forWKφ . Since the operator U∗U which is identified with

its matrix representation U∗U := {〈τm/Nφ, τn/Nφ〉L2

}N−1
m,n=0 is invertible, then the

set
{
(U∗U)τkqhj : hj ∈ H, k = 0, . . . , p − 1

}
is a frame forWKφ as a result of [4,

Corollary 5.3.2], and so there exist positive constants A,B such that

A‖c‖2
�2(IN )

≤
r−1∑

j=0

p−1∑

k=0

∣∣〈c, U∗Uτkqhj 〉�2

∣∣2 ≤ B‖c‖2
�2(IN )

for all c ∈ WKφ . For f = Uc, we have λmin‖c‖�2(IN ) ≤ ‖f ‖L2 ≤ λmax‖c‖�2(IN ),
where λmin (λmax) are the smallest (biggest) positive eigenvalues of the above
Gramian matrix U∗U . Therefore,

Aλ−2
max‖f ‖2

L2
≤
r−1∑

j=0

p−1∑

k=0

∣∣〈f, τkq/N (Uhj )
〉
L2

∣∣2 ≤ Bλ−2
min‖f ‖2

L2
for all f ∈ VN(φ)

and by defining gj = Uhj , the proof is complete. The inverse claim can be proven
by using similar arguments. We omit the proof.

Theorem 2 Let N = pq, (p, q ∈ N) and VN(φ) be a principal 1
N
-shift-invariant

subspace of L2 as in (1), which is associated with a set Kφ as above and with its
corresponding space WKφ as in (8). Consider the operator U : WKφ → VN(φ) as

above. Then for any finite set Ψ = {ψj }r−1
j=0 ∈ VNφ, if the set

TqΨ = {τnq(U∗ψj ) : j = 0, . . . , r − 1, n = 0, . . . , p − 1}

is a frame for WKφ , then every function f ∈ VN(φ) can be stably reconstructed

from the set of measurements
{
〈f, τkq/Nψj 〉L2 : 0 ≤ j < r, 0 ≤ k < p

}
by the

formula

f =
r−1∑

j=0

p−1∑

k=0

〈f, τkq/Nψj 〉L2τkq/NSj ,

where

Sj =
N−1∑

n=0

ψ
†
j (n)τn/Nφ. (14)
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Here, the elements ψ†
j are generators of the canonical dual frame Tq

Ψ † of TqΨ , and
they are computed from their discrete Fourier transform as in (13).

Proof Assume that the sets TqΨ and Tq
Ψ † are dual frames for the space WKφ and U

be as above. Then, for any f ∈ VN(φ), there exists a unique c ∈ WKφ such that
f = Uc and so

f =
N−1∑

n=0

cnτn/Nφ =
r−1∑

j=0

p−1∑

m=0

〈c, τmqU∗ψj 〉�2

(N−1∑

n=0

τmqψ
†
j (n)τn/Nφ

)

=
r−1∑

j=0

p−1∑

m=0

〈c, τmq/NU∗(ψj )〉�2τmq/NSj =
r−1∑

j=0

p−1∑

m=0

〈f, τmq/Nψj 〉L2τmq/NSj

Therefore, our reconstruction formula is obtained, and the sampling functions Sj are
computed from (14). Since Sj = U(HΨ †), the set {τq/NSj : j = 0, . . . , r − 1, k =
0, . . . , p − 1} is a frame for Vφ as a direct result of Proposition 6, and the dual
generators ψ†

j are computed from (13) for the particular selection H = Ψ .

Given the space WKφ , we may define a wide variety of trigonometric polynomials

Ψ = {ψj }r−1
j=0 by the formula

ψj (γ ) =
∑

n∈Kcφ

ĥj (n)φ̂(n+Nln)
|φ̂(n+Nln)|2 e2πi(n+Nln)γ , (15)

where:

(i) H = (hj )r−1
j=0 is a certain set of generators inWKφ so that the set T qH is a frame

forWKφ and
(ii) ln ∈ Ln = {l ∈ Z : φ̂(n + Nl) 	= 0}. Here, the set Kcφ is the complement of

Kφ in IN .

Then we have

Corollary 1 Let Ψ be a set of trigonometric polynomials as in (15). Then every
function f ∈ VN(φ) admits a stable reconstruction formula as in Theorem 2, whose
sampling function has the form

Sj =
N−1∑

n=0

h
†
j (n)φ(· − n/N),

and the elements h†
j are defined in (13).



88 N. Atreas

Proof By direct calculation using Proposition 1, we deduce that U∗ψj = hj . The
rest follow from Theorem 2.

4 Applications

In this section, we present some applications to demonstrate our theory.

Application 1 Let VN(φ) be as in (1). Then every f ∈ VN(φ) can be stably
reconstructed by the formula

f =
N−1∑

n=0

〈f, τn/N φ̃〉L2τn/Nφ,

where φ̃ =∑N−1
n=0 aφ(n)τn/Nφ is the canonical dual generator of φ and the sequence

of coefficients aφ = (aφ(n)) is computed from its discrete Fourier transform by

âφ(n) =
{

N∑
l∈Z |φ̂(n+lN)|2 , n /∈ Kφ

0, n ∈ Kφ
, n = 0, . . . , N − 1.

If the above sum (in the denominator) is infinite, then the calculation of φ̃ via
the sequence of coefficients (aφ(n))

N−1
n=0 may be not be precise due to truncation

and round-off errors. Therefore, we may use Theorem 2 for simplifying the
reconstruction process, provided that N is not prime. Indeed, if N is composite,
we consider a divisor q of N , and we define a set of generators H = {hj }r−1

j=0 of
length r = q by the formula

ĥj (n) =
{
e2πijn/N√

q
, n /∈ Kφ

0, n ∈ Kφ
, n = 0, . . . , N − 1.

Then the matrices Jn,H in (11) have orthonormal columns and so the set TqH is
a Parseval frame for the space WKφ . For this selection of H , let Ψ be a set of
trigonometric polynomials as in (15), and for simplicity, let us assume that all
elements ln = 0. Then by using Corollary 1, we obtain

Sj = 1√
q

∑

n/∈Kφ
e2πijn/Nτn/Nφ, j = 0, . . . , q − 1

and the related reconstruction formula of Theorem 2 implies that we have to
evaluate the sequence (〈f, τkq/Nψj 〉L2)k,j which can be easier calculated (than
(〈f, τn/N φ̃〉L2)), because (ψj ) is a sequence of trigonometric polynomials.
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Application 2 Let {τn/Nφ : n ∈ IN } be a basis for the space VN(φ), and assume
that we want to transmit a signal f ∈ VN(φ) by using convenient r-filtered
versions of f of the form Ljf (t) = 〈f,ψj (· − t)〉L2 sampled at time instants
t = kq/N, (k = 0, . . . , p − 1), where q is a pre-determined divisor of N .
This process can be considered as a communication packet network transporting
packets of data (in this case, sequences of length p) from a source to a recipient. By
allowing dependencies between transmitted packets, we are led to use suitable frame
expansions for encoding data, so that reconstruction is obtained even if some packet
is lost (provided that we know its position). It is well known that harmonic frames
are robust to erasures [3, 10], and below, we exploit this fact in order to construct
a frame TqH for �2(IN) which allows us to reconstruct a signal f ∈ VN(φ) if any
packet of data produced from a specific linear filter Lj0 is lost during transmission.
To do that, we need to define convenient impulse responses ψj , j = 0, . . . , r − 1,
provided that r > q. We shall use the trigonometric polynomials (15) with the
following selection of generators hj :

ĥj (n) = 1√
r
e

2πij [ n
p
]/r
, n = 0, . . . , N − 1 and N = pq.

Then we may obtain an overcomplete frame for �2. If, for example, we have r =
q+1 generators hj as above, then if any packet associated with transmission of any
(specific) filter Lj0f is lost, then the signal f can be reconstructed from Theorem 2
by putting ψj0 = 0, because the set of generators {h0, . . . , hj0−1, 0, hj0+1, . . . , hq}
continues to span �2. Similarly, if we use r > q + 1 generators, then reconstruction
is obtained even if any r − q packets are lost.
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Generalized Intensity-Dependent
Multiphoton Jaynes–Cummings Model

V. Bartzis, N. Merlemis, M. Serris, and G. Ninos

Abstract In this chapter, we study the Jaynes–Cummings model under multiphoton
excitation and in the general case of intensity-dependent coupling strength given by
an arbitrary function f . The Jaynes–Cummings theoretical model is of great interest
to atomic physics, quantum optics, solid-state physics, and quantum information
theory with several applications in coherent control and quantum information
processing. As the initial state of the radiation mode, we consider a squeezed
state, which is the most general Gaussian pure state. The time evolution of the
mean photon number and the dispersions of the two quadrature components of the
electromagnetic field are calculated for an arbitrary function f . The mean value of
the inversion operator of the atom is also calculated for some simple forms of the
function f .

1 Introduction

The Jaynes–Cummings model [1–3] is a theoretical model that describes the system
of a two-level atom interacting with a single mode of the quantum electromagnetic
field. The model is considered to be of great importance in quantum optics because it
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is the simplest solvable model that describes the interaction of radiation with matter.
The model allows for a fully quantum mechanical treatment of atoms interacting
with an electromagnetic field, thus revealing a number of novel features, in contrast
to the semi-classical approximation, in which only the atom is treated quantum
mechanically and the electromagnetic field is assumed to behave according to the
classical electromagnetic theory.

The mathematical formulation of the model is based on the Hamiltonian
formalism of the full system, which after the rotating wave approximation [3] it can
be expressed in terms of the inversion, raising, and lowering operators of the atom,
denoted by σ3, σ+, σ− and annihilation and creation operators a, a+ of the radiation
mode. The full system’s Hamiltonian consists of the atomic excitation Hamiltonian,
the free field Hamiltonian, and the Jaynes–Cummings interaction Hamiltonian:

H = 1

2
h̄ω0σ3 + h̄ωa+a + h̄λ(σ+a + σ−a+) (1)

Here ω0 is the transition frequency of the atom, and ω is the single mode
angular frequency. The parameter λ is the coupling constant for the radiation–atom
interaction. The operators σ3, σ+, σ− are 2× 2 Pauli matrices

σ3 =
(

1 0
0 −1

)
, σ+ =

(
0 1
0 0

)
, σ− =

(
0 0
1 0

)
(2)

The σ and a obey the following algebra:

[σ3, σ±] = ±2σ±, [σ+, σ−] = σ3,
[
a, a+

] = 1 (3)

σ+σ− = 1

2
(1+ σ3), σ−σ+ = 1

2
(1− σ3), σ

2
3 = 1 (4)

In a series of articles [4–7], Sukumar, Buck, and Singh considered two general-
ized Jaynes–Cummings models with the following interaction Hamiltonians:

Hint = h̄λ(σ+a
√
a+a + σ−

√
a+aa+) (5)

Hint = h̄λ(σ+am + σ−a+m) (6)

We note that in the first model (5), the coupling strength depends on the number
operator n = a+a (or otherwise on the radiation intensity), whereas in the second
model (6), the transmission of the atom from one level to the other is accompanied
by the absorption or emission of m photons. The model described by Eq. (6) has
been studied by Nayak and Mohanty [8] with m = 2 in order to obtain the steady-
state photon statistics in a two-photon laser in which the decay of the lasing levels
was taken into account. In addition, Haroche et al. [9] have observed the two-photon
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laser emission in Rydberg atoms of Rb, and Eq. (6) has been also widely applied to
study the dynamics of the field and atomic variables in Rydberg atoms [10, 11].

Bartzis [12] has already studied the intensity-dependent two photon Jaynes–
Cummings model with interaction Hamiltonian

Hint = h̄λ(σ+a2
√
a+a + σ−

√
a+a a+2) (7)

and the Jaynes–Cummings model with atomic motion [13].
N. Nayak and V. Bartzis [14, 15] have also used the three-level and the two-

level Rydberg atom interacting with two nondegenerate modes, thus showing the
differences in the dynamics. In another work, Bartzis, Patargias, and Jannussis have
presented results in the case of one or two cavity modes interacting with both a
three-level atom and Kerr-like medium [16, 17].

The atomic spin squeezing of N two-level and three-level atoms has been
observed by Nayak et al. [18–20]. In recent years, more generalized Jaynes–
Cummings models have been proposed [21–29], and the intensity dependence has
also been considered in the work of Saha et al. [23]. In the case of multilevel atomic
systems and multiphoton processes, the theoretical description is easier using the
semi-classical approximation, for example, in potassium atoms in order to study
two-photon excitation, multiphoton emissions, and other nonlinear processes [30–
33].

In this work, we continue the generalization of the Jaynes–Cummings model by
considering the interaction Hamiltonian that has the form

Hint = h̄λ(σ+amf (a+a)+ σ−f (a+a) a+m) (8)

This Hamiltonian describes a multiphoton process, since the transmission of the
atom from one level to the other is accompanied by absorption or emission of m
photons. In addition, the coupling strength in Eq. (8) is intensity dependent with
the dependency described by an arbitrary function f(a+a). In the standard Jaynes–
Cummings model, the coupling strength is considered to have a constant value.
However, it is reasonable to assume that the coupling strength depends on the
intensity since radiation intensity is observed to depend on time. As initial state of
the radiation mode, we consider a squeezed state [34–40], the most general Gaussian
pure state, which is defined as

|α, z〉 = S(z)D(α)|0〉 (9)

where D(α) = exp(αa+ − α∗a) is the Weyl displacement operator and

S(z) = exp

[
1

2
(za2 − z∗a+2)

]
, z = re-iθ (10)

represents the squeeze operator.



94 V. Bartzis et al.

In the n-representation, the squeeze state takes the form [35]

|α, z〉 =
∑

n

Cn|n〉,

Cn = 1√
n!μ

(
ν

2μ

)n/2
Hn

[
α(2μν)−1/2

]
exp

[
−1

2
|α|2 + ν∗

2μ
α2
]

(11)

where μ = cosh r , v = eiθ sinh r
The mean photon number for a squeezed state has the form

n̄ = |α̂|2 + |ν|2, where α̂ = μ∗α − να∗ (12)

The two quadrature components are defined as

X1 = 1

2
(a + a+) (13)

X2 = 1

2i
(a − a+) (14)

Consequently, the electric field of the radiation mode has the form

E(t) = X1cosωt +X2sinωt (15)

The dispersions of X1 and X2 for a squeezed state with θ = 0 are

〈(ΔX1)
2〉 = 1

4
e−2r (16)

〈(ΔX2)
2〉 = 1

4
e2r (17)

The squeezing phenomenon is observed in Eqs. (16) and (17), since the quantum
noise is lower in one quadrature component than that of the coherent state
(〈(ΔXi)2〉 = 1/4, i = 1,2) and higher in the other.

2 Time Evolution of the Atom Inversion Operator

In order to compute the time evolution of the system, we use Eq. (8) for the
interaction, and the Hamiltonian of our model takes the form

H = h̄ω
(
a+a + m

2
σ3

)
+ h̄Δ

2
σ3 + h̄λ(σ+amf (a+a)+ σ−f (a+a)a+m) (18)

where Δ = ω0 − mω.
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We can define the operators

C = a+a + m
2
σ3 (19)

B = h̄λ(σ+amf (a+a)− σ−f (a+a)a+m) (20)

D = h̄λ(σ+amf (a+a)+ σ−f (a+a)a+m) (21)

so finally the Hamiltonian (18) takes the form

H = h̄ωC + h̄Δ
2
σ3 +D (22)

It is easy to prove that [C,H ] = [C,B] = 0, [σ3, B] = 2D, [σ3,D] = 2B
For the calculation of the time evolution of the operator σ3 (represents the atom

population inversion), we will work in the Heisenberg picture. The Heisenberg
equations of motion for the operators σ3 and B are

ih̄σ̇3 = [σ3,H ] = [σ3,D] = 2B (23)

ih̄Ḃ = [B,H ] = −h̄ΔD + [B,D] (24)

The commutator of B and D is calculated to be

[B,D] = h̄2λ2
{
σ3

[
amf (a+a), f (a+a)a+m

]
+ +

[
amf (a+a), f (a+a)a+m

]}

(25)

where the symbol [, ]+ represents the anticommutator.
So solving the above system of Eqs. (23) and (24), we obtain the following

differential equation for σ3:

σ̈3 =2Δ

h̄
(H − h̄ωC − h̄Δ

2
σ3)

− 2λ2
{
(σ3 + 1)amf 2(a+a)a+m + (σ3 − 1)f (a+a)a+mamf (a+a)

}

(26)

The differential equation (26) cannot be solved in general for any arbitrary func-
tion f (a+a) so in the following discussion, we present the solution considering
the two simple cases of f (a+a)=1 and f (a+a)=

√
a+a. For these cases, Eq. (26)

takes the form

σ̈3 + ω′2σ3 = 2Δ

h̄
(H − h̄ωC) (27)

where ω′2 =
{

4λ2κ(κ − 1) · · · (κ + 1−m)+Δ 2 for f (a+a) = 1
4λ2κ2(κ − 1) · · · (κ + 1−m)+Δ 2 for f (a+a) = √a+a

}

and κ = C + 1
2m.
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The operator C is a constant of motion, so the solution of the above equation is

σ3(t) = σ3(0)cosω′t + 2B(0)

ih̄ω′
sinω′t + 2Δ

h̄ω′2
(H − h̄ωC)(1− cosω′t) (28)

We suppose that the atom is initially at the excited state and the field in a squeezed
state; thus, the solution takes the form

〈σ3(t)〉 =
∑

n

{
Δ 2

ω′2n
+
(

1− Δ
2

ω′2n

)
cosω′nt

}
|Cn|2 (29)

where ω′2n =
{

4λ2κn(κn − 1) · · · (κn + 1−m)+Δ 2 for f (a+a) = 1
4λ2κn

2(κn − 1) · · · (κn + 1−m)+Δ 2 for f (a+a) = √a+a
}

and κn = n+m.

3 Field Statistics of the Generalized Intensity-Dependent
Multiphoton Jaynes–Cummings Model

The Hamiltonian of the system is given by Eq. (18). We define the operators

C = a+a + m
2
σ3 (30)

N = Δ
2
σ3 + λ(σ+amf (a+a)+ σ−f (a+a)a+m) (31)

We easily can prove that

[C,N] = [H,N] = [H,C] = 0 (32)

Consequently, the time evolution operator can be written in the form

U(t, 0) = e(−i/h̄)Ht = e−iωCte−iNt ≡ U1(t, 0)U2(t, 0) (33)

In the two-dimensional atomic subspace, the matrix representation of the opera-
tors U1 and U2 has the form

U1(t, 0) = e−iωα+αt
∞∑

n=0

(− imωt
2 )n

n! σ
(n)
3 (34)

or

U1(t, 0) = e−iωα+αt
(
e
−imωt

2 0

0 e
imωt

2

)
(35)



Generalized Intensity-Dependent Multiphoton Jaynes–Cummings Model 97

Similarly, we can prove that operator

U2(t, 0) = e−iNt =
∞∑

n=0

(−it)n

n! N(n) (36)

has the following form:

U2(t, 0) =
(
K L

M Q

)
(37)

where K, L, M, and Q are calculated as

K =cos

⎧
⎨

⎩t

√
Δ 2

4
+ λ2amf 2(a+a)a+m

⎫
⎬

⎭

− i Δ
2

sin

{
t

√
Δ 2

4 + λ2amf 2(a+a)a+m
}

√
Δ 2

4 + λ2amf 2(a+a)a+m

(38)

L = −iλ
sin

{
t

√
Δ 2

4 + λ2amf 2(a+a)a+m
}

√
Δ 2

4 + λ2amf 2(a+a)a+m
amf (a+a) (39)

M = −iλ
sin

{
t

√
Δ 2

4 + λ2a+mf 2(a+a +m)am
}

√
Δ 2

4 + λ2a+mf 2(a+a +m)am
f (a+a)a+m (40)

Q =cos

⎧
⎨

⎩t

√
Δ 2

4
+ λ2a+mf 2(a+a +m)am

⎫
⎬

⎭

+ i Δ
2

sin

{
t

√
Δ 2

4 + λ2a+mf 2(a+a +m)am
}

√
Δ 2

4 + λ2a+mf 2(a+a +m)am

(41)

In addition, from Eq. (33), the operator U(t, 0) is written as

U(t, 0) = e−iωa+a
(
Ψ Z

Y W

)
(42)
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where Ψ = e−imωt
2 K Z = e−imωt

2 L Y = e imωt
2 M W = e imωt

2 Q

We can easily show that

UU+ = U+U = 1

Assuming that the atom is initially the excited state, we have the density operator of
the field as

ρf (t) = Tratom

{
U(t, 0)

(
ρf (0) 0

0 0

)
U+(t, 0)

}

= e−iωa+at
⎡

⎣

⎛

⎝cos
[
t

√
Δ 2

4 + λ2 (a+a+m)!
(a+a)! f 2(a+a +m)

]

−i Δ2
sin

[
t

√
Δ 2

4 +λ2 (a+a+m)!
(a+a)! f

2(a+a+m)
]

√
Δ 2

4 +λ2 (a+a+m)!
(a+a)! f

2(a+a+m)

⎞

⎠ ρf (0)

⎛

⎝cos
[
t

√
Δ 2

4 + λ2 (a+a+m)!
(a+a)! f 2(a+a +m)

]

+i Δ2
sin

[
t

√
Δ 2

4 +λ2 (a+a+m)!
(a+a)! f

2(a+a+m)
]

√
Δ 2

4 +λ2 (a+a+m)!
(a+a)! f

2(a+a+m)

⎞

⎠

+λ2
sin

[
t

√
Δ 2

4 +λ2 (a+a)!
(a+a−m)!f

2(a+a)
]

√
Δ 2

4 +λ2 (a+a)!
(a+a−m)!f

2(a+a)
f (a+a)a+mρf (0)amf (a+a)

sin

[
t

√
Δ 2

4 +λ2 (a+a)!
(a+a−m)!f

2(a+a)
]

√
Δ 2

4 +λ2 (a+a)!
(a+a−m)!f

2(a+a)

⎤

⎦ eiωα+αt

(43)

We consider as initial state of the system a squeezed state (9–11). So we can
calculate the matrix elements of ρf (t) in the |n〉-basis
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〈n|ρf (t)|n′〉 = CnC∗n′e−iω(n−n
′)t

⎛

⎝cos

[
t

√
Δ 2

4 + λ2 (n+m)!
(n)! f 2(n+m)

]

−i Δ2
sin

[
t

√
Δ 2

4 +λ2 (n+m)!
(n)! f 2(n+m)

]

√
Δ 2

4 +λ2 (n+m)!
(n)! f 2(n+m)

⎞

⎠×

×
⎛

⎝cos

[
t

√
Δ 2

4 + λ2 (n′+m)!
(n′)! f 2(n′ +m)

]

+i Δ2
sin

[
t

√
Δ 2

4 +λ2 (n′+m)!
(n′)! f

2(n′+m)
]

√
Δ 2

4 +λ2 (n′+m)!
(n′)! f

2(n′+m)

⎞

⎠+

+λ2Cn−mC∗n′−me
−iω(n−n′)t f (n)f (n′)

×
√

n!n’!
(n−m)!(n′−m)!

sin

[
t

√
Δ 2

4 +λ2 (n)!
(n−m)!f 2(n)

]

√
Δ 2

4 +λ2 (n)!
(n−m)!f 2(n′)

×
sin

[
t

√
Δ 2

4 +λ2 (n′)!
(n′−m)!f

2(n′)
]

√
Δ 2

4 +λ2 (n′)!
(n′−m)!f

2(n′)

(44)

Finally, the time evolution of the mean photon number is calculated as

n = Trfield
[
a+aρf (t)

] =
∑

n

n〈n|ρf (t)|n〉 (45)

We next consider the time of the dispersions of the quadrature operators

X1 = 1

2
(a + a+) (46)

X2 = 1

2i
(a − a+) (47)

which are finally calculated to have the form

〈(ΔX1)
2〉 = 1

4

{
1+

∑
n

[
2n〈n|ρf (t)|n〉 + √(n+ 1)(n+ 2)(〈n+ 2|ρf (t)|n〉 + 〈n|ρf (t)|n+ 2〉)]

− (∑
n

[√n+ 1(〈n+ 1|ρf (t)|n〉 + 〈n|ρf (t)|n+ 1〉)])2
}

(48)
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〈(ΔX2)
2〉 = 1

4

{
1+

∑
n

[
2n〈n|ρf (t)|n〉 − √(n+ 1)(n+ 2)(〈n+ 2|ρf (t)|n〉 + 〈n|ρf (t)|n+ 2〉)]

+ (∑
n

[√n+ 1(〈n+ 1|ρf (t)|n〉 − 〈n|ρf (t)|n+ 1〉)])2
}

(49)

4 Conclusions

The mathematical formalism for the generalized intensity-dependent multiphoton
Jaynes–Cummings model is presented for an arbitrary mathematical function f
describing the dependency on the intensity. The time evolution of the mean value of
the atom inversion operator is calculated for two simple cases of the function f . The
mean photon number and the dispersions of the two quadrature components are also
calculated for an arbitrary function f in the case of a squeezed state as initial state
of the electromagnetic field.
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Functional Inequalities for
Multi-additive-Quadratic-Cubic
Mappings

Abasalt Bodaghi and Themistocles M. Rassias

Abstract In this chapter, a new version of multi-quadratic mappings are character-
ized. By this characterization, every multi-additive-quadratic-cubic mapping which
is defined as system of functional equations can be unified as a single equation. In
addition, by applying two fixed point theorems, the generalized Hyers-Ulam sta-
bility of multi-additive-quadratic-cubic mappings in normed and non-Archimedean
normed spaces are studied. A few corollaries corresponding to some known stability
and hyperstability outcomes for multi-additive, multi-quadratic, multi-cubic, and
multi-additive-quadratic-cubic mappings (functional equations) are presented.

1 Introduction

Throughout this chapter, N and Q are the set of all positive integers and rationals,
respectively, N0 := N ∪ {0},R+ := [0,∞). Moreover, for the set X, we denote

n-times︷ ︸︸ ︷
X ×X × · · · ×X by Xn. For any l ∈ N0, n ∈ N, t = (t1, · · · , tn) ∈ {−1, 1}n, and
x = (x1, · · · , xn) ∈ V n, we write lx := (lx1, · · · , lxn) and tx := (t1x1, · · · , tnxn),
where lx stands, as usual, for the lth power of an element x of the commutative
group V .

Let n ∈ N and n ≥ 2. Let us recall that a function f : V n −→ W is called
multi-additive if it is additive (satisfies Cauchy’s functional equation A(x + y) =
A(x) + A(y)) in each variable. Some basic facts on such mappings can be found,
for instance, in [24], where their application to the representation of polynomial
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functions is also presented (see also [25]). In [14], Ciepliński proved that a mapping
f is multi-additive if and only if the following relation holds:

f (x1 + x2) =
∑

j1,j2,...,jn∈{1,2}
f (xj11, xj22, . . . , xjnn). (1)

Moreover, f : V n −→ W is said to be multi-quadratic if it is quadratic in each
variable, namely, it satisfies the quadratic functional equation

Q(x + y)+Q(x − y) = 2Q(x)+ 2Q(y) (2)

in each variable. It is shown in [34] that the system of functional equations defining
a multi-quadratic mappings can be unified as a single equation. Indeed, Zhao et al.
proved that a mapping f : V n −→ W is multi-quadratic if and only if it satisfies
the equation

∑

q∈{−1,1}n
f (x1 + qx2) = 2n

∑

j1,j2,...,jn∈{1,2}
f (x1j1 , x2j2 , . . . , xnjn) (3)

where xj = (x1j , x2j , . . . , xnj ) ∈ V n with j ∈ {1, 2}. For the Jensen type and
some generalized of multi-quadratic mappings which are recently studied, we refer
to [7, 9] and [29].

A mapping f : V n −→ W is also called a multi-cubic if it is cubic in each
variable, i.e., satisfies the equation

C(2x + y)+ C(2x − y) = 2C(x + y)+ 2C(x − y)+ 12C(x) (4)

in each variable [8]. It is shown in [8] that every multi-cubic mapping can be unified
as an equation. For other forms of multi-cubic mappings, we refer to [17] and [26].

Roughly speaking, nowadays, we say that an equation is stable in some class of
functions if any function from that class, satisfying the equation approximately (in
some sense), is near (in some way) to an exact solution of the equation. In 1940,
Ulam [31] asked the question concerning the stability of group homomorphisms.
The famous Ulam stability problem was partially solved by Hyers [21] for the
linear functional equation of Banach spaces. Hyers’ theorem was generalized
by Aoki [1] for additive mappings and by the second author [28] for linear
mappings by considering an unbounded Cauchy difference. A generalization of the
Rassias theorem was obtained by Găvruţa [19] by replacing the unbounded Cauchy
difference by a general control function in the spirit of Rassias approach. Next,
many of mathematicians were attracted and motivated to investigate the stability
problems of functional equations in various spaces. For instance, the stability of
multi-additive, multi-quadratic, multi-cubic, multi-quartic, multi-Jensen-cubic, and
multi-additive-quadratic can be found in [2, 6, 8, 13, 14, 27, 34].
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It is worth mentioning that the fixed point theorems have been considered and
applied as some tools for the investigation of stability and hyperstability of various
mappings and functional equations; for example, see [3, 4, 10, 15, 16, 18, 22, 30].

The organization of the paper is as follows. In Sect. 2, motivated by the quadratic
functional equation

Q(2x + y)+Q(2x − y) = Q(x + y)+Q(x − y)+ 6Q(x), (5)

we introduce a multi-quadratic mapping and present a characterization of such
mappings. Section 3 begins with definition of the multi-additive-quadratic-cubic
mappings which are additive in each of some k variables, are quadratic in each
of some p variables, and are cubic (in sense of satisfies Eq. (4)) in each of the
other variables. Furthermore, we reduce the system of n equations defining the
multi-additive-quadratic-cubic mappings to obtain a single functional equation. In
Sect. 4, we prove the generalized Hyers-Ulam stability for such mappings by using
the fixed point method. Finally, we indicate some direct consequences of stability
and hyperstability of multi-quadratic and multi-additive-quadratic-cubic mappings
in Banach spaces setting. Section 5 is devoted to study of the generalized Hyers-
Ulam stability for multi-additive-quadratic-cubic mappings by applying the fixed
point method in non-Archimedean normed spaces which is introduced in [11]; for
more applications of this approach for the stability of multi-Cauchy-Jensen and
multi-additive-quadratic mappings, see [5]. In addition, for the stability of multi-
Jensen and multi-additive mappings in non-Archimedean spaces, we refer to [32]
and [33], respectively.

2 Characterization of Multi-quadratic Mappings

In this section, we characterize the multi-quadratic mappings. Here, we indicate an
elementary result as follows. Since the proof is routine, we include it without proof.

Proposition 1 Let V andW be vector spaces over Q. Then, a mappingQ : V −→
W satisfies functional equation (2) if and only if it satisfies Eq. (5).

From now on, let V and W be vector spaces over Q, n ∈ N, and xni =
(xi1, xi2, . . . , xin) ∈ V n, where i ∈ {1, 2}. In what follows, we shall denote xni by
xi unless otherwise stated explicitly. Let x1, x2 ∈ V n and T ∈ N0 with 0 ≤ T ≤ n.
Put

A
n = {

An = (A1, A2, . . . , An)| Aj ∈ {x1j ± x2j , x1j }
}
,

where j ∈ {1, . . . , n}. To achieve our aim in this section, set

A
n
T :=

{
An = (A1, A2, . . . , An) ∈ A

n| Card{Aj : Aj = x1j } = T
}
.
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Definition 1 A mapping f : V n −→ W is said to be n-multi-quadratic or briefly
multi-quadratic if f satisfies (5) in each variable.

For multi-quadratic mappings, we use the following notations:

f
(
A
n
T

) :=
∑

An∈AnT
f (An), (6)

f
(
A
n
T , z

) :=
∑

An∈AnT
f (An, z) (z ∈ V ).

We wish to show that if a mapping f : V n −→ W satisfies the equation

∑

s∈{−1,1}n
f (2x1 + sx2) =

n∑

l=0

6lf
(
A
n
l

)
, (7)

where f
(
A
n
l

)
is defined in (6), then it is multi-quadratic and vice versa.

We say a mapping f : V n −→ W satisfying the r-power condition in the j th
component if

f (z1, . . . , zj−1, 2zj , zj+1, . . . , zn) = 2rf (z1, . . . , zj−1, zj , zj+1, . . . , zn),

for all (z1, . . . , zn) ∈ V n. In particular, 2-power and 3-power conditions are also
called the quadratic condition and the cubic condition, respectively. In the sequel,(
n

k

)
is the binomial coefficient defined for all n, k ∈ N0 with n ≥ k by n!/(k!(n−

k)!).
Theorem 1 For a mapping f : V n −→ W , the following assertions are
equivalent:

(i) f is multi-quadratic;
(ii) f satisfies Eq. (7) and the quadratic condition in each variable.

Proof (i)⇒(ii) It is easily verified that f satisfies the quadratic condition in all
variables. We now prove that f satisfies Eq. (7) by induction on n. For n = 1, it is
trivial that Eq. (5) holds for f . If (7) is true for some positive integer n > 1, then

∑

s∈{−1,1}n+1

f (2xn+1
1 + sxn+1

2 ) =
∑

s∈{−1,1}n
f (2xn1 + sxn2 , x1n+1 + x2n+1)

+
∑

s∈{−1,1}n
f (2xn1 + sxn2 , x1n+1 − x2n+1)

+ 6
∑

s∈{−1,1}n
f (2xn1 + sxn2 , x1n+1)
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=
n∑

l=0

∑

s∈{−1,1}
6lf

(
A
n
l , x1n+1 + sx2n+1

)

+ 6
n∑

l=0

6lf
(
A
n
l , x1n+1

)

=
n+1∑

l=0

6lf
(
A
n+1
l

)
.

This means that (7) holds for n+ 1.
(ii)⇒(i) Fix j ∈ {1, . . . , n}. Putting x2k = 0 for each k ∈ {1, . . . , n}\{j} in the

left side of (7) and using the assumption, we get

2n−1 × 22(n−1)
[
f
(
x11, . . . , x1j−1, 2x1j + x2j , x1j+1, . . . , x1n

)

+ f (
x11, . . . , x1j−1, 2x1j − x2j , x1j+1, . . . , x1n

) ]

= 2n−1
[
f
(
2x11, . . . , 2x1j−1, 2x1j + x2j , 2x1j+1, . . . , 2x1n

)

+ f (
2x11, . . . , 2x1j−1, 2x1j − x2j , 2x1j+1, . . . , 2x1n

) ]
. (8)

Set

f ∗(x1j , x2j ) : = f
(
x11, . . . , x1j−1, x1j + x2j , x1j+1, . . . , x1n

)

+ f (
x11, . . . , x1j−1, x1j − x2j , x1j+1, . . . , x1n

)
.

By the above substitutions in (7), it concludes from (8) that

2n−1 × 22(n−1)[f (
x11, . . . , x1j−1, 2x1j + x2j , x1j+1, . . . , x1n

)

+ f (
x11, . . . , x1j−1, 2x1j − x2j , x1j+1, . . . , x1n

)]

=
n−1∑

l=0

[(
n− 1
l

)
2n−l−1 × 6l

]
f ∗(x1j , x2j )

+
n∑

l=1

[(
n− 1
l − 1

)
2n−l × 6l

]
f (x11, . . . , x1n)

= (6+ 2)n−1f ∗(x1j , x2j )+ 6

[
n−1∑

l=0

(
n− 1
l

)
2n−l−1 × 6l

]
f (x11, . . . , x1n)

= 8n−1f ∗(x1j , x2j )+ 6× 8n−1f (x11, . . . , x1n)

= 2n−1 × 22(n−1)[f ∗(x1j , x2j )+ 6f (x11, . . . , x1n)]. (9)
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Now, relation (9) shows that

f
(
x11, . . . , x1j−1, 2x1j + x2j , x1j+1, . . . , x1n

)

+ f (
x11, . . . , x1j−1, 2x1j − x2j , x1j+1, . . . , x1n

)

= f ∗(x1j , x2j )+ 6f (x11, . . . , x1n) .

This means that f is quadratic (satisfying (5)) in the j th variable. Since j is
arbitrary, we obtain the desired result.

3 Characterization of Multi-additive-Quadratic-Cubic
Mappings

Let V and W be linear spaces, n ∈ N, and k, p ∈ {0, · · · , n}. A mapping f :
V n −→ W is called k-additive, p-quadratic, and n − k − p-cubic (briefly, multi-
additive-quadratic-cubic) if f is additive in each of some k variables, is quadratic
in each of some p variables (see Eq. (5)), and is cubic in each of the other variables
(see Eq. (4)). In this note, we suppose for simplicity that f is additive in each of the
first k variables, is cubic in each of the last n − k − p variables, and is quadratic
in each of the middle p variables, but one can obtain analogous results without this
assumption. Let us note that for k = n, p = n, and k, p = 0, the above definition
leads to the so-called multi additive, multi-quadratic, and multi-cubic mappings,
respectively.

In this section, we identify x = (x1, . . . , xn) ∈ V n with

(xk, xp, xn−k) ∈ V k × V p × V n−k−p,

where xk := (x1, . . . , xk), xp := (xk+1, . . . , xk+p) and xn−k−p :=
(xk+p+1, . . . , xn), and we adopt the convention that (xn, x0, x0) := (x0, xn, x0) :=
(x0, x0, xn) := xn. Put xki = (xi1, . . . , xik) ∈ V k , xpi = (xi,k+1 . . . , xi,k+p) ∈ V p
and xn−k−pi = (xi,k+p+1 . . . , xin) ∈ V n−k−p where i ∈ {1, 2}. We remember the
denotation xi instead of xni for the rest of the paper. In addition, we put

A
k+p = {

Ak+p = (Ak+1, . . . , Ak+p)| Aj ∈ {x1j ± x2j , x1j }
}
,

where j ∈ {k + 1, . . . , k + p}. Consider

A
k+p
T :=

{
Ak+p = (Ak+1, . . . , Ak+p) ∈ A

k+p| Card{Aj : Aj = x1j } = T
}
.
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Moreover, we put Bn−k−p = {
Bn = (Bk+p+1, . . . , Bn)| Bj ∈ {x1j ± x2j , x1j }

}
,

where j ∈ {k + p + 1, . . . , n}. Besides

B
n−k−p
T :=

{
Bn = (Bk+p+1, . . . , Bn) ∈ B

n−k−p| Card{Bj : Bj = x1j } = T
}
.

For the multi-additive-quadratic-cubic mappings, we use some notations as follows:

f
(
xki ,A

k+p
T

, x
n−k−p
i

)
:=

∑

Ak+p∈Ak+pT

f
(
xki ,Ak+p, x

n−k−p
i

)
,

f
(
xki , x

p
i
,B
n−k−p
T

)
:=

∑

Bn∈Bn−k−pT

f
(
xki , x

p
i
,Bn

)
,

f
(
xki ,A

k+p
T

,B
n−k−p
T

)
:=

∑

Ak+p∈Ak+pT

∑

Bn∈Bn−k−pT

f
(
xki ,Ak+p,Bn

)
(i ∈ {1, 2}).

Here, we reduce the system of n equations defining the multi-additive-quadratic-
cubic mapping to obtain a single functional equation.

Proposition 2 Let n ∈ N and k, p ∈ {0, . . . , n}. If a mapping f : V n −→ W is
multi-additive-quadratic-cubic, then f satisfies the equation

∑

s∈{−1,1}p

∑

t∈{−1,1}n−k−p
f
(
xk1 + xk2 , 2xp1 + sxp2 , 2xn−k−p1 + txn−k−p2

)

=
p∑

l=0

n−k−p∑

m=0

∑

i∈{1,2}
6l × 2n−k−p−m × 12mf

(
xki ,A

k+p
l ,B

n−k−p
m

)

(10)

for all xn−k−pi = (xi,k+p+1 . . . , xin) ∈ V n−k−p, xki = (xi1, . . . , xik) ∈ V k and
x
p
i = (xi,k+1 . . . , xi,k+p) ∈ V p.
Proof Since for k, p ∈ {0, n} our assertion follows from [14, Theorem 2], [8,
Proposition 2.2] and Theorem 1, we can assume that k, p ∈ {1, . . . , n − 1}. For
any xp ∈ V p, xn−k−p ∈ V n−k−p, define the mapping Txp,xn−k−p : V k −→ W by
Txp,xn−k−p (x

k) := f (
xk, xp, xn−k−p

)
for xk ∈ V k . By assumption, Txp,xn−k−p is

k-additive, and hence Theorem 2 from [14] implies that

Txp,xn−k−p
(
xk1 + xk2

)
=

∑

j1,j2,··· ,jk∈{1,2}
Txp,xn−k−p

(
xj11, xj22, . . . , xjkk

)
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for all xk1 , x
k
2 ∈ V k. It now follows from the above equality that

f
(
xk1 + xk2 , xp, xn−k−p

)
=

∑

j1,j2,...,jk∈{1,2}
f
(
xj11, xj22, . . . , xjkk, x

p, xn−k−p
)

(11)

for all xk1 , x
k
2 ∈ V k , xp ∈ V p, xn−k−p ∈ V n−k−p. Similar to the above, for any

xk ∈ V k, xn−k−p ∈ V n−k−p, consider the mapping Gxk,xn−k−p : V p −→ W defined
through Gxk,xn−k−p (x

p) := f (
xk, xp, xn−k−p

)
where xp ∈ V p which is in fact p-

quadratic. By Theorem 1, we get

∑

s∈{−1,1}p
Gxk,xn−k−p (2x

p

1 + sxp2 ) =
p∑

l=0

6lGxk,xn−k−p
(
A
k+p
l

)
(12)

for all xp1 , x
p

2 ∈ V p. Thus, relation (12) implies that

∑

s∈{−1,1}p
f
(
xk, 2xp1 + sxp2 , xn−k−p

)
=

p∑

l=0

6lf
(
xk,A

k+p
l , xn−k−p

)
(13)

for all xp1 , x
p

2 ∈ V p and xk ∈ V k, xn−k−p ∈ V n−k−p. Next, for any xk ∈ V k and
xp ∈ V p, define the mapping Hxk,xp : V n−k−p −→ W via Hxk,xp

(
xn−k−p

) :=
f
(
xk, xp, xn−k−p

)
, for any xn−k−p ∈ V n−k−p which is n − k − p-cubic. Hence,

we conclude from Proposition 2.2 of [8] that

∑

t∈{−1,1}n−k−p
Hxk,xp

(
2xn−k−p1 + txn−k−p2

)

=
n−k−p∑

m=0

2n−k−p−m × 12mHxk,xp

(
B
n−k−p
m

)
(14)

for all xn−k−p1 , x
n−k−p
2 ∈ V n−k−p. By the definition of Hxk,xp , relation (14) is

equivalent to

∑

t∈{−1,1}n−k−p
f
(
xk, xp, 2xn−k−p1 + txn−k−p2

)

=
n−k−p∑

m=0

2n−k−p−m × 12mf
(
xk, xp,B

n−k−p
m

)
(15)
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for all xn−k−p1 , x
n−k−p
2 ∈ V n−k−p and xk ∈ V k, xp ∈ V p. Plugging equalities (11)

and (13) into (15), we obtain

∑

s∈{−1,1}p

∑

t∈{−1,1}n−k−p
f
(
xk1 + xk2 , 2xp1 + sxp2 , 2xn−k−p1 + txn−k−p2

)

=
∑

s∈{−1,1}p

n−k−p∑

m=0

2n−k−p−m × 12mf
(
xk1 + xk2 , 2xp1 + sxp2 ,Bn−k−pm

)

=
p∑

l=0

6l
n−k−p∑

m=0

2n−k−p−m × 12mf
(
xk1 + xk2 ,Ak+pl ,B

n−k−p
m

)

=
p∑

l=0

n−k−p∑

m=0

∑

i∈{1,2}
6l × 2n−k−p−m × 12mf

(
xki ,A

k+p
l ,B

n−k−p
m

)

for all xn−k−pi = (xi,k+p+1 . . . , xin) ∈ V n−k−p, xki = (xi1, . . . , xik) ∈ V k , and
x
p
i = (xi,k+1 . . . , xi,k+p) ∈ V p, which proves that f satisfies Eq. (10).

It is easily verified that the function f : R
n −→ R defined by

f (z1, z2, . . . , zn) = ∏k
j=1

∏p

i=1

∏n−k−p
r=1 zj z

2
i z

3
r is multi-additive-quadratic-cubic

and so it satisfies (10) and so this equation is called multi-additive-quadratic-cubic
functional equation.

Remark 1 [26] We mention that if a mapping f satisfies the cubic condition in each
variable, it does not imply that f is multi-cubic. Let (A, ‖ · ‖) be a Banach algebra.
Fix the vector a0 in A (not necessarily unit). Define the mapping h : An −→ A by
h(a1, . . . , an) = ∏n

j=1 ‖aj‖3a0 for (a1, . . . , an) ∈ An. It is easy to check that the
mapping h satisfies the cubic condition in all variables but h is not multi-cubic even
for n = 1, that is, h does not satisfy in Eq. (4). Similarly, we have for the quadratic
condition.

In the next result, we show that if a mapping f satisfies Eq. (10), then it is multi-
additive-quadratic-cubic under some mild conditions.

Proposition 3 If a mapping f : V n −→ W satisfies Eq. (10) and the cubic
condition in the last n−k−p and the quadratic condition in the middle p variables,
then it is multi-additive-quadratic-cubic.

Proof Putting xp2 = (0, . . . , 0) and xn−k−p2 = (0, . . . , 0) in (10) and applying the
hypothesis, we see the left side of (10) will be as follows:

2p × 22p × 2n−k−p × 23(n−k−p)f (xk1 + xk2 , xp1 , xn−k−p1 )

= 24(n−k)−pf (xk1 + xk2 , xp1 , xn−k−p1 ) (16)
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for all xk1 , x
k
2 ∈ V k and xp1 ∈ V p, xn−k−p1 ∈ V n−k−p. On the other hand, the right

side of (10) under assumptions above is as

Γ (n)
∑

j1,j2,...,jk∈{1,2}
f
(
xj11, xj22, . . . , xjkk, x

p

1 , x
n−k−p
1

)
,

where

Γ (n) =
p∑

l=0

(
p

l

)
6l × 2p−l

n−k−p∑

m=0

(
n− k − p

m

)
2n−k−p−m × 12m × 2n−k−p−m.

(17)

By an easy computation, we have Γ (n) = (6+2)p(12+4)n−k−p = 24(n−k)−p, and
so the right side of (10) is

24(n−k)−p ∑

j1,j2,...,jk∈{1,2}
f
(
xj11, xj22, . . . , xjkk, x

p

1 , x
n−k−p
1

)
(18)

for all xk1 , x
k
2 ∈ V k and xp1 ∈ V p, xn−k−p1 ∈ V n−k−p. Comparing relations (16) and

(18), we find

f (xk1 + xk2 , xp1 , xn−k−p1 ) =
∑

j1,j2,...,jk∈{1,2}
f
(
xj11, xj22, . . . , xjkk, x

p

1 , x
n−k−p
1

)

(19)

for all xk1 , x
k
2 ∈ V k and xp1 ∈ V p, xn−k−p1 ∈ V n−k−p. In light of [14, Theorem 2],

we see that f is additive in each of the k first variables. Similar to the previous, by
putting xk1 = xk2 , xn−k−p2 = (0, . . . , 0) in (10), using the assumptions and this fact

that f
(

2xk1 , x
p

1 , x
n−k−p
1

)
= 2kf

(
xk1 , x

p

1 , x
n−k−p
1

)
, we obtain the left side of (10)

as follows:

2k × 2n−k−p × 23(n−k−p) ∑

s∈{−1,1}k
f
(
xk1 , 2x

p

1 + sxp2 , xn−k−p1

)

= 24(n−p)−3k
∑

s∈{−1,1}k
f
(
xk1 , 2x

p

1 + sxp2 , xn−k−p1

)
(20)

for all xk1 ∈ V k , xp1 , xp2 ∈ V p and xn−k−p1 ∈ V n−k−p. On the other hand, the right
side of (10) will be
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2k
n−k−p∑

m=0

(
n− k − p

m

)
2n−k−p−m × 12m × 2n−k−p−m

p∑

l=0

6lf
(
xk1 ,A

k+p
l

, x
n−k−p
1

)

= 2k × 24(n−k−p)
p∑

l=0

6lf
(
xk1 ,A

k+p
l

, x
n−k−p
1

)

= 24(n−p)−3k
p∑

l=0

6lf
(
xk1 ,A

k+p
l

, x
n−k−p
1

)
(21)

for all xk1 , xp1 , x
p

2 ∈ V p and xn−k−p1 ∈ V n−k−p. It follows from (20) and (21) that

∑

s∈{−1,1}p
f
(
xk1 , 2x

p

1 + sxp2 , xn−k−p1

)
=

p∑

l=0

6lf
(
xk1 ,A

k+p
l , x

n−k−p
1

)

for all xk1 , x
k
2 ∈ V k and xn−k−p1 ∈ V n−k−p. Now, Theorem 1 implies that f is

quadratic in each of the p middle variables. In a similar way, by putting xk1 = xk2 ,
x
p

2 = (0, . . . , 0) in (10), one can show that

∑

t∈{−1,1}n−k−p
f
(
xk1 , x

p

1 , 2x
n−k−p
1 + txn−k−p2

)

=
n−k−p∑

m=0

2n−k−p−m × 12mf
(
xk1 , x

p

1 ,B
n−k−p
m

)

for all xk1 ∈ V k , xp1 ∈ V p and xn−k−p1 , x
n−k−p
2 ∈ V n−k−p, and thus Proposition 2.2

of [8] now completes the proof.

4 Stability of the Multi-additive-Quadratic-Cubic Mappings

In this section, we prove the generalized Hyers-Ulam stability of multi-additive-
quadratic-cubic functional equation (10) by a fixed point result (Theorem 2) in
Banach spaces. Throughout, for two sets X and Y , the set of all mappings from
X to Y is denoted by YX. To reach our purpose in this section, we present the next
theorem which is a fundamental result in fixed point theory [10, Theorem 1].
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Theorem 2 Let the following hypotheses hold.

(A1) Y is a Banach space, S is a nonempty set, j ∈ N, g1, . . . , gj : S −→ S, and
L1, . . . , Lj : S −→ R+,

(A2) T : YS −→ YS is an operator satisfying the inequality

‖Tλ(x)−Tμ(x)‖ ≤
j∑

i=1

Li(x) ‖λ(gi(x))− μ(gi(x))‖ , λ, μ ∈ YS, x ∈ S,

(A3) Λ : RS+ −→ R
S+ is an operator defined through

Λδ(x) :=
j∑

i=1

Li(x)δ(gi(x)) δ ∈ R
S+ , x ∈ S.

Let also a function θ : S −→ R+ and a mapping φ : S −→ Y fulfill the following
two conditions:

‖Tφ(x)− φ(x)‖ ≤ θ(x), θ∗(x) :=
∞∑

l=0

Λlθ(x) <∞ (x ∈ S).

Then, there exists a unique fixed point ψ of T such that

‖φ(x)− ψ(x)‖ ≤ θ∗(x) (x ∈ S).

Moreover, ψ(x) = liml→∞Tlφ(x) for all x ∈ S.

Here and subsequently, for a mapping f : V n −→ W , we consider the difference
operator Daqcf : V n × V n −→ W by

Daqcf (x1, x2) :=
∑

s∈{−1,1}p

∑

t∈{−1,1}n−k−p
f
(
xk1 + xk2 , 2xp1 + sxp2 , 2xn−k−p1 + txn−k−p2

)

−
p∑

l=0

n−k−p∑

m=0

∑

i∈{1,2}
6l2n−k−p−m12mf

(
xki ,A

k+p
l

,B
n−k−p
m

)

for all xki = (xi1, . . . , xik) ∈ V k , xpi = (xi,k+1 . . . , xi,k+p) ∈ V p, and xn−k−pi =
(xi,k+p+1 . . . , xin) ∈ V n−k−p where i ∈ {1, 2}.

We now have the following stability result for the multi-additive-quadratic-cubic
functional equations.
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Theorem 3 Let β ∈ {−1, 1}, V be a linear space, and W be a Banach space.
Suppose that φ : V n × V n −→ R+ is a function satisfying

lim
r→∞

(
1

2(3n−2k−p)β

)r
φ(2βrx1, 2

βrx2) = 0 (22)

for all x1, x2 ∈ V n and

Φ(x) = 1

2n−k × 2
β+1

2 (3n−2k−p)
∞∑

r=0

(
1

2(3n−2k−p)β

)r
φ
(

2βr+
β−1

2 x,
(

2βr+
β−1

2 xk1 , 0, 0
))
<∞ (23)

for all x = x1 = (xk1 , xp1 , xn−k−p1 ) ∈ V n. Assume also f : V n −→ W is a mapping
satisfying the inequality

‖Daqcf (x1, x2)‖ � φ(x1, x2) (24)

for all x1, x2 ∈ V n. Then, there exists a unique solution F : V n −→ W of (10)
such that

‖f (x)−F(x)‖ ≤ Φ(x) (25)

for all x ∈ V n.
Proof Putting xk1 = xk2 and xp2 = xn−k−p2 = 0 in (24), we have

∥∥∥2n−kf (2x)− 2kΓ (n)f (x)
∥∥∥ ≤ φ(x, (xk1 , 0, 0)) (26)

for all x = x1 = (xk1 , x
p

1 , x
n−k−p
1 ) ∈ V n, where Γ (n) is defined in (17). Since

Γ (n) = 24(n−k)−p, (26) is as follows:

∥∥∥f (2x)− 23n−2k−pf (x)
∥∥∥ ≤ 1

2n−k
φ(x, (xk1 , 0, 0)) (27)

for all x ∈ V n. Now, relation (27) can be modified as

‖f (x)−Tf (x)‖ ≤ ξ(x) (28)

for all x ∈ V n, where

ξ(x) := 1

2n−k × 2
β+1

2 (3n−2k−p) φ
(

2
β−1

2 x,
(

2
β−1

2 xk1 , 0, 0
))
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and Tξ(x) := 1
2(3n−2k−p)β ξ(2

βx) in which ξ ∈ WVn . For each η ∈ R
V n+ , x ∈ V n,

define Λη(x) := 1
2(3n−2k−p)β η(2

βx). We now see that Λ has the form described

in (A3) with S = V n, g1(x) = 2βx, and L1(x) = 1
2(3n−2k−p)β for all x ∈ V n.

Furthermore, for each λ,μ ∈ WVn and x ∈ V n, we get

‖Tλ(x)−Tμ(x)‖ =
∥∥∥∥

1

2(3n−2k−p)β
[
λ(2βx)− μ(2βx)]

∥∥∥∥

≤ L1(x) ‖λ(g1(x))− μ(g1(x))‖ .

The relation above shows that the hypothesis (A2) of Theorem 2 holds. By induction
on r , one can check that

Λrξ(x) :=
(

1

2(3n−2k−p)β

)r
ξ(2βrx)

= 1

2n−k × 2
β+1

2 (3n−2k−p)

(
1

2(3n−2k−p)β

)r
φ
(

2βr+
β−1

2 x,
(

2βr+
β−1

2 xk1 , 0, 0
))

(29)

for all r ∈ N0 and x ∈ V n. It follows from relations (23) and (29) that all
assumptions of Theorem 2 are satisfied. Hence, there exists a solution F : V n −→
W of (10) such that

F(x) = lim
l→∞(T

rf )(x) = 1

2(3n−2k−p)βF(2βx) (x ∈ V n),

and (25) holds. We shall to show that

‖Daqc(Trf )(x1, x2)‖ ≤
(

1

2(3n−2k−p)β

)r
φ(2βrx1, 2

βrx2) (30)

for all x1, x2 ∈ V n and r ∈ N0. We argue by induction on r . The inequality (30)
holds for r = 0 by (24). Assume that (30) is valid for a r ∈ N0. Then

∥∥∥Daqc(Tr+1f )(x1, x2)
∥∥∥

=
∥∥∥

∑

s∈{−1,1}p

∑

t∈{−1,1}n−k−p
(Tr+1f )

(
xk1 + xk2 , 2xp1 + sxp2 , 2xn−k−p1 + txn−k−p2

)

−
p∑

l=0

n−k−p∑

m=0

∑

i∈{1,2}
6l × 2n−k−p−m × 12m(Tl+1f )

(
xki ,A

k+p
l

,B
n−k−p
m

) ∥∥∥

= 1

2(3n−2k−p)β
∥∥∥

∑

s∈{−1,1}p

∑

t∈{−1,1}n−k−p
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(Trf )
(

2β
(
xk1 + xk2

)
, 2β

(
2xp1 + sxp2

)
, 2β

(
2xn−k−p1 + txn−k−p2

))

−
p∑

l=0

n−k−p∑

m=0

∑

i∈{1,2}
6l × 2n−k−p−m × 12m(Trf )

(
2βxki , 2

β
A
k+p
l

, 2βBn−k−pm

) ∥∥∥

= 1

2(3n−2k−p)β
∥∥∥Daqc(Trf )(2βx1, 2

βx2)
∥∥∥

≤
(

1

2(3n−2k−p)β
)r+1

φ
(

2β(r+1)x1, 2
β(r+1)x2

)
(31)

for all x1, x2 ∈ V n. Letting r → ∞ in (30) and applying (22), we find
DaqcF(x1, x2) = 0 for all x1, x2 ∈ V n. This means that the mapping F satisfies
(10). Finally, assume that F′ : V n −→ W is another solution of equation (10) and
inequality (25), and fix x ∈ V n, j ∈ N. Then

‖F(x)−F′(x)‖

=
∥∥∥∥

1

2(3n−2k−p)βj F
(

2βj x
)
− 1

2(3n−2k−p)βj F′ (2βj x
)∥∥∥∥

≤ 1

2(3n−2k−p)βj
(∥∥∥F

(
2βj x

)
− f

(
2βj x

)∥∥∥+
∥∥∥F′ (2βj x

)
− f

(
2βj x

)∥∥∥
)

≤ 2

2(3n−2k−p)βj Φ
(

2βj x
)

≤ 2

2n−k × 2

(
β+1

2 +βj
)
(3n−2k−p)

∞∑

r=j

(
1

2(3n−2k−p)β

)r
φ
(

2βr+
β−1

2 x,
(

2βr+
β−1

2 xk1 , 0, 0
))
.

Consequently, letting j → ∞ and using the fact that series (23) is convergent for
all x ∈ V n, we obtain F(x) = F′(x) for all x ∈ V n, which finishes the proof.

The upcoming corollary is a direct consequence of Theorem 3 concerning the sta-
bility of multi-additive-quadratic-cubic mappings when the norm of Daqcf (x1, x2)

is bounded by the sum of powers of norms.

Corollary 1 Let θ > 0 and α ∈ R with α 	= 3n− 2k − p. Let also V be a normed
space and W be a Banach space. If f : V n −→ W is a mapping satisfying the
inequality

‖Daqcf (x1, x2)‖ ≤ θ
2∑

i=1

n∑

j=1

‖xij‖α

for all x1, x2 ∈ V n, then there exists a unique solution F : V n −→ W of (10) such
that
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‖f (x)−F(x)‖ ≤ θ

2n−k|23n−2k−p − 2α|

⎛

⎝2
k∑

j=1

‖x1j‖α +
n∑

j=k+1

‖x1j‖α
⎞

⎠

for all x ∈ V n.
Theorem 3 with k = n gives a result on the generalized Hyers-Ulam stability

of an equation characterizing multi-additive mappings which is studied in [14,
Theorem 3]. Moreover, by putting k = p = 0 in Corollary 1, we obtain [8, Corollary
3.5] on the stability of multi-cubic mappings. Furthermore, by considering p = n in
Corollary 1, we obtain the below result on the stability of multi-quadratic functional
equations.

Corollary 2 Let θ > 0 and α ∈ R with α 	= 2n. Let also V be a normed space and
W be a Banach space. If f : V n −→ W is a mapping satisfying the inequality

∥∥∥∥∥∥

∑

s∈{−1,1}n
f (2x1 + sx2)−

n∑

l=0

6lf
(
A
n
l

)
∥∥∥∥∥∥
≤ θ

2∑

i=1

n∑

j=1

‖xij‖α

for all x1, x2 ∈ V n, then there exists a unique solution Q : V n −→ W of (7) such
that

‖f (x)−Q(x)‖ ≤ θ

2n|22n − 2α|
n∑

j=1

‖x1j‖α

for all x ∈ V n.
Let A be a nonempty set, (X, d) a metric space, ψ ∈ R

An+ , and F1,F2 operators
mapping a nonempty set D ⊂ XA into XA

n
. We say that operator equation

F1ϕ(a1, . . . , an) = F2ϕ(a1, . . . , an) (32)

is ψ-hyperstable provided every ϕ0 ∈ D satisfying inequality

d(F1ϕ0(a1, . . . , an),F2ϕ0(a1, . . . , an)) ≤ ψ(a1, . . . , an), a1, . . . , an ∈ A,

fulfills (32); this definition is introduced in [12]. In other words, a functional equa-
tion F is hyperstable if any mapping f satisfying the equation F approximately is
a true solution of F.

Under some conditions, the multi-additive-quadratic-cubic mappings are hyper-
stable. It is shown in the next corollary.

Corollary 3 Let V be a normed space and W be a Banach space. Suppose that
θij > 0 for i ∈ {1, 2} and j ∈ {1, . . . , n} fulfill ∑2

i=1
∑n
j=1 θij 	= 3n − 2k − p. If

f : V n −→ W is a mapping satisfying the inequality
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‖Daqcf (x1, x2)‖ ≤
2∏

i=1

n∏

j=1

‖xij‖θij

for all x1, x2 ∈ V n, then f satisfies (10). Moreover, if f satisfies the cubic condition
in the last n− k − p and the quadratic condition in the middle p variables, then it
is multi-additive-quadratic-cubic.

Putting p = n in Corollary 3, we see a multi-quadratic mapping can be
hyperstable as follows.

Corollary 4 Let V be a normed space and W be a Banach space. Suppose that
θij > 0 for i ∈ {1, 2} and j ∈ {1, . . . , n} fulfill ∑2

i=1
∑n
j=1 θij 	= 2n. If f :

V n −→ W is a mapping satisfying the inequality

∥∥∥∥∥∥

∑

s∈{−1,1}n
f (2x1 + sx2)−

n∑

l=0

6lf
(
A
n
l

)
∥∥∥∥∥∥
≤

2∏

i=1

n∏

j=1

‖xij‖θij

for all x1, x2 ∈ V n, then f satisfies (10). In particular, if f satisfies the quadratic
condition in all variables, then it is multi-quadratic.

5 Stability Results for (10) in Non-Archimedean Normed
Spaces

We firstly express some basic facts concerning non-Archimedean spaces and some
preliminary results. Let us recall that a metric d on a nonempty set X is said to
be non-Archimedean (or an ultrametric) provided d(x, z) ≤max{d(x, y), d(y, z)}
for x, y, z ∈ X. By a non-Archimedean field, we mean a field K equipped with a
function (valuation) | · | from K into [0,∞) such that |a| = 0 if and only if a = 0,
|ab| = |a||b|, and |a+ b| ≤ max{|a|, |b|} for all a, b ∈ K. Clearly, |1| = | − 1| = 1
and |n| ≤ 1 for all n ∈ N.

Let X be a vector space over a scalar field K with a non-Archimedean non-trivial
valuation | · |. A function ‖ · ‖ : X −→ R is a non-Archimedean norm (valuation)
if it satisfies the following conditions:

(i) ‖x‖ = 0 if and only if x = 0;
(ii) ‖ax‖ = |a|‖x‖, (x ∈ X, a ∈ K);

(iii) the strong triangle inequality (ultrametric); namely,

‖x + y‖ ≤ max{‖x‖, ‖y‖} (x, y ∈ X).
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Then, (X, ‖ · ‖) is called a non-Archimedean normed space. Due to the fact that

‖xn − xm‖ ≤ max{‖xj+1 − xj‖;m ≤ j ≤ n− 1} (n ≥ m)

a sequence {xn} is Cauchy if and only if {xn+1 − xn} converges to zero in a non-
Archimedean normed space X. By a complete non-Archimedean normed space,
we mean one in which every Cauchy sequence is convergent. If (X, ‖ · ‖) is a
non-Archimedean normed space, then it is easily verified that the function dX :
X×X −→ R+, given by dX(x, y) := ‖x − y‖, is a non-Archimedean metric on
X that is invariant (i.e., dX(x+z, y+z) = dX(x, y) for x, y, z ∈ X). Hence, non-
Archimedean normed spaces are also special cases of metric spaces with invariant
metrics.

The most important examples of non-Archimedean normed spaces are the p-adic
numbers, which have gained the interest of physicists because of their connections
with some problems coming from quantum physics, p-adic strings, and superstrings
[23]. Indeed, Hensel [20] discovered the p-adic numbers as a number theoretical
analogue of power series in complex analysis. The most interesting example of non-
Archimedean normed spaces is p-adic numbers. A key property of p-adic numbers
is that they do not satisfy the Archimedean axiom: for all x, y > 0, there exists an
integer n such that x < ny.

We recall that for a field K with multiplicative identity 1, the characteristic of K

is the smallest positive number n such that

n−times︷ ︸︸ ︷
1+ · · · + 1 = 0.

In this section, we prove the generalized Hyers-Ulam stability for multi-additive-
quadratic-cubic in non-Archimedean normed spaces. The proof is based on a fixed
point result that can be derived from [11, Theorem 1]. To present it, we introduce
the following three hypotheses:

(H1) E is a nonempty set, Y is a complete non-Archimedean normed space over
a non-Archimedean field of the characteristic different from 2, j ∈ N,
g1, . . . , gj : E −→ E and L1, . . . , Lj : E −→ R+,

(H2) T : YE −→ YE is an operator satisfying the inequality

‖Tλ(x)−Tμ(x)‖ ≤ maxi∈{1,...,j }Li(x) ‖λ(gi(x))− μ(gi(x))‖ ,

for all λ,μ ∈ YE, x ∈ E,
(H3) Λ : RE+ −→ R

E+ is an operator defined through

Λδ(x) := maxi∈{1,...,j }Li(x)δ(gi(x)) δ ∈ R
E+, x ∈ E.

Here, we highlight the following theorem which is a fundamental result in fixed
point theory [11, Theorem 1]. This result plays a key tool to obtain our goal in this
section.
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Theorem 4 Let hypotheses (H1)-(H3) hold and the function θ : E −→ R+ and the
mapping ϕ : E −→ Y fulfill the following two conditions:

‖Tϕ(x)− ϕ(x)‖ ≤ θ(x), lim
l→∞Λ

lθ(x) = 0 (x ∈ E).

Then, for every x ∈ E, the limit liml→∞Tlϕ(x) =: ψ(x) exists and the mapping
ψ ∈ YE , defined in this way, is a fixed point of T with

‖ϕ(x)− ψ(x)‖ ≤ supl∈N0
Λlθ(x) (x ∈ E).

We now are ready to indicate the upcoming result which is the main result in this
section.

Theorem 5 Let β ∈ {−1, 1} be fixed, V be a linear space, and W be a complete
non-Archimedean normed space over a non-Archimedean field of the characteristic
different from 2. Suppose that ϕ : V n × V n −→ R+ is a mapping satisfying the
equality

lim
r→∞

(
1

|2|(3n−2k−p)β

)r
ϕ(2βrx1, 2

βrx2) = 0 (33)

for all x1, x2 ∈ V n. Assume also f : V n −→ W is a mapping satisfying the
inequality

‖Daqcf (x1, x2)‖ ≤ ϕ(x1, x2) (34)

for all x1, x2 ∈ V n. Then, there exists a unique solution F : V n −→ W of (10)
such that

‖f (x)−F(x)‖ ≤ supr∈N0

1

|2|n−k × |2| β+1
2 (3n−2k−p)

(
1

|2|(3n−2k−p)β

)r

ϕ
(

2βr+
β−1

2 x,
(

2βr+
β−1

2 xk1 , 0, 0
))

(35)

for all x ∈ V n.
Proof Putting xk1 = xk2 and xp2 = xn−k−p2 = 0 in (34), we get

∥∥∥2n−kf (2x)− 2kΓ (n)f (x)
∥∥∥ ≤ ϕ(x, (xk1 , 0, 0)) (36)
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for all x = x1 = (xk1 , x
p

1 , x
n−k−p
1 ) ∈ V n, where Γ (n) is defined in (17). Hence,

(36) can be rewritten as

∥∥∥f (2x)− 23n−2k−pf (x)
∥∥∥ ≤ 1

|2|n−k ϕ(x, (x
k
1 , 0, 0)) (37)

for all x ∈ V n. Set

θ(x) := 1

|2|n−k × |2| β+1
2 (3n−2k−p) ϕ

(
2
β−1

2 x,
(

2
β−1

2 xk1 , 0, 0
))

and Tθ(x) := 1
|2|(3n−2k−p)β θ(2

βx) in which ξ ∈ WVn for all θ ∈ WVn and x ∈ V n.
Thus, relation (37) shows that

‖f (x)−Tf (x)‖ ≤ θ(x) (38)

for all x ∈ V n. Define Λη(x) := 1
|2|(3n−2k−p)β η(2

βx) for all η ∈ R
V n+ , x ∈ V n. It is

easy to see that Λ has the form described in (H3) with E = V n, g1(x) := 2βx for
all x ∈ V n and L1(x) = 1

|2|(3n−2k−p)β . Moreover, for each λ,μ ∈ WVn and x ∈ V n,
we obtain

‖Tλ(x)−Tμ(x)‖ =
∥∥∥∥

1

2(3n−2k−p)β
[
λ(2βx)− μ(2βx)]

∥∥∥∥

≤ L1(x) ‖λ(g1(x))− μ(g1(x))‖ .

The last relation shows that the hypothesis (H2) is valid. By induction on r , one can
check that for any r ∈ N and x ∈ V n that

Λrθ(x) :=
(

1

|2|(3n−2k−p)β

)r
θ(2βrx)

= 1

|2|n−k × |2| β+1
2 (3n−2k−p)

(
1

|2|(3n−2k−p)β

)r
ϕ
(

2βr+
β−1

2 x,
(

2βr+
β−1

2 xk1 , 0, 0
))

(39)

for all x ∈ V n. The relations (38) and (39) necessitate that all assumptions of
Theorem 4 are satisfied. Hence, there exists a unique mapping F : V n −→ W

such that F(x) = limr→∞(Trf )(x) for all x ∈ V n, and also (35) holds. We also
can verify by induction on r that

‖Daqc(Trf )(x1, x2)‖ ≤
(

1

|2|(3n−2k−p)β

)r
ϕ(2βrx1, 2

βrx2) (40)
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for all x1, x2 ∈ V n. Letting r → ∞ in (40) and applying (33), we arrive at
DaqcF(x1, x2) = 0 for all x1, x2 ∈ V n. This means that the mapping satisfies
Eq. (10) and the proof is now completed.

In the sequel, we assume that |2| < 1. The following corollaries are some direct
applications of Theorem 5 concerning the stability of (10).

Corollary 5 Let δ > 0. Let V be a normed space and W be a complete non-
Archimedean normed space over a non-Archimedean field of the characteristic
different from 2. If f : V n −→ W is a mapping satisfying the inequality

‖Daqcf (x1, x2)‖ ≤ δ

for all x1, x2 ∈ V n, then there exists a unique solution F : V n −→ W of (10) such
that

‖f (x)−F(x)‖ ≤ 1

|2|n−k δ

for all x ∈ V n.
Proof Letting ϕ(x1, x2) = δ in the case β = −1 of Theorem 5, we have

lim
r→∞

(
1

|2|(3n−2k−p)β

)r
δ = 0.

Therefore, one can obtain the desired result.

In the next result, we study the stability of multi-additive, multi-quadratic, multi-
cubic, and multi-additive-quadratic-cubic functional equations when the norm of
corresponding difference operators is bounded by the sum of powers of norms.

Corollary 6 Let V be a non-Archimedean normed space and W be a complete
non-Archimedean normed space over a non-Archimedean field of the characteristic
different from 2. If α ∈ R fulfills α 	= 3n− 2k−p and f : V n −→ W is a mapping
satisfying the inequality

‖Daqcf (x1, x2)‖ ≤
2∑

i=1

n∑

j=1

‖xij‖α

for all x1, x2 ∈ V n, then there exists a unique solution F : V n −→ W of (10) such
that
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‖f (x)−F(x)‖

≤

⎧
⎪⎪⎨

⎪⎪⎩

1
|2|4n−3k−p

(
2
∑k
j=1 ‖x1j‖α +∑n

j=k+1 ‖x1j‖α
)

α > 3n− 2k − p

1
|2|n−k−α

(
2
∑k
j=1 ‖x1j‖α +∑n

j=k+1 ‖x1j‖α
)

α < 3n− 2k − p
(41)

for all x = x1 ∈ V n. In particular,
(i) if α 	= n and f satisfying the inequality

∥∥∥∥∥∥
f (x1 + x2)−

∑

j1,...,jn∈{1,2}
f
(
xj11, . . . , xjnn

)
∥∥∥∥∥∥
≤

2∑

i=1

n∑

j=1

‖xij‖α

for all x1, x2 ∈ V n, then there exists a unique multi-additive mapping A :
V n −→ W such that

‖f (x)−A(x)‖ ≤

⎧
⎪⎪⎨

⎪⎪⎩

2
|2|n

∑k
j=1 ‖x1j‖α α > n

2
|2|−α

∑k
j=1 ‖x1j‖α α < n;

(ii) if α 	= 2n and f satisfying the inequality

∥∥∥∥∥∥

∑

s∈{−1,1}n
f (2x1 + sx2)−

n∑

l=0

6lf
(
A
n
l

)
∥∥∥∥∥∥
≤

2∑

i=1

n∑

j=1

‖xij‖α

for all x1, x2 ∈ V n, then there exists a unique solution Q : V n −→ W of (7)
such that

‖f (x)−Q(x)‖ ≤

⎧
⎪⎪⎨

⎪⎪⎩

1
|2|3n

∑k
j=1 ‖x1j‖α α > 2n

1
|2|n−α

∑k
j=1 ‖x1j‖α α < 2n;

(iii) if α 	= 3n and f satisfying the inequality

∥∥∥∥∥∥

∑

t∈{−1,1}n
f (2x1 + tx2)−

n∑

m=0

2n−m × 12mf
(
B
n
m

)
∥∥∥∥∥∥
≤

2∑

i=1

n∑

j=1

‖xij‖α

for all x1, x2 ∈ V n, then there exists a unique solution C : V n −→ W of (2.3)
from [8] such that
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‖f (x)− C(x)‖ ≤

⎧
⎪⎪⎨

⎪⎪⎩

1
|2|4n

∑k
j=1 ‖x1j‖α α > 3n

1
|2|n−α

∑k
j=1 ‖x1j‖α α < 3n.

Proof Putting ϕ(x1, x2) = ∑2
i=1

∑n
j=1 ‖xij‖p, we have ϕ(2rx1, 2rx2) =

|2|rαϕ(x1, x2). The first and second inequalities of (41) follow from Theorem 5
in the cases β = 1 and β = −1, respectively. Other inequalities are taken from (41).

Under some conditions, the multi-additive-quadratic-cubic mappings can be
hyperstable as follows.

Corollary 7 Suppose that αij > 0 for i ∈ {1, 2} and j ∈ {1, · · · , n} fulfill∑2
i=1

∑n
j=1 αij 	= 3n − 2k − p. Let V be a normed space and W be a complete

non-Archimedean normed space over a non-Archimedean field of the characteristic
different from 2. If f : V n −→ W is a mapping satisfying the inequality

‖Daqcf (x1, x2)‖ ≤
2∏

k=i

n∏

j=1

‖xij‖αij

for all x1, x2 ∈ V n, then it satisfies (10).
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Generalizations of Truncated
M-Fractional Derivative Associated
with (p, k)-Mittag-Leffler Function
with Classical Properties

Mehar Chand and Praveen Agarwal

Abstract In the present chapter, we have generalized the truncated M-fractional
derivative. This new differential operator denoted by i,pD

σ,γ,q

M,k,α,β , where the param-
eter σ associated with the order of the derivative is such that 0 < σ < 1 and M
is the notation to designate that the function to be derived involves the truncated
(p, k)-Mittag-Leffler function. The operator i,pD

σ,γ,q

M,k,α,β satisfies the properties of
the integer-order calculus. We also present the respective fractional integral from
which emerges, as a natural consequence, the result, which can be interpreted as an
inverse property. Finally, we obtain the analytical solution of the M-fractional heat
equation, linear fractional differential equation, and present a graphical analysis.

2010 MSC 26A33, 33C45, 33C60, 33C70

1 Introduction and Preliminaries

Gehlot in [1], presented the following two parameter Pochhammer symbol defined
as:

Definition 1 Let w ∈ C \ kZ−; p, k ∈ R
+ − {0}; n ∈ N; and  (w) > 0; then

(p-k) Pochhammer symbol is defined as
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p(w)n,k =
(wp
k

) (wp
k
+ p

) (wp
k
+ 2p

)
· · ·

(wp
k
+ (n− 1)p

)

= p�k(w + nk)
p�k(w)

.

(1.1)

Gehlot in [1], introduced the two parameter Gamma function defined as:

Definition 2 Let w ∈ C \ kZ−; p, k ∈ R
+ − 0; n ∈ N; and  (w) > 0; then (p-k)

Gamma function is defined as

p�k(w) =
∫ ∞

0
e
− tk
p tw−1dt. (1.2)

Recently in [2], Gehlot introduced the (p-k) Mittag-Leffler function defined as:

Definition 3 Let p, k ∈ R
+ − {0}; α, β, γ ∈ C \ kZ−; and  (α) > 0, (β) >

0, (γ ) > 0, and q ∈ (0, 1) ∪ N; then (p-k) Mittag-Leffler function is defined as

pE
γ,q

k,α,β(z) =
∞∑

n=0

p(γ )nq,k

p�k(nα + β)
zn

n! . (1.3)

where p(γ )nq,k is two parameter Pochhammer symbol defined in Eq. (1.1).

1.1 Special Cases

1. For q = 1, Eq. (1.3), gives the following form of (p, k)-Mittag-Leffler function
as follows:

pE
γ,1
k,α,β(z) =

∞∑

n=0

p(γ )n,k

p�k(nα + β)
zn

n! . (1.4)

2. For p = k, Eq. (1.3), yields the following form of (p, k)-Mittag-Leffler function
as follows [3]:

kE
γ,q

k,α,β(z) =
∞∑

n=0

k(γ )nq,k

kk�k(nα + β)
zn

n! = GE
γ,q

k,α,β(z). (1.5)

3. For p = k and q = 1, Eq. (1.3), gives the following form of (p, k)-Mittag-Leffler
function as follows [4]:

kE
γ,1
k,α,β(z) =

∞∑

n=0

(γ )n,k

p�k(nα + β)
zn

n! = E
γ

k,α,β(z). (1.6)
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4. For p = k and k = 1, Eq. (1.3), yields the following form of Mittag-Leffler
function as follows [5]:

1E
γ,q

1,α,β(z) =
∞∑

n=0

(γ )nq

�(nα + β)
zn

n! = E
γ,q
α,β (z). (1.7)

5. For p = k, q = 1, and k = 1, Eq. (1.3), gives the following form of Mittag-
Leffler function as follows [6]:

1E
γ,1
1,α,β(z) =

∞∑

n=0

(γ )n

�(nα + β)
zn

n! = E
γ
α,β(z). (1.8)

6. For p = k, q = 1, k = 1, and γ = 1, Eq. (1.3), gives the following form of
Mittag-Leffler function as follows [4]:

1E
1,1
1,α,β(z) =

∞∑

0

zn

�(nα + β) = Eα,β(z). (1.9)

7. For p = k, q = 1, k = 1, γ = 1, and β = 1, Eq. (1.3), reduces to the following
form of Mittag-Leffler function as follows [7]:

1E
1,1
1,α,1(z) =

∞∑

0

zn

�(nα + 1)
= Eα(z). (1.10)

Following lemmas are required for our present study as follows:

Lemma 1 For the (p-k) Pochhammer symbol and the k-Pochhammer symbol and
the classical Pochhammer symbol, it has

p(w)n,k =
(p
k

)n
(w)n,k = pn

(w
k

)

n
. (1.11)

Lemma 2 For the (p-k) Gamma function, the k-Gamma function, and the classical
Gamma function, it has [1]

p�k(w) =
(p
k

)w
k

p�k(w) = p
w
k

k
�
(w
k

)
. (1.12)

2 Truncated M-Fractional Derivative Type

In this section, we define a truncated M-fractional derivative type and obtain several
results that have a great similarity with the results found in the classical calculus.
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From the definition, we present a theorem showing that this truncated M-fractional
derivative type is linear and obeys the product rule and the composition of two α-
differentiable functions, the quotient rule, and the chain rule. It is also shown that
the derivative of a constant is zero, as well as versions for Rolle’s theorem, the mean
value theorem, and an extension of the mean value theorem. Further, the continuity
of this truncated M-fractional derivative type is shown as in integer-order calculus.
Also, we introduce the concept of M-fractional integral of a function f. From the
definition, we shown the Inverse theorem.
We define the truncated (p, k)-Mittag-Leffler function by

i,pE
γ,q

k,α,β(z) =
i∑

r=0

p(γ )rq,k

p�k(rα + β)
zr

r! , (2.1)

with z, α, β, γ ∈ C;  (α) > 0, (β) > 0, (γ ) > 0.
From Eq. (2.1), we define a truncated M-fractional derivative type that unifies

other four fractional derivatives that refer to classical properties of the integer-order
calculus.

In this work, if a truncated M-fractional derivative type of order σ as defined in
(2.2), of a function f exists, we say that the function f is σ -differentiable.

Thus, let us begin with the following definition, which is a generalization of the
usual definition of integer-order derivative.

Definition 4 Let f : [0,∞) → R. For 0 < σ < 1, a truncated M-fractional
derivative type of f of order σ denoted by i,pD

σ,γ,q

M,k,α,β is

i,pD
σ,γ,q

M,k,α,βf (t) = lim
ε→0

f (t i,pE
γ,q

k,α,β(εt
−σ ))− f (t)

ε
, (2.2)

∀ t > 0 and i,pE
γ,q

k,α,β(.) is a truncated (p, k)-Mittag-Leffler function, as defined
in Eq. (2.1).

Note that, if function f is σ -differentiable in some open interval (0, a), a > 0,

and limt→0+
(
i,pD

σ,γ,q

M,k,α,βf (t)
)

exist, then

i,pD
σ,γ,q

M,k,α,βf (0) = lim
t→0+

(
i,pD

σ,γ,q

M,k,α,βf (t)
)
. (2.3)

Theorem 1 If a function f:[0,∞) → R is σ - differentiable for t0 > 0 with 0 <
σ < 1;α, β, γ ∈ C;  (α) > 0;  (β) > 0; and  (γ ) > 0, then f is continuous at
t0.

Proof Let us consider the identity

f (t0 i,pE
γ,q

k,α,β(εt
−σ
0 ))− f (t0) =

(
f (t0 i,pE

γ,q

k,α,β(εt
−σ
0 ))− f (t0)

ε

)
ε (2.4)
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Applying the lim ε→ 0 on both sides of Eq. (2.4), we get

lim
ε→0

f (t0 i,pE
γ,q

k,α,β(εt
−σ
0 ))− f (t0) = lim

ε→0

(
f (t0 i,pE

γ,q

k,α,β(εt
−σ
0 ))− f (t0)

ε

)
lim
ε→0

ε

= i,pD
σ,γ,q

M,k,α,βf (t0) lim
ε→0

ε

= 0.
(2.5)

Then, f is continuous at t0.
Using the definition of truncated (p, k)-Mittag-Leffler function, we have

f (t i,pE
γ,q

k,α,β(εt
−σ )) = f

(
t

i∑

r=0

p(γ )rq,k

p�k(rα + β)
(εt−σ )r

r!

)
. (2.6)

Applying the lim
ε→0

on both sides of (2.5), and since function f is a continuous

function, we have

lim
ε→0

f (t i,pE
γ,q

k,α,β(εt
−σ )) = lim

ε→0
f

(
t

i∑

r=0

p(γ )rq,k

p�k(rα + β)
(εt−σ )r

r!

)

= f
(
t lim
ε→0

i∑

r=0

p(γ )rq,k

p�k(rα + β)
(εt−σ )r

r!

)
.

(2.7)

Further, we have

i,pE
γ,q

k,α,β(εt
−σ ) =

i∑

r=0

p(γ )rq,k

p�k(rα + β)
(εt−σ )r

r!

= 1+ p(γ )q,k

p�k(α + β)
(εt−σ )

1! + . . .+ p(γ )iq,k

p�k(iα + β)
(εt−σ )i

i!

(2.8)

Applying the limε→0 it ε→ 0 on both sides of (2.8), we have

lim
ε→0

i∑

r=0

p(γ )rq,k

p�k(rα + β)
(εt−σ )r

r! = 1 (2.9)

In this way, we conclude from Eq. (2.5), that

lim
ε→0

f (t i,pE
γ,q

k,α,β(εt
−σ )) = f (t) (2.10)
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Here, we present the theorem that encompasses the main classical properties of
integer-order calculus. For the chain rule, it is verified through an example, as we
will see next. We will do here, only the demonstration of the product and chain rule,
for other items, follow the same steps of Theorem 2 found in the paper by Sousa
and Oliveira [8].

Theorem 2 Let 0 < σ ≤ 1;α, β, γ ∈ C; such that  (α) > 0;  (β) > 0;  (γ ) >
0; and f, g be σ -differentiable at a point t > 0. Then

(1) (Linearity) i,pD
σ,γ,q

M,k,α,β(af + bg)(t) = a i,pDσ,γ,qM,k,α,βf (t)+ b i,pDσ,γ,qM,k,α,βg(t).

(2) (Product rule) i,pD
σ,γ,q

M,k,α,β(f.g)(t) = f (t) i,pDσ,γ,qM,k,α,βg(t) + g(t) i,pDσ,γ,qM,k,α,β

f (t).

Proof Using Definition 4, we have

i,pD
σ,γ,q
M,k,α,β

(f.g)(t) = lim
ε→0

f (t i,pE
γ,q
k,α,β

(εt−σ )).g(t i,pEγ,qk,α,β(εt−σ ))− f (t).g(t)
ε

= lim
ε→0

⎛

⎜⎜⎜⎜⎜⎝

f (t i,pE
γ,q
k,α,β

(εt−σ )).g(t i,pEγ,qk,α,β(εt−σ ))+ f (t)g(t i,pEγ,qk,α,β(εt−σ ))
−f (t)g(t i,pEγ,qk,α,β(εt−σ ))− f (t).g(t)

ε

⎞

⎟⎟⎟⎟⎟⎠

= lim
ε→0

⎛

⎝
f (t i,pE

γ,q
k,α,β

(εt−σ ))− f (t)
ε

⎞

⎠ lim
ε→0

g(t i,pE
γ,q
k,α,β

(εt−σ ))

+ lim
ε→0

⎛

⎝
g(t i,pE

γ,q
k,α,β

(εt−σ ))− g(t)
ε

⎞

⎠ lim
ε→0

f (t i,pE
γ,q
k,α,β

(εt−σ ))

= g(t)i,pD
σ,γ,q
M,k,α,β

f (t)+ f (t)i,pD
σ,γ,q
M,k,α,β

g(t).

(2.11)

(3) i,pD
σ,γ,q

M,k,α,β

(
f

g

)
(t) = g(t) i,pD

σ,γ,q

M,k,α,βf (t)− f (t) i,pDσ,γ,qM,k,α,βg(t)

[g(t)]2 .

(4) i,pD
σ,γ,q

M,k,α,β(c) = 0, where f (t) = c is a constant.

(5) (Chain rule) If f is differentiable, then i,pD
σ,γ,q

M,k,α,β(f )(t)=p
(γ )q,k t

1−σ

p�k(α + β)
df (t)

dt

Proof From Eq. (2.8), we have

t i,pE
γ,q

k,α,β(εt
−σ ) = t + p(γ )q,k(εt

1−σ )
p�k(α + β) +O(ε2). (2.12)
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and introducing the following change

h = εt1−σ
(

p(γ )q,k

p�k(α + β) +O(ε)
)
⇒ ε = hp�k(α + β)

t1−σ
(
p(γ )q,k + p�k(α + β)O(ε)

) .

(2.13)

Employing the value of ε from above Eq. (2.13), the definition given in Eq. (2.2)
reduces to the following form:

i,pD
σ,γ,q

M,k,α,βf (t) = lim
ε→0

f (t + h)− f (t)
h

t1−σ
(
p(γ )q,k + p�k(α + β)O(ε)

)

p�k(α + β)

= p(γ )q,k t
1−σ

p�k(α + β) lim
ε→0

f (t + h)− f (t)
h

= p(γ )q,k t
1−σ

p�k(α + β)
df (t)

dt
,

(2.14)

with α, β, γ ∈ C;  (α) > 0, (β) > 0, (γ ) > 0, and t > 0.

(6) i,pD
σ,γ,q

M,k,α,β(f og)(t) = f
′
(g(t)) i,pD

σ,γ,q

M,k,α,βg(t) , for f is differentiable at
g(t).

Now, it is necessary to know if, in addition to the previous Theorem 2, that
contains important properties similar to integer-order calculus, this truncated M-
fractional derivative type Eq. (2.2), also has important theorems related to the
classical calculus. We shall now see that Rolle’s theorem and the mean value
theorem and its extension coming from the integer-order calculus can be extended
to σ -differentiable functions, i.e., that admit truncated M-fractional derivative as
introduced in Eq. (2.2).

Theorem 3 Let 0 < σ < 1;α, β, γ ∈ C; such that  (α) > 0;  (β) > 0 such that
 (γ ) > 0; and f, g be σ -differentiable at a point t > 0. Then

i,pD
σ,γ,q

M,k,α,β(1) = 0,

i,pD
σ,γ,q

M,k,α,β(exp(at)) = p(γ )q,k t
1−σ

p�k(α + β) a exp(at),

i,pD
σ,γ,q

M,k,α,β(sin(at)) = p(γ )q,k t
1−σ

p�k(α + β) a cos(at),

i,pD
σ,γ,q

M,k,α,β(cos(at)) = −p(γ )q,k t
1−σ

p�k(α + β) a sin(at),

i,pD
σ,γ,q

M,k,α,β

(
tσ

σ

)
= p(γ )q,k

p�k(α + β) .

(2.15)
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Theorem 4 Let 0 < σ < 1;α, β, γ ∈ C; such that  (α) > 0;  (β) > 0;  (γ ) >
0; and f, g be σ -differentiable at a point t > 0. Then

i,pD
σ,γ,q

M,k,α,β

(
exp

(
tσ

σ

))
= p(γ )q,k t

1−σ

p�k(α + β) exp

(
tσ

σ

)
,

i,pD
σ,γ,q

M,k,α,β

(
sin

(
tσ

σ

))
= p(γ )q,k t

1−σ

p�k(α + β) cos

(
tσ

σ

)
,

i,pD
σ,γ,q

M,k,α,β

(
cos

(
tσ

σ

))
= −p(γ )q,k t

1−σ

p�k(α + β) sin

(
tσ

σ

)
.

(2.16)

Theorem 5 (Rolle’s Theorem for Fractional σ -Differentiable Functions) Let a > 0
and f : [a; b] → R be a function with the properties:

1. f is continuous on [a,b].
2. f is σ -differentiable on (a, b) for some σ ∈ (0, 1).
3. f (a) = f (b).

Then, ∃ c ∈ (a, b), such that i,pD
σ,γ,q

M,k,α,βf (c) = 0, with α, β, γ ∈ C;  (α) >
0, (β) > 0, and  (γ ) > 0.

Proof Since f is continuous on [a, b] and f (a) = f (b), there exist c ∈ (a, b), at
which the function has a local extreme. Then,

i,pD
σ,γ,q

M,k,α,βf (c) = lim
ε→0−

f (c i,pE
γ,q

k,α,β(εc
−σ ))− f (c)

ε

= lim
ε→0+

f (c i,pE
γ,q

k,α,β(εc
−σ ))− f (c)

ε
. (2.17)

But, the two limits have opposite signs. Hence, i,pD
σ,γ,q

M,k,α,βf (c) = 0.
The proof of Theorems 6 and 7, will be omitted, but follow the same reasoning

of the respective theorems demonstrated in Sousa and Oliveira [8].

Theorem 6 (Mean Value Theorem for Fractional σ -Differentiable Functions) Let
a > 0 and f :[a; b] → R be a function with the properties:

1. f is continuous on [a, b].
2. f is σ -differentiable on (a, b) for some σ ∈ (0, 1).

Then, ∃ c ∈ (a, b), such that

i,pD
σ,γ,q

M,k,α,βf (c) =
f (b)− f (a)
bσ

σ
− aσ

σ

(2.18)

with α, β, γ ∈ C;  (α) > 0, (β) > 0, and (γ ) > 0.
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Theorem 7 (Extension Mean Value Theorem for Fractional σ -Differentiable Func-
tions) Let a > 0 and f, g : [a, b] → R function that satisfy:

1. f, g is continuous on [a, b].
2. f, g is σ -differentiable on (a, b) for some σ ∈ (0, 1).

Then, ∃ c ∈ (a, b), such that

i,pD
σ,γ,q

M,k,α,βf (c)

i,pD
σ,γ,q

M,k,α,βg(c)
= f (b)− f (a)
g(b)− g(a) , (2.19)

with α, β, γ ∈ C;  (α) > 0, (β) > 0, and  (γ ) > 0.

Definition 5 Let σ ∈ (n, n + 1], for some n ∈ N, α, β, γ ∈ C; such that  (α) >
0, (β) > 0, (γ ) > 0 and f is n times differentiable for t > 0. Then the σ -
fractional derivative of f is defined by

i,pD
σ,γ ;n
M,k,α,βf (t) = lim

ε→0

f (n)(t i,pE
γ,q

k,α,β(εt
n−α))− f (n)(t)

ε
, (2.20)

since the lim
ε→0

on it exist.

From Definition 2, and the chain rule, that is, from item 5 of Theorem 2, by
induction on n, we can prove that

i,pD
σ,γ ;n
M,k,α,βf (t) = p(γ )q,kt

n+1−σ

p�k(α + β) f
(n+1)(t),

σ ∈ (n, n+ 1] and f is (n+ 1)-differentiable for t > 0.
Now, we know that this truncated M-fractional derivative type Eq. (2.2), has

a corresponding M-fractional integral. Then, we will present the definition and
a theorem that corresponds to the inverse property. For other results involving
integrals, one can consult [8, 9].

3 Generalized M-Integral

Definition 6 Let a ≥ 0 and t ≥ a. Also, let f be a function defined in (a, t] and
0 < σ < 1. Then, the M-fractional integral of order σ of function f is defined by [8]

a,iI
σ,γ,q

M,k,α,βf (t) = p�k(α + β)
(γ )i,k

∫ t

α

f (x)

x1−σ dx, (3.1)

with α, β, γ ∈ C;  (α) > 0, (β) > 0, and  (γ ) > 0.
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Theorem 8 (Inverse) Let a ≥ 0, 0 < σ < 1, and let f be a continuous function
such that iI

σ,γ,q

M,k,α,βf (t) exist. Then

i,pD
σ,γ,q

M,k,α,β

(
a,iI

σ,γ,q

M,k,α,βf (t)
)
= f (t) (3.2)

with t ≥ α and α, β, γ ∈ C; such that  (α) > 0, (β) > 0, and  (γ ) > 0.

Proof In fact, using the chain rule as seen in Theorem 2, we have

i,pD
σ,γ,q

M,k,α,β

(
a,iI

σ,γ,q

M,k,α,βf (t)
)
= p(γ )q,kt

1−σ

p�k(α + β)
d

dt

(
a,iI

σ,γ,q

M,k,α,βf (t)
)

= p(γ )q,kt
1−σ

p�k(α + β)
d

dt

(
p�k(α + β)
p(γ )q,k

∫ t

a

f (x)

x1−σ dx
)

= p(γ )q,kt
1−σ

p�k(α + β)
(
p�k(α + β)
p(γ )q,kt1−σ

f (t)

)

= f (t).

(3.3)

With the condition f (a) = 0, by Theorem 8, that is, 3.3, we have

a,iI
σ,γ,q

M,k,α,β

[
i,pD

σ,γ,q

M,k,α,βf (t)
]
= f (t)

Theorem 9 (Fundamental Theorem of Calculus) Let f : (a, b) → R be an α-
differentiable function and 0 < α ≤ 1. Then, for all t > 0, we have

a,iI
σ,γ,q

M,k,α,β

(
i,pD

σ,γ,q

M,k,α,βf (t)
)
= f (t)− f (a), (3.4)

with β > 0.

Proof In fact, since function f is differentiable, using the chain rule of Theorem 2,
and the fundamental theorem of calculus for the integer-order derivative, we have

a,iI
σ,γ,q

M,k,α,β

(
i,pD

σ,γ,q

M,k,α,βf (t)
)
= p�k(α + β)

(γ )i,k

∫ t

a

i,pD
σ,γ,q

M,k,α,βf (t)

x1−σ dx

= p�k(α + β)
(γ )i,k

∫ t

a

(γ )i,kx
1−σ

�(β + 1)x1−σ
df (t)

dt
dx

=
∫ t

a

df (t)

dt
dx = f (t)− f (a),

(3.5)

If the condition f (a) = 0 holds, then by Theorem 9, we have a,iI
σ,γ,q

M,k,α,β(
i,pD

σ,γ,q

M,k,α,βf (t)
)
= f (t)
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4 Relation with Other Fractional Derivative Types

In this section, we will discuss the relationship between the fractional conformable
derivative proposed by Khalil et al. [10], the alternative fractional derivative and
the generalized alternative fractional derivative proposed by Katugampola [11], and
the M-fractional derivative proposed by Sousa and Oliveira [8], with our truncated
M-fractional derivative type.

Khalil et al. [10], proposed a definition of a fractional derivative, called con-
formable fractional derivative that refers to the classical properties of integer order
calculus, given by

f (σ)(t) = lim
ε→0

f (t + εt1−σ )− f (t)
ε

, (4.1)

with σ ∈ (0, 1) and t > 0.
In 2014, Katugampola [11], proposed another definition of a fractional derivative,

called an alternative fractional derivative which also refers to the classical properties
of integer-order calculus, given by

Dσ f (t) = lim
ε→0

f
(
teεt

−σ )− f (t)
ε

, (4.2)

with σ ∈ (0, 1) and t > 0.
In the same paper, Katugampola [11], by means of a truncated exponential

function, that is, rex , proposed another generalized fractional derivative, given by

D(σ )r f (t) = lim
ε→0

f
(
re
εt−σ t

)
− f (t)

ε
, (4.3)

with σ ∈ (0, 1) and t > 0.
Recently, Sousa and Oliveira [8], introduced the M-fractional derivative D

α,β
M

where the parameter β > 0 and M is the notation to designate that the function to
be derived involves the Mittag-Leffler function of one parameter, given by

D
α,β
M f (t) = lim

ε→0

f (tEβ(εt
σ )− f (t)
ε

, (4.4)

σ ∈ (0, 1) and t > 0.
It is clear that our definition of truncated M-fractional derivative type (2.2), is

more general than the fractional derivative Eqs. (4.1), (4.2), (4.3), and (4.4).
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5 Application

5.1 Solution Heat Equation

In this section, we obtain the solution of the heat equation using a truncated M-
fractional derivative type with 0 < α < 1 and present some graphs about the
behavior of the solution. Consider the heat equation in one dimension given by

∂u(x, t)

∂t
= ω∂

2u(x, t)

∂x2 , 0 < x < L, t > 0, (5.1)

where ω is a positive constant. Using a M-fractional derivative type, we propose an
M-fractional heat equation given by

p

(
∂

∂t

)σ,γ,q

M,k,α,β

u(x, t) = ω∂
2u(x, t)

∂x2
, 0 < x < L, t > 0, (5.2)

where 0 < α < 1 and with the initial condition and boundary conditions given by

u(0, t) = 0, t ≥ 0,

u(L, T ) = 0, t ≥ 0,

u(x, 0) = f (x), 0 ≤ x ≤ L

We start considering the so-called M-fractional linear differential equation with
constant coefficients

p

(
∂

∂t

)σ,γ,q

M,k,α,β

v(x, t)± μ2v(x, t) = 0, (5.3)

where μ2 is a positive constant.
Using the item 5 in Theorem 2, (5.2), can be written as follows:

p(γ )q,k t
1−σ

p�k(α + β)
dv(x, t)

dt
± μ2v(x, t) = 0,

whose solution is given by

v(t) = c exp

(
±p�k(α + β)

p(γ )q,k

μ2tσ

σ

)
, (5.4)

with 0 < α < 1 and β > 0.
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Now, we will use separation of variables method to obtain the solution of the
M-fractional heat equation. Then, considering u(x, t) = P(x)Q(t) and replacing in
(5.2), we get

p

(
∂

∂t

)σ,γ,q

M,k,α,β

Q(t)P (x) = ω
(
d

dx

)2

P(x)Q(t),

which implies

1

ωQ(t)
p

(
∂

∂t

)σ,γ,q

M,k,α,β

Q(t) = 1

P(x)

(
d

dx

)2

P(x) = α. (5.5)

From (5.5), we obtain a system of differential equations, given by

p

(
∂

∂t

)σ,γ,q

M,k,α,β

Q(t)− ωαQ(x) = 0. (5.6)

(
d

dx

)2

P(x)− αP (x) = 0. (5.7)

First, let’s find the solution of (5.7). For this, we must study three cases, that is,
ξ = 0 ξ = −μ2 and ξ = −μ2.

Case 1 ξ = 0. Substituting ξ = 0 into (5.7), we have

(
d

dx

)2

P(x)− ξP (x) = 0 (5.8)

whose solution is given by P(x) = c1x + c2, with c1 and c2 arbitrary constant.
Using the initial conditions given by Eq. (5.2), we obtain that c1 = c2 = 0. Like
this, P(x) = 0, which implies u(x, t) = 0 trivial solution.

Case 2 ξ = −μ2 Substituting ξ = −μ2 into (5.7), we get

(
d

dx

)2

P(x)+ ξ2P(x) = 0 (5.9)

whose solution is given by P(x) = c2 sin(μx)+c1 cos(μx), with c1 and c2 arbitrary
constant. Using the initial conditions Eq. (5.2), we obtain c1 = 0 and 0 = c2 sin(μx)

which implies that μ = nπ
L

with n=1,2,. . . L ; with n = 1, 2, . . . Then, we obtain

Pn(x) = an sin
(nπx
L

)
and μ = nπ

L
(5.10)



140 M. Chand and P. Agarwal

Case 3 ξ = μ2 Substituting ξ = μ2 into (5.7), we get

(
d

dx

)2

P(x)− ξ2P(x) = 0 (5.11)

whose solution is given by P(x) = c1e
μx + c2e

−μx = A cosh(μx) + B sinh(μx),
with c1, c2, A,B arbitrary constant. Using the boundary conditions (5.3), we have
A = 0 and 0 = B sinh(μx). As λ = −μ2 < 0 and λL 	= 0, then sinh(μx) 	= 0. Like
this, we get B = 0 and then Pn(x) = 0, which implies u(x, t) = 0, trivial solution.

Therefore, the solution of (5.7) is given by

Pn(x) = an sin
(nπx
L

)
and μ = nπ

L
(5.12)

Using (5.4) and (5.5) in Eq. (5.6), we have

Qn(t) = bn exp

(
−p�k(α + β)

p(γ )q,k

(nπ
L

)2 ω

σ
tσ
)

(5.13)

where bn are constant coefficients.
So, using (5.9), and (5.11), the partial solutions of (5.2), is given by

pu
γ,q

M,k,α,β(x, t)=
∞∑

n=1

cn sin
(nπx
L

)
exp

(
−p�k(α+β)

p(γ )q,k

(nπ
L

)2 ω

σ
tσ
)
. (5.14)

Using Eq. (5.3), we get

u(x, 0) = f (x) =
∞∑

n=1

cn sin
(nπx
L

)
,

which provides cn through

cn = 2

L

∫ L

0
f (x) sin

(nπx
L

)
dx.

So, we conclude that the solution of M-fractional heat equation (5.2), satisfying
the conditions (5.3), is given by

pu
γ,q

M,k,α,β(x, t) =
∞∑

n=1

[
2

L

∫ L

0
f (x) sin

(nπx
L

)
dx

]
sin

(nπx
L

)

× exp

(
−p�k(α + β)

p(γ )q,k

(nπ
L

)2 ω

σ
tσ
)
.

(5.15)
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Taking the Limit α, β, γ, k→ 1, in the last equation and using (2.2), we have

u(x, t) =
∞∑

n=1

sin
(nπx
L

)
exp

(
−
(nπ
L

)2 ω

α
tα
)(

2

L

∫ L

0
f (x) sin

(nπx
L

)
dx

)
,

(5.16)

which is exactly the solution of the fractional heat equation proposed by Cenesiz et
al.

Further, if we choose σ = 1, the above Eq. (5.16), produces the solution of heat
equation of integral order.

u(x, t) =
∞∑

n=1

sin
(nπx
L

)
exp

(
−
(nπ
L

)2
ωt

)(
2

L

∫ L

0
f (x) sin

(nπx
L

)
dx

)
.

(5.17)

5.1.1 Graphical and Numerical Results

Graphical presentations of the solution in Eqs. (5.14) and (5.17) are established in
Figs. 1 and 2 respectively. We choose here the values of function and parameters as
f (x) = log(x); σ = 0.5 and f (x) = exp(−x); σ = 1.5 with y = 1.5, q = 3,
k = 0.2, α = 0.2, β = 0.3, ω = 0.5 for Eq. (5.14) and f (x) = (1 + x + 2x2)σ =
1.5, y = 2.5, q = 3, k = 0.2, α = 0.2, β = 0.3, ω = 0.5 for the Eq. (5.17). Also
we present here numerical results of our finding in Eq. (5.17) for different values of
parameters as shown in Table 1.

Fig. 1 Graph for γ = 1.5, q = 3, k = 0.2, α = 0.2, β = 0.3, ω = 0.5. (a) Plot for f (x) =
log(x); σ = 0.5. (b) Plot for f (x) = exp(−x); σ = 1.5
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Fig. 2 Graph for f (x) = (1 + x + 2x2) and σ = 1.5, γ = 2.5, q = 3, k = 0.2, α = 0.2, β =
0.3, ω = 0.5. (a) x, t = 0 : .05 : 2. (b) x, t = 0 : .05 : 5. (c) x, t = 0 : .05 : 8. (d)
x, t = 0 : .05 : 10

5.2 Solution First-Order Differential Equation

The general first-order differential equation based on generalized M-derivative is
represented as

i,pD
σ,γ,q

M,k,α,βu(t)+ P(t)u(t) = Q(t), (5.18)

where P(t) andQ(t) are σ−differentiable function and u(t) is unknown.

Using the chain rule from Theorem 2, the above Eq. (5.18), reduces to

d

dt
u(t)+ p�k(α + β)

p(γ )q,k t1−σ
P (t)u(t) = p�k(α + β)

p(γ )q,k t1−σ
Q(t), (5.19)
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Table 1 f (x) = (1+x+2x2) and γ = 2.5, q = 3, k = 0.2, α = 0.2, β = 0.3, ω = 0.5;L = 10

x t σ = 0.1 σ = 0.3 σ = 0.5 σ = 0.7 σ = 0.9

0.0 0.0 0.000 0.000 0.000 0.000 0.000

0.5 0.5 15.081 15.063 15.052 15.048 15.045

1.0 1.0 29.804 29.775 29.769 29.766 29.765

1.5 1.5 44.854 44.848 44.847 44.847 44.846

2.0 2.0 59.971 59.988 59.991 59.992 59.993

2.5 2.5 74.885 74.921 74.928 74.930 74.931

3.0 3.0 89.351 89.403 89.413 89.416 89.416

3.5 3.5 103.161 103.226 103.237 103.240 103.240

4.0 4.0 116.148 116.222 116.235 116.237 116.236

4.5 4.5 128.189 128.269 128.282 128.283 128.281

5.0 5.0 139.211 139.292 139.304 139.304 139.300

5.5 5.5 149.187 149.265 149.276 149.276 149.270

6.0 6.0 158.143 158.215 158.224 158.223 158.216

6.5 6.5 166.154 166.216 166.224 166.222 166.215

7.0 7.0 173.343 173.392 173.398 173.396 173.389

7.5 7.5 179.878 179.912 179.915 179.913 179.908

8.0 8.0 185.967 185.983 185.984 185.983 185.980

8.5 8.5 191.855 191.850 191.850 191.850 191.851

9.0 9.0 197.757 197.788 197.787 197.789 197.794

9.5 9.5 189.399 201.524 202.030 201.007 198.389

10.0 10.0 0.000 0.000 0.000 0.000 0.000

The solution of the above Eq. (5.19), is given by

u(t) = exp

(
−p�k(α + β)

p(γ )q,k

∫
P(t)

t1−σ
dt

)

×
{
p�k(α + β)
p(γ )q,k

∫
Q(t)

t1−σ
exp

(
p�k(α + β)
p(γ )q,k

∫
P(t)

t1−σ
dt

)
dt + C

}
.

(5.20)

Further, using the definition of integral operator, we can obtain from the above the
equation

u(t) = exp
(
−a,iIσ,γ,qM,k,α,β(P (t))

)

×
{
a,iI

σ,γ,q

M,k,α,β(Q(t)) exp
(
a,iI

σ,γ,q

M,k,α,β(P (t))
)
+ C

}
.

(5.21)



144 M. Chand and P. Agarwal

6 Conclusion

We conclude the present study by remarking that Mittag-Leffler functions play a
very vital role in determining the solution of fractional differential and integral
equations which are associated with an extensive variety of problems in diverse
areas of sciences and engineerings [15–24]. All the finding in this paper are general
in nature. Various results can be easily obtained by employing the particular values
to the parameters involving in our findings.
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On Hyers-Ulam-Rassias Stability of a
Volterra-Hammerstein Functional
Integral Equation

Sorina Anamaria Ciplea, Nicolaie Lungu, Daniela Marian, and Themistocles
M. Rassias

Abstract The aim of this paper is to study the Hyers-Ulam-Rassias stability for
a Volterra-Hammerstein functional integral equation in three variables via Picard
operators.
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1 Introduction

Ulam stability is an important concept in the theory of functional equations. The
origin of Ulam stability theory was an open problem formulated by Ulam, in
1940, concerning the stability of homomorphism [46]. The first partial answer to
Ulam’s question came within a year, when Hyers [8] proved a stability result,
for the additive Cauchy equation in Banach spaces. The first result on Hyers-
Ulam stability of differential equations was given by Obloza [36]. Alsina and Ger
investigated the stability of the differential equation y′ = y [2]. The result of Alsina
and Ger was extended by many authors (cf. [6, 13, 16–18, 38–40, 42, 44, 45])
to the stability of the first-order linear differential equation and linear differential
equations of higher order. For a broader study of Hyers-Ulam stability for functional

S. A. Ciplea
Technical University of Cluj-Napoca, Department of Management and Technology, Cluj-Napoca,
Romania
e-mail: sorina.ciplea@ccm.utcluj.ro

N. Lungu · D. Marian (�)
Technical University of Cluj-Napoca, Department of Mathematics, Cluj-Napoca, Romania
e-mail: nlungu@math.utcluj.ro; daniela.marian@math.utcluj.ro

Th. M. Rassias
Department of Mathematics, Zografou Campus, National Technical University of Athens, Athens,
Greece
e-mail: trassias@math.ntua.gr

© Springer Nature Switzerland AG 2022
N. J. Daras, Th. M. Rassias (eds.), Approximation and Computation in Science
and Engineering, Springer Optimization and Its Applications 180,
https://doi.org/10.1007/978-3-030-84122-5_9

147

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-84122-5_9&domain=pdf
mailto:sorina.ciplea@ccm.utcluj.ro
mailto:nlungu@math.utcluj.ro
mailto:daniela.marian@math.utcluj.ro
mailto:trassias@math.ntua.gr
https://doi.org/10.1007/978-3-030-84122-5_9


148 S. A. Ciplea et al.

equations, the reader is also referred to the following books and papers: [1, 5, 9–
12, 19, 24, 25, 33, 34, 37, 46].

The first result proved on the Hyers-Ulam stability of partial differential equa-
tions is due to A. Prastaro and Th.M. Rassias [41]. Some results regarding
Ulam-Hyers stability of partial differential equations were given by S.-M. Jung [10];
S.-M. Jung and K.-S. Lee [15]; N. Lungu and S.A. Ciplea [26]; N. Lungu and D.
Popa [29–31]; N. Lungu and C. Craciun [27]; N. Lungu and D. Marian [28]; D
Marian, S.A. Ciplea, and N. Lungu [32]; and I.A. Rus and N. Lungu [43]. In [4],
Brzdek, Popa, Rasa, and Xu presented a unified and systematic approach to the
field. Some recent results regarding stability analysis and their applications were
established by H. Khan, A. Khan, T. Abdeljawad, and A. Alkhazzan [20]; A. Khan,
J.F. Gómez-Aguilar, T.S. Khan, and H. Khan [21]; H. Khan, T. Abdeljawad, M.
Aslam, R.A. Khan, and A. Khan [22]; and H. Khan, J.F. Gómez-Aguilar, A. Khan,
and T.S. Khan [23]. Results regarding fixed point theory and the Ulam stability can
be found in [3].

In this paper, we consider the following Volterra-Hammerstein functional integral
equation in three variables:

u (x, y, z) = g (x, y, z, h (u) (x, y, z)) (1)

+
∫ x

0

∫ y

0

∫ z

0
K (x, y, z, r, s, t, f1 (u) (r, s, t)) drdsdt

+
∫ ∞

0

∫ ∞

0

∫ ∞

0
F (x, y, z, r, s, t, f2 (u) (r, s, t)) drdsdt

via Picard operators.
The present paper is motivated by a recent paper [35] of L.T.P. Ngoc, T.M.

Thuyet, and N.T. Long in which is studied the existence of asymptotically stable
solution for a Volterra-Hammerstein integral equation in three variables. Equation
(1) is a generalization of equation (1.1) from [35].

2 Existence and Uniqueness

In what follows, we consider some conditions relative to Eq. (1).
Let (E, |·|) be a Banach space and

 =
{
(x, y, z, r, s, t) ∈ R

6+ : r ≤ x, s ≤ y, t ≤ z
}
.

Let τ > 0 and the set

Xτ :=
{
u ∈ C

(
R

3+, E
)
| ∃M (u) > 0 : |u (x, y, z)| e−τ(x+y+z) ≤ M (u) ,∀ (x, y, z) ∈ R+

}
.
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On the set Xτ , we consider Bielecki’s norm

‖u‖τ := sup
x,y,z∈R+

(
|u (x, y, z)| e−τ(x+y+z)

)
.

It is clear that (Xτ , ‖·‖τ ) is a Banach space. In what follows, we assume, relative to
(1), the conditions

(C1) g ∈ C
(
R

3+ × E,E
)
,K ∈ C ( × E,E) , F ∈ C ( × E,E) , h ∈

C (Xτ ,Xτ ) , f1 ∈ C (Xτ ,Xτ ) , f2 ∈ C (Xτ ,Xτ ) ;
(C2) there exists lh > 0 such that

|h (u) (x, y, z)− h (v) (x, y, z)| ≤ lh ‖u− v‖τ eτ(x+y+z),∀x, y, z ∈ R+,∀u, v ∈ Xτ ;

(C3) there exists lg > 0 such that

|g (x, y, z, e1)− g (x, y, z, e2)| ≤ lg |e1 − e2| ,∀x, y, z ∈ R+,∀e1, e2 ∈ E;

(C4) there exists lK ∈ C ( ,R+) such that

|K (x, y, z, r, s, t, e3)−K (x, y, z, r, s, t, e4)| ≤ lK (x, y, z, r, s, t) |e3 − e4| ,

∀ (x, y, z, r, s, t) ∈  ,∀e3, e4 ∈ E;
(C5) there exists lF ∈ C ( ,R+) such that

|F (x, y, z, r, s, t, e5)− F (x, y, z, r, s, t, e6)| ≤ lF (x, y, z, r, s, t) |e5 − e6| ,

∀ (x, y, z, r, s, t) ∈  ,∀e5, e6 ∈ E;
(C6) there exist lf1 > 0 and lf2 > 0 such that

|f1 (u) (r, s, t)− f1 (v) (r, s, t)| ≤ lf1 |u (r, s, t)− v (r, s, t)| ,∀ (r, s, t) ∈ R
3+,∀u, v ∈ Xτ ,

|f2 (u) (r, s, t)− f2 (v) (r, s, t)| ≤ lf2 |u (r, s, t)− v (r, s, t)| ,∀ (r, s, t) ∈ R
3+,∀u, v ∈ Xτ ;

(C7) there exist l1 > 0 and l2 > 0 such that

∫ x

0

∫ y

0

∫ z

0
lf1 lK (x, y, z, r, s, t) e

τ(r+s+t)drdsdt ≤ l1eτ(x+y+z),∀ (x, y, z, r, s, t) ∈  ,

∫ ∞

0

∫ ∞

0

∫ ∞

0
lf2 lF (x, y, z, r, s, t) e

τ(r+s+t)drdsdt ≤ l2eτ(x+y+z),∀ (x, y, z, r, s, t) ∈  ;

(C8) lglh + l1 + l2 < 1;
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(C9)

|g (x, y, z, h (u) (x, y, z))| +
∫ x

0

∫ y

0

∫ z

0
|K (x, y, z, r, s, t, f1 (0) (r, s, t))| drdsdt

+
∫ ∞

0

∫ ∞

0

∫ ∞

0
|F (x, y, z, r, s, t, f2 (0) (r, s, t))| drdsdt ≤ α exp (τ (x + y + z)) ,

∀ (x, y, z, r, s, t) ∈  ;
(C10) there exists m > 0 such that

∫ ∞

0

∫ ∞

0

∫ ∞

0

[
lf1 lK (x, y, z, r, s, t)+lf2 lF (x, y, z, r, s, t)

]
drdsdt ≤ m, ∀ (x, y, z, r, s, t) ∈  .

Theorem 2.1 Under the conditions (C1)−(C9) , Eq. (1) has in the setXτ a unique
solution u∗.

Proof We consider the operator

A : Xτ → Xτ ,A (u) (x, y, z) := second part of (1).

First, we prove that A(u) maps Xτ in Xτ . For u ∈ Xτ , we have

|A (u) (x, y, z)| ≤ |g (x, y, z, h (u) (x, y, z))| +
∫ x

0

∫ y

0

∫ z

0
|K (x, y, z, r, s, t, f1 (u) (r, s, t))| drdsdt

+
∫ ∞

0

∫ ∞

0

∫ ∞

0
|F (x, y, z, r, s, t, f2 (u) (r, s, t))| drdsdt ≤ |g (x, y, z, h (u) (x, y, z))|

+
∫ x

0

∫ y

0

∫ z

0
|K (x, y, z, r, s, t, f1 (u) (r, s, t))−K (x, y, z, r, s, t, f1 (0) (r, s, t))| drdsdt

+
∫ ∞

0

∫ ∞

0

∫ ∞

0
|F (x, y, z, r, s, t, f2 (u) (r, s, t))− F (x, y, z, r, s, t, f2 (0) (r, s, t))| drdsdt

+
∫ x

0

∫ y

0

∫ z

0
|K (x, y, z, r, s, t, f1 (0) (r, s, t))| drdsdt

+
∫ ∞

0

∫ ∞

0

∫ ∞

0
|F (x, y, z, r, s, t, f2 (0) (r, s, t))| drdsdt.

We obtain

|A (u) (x, y, z)| ≤ |g (x, y, z, h (u) (x, y, z))| +
∫ x

0

∫ y

0

∫ z

0
|K (x, y, z, r, s, t, f1 (0) (r, s, t))| drdsdt

+
∫ ∞

0

∫ ∞

0

∫ ∞

0
|F (x, y, z, r, s, t, f2 (0) (r, s, t))| drdsdt

+
∫ x

0

∫ y

0

∫ z

0
lK (x, y, z, r, s, t) |f1 (u) (r, s, t)− f1 (0) (r, s, t)| drdsdt

+
∫ ∞

0

∫ ∞

0

∫ ∞

0
lF (x, y, z, r, s, t) |f2 (u) (r, s, t)− f2 (0) (r, s, t)| drdsdt
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≤ α exp (τ (x + y + z))+
∫ x

0

∫ y

0

∫ z

0
lK (x, y, z, r, s, t) lf1 |u (r, s, t)| eτ(r+s+t) · e−τ(r+s+t)drdsdt

+
∫ ∞

0

∫ ∞

0

∫ ∞

0
lF (x, y, z, r, s, t) lf2 |u (r, s, t)| eτ(r+s+t) · e−τ(r+s+t)drdsdt

≤ α exp (τ (x + y + z))+ ‖u‖τ
∫ x

0

∫ y

0

∫ z

0
lK (x, y, z, r, s, t) lf1e

τ(r+s+t)drdsdt

+ ‖u‖τ
∫ ∞

0

∫ ∞

0

∫ ∞

0
lF (x, y, z, r, s, t) lf2e

τ(r+s+t)drdsdt.

Thus, we obtain

|A (u) (x, y, z)| ≤ [
α + ‖u‖τ (l1 + l2)

]
exp (τ (x + y + z)) ,

and hence A(u) ∈ Xτ .
The operatorA is a contraction inXτ with respect to ‖·‖τ . Indeed, for u, v ∈ Xτ ,

we have

|A (u) (x, y, z)− A (v) (x, y, z)| ≤ |g (x, y, z, h (u) (x, y, z))− g (x, y, z, h (v) (x, y, z))|

+
∫ x

0

∫ y

0

∫ z

0
|K (x, y, z, r, s, t, f1 (u) (r, s, t))−K (x, y, z, r, s, t, f1 (v) (r, s, t))| drdsdt

+
∫ ∞

0

∫ ∞

0

∫ ∞

0
|F (x, y, z, r, s, t, f2 (u) (r, s, t))− F (x, y, z, r, s, t, f2 (v) (r, s, t))| drdsdt

≤ lg |h (u) (x, y, z)− h (v) (x, y, z)|

+
∫ x

0

∫ y

0

∫ z

0
lK (x, y, z, r, s, t) |f1 (u) (r, s, t)− f1 (v) (r, s, t)| drdsdt

+
∫ ∞

0

∫ ∞

0

∫ ∞

0
lF (x, y, z, r, s, t) |f2 (u) (r, s, t)− f2 (v) (r, s, t)| drdsdt

≤ lglh ‖u− v‖τ eτ(x+y+z) +
∫ x

0

∫ y

0

∫ z

0
lK (x, y, z, r, s, t) lf1 ‖u− v‖τ eτ(r+s+t)drdsdt

+
∫ ∞

0

∫ ∞

0

∫ ∞

0
lF (x, y, z, r, s, t) lf2 ‖u− v‖τ eτ(r+s+t)drdsdt

≤ lglh ‖u− v‖τ eτ(x+y+z) + l1 ‖u− v‖τ eτ(x+y+z) + l2 ‖u− v‖τ eτ(x+y+z).

Then we get

‖A (u)− A (v)‖τ ≤
(
lglh + l1 + l2

) ‖u− v‖τ
for all u, v ∈ Xτ . From (C8), we have that A is a contraction. Hence, A is a
c−Picard operator, with

c = 1

1− lglh − l1 − l2 .

Hence, Eq. (1) has a unique solution in the set Xτ .
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3 Hyers-Ulam-Rassias stability

In what follows, we consider the equation

u (x, y, z) = g (x, y, z, h (u) (x, y, z)) (2)

+
∫ x

0

∫ y

0

∫ z

0
K (x, y, z, r, s, t, f1 (u) (r, s, t)) drdsdt

+
∫ ∞

0

∫ ∞

0

∫ ∞

0
F (x, y, z, r, s, t, f2 (u) (r, s, t)) drdsdt

and the inequality

|u (x, y, z)− g (x, y, z, h (u) (x, y, z))

−
∫ x

0

∫ y

0

∫ z

0
K (x, y, z, r, s, t, f1 (u) (r, s, t)) drdsdt−

−
∫ ∞

0

∫ ∞

0

∫ ∞

0
F (x, y, z, r, s, t, f2 (u) (r, s, t)) drdsdt

∣∣∣∣ ≤ ϕ (x, y, z) , (3)

where (E, |·|) is a Banach space and ϕ ∈ C
(
[0, a)3 ,R+

)
is increasing, g ∈

C
(
[0, a)3 × E,E) ,K ∈ C

(
[0, a)6 × E,E) , F ∈ C

(
[0, a)6 × E,E) , h ∈

C (Xτ ,Xτ ) , f1 ∈ C (Xτ ,Xτ ) , f2 ∈ C (Xτ ,Xτ ) .
Theorem 3.1 Under the conditions (C1)− (C10) and

(i) there exists N > 0 such that

|h (u) (x, y, z)− h (v) (x, y, z)| ≤ N |u (x, y, z)
−v (x, y, z)| ,∀x, y, z ∈ [0, a) ,∀u, v ∈ Xτ ;

(ii) lgN < 1,

if u is a solution of (3) and u∗ is the unique solution of (2), we have

∣∣u (x, y, z)− u∗ (x, y, z)∣∣ ≤ CKFghf1f2ϕ (x, y, z)

where

CKFghf1f2ϕ (x, y, z) =
1

1− lgN exp

(
m

1− lgN
)
,

i.e., Eq. (2) is Hyers-Ulam-Rassias stable.
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Proof We have

∣∣u (x, y, z)− u∗ (x, y, z)∣∣

≤
∣∣∣∣u (x, y, z)− g (x, y, z, h (u) (x, y, z))−

∫ x

0

∫ y

0

∫ z

0
K (x, y, z, r, s, t, f1 (u) (r, s, t)) drdsdt

−
∫ ∞

0

∫ ∞
0

∫ ∞
0
F (x, y, z, r, s, t, f2 (u) (r, s, t)) drdsdt

∣∣∣∣

+ ∣∣g (x, y, z, h (u) (x, y, z))− g (x, y, z, h (u∗) (x, y, z))∣∣

+
∫ x

0

∫ y

0

∫ z

0

∣∣K (x, y, z, r, s, t, f1 (u) (r, s, t))−K
(
x, y, z, r, s, t, f1

(
u∗

)
(r, s, t)

)∣∣ drdsdt

+
∫ ∞

0

∫ ∞
0

∫ ∞
0

∣∣F (x, y, z, r, s, t, f2 (u) (r, s, t))− F
(
x, y, z, r, s, t, f2

(
u∗

)
(r, s, t)

)∣∣ drdsdt

≤ ϕ (x, y, z)+ lg
∣∣h (u) (x, y, z)− h (u∗) (x, y, z)∣∣

+
∫ x

0

∫ y

0

∫ z

0
lK (x, y, z, r, s, t)

∣∣f1 (u) (r, s, t)− f1
(
u∗

)
(r, s, t)

∣∣ drdsdt

+
∫ ∞

0

∫ ∞
0

∫ ∞
0
lF (x, y, z, r, s, t)

∣∣f2 (u) (r, s, t)− f2
(
u∗

)
(r, s, t)

∣∣ drdsdt.

From conditions (i) , (ii), we have
∣∣u (x, y, z)− u∗ (x, y, z)∣∣ ≤ ϕ (x, y, z)+ lgN

∣∣u (x, y, z)− u∗ (x, y, z)∣∣

+
∫ x

0

∫ y

0

∫ z

0
lK (x, y, z, r, s, t) lf1

∣∣u (r, s, t)− u∗ (r, s, t)∣∣ drdsdt

+
∫ ∞

0

∫ ∞
0

∫ ∞
0
lF (x, y, z, r, s, t) lf2

∣∣u (r, s, t)− u∗ (r, s, t)∣∣ drdsdt

≤ ϕ (x, y, z)+ lgN
∣∣u (x, y, z)− u∗ (x, y, z)∣∣

+
∫ ∞

0

∫ ∞
0

∫ ∞
0

(
lK (x, y, z, r, s, t) lf1 + lF (x, y, z, r, s, t) lf2

) ∣∣u (r, s, t)− u∗ (r, s, t)∣∣ drdsdt.

Then
(
1− lgN

) ∣∣u (x, y, z)− u∗ (x, y, z)∣∣
≤ ϕ (x, y, z)

+
∫ ∞

0

∫ ∞
0

∫ ∞
0

(
lK (x, y, z, r, s, t) lf1 + lF (x, y, z, r, s, t) lf2

) ∣∣u (r, s, t)− u∗ (r, s, t)∣∣ drdsdt

and we have

∣∣u (x, y, z)− u∗ (x, y, z)∣∣ ≤ ϕ (x, y, z)
1− lgN

+ 1

1− lgN
∫ ∞

0

∫ ∞

0

∫ ∞

0

(
lK (x, y, z, r, s, t) lf1 + lF (x, y, z, r, s, t) lf2

)

∣∣u (r, s, t)− u∗ (r, s, t)∣∣ drdsdt.
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From Wendorf lemma [7], for an unbounded domain, it follows that

∣∣u (x, y, z)− u∗ (x, y, z)∣∣

≤ ϕ (x, y, z)
1− lgN exp

[
1

1− lgN
∫ ∞

0

∫ ∞
0

∫ ∞
0

(
lK (x, y, z, r, s, t) lf1 + lF (x, y, z, r, s, t) lf2

)
drdsdt

]

and we have

∣∣u (x, y, z)− u∗ (x, y, z)∣∣ ≤ 1

1− lgN exp

[
m

1− lgN
]
· ϕ (x, y, z)

and

∣∣u (x, y, z)− u∗ (x, y, z)∣∣ ≤ CKFghf1f2 · ϕ (x, y, z)

where

CKFghf1f2ϕ (x, y, z) =
1

1− lgN exp

(
m

1− lgN
)
,

and Eq. (2) is Hyers-Ulam-Rassias stable. �
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Analysis of Electroencephalography
(EEG) Signals Based on the Haar
Wavelet Transformation

Y. Contoyiannis, P. Papadopoulos, S. M. Potirakis, M. Kampitakis,
N. L. Matiadou, and E. Kosmidis

Abstract EEG recordings give extremely noisy signals that do not allow classical
methods to clearly display such as the existence of power laws or even more so
the critical state that is a signature of the normal operation of biological tissues
(Contoyiannis et al., Phys Rev Lett 93:098101, 2004; Contoyiannis et al., Nat
Hazards Earth Syst Sci 13:125–139, 2013; Kosmidis et al., Eur J Neurosci, 2018.
https://doi.org/10.1111/ejn.14117). We have recently introduced a method, based on
Haar wavelet transformation (Contoyiannis et al. Phys. Rev. E 101:052104, 2020),
that completely ignores noise and thus can reveal the information of the power law
in EEGs. It calculates the exponent of the power law and thus gives us the ability to
determine whether the brain is in critical state in terms of physics, i.e., in a state of
normal biological function. Pathological conditions, such as epilepsy, are quantified
through this method so we can observe their evolution.
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1 Introduction

We have shown in recent years that biological tissues such as the heart [1, 2]
and neurons [3], when operating normally, then obey the dynamics of critical
intermittency. This means that the appropriately defined waiting times, laminar
length L, in terminology of intermittency [4], have power law distribution of the
form:

P(L) = p1L
−pl (1)

where pl ∈ [1, 2][6].
These dynamics belong to the category of critical dynamics of the systems we

found in Nature, in the economy, in society. The meaning of the power law [1] in
biological systems is that due to its scale-free character , the biological systems have
all time scales to respond to all stimuli, which is one of the main features of normal
operation.

Therefore, it is an important diagnostic tool that can be used to determine whether
the tissue demonstrates behaviors such as Eq. [1]. For this reason, we have proposed
the Method of Critical Fluctuations (MCF) which reveals not only the critical state
but also how far or how close we are to it [5–8]. A series of biological signals are
the records of EEG coupled by the wide variety of noise sources external as well
internal.

Four general strategies [9] are employed to deal with the issue of noise in
EEG recording and analysis: elimination of noise sources, averaging, rejection
of noisy data, and noise removal. Specifically, in elimination of noise sources,
the easiest sources of noise to deal with are external, environmental sources of
noise, such as AC power lines, lighting a large array of electronic equipment (from
computers, displays, and TVs to wireless routers, notebooks, and mobile phones).
The averaging method [9] based on the random character of noise is a simple and
powerful way of dealing with noise, but it has a number of limitations and caveats
[9]. The most straightforward procedure for rejection of noisy data is by visual
inspection [9]. Other features of the data can be used to identify and reject specific
segments of the recording. EEGLAB analysis package [10] provides a number of
such options. In the category noise removal, the easiest way to remove noise from
the raw data is by filtering. Such method has been developed in [11]. Another
source of noise in EEG recording is physiological noise that can be caused by
various noise generators. Such a case is ocular signal caused by eyeball movement
(electrooculogram, EOG) [12–15].

A number of methods for estimating specific sources of EEG signal developed
and tested in the recent years fall under the umbrella of blind source separation
(BSS). The key assumption of BBS is that the observed signal can be interpreted
as a mixture of original source signals [16]. A series of the improving of devices
has been accomplished like [17]. Various linear or non-linear noise mathematical
methods of removal have been developed at the level of EEG signal analysis. One
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such linear method that refers to wavelet-based analysis is the [18]. Our approach
presented in this paper is based on the coefficients of the analysis on the basis of
Haar wavelet, but it has a peculiarity. It does not show any sensitivity to noise. In
other words, it ignores noise, no matter how strong it may be, and it reveals the
power law or, more generally, the critical state if this exists. The scope of this work
is to extract information from the operation of brain tissue from EEG regardless of
how noisy they are.

2 Data Collection

The data used, in the present work, have been introduced by Andrzejak et al. [19]
and are analyzed by statistical methods like Tsallis entropy and Shannon block
entropy, in [20]. Two sets, denoted “A” and “E,” respectively, each containing 100
single-channel EEG segments of 23.6 s. duration, were used for this study. Set “A”
contains EEGs of healthy people. Set “E” contains volunteers seizure activities. The
segments fulfill the criterion of weak stationarity [19]. After 12-bit analog-to-digital
conversion, the data is written continuously onto the disk of a data acquisition
computer system at a sampling rate of 173.61 Hz. Band-pass filter settings were
0.53–40 Hz (12 dB/oct.).

3 The MCF Analysis

We will present the procedure of analysis for file A. The procedure for analyzing the
E file, for which we will present only the results, is similar. The MCF produces the
distribution of waiting times, and its application is explained in Fig. 1. As we show
in [6], the critical dynamics are described by a non-linear intermittent map. So we
can see in Fig. 1 the time series as a portrait of this intermittent map. Details of the
MCF can be found in [6–8].

Figure 1 shows the two lines, which extend along the entire length of the 400,000-
point time series and define the so-called laminar region. E0 is the fixed point value
which is usually the lowest values level; therefore, a stationary behavior is necessary,
which is something that happens in EEG. The green line determines the end of the
laminar region. The value of El is a free parameter. Hence, the green line sweeps
across y-axis. Due to the symmetric form around the zero of the distribution of
EEG values, we start the sweep of green line after the zero. For a width of EEG
values between −200 and 200, the research for the end of laminar region could be
restricted in a zone from 20 up to 50 by a step of 10 units. The laminar lengths
are defined as the waiting times in the zone, Eo < E < El . The sweep is finished
when we locate the largest array in the laminar length distribution table (this will
be explained later). The largest lengths are favored by the distribution of power law
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Fig. 1 A segment (980–36,400 points) of the EEG 400,000 recording points by healthy people

(1) which is also required in our research. The distribution of the laminar lengths is
fitted by the function:

P(L) = p1L
−p2e−p3L (2)

We focus in the exponents p2 and p3. If p3 is zero, then the exponent p2 is
equal to pl in Eq. 1. The intermittency is characterized as critical intermittency when
p3 ≈ 0, p2 ∈ [1, 2]. It is clear that when p3 is not close to zero, the exponential
factor in (2) is significant and cuts large lengths L. So the more important this factor
becomes, the further we move away from the dynamics of critical intermittency.
In the case of EEGs, the very strong noise destroys the distribution of laminar
lengths, and so it is impossible with classical methods, like the fitting by function
like (2), to extract the information of the power law, if this exist. Figure 2a shows the
distribution of laminar lengths for the EEG signal. This distribution shows that it is
far from being considered a power law. But this distribution has come from healthy
people and normal operation requires it to be scale-free. Obviously, what we are
seeing is the destruction by very strong noise. How will this noise be removed so
that the dynamics are revealed? Or, on the other hand, maybe some methodologies
could ignore (and not remove) the noise so that the information of power law can be
shown. The answer to these questions is given by a method which comes from the
development on a wavelet basis and that reveals the power law, if it exists, no matter
how strong is the noise.
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4 The Haar Wavelet Analysis: The Steps

The wavelet base is a linear base suitable for phenomena that exhibit self-similar
properties such as critical phenomena. The wavelet undergoes two transformations,
the change of scale j and their displacement k. Thus, the coefficients of the analysis
are dj,k . When j = k = 0, we have the coarse graining description of the analysis.
In the framework of this description, the coefficients of the analysis might ignore the
noise of the analyzed signal [21]. We use this behavior to develop an algorithm that
applies to each distinct numerical or real signal f (i), i = 1,. . .Δmax , with theΔmax
the maximum length of the signal. This algorithm answers the question of whether
a signal is a power law and how close or far it is from the power law and calculates
the corresponding exponent p2. In other words, it creates a fitting function without
carrying the pathogenicity of the fitting function due to noise, especially at the high
values of the laminar lengths. In order to avoid the tail of distributions for the fitting
function, where the strong noise makes the results precarious, we usually keep the
small scales. But this is not correct because it removes the information that we can
obtain from the great scales. The new method uses all scales. The base we use to
develop the algorithm is the Haar wavelet base, which has as a mother function, the
following function which defined by the theta functions for spaces [0,Δ]:

ψH = Θ
(
Δ

2
− x

)
Θ(x − 0)−Θ

(
x − Δ

2

)
Θ(Δ− x) (3)

We define the quantities [4]:

λ =
d00
d10
d10
d20

= d00d20

d2
10

=

(∑Δ
2
i=0 f (i)−

∑Δ
Δ
2
f (i)

)
·
(∑Δ

8
i=0 f (i)−

∑Δ
4
Δ
8
f (i)

)

(∑Δ
4
i=0 f (i)−

∑Δ
2
Δ
4
f (i)

)2

(4)

and

R = d00

d10
= 1√

2

( Δ
2∑

i=1

f (i)−
Δ∑

Δ
2

f (i)
)
/
( Δ

4∑

i=1

f (i)−
Δ
2∑

Δ
4

f (i)
)

(5)

The proposed method for revealing the criticality and finding the exponent of the
power law of distribution of laminar lengths has the following steps:

1. We apply the algorithm (4) to calculate λ as a function of Δ up to Δmax . As we
can see from (4), the minimum Δ that can give information is Δ = 8. Because
some zeros are also included in these distributions between the digits, we do not
cut the length if they are less than 8 consecutive, but we cut it when more than
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8 consecutive ones appear (including 8). We make the plot λ vs Δ, and because
we are interested in the convergence of λ [21], the last 10 points are enough to
deduce conclusion.

2. Obviously, the closer the Dλ is to the value 0, the closer to the power law is the
distribution. We quantify the previous step by calculating the distance of λ from
the value λ = 1, which is the perfect power law, by calculating the quantity:

Dλ = 1

10

10∑

i=1

(1− λi)2 (6)

3. We produce the plot R vsΔ. From the convergence region of the diagram (≤ 10),
an average value for the quantity R is obtained.

4. We consider f (i) = ci−p , i = 1, 2, 3 . . . Δmax as a test function in (5) (we have
to mention here that c vanished in relation (5) and by solving numerically Eq. (5)
we calculate the exponent p for R closer to the average value which we found in
step 3).

5 The Results

As shown in Fig. 2, the distribution of the waiting times for the EEG of the healthy
set is very close to a power law, something that is impossible to obtain from the
distribution of Fig. 2a. This information is extracted using the new wavelet method.
The exponent p2 of the power law in EQ. 2, has been calculated in the value range
of the critical state, which means that this is the normal operation of the brain.
Following the procedure we presented, we analyze the data of the set E that refers
to patients with seizures. We present in Fig. 3 the results.

As shown in Fig. 3, the convergence of λ has been removed from the 1. Thus, in
the case of patients, no power law is expected for the distribution of waiting times.
So R does not make sense for the calculation of a power law exponent.

One question that arises is whether the above results depend on the time scale we
are analyzing. To answer this, we divided the set A into two consecutive subsets of
200,000 points and repeated the calculations. Then we divided it into four subsets
of 100,000 points. The results for the amount Dλ are shown in Fig. 4 with the green
color.

As we can see in Fig. 4, the change in scale, in the Healthy case, does not
significantly affect the quantitative results that refer to the criticality and the power
law. This is perfectly consistent with the scale-free character of the power law, but
also with the self-similarity of the critical state. On the contrary, in the case of
patients, we see that the change in the scale is associated with the reinforcement
of the exponential damping in relation 2, which means a removal from the power
law and the scale-free property.
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Fig. 2 (a) The distribution of laminar lengths for the healthy EEG with maximum length Lmax =
Δmax = 305. (b) The diagram λ vs Δ of the last 10 points (296 < Δ < 305) showing the
convergence of the values λ very close to the unit. The laminar region is [−200, 40]. The value
Dλ = 3.75 · 10−3 is very close to zero. (c) The diagram R vs Δ for the same area as (b) showing
the convergence of the values of R. The diagram shows the mean value of R for this period. (d) The
test function for the distribution is the power law with exponent p = 1.05 ∈ [1, 2] corresponding
to diagram 2a. The parameter p1 = 3 is determined by the condition of normalization of the
distribution of laminar lengths

∫ 305
1 p1x

−1.05dx = 1

6 Conclusions

Let us now come to our conclusions. An important source of information on whether
or not a biological tissue in a normal state is the appropriate waiting time for
biological signals. Based on the MCF application on EEG signal, we can find the
distribution of these times . These distributions in the EEG, regardless of whether
they came from healthy people or patients, are far from being power law, if they
are analyzed by classical methods. This is the result of strong noise on EEG due
to many sources. The new method we have recently introduced, based on special
processing of wavelet analysis, ignores the noise and thus extracts from the laminar
lengths distribution and information about the existence of power laws. This, we
can say, is a strong indication of the normal operation of the brain tissue. The
method we present in this work not only understands the healthy state but also
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Fig. 3 (a) The distribution of laminar lengths for the EEG of patients with maximum length
Lmax = Δmax = 254 for laminar region [−1500, 200]. (b) The diagram λ vs Δ of the last 10
points (235 < Δ < 254) showing the convergence of the values λ. It is clear that the unit is
removed in relation to the healthy ones. The value Dλ = 2 · 10−2 quantifies this removal

Fig. 4 Healthy with the green color. Star, set 1–400,000; circle, two sets from 200,000 points;
square, four sets from 100,000 points. The Dλ values are almost equal between them. Patient with
the red color. The symbolisms are the same as in the previous case. Now the Dλ values depend a
lot on the time scale
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identifies unhealthy states, such as epilepsy. Investigating the most specialized brain
diseases or predispositions of them, we have to remark that the methodology we
have presented in this work is a very important tool.
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Perov-Type Contractions

Marija Cvetković, Erdal Karapınar, Vladimir Rakočević, and
Seher Sultan Yeşilkaya

Abstract Fixed point theory is rapidly growing in various directions, so the goal
of this chapter is to collect and underline recent results on Perov-type contractions
and talk about various generalizations of this result. Perov contraction is defined
on generalized metric space firstly introduced by Russian mathematician A.I. Perov
in the 1960s. The main difference and strength of this result is in changed view
on contractive constant since, in Perov results, that role is played by a matrix with
positive entries. The question is what do we gain in this case? And also can we
talk about scientific novelty of this concrete results and all other generalizations
published in the last 10 years? We will try to answer at least partially on these
questions and gather most important results regarding Perov contractions.

1 Introduction

Famous Banach fixed point theorem [13] was generalized in numerous ways by
changing a setting, contractive condition, or both. Among large quantity of fixed
point theorems, it is important to demand some applications of these results and

Supported by Grant No. 174025 of the Ministry of Education, Science and Technological
Development of the Republic of Serbia.
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independence of previously presented theorems. Russian mathematician A.I. Perov
[61] in 1964 published a paper, in Russian, dealing with a Cauchy problem for
a system of ordinary differential equations. In this paper, he presented a concept
of generalized metric space (in a sense of Perov) and gave a proof of a new type
of fixed point theorems. From that point of view, we can say that Perov theorem
was created as a tool in the area of differential equations and therefore fulfilled
the application goal. It was used once again in Perov’s paper in 1966, and then
were no significant results on this topic till the 2000s. In the meantime, Polish
mathematician S. Czerwik [31] in 1976 published a similar result as a generalization
of Edelstein’s fixed point theorem. In 1992, M. Zima [86], who also works in the
area of differential equations, published a paper, quoting different work of Czerwik,
which gave fixed point result on Banach space that could be related to Perov fixed
point theorem. G. Petruşel [65] in 2005 did some research on Perov contractions for
multivalued operators that was followed by results for Perov multivalued operators
by A. Petruşel and A.D. Filip in 2010 ([35]). This led to several published papers
on this topic [6, 34, 39, 40, 78]. N. Jurja [50] proved version of Perov theorem for
partially ordered generalized metric space. In 2014, M. Cvetković and V. Rakočević
published a generalization of Perov fixed point theorem on cone metric spaces, and
this result obtained many extensions such as quasi-contraction, Fisher contraction,
θ -contraction, F -contraction, coupled fixed point problem, common fixed point
problem, etc. [2, 3, 22–30, 38, 41, 45, 63, 69, 73]. Many papers were published
in the 2010s citing Perov work, adjusting and generalizing that idea for multivalued
operators, spaces endowed with a graph, ω-distance, etc., but will not be the main
topic of this chapter.

We will focus on three different frameworks: metric space, generalized metric
space, and cone metric space. Thus, we present some basic definitions and proper-
ties. As one of the examples, we will present a system of operatorial equations that
transforms into coupled fixed point problem.

Definition 1 Let X be nonempty set and d : X ×X �→ R mapping such that

(d1) d(x, y) ≥ 0 and d(x, y) = 0 ⇔ x = y;
(d2) d(x, y) = d(y, x);
(d3) d(x, y) ≤ d(x, z)+ d(z, y).
Mapping d is a metric on X and (X, d) is called a metric space.

If f : X �→ X is a mapping, then x ∈ X is a fixed point of f if f (x) = x. Set of all
fixed point of mapping f is denoted with Fix(f ). S. Banach in [13] published in
1922 gave a proof of famous fixed point result regarding existence of a unique fixed
point for a class of contractive mappings.

Definition 2 The mapping f on a metric spaceX is named contraction (contractive
mapping) if there exists some constant q ∈ (0, 1) such that

d(f (x), f (y)) ≤ qd(x, y), x, y ∈ X.
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The constant q is known as the contractive constant.

Clearly, every contraction is a non-expansive mapping. For any self-mapping, we
define a sequence (xn), xn = f (xn−1), n ∈ N, for arbitrary x0 ∈ X. It is called a
sequence of successive approximations or iterative sequence.

Theorem 1 ([13]) Let (X, d) be a nonempty complete metric space with a contrac-
tion mapping f : X �→ X. Then f admits a unique fixed point in X, and for any
x0 ∈ X, the iterative sequence (xn) converges to the fixed point of f .

Russian mathematician A.I. Perov [61] defined generalized metric space where
metric has values in R

n. Then, this concept of metric space allowed him to define
a new class of mappings, known as Perov contractions, which satisfy contractive
condition similar to Banach’s, but with a matrix A with non-negative entries instead
of a constant q.
Let X be a nonempty set and n ∈ N.

Definition 3 ([61]) A mapping d : X × X �→ R
m is called a vector-valued metric

on X if the following statements are satisfied for all x, y, z ∈ X.

(d1) d(x, y) ≥ 0n and d(x, y) = 0m⇔ x = y, where 0m = (0, . . . , 0) ∈ R
m;

(d2) d(x, y) = d(y, x);
(d3) d(x, y) ≤ d(x, z)+ d(z, y).
If x = (x1, . . . , xm), y = (y1, . . . , ym) ∈ R

m, then notation x ≤ y means xi ≤
yi, i = 1,m.

Denote by Mn,n the set of all n × n matrices and by Mn,n(R+) the set of all
n×nmatrices with non-negative entries. We writeOn for the zero n×nmatrix and
In for the identity n× n matrix, and further on, we identify row and column vector
in R

n.
A matrix A ∈ Mm,m(R+) is said to be convergent to zero if An → Om, as

n→∞, or, equivalently, if the matrix norm is less than 1.

Theorem 2 ([61, 62]) Let (X, d) be a complete generalized metric space, f : X �→
X and A ∈ Mm,m(R+) a matrix convergent to zero, such that

d(f (x), f (y)) ≤ A(d(x, y)), x, y ∈ X. (1)

Then:

(i) f has a unique fixed point x∗ ∈ X;
(ii) the sequence of successive approximations xn = f (xn−1), n ∈ N, converges

to x∗ for any x0 ∈ X;
(iii) d(xn, x

∗) ≤ An(In − A)−1(d(x0, x1)), n ∈ N;
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(iv) if g : X �→ X satisfies the condition d(f (x), g(x)) ≤ c for all x ∈ X and
some c ∈ R

n, then by considering the sequence yn = gn(x0), n ∈ N, then

d(yn, x
∗) ≤ (In − A)−1(c)+ An(In − A)−1(d(x0, x1)), n ∈ N.

This result has main application in solving differential and integral equations
([61, 62, 68, 79]).

Even though the first fixed point theorems in cone metric spaces were obtained
by Schröder [80, 81] in 1956, cone metric spaces are in the focus of the research in
metric fixed point theory in the last decades (see, e.g., [1, 5, 7, 14, 37, 47, 49, 52–
56, 71, 74], for more details). Serbian mathematician -D. Kurepa [58] presented the
idea of pseudometrics and cone metric in 1934, but most authors in fixed point
theory cite Huang and Zhang’s paper [43] from 2007 as a pioneer paper in cone
metric fixed point theory.

Definition 4 Let E be a real Banach space with a zero vector θ . A subset P of E is
called a cone if:

(i) P is closed, nonempty, and P 	= {θ};
(ii) a, b ∈ R, a, b ≥ 0, and x, y ∈ P imply ax + by ∈ P ;
(iii) P ∩ (−P) = {θ}.
Given a cone P ⊆ E, the partial ordering % with respect to P is defined by x % y
if and only if y − x ∈ P . We write x ≺ y to indicate that x % y but x 	= y, while
x ' y denotes y − x ∈ (int)P where int(P ) is the interior of P .
The cone P in a real Banach space E is called normal if

inf{‖x + y‖ | x, y ∈ P and ‖x‖ = ‖y‖ = 1} > 0

or, equivalently, if there is a number K > 0 such that for all x, y ∈ P ,

θ % x % y implies ‖x‖ ≤ K ‖y‖ . (2)

The least positive number satisfying (2) is called the normal constant of P . It has
been shown that we can consider only case K = 1 for normal cone metric spaces.
The cone P is called solid if int (P ) 	= ∅.

Introducing a concept of cone in a real Banach space allows us to present
a different type of pseudometric related to defined partial ordering induced by
observed cone.

Definition 5 Let X be a nonempty set, and let P be a cone on a real Banach space
E. Suppose that the mapping d : X ×X �→ E satisfies:

(d1) θ % d(x, y), for all x, y ∈ X and d(x, y) = θ if and only if x = y;
(d2) d(x, y) = d(y, x), for all x, y ∈ X;
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(d3) d(x, y) % d(x, z)+ d(z, y), for all x, y, z ∈ X.

Then d is called a cone metric on X, and (X, d) is a cone metric space.

It is known that the class of cone metric spaces is bigger than the class of metric
spaces. Note that the generalized metric space is a normal cone metric space.

Example 1 Defined partial ordering on R
n as in the definition of generalized metric

in the sense of Perov determines a normal cone

P = {x = (x1, . . . , xn) ∈ R
n | xi ≥ 0, i = 1, n}

on R
n, with the normal constant K = 1. Evidently, A(P ) ⊆ P if and only if

A ∈ Mn,n(R+). It appears possible to adjust and probably broadly modify Perov’s
idea on a concept of cone metric space. Preferably, we will get some existence
results. Nevertheless, forcing the transfer of contractive condition on cone metric
space would be possible for some operator A instead of a matrix.

We present some well-known examples of cone metric spaces.

Example 2 Let X = R, E = R
n, and

P = {
(x1, . . . , xn) ∈ R

n | xi ≥ 0, i = 1, n
}
.

It is easy to see that d : X ×X �→ E defined by

d(x, y) = (|x − y|, k1|x − y|, . . . , kn−1|x − y|), x, y ∈ X

is a cone metric on X, where ki ≥ 0 for i = 1, n− 1.

Example 3 For X = E = C[0, 1] where E is equipped with the supremum norm,
a function d : X × X �→ E defined with d(f, g)(x) = |f (x) − g(x)|, x ∈ [0, 1],
f, g ∈ X, is a cone metric on C[0, 1].
Example 4 ([33]) Let E = C(1)[0, 1] with a norm ‖x‖ = ‖x‖∞ + ∥∥x′

∥∥∞, for any
x ∈ E, and P = {x ∈ E | x(t) ≥ 0, t ∈ [0, 1]}. Consider, for example,

xn(t) = 1− sin nt

n+ 2
and yn(t) = 1+ sin nt

n+ 2
, n ∈ N.

Deducing ‖xn‖ = ‖yn‖ = 1 and ‖xn + yn‖ = 2
n+2 → 0 as n → ∞, so it is a

non-normal cone.

Presumably, convergent and Cauchy sequences are naturally defined. Suppose that
E is a Banach space; P is a solid cone in E, whenever it is not normal; and % is the
partial order on E with respect to P .

Definition 6 The sequence (xn) ⊆ X is convergent in X if there exists some x ∈ X
such that
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(∀ c ) θ)(∃ n0 ∈ N) n ≥ n0 *⇒ d(xn, x)' c.

We say that a sequence (xn) ⊆ X converges to x ∈ X and denote that with
lim
n→∞ xn = x or xn→ x, n→∞. Point x is called a limit of the sequence (xn).

Definition 7 The sequence (xn) ⊆ X is a Cauchy sequence if

(∀ c ) θ)(∃ n0 ∈ N) n,m ≥ n0 *⇒ d(xn, xm)' c.

Every convergent sequence is a Cauchy (fundamental) sequence, but reverse do not
hold. If any Cauchy sequence in a cone metric space (X, d) is convergent, then X is
a complete cone metric space.

As proved in [43], if P is a normal cone, not related to if it is solid, a sequence
(xn) ⊆ X converges to x ∈ X if and only if d(xn, x) → θ , n → ∞. Similarly,
(xn) ⊆ X is a Cauchy sequence if and only if d(xn, xm) → θ , n,m → ∞. Also,
if lim
n→∞ xn = x and lim

n→∞ yn = y, then d(xn, yn) → d(x, y), n → ∞. Let us

emphasize that these equivalences do not hold if P is a non-normal cone.
The following properties of normal cone metric spaces are often used:

(1) If E is a real Banach space with a cone P and if a % λa, where a ∈ P and
0 < λ < 1, then a = θ .

(2) If c ∈ intP , θ % an and an → θ , then there exists n0 such that for all n > n0,
we have an ' c.

It follows that the sequence (xn) converges to x ∈ X if d(xn, x)→ θ as n→∞
and (xn) is a Cauchy sequence if d(xn, xm)→ θ as n,m→∞. In the situation with
a non-normal cone, we have Lemmas 1 and 4 from [43] just partially. Also, in this
case, the fact that d(xn, yn)→ d(x, y) if xn→ x and yn→ y is not applicable. As
shown in [73], if the cone is Archimedean, meaning x % ny, n ∈ N implies x % θ ,
then any decreasing sequence is convergent if and only if it is Cauchy and has an
infimum.
A mapping f : X �→ X is a continuous mapping on X if for any x ∈ X and a
sequence (xn) ⊆ X such that lim

n→∞ xn = x, it follows lim
n→∞ f (xn) = f (x). For

the purpose of proof that will be presented in the sequent, we will also recall the
following lemma [26].

Lemma 1 Let (X, d) be a cone metric space. Suppose that xn is a sequence in X
and that bn is a sequence in E. If θ % d(xn, xm) % bn for m > n and bn→ θ, n→
∞, then (xn) is a Cauchy sequence.

The question which raises when we work on generalization of Perov theorem
for cone metric spaces is could we and under which conditions replace matrix
with an operator in a role of contractive constant. And that was the main idea of
previously mentioned Perov-type results on cone metric spaces. Therefore, we will
recall some basic properties of operators on a Banach space and try to examine
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sufficient condition which operator should satisfy to suit our needs in generalized
Perov theorem for cone metric spaces.
Observe that with B(E) is denoted the set of all bounded linear operators on a
Banach space E and with L(E) the set of all linear operators on E. As usual, r(A)
is a spectral radius of an operator A ∈ B(E),

r(A) = lim
n→∞‖A

n‖1/n = inf
n∈N ‖A

n‖1/n.

If r(A) < 1, then the series
∞∑
n=0
An is absolutely convergent, I − A is invertible in

B(E), and

∞∑

n=0

An = (I − A)−1.

Also, r((I − A)−1) ≤ 1
1−r(A) .

If A,B ∈ B(E) and AB = BA, then r(AB) ≤ r(A)r(B).
Furthermore, if ‖A‖ < 1, then I − A is invertible, and

‖(I − A)−1‖ ≤ 1

1− ‖A‖ .

Results in this area can be divided in a several ways, but mostly we will
focus on generalizations of Perov’s result on generalized metric spaces, cone
metric spaces, partially ordered metric spaces, and several applications, leaving
out-of-focus results for multivalued operators, common fixed point problem, and
Perov-type fixed point results on many other types of spaces.

2 Fixed Point Theorems of Perov Type on Generalized
Metric Space

As mentioned, Perov presented fixed point result on generalized metric space in
1962 in the paper On Cauchy problem for a system of ordinary differential equations
(in Russian). But he used different techniques and did not state his result in the way
that was later used and as we stated in Theorem 2.

Theorem 3 Let (X, d) be a complete generalized metric space, f : X �→ X a
mapping satisfying

d(f (x), f (y)) ≤ A(d(x, y)), x, y ∈ X,
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for some non-negative a-matrix A. Then a mapping f has a single fixed point x∗
in X that can be obtained by the method of successive approximations (xn), where
xn = f n(x), n ∈ N. Following estimation holds:

d(xn, x
∗) ≤ An(In − A)−1(d(x0, x1)), n ∈ N.

Proof It is easy to see that the inequality

d(xm, xm+k) ≤ Am(In − A)−1(d(x1, x2)), k ∈ N

is satisfied for any m ∈ N. Thus, the sequence (xn) is fundamental and therefore
convergent in X. Let x∗ = lim

n→∞ xn. Then

d(f (x∗), x∗) ≤ d(f (x∗), xm+1)+ d(xm+1, x
∗)

≤ A(d(x∗, xm))+ d(xm+1, x
∗),

so f (x∗) = x∗.
Assume that, in addition to x∗, there exists some x ∈ X, another fixed point of f .
In that case,

d(x∗, x) = d(f (x∗), f (x)) ≤ A(d(x∗, x)),

yields to contradiction and, as a consequence, uniqueness of a fixed point of
mapping f .

Matrix A ∈ Mm,m with non-negative entries is a-matrix if determinants of all
principle minors of matrix Im − A are positive.
Fixed point theorems presented in that paper by Perov were used in solving many
differential equations and systems of differential equations, par example for Cauchy
problem [61].

Precup [70] has shown that the main advantage of Perov theorem over Banach
fixed point theorem and the most valuable impact of this result is application to
different fixed point problems with a much better estimation and faster convergence
of the iterative sequence. Some advantages of a vector-valued norm over the usual
scalar norms were pointed out. Throughout presented examples in [70], one can
show that, in general, the condition that A is a matrix convergent to zero is weaker
than the contraction conditions for operators given in terms of the scalar norms on
X of the following type:

‖x‖M := ‖x1‖ + ‖x2‖ ,
‖x‖C := max {‖x1‖ , ‖x2‖} or

‖x‖E :=
(‖x1‖2 + ‖x2‖2)1/2

.
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Also, in [66], the extension of Perov theorem is applied on solving Hammerstein
integral equation on R

n

u(x) =
∫

Ω

k(x, y)f (y, u(y))dy, x ∈ Ω,

in the case that kernel k has matrix-values, i.e.,

k : Ω2 �→ Mn,n.

The usual Hammerstein integral equation on R
n is a special case for k = λIn. As one

of the results, appropriate iterative method is presented along with abstract results.
This is just one chosen example among many showing impact of Perov theorem and
generalizations on area of differential equations. Hence, there are more than enough
reasons to apply Perov fixed point theorem before Banach’s in expectance of better
estimations and weaker requirements.
Chronologically, after Perov presented his results in the 1960s, it took almost 50
years for the mathematical community to take further mass interest in this problem,
and that happened in the setting of cone metric space.

Jurja ([50]) gives a Perov-type fixed point theorem in generalized ordered metric
spaces. In this setting, the map is assumed to be monotone and to satisfies a
Lipschitz-type condition with a matrix A. This condition is supposed to hold only
on elements that are comparable with respect to the partial order. It is also presumed
that f is continuous. It has been shown that under such conditions, a Perov-
type fixed point theorem still holds, meaning that a mapping has a fixed point on
generalized metric space.

Theorem 4 ([50]) Let X be a partially ordered set such that every pair x, y ∈ X
has a lower and an upper bound. Furthermore, let d be a metric on X such that
(X, d) is a generalized complete metric space

(
d(x, y) ∈ R

m+
)
. If the map f : X→

X is continuous, monotone (i.e., increasing or decreasing) such that

(1) f satisfies a Lipschitz-type condition with a matrix A ∈ Mm,m (R+)

d(f (x), f (y)) ≤ Ad(x, y), x ≥ y; (3)

(2) An→ Om, n→∞;
(3) ∃x0 ∈ X such that x0 ≤ f (x0) or x0 ≥ f (x0),

then,

(i) F ix(f ) = {x∗};
(ii) the sequence of successive approximations xn = f n(x) is convergent and

limn→∞ f n(x) = x∗, for any x ∈ X.
Proof Due to statement of the theorem, there exists some x0 ∈ X such that x0 ≤
f (x0) or f (x0) ≤ x0 and then, based on monotonicity of f , f n(x0) ≤ f n+1(x0) or
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f n+1(x0) ≤ f n(x0), for any n ∈ N. Therefore, the inequality (3) holds:

d(f n(x0), f
n+1(x0)) ≤ A(d(f n−1(x0), f

n(x0))), n ∈ N.

We will prove, by the principle of mathematical induction, that

d(f n(x0), f
n+1(x0)) ≤ An(d(x0, f (x0))), n ∈ N. (4)

Since the base case obviously holds, let us assume that (4) holds for n− 1. Then

d(f n(x0), f
n+1(x0)) ≤ A(d(f n−1(x0), f

n(x0)))

≤ A(An−1(d(f (x0), x0)))

= An(d(x0, f (x0))).

Hence, (4) holds for any n ∈ N. Furthermore, we will prove that the sequence
(f n(x0)) is a Cauchy sequence and so convergent in X. Let n,m ∈ N and n ≤ m.

d(f n(x0), f
m(x0)) ≤

m−1∑

i=n
d(f i(x), f i+1(x))

≤
m−1∑

i=n
Ai(d(x0, f (x0)))

≤
∞∑

i=n
Ai(d(x0, f (x0)))

= An(I − A)−1(d(x0, f (x0))).

As An → Om, there exists x∗ ∈ X, a limit of (f n(x0)). Since the mapping f is
continuous, x∗ is a fixed point of f . If we assume that x ∈ Fix(f ) and then let y
be an upper bound and z a lower bound of {x∗, x}, then

d(f n(a), x∗) = d(f n(a), f n(x∗)) ≤ An(d(a, x∗)), n ∈ N, a ∈ {y, z}.

Taking into the account that An → Om, we have lim
n→∞ f

n(y) = lim
n→∞ f

n(z) = x∗
and f n(z) ≤ x = f n(x) ≤ f n(y), n ∈ N, so x = x∗. Hence, f has a unique fixed
point in X.

Remark 1 Condition (3) is weaker than the condition (1) in Perov original fixed
point theorem, where it is required that (1) is satisfied for all x, y ∈ X.
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Perov-Maia theorem can also be stated for generalized ordered metric spaces ([59,
62]). We will not present proof of this and all other theorems that use the same proof
techniques as previously stated results.

Theorem 5 ([50]) (Perov-Maia) Let X be a nonempty set, partially ordered, such
that every pair x, y ∈ X has a lower and an upper bound. Let d and ρ be two
metrics on X and f : X→ X a mapping. We suppose that

(1) d(x, y) ≤ ρ(x, y), x ≥ y;
(2) (X, d) is a generalized ordered complete metric space;
(3) f : (X, d)→ (X, d) is a continuous mapping;
(4) f is a monotone mapping;
(5) there exists a matrix A ∈ Mm×m (R+) convergent to zero, such that

ρ(f (x), f (y)) ≤ Aρ(x, y), x ≥ y;

(6) ∃x0 ∈ X such that x0 ≤ f (x0) or x0 ≥ f (x0).

Then, Fix(f ) = {x∗}.
Filip and Petruşel [35] considered application of local fixed point theorem for

a class of generalized single-valued contractions stated and proved in [34]. Their
main goal was to solve semilinear inclusion systems that model evolution of
macrosystems under uncertainty or lack of precision, from control theory, biology,
economics, artificial intelligence, etc.
Since the next result has local character, we will define term of closed ball in
generalized metric space as usual. Let (X, d) be a generalized metric space, x0 ∈ X,
and r = (r1, r2, . . . , rm) > 0m; then

B̃ (x0, r) = {x ∈ X | d(x, x0) ≤ r}.

Also, Rm+ denotes a set of all positive m-tuples, i.e.,

R
m+ = {r = (r1, r2, . . . , rm) ∈ R

m | ri > 0, i = 1,m}.

Theorem 6 ([34]) Let (X, d) be a complete generalized metric space, x0 ∈ X,
r = (ri)

m
i=1 ∈ R

m+, and f : B̃ (x0, r) → X having the property that there exist
A,B ∈ Mm,m (R+) such that

d(f (x), f (y)) ≤ Ad(x, y)+ Bd(y, f (x)) (5)

for all x, y ∈ B̃ (x0, r) .We suppose that

(1) A is a matrix that converges to zero;
(2) if u ∈ R

m+ is such that (I − A)−1u ≤ (I − A)−1r, then u ≤ r;
(3) (I − A)−1d (x0, f (x0)) ≤ r .
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Then Fix (f ) 	= ∅.
In addition, if the matrix A+ B converges to zero, then Fix(f ) = {x∗}.
Remark 2 By similitude to [18], a mapping f : Y ⊆ X → X satisfying the
condition

d(f (x), f (y)) ≤ Ad(x, y)+ Bd(y, f (x)), x, y ∈ Y, (6)

for some matrices A,B ∈ Mm,m (R+) where A is a matrix that converges toward
zero, could be called an almost contraction of Perov type.

We have also a global version of Theorem 6 expressed by the following result.

Corollary 1 Let (X, d) be a complete generalized metric space. Let f : X → X

be a mapping having the property that there exist A,B ∈ Mm,m (R+) such that

d(f (x), f (y)) ≤ Ad(x, y)+ Bd(y, f (x)), ∀x, y ∈ X.

If A is a matrix that converges toward zero, then

(i) Fix(f ) 	= ∅;
(ii) the sequence (xn)n∈N given by xn = f n (x0) converges toward a fixed point of

f, for all x0 ∈ X;
(iii) one has the estimation

d
(
xn, x

∗) ≤ An(I − A)−1d (x0, x1)

where x∗ ∈ Fix(f ).
In addition, if the matrix A+ B converges to zero, then Fix(f ) = {x∗}.

Remark 3 Any matrix A =
(
a 0
0 c

)
, where a, c ∈ R+ and max{a, c} < 1, satisfies

the assumptions (1)-(2) in Theorem 6.

Theorem 7 Let (X, | · |) be a Banach space, and let T1, T2 : X × X → X be two
operators. Suppose that there exist aij , bij ∈ R+, i, j ∈ {1, 2} such that, for each
x = (x1, x2) , y = (y1, y2) ∈ X× X, one has

(1) |T1 (x1, x2)− T1 (y1, y2)| ≤ a11 |x1 − y1| + a12 |x2 − y2|
+ b11 |x1 − T1 (y1, y2)| + b12 |x2 − T2 (y1, y2)|

(2) |T2 (x1, x2)− T2 (y1, y2)| ≤ a21 |x1 − y1| + a22 |x2 − y2|
+ b21 |x1 − T1 (y1, y2)| + b22 |x2 − T2 (y1, y2)| .

In addition, assume that the matrix A =
(
a11a12

a21a22

)
converges to O2. Then, the

system

x1 = T1 (x1, x2) , x2 = T2 (x1, x2)
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has at least one solution x∗ = (x∗1 , x∗2 ) ∈ X × X. Moreover, if, in addition, the
matrix A+ B converges to zero, then the above solution is unique.

In correlation to Theorem 7, we will discuss results from [64] where authors
considered a system of operatorial equations

{
x = T1(x, y)

y = T2(x, y)

where T1, T2 : X ×X→ X are two given operators and X is a nonempty set.
By definition, a solution (x, y) ∈ X × X of the above system is called a coupled
fixed point for the operators T1 and T2. Notice that if S : X×X→ X is an operator
and we define

T1(x, y) := S(x, y) and T2(x, y) := S(y, x),

then we get the classical concept of a coupled fixed point for the operator S
introduced by Opoitsev and then studied in some papers by Lakshmikantham and
al. Coupled fixed point for operatorial inclusion is defined in a similar way, namely,
by using the symbol ∈ instead of =. The concept of a coupled fixed point for a
multivalued operator S is accordingly defined [83].

We present another result in the case of a generalized metric space but endowed
with two metrics.

Theorem 8 Let X be a nonempty set, and let d, ρ be two generalized metrics on X.
Let f : X → X be an operator. We assume that

(i) there exists C ∈ Mm,m (R+) such that d(f (x), f (y)) ≤ Cρ(x, y);
(ii) (X, d) is a complete generalized metric space;
(iii) f : (X, d)→ (X, d) is continuous;
(iv) there exists A,B ∈ Mm,m (R+) such that for all x, y ∈ X, one has

ρ(f (x), f (y)) ≤ Aρ(x, y)+ Bρ(y, f (x)).

If the matrix A converges toward zero, then Fix(f ) 	= ∅.
In addition, if the matrix A+B converges to zero, then fixed of point of f is unique.

A. Petruşel, G. Petruşel, and C. Urs presented an extension of Perov’s theorem
along with some theorems on multivalued operators that extend results from [15].

Theorem 9 Let (X, d) be a generalized complete metric space, and let f : X→ X

be an almost contraction with matrices A,B, and C, i.e., the matrix A + C ∈
Mm,m (R+) converges to zero, B ∈ Mm,m (R+), and

d(f (x), f (y)) ≤ Ad(x, y)+ Bd(y, f (x))+ Cd(x, f (x)), for all x, y ∈ X.

Then, the following conclusions hold.
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(i) f has at least one fixed point inX, and, for any x0 ∈ X, the sequence (f n(x0))

of successive approximations starting from x0 converges to x∗ (x0) ∈ Fix(f )
as n→∞;

(ii) For arbitrary x0 ∈ X, we have

d
(
xn, x

∗ (x0)
) ≤ An(I − A)−1d (x0, f (x0)) , n ∈ N,

and

d
(
x0, x

∗ (x0)
) ≤ (I − A)−1d (x0, f (x0)) ;

(iii) If, additionally, the matrix A+ B converges to zero, then f has a unique fixed
point in X.

Remark 4 Theorem 9 above extends Theorem 6 where the case of almost contrac-
tions with matric C = Om is treated.

Two important abstract concepts are given now.

Definition 8 ([77, 78]) If (X, d) is a generalized metric space, then a mapping f :
X → X is called a weakly Picard operator if and only if the sequence (f n(x)) of
successive approximations of f converges for all x ∈ X and the limit (which may
depend on x) is a fixed point of f .
If f is weakly Picard operator, then we define the operator f∞ : X→ X by

f∞(x) = lim
n→∞ f

n(x), x ∈ X.

Notice that, in this case, f∞(X) = Fix(f ).Moreover, f∞ is a set retraction of
X to Fix(f ).
If f is weakly Picard operator and Fix(f ) = {x∗} , then by definition f is a Picard
operator. In this case, f∞ is the constant operator, i.e., f∞(x) = x∗ for all x ∈ X.

Definition 9 ([78]) Let (X, d) be a generalized metric space, and let f : X → X

be an operator. Then, f is said to be a ψ -weakly Picard operator if and only if f is
a weakly Picard operator and ψ : Rm+ → R

m+ is an increasing operator, continuous
in Om with ψ(Om) = Om such that

d
(
x, f∞(x)

) ≤ ψ(d(x, f (x)), for all x ∈ X.

Moreover, a ψ -weakly Picard operator f : X → X with a unique fixed point
is said to be a ψ -Picard operator. In particular, if ψ : Rm+ → R

m+ is given by
ψ(t) = M · t (with M ∈ Mm,m (R+)

)
, then we say that f is M-weakly Picard

operator (respectively, aM-Picard operator).

Stability of functional equations [44, 72, 82] is another interesting topic in corre-
lation with fixed point theory and could be implemented and deduced from some



Perov-Type Contractions 181

of previous theorems. We can prove the following abstract result (see also [78])
concerning the Ulam-Hyers stability of the fixed point equation (7).

Definition 10 Let (X, d) be a generalized metric space, and let f : X → X be an
operator. Then, the fixed point equation

x = f (x) (7)

is said to be generalized Ulam-Hyers stable if there exists an increasing function
ψ : Rm+ → R

m+, continuous in Om with ψ(Om) = Om such that for any ε =
(ε1, . . . , εm) with εi > 0 for i ∈ {1, . . . , m} and any ε-solution y∗ ∈ X of (7), i.e.,

d
(
y∗, f

(
y∗
)) ≤ ε,

there exists a solution x∗ of (7) such that

d
(
x∗, y∗

) ≤ ψ(ε).

In particular, if ψ(t) = C · t, t ∈ R
m+ (where C ∈ Mm,m (R+)

)
, then the fixed point

equation (7) is called Ulam-Hyers stable.

Direct consequence of Perov theorem is Ulam-Hyers stability of the equation
f (x) = x where f is a Perov contraction.

Theorem 10 Let (X, d) be a generalized metric space, and let f : X → X be an
operator with the property that there exists a matrix A ∈ Mm,m(R) such that A
converges to zero and

d(f (x), f (y)) ≤ Ad(x, y), for all x, y ∈ X.

Then the fixed point equation

x = f (x), x ∈ X

is Ulam-Hyers stable.

Proof From Perov’s theorem, the equation f (x) = x, where f is a Perov
contraction, has a unique fixed point x∗ ∈ X. If we assume that, for arbitrary
ε ∈ R

m+, y ∈ X is ε-solution of this equation, i.e., d(y, f (y)) ≤ ε, then let us
estimate d(x∗, y). First, the inequality

d(y, f n(y)) ≤
n−1∑

i=0

d(f i(y), f i+1(y))

≤
n−1∑

i=0

Ai (d(y, f (y))) ,
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indicating

d(x∗, y) ≤ d(x∗, f n(y))+
n−1∑

i=0

d(f i(y), f i+1(y))

≤ d(x∗, f n(y))+
n−1∑

i=0

Ai (d(y, f (y))) .

In accordance to Perov’s theorem, the iterative sequence (f n(y)) converges to the
fixed point x∗; thus, we may choose n ∈ N such that d(x∗, f n(y)) ≤ A(ε).
Therefore,

d(x∗, y) ≤ A(ε)+
n−1∑

i=0

Ai (d(y, f (y)))

≤ A(ε)+
∞∑

i=0

Ai (ε))

= (A+ (I − A)−1)(ε).

Denote ψ = A + (I − A)−1; then it is increasing and continuous at zero, and
ψ(Om) = Om. Consequently, f (x) = x is a generalized Ulam-Hyers-stable
equation.

We can also talk about stability of fixed point equation f (x) = x where f is a
weakly Picard operator.

Theorem 11 Let (X, d) be a generalized metric space, and let f : X → X be a
ψ-weakly Picard operator. Then, the fixed point equation (7) is generalized Ulam-
Hyers stable.

In [83] are proved several results on existence, uniqueness, and Ulam-Hyers
stability results for the coupled fixed point of a pair of contractive-type operators
on complete generalized metric spaces observing Perov-type almost contractions
and similar results.

Definition 11 Let (X, d) be a metric space, and let T1, T2 : X × X → X be two
operators. Then the operatorial equation system

{
x = T1(x, y)

y = T2(x, y)
(8)

is said to be Ulam-Hyers stable if there exist c1, c2, c3, c4 > 0 such that for each
ε1, ε2 > 0 and each solution-pair (u∗, v∗) ∈ X ×X of the inequations
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d
(
u∗, T1

(
u∗, v∗

)) ≤ ε1

d
(
v∗, T2

(
u∗, v∗

)) ≤ ε2

there exists a solution (x∗, y∗) ∈ X ×X of (8) such that

d
(
u∗, x∗

) ≤ c1ε1 + c2ε2

d
(
v∗, y∗

) ≤ c3ε1 + c4ε2

We recall the following existence, uniqueness, data dependence, and Ulam-Hyers
stability theorem for the coupled fixed point of a pair of single-valued operators that
more extensively deals with Ulam-Hyers stability of coupled fixed point problem
for Perov contraction.

Theorem 12 ([84]) Let (X, d) be a complete metric space, and let operators
T1, T2 : X ×X→ X be such that

d (T1(x, y), T1(u, v)) ≤ k1d(x, u)+ k2d(y, v)

d (T2(x, y), T2(u, v)) ≤ k3d(x, u)+ k4d(y, v)

for all (x, y), (u, v) ∈ X × X. We suppose that A =
(
k1 k2

k3 k4

)
converges to zero.

Then

(i) there exists a unique element (x∗, y∗) ∈ X ×X such that

{
x∗ = T1

(
x∗, y∗

)

y∗ = T2
(
x∗, y∗

)

(ii) the sequence
(
T n1 (x, y), T

n
2 (x, y)

)
converges to (x∗, y∗) as n→∞, where

T n+1
1 (x, y) = T n1 (T1(x, y), T2(x, y))

T n+1
2 (x, y) = T n2 (T1(x, y), T2(x, y))

for all n ∈ N
∗

(iii) we have the following estimation:

(
d
(
T n1 (x0, y0) , x

∗)

d
(
T n2 (x0, y0) , y

∗)
)
≤ An(I − A)−1

(
d (x0, T1 (x0, y0))

d (y0, T2 (x0, y0))

)

(iv) let F1, F2 : X×X→ X be two operators such that there exist η1, η2 > 0 with

d (T1(x, y), F1(x, y)) ≤ η1

d (T2(x, y), F2(x, y)) ≤ η2
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for all (x, y) ∈ X ×X. If (a∗, b∗) ∈ X ×X is such that

{
a∗ = F1

(
a∗, b∗

)

b∗ = F2
(
a∗, b∗

)

then

(
d (a∗, x∗)
d (b∗, y∗)

)
≤ (I − A)−1η

where η :=
(
η1

η2

)

(v) let F1, F2 : X×X→ X be two operators such that there exist η1, η2 > 0 with

d (T1(x, y), F1(x, y)) ≤ η1

d (T2(x, y), F2(x, y)) ≤ η2

for all (x, y) ∈ X × X, and considering the sequence
(
Fn1 (x, y), F

n
2 (x, y)

)

where

Fn+1
1 (x, y) = Fn1 (F1(x, y), F2(x, y))

F n+1
2 (x, y) = Fn2 (F1(x, y), F2(x, y))

for all n ∈ N
∗ and η =

(
η1

η2

)
, then

(
d
(
Fn1 (x0, y0) , x

∗)

d
(
Fn2 (x0, y0) , y

∗)
)
≤ (I − A)−1η + An(I − A)−1

(
d (x0, T1 (x0, y0))

d (y0, T2 (x0, y0))

)

(vi) the operatorial equation system

x = T1(x, y)

y = T2(x, y)

is Ulam-Hyers stable.

We will return to Ulam-Hyers stability issue once again when talking about
generalized Ulam-Hyers stability on cone metric spaces.

By considering the recent technique of Jleli and Samet [48], Altun et al. [8]
present a new generalization of the Perov fixed point theorem. It is known in the
literature as a θ -contraction, and several results are published on this topic for metric
and b-metric spaces.
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LetΘ : Rm+0 → R
m
+1 be a function, where Rm+j is the set ofm×1 real matrices with

every element being greater than j .
For the sake of completeness, we will consider the following conditions:

(Θ1) Θ is nondecreasing in each variable, i.e., for all α = (αi)
m
i=1 and for β =

(βi)
m
i=1 ∈ R

m
+0 such that α ≤ β, then Θ(α) ≤ Θ(β).

(Θ2) For each sequence (αn) =
(
α
(1)
n , α

(2)
n , . . . , α

(m)
n

)
of Rm+0

lim
n→∞α

(i)
n = 0+if and only if lim

n→∞β
(i)
n = 1

for each i ∈ {1, 2, . . . , m}, where

Θ
((
α(1)n , α

(2)
n , . . . , α

(m)
n

))
=

(
β(1)n , β

(2)
n , . . . , β

(m)
n

)
.

(Θ3) There exist r ∈ (0, 1) and l ∈ (0,∞] such that lim
αi→0+

βi−1
αri

= l for each

i ∈ {1, 2, . . . , m}, where

Θ ((α1, α2, . . . , αm)) = (β1, β2, . . . , βm) .

We denote by Ξm the set of all functions Θ satisfying (Θ1)− (Θ3).

Let us define notation Λ[k] :=
(
Λ
ki
i

)m
i=1

for Λ = (Λi)mi=1 ∈ R
m+ and k = (ki)mi=1 ∈

R
m+. By considering the class Ξm, we introduce the concept of Perov-type Θ-

contraction as follows:

Definition 12 Let (X, d) be a generalized metric space and T : X→ X a mapping.
If there exist Θ ∈ Ξm and k = (ki)mi=1 ∈ R

m+with ki < 1 for all i ∈ {1, 2, . . . , m}
such that

Θ(d(T x, T y)) ≤ [Θ(d(x, y))][k]

for all x, y ∈ X with d(T x, T y) > 0m, then a mapping T is called a Perov-type
Θ-contraction.

For this class of mappings, we can prove existence and uniqueness theorem.

Theorem 13 ([9]) Let (X, d) be a complete generalized metric space and T : X→
X be a Perov-type Θ-contraction; then T has a unique fixed point.

Proof For some x0 ∈ X, define sequence a xn = T n(xn), n ∈ N, and assume that
xn 	= xn+1, n ∈ N0; otherwise, xn ∈ Fix(T ).
For the convenience, introduce notations d(xn, xn+1) = (a(1)n , a(2)n , . . . , a(m)n ) and
Θ(d(xn, xn+1)) = (b(1)n , b(2)n , . . . , b(m)n ), n ∈ N; then

(b(1)n , b
(2)
n , . . . , b

(m)
n ) = Θ(d(T (xn−1), T (xn)))

≤ [Θ(d(xn−1, xn))]
k

=
(
b
(1)
n−1, b

(2)
n−1, . . . , b

(m)
n−1

)[k]
,
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that yields to the conclusion

b(i)n ≤ (b(i)n−1)
ki ≤ . . . ≤ (b(i)0 )

ki
n

, i = 1,m, n ∈ N. (9)

This means lim
n→∞ b

(i)
n = 1 and lim

n→∞ a
(i)
n = 0+, i = 1,m.

Taking into the account (Θ2), there exists some r ∈ (0, 1) and l ∈ (0,∞] such that

lim
n→∞

b
(i)
n − 1

(a
(i)
n )

r
= l.

If l <∞, then there exists some n0 ∈ N that inequality

∣∣∣∣∣
b
(i)
n − 1

(a
(i)
n )

r
− l

∣∣∣∣∣ ≤
l

2

for any n ≥ n0.

Furthermore, b
(i)
n −1

(a
(i)
n )

r
≥ l

2 and, if L = l
2

L(a(i)n )
r ≤ b(i)n − 1. (10)

If l = ∞, for L from the previous case, there exists n0 ∈ N

∣∣∣∣∣
b
(i)
n − 1

(a
(i)
n )

r
− 2L

∣∣∣∣∣ ≤ L, n ≥ n0,

and (10) holds. Considering (9) and multiplying Eq. (10) with n,

Ln(a(i)n )
r ≤ n((b(i)n )k

n
i − 1),

we get lim
n→∞ n(a

(i)
n )

r = 0. For i ∈ {1, . . . , n}, there exists n(i) ∈ N such that

n(a
(i)
n )

r ≤ 1 for all n ≥ n(i). If n0 = max{n(i) | i = 1,m}, then

a(i)n ≤ 1

n1/r
, i = 1,m, n ≥ n0.

For p, q ≥ n0, the following inequalities hold:

d(xp, xq) ≤
q−1∑

j=p
d(xj , xj+1)
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=
⎛

⎝
q−1∑

j=p
a
(1)
j , . . . ,

q−1∑

j=p
a
(m)
j

⎞

⎠

≤
⎛

⎝
∞∑

j=p
a
(1)
j , . . . ,

∞∑

j=p
a
(m)
j

⎞

⎠

≤
⎛

⎝
∞∑

j=p

1

j1/r , . . . ,

∞∑

j=p

1

j1/r

⎞

⎠ .

Convergence of the series
∑∞
j=1

1
j1/r gives us a conclusion that (xn) is a Cauchy

sequence, thus convergent, and observe the limit of (xn), x∗ ∈ X . Function Θ is
nondecreasing in each variable and

Θ(d(T xn, T x
∗)) ≤ [Θ(d(xn, x∗))]k ≤ Θ(d(xn, x∗)).

Accordingly, x∗ is a fixed point of T , and if Ty = y, then Θ(d(y, x∗)) =
Θ(d(T y, T x∗)) ≤ [Θ(d(y, x∗))]k ≤ Θ(d(y, x∗)), so fixed point of T is unique.

Remark 5 If Θ : Rm+0 → R
m
+1 is defined with

Θ ((α1, α2, . . . , αm)) =
(
e
√
α1 , e

√
α2 , . . . , e

√
αm
)
, (α1, α2, . . . , αm) ∈ R

m
+0

in Theorem 13, we obtain Theorem 2 with

A =

⎛

⎜⎜⎜⎝

k2
1 0 . . . 0
0 k2

2 . . . 0
...
...
. . .

...

0 0 . . . k2
m

⎞

⎟⎟⎟⎠

m×m

.

Here, since max
{
ki | i = 1,m}} < 1, the matrix A is convergent to zero.

It is natural to apply Theorem 13 on solving semilinear operator system. It will also
be done for some other types of generalized Perov contractions, so it is left to the
reader to compare these results.
Let (E, ‖ · ‖) be a Banach space and T1, T2 : E2 → E be two nonlinear operators.
In this section, we will give an existence result for a semilinear operator system of
the form (8).

Again, we discuss about coupled fixed point problem. Since initial or boundary
value problems for nonlinear differential systems can be written in the operator form
of Eq. (8), such systems appear very often in different fields of mathematics and
science overall. We can see that various fixed point theorems such as Schauder,
Leray-Schauder, Krasnoselskii, and Perov fixed point theorems were applied in
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proving the existence of solutions of such systems in [67]. Let X = E2, and
define d : X × X → R

2, for u = (x1, y1) , v = (x2, y2) ∈ X × X by
d(u, v) = (‖x1 − x2‖ , ‖y1 − y2‖) . Then it can be seen that (X, d) is a complete
generalized metric space. If we define a mapping S : X→ X by Su = (T1u, T2u),

then Eq. (8) can be written as a fixed point problem

Su = u (11)

in the space X. Therefore, we will use Theorem 13 to investigate the sufficient
conditions that guarantee the existence of a solution of the fixed point problem (11).

Theorem 14 Let (E, ‖·‖) be a Banach space andA,B : E2 → E be two nonlinear
operators. Assume that there exist a function Θ ∈ Ξ2 and a constant γ ∈ (0, 1)
such that

Θ(‖Au− Av‖, ‖Bu− Bv‖) ≤ [Θ (‖x1 − x2‖ , ‖y1 − y2‖)][k] (12)

where k = (γ, γ ), for all u = (x1, y1) andv = (x2, y2) ∈ E2 with Au 	= Av. Then
Eq. (8) has a unique solution in E2.

The proof goes similarly as the proof of Theorem 13 since this could be observed as
a direct consequence.

Remark 6 Note that, if there exists a constant γ < 1 such that

max

{ ‖A(x1,y1)−A(x2,y2)‖‖x1−x2‖ ,
‖B(x1,y1)−B(x2,y2)‖‖y1−y2‖ e{‖B(x1,y1)−B(x2,y2)‖−‖y1−y2‖}

}
≤ γ

for all u = (x1, y1) andv = (x2, y2) ∈ E2 with x1 	= x2 and y1 	= y2, then we get
Eq. (12) with the function

Θ (α1, α2) =
(
e
√
α1 , e

√
α2e

α2
)

and k = (√γ ,√γ ).
Altun and Olgun ([9]) followed the idea of Wardowski [85] and obtained a class

of F -Perov contractions.
Let F : Rm+ → R

m be a function. Consider the following conditions:

(F1) F is strictly increasing in each variable, i.e., for all α = (αi)
m
i=1 , β =

(βi)
m
i=1 ∈ R

m+, such that α < β, and then , F (α) < F(β)

(F2) For each sequence {αn} =
(
α
(1)
n , α

(2)
n , . . . , α

(m)
n

)
of R

m+, assume that

limn→∞ α(i)n = 0 if and only if limn→∞ β(i)n = −∞, i ∈ {1, 2, . . . m}, where

F
((
α(1)n , α

(2)
n , . . . , α

(m)
n

))
=

(
β(1)n , β

(2)
n , . . . , β

(m)
n

)
, n ∈ N.
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(F3) There exists k ∈ (0, 1), such that limαi→0+ α
k
i βi = 0 for each i ∈

{1, 2, . . . m}, where

F ((α1, α2, . . . , αm)) = (β1, β2, · · · , βm) .

We denote by Fm the set of all functions F satisfying (F1)− (F3).
Taking into the account a class Fm, Perov-type F -contraction is defined as

follows:

Definition 13 Let (X, d) be a generalized metric space and T : X→ X be a map.
If there exist F ∈ Fm and τ = (τi)mi=1 ∈ R

m+, such that

τ + F(d(T x, T y)) ≤ F(d(x, y))

for all x, y ∈ X with d(T x, T y) > 0m, then a mapping T is called a Perov-type
F -contraction.

We will state a fixed point theorem for F -contractions, and later on for Ψ -
contraction, but not the proof since the proof idea and techniques are very similar to
Θ-contraction case.

Theorem 15 Let (X, d) be a complete generalized metric space and T : X → X

be a Perov-type F -contraction. Then, T has a unique fixed point.

Theorem 15 will be used to find sufficient conditions that guarantee the existence of
a solution of the fixed point problem (8).

Theorem 16 Let (E, ‖ · ‖E) be a Banach space and A,B : E2 → E be two
nonlinear operators. Assume that there exist positive numbers τi ∈ R+ for i = 1, 2,
such that

‖A (x1, y1)− A (x2, y2)‖E
‖x1 − x2‖E e‖x1−x2‖E−‖A(x1,y1)−A(x2,y2)‖E ≤ e−τ1

and

‖B (x1, y1)− B (x2, y2)‖E ≤ e−τ2 ‖y1 − y2‖E
for all u = (x1, y1) andv = (x2, y2) ∈ E2 with x1 	= x2. Then, the system ( 15) has
a unique solution in E2.

Altun and Qasim [10], similar to the case of Θ-contraction and F -contraction of
Perov type, and by following [48], gave a new generalization of Perov fixed point
theorem combining Perov result with a ψ-contractions. This result is applied on
solving complex partial differential equation

∂zw = F(z,w, ∂zw).
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Let Ψ : Rm+0 → R
m
+1 be a function. For the sake of completeness, we will consider

the following conditions:

(Ψ1) Ψ is nondecreasing in each variable, that is, for all u = (ui) , v = (vi) ∈ R
m
+0

such that u � v, then Ψ (u) � Ψ (v) .

(Ψ2) For each sequence (uv) =
(
u
(1)
v , u

(2)
v , . . . , u

(m)
v

)
of Rm+0

lim
v→+∞u

(i)
v = 0+ if and only if lim

v→+∞ v
(i)
v = 1

for each i ∈ {1, 2, . . . m}, where

Ψ
((
u(1)v , u

(2)
v , . . . , u

(m)
v

))
=

(
v(1)v , v

(2)
v , . . . , v

(m)
v

)
.

(Ψ3) There exist r ∈ (0, 1) and l ∈ (0,+∞] such that limui→0+
vi−1
uri

= l for each

i ∈ {1, 2, . . . m}, where

Ψ ((u1, u2, . . . , um)) = (v1, v2, . . . , vm) .

Denote by Ψm the set of all functions Ψ satisfying (Ψ1)− (Ψ3).

Definition 14 Let X be a nonempty set, Λ : X ×X→ Mm,m(R) and F : X→ X

mappings. The function F is called Λ -admissible if for all x, y ∈ X

Λ(x, y)) I implies Λ(Fx, Fy)) I

where I is the m×m identity matrix.

Definition 15 Let (X, d) be a generalized metric space, and let Λ : X × X →
Mm,m(R) be a function. If for each sequence (tn) ⊆ X such that lim

n→∞ tn = t

and Λ(tn, tn+1) ) I for all n ∈ N implies that there exists n0 ∈ N such that
Λ(tn, t)) I for all n ≥ n0, then the space (X, d) is called Λ-regular.

Let (X, d) be a generalized metric space, F : X �→ X be a mapping, and Λ : X ×
X → Mm

m,m(R) be a function. We will include the following set in the contractive
condition:

Ω(Λ,F) = {(t, s) ⊆ X ×X : Λ(t, s)) I and d(F t, F s) > 0m}.

Perov-type Ψ -contraction, under some strict conditions, has a fixed point.

Theorem 17 ([8]) Let (X, d) be a complete generalized metric space, F : X→ X

be a mapping, Ψ ∈ Ψm, and Λ : X × X → Mm,m(R) be a function. Suppose that
there exists γ = (γi) ∈ R

m+ with γi < 1 for all i ∈ {1, 2, . . . , m} such that

Ψ (d(F t, F s)) ≤ [Ψ (d(t, s))][γ ]
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for all (t, s) ∈ Ω(Λ,F). Then F has a fixed point in X assuming that the following
conditions hold:

(1) There exists t0 ∈ X such that Λ(t0, F t0)) I ;
(2) F is Λ -admissible;
(3) F is continuous or (X, d) is Λ -regular.

Corollary 2 ([8]) Let(X, d) be a complete generalized metric space, F : X → X

be a mapping, and Ψ ∈ Ψm. Suppose that there exists γ = (γi) ∈ R
m+ with γi < 1

for all i ∈ {1, 2, . . . , m} such that

Ψ (d(F t, F s)) � [Ψ (d(t, s))][γ ]

for all (t, s) ∈ X ×X such that d(F t, F s) > 0m. Then F has a fixed point in X.

Corollary 3 Let (X, d) be a complete generalized metric space, F : X → X be a
mapping, and Λ : X ×X→ Mm,m(R) be a function. Suppose that

d(F t, F s) � Ad(t, s)

hold for all (t, s) ∈ Ω(Λ,F). Then F has a fixed point in X provided that the
following conditions hold:

(1) There exists t0 ∈ X such that Λ(t0, F t0)) I ;
(2) F is Λ -admissible;
(3) F is continuous, or (X, d) is Λ-regular.

3 Perov Fixed Point Theorem on Cone Metric Spaces

In the setting of a cone metric space (X, d), distance is a vector in a Banach spaceE,
and therefore contractive constant q from the well-known Banach contraction can
be replaced with some operator A : E �→ E. Accordingly, for some f : X �→ X,
the inequality

d(f (x), f (y)) % A(d(x, y)), x, y ∈ X,

defines a new kind of contractions which we will name Perov-type contractions.
It remains to determine necessary conditions for the operator A that will guarantee
existence of a fixed point of a Perov-type contractions. Uniqueness of the fixed point
will be also discussed. Taking into the account previously stated Perov theorem, we
may suppose that A should be positive operator on cone metric space and An should
tend to zero operator when n→∞.
Discussing linear operators on a Banach space E, it is important to emphasize that
the class of positive and the class of increasing operators coincide. Remark that,
without linearity, only inclusion remains.
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Lemma 2 ([26]) Let E be Banach space, P ⊆ E cone in E, and A : E �→ E a
linear operator. The following conditions are equivalent:

(i) A is increasing, i.e., x % y implies A(x) % A(y).

(ii) A is positive, i.e., A(P ) ⊆ P .
Proof If A is monotonically increasing and p ∈ P , then, by definitions, it follows
p , θ and A(p) , A(θ) = θ . Thus, A(p) ∈ P , and A(P ) ⊆ P .
To prove the other implication, let us assume that A(P ) ⊆ P and x, y ∈ E are such
that x % y. Now y − x ∈ P , and so A(y − x) ∈ P . Thus, A(x) % A(y).

The results of the following theorem apply to the cone metric spaces in the
case when cone is not necessary normal, and Banach space should not be finite
dimensional. This extends the results of Perov for matrices [61, 62] and as a
corollary generalizes Theorem 1 of Zima [86].

Theorem 18 ([26]) Let (X, d) be a complete solid cone metric space, d : X×X �→
E, and f : X �→ X, A ∈ B(E), with r(A) < 1 and A(P ) ⊆ P , such that

d(f (x), f (y)) % Ad(x, y), x, y ∈ X. (13)

Then:

(i) f has a unique fixed point x∗ ∈ X;
(ii) For any x0 ∈ X, the sequence xn = f (xn−1), n ∈ N converges to x∗ and

d(xn, x
∗) % An(I − A)−1(d(x0, x1)), n ∈ N;

(iii) Suppose that g : X �→ X satisfies the condition d(f (x), g(x)) % c for all
x ∈ X and some c ∈ P . Then if yn = gn(x0), n ∈ N,

d(yn, x
∗) % (I − A)−1(c)+ An(I − A)−1(d(x0, x1)), n ∈ N.

Proof (i) For n,m ∈ N,m > n, the inequality

θ % d(xn, xm) %
m−1∑

i=n
Ai(d(x0, x1)) %

∞∑

i=n
Ai(d(x0, x1)),

along with r(A) < 1, implies

‖
∞∑

i=n
Ai(d(x0, x1))‖ ≤

∞∑

i=n
‖Ai‖‖(d(x0, x1))‖ → 0, n→∞.
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Thus, an =
∞∑
i=n
Ai(d(x0, x1)) → θ, n → ∞, and, by Lemma 1, (xn) is a Cauchy

sequence. Since X is a complete cone metric space, there exists the limit x∗ ∈ X of
sequence (xn).

Let us prove that f (x∗) = x∗. Set p = d(x∗, f (x∗)), and suppose that c ) θ

and ε ) θ . Hence, there exists n0 ∈ N such that

d(x∗, xn)' c and d(x∗, xn)' ε for all n ≥ n0.

Therefore, p = d(x∗, f (x∗)) % d(x∗, xn+1) + d(xn+1, f (x
∗)) % d(x∗, xn+1) +

A(d(x∗, xn)) % c + A(ε) for n ≥ n0. Thus, p % c + A(ε) for each c ) 0, and so
p % A(ε). For ε = ε/n, n ∈ N, we get

θ % p % A
(
ε

n

)
= A(ε)

n
, n ∈ N.

Due to A(ε)
n
→ θ , n→∞, it follows p = θ . Consequently, x∗ = f (x∗).

If f (y) = y, for some y ∈ X, then d(x∗, y) % A(d(x∗, y)). Accordingly,
d(x∗, y) % An(d(x∗, y)) for each n ∈ N and r(A) < 1 imply

‖An(d(x∗, y)‖ ≤ ‖An‖‖(d(x∗, y)‖ → 0, n→∞,

so, d(x∗, y) = θ and x∗ = y.
(ii) Depending on (i), for any n ∈ N, we have

d(xn, x
∗) % A(d(xn−1, x

∗)) % · · · % An(d(x0, x
∗)).

On the other hand,

d(x0, x
∗) % d(x0, xn)+ d(xn, x∗)

%
n−1∑

i=0

d(xi, xi+1)+ An(d(x0, x1))+ An(d(x1, x
∗))

%
i=n∑

i=0

Ai(d(x0, x1))+ An(d(x1, x
∗)).

Since An(d(x1, x
∗))→ θ, n→∞, we get

d(x0, x
∗) ≤

∞∑

i=0

Ai(d(x0, x1)) = (I − A)−1(d(x0, x1)),

and d(xn, x∗) % An(I − A)−1(d(x0, x1)).



194 M. Cvetković et al.

(iii) For any n ∈ N, d(yn, x∗) % d(yn, xn)+ d(xn, x∗), along with (ii), implies

d(yn, x
∗) % d(yn, xn)+ An(I − A)−1(d(x0, x1)).

Hence,

d(yn, xn) % d(yn, f (yn−1))+ d(f (yn−1), xn)

% c + A(d(yn−1, xn−1))

% c + A
(
d(yn−1, f (yn−2))+ d(f (yn−2), xn−1)

)

% c + A(c)+ A2(d(yn−2, xn−2))

% . . . %
n−1∑

i=0

Ai(c)

% (I − A)−1(c).

Remark 19 Let us remark that the initial assumption A ∈ Mn,n(R+), in Perov
theorem, is unnecessary. This will be illustrated by the following example.

Example 5 Let

A =
⎡

⎣
ccc 1

2 − 1
4 0

1
4 − 1

2 0
0 0 1

2

⎤

⎦ ,

X =
⎧
⎨

⎩

⎡

⎣
cx1

1
x3

⎤

⎦ | x ∈ R

⎫
⎬

⎭ and f : X �→ X, f

⎛

⎝

⎡

⎣
cx1

1
x3

⎤

⎦

⎞

⎠ =
⎡

⎣
c x1+1

2
1
x3+2

3

⎤

⎦.

Set ‖x‖ = max{|x1|, |x2|, |x3|} for x =
⎡

⎣
cx1

x2

x3

⎤

⎦ , xi ∈ R, i = 1, 2, 3.

For arbitrary x ∈ X,

‖Ax‖ = max

{
|1
2
x1 − 1

4
x2|, |1

4
x1 − 1

2
x2|, |1

2
x3|

}

≤ max

{
1

2
‖x‖ + 1

4
‖x‖, 1

4
‖x‖ + 1

2
‖x‖, 1

2
‖x‖

}
= 3

4
‖x‖.

Therefore, ‖A‖ ≤ 3
4 . If x =

⎡

⎣
−1
1
1

⎤

⎦, ‖x‖ = 1, then ‖Ax‖ = 3
4 . Thus, ‖A‖ = 3

4 .
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Evidently, r(A) ≤ ‖A‖ = 3/4 and d(f (x), f (y)) % A(d(x, y)), x, y ∈ X.
Despite A(P ) � P , (1, 1, 1) is a unique fixed point of f in X.

Based on the previous comments, we obtain the next result, where we do not
suppose that A(P ) ⊆ P.
Theorem 20 ([26]) Let (X, d) be a complete cone metric space, d : X × X �→ E,
P a normal cone with normal constant K , A ∈ B(E), and K‖A‖ < 1. If the
condition (13) holds for a mapping f : X �→ X, then f has a unique fixed point
x∗ ∈ X, and the sequence xn = f (xn−1), n ∈ N converges to x∗ for any x0 ∈ X.
Proof Let x0 ∈ X be arbitrary, xn = f (xn−1), n ∈ N. Inequality

d(xn, xn+1) % A(d(xn−1, xn)), n ∈ N

implies

‖d(xn, xn+1)‖ ≤ K‖A(d(xn−1, xn))‖ ≤ K‖A‖‖d(xn−1, xn)‖
≤ K2‖A‖2‖d(xn−2, xn−1)‖ ≤ . . . ≤ Kn‖A‖n‖d(x0, x1)‖.

If n,m ∈ N, n < m, then

‖d(xn, xm)‖ ≤
m−1∑

i=n
‖d(xi, xi+1)‖ ≤

m−1∑

i=n
Ki‖A‖i‖d(x0, x1)‖.

Clearly, K‖A‖ < 1 implies that the series
∞∑
i=0
Ki‖A‖i is convergent, and it means

that ‖d(xn, xm)‖ → 0, as n,m → ∞. Consequently, (xn) is a Cauchy sequence,
and there is x∗ ∈ X such that lim

n→∞ xn = x
∗. Let us prove that f (x∗) = x∗. From

d(f (x∗), xn+1) % A(d(x∗, xn)), we get

‖d(f (x∗), xn+1)‖ ≤ K‖A(d(x∗, xn))‖ ≤ K‖A‖‖d(x∗, xn)‖.

Thus, lim
n→∞ xn = f (x

∗), and f (x∗) = x∗.
It remains to show that x∗ is a unique fixed point of f .
If f (y) = y, for some y ∈ X then d(x∗, y) = d(f (x∗), f (y)) % A(d(x∗, y)) it
follows d(x∗, y) ≤ KAd(x∗, y). Now, K‖A‖ < 1 implies x∗ = y.

If we take into consideration that we could ask for normal constantK to be equal
to exactly 1, then Theorem 20 could be understood as an equivalent of Banach fixed
point theorem [23].

Following the work of Berinde [16, 17], the existence of the fixed point for the
class of Perov-type weak contraction is investigated.
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Theorem 21 ([26]) Let (X, d) be a complete cone metric space, d : X × X �→ E,
f : X �→ X, A ∈ B(E), with r(A) < 1 and A(P ) ⊆ P , B ∈ L(E) with
B(P ) ⊆ P , such that

d(f (x), f (y)) % A(d(x, y))+ B(d(x, f (y))), x, y ∈ X.

Then

(i) f : X �→ X has a fixed point in X, and for any x0 ∈ X, the sequence of
successive approximations (f n(x0)) converges to a fixed point of f .

(ii) If additionally,

B ∈ B(E) and r(A+ B) < 1,

or, for some n0 ∈ N,

d(f (x), f (y)) % Ad(x, y)+ B(d(x, f n0(x))), x, y ∈ X,

then f has a unique fixed point.

The following two theorems generalize Theorem 1 of [11] and, consequently,
Theorem 2 of [60]. Recall results of Jurja and Filip and Petrusel, Theorems 4 and 6
are just a special case of Theorem 21.

Theorem 22 Let (X, d) be a cone metric space, P ⊆ E a cone, and T : X �→ X. If
there exists a point z ∈ X such thatO(z) is complete,A ∈ B(E) a positive operator
with r(A) < 1, and

d(T x, T y) % A(d(x, y)), holdsforany x, y = T (x) ∈ O(z), (14)

then (T nz) converges to some x∗ ∈ O(z) and

d(T nz, x∗) % An(I − A)−1(d(z, T z)), n ∈ N.

If (14) holds for any x, y ∈ O(z), then x∗ is a fixed point of T .

Theorem 22 as a corollary has Theorem 6.

Corollary 4 Let (X, d) be a complete cone metric space and T : X �→ X a
mapping satisfying

d(T x, T y) % A(d(T x, x)+ d(T y, y)), x, y ∈ X,

for some positive operator A ∈ B(E) with r(A) < 1
2 . Then T has a unique fixed

point x∗ ∈ X and (T nx) converges to x∗ for any x ∈ X.
Corollary 5 Let (X, d) be a complete cone metric space and T : X �→ X a
mapping satisfying
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d(T x, T y) % A(d(x, T mz)+ d(y, T mz)),

for some m ∈ N, A ∈ B(E) positive operator, r(A) < 1 and for all x, y, z ∈ X.
Then the iterative sequence (T nx) converges to a unique fixed point of T for any
x ∈ X.

There are many extensions of well-known Banach contractive condition, and
most of them could be altered to suit Perov contraction. It is also important to
mention that many of them are equivalent or imply each other, and that is why
we define Perov-type quasi-contraction as one of the widest classes of contractive
mappings.
Serbian mathematician Lj. Ćiric studied new kind of mappings such that, for some
q ∈ (0, 1) and any x, y ∈ X,

d(f (x), f (y)) ≤ q max
{
d(x, y), d(x, f (x)), d(y, f (y)), d(x, f (y)), d(y, f (x))

}
,

known as quasi-contraction or Ćirić quasi-contraction. In [32], he proved the
following statement:

Theorem 23 If (X, d) is a complete metric space and f : X �→ X a quasi-
contraction, then it possesses a unique fixed point, and the iterative sequence
converges to the fixed point of f .

Example that convinces us that the class of quasi-contraction is strict superset of
contractions is presented in [32].

Ilić and Rakočević [46] defined a quasi-contractive mapping on a normal cone
metric space and proved existence and uniqueness of a fixed point. Kadelburg,
Radenović, and Rakočević [51], without the normality requirement, proved related
results, but only in the case when contractive constant q ∈ (0, 1/2). Later, Haghi,
Rezapour, and Shahzad [75] and also Gajić and Rakočević [37] gave proof of
the same result without the additional normality assumption and for q ∈ (0, 1)
by applying two different proof techniques. For more informations about quasi-
contraction on cone metric spaces, see [38, 42, 57], etc.

Definition 16 Let (X, d) be a cone metric space. A mapping f : X �→ X such that
for some bounded linear operator A ∈ B(E), r(A) < 1 and for each x, y ∈ X,
there exists

u ∈ C(f, x, y) ≡
{
d(x, y), d(x, f (x)), d(y, f (y)), d(x, f (y)), d(y, f (x))

}
,

such that

d(f (x), f (y)) % A(u), (15)

is called a quasi-contraction of Perov type.
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If f : X �→ X, and n ∈ N, set

O(x; n) =
{
x, f (x), f 2(x), . . . , f n(x)

}
,

and

O(x;∞) =
{
x, f (x), f 2(x), . . .

}
.

Denote by δ(O(x, n)) = max{‖d(a, b)‖ : a, b ∈ O(x, n)}, n ∈ N, x ∈ X and
δ(O(x,∞)) = sup

n∈N
δ(O(x, n)).

Theorem 24 Let (X, d) be a complete solid cone metric space. If a mapping f :
X �→ X is a quasi-contraction and A(P ) ⊆ P , then f has a unique fixed point, and
for any x ∈ X, the iterative sequence (f n(x)) converges to the fixed point of f .

Proof The following two inequalities hold for arbitrary x ∈ X:

(i) d(f n(x), f (x)) % (I − A)−1A(d(f (x), x)) n ∈ N,

(ii) d(f n(x), x) % (I − A)−1(d(f (x), x)) n ∈ N.

Evidently, (i) is true for n = 1. Suppose that it is true for each m ≤ n.
Since

d(f n+1(x), f (x)) % A(u),

where

u ∈
{
d(f n(x), x), d(f n(x), f (x)), d(x, f (x)),

d(x, f n+1(x)), d(f n(x), f n+1(x))

}
,

we have to consider the following five different cases.

(1) If u = d(f n(x), x), then

d(f n+1(x), f (x)) % A(d(f n(x), x))
% A(d(f n(x), f (x)))+ A(d(f (x), x))
% A(I − A)−1A(d(f (x), x))+ A(d(f (x), x))
= (I − A)−1A(d(f (x), x)).

(2) If u = d(f n(x), f (x)), then A(P ) ⊆ P implies

d(f n+1(x), f (x)) % A(d(f n(x), f (x)))
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% A(I − A)−1A(d(f (x), x))

= [(A− I )+ I ](I − A)−1A(d(f (x), x))

= −A(d(f (x), x))+ (I − A)−1A(d(f (x), x))

% (I − A)−1A(d(f (x), x)).

(3) Clearly, for u = d(f (x), x), the inequality (i) holds.
(4) Suppose that u = d(x, f n+1(x)); then

d(x, f n+1(x)) ≤ d(x, f (x))+ d(f (x), f n+1(x))

and, since A(P ) ⊆ P ,

d(f n+1(x), f (x)) % A(d(x, f (x)))+ A(d(f (x), f n+1(x))).

Therefore,

d(f n+1(x), f (x)) % (I − A)−1A(d(x, f (x))).

(5) If u = d(f n(x), f n+1(x)), then

d(f n+1(x), f (x)) % A(d(f n(x), f n+1(x)),

and since f is a quasi-contraction, there exist some i, j ∈ {0, 1, . . . , n} such that

d(f n(x), f n+1(x)) % An−1+i (d(f (x), f j (x))).

However,

d(f n+1(x), f (x)) % An+i (d(f (x), f j (x)))
% An+i (I − A)−1A(d(f (x), x))

= (I − A)−1A(d(f (x), x))−
n+i∑

j=1

Aj(d(f (x), x))

% (I − A)−1A(d(f (x), x)),

unless j = n+ 1.
If j = n + 1, then d(f n+1(x), f (x)) % An+i (d(f (x), f n+1(x))) and more
d(f n+1(x), f (x)) = θ .
Indeed, since I − An+i is an invertible operator and An+i (P ) ⊆ P , we have

d(f n+1(x), f (x)) % (I − An+i )−1(θ) = θ,
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along with d(f n+1(x), f (x)) = θ .
By using the method of the mathematical induction, we have proved that the

inequality (i) holds for each n ∈ N.

The inequality (ii) proceeds from (i):

d(f n(x), x) % d(f n(x), f (x))+ d(f (x), x)
% (I − A)−1A(d(f (x), x))+ d(f (x), x)
= (I − A)−1(d(f (x), x)), n ∈ N.

Let us prove that (f n(x)) is a Cauchy sequence in X; thus, it is convergent.
Suppose that n,m ∈ N, m > n. Mapping f is a quasi-contraction of Perov type, so
there exist i, j ∈ N such that , 1 ≤ i ≤ n, 1 ≤ j ≤ m,

d(f n(x), f m(x)) % An−1(d(f i(x), f j (x))).

By (i), this implies

d(f n(x), f m(x)) % 2An(I − A)−1(d(f (x), x)).

Nevertheless, 2An(I − A)−1(d(f (x), x))→ θ, n→∞; by Lemma 1, (f n(x)) is
a Cauchy sequence in X. Hence, there exists x∗ ∈ X such that limn f n(x) = x∗.
Let us prove that x∗ is a fixed point of f .
Suppose that c ) θ and ε ) θ . Then there exists n0 ∈ N such that

d(x∗, f n(x))' c, d(f n(x), f m(x))' ε (16)

and d(x∗, f n(x))' ε for all n,m ≥ n0.

Also, for any n > n0,

d(x∗, f (x∗)) % d(x∗, f n(x))+ d(f n(x), f (x∗)) (17)

% c + d(f n(x), f (x∗)).

Yet, because f is a quasi-contraction, we have

d(f n(x), f (x∗)) % A(u), (18)

for some

u ∈
{
d(f n−1(x), x∗), d(f n−1(x), f n(x)), d(f n−1(x), f (x∗)),

d(x∗, f (x∗)), d(x∗, f n(x))
}
.
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If

u ∈
{
d(f n−1(x), x∗), d(f n−1(x), f n(x)), d(x∗, f n(x))

}
,

for infinitely many n > n0, then (16), (17), and (18) imply

d(x∗, f (x∗)) % c + A(ε). (19)

Because the inequality (19) is true for each c ) θ , we get

d(x∗, f (x∗)) % A(ε). (20)

If u = d(f n−1(x), f (x∗)), then

d(f n−1(x), f (x∗)) % d(f n−1(x), x∗)+ d(x∗, f (x∗)),

and A(P ) ⊆ P imply

A(u) % A(d(f n−1(x), x∗))+ A(d(x∗, f (x∗))).

Taking into the account (16), (17), and (18), we have

d(x∗, f (x∗)) % c + A(ε)+ A(d(x∗, f (x∗))),

and, how c ) θ is arbitrary,

(I − A)(d(x∗, f (x∗))) % A(ε). (21)

Since (I − A)−1 is increasing, (21) implies

d(x∗, f (x∗)) % (I − A)−1A(ε). (22)

Finally, in the case u = d(x∗, f (x∗)), (17) and (18) imply

d(x∗, f (x∗)) % c + A(d(x∗, f (x∗))),

that is,

(I − A)(d(x∗, f (x∗))) % c. (23)

Again, because (I − A)−1 is increasing, (23) implies

d(x∗, f (x∗)) % (I − A)−1(c). (24)
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Now, by (20), (22), and (24), for ε = ε/n and c = c/n, n ∈ N, it follows,
respectively,

θ % d(x∗, f (x∗)) % A
(
ε

n

)
= A(ε)

n
→ θ, n→∞,

θ % d(x∗, f (x∗)) % (I − A)−1A

(
ε

n

)
= (I − A)

−1A(ε)

n
→ θ, n→∞,

and

θ % d(x∗, f (x∗)) % (I − A)−1A

(
c

n

)
= (I − A)

−1A(c)

n
→ θ, n→∞, .

Hence, d(x∗, f (x∗) = θ , i.e., f (x∗) = x∗.
If y is a fixed point of f , then

d(x∗, y) = d(f (x∗), f (y)) % A(d(x∗, y)),

that is,

(I − A)(d(x∗, y)) % θ *⇒ d(x∗, y) % (I − A)−1(θ) = θ,

so x∗ = y.

Theorem 24 could be combined with P property presented in [5]. It is said that the
mapping f has the property P if F(f ) = F(f n) for each n ∈ N (if it has no
periodic points). From the proof of the previous theorem, we obtain as a corollary
the extension of the known results Theorem 3.2 of [51] and Corollary 3.4 of [37].

Corollary 6 Let (X, d) be a complete solid cone metric space. Let f : X �→ X be
a quasi-contraction of Perov type with A(P ) ⊆ P and ‖A‖ < 1

2 . Then f has the
property P.

Observe that the first part of Theorem 18 follows directly from Theorem 24.

Example 6 Let X = [0, 3] ∪ [4, 5] and E = C(1)[0, 1] with a non-normal cone P
as in Example 4. Let us define cone metric d : X ×X �→ E by

d(x, y) = |x − y| · exp, x, y ∈ X.

If f : X �→ X is defined by

f (x) =
{

0, if x ∈ [0, 3],
3, if x ∈ [4, 5],
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then for each x ∈ [4, 5], we have d(x, f (x)) ≤ 2 · exp, d(f (x), f 2(x)) = 3 · exp.
Thus, d(f (x), f 2(x)) > d(x, f (x)), and f does not obey the condition (13). Let
us show that f fulfills the condition (15).

It is enough to consider x ∈ [0, 3] and y ∈ [4, 5]. Now d(f (x), f (y)) = 3 exp
and d(y, f (x)) ≥ 4 · exp. Hence,

d(f (x), f (y)) = 3

4
· 4 · exp ≤ 3

4
max{x − f (y)|, |y − f (x)|} · exp .

Thus, a mapping f : X �→ X satisfies the condition (15), where operator A :
E �→ E is a bounded linear operator defined with A(f ) = (3/4)f , f ∈ E. Clearly,
‖A‖ = 3/4, and all the assumptions from Theorem 24 are satisfied. Accordingly, f
has a unique fixed point x = 0 ∈ X.

The question that raises looking at the presented theorems on cone metric spaces
is do only x and f (x) have influence on existence of a fixed point. Obvious answer
follows from the sequence of successive approximations that converges to a fixed
point in any initial point x ∈ X. Having that in mind, it is important to somehow
include more values from the orbit of f in the contractive condition. Thus, we
introduce the concept of (p, q)-quasi-contraction of Perov type known also as Fisher
contraction ([36]).

Fixed point in both Banach and Ćirić theorem, and many similar, is a limit of
the iterative sequence. Having that in mind along with Ćiric’s result, it induces a
different condition:

d(f p(x), f qy) ≤ q max

{
d(f rx, f sy), d(f rx, f r

′
x), d(f sy, f s

′
y) |

0 ≤ r, r ′ ≤ p and 0 ≤ s, s′ ≤ q
}
.

for some p, q ∈ N and any x, y ∈ X, determining a (p, q)-quasi-contraction. Fisher
([36]) proved that continuous (p, q)-quasi-contraction on a complete metric space
possesses a unique fixed point. If p = 1 or q = 1, continuity is not necessary. Ćirić
quasi-contraction is a special case for p = q = 1.
As in the case of generalized quasi-contraction, bounded linear operator in (p, q)-
contractive condition will replace a number.

Definition 17 Let (X, d) be a cone metric space. A mapping f : X �→ X such that
for some A ∈ B(E), r(A) < 1 and for some fixed positive integers p and q and
every x, y ∈ X, there exists

u ∈ Fp,qf (x, y) ≡
{
d(f r(x), f s(y)), d(f r(x), f r

′
(x)), d(f s(y), f s

′
(y)) |

0 ≤ r, r ′ ≤ p and 0 ≤ s, s′ ≤ q
}
,
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such that d(f p(x), f q(y)) % A(u), is called a (p, q)-quasi-contraction (Fisher’s
quasi-contraction, F quasi-contraction) of Perov type.

This theorem extends the results of Perov for matrices and also, as a corollary,
generalizes Theorem 1 of Zima ([86]) along with Theorem 24.

Theorem 25 Let (X, d) be a complete cone metric space and P a solid cone.
Suppose that the mapping f : X �→ X is a (p, q)−quasi-contraction of Perov
type, A(P ) ⊆ P , and f continuous. Then f has a unique fixed point in X, and for
any x ∈ X, the iterative sequence (f n(x)) converges to the fixed point.

Proof Without loss of generality, assume that p ≥ q. If x ∈ X be arbitrary and
ω(x) =∑

0≤i<p d(f i(x), f p(x)), we prove that

d(f n(x), f p(x)) % (I − A)−1A(ω(x)), n ≥ p. (25)

Obviously, (25) is true for n = p. Suppose that it holds form ≤ n0−1, and observe
m = n0 ≥ p + 1.
Because f is (p, q)- quasi-contraction, there exist some i, j ∈ N, in a way that

d(f n0(x), f p(x)) % A(d(f i(x), f jx)). (26)

(1) If i, j ≤ p, then

d(f n0(x), f p(x)) % A(d(f i(x), f p(x))+ d(f p(x), f j (x)))
% A(ω(x))
% (I − A)−1A(ω(x)).

Remark that we have used that i 	= j in this inference, but if i = j , (25) is
fulfilled.

(2) If p < i < n0, j ≤ p, then (25) and (26) imply

d(f n0(x), f p(x)) % A(d(f i(x), f px))+ A(d(f p(x), f j (x)))
% A(I − A)−1A(ω(x))+ A(ω(x))
= (I − A)−1A(ω(x)).

(3) For p < i < n0, p < j < n0, we have

d(f n0x, f p(x)) % Ak(d(f i0(x), f j0(x))),

where i0 < p or j0 < p and 1 < k.
Assume that at least i0 < p.

d(f n0(x), f p(x)) % Ak(d(f i0(x), f px))+ Ak(d(f p(x), f j0(x)))
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% Ak(ω(x))+ Ak(I − A)−1A(ω(x))

% (I − A)−1A(ω(x)),

since j0 ≤ j < n0, so the inequality (25) holds in this case.
(4) In the case i = n0, j ≤ p, the triangle inequality, A(P ) ⊆ P and (26) imply

d(f n0(x), f p(x)) % A(d(f n0(x), f p(x)))+ A(d(f p(x), f jx))
% A(d(f n0(x), f px))+ A(ω(x)).

Looking at previous case (3), (25) easily follows.
(5) Finally, consider i = n0 and p < j ≤ n0.

If j = n0, it follows d(f n0(x), f p(x)) % A(θ) and d(f n0(x), f p(x)) = θ .
Otherwise,

d(f n0(x), f p(x)) % A(d(f j (x), f n0(x))) (27)

and there exist i0 ≤ j0 ≤ n0, i0 < p, and some k0 > 1 such that

d(f j (x), f n0(x)) % Ak0(d(f i0(x), f j0(x))).

If j0 ≤ p, then (25) follows by the last inequality and (27). Notice that if
p < j0 < n0, then

d(f n0(x), f p(x)) % A1+k0(d(f i0(x), f j0(x)))

% A1+k0(d(f i0(x), f p(x)))+ A1+k0(d(f px, f j0(x)))

% A1+k0(ω(x))+ A1+k0(I − A)−1A(ω(x))

= A1+k0(I − A)−1(I − A+ A)(ω(x))
% (I − A)−1A(ω(x)). (28)

But if j0 = n0, then

d(f n0(x), f p(x)) % A1+k0(d(f i0(x), f px))+ A1+k0(d(f p(x), f n0(x))).

(29)
For some k1 ≥ 1 and i1 ≤ j1 ≤ n0, i1 < p, d(f p(x), f n0(x)) %
Ak1(d(f i1(x), f j1(x))), so by (29) we get

d(f n0(x), f p(x)) % A1+k0(d(f i0(x), f px))+ A1+k0+k1(d(f i1(x), f j1(x))).
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Obviously, if j1 < n0, as in (28), we have (25). Otherwise,

d(f n0(x), f p(x)) % A1+k0(d(f i0(x), f px))+ A1+k0+k1(d(f i1(x), f px))

+A1+k0+2k1(d(f i1(x), f n0(x))).

Thus, for arbitrary n ∈ N,

d(f n0(x), f p(x)) % A1+k0(d(f i0(x), f px))+
n−1∑

m=1

A1+k0+mk1(d(f i1(x), f px))

+A1+k0+nk1(d(f i1(x), f n0(x)))

%
n−1∑

m=0

A1+k0+mk1A(ω(x))+ A1+k0+nk1(d(f i1(x), f n0(x)))

% (I − A)−1A1+k0(ω(x))+ A1+k0+nk1(d(f i1(x), f n0(x)))

% (I − A)−1A(ω(x))+ A1+k0+nk1(d(f i1(x), f n0(x))).

However, A1+k0+nk1(d(f i1(x), f n0(x)))→ θ , n→∞. For each c ) θ , there
exists nc ∈ N such that A1+k0+nk1(d(f i1(x), f n0(x)))' c for n > nc, so

d(f n0(x), f p(x)) % (I − A)−1A(ω(x))+ c, c ) θ,

and d(f n0(x), f p(x)) % (I − A)−1A(ω(x)).
Consequently, (25) is true for any n ∈ N. The inequality

d(f nx, f j (x)) % d(f nx, f p(x))+ d(f p(x), f j (x))
% (I − A)−1A(ω(x))+ ω(x)
= (I − A)−1(ω(x)).

proceeds from(25). Mapping f is a (p, q)-quasi-contraction; thus, for any n >
m ≥ p, m = kp + r, 0 ≤ r < p, k ≥ 1,

d(f n(x), f m(x)) % Ak(d(f i(x), f j (x))) % Ak(I − A)−1(ω(x)),

where 0 ≤ i ≤ j ≤ n and i ≤ p.

Observe that Ak(I −A)−1(ω(x))→ θ , k→∞ (m→∞), so (f n(x)) is a Cauchy
sequence inX and z = lim

n→∞ f
n(x) ∈ X is a fixed point of f since f is a continuous

it follows that f (z) = z. The uniqueness of z follows from the definition of a (p, q)-
quasi-contraction.
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As in the case of Perov theorem and coupled fixed problem on a generalized
metric spaces, we can also discuss generalized Ulam-Hyers stability of the fixed
point problem on cone metric spaces.

In order to discuss application of Perov-type result, we will present generaliza-
tion of Ulam-Hyers stability for a class of cone metric spaces.

Definition 18 ([76]) Let (X, d) and (Y, ρ) be two cone metric spaces and f, g :
X �→ Y mappings. The coincidence equation f (x) = g(x) is generalized Ulam-
Hyers stable if there exists a linear increasing operator ψ : E �→ E such that for
any ε ) θ and each x fulfilling the inequality ρ(f (x), g(x)) % ε, there exists some
solution z of the coincidence equation such that d(x, z) % ψ(ε).
Particular case of the coincidence equation is fixed point problem for X = Y ,
choosing g(x) = x, x ∈ X.

Definition 19 Let (X, d) be a solid cone metric space, f : X �→ X, and ψ :
P → P a nondecreasing function such that ψ(θ) = θ . The equation f (x) = x is
generalized Ulam-Hyers stable with respect to ψ if for any ε ) θ and y such that
d(f (y), y) % ε, there exists some solution z of this equation such that

d(z, y) % ψ(ε).

Theorem 26 If (X, d) is a solid cone metric space and a mapping f : X �→ X

satisfies condition (13) for some increasing operatorA ∈ B(E)with spectral radius
less than 1, then the equation f (x) = x is Ulam-Hyers stable.
Proof Due to Theorem 18, f has a unique fixed point x∗ ∈ X. Accordingly,

d(x, x∗) ≤ d(x, f (x))+ d(f (x), f (x∗))
≤ d(x, f (x))+ A(d(x, x∗))
≤ 2I − A)−1(ε).

Taking ψ = (I − A)−1, since it is nondecreasing linear function, the equation is
Ulam-Hyers stable.

Concerning recent results in this area [12, 20, 21], there are obvious tendencies
to incorporate fixed point results and, in that way, obtain Ulam-Hyers stability of
functional, operator, differential, or integral equations of higher order or with several
variables. Many of those results are obtainable from Perov-type theorems included
in this thesis and without any extensive proof or complicated proof approach despite
what was presented in [20].

Theorem 27 Let S be a nonempty set, (X, d) be a complete metric space, k ∈ N,
fi : S �→ S, Li : S → R+, i = 1, k, and Λ : R+S �→ R+S given by
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(Λ(δ)) (t) =
k∑

i=1

Li(t)δ(fi(t)), t ∈ S.

If operator T : XS �→ XS satisfying the inequality

Δ(T(u),T(v))(t) ≤ Λ(Δ(u, v))(t), u, v ∈ XS, t ∈ S,

and functions g ∈ XS and ε ∈ R
S such that

Δ(T(g), g)(t) ≤ ε(t), t ∈ R
+,

and

∞∑

n=1

Λn(ε(t))σ (t) <∞, t ∈ S,

then for every t ∈ S, the limit lim
n→∞(T

n(g))(t) = f (t) exists, and the function

f ∈ XS defined in this way is a unique fixed point of T with

Δ(g, f )(t) ≤ σ(t), t ∈ S

Proof Observe that Δ : (XS)2 �→ rS+ defined with

Δ(u, v)(t) = d(u(t), v(t)), u, v ∈ XS, t ∈ S,

is just an example of a cone metric and operator Λ has properties of operator A of
Theorem 29 so this result can be obtained as a direct consequence of Theorem 27.

We will recall one more result on cone metric spaces, but the proof will be
omitted due to similarity of applied techniques. Abbas, Rakočević, and Iqbal [4]
defined cyclic operators of Perov type in the setting of cone metric spaces and gave
proof of existence of a fixed point for this class of operators.

Definition 20 Let (X, d) be a cone metric space, n be a positive integer, and {Xi |
i = 1, n} be a family of nonempty closed subsets of X. Let f : ∪ni=1Xi → ∪ni=1Xi

be a mapping. We say that family
{
Xi | i = 1, n

}
is a cyclic representation of X

with respect to f if X = ∪ni=1Xi and

f (X1) ⊂ X2,...,f (Xn−1) ⊂ Xn, f (Xn) ⊂ X1.

Theorem 28 Let (X, d) be a complete cone metric space over a solid cone C,p
be a positive integer,

{
Xi | i = 1, n

}
be a family of nonempty closed subsets of X,

and f : X → X. Assume that
{
Xi | i = 1, n

}
is a cyclic representation of X with
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respect to f. Suppose that there exists A ∈ B(E) with r(A) < 1 such that for each
x ∈ Xi and y ∈ Xi+1, i = 1, n− 1, we have

d(f x, fy) % A(d(x, y))
where Xn+1 := X1. Then f has a unique fired point x∗ ∈ ∩ni=1Xi and f

nx→x∗ for
each x ∈ ∪ni=1Xj .

4 Nonlinear Operatorial Contractions

Recall that Perov fixed point theorem on cone metric space requires for contractive
operator A to satisfy (13), to be bounded, linear and with spectral radius less than 1.
The goal is to weaken these requirements and still obtain existence and uniqueness
of a fixed point of mapping f . The focus will be on omitting a linearity condition.

Theorem 29 Let (X, d) be complete cone metric space with a solid cone P and f :
X �→ X a continuous mapping. If there exists an increasing operator A : E �→ E

such that lim
n→∞A

n(e) = θ , e ∈ E, and, for any x, y ∈ X,

d(f (x), f (y)) % A(d(x, y)), (30)

then a mapping f has a unique fixed point in X.

Proof Let x0 ∈ X and xn = f (xn−1), n ∈ N. Due to (30),

θ % d(xn, xn+1) % An(d(x0, xn0)), n ∈ N,

we have lim
n→∞ d(xn, xn+1) = θ .

For some c ) θ , let n0 ∈ N be such that An(c) % c
8 , n ≥ n0, and n1 ∈ N such that

d(xn, xn+1) ≺ c
8n0

for n ≥ n1n0. Observe a sequence yk = f kn0(x), k ∈ N. Then

d(yk, yk+1) % Akn0(d(x0, x1)), k ∈ N,

and lim
n→∞ d(yk, yk+1) = θ . Furthermore, there exists some k0 ∈ N such that

d(yk, yk+1) ≺ c
8 holds also for any index greater than k0 and choose such k ≥ n1.

Denote with S a closed ball K[yk, c4 ] = {x ∈ X | d(yk, x) % c
4 }. It means that

f n0(S) ⊆ S since, for any x ∈ S,

d(yk, f
n0(x)) % d(yk, yk+1)+ d(yk+1, f

n0(x))

% c

8
+ An0(d(yk, x))

≺ c

4
.
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Hence, yn ∈ S for any n ≥ k.
If m ≥ kn0, let m = qn0 + r for some q ≥ k and 0 ≤ r < n0; then the inequalities

d(yk, xm) % d(yk, yq)+ d(yq, xm)

% d(yk, yq)+
m−1∑

i=qn0

d(xi, xi+1)

% c

4
+

m−1∑

i=qn0

c

8n0

% 3c

8
,

lead to

d(xn, xm) % d(xn, yk)+ d(yk, xm) % 3c

4
≺ c, n,m ≥ kn0.

Thus, (xn) is a Cauchy sequence in X and therefore convergent in X with a limit
x∗ ∈ X. Since the mapping f is continuous,

x∗ = lim
n→∞ f

n+1(x0) = f ( lim
n→∞ f

n(x0)) = f (x∗).

If f (u) = u, then

d(x∗, u) = d(f n(x∗), f n(u)) % An(x∗, u),

along with lim
n→∞A

n(x∗, u) = θ gives u = x∗. Uniqueness of fixed point implies

that lim
n→∞ f

n(x)) = x∗ for any x ∈ X since the first part of the proof induces that

(f n(x)) converges to the point with fixed point property.

Remark 30 Comparing this theorem with Theorem 24, notice thatA is not assumed
to be linear. Continuity condition of f is implicitly requested in Perov theorem and
Theorem 24. Condition r(A) < 1 means lim

n→∞‖A
n‖ = 0 and lim

n→∞‖A
n(e)‖ = 0,

for any e ∈ E. Hence, this result generalizes Theorem 24 and Perov theorem.

Instead of requesting that lim
n→∞A

n(e) = θ , for any e ∈ E, it is enough to assume

that for all e ∈ P .

Theorem 31 Let (X, d) be complete cone metric space with a solid cone P and f :
X �→ X a continuous mapping. If there exists an increasing operator A : E �→ E

such that lim
n→∞A

n(e) = θ , e ∈ P , and (30) holds for any x, y ∈ X, then a mapping

f has a unique fixed point in X.
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It is also possible to ask for a restriction A �P : P �→ P to be an increasing
operator instead of A : E �→ E.

In the case that A ∈ B(E), it is equivalent for A to be increasing or positive.
Boundedness does not have impact on this conclusion, only linearity. If A is a
nonlinear operator, but increasing and satisfies (30), then for x = y, θ % A(θ)

and for x ∈ P , θ % A(θ) % A(x) ∈ P , so A is a positive operator. On the other
hand, positivity of A does not imply that A is increasing.

Example 7 Let E be a Banach space with a solid cone P and c ∈ int(P ). Define an
operator A : E �→ E with

A(x) =
{
c
2 , x = θ
θ, x ∈ E \ {θ} .

Operator A is positive, but it is not increasing. Also, An(x) = θ , x ∈ E, for any
n ≥ 2.

Comparing requirements r(A) < 1 and lim
n→∞A

n(e) = θ , e ∈ E, for a bounded

linear operator A, it is obvious that r(A) < 1 implies other condition, but reverse do
not hold. Moreover, the condition lim

n→∞A
n(e) = θ , e ∈ E, (or e ∈ P ) of Theorem 31

is less strict that corresponding condition of Theorem 24.

5 Conclusion

Presented results are just a few selected ones on this topic and only concentrated on
single-valued operator on generalized metric spaces and cone metric spaces. Since
this topic is in the focus of the fixed point theory research in the last decade, there
have been published very interesting articles with different techniques and angle
of approach. It is also worth mentioning that some results do have questionable
novelty, but, in several cases, have some interesting applicability. In the future, we
would expect to differentiate these kinds of results, to find new areas of application,
and to talk about unification. There are several open questions like correlation
between nonlinear operatorial contraction and Perov theorem on cone metric spaces,
explaining better estimations obtained in this way and deepening influence of Perov
type results in the area of differential and difference equations. Since this problem
was not considered from the numerical point of view, it would be also meaningful to
consider some iterative methods based on new types of contractions. Nevertheless,
this is still a very interesting topic for research with a possible wide impact to
different areas of mathematics and science overall.
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24. M. Cvetković, Operatorial contractions on solid cone metric spaces. J. Nonlinear Convex Anal.

17(7), 1399–1408 (2016)
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On a Logarithmic Equation by Primes

S. I. Dimitrov

Abstract Let [ · ] be the floor function. In this paper, we show that every sufficiently
large positive integer N can be represented in the form

N = [p1 logp1] + [p2 logp2] + [p3 logp3],

where p1, p2, andp3 are prime numbers. We also establish an asymptotic formula
for the number of such representations, when p1, p2, andp3 do not exceed given
sufficiently large positive number.
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1 Introduction and Main Result

A remarkable moment in analytic number theory is 1937, when Vinogradov [10]
proved the ternary Goldbach problem. He showed that every sufficiently large odd
integer N can be represented in the form

N = p1 + p2 + p3,

where p1, p2, andp3 are prime numbers.
The consequences of Vinogradov’s [11] ingenious method for estimating expo-

nential sums over primes continue to this day in analytic number theory.
A detailed proof of Vinogradov’s theorem, beginning with a historical perspec-

tive along with an overview of essential lemmas and theorems, can be found in the
monograph of Rassias [7].
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In 1995, Laporta and Tolev [6] investigated an analogue of the Goldbach-
Vinogradov theorem. They considered the diophantine equation

N = [pc1] + [pc2] + [pc3] ,

where p1, p2, andp3 are primes. For 1 < c < 17/16, they showed that for the sum

R(N) =
∑

N=[pc1]+[pc2]+[pc3]
logp1 logp2 logp3

the asymptotic formula

R(N) = �
3(1+ 1/c)

�(3/c)
N3/c−1 +O

(
N3/c−1 exp

(− (logN)1/3−ε
))

(1)

holds.
Subsequently, the result of Laporta and Tolev was sharpened by Kumchev and

Nedeva [5] to

1 < c <
12

11
,

by Zhai and Cao [12] to

1 < c <
258

235
,

and by Cai [2] to

1 < c <
137

119
.

Overcoming all difficulties, Zhang and Li [15] improved the result of Cai to

1 < c <
3113

2703

and this is the best result up to now.
On the other hand, recently, the author [3] showed that when N is a sufficiently

large positive number and ε > 0 is a small constant, then the logarithmic inequality

∣∣p1 logp1 + p2 logp2 + p3 logp3 −N
∣∣ < ε

has a solution in prime numbers p1, p2, andp3.
Motivated by these results, in this paper, we introduce new diophantine equation

with prime numbers.
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Consider the logarithmic equation

N = [p1 logp1] + [p2 logp2] + [p3 logp3], (2)

where N is a sufficiently large positive integer. Having the arguments of the
aforementioned marvelous mathematicians and [3], we expect that (2) has a solution
in primes p1, p2, andp3. Define the sum

� =
∑

N=[p1 logp1]+[p2 logp2]+[p3 logp3]
logp1 logp2 logp3 . (3)

We make the first attempt and prove the following theorem.

Theorem 1 Let N is a sufficiently large positive integer. Let X is a solution of the
equality

X logX = N.

Then the asymptotic formula

� = X2

1+ logX
+O

(
X2 exp

(− (logX)1/3−ε
))

(4)

holds.

As usual, the corresponding binary problem is out of reach of the current state of
analytic number theory. In other words, we have the following challenge.

Conjecture 1 Let N is a sufficiently large positive integer. Then the logarithmic
equation

N = [p1 logp1] + [p2 logp2]

is solvable in prime numbers p1and p2.

Needless to say, we believe that in the near future, we will see the solution of this
binary logarithmic hypothesis.

2 Notations

The letter p with or without subscript will always denote prime number. We denote
by #(n) von Mangoldt’s function. Moreover, e(y) = e2πıy . As usual, [t] and {t}
denote the integer part, respectively, the fractional part of t . We recall that t =
[t] + {t} and ‖t‖ = min({t},1 − {t}). By ε, we denote an arbitrary small positive
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constant, not the same in all appearances. Let N be a sufficiently large positive
integer. Let X is a solution of the equality

X logX = N. (5)

Let y be an implicit function of t defined by

y log y = t. (6)

The first derivative of y is

y′ = 1

1+ log y
. (7)

Denote

τ = X− 23
25 ; (8)

S(α) =
∑

p≤X
e
(
α[p logp]) logp ; (9)

$(α) =
∑

m≤N

1

1+ log y(m)
e(mα) ; (10)

�1 =
τ∫

−τ
S3(α)e(−Nα) dα ; (11)

�2 =
1−τ∫

τ

S3(α)e(−Nα) dα ; (12)

%k =
1/2∫

−1/2

$k(α)e(−Nα) dα, k = 1, 2, 3, . . . ; (13)

%̃ =
τ∫

−τ
$3(α)e(−Nα) dα . (14)

3 Lemmas

Lemma 1 Let f (x) be a real differentiable function in the interval [a, b]. If f ′(x)
is a monotonous and satisfies |f ′(x)| ≤ θ < 1, then we have
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∑

a<n≤b
e(f (n)) =

b∫

a

e(f (x)) dx +O(1) .

Proof See [8, Lemma 4.8]. -.
Lemma 2 Let x, y ∈ R and H ≥ 3. Then the formula

e(−x{y}) =
∑

|h|≤H
ch(x)e(hy)+O

(
min

(
1,

1

H‖y‖
))

holds. Here

ch(x) = 1− e(−x)
2πi(h+ x) .

Proof See [1, Lemma 12]. -.
Lemma 3 (Van der Corput) Let f (x) be a real-valued function with continuous
second derivative in [a, b] such that

|f ′′(x)| / λ, (λ > 0) for x ∈ [a, b].

Then
∣∣∣∣
∑

a<n≤b
e(f (n))

∣∣∣∣' (b − a)λ 1
2 + λ− 1

2 .

Proof See [4, Ch. 1, Th. 5]. -.
Lemma 4 For any real number t and H ≥ 1, there holds

min

(
1,

1

H‖t‖
)
=

+∞∑

h=−∞
ahe(ht) ,

where

ah ' min

(
log 2H

H
,

1

|h| ,
H

|h|2 ,
)
.

Proof See [13, Lemma 2]. -.
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4 Proof of the Theorem

From (3), (9), (11), and (12), we have

� =
1∫

0

S3(α)e(−Nα) dα = �1 + �2. (15)

Estimation of �1
We write

�1 = (�1 − %̃)+ (%̃ −%3)+%3. (16)

Bearing in mind (10) and (13), we obtain

%1 =
1/2∫

−1/2

$(α)e(−Nα) dα = 1

1+ log y(N)
.

Suppose that

%k = 1

1+ log y(N)
Xk−1 +O

(
Xk−2) for k ≥ 2. (17)

Then

%k+1 =
∑

m≤N

1

1+ log y(m)

( ∑

m1≤N−m
· · ·

∑

mk≤N−mm1+···+mk=N−m

1

1+ log y(m1)
· · · 1

1+ log y(mk)

)

=
∑

m≤N

1

1+ log y(m)

(
1

1+ log y(N −m)X
k−1 +O

(
Xk−2)

)

=
∑

m≤N

1

1+ log y(m)
· 1

1+ log y(N −m)X
k−1 +O

(
Xk−1)

= 1

1+ log y(N)
Xk +O

(
Xk−1).

Consequently, the supposition (17) is true.
From (5) and (6), it follows that

y(N) = X. (18)

Bearing in mind (17) and (18), we conclude that
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%k = Xk−1

1+ logX
+O

(
Xk−2) for k ≥ 2. (19)

Now the asymptotic formula (19) gives us

%3 = X2

1+ logX
+O

(
X
)
. (20)

From (11) and (14), we get

|�1 − %̃| '
τ∫

−τ

∣∣S3(α)−$3(α)
∣∣ dα

' max|α|≤τ
∣∣S(α)−$(α)∣∣

( τ∫

−τ
|S(α)|2 dα +

1/2∫

−1/2

|$(α)|2 dα
)
. (21)

Arguing as in [3, Lemma 8], we find

τ∫

−τ
|S(α)|2 dα ' X logX. (22)

Square out and integrate, we obtain

1/2∫

−1/2

|$(α)|2 dα ' N

log2N
' X. (23)

Now we shall estimate from above |S(α)−$(α)| for |α| ≤ τ .
Our argument is a modification of Zhang’s and Li’s [14] argument.
From (8) and (9), we get

S(α) =
∑

p≤X
e(αp logp) logp +O

(
τX

)

=
∑

n≤X
#(n)e(αn log n)+O

(
X1/2)+O

(
τX

)

=
∑

n≤X
#(n)e(αn log n)+O

(
X1/2). (24)

From |α| ≤ τ , y ≥ 2 and Lemma 1, we have that
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∑

1<m≤y
e(mα) =

y∫

1

e(αt) dt +O(1). (25)

Using (6), (7), (8), (10), (25), and partial summation, we find

∑

n≤X
#(n)e(αn log n) =

X∫

1

e(αy log y) d

(∑

n≤y
#(n)

)

=
X∫

1

e(αy log y) dy +O
(
X exp

(− (logX)1/3
))

=
N∫

1

e(αt)
1

1+ log y(t)
dt +O

(
X exp

(− (logX)1/3
))

=
N∫

1

1

1+ log y(t)
d

( t∫

1

e(αu) du

)
+O

(
X exp

(− (logX)1/3
))

=
N∫

1

1

1+ log y(t)
d

( ∑

1<m≤t
e(mα)+O(1)

)

+O
(
X exp

(− (logX)1/3
))

=
∑

m≤N

1

1+ log y(m)
e(mα)+O

(
X exp

(− (logX)1/3
))

= $(α)+O
(
X exp

(− (logX)1/3
))
. (26)

From (24) and (26), it follows that

max|α|≤τ |S(α)−$(α)| ' X exp
(− (logX)1/3

)
. (27)

Taking into account (21), (22), (23), and (27), we conclude

�1 − %̃ ' X2 exp
(− (logX)1/3−ε

)
. (28)

Using (8), (13), and (14) and working as in [9, Lemma 2.8], we deduce

∣∣%3 − %̃
∣∣'

∫

τ≤|α|≤1/2

|$(α)|3 dα '
1/2∫

τ

dα

α3 ' X
46
25 . (29)

Summarizing (16), (20), (28), and (29), we obtain
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�1 = X2

1+ logX
+O

(
X2 exp

(− (logX)1/3−ε
))
. (30)

Estimation of �2
From (12), we get

�2 ' max
τ≤α≤1−τ |S(α)|

1∫

0

|S(α)|2 dα ' X(logX) max
τ≤α≤1−τ |S(α)|. (31)

By (9) and Lemma 2 with x = α, y = n log n, and

H = X 1
25 (32)

it follows

S(α) =
∑

n≤X
#(n)e(αn log n)e(−α{n log n})+O(X1/2)

=
∑

|h|≤H
ch(α)

∑

n≤X
#(n)e

(
(h+ α)n log n

)

+O

⎛

⎝(logX)
∑

n≤X
min

(
1,

1

H‖n log n‖
)⎞

⎠ .

Therefore,

max
τ≤α≤1−τ |S(α)| ' (S1 + S2) logX, (33)

where

S1 = max
τ≤α≤H+1

∣∣∣
∑

n≤X
#(n)e(αn log n)

∣∣∣, (34)

S2 =
∑

n≤X
min

(
1,

1

H‖n log n‖
)
. (35)

Bearing in mind (8), (32), and (34), according to [3, Lemma 9], we conclude

S1 ' X24/25 log3X. (36)

By (32), (35), Lemmas 3 and 4, and Y ≤ X/2, we obtain



226 S. I. Dimitrov

S2 ' (logX)
∑

Y<n≤2Y

min

(
1,

1

H‖n log n‖
)

≤ (logX)
+∞∑

h=−∞
|ah|

∣∣∣∣
∑

Y<n≤2Y

e(hn log n)

∣∣∣∣

' (logX)

(
Y log 2H

H
+ Y

1/2 log 2H

H

∑

h≤H
h1/2 + Y 1/2H

∑

h>H

h−3/2
)

' XH−1 log2X

' X24/25 log2X. (37)

From (31), (33), (36), and (37), we find

�2 ' X49/25 log5X. (38)

The End of the Proof
Bearing in mind (15), (30), and (38), we establish the asymptotic formula (4).
The theorem is proved.
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Hermite-Hadamard Trapezoid and
Mid-Point Divergences

Silvestru Sever Dragomir

Abstract In this paper, we introduce the concepts of Hermite-Hadamard trape-
zoid and mid-point divergences that are closely related to the Jensen divergence
considered by Burbea and Rao in 1982. The joint convexity of these divergences
and several inequalities involving these measures are established. Various examples
concerning the Csiszár, Lin-Wong, and HH f -divergence measures are also given.
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1 Introduction

For a function f defined on an interval I of the real line R, by following the paper by
Burbea and Rao [1], we consider the J -divergence between the vectors x, y ∈ In
given by

Jn,f (x, y) :=
n∑

i=1

(
1

2
[f (xi)+ f (yi)]− f

(
xi + yi

2

))
.

As important examples of such divergences, we can consider [1],
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Jn,α (x, y) :=

⎧
⎪⎨

⎪⎩

(α − 1)−1 ∑n
i=1

[
1
2

(
xαi + yαi

)− ( xi+yi
2

)α]
, α 	= 1

1
2

∑n
i=1

[
xi ln (xi)+ yi ln (yi)− (xi + yi) ln

( xi+yi
2

)]
, α = 1.

If f is convex on I, then Jn,f (x, y) ≥ 0 for all (x, y) ∈ In × In.
The following result concerning the joint convexity of Jn,f also holds:

Theorem 1 (Burbea-Rao, 1982 [1]) Let f be a C2 function on an interval I. Then
Jn,f is convex (concave) on In × In, if and only if f is convex (concave) and 1

f ′′ is
concave (convex) on I.

We define the Hermite-Hadamard trapezoid and mid-point divergences

Tn,f (x, y) :=
n∑

i=1

(
1

2
[f (xi)+ f (yi)]−

∫ 1

0
f ((1− t) xi + tyi) dt

)
(1.1)

and

Mn,f (x, y) :=
n∑

i=1

(∫ 1

0
f ((1− t) xi + tyi) dt − f

(
xi + yi

2

))
(1.2)

for all (x, y) ∈ In × In.
We observe that

Jn,f (x, y) = Tn,f (x, y)+Mn,f (x, y) (1.3)

for all (x, y) ∈ In × In.
If f is convex on I, then by Hermite-Hadamard inequalities

f (a)+ f (b)
2

≥
∫ 1

0
f ((1− t) a + tb) dt ≥ f

(
a + b

2

)

for all a, b ∈ I, we have the following fundamental facts:

Tn,f (x, y) ≥ 0 and Mn,f (x, y) ≥ 0 (1.4)

for all (x, y) ∈ In × In.
Using Bullen’s inequality (see, for instance, [6, p. 2]),

0 ≤
∫ 1

0
f ((1− t) a + tb) dt − f

(
a + b

2

)
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≤ f (a)+ f (b)
2

−
∫ 1

0
f ((1− t) a + tb) dt

we also have

0 ≤Mn,f (x, y) ≤ Tn,f (x, y) . (1.5)

Let us recall the following special means:

(a) The arithmetic mean

A (a, b) := a + b
2
, a, b > 0,

(b) The geometric mean

G(a, b) := √ab; a, b ≥ 0,

(c) The harmonic mean

H (a, b) := 2
1
a
+ 1
b

; a, b > 0,

(d) The identric mean

I (a, b) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1

e

(
bb

aa

) 1
b−a

if b 	= a

a if b = a
; a, b > 0

(e) The logarithmic mean

L (a, b) :=

⎧
⎪⎪⎨

⎪⎪⎩

b − a
ln b − ln a

if b 	= a

a if b = a
; a, b > 0

(f) The p-logarithmic mean

Lp (a, b) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(
bp+1 − ap+1

(p + 1) (b − a)
) 1
p

if b 	= a, p ∈ R\ {−1, 0}

a if b = a
; a, b > 0.
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If we put L0 (a, b) := I (a, b) and L−1 (a, b) := L (a, b) , then it is well known
that the function R 0p �→ Lp (a, b) is monotonic increasing on R.

We observe that for p ∈ R\ {−1, 0}, we have

∫ 1

0
[(1− t) a + tb]p dt = Lpp (a, b) ,

∫ 1

0
[(1− t) a + tb]−1 dt = L−1 (a, b)

and

∫ 1

0
ln [(1− t) a + tb] dt = ln I (a, b) .

Using these notations, we can define the following divergences for (x, y) ∈ In×
In where I is an interval of positive numbers

Tn,p (x, y) :=
n∑

i=1

[
A
(
x
p
i , y

p
i

)− Lpp (xi, yi)
]

and

Mn,p (x, y) :=
n∑

i=1

[
L
p
p (xi, yi)− Ap (xi, yi)

]

for all p ∈ R\ {−1, 0} ,

Tn,−1 (x, y) :=
n∑

i=1

[
H−1 (xi, yi)− L−1 (xi, yi)

]

and

Mn,−1 (x, y) :=
n∑

i=1

[
L−1 (xi, yi)− A−1 (xi, yi)

]

for p = −1, and

Tn,0 (x, y) := ln

[
n∏

i=1

(
G(xi, yi)

I (xi, yi)

)]

and

Mn,0 (x, y) := ln

[
n∏

i=1

(
I (xi, yi)

A (xi, yi)

)]
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for p = 0.
Since the function f (t) = tp, t > 0 is convex for p ∈ (−∞, 0) ∪ (1,∞), then

we have

Tn,p (x, y) , Mn,p (x, y) ≥ 0 (1.6)

for all (x, y) ∈ In × In.
For p ∈ (0, 1) the function f (t) = tp, t > 0 and for p = 0, the function

f (t) = ln t are concave, then we have for p ∈ [0, 1) that

Tn,p (x, y) , Mn,p (x, y) ≤ 0 (1.7)

for all (x, y) ∈ In × In.
Finally, for p = 1, we have both Tn,p (x, y) =Mn,p (x, y) = 0 for all (x, y) ∈

In × In.
In this paper, we establish the joint convexity of the Hermite-Hadamard trape-

zoid and mid-point divergences Tn,f and Mn,f and also provide several inequalities
involving these measures. Several examples concerning the Csiszár, Lin-Wong, and
HH f -divergence measures are also given.

2 General Results

We start with the following convexity result that is a consequence of Burbea-Rao
theorem above:

Theorem 2 Let f be a C2 function on an interval I. Then Tn,f and Mn,f are
convex (concave) on In×In, if and only if f is convex (concave) and 1

f ′′ is concave
(convex) on I.

Proof If Tn,f and Mn,f are convex on In× In, then the sum Tn,f +Mn,f = Jn,f
is convex on In × In, which, by Burbea-Rao theorem, implies that f is convex and

1
f ′′ is concave on I.

Now, if f is convex and 1
f ′′ is concave on I, then by the same theorem, we have

that the function Jf : I × I → R

Jf (x, y) := 1

2
[f (x)+ f (y)]− f

(
x + y

2

)

is convex.
Let x, y, u, v ∈ I . We define

ϕ (t) := Jf ((1− t) (x, y)+ t (u, v)) = Jf (((1− t) x + tu, (1− t) y + tv))
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= 1

2
[f ((1− t) x + tu)+ f ((1− t) y + tv)]

− f
(
(1− t) x + tu+ (1− t) y + tv

2

)

= 1

2
[f ((1− t) x + tu)+ f ((1− t) y + tv)]

− f
(
(1− t) x + y

2
+ t u+ v

2

)

for t ∈ [0, 1] .
Let t1, t2 ∈ [0, 1] and α, β ≥ 0 with α + β = 1. By the convexity of Jf , we

have

ϕ (αt1 + βt2)
= Jf ((1− αt1 − βt2) (x, y)+ (αt1 + βt2) (u, v))
= Jf ((α + β − αt1 − βt2) (x, y)+ (αt1 + βt2) (u, v))
= Jf (α (1− t1) (x, y)+ β (1− t2) (x, y)+ αt1 (u, v)+ βt2 (u, v))
= Jf (α [(1− t1) (x, y)+ t1 (u, v)]+ β [(1− t2) (x, y)+ t2 (u, v)])
≤ αJf ((1− t1) (x, y)+ t1 (u, v))+ βJf ((1− t2) (x, y)+ t2 (u, v))
= αϕ (t1)+ βϕ (t2) ,

which proves that ϕ is convex on [0, 1] for all x, y, u, v ∈ I.
Applying the Hermite-Hadamard inequality for ϕ, we get

1

2
[ϕ (0)+ ϕ (1)] ≥

∫ 1

0
ϕ (t) dt (2.1)

and since

ϕ (0) = 1

2
[f (x)+ f (y)]− f

(
x + y

2

)
,

ϕ (1) = 1

2
[f (u)+ f (v)]− f

(
u+ v

2

)

and

∫ 1

0
ϕ (t) dt = 1

2

[∫ 1

0
f ((1− t) x + tu) dt +

∫ 1

0
f ((1− t) y + tv) dt

]
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−
∫ 1

0
f

(
(1− t) x + y

2
+ t u+ v

2

)
dt,

hence, by (2.1), we get

1

2

{
1

2
[f (x)+ f (y)]− f

(
x + y

2

)
+ 1

2
[f (u)+ f (v)]− f

(
u+ v

2

)}

≥ 1

2

[∫ 1

0
f ((1− t) x + tu) dt +

∫ 1

0
f ((1− t) y + tv) dt

]

−
∫ 1

0
f

(
(1− t) x + y

2
+ t u+ v

2

)
dt.

Re-arranging this inequality, we get

1

2

[
f (x)+ f (u)

2
−
∫ 1

0
f ((1− t) x + tu) dt

]

+ 1

2

[
f (y)+ f (v)

2
−
∫ 1

0
f ((1− t) y + tv) dt

]

≥ 1

2

[
f

(
x + y

2

)
+ f

(
u+ v

2

)
−
∫ 1

0
f

(
(1− t) x + y

2
+ t u+ v

2

)
dt

]

which is equivalent to

1

2

[
Tf (x, u)+ Tf (y, v)

] ≥ Tf
(
x + y

2
,
u+ v

2

)

= Tf
(

1

2
(x, u)+ 1

2
(y, v)

)
,

for all (x, u) , (y, v) ∈ I × I , which shows that Tf is Jensen’s convex on I × I.
Since Tf is continuous on I × I , hence Tf is convex in the usual sense on I × I.
Further, by summing over i from 1 to n, we deduce that Tn,f is convex on In × In.

Now, if we use the second Hermite-Hadamard inequality for ϕ on [0, 1] ,we have

∫ 1

0
ϕ (t) dt ≥ ϕ

(
1

2

)
. (2.2)

Since

ϕ

(
1

2

)
= 1

2

[
f

(
x + u

2

)
+ f

(
y + v

2

)]
− f

(
1

2

x + y
2

+ 1

2

u+ v
2

)

hence, by (2.2), we have
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1

2

[∫ 1

0
f ((1− t) x + tu) dt +

∫ 1

0
f ((1− t) y + tv) dt

]

−
∫ 1

0
f

(
(1− t) x + y

2
+ t u+ v

2

)
dt

≥ 1

2

[
f

(
x + u

2

)
+ f

(
y + v

2

)]
− f

(
1

2

(
x + y

2
+ u+ v

2

))
,

which is equivalent to

1

2

[∫ 1

0
f ((1− t) x + tu) dt − f

(
x + u

2

)]

+ 1

2

[∫ 1

0
f ((1− t) y + tv) dt − f

(
y + v

2

)]

≥
∫ 1

0
f

(
(1− t) x + y

2
+ t u+ v

2

)
dt − f

(
1

2

(
x + y

2
+ u+ v

2

))

that can be written as

1

2

[
Mf (x, u)+Mf (y, v)

] ≥Mf

(
x + y

2
,
u+ v

2

)

=Mf

(
1

2
(x, u)+ 1

2
(y, v)

)

for all (x, u) , (y, v) ∈ I × I , which shows that Mf is Jensen’s convex on I × I.
Since Mf is continuous on I × I , hence Mf is convex in the usual sense on I × I.
Further, by summing over i from 1 to n, we deduce that Mn,f is convex on In×In.

The following reverses of the Hermite-Hadamard inequality hold:

Lemma 1 (Dragomir, 2002 [4] and [5]) Let h : [a, b] → R be a convex function
on [a, b] . Then

0 ≤ 1

8

[
h+

(
a + b

2

)
− h−

(
a + b

2

)]
(b − a) (2.3)

≤ h (a)+ h (b)
2

− 1

b − a
∫ b

a

h (x) dx

≤ 1

8
[h− (b)− h+ (a)] (b − a)

and
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0 ≤ 1

8

[
h+

(
a + b

2

)
− h−

(
a + b

2

)]
(b − a) (2.4)

≤ 1

b − a
∫ b

a

h (x) dx − h
(
a + b

2

)

≤ 1

8
[h− (b)− h+ (a)] (b − a) .

The constant 1
8 is best possible in all inequalities from (2.3) and (2.4).

We also have:

Theorem 3 Let f be a C1 convex function on an interval I. If I̊ is the interior of
I, then for all (x, y) ∈ I̊ n × I̊ n, we have

0 ≤Mn,f (x, y) ≤ Tn,f (x, y) ≤ 1

8
Cn,f ′ (x, y) (2.5)

where

Cn,f ′ (x, y) :=
n∑

i=1

[
f ′ (xi)− f ′ (yi)

]
(xi − yi) . (2.6)

Proof Since for b 	= a

1

b − a
∫ b

a

f (x) dx =
∫ 1

0
f ((1− t) a + tb) dt,

then from (2.3), we get

f (xi)+ f (yi)
2

−
∫ 1

0
f ((1− t) xi + tyi) dt ≤ 1

8

[
f ′ (xi)− f ′ (yi)

]
(xi − yi)

for all i ∈ {1, . . . , n}, and this inequality also holds if xi = yi .
By summing these inequalities over i ∈ {1, . . . , n}, we get the last inequality in

(2.5).

Remark 1 If

γ = inf
t∈I̊
f ′ (t) and Γ = sup

t∈I̊
f ′ (t)

are finite, then

Cn,f ′ (x, y) ≤ (Γ − γ )
n∑

i=1

|xi − yi |
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and by (2.5), we get the simpler upper bound

0 ≤Mn,f (x, y) ≤ Tn,f (x, y) ≤ 1

8
(Γ − γ )

n∑

i=1

|xi − yi | .

Moreover, if xi, yi ∈ [a, b] ⊂ I̊ for all i ∈ {1, . . . , n} and since f ′ is increasing on
I̊ , then we have the inequalities

0 ≤Mn,f (x, y) ≤ Tn,f (x, y) ≤ 1

8

[
f ′ (b)− f ′ (a)]

n∑

i=1

|xi − yi | . (2.7)

Since Jn,f (x, y) = Tn,f (x, y)+Mn,f (x, y) , hence

0 ≤ Jn,f (x, y) ≤ 1

4

[
f ′ (b)− f ′ (a)]

n∑

i=1

|xi − yi | .

Corollary 1 With the assumptions of Theorem 3 and if the derivative f ′ is
Lipschitzian with the constant K > 0, namely,

∣∣f ′ (t)− f ′ (s)∣∣ ≤ K |t − s| for all t, s ∈ I̊ ,

then we have the inequality

0 ≤Mn,f (x, y) ≤ Tn,f (x, y) ≤ 1

8
Kd2

2 (x, y) , (2.8)

where d2 (x, y) is the Euclidean distance between x and y, namely,

d2 (x, y) =
(
n∑

i=1

(xi − yi)2
)1/2

.

Also, we have

0 ≤ Jn,f (x, y) ≤ 1

4
Kd2

2 (x, y) .

3 Related Results

We have the following Jensen’s type inequality:

Theorem 4 Let f be a C2 function on an interval I. If f is convex and 1
f ′′ is

concave on I,, then for all (xi, yi) ∈ I×I, i ∈ {1, . . . , n} and pi ≥ 0, i ∈ {1, . . . , n}
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with
∑n
i=1 pi = 1,, we have

1

2

n∑

i=1

pi

[
f ′ (xi)− f ′

(
xi + yi

2

)]
(xi − u) (3.1)

+ 1

2

n∑

i=1

pi

[
f ′ (yi)− f ′

(
xi + yi

2

)]
(yi − v)

≥ 1

2

n∑

i=1

pi [f (xi)+ f (yi)]−
n∑

i=1

pif

(
xi + yi

2

)

− 1

2
[f (u)+ f (v)]+ f

(
u+ v

2

)

≥ 1

2

[
f ′ (u)− f ′

(
u+ v

2

)]( n∑

i=1

pixi − u
)

+ 1

2

[
f ′ (v)− f ′

(
u+ v

2

)]( n∑

i=1

piyi − v
)

for all (u, v) ∈ I × I.
In particular,

1

2

n∑

i=1

pi

[
f ′ (xi)− f ′

(
xi + yi

2

)]⎛

⎝xi −
n∑

j=1

pjxj

⎞

⎠ (3.2)

+ 1

2

n∑

i=1

pi

[
f ′ (yi)− f ′

(
xi + yi

2

)]⎛

⎝yi −
n∑

j=1

pjyj

⎞

⎠

≥ 1

2

n∑

i=1

pi [f (xi)+ f (yi)]−
n∑

i=1

pif

(
xi + yi

2

)

− 1

2

[
f

(
n∑

i=1

pixi

)
+ f

(
n∑

i=1

piyi

)]
+ f

(∑n
i=1 pixi +

∑n
i=1 piyi

2

)

≥ 0.

Proof It is well known that if the function of two independent variables F : D ⊂
R × R → R is convex on the convex domain D and has partial derivatives ∂F

∂x
and

∂F
∂y

on D then for all (x, y) , (u, v) ∈ D we have the gradient inequalities
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∂F (x, y)

∂x
(x − u)+ ∂F (x, y)

∂y
(y − v) (3.3)

≥ F (x, y)− F (u, v)

≥ ∂F (u, v)
∂x

(x − u)+ ∂F (u, v)
∂y

(y − v) .

Now, if we take F : I × I → R given by

F (x, y) = 1

2
[f (x)+ f (y)]− f

(
x + y

2

)

and observe that

∂F (x, y)

∂x
= 1

2

[
f ′ (x)− f ′

(
x + y

2

)]

and

∂F (x, y)

∂y
= 1

2

[
f ′ (y)− f ′

(
x + y

2

)]

and since F is convex on I × I, then by (3.3), we get

1

2

[
f ′ (x)− f ′

(
x + y

2

)]
(x − u)+ 1

2

[
f ′ (y)− f ′

(
x + y

2

)]
(y − v) (3.4)

≥ 1

2
[f (x)+ f (y)]− f

(
x + y

2

)
− 1

2
[f (u)+ f (v)]+ f

(
u+ v

2

)

≥ 1

2

[
f ′ (u)− f ′

(
u+ v

2

)]
(x − u)+ 1

2

[
f ′ (v)− f ′

(
u+ v

2

)]
(y − v) .

Moreover, if (xi, yi) ∈ I × I, i ∈ {1, . . . , n}, then by (3.4), we get

1

2

[
f ′ (xi)− f ′

(
xi + yi

2

)]
(xi − u)+ 1

2

[
f ′ (yi)− f ′

(
xi + yi

2

)]
(yi − v)

(3.5)

≥ 1

2
[f (xi)+ f (yi)]− f

(
xi + yi

2

)
− 1

2
[f (u)+ f (v)]+ f

(
u+ v

2

)

≥ 1

2

[
f ′ (u)− f ′

(
u+ v

2

)]
(xi − u)+ 1

2

[
f ′ (v)− f ′

(
u+ v

2

)]
(yi − v)

for all i ∈ {1, . . . , n} and (u, v) ∈ I × I.
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Let pi ≥ 0 for all i ∈ {1, . . . , n} with
∑n
i=1 pi = 1. If we multiply (3.5) by

pi ≥ 0 and sum over i from 1 to n, then we get the desired result (3.1).

Corollary 2 With the assumptions of Theorem 4, we have

1

2

n∑

i=1

[
f ′ (xi)− f ′

(
xi + yi

2

)]⎛

⎝xi − 1

n

n∑

j=1

xj

⎞

⎠ (3.6)

+ 1

2

n∑

i=1

[
f ′ (yi)− f ′

(
xi + yi

2

)]⎛

⎝yi − 1

n

n∑

j=1

yj

⎞

⎠

≥ Jn,f (x, y)

− 1

2
n

[
f

(
1

n

n∑

i=1

xi

)
+ f

(
1

n

n∑

i=1

yi

)]
+ nf

(
1

n

n∑

i=1

(
xi + yi

2

))

≥ 0.

Similar results hold for the Hermite-Hadamard trapezoid and mid-point diver-
gences.

Theorem 5 Let f be a C2 function on an interval I. If f is convex and 1
f ′′ is

concave on I, then for all (xi, yi) ∈ I×I, i ∈ {1, . . . , n} and pi ≥ 0, i ∈ {1, . . . , n}
with

∑n
i=1 pi = 1, we have

n∑

i=1

pi (xi − u)
∫ 1

0
(1− t) [f ′ (xi)− f ′ ((1− t) xi + tyi)

]
dt (3.7)

+
n∑

i=1

pi (yi − v)
∫ 1

0
t
[
f ′ (yi)− f ′ ((1− t) xi + tyi)

]
dt

≥
∑n
i=1 pif (xi)+

∑n
i=1 pif (yi)

2
−

n∑

i=1

pi

∫ 1

0
f ((1− t) xi + tyi) dt

− f (u)+ f (v)
2

+
∫ 1

0
f ((1− t) u+ tv) dt

≥
n∑

i=1

pi (xi − u)
∫ 1

0
(1− t) [f ′ (u)− f ′ ((1− t) u+ tv)] dt

+
n∑

i=1

pi (yi − v)
∫ 1

0
t
[
f ′ (v)− f ′ ((1− t) u+ tv)] dt

for all (u, v) ∈ I × I.
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In particular,

n∑

i=1

pi

⎛

⎝xi −
n∑

j=1

pjxj

⎞

⎠
∫ 1

0
(1− t) [f ′ (xi)− f ′ ((1− t) xi + tyi)

]
dt (3.8)

+
n∑

i=1

pi

⎛

⎝yi −
n∑

j=1

pjyj

⎞

⎠
∫ 1

0
t
[
f ′ (yi)− f ′ ((1− t) xi + tyi)

]
dt

≥
∑n
i=1 pif (xi)+

∑n
i=1 pif (yi)

2
−

n∑

i=1

pi

∫ 1

0
f ((1− t) xi + tyi) dt

−
f
(∑n

j=1 pjxj

)
+ f

(∑n
j=1 pjyj

)

2
+
∫ 1

0
f

⎛

⎝
n∑

j=1

pj
[
(1− t) xj + tyj

]
⎞

⎠ dt

≥ 0.

Proof Let (x, y) , (u, v) ∈ I × I. If we take F : I × I → R given by

F (x, y) = f (x)+ f (y)
2

−
∫ 1

0
f ((1− t) x + ty) dt

then

∂F (x, y)

∂x
= 1

2
f ′ (x)−

∫ 1

0
(1− t) f ′ ((1− t) x + ty) dt

=
∫ 1

0
(1− t) [f ′ (x)− f ′ ((1− t) x + ty)] dt

and

∂F (x, y)

∂y
= 1

2
f ′ (y)−

∫ 1

0
tf ′ ((1− t) x + ty) dt

=
∫ 1

0
t
[
f ′ (y)− f ′ ((1− t) x + ty)] dt

and since F is convex on I × I, then by (3.3), we get

∫ 1

0
(1− t) [f ′ (x)− f ′ ((1− t) x + ty)] dt (x − u) (3.9)

+
∫ 1

0
t
[
f ′ (y)− f ′ ((1− t) x + ty)] dt (y − v)
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≥ f (x)+ f (y)
2

−
∫ 1

0
f ((1− t) x + ty) dt

− f (u)+ f (v)
2

+
∫ 1

0
f ((1− t) u+ tv) dt

≥
∫ 1

0
(1− t) [f ′ (u)− f ′ ((1− t) u+ tv)] dt (x − u)

+
∫ 1

0
t
[
f ′ (v)− f ′ ((1− t) u+ tv)] dt (y − v) .

Therefore, if (xi, yi) ∈ I × I, i ∈ {1, . . . , n}, then by (3.9), we get

(xi − u)
∫ 1

0
(1− t) [f ′ (xi)− f ′ ((1− t) xi + tyi)

]
dt (3.10)

+ (yi − v)
∫ 1

0
t
[
f ′ (yi)− f ′ ((1− t) xi + tyi)

]
dt

≥ f (xi)+ f (yi)
2

−
∫ 1

0
f ((1− t) xi + tyi) dt

− f (u)+ f (v)
2

+
∫ 1

0
f ((1− t) u+ tv) dt

≥ (xi − u)
∫ 1

0
(1− t) [f ′ (u)− f ′ ((1− t) u+ tv)] dt

+ (yi − v)
∫ 1

0
t
[
f ′ (v)− f ′ ((1− t) u+ tv)] dt

for all i ∈ {1, . . . , n} and (u, v) ∈ I × I.
Let pi ≥ 0 for all i ∈ {1, . . . , n} with

∑n
i=1 pi = 1. If we multiply (3.10) by

pi ≥ 0 and sum over i from 1 to n, then we get the desired result (3.7).

Corollary 3 With the assumptions of Theorem 4, we have

n∑

i=1

⎛

⎝xi − 1

n

n∑

j=1

xj

⎞

⎠
∫ 1

0
(1− t) [f ′ (xi)− f ′ ((1− t) xi + tyi)

]
dt (3.11)

+
n∑

i=1

⎛

⎝yi − 1

n

n∑

j=1

yj

⎞

⎠
∫ 1

0
t
[
f ′ (yi)− f ′ ((1− t) xi + tyi)

]
dt

≥ Tn,f (x, y)
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− n
f
(

1
n

∑n
i=1 xi

)
+ f

(
1
n

∑n
i=1 yi

)

2
+ n

∫ 1

0
f

(
1

n

n∑

i=1

[(1− t) xi + tyi]
)
dt

≥ 0.

We also have:

Theorem 6 Let f be a C2 function on an interval I. If f is convex and 1
f ′′ is

concave on I, then for all (xi, yi) ∈ I×I, i ∈ {1, . . . , n} and pi ≥ 0, i ∈ {1, . . . , n}
with

∑n
i=1 pi = 1, we have

n∑

i=1

pi (xi − u)
∫ 1

0
(1− t)

[
f ′ ((1− t) xi + tyi)− f ′

(
xi + yi

2

)]
dt (3.12)

+
n∑

i=1

pi (yi − v)
∫ 1

0
t

[
f ′ ((1− t) xi + tyi)− f ′

(
xi + yi

2

)]
dt

≥
n∑

i=1

pi

∫ 1

0
f ((1− t) xi + tyi) dt −

n∑

i=1

pif

(
xi + yi

2

)

−
∫ 1

0
f ((1− t) u+ tv) dt + f

(
u+ v

2

)

≥
n∑

i=1

pi (xi − u)
∫ 1

0
(1− t)

[
f ′ ((1− t) u+ tv)− f ′

(
u+ v

2

)]
dt

+
n∑

i=1

pi (yi − v)
∫ 1

0
t

[
f ′ ((1− t) u+ tv)− f ′

(
u+ v

2

)]
dt

for all (u, v) ∈ I × I.
In particular,

n∑

i=1

pi

⎛

⎝xi −
n∑

j=1

pjxj

⎞

⎠
∫ 1

0
(1− t)

[
f ′ ((1− t) xi + tyi)− f ′

(
xi + yi

2

)]
dt

(3.13)

+
n∑

i=1

pi

⎛

⎝yi −
n∑

j=1

pjyj

⎞

⎠
∫ 1

0
t

[
f ′ ((1− t) xi + tyi)− f ′

(
xi + yi

2

)]
dt
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≥
n∑

i=1

pi

∫ 1

0
f ((1− t) xi + tyi) dt −

n∑

i=1

pif

(
xi + yi

2

)

−
∫ 1

0
f

⎛

⎝
n∑

j=1

pi [(1− t) xi + tyi]
⎞

⎠ dt + f
⎛

⎝
n∑

j=1

pi

(
xi + yi

2

)⎞

⎠

≥ 0.

Proof Let (x, y) , (u, v) ∈ I × I. If we take F : I × I → R given by

F (x, y) =
∫ 1

0
f ((1− t) x + ty) dt − f

(
x + y

2

)

then

∂F (x, y)

∂x
=

∫ 1

0
(1− t) f ′ ((1− t) x + ty) dt − 1

2
f ′

(
x + y

2

)

=
∫ 1

0
(1− t)

[
f ′ ((1− t) x + ty)− f ′

(
x + y

2

)]
dt

and

∂F (x, y)

∂y
=

∫ 1

0
tf ′ ((1− t) x + ty) dt − 1

2
f ′

(
x + y

2

)

=
∫ 1

0
t

[
f ′ ((1− t) x + ty)− f ′

(
x + y

2

)]
dt.

The rest of the proof follows in the similar way to the one from above, and we omit
the details.

Corollary 4 With the assumptions of Theorem 4, we have

n∑

i=1

⎛

⎝xi − 1

n

n∑

j=1

xj

⎞

⎠
∫ 1

0
(1− t)

[
f ′ ((1− t) xi + tyi)− f ′

(
xi + yi

2

)]
dt

(3.14)

+
n∑

i=1

⎛

⎝yi − 1

n

n∑

j=1

yj

⎞

⎠
∫ 1

0
t

[
f ′ ((1− t) xi + tyi)− f ′

(
xi + yi

2

)]
dt

≥Mn,f (x, y)
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− n
∫ 1

0
f

⎛

⎝1

n

n∑

j=1

[(1− t) xi + tyi]
⎞

⎠ dt + nf
⎛

⎝1

n

n∑

j=1

(
xi + yi

2

)⎞

⎠

≥ 0.

4 Some Results for f -Divergences

Consider the probability distributions p and q. Assume that f : (0,∞) → R is
convex, and define the Csiszár’s f -divergence measure [2] and [3]

Cn,f (p, q) :=
n∑

i=1

pif

(
qi

pi

)

and the Lin-Wong f -divergence measure [9]

LWn,f (p, q) :=
n∑

i=1

pif

(
qi + pi

2pi

)
.

If f : (0,∞) → R is a C2 convex function and such that 1
f ′′ is concave on

(0,∞) , then we get from (3.2) for xi = qi
pi

and yi = 1, i ∈ {1, . . . , n} that

1

2

n∑

i=1

[
f ′

(
qi

pi

)
− f ′

(
qi + pi

2pi

)]
(qi − pi)

≥ 1

2

n∑

i=1

pi

[
f

(
qi

pi

)
+ f (1)

]
−

n∑

i=1

pif

(
qi + pi

2pi

)
≥ 0,

namely,

0 ≤ 1

2

[
Cn,f (p, q)+ f (1)

]− LWn,f (p, q)

≤ 1

2

n∑

i=1

[
f ′

(
qi

pi

)
− f ′

(
qi + pi

2pi

)]
(qi − pi) (4.1)

for any probability distributions p and q.
If there exists 0 < r < 1 < R < ∞ and qi

pi
∈ [r, R] for any i ∈ {1, . . . , n} and

for some K > 0, we have
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∣∣f ′ (s)− f ′ (t)∣∣ ≤ K |s − t | (4.2)

for any s, t ∈ [r, R] , then

1

2

n∑

i=1

[
f ′

(
qi

pi

)
− f ′

(
qi + pi

2pi

)]
(qi − pi)

≤ 1

2

n∑

i=1

∣∣∣∣f
′
(
qi

pi

)
− f ′

(
qi + pi

2pi

)∣∣∣∣ |qi − pi |

≤ 1

2
K

n∑

i=1

∣∣∣∣
qi

pi
− qi + pi

2pi

∣∣∣∣ |qi − pi | =
1

4
K

n∑

i=1

(qi − pi)2
pi

= 1

4
K

n∑

i=1

q2
i − 2piqi + p2

i

pi
= 1

4
K

(
n∑

i=1

q2
i

pi
− 1

)
= Dχ2 (p, q)

where Dχ2 (p, q) is the well-known χ2-divergence.
By utilizing the inequality (4.1), we get

0 ≤ 1

2

[
Cn,f (p, q)+ f (1)

]− LWn,f (p, q) ≤ 1

4
KDχ2 (p, q) . (4.3)

Since f is a C2 convex function on [r, R], then we can takeK = maxt∈[r,R]
∣∣f ′′ (t)

∣∣
in the inequality (4.3).

In the same paper [9], the authors introduced the Hermite-Hadamard (HH) f -
divergence by

Dfn,HH (p, q) :=
n∑

i=1

pi

∫ qi
pi

1 f (t) dt
qi
pi
− 1

=
n∑

i=1

pi

∫ 1

0
f

(
(1− t) qi

pi
+ t

)
dt.

If f : (0,∞) → R is a C2 convex function and such that 1
f ′′ is concave on

(0,∞) , then we get from (3.8) for xi = qi
pi

and yi = 1, i ∈ {1, . . . , n} that, namely,

0 ≤ 1

2

[
Cn,f (p, q)+ f (1)

]−Dfn,HH (p, q)

≤
n∑

i=1

(qi − pi)
∫ 1

0
(1− t)

[
f ′

(
qi

pi

)
− f ′

(
(1− t) qi

pi
+ t

)]
dt (4.4)

for any probability distributions p and q.
If there exists 0 < r < 1 < R < ∞ and qi

pi
∈ [r, R] for any i ∈ {1, . . . , n} and

for some K > 0, we have the condition (4.2), then
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n∑

i=1

(qi − pi)
∫ 1

0
(1− t)

[
f ′

(
qi

pi

)
− f ′

(
(1− t) qi

pi
+ t

)]
dt

≤
n∑

i=1

|qi − pi |
∫ 1

0
(1− t)

∣∣∣∣f
′
(
qi

pi

)
− f ′

(
(1− t) qi

pi
+ t

)∣∣∣∣ dt

≤ K
n∑

i=1

|qi − pi |
∫ 1

0
(1− t)

∣∣∣∣
qi

pi
− (1− t) qi

pi
− t

∣∣∣∣ dt

= K
n∑

i=1

(qi − pi)2
pi

∫ 1

0
(1− t) tdt = 1

6
K

n∑

i=1

(qi − pi)2
pi

= 1

6
KDχ2 (p, q) .

Therefore, if qi
pi
∈ [r, R] for any i ∈ {1, . . . , n} and K = maxt∈[r,R]

∣∣f ′′ (t)
∣∣ , then

0 ≤ 1

2

[
Cn,f (p, q)+ f (1)

]−Dfn,HH (p, q) ≤
1

6
KDχ2 (p, q) . (4.5)

If f : (0,∞) → R is a C2 convex function and such that 1
f ′′ is concave on

(0,∞) , then we get from (3.13) for xi = qi
pi

and yi = 1, i ∈ {1, . . . , n} that

n∑

i=1

pi

(
qi

pi
− 1

)∫ 1

0
(1− t)

[
f ′

(
(1− t) qi

pi
+ t

)
− f ′

( qi
pi
+ 1

2

)]
dt

≥
n∑

i=1

pi

∫ 1

0
f

(
(1− t) qi

pi
+ t

)
dt −

n∑

i=1

pif

( qi
pi
+ 1

2

)
≥ 0,

namely,

0 ≤ Dfn,HH (p, q)− LWn,f (p, q) (4.6)

≤
n∑

i=1

(qi − pi)
∫ 1

0
(1− t)

[
f ′

(
(1− t) qi

pi
+ t

)
− f ′

(
qi + pi

2pi

)]
dt

for any probability distributions p and q.
If there exists 0 < r < 1 < R < ∞ and qi

pi
∈ [r, R] for any i ∈ {1, . . . , n} and

for some K > 0, we have the condition (4.2), then

n∑

i=1

(qi − pi)
∫ 1

0
(1− t)

[
f ′

(
(1− t) qi

pi
+ t

)
− f ′

(
qi + pi

2pi

)]
dt
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≤
n∑

i=1

|qi − pi |
∫ 1

0
(1− t)

∣∣∣∣f
′
(
(1− t) qi

pi
+ t

)
− f ′

(
qi + pi

2pi

)∣∣∣∣ dt

≤ K
n∑

i=1

|qi − pi |
∫ 1

0
(1− t)

∣∣∣∣(1− t)
qi

pi
+ t − qi + pi

2pi

∣∣∣∣ dt

= K
n∑

i=1

(qi − pi)2
pi

∫ 1

0
(1− t)

∣∣∣∣t −
1

2

∣∣∣∣ dt =
1

8
KDχ2 (p, q) .

Therefore, if qi
pi
∈ [r, R] for any i ∈ {1, . . . , n} and K = maxt∈[r,R]

∣∣f ′′ (t)
∣∣ , then

0 ≤ Dfn,HH (p, q)− LWn,f (p, q) ≤ 1

8
KDχ2 (p, q) . (4.7)

5 Some Examples

Consider the power function fα : [0,∞) → R, fα (t) = (α − 1)−1 tα with α ∈
(1, 2] . This function is convex on [0,∞) and 1

f ′′α
is concave on (0,∞) and therefore

Jn,α (x, y) := (α − 1)−1
n∑

i=1

[
A
(
xαi , y

α
i

)− Aα (xi, yi)
]

(5.1)

is jointly convex on R
n+ × R

n+, where R+ := [0,∞).
The Hermite-Hadamard trapezoid and mid-point divergences associated to fα

are

Tn,α (x, y) := (α − 1)−1
n∑

i=1

[
A
(
xαi , y

α
i

)− Lαα (xi, yi)
]

(5.2)

and

Mn,f (x, y) := (α − 1)−1
n∑

i=1

[
Lαα (xi, yi)− Aα (xi, yi)

]
(5.3)

for (x, y) ∈ R
n+ × R

n+.
According to Theorem 2, these divergences are jointly convex on R

n+×R
n+. From

Theorem 3, we have the inequalities
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0 ≤Mn,α (x, y) ≤ Tn,α (x, y) ≤ 1

8
α2 (α − 1)−1

n∑

i=1

Lα−1
α−1 (xi, yi) (xi − yi)2

(5.4)
for (x, y) ∈ R

n+ × R
n+.

If [a, b] ⊂ R
n+ and (x, y) ∈ [a, b]n × [a, b]n, then by (2.7), we have

0 ≤Mn,f (x, y) ≤ Tn,f (x, y) ≤ 1

8
(α − 1)−1 α

(
bα−1 − aα−1

) n∑

i=1

|xi − yi | .
(5.5)

We have for [a, b] ⊂ R
n++ := (0,∞) that

K := max
t∈[a,b]

f ′′α (t) = (α − 1)−1 α (α − 1) max
t∈[a,b]

tα−2 = α

a2−α

and by the inequality (2.8), we have

0 ≤Mn,f (x, y) ≤ Tn,f (x, y) ≤ α

8a2−α d
2
2 (x, y) . (5.6)

For fα , we have

Cn,fα (p, q) := (α − 1)−1
n∑

i=1

p1−α
i qαi ,

LWn,fα (p, q) := (α − 1)−1
n∑

i=1

p1−α
i

(
qi + pi

2

)α

and

Dfαn,HH (p, q) := (α − 1)−1
n∑

i=1

pi

∫ qi
pi

1 fα (t) dt
qi
pi
− 1

= (α − 1)−1
n∑

i=1

piLα

(
qi

pi
, 1

)
.

Let 0 < r < 1 < R < ∞. If qi
pi
∈ [r, R] for any i ∈ {1, . . . , n}, then from the

inequality (4.3), we get

0 ≤ 1

2

[
Cn,fα (p, q)+ (α − 1)−1

]
− LWn,fα (p, q) ≤

1

4

α

r2−α Dχ2 (p, q) ,

(5.7)
and from (4.5), we have

0 ≤ 1

2

[
Cn,fα (p, q)+ (α − 1)−1

]
−Dfαn,HH (p, q) ≤

1

6

α

r2−α Dχ2 (p, q) (5.8)
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while from (4.7), we obtain

0 ≤ Dfαn,HH (p, q)− LWn,fα (p, q) ≤
1

8

α

r2−α Dχ2 (p, q) . (5.9)

Consider now the function f1 : (0,∞) → R, f1 (t) = t ln t. The function f1 is
convex on (0,∞) and 1

f ′′1
is concave on (0,∞) . Then the function

Jn,1 (x, y) := 1

2

n∑

i=1

[
xi ln (xi)+ yi ln (yi)− (xi + yi) ln

(
xi + yi

2

)]

is jointly convex on R
n++ × R

n++.
Observe that

1

b − a
∫ b

a

t ln tdt = 1

2

1

b − a
∫ b

a

ln td
(
t2
)

= 1

2

1

b − a
[
t2 ln t

∣∣∣
b

a
−
∫ b

a

tdt

]

= 1

2

1

b − a
[
b2 ln b − a2 ln a − b

2 − a2

2

]

= 1

2

1

b − a
[
b2 ln b2 − a2 ln a2

2
− b

2 − a2

2

]

= 1

2

1

b − a
b2 − a2

2

[
b2 ln b2 − a2 ln a2

b2 − a2
− 1

]

= 1

4
(b + a) ln I

(
a2, b2

)
,

where I is the identric mean.
Therefore,

Tn,1 (x, y) :=
n∑

i=1

(
1

2
[f (xi)+ f (yi)]−

∫ 1

0
f ((1− t) xi + tyi) dt

)
(5.10)

= 1

2

n∑

i=1

[
xi ln

(
x2
i

)+ yi ln
(
y2
i

)

2
− A (xi, yi) ln I

(
x2
i , y

2
i

)]

= 1

2

n∑

i=1

[
A
(
xi ln

(
x2
i

)
, yi ln

(
y2
i

))
− A (xi, yi) ln I

(
x2
i , y

2
i

)]

and
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Mn,1 (x, y) :=
n∑

i=1

(
A (xi, yi) ln I

(
x2
i , y

2
i

)
− A (xi, yi) lnA (xi, yi)

)

=
n∑

i=1

A (xi, yi)
[
ln I

(
x2
i , y

2
i

)
− lnA (xi, yi)

]

for (x, y) ∈ R
n++ × R

n++.
According to Theorem 2, these divergences are jointly convex on R

n++ × R
n++.

From Theorem 3, we have the inequalities

0 ≤Mn,1 (x, y) ≤ Tn,1 (x, y) ≤ 1

8

n∑

i=1

(xi − yi)2
L (xi, yi)

. (5.11)

From the inequality (2.7), we have

0 ≤Mn,1 (x, y) ≤ Tn,1 (x, y) ≤ 1

8
(ln b − ln a)

n∑

i=1

|xi − yi | (5.12)

for (x, y) ∈ [a, b]n × [a, b]n , where [a, b] ⊂ (0,∞) .
We also have from (2.8) that

0 ≤Mn,1 (x, y) ≤ Tn,1 (x, y) ≤ 1

8

b − a
ba

d2
2 (x, y) (5.13)

for (x, y) ∈ [a, b]n × [a, b]n , where [a, b] ⊂ (0,∞) .
Consider the divergences

Cn,f1 (p, q) :=
n∑

i=1

qi ln

(
qi

pi

)
,

Kullback-Leibler divergence [7],

LWn,f1 (p, q) :=
n∑

i=1

qi + pi
2

ln

(
qi + pi

2pi

)
,

Lin-Wong divergence measure [8],

and

Df1
n,HH (p, q) :=

n∑

i=1

pi

∫ qi
pi

1 t ln tdt
qi
pi
− 1

= 1

2

n∑

i=1

A (qi, pi) ln I

((
qi

pi

)2

, 1

)
.
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Let 0 < r < 1 < R < ∞. If qi
pi
∈ [r, R] for any i ∈ {1, . . . , n}, then from the

inequality (4.3), we get

0 ≤ 1

2
Cn,f1 (p, q)− LWn,f1 (p, q) ≤

1

4r
Dχ2 (p, q) , (5.14)

and from (4.5), we have

0 ≤ 1

2
Cn,f1 (p, q)−Df1

n,HH (p, q) ≤
1

6r
Dχ2 (p, q) , (5.15)

while from (4.7), we obtain

0 ≤ Df1
n,HH (p, q)− LWn,f1 (p, q) ≤

1

8r
Dχ2 (p, q) . (5.16)
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Hermite-Hadamard-Type Integral
Inequalities for Perspective Function

Silvestru Sever Dragomir

Abstract Let f : (0,∞)→ R be a convex function on (0,∞). The associated two
variables perspective function Pf : (0,∞)× (0,∞)→ R is defined by

Pf (x, y) := xf
(y
x

)
.

In this paper, we establish some basic and double integral inequalities for the
perspective function Pf defined above. Some double integral inequalities in the case
of rectangles, squares, and circular sectors are also given.
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1 Introduction

The following inequality holds for any convex function f defined on R

(b − a)f
(
a + b

2

)
≤
∫ b

a

f (x)dx ≤ (b − a)f (a)+ f (b)
2

, a, b ∈ R, a < b.

(1.1)
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It was firstly discovered by Ch. Hermite in 1881 in the journal Mathesis (see [7]).
But this result was nowhere mentioned in the mathematical literature and was not
widely known as Hermite’s result.

E. F. Beckenbach, a leading expert on the history and the theory of convex
functions, wrote that this inequality was proven by J. Hadamard in 1893 [1]. In
1974, D. S. Mitrinović found Hermite’s note in Mathesis [7]. Since (1.1) was known
as Hadamard’s inequality, the inequality is now commonly referred as the Hermite-
Hadamard inequality. For a monograph devoted to this inequality, see [6]. Related
results can be also found in [4].

In 1990, [3] the author established the following refinement of Hermite-
Hadamard inequality for double and triple integrals for the convex function
f : [a, b] → R

f

(
a + b

2

)
≤ 1

(b − a)2
∫ b

a

∫ b

a

f

(
x + y

2

)
dxdy

≤ 1

(b − a)2
∫ b

a

∫ b

a

∫ 1

0
f ((1− t) x + ty) dtdxdy ≤ 1

b − a
∫ b

a

f (x)dx.

(1.2)

More recently, [5] we obtained a different double integral inequality of Hermite-
Hadamard type for the convex function f : [a, b] → R,

f

(
a + b

2

)
≤ 1

(d − c)2
∫ d

c

∫ d

c

f

(
αa + βb
α + β

)
dβdα ≤ f (a)+ f (b)

2
(1.3)

where 0 < c < d.
Let f : (0,∞) → R be a convex function on (0,∞). The associated two

variables perspective function Pf : (0,∞)× (0,∞)→ R is defined by

Pf (x, y) := xf
(y
x

)
. (1.4)

In this paper, we establish some basic and double integral inequalities for the
perspective function Pf defined above. Some integral inequalities in the case of
rectangles, squares, and circular sectors are also given.

2 General Results

We start with the following fundamental fact.

Lemma 1 Let f : (0,∞) → R be a convex function on (0,∞). Then the
perspective function Pf : (0,∞) × (0,∞) → R defined by (1.4) is convex on
(0,∞)× (0,∞) .
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Proof Let (x1, y1) , (x2, y2) ∈ (0,∞)× (0,∞) and α, β ≥ 0 with α+β = 1; then

Pf (α (x1, y1)+ β (x2, y2)) = Pf (αx1 + βx2, αy1 + y2β)

= (αx1 + βx2) f

(
αy1 + y2β

αx1 + βx
)

= (αx1 + βx2) f

(
αx1

y1
x1
+ βx2

y2
x2

αx1 + βx2

)

≤ (αx1 + βx2)

[
αx1

αx1 + βx2
f

(
y1

x1

)
+ βx2

αx1 + βx2
f

(
y2

x2

)]

= αx1f

(
y1

x1

)
+ βx2f

(
y2

x2

)
= αPf (x1, y1)+ βPf (x2, y2) ,

which proves the joint convexity. -.
We have the following basic inequality for two values of the perspective function:

Theorem 1 Let f : (0,∞) → R be a differentiable convex function on (0,∞) .
Then for all (x, y) , (u, v) ∈ (0,∞)× (0,∞), we have the double inequality

f
(y
x

)
(x − u)+ f ′

(y
x

)(yu− xv
x

)
≥ Pf (x, y)− Pf (u, v)

≥ f
(v
u

)
(x − u)+ f ′

(v
u

)(yu− vx
u

)
. (2.1)

The inequality (2.1) is equivalent to the following two inequalities:

Pf (x, y) ≥ xf
(v
u

)
+ f ′

(v
u

)(yu− vx
u

)
(2.2)

and

Pf (u, v) ≥ uf
(y
x

)
− f ′

(y
x

)(yu− xv
x

)
(2.3)

for all (x, y) , (u, v) ∈ (0,∞)× (0,∞) .
The inequality (2.1) is also equivalent to the double inequality

f ′
(y
x

) (
y − xv

u

)
+xf

(v
u

)
≥ Pf (x, y) ≥ xf

(v
u

)
+f ′

(v
u

) (
y − xv

u

)
(2.4)

for all (x, y) , (u, v) ∈ (0,∞)× (0,∞) .
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Proof Observe that the following partial derivatives exist and for all (x, y) ∈
(0,∞)× (0,∞)

∂Pf (x, y)

∂x
= d

dx

(
xf

(y
x

))
= f

(y
x

)
+ x d

dx

(
f
(y
x

))

= f
(y
x

)
+ xf ′

(y
x

) d
dx

(y
x

)
= f

(y
x

)
− y
x
f ′

(y
x

)
,

∂Pf (x, y)

∂y
= d

dy

(
xf

(y
x

))
= x d

dy

(
f
(y
x

))

= xf ′
(y
x

) d
dy

(y
x

)
= f ′

(y
x

)
.

Also, for all (u, v) ∈ (0,∞)× (0,∞), we have

∂Pf (u, v)

∂x
= f

(v
u

)
− v
u
f ′

(v
u

)

and

∂Pf (u, v)

∂y
= f ′

(v
u

)
.

Since Pf is a convex function on (0,∞)× (0,∞) , then for all (x, y) , (u, v) ∈
(0,∞)× (0,∞), we have the gradient inequality

∂Pf (x, y)

∂x
(x − u)+ ∂Pf (x, y)

∂y
(y − v)

≥ Pf (x, y)− Pf (u, v)

≥ ∂Pf (u, v)
∂x

(x − u)+ ∂Pf (u, v)
∂y

(y − v) ,

namely, by the calculations above,

[
f
(y
x

)
− y
x
f ′

(y
x

)]
(x − u)+ f ′

(y
x

)
(y − v) (2.5)

≥ Pf (x, y)− Pf (u, v)
≥
[
f
(v
u

)
− v
u
f ′

(v
u

)]
(x − u)+ f ′

(v
u

)
(y − v) .



Integral Inequalities for Perspective Function 257

Since
[
f
(v
u

)
− v
u
f ′

(v
u

)]
(x − u)+ f ′

(v
u

)
(y − v)

= f
(v
u

)
(x − u)+ f ′

(v
u

)
(y − v)− v

u
f ′

(v
u

)
(x − u)

= f
(v
u

)
(x − u)+ f ′

(v
u

) [
y − v − v

u
(x − u)

]

= f
(v
u

)
(x − u)+ f ′

(v
u

)(yu− vx
u

)

and
[
f
(y
x

)
− y
x
f ′

(y
x

)]
(x − u)+ f ′

(y
x

)
(y − v)

= f
(y
x

)
(x − u)− y

x
f ′

(y
x

)
(x − u)+ f ′

(y
x

)
(y − v)

= f
(y
x

)
(x − u)+ f ′

(y
x

)
(y − v)− y

x
f ′

(y
x

)
(x − u)

= f
(y
x

)
(x − u)+ f ′

(y
x

)(yu− xv
x

)
,

hence, by (2.5), we get (2.1).
Now, observe that

f
(v
u

)
(x − u)+ f ′

(v
u

)(yu− vx
u

)

= f
(v
u

)
x − f

(v
u

)
u+ f ′

(v
u

)(yu− vx
u

)

= f
(v
u

)
x − Pf (u, v)+ f ′

(v
u

)(yu− vx
u

)

and by the second inequality in (2.1), we get

Pf (x, y)− Pf (u, v) ≥ f
(v
u

)
x − Pf (u, v)+ f ′

(v
u

)(yu− vx
u

)

namely, (2.2).
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Also,

f
(y
x

)
(x − u)+ f ′

(y
x

)(yu− xv
x

)

= xf
(y
x

)
− uf

(y
x

)
+ f ′

(y
x

)(yu− xv
x

)

= Pf (x, y)− uf
(y
x

)
+ f ′

(y
x

)(yu− xv
x

)

and by the first inequality in (2.1), we have

Pf (x, y)− uf
(y
x

)
+ f ′

(y
x

)(yu− xv
x

)
≥ Pf (x, y)− Pf (u, v) ,

namely, (2.3).
The inequality (2.3) can also be written as

f ′
(y
x

)(yu− xv
x

)
+ uf

(v
u

)
≥ uf

(y
x

)
.

By multiplying this inequality by x and dividing with u, we get

f ′
(y
x

)(yu− xv
u

)
+ xf

(v
u

)
≥ Pf (x, y) ,

which proves the last part of the theorem. -.
Corollary 1 With the assumptions of Theorem 1, we have

[
f
(y
x

)
− f ′

(y
x

)(y + x
x

)]
(x − y) ≥ Pf (x, y)− Pf (y, x)

≥
[
f

(
x

y

)
− f ′

(
x

y

)(
y + x
y

)]
(x − y) , (2.6)

f ′
(y
x

)
(y − v) ≥ Pf (x, y)− Pf (x, v) ≥ f ′

(v
x

)
(y − v) (2.7)

and
[
f
(y
x

)
− y
x
f ′

(y
x

)]
(x − u) ≥ Pf (x, y)− Pf (u, y) (2.8)

≥
[
f
(y
u

)
− y
u
f ′

(y
u

)]
(x − u) .
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If f is normalized, namely, f (1) = 0, then

f
(y
x

)
(x − u)+ u

x
f ′

(y
x

)
(y − x) ≥ Pf (x, y) ≥ f ′ (1) (y − x) (2.9)

and

f ′
(y
x

)
(y − x) ≥ Pf (x, y) ≥ f ′ (1) (y − x) . (2.10)

Remark 1 From the inequality (2.4), we have for u = y and v = x that

f ′
(y
x

)(y2 − x2

y

)
+ xf

(
x

y

)
≥ Pf (x, y) ≥ xf

(
x

y

)
+ f ′

(
x

y

)(
y2 − x2

y

)
.

(2.11)

By taking u = x in (2.4), we get

f ′
(y
x

)
(y − v)+ xf

(v
x

)
≥ Pf (x, y) ≥ xf

(v
x

)
+ f ′

(v
x

)
(y − v) . (2.12)

Also, for v = y in (2.4), we get

f ′
(y
x

)(u− x
u

)
y + xf

(y
u

)
≥ Pf (x, y) ≥ xf

(y
u

)
+ f ′

(y
u

)(u− x
u

)
y.

(2.13)

Consider the convex function f (t) = − ln t, t > 0. Then by the inequality (2.4),
we get

x2v

yu
− x + x ln

(u
v

)
≥ x ln

(
x

y

)
≥ x ln

(u
v

)
+ x − yu

v
(2.14)

for all (x, y) , (u, v) ∈ (0,∞)× (0,∞) .
If we divide by x > 0, then we get

xv

yu
− 1+ ln

(u
v

)
≥ ln

(
x

y

)
≥ ln

(u
v

)
+ 1− yu

xv
(2.15)

for all (x, y) , (u, v) ∈ (0,∞)× (0,∞) .
Also, consider the convex function f (t) = t ln t, t > 0. Then by the inequality

(2.4), we have

(
ln
(y
x

)
+ 1

) (
y − xv

u

)
+ xv
u

ln
(v
u

)
≥ y ln

(y
x

)

≥ xv
u

ln
(v
u

)
+
(

ln
(v
u

)
+ 1

) (
y − xv

u

)
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namely, by division with y > 0,

(
ln
(y
x

)
+ 1

)(
1− xv

yu

)
+ xv
yu

ln
(v
u

)
(2.16)

≥ ln
(y
x

)

≥ xv
yu

ln
(v
u

)
+
(

ln
(v
u

)
+ 1

)(
1− xv

yu

)

for all (x, y) , (u, v) ∈ (0,∞)× (0,∞) .

3 Double Integral Inequalities

Consider G a closed and bounded subset of (0,∞)× (0,∞) . Define

AG :=
∫ ∫

G

dxdy

the area of G and (xG, yG) the center of mass for G, where

xG := 1

AG

∫ ∫

G

xdxdy, yG := 1

AG

∫ ∫

G

ydxdy.

Observe that if f : (0,∞) → R is convex and G a closed and bounded subset of
(0,∞)× (0,∞), then the double integral

∫ ∫

G

Pf (x, y) dxdy =
∫ ∫

G

xf
(y
x

)
dxdy

exists.
We have the following main result:

Theorem 2 If f : (0,∞)→ R is differentiable convex on (0,∞) and G a closed
and bounded subset of (0,∞)× (0,∞), then

1

AG

[∫ ∫

G

f ′
(y
x

)
ydxdy − v

u

∫ ∫

G

f ′
(y
x

)
xdxdy

]
+ xGf

(v
u

)
(3.1)

≥ 1

AG

∫ ∫

G

Pf (x, y) dxdy ≥ xGf
(v
u

)
+
(
yG − xG v

u

)
f ′

(v
u

)

for all (u, v) ∈ G.
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Proof By taking the integral in the inequality (2.4) over (x, y) on G, we get

∫ ∫

G

f ′
(y
x

) (
y − xv

u

)
dxdy +

∫ ∫

G

xf
(v
u

)
dxdy (3.2)

≥
∫ ∫

G

Pf (x, y) dxdy

≥
∫ ∫

G

xf
(v
u

)
dxdy +

∫ ∫

G

f ′
(v
u

) (
y − xv

u

)
.

Observe that
∫ ∫

G

f ′
(y
x

) (
y − xv

u

)
dxdy

=
∫ ∫

G

f ′
(y
x

)
ydxdy − v

u

∫ ∫

G

f ′
(y
x

)
xdxdy,

∫ ∫

G

xf
(v
u

)
dxdy = f

(v
u

) ∫ ∫

G

xdxdy = xGAGf
(v
u

)

and
∫ ∫

G

f ′
(v
u

) (
y − xv

u

)
dxdy = f ′

(v
u

) ∫ ∫

G

(
y − xv

u

)
dxdy

= AG
(
yG − xG v

u

)
f ′

(v
u

)
.

By replacing these values in (3.2) and dividing by the areaAG, we obtain the desired
result (3.1). -.
Corollary 2 With the assumptions of Theorem 2, we have

0 ≤ 1

AG

∫ ∫

G

Pf (x, y) dxdy − xGf
(
yG

xG

)

≤ 1

AG

∫ ∫

G

f ′
(y
x

)(
y − yG

xG
x

)
dxdy. (3.3)

The proof follows by taking v
u
= yG
xG

in (3.1).
We define for f : (0,∞)→ R a differentiable function on (0,∞) the quantity

�G
(
f ′
) :=

∫ ∫
G
f ′

( y
x

)
ydxdy

∫ ∫
G
f ′

( y
x

)
xdxdy

,

provided that the denominator is nonzero.
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Corollary 3 With the assumptions of Theorem 2 and if �G
(
f ′
)
> 0, then

0 ≤ xGf
(
�G

(
f ′
))− 1

AG

∫ ∫

G

Pf (x, y) dxdy ≥
(
xG�G

(
f ′
)− yG

)
f ′

(
�G

(
f ′
))
.

(3.4)

The proof follows by taking v
u
= �G

(
f ′
)

in (3.1).
We observe that the condition f is strictly increasing on (0,∞) implies that

�G
(
f ′
)
> 0.

In 2002, Cerone and Dragomir [2] obtained the following refinement of Grüss
inequality for the general Lebesgue integral:

Lemma 2 Let w, f, g : ' → R be μ-measurable functions on ' and w ≥ 0
μ-almost everywhere on '. If there exist the constants δ,  such that

−∞ < δ ≤ g ≤  <∞,

μ-almost everywhere on ', then

∣∣∣∣

∫
' w (x) f (x) g (x) dμ (x)∫

' w (x) dμ (x)
−

∫
' w (x) g (x) dμ (x)∫
' w (x) dμ (x)

∫
' w (x) f (x) dμ (x)∫
' w (x) dμ (x)

∣∣∣∣

≤ 1

2

 − δ∫
' w (x) dμ (x)

∫

'

∣∣∣∣g (y)−
1∫

' w (x) dμ (x)

∫

'
w (x) g (x) dμ (x)

∣∣∣∣ dμ (y) .

(3.5)

The constant 1
2 is best possible.

We have:

Theorem 3 Let f : (0,∞)→ R be differentiable convex on (0,∞) andG a closed
and bounded subset of (0,∞)× (0,∞). Assume that there exist the constants γ, �
such that

−∞ < γ ≤ f ′
(y
x

)
≤ � <∞ (3.6)

for almost every (x, y) ∈ G; then

0 ≤ 1

AG

∫ ∫

G

Pf (x, y) dxdy − xGf
(
yG

xG

)

≤ 1

2
(� − γ ) 1

AG

∫ ∫

G

∣∣∣∣y −
yG

xG
x

∣∣∣∣ dxdy ≤
1

2
(� − γ ) I 1/2

G , (3.7)
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where

IG := 1

AG

∫ ∫

G

y2dxdy − 2
yG

xG

1

AG

∫ ∫

G

xydxdy +
(
yG

xG

)2 1

AG

∫ ∫

G

x2dxdy.

Proof Observe that

1

AG

∫ ∫

G

(
y − yG

xG
x

)
dxdy = 1

AG

(∫ ∫

G

ydxdy − yG
xG

∫ ∫

G

xdxdy

)

= yG − yG
xG
xG = 0.

Then by the inequality (3.5) for functions defined on G, we get

∣∣∣∣
1

AG

∫ ∫

G
f ′

(y
x

)(
y − yG

xG
x

)
dxdy

∣∣∣∣ =
∣∣∣∣

1

AG

∫ ∫

G
f ′

(y
x

)(
y − yG

xG
x

)
dxdy

− 1

AG

∫ ∫

G
f ′

(y
x

)
dxdy

1

AG

∫ ∫

G

(
y − yG

xG
x

)
dxdy

∣∣∣∣

≤ 1

2
(� − γ ) 1

AG

∫ ∫

G

∣∣∣∣y −
yG

xG
x − 1

AG

∫ ∫

G

(
u− yG

xG
v

)
dudv

∣∣∣∣ dxdy

≤ 1

2
(� − γ ) 1

AG

∫ ∫

G

∣∣∣∣y −
yG

xG
x

∣∣∣∣ dxdy.

By utilizing (3.3), we get

0 ≤ 1

AG

∫ ∫

G

Pf (x, y) dxdy − xGf
(
yG

xG

)

≤ 1

2
(� − γ ) 1

AG

∫ ∫

G

∣∣∣∣y −
yG

xG
x

∣∣∣∣ dxdy,

which proves the second inequality in (3.7).
Using Cauchy-Schwarz inequality for the double integral, we have

1

AG

∫ ∫

G

∣∣∣∣y −
yG

xG
x

∣∣∣∣ dxdy ≤
(

1

AG

∫ ∫

G

(
y − yG

xG
x

)2

dxdy

)1/2

. (3.8)

Since

∫ ∫

G

(
y − yG

xG
x

)2

dxdy =
∫ ∫

G

(
y2 − 2

yG

xG
xy +

(
yG

xG

)2

x2

)
dxdy

=
∫ ∫

G

y2dxdy − 2
yG

xG

∫ ∫

G

xydxdy +
(
yG

xG

)2 ∫ ∫

G

x2dxdy,

hence by (3.8), we get the last part of (3.7). -.
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Corollary 4 With the assumptions of Theorem 3 and if there exists 0 < m < M <

∞ such that

y

x
∈ [m,M] for all (x, y) ∈ G, (3.9)

then

0 ≤ 1

AG

∫ ∫

G
Pf (x, y) dxdy − xGf

(
yG

xG

)

≤ 1

2

[
f ′ (M)− f ′ (m)] 1

AG

∫ ∫

G

∣∣∣∣y −
yG

xG
x

∣∣∣∣ dxdy ≤
1

2

[
f ′ (M)− f ′ (m)] I1/2

G
.

(3.10)

Proof Since f ′ is increasing, then by (3.9), we have f ′ (m) ≤ f ′ ( y
x

) ≤ f ′ (M) ,
and by (3.7), we get the desired result. -.

We have:

Theorem 4 Let f : (0,∞)→ R be differentiable convex on (0,∞) andG a closed
and bounded subset of (0,∞)× (0,∞). Assume that there exist the constants γ, �
such that

∣∣∣f ′
(y
x

)
− f ′

(u
v

)∣∣∣ ≤ #
∣∣∣
y

x
− u
v

∣∣∣ <∞ (3.11)

for almost every (x, y) ∈ G; then

0 ≤ 1

AG

∫ ∫

G

Pf (x, y) dxdy − xGf
(
yG

xG

)
≤ #JG, (3.12)

where

JG := 1

AG

∫ ∫

G

y2

x
dxdy − (yG)

2

xG
.

Proof Observe that

1

AG

∫ ∫

G

f ′
(y
x

)(
y − yG

xG
x

)
dxdy

= 1

AG

∫ ∫

G

[
f ′

(y
x

)
− f ′

(
yG

xG

)](
y − yG

xG
x

)
dxdy.
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Therefore,

1

AG

∫ ∫

G

f ′
(y
x

)(
y − yG

xG
x

)
dxdy

≤ 1

AG

∫ ∫

G

∣∣∣∣

[
f ′

(y
x

)
− f ′

(
yG

xG

)](
y − yG

xG
x

)∣∣∣∣ dxdy

≤ 1

AG
#

∫ ∫

G

∣∣∣∣

(
y

x
− yG
xG

)(
y − yG

xG
x

)∣∣∣∣ dxdy

= 1

AG
#

∫ ∫

G

∣∣∣∣

(
y

x
− yG
xG

)(
y

x
− yG
xG

)∣∣∣∣ xdxdy

= 1

AG
#

∫ ∫

G

(
y

x
− yG
xG

)2

xdxdy

= 1

AG
#

∫ ∫

G

[
y2

x2
− 2

yG

xG

y

x
+
(
yG

xG

)2
]
xdxdy. (3.13)

Since

∫ ∫

G

[
y2

x2
− 2

yG

xG

y

x
+
(
yG

xG

)2
]
xdxdy

=
∫ ∫

G

y2

x
dxdy − 2

yG

xG

∫ ∫

G

y

x
xdxdy +

(
yG

xG

)2 ∫ ∫

G

xdxdy

=
∫ ∫

G

y2

x
dxdy − 2

yG

xG

∫ ∫

G

ydxdy +
(
yG

xG

)2 ∫ ∫

G

xdxdy

=
∫ ∫

G

y2

x
dxdy − 2AG

yG

xG
yG + AG

(
yG

xG

)2

xG =
∫ ∫

G

y2

x
dxdy − AG (yG)

2

xG
,

hence

1

AG

∫ ∫

G

[
y2

x2 − 2
yG

xG

y

x
+
(
yG

xG

)2
]
xdxdy = 1

AG

∫ ∫

G

y2

x
dxdy − (yG)

2

xG

and by (3.13), we get (3.12). -.
Corollary 5 If f : (0,∞) → R is twice differentiable convex on (0,∞) and if
there exists 0 < m < M <∞ such that the condition (3.9) holds, then we have

0 ≤ 1

AG

∫ ∫

G

Pf (x, y) dxdy − xGf
(
yG

xG

)
≤ ∥∥f ′′

∥∥
[m,M],∞ JG, (3.14)
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where

∥∥f ′′
∥∥

[m,M],∞ := sup
t∈[m,M]

∣∣f ′ (t)
∣∣ <∞.

4 Examples for Functions Defined on Rectangles

If G = [a, b]× [c, d] is a rectangle from (0,∞)× (0,∞) , then

∫ b

a

∫ d

c
Pf (x, y) dxdy =

∫ b

a
x

(∫ d

c
f
(y
x

)
dy

)
dx =

∫ b

a
x2

(∫ d
x

c
x

f (u) du

)
dx,

and

AG = (b − a) (d − c) , xG = a + b
2

and yG = c + d
2
.

If F is an antiderivative for f, namely, F ′ (x) = f (x) , then integrating by
parts we have the following identity that can be used in applications to calculate∫ b
a

∫ d
c
Pf (x, y) dxdy

∫ b

a

x2

(∫ d
x

c
x

f (u) du

)
dx =

∫ b

a

x2
(
F

(
d

x

)
− F

( c
x

))
dx

= 1

3

∫ b

a

(
F

(
d

x

)
− F

( c
x

))
d
(
x3
)

= 1

3

[(
F

(
d

b

)
− F

( c
b

))
b3 −

(
F

(
d

a

)
− F

( c
a

))
a3
]

− 1

3

∫ b

a

x3
(
−F ′

(
d

x

)(
d

x2

)
+ F ′

( c
x

) c
x2

)
dx

= 1

3

[(
F

(
d

b

)
− F

( c
b

))
b3 −

(
F

(
d

a

)
− F

( c
a

))
a3
]

− 1

3

∫ b

a

x

(
−df

(
d

x

)
+ cf

( c
x

))
dx

= 1

3

[(
F

(
d

b

)
− F

( c
b

))
b3 −

(
F

(
d

a

)
− F

( c
a

))
a3
]

+ 1

3
d

∫ b

a

xf

(
d

x

)
dx − 1

3
c

∫ b

a

xf
( c
x

)
dx.
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We also have

I[a,b]×[c,d] = (b − a)
(
d3 − c3

)

3 (b − a) (d − c) − 2
c + d
a + b

(
b2 − a2

) (
d2 − c2

)

4 (b − a) (d − c)

+
(
c + d
a + b

)2 (d − c) (b3 − a3
)

3 (b − a) (d − c)

=
(
d2 + dc + c2

)

3
− c + d
a + b

(b + a) (d + c)
2

+
(
c + d
a + b

)2 (
b2 + ba + a2

)

3

= 1

6 (a + b)2

×
[
2
(
d2 + dc + c2

)
(a + b)2 − 3 (b + a)2 (d + c)2 + 2 (d + c)2

(
b2 + ba + a2

)]

= 1

6 (a + b)2

×
[
2
(
(d + c)2 − dc

)
(a + b)2 − 3 (b + a)2 (d + c)2 + 2 (d + c)2

(
(b + a)2 − ba

)]

= 1

6 (a + b)2
[
(d + c)2 (a + b)2 − 2dc (a + b)2 − 2ba (d + c)2

]
.

On the other hand,

J[a,b]×[c,d] := 1

(b − a) (d − c)
∫ b

a

∫ d

c

y2

x
dxdy − (c + d)2

2 (a + b)

= (ln b − ln a)
(
d2 + dc + c2

)

3 (b − a) − (c + d)2
2 (a + b) .

If (x, y) ∈ [a, b]× [c, d] ⊂ (0,∞)× (0,∞) , then

m = c

b
≤ y
x
≤ d
a
= M

From the inequality (3.10), we have for a differentiable convex function f :
(0,∞)→ R

0 ≤ 1

(b − a) (d − c)
∫ b

a

∫ d

c

Pf (x, y) dxdy − a + b
2
f

(
c + d
a + b

)

≤ 1

2

[
f ′

(
d

a

)
− f ′

( c
b

)] 1

(b − a) (d − c)
∫ b

a

∫ d

c

∣∣∣∣y −
c + d
a + bx

∣∣∣∣ dxdy



268 S. S. Dragomir

≤ 1

2
√

6 (a + b)
[
f ′

(
d

a

)
− f ′

( c
b

)]

×
[
(d + c)2 (a + b)2 − 2dc (a + b)2 − 2ba (d + c)2

]1/2
. (4.1)

If f : (0,∞)→ R is twice differentiable convex function, then by (3.14)

0 ≤ 1

(b − a) (d − c)
∫ b

a

∫ d

c

Pf (x, y) dxdy − a + b
2
f

(
c + d
a + b

)

≤ ∥∥f ′′
∥∥[

c
b
, d
a

]
,∞

[
(ln b − ln a)

(
d2 + dc + c2

)

3 (b − a) − (c + d)2
2 (a + b)

]
. (4.2)

The case of squares [a, b]× [a, b] provides simpler forms as follows:

0 ≤ 1

(b − a)2
∫ b

a

∫ b

a

Pf (x, y) dxdy − a + b
2
f (1)

≤ 1

2

[
f ′

(
b

a

)
− f ′

(a
b

)] 1

(b − a)2
∫ b

a

∫ b

a

|y − x| dxdy

= 1

6

[
f ′

(
b

a

)
− f ′

(a
b

)]
(b − a) (4.3)

for a differentiable convex function f : (0,∞)→ R and [a, b] ⊂ (0,∞) , and

0 ≤ 1

(b − a)2
∫ b

a

∫ b

a

Pf (x, y) dxdy − a + b
2
f (1)

≤ ∥∥f ′′
∥∥[

a
b
, b
a

]
,∞

[
(ln b − ln a)

(
a2 + ab + b2

)

3 (b − a) − a + b
2

]
(4.4)

if f : (0,∞)→ R is twice differentiable convex function and [a, b] ⊂ (0,∞) .

5 Examples for Functions Defined on Circular Sectors

We consider the first quarter of the circle

Q(R) :=
{
(x, y) | x = r cos θ, y = r sin θ with r ∈ [0, R] , θ ∈

[
0,
π

2

]}
.
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Using the polar coordinates change of variable, we have

∫ ∫

Q(R)

Pf (x, y) dxdy =
∫ ∫

Q(R)

xf
(y
x

)
dxdy

=
∫ R

0

∫ π
2

0
r2 cos θf (tan (θ)) drdθ = R

3

3

∫ π
2

0
cos θf (tan (θ)) dθ

where f : (0,∞)→ R is convex and the integral
∫ π

2
0 cos θf (tan (θ)) dθ is finite.

We have

AQ(R) =
∫ ∫

Q(R)

dxdy =
∫ R

0

∫ π
2

0
rdrdθ = πR

2

4

xQ(R) := 1

AQ(R)

∫ ∫

Q(R)

xdxdy = 1
πR2

4

∫ R

0

∫ π
2

0
r2 cos θdrdθ = 4

3π
R

and

yQ(R) := 1

AQ(R)

∫ ∫

Q(R)

ydxdy = 1
πR2

4

∫ R

0

∫ π
2

0
r2 sin θdrdθ = 4

3π
R.

From the inequality (3.3), we have

0 ≤
∫ π

2

0
cos θf (tan (θ)) dθ − f (1) ≤

∫ π
2

0
f ′ (tan (θ)) (sin θ − cos θ) dθ,

(5.1)

for f : (0,∞)→ R convex and provided that the involved integrals exist.
Consider

�Q(R)
(
f ′
) :=

∫ π
2

0 f ′ (tan (θ)) cos θdθ
∫ π

2
0 f ′ (tan (θ)) sin θdθ

, (5.2)

provided the involved integrals exists, and assume that �Q(R)
(
f ′
)
> 0; then by

(3.4), we get

0 ≤ f (
�Q(R)

(
f ′
))−

∫ π
2

0
cos θf (tan (θ)) dθ ≤ (

�Q(R)
(
f ′
)− 1

)
f ′

(
�Q(R)

(
f ′
))
,

(5.3)

for f : (0,∞)→ R convex and provided that the involved integrals exist.
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We can also consider the circular sector

Q(R, θ1, θ2) := {(x, y) | x = r cos θ, y = r sin θ with r ∈ [0, R] , θ ∈ [θ1, θ2]} ,

where [θ1, θ2] ⊂ [
0, π2

]
.

Then

∫ ∫

Q(R,θ1,θ2)

Pf (x, y) dxdy = R
3

3

∫ θ2

,θ1

cos θf (tan (θ)) dθ

AQ(R,θ1,θ2) =
R2

2
(θ2 − θ1) ,

xQ(R,θ1,θ2) =
2R

3

sin θ2 − sin θ1

θ2 − θ1

and

yQ(R,θ1,θ2) =
2R

3

cos θ1 − cos θ2

θ2 − θ1
.

We also have

JQ(R,θ1,θ2) :=
2R

3

1

θ2 − θ1

[∫ θ2

θ1

sin2 θ

cos θ
dθ − (cos θ2 − cos θ1)

2

sin θ2 − sin θ1

]
.

Since

∫ θ2

θ1

sin2 θ

cos θ
dθ = ln

⎛

⎝
tan

(
θ2
2 + π

4

)

tan
(
θ1
2 + π

4

)

⎞

⎠− (sin θ2 − sin θ1) ,

hence

∫ θ2

θ1

sin2 θ

cos θ
dθ − (cos θ2 − cos θ1)

2

sin θ2 − sin θ1

= ln

⎛

⎝
tan

(
θ2
2 + π

4

)

tan
(
θ1
2 + π

4

)

⎞

⎠− (sin θ2 − sin θ1)
2 + (cos θ2 − cos θ1)

2

sin θ2 − sin θ1
.

Moreover,

y

x
= sin θ

cos θ
= tan (θ) ∈ [tan (θ1) , tan (θ2)]
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and by (3.14), we get

0 ≤ 1

θ2 − θ1

∫ θ2

,θ1

cos θf (tan (θ)) dθ − sin θ2 − sin θ1

θ2 − θ1
f

(
cos θ1 − cos θ2

sin θ2 − sin θ1

)

≤ ∥∥f ′′
∥∥

[tan(θ1),tan(θ2)],∞

× 1

θ2 − θ1

⎡

⎣ln

⎛

⎝
tan

(
θ2
2 + π

4

)

tan
(
θ1
2 + π

4

)

⎞

⎠− (sin θ2 − sin θ1)
2 + (cos θ2 − cos θ1)

2

sin θ2 − sin θ1

⎤

⎦

(5.4)

provided f : (0,∞) → R is twice differentiable convex on (0,∞) and [θ1, θ2] ⊂[
0, π2

]
.

By utilizing the above general results, the interested reader may obtain other
inequalities for the integral of perspective on the circular sectors. The details are not
presented here.
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On the Maximum Value of a
Multi-variable Function

Soheila Emamyari and Mehdi Hassani

Abstract In this paper, we find the maximum value of a multi-variable function,
related by an optimization problem. Our method of maximizing this function is
geometric, without applying the partial derivatives tests and the concept of Hessian
matrix.

1 Introduction

Because of applications of canals to convey water for irrigation, industrial, and
domestic uses around the world, some of scientists study canals in various points
of view, including design of minimum water loss canal sections. Canals with
trapezoidal section consisting of cement bricks are the most common and practical
kind of canals, and a big number of abovementioned studies are about their cross
sections. In this paper, we consider the problem of maximizing cross section of the
canal consisting of 2n + 1 bricks, symmetrically, as in Fig. 1. We assume that the
length of similar bricks is 1.

The case n = 1 is related to the canal consisting of three bricks and maximizing
the function f (x) = (1 + cos x) sin x, where x denote the angle between slope of
canal and horizon. A simple calculus argument shows that

max
x∈[0, π2 ]

f (x) = f
(π

3

)
= 3

√
3

4
.
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Fig. 1 Cross section of a canal consisting of 2n+ 1 similar bricks

For n ≥ 2, maximizing cross section of the symmetric canal consisting of 2n + 1
bricks is related to maximizing the multi-variable function F : Rn→ R defined by

F(x1, x2, . . . , xn) =
n∑

k=1

(sin xk) (1+ cos xk)+ 2
n∑

k=2

(
(sin xk)

k−1∑

j=1

cos xj
)
. (1)

In Sect. 2, we study F for the case n = 2 by using partial derivative test. We
observe that applying the partial derivative tests and the concept of Hessian matrix
for arbitrary n is not easy. Instead, we suggest a geometric argument, based on the
fact (see [1], page 129) asserting that “Of all convex n-gons of a given perimeter,
the one which maximizes area is the regular n-gon.” This fact, which is a variant
of isoperimetric theorem formulated for convex n-gons, allows us to prove the
following.

Theorem 1 Let n ≥ 2. For x1, x2, . . . , xn ∈ [0, π2 ], the maximum value of the
multi-variable function F defined by (1) occurs at

xk = kπ

2n+ 1
(1 ≤ k ≤ n).

Moreover, as n→∞, we have

max
x1,x2,...,xn∈[0, π2 ]

F = 2n+ 1

4
cot

π

2(2n+ 1)
= 2

π
n2+ 2

π
n+

(
1

2π
− π

24

)
+O(n−2).

2 Theorem 1 for the Case n = 2

We consider a symmetric shape as in Fig. 2. We assume that chords are similar with
length 1, and we denote its area by A.
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b

h

by

y

hy
y

cybx

x
hx

x
1 cx

Fig. 2 A symmetric shape with area A = F(x, y)

Let A1 and A2 be areas of lower and upper isosceles trapezoids, respectively. We
have

A1 = hx
2
(1+ bx),

and

A2 = hy
2
(bx + by).

Since hx = sin x and bx = 1+ 2cx = 1+ 2 cos x, we obtain

A1 = (sin x)(1+ cos x).

Similarly, by considering hy = sin y and by = bx + 2cy = 1 + 2 cos x + 2 cos y,
we get

A2 = (sin y)(1+ 2 cos x + cos y).

Since A = A1 + A2, we have

A = (sin x)(1+ cos x)+ (sin y)(1+ cos y)+ 2 cos x sin y = F(x, y).

The maximum value of the function F(x, y) appears in some point inside the region
[0, π2 ]× [0, π2 ]. To find this point, we should solve the system of equations given by

∇F(x, y) = 0.

Figure 3 shows surface of the function z = F(x, y) on the domain [0, π ]×[0, π ] and
its level curves. This figure shows that most likely the maximum value of F(x, y)
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Fig. 3 Left: surface of the function z = F(x, y) on [0, π ]×[0, π ]. Right: level curves of F(x, y),
the line y = 2x, and the point ( π5 ,

2π
5 ), where the maximum value of F(x, y) occurs

occurs at a point (x, y) satisfying y = 2x. We put y = 2x in ∂
∂x
F (x, y) = 0, and we

apply the change of the variable t = cos x, from which we obtain the cubic equation

4t3+2t2−3t−1 = 0, with solutions−1, 1±√5
4 . Since x ∈ (0, π2 ), acceptable value

is cos x = t = 1+√5
4 . Thus, x = π

5 and y = 2x = 2π
5 . Moreover, we observe that

∇F
(π

5
,

2π

5

)
= 0.

Thus, the maximum value of F(x, y) is

max
x,y∈[0, π2 ]

F(x, y) = F
(π

5
,

2π

5

)
= 5

4

√
5+ 2

√
5.

3 Proof of Theorem 1

We consider a symmetric shape as in the left graph of Fig. 4. We assume that
chords are similar with length 1, and we denote its area by A. We show that
the area of cross cutting is F(x1, x2, . . . , xn), where x1, x2, . . . , xn are the slope
angles. Thus, the proof of Theorem 1 is based on finding x1, x2, . . . , xn such that
we achieve the maximum area of a shape consisting of n isosceles trapezoids with
areas A1, A2, . . . , An.

We set b0 = 1. Also, we let bk be the top side of isosceles trapezoid Ak and hk
its height. For 1 ≤ k ≤ n, we have Ak = hk

2 (bk−1 + bk). By considering Fig. 4, the
right graph, we have
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An xn

A1

A2

x1

x2

b0=1

bk

A hk
x

Ak

bk-1 ck

xk

Fig. 4 Up: a symmetric shape with area A = F(x1, . . . , xn). Down: kth isosceles trapezoid and
its related parameters

bk = bk−1 + 2ck = bk−1 + 2 cos xk.

Thus, for 1 ≤ k ≤ n, we obtain

Ak = (sin xk)(bk−1 + cos xk).

For 1 ≤ j ≤ k, we have bj − bj−1 = 2 cos xj . Summing over j = 1, . . . , k, we
imply that bk = 1+ 2

∑k
j=1 cos xj for k ≥ 1. Hence,

Ak = (sin xk)
(

1+ cos xk + 2
k−1∑

j=1

cos xj
)
,

for 2 ≤ k ≤ n. Also, we note that A1 = (sin x1)(1 + cos x1). Thus, for n ≥ 2, we
obtain

A =
n∑

k=1

Ak = F(x1, x2, . . . , xn),

where F is defined by (1).
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η xk
η

xk

- x

x

xk-1

O

xk-1

xkλ k

xk 1
R
λ

k-1

η

A B

η

Fig. 5 A regular convex 2(2n+ 1)-gon

Now, we consider Fig. 5. The isoperimetric theorem implies that twice of the
maximum of A is related by a regular convex 2(2n+ 1)-gon. Based on this fact, we
compute slope angles x1, x2, . . . , xn for which maximum value of the function F
occurs. Considering the right-hand side graph of Fig. 5, we let

λ = π

2n+ 1
,

and

η = π
2

(
1− 1

2n+ 1

)
.

Also, if we let x0 = 0, then for 1 ≤ k ≤ n, we imply that

xk + (π − xk−1)+ 2η = 2π,

and this gives

xk = kλ = kπ

2n+ 1
, (1 ≤ k ≤ n).

Therefore, we obtain

max
x1,x2,...,xn∈[0, π2 ]

F(x1, x2, . . . , xn) = F
(

π

2n+ 1
,

2π

2n+ 1
, . . . ,

nπ

2n+ 1

)
:= G(n),

say. We have
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G(n) =
n∑

k=1

(
sin

kπ

2n+ 1

)(
1+ cos

kπ

2n+ 1

)
+ 2

n∑

k=2

⎛

⎝
(

sin
kπ

2n+ 1

) k−1∑

j=1

cos
jπ

2n+ 1

⎞

⎠ .

On the other hand, by considering the right-hand side of Fig. 5, we have R =
1
2 csc λ2 . Since G(n) = 1

2 area of regular 2(2n + 1)-gon, or G(n) = 2(2n+1)
2 area

of triangle OAB, we obtain

G(n) = 2(2n+ 1)

2

(
1

4
cot
λ

2

)
.

Hence,

G(n) = 2n+ 1

4
cot

π

2(2n+ 1)
.

It remains to obtain asymptotic expansion for G(n). As n→∞, we have

cot
π

2(2n+ 1)
= 1

tan π
2(2n+1)

= 1

π
2(2n+1)

(
1+ 1

3

(
π

2(2n+1)

)2 +O(n−4)

) .

Thus,

cot
π

2(2n+ 1)
= 2(2n+ 1)

π

(
1− 1

3

(
π

2(2n+ 1)

)2

+O(n−4)

)
.

Hence,

G(n) = 2

π
n2 + 2

π
n+

(
1

2π
− π

24

)
+O(n−2).

This completes the proof of Theorem 1.

Remark 1 We observe that the above geometrical argument allows us to compute
the summations

∑n
k=1 cos kπ

2n+1 and
∑n
k=1 sin kπ

2n+1 . We consider the right-hand side
graph of Fig. 5 to write

n∑

k=1

ck = R − 1

2
= 1

2

(
csc

π

2(2n+ 1)
− 1

)
.

This implies

n∑

k=1

cos
kπ

2n+ 1
= 1

2

(
csc

π

2(2n+ 1)
− 1

)
.
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Also, we have
∑n
k=1 hk = h, where h is the distance of O from AB; hence, we have

h = 1
2 cot π

2(2n+1) . Thus, we obtain

n∑

k=1

sin
kπ

2n+ 1
= 1

2
cot

π

2(2n+ 1)
.
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Image Reconstruction for Positron
Emission Tomography Based on
Chebyshev Polynomials

George Fragoyiannis, Athena Papargiri, Vassilis Kalantonis,
Michael Doschoris, and Panayiotis Vafeas

Abstract The study of the functional characteristics of the brain plays a crucial
role in modern medical imaging. An important and effective nuclear medicine
technique is positron emission tomography (PET), whose utility is based upon
the noninvasive measure of the in vivo distribution of imaging agents, which are
labeled with positron-emitting radionuclides. The main mathematical problem of
PET involves the inverse Radon transform, leading to the development of several
methods toward this direction. Herein, we present an improved formulation based
on Chebyshev polynomials, according to which a novel numerical algorithm is
employed in order to interpolate exact simulated values of the Randon transform
via an analytical Shepp–Logan phantom representation. This approach appears to be
efficient in calculating the Hilbert transform and its derivative, being incorporated
within the final analytical formulae. The numerical tests are validated by comparing
the presented methodology to the well-known spline reconstruction technique.
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1 Introduction

Modern brain medical imaging is directly associated with positron emission tomog-
raphy (PET), a state-of-the-art technique that allows the study of a wide range of
physiological and pathological processes in vivo, and it is frequently combined
with computed tomography (CT) and magnetic resonance imaging (MRI) to
provide additional anatomical and metabolic information. In fact, PET is used to
measure brain metabolism via gamma-ray emissions from radioactively labeled and
metabolically active chemical agents that have been injected into the bloodstream,
whereas the measured emission data are numerically processed in order to construct
multidimensional images of the distribution of the radiopharmaceutical in the
brain [17, 20, 27].

PET is mathematically based on the Radon transform, representing the output of
a tomographic scan, and its inverse, being responsible for reconstructing the original
data [7, 19]. However, the numerical implementation of the explicitly defined inverse
Radon transform is in general complicated, since it depends on the occurrence
of the Hilbert transform [9, 12], which is necessary for the aforementioned data
processing. The difficulties in the computation of the Hilbert transform are closely
related to the singularities involved, wherein special methods must be adopted to
overcome the indeterminacies. Actually, the main goal of this process is to achieve
a satisfactory image reconstruction, which is an essential feature in tomographic
medical imaging, allowing tomographic images to be acquired from a set of two-
dimensional projection data. Doing so, critical information about the functional
characteristics of the brain is recovered, providing the adequate insight that is
vital in the wide area of clinical medicine, including neurology, oncology, and
cardiology.

In this study, we propose an efficient deterministic method that is designed to
reconstruct images from real Radon transform data, taking much advantage from
the Chebyshev polynomials [21, 25]. In particular, our first task is to provide the
appropriate tools in order to construct the Radon transform and obtain easy-to-
handle analytical formulae. Then, we introduce an effective, fast, and accurate
algorithm to numerically implement the integral relationships and process the
given data via Chebyshev interpolation. This technique is based on the numerical
evaluation of the Hilbert transform associated with the Radon transform, which is
crucial for the manipulation of the implicated relations. Further analysis includes
the comparison of the presented algorithm and its efficiency against a variation of
the spline reconstruction technique [7, 16], where the outcome gives rise to the
fact that the proposed methodology is a solid and credible tool in the direction
of brain image reconstruction. The technical part of this chapter incorporates
many basic mathematical and computational tools, whose references are available
in [4, 6, 7, 10, 15, 22, 23], providing adequate information to the interested
reader.

The rest of this chapter is organized as follows. In Sect. 2, we present a brief
overview of the relative mathematical background, wherein a more detailed analysis
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can be found in [4]. Section 3 renders the spline reconstruction technique, wherein
Sect. 4 is devoted to the Chebyshev reconstruction method. Finally, in Sect. 5, we
provide a numerical implementation of our semi-analytical methodology, while we
end up with a summary of this project in Sect. 6.

2 Mathematical Formulation

The Radon transform of the continuous function g : R2 → R is the function R{g},
defined by the line integral of g along each line L on the 2D space of all straight
lines in the x1x2 plane with coordinates (ρ and θ) and parameter τ ∈ (−∞,+∞).
The coordinate ρ ∈ (−∞,+∞) represents the distance of L from the origin, while
θ ∈ [0, 2π) is the angle of this line with respect to the x1-axis, as shown in Fig. 1.
Hence, the Cartesian coordinates of a point (x1, x2) on each of these lines are

x1 = τ cos θ − ρ sin θ

x2 = τ sin θ + ρ cos θ,
(1)

which implies that

ρ = x2 cos θ − x1 sin θ

τ = x2 sin θ + x1 cos θ,
(2)

and the Radon transform is written as [24]

R {g (ρ, θ)} =
∫

L

g (x1, x2) dτ

=
∫ ∞

−∞
g (τ cos θ − ρ sin θ, τ sin θ + ρ cos θ) dτ .

(3)

The inverse formula of (3) is given by Fokas et al. [7] and Radon [24]

g (x1, x2) = 1

4iπ2

∫ 2π

0
eiθ

(
∂

∂x1
− i ∂
∂x2

)

×
(

p.v.
∫ +∞

−∞
R
{
g
(
ρ′, θ

)}

ρ′ − (x2 cos θ − x1 sin θ)
dρ′

)
dθ

= − 1

4π2

∫ 2π

0

∂

∂ρ

(
p.v.

∫ +∞

−∞
R
{
g
(
ρ′, θ

)}

ρ′ − ρ dρ′
)
dθ

= − 1

4π2

∫ 2π

0

∂

∂ρ
H {R {g (ρ, θ)}} dθ,

(4)
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Fig. 1 The coordinates (ρ and θ) of an arbitrary line L. The line integral of function g(x1, x2)

along this line is the Radon transform R{g(ρ, θ)}

where p.v. is the Cauchy principal value [18] and H stands for the Hilbert transform,
while the derivative ∂ρH is known as the Hadamard transform [9].

For simplicity, in what follows, we denote the function R{g(ρ, θ)} by f (ρ), as
the case may be, where it is implied that f is also a function of θ . Furthermore,
we assume that g vanishes outside the circle x2

1 + x2
2 = ρ2 + τ 2= 1, and therefore

we can consider that ρ ∈ [ − 1, 1]. Hence, the Hilbert transform of the function
f : R→ R is given by the generalized integral

H {f (c)}= p.v.
∫ 1

−1

f (x)

x − cdx, (5)

in which we take the Cauchy principal value for the singular point x = c, yielding

H {f (c)} = lim
ε→0+

[∫ c−ε

−1

f (x)

x − cdx +
∫ 1

c+ε
f (x)

x − cdx
]
. (6)

Relationship (6) can be written as [9–11]

H {f (c)} =
∫ 1

−1

f (x)− f (c)
x − c dx + f (c)

∫ 1

−1

1

x − cdx

=
∫ 1

−1

f (x)− f (c)
x − c dx + f (c) ln

(
1− c
1+ c

)
,

(7)

wherein the singularity at the point x = c has been eliminated.
As far as PET is concerned, the main problem is the reconstruction of the

original image function g(x1, x2), given a number of measured values of its
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projections f (ρ, θ) for specific values of ρ and θ . The difficulty in the numerical
implementation of this inversion is the accurate evaluation of the Hilbert transform
and its derivative.

In order to evaluate the image reconstruction methods via the inverse Radon
transform relation (4), we utilize noiseless simulated data that correspond to the
standard Shepp–Logan phantom (see Fig. 2). The corresponding sinogram (as
usually reported) can be constructed via a closed-form expression in terms of
the coordinates ρ and θ . Indeed, the Shepp–Logan phantom is constituted by the
superposition of ellipses with distinct centers, orientations, and semi-axes [15].
Inside these ellipses, which lie on the domain [−1, 1]×[−1, 1], the intensity takes
specific constant values, which are shown in Table 1. Assuming a single ellipse with
center at (x0, y0) and semi-axes A and B, whose large semi-axis A is forming angle
φ with respect to the x1-axis, we can show that the Radon transform (along the line
with coordinates ρ and θ ) of the relative intensity function g(x1, x2) = λ is given
by

R {g (ρ, θ)}

= λ2AB
√
A2sin2 (θ − φ)+ B2cos2 (θ − φ)− (ρ + x0 sin θ − y0 cos θ)2

A2sin2 (θ − φ)+ B2cos2 (θ − φ) .

(8)

Hence, substituting A,B, x0, y0, and φ in the above relation with the corresponding
values for each ellipse (see Table 1) and then summing the corresponding functions
R
{
gj (ρ, θ)

}
, we obtain the closed-form expression of the Radon transform of the

Fig. 2 The exact
Shepp–Logan phantom. It is
used to produce the simulated
PET scan data via the
corresponding analytic
expression of R{g(ρ, θ)}
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Table 1 Parameters of the ellipses that constitute the Shepp–Logan phantom

Semi-major Semi-minor
Center (x0, y0) axis A axis B Angle φ Intensity λ

(0,0) 0.92 0.69 90◦ 1

(0,−0.0184) 0.874 0.6624 90◦ −0.8

(0.22,0) 0.31 0.11 72◦ −0.1

(−0.22,0) 0.41 0.16 108◦ −0.1

(0,0.35) 0.25 0.21 90◦ 0.2

(0,0.1) 0.046 0.046 0◦ 0.2

(0,−0.1) 0.046 0.046 0◦ 0.2

(−0.08,−0.605) 0.046 0.023 0◦ 0.2

(0.06,−0.605) 0.046 0.023 90◦ 0.2

(0,−0.605) 0.023 0.023 0◦ 0.2

Shepp–Logan phantom, which will be later utilized in the numerical implementa-
tion.

3 Spline Reconstruction

We assume that for a given projection angle θ , the function f is approximated by
piecewise cubic polynomials in the interval [ − 1, 1], divided into N − 1 equally
spaced subintervals of length h = xi+1 − xi , i.e.,

f (x) ≈ fi (x) = Ai(x − xi)3 +Bi(x − xi)2 +Ci (x − xi)+Di, x ∈ [xi, xi+1].
(9)

The coefficients Ai, Bi, Ci, and Di are functions of the coordinate θ , while they
depend upon the type of spline that is utilized [3, 14]. Here, we consider the cubic
Hermite spline and the B-spline.

In the case of the cubic Hermite spline, the approximation of f (x) in the
subinterval [xi, xi+1] is given by

f (x) ≈
(

2t3 − 3t2 + 1
)
f (xi)+

(
t3 − 2t2 + t

)
f ′ (xi) h

+
(
−2t3 + 3t2

)
f (xi+1)+

(
t3 − t2

)
f ′ (xi+1) h,

(10)

where t= (x − xi)/h, while the terms f ′(xi) are unknown. Expression (10) is
equivalent to the relation (9), if we assume that

Ai = 2f (xi)− 2f (xi+1)+ hf ′ (xi)+ hf ′ (xi+1)

h3
, (11)
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Bi = 3f (xi+1)− 3f (xi)− 2hf ′ (xi)− hf ′ (xi+1)

h2 (12)

and

Ci = f ′ (xi) , Di = f (xi) . (13)

For the derivatives f ′(xi), we consider the fourth-order centered difference approx-
imation

f ′ (xi) = −f (xi+2)+ 8f (xi+1)− 8f (xi−1)+ f (xi−2)

12h
+O

(
h4
)
, (14)

where at the end points we consider that

f ′ (x1) = −f (x3)+ 4f (x2)− 3f (x1)

2h
, f ′ (x2) = f (x3)− f (x1)

2h
(15)

and

f ′ (xN) = 3f (xN)− 4f (xN−1)+ f (xN−2)

2h
, f ′ (xN−1) = f (xN)− f (xN−2)

2h
.

(16)
In the case of the uniform B-spline, the terms Ai, Bi, Ci, and Di within (9) take

the form

Ai = 3f (xi)− f (xi−1)− 3f (xi+1)+ f (xi+2)

6h3 , (17)

Bi = 3f (xi−1)− 6f (xi)+ 3f (xi+1)

6h2
, (18)

Ci = 3f (xi+1)− 3f (xi−1)

6h
, (19)

and

Di = f (xi−1)+ 4f (xi)+ f (xi+1)

6
, (20)

respectively, while at the end points we consider that f (x0) = f (x1) and
f (xN+1) = f (xN).

Next, from the relation (7), we obtain [7]

H {f (c)} =
N−1∑

i=1

Ii + f (c) ln

(
1− c
1+ c

)
, (21)
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where

Ii =
∫ xi+h

xi

fi (x)− f (c)
x − c dx, (22)

and therefore, if c ∈ [
xj , xj+1

]
, we get

Ij =
∫ xj+h

xj

fj (x)− f (c)
x − c dx

=
∫ xj+h

xj

fj (x)− fj (c)
x − c dx, (23)

which, due to (9), becomes

Ij ≈
∫ xj+h

xj

Aj

[(
x − xj

)3 − (
c − xj

)3
]
+ Bj

[(
x − xj

)2 − (
c − xj

)2
]
+ Cj (x − c)

x − c dx

= Ajh
(
c − xj

)2 +
(
Bjh+ 1

2
Ajh

2
) (
c − xj

)+ 1

3
Ajh

3 + 1

2
Bjh

2 + Cjh,
(24)

while for i 	= j and according to (9), it holds that

Ii ≈
∫ xi+h

xi

Ai(x − xi)3 + Bi(x − xi)2 + Ci (x − xi)+Di − f (c)
x − c dx

= Aih(c − xi)2 +
(
Bih+ 1

2
Aih

2
)
(c − xi)+ 1

3
Aih

3 + 1

2
Bih

2 + Cih

+
[
Ai(c − xi)3 + Bi(c − xi)2 + Ci (c − xi)+Di − f (c)

]
ln

(
xi + h− c
xi − c

)
.

(25)

Hence, we obtain

H {f (c)} ≈
N−1∑

i=1,i 	=j
Ii + Ij + f (c) ln

(
1− c
1+ c

)
, (26)

where

f (c) = Aj
(
c − xj

)3 + Bj
(
x − xj

)2 + Cj
(
x − xj

)+Dj, (27)

and finally

d

dc
H {f (c)} ≈

N−1∑

i=1

Ji, (28)
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where

Ji= 2Aih (c − xi)+
(
Bih+ 1

2
Aih

2
)

+
[
3Ai(c − xi)2 + 2Bi (c − xi)+ Ci

]
ln

∣∣∣∣
xi + h− c
xi − c

∣∣∣∣

+
[
Ai(c − xi)3 + Bi(c − xi)2 + Ci (c − xi)+Di

] h

(c − xi) (c − xi − h) .
(29)

4 The Proposed Chebyshev Reconstruction Method

In this method, the function f (x) (for a specific projection angle θ ) is approximated
via a Chebyshev interpolating polynomial P(x) [5, 21], given a set of samples f (xn)
at the points xn, that is,

f (x) ≈ P (x) =
N∑

k=1

wkakTk−1 (x), x ∈ [ − 1, 1] (30)

with

wk =
⎧
⎨

⎩

√
1
N

k = 1√
2
N

k ≥ 2,
(31)

where Tk are the Chebyshev polynomials of the first kind,

ak = wk
N∑

n=1

f (xn) cos

(
(k − 1) (2n− 1)

2N
π

)
, k= 1, 2, . . . ,N, (32)

are the coefficients, which depend on θ and

xn= cos

(
2n− 1

2N
π

)
, n= 1, 2, . . . ,N, (33)

are the Chebyshev nodes (roots of TN ). The function f is assumed to be fairly
smooth, while the sampling is performed at the non-equally spaced interpolation
points xn, in order to minimize the effect of Runge’s phenomenon [26].
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If we substitute the polynomial (30) into relation (7), we readily obtain

H {P (c)} =
∫ 1

−1

P (x)− P (c)
x − c dx + P (c) ln

(
1− c
1+ c

)

=
√

2

N

N∑

k=2

ak

∫ 1

−1

Tk−1 (x)− Tk−1 (c)

x − c dx + P (c) ln

(
1− c
1+ c

)
,

(34)
and then we utilize the identity [11, 25]

Tk+1 (x)− Tk+1 (c)= 2 (x − c)
k∑

n=0

′Uk−n (x) Tn (c), k ≥ 0, (35)

where Uk are the Chebyshev polynomials of the second kind, while the prime in the
sum denotes that the first term is multiplied with 1/2. The relation (35) is written as

Tk−1 (x)− Tk−1 (c)

x − c = 2
k−2∑

n=0

′Uk−n−2 (x) Tn (c), k ≥ 2, (36)

and therefore, given that

∫ 1

−1
Uk (x) dx =

{
2
k+1 k even

0 k odd,
(37)

we obtain

∫ 1

−1

Tk−1(x)− Tk−1(c)

x − c dx= 2
k−2∑

n=0

′
∫ 1

−1
Uk−n−2 (x) dxTn (c)

= 2
k−2∑

n=0

′ 1− (−1)(k−n−1)

k − n− 1
Tn (c).

(38)

Substituting the relation (38) into (34), we have

H {P (c)} =
√

2

N

N∑

k=2

ak

(
2
k−2∑

n=0

′ 1− (−1)(k−n−1)

k − n− 1
Tn (c)

)
+ P (c) ln

(
1− c
1+ c

)
,

(39)
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where we can change the order of summation to obtain

H {P (c)}= 2

√
2

N

N−2∑

n=0

′
(

N∑

k=n+2

1− (−1)(k−n−1)

k − n− 1
ak

)
Tn (c)+ P (c) ln

(
1− c
1+ c

)

(40)
or

H {P (c)} =
N−1∑

n=1

′AnTn−1 (c)+ P (c) ln

(
1− c
1+ c

)
, (41)

where

An= 2

√
2

N

N∑

k=n+1

1− (−1)(k−n)

k − n ak. (42)

In the sequel, the derivative of (41) with respect to c leads to

d

dc
H {P (c)} =

N−1∑

n=2

An (n− 1) Un−2 (c)+ P ′ (c) ln

(
1− c
1+ c

)
− P (c) 2

1− c2 ,

(43)
with

P ′ (c) =
√

2

N

N∑

n=2

an (n− 1) Un−2 (c), (44)

and finally, in view of the recurrence relation [25],

2Tn (x) = 1

n+ 1

d

dx
Tn+1 (x)− 1

n− 1

d

dx
Tn−1 (x) , n = 2, 3, . . ., (45)

the derivative of the Hilbert transform is approximated by

d

dc
H {f (c)} ≈

N−2∑

n=1

′A′nTn−1 (c)+ P ′ (c) ln

(
1− c
1+ c

)
− P (c) 2

1− c2 , (46)

with

P ′ (c) =
√

2

N

N−1∑

n=1

′a′nTn−1 (c), P (c) =
N∑

k=1

wkakTk−1 (c) (47)
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and [22]

a′N = 0, a′N−1= 2 (N − 1) aN , a′k = a′k+2 + 2kak+1,

k = N − 2,N − 3, . . . , 1, (48)

A′N−1 = 0, A′N−2= 2 (N − 2) AN−1, A′k = A′k+2 + 2kAk+1,

k = N − 3,N − 4, . . . , 1. (49)

5 Numerical Implementation and Results

In order to implement the above methods, first we construct the exact simulated
projection data for the Shepp–Logan phantom for various discrete values of ρ and
θ via the analytic formula (8). For the reconstruction of this phantom, we consider
a grid of 250 × 250 points. For each point on the grid (x1, x2) with x2

1 + x2
2 < 1,

we evaluateM = 150 distinct values of θk ∈ [0, 2π) for every k = 1, 2, . . . ,M and
the corresponding coordinates ρ ≡ ck = x2 cos θk − x1 sin θk .

Then, for each one of the values θk , we utilize the precomputed discrete values
of the Radon transform R{g(ρ�, θk)} at the N distinct values ρ� ∈ [ − 1, 1],
� = 1, 2, . . . ,N , in order to calculate the coefficients (32) of the Chebyshev
interpolating polynomial (30) or the coefficients of the piecewise polynomials
(9) for the Chebyshev or spline method, respectively. In order to obtain similar
resolution for the reconstructed image for the Chebyshev method, we consider
N = 200 Chebyshev–Gauss nodes ρ� (since the Chebyshev points are denser at the
end points), while for the spline method we consider N = 150 points equidistantly
distributed in the same interval. It is worth considering that, despite the fewer
points in the spline method (for both the cubic Hermite and the B-spline cases),
the execution time for an equivalent implementation is longer, probably due to the
greater number of operations required.

Next, the computed Chebyshev or spline coefficients are utilized for the eval-
uation of the approximated derivative at ρ = ck , of the Hilbert transform of the
simulated Radon transform, via the relation (46) or (28), respectively. Finally, all
the M values of the derivatives, which correspond to each one of the M values of
θ , are used for the calculation of the image function g(x1, x2) at the considered
point (x1, x2) via the relation (4) and with the aid of the trapezoidal rule. The
sought reconstruction of the Shepp–Logan phantom via the spline technique and
the Chebyshev method is illustrated in Figs. 3 and 4, respectively.

Note that, in order to suppress the Gibbs phenomenon [8] in the Chebyshev
method, due to the step discontinuities of the Shepp–Logan phantom (the oscil-
lations are propagated away from the discontinuities), we apply appropriate spectral
filtering with no additional computational cost by multiplying the coefficients
of the Chebyshev interpolating polynomial ak (see (30)) with the coefficients
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Fig. 3 Reconstruction of the Shepp–Logan phantom via the spline reconstruction technique
utilizing (a) Hermite cubic splines and (b) B-splines

Fig. 4 Reconstruction of the Shepp–Logan phantom via the Chebyshev reconstruction method (a)
without filtering and (b) with Lanczos spectral filtering

σk= sin(πη)/πη with η = (k − 1)/(N − 1) (the Lanczos spectral filter [8]).
Figure 4b illustrates the reconstructed image incorporating the Lanczos filter, where
it is clear that the occurred oscillations almost vanish, providing a clean image,
similar to that of the B-spline method, as shown in Fig. 3b (the B-spline does not
pass through the control points, and hence it approximates without oscillations at
the discontinuities [13]).
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Finally, we mention that the Chebyshev coefficients (32) can be computed via
the discrete cosine transform (DCT) [1], while the Chebyshev summation (46) can
be computed recursively via the Clenshaw algorithm [2, 22].

6 Conclusion

PET is an important modern medical imaging technique, in which the reconstruction
of the tomographic image can be achieved via the inverse Radon transform
formula. The numerical implementation of the inverse Radon transform is in general
complicated, since it depends on the derivative of the Hilbert transform of the
projection data, which involves singularities. These singularities can be effectively
subtracted, if we approximate the input data via appropriate piecewise or global
polynomials.

Hence, in this work, we propose an efficient PET reconstruction algorithm based
on Chebyshev interpolation, and we compare it to an older similar technique based
on cubic splines. For the evaluation of the proposed algorithm, we utilize noiseless
simulated data that were constructed analytically from the standard Shepp–Logan
phantom, while we compare the results with the corresponding results of the spline
method. The numerical experiments validate the efficiency of the proposed method,
as this requires relatively few operations for the computation of the coefficients and
the final sum of Chebyshev polynomials, while it has the additional advantage of
possible hardware acceleration via the DCT algorithm. Furthermore, it is easy to
implement and can facilitate the application of various filters for image denoising.
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Approximation by Mixed Operators of
Max-Product–Choquet Type

Sorin G. Gal and Ionut T. Iancu

Abstract The main aim of this chapter is to introduce several mixed operators
between Choquet integral operators and max-product operators and to study their
approximation, shape preserving, and localization properties. Section 2 contains
some preliminaries on the Choquet integral. In Sect. 3, we obtain quantitative
estimates in uniform and pointwise approximation for the following mixed type
operators: max-product Bernstein–Kantorovich–Choquet operator, max-product
Szász–Mirakjan–Kantorovich–Choquet operators, nontruncated and truncated
cases, and max-product Baskakov–Kantorovich–Choquet operators, nontruncated
and truncated cases. We show that for large classes of functions, the max-product
Bernstein–Kantorovich–Choquet operators approximate better than their classical
correspondents, and we construct new max-product Szász–Mirakjan–Kantorovich–
Choquet and max-product Baskakov–Kantorovich–Choquet operators, which
approximate uniformly f in each compact subinterval of [0,+∞) with the
order ω1(f ;√λn), where λn ↘ 0 arbitrary fast. Also, shape preserving
and localization results for max-product Bernstein–Kantorovich–Choquet
operators are obtained. Section 4 contains quantitative approximation results
for discrete max-product Picard–Kantorovich–Choquet, discrete max-product
Gauss–Weierstrass–Kantorovich–Choquet operators, and discrete max-product
Poisson–Cauchy–Kantorovich–Choquet operators. Section 5 deals with the
approximation properties of the max-product Kantorovich–Choquet operators based
on (ϕ, ψ)-kernels. It is worth to mention that with respect to their max-product
correspondents, while they keep their good properties, the mixed max-product
Choquet operators present, in addition, the advantage of a great flexibility by the
many possible choices for the families of set functions used in their definitions. The
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results obtained present potential applications in sampling theory, neural networks,
and learning theory.

1 Introduction

In the recent years, two new directions of research in approximation of functions
were developed: (I) approximation by the so-called max-product operators and (II)
approximation by Choquet integral operators. Both directions of research generate
nonlinear approximation operators, which can produce better approximation esti-
mates than their linear (classical) counterparts.

(I) The max-product approximation operators can naturally be obtained by using
the possibility theory in an analogous manner with Feller’s scheme in proba-
bility theory used for generating linear and positive approximation operators
(see [6, 25]), by replacing the probability (σ -additive), with a maxitive set
function and the classical integral with the possibilistic integral (see, e.g., [3],
Chapter 10, Section 10.2). Formally, the max-product operators are attached to
the classical linear and positive operators, by replacing in their expression the
sum by the maximum (supremum). Their construction can be well illustrated
in the discrete case as follows. Let f : I → [0,+∞), pn,k(x) be various kinds
of function basis on the interval I satisfying

∑
k∈In pn,k(x) = 1, In finite or

infinite families of indices, {xn,k; k ∈ In} representing a division of I and
consider the notation

∨
k∈A ak = supk∈A ak . Starting from the general form of

discrete linear positive operators

Dn(f )(x) =
∑

k∈In
pn,k(x)f (xn,k), x ∈ I, n ∈ N,

and their Kantorovich-type variants

DKn(f )(x) =
∑

k∈In
pn,k(x) · 1

xn,k+1 − xn,k ·
∫ xn,k+1

xn,k

f (t)dt, x ∈ I, n ∈ N,

(1)
one replaces the sum by maximum (supremum), obtaining thus the max-
product operators

D(M)n (f )(x) =
∨
k∈In pn,k(x) · f (xn,k)∨

k∈In pn,k(x)
, x ∈ I, n ∈ N (2)

and their Kantorovich-type variants

DK(M)n (f )(x) =
∨
k∈In pn,k(x) · (1/(xn,k+1 − xn,k)) ·

∫ xn,k+1
xn,k

f (t)dt
∨
k∈In pn,k(x)

,

x ∈ I, n ∈ N. (3)
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Note that if, for example, pn,k(x), n ∈ N, k = 0, . . . , n, is a polynomial basis,
then the operators D(M)n (f )(x) and DK(M)n (f )(x) become piecewise rational
functions.

In a long series of papers, collected in the recent research monograph [3],
were introduced and studied approximation properties (including upper estimates,
saturation, localization, inverse results, shape preservation, and global smoothness
preservation) of the max-product operators of the form in (2), attached to Bernstein-
type operators, like the Bernstein polynomials, Favard–Szász–Mirakjan operators
(truncated and nontruncated cases), Baskakov operators (truncated and nontrun-
cated cases), Meyer-König and Zeller operators, Bleimann–Butzer–Hahn operators,
to interpolation polynomials of Lagrange and Hermite–Feéjer on various special
knots and to sampling operators based on various kernels, like those of Whittaker
type based on sinc-type kernels and those based on Fejér-type kernels.

After the appearance of this research monograph [3], the study of the max-
product operators of the form (2) has been continued by other authors in many
papers, like, for example, [7, 14, 16, 39, 39–45, 47]–[49].

It is worth mentioning that the max-product operators give for large classes
of functions better estimates in approximation than their linear counterparts. For
example, for concave functions, the order of approximation by the max-product

Bernstein operators (which are piecewise rational functions) is O
(
ω1

(
f ; 1

n

))
, or

more general, for strictly positive continuous functions, the order of approximation

is O

({
n
[
ω1(

(
f ; 1

n

)]2 + ω1

(
f ; 1

n

)})
. Also, it is worth noting that the max-

product Bernstein operators present essentially better localization results than their
linear counterparts. In this sense, if f = g on [a, b] with 0 < a < b < 1 and
0 < a < c < d < b < 1 are arbitrary, then there exists ñ such that while
B
(M)
n (f ) − B(M)n (g) = 0 on [c, d] for all n ≥ ñ, see, e.g., Theorem 2.4.1, p. 76 in

[3]), for the classical Bernstein polynomials, we have only the much weaker result
Bn(f ) − Bn(g) = o(1/n) on [c, d], for all n ≥ ñ (see, e.g., [22], p. 308, relation
(3.3)).

For another relevant example, in the case of interpolation operators, the degree
of approximation given by the max-product operators is of Jackson type ω1(f ; 1/n)
and they keep the same points of interpolation, while for the classical correspond-
ing interpolation operators of Hermite–Fejér and Lagrange on special nodes is
ω1(f ; ln(n)/n) or even the divergence phenomenon holds, see, e.g., [3], Chapter 7.

For other papers on approximation by max-product operators of the form (2),
which are not mentioned in the monograph [3], including applications to signal
theory, neural networks, and learning rates of algorithms, see, e.g., [7–18, 20, 23,
40, 42–45, 47].

Also, notice that the study of the max-product Kantorovich operators of the form
in (3) is missing from the research monograph [3] and has been completed only in
the very recent papers [7–10, 12–15, 18–20].
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(II) The second direction of research deals with approximation by the so-called
Choquet integral operators, consisting in the replacement of the classical
linear integral in the expressions of the integral operators, with the nonlinear
Choquet integral. The use of this integral in approximation theory was
motivated by its potential, due to its many applications to statistical mechanics
and potential theory, to the study of cooperative games, to decision-making
under risk and uncertainty, in finance, economics, portofolio problems, and
insurance.

Thus, in the recent papers [30, 34, 36, 37] for the multivariate Bernstein–
Durrmeyer polynomial operators defined in terms of the nonlinear Choquet integral
with respect to a family of strictly positive, monotone, and submodular set function,
μn,k,x ∈ Γn,x on the standard simplex Sd ⊂ R

d , by

Dn,Γn,x (f )(x) =
∑

|α|=n

(C)
∫
Sd
f (t)Bα(t)dμn,k,x(t)

(C)
∫
Sd
Bα(t)dμn,k,x(t)

· Bα(x), x ∈ Sd, n ∈ N,

qualitative and quantitative approximation results were obtained. Here, Bα(x)
denote the multivariate fundamental Bernstein polynomials.

Qualitative and better quantitative approximation results for other Choquet
integral operators obtained by using a Feller kind scheme (and including discrete
Bernstein–Choquet polynomials and Picard–Choquet operators) were obtained in
[26]. Approximation results in approximation by continuous (i.e., non-discrete)
convolution integral operators of Picard–Choquet type, Poisson–Cauchy–Choquet
type, Gauss–Weierstrass–Choquet type, Landau–Choquet type, and Angheluţă–
Choquet type were obtained in [28, 31–33].

Also, approximation results for various Kantorovich–Choquet-type operators
with respect to a family of strictly positive, monotone, and submodular set functions
μn,k,x ∈ Γn,x , obtained from the expression in (1) by replacing the usual integral
with the Choquet integral, i.e., for Choquet-type operators of the form

DKn,Γn,x (f )(x) =
∑

k∈In
pn,k(x) ·

(C)
∫ xn,k+1
xn,k

f (t)dμn,k,x(t)

μn,k,x([xn,k, xn,k+1]) , (4)

x ∈ I, n ∈ N, were obtained in the papers [27, 29, 38].
The main aim of this chapter is to introduce and study quantitative approximation

results, localization, and shape preserving results for various mixed operators
between Choquet integral operators and max-product operators, of the general form
obtained by replacing the usual integral in the expression of (3) by the Choquet
integral, i.e., for operators of the general form

DK
(M)
n,Γn,x

(f )(x) =
∨
k∈In pn,k(x) · (C)

∫ xn,k+1
xn,k

f (t)dμn,k,x(t)/μn,k,x([xn,k, xn,k+1])
∨
k∈In pn,k(x)

, (5)
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x ∈ I, n ∈ N.
The plan of the chapter goes as follows. Section 2 contains some preliminaries

on the Choquet integral. In Section 3, we obtain quantitative estimates in
uniform and pointwise approximation for the following mixed type operators:
max-product Bernstein–Kantorovich–Choquet operator, max-product Szász–
Mirakjan–Kantorovich–Choquet operators, nontruncated and truncated cases,
and max-product Baskakov–Kantorovich–Choquet operators, nontruncated and
truncated cases. We show that for large classes of functions, the max-product
Bernstein–Kantorovich–Choquet operators approximate better than their classical
correspondents, and we construct new max-product Szász–Mirakjan–Kantorovich–
Choquet and max-product Baskakov–Kantorovich–Choquet operators, which
approximate uniformly f in each compact subinterval of [0,+∞) with the
order ω1(f ;√λn), where λn ↘ 0 arbitrary fast. Also, shape preserving
and localization results for max-product Bernstein–Kantorovich–Choquet
operators are obtained. Section 4 contains quantitative approximation results
for discrete max-product Picard–Kantorovich–Choquet, discrete max-product
Gauss–Weierstrass–Kantorovich–Choquet operators and discrete max-product
Poisson–Cauchy–Kantorovich–Choquet operators. Section 5 deals with the
approximation properties of the max-product Kantorovich–Choquet operators
based on (ϕ, ψ)-kernels. It is worth mentioning that with respect to their max-
product correspondents, while they keep their good properties mentioned above,
the mixed max-product–Choquet operators present, in addition, the advantage of a
great flexibility by the many possible choices for the families of set functions used
in their definitions.

2 Preliminaries on Choquet Integral

In this section, we present some concepts and results on the Choquet integral which
will be used in the next sections.

Definition 1 Let Ω be a nonempty set and C be a σ -algebra of subsets in Ω .

(i) (see, e.g., [50], p. 63) Let μ : C → [0,+∞]. If μ(∅) = 0 and A,B ∈ C, with
A ⊂ B, implies μ(A) ≤ μ(B), then μ is called a monotone set function (or
capacity). Also, if

μ(A
⋃
B)+ μ(A

⋂
B) ≤ μ(A)+ μ(B), for all A,B ∈ C,

then μ is called submodular. Finally, if μ(Ω) = 1, then μ is called normalized.
(ii) (see [5], or [50], p. 233) Let μ be a normalized monotone set function on C.

If f : Ω → R is C-measurable, i.e., for any Borel subset B ⊂ R, we have
f−1(B) ∈ C, then for any A ∈ C, the Choquet integral is defined by
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(C)

∫

A

f dμ =
∫ +∞

0
μ(Fβ(f )

⋂
A)dβ +

∫ 0

−∞
[μ(Fβ(f )

⋂
A)− μ(A)]dβ,

where Fβ(f ) = {ω ∈ Ω; f (ω) ≥ β}. If (C)
∫
A
f dμ ∈ R, then f is called the

Choquet integrable on A. Notice that if f ≥ 0 on A, then in the above formula,
we get

∫ 0
−∞ = 0.

If μ is the Lebesgue measure, then the Choquet integral (C)
∫
A
f dμ reduces

to the Lebesgue integral.

In what follows, we list some known properties of the Choquet integral.

Remark 1 If μ : C → [0,+∞] is a monotone set function, then the following
properties hold:

(i) For all a ≥ 0, we have (C)
∫
A
af dμ = a · (C) ∫

A
f dμ (if f ≥ 0, then see,

e.g., [50], Theorem 11.2, (5), p. 228, and if f is of arbitrary sign, then see, e.g.,
[21], p. 64, Proposition 5.1, (ii)).

(ii) For all c ∈ R and f of arbitrary sign, we have (see, e.g., [50], pp. 232-233, or
[21], p. 65)

(C)

∫

A

(f + c)dμ = (C)
∫

A

f dμ+ c · μ(A).

If μ is submodular too, then for all f, g of arbitrary sign and lower bounded,
we have (see, e.g., [21], p. 75, Theorem 6.3)

(C)

∫

A

(f + g)dμ ≤ (C)
∫

A

f dμ+ (C)
∫

A

gdμ,

that is, the Choquet integral is sublinear.
(iii) If f ≤ g on A, then (C)

∫
A
f dμ ≤ (C)

∫
A
gdμ (see, e.g., [50], p. 228,

Theorem 11.2, (3) if f, g ≥ 0 and p. 232 if f and g are of arbitrary sign).
(iv) Let f ≥ 0. By the definition of the Choquet integral, it is immediate that if

A ⊂ B, then

(C)

∫

A

f dμ ≤ (C)
∫

B

f dμ,

and if, in addition, μ is finitely subadditive, then

(C)

∫

A
⋃
B

f dμ ≤ (C)
∫

A

f dμ+ (C)
∫

B

f dμ.

(v) By the definition of the Choquet integral, it is immediate that
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(C)

∫

A

1 · dμ(t) = μ(A).

(vi) The formula μ(A) = γ (m(A)), where γ : [0, 1] → [0, 1] is an increasing and
concave function, with γ (0) = 0, γ (1) = 1 and m is a probability measure (or
only finitely additive) on a σ -algebra on Ω (that is, m(∅) = 0, m(Ω) = 1 and
m is countably additive), gives simple examples of monotone and submodular
set functions (see, e.g., [21], pp. 16-17, Example 2.1). Such set functions μ are
also called distortion of countably normalized additive measures (or distorted
measures). For example, we can take γ (t) = tα , 0 < α < 1, or γ (t) = 2t

1+t , or

γ (t) = sin(t)
sin(1) , to choose only a few.

3 Approximation by Max-Product
Kantorovich–Choquet-Type Operators

Denoting by BI the sigma algebra of all Borel measurable subsets in P(I ),
everywhere in this section, (Γn,x)n∈N,x∈I , Γn,x = {μn,k,x}nk=0, will be a collection
of families of monotone, submodular, and strictly positive set functions μn,k,x on
BI , with I a compact interval, or I = [0,+∞) or I = R, depending on the
operator studied. Note here that a set function on BI is called strictly positive, if
for any open subset A ⊂ R with A ∩ I 	= ∅, we have μ(A ∩ I ) > 0.

Starting from the classical forms of the linear and positive operators of
Bernstein–Kantorovich (see, e.g., [46]), Szász–Mirakjan–Kantorovich (see, e.g.,
[2, 4]) and Baskakov–Kantorovich, in the recent paper [27], were introduced
and studied the Bernstein-Kantorovich–Choquet, Szász–Mirakjan–Kantorovich–
Choquet, and Baskakov–Kantorovich–Choquet operators.

On the other hand, starting from the classical linear operators, in another recent
paper [12], were introduced and studied the max-product operators of Bernstein–
Kantorovich kind, Szász–Mirakjan–Kantorovich nontruncated and truncated kinds,
Baskakov–Kantorovich nontruncated and truncated kinds, Meyer-König and Zeller
kind, Hermite–Fejér kind, discrete Picard kind, discrete Poisson–Cauchy kind, and
Gauss–Weierstrass kind.

In this chapter, we introduce and study the corresponding mixed type operators
between those of max-product types and those of Choquet types, as follows.

Definition 2 Firstly, we define the following types of max-product–Choquet oper-
ators, with respect to Γn,x = {μn,k,x}nk=0:

the max-product Bernstein–Kantorovich–Choquet operators

K
(M)
n,Γn,x

(f )(x) =
∨n
k=0

(
n
k

)
xk(1− x)n−k · (C)

∫ (k+1)/(n+1)
k/(n+1) f (t)dμn,k,x (t)

μn,k,x ([k/(n+1),(k+1)/(n+1)])∨n
k=0

(
n
k

)
xk(1− x)n−k ,



304 S. G. Gal and I. T. Iancu

the max-product Szász–Mirakjan–Kantorovich–Choquet operators, nontruncated
case

S
(M)
n,Γn,x

(f )(x) =
∨∞
k=0

(nx)k

k! · (C)
∫ (k+1)/(n+1)
k/(n+1) f (t)dμn,k,x (t)

μn,k,x ([k/n,(k+1)/n])
∨∞
k=0

(nx)k

k!
,

the max-product Szász–Mirakjan–Kantorovich–Choquet operators, truncated case

T S
(M)
n,Γn,x

(f )(x) =
∨n
k=0

(nx)k

k! · (C)
∫ (k+1)/(n+1)
k/(n+1) f (t)dμn,k,x (t)

μn,k,x ([k/n,(k+1)/n])
∨n
k=0

(nx)k

k!
,

the max-product Baskakov–Kantorovich–Choquet operators, nontruncated case

V
(M)
n,Γn,x

(f )(x) =
∨∞
k=0

(
n+k−1
k

)
xk

(1+x)n+k ·
(C)

∫ (k+1)/(n+1)
k/(n+1) f (t)dμn,k,x (t)

μn,k,x ([k/n,(k+1)/n])
∨∞
k=0

(
n+k−1
k

)
xk

(1+x)n+k
,

and the max-product Baskakov–Kantorovich–Choquet operators, truncated case

T V
(M)
n,Γn,x

(f )(x) =
∨n
k=0

(
n+k−1
k

)
xk

(1+x)n+k ·
(C)

∫ (k+1)/(n+1)
k/(n+1) f (t)dμn,k,x (t)

μn,k,x ([k/n,(k+1)/n])
∨n
k=0

(
n+k−1
k

)
xk

(1+x)n+k
.

In order to be well defined these operators, it is good enough if, for example, we
suppose that f : I → R+ is a BI -measurable function, bounded on I , where
I = [0, 1] forK(M)n,Γn,x

(f )(x), T S(M)n,Γn,x
(f )(x), T V (M)n,Γn,x

(f )(x) and I = [0,+∞) for

S
(M)
n,Γn,x

(f )(x) and V (M)n,Γn,x
(f )(x).

Remark 2 It is clear that if μn,k,x = m, for all n, k and x, where m is the
Lebesgue measure, then the above operators become the max-product Kantorovich-
type operators studied in [12].

Also, if μn,k,x = δk/n (the Dirac measures), since k/n ∈ (k/(n + 1), (k +
1)/(n + 1)), it is immediate that K(M)n,Γn,x

(f )(x) become the max-product Bernstein

operators, S(M)n,Γn,x
(f )(x) become the nontruncated max-product Szász–Mirakjan

operators, T S(M)n,Γn,x
(f )(x) become the truncated max-product Szász–Mirakjan oper-

ators, V (M)n,Γn,x
(f )(x) become the nontruncated max-product Baskakov operators,

and finally, T V (M)n,Γn,x
(f )(x) become the truncated max-product Baskakov operators,

studied in detail in a series of papers, all collected by the book [3], Chapters 2, 3,
and 4. This fact shows the great flexibility of the formulas of these operators. More
exactly, we can generate very many kinds of max-product–Choquet approximation
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operators, by choosing for some μn,k,x the Lebesgue measure, for some others
μn,k,x , the Dirac measures, and for the others μn,k,x , some Choquet measures.

In what follows, denoting for simplicity by L(M)n (f ) any from the operators
K
(M)
n,Γn,x

(f ), S(M)n,Γn,x
(f ), T S(M)n,Γn,x

(f )(x), V (M)n,Γn,x
(f ), and T V (M)n,Γn,x

(f ), we can state
the first result of this section.

Theorem 1 Let I = [0, 1] for K(M)n,Γn,x
(f )(x), T S(M)n,Γn,x

(f )(x), and T V (M)n,Γn,x
(f )

and I = [0,+∞) for S(M)n,Γn,x
(f )(x) and V (M)n,Γn,x

(f )(x). Define by Cb+(I ) the space
of all bounded, continuous, and positive-valued functions defined on I . For all f ∈
Cb+(I ), x ∈ I and n ∈ N, we have

|L(M)n (f )(x)− f (x)| ≤ 2ω1(f ;L(M)n (ϕx)(x))I , x ∈ I, n ∈ N, (6)

where ϕx(t) = |t − x| and ω1(f ; δ)I = sup{|f (x)− f (y)|; x, y ∈ I, |x − y| ≤ δ}.
Proof For x ∈ I , n, k ∈ N, let us consider Tn,k,x : Cb+(I )→ R+ defined by

Tn,k,x(f ) = (C)
∫

Ik,n

f (t)dμn,k,x(t)/μn,k,x(In,k), f ∈ Cb+(I ),

where Ik,n = [k/(n+ 1), (k+ 1)/(n+ 1)] for Kn,Γn,x (f )(x) and Ik,n = [k/n, (k+
1)/n] for Sn,Γn,x (f )(x) and Vn,Γn,x (f )(x).

Firstly, let us denote pn,k(x) =
(
n
k

)
xk(1 − x)n−k . Since from the properties

of the Choquet integral in Remark 1, it is easy to see that Tn,k,x is positively
homogeneous, sublinear, and monotonically increasing, multiplying it by pn,k(x),
passing to supremum after k and finally dividing by

∨n
k=0 pn,k(x), we immediately

get that L(M)n (f ) shares the same properties, that is, L(M)n (λf ) = λL
(M)
n (f ),

L
(M)
n (f + g) ≤ L

(M)
n (f ) + L(M)n (g), f ≤ g on I implies L(M)n (f ) ≤ L

(M)
n (g)

on I , for all λ ≥ 0, f, g ∈ Cb+(I ), n ∈ N, x ∈ I . Then, by Lemma 3.1 in [34] and
by its proof, we immediately have that

|L(M)n (f )(x)− L(M)n (g)(x)| ≤ L(M)n (|f − g|)(x). (7)

Denoting e0(t) = 1 for all t ∈ I , since obviously Ln(e0)(x) = 1 for all x ∈ I and
taking into account the property in Remark 1, (i) and (7), for any fixed x, we obtain

|L(M)n (f )(x)− f (x)|
= |L(M)n (f (t))(x)− L(M)n (f (x))(x)| ≤ L(M)n (|f (t)− f (x)|)(x). (8)

But taking into account the properties of the modulus of continuity, for all t, x ∈ I
and δ > 0, we get
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|f (t)− f (x)| ≤ ω1(f ; ‖t − x‖)I ≤
[

1

δ
‖t − x‖ + 1

]
ω1(f ; δ)I . (9)

Now, from (8) and applying L(M)n to (9), by the properties of L(M)n mentioned after
the inequality (7), we immediately get

|L(M)n (f )(x)− f (x)| ≤
[

1

δ
L(M)n (ϕx)(x)+ 1

]
ω1(f ; δ)I .

Choosing here δ = Ln(ϕx)(x), we obtain the desired estimate. �
Remark 3 The positivity of function f in Theorem 1 is necessary because of the
positive homogeneity of the Choquet integral used in its proof. However, if f is of
arbitrary sign on I , then the statement of Theorem 1 can be restated for the slightly
modified operator defined by

L(M∗)n (f )(x) = Ln(f − d)(x)+ d,

where d ∈ R is a lower bound for f , that is, f (x) ≥ d, for all x ∈ I .
Indeed, this is immediate from the fact that ω1(f −m; δ)I = ω1(f ; δ)I and from

the equality

L(M∗)n (f )(x)− f (x) = Ln(f − d)(x)− (f (x)− d).

Remark 4 It is worth noting that due to the nonlinearity of the Choquet integral in
Remark 2.2, (ii), unlike the classical cases, the L(M)n operators in Theorem 1 are
nonlinear. In the particular case when Γn,x reduces to one element (i.e., μn,α,x = μ
for all n, x and α), we will denote K(M)n,Γn,x

(f ) := K(M)n,μ (f ), S
(M)
n,Γn,x

(f ) := S(M)n,μ (f ),

T S
(M)
n,Γn,x

(f ) := T S(M)n,μ (f ), V
(M)
n,Γn,x

(f ) := V (M)n,μ (f ), and T V (M)n,Γn,x
(f ) := V (M)n,μ (f ).

In what follows, the estimate (6) allows to obtain concrete quantitative results for
some particular choices of Γn,x .

Corollary 1 Suppose that μn,k,x = μ := √
m, for all n, k, and x, where m is the

Lebesgue measure. We have

(i) |K(M)n,μ (f )(x) − f (x)| ≤ 2ω1

(
f ; 6√

n+1
+ 1
n

)

[0,1], for all n ∈ N, x ∈ [0, 1],
f ∈ C+([0, 1]) ;

(ii) |S(M)n,μ (f )(x)−f (x)| ≤ 2ω1

(
f ; 4

√
x√
n
+ 1
n

)

[0,+∞), for all n ∈ N, x ∈ [0,+∞),
f ∈ UCb+([0,+∞)), where

UCb+([0,+∞))

= {f : [0,+∞)→ R+; f is uniformly continuous and bounded on [0,+∞)};
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(iii) |T S(M)n,μ (f )(x) − f (x)| ≤ 2ω1

(
f ; 3√

n
+ 1
n

)

[0,1], for all n ∈ N, x ∈ [0, 1],
f ∈ C+([0, 1]) ;

(iv) |V (M)n,μ (f )(x) − f (x)| ≤ 2ω1

(
f ; 6

√
x(1+x)√
n

+ 1
n

)

[0,+∞), for all n ∈ N, x ∈
[0,+∞), f ∈ UCb+([0,+∞));

(v) |T V (M)n,μ (f )(x) − f (x)| ≤ 2ω1

(
f ; 12√

n+1
+ 1
n

)

[0,1], for all n ∈ N, x ∈ [0, 1],
f ∈ C+([0, 1]).

Proof According to Remark 1, (vi), μ = √
m is a monotone and submodular set

function. Also, it is clear that μ is strictly positive.

(i) Denote pn,k(x) =
(
n
k

)
xk(1 − x)n−k . In order to estimate K(M)n,μ (ϕx)(x), let us

denote

Cn,k(x) =
(C)

∫ (k+1)/(n+1)
k/(n+1) |t − x|dμn,k,x(t)

μn,k,x([k/(n+ 1), (k + 1)/(n+ 1)]) .

According to the proof of Corollary 3.6 in [27], we have

Cn,k(x) ≤
∣∣∣∣
k

n
− x

∣∣∣∣+
1

n
,

which immediately implies

K(M)n,μ (ϕx)(x)

≤
∨n
k=0 pn,k(x)

[∣∣ k
n
− x∣∣+ 1

n

]

∨n
k=0 pn,k(x)

≤
∨n
k=0 pn,k(x)

[∣∣ k
n
− x∣∣]

∨n
k=0 pn,k(x)

+ 1

n
≤ 6√

n+ 1
+ 1

n
,

where we have used the estimate (see, e.g., the proof of Theorem 2.1.5, p. 31
in [3])

∨n
k=0 pn,k(x)

[∣∣ k
n
− x∣∣]

∨n
k=0 pn,k(x)

≤ 6√
n+ 1

.

Now, using the estimate (6) in Theorem 1 too, we obtain the desired conclusion.

(ii) Denote sn,k(x) = (nx)k

k! . Using the estimate for Cn,k(x) from the above point
(i), we get

S(M)n,μ (ϕx)(x)

≤
∨+∞
k=0 sn,k(x)

[∣∣ k
n
− x∣∣+ 1

n

]

∨+∞
k=0 sn,k(x)

≤
∨+∞
k=0 sn,k(x)

[∣∣ k
n
− x∣∣]

∨+∞
k=0 sn,k(x)

+ 1

n
≤ 4

√
x√
n
+ 1

n
,
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where we have used the estimate (see, e.g., the proof of Theorem 3.1.4, p. 163
in [3])

∨+∞
k=0 sn,k(x)

[∣∣ k
n
− x∣∣]

∨+∞
k=0 sn,k(x)

≤ 4
√
x√
n
.

Now, using (6) too, we obtain the desired estimate.

(iii) Denote sn,k(x) = (nx)k

k! . Using the estimate for Cn,k(x) from the above point
(i), we get

T S(M)n,μ (ϕx)(x)

≤
∨n
k=0 sn,k(x)

[∣∣ k
n
− x∣∣+ 1

n

]

∨n
k=0 sn,k(x)

≤
∨n
k=0 sn,k(x)

[∣∣ k
n
− x∣∣]

∨n
k=0 sn,k(x)

+ 1

n
≤ 3√

n
+ 1

n
,

where we have used the estimate (see, e.g., the proof of Theorem 3.2.5, p. 179
in [3])

∨n
k=0 sn,k(x)

[∣∣ k
n
− x∣∣]

∨n
k=0 sn,k(x)

≤ 3√
n
.

Now, using (6) too, we obtain the desired estimate.

(iv) Denote vn,k(x) =
(
n+k−1
k

)
xk

(1+x)n+k . As at the above points (i) and (ii), we easily
obtain

V (M)n,μ (ϕx)(x)

≤
∨∞
k=0 vn,k(x)

[∣∣ k
n
− x∣∣+ 1

n

]

∨∞
k=0 vn,k(x)

≤
∨∞
k=0 vn,k(x)

[∣∣ k
n
− x∣∣]

∨∞
k=0 vn,k(x)

+ 1

n

≤ 6

√
x(1+ x)√
n

+ 1

n
,

where we have used the estimate (see, e.g., the proof of Theorem 4.1.6, p. 198
in [3])

∨∞
k=0 vn,k(x)

[∣∣ k
n
− x∣∣]

∨∞
k=0 vn,k(x)

≤ 6

√
x(1+ x)√
n

.

Finally, by using (6) too, we obtain the desired estimate.
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(v) Denote vn,k(x) =
(
n+k−1
k

)
xk

(1+x)n+k . As at the above points (i) and (ii), we easily
obtain

T V (M)n,μ (ϕx)(x)

≤
∨n
k=0 vn,k(x)

[∣∣ k
n
− x∣∣+ 1

n

]

∨n
k=0 vn,k(x)

≤
∨n
k=0 vn,k(x)

[∣∣ k
n
− x∣∣]

∨n
k=0 vn,k(x)

+ 1

n

≤ 2
√

3(
√

2+ 2)√
n+ 1

+ 1

n
,

where we have used the estimate (see, e.g., the proof of Theorem 4.2.6, pp.
217-218 in [3])

∨n
k=0 vn,k(x)

[∣∣ k
n
− x∣∣]

∨n
k=0 vn,k(x)

≤ 2
√

3(
√

2+ 2)√
n+ 1

≤ 12√
n+ 1

.

Finally, by using (6) too, we obtain the desired estimate. �
Remark 5 Comparing the orders of approximation for the operators in Corollary 1,
one sees that they are of the same order as for their only max-product correspondents
(see [12]), as for their only Choquet correspondents (see [27]) and as for their
classical correspondents (see, e.g., [1], p. 296, p. 300, and pp. 339-340).

However, in what follows, we can give, for example, two concrete examples of
max-product Bernstein–Kantorovich–Choquet operatorsK(M)n,Γn,x

, which, due to their
great flexibility of the form given by Definition 2, approximate better large classes
of functions than the classical ones.

Example 1 Let us take μn,k,x = δk/n—the Dirac measures, k = 0, . . . , n − 1, and
μn,n,x = √m, withm the Lebesgue measure. Since k/n ∈ [k/(n+1), (k+1)/(n+
1)], we get

K
(M)
n,Γn,x

(f )(x)

= max

⎧
⎪⎨

⎪⎩

∨n−1
k=0 pn,k(x) ·

(C)
∫ (k+1)/(n+1)
k/(n+1) f (t)dδk/n(t)

δk/n([k/(n+1),(k+1)/(n+1)])∨n
k=0 pn,k(x)

,

pn,n(x)
√
n+ 1 · (C) ∫ 1

n/(n+1) f (t)d
√
m(t)

∨n
k=0 pn,k(x)

⎫
⎬

⎭ .
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Suppose now that f is nonnegative and nonincreasing on [0, 1]. It follows

(C)

∫ 1

n/(n+1)
f (t)d

√
m(t) ≥ f (1) ·√1− n/(n+ 1) = f (1) · 1√

n+ 1
,

which immediately implies

Kn,Γn,x (f )(x) ≥
∨n
k=0 pn,k(x)f (k/n)∨n

k=0 pn,k(x)
= B(M)n (f )(x),

where B(M)n (f )(x) denotes the max-product Bernstein operator intensively studied
in, for example, [3], Chapter 2.

On the other hand, by

pn,n(x)
√
n+ 1 · (C) ∫ 1

n/(n+1) f (t)d
√
m(t)

∨n
k=0 pn,k(x)

= pn,n(x)f (1)∨n
k=0 pn,k(x)

+pn,n(x)
√
n+ 1 · (C) ∫ 1

n/(n+1) f (t)d
√
m(t)

∨n
k=0 pn,k(x)

− pn,n(x)f (1)∨n
k=0 pn,k(x)

and by the simple double inequality

max{A,B} ≤ max{A,B + C} ≤ max{A,B} + C, for all A,B,C ≥ 0, (10)

choosing

A =
∨n−1
k=0 pn,k(x) ·

(C)
∫ (k+1)/(n+1)
k/(n+1) f (t)dδk/n(t)

δk/n([k/(n+1),(k+1)/(n+1)])∨n
k=0 pn,k(x)

and

B = pn,n(x)
√
n+ 1 · (C) ∫ 1

n/(n+1) f (t)d
√
m(t)

∨n
k=0 pn,k(x)

= pn,n(x)f (1)∨n
k=0 pn,k(x)

,

it is immediate that

B(M)n (f )(x) ≤ K(M)n,Γn,x
(f )(x) ≤ B(M)n (f )(x)+ C,

where

0 ≤ C = pn,n(x)
√
n+ 1 · (C) ∫ 1

n/(n+1) f (t)d
√
m(t)

∨n
k=0 pn,k(x)

− pn,n(x)f (1)∨n
k=0 pn,k(x)
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= pn,n(x)∨n
k=0 pn,k(x)

(√
n+ 1 · (C)

∫ 1

n/(n+1)
f (t)d

√
m(t)− f (1)

)

≤ √n+ 1 · (C)
∫ 1

n/(n+1)
f (t)d

√
m(t)− f (1)

≤ √n+ 1f (n/(n+ 1)) · (C)
∫ 1

n/(n+1)
1 · d√m(t)− f (1)

= f (n/(n+ 1))− f (1)
≤ ω1(f ; 1/(n+ 1))[0,1].

Therefore, if, in addition, we suppose that f is strictly positive too (with mf > 0
its minimum), by Coroianu and Gal [12] (see also Theorem 2.2.18, p. 63 in [3]), we
obtain

|K(M)n,Γn,x
(f )(x)− f (x)|

≤ |Kn,Γn,x (f )(x)− B(M)n (f )(x)| + |B(M)n (f )(x)− f (x)|

≤ ω1(f ; 1/(n+ 1))[0,1] +
(
n · ω1(f ; 1/n)[0,1]

mf
+ 4

)
ω1(f ; 1/n)[0,1].

For example, if f is strictly positive, nonincreasing, and Lipschitz function on [0, 1],
by the above inequality, it follows that the order of approximation by the max-

product Bernstein–Kantorovich–Choquet operator K(M)n,Γn,x
(f ) is O

(
1
n

)
.

It is worth mentioning that this order of approximation is not achieved in the case
of classical Bernstein–Kantorovich operators.

Example 2 Let us take μn,k,x = m—the Lebesgue measures, k = 0, . . . , n− 1 and
μn,n,x = δ1—the Dirac measure. We get

K
(M)
n,Γn,x

(f )(x)

= max

⎧
⎨

⎩

∨n−1
k=0 pn,k(x) · (n+ 1)

∫ (k+1)/(n+1)
k/(n+1) f (t)dm(t)

∨n
k=0 pn,k(x)

,
pn,n(x)f (1)∨n
k=0 pn,k(x)

⎫
⎬

⎭

= max

⎧
⎨

⎩

∨n−1
k=0 pn,k(x) · (n+ 1)

∫ (k+1)/(n+1)
k/(n+1) f (t)dm(t)

∨n
k=0 pn,k(x)

,

pn,n(x)(n+ 1)
∫ 1
n/(n+1) f (t)dm(t)∨n

k=0 pn,k(x)
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+pn,n(x)f (1)− pn,n(x)(n+ 1)
∫ 1
n/(n+1) f (t)dm(t)∨n

k=0 pn,k(x)

⎫
⎬

⎭ .

Suppose now that f is nonnegative and nondecreasing on [0, 1]. It immediately
follows

C :=
pn,n(x)

[
f (1)− (n+ 1)

∫ 1
n/(n+1) f (t)dm(t)

]

∨n
k=0 pn,k(x)

≥ 0,

which from the above formula for K(M)n,Γn,x
(f )(x) immediately implies

Kn,Γn,x (f )(x) ≥
∨n
k=0 pn,k(x)(n+ 1)

∫ (k+1)/(n+1)
k/(n+1) f (t)dm(t)

∨n
k=0 pn,k(x)

= K(M)n (f )(x),

where K(M)n (f )(x) denotes the usual max-product Bernstein–Kantorovich operator
intensively studied in [12].

On the other hand, by choosing in the inequality (10)

A =
∨n−1
k=0 pn,k(x) · (n+ 1)

∫ (k+1)/(n+1)
k/(n+1) f (t)dm(t)

∨n
k=0 pn,k(x)

and

B = pn,n(x)(n+ 1) · ∫ 1
n/(n+1) f (t)dm(t)∨n

k=0 pn,k(x)
,

it is immediate that

K(M)n (f )(x) ≤ K(M)n,Γn,x
(f )(x) ≤ K(M)n (f )(x)+ C,

where from the above formula for C, we get

0 ≤ C ≤ f (1)− (n+ 1) ·
∫ 1

n/(n+1)
f (t)dm(t) ≤ ω1(f ; 1/(n+ 1))[0,1].

Therefore, if, in addition, we suppose that f is strictly positive too (withmf > 0 its
minimum), by Theorem 2.4, (iii) in [12], we obtain

|K(M)n,Γn,x
(f )(x)− f (x)|

≤ |Kn,Γn,x (f )(x)−K(M)n (f )(x)| + |K(M)n (f )(x)− f (x)|
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≤ ω1(f ; 1/(n+ 1))[0,1] + 2ω1(f ; 1/n)[0,1]
(
n · ω1(f ; 1/n)[0,1]

mf
+ 5

)
.

For example, if f is strictly positive, nondecreasing, and Lipschitz function on
[0, 1], by the above inequality, it follows that the order of approximation by the

max-product Bernstein–Kantorovich–Choquet operator K(M)n,Γn,x
(f ) is O

(
1
n

)
.

Again, we observe that this order of approximation is not achieved in the case of
classical Bernstein–Kantorovich operators.

Remark 6 To the above operators S(M)n,μ and V (M)n,μ , we can apply the idea in the
papers [24, 35]. Let λn be with λn ↘ 0. For simplicity, we will define the slightly
different operators

S
(M)
n,Γn,x

(f ; λn)(x) =
∨∞
k=0

xk

λknk! ·
(C)

∫ (k+1)λn
kλn

f (t)dμn,k,x (t)

μn,k,x ([kλn,(k+1)λn])
∨∞
k=0

xk

λknk!
,

V
(M)
n,Γn,x

(f ; λn)(x)

=
∨∞
k=0

1
k! · 1

λn

(
1+ 1

λn

)
· . . . ·

(
k − 1+ 1

λn

)
xk

(1+x)k ·
(C)

∫ (k+1)λn
kλn

f (t)dμn,k,x (t)

μn,k,x ([kλn,(k+1)λn])
∨∞
k=0

1
k! · 1

λn

(
1+ 1

λn

)
· . . . ·

(
k − 1+ 1

λn

)
xk

(1+x)k
,

respectively, where by convention 1
λn

(
1+ 1

λn

)
· . . . ·

(
k − 1+ 1

λn

)
= 1 for k = 0.

In this case, the estimates in Corollary 1 (ii) and (iii) easily become as follows.

Corollary 2 Let μ = √
m. For all n ∈ N, x ∈ [0,+∞), f ∈ UCb+([0,+∞)), we

have

|S(M)n,μ (f ; λn)(x)− f (x)| ≤ 2ω1

(
f ; 4

√
x ·√λn + λn

)

[0,+∞)

and

|V (M)n,μ (f ; λn)(x)− f (x)| ≤ 2ω1

(
f ; 6

√
x(1+ x) ·√λn + λn

)

[0,+∞) ,

where the sequence (λn)n∈N with λn ↘ 0 can be chosen of an arbitrary order.

Proof Firstly, we consider the case of S(M)n,μ (f ; λn)(x). Thus, denoting

Cλn,k(x) =
(C)

∫ (k+1)λn
kλn

|t − x|dμ(t)√
λn

,

by the proof of Corollary 3.8 in [27], we get
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Cλn,k(x) ≤ |x − kλn| + λn.

Now, denoting by S(M)n (f ; λn) the operator obtained from the usual max-product
Szász–Mirakjan operator, by replacing in its formula of definition 1/n by λn and
taking into account the estimate in, e.g., the book [3], p. 165, finally we easily arrive
at S(M)n,μ (ϕx; λn)(x) ≤ 4

√
x · √λn.

Applying the estimate (6) in Theorem 1, we arrive at the desired conclusion.
The proof for V (M)n,μ (f ; λn)(x) is similar with that in Corollary 1. We omit the

details. �
Remark 7 In other words, Corollary 2 shows that the order of uniform approx-
imation by S(M)n,μ (f ; λn)(x) and V (M)n,μ (f ; λn)(x) in each compact subinterval of
[0,+∞) can be chosen as fast we want, that is, O(ω1(f ;√λn)[0,+∞)), with λn ↘ 0
arbitrary fast.

At the end of this section, we present the shape preserving properties, direct
results, and localization results of the max-product Bernstein–Kantorovich–Choquet
operators given by Definition 2.

They can be deduced from the corresponding results of the usual max-product
Bernstein operator

B(M)n (f )(x) =
∨n
k=0

(
n
k

)
xk(1− x)n−k · f (k/n)

∨n
k=0

(
n
k

)
xk(1− x)n−k ,

based on the remark that the operatorK(M)n,μn can be obtained from the operator B(M)n ,
as follows. Suppose that f is arbitrary in C+ ([0, 1]). Let us consider

fn(x) = (C)
∫ (nx+1)/(n+1)

nx/(n+1)
f (t)dμn(t)/μn([nx/(n+ 1), (nx + 1)/(n+ 1)]),

(11)
where μn is a strictly positive set function.

It is readily seen that B(M)n (fn)(x) = K(M)n,μn(f )(x), for all x ∈ [0, 1]. We also
notice that fn ∈ C+ ([0, 1]). What is more, if f is strictly positive, then so is fn.

The following two shape preserving results hold.

Theorem 2 Let μn, n ∈ N, be strictly positive set functions and f ∈ C+([0, 1]).
(i) If f is nondecreasing (nonincreasing) on [0, 1], then for all n ∈ N, K(M)n,μn(f )

is nondecreasing (nonincreasing, respectively) on [0, 1].
(ii) If f is quasi-convex on [0, 1], then for all n ∈ N, K(M)n,μn(f ) is quasi-convex

on [0, 1]. Here, quasi-convexity on [0, 1] means that f (λx + (1 − λ)y) ≤
max{f (x), f (y)}, for all x, y, λ ∈ [0, 1].
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Proof

(i) If f ∈ C+([0, 1]), then the integral mean value theorem holds for the Choquet
integral too. Indeed, there exist m,M ≥ 0 such that m ≤ f (x) ≤ M for all
x ∈ [0, 1]. Then, by the properties of the Choquet integral in Remark 1, (iii),
(v), it easily follows

m ≤ (C)
∫ (k+1)/(n+1)

k/(n+1)
f dμn(t)/μn([k/(n+ 1), (k + 1)/(n+ 1)]) ≤ M,

which by the continuity of f implies the existence of

ξn,k ∈ [k/(n+ 1), (k + 1)/(n+ 1)]

such that

(C)

∫ (k+1)/(n+1)

k/(n+1)
f dμn(t)/μn,k([k/(n+ 1), (k + 1)/(n+ 1)]) = f (ξn,k).

By using this formula, we can write K(M)n,μn(f ) under the form

K(M)n,μn
(f )(x) =

∨n
k=0

(
n
k

)
xk(1− x)n−k · f (ξn,k)∨n

k=0

(
n
k

)
xk(1− x)n−k ,

where ξn,k ∈ [k/(n+ 1), (k + 1)/(n+ 1)], for all k = 0, . . . , n.
Then, by analogy with the proofs for the Bernstein max-product operators

(see, e.g., [3], pp. 39-41), the proofs for the Bernstein–Kantorovich–Choquet
max-product operators will be based on the properties of the functions

fk,n,j (x) =
(
n
k

)
(
n
j

) ·
(

x

1− x
)k−j

· f (ξn,k).

Now, analyzing the proofs of Lemma 2.1.13, Corollary 2.1.14, Theorem 2.1.15,
and Corollary 2.1.16 in [3], pp. 39-41, it is easy to see that they work identically
for the above fk,n,j too, and we immediately obtain the required conclusions.

(ii) Since as in the case of the max-product Bernstein operators in Corollary 2.1.18,
p. 41 in [3], this point is based on the properties from the above point (i), we
easily get the required conclusion for this point too.

�
In what follows, we will prove that K(M)n,μn preserves quasi-concavity too. Recall

that a continuous function f : [a, b] → R is quasi-concave, if and only if there
exists c ∈ [a, b] such that f is nondecreasing on [a, c] and nonincreasing on [c, b].
This property holds in the case of the operator B(M)n (see, e.g., Corollary 2.2.23, p.



316 S. G. Gal and I. T. Iancu

68 in [3]). However, it is difficult to adapt the proof to our case. Instead, we can
prove this property by finding a direct correspondence between the operators B(M)n

and K(M)n,μn .

We are now in a position to prove that K(M)n,μN preserves quasi-concavity too.

Theorem 3 Let μn, n ∈ N, be strictly positive set functions and f ∈ C+([0, 1]).
If f is quasi-concave on [0, 1], then for all n ∈ N, K(M)n,μn(f ) is quasi-concave on
[0, 1].

Proof For some arbitrary n ≥ 1, let us consider the function fn given by (11).
Moreover, let c ∈ [0, 1] such that f is nondecreasing on [0, c] and nonincreasing on
[c, 1]. Then, let j (c) ∈ {0, . . . , n} such that

j (c)

n+ 1
≤ c ≤ j (c)+ 1

n+ 1
.

Next, we consider the function gn, which interpolates fn at all the knots k
n

,
k = 0, 1, . . . , n, and which is continuous on [0, 1] and affine on any interval[
k
n
, k+1
n

]
, k = 0, 1, . . . , n − 1. It means that gn is the continuous polygonal line,

which interpolates fn at all the knots k
n

, k = 0, 1, . . . , n. This easily implies that

B
(M)
n (fn)(x) = B(M)n (gn)(x), x ∈ [0, 1], and hence, K(M)n,μn(f )(x) = B(M)n (gn)(x),
x ∈ [0, 1]. Let us now choose arbitrary 0 ≤ k1 < k2 ≤ j (c)− 1. We have

gn

(
k1

n

)
= (C)

∫ (k1+1)/(n+1)

k1/(n+1)
f (t)dμn(t)/μn([k1/(n+ 1), (k1 + 1)/(n+ 1)])

and

gn

(
k2

n

)
= (C))

∫ (k2+1)/(n+1)

k2/(n+1)
f (t)dμn(t)/μn([k2/(n+ 1), (k2 + 1)/(n+ 1)]).

As k1+1
n+1 ≤ k2

n+1 and f is nondecreasing on [0, k2+1
n+1 ], we easily obtain (after

applying the mean value theorem) that gn
(
k1
n

)
≤ gn

(
k2
n

)
. The construction of

gn easily implies that gn is nondecreasing on
[
0, j (c)−1

n

]
. By similar reasoning,

we get that gn is nonincreasing on
[
j (c)+1
n
, 1
]
. Now, suppose that f

(
j (c)
n+1

)
≥

f
(
j (c)+1
n+1

)
. The quasi-concavity of f implies that f (x) ≥ f

(
j (c)+1
n+1

)
for any

x ∈
[
j (c)
n+1 ,

j (c)+1
n+1

]
. Since there exists x0 ∈

[
j (c)
n+1 ,

j (c)+1
n+1

]
such that

(C)

∫ (j (c)+1)/(n+1)

j (c)/(n+1)
f (t)dμn(t)/μn([f (c)/(n+ 1), (f (c)+ 1)/(n+ 1)])

= f (x0) = gn
(
j (c)

n

)
,
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and since f
(
j (c)+1
n+1

)
≥ gn

(
j (c)+1
n

)
(this is true indeed as f is nondecreasing on

[
j (c)+1
n+1 , 1

]
), we get that gn

(
j (c)
n

)
≥ gn

(
j (c)+1
n

)
. Therefore, gn is nonincreasing

on
[
j (c)
n
,
j (c)+1
n

]
. This implies that gn is nondecreasing on

[
0, j (c)−1

n

]
and non-

increasing on
[
j (c)
n
, 1
]
. But f is affine on

[
j (c)−1
n
,
j (c)
n

]
, which means that it is

monotone on this interval. Clearly, this implies that gn is either nondecreasing on[
0, j (c)−1

n

]
and nonincreasing on

[
j (c)−1
n
, 1
]

or it is nondecreasing on
[
0, j (c)

n

]
and

nonincreasing on
[
j (c)
n
, 1
]
. It means that gn is quasi-concave on [0, 1]. By similar

reasonings, we get to the same conclusion if f
(
j (c)
n+1

)
≤ f

(
j (c)+1
n+1

)
. The only

difference is that now gn is either nondecreasing on
[
0, j (c)

n

]
and nonincreasing on

[
j (c)
n
, 1
]

or it is nondecreasing on
[
0, j (c)+1

n

]
and nonincreasing on

[
j (c)+1
n
, 1
]
.

Thus, we just proved that gn is quasi-concave on [0, 1]. By Theorem 2.2.22, p. 67
in the book [3], it follows that B(M)n (gn) is quasi-concave on [0, 1]. As B(M)n (gn) =
K
(M)
n,Γn
(f ), it follows that K(M)n,Γn

(f ) is quasi-concave on [0, 1]. �
Remark 8 As an important side remark, let us note that in Theorem 2.2.22, p. 67
in the book [3]), it is proved that if f is quasi-concave and c is a maximum point
of f , then there exists a maximum point of B(M)n (f ) such that |c − c′| ≤ 1

n+1 .
By the construction of gn, it follows that one maximum point of gn is between the
values j (c)−1

n
, j (c)
n

, or j (c)+1
n

. If we denote this value with cn, then one can easily
check that |cn − c| ≤ 2

n
. Now, applying the previous property, let c′ be a maximum

point of B(M)n (gn) = K
(M)
n,Γn
(f ), such that |c′ − cn| ≤ 1

n+1 . This easily implies

that |c′ − c| ≤ 3
n

. So, we obtained a quite similar result for the operator K(M)n,Γn
in

comparison with the operator B(M)n .

Let us return to the functions fn given in (11), and let us find now an upper
bound for the approximation of f by fn in terms of the uniform norm. For some

x ∈ [0, 1], using the mean value theorem, there exists ξx ∈
[
nx
n+1 ,

nx+1
n+1

]
such that

fn(x) = f (ξx). We also easily notice that |ξx − x| ≤ 1
n+1 . It means that

|f (x)− fn(x)| ≤ ω1(f ; 1/(n+ 1)), x ∈ R, n ∈ N. (12)

In what follows, we deal with the localization properties of the max-product
Bernstein–Kantorovich–Choquet operator.

We firstly prove a very strong localization property of the operator K(M)n,μn .

Theorem 4 Suppose that μn, n ∈ N are strictly positive set functions. Let f, g :
[0, 1] → [0,∞) be both bounded on [0, 1] with strictly positive lower bounds, and
suppose that there exist a, b ∈ [0, 1], 0 < a < b < 1 such that f (x) = g(x) for all
x ∈ [a, b]. Then, for all c, d ∈ [a, b] satisfying a < c < d < b, there exists ñ ∈ N
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depending only on f, g, a, b, c, and d such thatK(M)n,μn(f )(x) = K(M)n,μn(g)(x) for all
x ∈ [c, d]and n ∈ N with n ≥ ñ.
Proof Let us choose arbitrary x ∈ [c, d], and for each n ∈ N, let jx ∈ {0, 1, . . . , n}
be such that x ∈ [jx/(n+ 1), (jx + 1)/(n+ 1)]. Then, by the last relation on page
33 in the book [3], we have

K(M)n,μn
(f )(x) = B(M)n (fn)(x) =

n∨

k=0

(fn)k,n,jx (x), (13)

where for k ∈ {0, 1, . . . , n}, we have

(fn)k,n,jx =
(
n
k

)
(
n
jx

)
(

x

1− x
)k−jx

fn

(
k

n

)
, (14)

and each fn is given by (11). Let us denote withmf ,Mf andmfn,Mfn , respectively,
the minimums and maximum values of the functions f and fn. By the mean value
theorem for the Choquet integral, one can easily notice that for any x ∈ [0, 1], there
exists ξn,x ∈ [0, 1] such that fn(x) = f (ξn,x). It means that 0 < mf ≤ mfn ≤
Mfn ≤ Mf . In what follows, the proof is very similar to the proof of Theorem
2.4.1 in [3]. However, as often, we will use fn instead of f , especially, since the
constants obtained in the proof of Theorem 2.4.1 in [3] depend on f , in our setting
these constants would depend on fn; hence, they would depend on n, if we would
apply directly the results in [3]. Therefore, there are some differences in the two
proofs as our intention is to obtain constants that do not depend on fn.

We need the set In,x = {k ∈ {0, 1, . . . , n} : jx − an ≤ k ≤ jx + an}, where

an =
[

3
√
n2
]

(here, [a] denotes the integer part of a). Now, suppose that k /∈ In,x
, and let us discuss first the case when k < jx − an. If we look over the proof of
Theorem 2.4.1 in [3], we observe that this proof is split into cases (i) and (ii). Case (i)
corresponds to the case when k < jx−an. Furthermore, this case is divided into two

subcases (ia) and (ib). In subcase (ia), the inequality
fjx ,n,jx (x)

fk,n,jx (x)
≥

(
1+ an

nb−an
)an ·

f (jx/n)
f (k/n)

is obtained, which then gives
fjx ,n,jx (x)

fk,n,jx (x)
≥
(

1+ an
nb−an

)an · mf
Mf

. Applying this

reasoning but considering fn instead of f , we get
(fn)jx ,n,jx (x)

(fn)k,n,jx (x)
≥

(
1+ an

nb−an
)an ·

fn(jx/n)
fn(k/n)

. But sincemf ≤ mfn ≤ Mfn ≤ Mf , we get
(fn)jx ,n,jx (x)

(fn)k,n,jx (x)
≥
(

1+ an
nb−an

)an ·
mf
Mf

. We get the same conclusion for all the cases and subcases, that is, any lower

bound for
fjx ,n,jx (x)

fk,n,jx (x)
is also a lower bound for

(fn)jx ,n,jx (x)

(fn)k,n,jx (x)
, for any k outside of In,x .

Since in the proof of Theorem 2.4.1 in [3], on page 79, it was proved that there exists
N0 ∈ N, which may depend only on f, a, b, c, and d, such that for any n ≥ N0,

k ∈ {0, 1, . . . , n}, with k < jx − an or k > jx + an, we have
fjx ,n,jx (x)

fk,n,jx (x)
≥ 1, it



Max-Product Kantorovich–Choquet Operators 319

follows that
(fn)jx ,n,jx (x)

(fn)k,n,jx (x)
≥ 1, for any n ≥ N0, k ∈ {0, 1, . . . , n}, with k < jx − an

or k > jx + an. Combining this fact with relations (13)–(14), we get that

K(M)n,μn
(f )(x) =

∨

k∈In,x
(fn)k,n,jx (x), x ∈ [c, d], n ≥ N0.

Using a similar reasoning as in the proof of Theorem 2.4.1 in [3], in what follows,
we will prove that N0 can be replaced if necessary with a larger value Ñ1 such that
[ k
n+1 ,

k+1
n+1 ] ⊆ [a, b] for any k ∈ In,x . Let us choose arbitrary x ∈ [c, d] and n ∈ N

so that n ≥ N0. If there exists k ∈ In,x such that k/ (n+ 1) /∈ [c, d], then we
distinguish two cases. Either k

n+1 < c or k
n+1 > d. In the first case, we observe that

0 < c − k

n+ 1
≤ x − k

n+ 1
≤ jx + 1

n+ 1
− k

n+ 1
≤ jx + 1

n+ 1
− k

n+ 1
≤ an + 1

n+ 1
.

Since lim
n→∞

an+1
n+1 = 0, it results that for sufficiently large n, we necessarily have

an+1
n+1 < c − a, which clearly implies that k

n+1 ∈ [a, c]. In the same manner, when
k
n+1 > d, for sufficiently large n, we necessarily have k

n+1 ∈ [d, b]. By similar

reasoning, it results that for sufficiently large n, we necessarily have k
n+1 ∈ [a, b].

Summarizing, there exists a constant Ñ1 ∈ N independent of any x ∈ [c, d] such
that

K(M)n,μn
(f )(x) =

∨

k∈In,x
(fn)k,n,jx (x), x ∈ [c, d], n ≥ Ñ1,

and in addition for any x ∈ [c, d], n ≥ Ñ1 and k ∈ In,x , we have [ k
n+1 ,

k+1
n+1 ] ⊆

[a, b]. Also, it is easy to check that Ñ1 depends only on a, b, c, d, and f.
Now, for k ∈ {0, 1, . . . , n}, taking

(gn)k,n,jx =
(
n
k

)
(
n
jx

)
(

x

1− x
)k−jx

gn

(
k

n

)
,

and applying the same reasoning, there exists Ñ2 ∈ N, which may depend only on
a, b, c, d, and g, such that

K(M)n,μn
(g)(x) =

∨

k∈In,x
(gn)k,n,jx (x), x ∈ [c, d], n ≥ Ñ2,

and in addition for any x ∈ [c, d], n ≥ Ñ2 and k ∈ In,x , we have [ k
n+1 ,

k+1
n+1 ] ⊆

[a, b] . Since f (x) = g(x), x ∈ [a, b], we get that for any n ≥ ñ = max{Ñ1, Ñ2},
k ∈ In.x and x ∈ [c, d], it holds that (fn)k,n,jx (x) = (gn)k,n,jx (x). Thus, for any
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n ≥ ñ and x ∈ [c, d], we have K(M)n,μn(f )(x) = K(M)n,μn(g)(x). The proof is complete
now. �

Previously, by Theorem 2, we proved that K(M)n,μn preserves monotonicity and
more generally quasi-convexity. By the localization result in Theorem 4 and then
applying a very similar reasoning to the one used in the proof of Theorem 2, we
obtain local versions for these shape preserving properties. For this reason, we
omit the proofs of the following corollaries (see also the corresponding local shape
preserving properties proved for the operator B(M)n in Corollary 2.4.4 and Corollary
2.4.5, pp. 81-82 in the book [3]).

Corollary 3 Suppose that μn, n ∈ N are strictly positive set functions. Let
f : [0, 1] → [0,∞) be bounded on [0, 1] with strictly positive lower bound, and
suppose that there exist a, b ∈ [0, 1], 0 < a < b < 1, such that f is nondecreasing
(nonincreasing) on [a, b]. Then, for any c, d ∈ [a, b] with a < c < d < b,

there exists ñ ∈ N depending only on a, b, c, d, and f , such that K(M)n,μn(f ) is
nondecreasing (nonincreasing) on [c, d] for all n ∈ N with n ≥ ñ.
Corollary 4 Suppose that μn, n ∈ N are strictly positive set functions. Let f :
[0, 1] → [0,∞) be a continuous and strictly positive function, and suppose that
there exist a, b ∈ [0, 1], 0 < a < b < 1, such that f is quasi-convex on [a, b].
Then, for any c, d ∈ [a, b] with a < c < d < b, there exists ñ ∈ N depending only
on a, b, c, d, and f such that K(M)n,μn(f ) is quasi-convex on [c, d] for all n ∈ N with
n ≥ ñ.
Corollary 5 Suppose that μn, n ∈ N are strictly positive set functions. Let f :
[0, 1] → [0,∞) be a continuous and strictly positive function, and suppose that
there exist a, b ∈ [0, 1], 0 < a < b < 1, such that f is quasi-concave on [a, b].
Then, for any c, d ∈ [a, b] with a < c < d < b, there exists ñ ∈ N depending only
on a, b, c, d and f , such that K(M)n,μn(f ) is quasi-concave on [c, d] for all n ∈ N

with n ≥ ñ.
Remark 9 As in the cases of Bernstein-type max-product operators studied in the
research monograph [3], for the max-product Bernstein–Kantorovich–Choquet-type
operators, we can find natural interpretation as possibilistic operators, which can
be deduced from the Feller scheme written in terms of the possibilistic integral.
These approaches also offer new proofs for the uniform convergence, based on a
Chebyshev-type inequality in the theory of possibility.

4 Approximation by Max-Product Discrete Singular
Integrals of Choquet Type

In this section, we consider discrete variants of the convolution integrals of Picard,
Gauss–Weierstrass, and Poisson–Cauchy type.
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Firstly, let us consider pn,k(x) = e−n|x−k/n|, I = (−∞,+∞). The max-product
Picard–Kantorovich–Choquet operators, PK(M)n , are defined by

PK(M)n,Γn,x
(f )(x) =

∨+∞
k=−∞ e−n|x−k/n| ·

(C)
∫ (k+1)/(n+1)
k/(n+1) f (t)dμn,k,x (t)

μn,k,x ([k/(n+1),(k+1)/(n+1)])∨+∞
k=−∞ e−n|x−k/n)|

, (15)

where μn,k,x, k = 1, . . . , n, x ∈ R, is a collection of families of monotone,
submodular, and strictly positive set functions.

We can state the following result.

Theorem 5 Suppose that μn,k,x = μ := √
m, for all n, k and x, where m is the

Lebesgue measure. If f : R → [0,+∞) is bounded and uniformly continuous on
R, then we have

|PK(M)n,μ (f )(x)− f (x)| ≤ 4ω1(f ; 1/n)R, x ∈ R, n ∈ N.

Proof As in the proofs of the results in the previous section, let us consider the
quantity

Cn,k(x) =
(C)

∫ (k+1)/(n+1)
k/(n+1) |t − x|dμn,k,x(t)

μn,k,x([k/(n+ 1), (k + 1)/(n+ 1)]) .

According to the proof of Corollary 3.6 in [27], we have

Cn,k(x) ≤
∣∣∣∣
k

n
− x

∣∣∣∣+
1

n
,

which immediately implies

PK(M)n,μ (ϕx)(x)

≤
∨+∞
k=−∞ pn,k(x)

[∣∣ k
n
− x∣∣+ 1

n

]

∨+∞
k=−∞ pn,k(x)

≤
∨+∞
k=−∞ pn,k(x)

[∣∣ k
n
− x∣∣]

∨+∞
k=−∞ pn,k(x)

+1

n
≤ 1

n
+1

n
= 2

n
,

where we have used the estimate (see, e.g., the proof of Theorem 10.3.1, p. 424 in
[3])

∨+∞
k=−∞ pn,k(x)

[∣∣ k
n
− x∣∣]

∨+∞
k=−∞ pn,k(x)

≤ 1

n
.

Using the estimate (6) in Theorem 1 too, we obtain the desired conclusion. �
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Now, let us choose pn,k(x) = e−n(x−k/n)2 , I = (−∞,+∞). In this case, the
max-product Gauss–Weierstrass–Kantorovich–Choquet operators are defined by

WK(M)n,Γn,x
(f )(x) =

∨+∞
k=−∞ e−n(x−k/n))

2 · (C)
∫ (k+1)/(n+1)
k/(n+1) f (t)dμn,k,x (t)

μn,k,x ([k/(n+1),(k+1)/(n+1)])∨+∞
k=−∞ e−n(x−k/n)

2 . (16)

We have the following result.

Theorem 6 Suppose that μn,k,x = μ := √
m, for all n, k and x, where m is the

Lebesgue measure. If f : R → [0,+∞) is bounded and uniformly continuous on
R, then we have

|WK(M)n,μ (f )(x)− f (x)| ≤ 2ω1(f ; 1/
√
n+ 1/n), x ∈ R, n ∈ N.

Proof As in the proof of Theorem 5, we get

WK(M)n,μ (ϕx)(x)

≤
∨+∞
k=−∞ pn,k(x)

[∣∣ k
n
− x∣∣+ 1

n

]

∨+∞
k=−∞ pn,k(x)

≤
∨+∞
k=−∞ pn,k(x)

[∣∣ k
n
− x∣∣]

∨+∞
k=−∞ pn,k(x)

+ 1

n
≤ 1√

n
+ 1

n
,

where we have used the estimate (see, e.g., the proof of Theorem 10.3.3, p. 426 in
[3])

∨+∞
k=−∞ pn,k(x)

[∣∣ k
n
− x∣∣]

∨+∞
k=−∞ pn,k(x)

≤ 1√
n
.

Using the estimate (6) in Theorem 1 too, we obtain the desired conclusion. �
Finally, let us choose pn,k(x) = 1

n2(x−k/n)2+1
, I = (−∞,+∞). In this case, the

max-product Poisson–Cauchy–Kantorovich–Choquet operators are defined by

CK(M)n,Γn,x
(f )(x) =

∨∞
k=0

1
n2(x−k/n)2+1

· (C)
∫ (k+1)/(n+1)
k/(n+1) f (t)dμn,k,x (t)

μn,k,x ([k/(n+1),(k+1)/(n+1)])
∨∞
k=0

1
n2(x−k/n)2+1

. (17)

Concerning these operators, the following result holds.

Theorem 7 Suppose that μn,k,x = μ := √
m, for all n, k and x, where m is the

Lebesgue measure. If f : R → [0,+∞) is bounded and uniformly continuous on
R, then we have

|CK(M)n,μ (f )(x)− f (x)| ≤ 4ω1(f ; 1/n), x ∈ R, n ∈ N.
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Proof As in the proof of Theorem 6, we get

CK(M)n,μ (ϕx)(x)

≤
∨+∞
k=−∞ pn,k(x)

[∣∣ k
n
− x∣∣+ 1

n

]

∨+∞
k=−∞ pn,k(x)

≤
∨+∞
k=−∞ pn,k(x)

[∣∣ k
n
− x∣∣]

∨+∞
k=−∞ pn,k(x)

+1

n
≤ 1

n
+1

n
= 2

n
,

where we have used the estimate (see, e.g., the proof of Theorem 10.3.5, p. 427 in
[3])

∨+∞
k=−∞ pn,k(x)

[∣∣ k
n
− x∣∣]

∨+∞
k=−∞ pn,k(x)

≤ 1

n
.

Using the estimate (6) in Theorem 1 too, we obtain the desired estimate. �

5 Max-Product Kantorovich–Choquet Operators Based on
(φ,ψ)-Kernels

In the paper [11], the truncated max-product sampling operators based on sinc-Fejér
kernels were generalized to truncated max-product Kantorovich operators based on
generalized type kernels depending on two functions ϕ and ψ satisfying a set of
suitable conditions and convergence results were obtained. In the same paper, as
particular cases previous results in sampling and neural network approximation are
recaptured and new results for many concrete examples are obtained.

In this section, we introduce the more general max-product Kantorovich–
Choquet with respect to a family of strictly positive and submodular set functions
Γn,x = {μn,k,x, k = 0, . . . , n, x ∈ [0, b]} and based on a generalized (ϕ, ψ)-kernel,
by the formula

K
(M)
n,Γn,x

(f ;ϕ,ψ)(x) =
∨n
k=0

ϕ(nx−kb)
ψ(nx−kb) ·

[
(C)

∫ (k+1)b/(n+1)
kb/(n+1) f (v)dμn,k,x (v)

μn,k,x ([kb/(n+1),(k+1)b/(n+1)])
]

∨n
k=0

ϕ(nx−kb)
ψ(nx−kb)

, (18)

where b > 0, f : [0, b] → R+ is a bounded, the Choquet integrable function on
[0, b] with respect to each μn,k,x and ϕ and ψ satisfy some properties specific to
max-product operators and required to prove convergence results, as follows:

Definition 3 We say that (ϕ, ψ) forms a generalized kernel if satisfy some (not
necessary all, depending on the type of convergence intended for study) of the
following properties:
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(i) ϕ,ψ : R → R+ are continuous on R, ϕ(x) 	= 0 for all x ∈ (0, b/2] and
ψ(x) 	= 0 for all x 	= 0, ϕ(x)

ψ(x)
is an even function on R, and limx→0

ϕ(x)
ψ(x)

=
α ∈ (0, 1].

(ii) There exists a constant C ∈ R such that ϕ(x) ≤ C · ψ(x), for all x ∈ R.
(iii) There exist the positive constantsM > 0 and β > 0, such that ϕ(x)

ψ(x)
≤ M
xβ

, for
all x ∈ (0,∞).

(iv) For any n ∈ N, j ∈ {0, . . . , n} and x ∈
[
jb
n
,
(j+1)b
n

]
,

n∨

k=0

ϕ(nx − kb)
ψ(nx − kb) = max

{
ϕ(nx − jb)
ψ(nx − jb) ,

ϕ(nx − (j + 1)b)

ψ(nx − (j + 1)b)

}
.

(v)
∫ +∞
−∞

ϕ(y)
ψ(y)

dy = c, where c > 0 is a positive real constant.

Remark 10 The use of the two functions in the generalized kernels offers a large
flexibility in finding many concrete examples.

Remark 11 Let us note that if properties (i) and (iii) hold simultaneously, then (ii)
holds too. Indeed, firstly if (i) holds, clearly that we may extend the continuity of
ϕ(x)
ψ(x)

in the origin too, that is, we take ϕ(0)
ψ(0) = limx→0

ϕ(x)
ψ(x)

. This means that ϕ(x)
ψ(x)

is
continuous on the whole R. Secondly, from (iii), it is readily seen that there exists a
constant a > 0 such that M

xβ
≤ 1, for all x ∈ [a,∞). It means that ϕ(x) ≤ ψ(x),

for all x ∈ [a,∞). This fact combined with the continuity of ϕ(x)
ψ(x)

on [−a, a] easily
implies that (ii) holds.

Remark 12 Another important remark is that if (i) and (iii), β > 1 case, hold
simultaneously, then (v) holds too. Indeed, since ϕ(x)

ψ(x)
is an even function on R,

it suffices to prove that
∫ +∞

0
ϕ(y)
ψ(y)

dy is finite. From the continuity of ϕ(x)
ψ(x)

, this later

integral is finite if and only if
∫ +∞

1
ϕ(y)
ψ(y)

dy is finite. Now, since ϕ(x)
ψ(x)

≤ M
xβ

, for all

x ∈ [0,∞), and since we easily note that
∫ +∞

1
M
xβ
dx is finite, we conclude that

∫ +∞
1

ϕ(y)
ψ(y)

dy is finite. Thus,
∫ +∞
−∞

ϕ(y)
ψ(y)

dy is finite, which means that (v) holds.

Remark 13 If in the pair (ϕ, ψ), we consider that ψ is a strictly positive constant
function, then in order that (ϕ, ψ) be a generalized kernel satisfying all the
properties (i)–(v) in Definition 3, it is good enough if ϕ : R → R+ is a continuous
even function, satisfying ϕ(x) > 0, for all x ∈ (0, b/2), ϕ(0) 	= 0 (this implies

(i)), ϕ(x) is bounded on R (this implies (ii)), ϕ(x) = O
(

1
xβ

)
, x ∈ [0,+∞),

β > 0 (this implies (iii)), ϕ(x) is nonincreasing on [0,+∞) (this implies (iv)), and∫ +∞
0 ϕ(x)dx < +∞ (this implies (v)). Note that this particular type of choice for

the generalized kernel (ϕ, ψ) may cover some sampling approximation operators
(see Application 3 below) and neural network operators (see Application 6 below).

In what follows, we prove a quantitative estimate for a particular variant of
the max-product Kantorovich–Choquet operators defined by formula (18), which
involves the modulus of continuity, as follows.
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Theorem 8 Suppose that f : [0, b] → R+ is continuous on [0, b] and that
properties (i), (iii), and (iv) are fulfilled by ϕ and ψ . Also, take μn,k,x = μ := √m,
for all n, k, and x, where m is the Lebesgue measure. Then, for any n ∈ N, we have

∥∥∥K(M)n,μ (f ;ϕ,ψ)− f
∥∥∥ ≤ 2ω1

(
f ; M · (2b)1−β

c1 · nβ + b
n

)

[0,b]
.

Here, c1 denotes a constant which follows from relations (6) and (7) in [11], and
‖ · ‖ denotes the uniform norm.

Proof Denote pn,k(x) = ϕ(nx−kb)
ψ(nx−kb) . In order to estimate K(M)n,μ (ϕx;ϕ,ψ)(x), let us

denote

Cn,k(x) =
(C)

∫ (k+1)b/(n+1)
kb/(n+1) |t − x|dμ(t)

μ([k/(n+ 1), (k + 1)/(n+ 1)])

=
√
n+ 1√
b

· (C)
∫ (k+1)b/(n+1)

kb/(n+1)
|t − x|dμ(t).

We have three possibilities: (a) x ∈ [kb/(n + 1), (k + 1)b/(n + 1)], (b) 0 ≤ x <
kb/(n+ 1), and (c) (k + 1)b/(n+ 1) < x.

Case (a) Since |t − x| ≤ (k + 1)b/(n + 1) − kb/(n + 1) = b/(n + 1), for all
t, x ∈ In,k = [kb/(n+ 1), (k + 1)b/(n+ 1)], we get

Cn,k(x) ≤
√
n+ 1√
b

· b

n+ 1
· (C)

∫ (k+1)b/(n+1)

kb/(n+1)
1 · dμ

=
√
n+ 1√
b

· b

n+ 1
·

√
b√

n+ 1
= b

n+ 1
<
b

n
.

Case (b) We have |t − x| = t − x, and denoting E(n, k, x, β) := μ({t ∈ In,k; t ≥
x + β}), we get

Cn,k(x) =
√
n+ 1√
b

·
∫ ∞

0
E(n, k, x, β)dβ =

√
n+ 1√
b

·
∫ (k+1)b/(n+1)−x

0
E(n, k, x, β)dβ

=
√
n+ 1√
b

( ∫ kb/(n+1)−x

0
E(n, k, x, β)dβ

+
∫ (k+1)b/(n+1)−x

kb/(n+1)−x
E(n, k, x, β)dβ

)



326 S. G. Gal and I. T. Iancu

≤
(
kb

n+ 1
− x

)
+
√
n+ 1√
b

·
∫ (k+1)b/(n+1)−x

kb/(n+1)−x

√
(k + 1)b/(n+ 1)− x − βdβ

=
(
kb

n+ 1
− x

)
+
√
n+ 1√
b

·
∫ b/(n+1)

0

√
ηdη =

(
kb

n+ 1
− x

)
+ 2b

3(n+ 1)

= n

n+ 1

(
kb

n
− x

)
+ 2b − 3x

3(n+ 1)
≤ n

n+ 1

∣∣∣∣
kb

n
− x

∣∣∣∣+
2b

3(n+ 1)

≤
∣∣∣∣
kb

n
− x

∣∣∣∣+
2b

3(n+ 1)

<

∣∣∣∣
kb

n
− x

∣∣∣∣+
2b

3n
.

Case (c) Since |t−x| = x−t , denotingE(n, k, x, β) := μ({t ∈ In,k; t ≤ x−β}),
and reasoning as in the case (b), we obtain

Cn,k(x) =
√
n+ 1√
b

·
∫ ∞

0
E(n, k, x, β)dβ =

√
n+ 1√
b

·
∫ x−kb/(n+1)

0
E(n, k, x, β)dβ

=
√
n+ 1√
b

(∫ x−(k+1)b/(n+1)

0
E(n, k, x, β)dβ

+
∫ x−kb/(n+1)

x−(k+1)b/(n+1)
E(n, k, x, β)dβ

)

≤
(
x − (k + 1)b

n+ 1

)
+
√
n+1√
b

·
∫ x−kb/(n+1)

x−(k+1)b/(n+1)

√
x−kb/(n+1)−βdβ

=
(
x − (k + 1)b

n+ 1

)
+
√
n+ 1√
b

·
∫ b/(n+1)

0

√
ηdη

=
(
x − (k + 1)b

n+ 1

)
+ 2b

3(n+ 1)
= n

n+ 1

(
x − kb

n

)
+ x − b/3
(n+ 1)

≤ n

n+ 1

∣∣∣∣x −
kb

n

∣∣∣∣+
2b

3(n+ 1)
≤
∣∣∣∣x −

kb

n

∣∣∣∣+
b

n+ 1
<

∣∣∣∣x −
kb

n

∣∣∣∣+
b

n
.
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Collecting the estimates in the three cases (a), (b), and (c), it follows that for all
x ∈ [0, 1], we get

Cn,k(x) ≤
∣∣∣∣
kb

n
− x

∣∣∣∣+
b

n
,

which immediately implies

K(M)n,μ (ϕx;ϕ,ψ)(x)

≤
∨n
k=0 pn,k(x)

[∣∣ kb
n
− x∣∣+ b

n

]
∨n
k=0 pn,k(x)

≤
∨n
k=0 pn,k(x)

[∣∣ kb
n
− x∣∣]

∨n
k=0 pn,k(x)

+ b
n
≤ M21−β

c1nβ
+ b
n
,

where we have used the estimate (see the estimate (10) and the reasonings in the
proof of Theorem 3.3 in [11])

∨n
k=0 pn,k(x)

[∣∣ kb
n
− x∣∣]

∨n
k=0 pn,k(x)

≤ M · (2b)1−β
c1 · nβ ,

for all x ∈ [0, b].
Now, using the estimate (6) in Theorem 1 too, we obtain the desired conclusion.

�
Remark 14 The estimate in the statement of Theorem 8 remains valid for functions
of arbitrary sign, lower bounded. Indeed, if m ∈ R is such that f (x) ≥ m for
all x ∈ [0, b], then it is easy to see that defining the new max-product operator

K
(M)

n (f ;ϕ,ψ)(x) = K(M)n (f −m;ϕ,ψ)(x)+m, for |f (x)−K(M)n (f ;ϕ,ψ)(x)|,
we get the same estimate as in the statement of Theorem 8.

In the next lines, we present some concrete examples of (ϕ, ψ)-kernels satisfying
the conditions in Definition 3.

Application 1 Let us choose ϕ(x) = sin2r (x),ψ(x) = x2r , with r ∈ N. In this case,
ϕ(x)
ψ(x)

represents in fact the so-called generalized Jackson kernel. Now, in Definition 3
by taking b = π , condition (i) is evidently satisfied with α = 1, condition (ii) is

evidently satisfied with C = 1, c1 =
(

2
π

)2r
), condition (iii) holds withM = 1 and

β = 2r , and condition (v) is satisfied with c = π
(2r−1)! · er , where er is the so-called

Eulerian number given by

er =
r∑

j=0

(−1)j
(

2r

j

)
(r − j)2r−1.

Due to the fact that sin2r (nx − kπ) = sin2r (nx), the equality in condition (iv) in
Definition 3, one reduces to
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n∨

k=0

1

(nx − kb)2r = max

{
1

(nx − jb)2r ,
1

(nx − (j + 1)b)2r

}
, (19)

for all x ∈
[
jb
n
,
(j+1)b
n

]
, which follows by simple calculation; see Application 5.1

in [11].
Concluding, Theorem 8 is valid for the max-product Kantorovich–Choquet

sampling operators based on this kernel (ϕ, ψ) and given by (18).

Application 2 Let us choose ϕ(x) = sin(x/2) sin(3x/2), ψ(x) = 9x2/4. We
note that ϕ(x)

ψ(x)
represents in fact the so-called de la Vallée-Poussin kernel used in

approximation by sampling operators. Similar reasonings with those in Application
1 easily lead to the fact that in this case too, conditions (i)–(v) in Definition 3 hold
and that the max-product Kantorovich–Choquet sampling operators in (18) based
on this (ϕ, ψ)-kernel satisfy Theorem 8.

Application 3 Let us choose as ϕ(x) the B-spline of order 3 given by

ϕ(x) = 3

4
− x2, if |x| ≤ 1

2
, ϕ(x) = 1

2
(
3

2
− |x|)2, if

1

2
< |x| ≤ 3

2
,

ϕ(x) = 0, if |x| > 3

2
.

Choosing, for example, ψ(x) = 1, for all x ∈ R, it is easy to see that (ϕ, ψ) verifies
all the conditions in Definition 3, as follows: condition (i) with b = 1

2 , condition
(ii) with a sufficiently large constant C > 0, condition (iii) with β = 2 and M > 0
sufficiently large, and evidently condition (iv), and condition (v); see Application
5.3 in [11].

In conclusion, Theorem 8 holds for the max-product Kantorovich–Choquet
operator in (18) based on this kernel (ϕ, ψ).

In fact, if we choose for ϕ(x) any B-spline of an arbitrary order n and ψ(x) =
1, x ∈ R, then (ϕ, ψ) verifies, as in the previous lines, all the conditions in
Definition 3; see again Application 5.3 in [11].

This means that Theorem 8 holds for the max-product Kantorovich–Choquet
operators in (18) based on this (ϕ, ψ)-kernel.

Application 4 Let us consider ϕ(x) = 2 arctan
(

1
x2

)
, x 	= 0, ϕ(0) = π , andψ(x) =

π , x ∈ R, where arctan : R → (−π2 , π2
)

and limy→∞ arctan(y) = π
2 . We check

the conditions in Definition 3. Indeed, it is clear that condition (i) is satisfied for
b = 1 and with α = 1, while since 0 ≤ arctan(y) ≤ π

2 for all y ≥ 0, condition
(ii) follows with C = 1. Note here that since arctan(y) ≥ π

4 , for all y ∈ [1,+∞),
putting y = 1

x2 , we immediately obtain that in Definition 3 b = 1 and c1 = 1
4 . By

2 arctan(1/x2) ≤ 2
x2 , for all x > 0, we obtain that condition (iii) holds too with

β = 2 andM = 2π .
Then, since arctan(y) ≤ y for all y ∈ [0+∞), we get
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∫ +∞

−∞
ϕ(x)

ψ(x)
dx = 2

π

∫ +∞

0
arctan(1/x2)dx

= 2

π

∫ 1

0
arctan(1/x2)dx + 2

π

∫ +∞

1
arctan(1/x2)dx

≤ 1+ 2

π

∫ +∞

1
arctan(1/x2)dx

≤ 1+ 2

π

∫ +∞

1

1

x2 dx = 1+ 2

π
< +∞,

which shows that condition (v) holds.
Now, since for x ∈ [j/n, (j + 1)/n], we evidently have (see also the similar

relation (19))

1

(x − k/n)2 ≤
1

(x − j/n)2 and
1

(x − k/n)2 ≤
1

(x − (j + 1)/n)2
, for 0 ≤ k ≤ n;

(20)
applying here the increasing function arctan, we immediately obtain (iv).

In conclusion, for this choice of the (ϕ, ψ)-kernel, Theorem 8 remains valid for
the max-product operators given by (18).

Application 5 Let us choose ϕ(x) = |x| and ψ(x) = e|x| − 1. We will check the
conditions in Definition 3. Firstly, it is easy to see that condition (i) is satisfied with,
e.g., b = ln(2), since by using l’Hospital’s rule, we have limx→0

ϕ(x)
ψ(x)

= 1. Then,

by |x| ≤ e|x| − 1 for all x ∈ R, it follows that condition (ii) holds with C = 1 and
c1 = 1

2 and b = ln(2)). Condition (iii) obviously holds forM = 2 and β = 1.
Then, condition (v) is also satisfied, since

∫ +∞

−∞
|x|

e|x| − 1
dx = 2

∫ +∞

0

x

ex − 1
dx

= 2
∫ 1

0

x

ex − 1
dx + 2

∫ +∞

1

x

ex − 1
dx = c > 0, c finite ,

since
∫ +∞

1
x

ex−1dx ≤
∫ +∞

1 x · e−x/2dx < +∞.
It remains to check condition (iv). Firstly, by similar reasonings to those used for

the proofs of relations (19) and (20), for all x ∈ [jb/n, (j + 1)b/n], we get

|nx − kb| ≥ |nx − jb| and |nx − kb| ≥ |nx − (j + 1)b|, for all k = 0, . . . , n.

Now, denote F(u) = u
eu−1 , u ≥ 0. If we prove that F is nonincreasing on [0,+∞),

then we immediately get that condition (iv) in Definition 3 is satisfied.
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In this sense, by F ′(u) = eu−1−ueu
(eu−1)2

= G(u)

(eu−1)2
, with G(u) = eu − 1− ueu, since

G(0) = 0 and G′(u) = −ueu ≤ 0, we immediately obtain G(u) ≤ 0, for all u ≥ 0
and consequently F ′(u) ≤ 0, for all u ≥ 0. See Application 5.4 in [11].

In conclusion, in the case of this (ϕ, ψ)-kernel too, Theorem 8 remains valid for
the max-product operators given by (18).

Application 6 Starting with a so-called sigmoidal function σ (as, for example, the
hyperbolic sigmoidal function or the sigmoidal logistic function or the ramp func-
tion), one can define the “centered bell-shaped function” Φσ (x) = σ(x+1)−σ(x−1)

2
and the corresponding max-product Kantorovich–Choquet neural network operator
on [0, 1]. Then, taking into account that Φσ (x) is a continuous, positive, even
function on R, nonincreasing for x ≥ 0 and Φσ (x) = O(|x|−β), with β > 1,
we may consider the (Φσ ,ψ)-kernel with ψ a positive constant function. Then, it
follows that (Φσ ,ψ) satisfies all the properties in Definition 3; see Application 5.6
in [11].

Therefore, Theorem 8 remains valid for this max-product neural network opera-
tor of Choquet type.

Application 7 It is worth mentioning that if (ϕ1, ψ1) and (ϕ2, ψ2) are two kernels
satisfying the conditions (i), (ii), (iii), and (v) in Definition 3, then the new kernel
(ϕ1 · ϕ2, ψ1 · ψ2) also satisfies these conditions.

The only problem is that the condition (iv) is not, in general, satisfied by the
(ϕ1 · ϕ2, ψ1 · ψ2)-kernel.
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On the Approximation of Extinction
Time for the Discrete-Time Birth–Death
Circuit Chains in Random Environments

Chrysoula Ganatsiou

Abstract We investigate suitable expressions for the mean time to extinction of the
corresponding “adjoint” circuit chains describing uniquely the discrete-time birth–
death model in random environments.

2010 AMS Mathematics Subject Classification 60J10, 60G50, 60K99, 60K37,
60J80, 62M99, 92B15

1 Introduction

It is known that the discrete probability theory deals with events that occur in
measurable sample spaces, which can be modeled through the discrete probability
distributions (cf. [17, 22]), as well as that the graph theory is considered as a part of
the combinatorics (cf. [32]). In particular, graphs are one of the most important
subjects studied in discrete mathematics because it is one of the most common
models of physical and artificial structures since they can model several types of
relationships and dynamic processes in physical, biological, and social systems ([cf.
33]), such as the classical discrete-time birth–death model, which is an important
special case of homogeneous, irreducible Markov chain (cf. [30, 35]) introduced by
W. Feller in 1939 [3, 4], where the possible state changes can only occur between
neighboring states at discrete time points 0, 1, 2, . . . , n, n ∈ N . This means that the
state transitions are of only two types: “births,” which increase the state variable by
one, and “deaths,”İ which decrease the state variable by one; that is, if the current
state at discrete time instant n isXn = i, then the state at the next time instant (n+1)
can only be Xn+1 = i + 1 or (i − 1). It is assumed that the birth and death events
are independent of each other. Loosely speaking, this is a process which combines
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the property of a random walk with reflection at zero [6, 7, 9–11] and discrete-
time nature of the transition times. (Here, the states are represented as non-negative
integer-valued without loss of generality (cf. [28, 36]).)

The model’s name has been arisen by a common application, the use of
such models to represent the current size of a population where the transitions
are literal births and deaths. In particular, biology and epidemiology birth–death
chains are useful for studying processes of biological populations such as the
model growth of biological populations since the variety of dynamic behavior
exhibited by many species of bacteria, insects, and animals has stimulated a
great interest in the development of such mathematical models. In particular, in
many ecological problems such as animal populations, epidemics, and competition
between species, their patterns of growth are influenced by population size (cf.
[2, 27, 31]). Furthermore, they can also be used to model the states of chemical
systems such as the radioactive transformations, where the radioactive atoms are
unstable and disintegrate stochastically. Then, the new atoms that are also unstable
and could emit radioactive particles will decay with specified rates from one state to
the adjacent state through a process which can be modeled by a birth–death chain.
Besides, the queuing model is an important application of the birth–death chains
in a wide range of areas such as computer networks and telecommunications since
it can be used to optimize the size of the storage space, to determine the trade-off
between throughput and inventory as well as to exhibit the propagation of blockage
(cf. [29, 34]). We will consider the discrete-time birth–death model with state space
S = N and transition probabilities given by pij = 0, if j 	= i−1, i+1, pi,i−1 = qi ,
pi,i = 0, pi,i+1 = pi , pi + qi = 1, i ≥ 1, with p0 = 1, allowed to depend on the
current population size, which describes the size of a “population” at discrete instant
time periods [19].

Usually, the discrete-time birth–death chains are studied from the Markov chain
point of view, where the random mechanism of spatial motion is determined by the
given transition probabilities (probabilities of jumps) at each state in a non-random
(fixed) environment (cf. [1, 5, 15, 21]). Although they provide a simple conventional
model to describe various transport processes in many cases, the medium where the
system evolves is highly irregular due to many irregularities (defects, fluctuations,
etc.) known as random environments which lead to the choice of the local charac-
teristics of the motion at random according to certain probability distribution. Such
models are referred to as birth–death chains in random environments. The definition
of these chains involves two special ingredients: the environment (randomly chosen
but still fixed throughout the time evolution) and the birth–death chain (whose
transition probabilities are determined by the environment) (cf.[18]).

It is also known that extinction means the termination of a kind of organism or
of a group of kinds usually species. The moment of extinction is generally to be
the death of the last individual of the species although the capacity to recover may
have been lost before this point. Since a species’ potential range may be very large,
the determination of this moment is difficult and it is usually done retrospectively
([cf. 16]). Knowing that the discrete-time birth–death chains are special cases of the
birth–death processes, they incorporate the possibility of reductions in population
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of arbitrary size. A central question in the theory of birth–death processes is
the probability of ultimate extinction where no individuals exist after some finite
number of births–deaths. To this direction, the determination of a measure which
possesses logical properties is very fundamental. It is known as the expected time
to extinction also called “average extinction time” or “mean survival time”. The
expected time to extinction of a population is intimately related to the probability of
its occurrence in such a way so as to ensure the validity of certain common inference
patterns found optimization, adaptation, and similar types of evolutionary reasoning
(cf. [25, 26]).

In parallel, in recent years, a systematic research has been developed (Kalpazidou
[20], MacQueen [23], Qian Minping and Qian Min [24], Zemanian [37], and
others) in order to investigate representations of the finite-dimensional distributions
of Markov processes (with discrete or continuous parameter) having an invariant
measure, as decompositions in terms of the circuit (or cycle) passage functions

Jc(i, j) =
{

1, if i, jare consecutive states ofc,
0, otherwise,

for any directed sequence c = (i1, i2, . . . , iv, i1) (or ĉ = (i1, i2, . . . , iv)) of
states, called a circuit (or a cycle), v > 1, of the corresponding Markov process.
This research has stimulated a motivation toward the representation of Markov
processes through directed circuits (or cycles) and weights in terms of circuit (or
cycle) passage functions in fixed or random environments as well as the study
of specific problems associated with Markov processes in a different way. The
representations are called circuit (or cycle) representations, while the corresponding
discrete parameter Markov chains generated by directed weighted circuits are called
circuit chains.

More specifically, let S be a denumerable set. The directed sequence c =
(i1, i2, . . . , iv, i1) modulo the cyclic permutations, where i1, i2, . . . , iv ∈ S, v > 1,
completely defines a directed circuit in S. The ordered sequence ĉ = (i1, i2, . . . , iv)
associated with the given directed circuit c is called a directed cycle in S. A directed
circuit may be considered asc = (c(m), c(m+ 1), . . . , c(m+ v − 1), c(m+ v)), if
there exists an m ∈ Z, such that i1 = c(m+0), i2 = c(m+1), . . . , iv = c(m+v−1),
i1 = c(m+ v), that is, a periodic function from Z to S. The corresponding directed
cycle is defined by the ordered sequence ĉ = (c(m), c(m+1), . . . , c(m+v−1)). The
values c(k) are the points of c, while the directed pairs (c(k), c(k + 1)), k ∈ Z, are
the directed edges of c. The smallest integer p ≡ p(c) ≥ 1 satisfying the equation
c(m + p) = c(m), for all m∈ Z, is the period of c. A directed circuit c such that
p(c) = 1 is called a loop. (In the present work, we shall use directed circuits with
distinct point elements.) Let a directed circuit c with period p(c) > 1. Then, we
may define by

J (n)c (i, j) =
{

1, if there exists an m ∈ Z such that i = c(m), j = c(m+ n),
0, otherwise,
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the n-step passage function associated with the directed circuit c, for any i, j∈ S,
n∈ N∗ = {1, 2, . . .}.

We may also define by

Jc(i, j) =
{

1, if there exists an m ∈ Z such thati = c(m),
0, otherwise,

the passage function associated with the directed circuit c, for any i∈ S. The above
definitions are due to MacQueen [23] and Kalpazidou [20].

Given a denumerable set S and an infinite denumerable class C of overlapping
directed circuits (or directed cycles) with distinct points (except for the terminals)
in S such that all the points of S can be reached from one another following paths
of circuit edges, that is, for each two distinct points i and j of S, there exists a finite
sequence c1, c2, . . . , ck, k ∈ N∗, of circuits (or cycles) of C such that i lies on c1
and j lies on ck and any pair of consecutive circuits (cn, cn+1) have at least one point
in common. We may assume also that the class C contains, among its elements,
circuits (or cycles) with period greater than or equal to 2. With each directed circuit
(or directed cycle) c ∈ C, let us associate a strictly positive weight wc which must
be independent of the choice of the representative of c, that is, it must satisfy the
consistency condition wcotk = wc, k ∈ Z = {. . . ,−1, 0, 1, . . . }, where tk is the
translation of length k.

For a given class C of overlapping directed circuits (or cycles) and for a given
sequence (wc)c∈C of weights, we may define by

pij =

∑

c∈C
wc · J (1)c (i, j)

∑

c∈C
wc · Jc(i)

(1.1)

the elements of a Markov transition matrix on S, if and only if
∑

c∈C
wc · Jc(i) <∞,

for any i ∈ S. This means that a given Markov transition matrix P = (pij ), i, j ∈ S,
can be represented by directed circuits (or cycles) and weights if and only if there
exist a class of overlapping directed circuits (or cycles) C and a sequence of positive
weights (wc)c∈C such that the formula (1.1) holds. In this case, the representation of
the distribution of Markov process (with discrete or continuous parameter) having
an invariant measure as decomposition in terms of the circuit (or cycle) passage
functions is called circuit (or cycle) representation, while the corresponding discrete
parameter Markov chain generated by directed circuits (or cycles) is called circuit
(or cycle) chain with Markov transition matrix P given by (1.1) and unique stationary
distribution p (a solution of p. P = p) defined by

p(i) =
∑

c∈C
wc · Jc(i), i ∈ S.
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The following classes of Markov chains may be represented uniquely by directed
circuits (or cycles) and weights: (1) the recurrent Markov chains [24] and (2) the
reversible Markov chains.

By considering the importance of the study of extinction times for different
classes of birth–death processes in general and by using the context of circuit
representation theory of Markov processes, the present work arises as an attempt
to give approximations of the exact expressions of the mean time to extinction, that
is, the mean first passage time to the state n = 0 starting at n = k, k ∈ N∗, of
the corresponding “adjoint” discrete-time Markov chains (circuit chains) describing
uniquely the discrete-time birth–death model by directed weighted circuits in
random environments giving a new perspective in the study of specific problems
associated with birth–death chains [8, 12, 14].

The work is organized as follows. In Sect. 2, the abovementioned discrete-time
birth–death model is considered, and the unique representations by directed circuits
and weights of the corresponding Markov chains (circuit chains) are investigated
in fixed random environments. These representations will give us the possibility to
find approximations of the exact expressions of the mean time to extinction through
the unique representations by directed circuit and weights of the corresponding
“adjoint” Markov chains describing uniquely the discrete-time birth–death model
especially in random environments, as it is given in Sect. 3.

Throughout the chapter, we shall need the following notations: N =
{0, 1, 2, . . .}, Z∗+ = {1, 2, 3, . . .}, Z∗− = {. . . ,−2,−1}.

2 Circuit and Weight Representations of Discrete-Time
Birth–Death Chains

2.1 Fixed Environments

Let us consider the Markov chain (Xn)n∈N on N (Xn expresses the current size of
a “population” at discrete instant time n, n ∈ N ), which describes a discrete-time
birth–death chain in a fixed environment. Since the state transitions are of only two
types, that is, k −→ (k + 1) and k −→ (k − 1), the elements of the corresponding
Markov transition matrix (transition probabilities) are defined by

P(Xn+1 = k + 1/Xn = k) = pk,
P (Xn+1 = k − 1/Xn = k) = qk,

such that pk + qk = 1, 0 < pk ≤ 1, for every k ∈ N∗, with p0 = 1, as it is shown
in Fig. 1.

Assume that (pk)k∈N is an arbitrary fixed sequence with 0 < pk ≤ 1, for every
k ∈ N∗, with p0 = 1. If we consider the directed circuits ck = (k, k+ 1, k), k ∈ N ,
and the collection of weights (wck )k∈N , we may obtain the corresponding transition
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0 1 2 3 ... l-1 l ...

p0

q1

p1

q2

p2

q3

pl−1

ql

Fig. 1 The Markov chain (Xn)n∈N (fixed environments)

probabilities

pk = wck

wck−1 + wck
,

qk = 1− pk = wck−1

wck−1 + wck
,

with p0 = 1, for every k ∈ N∗. Here, the class C(k) contains the directed circuits
ck = (k, k + 1, k), ck−1 = (k − 1, k, k − 1). Equivalently, the transition matrix
P=(pij ) with

pij =

∞∑

k=0

wck · J (1)ck (i, j)
∞∑

k=0

wck · Jck (i)
, for i 	= j, (2.1)

pii = 0
where J

(1)
ck (i, j) = 1, if i and j are consecutive points of the circuit ck , and
Jck (i) = 1, if i is a point of the circuit ck ,

expresses the representation of the Markov chain (Xn)n∈N by directed circuits and
weights.

Similarly, let us consider the “adjoint” Markov chain (X′n)n∈N on N whose
elements of the corresponding Markov transition matrix are defined by

P(X′n+1 = k + 1/X′n = k) = q ′k,
P (X′n+1 = k − 1/X′n = k) = p′k,

such that p′k + q ′k = 1, 0 < q ′k ≤ 1, for every k ∈ N∗, with q ′0 = 1, as it is shown in
Fig. 2.

Assume that (q ′k)k∈N is an arbitrary fixed sequence with 0 < q ′k ≤ 1, for every
k ∈ N∗, with q ′0 = 1. If we consider the directed circuits c′k = (k+ 1, k, k+ 1), k ∈
N and the collection of weights (wc′k )k∈N , then we may have that
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q′
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1
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q′
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p′
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q′
l−1

p′
l

Fig. 2 The “adjoint” Markov chain (X′n)n∈N (fixed environments)

q ′k =
wc′k

wc′k−1
+ wc′k

,

p′k = 1− q ′k =
wc′k−1

wc′k−1
+ wc′k

,

with q ′0 = 1, such that p′k + q ′k = 1, 0 < q ′k ≤ 1, for every k ∈ N∗. Here, the class
C′(k) contains the directed circuits c′k = (k + 1, k, k + 1), c′k−1 = (k, k − 1, k).
As a consequence, the transition matrix P ′ = (p′ij ) with elements equivalent to that
given by the abovementioned formulas (2.1) expresses also the representation of the
“adjoint” Markov chain (X′n)n∈N by directed circuits and weights.
So, we have the following:

Proposition 1 The “adjoint” Markov chains (Xn)n∈N and (X′n)n∈N have unique
representations by directed circuits and weights.

For the proof of the above proposition, see Ganatsiou [13].

2.2 Random Environments

Let us now consider a discrete-time birth–death chain on N with transitions k −→
(k−1) and k −→ (k+1), whose transition probabilities (pk)k∈N constitute a station-
ary ergodic sequence. A realization of this sequence is called a random environment
for this chain. In order to investigate the unique circuit and weight representation
of this chain in random environments, for almost every environment, let us consider
a probability space (Ω, F,μ), a measure preserving ergodic automorphism of this
space θ : Ω −→ Ω and a measurable function p : Ω −→ (0, 1) such that every
ω ∈ Ω generates the random environment pk ≡ p(θκω), k ∈ N . Since θ is measure
preserving and ergodic, the sequence (pk)k∈N is a stationary ergodic sequence of
random variables.

Let also S = (N)N be the infinite product space with coordinates (Xn)n∈N . Then,
we may define a family (Pω)ω∈Ω of probability measures on S such that, for eve-
ry ω ∈ Ω , the sequence (Xn)n∈N is a Markov chain on N whose elements of the
corresponding Markov transition matrix are defined by
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Fig. 3 The Markov chain (Xn)n∈N (random environments)

Fig. 4 The “adjoint” Markov chain (X′n)n∈N (random environments)

Pω(X0 = 0) = 1,

P ω(Xn+1 = k + 1/Xn = k) = p(θkω),
Pω(Xn+1 = k − 1/Xn = k) = 1− p(θkω) ≡ q(θkω), k ∈ N∗,

as it is shown in Fig. 3.
Let us now introduce the “adjoint” discrete-time birth–death chain in random

environment (X′n)n∈N . For every ω ∈ Ω and for the family (Pω)ω∈Ω of probability
measures on S, the sequence (X′n)n∈N is a Markov chain on N whose elements of
the corresponding Markov transition matrix are defined by

Pω(X′0 = 0) = 1,

P ω(X′n+1 = k + 1/X′n = k) = q(θkω),
Pω(X′n+1 = k − 1/X′n = k) = 1− q(θkω) ≡ p(θkω), k ∈ N∗,

as it is shown in Fig. 4.
We have the following (Ganatsiou [14]):

Proposition 2 For μ-almost every environment ω ∈ Ω , the chains (Xn)n∈N and
(X′n)n∈N have unique circuit and weight representations.

Proof Following an analogous way of that given in subsection 2.1, let us consider
the set of directed circuits ck = (k, k + 1, k), for every k ∈ N , since only the
transitions from k −→ (k + 1) and k −→ (k − 1) are possible. There are two circuits
through each point k ∈ N : ck−1 and ck .

In order to define the weights of the circuits ck , k ∈ N , we may symbolize by
wk(ω) the weight of the circuit ck , for every k ∈ N . For the definition of weights,
let us consider the sequence (bk(ω))k∈N∗ defined by
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bk(ω) = wk(ω)

wk−1(ω)
, k ∈ N∗.

Consequently, we may have

bk(ω) = p(θkω)

1− p(θkω) =
p(θkω)

q(θkω)
≡ p
q
(θkω), k ∈ N∗. (2.2)

Given the stationary ergodic sequence (pk)k∈N , for which everyω ∈ Ω generates
the random environment pk ≡ p(θκω), k ∈ N , we have that the preceding equation
(2.2) gives a unique definition of the sequence (bk(ω))k∈N∗ , for μ-almost every
ω ∈ Ω , by ergodicity of θ . Hence, the sequence of weights (wk(ω))k∈N∗ is defined
uniquely by

wk(ω) = w0(ω)b1(ω)b2(ω) . . . bk(ω), k ∈ N∗

(the unicity of the weight sequence (wk(ω))k∈N∗ is understood up to the constant
factor w0(ω)).

Similarly, let us consider the set of directed circuits ck = (k + 1, k, k + 1), for
every k ∈ N , since only the transitions from k −→ (k + 1) and k −→ (k − 1)
are possible. There are two circuits, through each point k ∈ N∗: c′k−1 and c′k . The
problem we have also to manage here is the definition of the weights of the circuits.
To this direction, we may denote by w′k(ω) the weight of the circuit c′k , for every
k ∈ N . By using an analogous way of that given before for the chain (Xn)n∈N , let
us consider the sequence (lk(ω))k∈N∗ defined by

�k(ω) =
w′k−1(ω)

w′k(ω)
, k ∈ N∗,

such that

lk(ω) = 1− q(θkω)
q(θkω)

= p(θ
kω)

q(θkω)
≡ p
q
(θkω), for every k ∈ N∗.

Then, the sequence of weights (w′k(ω))k∈N∗ is defined uniquely by

w′k(ω) =
w′0(ω)

l1(ω)l2(ω) . . . lk(ω)
, k ∈ N∗

(the unicity of the weight sequence (w′k(ω))k∈N∗ is understood up to the constant
factor w′0(ω)).
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3 The Mean Time to Extinction of the Discrete-Time
Birth–Death Circuit Chains in Random Environments

3.1 For the Circuit Chain (Xn)n∈N

Let us consider that the state 0 is a recurrent absorbing state, that is, p(θ0ω) = 0,
ω ∈ Ω . This means that the population cannot recover once it has been extinct
(Fig. 3). Let tk(ω), ω ∈ Ω , be the expected time before the population hits zero,
conditioned on an initial population of size k, k ∈ N . We have that

t0(ω) = 0, p(θ0ω) = 0, p(θkω)+ q(θkω) = 1, k ∈ N∗, ω ∈ Ω.

Then, we may obtain that

tk(ω) = p(θkω)[1+ tk+1(ω)] + q(θkω)[1+ tk−1(ω)]

or

tk+1(ω) = tk(ω)+ q(θ
kω)

p(θkω)

[
tk(ω)− tk−1(ω)− 1

q(θkω)

]
, k ∈ N∗, ω ∈ Ω.

(3.1)
Iterating the above Eq. (3.1), for every k ∈ N∗, ω ∈ Ω , and since t0(ω) = 0, we
may have that

tm(ω) = t1(ω)+
m−1∑

k=1

q(θ1ω) . . . q(θkω)

p(θ1ω) . . . p(θkω)

[
t1(ω)− 1

q(θ1ω)

−
k∑

i=2

p(θ1ω) . . . p(θ i−1ω)

q(θ1ω) . . . q(θ iω)

]
,m ≥ 2, ω ∈ Ω. (3.2)

In order to determine the exact value of t1(ω), ω ∈ Ω , we modify the circuit chain
(Xn)n∈N such that p(θ0ω) = 1. Since

t1(ω) = E(T0(ω))− 1,

where T0(ω) is the first return time, for every ω ∈ Ω , with

E(T0(ω)) = 1

π0(ω)
,

it remains to determine the exact value of π0(ω). To this direction, let πk(ω), ω ∈
Ω , k ∈ N , be the stationary distribution of the modified circuit chain (Xn)n∈N
satisfying the following relation:
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πk(ω) = p(θk−1ω)πk−1(ω)+ q(θk+1ω)πk+1(ω), (3.3)

with

π0(ω) = q(θ1ω)π1(ω).

By rearranging Eq. (3.3), we may obtain that

πk+1(ω) = p(θkω)

q(θk+1ω)
πk(ω), k ∈ N∗, ω ∈ Ω,

or equivalently,

πk(ω) = p(θ
k−1ω)

q(θkω)
πk−1(ω) = . . . = p(θ

1ω) . . . p(θk−1ω)

q(θ1ω) . . . q(θkω)
π0(ω), k ∈ N∗, ω ∈ Ω.

Since

+∞∑

k=0

πk(ω) = 1,

we obtain that

π0(ω) =
[

1+
+∞∑

k=1

p(θ1ω) . . . p(θk−1ω)

q(θ1ω) . . . q(θkω)

]−1

if and only if
+∞∑

k=1

p(θ1ω) . . . p(θk−1ω)

q(θ1ω) . . . q(θkω)

<∞, ω ∈ Ω.

Hence, we have that

t1(ω) = E(T0(ω))−1 = 1

π0(ω)
−1 = 1

q(θ1ω)
+
+∞∑

k=2

p(θ1ω) . . . p(θk−1ω)

q(θ1ω) . . . q(θkω)
, ω ∈ Ω.

So, finally Eq. (3.2) turns into

tm(ω) = t1(ω)+
m−1∑

k=1

[
q(θ1ω) . . . q(θkω)

p(θ1ω) . . . p(θkω)

+∞∑

i=k+1

p(θ1ω) . . . p(θ i−1ω)

q(θ1ω) . . . q(θ iω)

]
, ω ∈ Ω.

(3.4)
Since

b1(ω)b2(ω) . . . bk(ω) = p(θ
1ω)p(θ2ω) . . . p(θkω)

q(θ1ω)q(θ2ω) . . . q(θkω)
= wk(ω)
w0(ω)

, k ∈ N∗, ω ∈ Ω,
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from relations (3.2) and (3.4), we may obtain that

tm(ω) = t1(ω)+
m−1∑

k=1

w0(ω)

wk(ω)
[t1(ω)− 1

q(θ1ω)
−

k∑

i=2

1

p(θiω)
wi(ω)/w0(ω)],m ≥ 2, ω ∈ Ω,

(3.5)

or equivalently,

tm(ω) = t1(ω)+
m−1∑

k=1

[
1

wk(ω)
·
+∞∑

i=k+1

1

p(θiω)
wi(ω)

]
,m ≥ 2, ω ∈ Ω. (3.6)

Equations (3.5) and (3.6) are suitable expressions of the mean time to extinction
tm(ω), for every m ≥ 2, of the discrete-time birth–death chain (Xn)n∈N through its
unique representation by the sequences of the directed circuits (ck)k∈N and weights
(wck )k∈N , for every random environment ω ∈ Ω .

3.2 For the Circuit Chain (X′
n)n

Following an analogous way of that given in Sect. 3.1 for the circuit chain (Xn)n∈N ,
let us consider that the state 0 is a recurrent absorbing state, that is, q(θ0ω) = 0.
This means that the population will extinct at some point (Fig. 4). Let also t ′k(ω),
ω ∈ Ω , be the expected time before the population hits zero, conditioned on an
initial population of size k, k ∈ N . We have that

t ′0(ω) = 0, q(θ0ω) = 0, p(θkω)+ q(θkω) = 1, k ∈ N∗, ω ∈ Ω.

Then, we may take

t ′k(ω) = q(θkω)
[
1+ t ′k+1(ω)

]+ p(θk(ω)[1+ t ′k−1(ω)
]

or

t ′k+1(ω) = t ′k(ω)+
p(θkω)

q(θkω)
[t ′k(ω)− t ′k−1(ω)−

1

p(θkω)
], k ∈ N∗, ω ∈ Ω. (3.7)

Iterating Eq. (3.7), for every k ∈ N∗, ω ∈ Ω , and since t ′0(ω) = 0, we may have
that

t ′m(ω) = t ′1(ω)+
m−1∑

k=1

p(θ1ω) . . . p(θkω)

q(θ1ω) . . . q(θkω)

[
t ′1(ω)−

1

p(θ1ω)
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−
k∑

i=2

q(θ1ω)q(θ2ω) . . . q(θ i−1ω)

p(θ1ω)p(θ2ω) . . . p(θ iω)

]
,m ≥ 2, ω ∈ Ω. (3.8)

In order to determine the exact value of t ′1(ω), ω ∈ Ω , we modify the circuit chain
(X′n)n∈N such that q(θ0ω) = 1. Since

t ′1(ω) = E(T ′0(ω))− 1,

where T ′0(ω) is the first return time, for every ω ∈ Ω , with

E(T ′0(ω)) =
1

π ′0(ω)
,

it remains to determine the exact value of π ′0(ω). To this direction, let π ′k(ω), ω ∈
Ω , k ∈ N , be the stationary distribution of the modified circuit chain (X′n)n∈N
satisfying the following relation:

π ′k(ω) = q(θk−1ω)π ′k−1(ω)+ p(θk+1ω)π ′k+1(ω), k ∈ N,ω ∈ Ω

with π ′0(ω) = p(θ1ω)π ′1(ω).
Equivalently, we have that

π ′k+1(ω) =
q(θkω)

p(θk+1ω)
π ′k(ω), k ∈ N∗, ω ∈ Ω

or

π ′k(ω) =
q(θk−1ω)

p(θkω)
π ′k−1(ω) = . . . =

q(θ1ω) . . . q(θk−1ω)

p(θ1ω) . . . p(θkω)
π ′0(ω), k ∈ N∗, ω ∈ Ω.

Since

+∞∑

k=0

π ′k(ω) = 1,

we obtain that

π ′0(ω) =
(

1+
+∞∑

k=1

q(θ1ω) . . . q(θk−1ω)

p(θ1ω) . . . p(θkω)

)−1
if and only if

+∞∑

k=1

q(θ1ω) . . . q(θk−1ω)

p(θ1ω) . . . p(θkω)

< +∞, ω ∈ Ω.
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Hence, we have that

t ′1(ω) = E(T ′0(ω))−1 = 1

π ′0(ω)
−1 = 1

p(θ1ω)
+
+∞∑

k=2

q(θ1ω) . . . q(θk−1ω)

p(θ1ω) . . . p(θkω)
, ω ∈ Ω.

Finally, by substituting t ′1(ω) in relation (3.8), we may obtain that

t ′m(ω) = t ′1(ω)+
m−1∑

k=1

[
p(θ1ω) . . . p(θkω)

q(θ1ω) . . . q(θkω)

+∞∑

i=k+1

q(θ1ω) . . . q(θ i−1ω)

p(θ1ω) . . . p(θ iω)

]
,m ≥ 2, ω ∈ Ω.

(3.9)

Furthermore, since

l1(ω)l2(ω) . . . lk(ω) = p(θ
1ω)p(θ2ω) . . . p(θkω)

q(θ1ω)q(θ2ω) . . . q(θkω)
= w

′
0(ω)

w′k(ω)
, k ∈ N∗, ω ∈ Ω,

from relations (3.8) and (3.9), we may obtain that

t ′m(ω) = t ′1(ω)+
m−1∑

k=1

w′0(ω)
w′k(ω)

[
t ′1(ω)−

1

p(θ1ω)
−

k∑

i=2

1

q(θiω)
w′i (ω)/w′0(ω)

]
,m ≥ 2, ω ∈ Ω,

(3.10)

or equivalently,

t ′m(ω) = t ′1(ω)+
m−1∑

k=1

[ 1

w′k(ω)
·
+∞∑

i=k+1

1

q(θiω)
w′i (ω)

]
,m ≥ 2, ω ∈ Ω. (3.11)

Equations (3.10) and (3.11) are suitable expressions of the expected extinction time
t ′m(ω), for every m ≥ 2, of the discrete-time birth–death chain (X′n)n∈N through its
unique representation by the sequences of the directed circuits (c′k)k∈N and weight
(wc′k )k∈N , for every random environment ω ∈ Ω .
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Some Hyperstability Results in
Non-Archimedean 2-Banach Space
for a σ -Jensen Functional Equation

Rachid EL Ghali and Samir Kabbaj

Abstract By combining the two versions of Brzdȩk’s fixed point theorem in non-
Archimedean Banach spaces Brzdȩk and Ciepliński (Nonlinear Analy 74:6861–
6867, 2011) and that in 2-Banach spaces Brzdȩk and Ciepliński (Acta Math Sci
38(2):377–390, 2018), we will investigate the hyperstability of the following σ -
Jensen functional equation:

f (x + y)+ f (x + σ(y)) = 2f (x),

where f : X→ Y such thatX is a normed space, Y is a non-Archimedean 2-Banach
space, and σ is a homomorphism of X. In addition, we prove some interesting
corollaries corresponding to some inhomogeneous outcomes and particular cases
of our main results in C∗-algebras.

Mathematics Subject Classification Primary: 39B82; Secondary: 39B62,
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1 Introduction

The stability of functional equations has been a very popular subject of investigation
for the last nearly 80 years. There are published hundreds of papers and many books
on very active domain of research (Cf. J.Aczel and J.Dhombre [3], S. Czerwik [21],
D.H. Hyers [29], S.-M. Jung [32], Pl. Kannappan [36], Th. M. Rassias [48]). Its
main motivation was given by the problem of S. M. Ulam [53] concerning the
stability of group homomorphisms that he posed in his lecture delivered in the
University of Wisconsin in 1940.
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Ulam’s Problem 1940
Given a group G, a metric group H with metric d(., .), and a positive number ε, does there exists
a δ > 0 such that if f : G→ H satisfies:

d(f (xy), f (x)f (y)) < δ

for all x, y ∈ G, then a homomorphism Φ : G→ H exists with d(f (x),Φ(x)) < ε for x ∈ G?
If the answer is affirmative, we say that the equation of homomorphism

h(x ∗1 y) = h(x) ∗2 H(y)

is stable.

In 1941, D. H. Hyers [27] gave a first partial answer to Ulam’s question and
introduced the stability result as follows:

Theorem 1.1 [27] Let E1 and E2 be two Banach spaces and f : E1 → E2 be a
function such that

‖f (x + y)− f (x)− f (y)‖ ≤ δ

for some δ > 0 and for all x, y ∈ E1. Then the limit

A(x) = lim
n→∞ 2−nf (2nx)

exists for each x ∈ E1, and A : E1 → E2 is the unique additive function such that

‖f (x)− A(x)‖ ≤ δ

for all x ∈ E1. Moreover, if f (tx) is continuous in t for each fixed x ∈ E1, then the
function A is linear.

Afterwards several mathematicians extended this result. The following theorem
is one of the most classical result concerning the Hyers–Ulam stability of Cauchy
functional equation.

Theorem 1.2 Let E1 and E2 be two normed spaces, c ≥ 0 and p 	= 1 be fixed real
numbers. Let f : E1 → E2 be a mapping satisfying

‖f (x + y)− f (x)− f (y)‖ ≤ c
(
‖x‖p + ‖y‖p

)
, x, y ∈ E1 \ {0}.

Then the following statements are valid:

(1) If p ≥ 0 and E2 is complete, then there exists a unique additive function
T : E1 → E2 such that

‖f (x)− T (x)‖ ≤ c‖x‖p
|2p−1 − 1| , x ∈ E1 \ {0}.
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(2) If p < 0, then f is additive.

In the case p = 0, we get the first answer of Ulam’s problem [53] which has been
given by Hyers [27]. Moreover, the case 0 < p < 1 was the contribution of T. Aoki
[9]. Also, Z. Gajda [24] proved this result for p > 1. Th. M. Rassias [45] proved
this result for the case p < 0. An example in [24] showed that this result is not true
when p = 1 thus answering a question that had been posed by Th. M. Rassias. A
few years later J.M. Rassias in [46, 47] following the spirit of the approach of Th.
M. Rassias [45] studied the case when the sum of two p-norms is replaced by the
product of a p-norm with a q-norm.

In 1994, P. Găvruţa [25] following Th. M. Rassias’ approach replaced c
(
‖x‖p+

‖y‖p
)

and c
(
‖x‖p‖y‖q

)
by ϕ(x, y)where ϕ is a map fromE1×E1 into R

+. Some

extensive account of further results as well as applications and numerous references
can be found for example in [1–3, 12, 20, 21, 28, 29, 31–36, 38, 39, 41, 44, 48, 49,
51, 52].

Note that, in Theorem 3.1, for the case p < 0, we already have f is
additive. This result is known as the hyperstability result, (see [14]). However,
the term of hyperstability was introduced for the first time probably in [40], and
it was developed with fixed point theorem of Brzdȩk in [15] and thereafter, the
hyperstability of a several functional equation has been studied by many authors. For
more information about the hyperstability, see for example [14–16]. In 2011, Brzdȩk
et al. [18, 19] proved the existence of fixed point theorem for nonlinear operator.
Also, they used this result to study the stability of functional equations in non-
Archimedean metric spaces and obtained the fixed point result in arbitrary metric
spaces. On the other hand, in 2018, Brzdȩk [17] proved the fixed point theorem in
2-Banach spaces and studied the Ulam stability of Cauchy functional equations.

LetX be a vector space, Y be a non-Archimedean 2-Banach space, and let σ be a
homomorphism of X such that σ ◦ σ(x) = x for all x ∈ X. A function f : X→ Y

is called a σ -Jensen if it satisfies the following functional equation:

f (x + y)+ f (x + σ(y)) = 2f (x). (1.1)

P. Sinopoulos [50] proved that the general solution f : S → G of the Eq. (1.1)
is of the form f (x) = A(x) + α where (S,+) is a commutative semi-group,
G is a 2-cancellative abelian group, A is an additive function, and α ∈ G is
an arbitrary constant such that A ◦ σ = −A. The functional equation (1.1) is
a generalization of the Cauchy–Jensen functional equation. In fact, the Eq. (1.1)
becomes a Cauchy–Jensen functional equation by taking σ = −Id. The Hyers–
Ulam stability of the Cauchy–Jensen functional equation has been studied by
various authors (cf.[10, 42]).

The purpose of this paper is to exploit the results of Brzdȩk’s fixed point
theorem in 2-Banach spaces [17] and in non-Archimedean Banach spaces [18] to
establish the hyperstability of the functional equation (1.1) in non-Archimedean 2-
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Banach spaces. Some interesting consequences of our main results concerning the
hyperstability in the C∗-algebras will be presented in the last section of this paper.

Throughout this paper, we denote by N the set of all positive integers, N0 =
N ∪ {0}, Nm0 the set of all integers greater than or equal to m0 (m0 ∈ N),
R+ = [0,∞), X is a normed space, Y is a non-Archimedean 2-Banach space, σ
is a homomorphism of X, and we use X0 for the set X \ {0}.

We need to recall some basic definitions and properties concerning non-
Archimedean 2-normed spaces. For more details (cf. [37]).

2 Background

Note that the theory of the 2-normed spaces was first developed by Gähler [22] in
the mid-1960s, while that of 2-Banach spaces was studied later by Gähler [23].

In this section, we need to recall some basic definitions and properties concerning
non-Archimedean 2-Banach spaces.

Definition 2.1 By a non-Archimedean field, we mean a field K equipped with a
function (valuation) | · | : K → [0,∞) such that for all r, s ∈ K, the following
conditions hold:

(1) |r| = 0 if and only if r = 0,
(2) |rs| = |r||s|,
(3) |r + s| ≤ max

{|r|, |s|}.

The pair (K, |.|) is called a valued field.

Remark 2.2 In any non-Archimedean field, we have |1| = | − 1| = 1 and |n| ≤ 1
for n ∈ N.

Example 2.3 In any field K the function | · | : K→ R+ given by

|x| :=
{

0, x = 0,
1, x 	= 0,

is a valuation which is called trivial valuation. The most important examples of non-
Archimedean field are p-adic numbers which have gained the interest of physicists
for their research in some problems deriving from quantum physics, p-adic strings,
and superstrings.

Let p be a fixed prime number and x a non-rational number, there exists a unique
integer vp(x) ∈ Z such that x = pvp(x) a

b
where a and b are integers co-prime to

p. The function defined in Q by |x|p = pvp(x) is called a p-adic, an Ultrametric, or
simply a non-Archimedean absolute value on Q. The completion, denoted by Qp of
Q with respect to the metric defined by the p-adic absolute is called p-adic numbers.
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Definition 2.4 Let X be a vector space (with dimX > 1) over a scalar field K with
a non-Archimedean non-trivial valuation | · |. A function ||., .|| : X2 → R+ is called
a non-Archimedean 2-norm (valuation) if it satisfies the following conditions:

(1) ‖x, y‖ = 0 if and only if x and y are linearly independent, x, y ∈ X,
(2) ‖x, y‖ = ‖y, x‖ x, y ∈ X,
(3) ‖rx, y‖ = |r| ‖x, y‖ (r ∈ K, x,∈ X),
(4) ‖x, y + z‖ ≤ max

{‖x, y‖, ‖x, z‖} x, y, z ∈ X.
Then (X, ‖·, ·‖) is called a non-Archimedean 2-normed space or an Ultrametric
2-normed space.

Example 2.5 Let p be a fixed prime number. For x = (x1, x2) and y = (y1, y2) we
define the non-Archimedean 2-norm in Qp

2 by ‖x, y‖p = |x1y2 − x2y1|p.

Definition 2.6 Let {xn} be a sequence in a non-Archimedean 2-normed spaceX.

(1) A sequence{xn}∞n=1 is a Cauchy sequence if there are linearly independent
y, z ∈ X such that

lim
n→∞‖xn+1 − xn, y‖ = 0 = lim

n→∞‖xn+1 − xn, z‖

(2) The sequence {xn} is said to be convergent if there exists x ∈ X (called limit of
this sequence and denoted by limn→∞ xn) such that

lim
n→∞‖xn − x, y‖ y ∈ X

(3) If every Cauchy sequence inX converges, then the non-Archimedean 2-normed
space X is called a non-Archimedean 2-Banach space or an Ultrametric 2-
Banach space.

Lemma 2.7 ([43])

(1) Let X be a non-Archimedean 2-Banach space over a non-Archimedean field K

and x, y, z ∈ X such that y and z are linearly independent and ‖x, y‖ = 0 =
‖x, z‖ . Then x = 0.

(2) If (xn)n∈N is a convergent sequence of elements of X, then:

lim
n→∞‖xn, y‖ = ‖ lim

n→∞ xn, y‖ y ∈ X.

3 A Fixed Point Theorem

In 2011 and in 2018, J. Brzdȩk and K. Ciepliński [17, 18] proved a fixed point
theorem in non-Archimedean Banach space and in 2-Banach spaces, respectively.
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By combining those two results, we get Theorem 3.1. Before we present this
theorem, we need the following hypotheses:

(H1) X is a non-empty set, (Y, ‖., .‖) is a non-Archimedean 2-Banach space
over a non-Archimedean field, Y0 is a subset of Y containing two linearly
independent vectors, f1, . . . , fk : X −→ X, g1, . . . , gk : Y0 −→ Y0, and
L1, . . . , Lk : X × Y0 −→ R+ are given.

(H2) T : YX −→ YX is an operator satisfying the inequality:

∥∥T ξ(x)− T μ(x), y
∥∥ ≤ max

1≤i≤k
{
Li(x, y)

∥∥ξ
(
fi(x)

)− μ(fi(x)
)
, gi(y)

∥∥} ,

ξ, μ ∈ YX, x ∈ X, y ∈ Y0.

(H3) Λ : RX×Y0+ −→ R
X×Y0+ is a non-decreasing linear operator defined by

Λδ(x, y) := max
1≤i≤k

{
Li(x, y)δ

(
fi(x), gi(y)

)}
, δ ∈ R

X×Y0+ , x ∈ X, y ∈ Y0.

Theorem 3.1 Let hypotheses (H1)–(H3) are valid and let ε : X × Y0 −→ R+ and
ϕ : X −→ Y be functions fulfilling the following two conditions:

‖T ϕ(x)− ϕ(x), y‖ ≤ ε(x, y), x ∈ X, y ∈ Y0, (3.1)

lim
n→∞Λ

nε(x, y) = 0, x ∈ X, y ∈ Y0. (3.2)

Then, for every x ∈ X, the limit

ψ(x) = lim
n→∞ T nϕ(x)

exists and defines a fixed point ψ of T with

‖ϕ(x)− ψ(x), y‖ ≤ sup
n∈N0

Λnε(x, y) = γ (x, y), x ∈ X, y ∈ Y0. (3.3)

Moreover, if

(Λγ )(x, y) ≤ sup
n∈N0

Λn+1ε(x, y), x ∈ X, x ∈ Y0, (3.4)

then ψ is a unique fixed point of T satisfying (3.3).
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4 Hyperstability of σ -Jensen Functional Equation in
Non-archimedean 2-Banach Space

Using the fixed point Theorem 3.1 as a basic tool, we investigate the hyperstability
of the σ -Jensen functional equation (1.1) in a non-Archimedean 2-Banach space. In
the remaining part of this paper, we assume that X′ is a non-empty subset of X.

Theorem 4.1 Let h1, h2 : X′ × Y → R+ be two functions such that

U :=
{
n ∈ N : αn = max{λ1(n+ 1)λ2(n+ 1) , λσ1 (n)λ

σ
2 (n)} < 1

}
,

where

λi(n) = inf{t ∈ R+ : hi(nx, z) ≤ thi(x, z)} and

λσi (n) = inf{t ∈ R+ : hi((n+ 1)x − nσ(x), z) ≤ thi(x, z), }

for all x ∈ X′,z ∈ Y and n ∈ N, where i = 1, 2 such that

lim
n→∞ λ1(n+ 1)λ2(−n) = 0.

Suppose that f : X′ → Y satisfies the inequality

‖f (x + y)+ f (x + σ(y))− 2f (x), z‖ ≤ h1(x, z)h2(y, z), (4.1)

for all x, y ∈ X′ and z ∈ Y . Then f is a σ -Jensen on X′.

Proof Replacing x by (m+ 1)x and y by −mx in (4.1) where m ∈ U , we get

‖2f ((m+ 1)x)− f ((m+ 1)x −mσ(x))− f (x), z‖
≤ h1((m+ 1)x, z)h2(−mx, z) x ∈ X′, z ∈ Y. (4.2)

We consider

Tmξ(x) := 2ξ((m+ 1)x)− ξ((m+ 1)x −mσ(x)), ξ ∈ YX′ , x ∈ X′, z ∈ Y,

and

εm(x, z) := h1((m+ 1)x, z)h2(−mx, z), x ∈ X′, z ∈ Y.

Therefore, the inequality (4.1) becomes

‖Tmf (x)− f (x), z‖ ≤ εm(x, z) x ∈ X′, z ∈ Y,m ∈ U .



356 R. EL Ghali and S. Kabbaj

Now, for each ξ, μ ∈ YX′ , x ∈ X′, z ∈ Y and m ∈ U , we have

‖Tmξ(x)− Tmμ(x), z‖
= ‖2ξ((m+ 1)x)− ξ((m+ 1)x −mσ(x))− 2μ((m+ 1)x)

+ μ((m+ 1)x −mσ(x)), z‖
≤ max

{|2|‖ξ((m+ 1)x)− μ((m+ 1)x), z‖,
‖ξ((m+ 1)x −mσ(x))− μ((m+ 1)x −mσ(x)), z‖}

≤ max
{‖ξ((m+ 1)x)− μ((m+ 1)x), z‖,

‖ξ((m+ 1)x −mσ(x))− μ((m+ 1)x −mσ(x)), z‖}.

Next, we define

Λmδ(x, z)

:= max
{
δ((m+ 1)x, z), δ((m+ 1)x −mσ(x), z)}, δ ∈ R

X′×Y+ , x ∈ X′, z ∈ Y.

Therefore, for each m ∈ U , the operator Λ := Λm has the form described in (H3)
with k = 2, f1(x) = (m+1)x, f2(x) = (m+1)x−mσ(x),L1(x, z) = L2(x, z) = 1
, gi = IdY , i = 1, 2 for all x ∈ X′ and z ∈ Y . It is easy to see that

εm(x, z) ≤ λ1(m+ 1)λ2(−m)h1(x, z)h2(x, z), x ∈ X′, z ∈ Y. (4.3)

By induction, we will show that for each n ∈ N0

Λnmεm(x, z) ≤ λ1(m+ 1)λ2(−m)αnmh1(x, z)h2(x, z), x ∈ X′, z ∈ Y. (4.4)

Indeed, for n = 0 it is evident that (4.4) is exactly (4.3). Next, we fix k ∈ N and
assume that (4.4) holds for n = k. Then, using the non-decreasing of Λm, we have

Λk+1
m εm(x, z) = Λm(Λkmεm(x, z))
= max{Λkmεm((m+ 1)x, z),Λkmεm((m+ 1)x −mσ(x), z)}
≤ λ1(m+ 1)λ2(−m)αkm max{h1((m+ 1)x, z)h2((m+ 1)x, z),

h1((m+ 1)x −mσ(x), z)h2((m+ 1)x −mσ(x), z)}
≤ λ1(m+ 1)λ2(−m)αkmh1(x, z)h2(x, z)max{λ1(m+ 1)λ2(m+ 1),

λσ1 (m)λ
σ
2 (m)}

= λ1(m+ 1)λ2(−m)αk+1
m h1(x, z)h2(x, z),

for all x ∈ X′ and z ∈ Y . Letting n→∞ in (4.4), we get
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lim
n→∞Λ

n
mεm(x, z) = 0

for all x ∈ X′,z ∈ Y and all m ∈ U . Then, by applying the Theorem 3.1, there
exists, for each m ∈ U , a fixed point Jm of Tm such that

‖f (x)− Jm(x), z‖ ≤ sup
n∈N0

Λnmεm(x, z), (4.5)

for all x ∈ X′ and all z ∈ Y and

lim
n→∞ T nmf (x) = Jm(x), x ∈ X′. (4.6)

Next, we will show, by induction, that for each n ∈ N0

‖T nmf (x + y)+ T nmf (x + σ(y))− 2T nmf (x), z‖
≤ αnmh1(x, z)h2(y, z), x, y ∈ X′, z ∈ Y. (4.7)

Since the case n = 0 is just (4.1), we fix k ∈ N and suppose that (4.7) holds for
n = k. Then, for all x, y ∈ X′ and z ∈ Y , we have

‖T k+1
m f (x + y)+ T k+1

m f (x + σ(y))− 2T k+1
m f (x), z‖

= ‖Tm
(
T kmf (x + y)

)
+ Tm

(
T kmf (x + σ(y))

)
− 2Tm

(
T kmf (x)

)
, z‖

= ‖2T kmf ((m+ 1)(x + y))− T kmf ((m+ 1)(x + y)−mσ(x + y))
+ 2T kmf ((m+ 1)(x + σ(y)))
− T kmf (((m+ 1)(x + σ(y)))−m(x + σ(y)))− 4T kmf ((m+ 1)x)

+ 2T kmf ((m+ 1)x −mσ(x)), z‖
≤ max{|2|‖T kmf ((m+ 1)(x + y))
+ T kmf ((m+ 1)(x + σ(y)))− 2T kmf ((m+ 1)x), z‖;

‖T kmf ((m+ 1)(x + y)−mσ(x + y))
+ T kmf ((m+ 1)(x + σ(y))−mσ(x + σ(y)))
− 2T kmf ((m+ 1)x −mσ(x)), z‖}

≤ max{‖T kmf ((m+ 1)(x + y))
+ T kmf ((m+ 1)(x + σ(y)))− 2T kmf ((m+ 1)x), z‖;

‖T kmf ((m+ 1)(x + y)−mσ(x + y))
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+ T kmf ((m+ 1)(x + σ(y))−mσ(x + σ(y)))
− 2T kmf ((m+ 1)x −mσ(x)), z‖}

≤ αkm max{h1((m+ 1)x, z)h2((m+ 1)y, z);
h1((m+ 1)x −mσ(x), z)h2((m+ 1)y −mσ(y), z)}
≤ αkmh1(x, z)h2(y, z)max{λ1(m+ 1)λ2(m+ 1); λσ1 (m)λσ2 (m)}
= αk+1

m h1(x, z)h2(y, z).

Thus, we have shown that (4.7) holds for every n ∈ N0. Letting n → ∞ in (4.7),
we obtain, for each m ∈ U , that

Jm(x + y)+ Jm(x + σ(y)) = 2Jm(x), x ∈ X′.

In this way, we find a sequence {Jm}m∈U of a σ -Jensen functions on X′ such that

‖f (x)− Jm(x), z‖ ≤ sup
n∈N
{λ1(m+ 1)λ2(−m)αnmh1(x, z)h2(x, z)}

≤ λ1(m+ 1)λ2(−m)h1(x, z)h2(x, z) sup
n∈N
{αnm},

for all x ∈ X′, z ∈ Y , and m ∈ U . It follows, with m→∞, that f is σ -Jensen on
X′. �

By similar method, we prove the following theorem.

Theorem 4.2 Let h : X′ × Y → R+ be a function such that

U := {
n ∈ N : αn = max

{
λ(n+ 1) , λσ (n)

}
< 1

}
,

where

λ(n) := inf{t ∈ R+ : h(nx, z) ≤ th(x, z), x ∈ X′, z ∈ Y } and

λ(n)σ := inf{t ∈ R+ : h((n+ 1)x − nσ(x), z) ≤ th(x, z), x ∈ X′, z ∈ Y }

for all n ∈ N such that

lim
n→∞ λ(n+ 1)+ λ(−n) = 0.

Suppose that f : X′ → Y satisfies the inequality

‖f (x + y)+ f (x + σ(y))− 2f (x), z‖ ≤ h(x, z)+ h(y, z), x, y ∈ X′, z ∈ Y.
(4.8)

Then f is a σ -Jensen on X′.
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Proof Replacing x by (m+ 1)x and y by −mx where m ∈ U in (4.8), we get

‖2f ((m+ 1)x)− f ((m+ 1)x −mσ(x))− f (x), z‖ ≤ h((m+ 1)x, z)+ h(−mx, z),
x ∈ X′, z ∈ Y. (4.9)

For each m ∈ U , we define the operator Tm : YX′ → YX
′

and the function ε :
X′ × Y → R+ by

Tmξ(x) := 2ξ((m+ 1)x)− ξ((m+ 1)x −mσ(x)), ξ ∈ YX′ , x ∈ X′.
εm(x, z) = h((m+ 1)x, z)+ h(−mx, z) x ∈ X′, z ∈ Y.

Then the inequality (4.9) takes the form

‖Tmf (x)− f (x), z‖ ≤ εm(x, z), x ∈ X′, z ∈ Y.

Furthermore, for every ξ, μ ∈ YX′ , x ∈ X′, z ∈ Y , and m ∈ U , we obtain

‖Tmξ(x)− Tmμ(x), z‖
= ‖2ξ((m+ 1)x)− ξ((m+ 1)x −mσ(x))− 2μ((m+ 1)x)

+ μ((m+ 1)x −mσ(x)), z‖
≤ max

{|2|‖ξ((m+ 1)x)− μ((m+ 1)x), z‖,
‖ξ((m+ 1)x −mσ(x))− μ((m+ 1)x −mσ(x)), z‖}

≤ max
{‖ξ((m+ 1)x)− μ((m+ 1)x), z‖,

‖ξ((m+ 1)x −mσ(x))− μ((m+ 1)x −mσ(x)), z‖}.

Take

Λmδ(x, z) := max
{
δ((m+ 1)x, z), δ((m+ 1)x −mσ(x), z)}, δ ∈ R

X′×Y+ ,

x ∈ X′, z ∈ Y.

Therefore, for each m ∈ U , the operator Λ := Λm has the form described in (H3)
with k = 2, f1(x) = (m+1)x, f2(x) = (m+1)x−mσ(x),L1(x, z) = L2(x, z) = 1,
gi = IdY , i = 1, 2 for all x ∈ X′ and z ∈ Y . Observe that

εm(x, z) ≤
(
λ(m+ 1)+ λ(−m))h(x, z) x ∈ X′, z ∈ m ∈ U . (4.10)

By using mathematical induction we will show that for each n ∈ N0

Λnmεm(x, z) ≤
(
λ(m+ 1)+ λ(−m)

)
αnmh(x, z), x ∈ X′ z ∈ Y, (4.11)
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for all m ∈ U . From (4.10), we obtain that the inequality (4.11) holds for n = 0.
Next, we will assume that (4.11) holds for n = k, where k ∈ N. Then we have

Λk+1
m εm(x, z) = Λm

(
Λkmεm(x, z)

)

= max
{
Λkmεm

(
(m+ 1)x, z

)
, Λkmεm

(
(m+ 1)x −mσ(x), z)

}

≤ (
λ(m+ 1)+ λ(−m))αkm
×max {h((m+ 1)x, z) , h((m+ 1)x −mσ(x), z)}

≤ (
λ(m+ 1)+ λ(−m))αkmh(x, z) max

{
λ(m+ 1) , λσ (m)

}

≤ (
λ(m+ 1)+ λ(−m)

)
αk+1
m h(x, z),

for all x ∈ X′, z ∈ Y , and m ∈ U .
This shows that (4.11) holds for n = k + 1. Now, we can conclude that the

inequality (4.11) holds for all n ∈ N0. Letting n→∞ in (4.11), we obtain

lim
n→∞Λ

nεm(x, z) = 0,

for all x ∈ X′ , z ∈ Y and allm ∈ U . Hence, according to Theorem 3.1, there exists,
for each m ∈ U , a fixed point Jm of the operator Tm such that

‖f (x)− Jm(x), z‖ ≤ sup
n∈N0

Λnmεm(x, z), (4.12)

for all x ∈ X′ and all z ∈ Y and

lim
n→∞ T nmf (x) = Jm(x), x ∈ X′. (4.13)

Next, we will show, by induction, that for each n ∈ N0

‖T nmf (x+y)+T nmf (x+σ(y))−2T nmf (x), z‖ ≤ αnm
(
h(x, z)+h(y, z)), (4.14)

for all x, y ∈ X′, z ∈ Y and all m ∈ U .
Since the case n = 0 is just (4.8), so we fix k ∈ N and suppose that (4.14) holds

for n = k. Then, for all x, y ∈ X′ and z ∈ Y we have

‖T k+1
m f (x + y)+ T k+1

m f (x + σ(y))− 2T k+1
m f (x), z‖

= ‖Tm
(
T kmf (x + y)

)
+ Tm

(
T kmf (x + σ(y))

)
− 2Tm

(
T kmf (x)

)
, z‖

= ‖2T kmf ((m+ 1)(x + y))− T kmf ((m+ 1)(x + y)−mσ(x + y))
+ 2T kmf ((m+ 1)(x + σ(y)))
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− T kmf (((m+ 1)(x + σ(y)))−m(x + σ(y)))− 4T kmf ((m+ 1)x)

+ 2T kmf ((m+ 1)x −mσ(x)), z‖
≤ max{|2|‖T kmf ((m+ 1)(x + y))+ T kmf ((m+ 1)(x + σ(y)))
− 2T kmf ((m+ 1)x), z‖;

‖T kmf ((m+ 1)(x + y)−mσ(x + y))+ T kmf ((m+ 1)(x + σ(y))−mσ(x + σ(y)))
− 2T kmf ((m+ 1)x −mσ(x)), z‖}

≤ max{‖T kmf ((m+ 1)(x + y))+ T kmf ((m+ 1)(x + σ(y)))
− 2T kmf ((m+ 1)x), z‖;

‖T kmf ((m+ 1)(x + y)−mσ(x + y))+ T kmf ((m+ 1)(x + σ(y))−mσ(x + σ(y)))
− 2T kmf ((m+ 1)x −mσ(x)), z‖}

≤ αkm max{h((m+ 1)x, z)+ h((m+ 1)y, z);h((m+ 1)x −mσ(x), z)
+ h((m+ 1)y −mσ(y), z)}

≤ αkm
(
h(x, z)+ h(y, z))max{λ(m+ 1); λσ (m)}

= αk+1
m

(
h(x, z)+ h(y, z)).

Thus, we have shown that (4.14) holds for every n ∈ N0. Letting n → ∞ in
(4.14), we obtain, for each m ∈ U , that

Jm(x + y)+ Jm(x + σ(y)) = 2Jm(x), x ∈ X′.

In this way, we find a sequence {Jm}m∈U of σ -Jensen functions on X′ such that

‖f (x)−Jm(x), z‖ ≤ sup
n∈N
{(λ(m+1)+λ(−m))αnm

(
h(x, z)+h(y, z))}, x ∈ X′, z ∈ Y.

It follows, with m→∞, that f is σ -Jensen on X′. �
Theorems 4.1 and 4.2 imply, as particular cases, the following two corollaries
concerning the inhomogeneity of the σ -Jensen functional equation.

Corollary 4.3 Let h1, h2 : X′ × Y → R+ be two functions, σ be a homomorphism
of X, G : X × X → Y be a function such that G(0, 0) = 0, and f : X → Y be a
function. Assume that f,G satisfy the inequality:

‖f (x + y)+ f (x + σ(y))− 2f (x)−G(x, y), z‖ ≤ h1(x, z)h2(y, z), (4.15)
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for all x, y ∈ X′ and z ∈ Y . If the functional equation

f (x + y)+ f (x + σ(y))− 2f (x)−G(x, y) = 0, (4.16)

has a solution f0 : X → Y , then f is a solution of the functional equation (4.16)
on X.

Proof Let be ϕ : X → Y be a function defined by ϕ(x) = f (x) − f0(x) for all
x ∈ X, then for all x, y ∈ X′ and z ∈ Y we have

‖ϕ(x + y)+ ϕ(x + σ(y))− 2ϕ(x), z‖
= ‖f (x + y)+ f (x + σ(y))− 2f (x)−G(x, y)− f0(x + y)
− f0(x + σ(y))+ 2f0(x)+G(x, y), z‖
= ‖f (x + y)+ f (x + σ(y))− 2f (x)−G(x, y), z‖
≤ h1(x, z)h2(y, z),

thus ϕ is σ -Jensen on X′. Moreover, for all x, y ∈ X′ we get

f (x + y)+ f (x + σ(y))− 2f (x)−G(x, y)
= ϕ(x + y)+ ϕ(x + σ(y))− 2ϕ(x)+ f0(x + y)
+ f0(x + σ(y))− 2f0(x)−G(x, y)

= 0,

which means that f is a solution of the functional equation (4.16) on X. �
With an analogous proof of Corollary 4.3, we present the following corollary.

Corollary 4.4 Let h : X′ × Y → R+ be two functions, σ be a homomorphism of
X, G : X × X → Y be a function such that G(0, 0) = 0, and f : X → Y be a
function. Assume that f,G satisfy the inequality:

‖f (x + y)+ f (x + σ(y))− 2f (x)−G(x, y), z‖ ≤ h(x, z)+ h(y, z), (4.17)

for all x, y ∈ X′ and z ∈ Y . If the functional equation

f (x + y)+ f (x + σ(y))− 2f (x)−G(x, y) = 0, (4.18)

has a solution f0 : X → Y , then f is a solution of the functional equation (4.18)
on X.
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5 Applications

In this section, we take (X, ‖.‖X) as a normed space and X′ = X \ {0}. Let
h1(x, z) = c1 ‖x‖pX ‖z,w‖r1 , h2(x, z) = c2 ‖x‖qX ‖z,w‖r2 , and h(x, z) =
c ‖x‖pX ‖z,w‖r for all x ∈ X′ and z,w ∈ Y where c1, c2, c ≥ 0, r1, r2, r > 0
and p, q ∈ R.

In the case when σ is a homomorphism of X such that σ = −idX with X is a
real or complex vector space, we get the Cauchy–Jensen functional equation

f (x + y)+ f (x − y) = 2f (x) x, y ∈ X.

From Theorem 4.1 and Theorem 4.2, we derive the following corollaries.

Corollary 5.1 Let Y be a non-Archimedean 2-Banach space. Assume that a
function f : X′ → Y verifies the inequality

‖f (x + y)+ f (x − y)− 2f (x), z‖ ≤ c ‖x‖pX ‖y‖qX ‖z,w‖r (5.1)

for all x, y ∈ X′ and z,w ∈ Y with c = c1×c2 ≥ 0, p+q < 0 and r = r1+r2 > 0.
Then f (x) = A(x) + a, x ∈ X′, where A is an additive map X′ → Y and a ∈ Y
is an arbitrary constant.

Proof For each m ∈ N we define λ1(m+ 1) and λσ1 (m) as in Theorem 4.1

λ1(m+ 1) = inf {t ∈ R+ : h1((m+ 1)x, z) ≤ th1(x, z)} x, z ∈ X′

= inf
{
t ∈ R+ : c1‖(m+ 1)x‖pX ‖z,w‖r1

≤ tc1 ‖x‖pX ‖z,w‖r1
}

x ∈ X′, z, w ∈ Y
= inf

{
t ∈ R+ : |m+ 1|p ‖x‖pX ‖z,w‖r1

≤ t ‖x‖pX ‖z,w‖r1
}

x ∈ X′, z, w ∈ Y
= |m+ 1|p,

and

λσ1 (m) = inf {t ∈ R+ : h1((m+ 1)x −mσ(x), z) ≤ th1(x, z)} x, z ∈ X′

= inf
{
t ∈ R+ : c1 ‖(2m+ 1)x‖pX ‖z,w‖r1

≤ tc1 ‖x‖pX ‖z,w‖r1
}

x ∈ X′, z, w ∈ Y
= inf

{
t ∈ R+ : |2m+ 1|p ‖x‖pX ‖z,w‖r1

≤ t ‖x‖pX ‖z,w‖r1
}

x ∈ X′, z, w ∈ Y
= |2m+ 1|p,
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also, for m ∈ N we have λ2(−m) = |m + 1|q and λσ2 (m) = |2m + 1|q . Then for
m ∈ N we obtain:

αm =max{λ1(m+ 1)λ2(m+ 1) , λσ1 (m)λ
σ
2 (m)}

=max{|m+ 1|p+q , |2m+ 1|p+q} < 1.

On the other hand, since p + q < 0, then

lim
m→∞ λ1(m+ 1)λ2(−m) = lim

m→∞ |m+ 1|p+q = 0.

Applying theorem 4.1, we get that f is a Cauchy–Jensen on X. �
By a similar proof, we have the following corollary:

Corollary 5.2 Let Y be a non-Archimedean 2-Banach space. Assume that a
function f : X′ → Y verifies the inequality

‖f (x + y)+ f (x − y)− 2f (x), z‖ ≤ c(‖x‖pX + ‖y‖pX) ‖z,w‖r (5.2)

for all x, y ∈ X′ and z,w ∈ Y with c ≥ 0, p < 0 and r > 0. Then f (x) =
A(x)+ a, x ∈ X′, where A is an additive map X′ → Y and a ∈ Y is an arbitrary
constant.

Corollary 5.3 Let h1, h2 : X′ × Y → R+ be two functions, G : X × X → Y be
a function such that G(0, 0) = 0, and f : X → Y be a function. Assume that f,G
satisfy the inequality:

‖f (x + y)+ f (x − y)− 2f (x)−G(x, y), z‖ ≤ c ‖x‖pX ‖y‖qX ‖z,w‖r ,
or c(‖x‖sX + ‖y‖sX) ‖z,w‖r (5.3)

for all x, y ∈ X′ and z,w ∈ Y with c ≥ 0, p + q < 0, s < 0, and r > 0. If the
functional equation

f (x + y)+ f (x + σ(y))− 2f (x)−G(x, y) = 0, (5.4)

has a solution f0 : X→ Y then f is a solution of functional equation (5.4) on X.

In the following corollaries, we investigate some hyperstability results in a C∗-
algebra. We know that a C∗-algebra X is a Banach algebra (X, ‖.‖X) over a C

equipped with an involution ∗ satisfying the C∗-identities

∥∥x∗x
∥∥
X
= ‖x‖2

X and
∥∥x∗

∥∥
X
= ‖x‖X , x ∈ X.

Take the homomorphism σ of X as follows σ(x) = x∗, we get this functional
equation
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f (x + y)+ f (x + y∗) = 2f (x), x, y ∈ X. (5.5)

The solution of this equation is as follows f (x) = A(x)+a, x ∈ X, where A is an
additive map X→ Y and a ∈ Y is an arbitrary constant such that A(x∗) = −A(x).
Corollary 5.4 Let Y be a non-Archimedean 2-Banach space. Assume that a
function f : X′ → Y verifies the inequality

‖f (x + y)+ f (x + y∗)− 2f (x), z‖ ≤ c ‖x‖pX ‖y‖qX ‖z,w‖r , (5.6)

for all x, y ∈ X′ and z,w ∈ Y with c = c1×c2 ≥ 0, p+q < 0 and r = r1+r2 > 0.
Then f (x) = A(x)+ a, x ∈ X, where A is an additive map X→ Y and a ∈ Y is
an arbitrary constant such that A(x∗) = −A(x).
Proof Reformulate (5.1) as

‖f (x + y)+ f (x − y)− 2f (x)−G(x, y), z‖ ≤ c ‖x‖pX ‖y‖qX ‖z,w‖r ,

where G(x, y) = f (x − y)− f (x + y∗), x, y ∈ X. Observe that G(0, 0) = 0, and
the functional equation (5.5) has a solution, so by corollary 5.3, we get the desired
result. �
Corollary 5.5 Let Y be a non-Archimedean 2-Banach space. Assume that a
function f : X′ → Y verifies the inequality

‖f (x + y)+ f (x + y)− 2f (x), z‖ ≤ c(‖x‖pX + ‖y‖pX) ‖z,w‖r ,

for all x, y ∈ X′ and z,w ∈ Y with c ≥ 0, p < 0 and r > 0. Then f (x) =
A(x) + a, x ∈ X, where A is an additive map X → Y and a ∈ Y is an arbitrary
constant such that A(x∗) = −A(x).
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19. J. Brzdȩk, J. Chudziak, Zs. Páles, A fixed point approach to stability of functional equations.

Nonlinear Anal. 74, 6728–6732 (2011)
20. S. Czerwik, On the stability of the quadratic mapping in normed spaces. Abd. Math. Sem.

Univ. Hambourg 62, 59–64 (1992)
21. S. Czerwik, Functional Equations and Inequalities in Several Variables (World Scientific,

Singapore, 2002)
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A Characterization for the Validity of the
Hermite–Hadamard Inequality on a
Simplex

Allal Guessab

Abstract We consider the d-dimensional Hermite–Hadamard inequality

1

|S|
∫

S

f (x) dx ≤ Qtra(f ) := 1

|∂S|
∫

∂S

f (x)dγ. (1)

Here f is a convex function defined on a simplex S ⊂ R
d , (d ∈ N). We give

necessary and sufficient conditions on S for the validity of (1). More specifically,
we establish that (1) holds if and only if S is an equiareal simplex. We will give two
proofs of this result:

• The first proof is based on Green’s identity. Here, in addition to the convexity
requirement, the C1-regularity assumption is necessary.

• In the second proof, the convexity is only required.

A series of equivalent criteria for validity of (1) is simply reformulated in terms of
coincidences of certain simplex centers.

1 Introduction, Motivation, and Problem Setting

The classical right-hand side of the Hermite–Hadamard inequality, with which we
teach our calculus students to obtain a numerical approximation to definite integrals,
provides an upper estimation for the integral of any convex function defined on a
compact interval of real numbers. More precisely, it can be stated in the (maybe)
more familiar form. If f is a convex function on [a, b], then
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1

b − a
∫ b

a

f (x) dx ≤ Qtra(f ) = 1

2
(f (a)+ f (b)) . (2)

Hermite–Hadamard’s inequality (2) has been generalized or modified in many
other directions, we refer to the monograph of Dragomir and Pearce [8]. In the
univariate case, this inequality is reasonably well-studied and understood. However,
in higher dimensions, relatively little work has been done for a multivariate version
of inequality (2); we refer to [16–18] and the further references given there. We now
consider a simplex S ⊂ R

d(d ∈ N). By ∂S we denote the boundary of S, and |S|
denotes the d-dimensional volume of S, namely area in two dimensions and volume
in high dimensions. The main purpose of this chapter is to derive a characterization
of the simplices S, for which the d-dimensional Hermite–Hadamard inequality (1)
is valid. It is shown that (1) holds if and only if S is an equiareal simplex. We will
offer two proofs of this result, both relying on new characterizations of equiareal
simplices. While in the first proof the C1-regularity on the functions is needed for
proving the validity of (1), the second one requires the convexity property only.

Some motivation may be helpful. The functional Qtra(f ), defined in (1), is a
natural multivariate version of the classical trapezoidal rule, hence it can serve as a
cubature formula (multidimensional integration formula) for the approximation of
the exact value of the integral

∫
S
f (x) dx. We call it the trapezoidal cubature for-

mula. Let us recall here that most of classical numerical methods for approximation
of a multivariate function (or integrals of it) use the values of function at some nodes.
However, as described in [1, 16–18], in many practical problems, the available data
is not restricted by function evaluations, but contains also a number of integrals
over certain hyperplane sections, or more generally, over certain domains defined
implicitly by an indicator function such as the level set function. In such cases,
generalizations of the existing theory and algorithms of numerical integration are
required. The motivation for discussing such fundamental issues arises in a variety
of cases since the data obtained in measurements in number of applications contains
the mean values of functions over some surfaces. This type of data is inherent to
computer tomography and it is widely used in geology, radiology, medicine, etc. The
mathematical foundation behind these techniques is the so-called Radon transform
[33], which integrates a function over a set of spheres with a given set of centers.
It is worth noting that the cubature formulas developed in this chapter can be also
used to construct numerical algorithms for solving partial differential equations with
the error control. Such methods of integration are needed in finite element methods
and algorithms for solving inverse problems. Here we refer the interested reader to
[5, 10, 31, 32]. The papers [19, 31] show the importance of the cubature formulas of
this type in nonconforming finite elements.

This chapter, except for the introduction, is divided into five sections. In Sect. 2,
we introduce some notations and present some of the essential properties of barycen-
tric coordinates. We also provide a closed form formula for these coordinates. We
state the definition of admissible simplices for (1) and give necessary conditions for
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a simplex to be valid for it. Under convexity assumption and C1-regularity of the
functions involved, Sect. 3 gives several characterization results for a simplex to be
valid for (1). Section 4 solves the same problem, but this time under the convexity
assumption only. Section 5, where, based on a general characterization result, see
Theorem 6, we have established the explicit expressions of the best constants, which
appear in the error estimates for our new cubature formulas, see Corollary 1. Finally,
in Sect. 6, we give some numerical examples to illustrate the proposed methodology.

2 Auxiliary Results

In this section, we recall some definitions and introduce some notations which
we shall use in the sequel. We then present some of the essential properties of
barycentric coordinates. We provide a closed form formula for these coordinates
and collect some necessary technical lemmas. Let σd be a simplex, say σd =
conv [v0v1 . . . vd ] . A superscript for a simplex indicates the dimension, so, for

example, σd is a d-simplex. The notation is used to indicate that σd is the convex
hull of the (d + 1) affinely independent points (or position vectors) v0, v1, . . . , vd
in R

d . The points v0, v1, . . . , vd are the vertices. As a matter of convention, the
(d − 1)-faces usually are denoted by τd−1

0 , τ d−1
1 , . . . , τ d−1

d with the understanding
that face τd−1

i is opposite to the vertex vi . Every face that is an (d − 1)-simplex
is called a boundary face. The union of the boundary faces is the boundary of σd,
denoted by ∂σd.

When dealing with a simplex it is often convenient to use barycentric coordinates.
For all x ∈ σd [v0v1 . . . vd ] and all i = 0, . . . , d, we denote by λi(x) the
components of vector x − v0 in basis {v1 − v0, . . . , vd − v0} , i.e.

x − v0 =
d∑

i=1

λi(x) (vi − v0) . (3)

To allow all the vertices of σd to play a symmetric role, we introduce the additional
function

λ0(x) := 1−
d∑

i=1

λi(x). (4)

A simple inspection of (3) and (4) reveals that coefficients λi(x), i = 0, . . . , d, are
uniquely determined, they are affine functions of x, and they satisfy the following
three properties for a point x inside σd :

λi(x) ≥ 0, i = 0, . . . , d, (positivity) (5)
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1 =
d∑

i=0

λi(x), (partition of unity) (6)

x =
d∑

i=0

λi(x)vi , (linear precision). (7)

The uniquely determined coefficients λi(x), i = 0, . . . , d, are called the barycentric
coordinates of x with respect to σd. Linear precision (7) implies that points inside
σd can be represented by convex combination of the vertices. Note also that (7)
will continue to hold for any x ∈ R

d . However, the positivity condition (5) is not
satisfied in this case. As immediate consequence of (7), the barycentric coordinates
on σd satisfy the “delta property” or “Lagrange property”

λi(vj ) = δij , i, j = 0, . . . , d,

where δij denotes the Kronecker δ-symbol. The parametrization of σd with a convex
combination of the vertices reads as follows:

σd =
{

x ∈ R
d : x =

d∑

i=0

λi(x)vi ,with λi(x) ≥ 0, i = 0, . . . , d, and
d∑

i=0

λi(x) = 1

}
. (8)

Any of its face τd−1
i , i = 0, . . . , d, can be described as:

τd−1
i =

{
x ∈ σd, λi(x) = 0

}
.

Henceforth, we will let cσd denote the centroid of σd which is defined as

cσd =
1∣∣σd
∣∣

∫

σd
x dx. (9)

The centroid of a simplex can be thought of as the center of mass. It is just the
average of the vertices (treated as equal point masses), that is,

cσd =
1

d + 1

d∑

i=0

vi . (10)

Hence, the centroid is identified as the point in the simplex with all its barycentric
coordinates equal, that is

λ0(cσd ) =
1

d + 1
, . . . , λd(cσd ) =

1

d + 1
. (11)
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We now give explicit expressions for the barycentric coordinates. Here we denote by
ni the outward unit normal vector to τd−1

i , for each i.We did not find any reference
to this result; however, we give a simple and direct proof of it.

Proposition 1 The barycentric coordinates are such that

λi(x) = d
(
cσd , τ

d−1
i

)− 〈
ni , x − cσd

〉

(d + 1)d
(
cσd , τ

d−1
i

) , (12)

for all x ∈ σd and all i = 0, . . . , d.

Proof Let us first recall that for any i = 0, . . . , d, the barycentric coordinate λi
associated with the vertex vi is the only affine function that satisfies Lagrange
property at the vertices, that is

λi(vj ) = δji , the Kronecker delta, j = 0, . . . , d. (13)

This property is equivalent to the following conditions:

λi(vj ) = 0, j = 0, . . . , d, j 	= i, (14)

λi(cσd ) =
1

d + 1
, (15)

for each i. Let hi denote the function defined by

hi(x) = d
(
cσd , τ

d−1
i

)− 〈
ni , x − cσd

〉

(d + 1)d
(
cσd , τ

d−1
i

) . (16)

Clearly, hi is affine, which obviously satisfies (15). To verify (14), let us denote the
closest point of cσd in τd−1

i by cpi(cσd ). Then, for any j = 0, . . . , d, j 	= i, it holds

〈
ni , vj − cσd

〉 = 〈
ni , vj − cpi(cσd )

〉+ 〈
ni , cpi(cσd )− cσd

〉

= 〈
ni , cpi(cσd )− cσd

〉
(17)

= d(cσd , τ d−1
i

)
, (18)

where in the second last equality we have used that ni is orthogonal to τd−1
i . This

means that condition (14) is also satisfied and hence uniqueness of the barycentric
coordinates shows that hi = λi, i = 0, . . . , d.

Remark 1 Let gi, i = 0, . . . , d, be the functions defined on the simplex σd, by

gi(x) =
〈
ni , x − cσd

〉
. (19)
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Then, σd and its faces τd−1
i can be, respectively, expressed in terms of functions gi

as follows:

σd =
{
x ∈ R

d , gi(x) ≤ d
(
cσd , τ

d−1
i

)
, i = 0, . . . , d

}
, (20)

τd−1
i =

{
x ∈ σd, gi(x) = d

(
cσd , τ

d−1
i

)}
. (21)

The insphere of a d−simplex σd is the sphere that is tangent to all d + 1 facets
τd−1
i , i = 0, . . . , d, of σd; its center is the incenter cin and its radius is the inradius
rin of σd .
There is a simple geometric meaning of the barycentric coordinates. Given a point
x in σd, let σdi (x) be the d-simplex obtained from σd by replacing vi by x. Then,
it follows by the Cramer’s rule for solving (6) and (7),

λi(x) =
∣∣σdi (x)

∣∣
∣∣σd

∣∣ , i = 0, . . . , d. (22)

Clearly, the λi as given in Eqs. (22) are nonnegative, and their sum is equal to 1,
since the d-volume

∣∣σd
∣∣ of σd is represented by

∣∣σd
∣∣ = ∑d

i=0

∣∣σdi (x)
∣∣ . On the

other hand, the volume of a simplex of height h over a base of (d − 1)-dimensional

volume B is Bh/d, then we have
∣∣σdi (x)

∣∣ = d(x,τ d−1
i )

d

∣∣∣τd−1
i

∣∣∣ . Therefore, the λi can

be expressed in the equivalent form

λi(x) = d
(
x, τ d−1

i

)

rin

∣∣∣τd−1
i

∣∣∣
∣∣∂σd

∣∣ . (23)

Using (7), it follows that every point in σd can be alternatively expressed as:

x =
d∑

i=0

d
(
x, τ d−1

i

)

rin

∣∣∣τd−1
i

∣∣∣
∣∣∂σd

∣∣ vi . (24)

Since cin lies at equal distances rin from the faces, it follows that the incenter is
algebraically defined by

cin =
d∑

i=0

∣∣∣τd−1
i

∣∣∣
∣∣∂σd

∣∣ vi . (25)

This representation will be frequently used.

For later reference we prove the following result, which is satisfied by any d-
simplex.



A Characterization for the Validity of the Hermite–Hadamard Inequality on a Simplex 375

Lemma 1 Let σd be a d-simplex and let f be an affine function on σd. Then the
following identity holds:

1∣∣σd
∣∣

∫

σd
f (x) dx = 1

d + 1

d∑

i=0

1∣∣∣τd−1
i

∣∣∣

∫

τd−1
i

f (x)dγi . (26)

Proof By an affine function f on σd , we mean a mapping f : x → a + 〈b, x〉 ,
where a ∈ R, b, x ∈ R

d .We have ∇f (x) = b, therefore the gradient is constant for
any affine function, then the second integral on the left-hand side in (48) vanishes,
and consequently Green’s identity (48) simplifies to (26), showing that the required
statement (26) holds for any affine function.

We now introduce the notion of admissible simplices.

Definition 1 A d-simplex σd is called admissible if it satisfies the Hermite–
Hadamard inequality (1).

The following result will be useful in our subsequent analysis. A similar argument
to the proof of Lemma 1 shows that:

Lemma 2 Let σd be an admissible simplex and let f be an affine function on σd.
Then the following identity holds:

1∣∣σd
∣∣

∫

σd
l(x) dx = 1∣∣∂σd

∣∣

∫

∂σd

l(x)dγ. (27)

We need the following simple lemma:

Lemma 3 The following two statements are equivalent:

(i) For any affine function l : σd → R, we have

1∣∣σd
∣∣

∫

σd
l(x) dx = 1∣∣∂σd

∣∣

∫

∂σd

l(x)dγ. (28)

(ii) The centroid of σd and the centroid of its boundary coincide.

Proof Assume that (i) holds. Then, if we take in (28), l(x) = xj for j = 1, . . . , d,
we get

1∣∣σd
∣∣

∫

σd
x dx = 1∣∣∂σd

∣∣

∫

∂σd

x dγ. (29)

This shows that property (ii) holds. For the converse, assume that (ii) holds. Then,
since for any affine function l, we have
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l

(
1∣∣σd
∣∣

∫

σd
x dx

)
= 1∣∣σd

∣∣

∫

σd
l(x) dx

l

⎛

⎜⎝
1∣∣∂σd

∣∣

∫

∂σd

x dγ

⎞

⎟⎠ = 1∣∣∂σd
∣∣

∫

∂σd

l(x) dγ,

it follows that (i) holds.

Remark 2 Using Lemmas 2 and 3, it is easy to see that a necessary condition for
a simplex to be admissible is that its centroid and the centroid of its boundary
coincide. We will see that for a very important family of simplices, it is also a
sufficient condition.

It is not generally true that any simplex is admissible in the sense of definition 1.
Next we present our counterexample, to show that there exists a simplex which is
not admissible for (1). Consider the standard unit-simplex σ̃ d , that is the set of
points x ∈ R

d such that for each i = 1, . . . , d, xi ≥ 0, and x1 + . . . , xd ≤ 1.
There are several ways to compute the d-volume (d-dimensional volume) of σ̃ d and
the (d − 1)-volumes of its faces. An elegant way to perform all these integrals is
proposed in [22, section 18.10] and uses the classical Laplace transform. By using
this technique, we can easily derive:

∣∣∣σ̃ d
∣∣∣ = 1

d! (30)

∣∣∣τ̃ d−1
0

∣∣∣ =
√
d

(d − 1)! (31)

∣∣∣τ̃ d−1
i

∣∣∣ = 1

(d − 1)! , (i = 1, . . . , d). (32)

As mentioned before, the barycentric coordinates of the centroid of σ̃ d are

λ0 = 1

d + 1
, . . . , λd = 1

d + 1
. (33)

However, using the identities (30), (31), (32), and (25), we can see that those of its
incenter are

μ0 =
√
d

d +√d
μi = 1

d +√d , (i = 1, . . . , d).
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It is readily seen that the centroid and the incenter do not coincide with the exception
of dimension one. The centroid of its boundary can be calculated according the
formula (see Lemma 8):

d∑

i=0

∣∣∣τ̃ d−1
i

∣∣∣
∣∣∂σ̃ d

∣∣ c
τ̃ d−1
i

= 1

d

(
cσ̃ d − cin

)+ cσ̃ d . (34)

Since the centroid and the incenter do not coincide, so the centroid and the centroid
of the boundary do not coincide, too. Then, Remark 2 tells us that σ̃ d is not a valid
simplex for (1).

After seeing this result, the reader might naturally ask: Is the coincidence of these
two centers also sufficient? The answer is yes, and we will give several equivalent
conditions to this coincidence property.

3 The Regular Case

This section contains the main results of the chapter (Theorems 1, 2 and its
converse 3, below), as well as some technical lemmas related to it. We will prove
several results characterizing an equiareal simplex (see Lemma 9). The central
question in this section is whether a d-simplex satisfies inequality (1) or not.
Here, we deal with the case when in addition to the convexity requirement the
C1-regularity is also assumed. Hence, throughout this section we assume that the
functions involved are continuously differentiable in σd.We need the following key
lemma.

Lemma 4 Let σd be non-degenerate simplex with faces τd−1
i , i = 0, . . . , d. Then ,

the following identities hold:

〈
ni , x − cσd

〉 = d(cσd , τ d−1
i ) (35)

= d

d + 1

∣∣σd
∣∣

∣∣∣τd−1
i

∣∣∣
, (36)

for any x ∈ τd−1
i .

Proof First let us observe that for any i = 0, . . . , d, and any x ∈ τd−1
i , it holds

〈
ni , x − cσd

〉 = 〈
ni , x − cpi(cσd )

〉+ 〈
ni , cpi(cσd )− cσd

〉
(37)

= 〈
ni , cpi(cσd )− cσd

〉
(38)

= d(cσd , τ d−1
i ), (39)
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where in the second last equality we have used that cpi(x) is the closest point of cσd

in τd−1
i and that ni is orthogonal to τd−1

i . An alternative proof of the above formula
can also be obtained from the characterization result of a face given in (21). Now we
can prove the main inequality (36). Let us denote by σdi the simplex obtained from
σd by replacing vi by cσd .We shall need to know the volume of σdi as a function of
σd. Observe first that the volume of σdi is given by the familiar formula: 1/d times
its height multiplied by the (d− 1)-dimensional volume of its base. Hence, we have∣∣σdi

∣∣ = hi
d

∣∣∣τd−1
i

∣∣∣ and hi =
〈
ni , cpi(cσd )− cσd

〉
, then by (39) we get

〈
ni , cpi(cσd )− cσd

〉 = d
∣∣σdi

∣∣
∣∣∣τd−1
i

∣∣∣
. (40)

The simplices σdj , j = 0, . . . , d, decompose σd and for all j = 0, . . . , d, we have

∣∣∣σdj
∣∣∣ =

∣∣σd
∣∣

d + 1
. (41)

This is obvious for a regular d-simplex (determined by (d + 1) points arranged
equidistantly in R

d ), but since an affine transformation maps the centroid of a
simplex to the centroid of its image and preserves the ratio of volumes, we conclude
that (41) also holds for an arbitrary simplex. Nevertheless we may give an alternative
proof of identity (41) by simply using other expressions of barycentric coordinates,
which will be provided later in (22). Then to obtain (41), it suffices to take x = cσd

in (22). Finally, combining (41) with (17) and (18) gives directly the desired result.

We are now ready to prove the following theorem. The same approach was
consistently used by B. Semisalov and the author in a series of papers in [16–18].

Theorem 1 Given a non-degenerate simplex σd with faces τd−1
i , i = 0, . . . , d.

Then, for any continuously differentiable function we have

1∣∣σd
∣∣

∫

σd
f (x) dx ≤ Qtra

d (f ) :=
1

d + 1

d∑

i=0

1∣∣∣τd−1
i

∣∣∣

∫

τd−1
i

f (x)dγi . (42)

Proof Let us take any continuously differentiable function f. Let ∇f (x) denote the
gradient of f at x. Then, Green’s identity tells us that

∫

σd
f (x)2u(x) dx +

∫

σd
〈 ∇f (x),∇u(x)〉dx =

d∑

i=0

∫

τd−1
i

f (x)〈ni (x),∇u(x)〉 dγi , (43)

where dγi is the element of integration over τd−1
i , and
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2 = ∂2

∂x2
1

+ · · · + ∂2

∂x2
d

is the Laplace operator. Formula (43) is valid for any twice continuously differen-
tiable function u.Here ni (x) is the outward unit normal vector to the boundary τd−1

i

at the point x ∈ τd−1
i . Hence, if we take

u(x) =
∥∥x − cσd

∥∥2

2
,

then the following identity holds:

∇u(x) = x − cσd .

With help of Lemma 4, (43) reduces to

d

∫

σd
f (x) dx +

∫

σd
〈 ∇f (x), x − cσd 〉dx =

d∑

i=0

∫

τd−1
i

〈ni (x), x − cσd 〉f (x)dγi

=
d∑

i=0

d(cσd , τ
d−1
i )

∫

τd−1
i

f (x)dγi .(44)

This can be written in a more convenient form, as follows:

∫

σd
f (x) dx + 1

d

∫

σd
〈 ∇f (x), x − cσd 〉dx =

d∑

i=0

d(cσd , τ
d−1
i )

d

∫

τd−1
i

f (x)dγi .

(45)
Let us observe that the centroid cσd of σd satisfies

cσd =
1∣∣σd
∣∣

∫

σd
x dx, or

∫

σd

(
x − cσd

)
dx = 0. (46)

From the above equation, we can clearly see that

∫

σd
〈 ∇f (cσd ), x − cσd 〉dx = 〈∇f (cσd ),

∫

σd

(
x − cσd

)
dx〉 = 0. (47)

Hence, by (47) Green’s identity (45) can be rewritten as follows:

∫

σd
f (x) dx + 1

d

∫

σd
〈 ∇f (x)−∇f (cσd ), x − cσd 〉dx
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=
d∑

i=0

d(cσd , τ
d−1
i )

d

∫

τd−1
i

f (x)dγi . (48)

Now, using the monotonicity of the gradient, we see that the second integral in the
above identity is nonnegative for any continuously differentiable convex function
on σd, then it follows

∫

σd
f (x) dx ≤

d∑

i=0

d
(
cσd , τ

d−1
i

)

d

∫

τd−1
i

f (x)dγi,

which gives the desired result using again Lemma 4.

A d-simplex is said to be equiareal if its faces are of equal area.

Theorem 2 Let σd be an equiareal d-simplex with faces τd−1
i , i = 0, . . . , d. Then,

σd is an admissible simplex. Moreover, for all i = 0, . . . , d, it holds

d
(
cσd , τ

d−1
i

)

d
=

∣∣σd
∣∣

∣∣∂σd
∣∣ . (49)

Proof By Theorem 1 it suffices to show that (49) holds. But, by Lemma 4 it follows
that

d
(
cσd , τ

d−1
i

)

d
=

∣∣σd
∣∣

(d + 1)
∣∣∣τd−1
i

∣∣∣
. (50)

Any equiareal simplex has faces of equal area; therefore, the desired result (49)

follows from the fact that (d + 1)
∣∣∣τd−1
i

∣∣∣ = ∣∣∂σd
∣∣ .

We now move to the harder direction. The converse of Theorem 2 is also true, indeed
we have:

Theorem 3 If the simplex σd is admissible, then σd is an equiareal simplex.

Theorem 2 and its converse Theorem 3 tell us that the d-dimensional Hermite–
Hadamard inequality (1) holds if and only if the d-simplex S is equiareal. In order
to prove Theorem 3, we need some auxiliary results that are actually of independent
interest. We begin with a simple fact:

Lemma 5 Let σd be a d-simplex with vertices vi , i = 0, . . . , d. If l is an affine
function on σd , then

1∣∣σd
∣∣

∫

σd
l(x) dx = 1

d + 1

d∑

i=0

l(vi ) (51)
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= l(cσd ). (52)

Proof Take l : σd → R, any affine function. Then l can be expressed as l(x) =
〈u, x〉 + a for some u ∈ R

d , and a ∈ R. Hence

1∣∣σd
∣∣

∫

σd
l(x) dx = 1∣∣σd

∣∣

∫

σd
(〈u, x〉 + a) dx

= 1∣∣σd
∣∣

∫

σd
〈u, x〉 dx + a

=
〈
u,

1∣∣σd
∣∣

∫

σd
x dx

〉
+ a

= 〈
u, cσd

〉+ a,

where cσd is the centroid of σd. Recall that, by the definition the latter is also simply
the average of its vertices, then we must have

1∣∣σd
∣∣

∫

σd
l(x) dx =

〈
u,

1

d + 1

d∑

i=0

vi

〉
+ a

= 1

d + 1

d∑

i=0

〈u, vi〉 + a

= 1

d + 1

d∑

i=0

(〈u, vi〉 + a)

= 1

d + 1

d∑

i=0

l(vi ).

This shows that identity (51) holds. On the other hand, we also have

1

d + 1

d∑

i=0

l(vi ) = l
(

1

d + 1

d∑

i=0

vi

)
(53)

= l(cσd ). (54)

This shows that identity (52) also holds.

As mentioned before, we note that special cases of Lemma 5 for li (x) := xi, i =
1, . . . , d yield that the coordinates of the centroid are the arithmetic mean of the
coordinates of all the vertices of a simplex, see (10).
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Every face of a d-simplex is an (d− 1)-simplex, then Lemma 5 combined by the
arguments used in its proof imply the following result.

Lemma 6 Let σd be a d-simplex with faces τd−1
i , i = 0, . . . , d. If l is an affine

function on σd , then we have for all i = 0, . . . , d,

1∣∣∣∂τd−1
i

∣∣∣

∫

τd−1
i

l(x) dγ = 1

d

(
d + 1∣∣σd

∣∣

∫

σd
l(x) dx − l(vi )

)
. (55)

We also require the following lemma.

Lemma 7 Let σd be a d-simplex with faces τd−1
i , i = 0, . . . , d. If l is an affine

function on σd , then

1∣∣∂σd
∣∣

∫

∂σd
l(x) dγ − 1∣∣σd

∣∣

∫

σd
l(x) dx = 1

d

⎛

⎝ 1∣∣σd
∣∣

∫

σd
l(x) dx −

d∑

i=0

∣∣∣τd−1
i

∣∣∣
∣∣∂σd

∣∣ l(vi )

⎞

⎠. (56)

Proof Multiplying equality (55) by
∣∣∣∂τd−1

i

∣∣∣ and summing on all the faces of σd ,
we get

∫

∂σd
l(x) dγ = 1

d

(
(d + 1)

∣∣∂σd
∣∣

∣∣σd
∣∣

∫

σd
l(x) dx −

d∑

i=0

∣∣∣τd−1
i

∣∣∣ l(vi )
)
. (57)

Then we can divide both sides by
∣∣∂σd

∣∣ to get

1∣∣∂σd
∣∣

∫

∂σd
l(x) dγ = 1

d

⎛

⎝d + 1∣∣σd
∣∣

∫

σd
l(x) dx −

d∑

i=0

∣∣∣τd−1
i

∣∣∣
∣∣∂σd

∣∣ l(vi )

⎞

⎠ . (58)

Finally, the proof of the lemma is completed by subtracting 1|σd |
∫
σd
l(x) dx from

both sides.

The following lemma establishes an important relationship between the centroid,
the incenter, and the boundary center of a d-simplex.

Lemma 8 Let σd be a d-simplex with faces and vertices, respectively, τd−1
i , i =

0, . . . , d, and vi , i = 0, . . . , d. Let c
τd−1
i

denote the centroid of the face τd−1
i for

each i. Then the following identity holds:

1

d

(
cσd − cin

)+ cσd =
d∑

i=0

∣∣∣τd−1
i

∣∣∣
∣∣∂σd

∣∣ c
τd−1
i
. (59)
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Proof Since the centroid of any face of σd is just the average of all vertices which
forms it, then a simple calculation shows that

d∑

i=0

∣∣∣τd−1
i

∣∣∣
∣∣∂σd

∣∣ c
τd−1
i

=
d∑

i=0

∣∣∣τd−1
i

∣∣∣
∣∣∂σd

∣∣
1∣∣∣τd−1
i

∣∣∣

∫

τd−1
i

x dx

=
d∑

i=0

∣∣∣τd−1
i

∣∣∣
∣∣∂σd

∣∣
1

d

⎛

⎝
d∑

j=0,

vj − vi

⎞

⎠ = 1

d

d∑

j=0,

vj − 1

d

d∑

i=0

∣∣∣τd−1
i

∣∣∣
∣∣∂σd

∣∣ vi ,

and it follows that

d∑

i=0

∣∣∣τd−1
i

∣∣∣
∣∣∂σd

∣∣ c
τd−1
i

= d + 1

d
cσd −

1

d
cin.

The desired result now follows since the last term in the right-hand side above is
just 1

d

(
cσd − cin

)+ cσd .

We are now ready to state several characterizations of an equiareal simplex.

Lemma 9 Let σd be a d-simplex with faces and vertices, respectively, τd−1
i , i =

0, . . . , d, and vi , i = 0, . . . , d. Let c
τd−1
i

denote the centroid of the face τd−1
i for

each i. Then the following statements are equivalent:

(i) σd is an equiareal simplex.
(ii) For every affine function l, we have

1∣∣σd
∣∣

∫

σd
l(x) dx =

d∑

i=0

∣∣∣τd−1
i

∣∣∣
∣∣∂σd

∣∣ l(vi ). (60)

(iii) The centroid and the incenter of the simplex σd coincide.

(iv) The incenter of the simplex σd can be represented as cin =∑d
i=0

∣∣∣τd−1
i

∣∣∣
|∂σd | cτd−1

i
.

(v) The centroid of σd and the centroid of its boundary coincide.
(vi) For every affine function l on σd, we have

l(cin) = 1∣∣σd
∣∣

∫

σd
l(x) dx. (61)

Proof Assume that σd is an equiareal d-simplex. Then, all its faces τd−1
i , i =

0, . . . , d, have equal area. Note that since ∂σd =∑d
i=0

∣∣∣τd−1
i

∣∣∣ , then we get
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∣∣∣τd−1
i

∣∣∣
∣∣∂σd

∣∣ =
1

d + 1
(62)

for each i. Hence, (60) can be reduced to

1∣∣σd
∣∣

∫

σd
l(x) dx = 1

d + 1

d∑

i=0

l(vi ). (63)

But, Lemma 5 says that the above identity is satisfied by any affine function. This
shows that (ii) holds. Assume that (ii) is satisfied. Then, the special cases l(x) = xj
for j = 1, . . . , d, yield that

1∣∣σd
∣∣

∫

σd
x dx =

d∑

i=0

∣∣∣τd−1
i

∣∣∣
∣∣∂σd

∣∣ vi . (64)

But the left-hand term is the centroid, and the right-hand one is the incenter, we may
conclude, therefore, that (iii) holds. Assume now that (iii) is satisfied. Since cσd =
cin, it follows from Lemma 8 that (iv) holds. Assume now that (iv) is satisfied. To
prove (v), we write

l(cin) = l
⎛

⎝
d∑

i=0

∣∣∣τd−1
i

∣∣∣
∣∣∂σd

∣∣ vi

⎞

⎠

=
d∑

i=0

∣∣∣τd−1
i

∣∣∣
∣∣∂σd

∣∣ l(vi )

= l
⎛

⎝
d∑

i=0

∣∣∣τd−1
i

∣∣∣
∣∣∂σd

∣∣ c
τd−1
i

⎞

⎠

=
d∑

i=0

∣∣∣τd−1
i

∣∣∣
∣∣∂σd

∣∣ l
(
c
τd−1
i

)
,

it follows that

l(cin) =
d∑

i=0

∣∣∣τd−1
i

∣∣∣
∣∣∂σd

∣∣ l (vi )
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=
d∑

i=0

∣∣∣τd−1
i

∣∣∣
∣∣∂σd

∣∣ l

⎛

⎝ 1∣∣∣τd−1
i

∣∣∣

∫

τd−1
i

x dx

⎞

⎠

=
d∑

i=0

∣∣∣τd−1
i

∣∣∣
∣∣∂σd

∣∣
1∣∣∣τd−1
i

∣∣∣

∫

τd−1
i

l (x) dx

=
d∑

i=0

1∣∣∂σd
∣∣

∫

τd−1
i

l (x) dx

= 1∣∣∂σd
∣∣

∫

∂σd
l (x) dx.

Hence

1∣∣∂σd
∣∣

∫

∂σd
l(x) dx =

d∑

i=0

∣∣∣τd−1
i

∣∣∣
∣∣∂σd

∣∣ l(vi ), (65)

and therefore by Lemma 7 we obtain

1∣∣∂σd
∣∣

∫

∂σd
l (x) dx = 1∣∣σd

∣∣

∫

σd
l (x) dx, (66)

for any affine function. Thus, according to Lemma 3 we get

1∣∣σd
∣∣

∫

σd
x dx = 1∣∣∂σd

∣∣

∫

∂σd

x dγ, (67)

and then property (v) holds. Assume (v) holds. Then, by Lemma 8, the centroid and
the incenter coincide. Hence for any affine function l we derive

l(cin) = l(cσd ).

By Lemma 5, it follows that (vi) holds. Assume that (vi) holds. Then, we have

1∣∣σd
∣∣

∫

σd
l (x) dx = l(cin) (68)

=
d∑

i=0

∣∣∣τd−1
i

∣∣∣
∣∣∂σd

∣∣ l(vi ). (69)

Applying Lemma 5 we get
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1

d + 1

d∑

i=0

l(vi ) =
d∑

i=0

∣∣∣τd−1
i

∣∣∣
∣∣∂σd

∣∣ l(vi ). (70)

In particular, for each l(x) = xj for j = 1, . . . , d, it is true that

cσd =
d∑

i=0

∣∣∣τd−1
i

∣∣∣
∣∣∂σd

∣∣ vi . (71)

So, the uniqueness of barycentric coordinates implies

∣∣∣τd−1
i

∣∣∣
∣∣∂σd

∣∣ =
1

d + 1
, (72)

or equivalently

∣∣∣τd−1
i

∣∣∣ =
∣∣∂σd

∣∣
d + 1

, (i = 0, . . . , d). (73)

This says that all faces of σd are of equal area and hence σd is an equiareal simplex.
Therefore, property (i) holds and the equivalence of the six statements follows.

Remark 3 The equivalence of (i) and (iii) was established by Edmonds et al. [9,
Theorem 3.2]. However, the direct proof we give here is new (as far as we know).

With the help of these lemmas, we are now prepared to prove Theorem 3:

Proof of Theorem 3 Assume that σd is an admissible simplex. Then, Lemma 2 tells
us

1∣∣σd
∣∣

∫

σd
l(x) dx = 1∣∣∂σd

∣∣

∫

∂σd
l(x) dγ, (74)

for any affine function. By Lemma 7, this is equivalent to that for any affine function
l it holds

1∣∣σd
∣∣

∫

σd
l(x) dx =

d∑

i=0

∣∣∣τd−1
i

∣∣∣
∣∣∂σd

∣∣ l(vi ). (75)

Finally, Lemma 9 implies that σd must be an equiareal simplex. This leads to the
conclusion of the theorem.
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It is important to note, apart convexity, in the proof of the sufficient condition,
we did not use any regularity requirement on the functions in Theorem 3.

4 Characterization Without Using Any Regularity Condition

The challenge in this section is to show that our characterization remains valid if the
convexity is only assumed. Hence, the main novelty is that we do not require here
any regularity except convexity of the integrands. Our first result comes from the
observation that the identity (56) proved in Lemma 7 can be equivalently rewritten
as:

1∣∣σd
∣∣

∫

σd
f (x) dx − f (cin) = d

⎛

⎜⎝
1∣∣∂σd

∣∣

∫

∂σd

f (x)dγi − 1∣∣σd
∣∣

∫

σd
f (x) dx

⎞

⎟⎠ , (76)

which is valid for any affine function. We now extend this result to the case of convex
functions. Therefore, Lemma 7 can be viewed as a special case of the following
more general result:

Theorem 4 Let σd be a d-simplex with incenter cin, inradius rin, and faces
τd−1
i , i = 0, . . . , d. Then, for any convex function we have

1∣∣σd
∣∣

∫

σd
f (x) dx − f (cin) ≤ d

⎛

⎜⎝
1∣∣∂σd

∣∣

∫

∂σd

f (x)dγi − 1∣∣σd
∣∣

∫

σd
f (x) dx

⎞

⎟⎠ . (77)

Proof Let us denote by σdi the simplex obtained from σd by replacing vi by the
incenter cin of σd. Let us prove that for every σdi we have

∫

σdi

f (x) dx ≤ rin

d + 1

∫

τd−1
i

f (x) dγi + rin

d(d + 1)

∣∣∣τd−1
i

∣∣∣ f (cin), (i = 1, . . . , d),

(78)
for each convex function defined on σd. Due to affine invariance of our considera-
tions, it suffices to consider the following special situation: The face τd−1

i belongs
to the hyperplane

{
x ∈ R

d , xd = 0
}
, and cin = (0, . . . , rin). Then it is easily seen

that the last coordinate of a point in σdi varies from 0 to rin, so it follows that

∫

σdi

f (x) dx =
∫ rin

0

(∫

σdi,s

f (x̃, s) dx̃

)
ds,

where σdi,s = {
x̃ ∈ R

d−1, (x̃, s) ∈ σdi
}
. Let us observe that σdi,s can also be

described as:
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σdi,s =
{
rin − s
rin

x̃ + s

rin
cin, x̃ ∈ τd−1

i , s ∈ [0, rin]

}
. (79)

Now changing variables in the integral gives

∫

σdi

f (x) dx =
∫ rin

0

(rin − s)d−1

rd−1
in

(∫

τd−1
i

f

(
rin − s
rin

x̃ + s

rin
cin

)
dx̃

)
ds.

(80)
On the other hand, the convexity of f implies

∫

σdi

f (x) dx ≤
(∫ rin

0

(rin − s)d
rdin

ds

)∫

τd−1
i

f (x̃)dx̃ +
(∫ rin

0

(rin − s)d−1s

rdin

ds

) ∣∣∣τd−1
i

∣∣∣ f (cin).

(81)

Inequality (78) now follows by simply combining (81) and the identities:

∫ rin

0

(rin − s)d
rdin

ds = rin

d + 1
∫ rin

0

(rin − s)d−1s

rdin

ds = rin

d(d + 1)
.

Now, summing up all inequalities (78), we get

∫

σd
f (x) dx ≤ rin

d + 1

∫

∂σd
f (x̃)dx̃ + rin

d(d + 1)

∣∣∣∂σd
∣∣∣ f (cin). (82)

In view of the fact that
∣∣σd

∣∣ = r
d

∣∣∂σd
∣∣ , we derive

1∣∣σd
∣∣

∫

σd
f (x) dx ≤ d

d + 1

1∣∣∂σd
∣∣

∫

∂σd
f (x̃)dx̃ + 1

d + 1
f (cin). (83)

Multiply both sides by d + 1 and subtracting d|σd |
∫
σd
f (x) dx from both sides give

the desired result.

Without using Theorem 1, where C1-regularity is needed, we are now in position to
give the following simple and direct proof for the characterization of the validity of
(1).

Theorem 5 Let σd be a non-degenerate d-simplex. Then the following statements
are equivalent:

(i) σd is an admissible simplex for (1) on the set of convex functions.
(ii) σd is an equiareal simplex.

Proof Assume that (i) holds. Then the centroid of σd and the centroid of its
boundary coincide, see Remark 2. Hence, by Lemma 9, σd is an equiareal simplex.
Assume that (ii) holds. Then, by Lemma 9 the incenter satisfies:
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l(cin) = 1∣∣σd
∣∣

∫

σd
l(x) dx, (84)

for every affine function l. Let us now take any convex function f on σd. By
convexity of f, there exists an affine function l such that

f (cin) = l(cin), (85)

f (x) ≥ l(x), x ∈ σd. (86)

Integrating both sides of (86) directly yields

1∣∣σd
∣∣

∫

σd
f (x) dx ≥ 1∣∣σd

∣∣

∫

σd
l(x) dx

= l(cin)
= f (cin).

Hence, the first term in (76) is nonnegative, then by Theorem 4, (i) holds for any
convex function.

The reader can see that the above theorem can be reformulated in several equivalent
forms. For example, using any other equivalent property provided by Lemma 9.

5 Best Cubature Error Bounds

5.1 Characterization of the New Extended Cubature Formulas

Theorem 1 says that every d-simplex satisfies:

1∣∣σd
∣∣

∫

σd
f (x) dx ≤ Qtra

d (f ) :=
1

d + 1

d∑

i=0

1∣∣∣τd−1
i

∣∣∣

∫

τd−1
i

f (x)dγi, (87)

for every continuously differentiable function f : σd → R. The application to
the cubature formulas runs as follows. First observe that the functional Qtra(f ),

which is a natural multivariate version of the classical trapezoidal rule, can serve as
a cubature formula (multidimensional integration formula) for the approximation of
the exact value of the integral 1|σd |

∫
σd
f (x) dx. We call it the trapezoidal cubature

formula. In this section, best estimates are established for the integration error,
defined for a given continuous function f : σd → R as follows:
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E [f ] := Qtra(f )− 1∣∣σd
∣∣

∫

σd
f (x) dx. (88)

The approximation error of such cubature formulas is always nonnegative for
convex functions. One interesting advantage of this property is to ensure a sharp
error bound for the associated integration formula. The main result in this section is
Theorem 6 that completely characterizes a cubature formula of the form (87).
Here, for a twice differentiable function f : σd → R, we say that f is continuously
differentiable on σd if it is continuously differentiable on an open set containing σd .

Definition 2 A differentiable function f : σd → R is said to have a Lipschitz
continuous gradient, if there exists a constant ρ(∇f ), such that

‖∇f (x)−∇f (y)‖ ≤ ρ(∇f ) ‖x − y‖ , (x, y ∈ σd). (89)

For any differentiable f with Lipschitz continuous gradient, there exists a smallest
possible ρ(∇f ) such that (89) holds. The smallest constant L(∇f ) := Lip(∇f )
satisfying inequality (89) is called the Lipschitz constant for ∇f . By C1,1(σ d) we
will denote the subclass of all functions f which are continuously differentiable on
σd with Lipschitz continuous gradients.

The integration error of the trapezoidal cubature formulaQtra
d when applied to the

function ‖.‖2 plays an important role in our best error estimate. Indeed, the latter is
characterized as follows:

Theorem 6 Let Qtra and E be defined respectively as in (87) and (88). Then, the
two following statements are equivalent:

(i) For every convex function g ∈ C1,1(σ d), we have

E [g] ≥ 0. (90)

(ii) For every f ∈ C1,1(σ d) with L(∇f )-Lipschitz gradient, we have

|E [f ]| ≤ E
[
‖.‖2

] L(∇f )
2

. (91)

Equality is attained for all functions of the form

f (x) := a(x)+ c‖.‖2, (92)

where c ∈ R and a(·) is any affine function.
Proof First we prove that (i) implies (ii). Take f to be any continuous function from
C1,1(σ d) with Lipschitz constant L(∇f ), and define the two functions
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g± := ‖.‖2L(∇f )
2

± f.

According to [12, proposition 2.2], we know that both of these functions are convex
and clearly belong to C1,1(σ d). Hence, by applying (90) to g±, we immediately
deduce

E

[
‖.‖2L(∇f )

2
± f

]
≥ 0,

or equivalently, by using the linearity of E,

−
∣∣∣E

[
‖.‖2

]∣∣∣
L(∇f )

2
≤ E [f ] ≤

∣∣∣E
[
‖.‖2

]∣∣∣
L(∇f )

2
.

This is equivalent to the desired result (91).
For the statement on the occurrence of equality, it is enough to note that if E

satisfies (90) for all convex functions from C1,1(σ d) then it must vanish for affine
functions.

Let us now prove that (ii) implies (i). It clearly follows from (91) that

E
[
‖.‖2

]
≥ 0, (93)

and that, for any f ∈ C1,1(σ d),

E

[
‖.‖2L(∇f )

2
− f

]
≥ 0. (94)

Now, let us take an arbitrary convex function g ∈ C1,1(σ d), and define

f := L(∇g)
2

‖.‖2 − g.

Then, by Guessab [12, proposition 2.2], we have

f ∈ C1,1(σ d) with L(∇f ) ≤ L(∇g). (95)

Furthermore, since

g = L(∇g)
2

‖.‖2 − f,

we obviously have

g =
(
‖.‖2L(∇f )

2
− f

)
+ ‖.‖2

(
L(∇g)

2
− L(∇f )

2

)
,
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and hence we arrive at

E [g] = E
[
‖.‖2L(∇f )

2
− f

]
+ E

[
‖.‖2

](L(∇g)
2

− L(∇f )
2

)
.

Finally, (93), (94) together with (95) yield that (i) is valid. This shows the
equivalence between these two statements.

Let us recall some important facts from numerical integration methods. In one
dimensional case it suffices to define quadrature rules on a “standard” interval,
as any other interval could be transformed to this standard interval. In the mul-
tidimensional case, it is convenient to have a standard (or reference) simplex σ̂ d

spanned by the vertices e0, e2, . . . , ed . Here we use the notation e0 = 0 and
{e1, . . . , ed} is the standard basis for Rd , with the coordinates of ej equal to 0 in all
entries except for the j th entry, where the coordinate is equal to 1. Thus, the faces
τ̂ d−1

1 , τ̂ d−1
2 , . . . , τ̂ d−1

d of σ̂ d lay in coordinate hyperplanes xi = 0, i = 1, . . . , d,
respectively, while the facet τ̂ d−1

0 opposite to the origin lies in the hyperplane
x1 + x2 + · · · + xd = 1. Then any simplex σd = [v0v1 . . . vd ] can be as an image
of σ̂ d through the affine transformation

Bσd : σ̂ d → σd

x �→ Bσd (x) = (1− x1 − · · · − xd)v0 + x1v1 + · · · + xdvd ,

with the property Bσd (ei ) = vi , i = 0, . . . , d. Now, as the measure of σ̂ d is
1

d! then

we have

1∣∣σd
∣∣

∫

σd
f (x) dx = 1∣∣σ̂ d

∣∣

∫

σ̂ d
f ◦ Bσd (x) dx

= d!
∫

σ̂ d
f ◦ Bσd (x) dx.

Hence, our task reduces to the problem of constructing the trapezoidal cubature
formula over reference simplex σ̂ d . In this latter, it takes the following form. For
any continuously differentiable convex function f on σ̂ d , it holds:

d!
∫

σ̂ d
f (x) dx ≤ Q̂tra

d (f ) :=
1

d + 1

d∑

i=0

1∣∣∣τ̂ d−1
i

∣∣∣

∫

τ̂ d−1
i

f (x)dγi . (96)

We now give a useful identity regarding an integration rule for products of barycen-
tric coordinates over simplices. The following identity holds for all nonnegative
integers m0, . . . , md , see [35]:
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∫

σd

d∏

i=0

λ
mi
i (x) dx =

|Δσ |∏d
i=0mi !

(d +m0 + · · · +md)! , (97)

where |Δσ | = det(v1 − v0, . . . , vd − v0) = d!
∣∣σd

∣∣.

As a consequence of Theorem 6, the following explicit integration error is
obtained.

Corollary 1 Let f ∈ C1,1(σ̂ d) with L(∇f )-Lipschitz gradient. Then, for the
trapezoidal cubature formula Q̂tra

d , the following error estimate holds:

Ê [f ] := Q̂tra
d (f )−

1∣∣σ̂ d
∣∣

∫

σ̂ d
f (x) dx ≤ dL(∇f )

(d + 2)(d + 1)2
. (98)

Proof By Theorem 6, it suffices to determine the integration error associated with
the function ‖.‖2 . The following identities can be obtained directly from the general
formula (97):

Q̂tra
d (x

2
j ) =

2

(d + 1)2
, (j = 1, . . . , d), (99)

1∣∣σ̂ d
∣∣

∫

σ̂ d
‖x‖2 dx = 2d

(d + 1)(d + 2)
. (100)

The required result now follows from Theorem 6.

6 Numerical Experiments

In this section, we provide some numerical tests, which we perform in order to
validate our theoretical predictions. Here, we limit our experiments to the case of
a simplex; however, we refer to [17–19] for many experiments in more general
domains. The properties of the method derived in this work are illustrated using
the following two bivariate test functions:

f1(x, y) = exp(ax + by), a, b ∈ R, (x, y) ∈ Ω = [0, 1]2, (101)

f2(x, y) = sin(ax + by), a, b ∈ R
+, (x, y) ∈ Ω = [0, 1]2. (102)

Both of them are infinitely differentiable functions having singularities (large
gradient and rapid oscillations), when a or b is large enough. Note that f1(x, y)

is convex and if a + b > π , f2(x, y) is convex and concave at the same time, i.e.
there are subdomains of Ω where f2(x, y) is convex and concave in others, see
Fig. 1.
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Fig. 1 Test functions f1(x, y) (a), f2(x, y) (b) for the case a = b = 5

Fig. 2 Domain Ω and its
NM-triangulation
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We shall use the proposed methods Q̂tra
d (f ), as defined in (96) for computing

numerical values of the integrals of f over Ω in the case d = 2 and f = f1(x, y)

or f = f2(x, y). To this end we introduce simple uniform decomposition of Ω ,
see Fig. 2, dividing Ω into NM equal rectangles rij , i = 1, . . . , N , j = 1, . . . ,M .
Further usually we shall consider the case N = M . Each rectangle rij is divided in
natural way into two right triangles tupij , tdownij . This uniform decomposition of Ω
we shall call NM-triangulation. Numerical values of integrals of f1, f2 overΩ will
be computed by applying our approximate formulas in each of triangles tupij , tdownij

and by summing the results over all i, j .
Exact values of integrals are

I (f1) = (exp(a)− 1)(exp(b)− 1)

ab
, I (f2) = sin(a)+ sin(b)− sin(a + b)

ab
.

Let Etra
NM(f ) be relative error of method Q̂tra

2 (f ), obtained using NM-triangulation

Etra
NM(f ) =

Q̂tra
2 (f )− I (f )
I (f )

, f ∈ {f1, f2}.

If N = M we shall also use the notation Etra
N (f ) or Etra

N .
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Table 1 Errors of integration obtained in tests for f1 with a = b = 1, N = M
N 16 32 64 128 256 512

ETra
N (g) 0.00011 2.71E–05 6.78E–06 1.7E–06 4.24E–07 1.06E–07

Table 2 Orders of convergence obtained in tests for f1 with a = b = 1, N = M
N 16 32 64 128 256 512

ETra
N (g) 2.00035 2.00009 2.00002 2.00001 2.00001 2

Table 3 Errors of integration obtained in tests for f2 with a = 10, b = 50, N = M
N 16 32 64 128 256 512 1024

ETra
N (g) −0.27133 −0.05917 −0.01437 −0.00357 −0.00089 −0.00022 −5.56

Table 4 Orders of convergence obtained in tests for f2 with a = 10, b = 50, N = M
N 16 32 64 128 256 512

ETra
N (g) 7.79623 2.24357 2.05183 2.01249 2.0031 2.00077

It is necessary to note that while computing the integral of f1 by formula
Q̂tra

2 (f1), we have been checking the inequality (87). Numerical values of the
integral often satisfied it.

In Tables 1, 2, 3 and 4 the relative errors and the orders of convergence obtained
in tests for f1 with a = b = 1 and for f2 with a = 10, b = 50 are given. To compute
the order of convergence of method Q̂tra

2 (f ) in case N = M , we used the formula

Rtra
N (f ) = log2

|Q̂tra,2N
2 (f )− Q̂tra,N

2 (f )|
|Q̂tra,N

2 (f )− Q̂tra,N/2
2 (f )|

, f ∈ {f1, f2},

where Q̂tra,N
2 (f ) is the approximate value of integral of f , obtained using the

trapezoidal cubature formula Q̂tra
2 (f ) and NN -triangulation of Ω .
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On the Stability of the Triangular
Equilibrium Points in the
Photogravitational R3BP with an Oblate
Infinitesimal and Triaxial Primaries for
the Binary Lalande 21258 System

Jessica Mrumun Gyegwe, Aguda Ekele Vincent, and Angela E. Perdiou

Abstract In the framework of the planar circular restricted three-body problem
(R3BP), we explore the effects of oblateness of the infinitesimal mass body as
well as radiation pressure and triaxiality of the two primaries on the position and
stability of the triangular equilibrium points (TEPs). It is found that all the involved
parameters affect the positions and stability of these points. Specifically, it has been
shown that TEPs are stable for 0 < μ < μc and unstable for μc � μ � 1/2, where
μc denotes the critical mass parameter which depends on system’s parameters. In
addition, all the parameters of the bigger primary, except that of triaxiality, have
destabilizing tendencies resulting in a decrease in the size of the region of stability.
Finally, we justify the relevance of the model in astronomy by applying it to the
binary Lalande 21258 system for which the equilibrium points have been seen to be
unstable.

MSC 70F07, 70F15, 70M20, 70K42

1 Introduction

The restricted three-body problem (R3BP) has to do with three bodies or masses.
Two of the bodies have tangible masses and are known as the primaries while

J. M. Gyegwe
Department of Mathematical Sciences, Federal University Lokoja, Lokoja, Nigeria
e-mail: jessica.gyegwe@fulokoja.edu.ng

A. E. Vincent
Department of Mathematics, Nigeria Maritime University, Okerenkoko, Nigeria

A. E. Perdiou (�)
Department of Civil Engineering, University of Patras, Patras, Greece
e-mail: aperdiou@upatras.gr

© Springer Nature Switzerland AG 2022
N. J. Daras, Th. M. Rassias (eds.), Approximation and Computation in Science
and Engineering, Springer Optimization and Its Applications 180,
https://doi.org/10.1007/978-3-030-84122-5_21

397

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-84122-5_21&domain=pdf
mailto:jessica.gyegwe@fulokoja.edu.ng
mailto:aperdiou@upatras.gr
https://doi.org/10.1007/978-3-030-84122-5_21


398 J. M. Gyegwe et al.

the third body has a negligible mass (massless) and is often referred to as the
infinitesimal body. The primaries move in circular orbit about a common barycentre,
and their motion is not affected by that of the infinitesimal body (or test particle),
whereas the motion of the primaries affects that of the test particle [17, 36]. This
problem has also some simpler versions such as Hill’s three-body problem which
can be treated as a perturbed two-body problem and has many applications in the
Sun–Earth–Satellite system (see for example, [6, 12, 13, 19, 37, 41], among others)
or the Sitnikov problem in which the massless body moves along a straight line
that is perpendicular to the orbital plane formed by the two primaries of equal
masses, and this rectilinear motion can be used as generator of families of spatial
periodic orbits for the classical R3BP or for its modifications (see, e.g., [2, 3, 21–
23, 26, 42, 43] and references therein).

Five stationary points (Lagrangian points) exist where the force on the massless
body is zero. This is because the true gravitational forces exerted by both primaries
are just cancelled by the centrifugal force at these points. Three of the Lagrangian
points, denoted by L1, L2, and L3, lie on the line joining the primaries and are
called collinear equilibrium points while the other two, denoted by L4 and L5, are
called triangular equilibrium points (TEPs) as they form the third vertex of a triangle
with the primaries. The TEPs are very important in the natural world since they have
been found to be the home of asteroids in at least three systems. For instance, on
January 25, 2010, the only Earth Trojan also known as 2010TK7 was discovered.
The Earth Trojan is an asteroid that orbits the Sun in the vicinity of the Sun–Earth
Lagrangian points L4 (leading 600) or L5 (trailing 600), making it to have the same
type of Earth’s orbit [8]. Also, in July, 2011 a total of four thousand nine hundred
and seventeen (4917) Trojan Asteroids were found in the Sun–Jupiter systems, three
thousand one hundred and sixty-eight (3168) around the L4 point, and one thousand
six hundred and forty-five (1645) around the L5 point [34].

Many researchers over the years have made modifications to the classical R3BP.
Some of the modifications made include the consideration of one or both primaries
as being sources of radiation pressure and/or oblate spheroids and/or triaxial rigid
bodies (see, e.g., [4, 5, 11, 35, 40], among others). Regarding the TEPs, Devi
and Singh [7] found their location in the photogravitational circular R3BP with
perturbations in the Coriolis and centrifugal forces. Their results showed that
these points are affected by all the parameters involved. Singh and Begha [29]
studied the existence and stability of equilibrium points under the influence of
small perturbations in the Coriolis and centrifugal forces when the primary and
secondary are triaxial and oblate spheroids, respectively. It was observed that the
TEPs are stable for certain interval of the mass ratio while the collinear equilibrium
points remain unstable. In the framework of the photogravitational version of
the R3BP, Kumar and Sharma [15] considered the case where the primaries are
oblate spheroids and explored both the positions and stability of TEPs. For the
elliptic R3BP when the primary is an oblate spheroid and the secondary a source
of radiation, Kalantonis et al. [14] studied the stability of TEPs and determined,
both analytically and numerically, the transition curves which separate stable from
unstable regions in the parametric space.
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By modelling the primaries as triaxial rigid bodies as well as sources of radiation
together with small perturbations in the Coriolis and centrifugal forces, Singh [28]
examined the existence and stability of the equilibrium points in the R3BP. It was
observed that the positions of the usual five (three collinear and two triangular)
equilibrium points are affected by the radiation, triaxiality, and a small perturbation
in the centrifugal force, but are unaffected by that of the Coriolis force. The
collinear equilibrium points remained unstable while the TEPs are seen to be stable
for 0 < μ < μc and unstable for μc � μ � 1/2, where μc is the critical
mass ratio influenced by small perturbations in the Coriolis and centrifugal forces,
radiation, and triaxiality. In the same vein, Singh and Simeon [32] explored the
existence and linear stability of the TEPs in the framework of circular R3BP with
the postulation that the primaries are triaxial rigid bodies, radiating in nature and are
also under the influence of Poynting–Robertson (P–R) drag. Numerical simulations
were made using the binary stars Kruger 60 (AB) and Archird. It was observed
that the TEPs move towards the line joining the primaries in the direction of the
bigger primary with increasing triaxiality, and the TEPs are unstable owing to the
destabilizing influence of P–R drag. Also, Gao and Wang [10] considered the HD
191408 binary system in the case of triaxial and radiating primaries and presented
bifurcation diagrams in the parameter space as well as they provided semi-analytical
periodic solutions about the equilibrium points. Additionally, in the case where
the primaries move in elliptical orbits around their common barycentre, Zahra et
al. [39] investigated the location and stability of TEPs under the effects due to the
triaxiality of the more massive primary, the oblateness of the less massive one as
well as relativistic corrections.

By utilizing a different approach, Pathak and Elshaboury [20] within the
framework of the R3BP when both primaries are triaxial rigid bodies constructed
for different cases of Euler’s angles, the locations of the TEPs, and the stability
conditions of motion in the proximity of these points. The numerical solution was
obtained by using a fourth order Runge–Kutta–Gill integrator. Similarly, Selim et
al. [25] studied analytically the existence and the stability of the libration points in
the R3BP, when the primaries are triaxial rigid bodies in the case when the Euler
angles of the rotational motion are equal to θi = π/2, ψi = 0, and Φi = π/2,
i = 1, 2. It was established that the locations and the stability of the TEPs
change according to the effect of the triaxiality of the primaries. By taking into
consideration the shape of the infinitesimal body, Narayan et al. [18] investigated
the pulsating surfaces of zero velocity of the elliptic R3BP when the primaries are
luminous oblate spheroids as well as a consideration of the effect of the oblateness
of the infinitesimal. In the case of a triaxial rigid primary body, Saeed and Zotos [24]
revealed numerically the way in which the triaxiality parameters affect the position
and linear stability of the libration points.

In this paper, we examine the existence and stability of triangular equilibrium
points in the restricted three-body problem when the primaries are modelled as
triaxial rigid bodies as well as sources of radiation pressure while the infinitesimal
body is taken to be an oblate spheroid. Particularly, in Sect. 2, the equations of
motion of this mathematical model are presented while the existence and location of
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the TEPs are established in Sect. 3. In Sect. 4, we give an analysis of the dynamics
around the TEPs by examining their stability. In Sect. 5, a numerical simulation is
made by using the physical data of the binary Lalande 21258 system and in Sect. 6,
we discuss the results and make the relevant conclusions.

2 Equations of Motion

The equations of motion in the barycentric, synodic, and dimensionless coordinate
system Oxyz of the massless body (see, [27, 28]) are represented by:

ẍ − 2nẏ = Ωx, ÿ + 2nẋ = Ωy, (1)

where Ω represents the pseudo-force (potential function) and is given by:

Ω = n2

2
(x2 + y2)+ (1− μ)q1

r1
+ μq2

r2
+ (1− μ)(2Φ1 −Φ2)q1

2r3
1

+ μ(2%1 − Ψ2)q2

2r3
2

− 3(1− μ)(Φ1 −Φ2)q1y
2

2r5
1

− 3μ(Ψ1 − Ψ2)q2y
2

2r5
2

+ (1− μ)A3

2r3
1

+ μA3

2r3
2

, (2)

while

r1 = [(x − μ)2 + y2]1/2, r2 = [(x + 1− μ)2 + y2]1/2, (3)

are the distances of the third body from the primary and secondary body, respec-
tively and μ ∈ (0, 1/2] (the mass parameter) is the ratio of the mass of smaller
primary to the total mass of the primaries. The perturbed, due to the triaxiality of
the primaries, mean motion n is given by the formula:

n =
√

1+ 3

2
(2Φ1 −Φ2)+ 3

2
(2Ψ1 − Ψ2), (4)

with

Φ1 =
Ξ2
t1
−Ξ2

t3

5R2 , Φ2 =
Ξ2
t2
−Ξ2

t3

5R2 , Ψ1 =
Ξ
′2
t1
−Ξ ′2

t3

5R2 , Ψ2 =
Ξ
′2
t2
−Ξ ′2

t3

5R2 ,

(5)
characterizing the triaxiality of the primary and secondary body, respectively, with
Φi, Ψi ' 1, i = 1, 2, where Ξt1, Ξt2, Ξt3 are the semi-axes of the larger primary
body, Ξ ′t1, Ξ

′
t2
, Ξ ′t3 are the semi-axes of the smaller one, and R is the dimensional

distance between the primaries. Also, A3 ' 1 is the oblateness coefficient of the
infinitesimal body defined by:
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Fig. 1 The configuration of the rotating coordinate system Oxy for the photogravitational R3BP
where m1, m2 are the triaxial primaries and m is the oblate infinitesimal body while OXY
represents the inertial frame

A3 =
Ξ2
o1
−Ξ2

o3

5R2
, (6)

where Ξo1, Ξo2, Ξo3 being the semi-axes of the infinitesimal body with Ξo1 =
Ξo2 > Ξo3, while qi, i = 1, 2, stand for the radiation factors of the primary and
secondary bodies respectively and are given by Fpi = Fgi (1 − qi), i = 1, 2, such
that 0 < 1 − qi = δi ' 1 where Fgi and Fpi are the gravitational and radiation
pressure forces, respectively. The energy (Jacobi) integral of this problem is given
by the expression:

C = 2Ω(x, y)− (ẋ2 + ẏ2), (7)

where C is the Jacobian-like constant while ẋ and ẏ are the velocity components.
The configuration of the rotating coordinate system for the problem is presented in
Fig. 1.

3 Location of the Triangular Points

The equilibrium points (or Lagrangian points) are obtained when the acceleration
and velocity of the infinitesimal body are zero. In other words, the equilibrium points
are obtained when the infinitesimal body is experiencing a state of rest. These points
are the solutions of the following system of non-linear algebraic equations:
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Ωx = n2x − (1− μ)(x − μ)q1

r3
1

− μ(x − μ+ 1)q2

r3
2

− 3A3(1− μ)(x − μ)
2r5

1

−3A3μ(x − μ+ 1)
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2
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2
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1
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2

2r7
2

= 0,

Ωy =
[
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r3
1

− μq2

r3
2

− 3A3(1− μ)
2r5

1

− 3A3μ

2r5
2

−3(1− μ)(Φ1 −Φ2)q1

r5
1
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1
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2

2r7
1

+ 15μ(Ψ1 − Ψ2)q2y
2

2r7
2

]
y = 0,

(8)
for y 	= 0 while Ωx and Ωy are the partial derivatives of the potential function (2).
If we take Φ1 = Φ2 = Ψ1 = Ψ2 = 0 = A3 and q1 = q2 = 1 in Eqs. (8),
we fall on the classical R3BP and the solutions yield r1 = r2 = 1 while from
Eq. (4) we have n = 1. Now, with the presence of the perturbation parameters,
i.e. Φ1, Φ2, Ψ1, Ψ2, A3 	= 0 and q1, q2 	= 1, we assume that the solutions of
System (8) are:

r1 = 1+Θ1, r2 = 1+Θ2, (9)

where Θ1, Θ2 ' 1. Next, we substitute the values of ri, i = 1, 2, from Eqs. (9)
into Eqs. (3) and solving for x and y retaining only linear terms in Θ1 and Θ2, we
obtain:

x = Θ2 −Θ1 + μ− 1

2
, y = ±

√
3

2

[
1+ 2

3
(Θ1 +Θ2)

]
. (10)

In order to find the values of the small quantities Θ1 and Θ2, we make use of r1,2,
x and y from Eqs. (9) and (10), respectively, and n2 from Eq. (4). These are then
substituted into the two equations of System (8) appropriately, such that higher order
terms inΦ1, Φ2, Ψ1, Ψ2, q1 = 1−δ1, q2 = 1−δ2 (δ1,2 ' 1), andA3 are neglected.
Thus, we get:

Θ1 = − δ1
3
− 11

8
Φ1 + 11

8
Φ2 +

[
μ

2(1− μ) − 1

]
Ψ1 +

[
1

2
− μ

2(1− μ)
]
Ψ2 + 1

2
A3,

Θ2 = − δ2
3
−
[

3

2
− 1

2μ

]
Φ1 +

(
1− 1

2μ

)
Φ2 − 11

8
Ψ1 + 11

8
Ψ2 + 1

2
A3.

(11)

As a result, the coordinates of the TEPs are obtained, after substituting (11) into
Eqs. (10), in the following form:
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x0 = 1

2

{
2μ− 1+ 2

3
(1− q1)− 2

3
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(
1

μ
− 1

4

)
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1

μ
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4
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μ
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4
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μ
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7

4
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}
,

y0 = ±
√

3

2

{
1− 2(1− q1)

9
− 2(1− q2)

9

+1

3

[(
1

μ
− 23

4
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(
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4
− 1

μ
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μ

1− μ −
19

4

]
Ψ1

−
[
μ

1− μ −
15

4

]
Ψ2 + 2A3

]}
.

(12)

Note here that for A3 = 0 in (12), the positions of the triangular equilibrium points
conform to those given by Singh in [28] when the perturbation in the centrifugal
force is neglected there (case β = 1). It is seen that the pair of points (x0,±y0)

which correspond to the positions of the TEPs L4,5, are affected by the triaxiality
and radiation of the primaries as well as the oblateness of the infinitesimal body.
Meanwhile, the point x0 is independent of the oblateness of the infinitesimal body; it
is only affected by triaxiality and radiation factors of the primaries whereas the point
y0 is affected by the oblateness of the infinitesimal body combined with triaxiality
and radiation pressure of both primaries.

4 Analysis of the Dynamics Around the Triangular
Equilibrium Points

We obtain the variational equations by first of all considering small displacements
at the triangular equilibrium points L(x0, y0). That is:

x = x0 + X, y = y0 + Y, (13)

where X and Y are small displacements in (x0, y0). By substituting the last two
equations in (1), we get:

Ẍ− 2nẎ = Ω0
xxX+Ω0

xyY,

Ÿ− 2nẊ = Ω0
xyX+Ω0

yyY,
(14)

where the superscript “0” specifies that the partial derivatives are being evaluated at
the triangular equilibrium points (x0, y0) given by (12).

In order to examine the stability of the TEPs, we make use of the characteristic
equation which has been obtained from system (14) in the form:
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λ4 + (4n2 −Ω0
xx −Ω0
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4
+ 3A3 +

(
1

2
− 3μ

2

)
(1− q1)−

(
1− 3μ

2

)
(1− q2)+

(
87

16
− 45μ

16
+ 3

2μ

)
Φ1

+
(
−21

16
+ 45μ

16
− 3

2μ

)
Φ2 +

(
33

8
+ 135μ

16
+ 45μ2 − 33μ

8(1− μ)
)
Ψ1

+
(
−135μ

16
+ 33μ− 45μ2

8(1− μ)
)
Ψ2,

Ω0
xy =

√
3

{
−3

4
+
(
−1

2
+ μ

)
A3 + 3μ

2
+
(

1

6
+ μ

6

)
(1− q1)+

(
μ

6
− 1

3

)
(1− q2)

+
(
−47

16
+ 89μ

16
+ 1

2μ

)
Φ1 +

(
9

16
− 37μ

16
− 1

2μ

)
Φ2

+
(
−25

8
+ 85μ

16
− μ+ μ2

4(1− μ)
)
Ψ1 +

(
9

4
− 33μ

16
+ μ+ μ2

4(1− μ)
)
Ψ2

}
.

Simplifying Eq. (15), we have:

#2 +Q#+W = 0, (16)

where λ2 has been replaced by # while:

Q = 1− 3A3 + 3Φ1 + 3(μ− 3

2
)Φ2 + 3Ψ1 − 3(μ+ 1

2
)Ψ2 > 0,

and

W = μ(1− μ)
[

27

4
+ 9A3 + 3

2
(1− q1)+ 3

2
(1− q2)

]
+
(
−45

8
+ 891

16
μ− 801

16
μ2

)
Φ1

+
(

45

8
− 423

16
μ+ 333

16
μ2

)
Φ2 +

(
711

16
μ− 801

16
μ2

)
Ψ1 −

(
243

16
μ− 333

16
μ2

)
Ψ2.

By solving Eq. (16) we get the roots:

#1,2 = 1

2

(
−Q±

√
Q2 − 4W

)
, (17)
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so, the roots of the characteristic polynomial (15) are λ1 = +#1/2
1 , λ2 = −#1/2

1 ,

λ3 = +#1/2
2 , and λ4 = −#1/2

2 . These roots depend on the value of the parameters
μ, Φ1, Φ2, Ψ1, Ψ2, and A3. Explicitly, the discriminant is:

 = Q2 − 4W

= μ2
[

27+ 36A3 + 6(1− q1)+ 6(1− q2)+ 801

4
(Φ1 + Ψ1)− 333

4
(Φ2 + Ψ2)

]

−μ
[

27+ 36A3 + 6(1− q1)+ 6(1− q2)+ 891

4
Φ1 − 447

4
Φ2 + 711

4
Ψ1 − 219

4
Ψ2

]

+1− 6A3 + 57

2
Φ1 − 63

2
Φ2 + 6Ψ1 − 3Ψ2.

(18)

We note that, for the values of the mass parameter μ = 0 and μ = 1
2 , the

discriminant is:

( )μ=0 = 1− 6A3 + 57

2
Φ1 − 63

2
Φ2 + 6Ψ1 − 3Ψ2 > 0, (19)

and

( )μ= 1
2
= −23

4
−15A3−3

2
(1−q1)−3

2
(1−q2)−525

16
Φ1+57

16
Φ2−525

16
Ψ1+57

16
Ψ2 < 0,

(20)
respectively, where the parameters are very small quantities. Since ( )μ=0 and
( )μ=0.5 are of opposite signs, there is only one value of μ in the open interval
(0, 1

2 ) for which  vanishes and it is denoted as μc (the critical mass parameter).
The solution of the quadratic equation  = 0 for μ gives the critical mass ratio

value μc of the mass parameter, namely:

μc = μB + μO + μR + μT, (21)

with

μB = 1

2

(
1−

√
23

27

)
, μO = − 22A3

9
√

69
, μR = − 2

27
√

69
[(1−q1)+(1−q2)],

and

μT =
(

5

12
+ 59

18
√

69

)
Φ1 −

(
19

36
+ 85

18
√

69

)
Φ2

−
(

5

12
− 59

18
√

69

)
Ψ1 +

(
19

36
− 85

18
√

69

)
Ψ2.

Clearly, μc represents the combined effects of radiation and triaxiality of the
primaries with oblateness of the infinitesimal body on the critical mass value of
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the restricted three-body problem. On ignoring A3, μc confirms that obtained by
Singh [28] in the absence of perturbations in Coriolis and centrifugal forces. Also
by setting appropriate parameter(s) to zero, our results are in excellent agreement
with those obtained previously.

Next, we consider, separately, the following three regions of values of μ:

(i) For the interval 0 � μ < μc we have < 0. Here, the values of λ1,2,3,4,which
are the roots of Eq. (17), are negative and therefore all the four characteristic
roots are distinct pure imaginary numbers. Hence, the triangular points are
linearly stable.

(ii) For the interval μc < μ � 1
2 we have  < 0. Here, the real parts of the

characteristic roots are positive. Therefore, the triangular points are unstable.
(iii) When μ = μc,  = 0 the values of λ1,2,3,4, which are the roots of Eq. (17)

are the same. This induces instability of the triangular points.

Hence, the stability region for the TEPs is defined by:

0 < μ < μB − 22A3

9
√

69
− 2

27
√

69
[(1− q1)+ (1− q2)]

(
5

12
+ 59

18
√

69

)
Φ1

−
(

19

36
+ 85

18
√

69

)
Φ2 −

(
5

12
− 59

18
√

69

)
Ψ1 +

(
19

36
− 85

18
√

69

)
Ψ2,

(22)
where μB = 0.0385 . . . is the Routh’s value.

5 Numerical Simulation

In this section, we compute and examine numerically and graphically the positions
of the triangular points as well as the critical mass parameter and stability of the
binary Lalande 21258 systems as presented in Table 1, for some assumed values
of oblateness coefficient of the massless body and triaxiality of the primaries. The
parameters MA and MB are the masses of Lalande 21258A and Lalande 21258B
respectively, as compared to the mass of the Sun. The luminosity of the binary
systems denoted by LA and LB, respectively, is obtained from the relation given
by Mia and Kushvah in [16]:

L

LS
≈

(
M

MS

)3.9

, (23)

where LS andMS are the luminosity and mass of the Sun.
Radiation pressure has had a key effect on the formation of stars and shaping

of clouds of dust and gases on a wide range of scales. The mass reduction factors
are represented as qi = 1 − Fp/Fg, i = 1, 2, where Fp and Fg are the radiation
pressure and the gravitational attraction forces being exerted by the binary systems
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on objects around them or equivalently qi = 1− β, i = 1, 2, or on the basis of the
Stefan–Boltzmann’s law [30, 31, 38] as:

qi = 1− AκL
aρM

, i = 1, 2, (24)

whereM, L, and κ are the mass, luminosity, and radiation pressure efficiency factor
of a star, respectively. Also, a and ρ are the radius and density of the dust grain
particles moving in the binary systems while A = 3

16πcG is a constant with c and
G being the speed of light and Gravitational constant, correspondingly. The values
of the luminosity and mass reduction factor qi, i = 1, 2, have been obtained by
computing in the C.G.S. system of unit, using Ls = 3.846 × 1033 erg/s, c = 3 ×
1010 cm/s, G = 6.67384 × 10−8 cm3 g−1 s−2, Ms = 1.989 × 1033 g, and κ =
1. Also, we have assumed the values for the radius and density of the dust grain
particles as a = 2 × 10−2 cm and ρ = 1.4 g/cm3 [33, 38]. Arbitrary values are
been used for the oblateness coefficient of the massless body A3 and the triaxiality
coefficients of the primary and secondary star, Φ1, Φ2, Ψ1, and Ψ2, as shown in
Table 1.

We now proceed to numerically compute the positions of the TEPs and critical
mass for Lalande 21258 binary system using the astrophysical parameters presented
in Table 1. Results are presented for eight (8) different cases in Table 2. The
considered cases are:

Case 1: The classical case, i.e. Φ1 = Φ2 = Ψ1 = Ψ2 = A3 = 0, q1 = q2 = 1.
Case 2: Varying oblateness of the infinitesimal body.
Case 3: Varying Triaxiality of the primary only.
Case 4: Varying Triaxiality of the secondary only.
Case 5: Varying Triaxiality of both primaries only.
Case 6: Varying Triaxiality of the primary as well as oblateness of the infinitesi-

mal body only.
Case 7: Varying Triaxiality of the secondary as well as oblateness of the infinites-

imal body only.
Case 8: Varying Triaxiality of both primaries as well as oblateness of the infinites-

imal body only.

In particular, the positions of TEPs and critical mass value for the binary Lalande
21258 system have been computed using the physical parameters, presented in
Table 1, in Eqs. (12) and (21) for the eight aforementioned cases. It can be observed
that each case produces two distinct TEPs with a critical mass value, indicating
that every parameter under consideration, i.e., radiation pressure and triaxiality
coefficient of both stars, as well as the oblateness of the massless body, has a
significant effect on the positions of the TEPs and critical mass value.

The effects of the parameters involved in the positions of the TEPs are shown
in Figs. 2, 3, and 4. In particular, Fig. 2 shows the positions of L4,5 as a function
of oblateness (case 2), triaxiality of the first and second primaries (cases 3 and
4), respectively, keeping the remaining parameters constant. It is observed that
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increasing oblateness factor moves the TEPs farther from the line joining the
primaries while increasing the triaxiality parameters brings the TEPs closer to the
line connecting the primaries. We observe that the variational trend of the equilibria
locations is similar to the scenario presented in Table 2. Figure 3 shows the positions
of L4,5 for combined effect of triaxiality of both primaries (case 5), triaxiality
of the first primary and oblateness (case 6) and, triaxiality of the second primary
and oblateness (case 7), respectively, keeping the remaining parameters constant.
Obviously, with increasing triaxiality of both primaries and/or oblateness, the
variational trend of the corresponding positions is similar to the scenario presented
in Fig. 2. Figure 4 shows the combined effect of triaxiality of both primaries
and oblateness. We observe that with increasing triaxiality of the primaries and
oblateness the variational trend of the equilibria locations is similar to the scenario
presented in Figs. 2 and 3. On the basis of numerical as well as graphical results,
we note that the oblateness factor has greater influence on the motion of a binary
system Lalande 21285 than the triaxiality.

The critical value of the mass parameter, given by Eq. (21), shows the effects
of the various parameters on the size of the region of stability. It is seen from
Table 3 that an increase of some parameters results in a decrease/increase in
the size of the stability region. It is worth mentioning that the comprehensive
effects of the perturbations have stabilizing tendencies. However, triaxiality of
the smaller primary has tendency for instability. The four roots of characteristic
equation (16) are presented in Table 3 for a wide range of the remaining parameters
Φ1, Φ2, Ψ1, Ψ2, and A3. It is clear from this table that, for a particular set of values
of these parameters there exists at least a complex root with positive real part;
consequently, the motion is unbounded and thus unstable.

6 Discussion and Conclusions

A modification of the photogravitational restricted three-body problem in which the
two primaries are triaxial rigid bodies while the third body of negligible mass is an
oblate spheroid was explored. This special modified version can be considered as
a generalization of the classical restricted three-body problem in the sense that the
shape of the involved bodies was taken into account as well as additional forces,
except that of the gravitation, were also adapted.

In particular, the location of the triangular equilibrium points was obtained
in semi-analytical form and it was found that their position is affected by all
the involved parameters, i.e. by the triaxiality and radiation of the two primary
bodies as well as the oblateness of the massless one. Specifically, it was shown
that the relevant abscissa is independent of the oblateness coefficient while the
corresponding ordinate is expressed through all the parameters of the system.
The linear stability of the triangular equilibrium points was also investigated.
Particularly, it was demonstrated that the corresponding equilibria are stable for
0 < μ < μc and unstable for μc � μ � 1/2, where μc depends on all
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system’s parameters and denotes the value of the critical mass parameter at which
stability gives place to instability and vice versa. Moreover, it was observed that the
parameters of the problem play significant role on the regions of stability since it
was identified that the comprehensive effects of the perturbations have destabilizing
tendencies. This can be verified from the results of Table 2 in which the critical mass
is incorporated, and it is clear that the values of the critical mass approach zero with
the addition of triaxiality and/or oblateness factors of the participating bodies. The
model under consideration was applied to the binary system Lalande 21258 by using

Fig. 2 (Colour figure online) Positions of L4,5 of Lalande 21258 (a) for the oblateness parameter
A3 = 0.01 (blue), 0.05 (red), and 0.1 (black) with fixed values of the remaining parameters
as given in the second case of Table 2 (b) for the triaxiality parameters of the first primary
(Φ1, Φ2) = (0.01, 0.003), (0.03, 0.015), and (0.05, 0.03), denoted by colour code blue, red, and
black, respectively, with fixed values of the remaining parameters as given in the third case of
Table 2, (c) for the triaxiality of the second primary (Ψ1, Ψ2) = (0.006, 0.004), (0.03, 0.015) and
(0.05, 0.03), denoted by colour code blue, red, and black, respectively, with fixed values of the
remaining parameters as given in the fourth case of Table 2
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Fig. 3 (Colour figure online) Positions of L4,5 of Lalande 21258 (a) for combined effects
of triaxiality of both primaries (Φ1, Φ2) = (0.008, 0.006), (0.03, 0.02), (0.05, 0.035) and
(Ψ1, Ψ2) = (0.006, 0.004), (0.015, 0.01), (0.03, 0.02), correspondingly, denoted by colour code
blue, red, and black, respectively, with fixed value of A3 = 0.01 (case 5 of Table 2), (b) for
combined effects of triaxiality parameter of the first primary and oblateness (Φ1, Φ2, A3) =
(0.008, 0.006, 0.01), (0.03, 0.02, 0.05), and (0.05, 0.035, 0.1), correspondingly, denoted by blue,
red, and black, respectively, with fixed values of Ψ1 = 0.006, Ψ2 = 0.004 (case 6 of Table 2), (c)
for combined effects of triaxiality parameter of the second primary and oblateness (Ψ1, Ψ2, A3) =
(0.006, 0.004, 0.01), (0.015, 0.01, 0.05), and (0.03, 0.02, 0.1), correspondingly, denoted by blue,
red, and black, respectively, with fixed values of Φ1 = 0.008, Φ2 = 0.006 (case 7 of Table 2)

its physical parameters. In this case, we found that the characteristic polynomial has
no roots which are purely imaginary or complex with negative real parts; therefore,
the triangular equilibrium points are unstable.

It is worth to mention here that, if we do not consider the oblateness of the
massless body, i.e. A3 = 0, our results will be in excellent agreement with
those provided by Singh [28]. Furthermore, if the primary bodies do not also emit
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Fig. 4 (Colour figure online)
Positions of L4,5 of Lalande
21258 for combined effects of
triaxiality of both primaries
and oblateness (case 8 of
Table 2): blue colour Φ1 =
0.008, Φ2 = 0.006, Ψ1 =
0.006, Ψ2 = 0.004, and
A3 = 0.01; red colour
Φ1 = 0.03, Φ2 = 0.02, Ψ1 =
0.015, Ψ2 = 0.01, and
A3 = 0.05; black colour
Φ1 = 0.05, Φ2 =
0.035, Ψ1 = 0.03, Ψ2 = 0.02,
and A3 = 0.1

Table 3 The eigenvalues λ1,2, λ3,4 of Eq. (16) for Lalande 21258 system

Φ1 Φ2 Ψ1 Ψ2 A3 λ1,2 λ3,4

0.008 0.006 0.006 0.004 0.01 −0.513933± 0.868413i 0.513933± 0.868413i

0.03 0.02 0.015 0.01 0.05 −0.574577± 0.879048i 0.574577± 0.879048i

0.05 0.035 0.03 0.02 0.1 −0.642373± 0.890378i 0.642373± 0.890378i

0.09 0.05 0.04 0.03 0.15 −0.684338± 0.899161i 0.684338± 0.899161i

radiation, i.e. q1 = q2 = 1, A3 = 0, then we will get the results obtained by
Elshaboury et al. [9]. Also, in the presence of the Coriolis and centrifugal forces
when the two primaries are oblate spheroids, namely q1 = q2 = 1, Φ1 = Φ2,

Ψ1 = Ψ2, our results will tally with those given by Abouelmagd and Guirao [1].
Finally, in the absence of radiation forces when the smaller primary body is an
oblate spheroid and if the Coriolis and centrifugal forces are taken also into account,
i.e. q1 = q2 = 1, A3 = 0, Ψ1 = Ψ2, our results are in agreement with those of
Singh and Begha [29]. In a future correspondence, we intend to extend our results
by studying the families of short and long periodic orbits emanating from triangular
equilibrium points. Furthermore, a natural extension of our present work would be
also to incorporate the Poynting–Robertson relativistic correction in the radiation
force and study how this strengthened force affects the location and stability of the
respective equilibria.
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Normalized Symmetric Differential
Operators in the Open Unit Disk

Rabha W. Ibrahim

Abstract The symmetric differential operator SDO is a simplification functioning
of the recognized ordinary derivative. The purpose of this effort is to provide a study
of SDO connected with the geometric function theory. These differential operators
indicate a generalization of well known differential operator including the Sàlàgean
differential operator. Our contribution is to deliver two classes of symmetric
differential operators in the open unit disk and to describe the further development
of these operators by introducing convex linear symmetric operators. In addition,
by acting these SDOs on the class of univalent functions, we display a set of sub-
classes of analytic functions having geometric representation, such as starlikeness
and convexity properties. Investigations in this direction lead to some applications
in the univalent function theory of well known formulas, by defining and studying
some sub-classes of analytic functions type Janowski function, bounded turning
function subclass and convolution structures. Consequently, we define a linear
combination differential operator involving the Sàlàgean differential operator and
the Ruscheweyh derivative. The new operator is a generalization of the Lupus
differential operator. Moreover, we aim to solve some special complex boundary
problems for differential equations, spatially the class of Briot-Bouquet differential
equations. All solutions are symmetric under the suggested SDOs. Additionally,
by using the SDOs, we introduce a generalized class of Briot-Bouquet differential
equations to deliver, what is called the symmetric Briot-Bouquet differential
equations. We shall show that the upper solution is symmetric in the open unit disk
by considering a set of examples of univalent functions.
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1 Introduction

The term Symmetry, from Greek, means arrangement in measurements, due pro-
portion, organization. In free language, it mentions to a concept of harmonious
and attractive proportion and equilibrium. In mathematics, “symmetry” has a more
detailed definition, and typically utilized to discuss an object that is invariant
via certain transformations; containing reflection, translation, rotation, or scaling.
Even more, these two senses of symmetry" can occasionally be expressed distant;
they are complexly connected, and henceforth is deliberated composed in this
object. Research on the operator theory involving all types of functions (integration,
differentiation, convolution, deference, diverse, and linear) has been attractive in
all mathematical sciences. It can be seen in the fields of computing (self-adjoint
operator or Hermitian operator), engineering studies (the peridynamic differential
operator). The association of geometry and operator theory indicates an important
recognition in theory of geometric functions that can be virtue in the open unit
disk. This firm grows openly related to the reality between operators and geometric
performance [1, 2].

In 1983, Sàlàgean announced his illustrious differential operator of normalized
analytic functions in the open unit disk [3]. By employing this operator, many
sub-classes of analytic functions are introduced. An extension in the space of the
parameters of this operator is given by Al-Oboudi [4]. Later, these operators show
important studies in the geometric function theory, by signifying diverse modules
of operators and categories of univalent functions (see [5–10] for recent works).
Our investigation is to express some categories of symmetric differential operators
with integral by exploiting the idea of the symmetric derivative in a complex
domain. This notion is a process covering the innovative derivative. Note that
the symmetry representations in mathematical modeling stay open. For example,
as an application in mathematical physics, it is critical to apply group analysis
approaches. Such approaches allow systems for splitting solution structure using the
symmetric group theory. Recently, a special type of SDOs delivered by Ibrahim and
Jay [7] called a complex conformable differential operator. A situation of specific
attention, mainly with an appreciation in the direction of applications in physics and
engineering, is smearing the conformable calculus to smooth (analytic) functions.
In this situation, the operator develops the term χ1−℘f ′(χ) (see [11]). The complex
conformable calculus (CCC) that formulated in [7] indicated the term ξϕ′(ξ),where
ξ is a complex variable and ϕ is a complex valued analytic function. This term is
suggested to normalize the CCC in order to study it in view of univalent function
theory. In addition the CCC can be viewed as a generalization of the Ruscheweyh
derivative and the Sàlàgean differential operator.

In this chapter, we deliver two types of symmetric differential operators in the
open unit disk. We act these operators in some classes of univalent functions.
Convolution classes of these operators are also suggested in the sequel. Moreover,
we aim to solve some special complex boundary problems for differential equations,
spatially the class of Briot-Bouquet differential equations.
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2 Methodology

This section gives out the mathematical processing to deliver the suggested SDOs
and complex conformable operator for some categories of smooth functions in the
open unit disk ∪ = {ξ ∈ C : |ξ |1}. Let

∧
be the category of smooth function

elicited as pursue

� (ξ) = ξ +
∞∑

n=2

�nξn, ξ ∈ ∪. (1)

A function � ∈∧
is known as a starlike via the (0,0) ( origin in ∪) if the linear slice

combining the origin to all else point of � embedding completely in �(ξ : |ξ | < 1).
The aim is that each point of �(ξ : |ξ | < 1) must be manifest via (0,0). A univalent
function (� ∈ �) is said to be convex in∪ if the linear slice combining two points of
�(ξ : |ξ | < 1) stay completely in �(ξ : |ξ | < 1). We denote these categories by S∗
and C for starlike and convex, respectively. In addition, suppose that the category
P involves all functions � analytic in ∪ with a positive real part in ∪ achieving
�(0) = 1. Mathematically, � ∈ S∗ if and only if ξ �′ (ξ)/ � (ξ) ∈P and � ∈ C
if and only if 1+ ξ �′′ (ξ)/�′ (ξ) ∈P equivalently,

 (ξ �′ (ξ)/� (ξ)) > 0,

for starlikeness and

1+ (ξ �′′ (ξ)/�′ (ξ)) > 0,

for convexity.
For two functions �1 and �2 belong to the category

∧
, are said to be

subordinate, noting by �1 ≺ �2, if we can find a Schwarz function ᵀ with
ᵀ(0) = 0 and | ᵀ (ξ)| < 1 achieving �1(ξ) = �2(ᵀ(ξ)), ξ ∈ ∪ (the detail can
be located in [12]). Obviously, �1(ξ) ≺ �2(ξ) congregants with �1(0) = �2(0)
and �1(∪) ⊂ �2(∪).We employ next facts, one can find it in [12].

Lemma 1 Let a ∈ C, a positive integer n and ℵ[a, n] = {� : �(ξ) = a+ anξn +
an+1ξ

n+1 + . . .}.
(i) Suppose that � ∈ R; then  

(
� (ξ)+ � ξ �′ (ξ)

)
> 0 *⇒  ( � (ξ)) > 0. In

addition, if � > 0 and � ∈ ℵ[1, n], then there occur some constants a > 0 and
b > 0 with b = b(�, a, n) where

�(ξ)+ �ξ �′ (ξ) ≺
(

1+ ξ
1− ξ

)b
⇒ �(ξ) ≺

(
1+ ξ
1− ξ

)a
.
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(ii) Assume that ð ∈ [0, 1) and� ∈ ℵ[1, n]; then a constant k > 0 exists satisfying
k = k(a, n) so that

 
(
�2(ξ)+ 2�(ξ).ξ�′(ξ)

)
> ð⇒  (�(ξ)) > k.

(iii) If � ∈ ℵ[a, n] with  (a) > 0, then  
(
� (ξ)+ ξ �′ (ξ)+ ξ2 �′′ (ξ)

)
> 0 or

for ı : ∪ → R with  
(
� (ξ) + ı(ξ)

ξ �′ (ξ)
�(ξ)

)
> 0 then  (�(ξ)) > 0.

Lemma 2 Suppose that � is a convex function achieving �(0) = a, and assume
that k ∈ C \ {0} is a complex number satisfying  (k) ≥ 0. If � ∈ ℵ[a, n], and

�(ξ)+ (1/k)ξ �′ (ξ) ≺ �(ξ), ξ ∈ ∪,

then

�(ξ) ≺ ι(ξ) ≺ �(ξ),

where

ι(ξ) = k

nξk/n

∫ ξ

0
�(τ )τ

k

(n− 1) dτ, ξ ∈ ∪.

Lemma 3 ([13]) Suppose that � ∈ ∧
and there occurs a positive constant 0 <

υ ≤ 1. If

ξ �′ (ξ)− ξ
�(ξ) ≺ 2υξ

1+ ξ ,

then

�(ξ)
ξ

≺ 1+ υ ξ, ξ ∈ ∪.

And the result is sharp.

2.1 Symmetric Differential Operators (SDO)

In this place, we deliver two SDOs in the open unit disk under the category
∧
.

For a function � ∈∧
, we formulate the pursuing SDO
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Δ0
α � (ξ) = �(ξ)

Δ1
α � (ξ) =

(α
ᾱ

)
ξ �′ (ξ)−

(
1− α

ᾱ

)
ξ �′ (−ξ)

...

Δmα � (ξ) = Δα(Δm−1
α � (ξ))

= ξ +
∞∑

n=2

(
n
(α
ᾱ
− (1− α

ᾱ
)(−1)n

))m
�n ξn

:= �(ξ) ∗Dα(ξ),

(2)

where α 	= 0 is a complex number and ∗ is the convolution product such that

Dα(ξ) := ξ +
∞∑

n=2

(
n
(α
ᾱ
− (1− α

ᾱ
)(−1)n

))m
ξn.

Certainly, when α is real (for example, α = 1), we get the Sàlàgean differential
operator [3]

Sm � (ξ) = ξ +
∞∑

n=2

nm �n ξn.

We proceed to define a linear combination operator involving the SDO (2) and the
Ruscheweyh derivative (RD). Let � ∈∧

, then the RD satisfies the functional

Rm � (ξ) = ξ +
∞∑

n=2

Cmm+n−1 �n ξn,

where the term Cmm+n−1 is the combination coefficients. In this direction, we impose
a new linear combination of Rm and Δmα as follows:

Pmα,λ � (ξ) = (1− λ)Rm � (ξ)+ λΔmα � (ξ)

= ξ +
∞∑

n=2

[
(1− λ)Cmm+n−1 + λ

(
n
(α
ᾱ
− (1− α

ᾱ
)(−1)n

))m]
�n ξn.

(3)

Remark 1

• m = 0 *⇒ P0
α,λ � (ξ) = �(ξ);

• α is real then Pmα,λ � (ξ) = Lm
λ � (ξ); [14] (Lupas operator)

• λ = 0 *⇒ Pmα,0 � (ξ) = Rm � (ξ);
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• λ = 1 *⇒ Pmα,1 � (ξ) = Sk � (ξ), provide that α is real;
• λ = 1 *⇒ Pmα,1 � (ξ) = Δmα � (ξ).
Our study is based on the following classes of analytic functions involving the
operators (2) and (3).

S∗αm (�) =
{
� ∈

∧
: ξ(Δ

m
α � (ξ))′

Δmα � (ξ) ≺ �(ξ), � ∈ C
}
.

Clearly, the subcategory S∗0 (�) = S∗(�).

Definition 1 For a function � ∈∧
is in the category J

b
α(A,B,m) if and only if

1+ 1

0

( 2Δm+1
α � (ξ)

Δmα � (ξ)−Δmα � (−ξ)
)
≺ 1+ Aξ

1+ Bξ ,

(
ξ ∈ ∪, −1 ≤ B < A ≤ 1, k = 1, 2, . . . , 0 ∈ C \ {0}, α ∈ C \ {0}

)
.

The category J
b
α(A,B,m) has the following special cases:

• α ∈ R→ [15];
• α ∈ R & B = 0 → [16];
• α ∈ R, A = 1, B = −1, 0 = 2 → [17].

Moreover, we seek another category that includes the linear operator Pmα,λ as follows:

Definition 2 Consider the following data: ε ∈ [0, 1), α ∈ C\{0}, λ ≥ 0,� ∈ ∧

and m ∈ N then the function � ∈ Tm(α, λ, ε) if and only if

 
((

Pmα,λ � (ξ)
)′)
> ε, z ∈ U.

The category Tm(α, λ, ε) represents to the generalization of the class of bounding
turning analytic functions in ∪. For example, when m = 0 we have the usual
category

 
((

P0
α,λ � (ξ)

)′)
> ε →  (� (ξ))′ > ε.

Our aim is to study the above classes in different approaches.

3 Results

This place concerns about the outcomes that utilizing the above operators to get
some geometric presentation.
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Theorem 1 For � ∈ ∧
and α ∈ C\{0}, if one of the sequencing subordinations is

valid

• The operator Δmα � (ξ) in (2) is of bounded boundary rotation;
• � satisfies the subordination relation

(Δmα � (ξ))′ ≺
(

1+ ξ
1− ξ

)b
, b > 0, ξ ∈ ∪;

• � fulfilled the inequality

 
(
(Δmα � (ξ))′Δ

m
α � (ξ)
ξ

)
>
δ

2
, δ ∈ [0, 1), ξ ∈ ∪,

• � admits the inequality

 
(
ξΔmα � (ξ))′′ −Δmα � (ξ))′ + 2

Δmα � (ξ))
ξ

)
> 0,

• � confesses the inequality

 
(zΔmα � (ξ))′
Δmα � (ξ)) + 2

Δmα � (ξ)
ξ

)
> 1,

then Δ
m
α�(ξ)
ξ

∈P(ε) for some ε ∈ [0, 1).
Proof Define a function 1 as follows

ρ(ξ) = Δ
m
α � (ξ)
ξ

⇒ ξρ′(ξ)+ ρ(ξ) = (Δmα � (ξ))′. (4)

By the first fact, Δmα � (ξ) is of bounded boundary rotation, it implies that

 (ξ 1′(ξ)+ 1(ξ)) > 0.

Therefore, according to Lemma 1(i), we attain  (1(ξ)) > 0 which gets the first
term of the theorem. In view of the second fact, we have the following subordination
relation

(Δmα � (ξ))′ = ξ 1′(ξ)+ 1(ξ) ≺
(

1+ ξ
1− ξ

)b
.

Now, by employing again Lemma 1(i), there occurs a fixed constant a > 0 with
b = b(a) with the following property
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Δmα � (ξ)
ξ

≺
(

1+ ξ
1− ξ

)a
.

This implies that  (Δmα � (ξ)/ξ) > ε, for some ε ∈ [0, 1). Lastly, agree with the
third relation to get

 
(
12(ξ)+ 21(ξ).ξ 1′(ξ)

)
= 2 

(
(Δmα � (ξ))′Δα

k � (ξ)
ξ

)
> δ. (5)

According to Lemma 1(ii), there exists a positive fixed constant λ > 0 such that
 (1(ξ)) > λ, which yields 1(ξ) = Δmα�(ξ)

ξ
∈ P(ε) for some ε ∈ [0, 1). It

indicates from (5) that  
(
Δmα � (ξ))′

)
> 0, consequently by Noshiro-Warschawski

and Kaplan Theorems imply that Δmα � (ξ) is univalent and of bounded boundary
rotation in ∪. Now via the differentiating (4) and concluding the real case, we
indicate that

 
(
1(ξ)+ ξ 1′(ξ)+ ξ21′′(ξ)

)

=  
(
ξ(Δmα � (ξ))′′ − (Δmα � (ξ))′ + 2

Δmα � (ξ)
ξ

)

> 0.

Thus, we finished the conclusion of Lemma 1(ii), which indicates the inequality

 (Δ
m
α � (ξ)
ξ

) > 0.

Taking the logarithmic differentiation (4) and indicating the real, we arrive at the
following conclusion:

 
(
1(ξ)+ ξ 1

′(ξ)
1(ξ)

+ ξ21′′(ξ)
)

=  
(ξ(Δmα � (ξ))′
Δmα � (ξ) + 2

Δmα � (ξ)
ξ

− 1
)

> 0.

A direct application of Lemma 1(iii), we get the positive real, i.e.,  (Δmα�(ξ)
ξ

) > 0.
This completes the proof.

Theorem 2 Suppose that � ∈ J
0
α(A,B,m) then for every function of the form

X(ξ) = 1

2
[�(ξ)−�(−ξ)], ξ ∈ ∪
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agrees with the pursuing relation

1+ 1

0

(Δm+1
α X(ξ)

ΔmαX(ξ)
− 1

)
≺ 1+ Aξ

1+ Bξ ,

and

 
(ξX(ξ)′

X(ξ)

)
≥ 1−	2

1+	2
, |ξ | = 	 < 1,

(
ξ ∈ ∪, −1 ≤ B < A ≤ 1, m = 1, 2, . . . , 0 ∈ C \ {0}, α ∈ C

)
.

Proof Because the function � ∈ J
0
α(A,B,m) then there occurs a function ℘ ∈

J(A,B) such that

0(℘ (ξ)− 1) =
( 2Δm+1

α � (ξ)
Δmα � (ξ)−Δmα � (−ξ)

)

and

0(℘ (−ξ)− 1) =
( −2Δm+1

α � (−ξ)
Δmα � (ξ)−Δmα � (−ξ)

)
.

This implies that

1+ 1

0

(Δm+1
α X(ξ)

ΔmαX(ξ)
− 1

)
= ℘(ξ)+ ℘(−ξ)

2
.

Also, since ℘(ξ) ≺ 1+ Aξ
1+ Bξ , where

1+ Aξ
1+ Bξ is univalent then by the concept of the

subordination, we arrive at

1+ 1

0

(Δm+1
α X(ξ)

ΔmαX(ξ)
− 1

)
≺ 1+ Aξ

1+ Bξ .

But the function X(ξ) is starlike in ∪, which means that

ξX(ξ)′

X(ξ)
≺ 1− ξ2

1+ ξ2

and there holds a Schwarz function ᵀ ∈ ∪, | ᵀ (ξ)| ≤ |ξ | < 1,ᵀ(0) = 0 such that

Ψ (ξ) := zX(ξ)
′

X(ξ)
≺ 1− ᵀ(ξ)2

1+ ᵀ(ξ)2
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which implies that there exists ζ, |ζ | = 	 < 1 achieving

ᵀ2(ζ ) = 1− Ψ (ζ )
1+ Ψ (ζ ) , ζ ∈ ∪.

A computation brings that

∣∣∣
1− Ψ (ζ )
1+ Ψ (ζ )

∣∣∣ = | ᵀ (ζ )|2 ≤ |ζ |2.

Thus, we conclude that

∣∣∣Ψ (ζ )− 1+ |ζ |4
1− |ζ |4

∣∣∣
2 ≤ 4|ζ |4

(1− |ζ |4)2
or

∣∣∣Ψ (ζ )− 1+ |ζ |4
1− |ζ |4

∣∣∣ ≤ 2|ζ |2
(1− |ζ |4) .

Consequently, we obtain

 (Ψ (ζ )) ≥ 1−	2

1+	2
, |ζ | = 	 < 1.

Next results come directly from Theorem 2, which may be found in [15, 17],
respectively.

Corollary 1 Let α be a real number in Theorem 2. Then

1+ 1

0

(Δm+1
α X(ξ)

ΔmαX(ξ)
− 1

)
≺ 1+ Aξ

1+ Bξ .

Corollary 2 Let α be a real number and m = 1 in Theorem 2. Then

1+ 1

0

(Δ2
αX(ξ)

Δ1
αX(ξ)

− 1
)
≺ 1+ Aξ

1+ Bξ .

Theorem 3 Suppose that � ∈ Tm(α, λ, ε), and the convex analytic function g
satisfying the integral equation

F(ξ) = 2+ c
ξ1+c

∫ ξ

0
τ c � (τ )dτ, ξ ∈ ∪

then the subordination
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(
Pmα,λ � (ξ)

)′ ≺ g(ξ)+ (ξg
′(ξ))

2+ c , c > 0,

implies the subordination

(
Pmα,λF (ξ)

)′ ≺ g(ξ),

and this result is sharp.

Proof Here, we aim to utilize the result of Lemma 2. By the conclusion of F(ξ),
we acquire

(
Pmα,λF (ξ)

)′ +
(

Pmα,λF (ξ)
)′′

2+ c =
(

Pmα,λ � (ξ)
)′
.

Following the conditions of the theorem, we get

(
Pmα,λF (ξ)

)′ +
(

Pmα,λF (ξ)
)′′

2+ c ≺ g(ξ)+ (ξ g
′(ξ))

2+ c .

By assuming

1(ξ) :=
(

Pmα,λF (ξ)
)′
,

we have

1(ξ)+ (ξ1
′(ξ))

2+ c ≺ g(ξ)+ (ξg
′(ξ))

2+ c .

According to Lemma 2, we attain

(
Pmα,λF (ξ)

)′ ≺ g(ξ),

and g is the best dominant.

Theorem 4 Let g be convex such that g(0) = 1. If

(
Pmα,λ � (ξ)

)′ ≺ g(ξ)+ ξg′(ξ), ξ ∈ ∪,

then
Pmα,λ � (ξ)

ξ
≺ g(ξ), and this result is sharp.

Proof Define the pursuing function



428 R. W. Ibrahim

1(ξ) := Pmα,λ � (ξ)
ξ

∈ ℵ[1, 1]. (6)

A direct application of Lemma 1yields

Pmα,λ � (ξ) = ξ1(ξ) *⇒
(

Pmα,λ � (ξ)
)′ = 1(ξ)+ ξ1′(ξ).

Thus, we introduce the pursuing subordination:

1(ξ)+ ξ1′(ξ) ≺ g(ξ)+ ξg′(ξ).

Hence, we conclude that
Pmα,λ � (ξ)

ξ
≺ g(ξ), and g is the best dominant.

Theorem 5 If � ∈∧
fulfills the subordination

(Pmα,λ � (ξ))′ ≺
(

1+ ξ
1− ξ

)b
, ξ ∈ ∪, b > 0,

then

 
(Pmα,λ � (ξ)

ξ

)
> ε

for some ε ∈ [0, 1).
Proof Define a function 1 as in (6). Then, by subordination properties, we have

(Pmα,λ � (ξ))′ = ξ1′(ξ)+ 1(ξ) ≺
(

1+ ξ
1− ξ

)b
.

With the help of Lemma 1(i), there occurs a constant a > 0 with b = b(a) such that

Pmα,λ � (ξ)
ξ

≺
(

1+ ξ
1− ξ

)a
.

This leads to real conclusion  (Pmα,λ � (ξ)/ξ) > ε, for some ε ∈ [0, 1).
Theorem 6 If � ∈∧

fulfills the real inequality

 
(
(Pmα,λ � (ξ))′

Pmα,λ � (ξ)
ξ

)
>  (α

2
), ξ ∈ ∪, α ∈ C,

then Pmα,λ � (ξ) ∈ Tm(α, λ, ε) for some ε ∈ [0, 1). In addition, it is univalent and of
bounded boundary rotation in ∪.
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Proof Formulate 1 as in (6). A simple calculation gives

 
(
12(ξ)+ 21(ξ).ξ1′(ξ)

)
= 2 

(
Pmα,λ � (ξ))′

Pmα,λ � (ξ)
ξ

)
>  (α). (7)

By the advantage of Lemma 1(ii), there occurs a constant κ concerning on  (α)
such that  (1(ξ)) > κ , which gives that  (1(ξ) ) > ε for some ε ∈ [0, 1).
It implies from (7) that  

(
Pmα,λ � (ξ))′

)
> ε and hence based on the idea of

Noshiro-Warschawski and Kaplan Theorems, Pmα,λ�(ξ) is univalent and of bounded
boundary rotation in ∪.

Theorem 7 The set Tm(α, λ, ε) is convex.

Proof Let �i , i = 1, 2 be two functions in the set Tm(α, λ, ε) achieving the
formulas �1(ξ) = ξ +∑∞

n=2 anξ
n and �2(ξ) = ξ +∑∞

n=2 bnξ
n, respectively.

It is adequate to show that the linear combination function

G(ξ) = w1 �1 (ξ)+ w2 �2 (ξ), ξ ∈ ∪

belongs to Tm(α, λ, ε), where w1 > 0, w2 > 0 and w1 +w2 = 1. By the definition
of G(ξ), a computation yields that

G(ξ) = ξ +
∞∑

n=2

(w1an + w2bn)ξ
n

then under the formal Pmα,λ, we obtain

Pmα,λG(ξ) = ξ +
∞∑

n=2

(w1an + w2bn)×
[
(1− λ)Cmm+n−1 + λ

(
n
(α
ᾱ
−
(

1− α
ᾱ

)
(−1)n

))m]
ξn.

By considering the derivative, we have

 
{
(Pmα,λG(ξ))

′}

= 1+ w1 
{ ∞∑

n=2

n
[
(1− λ)Cmm+n−1 + λ

(
n
(α
ᾱ
−
(

1− α
ᾱ

)
(−1)n

))m]
anξ

n−1
}

+ w2 
{ ∞∑

n=2

n
[
(1− λ)Cmm+n−1 + λ

(
n
(α
ᾱ
−
(

1− α
ᾱ

)
(−1)n

))m]
bnξ

n−1
}

> 1+ w1(ε − 1)+ w2(ε − 1) = ε.

This completes the proof.

Next consequence result of Theorem 7 can be found in [14].
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Corollary 3 Let α be a real number in Theorem 7. Then the set Tm(α, λ, ε) is
convex.

4 Applications

A set of complex differential equations is an assembly of differential equations
whose consequences are terms of a complex variable. Accumulating integrals
encloses superior paths to proceed, which incomes singularities. This branch fact
of the equations and its applications must investigate widely. The most important
study in this direction is to establish the existence and uniqueness of solutions. There
are diffident types of techniques including the utility of majorants and minorants (or
subordination and superordination concepts) (see [12]). Investigation of ODEs in the
complex domain suggests the detection of novel transcendental special functions,
which currently called a Briot-Bouquet differential equation (BBDE)

ω � (ξ)+ (1− ω)ξ(�(ξ))
′

�(ξ) = �(ξ),

(
�(0) = �(0), ω ∈ [0, 1], ξ ∈ ∪, � ∈

∧)
.

In this place, we shall generalize the BBDE into a symmetric BBDE by using SDO.
Numerous presentations of these comparisons in the geometric function model have
recently achieved in [12].

Needham and McAllister [18] reflected a two-dimensional complex holomorphic
dynamical system, pleasing the 2-D form

ξt = Θ(ξ, ω); ωt = Θ(ξ,w), ξ, ω ∈ ∪

and t is in any real interval. In detailed, they utilized the BB-singular point theory
to find the existence and uniqueness of complex holomorphic result of the system
in the neighborhood of an equilibrium point with two purely imaginary eigenvalues.
Consequently, they recognized the existence of isochronous center relations in the
neighborhood of the equilibrium point. Yuan et al. [19] achieved the meromorphic
result of a class of 2D-BBDE. Development application of the BBDE seemed new,
with unlike approaches (see [20]) in resolving (as a singular situation) the equation
of electronic nano-shells (see [21]). Controlled by the situation effort of traditional
shell theory, the transposition fields of the nano-shell take the dynamic system

ξt = Θ(ξ, ω)+Θθ(ξ, ω); ωt = Θ(ξ, ω)+Θθ(ξ̄ , ω̄), ξ, ω ∈ ∪,

where θ is the angles between ξ and ω and their conjugates.
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Our purpose is to simplify this category of equation by utilizing the SDO and
establish its resolutions by applying the subordination associations. By employing
the (2), we have the generalized BBDE

ω � (ξ)+ (1− ω)
(ξ(Δmα � (ξ))′
Δmα � (ξ)

)
= �(ξ), �(0) = �(0), ξ ∈ ∪. (8)

The subordination settings and alteration bound for a session of SDO specified in the
following formula. A trivial resolution of (8) is given when ω = 1. Consequently,
our vision is to carry out the situation, � ∈ ∧

and ω = 0. We proceed to present
the behavior of the solution of (8).

Theorem 8 For � ∈∧
, α ∈ [0,∞) and � is univalent convex in ∪ if

(ξ(Δmα � (ξ))′
Δmα � (ξ)

)
≺ �(ξ), ξ ∈ ∪, (9)

then

Δmα � (ξ) ≺ ξ exp
( ∫ ξ

0

�(4(ξ))− 1

�
d�
)
,

where 4 is a Schwarz function in ∪. In addition, we have

|ξ | exp

(∫ 1

0

�(4(−σ))− 1

σ
dσ

)
≤
∣∣∣Δmα�(ξ)

∣∣∣ ≤ |ξ | exp

(∫ 1

0

�(4(σ ))− 1

σ
dσ

)
.

Proof The subordination fact, in (9), implies that there occurs a Schwarz function
4 with the attaching inequality

(ξ(Δmα � (ξ))′
Δmα � (ξ)

)
= h̄(4(ξ)), ξ ∈ ∪.

This yields the inequality

(ξ(Δmα � (ξ))′
Δmα � (ξ)

)
− 1

ξ
= �(4(ξ))− 1

ξ
.

By making the integrated operating, we attain the attaching equality

log

(
Δmα � (ξ)

ξ

)
=

∫ ξ

0

�(4(�))− 1

�
d�. (10)

Consequently, we have
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logΔmα � (ξ) =
(∫ ξ

0

�(4(�))− 1

�
d�

)
− log(ξ). (11)

A calculation brings the next subordination relation

Δmα � (ξ) ≺ ξ exp
( ∫ ξ

0

�(4(�))− 1

�
d�
)
.

Moreover, we indicate that the function � translates the disk 0 < |ξ | < σ ≤ 1 onto
a domain, which is convex and symmetric via the real axis; on other words, we have

�(−σ |ξ |) ≤  (�(4(σξ))) ≤ �(σ |ξ |), σ ∈ (0, 1], |ξ | 	= σ,

which implies the inequalities:

�(−σ) ≤ �(−σ |ξ |), �(σ |ξ |) ≤ �(σ )

and

∫ 1

0

�(4(−σ |ξ |))− 1

σ
dσ ≤  

( ∫ 1

0

�(4(σ ))− 1

σ
dσ

)
≤
∫ 1

0

�(4(σ |ξ |))− 1

η
dσ.

By employing the above inequality and Eq. (10), we arrive at

∫ 1

0

�(4(−σ |ξ |))− 1

σ
dσ ≤ log

∣∣∣
Δmα � (ξ)

ξ

∣∣∣ ≤
∫ 1

0

�(4(σ |ξ |))− 1

σ
dσ.

This equivalence to the fact

exp
( ∫ 1

0

�(4(−σ |ξ |))− 1

σ
dσ

)
≤
∣∣∣
Δmα � (ξ)

ξ

∣∣∣ ≤ exp
( ∫ 1

0

�(4(σ |ξ |))− 1

σ
dσ

)
.

This completes the proof.

We note that the condition of Theorem 8, which the BB formula subordinates by a
convex univalent function �, can be replaced by a general condition as follows:

Theorem 9 Suppose that � ∈∧
, α ∈ [0,∞) and 0 < υ ≤ 1. If

(ξ(Δmα � (ξ))′ − ξ
Δmα � (ξ)

)
≺ 2υξ

1+ ξ , ξ ∈ ∪, (12)

then

∣∣∣
Δmα � (ξ)

ξ
− 1

∣∣∣ ≤ υ. (13)



Normalized Symmetric Differential Operators in the Open Unit Disk 433

Moreover, if υ := 1
(1−r)v , 0 < r < 1, for some positive constant v, then

∣∣∣
(
Δmα � (ξ)

ξ

)′ ∣∣∣ ≤ v + 1

(1− r)v+1 . (14)

Proof In view of Lemma 3, we have the subordination inequality

Δmα � (ξ)
ξ

≺ 1+ υξ.

Since the result is sharp, then directly, we obtain the inequality (13). Consequently,
by ([22], lemma 5.1.3), we have the inequality (14).

5 Conclusion

In deduction, it is worth it to memo that the environment of the SDOs and
their applications is a nonetheless to be completely discovered the area and it
is estimated that the contemporary effort prompts the upcoming research on this
subject. Furthermore, we delivered a relation between starlike class and the upper
bound solution of BBDE by using the symmetric operator (Theorem 8). In the
same manner of this result, we can use the linear operator Pmα,λ to present the same
property. The linear operator indicates and extends many propositions involving the
Sàlàgean differential operator and the Ruscheweyh derivative.

For future work, one can suggest the SDO (2) in different types of categories
of analytic functions in ∪. These categories include the harmonic, meromorphic,
and p-valent categories. Moreover, one can use any other geometric classes of
univalent functions such as symmetric classes, spiral-like, close to convex, etc.
classes. Different studies can also suggest by using (2), such as generalized various
classes of differential equations describing the symmetry property, including wave
equations and heat equations in a complex domain (space-time investigation).

References

1. P. Duren, Univalent Functions, Grundlehren der mathematischen Wissenschaften, vol. 259
(Springer, New York, 1983). ISBN 0-387-90795-5

2. A.W. Goodman, Univalent Functions
3. G.S. Sàlàgean, in Subclasses of univalent functions, in Complex Analysis-Fifth Romanian-

Finnish Seminar, Part 1 (Bucharest, 1981). Lecture Notes in Math., vol. 1013 (Springer, Berlin,
1983), pp. 362–372

4. F.M. Al-Oboudi, On univalent functions defined by a generalized Sàlàgean operator. Int. J.
Math. Math. Sci. 27, 1429–1436 (2004)



434 R. W. Ibrahim

5. R.W. Ibrahim, Operator inequalities involved Wiener–Hopf problems in the open unit disk, in
Differential and Integral Inequalities, vol. 13 (Springer, Cham. 2019), pp. 423–433

6. R.W. Ibrahim, M. Darus, Subordination inequalities of a new Salagean difference operator. Int.
J. Math. Comput. Sci 14, 573–582 (2019)

7. R.W. Ibrahim, J.M. Jahangiri, Conformable differential operator generalizes the Briot-Bouquet
differential equation in a complex domain. AIMS Math. 6(4), 1582–1595 (2019)

8. R.W. Ibrahim, M. Darus, New symmetric differential and integral operators defined in the
complex domain. Symmetry 7(11), 906 (2019)

9. R.W. Ibrahim, M. Darus, Univalent functions formulated by the Salagean-difference operator.
Int. J. Anal. Appl. 17(4), 652–658 (2019)

10. R.W. Ibrahim, Regular classes involving a generalized shift plus fractional Hornich integral
operator. Boletim da Sociedade Paranaense de Matemática 38(2), 89–99 (2020)

11. D.R. Anderson, D.J. Ulness, Newly defined conformable derivatives. Adv. Dyn. Syst. Appl
10(2), 109–137 (2015)

12. S.S. Miller, P.T. Mocanu, Differential Subordinations: Theory and Applications (CRC Press,
Boca Raton, 2000)

13. N. Tuneski, M. Obradovic, Some properties of certain expressions of analytic functions.
Comput. Math. Appl. 62(9), 3438–3445 (2011)

14. A. Lupas, Some differential subordinations using Ruscheweyh derivative and Slgean operator.
Adv. Differ. Equ. 150, 1–11 (2013)

15. M. Arif, et al., A new class of analytic functions associated with Slgean operator. J. Funct.
Spaces 2019, 6157394 (2019). https://doi.org/10.1155/2019/6157394

16. K. Sakaguchi, On a certain univalent mapping. J. Math. Soc. Jpn. 11, 72–75 (1959)
17. R.N. Das, P. Singh, On subclasses of schlicht mapping. Indian J. Pure Appl. Math. 8, 864–872

(1977)
18. D.J. Needham, S. McAllister, Centre families in two–dimensional complex holomorphic

dynamical systems, in Proceedings of the Royal Society of London. Series A: Mathematical.
Physical and Engineering Sciences, vol. 454 (1998), pp. 2267–2278

19. W. Yuan, Y. Li, J. Lin, Meromorphic solutions of an auxiliary ordinary differential equation
using complex method. Math. Methods Appl. Sci. 36(13), 1776–1782 (2013)

20. F. Ebrahimi, et al., Wave propagation analysis of a spinning porous graphene nanoplatelet-
reinforced nanoshell. Waves in Random and Complex Media (2019), pp. 1–27

21. M. Habibi, M. Mohammadgholiha, H. Safarpour, Wave propagation characteristics of the
electrically GNP-reinforced nanocomposite cylindrical shell. J. Brazil. Soc. Mech. Sci. Eng.
41(5), 221 (2019)

22. L. Hormander, Linear Partial Differential Operators (Springer, Berlin, 1963)

https://doi.org/10.1155/2019/6157394


New Hermite–Hadamard Inequalities
Concerning Twice Differentiable
Generalized ψ-Convex Mappings via
Conformable Fractional Integrals

Artion Kashuri and Rozana Liko

Abstract In this article, we first introduced a new class of generalized
((p1, p2); (ψ1, ψ2))–convex mappings and an interesting lemma regarding
Hermite–Hadamard type conformable fractional integral inequalities. By using the
notion of generalized ((p1, p2); (ψ1, ψ2))–convexity and lemma as an auxiliary
result, some new estimates with respect to Hermite–Hadamard type integral
inequalities associated with twice differentiable generalized ((p1, p2); (ψ1, ψ2))–
convex mappings via conformable fractional integrals are established. It is pointed
out that some new special cases can be deduced from main results of the article. At
the end, some applications to special means are also given.

2010 Mathematics Subject Classification Primary: 26A51; Secondary: 26A33,
26D07, 26D10, 26D15

1 Introduction

The following inequality, named Hermite–Hadamard inequality, is one of the most
famous inequalities in the literature for convex functions.

Theorem 1.1 Let f : I ⊆  −→  be a convex function on I and a, b ∈ I with
a < b. Then the following inequality holds:

f

(
a + b

2

)
≤ 1

b − a
∫ b

a

f (x)dx ≤ f (a)+ f (b)
2

. (1.1)

This inequality (1.1) it is known as trapezium inequality.
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The trapezium type inequality has remained an area of great interest due to its
wide applications in the field of mathematical analysis. For other recent results
which generalize, improve, and extend the inequality (1.1) through various classes
of convex functions interested readers are referred to [2–37, 39, 40, 43, 44, 47–
51, 54, 57, 58]. Let us recall some special functions and evoke some basic definitions
as follows.

Definition 1.2 The Euler beta function is defined for a, b > 0 as

β(a, b) =
∫ 1

0
ta−1(1− t)b−1dt = �(a)�(b)

�(a + b) . (1.2)

Definition 1.3 The incomplete beta function is defined for a, b > 0 as

βx(a, b) =
∫ x

0
ta−1(1− t)b−1dt, 0 < x ≤ 1.

For x = 1, the incomplete beta function coincides with the complete beta function.

Definition 1.4 Let f ∈ L1[a, b]. The Riemann–Liouville integrals Jαa+f and Jαb−f
of order α > 0 with a ≥ 0 are defined by

Jαa+f (x) =
1

�(α)

∫ x

a

(x − t)α−1f (t)dt, x > a

and

Jαb−f (x) =
1

�(α)

∫ b

x

(t − x)α−1f (t)dt, b > x. (1.3)

Here J 0
a+f (x) = J 0

b−f (x) = f (x). In the case of α = 1, the fractional integral
reduces to the classical integral.

In the following, we give some definitions and properties of conformable fractional
integrals which help to obtain main identity and results. Recently, some authors
started to study on conformable fractional integrals. In [28], Khalil et al. defined the
fractional integral of order 0 < α ≤ 1 only. In [1], Abdeljawad gave the definition
of left and right conformable fractional integrals of any order α > 0.

Definition 1.5 Let α ∈ (n, n + 1] and set β = α − n, then the left conformable
fractional integral starting at a is defined by

(
I aα f

)
(t) = 1

n!
∫ t

a

(t − x)n(x − a)β−1f (x)dx.

Analogously, the right conformable fractional integral is defined by
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(
bIαf

)
(t) = 1

n!
∫ b

t

(x − t)n(b − x)β−1f (x)dx.

Notice that if α = n+ 1, then β = α− n = n+ 1− n = 1, where n = 0, 1, 2, . . . ,
and hence

(
I aα f

)
(t) = (

J an+1f
)
(t).

In [47], Set et al. established a generalization of Hermite–Hadamard type
inequality for s-convex functions and gave some remarks to show the relationships
with the classical and Riemann-Liouville fractional integrals inequality by using the
given properties of conformable fractional integrals.

Theorem 1.6 Let f : [a, b] −→  be a function with 0 ≤ a < b, s ∈ (0, 1], and
f ∈ L1[a, b]. If f is a convex function on [a, b], then the following inequalities for
conformable fractional integrals hold

�(α − n)
�(α + 1)

f

(
a + b

2

)
≤ 1

2s(b − a)α
[ (
I aα f

)
(b)+

(
bIαf

)
(a)

]

≤
[
β(n+ s + 1, α − n)+ β(n+ 1, α − n+ s)

n!
]
f (a)+ f (b)

2s
,

with α ∈ (n, n+ 1], n ∈ N, n = 0, 1, 2, . . . .

In [46–50], Set et al. established some results for some kind of inequalities via
conformable fractional integrals.

Definition 1.7 ([56]) A set S ⊆  n is said to be invex set with respect to the
mapping η : S × S −→  n, if x + tη(y, x) ∈ S for every x, y ∈ S and t ∈ [0, 1].
The invex set S is also termed an η-connected set.

Definition 1.8 ([41]) Let h : [0, 1] −→  be a non-negative function and h 	= 0.
The function f on the invex set K is said to be h-preinvex with respect to η, if

f
(
x + tη(y, x)) ≤ h(1− t)f (x)+ h(t)f (y) (1.4)

for each x, y ∈ K and t ∈ [0, 1] where f (·) > 0.

Clearly, when putting h(t) = t in Definition 1.8, f becomes a preinvex function
[45]. If the mapping η(y, x) = y − x in Definition 1.8, then the non-negative
function f reduces to h-convex mappings [53].

Definition 1.9 ([55]) Let S ⊆  n be an invex set with respect to η : S×S −→  n.
A function f : S −→ [0,+∞) is said to be s-preinvex (or s-Breckner-preinvex)
with respect to η and s ∈ (0, 1], if for every x, y ∈ S and t ∈ [0, 1],

f
(
x + tη(y, x)) ≤ (1− t)sf (x)+ t sf (y). (1.5)
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Definition 1.10 ([42]) A function f : K −→  is said to be s-Godunova-Levin-
Dragomir-preinvex of second kind, if

f
(
x + tη(y, x)) ≤ (1− t)−sf (x)+ t−sf (y), (1.6)

for each x, y ∈ K, t ∈ (0, 1) and s ∈ (0, 1].
Definition 1.11 ([14]) A non-negative function f : I ⊆  −→ [0,+∞) is said to
be P -function, if

f (tx + (1− t)y) ≤ f (x)+ f (y), ∀x, y ∈ I, t ∈ [0, 1].

Definition 1.12 ([52]) Let f : K ⊆  −→  be a non-negative function, a
function f : K −→  is said to be a tgs-convex function on K if the inequality

f
(
(1− t)x + ty) ≤ t (1− t)[f (x)+ f (y)] (1.7)

grips for all x, y ∈ K and t ∈ (0, 1).
Definition 1.13 ([38]) A function f : I ⊆  −→  is said to MT -convex
functions, if it is non-negative and ∀ x, y ∈ I and t ∈ (0, 1) satisfies the subsequent
inequality

f (tx + (1− t)y) ≤
√
t

2
√

1− t f (x)+
√

1− t
2
√
t
f (y). (1.8)

Definition 1.14 ([43]) A function: I ⊆  −→  is said to be m −MT -convex,
if f is positive and for ∀ x, y ∈ I , and t ∈ (0, 1), among m ∈ (0, 1], satisfies the
following inequality

f
(
tx +m(1− t)y) ≤

√
t

2
√

1− t f (x)+
m
√

1− t
2
√
t
f (y). (1.9)

For m = 1, Definition 1.14 reduces to Definition 1.13.
The concept of η-convex functions (at the beginning was named by χ -convex

functions), considered in [19], has been introduced as the following.

Definition 1.15 Consider a convex set I ⊆  and a bifunction η : f (I)×f (I) −→
 . A function f : I −→  is called convex with respect to η (briefly η-convex), if

f
(
λx + (1− λ)y) ≤ f (y)+ λη(f (x), f (y)), (1.10)

is valid for all x, y ∈ I and λ ∈ [0, 1].
Geometrically it says that if a function is η-convex on I, then for any x, y ∈
I, its graph is on or under the path starting from (y, f (y)) and ending at
(x, f (y)+ η(f (x), f (y))) . If f (x) should be the end point of the path for every
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x, y ∈ I, then we have η(x, y) = x − y and the function reduces to a convex one.
For more results about η-convex functions readers are referred to [11, 12, 18, 19].

Definition 1.16 ([3]) Let I ⊆  be an invex set with respect to η1 : I × I −→  .
Consider f : I −→  and η2 : f (I) × f (I) −→  . The function f is said to be
(η1, η2)-convex if

f
(
x + λη1(y, x)

) ≤ f (x)+ λη2(f (y), f (x)), (1.11)

is valid for all x, y ∈ I and λ ∈ [0, 1].
Motivated by above works and references therein, the main objective of this article
is to establish some new estimates with respect to Hermite–Hadamard type integral
inequalities using the notion of generalized ((p1, p2); (ψ1, ψ2))-convexity and an
interesting lemma as auxiliary result for conformable fractional integrals. It is
pointed out that some new special cases will be deduced from main results of the
article. At the end, some applications to special means will be obtained.

2 Main Results

The following definitions will be used in this section.

Definition 2.1 [15] A set K ⊆  is named as m-invex with respect to the mapping
ψ : K × K −→  for some fixed m ∈ (0, 1], if mx + tψ(y,mx) ∈ K for each
x, y ∈ K and any t ∈ [0, 1].
Remark 2.2 In Definition 2.1, under certain conditions, the mapping ψ(y,mx)
could reduce to ψ(y, x).When m = 1, we get Definition 1.7.

We next introduce the concept of generalized ((p1, p2); (ψ1, ψ2))-convex map-
pings.

Definition 2.3 Let K ⊆  be an open m-invex set with respect to the mapping
ψ1 :  ×  −→  . Suppose p1, p2 : [0, 1] −→ [0,+∞) and χ : I −→  are
continuous. Consider f : K −→ (0,+∞) and ψ2 : f (K) × f (K) −→ [0,+∞).
The mapping f is said to be generalized ((p1, p2); (ψ1, ψ2))-convex, if

f
(
mχ(x)+ tψ1(χ(y),mχ(x))

) ≤ [
mp1(t)f

r(x)+ p2(t)ψ2(f
r(y), f r(x))

] 1
r

(2.1)
holds for all x, y ∈ I, r ∈ (0, 1], t ∈ [0, 1] and some fixed m ∈ (0, 1].
Remark 2.4 In Definition 2.3, if we choose m = r = 1, p1(t) = 1, p2(t) =
t, ψ1(χ(y),mχ(x)) = χ(y) − mχ(x), ψ2(f

r(y), f r(x)) = η(f r(y), f r(x)) and
χ(x) = x, ∀x ∈ I, then we get Definition 1.15. Also, in Definition 2.3, if we
choose m = r = 1, p1(t) = 1, p2(t) = t and χ(x) = x, ∀x ∈ I, then we get
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Definition 1.16. Under some suitable choices as we done above, we can get also the
Definitions 1.9 and 1.10.

Remark 2.5 For r = 1, let us discuss some special cases in Definition 2.3 as
follows:

(I) Taking p1(t) = p2(t) = 1, then we get generalized ((m, P ); (ψ1, ψ2))-
convex mappings.

(II) Taking p1(t) = h(1 − t), p2(t) = h(t), then we get generalized
((m, h); (ψ1, ψ2))-convex mappings.

(III) Taking p1(t) = (1 − t)s, p2(t) = t s for s ∈ (0, 1], then we get generalized
((m, s); (ψ1, ψ2))-Breckner-convex mappings.

(IV) Taking p1(t) = (1− t)−s , p2(t) = t−s for s ∈ (0, 1], then we get generalized
((m, s); (ψ1, ψ2))-Godunova-Levin-Dragomir-convex mappings.

(V) Taking p1(t) = p2(t) = t (1−t), then we get generalized ((m, tgs); (ψ1, ψ2))-
convex mappings.

(VI) Taking p1(t) =
√

1− t
2
√
t
, p2(t) =

√
t

2
√

1− t , then we get generalized

(m; (ψ1, ψ2))−MT -convex mappings.

It is worth to mention here that to the best of our knowledge all the special cases
discussed above are new in the literature.

Let see the following example of a generalized ((p1, p2); (ψ1, ψ2))-convex
mapping which is not convex.

Example 2.6 Let us take r = 1
2 , p1(t) = t l , p2(t) = (1 − t)s for all l, s ∈ (0, 1]

and χ be an identity function. Consider the function f : [0,+∞) −→ [0,+∞) by

f (x) =
{
x, 0 ≤ x ≤ 2;
4, x > 2.

Define two bifunctions ψ1 : [0,+∞) × [0,+∞) −→  and ψ2 : [0,+∞) ×
[0,+∞) −→ [0,+∞) by

ψ1(x, y) =
{−y, 0 ≤ y ≤ 2;
x + y, y > 2,

and

ψ2(x, y) =
{
x + y, x ≤ y;
4(x + y), x > y.

Then f is generalized
((
t
l
2 , (1− t) s2

)
; (ψ1, ψ2)

)
-convex mapping. But f is not

preinvex with respect to ψ1 and also it is not convex (consider x = 0, y = 3 and
t ∈ (0, 1]).
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For establishing our main results regarding some new Hermite–Hadamard
type integral inequalities associated with twice differentiable generalized
((p1, p2); (ψ1, ψ2))-convex mappings via conformable fractional integrals, we
need the following lemma.

Lemma 2.7 Let χ : I −→  be a continuous function. Suppose K =
[mχ(a),mχ(a) + η(χ(b),mχ(a))] ⊆  be an open m-invex subset with respect
to η : K × K −→  for some fixed m ∈ (0, 1], where η(χ(b),mχ(a)) > 0 and
a < b. Assume that f : K −→  be a twice differentiable mapping on K◦ such
that f ′′ ∈ L1(K). Then for α ∈ (n, n + 1], where n = 0, 1, 2, . . . , the following
identity for conformable fractional integrals holds:

− η
α+1(χ(x),mχ(a))f ′(mχ(a))+ ηα+1(χ(x),mχ(b))f ′(mχ(b))

η(χ(b),mχ(a))

− (n+ 2− α)(n+ 1)!
η(χ(b),mχ(a))

×
[ (
(mχ(a)+η(χ(x),mχ(a)))Iαf

)
(mχ(a))+

(
(mχ(b)+η(χ(x),mχ(b)))Iαf

)
(mχ(b))

]

= η
α+2(χ(x),mχ(a))

η(χ(b),mχ(a))
(2.2)

×
∫ 1

0

[
β(n+ 2, α − n)− βt (n+ 2, α − n)]f ′′(mχ(a)+ tη(χ(x),mχ(a)))dt

+ η
α+2(χ(x),mχ(b))

η(χ(b),mχ(a))

×
∫ 1

0

[
β(n+ 2, α − n)− βt (n+ 2, α − n)]f ′′(mχ(b)+ tη(χ(x),mχ(b)))dt.

Proof A simple proof of the equality can be done by performing two integration by
parts in the integrals and changing the variables. The details are left to the interested
reader. -.
Remark 2.8 In Lemma 2.7, if we choose α = n+ 1, where n = 0, 1, 2, . . . , we get
an identity for fractional integrals.

Throughout this paper, we denote

If,η,χ (x;α, n,m, a, b) := η
α+2(χ(x),mχ(a))

η(χ(b),mχ(a))
(2.3)

×
∫ 1

0

[
β(n+ 2, α − n)− βt (n+ 2, α − n)]f ′′(mχ(a)+ tη(χ(x),mχ(a)))dt

+ η
α+2(χ(x),mχ(b))

η(χ(b),mχ(a))
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×
∫ 1

0

[
β(n+ 2, α − n)− βt (n+ 2, α − n)]f ′′(mχ(b)+ tη(χ(x),mχ(b)))dt.

Using Lemma 2.7, we now state the following theorems for the corresponding
version for power of second derivative.

Theorem 2.9 Let α ∈ (n, n+ 1], where n = 0, 1, 2, . . . , and 0 < r ≤ 1. Also, let
p1, p2 : [0, 1] −→ [0,+∞) and χ : I −→  are continuous functions. Suppose
K = [mχ(a),mχ(a) + ψ1(χ(b),mχ(a))] ⊆  be an open m-invex subset with
respect to ψ1 :  × −→  for some fixed m ∈ (0, 1], where ψ1(χ(b),mχ(a)) >

0 and a < b. Assume that f : K −→ (0,+∞) be a twice differentiable mapping
on K◦ such that f ′′ ∈ L1(K) and ψ2 : f (K)× f (K) −→ [0,+∞). If (f ′′(x))q is
generalized ((p1, p2); (ψ1, ψ2))-convex mapping, where q > 1 and p−1+q−1 = 1,
then the following inequality for conformable fractional integrals holds:

∣∣If,ψ1,χ (x;α, n,m, a, b)
∣∣ ≤ δ

1
p (p, α, n)

ψ1(χ(b),mχ(a))
(2.4)

×
{
|ψ1(χ(x),mχ(a))|α+2

[
m
(
f ′′(a)

)rq
I r (p1(t); r)

+ ψ2
(
(f ′′(x))rq , (f ′′(a))rq

)
I r (p2(t); r)

] 1
rq

+ |ψ1(χ(x),mχ(b))|α+2
[
m
(
f ′′(b)

)rq
I r (p1(t); r)

+ ψ2
(
(f ′′(x))rq , (f ′′(b))rq

)
I r (p2(t); r)

] 1
rq

}
,

where

δ(p, α, n) :=
∫ 1

0

[
β(n+ 2, α − n)− βt (n+ 2, α − n)]pdt

and

I (pi(t); r) :=
∫ 1

0
p

1
r

i (t)dt, ∀ i = 1, 2.

Proof From Lemma 2.7, generalized ((p1, p2); (ψ1, ψ2))-convexity of (f ′′(x))q,
Hölder inequality, Minkowski inequality and properties of the modulus, we have

∣∣If,ψ1,χ (x;α, n,m, a, b)
∣∣ ≤ |ψ1(χ(x),mχ(a))|α+2

|ψ1(χ(b),mχ(a))|
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×
∫ 1

0

∣∣β(n+ 2, α − n)− βt (n+ 2, α − n)∣∣∣∣f ′′(mχ(a)+ tψ1(χ(x),mχ(a)))
∣∣dt

+ |ψ1(χ(x),mχ(b))|α+2

|ψ1(χ(b),mχ(a))|

×
∫ 1

0

∣∣β(n+ 2, α − n)− βt (n+ 2, α − n)∣∣∣∣f ′′(mχ(b)+ tψ1(χ(x),mχ(b)))
∣∣dt

≤ |ψ1(χ(x),mχ(a))|α+2

ψ1(χ(b),mχ(a))

(∫ 1

0

[
β(n+ 2, α − n)− βt (n+ 2, α − n)]pdt

) 1
p

×
(∫ 1

0

(
f ′′(mχ(a)+ tψ1(χ(x),mχ(a)))

)q
dt

) 1
q

+ |ψ1(χ(x),mχ(b))|α+2

ψ1(χ(b),mχ(a))

(∫ 1

0

[
β(n+ 2, α − n)− βt (n+ 2, α − n)]pdt

) 1
p

×
(∫ 1

0

(
f ′′(mχ(b)+ tψ1(χ(x),mχ(b)))

)q
dt

) 1
q

≤ |ψ1(χ(x),mχ(a))|α+2

ψ1(χ(b),mχ(a))
δ

1
p (p, α, n)

×
[ ∫ 1

0

[
mh1(t)(f

′′(a))rq + p2(t)ψ2
(
(f ′′(x))rq , (f ′′(a))rq

) ] 1
r
dt

] 1
q

+ |ψ1(χ(x),mχ(b))|α+2

ψ1(χ(b),mχ(a))
δ

1
p (p, α, n)

×
[ ∫ 1

0

[
mh1(t)(f

′′(b))rq + p2(t)ψ2
(
(f ′′(x))rq , (f ′′(b))rq

) ] 1
r
dt

] 1
q

≤ |ψ1(χ(x),mχ(a))|α+2

ψ1(χ(b),mχ(a))
δ

1
p (p, α, n)

×
[(∫ 1

0
m

1
r (f ′′(a))qp

1
r

1 (t)dt

)r
+
(∫ 1

0
ψ

1
r

2

(
(f ′′(x))rq , (f ′′(a))rq

)
p

1
r

2 (t)dt

)r ] 1
rq

+ |ψ1(χ(x),mχ(b))|α+2

ψ1(χ(b),mχ(a))
δ

1
p (p, α, n)

×
[(∫ 1

0
m

1
r (f ′′(b))qp

1
r

1 (t)dt

)r
+
(∫ 1

0
ψ

1
r

2

(
(f ′′(x))rq , (f ′′(b))rq

)
p

1
r

2 (t)dt

)r ] 1
rq

= δ
1
p (p, α, n)

ψ1(χ(b),mχ(a))

×
{
|ψ1(χ(x),mχ(a))|α+2

[
m
(
f ′′(a)

)rq
I r (p1(t); r)

+ ψ2
(
(f ′′(x))rq , (f ′′(a))rq

)
I r (p2(t); r)

] 1
rq
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+ |ψ1(χ(x),mχ(b))|α+2
[
m
(
f ′′(b)

)rq
I r (p1(t); r)

+ ψ2
(
(f ′′(x))rq , (f ′′(b))rq

)
I r (p2(t); r)

] 1
rq

}
.

The proof of theorem 2.9 is completed. -.
We point out some special cases of Theorem 2.9 as follows:

Corollary 2.10 In Theorem 2.9, if we choose α = n + 1 where n = 0, 1, 2, . . . ,
we have the following Hermite–Hadamard type inequality for generalized
((p1, p2); (ψ1, ψ2))-convex mappings via fractional integrals:

∣∣∣∣−
ψn+2

1 (χ(x),mχ(a))f ′(mχ(a))+ ψn+2
1 (χ(x),mχ(b))f ′(mχ(b))

(n+ 2)ψ1(χ(b),mχ(a))

+ ψ
n+1
1 (χ(x),mχ(a))f (mχ(a)+ ψ1(χ(x),mχ(a)))+ ψn+1

1 (χ(x),mχ(b))f (mχ(b)+ ψ1(χ(x),mχ(b)))

ψ1(χ(b),mχ(a))

− �(n+ 2)

ψ1(χ(b),mχ(a))

×
[
J n+1
(mχ(a)+ψ1(χ(x),mχ(a)))

−f (mχ(a))+ J n+1
(mχ(b)+ψ1(χ(x),mχ(b)))

−f (mχ(b))
]∣∣∣∣

≤ δ
1
p (p, n+ 1, n)

ψ1(χ(b),mχ(a))
(2.5)

×
{
|ψ1(χ(x),mχ(a))|n+3

[
m
(
f ′′(a)

)rq
I r (p1(t); r)

+ ψ2
(
(f ′′(x))rq , (f ′′(a))rq

)
I r (p2(t); r)

] 1
rq

+
{
|ψ1(χ(x),mχ(b))|n+3

[
m
(
f ′′(b)

)rq
I r (p1(t); r)

+ ψ2
(
(f ′′(x))rq , (f ′′(b))rq

)
I r (p2(t); r)

] 1
rq

}
.

Corollary 2.11 In Theorem 2.9 for p = q = 2, we have the following Hermite–
Hadamard type inequality for generalized ((p1, p2); (ψ1, ψ2))-convex mappings
via conformable fractional integrals:

∣∣If,ψ1,χ (x;α, n,m, a, b)
∣∣ ≤

√
δ(2, α, n)

ψ1(χ(b),mχ(a))
(2.6)

×
{
|ψ1(χ(x),mχ(a))|α+2

[
m
(
f ′′(a)

)2r
I r (p1(t); r)

+ ψ2

(
(f ′′(x))2r , (f ′′(a))2r

)
I r (p2(t); r)

] 1
2r
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+
{
|ψ1(χ(x),mχ(b))|α+2

[
m
(
f ′′(b)

)2r
I r (p1(t); r)

+ ψ2

(
(f ′′(x))2r , (f ′′(b))2r

)
I r (p2(t); r)

] 1
2r
}
.

Corollary 2.12 In Theorem 2.9 for p1(t) = p2(t) = 1 and f ′′(x) ≤ L, ∀x ∈
I, we get the following Hermite–Hadamard type inequality for generalized
((m, P ); (ψ1, ψ2))-convex mappings via conformable fractional integrals:

∣∣If,ψ1,χ (x;α, n,m, a, b)
∣∣ ≤ δ

1
p (p, α, n)

ψ1(χ(b),mχ(a))
(2.7)

×
[
|ψ1(χ(x),mχ(a))|α+2 + |ψ1(χ(x),mχ(b))|α+2

][
mLrq + ψ2

(
Lrq, Lrq

) ] 1
rq
.

Corollary 2.13 In Theorem 2.9 for p1(t) = h(1 − t), p2(t) = h(t) and f ′′(x) ≤
L, ∀x ∈ I, we get the following Hermite–Hadamard type inequality for generalized
((m, h); (ψ1, ψ2))-convex mappings via conformable fractional integrals:

∣∣If,ψ1,χ (x;α, n,m, a, b)
∣∣ ≤ δ

1
p (p, α, n)

ψ1(χ(b),mχ(a))
I

1
q (h(t); r) (2.8)

×
[
|ψ1(χ(x),mχ(a))|α+2 + |ψ1(χ(x),mχ(b))|α+2

][
mLrq + ψ2

(
Lrq, Lrq

) ] 1
rq
.

Corollary 2.14 In Corollary 2.13 for p1(t) = (1 − t)s, p2(t) = t s , we get the
following Hermite–Hadamard type inequality for generalized ((m, s); (ψ1, ψ2))-
Breckner-convex mappings via conformable fractional integrals:

∣∣If,ψ1,χ (x;α, n,m, a, b)
∣∣ ≤ δ

1
p (p, α, n)

ψ1(χ(b),mχ(a))

(
r

r + s
) 1
q

(2.9)

×
[
|ψ1(χ(x),mχ(a))|α+2 + |ψ1(χ(x),mχ(b))|α+2

][
mLrq + ψ2

(
Lrq, Lrq

) ] 1
rq
.

Corollary 2.15 In Corollary 2.13 for p1(t) = (1 − t)−s , p2(t) = t−s and
0 < s < r, we get the following Hermite–Hadamard type inequality for generalized
((m, s); (ψ1, ψ2))-Godunova-Levin-Dragomir-convex mappings via conformable
fractional integrals:

∣∣If,ψ1,χ (x;α, n,m, a, b)
∣∣ ≤ δ

1
p (p, α, n)

ψ1(χ(b),mχ(a))

(
r

r − s
) 1
q

(2.10)

×
[
|ψ1(χ(x),mχ(a))|α+2 + |ψ1(χ(x),mχ(b))|α+2

][
mLrq + ψ2

(
Lrq, Lrq

) ] 1
rq
.
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Corollary 2.16 In Theorem 2.9 for p1(t) = p2(t) = t (1 − t) and f ′′(x) ≤
L, ∀x ∈ I, we get the following Hermite–Hadamard type inequality for generalized
((m, tgs); (ψ1, ψ2))-convex mappings via conformable fractional integrals:

∣∣If,ψ1,χ (x;α, n,m, a, b)
∣∣ ≤ δ

1
p (p, α, n)

ψ1(χ(b),mχ(a))
β

1
q

(
1+ 1

r
, 1+ 1

r

)
(2.11)

×
[
|ψ1(χ(x),mχ(a))|α+2 + |ψ1(χ(x),mχ(b))|α+2

][
mLrq + ψ2

(
Lrq, Lrq

) ] 1
rq
.

Corollary 2.17 In Corollary 2.13 for p1(t) =
√

1− t
2
√
t
, p2(t) =

√
t

2
√

1− t and

r ∈ ( 1
2 , 1

]
, we get the following Hermite–Hadamard type inequality for generalized

(m; (ψ1, ψ2))−MT -convex mappings via conformable fractional integrals:

∣∣If,ψ1,χ (x;α, n,m, a, b)
∣∣ ≤ δ

1
p (p, α, n)

ψ1(χ(b),mχ(a))
β

1
q

(
1− 1

2r
, 1+ 1

2r

)
(2.12)

×
[
|ψ1(χ(x),mχ(a))|α+2 + |ψ1(χ(x),mχ(b))|α+2

][
mLrq + ψ2

(
Lrq, Lrq

) ] 1
rq
.

Theorem 2.18 Let α ∈ (n, n+ 1], where n = 0, 1, 2, . . . , and 0 < r ≤ 1. Also, let
p1, p2 : [0, 1] −→ [0,+∞) and χ : I −→  are continuous functions. Suppose
K = [mχ(a),mχ(a) + ψ1(χ(b),mχ(a))] ⊆  be an open m-invex subset with
respect to ψ1 :  × −→  for some fixed m ∈ (0, 1], where ψ1(χ(b),mχ(a)) >

0 and a < b. Assume that f : K −→ (0,+∞) be a twice differentiable mapping
on K◦ such that f ′′ ∈ L1(K) and ψ2 : f (K) × f (K) −→ [0,+∞). If (f ′′(x))q
is generalized ((p1, p2); (ψ1, ψ2))-convex mapping and q ≥ 1, then the following
inequality for conformable fractional integrals holds:

∣∣If,ψ1,χ (x;α, n,m, a, b)
∣∣ ≤ β

1− 1
q (n+ 3, α − n)

ψ1(χ(b),mχ(a))
(2.13)

×
{
|ψ1(χ(x),mχ(a))|α+2

[
m
(
f ′′(a)

)rq
I r (p1(t);α, n, r)

+ ψ2
(
(f ′′(x))rq , (f ′′(a))rq

)
I r (p2(t);α, n, r)

] 1
rq

+ |ψ1(χ(x),mχ(b))|α+2
[
m
(
f ′′(b)

)rq
I r (p1(t);α, n, r)

+ ψ2
(
(f ′′(x))rq , (f ′′(b))rq

)
I r (p2(t);α, n, r)

] 1
rq

}
,
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where

I (pi(t);α, n, r) :=
∫ 1

0

[
β(n+ 2, α− n)− βt (n+ 2, α− n)]p

1
r

i (t)dt, ∀ i = 1, 2.

Proof From Lemma 2.7, generalized ((p1, p2); (ψ1, ψ2))-convexity of (f ′′(x))q,
the well-known power mean inequality, Minkowski inequality and properties of the
modulus, we have

∣∣If,ψ1,χ (x;α, n,m, a, b)
∣∣ ≤ |ψ1(χ(x),mχ(a))|α+2

|ψ1(χ(b),mχ(a))|

×
∫ 1

0

∣∣β(n+ 2, α − n)− βt (n+ 2, α − n)∣∣∣∣f ′′(mχ(a)+ tψ1(χ(x),mχ(a)))
∣∣dt

+ |ψ1(χ(x),mχ(b))|α+2

|ψ1(χ(b),mχ(a))|

×
∫ 1

0

∣∣β(n+ 2, α − n)− βt (n+ 2, α − n)∣∣∣∣f ′′(mχ(b)+ tψ1(χ(x),mχ(b)))
∣∣dt

≤ |ψ1(χ(x),mχ(a))|α+2

ψ1(χ(b),mχ(a))

(∫ 1

0

[
β(n+ 2, α − n)− βt (n+ 2, α − n)]dt

)1− 1
q

×
(∫ 1

0

[
β(n+ 2, α − n)− βt (n+ 2, α − n)] (f ′′(mχ(a)+ tψ1(χ(x),mχ(a)))

)q
dt

) 1
q

+ |ψ1(χ(x),mχ(b))|α+2

ψ1(χ(b),mχ(a))

(∫ 1

0

[
β(n+ 2, α − n)− βt (n+ 2, α − n)]dt

)1− 1
q

×
(∫ 1

0

[
β(n+ 2, α − n)− βt (n+ 2, α − n)] (f ′′(mχ(b)+ tψ1(χ(x),mχ(b)))

)q
dt

) 1
q

≤ |ψ1(χ(x),mχ(a))|α+2

ψ1(χ(b),mχ(a))
β

1− 1
q (n+ 3, α − n)

×
[ ∫ 1

0

[
β(n+ 2, α − n)− βt (n+ 2, α − n)]

×
[
mh1(t)(f

′′(a))rq + p2(t)ψ2
(
(f ′′(x))rq , (f ′′(a))rq

) ] 1
r
dt

] 1
q

+ |ψ1(χ(x),mχ(b))|α+2

ψ1(χ(b),mχ(a))
β

1− 1
q (n+ 3, α − n)

×
[ ∫ 1

0

[
β(n+ 2, α − n)− βt (n+ 2, α − n)]

×
[
mh1(t)(f

′′(b))rq + p2(t)ψ2
(
(f ′′(x))rq , (f ′′(b))rq

) ] 1
r
dt

] 1
q
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≤ |ψ1(χ(x),mχ(a))|α+2

ψ1(χ(b),mχ(a))
β

1− 1
q (n+ 3, α − n)

×
[(∫ 1

0
m

1
r (f ′′(a))q

[
β(n+ 2, α − n)− βt (n+ 2, α − n)]p

1
r

1 (t)dt

)r

+
(∫ 1

0
ψ

1
r

2

(
(f ′′(x))rq , (f ′′(a))rq

) [
β(n+ 2, α − n)− βt (n+ 2, α − n)]p

1
r

2 (t)dt

)r ] 1
rq

+ |ψ1(χ(x),mχ(b))|α+2

ψ1(χ(b),mχ(a))
β

1− 1
q (n+ 3, α − n)

×
[(∫ 1

0
m

1
r (f ′′(b))q

[
β(n+ 2, α − n)− βt (n+ 2, α − n)]p

1
r

1 (t)dt

)r

+
(∫ 1

0
ψ

1
r

2

(
(f ′′(x))rq , (f ′′(b))rq

) [
β(n+ 2, α − n)− βt (n+ 2, α − n)]p

1
r

2 (t)dt

)r ] 1
rq

= β
1− 1

q (n+ 3, α − n)
ψ1(χ(b),mχ(a))

×
{
|ψ1(χ(x),mχ(a))|α+2

[
m
(
f ′′(a)

)rq
I r (p1(t);α, n, r)

+ ψ2
(
(f ′′(x))rq , (f ′′(a))rq

)
I r (p2(t);α, n, r)

] 1
rq

+ |ψ1(χ(x),mχ(b))|α+2
[
m
(
f ′′(b)

)rq
I r (p1(t);α, n, r)

+ ψ2
(
(f ′′(x))rq , (f ′′(b))rq

)
I r (p2(t);α, n, r)

] 1
rq

}
.

The proof of theorem 2.18 is completed. -.
We point out some special cases of Theorem 2.18 as follows:

Corollary 2.19 In Theorem 2.18, if we choose α = n + 1 where n = 0, 1, 2, . . . ,
we have the following Hermite–Hadamard type inequality for generalized
((p1, p2); (ψ1, ψ2))-convex mappings via fractional integrals:

∣∣∣∣−
ψn+2

1 (χ(x),mχ(a))f ′(mχ(a))+ ψn+2
1 (χ(x),mχ(b))f ′(mχ(b))

(n+ 2)ψ1(χ(b),mχ(a))

+ ψ
n+1
1 (χ(x),mχ(a))f (mχ(a)+ ψ1(χ(x),mχ(a)))+ ψn+1

1 (χ(x),mχ(b))f (mχ(b)+ ψ1(χ(x),mχ(b)))

ψ1(χ(b),mχ(a))

− �(n+ 2)

ψ1(χ(b),mχ(a))

×
[
J n+1
(mχ(a)+ψ1(χ(x),mχ(a)))

−f (mχ(a))+ J n+1
(mχ(b)+ψ1(χ(x),mχ(b)))

−f (mχ(b))
]∣∣∣∣

≤
(

1

n+ 3

)1− 1
q 1

ψ1(χ(b),mχ(a))
(2.14)
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×
{
|ψ1(χ(x),mχ(a))|n+3

[
m
(
f ′′(a)

)rq
I r (p1(t); n+ 1, n, r)

+ ψ2
(
(f ′′(x))rq , (f ′′(a))rq

)
I r (p2(t); n+ 1, n, r)

] 1
rq

+ |ψ1(χ(x),mχ(b))|n+3
[
m
(
f ′′(b)

)rq
I r (p1(t); n+ 1, n, r)

+ ψ2
(
(f ′′(x))rq , (f ′′(b))rq

)
I r (p2(t); n+ 1, n, r)

] 1
rq

}
.

Corollary 2.20 In Theorem 2.18 for q = 1, we have the following Hermite–
Hadamard type inequality for generalized ((p1, p2); (ψ1, ψ2))-convex mappings
via conformable fractional integrals:

∣∣If,ψ1,χ (x;α, n,m, a, b)
∣∣ ≤ 1

ψ1(χ(b),mχ(a))
(2.15)

×
{
|ψ1(χ(x),mχ(a))|α+2

[
m
(
f ′′(a)

)r
I r (p1(t);α, n, r)

+ψ2
(
(f ′′(x))r , (f ′′(a))r

)
I r (p2(t);α, n, r)

] 1
r

+|ψ1(χ(x),mχ(b))|α+2
[
m
(
f ′′(b)

)r
I r (p1(t);α, n, r)

+ψ2
(
(f ′′(x))r , (f ′′(b))r

)
I r (p2(t);α, n, r)

] 1
r

}
.

Corollary 2.21 In Theorem 2.18 for p1(t) = p2(t) = 1 and f ′′(x) ≤ L, ∀x ∈
I, we get the following Hermite–Hadamard type inequality for generalized
((m, P ); (ψ1, ψ2))-convex mappings via conformable fractional integrals:

∣∣If,ψ1,χ (x;α, n,m, a, b)
∣∣ ≤ β(n+ 3, α − n)

ψ1(χ(b),mχ(a))
(2.16)

×
[
|ψ1(χ(x),mχ(a))|α+2 + |ψ1(χ(x),mχ(b))|α+2

][
mLrq + ψ2

(
Lrq, Lrq

) ] 1
rq
.

Corollary 2.22 In Theorem 2.18 for p1(t) = h(1− t), p2(t) = h(t) and f ′′(x) ≤
L, ∀x ∈ I, we get the following Hermite–Hadamard type inequality for generalized
((m, h); (ψ1, ψ2))-convex mappings via conformable fractional integrals:

∣∣If,ψ1,χ (x;α, n,m, a, b)
∣∣ ≤ β

1− 1
q (n+ 3, α − n)

ψ1(χ(b),mχ(a))
(2.17)
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×
[
|ψ1(χ(x),mχ(a))|α+2 + |ψ1(χ(x),mχ(b))|α+2

]

×
[
mLrqI r (h(1− t);α, n, r)+ ψ2

(
Lrq, Lrq

)
I r (h(t);α, n, r)

] 1
rq
.

Corollary 2.23 In Corollary 2.22 for p1(t) = (1 − t)s, p2(t) = t s , we get the
following Hermite–Hadamard type inequality for generalized ((m, s); (ψ1, ψ2))-
Breckner-convex mappings via conformable fractional integrals:

∣∣If,ψ1,χ (x;α, n,m, a, b)
∣∣ ≤ β

1− 1
q (n+ 3, α − n)

ψ1(χ(b),mχ(a))
(2.18)

×
[
|ψ1(χ(x),mχ(a))|α+2 + |ψ1(χ(x),mχ(b))|α+2

]

×
[
mLrqI r ((1− t)s;α, n, r)+ ψ2

(
Lrq, Lrq

)
I r (ts;α, n, r)

] 1
rq
.

Corollary 2.24 In Corollary 2.22 for p1(t) = (1 − t)−s , p2(t) = t−s , we get the
following Hermite–Hadamard type inequality for generalized ((m, s); (ψ1, ψ2))-
Godunova-Levin-Dragomir-convex mappings via conformable fractional integrals:

∣∣If,ψ1,χ (x;α, n,m, a, b)
∣∣ ≤ β

1− 1
q (n+ 3, α − n)

ψ1(χ(b),mχ(a))
(2.19)

×
[
|ψ1(χ(x),mχ(a))|α+2 + |ψ1(χ(x),mχ(b))|α+2

]

×
[
mLrqI r ((1− t)−s;α, n, r)+ ψ2

(
Lrq, Lrq

)
I r (t−s;α, n, r)

] 1
rq
.

Corollary 2.25 In Theorem 2.18 for p1(t) = p2(t) = t (1 − t) and f ′′(x) ≤
L, ∀x ∈ I, we get the following Hermite–Hadamard type inequality for generalized
((m, tgs); (ψ1, ψ2))-convex mappings via conformable fractional integrals:

∣∣If,ψ1,χ (x;α, n,m, a, b)
∣∣ ≤ β

1− 1
q (n+ 3, α − n)

ψ1(χ(b),mχ(a))
I

1
q (t (1− t);α, n, r) (2.20)

×
[
|ψ1(χ(x),mχ(a))|α+2 + |ψ1(χ(x),mχ(b))|α+2

][
mLrq + ψ2

(
Lrq, Lrq

) ] 1
rq
.

Corollary 2.26 In Corollary 2.22 for p1(t) =
√

1− t
2
√
t
, p2(t) =

√
t

2
√

1− t , we get
the following Hermite–Hadamard type inequality for generalized (m; (ψ1, ψ2)) −
MT -convex mappings via conformable fractional integrals:
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∣∣If,ψ1,χ (x;α, n,m, a, b)
∣∣ ≤ β

1− 1
q (n+ 3, α − n)

ψ1(χ(b),mχ(a))
(2.21)

×
[
|ψ1(χ(x),mχ(a))|α+2 + |ψ1(χ(x),mχ(b))|α+2

]

×
[
mLrqI r

(√
1− t
2
√
t
;α, n, r

)
+ ψ2

(
Lrq, Lrq

)
I r

( √
t

2
√

1− t ;α, n, r
)] 1

rq

.

Remark 2.27 For ψ2(f
r(y), f r(x)) = f r(y) − f r(x), ∀x, y ∈ I and 0 < r ≤

1, by our Theorems 2.9 and 2.18 and their corresponding corollaries, respec-
tively 2.10–2.17 and 2.19–2.26, we can get some new special Hermite–Hadamard
type inequalities associated with generalized ((p1, p2); (ψ1, ψ2))-convex mappings
via conformable fractional integrals and fractional integrals. The details are left to
the interested reader.

3 Applications to Special Means

Definition 3.1 ([4]) A functionM :  2+ −→  + is called a Mean function if it has
the following properties:

(1) Homogeneity:M(ax, ay) = aM(x, y), for all a > 0,
(2) Symmetry:M(x, y) = M(y, x),
(3) Reflexivity:M(x, x) = x,
(4) Monotonicity: If x ≤ x′ and y ≤ y′, thenM(x, y) ≤ M(x′, y′),
(5) Internality: min{x, y} ≤ M(x, y) ≤ max{x, y}.
We consider some means for different positive real numbers α and β.

(1) The arithmetic mean:

A := A(α, β) = α + β
2
.

(2) The geometric mean:

G := G(α, β) = √
αβ.

(3) The harmonic mean:

H := H(α, β) = 2
1
α
+ 1
β

.

(4) The power mean:
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Pr := Pr(α, β) =
(
αr + βr

2

) 1
r

, r ≥ 1.

(5) The identric mean:

I := I (α, β) =
{

1
e

(
ββ

αα

)
, α 	= β;

α, α = β.

(6) The logarithmic mean:

L := L(α, β) = β − α
ln(β)− ln(α)

.

(7) The generalized log-mean:

Lp := Lp(α, β) =
[
βp+1 − αp+1

(p + 1)(β − α)
] 1
p

; p ∈  \ {−1, 0}.

(8) The weighted p-power mean:

Mp

(
α1, α2, · · · , αn
u1, u2, · · · , un

)
=

(
n∑

i=1

αiu
p
i

) 1
p

,

where 0 ≤ αi ≤ 1, ui > 0 (i = 1, 2, . . . , n) with
∑n
i=1 αi = 1.

It is well known that Lp is monotonic nondecreasing over p ∈  with L−1 := L
and L0 := I. In particular, we have the following inequality H ≤ G ≤ L ≤ I ≤ A.
Now, let a and b be positive real numbers such that a < b. Consider a continuous
function χ : I −→  , ψ1 :  ×  −→  , ψ2 : f (K) × f (K) −→ [0,+∞),
and M := M(χ(a), χ(b)) : [χ(a), χ(a) + ψ1(χ(b), χ(a))] × [χ(a), χ(a) +
ψ1(χ(b), χ(a))] −→  +, which is one of the above mentioned means. Therefore,
one can obtain various inequalities using the results of Sect. 2 for these means as
follows: Replace ψ1(χ(y), χ(x)) = M(χ(x), χ(y)), ∀x, y ∈ I, for value m = 1
in (2.4) and (2.13), one can obtain the following interesting inequalities involving
means:

∣∣If,M(·,·),χ (x;α, n, 1, a, b)
∣∣ ≤ δ

1
p (p, α, n)

M
(3.1)

×
{
Mα+2(χ(x), χ(a))

[ (
f ′′(a)

)rq
I r (p1(t); r)

+ ψ2
(
(f ′′(x))rq , (f ′′(a))rq

)
I r (p2(t); r)

] 1
rq
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+Mα+2(χ(x), χ(b))
[ (
f ′′(b)

)rq
I r (p1(t); r)

+ ψ2
(
(f ′′(x))rq , (f ′′(b))rq

)
I r (p2(t); r)

] 1
rq

}
,

∣∣If,M(·,·),χ (x;α, n, 1, a, b)
∣∣ ≤ β

1− 1
q (n+ 3, α − n)

M
(3.2)

×
{
Mα+2(χ(x), χ(a))

[ (
f ′′(a)

)rq
I r (p1(t);α, n, r)

+ ψ2
(
(f ′′(x))rq , (f ′′(a))rq

)
I r (p2(t);α, n, r)

] 1
rq

+Mα+2(χ(x), χ(b))
[ (
f ′′(b)

)rq
I r (p1(t);α, n, r)

+ ψ2
(
(f ′′(x))rq , (f ′′(b))rq

)
I r (p2(t);α, n, r)

] 1
rq

}
.

Letting M(χ(x), χ(y)) := A,G,H,Pr, I, L,Lp,Mp, ∀ x, y ∈ I in (3.1) and
(3.2), we get inequalities involving means for a particular choices of twice differ-
entiable generalized ((p1, p2); (ψ1, ψ2))-convex mapping f. The details are left to
the interested reader.
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20. I. Işcan, M. Kunt, Hermite–Hadamard-Fejér type inequalities for harmonically quasi-convex
functions via fractional integrals. Kyungpook Math. J. 56, 845–859 (2016)

21. A. Kashuri, R. Liko, On Hermite–Hadamard type inequalities for generalized (s,m, χ)-
preinvex functions via k-fractional integrals. Adv. Inequal. Appl. 6, 1–12 (2017)

22. A. Kashuri, R. Liko, Generalizations of Hermite–Hadamard and Ostrowski type inequalities
forMTm-preinvex functions. Proyecciones 36(1), 45–80 (2017)

23. A. Kashuri, R. Liko, Hermite–Hadamard type fractional integral inequalities for generalized
(r; s,m, ϕ)-preinvex functions. Eur. J. Pure Appl. Math. 10(3), 495–505 (2017)

24. A. Kashuri, R. Liko, Hermite–Hadamard type fractional integral inequalities for twice differ-
entiable generalized (s,m, ϕ)-preinvex functions. Konuralp J. Math. 5(2), 228–238 (2017)

25. A. Kashuri, R. Liko, Hermite–Hadamard type inequalities for generalized (s,m, ϕ)-preinvex
functions via k-fractional integrals. Tbil. Math. J. 10(4), 73–82 (2017)

26. A. Kashuri, R. Liko, Hermite–Hadamard type fractional integral inequalities for MT(m,ϕ)-
preinvex functions. Stud. Univ. Babeş-Bolyai, Math. 62(4), 439–450 (2017)
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Some New Fractional Inequalities Using
n-Polynomials s-Type Convexity

Artion Kashuri, Themistocles M. Rassias, and Rozana Liko

Abstract In the present paper, the authors establish a new version of the Hermite–
Hadamard and Ostrowski type fractional integral inequalities for a class of n-
polynomial s-type convex functions. Using our generalizations we are able to
also deduce some already known results. We present two different techniques, for
functions whose first and second derivatives in absolute value at certain powers are
n-polynomial s-type convex by employing k-fractional integral operators. These
techniques have yielded some interesting results. In the form of corollaries, some
estimates of k-fractional integrals are obtained which contain bounds of RL-
fractional integrals. We also obtain a refined bound of the Midpoint, Trapezoidal,
and Simpson type inequalities for twice differentiable n-polynomial s-type convex
functions.
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1 Introduction

Convexity has played a crucial role in the advancement of different areas of science
and technology. Due to its robustness, convex functions and convex sets have been
generalized and extended in various directions. The Hermite–Hadamard inequality
is a fundamental inequality which has been extensively used in several problems
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of pure and applied Mathematics, cf. [5–7, 9, 10, 26]. The Hermite–Hadamard type
inequality, cf. [16, 17], is stated as follows:

D
(θ1 + θ2

2

)
≤ 1

θ2 − θ1

∫ θ2

θ1

D(�)d� ≤ D(θ1)+D(θ2)

2
, (1.1)

where D is an integrable real valued function over an interval [θ1, θ2].
The inequality (1.1) and its various generalizations, refinements, extensions,

and converses, etc. have many applications in different fields of science, such as
electrical engineering, mathematical statistics, mathematical finance, information
theory, coding, to mention just a few (cf. [9, 10, 26]). It has been proved that a
function is convex if and only if it satisfies an integral inequality (1.1).

In [25], Ostrowski proved an inequality that establishes bounds of the integral
average of a function D over an interval [θ1, θ2] to its value D(�) at a point � ∈
[θ1, θ2].
Theorem 1.1 Let J ⊂  and D : J →  be a differentiable function in J ◦
(the interior of J ) such that θ1, θ2 ∈ J ◦ with θ1 < θ2. If |D′(ı)| ≤ K, for all
ı ∈ [θ1, θ2], then we have

∣∣∣D(�)− 1

θ2 − θ1

∫ θ2

θ1

D(�)d�
∣∣∣ ≤ K(θ2 − θ1)

[
1

4
+

(
�− θ1+θ2

2

)2

(θ2 − θ1)2

]
, ∀ � ∈ [θ1, θ2].

(1.2)

Ostrowski type inequalities have significant applications in numerical analysis
as they provide error estimates for many quadrature rules. In recent years, such
inequalities have been extended and generalized in various aspects, cf. [12–14, 28].
Moreover, fractional integral inequalities have several applications in scientific
domains (cf. [1–31]). In [31], the authors have derived several generalizations for
new Ostrowski type inequalities for generalized k-fractional integrals. Farid et al.
[12] established Ostrowski type fractional integral inequalities for s-Godunova–
Levin functions via k-fractional integrals (cf. [12–14, 27, 31]).

In the following, we present a class of functional variants for convex functions as
well as several other generalizations. The novel technique that we establish here is
useful to generate the Mandelbrot and Julia sets for quadratic and cubic polynomials
with s-convexity (cf. [19, 22, 33]).

We discuss some connections between the class of convex functions and s-type
convex functions.

Definition 1.1 Let s ∈ [0, 1]. We say that D : J →  is an s-type convex function
on J , if the inequality

D
(
ıx + (1− ı)y) ≤ [

1− s(1− ı)]D(x)+ [
1− sı]D(y) (1.3)

holds for all x, y ∈ J and ı ∈ [0, 1].
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Remark 1.1 In Definition 1.1:

(1) If we choose s = 1, then we derive the classical convex function.
(2) If we choose s = 0, then we derive the definition of P -function, as in [11].
(3) If D is s-type convex on J , then the codomain of D is [0,+∞).
(4) Indeed, let x be an arbitrary point on J , then by the s-type convexity of D, we

have

D(ıθ + (1− ı)x) ≤ [
1− s(1− ı)]D(θ)+ [

1− sı]D(x)

for all θ ∈ J and ı ∈ [0, 1].
If we choose ı = 1, then we get

D(θ) ≤ D(θ)+ (1− s)D(x)

⇒ (1− s)D(x) ≥ 0 ⇒ D(x) = 0.

Proposition 1.1 Every nonnegative convex function is also s-type convex function.

Proof The proof is evident, since

s(1− ı) ≤ (1− ı) and ı ≥ sı

for all ı ∈ [0, 1] and s ∈ [0, 1]. -.
We present below the definition of n-polynomial s-type convex function.

Definition 1.2 Let s ∈ [0, 1] with n ∈ N. We say that D : J →  is a n-
polynomial s-type convex function on J , if the inequality

D
(
ıx + (1− ı)y) ≤ 1

n

n∑

i=1

[
1− (s(1− ı))i]D(x)+ 1

n

n∑

i=1

[
1− (sı)i]D(y) (1.4)

holds for all x, y ∈ J and ı ∈ [0, 1].
Remark 1.2 In Definition 1.2:

(1) If we choose s = 0, then we get P -functions, as in [11].
(2) If we choose s = 1, then we get Definition 2 of [32].
(3) If we choose n = s = 1, then we get Definition 1.1.
(4) If D is a polynomial s-convex function then the codomain of D is [0,+∞).
Remark 1.3 Every nonnegative n-polynomial convex function is also n-polynomial
s-type convex function. Indeed

1

n

n∑

i=1

[
1− (s(1− ı))i] ≥ 1

n

n∑

i=1

[
1− (1− ı)i]
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and

1

n

n∑

i=1

[
1− ıi] ≤ 1

n

n∑

i=1

[
1− (sı)i]

for all ı ∈ [0, 1], n ∈ N and s ∈ [0, 1].
We now demonstrate some essential ideas associated with the fractional integral
which are mainly due to Mubeen et al. [24].

Let D ∈ L1([θ1, θ2]). Then k-fractional integrals of order α > 0 with k > 0 are
defined by

J α,k
θ+1

D(�) = 1

k�k(α)

∫ �

θ1

(�− ξ) αk−1D(ξ)dξ, � > θ1 (1.5)

and

J α,k
θ−2

D(�) = 1

k�k(α)

∫ θ2

�

(ξ − �) αk−1D(ξ)dξ, � < θ2, (1.6)

where �k(α) is the k-Gamma function [8], defined as

�k(α) =
∫ +∞

0
ıα−1e−

ık

k dı.

It holds that

�k(α + k) = α�k(α)

and for k = 1, the k-fractional integrals yield the well-known RL-fractional
integrals.

In the following we recall the Euler beta function and hypergeometric functions,
respectively,

β(x, y) = �(x)�(y)
�(x + y) =

∫ 1

0
ıx−1(1− ı)y−1dı, x, y > 0

and

2F1(a, b, c, z) = 1

β(b, c − b)
∫ 1

0
ıb−1(1− ı)c−b−1(1− zı)−adı, 0 < b < c, |z| < 1,

for more details, see [18].
Motivated by the above results and literatures, the aim of this paper is to derive

some interesting new integral inequalities including a Hermite–Hadamard type and
Ostrowski type pertaining n-polynomial s-type convexity via k-fractional integral
operator. By making use of the fractional operators, we will establish new estimates
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on generalizations whose first and second derivatives in absolute value at certain
powers are n-polynomial s-type convex. Interestingly, special cases of the presented
results are RL-fractional integral inequalities and quadrature rules.

2 Hermite–Hadamard Inequalities for n-Polynomial s-Type
Convex Functions

In this section, we will state and prove some inequalities of Hermite–Hadamard type
for n-polynomial s-type convex functions.

Theorem 2.1 For s ∈ [0, 1], α, k > 0 with n ∈ N, assume that there is a positive
function D : J →  with θ2 > θ1 and D ∈ L1([θ1, θ2]). If D is an n-polynomial
s-type convex function on J , then

[
n(2− s)2n

2n(2n− s(n+ 1))+ sn+1

]
D
( θ1 + θ2

2

)
≤ �k(k + α)
(θ2 − θ1)

α
k

[
J α,k
θ+1

D(θ2)+ J α,k
θ−2

D(θ1)

]

≤
[
D(θ1)+D(θ2)

]

n

[ n∑

i=1

[
α(2− si )+ 2ik)

(α + ik) − αs
i

k
β
(α
k
, i + 1

)]]
. (2.1)

Proof By utilizing the n-polynomial s-type convexity of D on J , we have

D
(�1 + �2

2

)
≤ 1

n

n∑

i=1

[
1− ( s

2

)i][D(�1)+D(�2)
]
. (2.2)

Setting �1 = ıθ2 + (1− ı)θ1, �2 = ıθ1 + (1− ı)θ2, we get

D
( θ1 + θ2

2

)
≤ 1

n

n∑

i=1

[
1− ( s

2

)i]
[
D(ıθ2 + (1− ı)θ1)+D(ıθ1 + (1− ı)θ2)

]
. (2.3)

Multiplying both sides of (2.3) by ı
α
k
−1, then integrating with respect to ı over

[0, 1], we obtain

k

α

( n(2− s)2n
2n(2n− s(n+ 1))+ sn+1

)
D
(θ1 + θ2

2

)

≤
[ ∫ 1

0
ı
α
k
−1D(ıθ2 + (1− ı)θ1)dı +

∫ 1

0
ı
α
k
−1D(ıθ1 + (1− ı)θ2)dı

]

= 1

(θ2 − θ1)
α
k

[ ∫ θ2

θ1

( v − θ1

θ2 − θ1

) α
k
−1

D(v)dv +
∫ θ2

θ1

( θ2 − v
θ2 − θ1

) α
k
−1

D(v)dv
]

= k�k(α)

(θ2 − θ1)
α
k

[
J α,k
θ+1

D(θ2)+ J α,k
θ−2

D(θ1)

]
.
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Then, we have

( n(2− s)2n
2n(2n− s(n+ 1))+ sn+1

)
D
( θ1 + θ2

2

)
≤ �k(k + α)
(θ2 − θ1)

α
k

[
J α,k
θ+1

D(θ2)+ J α,k
θ−2

D(θ1)

]

and the first inequality of (2.1) is obtained. For the proof of the second inequality
in (2.1), we first note that, if D is n-polynomial s-type convex, we get

D
(
ıθ2 + (1− ı)θ1

)
≤ 1

n

n∑

i=1

[
1− (sı)i]D(θ1)+ 1

n

n∑

i=1

[
1− (s(1− ı))i]D(θ2)

and

D
(
ıθ1 + (1− ı)θ2

)
≤ 1

n

n∑

i=1

[
1− sıi]D(θ2)+ 1

n

n∑

i=1

[
1− (s(1− ı))i]D(θ1).

Adding the above inequalities, we obtain

D
(
ıθ2 + (1− ı)θ1

)
+D

(
ıθ1 + (1− ı)θ2

)
≤
[
D(θ1)+D(θ2)

][1

n

n∑

i=1

[
1− sı]i

+1

n

n∑

i=1

[
1− (s(1− ı))i]

]
. (2.4)

Again, multiplying both sides of (2.4) by ı
α
k
−1, and integrating the inequality with

respect to ı over [0, 1], and then making the change of variable, we deduce that

∫ 1

0
ı
α
k
−1D

(
ıθ2 + (1− ı)θ1

)
dı +

∫ 1

0
ı
α
k
−1D

(
ıθ1 + (1− ı)θ2

)
dı

≤ [
D(θ1)+D(θ2)

] ∫ 1

0
ı
α
k
−1
[1

n

n∑

i=1

[
1− (sı)i]+ 1

n

n∑

i=1

[
1− (s(1− ı))i]

]
dı,

which completes the proof. -.
Now, we derive some special cases of Theorem 2.1 as follows:

(I ) Choosing s = 1, we have:

Corollary 2.2 Under the assumptions of Theorem 2.1, we obtain

( n2n

2n(n− 1)+ 1

)
D
(θ1 + θ2

2

)
≤ �k(k + α)
(θ2 − θ1)

α
k

[
J α,k
θ+1

D(θ2)+ J α,k
θ−2

D(θ1)

]
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≤
[
D(θ1)+D(θ2)

]

n
×

n∑

i=1

[
α + 2ik)

(α + ik) −
α

k
β
(α
k
, i + 1

)]
.

(I I ) Setting s = 1 = k, we get

Corollary 2.3 Under the assumptions of Theorem 2.1, we get

( n2n

2n(n− 1)+ 1

)
D
(θ1 + θ2

2

)
≤ �(α + 1)

(θ2 − θ1)α

[
J α
θ+1
D(θ2)+ J α

θ−2
D(θ1)

]

≤
[
D(θ1)+D(θ2)

]

n

n∑

i=1

[
α + 2i

(α + i) − αβ
(
α, i + 1

)]
.

Remark 2.1 If we set s = 1 = k and α = 1, we obtain Theorem 4 of [32].

3 Ostrowski Type Inequalities for Differentiable Functions

In this section, we will prove some new estimates that refine Ostrowski type
inequalities for functions whose first derivative in absolute value at certain power
is higher order n-polynomial s-type convex.

Lemma 3.1 ([12]) Consider a differentiable function D : J →  on J ◦(interior
of J ) with θ2 > θ1 such that D′ ∈ L1[θ1, θ2]. Then

(�− θ1)
α
k + (θ2 − �) αk
θ2 − θ1

D(�)− �k(α + k)
θ2 − θ1

[
J α,k
�− D(θ1)+ J α,k

�+ D(θ2)
]

(3.1)

= (�− θ1)
α
k
+1

θ2 − θ1

∫ 1

0
ı
α
kD′(ı�+ (1− ı)θ1)dı − (θ2 − �) αk+1

θ2 − θ1

×
∫ 1

0
ı
α
kD′(ı�+ (1− ı)θ2)dı.

Using Lemma 3.1, the following results will be proved.

Theorem 3.2 For α, k > 0 with s ∈ [0, 1], n ∈ N assume that there is a
differentiable function D : J →  on J ◦(interior of J ) with θ2 > θ1 such that
D′ ∈ L1[θ1, θ2]. If |D′(�)| is an n-polynomial s-type convex function on J and
|D′(�)| ≤ K, ∀ � ∈ [θ1, θ2], then

∣∣∣∣
(�− θ1)

α
k + (θ2 − �) αk
θ2 − θ1

D(�)− �k(α + k)
θ2 − θ1

[
J α,k
�− D(θ1)+ J α,k

�+ D(θ2)
]∣∣∣∣ (3.2)
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≤ K
[
(�− θ1)

α
k
+1 + (θ2 − �) αk+1

θ2 − θ1

]
1

n

n∑

i=1

[[α(1− si)+ k(i + 1− si)
(α + k)((α + (i + 1)k))

]

+
[ k

α + k − s
iβ
(α
k
+ 1, i + 1

)]]
.

Proof Using Lemma 3.1 and the fact that |D′| is an n-polynomial s-type convex on
J , we have

∣∣∣∣
(�− θ1)

α
k + (θ2 − �) αk
θ2 − θ1

D(�)− �k(α + k)
θ2 − θ1

[
J α,k
�− D(θ1)+ J α,k

�+ D(θ2)
]∣∣∣∣

≤ (�− θ1)
α
k
+1

θ2 − θ1

∫ 1

0
ı
α
k

∣∣∣D′(ı�+ (1− ı)θ1)

∣∣∣dı + (θ2 − �) αk+1

θ2 − θ1

×
∫ 1

0
ı
α
k

∣∣∣D′(ı�+ (1− ı)θ2)

∣∣∣dı

≤ (�− θ1)
α
k
+1

θ2 − θ1

∫ 1

0
ı
α
k

[
1

n

n∑

i=1

[
1− (sı)i

]
|D′(θ1)|

+1

n

n∑

i=1

[
1− (s(1− ı))i

]
|D′(�)|

]
dı

+ (θ2 − �) αk+1

θ2 − θ1

∫ 1

0
ı
α
k

[
1

n

n∑

i=1

[
1− (sı)i

]
|D′(θ2)|

+1

n

n∑

i=1

[
1− (s(1− ı))i

]
|D′(�)|

]
dı

≤
[ (�− θ1)

α
k
+1 + (θ2 − �) αk+1

θ2 − θ1

]K
n

n∑

i=1

[ ∫ 1

0
ı
α
k

[
1− (sı)i

]
dı

+
∫ 1

0
ı
α
k

[
1− (s(1− ı))i

]
dı

]

=
[
(�− θ1)

α
k
+1 + (θ2 − �) αk+1

θ2 − θ1

]K
n

n∑

i=1

[[α(1− si)+ k(i + 1− si)
(α + k)((α + (i + 1)k))

]

+
[ k

α + k − s
iβ
( α

k + 1
.i + 1

)]]
,

where we have used the following identities,
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∫ 1

0
ı
α
k

[
1− (sı)i

]
dı = α(1− si)+ k(i + 1− si)

(α + k)((α + (i + 1)k))

and

∫ 1

0
ı
α
k

[
1− (s(1− ı))i

]
dı = k

α + k − s
iβ
(α
k
+ 1, i + 1

)
.

This completes the proof. -.
Now, we derive some special cases of Theorem 3.2 as follows:

(I ) Taking k = 1, we have:

Corollary 3.3 For α > 0 with s ∈ [0, 1], n ∈ N, assume that there is a
differentiable function D : J →  on J ◦(interior of J ) with θ2 > θ1 such
that D′ ∈ L1[θ1, θ2]. If |D′(�)| is n-polynomial s-type convex function on J and
|D′(�)| ≤ K, � ∈ [θ1, θ2], then

∣∣∣∣
(�− θ1)

α + (θ2 − �)α
θ2 − θ1

D(�)− �(α + 1)

θ2 − θ1

[
J α
�−D(θ1)+ J α

�+D(θ2)
]∣∣∣∣

≤ K
[ (�− θ1)

α+1 + (θ2 − �)α+1

θ2 − θ1

]1

n

n∑

i=1

[[α(1− si)+ (i + 1− si)
(α + 1)(α + (i + 1))

]

+
[ 1

α + 1
− siβ

(
α + 1, i + 1

)]]
.

(I I ) Setting k = 1 = α, we get:

Corollary 3.4 For s ∈ [0, 1], n ∈ N, assume that there is a differentiable function
D : J →  on J ◦(interior of J ) with θ2 > θ1 such that D′ ∈ L1[θ1, θ2]. If |D′(�)|
is n-polynomial s-type convex function on J and |D′(�)| ≤ K, � ∈ [θ1, θ2], then

∣∣∣∣D(�)−
1

θ2 − θ1

∫ θ2

θ1

D(�)d�
∣∣∣∣ ≤ K

[ (�− θ1)
2 + (θ2 − �)2
θ2 − θ1

]

× 1

n

n∑

i=1

[
4+ 9i + 3i2 − 4si2 − 6si

2(i + 1)(i + 2)

]
.

Remark 3.1 Setting k = 1 = α along with s = 1 = n, then we recapture inequality
(1.2).

Theorem 3.5 For α, k > 0 with s ∈ [0, 1], n ∈ N, assume that there is a
differentiable function D : J →  on J ◦(interior of J ) with θ2 > θ1 such
that D′ ∈ L1[θ1, θ2]. If |D′(�)|q, where q ≥ 1, is an n-polynomial s-type convex
function on J and |D′(�)| ≤ K, ∀ � ∈ [θ1, θ2], then
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∣∣∣∣
(�− θ1)

α
k + (θ2 − �) αk
θ2 − θ1

D(�)− �k(α + k)
θ2 − θ1

[
J α,k
�− D(θ1)+ J α,k

�+ D(θ2)
]∣∣∣∣

≤ K
(

k

α + k
)1− 1

q
[
(�− θ1)

α
k
+1 + (θ2 − �) αk +1

θ2 − θ1

]
(3.3)

×
[

1

n

n∑

i=1

([
α(1− si)+ k(i + 1− si)
(α + k)(α + (i + 1)k)

]
+
[
k

α + k − s
iβ
(α
k
+ 1, i + 1

)])] 1
q

.

Proof Using Lemma 2.1, the fact that |D′|q is n-polynomial s-type convex on J
and the power mean inequality, we have

∣∣∣∣
(�− θ1)

α
k + (θ2 − �) αk
θ2 − θ1

D(�)− �k(α + k)
θ2 − θ1

[
J α,k
�− D(θ1)+ J α,k

�+ D(θ2)
]∣∣∣∣

≤ (�− θ1)
α
k
+1

θ2 − θ1

∫ 1

0
ı
α
k

∣∣∣D′(ı�+ (1− ı)θ1)

∣∣∣dı + (θ2 − �) αk+1

θ2 − θ1

×
∫ 1

0
ı
α
k

∣∣∣D′(ı�+ (1− ı)θ2)

∣∣∣dı

≤ (�− θ1)
α
k
+1

θ2 − θ1

( ∫ 1

0
ı
α
k dı

)1− 1
q
( ∫ 1

0
ı
α
k

∣∣∣D′(ı�+ (1− ı)θ1)

∣∣∣
q

dı
) 1
q

+ (θ2 − �) αk+1

θ2 − θ1

( ∫ 1

0
ı
α
k dı

)1− 1
q
( ∫ 1

0
ı
α
k

∣∣∣D′(ı�+ (1− ı)θ2)

∣∣∣
q

dı
) 1
q

≤
( k

α + k
)1− 1

q

[
(�− θ1)

α
k
+1

θ2 − θ1

((
1

n

n∑

i=1

∫ 1

0
ı
α
k

[
1− (sı)i

]
dı

)
|D′(θ1)|q

+
(

1

n

n∑

i=1

∫ 1

0
ı
α
k

[
1− (s(1− ı))i

]
dı

)
|D′(�)|q

) 1
q

+ (θ2 − �) αk+1

θ2 − θ1

((
1

n

n∑

i=1

∫ 1

0
ı
α
k

[
1− (sı)i

]
dı

)
|D′(θ2)|q

+
(

1

n

n∑

i=1

∫ 1

0
ı
α
k

[
1− (s(1− ı))i

]
dı

)
|D′(�)|q

) 1
q
]

≤ K
( k

α + k
)1− 1

q

[
(�− θ1)

α
k
+1 + (θ2 − �) αk+1

θ2 − θ1

]

×
[

1

n

n∑

i=1

([α(1− si)+ k(i + 1− si)
(α + k)((α + (i + 1)k))

]
+
[
k

α + k − s
iβ
(α
k
+ 1, i + 1

)])] 1
q

.
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This completes the proof. -.
Remark 3.2 If we choose q = 1, then our Theorem 3.5 reduces to Theorem 3.2.

Theorem 3.6 For α, k > 0 with s ∈ [0, 1], n ∈ N, assume that there is a
differentiable function D : J →  on J ◦(interior of J ) with θ2 > θ1 such that
D′ ∈ L1[θ1, θ2]. If |D′(�)|q, q > 1 is n-polynomial s-type convex function on J
and |D′(�)| ≤ K, � ∈ [θ1, θ2], then

∣∣∣∣
(�− θ1)

α
k + (θ2 − �) αk
θ2 − θ1

D(�)− �k(α + k)
θ2 − θ1

[
J α,k
�− D(θ1)+ J α,k

�+ D(θ2)
]∣∣∣∣ (3.4)

≤ K
(

k

pα + k
) 1
p
[
(�− θ1)

α
k
+1 + (θ2 − �) αk+1

θ2 − θ1

]
1

n

n∑

i=1

(
2(i + 1− si)

i + 1

) 1
q

,

where 1
p
+ 1
q
= 1.

Proof Using Lemma 2.1, the fact that |D′|q is n-polynomial s-type convex on J
and Hölder’s inequality, we have

∣∣∣∣
(�− θ1)

α
k + (θ2 − �) αk
θ2 − θ1

D(�)− �k(α + k)
θ2 − θ1

[
J α,k
�− D(θ1)+ J α,k

�+ D(θ2)
]∣∣∣∣

≤ (�− θ1)
α
k
+1

θ2 − θ1

∫ 1

0
ı
α
k

∣∣∣D′(ı�+ (1− ı)θ1)

∣∣∣dı + (θ2 − �) αk+1

θ2 − θ1

×
∫ 1

0
ı
α
k

∣∣∣D′(ı�+ (1− ı)θ2)

∣∣∣dı

≤ (�− θ1)
α
k
+1

θ2 − θ1

( ∫ 1

0
ı
pα
k dı

) 1
p

(∫ 1

0

∣∣∣D′(ı�+ (1− ı)θ1)

∣∣∣
q

dı

) 1
q

+ (θ2 − �) αk+1

θ2 − θ1

( ∫ 1

0
ı
pα
k dı

) 1
p

(∫ 1

0

∣∣∣D′(ı�+ (1− ı)θ2)

∣∣∣
q

dı

) 1
q

≤
( k

pα + k
) 1
p

[
(�− θ1)

α
k
+1

θ2 − θ1

((
1

n

n∑

i=1

∫ 1

0

[
1− (sı)i

]
dı

)
|D′(θ1)|q

+
(

1

n

n∑

i=1

∫ 1

0

[
1− (s(1− ı))i

]
dı

)
|D′(�)|q

) 1
q

+ (θ2 − �) αk+1

θ2 − θ1

((
1

n

n∑

i=1

∫ 1

0

[
1− (sı)i

]
dı

)
|D′(θ2)|q
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+
(

1

n

n∑

i=1

∫ 1

0

[
1− (s(1− ı))i

]
dı

)
|D′(�)|q

) 1
q
]

≤ K
(

k

pα + k
) 1
p
[
(�− θ1)

α
k
+1 + (θ2 − �) αk+1

θ2 − θ1

]
1

n

n∑

i=1

(
2(i + 1− si)

i + 1

) 1
q

.

This completes the proof. -.

4 Other Results About Ostrowski Type Inequalities for
Twice Differentiable Functions

In this section, the following useful fractional integral identity including the second-
order derivative of D will be proved.

Lemma 4.1 ([28]) For α, k > 0, assume that there is a twice differentiable function
D : J ⊂  →  on J ◦(interior of J ) with θ2 > θ1 such that D′′ ∈ L1[θ1, θ2].
Then the following identity holds:

(1− ρ)
[
(θ2 − �) αk − (�− θ1)

α
k

θ2 − θ1

]
D′(�)+

(
1+ α

k
− ρ

) [ (�− θ1)
α
k + (θ2 − �) αk
θ2 − θ1

]
D(�)

+ρ
[
(�− θ1)

α
k D(θ1)+ (θ2 − �) αk D(θ2)

θ2 − θ1

]
− �k(α + 2k)

θ2 − θ1

[
J α,k
�− D(θ1)+ J α,k

�+ D(θ2)
]

= (�− θ1)
α
k
+2

θ2 − θ1

∫ 1

0
ı(ρ − ı αk )D′′(ı�+ (1− ı)θ1)dı + (θ2 − ı) αk +2

θ2 − θ1

×
∫ 1

0
ı(ρ − ı αk )D′′(ı�+ (1− ı)θ2)dı (4.1)

for all � ∈ [θ1, θ2] and ρ ∈ [0, 1].
For the simplicity of the notation, let

%D
(
ρ, α, k; θ1, θ2, �

) = (1− ρ)
[
(θ2 − �) αk − (�− θ1)

α
k

θ2 − θ1

]
D′(�)+

(
1+ α

k
− ρ

)

×
[
(�− θ1)

α
k + (θ2 − �) αk
θ2 − θ1

]
D(�)

+ ρ
[
(�− θ1)

α
kD(θ1)+ (θ2 − �) αkD(θ2)

θ2 − θ1

]
− �k(α + 2k)

θ2 − θ1

×
[
J α,k
�− D(θ1)+ J α,k

�+ D(θ2)
]
. (4.2)
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Theorem 4.2 For α, k > 0 with s ∈ [0, 1], n ∈ N, assume that there is a twice
differentiable function D : J →  on J ◦(interior of J ) with θ2 > θ1 such that
D′′ ∈ L1[θ1, θ2]. If |D′′(�)| is an n-polynomial s-type convex function on J and for
all � ∈ [θ1, θ2], then

∣∣%D
(
ρ, α, k; θ1, θ2, �

)∣∣

≤ 1

n

n∑

i=1

C1(α, k; i, s)
[
(�− θ1)

α
k
+2

θ2 − θ1
|D′′(θ1)| + (θ2 − �) αk +2

θ2 − θ1
|D′′(θ2)|

]
(4.3)

+ (�− θ1)
α
k
+2 + (θ2 − �) αk +2

n(θ2 − θ1)

n∑

i=1

C2(α, k; i, s)|D′′(�)|,

where

C1(α, k; i, s) =
∫ 1

0
ı(ρ − ı αk )[1− (sı)i]dı

=
[
ρα − 2k(1− ρ)

2(α + 2k)
− si ρα − k(i + 2)(1− ρ)

(i + 2)(α + k(i + 2))

]
(4.4)

and

C2(α, k; i, s) =
∫ 1

0
ı(ρ − ı αk )[1− (s(1− ı))i]dı

=
[
ρα − 2k(1− ρ)

2(α + 2k)
− si

[
ρ

(i + 2)(i + 1)
− �

(
α
k
+ 2

)
�(i + 1)

�
(
α
k
+ i + 3

)
]]
. (4.5)

Proof Using Lemma 4.1, the property of the modulus and the n-polynomial s-type
convexity of |D′| on J , we derive that

∣∣∣∣(1− ρ)
[
(θ2 − �) αk − (�− θ1)

α
k

θ2 − θ1

]
D′(�)+ (1+ α

k
− ρ)

[
(�− θ1)

α
k + (θ2 − �) αk
θ2 − θ1

]
D(�)

+ρ
[
(�− θ1)

α
k D(θ1)+ (θ2 − �) αk D(θ2)

θ2 − θ1

]
− �k(α + 2k)

θ2 − θ1

×
[
J α,k
�+ D(θ1)+ J α,k

�− D(θ2)
]∣∣∣∣

≤ (�− θ1)
α
k
+2

θ2 − θ1

∫ 1

0
ı(ρ − ı αk )

∣∣∣D′′(ı�+ (1− ı)θ1)
∣∣dı + (θ2 − ı) αk +1

θ2 − θ1

×
∫ 1

0
ı(ρ − ı αk )

∣∣∣D′′(ı�+ (1− ı)θ2)

∣∣∣dı

≤ (�− θ1)
α
k
+2

θ2 − θ1

∫ 1

0
ı(ρ − ı αk )

[
1

n

n∑

i=1

(1− (sı)i )|D′′(θ1)|
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+ 1

n

n∑

i=1

[
1− (s(1− ı))i]|D′′(�)|

]
dı

+ (θ2 − �) αk +2

θ2 − θ1

∫ 1

0
ı(ρ − ı αk )

[
1

n

n∑

i=1

(1− (sı)i )|D′′(θ2)|

+ 1

n

n∑

i=1

[
1− (s(1− ı))J ]|D′′(�)|

]
dı

= (�− θ1)
α
k
+2

n(θ2 − θ1)

n∑

i=1

[
C1(α, k; i, s)|D′′(θ1)| + C2(α, k; i, s)|D′′(�)|

]

+ (θ2 − �) αk +2

n(θ2 − θ1)

n∑

i=1

[
C1(α, k; i, s)|D′′(θ2)| + C2(α, k; i, s)|D′′(�)|

]

= 1

n

n∑

i=1

C1(α, k; i, s)
[
(�− θ1)

α
k
+2

θ2 − θ1
|D′′(θ1)| + (θ2 − �) αk +2

θ2 − θ1
|D′′(θ2)|

]

+ (�− θ1)
α
k
+2 + (θ2 − �) αk +2

n(θ2 − θ1)

n∑

i=1

C2(α, k; i, s)|D′′(�)|.

This completes the proof. -.
Theorem 4.3 For α, k > 0 with s ∈ [0, 1], n ∈ N, assume that there is a twice
differentiable function D : J →  on J ◦(interior of J ) with θ2 > θ1 such that
D′′ ∈ L1[θ1, θ2]. If |D′′(�)|q, q ≥ 1 is an n-polynomial s-type convex function on
J , then

|%D
(
ρ, α, k; θ1, θ2, �

)|

≤ C
1− 1

q

3 (α, k, ρ)

[
(�− θ1)

α
k
+2

n(θ2 − θ1)

n∑

i=1

(
C1(α, k; i, s)|D′′(θ1)|q + C2(α, k; i, s)|D′′(�)|q

) 1
q

+ (θ2 − �) αk +2

n(θ2 − θ1)

n∑

i=1

(
C1(α, k; i, s)|D′′(θ2)|q + C2(α, k; i, s)|D′′(�)|q

) 1
q
]
,

where

C3(α, k, ρ) =
∫ 1

0
ı(ρ − ı αk )dı

= kρ
2k+α
α

α

[
�
(2k + α

α

)
2F1

(
1, 2; 3+ 2k

α
; 1
)

+β
(

2,−2k + α
α

)
− β

(
ρ, 2,−2k + α

α

)]
, (4.6)

C1(α, k; i, s) and C2(α, k; i, s) are given in (4.4) and (4.5), respectively.
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Proof Using Lemma 4.2, the property of modulus, the power mean inequality and
the n-polynomial s-type convexity of |D′| on J , we have

∣∣∣∣(1− ρ)
[
(θ2 − �) αk − (�− θ1)

α
k

θ2 − θ1

]
D′(�)+ (1+ α

k
− ρ)

[
(�− θ1)

α
k + (θ2 − �) αk
θ2 − θ1

]
D(�)

+ρ
[
(�− θ1)

α
k D(θ1)+ (θ2 − �) αk D(θ2)

θ2 − θ1

]
− �k(α + 2k)

θ2 − θ1

[
J α,k
�+ D(θ1)+ J α,k

�− D(θ2)
]∣∣∣∣

≤ (�− θ1)
α
k
+2

θ2 − θ1

∫ 1

0
|ı(ρ − ı αk )|

∣∣∣D′′(ı�+ (1− ı)θ1)

∣∣∣dı + (θ2 − ı) αk +1

θ2 − θ1

×
∫ 1

0
|ı(ρ − ı αk )|

∣∣∣D′′(ı�+ (1− ı)θ2)

∣∣∣dı

≤
(∫ 1

0
ı(ρ − ı αk )dı

)1− 1
q
[
(�− θ1)

α
k
+2

θ2 − θ1

(∫ 1

0
ı(ρ − ı αk )

[
1

n

n∑

i=1

(1− (sı)i )|D′′(θ1)|q

+ 1

n

n∑

i=1

[
1− (s(1− ı))i]|D′′(�)|q

]
dı

) 1
q

+ (θ2 − �) αk +2

θ2 − θ1

(∫ 1

0
ı(ρ − ı αk )

[
1

n

n∑

i=1

(1− (sı)i )|D′′(θ2)|q

+ 1

n

n∑

i=1

[
1− (s(1− ı))i]|D′′(�)|q

]
dı

) 1
q
]

= C
1− 1

q

3 (α, k, ρ)

[
(�− θ1)

α
k
+2

n(θ2 − θ1)

n∑

i=1

(
C1(α, k; i, s)|D′′(θ1)|q + C2(α, k; i, s)|D′′(�)|q

) 1
q

+ (θ2 − �) αk +2

n(θ2 − θ1)

n∑

i=1

(
C1(α, k; i, s)|D′′(θ2)|q + C2(α, k; i, s)|D′′(�)|q

) 1
q
]
. (4.7)

This completes the proof. -.
Theorem 4.4 For α, k > 0 with s ∈ [0, 1], n ∈ N, assume that there is a twice
differentiable function D : J →  on J ◦(interior of J ) with θ2 > θ1 such that
D′′ ∈ L1[θ1, θ2]. If |D′′(�)|q, q > 1 is an n-polynomial s-type convex function on
J , then

|%D
(
ρ, α, k; θ1, θ2, �

)|

≤ C
1
p

3 (p, α, k, ρ)

[
(�− θ1)

α
k
+2

(θ2 − θ1)

(
1

n

n∑

i=1

(
i + 1− si
i + 1

)[
|D′′(�)|q + |D′′(θ1)|q

]) 1
q

(4.8)

+ (θ2 − �) αk +2

(θ2 − θ1)

(
1

n

n∑

i=1

(
i + 1− si
i + 1

)[
|D′′(�)|q + |D′′(θ2)|q

]) 1
q
]
,
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where 1
p
+ 1
q
= 1 and

C3(p, α, k, ρ) =
∫ 1

0

(
ı(ρ − ı αk ))pdı

= kρ
(1+p)k+αp

α

α

[
�(1+ p)�

( k(1+ p)+ α
α

)
2F1

(
1, 1+ p, 2+ p + k(p + 1)

α
, 1
)

+β
(

1+ p,− k(1+ p)+ αp
α

)
− β

(
ρ, 1+ p,− (1+ p)k + αp

α

)]
. (4.9)

Proof Using Lemma 4.2, the property of the modulus, Hölder’s inequality and the
n-polynomial s-type convexity of |D′| on J , we have

∣∣∣∣(1− ρ)
[
(θ2 − �) αk − (�− θ1)

α
k

θ2 − θ1

]
D′(�)+ (1+ α

k
− ρ)

[
(�− θ1)

α
k + (θ2 − �) αk
θ2 − θ1

]
D(�)

+ρ
[
(�− θ1)

α
k D(θ1)+ (θ2 − �) αk D(θ2)

θ2 − θ1

]
− �k(α + 2k)

θ2 − θ1

[
J α,k
�+ D(θ1)+ J α,k

�− D(θ2)
]∣∣∣∣

≤ (�− θ1)
α
k
+2

θ2 − θ1

∫ 1

0
|ı(ρ − ı αk )|

∣∣∣D′′(ı�+ (1− ı)θ1)

∣∣∣dı + (θ2 − ı) αk +1

θ2 − θ1

×
∫ 1

0
|ı(ρ − ı αk )|

∣∣∣D′′(ı�+ (1− ı)θ2)

∣∣∣dı

≤ (�− θ1)
α
k
+2

θ2 − θ1

(∫ 1

0
|ı(ρ − ı αk )|pdı

) 1
p
(∫ 1

0

∣∣∣D′′(ı�+ (1− ı)θ1)
∣∣qdı

) 1
q

+ (θ2 − ı) αk +2

θ2 − θ1

(∫ 1

0
|ı(ρ − ı αk )|pdı

) 1
p
(∫ 1

0

∣∣∣D′′(ı�+ (1− ı)θ2)

∣∣∣dı
) 1
q

≤ C
1
p

3 (p, α, k; ρ)
[
(�− θ1)

α
k
+2

θ2 − θ1

(∫ 1

0

[
1

n

n∑

i=1

(1− (sı)i )|D′′(θ1)|q

+ 1

n

n∑

i=1

[
1− (s(1− ı))i]|D′′(�)|q

]
dı

) 1
q

+ (θ2 − �) αk +2

θ2 − θ1

(∫ 1

0

[
1

n

n∑

i=1

(1− (sı)i )|D′′(θ2)|q

+ 1

n

n∑

i=1

[
1− (s(1− ı))i]|D′′(�)|q

]
dı

) 1
q
]
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= C
1
p

3 (p, α, k, ρ)

[
(�− θ1)

α
k
+2

(θ2 − θ1)

(
1

n

n∑

i=1

(
i + 1− si
i + 1

)[
|D′′(�)|q + |D′′(θ1)|q

]) 1
q

+ (θ2 − �) αk +2

(θ2 − θ1)

(
1

n

n∑

i=1

(
i + 1− si
i + 1

)[
|D′′(�)|q + |D′′(θ2)|q

]) 1
q
]
. (4.10)

This completes the proof. -.

5 Corollaries

In this final section, we are interested to estimate k-fractional integrals which
contain bounds of RL-fractional integrals that can be comprised as special cases
of results of our previous section. Finally, we will obtain a refined bound of the
Midpoint, Trapezoidal, and Simpson type inequalities for twice differentiable n-
polynomial s-type convex functions.

By applying Theorem 4.2 we obtain the following results:

(I ) For ρ = 0 and � = θ1+θ2
2 , then

Corollary 5.1 For α, k > 0 with s ∈ [0, 1], n ∈ N, assume that there is a twice
differentiable function D : J →  on J ◦(interior of J ) with θ2 > θ1 such that
D′′ ∈ L1[θ1, θ2]. If |D′′(�)| is an n-polynomial s-type convex function on J and for
all � ∈ [θ1, θ2], then

∣∣∣∣%D

(
0, α, k; θ1, θ2,

θ1 + θ2

2

)∣∣∣∣

≤
(
(θ2 − θ1)

α
k
+1

2
α
k
+1n

)[ n∑

i=1

C1(α, k; i, s)
[|D′′(θ1)| + |D′′(θ2)|

]

+
n∑

i=1

C2(α, k; i, s)
∣∣∣∣D

′′
(
θ1 + θ2

2

)∣∣∣∣

]
,

where C1(α, k; i, s) and C2(α, k; i, s) are given in (4.4) and (4.5), respectively.

(II ) For ρ = 1 and � = θ1+θ2
2 , then one has:

Corollary 5.2 For α, k > 0 with s ∈ [0, 1], n ∈ N, assume that there is a twice
differentiable function D : J →  on J ◦(interior of J ) with θ2 > θ1 such that
D′′ ∈ L1[θ1, θ2]. If |D′′(�)| is an n-polynomial s-type convex function on J and for
all � ∈ [θ1, θ2], then
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∣∣∣∣%D

(
1, α, k; θ1, θ2,

θ1 + θ2

2

)∣∣∣∣

≤
(
(θ2 − θ1)

α
k
+1

2
α
k
+1n

)[ n∑

i=1

[
α

2(α + 2k)
− si

(
1

(i + 1)(i + 2)

−
�
(
α
k
+ 2

)
�(i + 1)

�
(
α
k
+ i + 3

)
)]∣∣∣∣D

′′
(
θ1 + θ2

2

)∣∣∣∣

+
n∑

i=1

[
α

2(α + 2k)
− siα

(i + 2)(α + k(i + 2))

][|D′′(θ1)| + |D′′(θ2)|
]]
.

(I II ) For ρ = 1
2 and � = θ1+θ2

2 , then one has:

Corollary 5.3 For α, k > 0 assume that there is a differentiable function D : J →
 on J ◦(interior of J ) with θ2 > θ1 such that D′′ ∈ L1[θ1, θ2]. If |D′′(�)| is an
n-polynomial s-convex function on J and for all � ∈ [θ1, θ2], then

∣∣∣∣%D

(
1

2
, α, k; θ1, θ2,

θ1 + θ2

2

)∣∣∣∣

≤
(
(θ2 − θ1)

α
k
+1

2
α
k
+1n

)[ n∑

i=1

[
α − 2k

4(α + 2k)
− si

[
α − k(i + 2)

]

2(i + 2)(α + k(i + 2))

][|D′′(θ1)| + |D′′(θ2)|
]

+
n∑

i=1

[
α − 2k

4(α + 2k)
− si

(
1

2(i + 1)(i + 2)
−
�
(
α
k
+ 2

)
�(i + 1)

�
(
α
k
+ i + 3

)
)]∣∣∣∣D

′′( θ1 + θ2

2

)∣∣∣∣

]
.

(IV ) For ρ = 1
3 and � = θ1+θ2

2 , then one obtain that:

Corollary 5.4 For α, k > 0 with s ∈ [0, 1], n ∈ N, assume that there is a twice
differentiable function D : J →  on J ◦(interior of J ) with θ2 > θ1 such that
D′′ ∈ L1[θ1, θ2]. If |D′′(�)| is an n-polynomial s-type convex function on J and for
all � ∈ [θ1, θ2], then

∣∣∣∣%D

(
1

3
, α, k; θ1, θ2,

θ1 + θ2

2

)∣∣∣∣

≤
(
(θ2 − θ1)

α
k
+1

2
α
k
+1n

)[ n∑

i=1

[
α − 4k

6(α + 2k)
− si

[
α − 2k(i + 2)

]

3(i + 2)(α + k(i + 2))

][|D′′(θ1)| + |D′′(θ2)|
]

+
n∑

i=1

[
α − 4k

6(α + 2k)
− si

(
1

3(i + 1)(i + 2)
−
�
(
α
k
+ 2

)
�(i + 1)

�
(
α
k
+ i + 3

)
)]∣∣∣∣D

′′
(
θ1 + θ2

2

)∣∣∣∣

]
.
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Remark 5.1 Under the assumptions of Theorems 4.3 and 4.4 we can derive some
interesting new results for some special values of ρ and �.We omit here their proofs
and the details are left to the interested readers.
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Hyperstability of Orthogonally 3-Lie
Homomorphism: An Orthogonally Fixed
Point Approach

Vahid Keshavarz and Sedigheh Jahedi

Abstract In this chapter, by using the orthogonally fixed point method, we prove
the Hyers–Ulam stability and the hyperstability of orthogonally 3-Lie homomor-
phisms for additive ρ-functional equation in 3-Lie algebras. Indeed, we investigate
the stability and the hyperstability of the system of functional equations

{
f (x + y)− f (x)− f (y) = ρ (2f ( x+y

2

)+ f (x)+ f (y)) ,
f ([[u, v], w]) = [[f (u), f (v)], f (w)]

in 3-Lie algebras where ρ 	= 1 is a fixed real number.

2010 Mathematics Subject Classification Primary 46S10, 39B62, 39B52,
47H10, 12J25

1 Introduction

The stability problem of functional equations originated from a question of Ulam [1]
concerning the stability of group homomorphisms. Hyers [2] gave a first affirmative
partial answer to the question of Ulam for Banach spaces. Hyers’ theorem was
generalized by Th. M. Rassias [3] for linear mappings by considering an unbounded
Cauchy difference. A generalization of Rassias’ theorem was obtained by Găvruta
[4] by replacing the unbounded Cauchy difference with a general control function
in the spirit of Rassias’ approach. In 1996, G. Isac and Th. M. Rassias [5] were the
first to provide applications of stability theory of functional equations for the proof
of new fixed point theorems with applications. The stability problems of several
functional equations have been extensively investigated by a number of authors (see
[6–14]).

V. Keshavarz (�) · S. Jahedi
Department of Mathematics, Shiraz University of Technology, Shiraz, Iran
e-mail: jahedi@sutech.ac.ir

© Springer Nature Switzerland AG 2022
N. J. Daras, Th. M. Rassias (eds.), Approximation and Computation in Science
and Engineering, Springer Optimization and Its Applications 180,
https://doi.org/10.1007/978-3-030-84122-5_25

477

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-84122-5_25&domain=pdf
mailto:jahedi@sutech.ac.ir
https://doi.org/10.1007/978-3-030-84122-5_25


478 V. Keshavarz and S. Jahedi

There are several orthogonality notions on a real normed space such as Birkhoff–
James, Boussouis, (semi-)inner product, Singer, Carlsson, unitary-Boussouis,
Roberts, Pythagorean and Diminnie (see [15, 16]). Recently, Eshaghi Gordji et
al. [17] introduced orthogonal sets and some corresponding concepts.

Definition 1.1 ([17])

(i) Let X 	= ∅ and ⊥ ⊆ X × X be a binary relation. If ⊥ satisfies the following
condition:

∃x0; (∀y; y⊥x0) or (∀y; x0⊥y),

then (X,⊥) is called an orthogonal set (briefly, O-set).
(ii) Let (X,⊥) be an O-set. A sequence {xn}n∈N is called an orthogonal sequence

(briefly, O-sequence) if

(∀n; xn⊥xn+1) or (∀n; xn+1⊥xn).

(iii) If (X,⊥) is an O-set and (X, d) is a metric space, then (X,⊥, d) is an
orthogonally metric space. A mapping f : X → X is a ⊥-continuous in
x ∈ X if for each O-sequence {xn}n∈N in X with xn → x, f (xn) → f (x).
Obviously, every continuous mapping is ⊥-continuous.

(iv) A Cauchy sequence {xn} in X is said to be a Cauchy orthogonally sequence
(briefly, Cauchy O-sequence) if for all n ∈ A, xn⊥xn+1 or xn+1⊥xn. An
orthogonally metric space (X,⊥, d) is orthogonally complete (briefly O-
complete) if every Cauchy O-sequence is convergent.

It is easy to see that every complete metric space is O-complete and the
converse is not true in general.

(v) Let (X,⊥, d) be an orthogonally metric space and 0 < λ < 1. A mapping
f : X → X is said to be orthogonality contraction with Lipschitz constant λ
if for any x, y with x⊥y

d(f x, fy) ≤ λd(x, y).

Eshaghi Gordji et al. in [18] proved a fixed point theorem in O-sets and several
authors worked on orthogonally fixed point (see [19–22]).

Theorem 1.2 ([18]) Let (X, d,⊥) be an O-complete generalized metric space. Let
T : X → X be a ⊥-preserving, ⊥-continuous and ⊥ − λ-contraction. Let x0 ∈ X
satisfy for all y ∈ X, x0 ⊥ y or for all y ∈ X, y ⊥ x0, and consider the O-
sequence of successive approximations with initial element x0; x0, T (x0), T 2(x0),
. . . , T n(x0), . . . . Then, either d(T n(x0), T

n+1(x0)) = ∞ for all n ≥ 0, or there
exists a positive integer n0 such that d(T n(x0), T

n+1(x0)) < ∞ for all n > n0. If
the second alternative holds, then

(i) the O-sequence of {T n(x0)} is convergent to a fixed point x∗ of T ,
(ii) x∗ is the unique fixed point of T in
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X∗ = {y ∈ X : d(T n(x0), y) <∞}.

(iii) if y ∈ X, then

d(y, x∗) ≤ 1

1− λd(y, T (y)).

Note that a Lie algebra is a Banach algebra endowed with the Lie product

[x, y] := (xy − yx)
2

.

Similarly, a 3-Lie algebra is a Banach algebra endowed with the product

[
[x, y], z

]
:= [x, y]z− z[x, y]

2
,

for all x, y, z ∈ A.

Definition 1.3 Let A and B be two 3-Lie algebras. A mapping H : A → B is
called an orthogonally 3-Lie homomorphism if

(i) H is a linear mapping;
(ii) for all u, v,w ∈ A with u⊥v, u⊥w, v⊥w,

H([[u, v], w]) = [[H(u),H(v)],H(w)].

In this chapter, we investigate the stability and the hyperstability of the system of
functional equations

⎧
⎨

⎩

f (x + y)− f (x)− f (y) = ρ(2f (x+y2 )+ f (x)+ f (y)),

f ([[u, v], w]) = [[f (u), f (v)], f (w)]

in 3-Lie algebras where ρ 	= 1 is a fixed real number, by using the orthogonally
fixed point method.

2 Main Results

Throughout this section, assume that A and B are two orthogonally 3-Lie algebras
and ρ 	= 1 is a fixed real number. Denote

V⊥ := {x, y, z ∈ A | x⊥y, x⊥z, y⊥z},
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 ρf (x, y) := f (x + y)− f (x)− f (y)− ρ
(

2f
(x + y

2

)
− f (x)− f (y)

)
,

(2.1)
and

 f ([[u, v], w]) := f ([[u, v], w] − [[f (u), f (v)], f (w)], (2.2)

where u, v,w ∈ V⊥.
Lemma 2.1 ([23]) LetX and Y be vector spaces. If a mapping f : X→ Y satisfies

f (x + y)− f (x)− f (y) = ρ
(

2f

(
x + y

2

)
− f (x)− f (y)

)
(2.3)

for all x, y ∈ X, then f is additive.

In the following theorem, we prove the Hyers–Ulam stability of orthogonally 3-Lie
homomorphism in orthogonally 3-Lie algebras.

Theorem 2.2 Let f : A → B be a mapping, and let ϕ : A2 → [0,∞) and
ψ : A3 → [0,∞) be two functions such that there exists an L < 1 with

‖ ρf (x, y)‖ ≤ ϕ(x, y) (2.4)

and

‖ f ([[[u, v], w])‖ ≤ ψ(u, v,w) (2.5)

for all x, y, u, v,w ∈ V⊥. If there exists a constant 0 < L < 1 such that

ϕ
(x

2
,
y

2

)
≤ L

2
ϕ (x, y) (2.6)

ψ
(u

2
,
v

2
,
w

2

)
≤ L

23ψ (u, v,w) (2.7)

for all x, y, u, v,w ∈ V⊥, then there exists a unique orthogonally 3-Lie homomor-
phism 5 : A→ B such that

‖f (x)− 5(x)‖ ≤ L

2(1− L)ϕ (x, x) (2.8)

for all x ∈ A.
Proof Inequalities (2.6) and (2.7) imply that
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lim
n→∞ 2nϕ

(x
2
,
y

2

)
= 0 and lim

n→∞ 23nψ
(u

2
,
v

2
,
w

2

)
= 0 (2.9)

for all x, y, u, v,w ∈ V⊥. Letting x = y = u = v = w = 0 in (2.9), we obtain that
ϕ(0, 0) = 0 and ψ(0, 0, 0) = 0.

Consider the set

# =
{
g : A→ B | g(0) = 0 g(x)⊥2g

(x
2

)
or 2g

(x
2

)
⊥g(x)

}
.

For every g, h ∈ #, define,

d(g, h) = inf{k ∈ (0,∞) | ‖g(x)− h(x)‖ ≤ kϕ(x, x) , x ∈ A}.

Now, we put the orthogonality relation ⊥ on # for all g, h ∈ # as follows:

h⊥g ⇔ h(x)⊥g(x) or g(x)⊥h(x) ∀x ∈ A.

It is easy to show that (#, d,⊥) is an O-complete generalized metric space.
Consider the mapping T : #→ # defined by

T g(x) = 2g
(x

2

)
∀x ∈ A.

Clearly, T is ⊥-preserving. It follows that for all g, h ∈ # with g⊥h and x ∈ A,
∥∥∥2g

(x
2

)
− 2h

(x
2

)∥∥∥ ≤ 2kϕ
(x

2
,
x

2

)
≤ Lkϕ (x, x) .

Hence, we see that

d(T g, T h) ≤ Ld(g, h)

for all g, h ∈ #, that is, T is a strictly ⊥-contractive self-mapping of # with the
Lipschitz constant L. The function T is ⊥-continuous. In fact, if {gn} is an O-
sequence in #, which converges to g ∈ #, then for a given ε > 0 there exists
k > 0 with k < ε and n ∈ N such that

‖gn(x)− g(x)‖ ≤ kϕ(x, x)

for all x ∈ A and n ∈ N.
By Theorem 1.2, there exists a mapping 5 : A→ B such that

1. 5 is a fixed point of T, i.e.,

5(x) = 25
(x

2

)
∀x ∈ A. (2.10)
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The mapping 5 is a unique fixed point of T in the set

' = {g ∈ # : d(f, g) <∞}.

5 is a unique mapping satisfying (2.10) such that

‖f (x)− 5(x)‖ ≤ kϕ(x, x) ∀x ∈ A

for some k ∈ (o,∞).
2. d(T nf,5) → 0 as n → ∞. By Theorem 1.2, there exists a fixed point 5 of T

such that

5(x) = lim
n→∞ 2nf

( x
2n

)
∀x ∈ A. (2.11)

On the other hand, it follows from (2.4), (2.6) and (2.9)

‖ ρ5(x, y)‖ = lim
n→∞ 2n‖ ρf

( x
2n
,
y

2n

)
‖

≤ lim
n→∞ 2nϕ

( x
2n
,
y

2n

)

= 0.

Therefore,  ρ5(x, y) = 0 for all x, y ∈ V⊥. By Lemma 2.1 and ([23], Theorem
2.2), 5 is a unique additive. By the result in [18], 5 is an orthogonal mapping.
Then, by definition of 5, (2.5), (2.7) and (2.9), we have

‖ 5([[u, v], w])‖ = lim
n→∞ 23n

∥∥∥ f
([[ u

2n
,
v

2n

]
,
w

2n

])∥∥∥

≤ lim
n→∞ 23nψ

( u
2n
,
v

2n
,
w

2n

)

= 0

for all u, v,w ∈ V⊥.
3. d(f,5) ≤ 1

1−Ld(f, Tf ) ≤ 1
2(1−L)ϕ(x, x) for all x ∈ A. This completes the

proof.
-.

The following result shows the Hyers–Ulam–Rassias stability of the orthogonally
3-Lie homomorphism additive ρ-functional equation (2.1).

Corollary 2.3 Let s 	= 1 and θ be nonnegative real numbers. Suppose f : A→ B

is a mapping such that

‖ ρf (x, y)‖ ≤ θ(‖x‖s + ‖y‖s) (2.12)
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and

‖ f ([[u, v], w])‖ ≤ θ(‖u‖s · ‖v‖s · ‖w‖s) (2.13)

for all u, v,w ∈ V⊥. Then, there exists a unique 3-Lie homomorphism 5 : A→ B

such that

‖f (x)− A(x)‖ ≤ 2θ

2s − 2
‖x‖s , (f or s < 1) (2.14)

and

‖f (x)− A(x)‖ ≤ 2θ

2− 2s
‖x‖s , (f or s > 1) (2.15)

for all x ∈ A.
Proof The proof follows from Theorem 2.2 by taking

ϕ(x, y) = θ(‖x‖s + ‖y‖s)

ψ(u, v,w) = θ(‖u‖s · ‖v‖s · ‖w‖s)

for all x, y, u, v,w ∈ V⊥. Then, by choosing L = 2s−1 in (2.14), L = 21−s in
(2.15), we get the desired result. -.
Now, we will prove the hyperstability of orthogonally 3-Lie homomorphism in 3-
Lie algebras in the following theorem.

Theorem 2.4 Let f : A → B be a mapping and ϕ : A5 → [0,∞) be a function
such that

‖ ρf (x, y)+ (u, v,w)‖ ≤ ϕ(0, y, u, v,w) (2.16)

for all x, y, u, v,w ∈ V⊥. If there exists a constant 0 < L < 1 such that

ϕ
(

0,
y

2
,
u

2
,
v

2
,
w

2

)
≤ L

2
ϕ(0, y, u, v,w) (2.17)

for all x, y, u, v,w ∈ V⊥, then f is an orthogonally 3-Lie homomorphism.

Proof Put y = u = v = w = 0 in (2.16). So, we have

∥∥∥∥f (x)−
1

2
f (2x)

∥∥∥∥ ≤ ϕ(0, 0, 0, 0, 0) (2.18)

for all x ∈ A. On the other hand, by (2.17), we obtain that
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lim
n→∞ 2nϕ

(
0,
y

2
,
u

2
,
v

2
,
w

2

)
= 0 (2.19)

for all y, u, v,w ∈ V⊥. But ϕ(0, 0, 0, 0, 0) = 0, thus by (2.16), f (x) = 1
2f (2x),

and then for all n ∈ N and x ∈ A, we have

f (x) = 1

2n
f (2nx). (2.20)

From (2.16) and (2.20), we have

‖ ρf (x, y)‖ = 1

2n
‖ ρf (2nx, 2ny)‖

≤ 1

2n
ϕ
(
0, 2ny, 0, 0, 0

)

= 0

(2.21)

for all x, y ∈ V⊥. Letting n → ∞ in (2.21) and using (2.19), we have
‖ ρf (x, y)‖ = 0 for all x, y ∈ V⊥. On the other hand, we have

‖ f (u, v,w)‖ = 1

2n
‖ f (2nu, 2nv, 2nw)‖

≤ 1

2n
ϕ
(
0, 0, 2nu, 2nv, 2nw

)

= 0

(2.22)

for all u, v,w ∈ V⊥. Hence, by letting n→∞ in (2.22) and using (2.19), we have

 f (a, b, c) = 0 ∀a, b, c ∈ V⊥.

Therefore, f is an orthogonally 3-Lie homomorphism. -.
Corollary 2.5 Let θ and s 	= 1 be nonnegative real numbers. Suppose f : A→ B

is a mapping such that

‖ ρf (x, y)+ f (u, v,w)‖ ≤ θ(‖y‖s + ‖u‖s + ‖v‖s + ‖w‖s) (2.23)

for all x, y, u, v,w ∈ V⊥. Then, f is an orthogonally 3-Lie homomorphism.
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Some New Inequalities for Fractional
Integral Operators

Jichang Kuang

Abstract In this chapter, we introduce some new fractional integral operators and
fractional area balance operators. The corresponding integral operator inequalities
are established.

Mathematics Subject Classification 26A33, 26D10, 26A51

1 Introduction

It is well known that fractional integral operator is one of the important operators
in harmonic analysis with background of partial differential equations. In fact,
the solution of the Laplace equation 2g = f for good functions on R

n can
be represented by using the fractional integral operators acting on f . Recently,
different versions of fractional integral operators have been developed which are
useful in the study of different classes of differential and integral equations. These
fractional integral operators act as ready tools to study the classes of differential and
integral equations. Hence, fractional integral inequalities are very important in the
theory and applications of differential equations. Such inequalities are also of great
importance in the mathematical modeling of the fractional boundary value problems
(see e.g. [1–11] and the references cited therein). First, we recall the following
definitions and some related results.

Definition 1 (cf.[1, 2]) Let f ∈ L[a, b], then Riemann–Liouville fractional inte-
grals of f of order α > 0 with a ≥ 0 are defined by

T1(f, x) = 1

�(α)

∫ x

a

(x − t)α−1f (t)dt, x > a, (1)
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and

T2(f, x) = 1

�(α)

∫ b

x

(t − x)α−1f (t)dt, x < b, (2)

respectively, where

�(α) =
∫ ∞

0
tα−1e−t dt (3)

is the Gamma function and when α = 0, T1(f, x) = T2(f, x) = f (x).
Definition 2 (cf.[3]) Let f ∈ L[a, b], then Riemann–Liouville k-fractional inte-
grals of f of order α > 0 with a ≥ 0 are defined by

T3(f, x) = 1

k�k(α)

∫ x

a

(x − t)(α/k)−1f (t)dt, , x > a, (4)

and

T4(f, x) = 1

k�k(α)

∫ b

x

(t − x)(α/k)−1f (t)dt, x < b, (5)

respectively, where

�k(α) =
∫ ∞

0
tα−1e−(tk/k)dt, α > 0, (6)

is the k-Gamma function. Also, �(x) = limk→1 �k(x), �k(α) = k(α/k)−1�(α/k)

and �k(α + k) = α�k(α).
It is well known that the Mellin transform of the exponential function on exp−tk/k
is the k-Gamma function.

Definition 3 (cf.[4, 5]) Let f ∈ L1,r [a, b], a ≥ 0, then the generalized Riemann–
Liouville fractional integrals of f of order (α, r) are defined by

T5(f, x) = (r + 1)1−α

�(α)

∫ x

a

(xr+1 − t r+1)α−1t rf (t)dt, x > a, (7)

T6(f, x) = (r + 1)1−α

�(α)

∫ b

x

(tr+1 − xr+1)α−1t rf (t)dt, x < b, (8)

and

T7(f, x) = (r + 1)1−(α/k)

k�k(α)

∫ x

a

(xr+1 − t r+1)(α/k)−1t rf (t)dt, x > a, (9)
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T8(f, x) = (r + 1)1−(α/k)

k�k(α)

∫ b

x

(tr+1 − xr+1)(α/k)−1t rf (t)dt, x < b, (10)

respectively, where k, α > 0, r ≥ 0, and x ∈ [a, b].
In particular, if r = 0, then Definition 3 reduces to Definitions 1 and 2.

Theorem 1 ([6]) Let f : [a, b] → (0,∞),f ∈ L[a, b], a ≥ 0. If f is a convex
function on [a, b], then

f (
a + b

2
) ≤ �(α + 1)

2(b − a)α [T1(f, x)+ T2(f, x)] ≤ 1

2
[f (a)+ f (b)]. (11)

Theorem 2 ([7]) Let f : [a, b] → [0,∞), f ∈ L[a, b], a ≥ 0. Let 1 < p <

∞, 1
p
+ 1
q
= 1. If |f ′ |q is a convex function on [a, b], then

|1
2
(f (a)+ f (b))− �(α + 1)

2(b − a)α [T1(f, b)+ T2(f, a)]|

≤ b − a
21/q(pα + 1)1/p

(|f ′(a)|q + |f ′(b)|q)1/q . (12)

Definition 4 (cf.[8, 9]) Let f be a conformable integrable function on [a, b] ⊂
[0,∞). The right-sided and left-sided generalized conformable fractional integrals
T9 and T10 of f of order α > 0 are defined by

T9(f, x) = 1

�(α)

∫ x

a

(
xr+s − t r+s
r + s

)α−1

t r+s−1f (t)dt, x > a, (13)

and

T10(f, x) = 1

�(α)

∫ b

x

( t r+s − xr+s
r + s

)α−1
t r+s−1f (t)dt x < b, (14)

respectively, where r, s ≥ 0, r + s 	= 0.

In particular, if s = 1, then T9 and T10 reduce to T5 and T6, respectively.

Definition 5 (cf.[10, 11]) Let f ∈ L[a, b], g : [a, b] → (0,∞) be an increasing
function, and g

′ ∈ C[a, b], α > 0. Then, g-Riemann–Liouville fractional integrals
of f with respect to the function g on [a, b] are defined by

T11(f, x) = 1

�(α)

∫ x

a

g
′
(t)[g(x)− g(t)]α−1f (t)dt, x > a, (15)

and
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T12(f, x) = 1

�(α)

∫ b

x

g
′
(t)[g(t)− g(x)]α−1f (t)dt, x < b, (16)

respectively.

Theorem 3 ([11]) Let α ∈ (0, 1), 0 ≤ a < b, f, g : [a, b] → (0,∞), f ∈
L[a, b], g′ ∈ C[a, b], g be an increasing function. If f is an s-convex function on
[a, b]. Then,

2s−1f

(
a + b

2

)
≤ �(α + 1)

2(b − a)α {T11(f ◦ g)(g−1(b))

+T12(f ◦ g)(g−1(a))} ≤ α

α + s
(

3− 1

2α+s

)
f (a)+ f (b)

2
. (17)

In 2018, Dragomir [12] introduced the new notion of the area balance function.

Definition 6 ([12]) Let f ∈ L[a, b], then the area balance function of f is defined
by

T13(f, x) = 1

2

{∫ b

x

f (t)dt −
∫ x

a

f (t)dt

}
. (18)

Theorem 4 ([12]) Let f ∈ AC[a, b]. If f ′(t) ≥ 0 a.e. t ∈ [a, b], then
(
a + b

2
− x

)
f (x) ≤ T13(f, x)

≤ 1

2
[bf (b)+ af (a)] − 1

2
[f (b)+ f (a)]x, (19)

for all x ∈ [a, b].
Theorem 5 ([12]) Let f ∈ AC[a, b], f ′ ∈ BV [a, b], then for any x ∈ [a, b],
∣∣∣∣T13(f, x)−

(
a + b

2
− x

)
f (x)− 1

4

[
f
′
(a)+ f ′(b)

]

×
[
(x − a + b

2
)2 + 1

4
(b − a)2

]∣∣∣∣ ≤
1

4

[
1

4
(b − a)2 + (x − a + b

2
)2
]
V ba (f

′
),

and
∣∣∣∣T13(f, x)− 1

2
[af (a)+ bf (b)]+ 1

2
[f (a)+ f (b)] x

+1

4

[
f
′
(a)+ f ′(b)

]
×
[
(x − a + b

2
)2 + 1

4
(b − a)2

]∣∣∣∣
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≤ 1

4

[
1

4
(b − a)2 +

(
x − a + b

2

)2
]
V ba (f

′
)

In this chapter, we introduce some new generalized fractional integral operators
and fractional area balance operators in Sect. 2. The corresponding integral operator
inequalities are established in Sects. 3 and 4.

2 Generalized Fractional Integral Operators and Fractional
Area Balance Operators

Definition 7 Let f ∈ L[a, b], g : [a, b] → (0,∞) be an increasing function, and
g ∈ AC[a, b], k, c, α > 0, a ≥ 0. Then, the generalized fractional integral operator
T14 with respect to the function g on [a, b] is defined by

T14(f, x) = c

k�k(α)

∫ b

a

g
′
(t)|g(x)− g(t)|(α/k)−1f (t)dt, (20)

where �k(α) is defined by (6).

Let

T15(f, x) = c

k�k(α)

∫ x

a

g
′
(t)[g(x)− g(t)](α/k)−1f (t)dt, x > a, (21)

and

T16(f, x) = c

k�k(α)

∫ b

x

g
′
(t)[g(t)− g(x)](α/k)−1f (t)dt, x < b. (22)

Then,

T14(f, x) = T15(f, x)+ T16(f, x). (23)

In particular, if c = k = 1 in (23), then (23) reduces to

T14(f, x) = T11(f, x)+ T12(f, x). (24)

If c = (r + s)−α, g(t) = t r+s , r, s ≥ 0, r + s 	= 0, k = 1 in (23), then (23) reduces
to

T14(f, x) = T9(f, x)+ T10(f, x). (25)

If c = (r + 1)−(α/k), g(t) = t r+s , r ≥ 0, in (23), then (23) reduces to
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T14(f, x) = T7(f, x)+ T8(f, x). (26)

If s = 1 in (25), then (25) reduces to

T14(f, x) = T5(f, x)+ T6(f, x). (27)

If r = 0 in (26), then (26) reduces to

T14(f, x) = T3(f, x)+ T4(f, x). (28)

If k = 1 in (28), then (28) reduces to

T14(f, x) = T1(f, x)+ T2(f, x). (29)

We can also rewrite T9 and T10 as

T9(f, x) = (r + s)
1−α

�(α)

∫ x

a

(xr+s − t r+s)α−1t r+s−1f (t)dt, x > a,

and

T10(f, x) = (r + s)
1−α

�(α)

∫ b

x

(tr+s − xr+s)α−1t r+s−1f (t)dt, x < b,

and then generalize them to

T17(f, x) = (r + s)
1−(α/k)

k�k(α)

∫ x

a

(xr+s − t r+s)(α/k)−1t r+s−1f (t)dt, x > a,

(30)
and

T18(f, x) = (r + s)
1−(α/k)

k�k(α)

∫ b

x

(tr+s−xr+s)(α/k)−1t r+s−1f (t)dt, x < b. (31)

If c = (r + s)−(α/k), g(t) = t r+s , r, s ≥ 0, r + s 	= 0 in (23), then (23) reduces to

T14(f, x) = T17(f, x)+ T18(f, x). (32)

Definition 8 ([13, 14]) Let f ∈ L[a, b], a ≥ 0. The left-sided and right-sided
Hadamard fractional integrals T20 and T21 of f of order α > 0 are defined by

T20(f, x) = 1

�(α)

∫ x

a

(log x − log t)α−1t−1f (t)dt, x > a,

and
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T21(f, x) = 1

�(α)

∫ b

x

(log t − log x)α−1t−1f (t)dt, x < b,

respectively.

Theorem 6 (cf.[14]) Let f ∈ L[a, b], a ≥ 0. If f is a GA-convex function, then

f (
√
ab) ≤ �(α + 1)

2 logα(b/a)
(T20(f, b)+ T21(f, a)) ≤ 1

2
(f (a)+ f (b)).

We can generalize them to

T22(f, x) = 1

k�k(α)

∫ x

a

(log x − log t)(α/k)−1t−1f (t)dt, x > a,

and

T23(f, x) = 1

k�k(α)

∫ b

x

(log t − log x)(α/k)−1t−1f (t)dt, x < b.

If c = 1, g(t) = log t in (23), then (23) reduces to

T14(f, x) = T22(f, x)+ T23(f, x).

In particular, if k = 1, then

T14(f, x) = T20(f, x)+ T21(f, x).

Definition 9 Under the assumptions of Definition 7, the fractional area balance
operator T19 with respect to the function g on [a, b] is defined by

T19(f, x) = c

k�k(α)

{∫ b

x

g
′
(t)[g(t)− g(x)](α/k)−1f (t)dt

−
∫ x

a

g
′
(t)[g(x)− g(t)](α/k)−1f (t)dt }, (33)

where �k(α) is defined by (6).

Using (21) and (22), we have

T19(f, x) = T16(f, x)− T15(f, x). (34)

In particular, if c = (r+ s)−(α/k), g(t) = t r+s , r, s ≥ 0, r+ s 	= 0 in (34), then (34)
reduces to

T19(f, x) = T18(f, x)− T17(f, x). (35)
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If g(t) = t, α = k = 1, c = 1/2 in (34), then T19 reduces to T13. If c = k = 1 in
(34), then (34) reduces to

T19(f, x) = T12(f, x)− T11(f, x). (36)

If c = (r + s)−α, g(t) = t r+s , r, s ≥ 0, r + s 	= 0, k = 1 in (34), then (34) reduces
to

T19(f, x) = T10(f, x)− T9(f, x). (37)

If c = (r + 1)−(α/k), g(t) = t r+1, r ≥ 0 in (34), then (34) reduces to

T19(f, x) = T8(f, x)− T7(f, x). (38)

If k = 1 in (38), then (38) reduces to

T19(f, x) = T6(f, x)− T5(f, x). (39)

If r = 0 in (38), then (38) reduces to

T19(f, x) = T4(f, x)− T3(f, x). (40)

If k = 1 in (40), then (40) reduces to

T19(f, x) = T2(f, x)− T1(f, x). (41)

If c = 1 and g(t) = log t in (34), then (34) reduces to

T19(f, x) = T23(f, x)− T22(f, x).

In particular, if k = 1, then

T19(f, x) = T21(f, x)− T20(f, x).

Hence, Definitions 7 and 9 unified and generalized many known and new classes of
fractional integral operators.

3 Some Inequalities for T19

We require the following definition and lemmas to prove our main results.

Definition 10 ([1]) Let [a, b] ⊂ [0,∞) ,h : [a, b] → (0,∞) be given function.
A function f : [a, b] → [0,∞) is called exponentially (β, s, s1, s2, h)-strongly
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convex if

f (tx1 + (1− t)x2) ≤
{
t ss1

(
f (x1)

erx1

)β

+(1− t s2)s(f (x2)

erx2
)β
}1/β

− t (1− t)h(|x1 − x2|), (42)

where x1, x2 ∈ [a, b], t, s, s1, s2 ∈ [0, 1], r, β ∈ R, β 	= 0.

Lemma 1 Let [a, b] ⊂ [0,∞),f ∈ L[a, b],g : [a, b] → [0,∞) be an increasing
function, and g ∈ AC[a, b], k, α, c > 0, then

T19(f, x) = [T16(1, x)− T15(1, x)]f (x)

+
{∫ b

x

G16(1, t)f
′
(t)dt +

∫ x

a

G15(1, t)f
′
(t)dt

}
, (43)

where G15(1, t) and G16(1, t) are defined by

G15(1, t) = c

k�k(α)

∫ t

a

g
′
(u)[g(x)− g(u)](α/k)−1du, (44)

and

G16(1, t) = c

k�k(α)

∫ b

t

g
′
(u)[g(u)− g(x)](α/k)−1du, (45)

and T19, T15, T16, and �k(α) are defined by (33), (21), (22), and (6), respectively.

Proof From (21) and (22), we have

T15(1, t) = c

k�k(α)

∫ t

a

g
′
(u)[g(t)− g(u)](α/k)−1du,

and

T16(1, t) = c

k�k(α)

∫ b

t

g
′
(u)[g(u)− g(t)](α/k)−1du.

Thus,

G15(1, x) = T15(1, x);G16(1, x) = T16(1, x).

Then, making use of integration by parts, we get
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∫ x

a

G15(1, t)f
′
(t)dt = G15(1, t)f (t)|xa

− c

k�k(α)

∫ x

a

g
′
(t)[g(x)− g(t)](α/k)−1f (t)dt

= T15(1, x)f (x)− T15(f, x),

which leads to

T15(f, x) = T15(1, x)f (x)−
∫ x

a

G15(1, t)f
′
(t)dt. (46)

Similarly, we have

T16(f, x) = T16(1, x)f (x)+
∫ b

x

G16(1, t)f
′
(t)dt. (47)

Hence, (43) follows from (34), (46), and (47). The proof is completed.

Similarly, we get the following lemma:

Lemma 2 Under the assumptions of Lemma 1, we have

T14(f, x) = [T16(1, x)+ T15(1, x)]f (x)

+
∫ b

x

G16(1, t)f
′
(t)dt −

∫ x

a

G15(1, t)f
′
(t)dt. (48)

Theorem 7 Under the assumptions of Lemma 1, if |f ′ |p is exponentially
(β, s, s1, s2, h)-strongly convex on [a, b], and 1 < p <∞, 1

p
+ 1
q
= 1, s

β
+ 1 > 0,

then

|T19(f, x)− [T16(1, x)− T15(1, x)]f (x)|

≤
(∫ b

x

|G16(1, t)|qdt
)1/q

(b − x)1/p

×
{
Cβ

[
β

ss1 + β
|f ′(b)|p
erb

+ 1

s2
B

(
s

β
+ 1,

1

s2

) |f ′(x)|p
erx

]
− 1

6
h(b − x)

}1/p

+
(∫ x

a

|G15(1, t)|qdt
)1/q

(x − a)1/p
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×
{
Cβ

[
β

ss1 + β
|f ′(x)|p
erx

+ 1

s2
B

(
s

β
+ 1,

1

s2

) |f ′(a)|p
era

]
− 1

6
h(x − a)

}1/p

. (49)

If p = 1, then

|T19(f, x)− [T16(1, x)− T15(1, x)]f (x)|

≤ ‖G16‖∞(b − x)
{
Cβ

[ β

ss1 + β
|f ′(b)|
erb

+ 1

s2
B
( s
β
+ 1,

1

s2

) |f ′(x)|
erx

]
− 1

6
h(b − x)

}

+‖G15‖∞(x − a)
{
Cβ

[ β

ss1 + β
|f ′(x)|
erx

+ 1

s2
B
( s
β
+ 1,

1

s2

) |f ′(a)|
era

]
− 1

6
h(x − a)

}
,

where

Cβ =
{

1 β ≥ 1,
2(1/β)−1, 0 < β < 1,

(50)

and

B(α, β) =
∫ 1

0
tα−1(1− t)β−1dt

is the Beta function.

Proof For 1 < p <∞, by using Lemma 1 and the Hölder inequality, we obtain

|T19(f, x)− [T16(1, x)− T15(1, x)]f (x)|

≤
∫ b

x

|G16(1, t)| × |f ′(t)|dt +
∫ x

a

|G15(1, t)| × |f ′(t)|dt

≤
(∫ b

x

|G16(1, t)|qdt
)1/q (∫ b

x

|f ′(t)|pdt
)1/p

+
(∫ x

a

|G15(1, t)|qdt
)1/q (∫ x

a

|f ′(t)|pdt
)1/p

. (51)
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Setting u = x + (b − x)t and using the exponentially (β, s, s1, s2, h)-strongly
convexity of |f ′ |p on [a, b], we have

∫ b

x

|f ′(u)|pdu = (b − x)
∫ 1

0
|f ′(tb + (1− t)x)|pdt

≤ (b − x)
∫ 1

0

⎧
⎪⎨

⎪⎩

⎡

⎣t ss1
(
|f ′(b)|p
erb

)β
+ (1− t s2)s

(
|f ′(x)|p
erx

)β⎤

⎦
1/β

−t (1− t)h(b − x)
⎫
⎬

⎭ dt

≤ (b − x)
{
Cβ

∫ 1

0

[
t (ss1)/β

(
|f ′(b)|p
erb

)
+ (1− t s2)s/β

(
|f ′(x)|p
erx

)]
dt

−h(b − x)
∫ 1

0
t (1− t)dt

}

= (b − x)
{
Cβ

[
β

ss1 + β
|f ′(b)|p
erb

+ 1

s2
B

(
s

β
+ 1,

1

s2

) |f ′(x)|p
erx

]
− 1

6
h(b − x)

}
. (52)

By letting u = a + (x − a)t and similar arguments, we get

∫ x

a

|f ′(u)|pdu = (x − a)
∫ 1

0
|f ′(tx + (1− t)a)|pdt

≤ (x − a)
{
Cβ

[
β

ss1 + β
|f ′(x)|p
erx

+ 1

s2
B

(
s

β
+ 1,

1

s2

) |f ′(a)|p
era

]

−1

6
h(x − a)

}
. (53)

Hence, (49) follows from (51), (52), and (53). The case p = 1 can be treated
analogously. The proof is completed.

By giving particular values to the parameters in Theorem 7, we get the correspond-
ing integral inequalities for different fractional integral operators. Such as, taking
k = c = β = 1 in Theorem 7, then T19 reduces to T12 − T11. Thus, we get the
following corollary:
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Corollary 1 Under the assumptions of Theorem 7, if k = c = β = 1, and 1 < p <
∞, 1

p
+ 1
q
= 1, then

|T12(f, x)− T11(f, x)− 1

α�(α)
[(g(b)− g(x))α

−(g(x)− g(a))α]f (x)| ≤
(∫ b

x

|G12(1, t)|qdt
)1/q

(b − x)1/p

×
{

1

ss1 + 1

|f ′(b)|p
erb

+ 1

s2
B

(
s + 1,

1

s2

) |f ′(x)|p
erx

− 1

6
h(b − x)

}1/p

+
(∫ x

a

|G11(1, t)|qdt
)1/q

(x − a)1/p

×
{

1

ss1 + 1

|f ′(x)|p
erx

+ 1

s2
B

(
s + 1,

1

s2

) |f ′(a)|p
era

− 1

6
h(x − a)

}1/p

,(54)

where G11(1, t) and G12(1, t) are defined by

G11(1, t) = 1

�(α)

∫ t

a

g
′
(u)[g(x)− g(u)]α−1du

and

G12(1, t) = 1

�(α)

∫ b

t

g
′
(u)[g(u)− g(x)]α−1du,

respectively.

Corollary 2 Under the assumptions of Theorem 7, if g(t) = t, c = 1, then T19
reduces to T4 − T3. Thus, for 1 < p <∞, 1

p
+ 1
q
= 1, we get

∣∣∣∣T4(f, x)− T3(f, x)− 1

α�k(α)

[
(b − x)(α/k) − (x − a)α/k

]
f (x)

∣∣∣∣

≤ 1

α�k(α)

(∫ b

x

|(b − x)α/k − (t − x)α/k|qdt
)1/q

(b − x)1/p

×
{
Cβ

[
β

ss1 + β
|f ′(b)|p
erb

+ 1

s2
B

(
s

β
+ 1,

1

s2

) |f ′(x)|p
erx

]

−1

6
h(b − x)

}1/p
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+ 1

α�k(α)

(∫ x

a

|(x − a)α/k − (x − t)α/k|qdt
)1/q

(x − a)1/p

×
{
Cβ

[
β

ss1 + β
|f ′(x)|p
erx

+ 1

s2
B

(
s

β
+ 1,

1

s2

) |f ′(a)|p
era

]

−1

6
h(x − a)

}1/p

. (55)

If p = 1, then

|T4(f, x)− T3(f, x)− 1

α�k(α)
[(b − x)(α/k) − (x − a)(α/k)]f (x)|

≤ 1

α�k(α)
(b − x)1+(α/k)

{
Cβ

[
β

ss1 + β
|f ′ (b)|
erb

+ 1

s2
B(
s

β
+ 1,

1

s2
)
|f ′ (x)|
erx

]

−1

6
h(b − x)

}

+ 1

α�k(α)
(x − a)1+(α/k)

{
Cβ

[
β

ss1 + β
|f ′ (x)|
erx

+ 1

s2
B

(
s

β
+ 1,

1

s2

) |f ′ (a)|
era

]

−1

6
h(x − a)

}
.

If k = β = 1 in Corollary 2, then T19 reduces to T2−T1. Thus, we get the following
corollary:

Corollary 3 Under the assumptions of Corollary 2, let k = β = 1. If 1 < p <∞,
then

|T2(f, x)− T1(f, x)− 1

α�(α)
[(b − x)α − (x − a)α]f (x)|

≤ 1

α�(α)

(∫ b

x

|(b − x)α − (t − x)α|qdt
)1/q

(b − x)1/p

×
{

1

ss1 + 1

[
|f ′(b)|p
erb

+ 1

s2
B

(
s + 1,

1

s2

) |f ′(x)|p
erx

]
− 1

6
h(b − x)

}1/p

+ 1

α�(α)

(∫ x

a

|(x − a)α − (x − t)α|qdt
)1/q

(x − a)1/p

×
{

1

ss1 + 1

[
|f ′(x)|p
erx

+ 1

s2
B

(
s + 1,

1

s2

) |f ′(a)|p
era

]
− 1

6
h(x − a)

}1/p

.(56)

If p = 1, then
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|T2(f, x)− T1(f, x)− 1

α�(α)
[(b − x)α − (x − a)α]f (x)|

≤ 1

α�(α)
(b − x)1+α

{
1

ss1 + 1

|f ′(b)|
erb

+ 1

s2
B

(
s + 1,

1

s2

) |f ′(x)|
erx

−1

6
h(b − x)

}

+ 1

α�(α)
(x − a)1+α

{
1

ss1 + 1

|f ′(x)|
erx

+ 1

s2
B

(
s + 1,

1

s2

) |f ′(a)|
era

−1

6
h(x − a)

}
. (57)

Taking c = 1/2, α = k = 1, and g(t) = t in Theorem 7, then T19 reduces to the
area balance function T13. Thus, we get the following corollary:

Corollary 4 Let f
′ ∈ Lp[a, b], a ≥ 0, and |f ′ |p be exponentially (s, s1, s2, h)-

strongly convex on [a, b], where 1 ≤ p < ∞, 1
p
+ 1
q
= 1, and for p = 1, define

q = ∞, 1
∞ = 0.

If 1 < p <∞, then

|T13(f, x)− ((b + a)/2− x)f (x)|

≤ (b − x)2
2(q + 1)1/q

{
1

ss1 + 1

|f ′(b)|p
erb

+ 1

s2
B

(
s + 1,

1

s2

) |f ′(x)|p
erx

−1

6
h(b − x)

}1/p

+ (x − a)2
2(q + 1)1/q

{
1

ss1 + 1

|f ′(x)|p
erx

+ 1

s2
B

(
s + 1,

1

s2

) |f ′(a)|p
era

−1

6
h(x − a)

}1/p

. (58)

If p = 1, then

|T13(f, x)− ((b + a)/2− x)f (x)|

≤ 1

2
(b − x)2

{
1

ss1 + 1

|f ′(b)|
erb

+ 1

s2
B

(
s + 1,

1

s2

) |f ′(x)|
erx

−1

6
h(b − x)

}
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+1

2
(x − a)2

{
1

ss1 + 1

|f ′(x)|
erx

+ 1

s2
B

(
s + 1,

1

s2

) |f ′(a)|
era

−1

6
h(x − a)

}
. (59)

Let r = h = 0 in (58) and (59). If 1 < p <∞, then

|T13(f, x)− ((b + a)/2− x)f (x)|

≤ 1

2(q + 1)1/q

{
(b − x)2

[
1

ss1 + 1
|f ′(b)|p + 1

s2
B

(
s + 1,

1

s2

)
|f ′(x)|p

]1/p

+(x − a)2
[

1

ss1 + 1
|f ′(x)|p + 1

s2
B

(
s + 1,

1

s2

)
|f ′(a)|p

]1/p
}
. (60)

If p = 1, then

|T13(f, x)− ((b + a)/2− x)f (x)|

≤ 1

2

{
(b − x)2

[
1

ss1 + 1
|f ′(b)| + 1

s2
B

(
s + 1,

1

s2

)
|f ′(x)|

]

+(x − a)2
[

1

ss1 + 1
|f ′(x)| + | 1

s2
B

(
s + 1,

1

s2

)
f
′
(a)|

]}
. (61)

By using the following identity (see [12])

T13(f, x) = 1

2
{bf (b)+ af (a)− [f (b)+ f (a)]x}

−1

2

∫ b

a

|t − x|f ′(t)dt, x ∈ [a, b], (62)

we get the following theorem:

Theorem 8 Let f ∈ AC[a, b], a ≥ 0, and |f ′ | be exponentially (β, s, s1, s2, h)-
strongly convex on [a, b], s

β
+ 1 > 0, then

|T13(f, x)− 1

2
{bf (b)+ af (a)− [f (b)+ f (a)]x}|

≤ 1

2

{
(b − x)2 × Cβ

[
β

ss1 + 2β

|f ′(b)|
erb

+ 1

s2
B

(
s

β
+ 1,

2

s2

) |f ′(x)|
erx

]

− 1

12
h(b − x)
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+(x − a)2 × Cβ
[

β2

(ss1 + β)(ss1 + 2β)

|f ′(x)|
erx

+ 1

s2

(
B

(
s

β
+ 1,

1

s2

)
− B

(
s

β
+ 1,

2

s2

)) |f ′(a)|
era

]

− 1

12
h(x − a)

}
, (63)

where Cβ is defined by (50).

Proof From (62), we have

|T13(f, x)− 1

2
{bf (b)+ af (a)− [f (a)+ f (b)]x} |

≤ 1

2

∫ b

a

|t − x||f ′(t)|dt

= 1

2

{∫ x

a

(x − t)|f ′(t)|dt +
∫ b

x

(t − x)|f ′(t)|dt
}
. (64)

Let

I1 =
∫ x

a

(x − u)|f ′(u)|du; I2 =
∫ b

x

(u− x)|f ′(u)|du.

Setting u = x + (b − x)t and using the exponentially (β, s, s1, s2, h)-strongly
convexity of |f ′ | on [a, b], we have

I2 =
∫ b

x

(u− x)|f ′(u)|du = (b − x)2
∫ 1

0
t |f ′(tb + (1− t)x)|dt

≤ (b − x)2
∫ 1

0
t

⎧
⎪⎨

⎪⎩

⎡

⎣t ss1
(
|f ′(b)|
erb

)β
+ (1− t s2)s

(
|f ′(x)|
erx

)β⎤

⎦
1/β

−t (1− t)h(b − x)} dt

≤ (b − x)2
{
Cβ

∫ 1

0

[
t (ss1/β)+1

(
|f ′(b)|
erb

)
+ t (1− t s2)s/β

(
|f ′(x)|
erx

)]
dt

−h(b − x)
∫ 1

0
t2(1− t)dt

}

= (b − x)2
{
Cβ

[
β

ss1 + 2β

|f ′(b)|
erb

+ 1

s2
B

(
s

β
+ 1,

2

s2

) |f ′(x)|
erx

]
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− 1

12
h(b − x)

}
. (65)

By letting u = a + (x − a)t , noting that

∫ 1

0
(1− t)t

ss1
β dt = β2

(ss1 + β)(ss1 + 2β)
,

and setting u = 1− t s2 , we have

∫ 1

0
(1− t)(1− t s2)s/βdt

= 1

s2

∫ 1

0
us/β(1− u)(1/s2)−1(1− (1− u)1/s2)dt

= 1

s2

[
B

(
s

β
+ 1,

1

s2

)
− B

(
s

β
+ 1,

2

s2

)]
,

and similar arguments, we get

I1 =
∫ x

a

(x − u)|f ′ (u)|du = (x − a)2
∫ 1

0
(1− t)|f ′ (tx + (1− t)a)|dt

≤ (x − a)2
{
Cβ

[(∫ 1

0
(1− t)t

ss1
β dt

) |f ′ (x)|
erx

+
(∫ 1

0
(1− t)(1− t s2 )s/βdt

) |f ′ (a)|
era

]
− h(x − a)

∫ 1

0
t (1− t)2dt

}

≤ (x − a)2
{
Cβ

[
β2

(ss1 + β)(ss1 + 2β)

|f ′ (x)|
erx

+ 1

s2

(
B

(
s

β
+ 1,

1

s2

)
− B

(
s

β
+ 1,

2

s2

)) |f ′ (a)|
era

]
− 1

12
h(x − a)

}
. (66)

Hence, (63) follows from (64), (65), and (66). The proof is completed.

Taking h = r = 0 and x = (a+ b)/2 in Theorem 8, we get the following corollary:

Corollary 5 Let f ∈ AC[a, b], a ≥ 0, if |f ′ | is (β, s, s1, s2)-convex on [a, b], sβ +
1 > 0, and x = (a + b)/2, then

|T13(f,
a + b

2
)− 1

4
[f (b)− f (a)](b − a)|

≤ Cβ(b − a)
2

8

{
β

ss1 + 2β
|f ′(b)|
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+
(

β2

(ss1 + β)(ss1 + 2β)
+ 1

s2
B

(
s

β
+ 1,

2

s2

)) ∣∣∣∣f
′
(
a + b

2

)∣∣∣∣

+ 1

s2

(
B

(
s

β
+ 1,

1

s2

)
− B

(
s

β
+ 1,

2

s2

))
|f ′(a)|

}
. (67)

4 Some Inequalities for Operator T14

Theorem 9 Under the assumptions of Lemma 1, let f
′ ∈ Lp[a, b], a ≥ 0, 1 ≤

p <∞, 1
p
+ 1
q
= 1, and for p = 1, define q = ∞, 1

∞ = 0. If 1 < p <∞, then

|T14(f, x)− [T15(1, x)+ T16(1, x)]f (x)|

≤
{(∫ x

a

|G15(1, t)|qdt
)1/q

+
(∫ b

x

|G16(1, t)|qdt
)1/q}

‖f ′ ‖p. (68)

If p = 1, then

|T14(f, x)− [T15(1, x)+ T16(1, x)]f (x)| ≤ ‖G‖∞‖f ′ ‖1, (69)

where T14, T15, T16,G15, and G16 are defined by (20), (21), (22), (44), and (45),
respectively, and

G(t) = G16(1, t)ϕD2(t)−G15(1, t)ϕD1(t), (70)

D1 = [a, x],D2 = [x, b], and ϕD is the characteristic function of the setD, that is,

ϕD(t) =
{

1, t ∈ D,
0, t ∈ Dc.

Proof For 1 < p <∞, by using Lemma 2, we obtain

|T14(f, x)− [T16(1, x)+ T15(1, x)]f (x)|

≤
∣∣∣∣
∫ b

x

G16(1, t)f
′
(t)dt −

∫ x

a

G15(1, t)f
′
(t)dt

∣∣∣∣

=
∣∣∣∣
∫ b

a

[G16(1, t)ϕD2(t)−G15(1, t)ϕD1(t)]f
′
(t)dt

∣∣∣∣ . (71)

From (70), we have
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G(t) =
{
G16(1, t), t ∈ D2,

−G15(1, t), t ∈ D1.

This implies that

∫ b

a

|G(t)|qdt =
∫ x

a

|G15(1, t)|qdt.+
∫ b

x

|G16(1, t)|qdt

Using the Hölder inequality, we obtain

|T14(f, x)− [T16(1, x)+ T15(1, x)]f (x)|

≤
(∫ b

a

|G(t)|qdt
)1/q (∫ b

a

|f ′(t)|pdt
)1/p

=
{∫ x

a

|G15(1, t)|qdt +
∫ b

x

|G16(1, t)|qdt
}1/q

‖f ′ ‖p

≤
{(∫ x

a

|G15(1, t)|qdt
)1/q

+
(∫ b

x

|G16(1, t)|qdt
)1/q}

‖f ′ ‖p,

and for p = 1, we have

|T14(f, x)− [T15(1, x)+ T16(1, x)]f (x)| ≤ ‖G‖∞‖f ‖1.

The proof is completed.

Taking c = 1 and g(t) = t in Theorem 9, T14 reduces to T3 + T4. Thus, we get the
following corollary:

Corollary 6 Let f
′ ∈ Lp[a, b], a ≥ 0, 1 ≤ p < ∞, 1

p
+ 1
q
= 1, and for p = 1,

define q = ∞, 1
∞ = 0. If 1 < p <∞, then

|T4(f, x)+ T3(f, x)− 1

α�k(α)
[(b − x)α/k + (x − a)α/k]f (x)|

≤ [kB( k
α
, q + 1)]1/q

α1+(1/q)�k(α)

{
(x − a) αk+ 1

q + (b − x) αk+ 1
q

}
‖f ′ ‖p. (72)

If p = 1, then

|T4(f, x)+ T3(f, x)− 1

α�k(α)
[(x − a)(α/k) + (b − x)(α/k)]f (x)|

≤ 1

α�k(α)

{
(x − a)(α/k) + (b − x)(α/k)

}
‖f ′ ‖1. (73)
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Taking k = 1 in (72) and (73), respectively, we get

|T2(f, x)+ T1(f, x)− 1

α�(α)
[(x − a)α + (b − x)α]f (x)|

≤ (B(
1
α
, q + 1))1/q

α1+(1/q)�(α)

{
(x − a)α+(1/q) + (b − x)α+(1/q)

}
‖f ′ ‖p, (74)

and

|T1(f, x)+ T2(f, x)− 1

α�(α)
[(x − a)α + (b − x)α]f (x)|

≤ 1

α�(α)

{
(x − a)α + (b − x)α} ‖f ′ ‖1. (75)

Taking x = (a + b)/2 in (72), (73), (74), and (75), respectively, we get

∣∣∣∣∣T3

(
f,
a + b

2

)
+ T4

(
f,
a + b

2

)
− 21−(α/k)(b − a)(α/k)

α�k(α)
f

(
a + b

2

)∣∣∣∣∣

≤ 2(1/p)−(α/k)(kB( k
α
, q + 1))1/q(b − a)(α/k)+(1/q)
α1+(1/q)�k(α)

‖f ′ ‖p, (76)

∣∣∣∣∣T4

(
f,
a + b

2

)
+ T3

(
f,
a + b

2

)
− 21−(α/k)(b − a)(α/k)

α�k(α)
f

(
a + b

2

)∣∣∣∣∣

≤ 21−(α/k)(b − a)α/k
α�k(α)

‖f ′ ‖1, (77)

∣∣∣∣T2

(
f,
a + b

2

)
+ T1

(
f,
a + b

2

)
− 21−α(b − a)α

α�(α)
f

(
a + b

2

)∣∣∣∣

≤
2(1/p)−(α)

(
B
(

1
α
, q + 1

))1/q

α1+(1/q)�(α)
(b − a)α+(1/q)‖f ′ ‖p, (78)

and

∣∣∣∣T1

(
f,
a + b

2

)
+ T2

(
f,
a + b

2

)
− 21−α

α�(α)
(b − a)αf

(
a + b

2

)∣∣∣∣

≤ 21−α

α�(α)
(b − a)α‖f ′ ‖1. (79)
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New Generalized Convexity and Their
Applications

Jichang Kuang

Abstract In this chapter, we introduce some very general new notions of Kg
strongly convex functional in normed linear spaces. As their applications, new
generalized Ostrowski type and perturbed Simpson type inequalities are established.
We apply these inequalities to provide approximations for the integral of a real
valued function.

Mathematics Subject Classification 26D15, 26A51

1 Introduction

A function f : [a, b] → R is called convex (in the classical sense), if

f (λx1 + (1− λ)x2)) ≤ λf (x1)+ (1− λ)f (x2), (1)

for all x1, x2 ∈ [a, b], λ ∈ [0, 1]. This classical inequality (1) plays an important
role in analysis, optimization and in the theory of inequalities, and it has a huge
literature dealing with its applications, various generalization, and refinements.
Further, the convexity is one of the most fundamental and important notions
in mathematics. The convexity has wide applications in many branches of pure
and applied mathematics, many inequalities can be derived via the convexity
theory. The convexity theory and its inequalities are fields of interest of numerous
mathematicians and there are many paper, books, and monographs devoted to these
fields and various applications (see e.g.[1–8]). In 2018, Awan, M.U. et al. introduced
the new notion of exponentially convex function:

Definition 1 ([9]) A function f : [a, b] → R is called exponentially convex if
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f (tx1 + (1− t)x2) ≤ t f (x1)

erx1
+ (1− t)f (x2)

erx2
, (2)

for ∀x1, x2 ∈ [a, b],∀t ∈ [0, 1] and r ∈ R.

In particular, if r = 0, then (2) reduces to convex function (1). Let f : [a, b] → R

be a convex function, then the inequality

f

(
a + b

2

)
≤ 1

b − a
∫ b

a

f (x)dx ≤ f (a)+ f (b)
2

(3)

is known in the literature as the Hermite-Hadamard inequality (see, for instance,
[1] and [10]). In fact, the inequality (3) holds if and only if f is a convex
function. The Hermite-Hadamard inequality provides approximations for integral
mean of a real valued function f . The concept of convex function was extended in
many directions and frameworks due to its numerous applications in optimization,
variational methods, geometry, and artificial intelligence. Hence, the inequality (3)
has also been extended and generalized for different classes of generalized convex
functions (see [1, 7, 8, 11, 12] and the references therein). In 2019, Mehreen and
Anwar [10] extended the above Definition 1 by introducing the new notions of
exponentially p-convex function and exponentially s-convex function in the second
sense, respectively. In fact, they can be generalized uniformly as follows:

Definition 2 Let [a, b] ⊂ (0,∞). A function f : [a, b] → R is called
exponentially (α, s)-convex if

f ((txα1 + (1− t)xα2 )1/α) ≤ t s
f (x1)

erx1
+ (1− t)s f (x2)

erx2
, (4)

for ∀x1, x2 ∈ [a, b],∀t ∈ [0, 1], s ∈ (0, 1],α 	= 0 and r ∈ R.

In particular, if s = 1, then (4) reduces to exponentially α-convex function in [10];
if s = 1, r = 0, then (4) reduces to α-convex function in [10]; if α = 1, then (4)
reduces to exponentially s-convex function in [10]; if r = 0, α = 1, then (4) reduces
to s-convex function in [13].

Definition 3 Let [a, b] ⊂ R − {0}. A function f : [a, b] → R is called
exponentially harmonically s-convex, if

f

(
x1x2

tx2 + (1− t)x1

)
≤ t s f (x1)

erx1
+ (1− t)s f (x2)

erx2
, (5)

for ∀x1, x2 ∈ [a, b],∀t ∈ [0, 1], s ∈ (0, 1] and r ∈ R.

If s = 1,r = 0, then (5) reduces to harmonically convex function in [14]. In 1966,
Polyak [14] introduced the notion of strongly convex functions:



New Generalized Convexity and Their Applications 511

Definition 4 ([14]) A function f : [a, b] → R is called strongly convex with
modulus c if

f (tx1 + (1− t)x2) ≤ tf (x1)+ (1− t)f (x2)− ct (1− t)(x1 − x2)
2, (6)

∀x1, x2 ∈ [a, b],∀t ∈ [0, 1], c > 0.

Strongly convex functions have properties useful in optimization, mathematical
economics, and other branches of pure and applied mathematics. Many properties
and applications of them can be found in the literature (see, for instance, [2, 6, 7, 15],
and the references therein). In 2016, Adamek [15] generalized (6) to the following

Definition 5 ([15]) A function f : [a, b] → R is called h-strongly convex if

f (tx1 + (1− t)x2) ≤ tf (x1)+ (1− t)f (x2)− t (1− t)h(x1 − x2), (7)

∀x1, x2 ∈ [a, b],∀t ∈ [0, 1], and h : [a, b] → [0,∞).
In particular, if h(x1 − x2) = c(x1 − x2)

2, c > 0, then (7) reduces to (6). In what
follows, (X, ‖ · ‖) denotes the real normed linear spaces,D be a convex subset of X,
h : (0, 1) → (0,∞) is a given function and c be a positive constant. In 2019, the
author [5] introduced a new class of generalized convex functionals, that is,

Definition 6 A functional f : D→ (0,∞) is called (α, β, λ, λ0, t, ξ, h) convex if

f β((λ‖x1‖α + λ0(1− λ)‖x2‖α)1/α) ≤ h(tξ )f β(‖x1‖)+ λ0h(1− t ξ )f β(‖x2‖),
(8)

∀x1, x2 ∈ D,∀λ, λ0, t, ξ ∈ [0, 1], α, β are real numbers, and α, β 	= 0.

In particular, if D = (0,∞), λ0 = 1 in (8), that is, if a function f : (0,∞) →
(0,∞) satisfies

f β((λxα1 + (1− λ)xα2 )1/α) ≤ h(tξ )f β(x1)+ h(1− t ξ )f β(x2), (9)

∀x1, x2 ∈ (0,∞),∀λ ∈ [0, 1], α, β are real numbers, and α, β 	= 0, then f is said to
be a (α, β, λ, t, ξ, h) convex function.

Definition 7 ([1]) Let M be the family of all mean of two positive numbers a, b.
Given M1,M2 ∈ M . A function f : (0,∞) → (0,∞) is called (h1, h2,M1,M2)-
convex, if

f (tM1(a, b)+ (1− t)M2(a, b))

≤ h1(t)M2(f (a), f (b))+ h2(1− t)M1(f (a), f (b)). (10)

If h1(t) = h2(t) = t in (10), that is,

f (tM1(a, b)+ (1− t)M2(a, b))
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≤ tM2(f (a), f (b))+ (1− t)M1(f (a), f (b)), (11)

then f is said to be a (t,M1,M2)-convex function. If t = 1 in (11), that is,

f (M1(a, b)) ≤ M2(f (a), f (b)), (12)

then f is said to be a (M1,M2)-convex function.

Theorem 1 ([1, 2]) Let f : [a, b] → R be a differentiable function, then for all
x ∈ [a, b],

| 1

b − a
∫ b

a

f (u)du− f (x)| ≤
[

1

4
+
(
x − (a + b)/2

b − a
)2

]
(b− a)‖f ′ ‖∞. (13)

The constant 1
4 is the best possible.

This is well-known as Ostrowski inequality. Many authors have made general-
izations to inequality (13). For more results and details, see [1–3, 16, 17] and
the references therein. In [18], Dragomir proved the following Ostrowski type
inequalities for functions of bounded variation:

Theorem 2 Let f ∈ BV [a, b], then for all x ∈ [a, b]
∣∣∣∣

1

b − a
∫ b

a

f (u)du− f (x)
∣∣∣∣ ≤

[
1

2
+
∣∣∣∣
x − (a + b)/2

b − a
∣∣∣∣

]
V ba (f ). (14)

The constant 1/2 is the best possible.

In [19], Lerone et al. established the following generalized trapezoid inequalities for
functions of bounded variation:

Theorem 3 Let f ∈ BV [a, b], then for all x ∈ [a, b]
∣∣∣∣

1

b − a
∫ b

a

f (u)du− (x − a)f (a)+ (b − x)f (b)
b − a

∣∣∣∣

≤
[

1

2
+
∣∣∣∣
x − (a + b)/2

b − a
∣∣∣∣

]
V ba (f ). (15)

The constant 1/2 is the best possible.

Theorem 4 ([20]) Let f ∈ BV [a, b], then for all x ∈ [a, (a + b)/2],
∣∣∣∣
∫ b

a

f (u)du− (x − a)[f (a)+ f (b)] − (a + b − 2x)f

(
a + b

2

)∣∣∣∣

≤
[
b − a

4
+
∣∣∣∣x −

3a + b
4

∣∣∣∣

]
V ba (f ). (16)
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The constant 1/4 is the best possible.

Taking x = (3a + b)/4 in (16), we get

∣∣∣∣
1

b − a
∫ b

a

f (u)du− 1

2

[
f

(
a + b

2

)
+ f (a)+ f (b)

2

]∣∣∣∣ ≤
1

4
V ba (f ).

Taking x = a in (16), we get the midpoint inequality:

∣∣∣∣
1

b − a
∫ b

a

f (u)du− f
(
a + b

2

)∣∣∣∣ ≤
1

2
V ba (f ).

Taking x = (a + b)/2 in (16), we get the trapezoid inequality:

∣∣∣∣
1

b − a
∫ b

a

f (u)du− 1

2
[f (a)+ f (b)]

∣∣∣∣ ≤
1

2
V ba (f ).

Theorem 5 ([8]) Let f " ∈ BV [a, b], then
∣∣∣∣

1

b − a
∫ b

a

f (u)du− f
(
a + b

2

)
− (b − a)

2

48
f "

(
a + b

2

)

−b − a
96

[
f "(a)+ f "(b)

]∣∣∣∣ ≤
(b − a)2

96
V ba (f

"). (17)

Theorem 6 ([21]) Let f
′′ ∈ BV [a, b], then

∣∣∣∣
1

b − a
∫ b

a

f (u)du− 1

2
[f (a)+ f (b)]+ (b − a)

2

8

[
f
′
(b)− f ′(a)

]

− (b − a)
2

48

[
f "(a)+ f "(b)

]∣∣∣∣ ≤
(b − a)2

48
V ba (f

").

In this chapter, we generalized (8) to exponentially strongly convex functional,
and introduce some very general new notions of Kg strongly convex functional
in normed linear spaces in Sect. 2. It unifies and generalizes the many known and
new classes of convex functions. As their applications, new generalized Ostrowski
type inequalities are established in Sect. 3. We apply these inequalities to provide
approximations for the integral of a real valued function. In Sect. 4, we give proofs
of Theorem 7 and 8. In Sect. 5, perturbed Simpson type inequalities and some new
approximations for the integral of a real valued function are also given.
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2 Generalized Convexity in Normed Linear Spaces

In this section, we generalized (8) to exponentially strongly convex functional and
introduce some very general new notions of Kg strongly convex functional in
normed linear spaces.

Definition 8 Let (X, ‖·‖) denotes the real normed linear spaces,D be a convex sub-
set of X,g, h1, h2 : (0, 1)→ (0,∞) and h : (0,∞)→ (0,∞) be given functions.
A function f : D → [0,∞) is called exponentially (α, β, λ, λ1, λ2, ξ, t, h1, g, h)-
strongly convex if

f
((
λ‖x1‖α + λ1(1− λ)‖x2‖α

)1/α
)
≤
{
h1(t

ξ )

(
f (‖x1‖)
er‖x1‖

)β

+λ2h1(1− t ξ )
(
f (‖x2‖)
er‖x2‖

)β}1/β

− g(t)h(‖x1 − x2‖), (18)

where x1, x2 ∈ D,λ, λ1, λ2, ξ, t ∈ [0, 1], r ∈ R,α, β are real numbers, and α, β 	=
0.

In particular, if g(t) = λ0h2(t)h2(1− t),λ0 ∈ [0, 1], that is,

f
((
λ‖x1‖α + λ1(1− λ)‖x2‖α

)1/α
)
≤
{
h1(t

ξ )(
f (‖x1‖)
er‖x1‖ )

β

+λ2h1(1− t ξ )
(
f (‖x2‖)
er‖x2‖

)β}1/β

− λ0h2(t)h2(1− t)h(‖x1 − x2‖), (19)

we say that f is an exponentially (α, β, λ, λ1, λ2, λ0, ξ, t, h1, h2, h)-strongly
convex functional. If h2(t) = t, λ0 = 1, then (19) reduces to exponen-
tially (α, β, λ, λ1, λ2, ξ, t, h1, h)-strongly convex functional in [6]. If D ⊂
(0,∞), h2(t) = t, λ0 = 1 in (19), that is, if a function f : D→ (0,∞) satisfies

f ((λxα1 + λ1(1− λ)xα2 )1/α) ≤
{
h1(t

ξ )

(
f (x1)

erx1

)β

+λ2h1(1− t ξ )
(
f (x2)

erx2

)β}1/β

− t (1− t)h(|x1 − x2|), (20)

where x1, x2 ∈ D,λ, λ1, λ2, ξ, t ∈ [0, 1], r ∈ R,α, β are real numbers, and α, β 	=
0, we say that f is an exponentially (α, β, λ, λ1, λ2, ξ, t, h1, h)-strongly convex
function. If ξ = 1 in (20), that is,
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f
((
λxα1 + λ1(1− λ)xα2

)1/α
)
≤
{
h1(t)

(
f (x1)

erx1

)β

+λ2h1(1− t)
(
f (x2)

erx2

)β}1/β

− t (1− t)h(|x1 − x2|), (21)

we say that f is an exponentially (α, β, λ, λ1, λ2, t, h1, h)-strongly convex func-
tion. If λ1 = λ2 = 1, λ = t, h1(t) = t s , 0 < |s| ≤ 1 in (21), that is,

f
((
txα1 + (1− t)xα2

)1/α
)
≤
{
t s
(
f (x1)

erx1

)β

+(1− t)s
(
f (x2)

erx2

)β}1/β

− t (1− t)h(|x1 − x2|), (22)

we say that f is an exponentially (α, β, s, h)-strongly convex function. If α = 1 in
(22), then f is an exponentially (β, s, h)-strongly convex function. If α = β = 1 in
(22), then f is an exponentially (s, h)-strongly convex function. If α = β = s = 1
in (22), then f is an exponentially h-strongly convex function. If λ1 = λ2 = 1, λ =
t, r = 0 in (20), that is,

f
((
txα1 + (1− t)xα2

)1/α
)
≤ {
h1(t

ξ )(f (x1))
β

+h1(1− t ξ )(f (x2))
β
}1/β − t (1− t)h(|x1 − x2|), (23)

we say that f is a (α, β, ξ, h, h1)-strongly convex function. If α = β = ξ =
1,h1(t) = t , then (23) reduces to (7).

Definition 9 Let D ⊂ X, g : [0, 1] → D,h : [0,∞) → (0,∞) and h1, h2 :
(0, 1) → (0,∞) be given function. K : (0,∞) × (0,∞) → (0,∞). A functional
f : D→ R is called Kg-strongly convex, if

f (g(λ)) ≤ K(f (g(0)), f (g(1)))− λ0h2(t)h2(1− t)h(‖g(0)− g(1)‖), (24)

where λ, λ0, t ∈ [0, 1].
If

f (g(λ)) ≥ K(f (g(0)), f (g(1)))+ λ0h2(t)h2(1− t)h(‖g(0)− g(1)‖),

we say that f is aKg-strongly concave function. In particular, let g(λ) = (λ‖x2‖α+
(1− λ)‖x1‖α)1/α , λ, ξ, t ∈ [0, 1],r ∈ R,

K(x, y) = {h1(t
ξ )(e−r‖x1‖x)β + h1(1− t ξ )(e−r‖x2‖y)β}1/β,
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then (24) reduces to

f
((
λ‖x2‖α + (1− λ)‖x1‖α

)1/α
)
≤
{
h1(t

ξ )

(
f (‖x1‖)
er‖x1‖

)β

+h1(1− t ξ )
(
f (‖x2‖)
er‖x2‖

)β}1/β

− λ0h2(t)h2(1− t)h(|‖x1‖ − ‖x2‖|).

If h is a decreasing function, then h(|‖x1‖−‖x2‖|) ≥ h(‖x1−x2‖), thus (24) reduces
to (19). If g(λ) = M1(q

λ‖x1‖, q1−λ‖x2‖), 0 < q, λ < 1,K(x, y) = M2(x, y), then
(24) reduces to

f (M1(q
λ‖x1‖, q1−λ‖x2‖)) ≤ M2(f (M1(‖x1‖, q‖x2‖)), f (M1(q‖x1‖, ‖x2‖)))

−λ0h2(t)h2(1− t)h(|M1(‖x1‖, q‖x2‖)−M1(q‖x1‖, ‖x2‖)|). (25)

If g(t) = tM1(‖x1‖, ‖x2‖)+(1−t)M2(‖x1‖, ‖x2‖),K(x, y) = h1(t)x+h1(1−t)y,
then (24) reduces to

f (tM1(‖x1‖, ‖x2‖)+ (1− t)M2(‖x1‖, ‖x2‖))
≤ h1(t)f (M2(‖x1‖, ‖x2‖))+ h1(1− t)f (M1(‖x1‖, ‖x2‖))
−λ0h2(t)h2(1− t)h(|M2(‖x1‖, ‖x2‖)−M1(‖x1‖, ‖x2‖)|). (26)

In what follows, let X = [0,∞),[a, b] ⊂ X, then (24) reduces to

f (g(λ)) ≤ K(f (g(0)), f (g(1)))− λ0h2(t)h2(1− t)h(|g(0)− g(1)|). (27)

If g(t) = ((1 − t)aα + tbα)1/α , K(x, y) = {h1(t
ξ )(e−rax)β + h1(1 −

t ξ )(e−rby)β}1/β , then (27) reduces to

f
((
(1− t)aα + tbα)1/α

)
≤
{
h1(t

ξ )(e−raf (a))β + h1(1− t ξ )(e−rbf (b))β
}1/β

−λ0h2(t)h2(1− t)h(b − a). (28)

If λ0 = 1, λ1 = λ2 = 1,h2(t) = t , then (28) reduces to (20). If g(t) = ta +
(1 − t)b,K(x, y) = ty + (1 − t)x, λ0 = 0, then (27) reduces to (1). If g(t) =
(1− t)a+ tb,K(x, y) = x1−t yt , then (27) reduces toAG-strongly convex function:

f ((1− t)a + tb) ≤ {f (a)}1−t {f (b)}t − λ0h2(t)h2(1− t)h(b − a).

If g(t) = a1−t bt , K(x, y) = tx+(1−t)y, then (27) reduces toGA-strongly convex
function:
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f (a1−t bt ) ≤ tf (a)+ (1− t)f (b)− λ0h2(t)h2(1− t)h(b − a).

If g(t) = a1−t bt , K(x, y) = x1−t yt , then (27) reduces to GG-strongly convex
function:

f (a1−t bt ) ≤ {f (a)}1−t f (b)t − λ0h2(t)h2(1− t)h(b − a).

In particular, if λ0 = 0, then the above inequality reduces toGG-convex function in
[22]. If g(t) = ((1− t)a−1 + tb−1)−1,K(x, y) = ty + (1− t)x, then (27) reduces
to HA-strongly convex function:

f

(
ab

ta + (1− t)b
)
≤ tf (b)+ (1− t)f (a)− λ0h2(t)h2(1− t)h(b − a).

If g(t) = ta + (1− t)b,K(x, y) = max{x, y}, then (27) reduces to strongly quasi-
convex function:

f (ta + (1− t)b) ≤ max{f (a), f (b)} − λ0h2(t)h2(1− t)h(b − a).

If g(t) = (1− t)a + tb,K(x, y) = (tαx−1 + (1− t)αy−1)−1, then (27) reduces to
α − AH -strongly convex function:

f ((1− t)a + tb) ≤ f (a)f (b)

tαf (b)+ (1− t)αf (a) − λ0h2(t)h2(1− t)h(b − a).

If g(t) = ((1 − t)a−1 + tb−1)−1, K(x, y) = (tαx−1 + (1 − t)αy−1)−1, then (27)
reduces to α −HH strongly convex function:

f

((
(1− t)a−1 + tb−1

)−1
)
≤
{
tα(f (a))−1 + (1− t)α(f (b))−1

}−1

−λ0h2(t)h2(1− t)h(b − a).

In particular, if λ0 = 1, then the above inequality reduces to α − HH convex
function in [23]. If g(t) = ((1 − t)aα + tbα)1/α , K(x, y) = {h1(t

ξ )xβ + (1 −
h1(t

ξ ))yβ}1/β , then (27) reduces to

f
((
(1− t)aα + tbα)1/α

)
≤ {
h1(t

ξ )(f (a))β + (1− h1(t
ξ ))(f (b))β

}1/β

−λ0h2(t)h2(1− t)h(b − a). (29)

If α = β = 1, λ0 = 0, ξ = 1, then (29) reduces to modified h1-convex function
[11]:

f ((1− t)a + tb) ≤ h1(t)f (a)+ (1− h1(t))f (b).
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Hence, Definitions 8 and 9 are very general notions of convex functions. They
unified and generalized many known and new classes of convex functions.

3 Generalized Ostrowski Type Inequalities

In what follows, let

Sn(f, x) =
n−1∑

k=0

[
(b − x)k+1 + (−1)k(x − a)k+1

(k + 1)!
]
f k(x); (30)

AC[a, b] denotes the class of absolutely continuous functions on [a, b], and

B(α, β) =
∫ 1

0
tα−1(1− t)β−1dt, α, β > 0

is the Beta function.

Theorem 7 Let [a, b] ⊂ (0,∞),f : [a, b] → (0,∞) be a differentiable mapping
such that f (n−1) ∈ AC[a, b],1 ≤ p < ∞, 1

p
+ 1
q
= 1, and for p = 1, define

q = ∞, 1
∞ = 0. If |f (n)|p is exponentially (β, s, h)-strongly convex on [a, b], thus,

we get an approximation error estimate:

∣∣∣∣
∫ b

a

f (u)du− Sn(f, x)
∣∣∣∣

≤ (x − a)n+1

n!(nq + 1)1/q
×
{
βCβ

s + β

[
|f (n)(x)|p
erx

+ |f (n)(a)|p
era

]
− 1

6
h(x − a)

}1/p

+ (b − x)n+1

n!(nq + 1)1/q
×
{
βCβ

s + β

[
|f (n)(b)|p
erb

+ |f (n)(x)|p
erx

]
− 1

6
h(b − x)

}1/p

,

(31)

where

Cβ =
{

1, β ≥ 1,
2(1/β)−1, 0 < β < 1.

(32)
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Taking β = 1 in (31), we get

∣∣∣∣
∫ b

a

f (u)du− Sn(f, x)
∣∣∣∣

≤ (x − a)n+1

n!(nq + 1)1/q
×
{

1

s + 1

[
|f (n)(x)|p
erx

+ |f (n)(a)|p
era

]
− 1

6
h(x − a)

}1/p

+ (b − x)n+1

n!(nq + 1)1/q
×
{

1

s + 1

[
|f (n)(b)|p
erb

+ |f (n)(x)|p
erx

]
− 1

6
h(b − x)

}1/p

.

(33)

If p = 1 in (33), then

∣∣∣∣
∫ b

a

f (u)du− Sn(f, x)
∣∣∣∣

≤ (x − a)
n+1

n! ×
{

1

s + 1

[
|f (n)(x)|
erx

+ |f (n)(a)|
era

]
− 1

6
h(x − a)

}

+ (b − x)
n+1

n! ×
{

1

s + 1

[
|f (n)(b)|
erb

+ |f (n)(x)|
erx

]
− 1

6
h(b − x)

}
. (34)

Let

Mk,p = sup

{
|f (k)(x)|p
erx

: x ∈ [a, b]
}
. (35)

Taking h = 0 in (33), (34), respectively, we get

∣∣∣∣
∫ b

a

f (u)du− Sn(f, x)
∣∣∣∣

≤ (2Mn,p)1/p

n!(nq + 1)1/q(s + 1)1/p

[
(x − a)n+1 + (b − x)n+1

]
; (36)

∣∣∣∣
∫ b

a

f (u)du− Sn(f, x)
∣∣∣∣ ≤

2Mn,1
n!(s + 1)

[
(x − a)n+1 + (b − x)n+1

]
. (37)

Taking x = (a + b)/2 in (33), (34), (36), and (37), we get some new midpoint type
inequalities:

∣∣∣∣
∫ b

a

f (u)du− Sn(f, (a + b)/2)
∣∣∣∣ ≤

(b − a)n+1

2n+1n!(nq + 1)1/q
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×
⎧
⎨

⎩

[
1

s + 1

(
|f (n)((a + b)/2)|p

er(a+b)/2
+ |f (n)(a)|p

era

)
− 1

6
h

(
b − a

2

)]1/p

+
[

1

s + 1

(
|f (n)(b)|p
erb

+ |f (n)((a + b)/2)|p
er(a+b)/2

)
− 1

6
h

(
b − a

2

)]1/p
⎫
⎬

⎭ ;(38)

∣∣∣∣
∫ b

a

f (u)du− Sn(f, (a + b)/2)
∣∣∣∣

≤ (b − a)
n+1

2n+1n!

{
1

s + 1

[
2|f (n)((a + b)/2)|

er(a+b)/2

+|f
(n)(a)|
era

+ |f (n)(b)|
erb

]
− 1

3
h

(
b − a

2

)}
; (39)

∣∣∣∣
∫ b

a

f (u)du− Sn
(
f,
a + b

2

)∣∣∣∣ ≤
(2Mn,p)1/p(b − a)n+1

2nn!(nq + 1)1/q(s + 1)1/p
; (40)

∣∣∣∣
∫ b

a

f (u)du− Sn
(
f,
a + b

2

)∣∣∣∣ ≤
Mn,1(b − a)n+1

2n−1n!(s + 1)
. (41)

Taking n = 1 in (33), (34), (36), (37), (38), (39), (40) and (41), respectively, we get
some new versions of Ostrowski type and midpoint type inequalities:

∣∣∣∣
∫ b

a

f (u)du− (b − a)f (x)
∣∣∣∣

≤ (x − a)2
(q + 1)1/q

×
{

1

s + 1

[
|f ′(x)|p
erx

+ |f ′(a)|p
era

]
− 1

6
h(x − a)

}1/p

+ (b − x)2
(q + 1)1/q

×
{

1

s + 1

[
|f ′(b)|p
erb

+ |f ′(x)|p
erx

]
− 1

6
h(b − x)

}1/p

;(42)

∣∣∣∣
∫ b

a

f (u)du− (b − a)f (x)
∣∣∣∣

≤ (x − a)2 ×
{

1

s + 1

[
|f ′(x)|
erx

+ |f ′(a)|
era

]
− 1

6
h(x − a)

}



New Generalized Convexity and Their Applications 521

+(b − x)2 ×
{

1

s + 1

[
|f ′(b)|
erb

+ |f ′(x)|
erx

]
− 1

6
h(b − x)

}
; (43)

∣∣∣∣
∫ b

a

f (u)du− (b − a)f (x)
∣∣∣∣

≤ (2M1,p)
1/p

(q + 1)1/q(s + 1)1/p

[
(x − a)2 + (b − x)2

]
; (44)

∣∣∣∣
∫ b

a

f (u)du− (b − a)f (x)
∣∣∣∣

≤ 2M1,1

s + 1
[(x − a)2 + (b − x)2]; (45)

∣∣∣∣
1

b − a
∫ b

a

f (u)du− f
(
a + b

2

)∣∣∣∣ ≤
(b − a)

4(q + 1)1/q

×
⎧
⎨

⎩

[
1

s + 1

(
|f ′((a + b)/2)|p

er(a+b)/2
+ |f ′(a)|p

era

)
− 1

6
h

(
b − a

2

)]1/p

+
[

1

s + 1

(
|f ′(b)|p
erb

+ |f ′((a + b)/2)|p
er(a+b)/2

)
− 1

6
h

(
b − a

2

)]1/p
⎫
⎬

⎭ ;(46)

∣∣∣∣
1

b − a
∫ b

a

f (u)du− f
(
a + b

2

)∣∣∣∣ ≤
(b − a)

4

{
1

s + 1

[
2|f ′((a + b)/2)|
er(a+b)/2

+|f
′
(a)|
era

+ |f ′(b)|
erb

]
− 1

3
h

(
b − a

2

)}
; (47)

∣∣∣∣
1

b − a
∫ b

a

f (u)du− f (a + b
2
)

∣∣∣∣ ≤
(M1,p)

1/p(b − a)
21/q(q + 1)1/q(s + 1)1/p

; (48)

∣∣∣∣
1

b − a
∫ b

a

f (u)du− f (a + b
2
)

∣∣∣∣ ≤
M1,1(b − a)
s + 1

. (49)
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If r = 0, h = 0, that is, |f ′ |p is s-convex on [a, b], then

∣∣∣∣
∫ b

a

f (u)du− (b − a)f (x)
∣∣∣∣

≤ (x − a)2
(q + 1)1/q(s + 1)1/p

(|f ′(x)|p + |f ′(a)|p)1/p

+ (b − x)2
(q + 1)1/q(s + 1)1/p

(|f ′(b)|p + |f ′(x)|p)1/p;

∣∣∣∣
∫ b

a

f (u)du− (b − a)f (x)
∣∣∣∣

≤ (x − a)
2

s + 1
(|f ′(x)| + |f ′(a)|)+ (b − x)

2

s + 1
(|f ′(b)| + |f ′(x)|);

∣∣∣∣
1

b − a
∫ b

a

f (u)du− f
(
a + b

2

)∣∣∣∣ ≤
(b − a)

4(q + 1)1/q(s + 1)1/p

×
{
(|f ′((a + b)/2)|p + |f ′(a)|p)1/p + (|f ′(b)|p + |f ′((a + b)/2)|p)1/p

}
;

∣∣∣∣
1

b − a
∫ b

a

f (u)du− f
(
a + b

2

)∣∣∣∣ ≤
(b − a)
4(s + 1)

{
|f ′ (a)| + |f ′ (b)| + 2|f ′ ((a + b)/2)|

}
.

Taking n = 2 in (38), (39), (40), and (41), respectively, and note that

∣∣∣∣
∫ b

a

f (u)du− S2(f, (a + b)/2)
∣∣∣∣ =

∣∣∣∣
∫ b

a

f (u)du− (b − a)f ((a + b)/2)
∣∣∣∣ ,

we get also some new versions of midpoint type inequalities:

∣∣∣∣
1

b − a
∫ b

a

f (u)du− f
(
a + b

2

)∣∣∣∣ ≤
(b − a)2

16(2q + 1)1/q

×
{[

1

s + 1

( |f "((a + b)/2)|p
er(a+b)/2

+ |f "(a)|p
era

)
− 1

6
h

(
b − a

2

)]1/p

+
[

1

s + 1

( |f "(b)|p
erb

+ |f "((a + b)/2)|p
er(a+b)/2

)
− 1

6
h

(
b − a

2

)]1/p}
(50)
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∣∣∣∣
1

b − a
∫ b

a

f (u)du− f
(
a + b

2

)∣∣∣∣

≤ (b − a)
2

16

{
1

s + 1

[
2|f "((a + b)/2)|

er(a+b)/2

+|f
"(a)|
era

+ |f "(b)|
erb

]
− 1

3
h

(
b − a

2

)}
; (51)

∣∣∣∣
1

b − a
∫ b

a

f (u)du− f
(
a + b

2

)∣∣∣∣ ≤
(2M2,p)

1/p(b − a)2
8(2q + 1)1/q(s + 1)1/p

; (52)

∣∣∣∣
1

b − a
∫ b

a

f (u)du− f
(
a + b

2

)∣∣∣∣ ≤
M2,1(b − a)2

4(s + 1)
. (53)

If r = 0, h = 0, that is,|f "|p is s-convex on [a, b], then

∣∣∣∣
1

b − a
∫ b

a

f (u)du− f
(
a + b

2

)∣∣∣∣ ≤
(b − a)2

16(2q + 1)1/q(s + 1)1/p

×
{
(|f "((a + b)/2)|p + |f "(a)|p)1/p + (|f "(b)|p + |f "((a + b)/2)|p)1/p

}
;

∣∣∣∣
1

b − a
∫ b

a

f (u)du− f
(
a + b

2

)∣∣∣∣

≤ (b − a)2
16(s + 1)

{
|f "(a)| + |f "(b)| + 2|f "((a + b)/2)|

}
.

Theorem 8 Under the assumptions of Theorem 7, we have another approximation
error estimate:

∣∣∣∣
∫ b

a

f (u)du− Sn(f, x)
∣∣∣∣

≤ (x − a)n+1

n!(n+ 1)1/q

{
Cβ

[
β

s + β(n+ 1)

|f (n)(x)|p
erx

+B
(
n+ 1,

s

β
+ 1

) |f (n)(a)|p
era

]
− 1

(n+ 2)(n+ 3)
h(x − a)

}1/p

+ (b − x)
n+1

n!(n+ 1)1/q

{
Cβ

[
B(n+ 1,

s

β
+ 1)

|f (n)(b)|p
erb
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+ β

s + β(n+ 1)

|f (n)(x)|p
erx

]
− 1

(n+ 2)(n+ 3)
h(b − x)

}1/p

, (54)

where Cβ is defined by (32).

Taking β = 1 in (54), we get

∣∣∣∣
∫ b

a

f (u)du− Sn(f, x)
∣∣∣∣

≤ (x − a)n+1

n!(n+ 1)1/q

{
1

s + n+ 1

|f (n)(x)|p
erx

+B(n+ 1, s + 1)
|f (n)(a)|p
era

− 1

(n+ 2)(n+ 3)
h(x − a)

}1/p

+ (b − x)
n+1

n!(n+ 1)1/q

{
B(n+ 1, s + 1)

|f (n)(b)|p
erb

+ 1

s + n+ 1

|f (n)(x)|p
erx

− 1

(n+ 2)(n+ 3)h(b − x)

}1/p

, (55)

If p = 1 in (55), then

∣∣∣∣
∫ b

a

f (u)du− Sn(f, x)
∣∣∣∣ ≤

(x − a)n+1

n!

{
1

s + n+ 1

|f (n)(x)|
erx

+B(n+ 1, s + 1)
|f (n)(a)|
era

− 1

(n+ 2)(n+ 3)
h(x − a)

}

+ (b − x)
n+1

n!

{
B(n+ 1, s + 1)

|f (n)(b)|
erb

+ 1

s + n+ 1

|f (n)(x)|
erx

− 1

(n+ 2)(n+ 3)
h(b − x)

}
. (56)

Taking h = 0 in (55), (56), respectively, we get

∣∣∣∣
∫ b

a

f (u)du− Sn(f, x)
∣∣∣∣

≤ (Mn,p)
1/p

n!(n+ 1)1/q

{
B(n+ 1, s + 1)+ 1

s + n+ 1

}1/p [
(x − a)n+1 + (b − x)n+1

]
; (57)
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∣∣∣∣
∫ b

a

f (u)du−Sn(f, x)
∣∣∣∣

≤ Mn,1
n!

{
B(n+1, s + 1)+ 1

s+n+1

} [
(x−a)n+1+(b−x)n+1

]
, (58)

where Mk,p is defined by (35). Taking x = (a + b)/2 in (55), (56), (57), and (58),
respectively, we get some new midpoint type inequalities:

∣∣∣∣
∫ b

a

f (u)du− Sn(f, (a + b)/2)
∣∣∣∣

≤ (b − a)n+1

2n+1n!(n+ 1)1/q

{[
1

s + n+ 1

|f (n)((a + b)/2)|p
er(a+b)/2

+B(n+ 1, s + 1)
|f (n)(a)|p
era

− 1

(n+ 2)(n+ 3)
h(
b − a

2
)

]1/p

+
[
B(n+ 1, s + 1)

|f (n)(b)|p
erb

+ 1

s + n+ 1

|f (n)((a + b)/2)|p
er(a+b)/2

− 1

(n+ 2)(n+ 3)
h

(
b − a

2

)]1/p
⎫
⎬

⎭ ; (59)

∣∣∣∣
∫ b

a

f (u)du− Sn(f, (a + b)/2)
∣∣∣∣

≤ (b − a)
n+1

2n+1n!

{
2

s + n+ 1

|f (n)((a + b)/2)|
er(a+b)/2

+B(n+ 1, s + 1)

(
|f (n)(a)|
era

+ |f (n)(b)|
erb

)

− 2

(n+ 2)(n+ 3)
h((b − a)/2)

}
; (60)

∣∣∣∣
∫ b

a

f (u)du− Sn(f, (a + b)/2)
∣∣∣∣

≤ (Mn,p)
1/p

2nn!(n+ 1)1/q

{
B(n+ 1, s + 1)+ 1

s + n+ 1

}1/p

(b − a)n+1; (61)

∣∣∣∣
∫ b

a

f (u)du− Sn(f, (a + b)/2)
∣∣∣∣

≤ Mn,1
2nn!

{
B(n+ 1, s + 1)+ 1

s + n+ 1

}
(b − a)n+1. (62)
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Taking n = 1 in (55), (56), (57) and (58), respectively, we get some new versions of
Ostrowski type inequalities:

∣∣∣∣
∫ b

a

f (u)du− (b − a)f (x)
∣∣∣∣

≤ (x − a)
2

21/q

{
1

s + 2

[
|f ′ (x)|p
erx

+ 1

s + 1

|f ′ (a)|p
era

]
− 1

12
h(x − a)

}1/p

+ (b − x)
2

21/q

{
1

s + 2

[
1

s + 1

|f ′ (b)|p
erb

+ |f ′ (x)|p
erx

]
− 1

12
h(b − x)

}1/p

; (63)

∣∣∣∣
∫ b

a

f (u)du− (b − a)f (x)
∣∣∣∣

≤ (x − a)2
{

1

s + 2

[
|f ′(x)|
erx

+ 1

s + 1

|f ′(a)|
era

]
− 1

12
h(x − a)

}

+(b − x)2
{

1

s + 2

[
1

s + 1

|f ′(b)|
erb

+ |f ′(x)|
erx

]
− 1

12
h(b − x)

}
; (64)

∣∣∣∣
∫ b

a

f (u)du− (b − a)f (x)
∣∣∣∣

≤ (M1,p)
1/p

21/q(s + 2)1/p

{
1+ 1

s + 1

}1/p [
(x − a)2 + (b − x)2

]
; (65)

∣∣∣∣
∫ b

a

f (u)du− (b − a)f (x)
∣∣∣∣ ≤

M1,1

s + 2

{
1+ 1

s + 1

} [
(x − a)2 + (b − x)2

]
.

(66)

Taking n = 2 in (59), (60), (61), and (62), respectively, we get also some new
versions of midpoint type inequalities:

∣∣∣∣
1

b − a
∫ b

a

f (u)du− f
(
a + b

2

)∣∣∣∣

≤ (b − a)2
16× 31/q

{[
1

s + 3

( |f "((a + b)/2)|p
er(a+b)/2

+ 2

(s + 1)(s + 2)

|f "(a)|p
era

)
− 1

20
h

(
b − a

2

)]1/p
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+
[

1

s + 3

(
2

(s + 1)(s + 2)

|f "(b)|p
erb

+|f
"((a + b)/2)|p
er(a+b)/2

)
− 1

20
h

(
b − a

2

)]1/p}
; (67)

∣∣∣∣
1

b − a
∫ b

a

f (u)du− f
(
a + b

2

)∣∣∣∣ ≤
(b − a)2

16

{
2

s + 3

[ |f "((a + b)/2)|
er(a+b)/2

+ 1

(s + 1)(s + 2)

( |f "(a)|
era

+ |f "(b)|
erb

)]
− 1

10
h

(
b − a

2

)}
; (68)

∣∣∣∣
1

b − a
∫ b

a

f (u)du− f
(
a + b

2

)∣∣∣∣

≤ (M2,p)
1/p

8× 31/q(s + 3)1/p

{
1+ 2

(s + 1)(s + 2)

}1/p

(b − a)2; (69)

∣∣∣∣
1

b − a
∫ b

a

f (u)du− f
(
a + b

2

)∣∣∣∣

≤ M2,1

8(s + 3)

{
1+ 2

(s + 1)(s + 2)

}
(b − a)2. (70)

4 Proofs of Theorems 7 and 8

We require the following Lemma to prove our results.

Lemma 1 ([16, 24]) Let f : [a, b] → R be a differentiable mapping such that
f (n−1) ∈ AC[a, b], then for all x ∈ [a, b], we have

∫ b

a

f (u)du− Sn(f, x) = (−1)n
∫ b

a

Kn(x, t)f
(n)(t)dt, (71)

where the kernelKn : [a, b]2 → R is given by

Kn(x, t) =
{
(t−a)n
n! , t ∈ [a, x],

(t−b)n
n! , t ∈ [x, b],

, (72)

and Sn(f, x) is defined by (30).

Proof of Theorem 7 By Lemma 1, we have
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∣∣∣∣
∫ b

a

f (u)du− Sn(f, x)
∣∣∣∣ ≤

∫ x

a

(u− a)n
n! |f (n)(u)|du

+
∫ b

x

(b − u)n
n! |f (n)(u)|du = I1 + I2. (73)

Setting u = a + (x − a)t , and using the Höder inequality, we obtain

I1 = 1

n!
∫ x

a

(u− a)n|f (n)(u)|du

= (x − a)n+1

n!
∫ 1

0
tn|f (n)(tx + (1− t)a)|dt

≤ (x − a)
n+1

n!
(∫ 1

0
tnqdt

)1/q {∫ 1

0
|f (n)(tx + (1− t)a)|pdt

}1/p

= (x − a)n+1

n!(nq + 1)1/q

{∫ 1

0
|f (n)(tx + (1− t)a)|pdt

}1/p

. (74)

By using the exponentially (β, s, h)-strongly convexity of |f (n)|p on [a, b], we have

I3 =
∫ 1

0
|f (n)(tx + (1− t)a)|pdt

≤
∫ 1

0

⎧
⎪⎨

⎪⎩

⎡

⎣t s
(
|f (n)(x)|p
erx

)β
+ (1− t)s

(
|f (n)(a)|p
era

)β⎤

⎦
1/β

− t (1− t)h(x − a)

⎫
⎪⎬

⎪⎭
dt

≤ Cβ
∫ 1

0

[
t s/β

(
|f (n)(x)|p
erx

)
+ (1− t)s/β

(
|f (n)(a)|p
era

)]
dt − h(x − a)

∫ 1

0
t (1− t)dt

= βCβ

s + β

(
|f (n)(x)|p
erx

+ |f (n)(a)|p
era

)
− 1

6
h(x − a), (75)

where Cβ is defined by (32). Hence,

I1 ≤ (x − a)n+1

n!(nq + 1)1/q

{
βCβ

s + β

(
|f (n)(x)|p
erx

+ |f (n)(a)|p
era

)
− 1

6
h(x − a)

}1/p

.

(76)
By letting u = x + (b − x)t and similar arguments, we get

I2 = 1

n!
∫ b

x

(b − u)n|f (n)(u)|du

= (b − x)n+1

n!
∫ 1

0
(1− t)n|f (n)(tb + (1− t)x)|dt
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≤ (b − x)n+1

n!
(∫ 1

0
(1− t)nqdt

)1/q {
|f (n)(tb + (1− t)x)|pdt

}1/p

≤ (b − x)n+1

n!(nq + 1)1/q

{
βCβ

s + β

(
|f (n)(b)|p
erb

+ |f (n)(x)|p
erx

)
− 1

6
h(b − x)

}1/p

. (77)

A combination of (73), (76), and (77) gives the required result. The proof is
completed.

Proof of Theorem 8 In (73), we have a different decomposition of the integrand for
I1 and I2, and using the Hölder inequality. Setting u = a + (x − a)t , we obtain

I1 = 1

n!
∫ x

a

(u− a)n|f (n)(u)|du

= (x − a)n+1

n!
∫ 1

0
tn|f (n)(tx + (1− t)a)|dt

≤ (x − a)
n+1

n!
(∫ 1

0
tndt

)1/q {∫ 1

0
tn|f (n)(tx + (1− t)a)|pdt

}1/p

= (x − a)n+1

n!(n+ 1)1/q
× {I4(x, a)}1/p , (78)

where

I4 =
∫ 1

0
tn|f (n)(tx + (1− t)a)|pdt. (79)

By using the exponentially (β, s, h)-strongly convexity of |f (n)|p on [a, b], we have

I4 =
∫ 1

0
tn|f (n)(tx + (1− t)a)|pdt

≤
∫ 1

0
tn

⎧
⎪⎨

⎪⎩

⎡

⎣t s
(
|f (n)(x)|p
erx

)β
+ (1− t)s

(
|f (n)(a)|p
era

)β⎤

⎦
1/β

−t (1− t)h(x − a)
⎫
⎬

⎭ dt

≤
∫ 1

0
tn

{
Cβ

[
t s/β

(
|f (n)(x)|p
erx

)
+ (1− t)s/β

(
|f (n)(a)|p
era

)]
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−t (1− t)h(x − a)
⎫
⎬

⎭ dt

≤ Cβ
[

β

s + β(n+ 1)

|f (n)(x)|p
erx

+ B
(
n+ 1,

s

β
+ 1

) |f (n)(a)|p
era

]

− 1

(n+ 2)(n+ 3)
h(x − a). (80)

By letting u = x + (b − x)t and similar arguments, we get

I2 = 1

n!
∫ b

x

(b − u)n|f (n)(u)|du

= (b − x)n+1

n!
∫ 1

0
(1− t)n|f (n)(tb + (1− t)x)|dt

≤ (b − x)
n+1

n!
(∫ 1

0
(1− t)ndt

)1/q {∫ 1

0
(1− t)n|f (n)(tb + (1− t)x)|pdt

}1/p

= (b − x)n+1

n!(n+ 1)1/q
× {I5(b, x)}1/p . (81)

By letting t1 = 1− t , we get

I5(b, x) =
∫ 1

0
(1− t)n|f (n)(tb + (1− t)x)|pdt

=
∫ 1

0
tn1 |f (n)(t1x + (1− t1)b|pdt1

≤ Cβ
[

β

s + β(n+ 1)

|f (n)(x)|p
erx

+ B(n+ 1,
s

β
+ 1)

|f (n)(b)|p
erb

]

− 1

(n+ 2)(n+ 3)
h(b − x). (82)

A combination of (73), (78), (80), (81), and (82) gives the required result. The proof
is completed.

5 Perturbed Simpson Type Inequalities and Approximations

In what follows, let
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2(f, λ) = 1

(b − a)2
{

1

b − a
∫ b

a

f (u)du− (1− λ)f
(
a + b

2

)
− λf (a)+ f (b)

2

}
.

(83)
In particular,

2
(
f,

1

3

)
= 1

(b − a)2
{

1

b − a
∫ b

a

f (u)du− 1

6

[
f (a)+ f (b)+ 4f

(
a + b

2

)]}
.

Theorem 9 ([25, 26]) Let f (4) ∈ L∞[a, b], then the following Simpson’s inequal-
ity holds:

|2
(
f,

1

3

)
| ≤ 1

2880
‖f (4)‖∞.

Lemma 2 ([27]) If f " ∈ L1[a, b], then

2(f, λ) = 1

2

∫ 1

0
K(t)f "(ta + (1− t)b)dt, (84)

where

K(t) =
{
t (t − λ), t ∈ [0, 1/2),
(1− t)(1− λ− t), t ∈ [1/2, 1].

Theorem 10 Let [a, b] ⊂ (0,∞),f : [a, b] → (0,∞) be a differentiable mapping
such that f

′ ∈ AC[a, b]. Let |f "|p is exponentially (β, s, h)-strongly convex on
[a, b], 1 < p, q1, q2 <∞, 1

p
+ 1
q1
+ 1
q2
= 1, 0 ≤ λ < 1. If 0 ≤ λ < 1/2, then

|2(f, λ)| ≤ 1

22+(1/q1)(q1 + 1)1/q1 (q2 + 1)1/q2

(
λq2+1 +

(
1

2
− λ

)q2+1
)1/q2

×
{[

βCβ

s + β
(

1

21+(s/β) ×
|f "(a)|p
era

+
(

1− 1

21+(s/β) ×
|f "(b)|p
erb

))
− 1

12
h(b − a)

]1/p

+
[
βCβ

s + β
((

1− 1

21+(s/β)

)
× |f "(a)|p

era
+ 1

21+(s/β) ×
|f "(b)|p
erb

)
− 1

12
h(b − a)

]1/p}
. (85)

If 1
2 ≤ λ ≤ 1, then

|2(f, λ)| ≤ 1

22+(1/q1)(q1 + 1)1/q1 (q2 + 1)1/q2

(
λq2+1 −

(
λ− 1

2

)q2+1
)1/q2

×
{[
βCβ

s + β
(

1

21+(s/β) ×
|f "(a)|p
era

+
(

1− 1

21+(s/β)

)
× |f "(b)|p

erb

)
− 1

12
h(b − a)

]1/p
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+
[
βCβ

s + β
((

1− 1

21+(s/β)

)
× |f "(a)|p

era
+ 1

21+(s/β) ×
|f "(b)|p
erb

)
− 1

12
h(b − a)

]1/p}
,

(86)

where Cβ is defined by (32).

Taking λ = 1/3 in (85), we get Simpson type inequality:

|2
(
f,

1

3

)
| ≤ 1

22+(1/q1)(q1 + 1)1/q1 (q2 + 1)1/q2 × 31+(1/q2)

(
1+ 1

2q2 + 1

)1/q2

×
{[
βCβ

s + β
(

1

21+(s/β) ×
|f "(a)|p
era

+
(

1− 1

21+(s/β) ×
|f "(b)|p
erb

))
− 1

12
h(b − a)

]1/p

+
[
βCβ

s + β
((

1− 1

21+(s/β)

)
× |f "(a)|p

era
+ 1

21+(s/β) ×
|f "(b)|p
erb

)
− 1

12
h(b − a)

]1/p}
.

Hence, we say that (85) and (86) are the perturbed Simpson type inequalities.
Taking β = 1, r = 0, h = 0 in (85) and (86), respectively, that is, |f "|p is s-convex
on [a, b], we get

|2(f, λ)| ≤ 1

22+(1/q1)(q1 + 1)1/q1(q2 + 1)1/q2(s + 1)1/p

×
(
λq2+1 +

(
1

2
− λ

)q2+1
)1/q2

×
{[

1

21+s |f "(a)|p +
(

1− 1

21+s

)
|f "(b)|p

]1/p

+
[

1

21+s |f "(b)| +
(

1− 1

21+s

)
|f "(a)|p

]1/p
}
; (87)

and

|2(f, λ)| ≤ 1

22+(1/q1)(q1 + 1)1/q1(q2 + 1)1/q2(s + 1)1/p

×
(
λq2+1 −

(
λ− 1

2

)q2+1
)1/q2

×
{[

1

21+s |f "(a)|p + (1− 1

21+s )|f "(b)|p
]1/p

+
[

1

21+s |f "(b)|p +
(

1− 1

21+s

)
|f "(a)|p

]1/p
}
. (88)



New Generalized Convexity and Their Applications 533

If we take λ = 1/3 in (87), then we get a Simpson type inequality:

|2
(
f,

1

3

)
| ≤ 1

22+(1/q1)(q1 + 1)1/q1(q2 + 1)1/q2 × 31+(1/q2)

(
1+ 1

2q2+1

)1/q2

×
{[

1

21+s |f "(a)|p +
(

1− 1

21+s

)
|f "(b)|p

]1/p

+
[

1

21+s |f "(b)|p +
(

1− 1

21+s

)
|f "(a)|p

]1/p
}
. (89)

If we take λ = 0 in (87), then we get a midpoint type inequality:

|2(f, 0)| = 1

(b − a)2
∣∣∣∣

1

b − a
∫ b

a

f (u)du− f
(
a + b

2

)∣∣∣∣

≤ 1

23+(1/q1)+(1/q2)(q1 + 1)1/q1(q2 + 1)1/q2(s + 1)1/p

×
{[

1

21+s |f "(a)|p +
(

1− 1

21+s

)
|f "(b)|p

]1/p

+
[

1

21+s |f "(b)|p +
(

1− 1

21+s

)
|f "(a)|p

]1/p
}
.

If we take λ = 1 in (88), then we get a trapezoid type inequality:

|2(f, 1)| = 1

(b − a)2
∣∣∣∣

1

b − a
∫ b

a

f (u)du− f (a)+ f (b)
2

∣∣∣∣

≤ 1

22+(1/q1)(q1 + 1)1/q1(q2 + 1)1/q2(s + 1)1/p

(
1− 1

2q2+1

)1/q2

×
{[

1

21+s |f "(a)|p + (1− 1

21+s )|f "(b)|p
]1/p

+
[

1

21+s |f "(b)|p + (1− 1

21+s )|f "(a)|p
]1/p

}
.

If we take λ = 1/2 in (87), then we get an averaged midpoint-trapezoid type
inequality:

|2
(
f,

1

2

)
| = 1

(b − a)2
∣∣∣∣

1

b − a
∫ b

a

f (u)du− 1

2

[
f (a)+ f (b)

2
+ f

(
a + b

2

)]∣∣∣∣
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≤ 1

23+(1/q1)+(1/q2)(q1 + 1)1/q1(q2 + 1)q2(s + 1)1/p

×
{[

1

21+s |f "(a)|p +
(

1− 1

21+s

)
|f "(b)|p

]1/p

+
[

1

21+s |f "(b)|p +
(

1− 1

21+s

)
|f "(a)|p

]1/p
}

Proof of Theorem 10 By Lemma 2, we have

|2(f, λ)| ≤ 1

2

∫ 1/2

0
t |t − λ||f "(ta + (1− t)b)|dt

+1

2

∫ 1

1/2
(1− t)|1− λ− t ||f "(ta + (1− t)b)|dt = I1 + I2. (90)

Using the Hölder inequality, we obtain

I1 ≤ 1

2

(∫ 1/2

0
tq1dt

)1/q1 (∫ 1/2

0
|t − λ|q2dt

)1/q2

×
(∫ 1/2

0
|f "(ta + (1− t)b)|pdt

)1/p

. (91)

I2 ≤ 1

2

(∫ 1

1/2
|1− t |q1dt

)1/q1 (∫ 1

1/2
|1− λ− t |q2dt

)1/q2

×
(∫ 1

1/2
|f "(ta + (1− t)b)|pdt

)1/p

. (92)

If 0 ≤ λ ≤ 1/2, then

∫ 1/2

0
tq1dt = 1

(q1 + 1)2q1+1 ,

∫ 1/2

0
|t − λ|q2dt =

∫ λ

0
(λ− t)q2dt +

∫ 1/2

λ

(t − λ)q2dt

= 1

q2 + 1

(
λq2+1 +

(
1

2
− λ

)q2+1
)
.

By using the exponentially (β, s, h)-strongly convexity of |f "|p on [a, b], we have
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∫ 1/2

0
|f "(ta + (1− t)b)|pdt

≤
∫ 1/2

0

⎧
⎨

⎩

[
t s
( |f "(a)|p

era

)β
+ (1− t)s

( |f "(b)|p
erb

)β]1/β

− t (1− t)h(b − a)
⎫
⎬

⎭ dt

≤ βCβ

s + β
{

1

2(s/β)+1

( |f "(a)|p
era

)
+ (1− 1

2(s/β)+1
)

( |f "(b)|p
erb

)}
− 1

12
h(b − a).

Hence, we get

I1 ≤ 1

22+(1/q1)(q1 + 1)1/q1(q2 + 1)1/q2

(
λq2+1 +

(
1

2
− λ

)q2+1
)1/q2

×
{
βCβ

s + β
[

1

21+(s/β) ×
|f "(a)|p
era

+
(

1− 1

21+(s/β)

)

×|f
"(b)|p
erb

]
− 1

12
h(b − a)

}1/p

. (93)

I2 ≤ 1

22+(1/q1)(q1 + 1)1/q1(q2 + 1)1/q2

(
λq2+1 +

(
1

2
− λ

)q2+1
)1/q2

×
{
βCβ

s + β
[

1

21+(s/β) ×
|f "(b)|p
erb

+
(

1− 1

21+(s/β)

)

×|f
"(a)|p
era

]
− 1

12
h(b − a)

}1/p

. (94)

It follows from(90)–(94) that (85) holds. When1/2 ≤ λ ≤ 1, by using similar
arguments, we get (86). The proof is completed.

In what follows, let

σn(f, x) =
n−1∑

k=1

(n− k)
k!

f k−1(b)(x − b)k − f k−1(a)(x − a)k
b − a . (95)

The sum in (95) is zero when n = 1.

Lemma 3 ([28]) Let n ≥ 1 and f : [a, b] → R be a differentiable mapping such
that f (n−1) ∈ AC[a, b], then for all x ∈ [a, b], we have

f (x) = n

b − a
∫ b

a

f (u)du+ σn(f, x)
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+ 1

(n− 1)!(b − a)
∫ b

a

(x − u)n−1K(u, x)f (n)(u)du, (96)

where the kernel Kn : [a, b]2 → R is given by

K(u, x) =
{
u− a, a ≤ u ≤ x ≤ b,
u− b, a ≤ x < u ≤ b, ,

and σn(f, x) is defined by (95).

Theorem 11 Under the assumptions of Theorem 7, we have

|f (x)− n

b − a
∫ b

a

f (u)du− σn(f, x)|

≤ [B(q + 1, (n− 1)q + 1)]1/q
(n− 1)!(b − a)

×
⎧
⎨

⎩(x − a)
n+1

[
βCβ

s + β

(
|f (n)(x)|p
erx

+ |f (n)(a)|p
era

)
− 1

6
h(x − a)

]1/p

+(b − x)n+1[ βCβ
s + β

(
|f (n)(b)|p
erb

+ |f (n)(x)|p
erx

)
− 1

6
h(b − x)]1/p

}
.

(97)

If n = 1, β = 1 in (97), then

|f (x)− 1

b − a
∫ b

a

f (u)du| ≤ 1

(b − a)(q + 1)1/q

×
⎧
⎨

⎩(x − a)
2

[
1

s + 1

(
|f ′(x)|p
erx

+ |f ′(a)|p
era

)
− 1

6
h(x − a)

]1/p

+(b − x)2
[

1

s + 1

(
|f ′(b)|p
erb

+ |f ′(x)|p
erx

)
− 1

6
h(b − x)

]1/p
⎫
⎬

⎭ . (98)

If p = 1 in (98), then

|f (x)− 1

b − a
∫ b

a

f (u)du| ≤ 1

b − a

×
{
(x − a)2

[
1

s + 1

(
|f ′(x)|
erx

+ |f ′(a)|
era

)
− 1

6
h(x − a)

]
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+(b − x)2
[

1

s + 1

(
|f ′(b)|
erb

+ |f ′(x)|
erx

)
− 1

6
h(b − x)

]}
. (99)

Taking x = (a + b)/2 in (98), we get

∣∣∣∣f
(
a + b

2

)
− 1

b − a
∫ b

a

f (u)du

∣∣∣∣ ≤
b − a

4(q + 1)1/q

×
⎧
⎨

⎩

[
1

s + 1

(
|f ′((a + b)/2)|p

er(a+b)/2
+ |f ′(a)|p

era

)
− 1

6
h

(
b − a

2

)]1/p

+
[

1

s + 1

(
|f ′(b)|p
erb

+ |f ′((a + b)/2)|p
er(a+b)/2

)
− 1

6
h

(
b − a

2

)]1/p
⎫
⎬

⎭ .

(100)

If p = 1 in (100), then

∣∣∣∣f
(
a + b

2

)
− 1

b − a
∫ b

a

f (u)du

∣∣∣∣

≤ (b − a)
4(s + 1)

{
|f ′ (a)|
era

+ 2|f ′ ((a + b)/2)|
er(a+b)/2

+ |f ′ (b)|
erb

− 1

3
h

(
b − a

2

)}
. (101)

If n = 2, β = 1 in (97), then

∣∣∣∣
1

b − a
∫ b

a

f (u)du− 1

2

{
f (x)+ f (a)(x − a)+ f (b)(b − x)

b − a
}∣∣∣∣

≤ [B(q + 1, q + 1)]1/q
2(b − a)

×
{
(x − a)3

[
1

s + 1

( |f "(x)|p
erx

+ |f "(a)|p
era

)
− 1

6
h(x − a)

]1/p

+(b − x)3
[

1

s + 1

( |f "(b)|p
erb

+ |f "(x)|p
erx

)
− 1

6
h(b − x)

]1/p}
.

(102)

Taking x = (a + b)/2 in (102), then

∣∣∣∣
1

b − a
∫ b

a

f (u)du− 1

2

{
f

(
a + b

2

)
+ f (a)+ f (b)

2

}∣∣∣∣

≤ [B(q + 1, q + 1)]1/q(b − a)2
16
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×
{[

1

s + 1

( |f "((a + b)/2)|p
er(a+b)/2

+ |f "(a)|p
era

)
− 1

6
h

(
b − a

2

)]1/p

+
[

1

s + 1

( |f "(b)|p
erb

+ |f "((a + b)/2)|p
er(a+b)/2

)
− 1

6
h

(
b − a

2

)]1/p}
.(103)

If p = 1 in (103), then

∣∣∣∣
1

b − a
∫ b

a

f (u)du− 1

2

{
f

(
a + b

2

)
+ f (a)+ f (b)

2

}∣∣∣∣

≤ (b − a)2
16(s + 1)

{ |f "(a)|
era

+ 2|f "((a + b)/2)|
er(a+b)/2

+ |f "(b)|
erb

− 1

3
h

(
b − a

2

)}
. (104)

If r = 0, h = 0 in (104), that is, |f "| is s-convex on [a, b], then

∣∣∣∣
1

b − a
∫ b

a

f (u)du− 1

2

{
f (
a + b

2
)+ f (a)+ f (b)

2

}∣∣∣∣

≤ (b − a)2
16(s + 1)

{
|f "(a)| + 2

∣∣∣∣f
"
(
a + b

2

)∣∣∣∣+ |f "(b)|
}
.

Proof of Theorem 11 By Lemma 3, we have

∣∣∣∣f (x)−
n

b − a
∫ b

a

f (u)du− σn(f, x)
∣∣∣∣

= 1

(n− 1)!(b − a)
∣∣∣∣
∫ x

a

(x − u)n−1(u− a)f (n)(u)du

+
∫ b

x

(x − u)n−1(u− b)f (n)(u)du
∣∣∣∣

≤ 1

(n− 1)!(b − a)
{∫ x

a

(x − u)n−1(u− a)|f (n)(u)|du

+
∫ b

x

(u− x)n−1(b − u)|f (n)(u)|du
}
. (105)

Setting u = a + (x − a)t and using the Hölder inequality, we obtain

∫ x

a

(x − u)n−1(u− a)|f (n)(u)|du

= (x − a)n+1
∫ 1

0
t (1− t)n−1|f (n)(tx + (1− t)a)|dt
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≤ (x − a)n+1 {B(q + 1, (n− 1)q + 1)}1/q

×
{∫ 1

0
|f (n)(tx + (1− t)a)|pdt

}1/p

. (106)

By using the exponentially (β, s, h)-strongly convexity of |f (n)|p on [a, b], we have

∫ 1

0

∣∣∣f (n)(tx + (1− t)a)
∣∣∣
p

dt

≤
∫ 1

0

⎧
⎪⎨

⎪⎩

⎡

⎣t s
(
|f (n)(x)|p
erx

)β
+ (1− t)s

(
|f (n)(a)|p
era

)β⎤

⎦
1/β

− t (1− t)h(x−a)

⎫
⎪⎬

⎪⎭
dt

≤ βCβ

s + β

(
|f (n)(x)|p
erx

+ |f (n)(a)|p
era

)
− 1

6
h(x − a), (107)

where Cβ is defined by (32). Hence,
∫ x

a

(x − u)n−1(u− a)|f (n)(u)|du

≤ (x − a)n+1 {B(q + 1, (n− 1)q + 1)}1/q

×
{
βCβ

s + β

(
|f (n)(x)|p
erx

+ |f (n)(a)|p
era

)
− 1

6
h(x − a)

}1/p

. (108)

By letting u = x + (b − x)t and similar arguments, we get

∫ b

x

(u− x)n−1(b − u)|f (n)(u)|du

= (b − x)n+1
∫ 1

0
tn−1(1− t)|f (n)(tb + (1− t)x)|dt

≤ (b − x)n+1 {B((n− 1)q + 1, q + 1)}1/q

×
{∫ 1

0
|f (n)(tb + (1− t)x)|pdt

}1/p

≤ (b − x)n+1 {B((n− 1)q + 1, q + 1)}1/q

×
{
βCβ

s + β

(
|f (n)(b)|p
erb

+ |f (n)(x)|p
erx

)
− 1

6
h(b − x)

}1/p

. (109)

A combination of (105), (108), and (109) gives the required result. The proof is
completed.
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Ternary Biderivations and Ternary
Bihomorphisms in C∗-Ternary Algebras

Jung Rye Lee, Choonkil Park, and Themistocles M. Rassias

Abstract In (Park et al., Rocky Mountain J Math 49:593–607, 2019), Park
introduced the following bi-additive s-functional inequality

‖f (x + y, z− w)+ f (x − y, z+ w)− 2f (x, z)+ 2f (y,w)‖

≤
∥∥∥∥s

(
2f

(
x + y

2
, z− w

)
+ 2f

(
x − y

2
, z+ w

)
− 2f (x, z)+ 2f (y,w)

)∥∥∥∥ ,

(1)

where s is a fixed nonzero complex number with |s| < 1. Using the fixed
point method, we prove the Hyers–Ulam stability of ternary biderivations and
ternary bihomomorphism in C∗-ternary algebras, associated with the bi-additive s-
functional inequality (1).

1 Introduction and Preliminaries

The stability problem of functional equations originated from a question of Ulam
[24] in 1940, concerning the stability of group homomorphisms. Let (G1, .) be
a group and let (G2, ∗) be a metric group with the metric d(., .). Given ε > 0,
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does there exist a δ0, such that if a mapping h : G1 → G2 satisfies the inequality
d(h(x.y), h(x) ∗ h(y)) < δ for all x, y ∈ G1, then there exists a homomorphism
H : G1 → G2 with d(h(x),H(x)) < ε for all x ∈ G1? In the other words,
under what condition does there exists a homomorphism near an approximate
homomorphism? The concept of stability for functional equation arises when we
replace the functional equation by an inequality which acts as a perturbation of the
equation. In 1941, Hyers [14] gave the first affirmative answer to the question of
Ulam for Banach spaces. Let f : E → E′ be a mapping between Banach spaces
such that

‖f (x + y)− f (x)− f (y)‖ ≤ δ

for all x, y ∈ E, and for some δ > 0. Then there exists a unique additive mapping
T : E→ E′ such that

‖f (x)− T (x)‖ ≤ δ

for all x ∈ E. In 1978, Rassias [23] proved the following theorem.

Theorem 1 ([23]) Let f : E → E′ be a mapping from a normed vector space E
into a Banach space E′ subject to the inequality

‖f (x + y)− f (x)− f (y)‖ ≤ ε(‖x‖p + ‖y‖p) (2)

for all x, y ∈ E, where ε and p are constants with ε > 0 and p < 1. Then there
exists a unique additive mapping T : E→ E′ such that

‖f (x)− T (x)‖ ≤ 2ε

2− 2p
‖x‖p (3)

for all x ∈ E. If p < 0, then (2) holds for all x, y 	= 0, and (3) holds for x 	= 0.
Also, if the function t �→ f (tx) from R into E′ is continuous in t ∈ R for each fixed
x ∈ E, then T is R-linear.

A generalization of the Rassias’ theorem was obtained by Găvruta [11] by
replacing the unbounded Cauchy difference by a general control function.

Theorem 2 ([11]) Suppose (G,+) is an abelian group, E is a Banach space, and
that the so-called admissible control function ϕ : G×G→ R satisfies

ϕ̃(x, y) := 2−1
∞∑

n=0

2−nϕ(2nx, 2ny) <∞

for all x, y ∈ G. If f : G→ E is a mapping with

‖f (x + y)− f (x)− f (y)‖ ≤ ϕ(x, y)
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for all x, y ∈ G, then there exists a unique mapping T : G→ E such that T (x +
y) = T (x)+ T (y) and ‖f (x)− T (x)‖ ≤ ϕ̃(x, x) for all x, y ∈ G.

Gilányi [12] showed that if f satisfies the functional inequality

‖2f (x)+ 2f (y)− f (x − y)‖ ≤ ‖f (x + y)‖ (4)

then f satisfies the Jordan-von Neumann functional equation

2f (x)+ 2f (y) = f (x + y)+ f (x − y)

Fechner [10] and Gilányi [13] proved the Hyers–Ulam stability of the functional
inequality (4). Park [18, 19] defined additive ρ-functional inequalities and proved
the Hyers–Ulam stability of the additive ρ-functional inequalities in Banach spaces
and non-Archimedean Banach spaces. The stability problems of various functional
equations and functional inequalities have been extensively investigated by a
number of authors (see [1, 8, 9]).

Using the result on fixed point given in [4, 7], Isac and Rassias [15] were the
first to provide applications of stability theory of functional equations for the proof
of new fixed point theorems with applications. By using fixed point methods, the
stability problems of several functional equations have been extensively investigated
by a number of authors (see [5, 6, 22]).

A C∗-ternary algebra is a complex Banach space A, equipped with a ternary
product (x, y, z) �→ [x, y, z] of A3 into A, which is C-linear in the outer
variables, conjugate C-linear in the middle variable, and associative in the sense that
[x, y, [z,w, v]] = [x, [w, z, y], v] = [[x, y, z], w, v], and satisfies ‖[x, y, z]‖ ≤
‖x‖ · ‖y‖ · ‖z‖ and ‖[x, x, x]‖ = ‖x‖3 (see [25]).

Let A and B be C∗-ternary algebras. A C-linear mapping G : A→ B is called a
ternary homomorphism if

G([a, b, c]) = [G(a),G(b),G(c)]

for all a, b, c ∈ A. A C-linear mapping D : A→ A is called a ternary derivation if

D([a, b, c]) = [D(a), b, c] + [a,D(b), c] + [a, b,D(c)]

for all a, b, c ∈ A (see [2, 17]).
Park [20] defined ternary bihomomorphisms and ternary biderivations in C∗-

ternary algebras.

Definition 1 ([20, Definition 2]) LetA and B be C∗-ternary algebras. A C-bilinear
mapping G : A× A→ B is called a ternary bihomomorphism if

G([x, y, z], [w,w,w]) = [G(x,w),G(y,w),G(z,w)],
G([x, x, x], [y, z,w]) = [G(x, y),G(x, z),G(x,w)]
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for all x, y, z,w ∈ A. A C-bilinear mapping D : A × A → A is called a ternary
biderivation if

D([x, y, z], w) = [D(x,w), y, z] + [x,D(y,w∗), z] + [x, y,D(z,w)],
D(x, [y, z,w]) = [D(x, y), z,w] + [y,D(x∗, z), w] + [y, z,D(x,w)]

for all x, y, z,w ∈ A.

In this paper, we prove the Hyers–Ulam stability of ternary bihomomorphisms
and ternary biderivations in C∗-ternary algebras by using the fixed point method.

Throughout this paper, let X be a complex normed space and Y a complex
Banach space. Assume that s is a fixed nonzero complex number with |s| < 1.

2 Ternary Bihomomorphisms in C∗-Ternary Algebras

Throughout this paper, assume that A and B are C∗-ternary algebras.

Lemma 1 ([3, Lemma 2.1]) Let g : X ×X→ Y be a mapping such that

g(λ(x + y), ν(z− w))+ g(λ(x − y), ν(z+ w)) = 2λνg(x, z)− 2λνg(y,w)

for all λ, ν ∈ S1 := {η ∈ C : |η| = 1} and all x, y, z,w ∈ X. Then g : X×X→ Y

is C-bilinear.

For a given mapping g : A× A→ B, we define

Eλ,νg(x, y, z,w)

:= g(λ(x + y), ν(z− w))+ g(λ(x − y), ν(z+ w))− 2λνg(x, z)+ 2λνg(y,w),

Fλ,νg(x, y, z,w)

:= g
(
λ
x + y

2
, ν(z− w)

)
+ g

(
λ
x − y

2
, ν(z+ w)

)
− 2λνg(x, z)+ 2λνg(y,w)

for all λ, ν ∈ S1 and all x, y, z,w ∈ A.

Lemma 2 Let f : X ×X→ Y be a mapping such that

‖Eλ,μf (x, y, z,w)‖ ≤ ‖sFλ,μf (x, y, z,w)‖

for all λ,μ ∈ S1 and all x, y, z,w ∈ X. Then f : X ×X→ Y is C-bilinear.

Proof Let λ = μ = 1. By [21, Lemma 2.1], the mapping f : X × X → Y is
bi-additive. So
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‖Dλ,μf (x, y, z,w)‖ ≤ ‖sEλ,μf (x, y, z,w)‖
= ‖sDλ,μf (x, y, z,w)‖

for all λ,μ ∈ S1 and all x, y, z,w ∈ X. Thus Dλ,μf (x, y, z,w) = 0 for all λ,μ ∈
S1 and all x, y, z,w ∈ X, since |s| < 1. By Lemma 1, the mapping f : X×X→ Y

is C-bilinear.

We prove the Hyers–Ulam stability of ternary bihomomorphisms in C∗-ternary
algebras.

Theorem 3 Let ϕ : A4 → [0,∞) be a function such that there exists a κ < 1 with

ϕ
(x

2
,
y

2
,
z

2
,
w

2

)
≤ κ

64
ϕ (x, y, z,w) ≤ κ

4
ϕ (x, y, z,w) (5)

for all x, y, z,w ∈ X. Let f : A × A → B be a mapping satisfying f (x, 0) =
f (0, z) = 0 and

‖Eλ,νf (x, y, z,w)‖ ≤ ‖sFλ,νf (x, y, z,w)‖ + ϕ(x, y, z,w), (6)

‖f ([x, y, z], [w,w,w])− [f (x,w), f (y,w), f (z,w)]‖ (7)

+‖f ([x, x, x], [y, z,w])− [f (x, y), f (x, z), f (x,w)]‖ ≤ ϕ(x, y, z,w)

for all λ, ν ∈ S1 and all x, y, z,w ∈ A. Then there exists a unique ternary
bihomomorphism H : A× A→ B such that

‖f (x, z)−H(x, z)‖ ≤ κ

1− κ
(

1

2
ϕ (x, x, z, 0)+ 1

4
ϕ(2x, 0, z, z)

)
(8)

for all x, z ∈ A.
Proof Letting y = x, w = 0, and λ = ν = 1 in (6), we get

‖f (2x, z)− 2f (x, z)‖ ≤ ϕ(x, x, z, 0) (9)

for all x, z ∈ A.
Letting y = 0, w = z, and λ = ν = 1 in (6), we get

‖f (x, 2z)− 2f (x, z)‖ ≤ ϕ(x, 0, z, z)

and so

‖f (2x, 2z)− 2f (2x, z)‖ ≤ ϕ(2x, 0, z, z) (10)

for all x, z ∈ A.
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It follows from (9) and (10) that

‖f (2x, 2z)− 4f (x, z)‖ ≤ 2ϕ(x, x, z, 0)+ ϕ(2x, 0, z, z) (11)

for all x, z ∈ A. Thus

∥∥∥∥f (x, z)−
1

4
f (2x, 2z)

∥∥∥∥ ≤
1

2
ϕ(x, x, z, 0)+ 1

4
ϕ(2x, 0, z, z)

for all x, z ∈ A.
Consider the set

S := {h : A× A→ B, h(x, 0) = h(0, z) = 0, ∀x, z ∈ A}

and introduce the generalized metric on S:

d(g, h) = inf{β ∈ R+ : ‖g(x, z)− h(x, z)‖
≤ β(1

2
ϕ (x, x, z, 0)+ 1

4
ϕ(2x, 0, z, z)), ∀x, z ∈ A},

where, as usual, infφ = +∞. It is easy to show that (S, d) is complete (see [16]).
Now we consider the linear mapping J : S → S such that

Jg(x, z) := 4g
(x

2
,
z

2

)

for all x, z ∈ A.
Let g, h ∈ S be given such that d(g, h) = ε. Then

‖g(x, z)− h(x, z)‖ ≤ ε(1
2
ϕ (x, x, z, 0)+ 1

4
ϕ(2x, 0, z, z))

for all x, z ∈ A. Since

‖Jg(x, z)− Jh(x, z)‖ =
∥∥∥4g

(x
2
,
z

2

)
− 4h

(x
2
,
z

2

)∥∥∥

≤ 4ε(
1

2
ϕ
(x

2
,
x

2
,
z

2
, 0
)
+ 1

4
ϕ
(
x, 0,

z

2
,
z

2

)
)

≤ 4ε
κ

4
(
1

2
ϕ (x, x, z, 0)+ 1

4
ϕ(2x, 0, z, z))

= κε(1
2
ϕ (x, x, z, 0)+ 1

4
ϕ(2x, 0, z, z))

for all x, z ∈ A, d(Jg, Jh) ≤ κε. This means that
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d(Jg, Jh) ≤ κd(g, h)

for all g, h ∈ S.
It follows from (11) that

∥∥∥f (x, z)− 4f
(x

2
,
z

2

)∥∥∥ ≤ 2ϕ
(x

2
,
x

2
,
z

2
, 0
)
+ ϕ

(
x, 0,

z

2
,
z

2

)

≤ κ(1
2
ϕ (x, x, z, 0)+ 1

4
ϕ(2x, 0, z, z))

for all x, z ∈ A. So d(f, Jf ) ≤ κ .
By Theorem [4, Theorem 2.1], there exists a mappingH : A×A→ B satisfying

the following:

1. H is a fixed point of J , i.e.,

H (x, z) = 4H
(x

2
,
z

2

)
(12)

for all x, z ∈ A. The mapping H is a unique fixed point of J in the set

M = {g ∈ S : d(f, g) <∞}.

This implies that H is a unique mapping satisfying (12) such that there exists a
β ∈ (0,∞) satisfying

‖f (x, z)−H(x, z)‖ ≤ β(1
2
ϕ (x, x, z, 0)+ 1

4
ϕ (2x, 0, z, z))

for all x, z ∈ A;
2. d(J lf,H)→ 0 as l→∞. This implies the equality

lim
l→∞ 4lf

( x
2l
,
z

2l

)
= H(x, z)

for all x, z ∈ A;
3. d(f,H) ≤ 1

1−κ d(f, Jf ), which implies

‖f (x, z)−H(x, z)‖ ≤ κ

1− κ (
1

2
ϕ (x, x, z, 0)+ 1

4
ϕ (2x, 0, z, z))

for all x ∈ A.

It follows from (5) and (6) that

∥∥Eλ,νH(x, y, z,w)
∥∥ = lim

n→∞ 4n
∥∥∥Eλ,νf

( x
2n
,
y

2n
,
z

2n
,
w

2n

)∥∥∥
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≤ lim
n→∞ 4n

∥∥∥sFλ,νf
( x

2n
,
y

2n
,
z

2n
,
w

2n

)∥∥∥+ lim
n→∞ 4nϕ

( x
2n
,
y

2n
,
z

2n
,
w

2n

)

= ∥∥sFλ,νH(x, y, z,w)
∥∥

for all λ,μ ∈ S1 and all x, y, z,w ∈ A, since

lim
n→∞ 4nϕ

( x
2n
,
y

2n
,
z

2n
,
w

2n

)
≤ lim
n→∞

4nκn

4n
ϕ (x, y, z,w) = 0

So

‖Eλ,νH(x, y, z,w)‖ ≤ ‖sFλ,νH(x, y, z,w)‖

for all λ,μ ∈ S1 and all x, y, z,w ∈ A. By Lemma 2, the mappingH : A×A→ B

is C-bilinear. So there exists a unique C-bilinear mappingH : A×A→ B satisfying
(8).

It follows from (6) that

‖H([x, y, z], [w,w,w])− [H(x,w),H(y,w),H(z,w)]‖
+‖H([x, x, x], [y, z,w])− [H(x, y),H(x, z),H(x,w)]‖

≤ lim
n→∞ 64n

∥∥∥∥f
( [x, y, z]

8n
,
[w,w,w]

8n

)
−
[
f
( x

2n
,
w

2n

)
, f

( y
2n
,
w

2n

)
, f

( z
2n
,
w

2n

)]∥∥∥∥

+ lim
n→∞ 64n

∥∥∥∥f
( [x, x, x]

8n
,
[y, z,w]

8n

)
−
[
f
( x

2n
,
y

2n

)
, f

( x
2n
,
z

2n

)
, f

( x
2n
,
w

2n

)]∥∥∥∥

≤ lim
n→∞ 64nϕ

( x
2n
,
y

2n
,
z

2n
,
w

2n

)
≤ lim
n→∞

64nκn

64n
ϕ (x, y, z,w) = 0

for all x, y, z,w ∈ A. So

H([x, y, z], [w,w,w]) = [H(x,w),H(y,w),H(z,w)],
H([x, x, x], [y, z,w]) = [H(x, y),H(x, z),H(x,w)]

for all x, y, z,w ∈ A, as desired.

Corollary 1 Let r > 6 and θ be nonnegative real numbers and f : A×A→ B be
a mapping satisfying f (x, 0) = f (0, z) = 0 and

‖Eλ,νf (x, y, z,w)‖ ≤ ‖sFλ,νf (x, y, z,w)‖ + θ(‖x‖r + ‖y‖r + ‖z‖r + ‖w‖r ),(13)

‖f ([x, y, z], [w,w,w])− [f (x,w), f (y,w), f (z,w)]‖ (14)

+‖f ([x, x, x], [y, z,w])− [f (x, y), f (x, z), f (x,w)]‖
≤ θ(‖x‖r + ‖y‖r + ‖z‖r + ‖w‖r )
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for all λ, ν ∈ S1 and all x, y, z,w ∈ A. Then there exists a unique ternary
bihomomorphism H : A× A→ B such that

‖f (x, z)−H(x, z)‖ ≤ (2
r + 4)θ

2r − 4
‖x‖r + 4θ

2r − 4
‖z‖r

for all x, z ∈ A.
Proof The proof follows from Theorem 3 by taking ϕ(x, y, z,w) = θ(‖x‖r +
‖y‖r + ‖z‖r + ‖w‖r ) for all x, y, z,w ∈ A. Choosing κ = 22−r , we obtain the
desired result.

Theorem 4 Let ϕ : A4 → [0,∞) be a function such that there exists a κ < 1 with

ϕ (x, y, z,w) ≤ 4κϕ
(x

2
,
y

2
,
z

2
,
w

2

)
(15)

for all x, y, z,w ∈ A. Let f : A × A → B be a mapping satisfying f (x, 0) =
f (0, z) = 0, (6) and (6). Then there exists a unique ternary bihomomorphism H :
A× A→ B such that

‖f (x, z)−H(x, z)‖ ≤ 1

1− κ
(

1

2
ϕ (x, x, z, 0)+ 1

4
ϕ(2x, 0, z, z)

)

for all x, z ∈ A.
Proof Let (S, d) be the generalized metric space defined in the proof of Theorem 3.

Now we consider the linear mapping J : S → S such that

Jg(x, z) := 1

4
g (2x, 2z)

for all x, z ∈ A.
It follows from (11) that

∥∥∥∥f (x, z)−
1

4
f (2x, 2z)

∥∥∥∥ ≤
1

2
ϕ(x, x, z, 0)+ 1

4
ϕ(2x, 0, z, z)

for all x, z ∈ A.
The rest of the proof is similar to the proof of Theorem 3.

Corollary 2 Let r < 2 and θ be nonnegative real numbers and f : A × A → B

be a mapping satisfying f (x, 0) = f (0, z) = 0, (13) and (14). Then there exists a
unique ternary bihomomorphism H : A× A→ B such that

‖f (x, z)−H(x, z)‖ ≤ (4+ 2r )θ

4− 2r
‖x‖r + 4θ

4− 2r
‖z‖r

for all x, z ∈ A.
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Proof The proof follows from Theorem 4 by taking ϕ(x, y, z,w) = θ(‖x‖r +
‖y‖r + ‖z‖r + ‖w‖r ) for all x, y, z,w ∈ A. Choosing κ = 2r−2, we obtain the
desired result.

3 Ternary Biderivations on C∗-Ternary Algebras Associated
with the Bi-additive Functional Inequality (1)

In this section, we prove the Hyers–Ulam stability of the bi-additive s-functional
inequality (1) in complex Banach spaces.

Theorem 5 Let ϕ : X4 → R be a function satisfying (5) and f : X2 → Y be a
mapping satisfying f (x, 0) = f (0, z) = 0 and

‖f (x + y, z− w)+ f (x − y, z+ w)− 2f (x, z)+ 2f (y,w)‖ (16)

≤
∥∥∥∥s

(
2f

(
x + y

2
, z− w

)
+ 2f

(
x − y

2
, z+ w

)
− 2f (x, z)+ 2f (y,w)

)∥∥∥∥

+ϕ(x, y, z,w)

for all x, y, z,w ∈ X. Then there exists a unique bi-additive mapping G : X2 → Y

such that

‖f (x, z)−G(x, z)‖ ≤ κ

1− κ
(

1

2
ϕ (x, x, z, 0)+ 1

4
ϕ(2x, 0, z, z)

)
(17)

for all x, z ∈ X.
Proof Letting y = x and w = 0 in (16), we get

‖f (2x, z)− 2f (x, z)‖ ≤ ϕ(x, x, z, 0) (18)

for all x, z ∈ X.
Letting y = 0 and w = z in (16), we get

‖f (x, 2z)− 2f (x, z)‖ ≤ ϕ(x, 0, z, z) (19)

for all x, z ∈ X.
The rest of the proof is similar to the proof of Theorem 3.

Corollary 3 Let r > 2 and θ be nonnegative real numbers and f : X2 → Y be a
mapping satisfying f (x, 0) = f (0, z) = 0 and

‖f (x + y, z− w)+ f (x − y, z+ w)− 2f (x, z)+ 2f (y,w)‖ (20)
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≤
∥∥∥∥s

(
2f

(
x + y

2
, z− w

)
+ 2f

(
x − y

2
, z+ w

)
− 2f (x, z)+ 2f (y,w)

)∥∥∥∥

+θ(‖x‖r + ‖y‖r + ‖z‖r + ‖w‖r )

for all x, y, z,w ∈ X. Then there exists a unique bi-additive mapping G : X2 → Y

such that

‖f (x, z)−G(x, z)‖ ≤ (2
r + 4)θ

2r − 4
‖x‖r + 4θ

2r − 4
‖z‖r (21)

for all x, z ∈ X.
Theorem 6 Let ϕ : X4 → R be a function satisfying (15) and f : X2 → Y be
a mapping satisfying (16) and f (x, 0) = f (0, z) = 0 for all x, z ∈ X. Then there
exists a unique bi-additive mapping G : X2 → Y such that

‖f (x, z)−G(x, z)‖ ≤ 1

1− κ
(

1

2
ϕ (x, x, z, 0)+ 1

4
ϕ(2x, 0, z, z)

)
(22)

for all x, z ∈ X.
Corollary 4 Let r < 2 and θ be nonnegative real numbers and let f : X2 → Y be
a mapping satisfying (20) and f (x, 0) = f (0, z) = 0 for all x, z ∈ X. Then there
exists a unique bi-additive mapping G : X2 → Y such that

‖f (x, z)−G(x, z)‖ ≤ (4+ 2r )θ

4− 2r
‖x‖r + 4θ

4− 2r
‖z‖r (23)

for all x, z ∈ X.
Now, we investigate ternary biderivations on C∗-ternary algebras associated with

the bi-additive s-functional inequality (1).
From now on, assume that A is a C∗-ternary algebra.

Theorem 7 Let ϕ : A4 → R be a function satisfying (5) and f : A2 → A be a
mapping satisfying f (x, 0) = f (0, z) = 0 and

‖f (λ(x + y), ν(z− w))+ f (λ(x − y), ν(z+ w))− 2λνf (x, z)+ 2λνf (y,w)‖ (24)

≤
∥∥∥∥s

(
2f

(
x + y

2
, z− w

)
+ 2f

(
x − y

2
, z+ w

)
− 2f (x, z)+ 2f (y,w)

)∥∥∥∥

+ϕ(x, y, z,w)

for all λ, ν ∈ S1 and all x, y, z,w ∈ A. Then there exists a unique C-bilinear
mapping D : A2 → A such that

‖f (x, z)−D(x, z)‖ ≤ κ

1− κ (
1

2
ϕ (x, x, z, 0)+ 1

4
ϕ(2x, 0, z, z)) (25)
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for all x, z ∈ A.
If, in addition, the mapping f : A2 → A satisfies f (2x, z) = 2f (x, z) and

‖f ([x, y, z], w)− [f (x,w), y, z] − [x, f (y,w∗), z] − [x, y, f (z,w)]‖ (26)

≤ ϕ(x, y, z,w),

‖f (x, [y, z,w])− [f (x, y), z, w] − [y, f (x∗, z, w] − [y, z, f (x,w)]‖ (27)

≤ ϕ(x, y, z,w)

for all x, y, z,w ∈ A, then the C-bilinear mapping D : A2 → A is a ternary
biderivation.

Proof Let λ = ν = 1 in (24). By Theorem 5, there is a unique bi-additive mapping
D : A2 → A satisfying (25) defined by

D(x, z) := lim
m→∞ 4mf

( x
2m
,
z

2m

)

for all x, z ∈ A.
Letting y = w = 0 in (24), we get f (λx, νz) = λνf (x, z) for all x, z ∈ A and

all λ, ν ∈ S1. By Lemma 2, the bi-additive mapping D : A2 → A is C-bilinear.
It follows from (26) that

‖D([x, y, z], w)− [D(x,w), y, z] − [x,D(y,w∗), z] − [x, y,D(z,w)]‖

= lim
n→∞ 16n

(∥∥∥∥
1

4n
f

( [x, y, z]
2n

,
w

2n

)
−
[
f
( x

2n
,
w

2n

)
,
y

2n
,
z

2n

]

−
[
x

2n
, f

(
y

2n
,
w∗

2n

)
,
z

2n

]
−
[ x

2n
,
y

2n
, f

( z
2n
,
w

2n

)]∥∥∥∥

)

= lim
n→∞ 16n

(∥∥∥∥f
( [x, y, z]

8n
,
w

2n

)
−
[
f
( x

2n
,
w

2n

)
,
y

2n
,
z

2n

]

−
[
x

2n
, f

(
y

2n
,
w∗

2n

)
,
z

2n

]
−
[ x

2n
,
y

2n
, f

( z
2n
,
w

2n

)]∥∥∥∥

)

≤ lim
n→∞ 16nϕ

( x
2n
,
y

2n
,
z

2n
,
w

2n

)
≤ lim
n→∞

16nκn

64n
ϕ (x, y, z,w) = 0

for all x, y, z,w ∈ A. Thus

D([x, y, z], w) = [D(x,w), y, z] + [x,D(y,w∗), z] + [x, y,D(z,w)]

for all x, y, z,w ∈ A.
Similarly, one can show that
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D(x, [y, z,w]) = [D(x, y), z,w] − [y,D(x∗, z, w] − [y, z,D(x,w)]

for all x, y, z,w ∈ A. So the C-bilinear mapping D : A2 → A is a ternary
biderivation.

Corollary 5 Let r > 6 and θ be nonnegative real numbers and f : A2 → A be a
mapping satisfying f (x, 0) = f (0, z) = 0 and

‖f (λ(x + y), ν(z− w))+ f (λ(x − y), ν(z+ w))− 2λνf (x, z)+ 2λνf (y,w)‖

≤
∥∥∥∥s

(
2f

(
x + y

2
, z− w

)
+ 2f

(
x − y

2
, z+ w

)
− 2f (x, z)+ 2f (y,w)

)∥∥∥∥

+θ(‖x‖r + ‖y‖r + ‖z‖r + ‖w‖r ) (28)

for all λ, ν ∈ S1 and all x, y, z,w ∈ A. Then there exists a unique C-bilinear
mapping D : A2 → A such that

‖f (x, z)−D(x, z)‖ ≤ (2
r + 4)θ

2r − 4
‖x‖r + 4θ

2r − 4
‖z‖r (29)

for all x, z ∈ A.
If, in addition, the mapping f : A2 → A satisfies f (2x, z) = 2f (x, z) and

‖f ([x, y, z], w)− [f (x,w), y, z] − [x, f (y,w∗), z] − [x, y, f (z,w)]‖
≤ θ(‖x‖r + ‖y‖r + ‖z‖r + ‖z‖r ), (30)

‖f (x, [y, z,w])− [f (x, y), z, w] − [y, f (x∗, z, w] − [y, z, f (x,w)]‖
≤ θ(‖x‖r + ‖y‖r + ‖z‖r + ‖w‖r ) (31)

for all x, y, z,w ∈ A, then the C-bilinear mapping D : A2 → A is a ternary
biderivation.

Theorem 8 Let ϕ : A4 → R be a function satisfying (15) and f : A2 → A be
a mapping satisfying (24) and f (x, 0) = f (0, z) = 0 for all x, z ∈ A. Then there
exists a unique C-bilinear mapping D : A2 → A such that

‖f (x, z)−D(x, z)‖ ≤ 1

1− κ (
1

2
ϕ (x, x, z, 0)+ 1

4
ϕ(2x, 0, z, z)) (32)

for all x, z ∈ A.
If, in addition, the mapping f : A2 → A satisfies (26), (27) and f (2x, z) =

2f (x, z) for all x, z ∈ A, then the C-bilinear mapping D : A2 → A is a ternary
biderivation.

Proof The proof is similar to the proof of Theorem 7.
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Corollary 6 Let r < 2 and θ be nonnegative real numbers and f : A2 → A be
a mapping satisfying (28) and f (x, 0) = f (0, z) = 0 for all x, z ∈ A. Then there
exists a unique C-bilinear mapping D : A2 → A such that

‖f (x, z)−D(x, z)‖ ≤ (4+ 2r )θ

4− 2r
‖x‖r + 4θ

4− 2r
‖z‖r (33)

for all x, z ∈ A.
If, in addition, the mapping f : A2 → A satisfies (30), (31) and f (2x, z) =

2f (x, z) for all x, z ∈ A, then the C-bilinear mapping D : A2 → A is a ternary
biderivation.

4 Ternary Bihomomorphisms in C∗-Ternary Algebras
Associated with the Bi-additive Functional Inequality (1)

In this section, we investigate ternary bihomomorphisms in C∗-ternary algebras
associated with the bi-additive s-functional inequality (1).

Theorem 9 Let ϕ : A4 → R be a function satisfying (5) and f : A2 → B be
a mapping satisfying f (x, 0) = f (0, z) = 0 and (24). Then there exists a unique
C-bilinear mapping H : A2 → B satisfying (25), where D is replaced by H in
(25).

If, in addition, the mapping f : A2 → B satisfies

‖f ([x, y, z], [w,w,w])− [f (x,w), f (y,w), f (z,w)]‖ ≤ ϕ(x, y, z,w), (34)

‖f ([x, x, x], [y, z,w])− [f (x, y), f (x, z), f (x,w)]‖ ≤ ϕ(x, y, z,w) (35)

for all x, y, z,w ∈ A, then the C-bilinear mapping H : A2 → B is a ternary
bihomomorphism.

Proof By the same reasoning as in the proof of Theorem 7, there is a unique C-
bilinear mapping H : A2 → B, which is defined by

H(x, z) = lim
m→∞ 4mf

( x
2m
,
z

2m

)

for all x, z ∈ A.
It follows from (34) that

‖H([x, y, z], [w,w,w])− [H(x,w),H(y,w),H(z,w)]‖

= lim
n→∞ 64n

∥∥∥∥f
( [x, y, z]

8n
,
[w,w,w]

8n

)
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−
[
f
( x

2n
,
w

2n

)
, f

( y
2n
,
w

2n

)
, f

( z
2n
,
w

2n

)]∥∥∥

≤ lim
n→∞ 64nϕ

( x
2n
,
y

2n
,
z

2n
,
w

2n

)
≤ lim
n→∞

64nκn

64n
ϕ
( x

2n
,
y

2n
,
z

2n
,
w

2n

)
= 0

for all x, y, z,w ∈ A. Thus

H([x, y, z], [w,w,w]) = [H(x,w),H(y,w),H(z,w)]

for all x, y, z,w ∈ A.
Similarly, one can show that

H([x, x, x], [y, z,w]) = [H(x, y),H(x, z),H(x,w)]

for all x, y, z,w ∈ A. Hence the C-bilinear mapping H : A2 → B is a ternary
bihomomorphism.

Corollary 7 Let r > 6 and θ be nonnegative real numbers and f : A2 → B be
a mapping satisfying f (x, 0) = f (0, z) = 0 for all x, z ∈ A and (28). Then there
exists a unique C-bilinear mapping H : A2 → B such that

‖f (x, z)−H(x, z)‖ ≤ (2
r + 4)θ

2r − 4
‖x‖r + 4θ

2r − 4
‖z‖r

for all x, z ∈ A.
If, in addition, the mapping f : A2 → B satisfies

‖f ([x, y, z], [w,w,w])− [f (x,w), f (y,w), f (z,w)]‖
≤ θ(‖x‖r + ‖y‖r + ‖z‖r + ‖w‖r ), (36)

‖f ([x, x, x], [y, z,w])− [f (x, y), f (x, z), f (x,w)]‖
≤ θ(‖x‖r + ‖y‖r + ‖z‖r + ‖w‖r ) (37)

for all x, y, z,w ∈ A, then the C-bilinear mapping H : A2 → B is a ternary
bihomomorphism.

Theorem 10 Let ϕ : A4 → R be a function satisfying (15) and let f : A2 → B

be a mapping satisfying (24) and f (x, 0) = f (0, z) = 0 for all x, z ∈ A. Then
there exists a unique C-bilinear mapping H : A2 → B satisfying (32), where D is
replaced by H in (32).

If, in addition, the mapping f : A2 → B satisfies (34) and (35), then the C-
bilinear mapping H : A2 → B is a ternary bihomomorphism.

Proof The proof is similar to the proof of Theorem 9.
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Corollary 8 Let r < 2 and θ be nonnegative real numbers and f : A2 → B be
a mapping satisfying (28) and f (x, 0) = f (0, z) = 0 for all x, z ∈ A. Then there
exists a unique C-bilinear mapping H : A2 → B such that

‖f (x, z)−H(x, z)‖ ≤ (4+ 2r )θ

4− 2r
‖x‖r + 4θ

4− 2r
‖z‖r

for all x, z ∈ A.
If, in addition, the mapping f : A2 → B satisfies (36) and (37), then the C-

bilinear mapping H : A2 → B is a ternary bihomomorphism.
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Hyers–Ulam Stability of an
Additive-Quadratic Functional Equation

Jung Rye Lee, Choonkil Park, and Themistocles M. Rassias

Abstract Using the fixed point method and the direct method, we prove the
Hyers–Ulam stability of Lie biderivations and Lie bihomomorphisms in Lie Banach
algebras, associated with the bi-additive functional inequality

‖f (x + y, z+ w)+ f (x + y, z− w)+ f (x − y, z+ w)
+ f (x − y, z− w)− 4f (x, z)‖

≤ ‖s (2f (x+ y, z−w)+ 2f (x − y, z+w)− 4f (x, z)+ 4f (y,w))‖ , (1)

where s is a fixed nonzero complex number with |s| < 1.

1 Introduction and Preliminaries

The stability problem of functional equations originated from a question of Ulam
[25] concerning the stability of group homomorphisms. Hyers [9] gave a first affir-
mative partial answer to the question of Ulam for Banach spaces. Hyers’ Theorem
was generalized by Aoki [1] for additive mappings and by Rassias [24] for linear
mappings by considering an unbounded Cauchy difference. A generalization of the
Rassias theorem was obtained by Găvruta [8] by replacing the unbounded Cauchy

J. R. Lee
Department of Data Science, Daejin University, Pocheon, Korea
e-mail: jrlee@daejin.ac.kr

C. Park (�)
Department of Mathematics, Hanyang University, Seoul, Korea
e-mail: baak@hanyang.ac.kr

Th. M. Rassias
Department of Mathematics, Zografou Campus, National Technical University of Athens, Athens,
Greece
e-mail: trassias@math.ntua.gr

© Springer Nature Switzerland AG 2022
N. J. Daras, Th. M. Rassias (eds.), Approximation and Computation in Science
and Engineering, Springer Optimization and Its Applications 180,
https://doi.org/10.1007/978-3-030-84122-5_29

561

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-84122-5_29&domain=pdf
mailto:jrlee@daejin.ac.kr
mailto:baak@hanyang.ac.kr
mailto:trassias@math.ntua.gr
https://doi.org/10.1007/978-3-030-84122-5_29


562 J. R. Lee et al.

difference by a general control function in the spirit of Rassias’ approach. Park [18–
20] defined additive ρ-functional inequalities and proved the Hyers–Ulam stability
of the additive ρ-functional inequalities in Banach spaces and non-Archimedean
Banach spaces. Various functional equations and functional inequalities have been
extensively investigated by a number of authors (see [11–13, 16]).

We recall a fundamental result in fixed point theory.

Theorem 1 ([3, 6]) Let (X, d) be a complete generalized metric space and let J :
X → X be a strictly contractive mapping with Lipschitz constant α < 1. Then for
each given element x ∈ X, either

d(J nx, J n+1x) = ∞

for all nonnegative integers n or there exists a positive integer n0 such that

(1) d(J nx, J n+1x) <∞, ∀n ≥ n0;
(2) the sequence {Jnx} converges to a fixed point y∗ of J ;
(3) y∗ is the unique fixed point of J in the set Y = {y ∈ X | d(J n0x, y) <∞};
(4) d(y, y∗) ≤ 1

1−α d(y, Jy) for all y ∈ Y .
In 1996, Isac and Rassias [10] were the first to provide applications of stability

theory of functional equations for the proof of new fixed point theorems with
applications. By using fixed point methods, the stability problems of several
functional equations have been extensively investigated by a number of authors (see
[4, 5, 7, 23]).

Maksa [14, 15] introduced and investigated biderivations and symmetric
biderivations on rings. Öztürk and Sapanci [17], Vukman [26] and Yazarli [27]
investigated some properties of symmetric biderivations on rings.

Definition 1 ([14, 15]) Let A be a ring. A bi-additive mapping D : A× A→ A is
called a symmetric biderivation on A if D satisfies

D(xy, z) = D(x, z)y + xD(y, z),
D(x, y) = D(y, x)

for all x, y, z ∈ A.

In this paper, we introduce biderivations and bihomomorphisms in Lie Banach
algebras.

Let A be a Lie Banach algebra. Suppose that a C-bilinear mappingD : A×A→
A is a Lie derivation in each variable, i.e.,

D([x, y], z) = [D(x, z), y] + [x,D(y, z)],
D(x, [z,w]) = [D(x, z), w] + [z,D(x,w)]

for all x, y, z,w ∈ A. It is easy to show that
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D([x, y], [z,w]) = [[D(x, z), w], y] + [[z,D(x,w)], y]
+[x, [D(y, z), w]] + [x, [z,D(y,w)]]

for all x, y, z,w ∈ A.

Definition 2 Let A be a complex Lie Banach algebra. A C-bilinear mapping D :
A× A→ A is called a Lie biderivation on A if D satisfies

D([x, y], [z,w]) = [[D(x, z), w], y] + [[z,D(x,w)], y]
+[x, [D(y, z), w]] + [x, [z,D(y,w)]]

for all x, y, z,w ∈ A.

Definition 3 Let A and B be complex Lie Banach algebras. A C-bilinear mapping
H : A× A→ B is called a Lie bihomomorphism if H satisfies

H([x, y], [z,w]) = [H(x, z),H(y,w)]

for all x, y, z,w ∈ A.

This paper is organized as follows: In Sects. 2 and 3, we prove the Hyers–Ulam
stability of Lie biderivations and Lie bihomomorphisms in Lie Banach algebras
associated with the bi-additive s-functional inequality (1) by using the direct
method. In Sects. 4 and 5, we prove the Hyers–Ulam stability of Lie biderivations
and Lie bihomomorphisms in Lie Banach algebras associated with the bi-additive
s-functional inequality (1) by using the fixed point method.

Throughout this paper, let X be a complex normed space and Y be a complex
Banach space. LetA andB be Lie Banach algebras. Assume that s is a fixed nonzero
complex number with |s| < 1.

2 Hyers–Ulam Stability of Lie biderivations on Lie Banach
Algebras: Direct Method

We investigate the bi-additive s-functional inequality (1) in complex normed spaces.

Lemma 1 ([21, Lemma 2.1]) If a mapping f : X2 → Y satisfies f (0, z) =
f (x, 0) = 0 and

‖f (x + y, z+ w)+ f (x + y, z− w)+ f (x − y, z+ w)
+f (x − y, z− w)− 4f (x, z)‖

≤ ‖s (2f (x + y, z− w)+ 2f (x − y, z+ w)− 4f (x, z)+ 4f (y,w))‖

for all x, y, z,w ∈ X, then f : X2 → Y is bi-additive.
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In [22], Park proved the Hyers–Ulam stability of the bi-additive s-functional
inequality (1) in complex Banach spaces.

Theorem 2 ([22, Theorem 2.2]) Let ϕ : X2 → [0,∞) be a function satisfying

∞∑

j=1

4j ϕ
( x

2j
,
y

2j

)
<∞ (2)

for all x, y ∈ X and f : X2 → Y be a mapping satisfying f (x, 0) = f (0, z) = 0
and

‖f (x + y, z+ w)+ f (x + y, z− w)+ f (x − y, z+ w)
+f (x − y, z− w)− 4f (x, z)‖ (3)

≤ ‖s (2f (x + y, z− w)+ 2f (x − y, z+ w)− 4f (x, z)+ 4f (y,w)) ‖
+ϕ(x, y)ϕ(z,w)

for all x, y, z,w ∈ X. Then there exists a unique bi-additive mapping P : X2 → Y

such that

‖f (x, z)− P(x, z)‖ ≤ 1

4(1− |s|)Ψ (x, x)ϕ(z, 0) (4)

for all x, z ∈ X, where

Ψ (x, y) :=
∞∑

j=1

2j ϕ
( x

2j
,
y

2j

)

for all x, y ∈ X.
Theorem 3 ([22, Theorem 2.2]) Let ϕ : X2 → [0,∞) be a function satisfying

Ψ (x, y) :=
∞∑

j=0

1

2j
ϕ
(

2j x, 2j y
)
<∞ (5)

for all x, y ∈ X and f : X2 → Y be a mapping satisfying (3) and f (x, 0) =
f (0, z) = 0 for all x, z ∈ X. Then there exists a unique bi-additive mapping P :
X2 → Y such that

‖f (x, z)− P(x, z)‖ ≤ 1

2(1− |s|)Ψ (x, x)ϕ(z, 0) (6)

for all x, z ∈ X.
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Now, we investigate Lie biderivations on Lie Banach algebras associated with
the bi-additive s-functional inequality (1).

Lemma 2 ([2, Lemma 2.1]) Let f : X2 → Y be a bi-additive mapping such that
f (λx, μz) = λμf (x, z) for all x, z ∈ X and λ,μ ∈ S1 := {ν ∈ C : |ν| = 1}.
Then f is C-bilinear.

Theorem 4 Let ϕ : A2 → [0,∞) be a function satisfying (2) with X = A and
f : A2 → A be a mapping satisfying f (x, 0) = f (0, z) = 0 and

‖f (λ(x + y), μ(z+ w))+ f (λ(x + y), μ(z− w))+ f (λ(x − y), μ(z+ w))
+f (λ(x − y), μ(z− w))− 4λμf (x, z)‖

≤ ‖s (2f (x + y, z− w)+ 2f (x − y, z+ w)− 4f (x, z)+ 4f (y,w))‖
+ϕ(x, y)ϕ(z,w) (7)

for all λ,μ ∈ S1 and all x, y, z,w ∈ A. Then there exists a unique C-bilinear
mapping D : A2 → A satisfying (4) with X = A, where P is replaced by D in (4).

If, in addition, the mapping f : A2 → A satisfies f (2x, z) = 2f (x, z) and

‖f ([x, y], [z,w])− [[f (x, z), w], y] − [[z, f (x,w)], y]
−[x, [f (y, z), w]] − [x, z, f (y,w)]]‖

≤ ϕ(x, y)ϕ(z,w) (8)

for all x, y, z,w ∈ A, then the mapping f : A2 → A is a Lie biderivation.

Proof Let λ = μ = 1 in (7). By Theorem 2, there is a unique bi-additive mapping
D : A2 → A satisfying (4) defined by

D(x, z) := lim
n→∞ 2nf

( x
2n
, z
)

for all x, z ∈ A.
Letting y = w = 0 in (7), we get f (λx, μz) = λμf (x, z) for all x, z ∈ A and

all λ,μ ∈ S1. By Lemma 2, the bi-additive mapping D : A2 → A is C-bilinear.
If f (2x, z) = 2f (x, z) for all x, z ∈ A, then we can easily show that D(x, z) =

f (x, z) for all x, z ∈ A.
It follows from (8) that

‖D([x, y], [z,w])− [[D(x, z), w], y] − [[z,D(x,w)], y]
−[x, [D(y, z), w]] − [x, z,D(y,w)]]‖

= lim
n→∞ 4n

∥∥∥∥f
( [x, y]

2n · 2n
, [z,w]

)
−
[[
f
( x

2n
, z
)
, w

]
,
y

2n

]
−
[[
z, f

( x
2n
, w

)]
,
y

2n

]

−
[ x

2n
,
[
f
( y

2n
, z
)
, w

]]
−
[ z

2n
,
[
z, f

( y
2n
, w

)]]∥∥∥ ≤ lim
n→∞ 4nϕ

( x
2n
,
y

2n

)
ϕ(z,w) = 0
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for all x, y, z,w ∈ A. Thus

D([x, y], [z,w]) = [[D(x, z), w], y] + [[z,D(x,w)], y]
+ [x, [D(y, z), w]] + [x, z, [D(y,w)]]

for all x, y, z,w ∈ A. Hence the mapping f : A2 → A is a Lie biderivation.

Corollary 1 Let r > 2 and θ be nonnegative real numbers, and f : A2 → A be a
mapping satisfying f (x, 0) = f (0, z) = 0 and

‖f (λ(x + y), μ(z+ w))+ f (λ(x + y), μ(z− w))+ f (λ(x − y), μ(z+ w))
+f (λ(x − y), μ(z− w))− 4λμf (x, z)‖ (9)

≤ ‖s (2f (x + y, z− w)+ 2f (x − y, z+ w)− 4f (x, z)+ 4f (y,w))‖
+θ(‖x‖r + ‖y‖r )(‖z‖r + ‖w‖r )

for all λ,μ ∈ S1 and all x, y, z,w ∈ A. Then there exists a unique C-bilinear
mapping D : A2 → A such that

‖f (x, z)−D(x, z)‖ ≤ θ

(1− |s|)(2r − 2)
‖x‖r‖z‖r (10)

for all x, z ∈ A.
If, in addition, the mapping f : A2 → A satisfies f (2x, z) = 2f (x, z) and

‖f ([x, y], [z,w])− [[f (x, z), w], y] − [[z, f (x,w)], y]
−[x, [f (y, z), w]] − [x, z, f (y,w)]]‖

≤ θ(‖x‖r + ‖y‖r )(‖z‖r + ‖w‖r ) (11)

for all x, y, z,w ∈ A, then the mapping f : A2 → A is a Lie biderivation.

Proof The proof follows from Theorem 4 by taking ϕ(x, y) = √
θ(‖x‖r + ‖y‖r )

for all x, y ∈ A.

Theorem 5 Let ϕ : A2 → [0,∞) be a function satisfying (5) with X = A and
f : A2 → A be a mapping satisfying (7) and f (x, 0) = f (0, z) = 0 for all
x, z ∈ A. Then there exists a unique C-bilinear mapping D : A2 → A satisfying
(6) with X = A.

If, in addition, the mapping f : A2 → A satisfies (8) and f (2x, z) = 2f (x, z)
for all x, z ∈ A, then the mapping f : A2 → A is a Lie biderivation.

Proof The proof is similar to the proof of Theorem 4.

Corollary 2 Let r < 1 and θ be nonnegative real numbers, and f : A2 → A be
a mapping satisfying (9) and f (x, 0) = f (0, z) = 0 for all x, z ∈ A. Then there
exists a unique C-bilinear mapping D : A2 → A such that
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‖f (x, z)−D(x, z)‖ ≤ θ

(1− |s|)(2− 2r )
‖x‖r‖z‖r (12)

for all x, z ∈ A.
If, in addition, the mapping f : A2 → A satisfies (11) and f (2x, z) = 2f (x, z)

for all x, z ∈ A, then the mapping f : A2 → A is a Lie biderivation.

Proof The proof follows from Theorem 5 by taking ϕ(x, y) = √
θ(‖x‖r + ‖y‖r )

for all x, y ∈ A.

3 Hyers–Ulam Stability of Lie Bihomomorphisms in Lie
Banach Algebras: Direct Method

Now, we investigate Lie bihomomorphisms in Lie Banach algebras associated with
the bi-additive s-functional inequality (1).

Theorem 6 Let ϕ : A2 → [0,∞) be a function satisfying (2) with X = A and
f : A2 → B be a mapping satisfying (7) and f (x, 0) = f (0, z) = 0 for all
x, z ∈ A. Then there exists a unique C-bilinear mapping H : A2 → B satisfying
(4) with X = A and Y = B, where P is replaced by H in (4).

If, in addition, the mapping f : A2 → B satisfies f (2x, z) = 2f (x, z) and

‖f ([x, y], [z,w])− [f (x, z), f (y,w)]‖ ≤ ϕ(x, y)ϕ(z,w) (13)

for all x, y, z,w ∈ A, then the mapping f : A2 → B is a Lie bihomomorphism.

Proof By the same reasoning as in the proof of Theorem 4, there is a unique C-
bilinear mapping H : A2 → B, which is defined by

H(x, z) = lim
n→∞ 2nf

( x
2n
, z
)

for all x, z ∈ A.
If f (2x, z) = 2f (x, z) for all x, z ∈ A, then we can easily show that H(x, z) =

f (x, z) for all x, z ∈ A.
It follows from (13) that

‖H([x, y], [z,w])− [H(x, z),H(y,w)]‖

= lim
n→∞ 4n

∥∥∥∥f
( [x, y]

2n · 2n
, [z,w]

)
−
[
f
( x

2n
, z
)
, f

( y
2n
,w

)]∥∥∥∥

≤ lim
n→∞ 4nϕ

( x
2n
,
y

2n

)
ϕ(z,w) = 0

for all x, y, z,w ∈ A. Thus
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H([x, y], [z,w]) = [H(x, z),H(y,w)]

for all x, y, z,w ∈ A. Hence the mapping f : A2 → B is a Lie bihomomorphism.

Corollary 3 Let r > 2 and θ be nonnegative real numbers, and f : A2 → B be
a mapping satisfying (9) and f (x, 0) = f (0, z) = 0 for all x, z ∈ A. Then there
exists a unique C-bilinear mapping H : A2 → B satisfying (10) with X = A and
Y = B, where P is replaced by H in (10).

If, in addition, the mapping f : A2 → B satisfies f (2x, z) = 2f (x, z) and

‖f ([x, y], [z,w])− [f (x, z), f (y,w)]‖ ≤ θ(‖x‖r + ‖y‖r )(‖z‖r + ‖w‖r ) (14)

for all x, y, z,w ∈ A, then the mapping f : A2 → B is a Lie bihomomorphism.

Theorem 7 Let ϕ : A2 → [0,∞) be a function satisfying (5) with X = A and
f : A2 → B be a mapping satisfying (7) and f (x, 0) = f (0, z) = 0 for all
x, z ∈ A. Then there exists a unique C-bilinear mapping H : A2 → B satisfying
(6) with X = A and Y = B, where P is replaced by H in (6).

If, in addition, the mapping f : A2 → B satisfies (13) and f (2x, z) = 2f (x, z)
for all x, z ∈ A, then the mapping f : A2 → B is a Lie bihomomorphism.

Proof The proof is similar to the proof of Theorem 6.

Corollary 4 Let r < 1 and θ be nonnegative real numbers, and f : A2 → B be
a mapping satisfying (9) and f (x, 0) = f (0, z) = 0 for all x, z ∈ A. Then there
exists a unique C-bilinear mapping H : A2 → B satisfying (12) with X = A and
Y = B, where D is replaced by H in (12).

If, in addition, the mapping f : A2 → B satisfies (14) and f (2x, z) = 2f (x, z)
for all x, z ∈ A, then the mapping f : A2 → B is a Lie bihomomorphism.

4 Hyers–Ulam Stability of Lie Biderivations on Lie Banach
Algebras: Fixed Point Method

Using the fixed point method, Park [22] proved the Hyers–Ulam stability of the
bi-additive s-functional inequality (1) in complex Banach spaces.

Theorem 8 [22, Theorem 4.1] Let ϕ : X2 → [0,∞) be a function such that there
exists an L < 1 with

ϕ
(x

2
,
y

2

)
≤ L

4
ϕ (x, y) ≤ L

2
ϕ (x, y) (15)

for all x, y ∈ X. Let f : X2 → Y be a mapping satisfying (3) and f (x, 0) =
f (0, z) = 0 for all x, z ∈ X. Then there exists a unique bi-additive mapping P :
X2 → Y such that
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‖f (x, z)− P(x, z)‖ ≤ L

4(1− |s|)(1− L)ϕ(x, x)ϕ(z, 0) (16)

for all x, z ∈ X.
Using the fixed point method, we prove the Hyers–Ulam stability of Lie

biderivations on Lie Banach algebras associated with the bi-additive s-functional
inequality (1).

Theorem 9 Let ϕ : A2 → [0,∞) be a function satisfying (15) with A = X and
f : A2 → A be a mapping satisfying (7) and f (x, 0) = f (0, z) = 0 for all
x, z ∈ A. Then there exists a unique C-bilinear mapping D : A2 → A satisfying
(16) with X = A.

If, in addition, the mapping f : A2 → A satisfies (8) and f (2x, z) = 2f (x, z)
for all x, z ∈ A, then the mapping f : A2 → A is a Lie biderivation.

Proof Let λ = μ = 1 in (5). By Theorem 8, there is a unique bi-additive mapping
D : A2 → A satisfying (16) defined by

D(x, z) := lim
n→∞ 2nf

( x
2n
, z
)

for all x, z ∈ A.
Letting y = w = 0 in (5), we get f (λx, μz) = λμf (x, z) for all x, z ∈ A and

all λ,μ ∈ S1. By Lemma 2, the bi-additive mapping D : A2 → A is C-bilinear.
The rest of the proof is similar to the proof of Theorem 4.

Corollary 5 Let r > 2 and θ be nonnegative real numbers, and f : A2 → A be
a mapping satisfying (8) and f (x, 0) = f (0, z) = 0 for all x, z ∈ A. Then there
exists a unique C-bilinear mapping D : A2 → A satisfying (10).

If, in addition, the mapping f : A2 → A satisfies (9), (10) and f (2x, z) =
2f (x, z) for all x, z ∈ A, then the mapping f : A2 → A is a Lie biderivation.

Proof The proof follows from Theorem 9 by taking L = 21−r and ϕ(x, y) =√
θ(‖x‖r + ‖y‖r ) for all x, y ∈ A.

Theorem 10 ([22, Theorem 4.4]) Let ϕ : X2 → [0,∞) be a function such that
there exists an L < 1 with

ϕ (x, y) ≤ 2Lϕ
(x

2
,
y

2

)
(17)

for all x, y ∈ X. Let f : X2 → Y be a mapping satisfying (4) and f (x, 0) =
f (0, z) = 0 for all x, z ∈ X. Then there exists a unique bi-additive mapping P :
X2 → Y such that

‖f (x, z)− P(x, z)‖ ≤ 1

4(1− |s|)(1− L)ϕ (x, x) ϕ(z, 0) (18)

for all x, z ∈ X.
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Theorem 11 Let ϕ : A2 → [0,∞) be a function satisfying (17) with X = A and
f : A2 → A be a mapping satisfying f (x, 0) = f (0, z) = 0 and (5). Then there
exists a unique C-bilinear mapping D : A2 → A satisfying (18).

If, in addition, the mapping f : A2 → A satisfies f (2x, z) = 2f (x, z) and (7),
then the mapping f : A2 → A is a Lie biderivation.

Proof The proof is similar to the proof of Theorem 9.

Corollary 6 Let r < 1 and θ be nonnegative real numbers, and f : A2 → A be
a mapping satisfying (8) and f (x, 0) = f (0, z) = 0 for all x, z ∈ A. Then there
exists a unique C-bilinear mapping D : A2 → A satisfying (12).

If, in addition, the mapping f : A2 → A satisfies (9), (10) and f (2x, z) =
2f (x, z) for all x, z ∈ A, then the mapping f : A2 → A is a Lie biderivation.

Proof The proof follows from Theorem 11 by taking L = 2r−1 and ϕ(x, y) =√
θ(‖x‖r + ‖y‖r ) for all x, y ∈ A.

5 Hyers–Ulam Stability of Lie Bihomomorphisms in Lie
Banach Algebras: Fixed Point Method

Using the fixed point method, we prove the Hyers–Ulam stability of Lie biho-
momorphisms in Lie Banach algebras associated with the bi-additive s-functional
inequality (1).

Theorem 12 Let ϕ : A2 → [0,∞) be a function satisfying (15) with X = A and
f : A2 → B be a mapping satisfying f (x, 0) = f (0, z) = 0 for all x, z ∈ A and
(5). Then there exists a unique C-bilinear mapping H : A2 → B satisfying (16)
with X = A and Y = B, where P is replaced by H in (16).

If, in addition, the mapping f : A2 → B satisfies (13) and f (2x, z) = 2f (x, z)
for all x, z ∈ A, then the mapping f : A2 → B is a Lie bihomomorphism.

Proof By Theorem 9, there is a unique C-bilinear mappingH : A2 → B satisfying
(16) defined by

H(x, z) := lim
n→∞ 2nf

( x
2n
, z
)

for all x, z ∈ A.
The rest of the proof is similar to the proof of Theorem 6.

Corollary 7 Let r > 2 and θ be nonnegative real numbers, and f : A2 → B be
a mapping satisfying (8) and f (x, 0) = f (0, z) = 0 for all x, z ∈ A. Then there
exists a unique C-bilinear mapping H : A2 → B satisfying (10).

If, in addition, the mapping f : A2 → B satisfies (14) and f (2x, z) = 2f (x, z)
for all x, z ∈ A, then the mapping f : A2 → B is a Lie bihomomorphism.
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Theorem 13 Let ϕ : A2 → [0,∞) be a function satisfying (17) with X = A and
f : A2 → B be a mapping satisfying f (x, 0) = f (0, z) = 0 and (5). Then there
exists a unique C-bilinear mapping H : A2 → B satisfying (18) with X = A and
Y = B, where P is replaced by H in (18).

If, in addition, the mapping f : A2 → B satisfies f (2x, z) = 2f (x, z) for all
x, z ∈ A and (13), then the mapping f : A2 → B is a Lie bihomomorphism.

Proof The proof is similar to the proof of Theorem 12.

Corollary 8 Let r < 1 and θ be nonnegative real numbers, and f : A2 → B be
a mapping satisfying (8) and f (x, 0) = f (0, z) = 0 for all x, z ∈ A. Then there
exists a unique C-bilinear mapping H : A2 → B satisfying (12).

If, in addition, the mapping f : A2 → B satisfies (14) and f (2x, z) = 2f (x, z)
for all x, z ∈ A, then the mapping f : A2 → B is a Lie bihomomorphism.

6 Conclusions

Using the fixed point method and the direct method, we have proved the Hyers–
Ulam stability of Lie biderivations and Lie bihomomorphisms in Lie Banach
algebras, associated with the bi-additive functional inequality (1).
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Orthogonal Dirichlet Polynomials

Doron S. Lubinsky

Abstract Let
{
λj
}∞
j=1 be a sequence of distinct positive numbers. Let w be

a non-negative function, integrable on the real line. One can form orthogonal

Dirichlet polynomials {φn} from linear combinations of
{
λ−itj

}n
j=1

, satisfying the

orthogonality relation

∫ ∞

−∞
φn (t) φm (t)w (t) dt = δmn.

Weights that have been considered include the arctan density w (t) = 1
π(1+t2) ;

rational function choices of w; w (t) = e−t ; and w (t) constant on an interval
symmetric about 0. We survey these results and discuss possible future directions.

1 Introduction

Throughout, let

{
λj
}∞
j=1 be a sequence of distinct positive numbers. (1.1)

Given m ≥ 1, a Dirichlet polynomial of degree ≤ m [17, 23] associated with this
sequence of exponents has the form
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m∑

n=1

anλ
−it
n =

m∑

n=1

ane
−i(log λn)t ,

where {an} ⊂ C. We denote the set of all such polynomials by Lm.
The theory of almost-periodic functions [2, 3] is based on orthogonality in the

mean:

lim
T→∞

1

T

∫ T

0
λ−itj λ−itk dt = δjk.

Thus in an asymptotic sense, the “monomials”
{
λ−itj

}

j≥1
are orthonormal poly-

nomials. In the hope that a more standard orthogonality relation might have some
advantages, the author [6] introduced Dirichlet orthogonal polynomials associated
with the arctan density.

In the general case, one can consider a non-negative functionw, integrable on the
real line, and positive on a set of positive measure. The corresponding orthonormal
polynomials φn ∈ Ln have positive leading coefficient and satisfy

∫ ∞

−∞
φn (t) φm (t)w (t) dt = δmn, m, n ≥ 1.

If we use as the inner product

(f, g) =
∫ ∞

−∞
f (t) g (t)w (t) dt

and assume
∫∞
−∞w = 1, then φn admits the representation

φn (x) = (−1)n+1

√
An−1An

× det

⎡

⎢⎢⎢⎢⎢⎢⎣

λ−ix1 λ−ix2 λ−ix3 · · · λ−ixn
1

(
λ−it1 , λ−it2

) (
λ−it1 , λ−it3

)
· · ·

(
λ−it1 , λ−itn

)

(
λ−it2 , λ−it1

)
1

(
λ−it2 , λ−it3

)
· · ·

(
λ−it2 , λ−itn

)

.

.

.
.
.
.

.

.

.
. . .

.

.

.(
λ−itn−1, λ

−it
1

) (
λ−itn−1, λ

−it
2

) (
λ−itn−1, λ

−it
3

)
· · ·

(
λ−itn−1, λ

−it
n

)

⎤

⎥⎥⎥⎥⎥⎥⎦
, (1.2)

where

An = det
[(
λ−itj , λ−itk

)]

1≤j,k≤n . (1.3)

The leading coefficient of φn (x) is
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γn =
√
An−1

An
.

In analyzing orthonormal polynomials, the reproducing kernels

Kn (x, y) =
n∑

j=1

φj (x) φj (y)

are useful. The nth Christoffel function is

1/Kn (x, x) = 1/
n∑

j=1

∣∣φj (x)
∣∣2 .

The extremal property

Kn (x, x) = sup
P∈Ln

|P (x)|2∫∞
−∞ |P |2w

facilitates estimation of Kn (x, x) and the Christoffel function. The extremal
property is an easy consequence of the Cauchy-Schwarz inequality.

Examples of weights w for which some analysis has been undertaken are the
arctan density

w (t) = 1

π
(
1+ t2) , t ∈ R;

rational functions of special form; w (t) = e−t , t ∈ [0,∞) and w (t) = 1 on
[−T , T ] , T > 0. We shall survey some of the results in Sects. 2–5. It seems of
some interest to develop also a theory for general weights.

One reason for studying Dirichlet orthogonal polynomials is that they might offer
some insight into the behavior of general Dirichlet polynomials, just as classical
orthogonal polynomials are useful in analyzing algebraic polynomials P (x) =∑n
j=0 cj x

j . There is of course a vast literature on Dirichlet polynomials, with
connections to Turán’s formulation of the Lindelöf hypothesis, Hilbert’s inequality,
the large sieve of number theory, the Montgomery-Vaughn theory, and higher
dimensional results such as the Vinogradov Mean Value Theorem. We cannot hope
to review these here, but present a few results relevant to our topic:

The classical conjecture of Lindelöf asserts that given ε > 0, the Riemann ζ
function admits the bound

|ζ (s + it)| ≤ C (ε) (2+ |t |)ε
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provided s ≥ 1
2 and s+it lies outside a small disk centered on 1. Using a very simple

argument, Turán showed in a 1962 paper [22] that this conjecture is equivalent to
the estimate on a specific Dirichlet polynomial: given ε > 0, we have for all real t
and n ≥ 1,

∣∣∣∣∣∣

n∑

j=1

(−1)j j−it
∣∣∣∣∣∣
< C (ε) n

1
2+ε (2+ |t |)ε .

Another classical connection, to Hilbert’s inequality, involves the Montgomery-
Vaughan refinement of the Mean Value Theorem. There are several versions, among
them [13, 14], [15, p. 74, Corollary 2]

∫ T

0

∣∣∣∣∣∣

n∑

j=1

ajλ
−it
j

∣∣∣∣∣∣

2

dt = T
n∑

j=1

∣∣∣a2
j

∣∣∣+ 3πθ
n∑

j=1

∣∣∣a2
j

∣∣∣ δ−1
j . (1.4)

Here T > 0, and (in the notation here):

δj = min
{∣∣log λj − log λk

∣∣ : k 	= j, k ≤ n} ,

while |θ | ≤ 1.
A much more recent result is Weber’s Mean Value Theorem [24] when there are

non-negative coefficients:

∫ T

0

∣∣∣∣∣∣

n∑

j=1

ajλ
−it
j

∣∣∣∣∣∣

2q

dt ≥ cT
⎛

⎝
n∑

j=1

a2
j

⎞

⎠
q

.

Here we assume that q is a positive integer, all aj ≥ 0, while c is independent of
N,

{
aj
}
,
{
λj
}
.

This paper is organized as follows: in Sect. 2, we review results for the arctangent
density. In Sect. 3, we consider the exponential weight and the connection to Müntz
orthogonal polynomials. In Sect. 4, we look at rational weights, and in Sect. 5, we
look at constant weights on [−T , T ].

2 The Arctangent Density

Let

w (t) = 1

π
(
1+ t2) , t ∈ R.
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We also assume that

1 = λ1 < λ2 < λ3 < · · ·

It was shown in [6] that φ1 = 1 and for n ≥ 2,

φn (t) =
λ1−it
n − λ1−it

n−1√
λ2
n − λ2

n−1

.

Here it is essential that the
{
λj
}

are increasing, while it is intriguing that φn
involves only the last two powers. The proof of course is elementary, and based on
the following integral (itself a simple consequence of the residue theorem):

∫ ∞

−∞
eiμt

π
(
1+ t2)dt = e

−|μ|.

The nth reproducing kernel along the diagonal is given for real x by [6, p. 46]

Kn (x, x) = 1+
m∑

n=1

1

λ2
n − λ2

n−1

[
(λn − λn−1)

2 + 4λn−1λn sin2
(
x

2
log

λn

λn−1

)]
.

Because of the simple explicit form, it is easy to do analysis. Thus one can check
that

sup
t∈R

|φn (t)| =
√
λn + λn−1

λn − λn−1

while

sup
t∈R

∣∣φ′n (t)
∣∣ = λn log λn + λn−1 log λn−1√

λ2
n − λ2

n−1

.

The zeros of φn have the form −i + 2kπ
log(λn/λn−1)

, k ∈ Z.

If λm→∞, as m→∞, the reproducing kernel admits the asymptotic

lim
m→∞

1

log λm
Km (x, x) = 1+ x2

2
,

uniformly for x in compact subsets of the real line. The universality limit takes the
form
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lim
m→∞

1

log λm
Km

(
x + α

log λm
, x + β

log λm

)
= 1+ x2

2
ei(β−α)/2S

(
α − β

2

)
,

where

S (t) = sin t

t

is the usual sinc kernel. The limit holds uniformly for x in compact subsets of R
and α, β in compact subsets of C. Markov-Bernstein inequalities for derivatives of
Dirichlet polynomials were also established in [6].

Orthonormal expansions in the {φn}were also considered there, and in the follow
up paper [7]. For example, it was shown using such orthonormal expansions that if

f (t) =
∞∑

n=1

anλ
−it
n

where the coefficients are complex numbers, and r > 0, then

∫ ∞

−∞
|f (rt)|2 dt

π
(
1+ t2) =

∞∑

k=1

(
λ2r
k − λ2r

k−1

) ∣∣∣∣∣

∞∑

n=k

an

λrn

∣∣∣∣∣

2

,

provided the series on the right-hand side converges. This was used to establish a
number of inequalities of Hilbert/mean value type. If for example, r > 0 and {ak}
are non-negative numbers with

{
ak/λ

r
k

}
decreasing, then

F (t) =
∞∑

n=1

(−1)n−1 anλ
−it
n

satisfies

∫ ∞

−∞
|F (rt)|2 dt

π
(
1+ t2) ≤

∞∑

n=1

a2
n.

M. Weber used the orthonormal expansions above in studying Cauchy means of
Dirichlet polynomials and series, with a more definitive version of the limits for
orthonormal expansions than given in [6, 7]. For example, he proved that if q is a
positive integer, and {an} are complex, [26, p. 65, Proposition 1.4]

lim
s→∞

∫ ∞

−∞

∣∣∣∣∣∣

∞∑

j=1

aj j
−ist

∣∣∣∣∣∣

2q
dt

π
(
1+ t2) = lim

s→∞
1

2s

∫ ∞

−∞

∣∣∣∣∣∣

∞∑

j=1

aj j
−it

∣∣∣∣∣∣

2q

dt,
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provided the limit on the right exists. He established estimates such as [26, p. 65,
Proposition 1.5]

1

S

∫ S

0

∣∣∣∣∣∣

n∑

j=1

aj j
−it

∣∣∣∣∣∣

2q

dt ≤ 2π

log 2
sup

S≤s≤2S

∫ ∞

−∞

∣∣∣∣∣∣

N∑

j=1

aj j
−ist

∣∣∣∣∣∣

2q
dt

π
(
1+ t2) .

Another application has been given by D. Dimitrov and W.D. Oliviera [5], to
finding the Dirichlet polynomials that minimize

1

2π

∫ ∞

−∞

∣∣∣∣P
(

1

p
+ it

)∣∣∣∣
2

dt

1
p
+ t2

among all Dirichlet polynomials of degree ≤ n satisfying the interpolation condi-

tions P
(

1
p
+ itj

)
= 1, at m distinct points

{
tj
}m
j=1. See also [16].

3 Laguerre Weight

Let

w (t) = e−t , t ∈ [0,∞),

so that our orthogonality relation becomes

∫ ∞

0
φn (t) φm (t)e

−t dt = δmn. (3.1)

In [8], it was shown that

φn (t) = Δn

2πi

∫

Γ

e−tzRn (t) dt,

where Γ is a simple closed positively oriented curve in the half plane Re z > −1
that encloses i log λj , 1 ≤ j ≤ n, while

Rn (z) = 1

z− i log λn

n−1∏

j=1

(
1+ 1

z− i log λj

)
;

Δn = Dn

|Dn| ;
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and

Dn =
n−1∏

j=1

(
1+

[
i log

λj

λn

]−1
)
.

For x ∈ (0,∞) , there is the simplified form

φn (x) = −Δn e
αx

2π

∫ ∞

−∞
e−ixsRn (−α + is) ds.

Here α ∈ (0, 1). It was shown there that

φn (x) =
n∑

j=1

Bnjλ
−ix
j , (3.2)

where

Bnj = Δn

i log
λj
λn

n−1∏

k=1,k 	=j

⎛

⎝1+ 1

i log
λj
λk

⎞

⎠ .

In addition, formulae were given for φ′n and Markov-Bernstein inequalities were
established. Among the more interesting inequalities established are the bounds

e−x
n∑

j=1

∣∣φj (x)
∣∣2 ≤

n∑

j=1

∣∣φj (0)
∣∣2 = n.

Moreover, the left-hand side is a decreasing function of x ∈ [0,∞). Similarly,

e−x
n∑

j=1

∣∣∣φ′j (x)
∣∣∣
2

≤
n∑

j=1

∣∣∣φ′j (0)
∣∣∣
2 = n (n− 1) (2n− 1)

6
+

n∑

j=1

(
log λj

)2
,

and the left-hand side is also a decreasing function of x.
As it turns out, many of the above results were not new, and subsumed by existing

results on Müntz orthogonal polynomials. Suppose we make the substitution x =
e−t in (3.1). We obtain

∫ 1

0
φn

(
log

1

x

)
φm

(
log

1

x

)
dx = δmn,
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and

φn

(
log

1

x

)
=

n∑

j=1

Bnjx
−iλj .

These are Müntz orthogonal polynomials that were explored in the Russian
literature as far back as 1955—see [1, 21]. An excellent reference is the beautiful
book of Borwein and Erdelyi [4, p. 125 ff.]. As the author knows much of that book
well, he ought to have noticed the connection.

The treatment in [4] allows complex λj , so let us change notation: given complex
ρj with Re ρj > − 1

2 , j ≥ 0, define the nth Müntz-Legendre polynomial

Ln (x) = 1

2πi

∫

Γ

n−1∏

k=0

t + 1k + 1

t − ρk
xt

t − ρn dt.

Here Γ is a simple closed positively oriented curve enclosing all the
{
ρj
}
. It can

be shown that Ln is a linear combination of {xρj }nj=0 admitting the orthogonality
relation

∫ 1

0
Ln (x)Lm (x)dx = δmn 1

1+ 2Re ρn
.

Müntz orthogonal polynomials have been used in numerical quadrature [11, 12]. A
thorough study of their asymptotics was undertaken by Ulfar Stefansson. See for
example [18, 19].

4 Rational Weights

Since the formulae for the arctan density are so simple, it is natural to try generalize
them to linear combinations of scaled arctan densities. Let

w (t) =
L∑

m=1

cm

π
(
1+ (bmt)2

) , (4.1)

where L ≥ 2, the
{
cj
}

are real, and

1 = b1 < b2 < · · · < bm. (4.2)

One would also hope to preserve the simple structure for the arctan density. Some
guidance is provided by expressing φn of Sect. 2, in the determinant form (1.2):
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φn (t) =
λ1−it
n − λ1−it

n−1√
λ2
n − λ2

n−1

= − 1√
λ2
n − λ2

n−1

det

[
λ−itn−1 λ

−it
n

λ−1
n−1 λ

−1
n

]
.

By analogy, define for n ≥ L,

ψn (t) = det

⎡

⎢⎢⎢⎢⎢⎢⎣

λitn−L λitn−L+1 · · · λitn−1 λitn

λ
−1/b1
n−L λ

−1/b1
n−L+1 · · · λ−1/b1

n−1 λ
−1/b1
n

...
...

. . .
...

...

λ
−1/bL−1
n−L λ

−1/bL−1
n−L+1 · · · λ−1/bL−1

n−1 λ
−1/bL−1
n

λ
−1/bL
n−L λ

−1/bL
n−L+1 · · · λ−1/bL

n−1 λ
−1/bL
n

⎤

⎥⎥⎥⎥⎥⎥⎦
. (4.3)

Observe that ψn (t) is a linear combination of only
{
λ−itj

}

n−L≤j≤n. Also define for

a given fixed n, and j ≥ 1, 1 ≤ m ≤ L,

djm =
∫ ∞

−∞
ψn (t)

λitj

π
(
1+ (bmt)2

) dt (4.4)

and let B be the (L− 1)× L matrix

B =

⎡

⎢⎢⎢⎣

dn−L+1,1 dn−L+1,2 · · · dn−L+1,L

dn−L+2,1 dn−L+2,2 · · · dn−L+2,L
...

...
. . .

...

dn−1,1 dn−1,2 · · · dn−1,L

⎤

⎥⎥⎥⎦ (4.5)

and

D = det

⎡

⎢⎢⎢⎢⎢⎣

dn−L+1,1 dn−L+1,2 · · · dn−L+1,L

dn−L+2,1 dn−L+2,2 · · · dn−L+2,L
...

...
. . .

...

dn−1,1 dn−1,2 · · · dn−1,L

dn,1 dn,2 · · · dn,L

⎤

⎥⎥⎥⎥⎥⎦
. (4.6)

In [9] we proved:

Proposition 4.1 Let c = [c1 c2 . . . cL]T be taken as any non-trivial solution of
Bc = 0. Let w be as in (4.1). Then for 1 ≤ j ≤ n− 1,

∫ ∞

−∞
ψn (t) λ

it
j w (t) dt = 0. (4.7)
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If D defined by (4.6) is non-0, then we can take

w (t) = A det

⎡

⎢⎢⎢⎢⎢⎢⎣

dn−L+1,1 dn−L+1,2 · · · dn−L+1,L

dn−L+2,1 dn−L+2,2 · · · dn−L+2,L
...

...
. . .

...

dn−1,1 dn−1,2 · · · dn−1,L
1

π
(
1+(b1t)

2)
1

π
(
1+(b2t)

2) · · · 1
π
(
1+(bLt)2

)

⎤

⎥⎥⎥⎥⎥⎥⎦
, (4.8)

for any A 	= 0, while

∫ ∞

−∞
ψn (t) λ

it
n w (t) dt = AD.

Only in the case L = 2, could we prove positivity of the weight, with
appropriately chosen 0 < c1 < c2. It seems a worthwhile project to investigate
if for L ≥ 3 that the weight can be chosen to be of one sign.

If one can prove positivity of w for arbitrary L, there is the hope that one
can use such rational weights to approximate general weights in much the same
way as Bernstein-Szegő weights are used in the theory of “algebraic” orthogonal
polynomials [20]. However, this might be quite a reach, as there is at present no
indication that even if we could prove positivity, that there is the wealth of detail
and formulae that make Bernstein-Szegő weights such a valuable tool.

5 Legendre Weight

A natural choice for the weight is the Legendre weight w = Constant on some
interval or subset of the real line. In [10], we considered the normalized Legendre
weight w = 1

2T on [−T , T ] for T > 0. To emphasize the dependence on T >

0, we denote the Dirichlet orthogonal polynomial by φn,T , with positive leading
coefficient γn,T , such that

(
φn,T , φm,T

)
T
= 1

2T

∫ T

−T
φn,T (t) φm,T (t)dt = δmn.

The nth reproducing kernel is

Kn,T (u, v) =
n∑

j=1

φj,T (u) φj,T (v).

Let, as above,
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S (u) = sinu

u

denote the sinc kernel. From

1

2T

∫ T

−T
(
λj/λk

)−it
dt = S

(
T log

(
λj/λk

))
,

the determinantal representation (1.2) becomes

φn,T (x) = (−1)n+1

√
An−1,T An,T

× det

⎡

⎢⎢⎢⎣

λ−ix1 λ−ix2 λ−ix3 · · · λ−ixn
1 S (T log λ1/λ2) S

(
T log λ1/λ3

) · · · S (T log λ1/λn)

S (T log λ2/λ1) 1 S
(
T log λ2/λ3

) · · · S (T log λ2/λn)

.

.

.

.

.

.

.

.

.
. . .

.

.

.

S
(
T log λn−1/λ1

)
S
(
T log λn−1/λ2

)
S
(
T log λn−1/λ3

) · · · S (T log λn−1/λn
)

⎤

⎥⎥⎥⎦ .

The leading coefficient of φn,T (x) is γn,T =
√
An−1,T
An,T

, where

An,T = det
[
S
(
T log λj/λk

)]
1≤j,k≤n . (5.1)

It follows from the determinantal expression and the limit limx→∞ S (x) = 0 that

lim
T→∞φn,T (x) = λ

−ix
n .

One motivation for considering the Legendre weight is the Montgomery-
Vaughan mean value relation (1.4). It is to be hoped that a theory of orthogonal
Dirichlet polynomials might contribute to this circle of ideas and to estimates
involving Dirichlet polynomials. In this vein, write for j ≥ 1, T > 0,

λ−itj =
j∑

k=1

cT ,j,kφk,T (t) .

Let

CT,n =

⎡

⎢⎢⎢⎢⎢⎣

cT ,1,1 cT ,2,1 cT ,3,1 · · · cT ,n,1
0 cT ,2,2 cT ,3,2 · · · cT ,n,2
0 0 cT ,3,3 · · · cT ,n,3
...

...
...

. . .
...

0 0 0 · · · cT ,n,n

⎤

⎥⎥⎥⎥⎥⎦
.
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In [10], there is the simple observation that

sup
{aj }

1

2T

∫ T

−T

∣∣∣∣∣∣

n∑

j=1

ajλ
−it
j

∣∣∣∣∣∣

2

dt/

n∑

j=1

∣∣aj
∣∣2 = ∥∥CT,n

∥∥2
,

where the norm is the usual matrix norm induced by the Euclidean norm on C
n. The

Montgomery-Vaughan inequality shows that

∥∥CT,n
∥∥2 = T + 3πθ0/min

j 	=k
∣∣log λj − log λk

∣∣ ,

where |θ0| ≤ 1, but it would be of interest to use
∥∥CT,n

∥∥ to study refinements in the
other direction as T → ∞. Of course this would require understanding how φn,T
changes as T does. Some initial estimates were obtained in [10]:

Proposition 5.1 Let S > T .
(a)

1

2T

∫ T

−T

∣∣∣∣ψn,S (t)−
γn,S

γn,T
ψn,T (t)

∣∣∣∣
2

dt ≤ S

T
−
(
γn,S

γn,T

)2

.

(b)

γn,S

γn,T
≤
(
S

T

)1/2

.

(c)

Kn,T (x, x)+
(
S

T
− 2

)
Kn,S (x, x) ≥ 0. (5.2)

(d)

∂

∂T
Kn,T (x, x) = 1

T
Kn,T (x, x)− 1

2T

(
|Kn (x, T )|2 + |Kn (x,−T )|2

)
. (5.3)

(e)

∂
(
ln γn,T

)

∂T
= 1

2T
(1− ∣∣ψn,T (T )

∣∣2).

(f)

∂

∂T
lnAn,T = − 1

T

(
n−Kn,T (T , T )

)
.
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(g)

∂

∂T
cT,j,k + 1

T
cT,j,k = 1

2T

[
λ−iTj φk,T (T )+ λiTj φk,T (T )

]

+ 1

2T

∫ T

−T
λ−itj

∂

∂T
φk,T (t)dt.

6 Conclusions

The hope in studying Dirichlet orthogonal polynomials is that they might give new
insights into estimates for Dirichlet polynomials such as mean value theorems. At
this preliminary stage, this is little more than a hope. However, it seems of intrinsic
interest to develop analogues of the analysis for ordinary orthogonal polynomials:
estimates and asymptotics for the Christoffel functions, orthogonal polynomials,
and reproducing kernels for general weights. The first step in such a direction would
be explicit formulae for a significant set of special weights that can approximate
others—perhaps something like the Bernstein-Szegő weight. As is clear from the
above, even a more basic theory for special weights is incomplete.
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Generalizations and Improvements of
Approximations of Some Analytic
Functions: A Survey

Branko Malešević, Tatjana Lutovac, and Marija Rašajski

Abstract In this paper, we present a survey of some recent results concerning
generalizations and improvements of approximations of some analytic functions
including trigonometric, inverse trigonometric, polynomial, and irrational functions.

1 Introduction

Even though investigations and proving of inequalities involving trigonometric,
inverse trigonometric, polynomial, and irrational functions have been attracting
attention of scientists through the centuries, these topics remain in the focus of
numerous studies of mathematicians and researchers in various fields [2, 8, 25].

In addition to theoretical significance, these inequalities are also effectively
applied to various problems in fundamental sciences and many areas of engineering,
such as electronics, mechanics, aeronautics, etc.

Proving of analytical inequalities as well as development of corresponding
formal methods and procedures still represent important and very challenging tasks.
In this paper, we present a brief survey of some of the authors’ recent results in this
field.

Our approach is based on using one-sided and double-sided Taylor’s approxima-
tions, power series expansions of the corresponding functions, Cauchy’s product
of power series, characteristic of some special numbers (such as, for exam-
ple, Bernoulli’s numbers), Leibniz’s criterion for alternating series, mathematical
induction, many results connected with derivatives of functions, L’Hospital’s rule
for monotonicity, analysis and solving of recurrent relations, and many results
connected with the localization of real zeros of polynomials.
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The obtained results present improvements of approximations of the correspond-
ing functions. Also, in many cases these results enable generalizations by producing
sequences of polynomial approximations, thus allowing arbitrary uniform precision.

Our method could be a basis for the development of a general methodology
for proving various analytical inequalities. Also, it represents a contribution to the
library of tools for automated proving of analytic inequalities.

2 Refinements and Generalizations of Some Inequalities
Involving Inverse Trigonometric Functions

Inverse trigonometric functions have many applications in computer science
and engineering. For example, numerous inequalities involving the arcsine and
arctangent functions have been studied and effectively applied to problems
in many areas of engineering and theoretical sciences such as electronics,
telecommunications, optical fiber telecommunications, signal processing, machine
learning, aeronautics, mechanics, etc.

In this section, we present some refinements and generalizations of Shafer–Fink’s
type and Shafer’s type inequalities.

2.1 Shafer–Fink’s Type Inequalities

Let us state Shafer–Fink’s inequality [10, 25] :

3x

2+√1− x2
≤ arcsin x ≤ πx

2+√1− x2
, for x∈[0, 1].

In [15] we proposed and proved some new inequalities which present refinements
and generalizations of inequalities stated in [6], related to Shafer–Fink’s inequality
for the inverse sine function.

The following results were obtained and proved by using the power series expan-
sions of the corresponding functions, and by establishing and solving recurrent
relations between the coefficients of the obtained power series.

Theorem 1 ([15], Theorem 1) For x ∈ [0, 1], n ∈ N and k = 3 or k = π the
following inequality holds:

n∑

m=0

Dk(m)x
2m+1 ≤ arcsin x − kx

2+√1− x2
,
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where

Dk(m) = (2m)!
(m!)2(2m+1)22m

−
(
(−1)mk

3m+1
+
m−1∑

i=0

k(−1)m−1−i (2i)!
3m−i i!(i+1)!22i+1

)
. (1)

Theorem 2 ([34], Theorem 2.6) For x ∈ [0, 1], n ∈N , k = 3 or k = π , and the
sequence {Dk(m)}m∈N0,m≥2 defined by (1), the following double-sided inequalities
hold true :

n∑

m=0

Dk(m)x
2m+1 < arcsin x − kx

2+√1− x2
<

n−1∑

m=0

Dk(m)x
2m+1

+
(
π − k

2
−
n−1∑

m=0

Dk(m)

)
x2n+1.

Examples For x ∈
(

0,
π

2

)
, following inequalities hold for n = 5 and n = 4,

respectively:

x5

180
+ x

7

189
+23x9

5184
+ 629x11

171072
< arcsin x − 3x

2+√1− x2
<
x5

180
+ x7

189
+ 23x9

5184

+
(
−274933

181440
+ π

2

)
x11,

(
1−π

3

)
x+

(
1

6
−π

18

)
x3+

(
3

40
−5π

216

)
x5+

(
5

112
−17π

1296

)
x7+

(
35

1152
− 269π

31104

)
x9

< arcsin x − πx

2+√1− x2
<
(

1− π
3

)
x +

(
1

6
− π

18

)
x3 +

(
3

40
− 5π

216

)
x5

+
(

5

112
− 17π

1296

)
x7 +

(
−2161

1680
+ 551π

1296

)
x9.

Theorem 3 ([15], Theorem 2) If n ∈ N and n ≥ 2, then

n∑

m=2

E(m)x2m+1

2+√1− x2
≤ arcsin x − 3x

2+√1− x2
,

for every x∈[0, 1], where
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E(m) = m(2m−1)!
(2m+1)22m−2(m!)2 −

2m 22m−2((m−1)!)2
(2m+1)! , m∈N, m ≥ 2. (2)

Using the WD theorem [39] we obtained the upper bounds for the previous
inequality.

Theorem 4 ([34], Theorem 2.10) For x∈[0, 1] and the sequence {E(m)}m∈N,m≥2,
defined by (2), the following double-sided inequalities hold true :

n∑

m=2

E(m)x2m+1

2+√1− x2
< arcsin x − 3x

2+√1− x2

<

n−1∑

m=2

E(m)x2m+1+
(
π−

n−1∑

m=0

E(m)

)
x2n+1

2+√1− x2
.

Example From the above two theorems, for n = 4 and x ∈
(

0,
π

2

)
the following

inequalities hold:

1

60
x5+ 11

840
x7+ 67

6720
x9

2+√1− x2
< arcsin x− 3x

2+√1−x2
<

1

60
x5+ 11

840
x7+

(
π − 509

168

)
x9

2+√1− x2
.

2.2 Shafer’s Type Inequalities

Let us state Shafer’s inequality [37]:

3x

1+ 2
√

1+ x2
< arctan x, for x > 0.

In [18] we proved some sharper refinements and generalizations of inequalities
related to Shafer’s inequality, stated in [27]. Note that in our proofs we utilize
power series expansions, recurrence relations of power series coefficients, the Wilf–
Zeilberger method [32], as well as Leibniz’s criterion for alternating series.

Theorem 5 ([18], Theorem 9) For the real analytic function:

f (x) = arctan x − 3x

2+√1+ x2
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the following inequalities hold for k∈N and x∈
(

0,

√
3

2

]
:

2k+1∑

m=0

(−1)mC(m)x2m+1 < f (x) <

2k∑

m=0

(−1)mC(m)x2m+1,

where C(0) = C(1) = 0, and for m ≥ 2 the following holds:

C(m)= 1

2m+ 1
− 4m−1

3m

(
1− 8

m∑

i=2

(2i − 2)!
(i − 1)! i! 22i−1

(
3

4

)i )
.

Example For k=3 and x∈(0,√3/2
]
:

x5

180
−13x7

1512
+53x9

5184
−3791x11

342144
+55801x13

4852224
−130591x15

11197440
< arctan x− 3x

1+2
√

1+x2

<
x5

180
− 13x7

1512
+ 53x9

5184
− 3791x11

342144
+ 55801x13

4852224
.

Theorem 6 ([18], Theorem 10) For every x ∈ (0, 1] and k ∈ N , it is asserted that:

3x +
2k+1∑

m=2

(−1)mE(m)x2m+1

1+ 2
√

1+ x2
< arctan x <

3x +
2k∑

m=2

(−1)mE(m)x2m+1

1+ 2
√

1+ x2
,

where

E(m) = 3

2m+ 1
−
m−1∑

i=0

(2m− 2i − 2)!
2(2m−2i−2) (2i + 1) (m− i − 1)! (m− i)! .

Example For k = 2 the following hold:

3x + 1

60
x5 − 17

840
x7 + 139

6720
x9 − 8947

443520
x11

1+ 2
√

1+ x2
< arctan x

<

3x + 1

60
x5 − 17

840
x7 + 139

6720
x9

1+ 2
√

1+ x2
.
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Theorem 7 ([18], Theorem 11) For every x ∈ (0, 1] and k ∈ N , it is asserted that:
2k−1∑

m=1

(−1)mC(m)x2m+1 < arctan x − 2x

1+√1+ x2
<

2k∑

m=1

(−1)mC(m)x2m+1,

where

C(m) = 1

2m+ 1
− ( 2m− 1 )!!
(m+ 1)! 2m .

Example For k = 3 the following inequalities hold:

− 1

12
x3 + 3

40
x5 − 29

448
x7 + 65

1152
x9 − 281

5632
x11 < arctan x − 2x

1+√1− x2

< − 1

12
x3 + 3

40
x5 − 29

448
x7 + 65

1152
x9 − 281

5632
x11 + 595

13312
x13.

3 Inequalities Containing the Sinc Function

It is well-known that inequalities with the sinc function, i.e. sinc x = sin x
x
(x 	= 0),

occur in various fields of mathematics and engineering such as difference equations
and inequalities, Fourier analysis and its applications, theory of stability, theory of
approximations, signal processing, optics, radio transmission, sound recording, etc.

3.1 Inequalities Related to Wilker–Cusa–Huygens’s
Inequalities

Following the idea to compare and replace functions with their corresponding
power series to get more accurate approximations, and using WD theorem ([39],
Theorem 2) as well as Leibniz’s criterion for alternating series, we proposed and
proved new inequalities which represent refinements and generalizations of the
inequalities stated in [26] and related to Wilker–Cusa–Huygens’s inequalities.

Theorem 8 ([20], Theorem 1)

(i) For every x∈
(

0,
π

2

)
and every n ∈ N , we have:

2n∑

k=2

(−1)kA(k) x2k < cos x −
(

sin x

x

)3

<

2n+1∑

k=2

(−1)kA(k) x2k,
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where A(k) = 32k+3−32k3−96k2−88k−27

4 (2k + 3)! .

(ii) For every x∈
(

0,
π

2

)
and everym ∈ N , we have the following error estimation:

∣∣∣∣ cos x −
(

sin x

x

)3

−
m∑

k=1

(−1)kA(k) x2k
∣∣∣∣ < A(m+ 1) x2m+2.

Example For n = 2 and every x∈
(

0,
π

2

)
, the following inequalities hold:

− 1

15
x4 + 23

1890
x6 − 41

37800
x8 < cos x −

(
sin x

x

)3

< − 1

15
x4 + 23

1890
x6 − 41

37800
x8 + 53

831600
x10.

Theorem 9 ([20], Theorem 2)

(i) For every x∈
(

0,
π

2

)
and every n ∈ N , we have:

2n∑

k=2

(−1)k+1B(k) x2k <
sin x

x
− cos x + 2

3
<

2n+1∑

k=2

(−1)k+1B(k) x2k,

where B(k) = 2

3

k − 1

(2 k + 1)!
.

(ii) For every x∈
(

0,
π

2

)
and everym ∈ N , we have the following error estimation:

∣∣∣∣∣
sin x

x
− cos x + 2

3
−

m∑

k=0

(−1)k+1B(k) x2k

∣∣∣∣∣ < B(m+ 1) x2m+2.

Example For n = 2 and every x∈
(

0,
π

2

)
, the following inequalities hold:

− 1

180
x4 + 1

3780
x6 − 1

181440
x8 <

sin x

x
− 1

3
cos x − 2

3

< − 1

180
x4 + 1

3780
x6 − 1

181440
x8 + 1

14968800
x10.
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Theorem 10 ([20], Theorem 3)

(i) For every x∈
(

0,
π

2

)
and every n ∈ N , we have:

3+ 1

cos x

2n+1∑

k=2

(−1)k C(k) x2k < 2
sin x

x
+ tan x

x

< 3 + 1

cos x

2n∑

k=2

(−1)k C(k) x2k,

where C(k) = 2
4k − 3 k − 1

(2 k + 1)! .

(ii) For every x ∈
(

0,
π

2

)
and every m ∈ N, m ≥ 2, we have the following error

estimation:
∣∣∣∣∣2

sin x

x
+ tan x

x
−
(

3+ 1

cos x

m∑

k=2

(−1)k+1C(k) x2k

) ∣∣∣∣∣ < C(m+ 1)
x2m+2

cos x
.

Example For n = 2 and every x∈
(

0,
π

2

)
, the following inequalities hold:

2+ 1

cos x

(
3

20
x4 − 3

140
x6 + 3

2240
x8 − 1

19800
x10

)
< 2

sin x

x
+ tan x

x

< 2+ 1

cos x

(
3

20
x4 − 3

140
x6 + 3

2240
x8
)
.

Theorem 11 ([20], Theorem 4)

(i) For every x∈
(

0,
π

2

)
and every n ∈ N , we have:

2+ 1

cos x

2n+1∑

k=2

(−1)kD(k) x2k <

(
sin x

x

)2

+ tan x

x

< 2+ 1

cos x

2n∑

k=2

(−1)kD(k) x2k,

where D(k) = 1

4

−9+ 32k+2 − 40 k − 32 k2

(2 k + 2)! .

(ii) For every x ∈
(

0,
π

2

)
and every m ∈ N,m ≥ 2, we have the following error

estimation:
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∣∣∣∣∣

(
sin x

x

)2

+ tan x

x
−
(

2+ 1

cos x

m∑

k=2

(−1)k+1D(k) x2k

)∣∣∣∣∣ < D(m+ 1) x
2m+2

cos x .

Example Let x∈
(

0,
π

2

)
and n = 2. The following inequalities are true:

2+ 1

cos x

(
8

45
x4 − 4

105
x6 + 19

4725
x8 − 37

133650
x10

)
<

(
sin x

x

)2

+ tan x

x

< 2+ 1

cos x

(
8

45
x4 − 4

105
x6 + 19

4725
x8
)
.

Theorem 12 ([20], Theorem 5) For every x ∈
(

0,
π

2

)
and m ∈ N , m ≥ 2, the

following inequalities hold:

2+
m∑

k=2

|B2k | (2k − 2)4k

(2k)! x2k <
( x

sin x

)2 + x

tan x

< 2+
m−1∑

k=2

|B2k | (2k − 2)4k

(2k)! x2k +
(

2x

π

)2n
(
π2

4
− 2−

m−1∑

k=2

|B2k | (2k − 2)4k

(2k)!
(π

2

)2k
)
,

where Bi are Bernoulli’s numbers.

The above theorem allows for the approximation error to be estimated:

Rn (x) =
(
f
(π

2

)
− 2−

n∑

k=1

|B2k| (2k − 2)4k

(2k)!
(π

2

)2k
)(

2x

π

)2n

.

Example For x∈
(

0,
π

2

)
and m=2, the following holds true:

2+ 2

45
x4 <

( x

sin x

)2 + x

tan x
< 2+

(
2

π

)4(
−2+ π

2

4

)
x4.

Theorem 13 ([20], Theorem 6) For every x ∈
(

0,
π

2

)
and m ∈ N , m ≥ 3, the

following inequality holds:

4+
m∑

k=1

3 |B2k| (22k−2)+(−1)k

(2k)! x2k < 3
x

sin x
+cos x

< 4+
m−1∑

k=1

3|B2k| (22k−2)+(−1)k

(2k)! x2k
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+
(

2x

π

)2m
(
f
(π

2

)
− 4−

m−1∑

k=1

3|B2k| (22k−2)+(−1)k

(2k)!
(π

2

)2k
)
,

where Bi are Bernoulli’s numbers.

Example For m = 4 and every x∈
(

0,
π

2

)
the following holds:

4 + 1

10
x4 + 1

210
x6 + 11

16800
x8 < 3

x

sin x
+ cos x

< 4+ 1

10
x4 + 1

210
x6 +

(
2

π

)8(
−4+ 3π

2
− π4

160
− π6

13440

)
x8.

3.2 Some Exponential Inequalities Related to the Sinc
Function

Starting from Jordan’s inequality [25]:

2

π
≤ sin x

x
≤ 1, 0 < x ≤ π

2
,

and continuing with the polynomial bounds [1, 9, 33], some exponential bounds
have recently been considered [7, 30, 31].

In [12] we presented a new approach to proving some exponential inequalities
connected with the sinc function. Using the power series expansions of the
corresponding functions and some newly developed approximation techniques, we
reduce exponential inequalities to the corresponding polynomial inequalities that
are more easily analyzed and proved.

Theorem 14 ([12], Theorem 2.1) Let function f1 be defined in the interval
(

0,
π

2

]

by:

f1(x) =
(

1− 4(π − 2)

π3 x2
)α1x

3+β1x
2+γ1x+δ1

− sin x

x
,

and let the following conditions hold:

f1(0+)=f ′1(0+)=f ′′1 (0+)=0, f1

(π
2

)
=f ′1

(π
2

)
=f ′′1

(π
2

)
=0.
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Then:

α1 =
(−π3+24π−48

)
ln2 π

2 −3 (π−2)
(
3π2−20π+36

)
ln π2 + 24(π−3)(π−2)2

3 (π − 2) π3 ln2 π
2

,

β1 = (π3 − 24π + 48) ln2 π
2 + 6(π − 2)(π − 4)2 ln π2 − 16(π − 3)(π − 2)2

2(π − 2)π2 ln2 π
2

,

γ1 = (−π3+24π−48) ln2 π
2 + (3π−10)(π−6)(π−2) ln π2 + 8(π−3)(π−2)2

4π(π−2) ln2 π
2

,

δ1 = π3

24(π−2)

and

f1(x) > 0, i.e.
sin x

x
<

(
1− 4(π − 2)

π3 x2
)α1x

3+β1x
2+γ1x+δ1

for every x∈
(

0,
π

2

]
.

Theorem 15 ([12], Theorem 2.2) Let the function

f2(x)=
(

1− 4(π − 2)

π3
x2
)α2x

3+β2x
2+δ2

− sin x

x
,

for x∈
(

0,
π

2

]
satisfy the following conditions:

f2(0+)=f ′2(0+)=f ′′2 (0+)=0, f2

(π
2

)
=f ′2

(π
2

)
=0.

Then:

α2 = −2

3

12(π − 2)(π − 3) − (48− 24π + π3) ln π2
π3(π − 2) ln π2

,

β2 = 8(π − 2)(π − 3) − (48− 24π + π3) ln π2
2π2(π − 2) ln π2

,

δ2 = π3

24(π − 2)

and

f2(x) < 0, i.e.

(
1− 4(π − 2)

π3 x2
)α2x

3+β2x
2+δ2

<
sin x

x

for every x∈
(

0,
π

2

]
.
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Theorem 16 ([12], Theorem 2.3) Let the function

f3(x) =
(

1− 4(π − 2)

π3 x2
)α3x

3+δ3
− sin x

x

for x∈
(

0,
π

2

]
satisfy the following conditions:
f3(0+)=f ′3(0+)=f ′′3 (0+)=0, f3

(π
2

)
=0.

Then:
α3 = −π

3 − 24π + 48

3(π − 2)π3 ,

δ3 = π3

24(π − 2)
.

and

f3(x) < 0, i.e.

(
1− 4(π − 2)

π3 x2
)α3x

3+δ3
<

sin x

x

for every x∈
(

0,
π

2

]
.

In [35] we proved some exponential inequalities, with constant exponents and
with certain polynomial exponents, involving the sinc function. Also, we determined
a relation between the cases of the constant and of the polynomial exponent.

Theorem 17 ([35], Theorem 5) For every a ≥ 2 and every x ∈ (0, π) the
following inequality holds true:

(
sin x

x

)a
≤ cos2 x

2
.

Theorem 18 ([35], Theorem 6) For every a ∈
(

3

2
, 2
)
, and every x ∈ (0, xa] ,

where 0 < xa < π , the following inequality holds true:
(

sin x

x

)a
≤ cos2 x

2
.

Theorem 19 ([35], Theorem 8) For every x ∈ (0, 3.1) the following double-sided
inequality holds:

(
sin x

x

)p1(x)

< cos2 x

2
<

(
sin x

x

)p2(x)

,

where p1 (x) = 3

2
+ x2

2π2 and p2 (x) = 3

2
+ x2

80
.
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Theorem 20 ([35], Theorem 10) For every a ∈
(

3

2
, 2
)
and every x ∈ (0,ma),

where ma =
√

2π2
(
a − 3

2

)
, the following double-sided inequality holds:

(
sin x

x

)a
<

(
sin x

x

)3
2+ x2

2π2

< cos2 x

2
.

3.3 Wilker’s Type Inequalities

Starting from Wilker’s inequality [38]:

(
sin x

x

)2

+ tan x

x
> 2, for x∈

(
0,
π

2

)
,

using the power series expansions and WD theorem, we obtained some generaliza-
tions and sharpenings of certain inequalities from [29].

Theorem 21 ([34], Theorem 2.2) For the function

f (x) = 1

x
+ sin 2x

2x2 − 2 cot x − 8x3

45
+ 8x5

945
,

where x∈
(

0,
π

2

)
, the following sequence of inequalities holds :

m∑

k=0

ckx
2k+1 < f (x) <

m−1∑

k=0

ckx
2k+1 +

(
f
(π

2

)
−
m−1∑

k=0

ck

(π
2

)2k+1
)(

2x

π

)2m+1

,

for x∈
(

0,
π

2

)
, m ∈ N , c0 = c1 = c2 = 0 and for k ≥ 3 :

ck = 22k+2
(
(4k+6)|B2k+2| + (−1)k+1

)

(2k + 3)! ,

where Bi are Bernoulli’s numbers.

Example For m = 4, and x∈
(

0,
π

2

)
we have:

16 x7

14175
+ 8 x9

467775
< f (x) <

16 x7

14175
+
(

2

π

)9( 2

π
− π

3

45
+ π5

3780
− π7

113400

)
x9.
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The above theorem allows for the approximation error to be estimated:

Rm(x)=
(
f
(π

2

)
−

m∑

k=3

22k+2
(
(4k + 6) |B2k+2| + (−1)k+1)

(2k + 3)!
(π

2

)2k+1
)(

2x

π

)2m+1

.

4 Generalizations and Improvements of Some Inequalities
Using the Double-Sided Taylor’s Approximations

In [21] the double-sided Taylor’s approximations were studied, and two new
theorems were proved regarding the monotonicity of such approximations. Also,
some new applications of the double-sided Taylor’s approximations in the theory of
analytic and trigonometric inequalities were presented.

First, let us introduce the notation. For a real function f : (a, b) −→ R such that
there exist finite limits f (k)(a+) = lim

x→a+ f
(k)(x) and f (k)(b−) = lim

x→b− f
(k)(x) for

k = 0, 1, . . . , n, n∈N0 the following polynomials:

T
f, a+
n (x) =

n∑

k=0

f (k)(a+)
k! (x − a)k and T

f, b−
n (x) =

n∑

k=0

f (k)(b−)
k! (x − b)k,

are called the first Taylor’s approximation in the right neighborhood of a, and the
first Taylor’s approximation in the left neighborhood of b, respectively.

Also, for n∈N, the following functions:

R
f, a+
n (x) = f (x)− T f, a+n−1 (x) and R

f, b−
n (x) = f (x)− T f, b−n−1 (x),

are called the remainder of the first Taylor’s approximation in the right neigh-
borhood of a, and the remainder of the first Taylor’s approximation in the left
neighborhood of b, respectively.

The following polynomials:

T
f ; a+, b−
n (x) =

⎧
⎪⎨

⎪⎩

T
f, a+
n−1 (x)+

1

(b − a)n R
f, a+
n (b−)(x − a)n : n ≥ 1

f (b−) : n = 0,
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and

T
f ; b−, a+
n (x) =

⎧
⎪⎨

⎪⎩

T
f, b−
n−1 (x)+

1

(a − b)n R
f, b−
n (a+)(x − b)n : n ≥ 1

f (a+) : n = 0,

are called the second Taylor’s approximation in the right neighborhood of a, and
the second Taylor’s approximation in the left neighborhood of b, respectively.

In [21] the following theorem was proved. This theorem concerns real analytic
functions which are of special interest in proofs of analytic inequalities.

Theorem 22 ([21], Theorem 4) Consider the real analytic functions f :(a, b)−→R :

f (x) =
∞∑

k=0

ck(x − a)k,

where ck ∈ R and ck ≥ 0 for all k ∈ N0. Then,

T
f, a+
0 (x) ≤ · · · ≤ T f, a+n (x) ≤ T f, a+n+1 (x) ≤ · · ·

· · · ≤ f (x) ≤ · · ·
· · · ≤ T

f ; a+, b−
n+1 (x) ≤ T

f ; a+, b−
n (x) ≤ · · · ≤ T

f ; a+, b−
0 (x),

for all x ∈ (a, b). If ck ∈ R and ck ≤ 0 for all k ∈ N0, then the reversed inequalities
hold.

In [21] we applied the above theorem on double-sided Taylor’s approximations

to the sequence of functions hn :
(

0,
π

2

)
−→ R, defined by:

hn(x) =
tan x − T tan, 0

2n−1 (x)

x2n tan x
, n ∈ N.

Using the change of variables and some algebraic transformations, we proved:

hn(x) =
∞∑

i=0

n∑

j=1

22(n+i+1)(22(n−j+1) − 1) |B2(n−j+1)| |B2(i+j)|
(2(n− j + 1))! (2(i + j))! x2i .

As the Taylor series expansions of the functions hn(x) satisfy the conditions of
Theorem 22 we improved the results from [40], as follows:
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Theorem 23 ([21], Theorem 8) For x ∈
(

0,
π

2

)
and n ∈ N, we have:

T
hn(x), 0+

0 (x) = 22(n+1)(22(n+1) − 1)|B2(n+1)|
(2n+ 2)! <

< T
hn(x), 0+

2 (x) < · · · < T hn(x), 0+2m (x) < T
hn(x), 0+

2m+2 (x) < · · ·

· · · < hn(x) < · · ·
· · · < T

hn(x); 0+, π2 −
2m+2 (x) < T

hn(x); 0+, π2 −
2m (x) < · · · < T

hn(x); 0+, π2 −
2 (x) <

< T
hn(x); 0+, π2 −

0 (x) =
(

2

π

)2n

.

Also, we obtained improvements of results from [28]:

Theorem 24 ([21], Theorem 10) For every x ∈
(

0,
π

2

)
and m ∈ N , m ≥ 2, the

following inequalities hold:
T
g, 0+

1

(π
2
− x

)
≤ · · · ≤ T g, 0+2m−1

(π
2
− x

)
≤ T g, 0+2m+1

(π
2
− x

)
≤ · · ·

· · · ≤ tan x − 4x

π(2π − x) ≤ · · ·

· · · ≤ T
g; 0+, π2 −
2m+1

(π
2
− x

)
≤ T

g; 0+, π2 −
2m−1

(π
2
− x

)
≤ · · · ≤ T

g; 0+, π2 −
1

(π
2
− x

)
.

Example For m = 1, the following inequalities hold:

T
g; 0+, π/2−
1

(π
2
− x

)
= 2

π
− 4

π2

(π
2
− x

)
≤ tan x − 4x

π(2π − x)
≤ 2

π
− 1

3

(π
2
− x

)
= T g, 01

(π
2
− x

)
,

which further implies the following:

Q1(x) < T
g; 0+, π/2−
1

(π
2
− x

)
≤ tan x− 4x

π(2π − x) ≤ T
g, 0+
1

(π
2
− x

)
= R1(x),

for x ∈
(

0,
π

2

)
, where Q1(x) = 2

π
− 1

2

(π
2
− x

)
, and R1(x) = 2

π
− 1

3

(π
2
− x

)

are the bounds from [9].

The following theorem gives some generalizations of the results obtained in
Theorem 12.
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Theorem 25 ([21], Theorem 12) For every x ∈
(

0,
π

2

)
and m ∈ N , m ≥ 2, the

following inequalities hold:

T
f, 0+

0 (x) ≤ · · · ≤ T f, 0+2m (x) ≤ T f, 0+2m+2(x) ≤ · · ·
· · · ≤

( x

sin x

)2 + x

tan x
≤ · · ·

· · · ≤ T
f ; 0+, π/2−
2m+2 (x) ≤ T

f ; 0+, π/2−
2m (x) ≤ · · · ≤ T

f ; 0+, π/2−
0 (x).

In [22], using the double-sided Taylor’s approximations, we obtained improve-
ments of some trigonometric inequalities proved in [36]. Our approach enabled
generalizations of the considered inequalities and produced sequences of polyno-
mial approximations of considered trigonometric functions.

Theorem 26 ([22], Theorem 3) For the function

f (x) = 1

x2

(
1− cos x

cos x2

)
, for x∈(0, π), and f (0) = 3

8
,

and any c ∈ (0, π) the following inequalities hold true:
3

8
= T f, 0+0 (x) ≤ T f, 0+2 (x) ≤ · · · ≤ T f, 0+2n (x) ≤ · · ·

· · · ≤ f (x) ≤ · · ·
≤ T

f ; 0+, c−
2m (x) ≤ · · · ≤ T

f ; 0+, c−
2 (x) ≤ T

f ; 0+, c−
0 (x) = 1

c2

(
1− cos c

cos c2

)

for every x∈(0, c), where m, n∈N0.

Example For c = π/2, i.e. for x∈
(

0,
π

2

)
the following inequalities hold:

3

8
≤ T f, 0+2 (x)= 3

8
+ 1

128
x2 ≤ f (x) ≤ T

f ; 0+, π/2−
2 (x)= 3

8
+
(

16

π4
− 3

2π2

)
x2 ≤ 4

π2
.

Now, let us consider functions:

g1(x)=

⎧
⎪⎪⎨

⎪⎪⎩

1

4
, x = 0,

cosh x2 − cos x2
x2 , x∈(0, β]

and g2(x)=

⎧
⎪⎨

⎪⎩

0 , x = 0,

cosh x2 + cos x2 − 2

x2 , x∈(0, β]
,

and g(x) = g1(x)− g2(x), for β∈(0, π).
We obtained the following results.
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Theorem 27 ([22], Theorem 4) For every c ∈ (0, π) the following inequalities
hold true:

1

4
= T g1, 0+

0 (x) ≤ · · · ≤ T g1, 0+
4n (x) ≤ T g1, 0+

4n+4 (x) ≤ · · ·
· · · ≤ g1(x) ≤ · · ·

· · · ≤ T
g1; 0+, c−
4m+4 (x) ≤ T

g1; 0+, c−
4m (x) ≤ · · · ≤ T

g1; 0+, c−
0 (x) = g1(c).

for all x∈(0, c), where m, n∈N0.

Theorem 28 ([22], Theorem 5) For every c ∈ (0, π) the following inequalities
hold true:

1

192
x2 = T g2, 0+

2 (x) ≤ · · · ≤ T g2, 0+
4n+2 (x) ≤ T g2, 0+

4n+6 (x) ≤ · · ·
· · · ≤ g2(x) ≤ · · ·

· · · ≤ T
g2; 0+, c−
4m+6 (x) ≤ T

g2; 0+, c−
4m+2 (x) ≤ · · · ≤ T

g2; 0+, c−
2 (x) = g2(c)

c2 x2

for all x∈(0, c), where m, n∈N0.

Example For c = π
2

and x∈(0, π/2), the following inequalities hold true:

1

4
− 4

π2
g2

(π
2

)
x2 ≤ g(x) ≤ g1

(π
2

)
− 1

192
x2

i.e.

1

4
− 16

π4

(
cosh

π

4
+
√

2

2
− 2

)
x2 ≤ g(x) ≤ 4

π2

(
cosh

π

4
−
√

2

2

)
− 1

192
x2.

5 Conclusion

In this paper, we gave a brief survey of our recent results in the area of analytic
inequalities. Presented results make a good basis for the systematic proving in this
field. Developing general, automated-oriented methodology for proving of analytic
inequalities is an area of our continuing interest and research [3–5, 11–21, 23, 24,
28, 29, 34, 35].
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Some Classes of Meir–Keeler
Contractions

Laura Manolescu, Paşc Găvruţa, and Farshid Khojasteh

Abstract In the present paper, we prove that Z-contractions, weakly type contrac-
tions, and some type of F -contractions are actually Meir–Keeler contractions.

Mathematics Subject Classification (2010) Primary 54H25; MSC Secondary
47H10

1 Introduction

Let (X, d) be a metric space and T : X → X be a mapping. T is called a Banach
contraction on X if there exist λ ∈ [0, 1) so that

d(T x, T y) ≤ λd(x, y), for all x, y ∈ X.

We say that T is a Picard operator if T has a unique fixed point x∗ in X and for
every x ∈ X, the sequence of successive approximations {xn}n∈N, where xn+1 =
T xn, n ∈ N, x0 = x converges to x∗. See [19].

S. Banach proved in [3] that if (X, d) is complete, then Banach contraction is a
Picard operator.

After this result, a large number of generalizations were obtained. See, for
example, the book of I.A. Rus et al. [18] and the articles [4] and [17].

Definition 1 We say that T is a Meir–Keeler contraction if given an ε > 0, there
exists δ > 0 such that
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ε ≤ d(x, y) < ε + δ implies d(T x, T y) < ε,

for all x, y ∈ X.
In [14] it is proved the following Theorem.

Theorem 1 Let (X, d) be a complete metric space and T be a Meir–Keeler
contraction. Then T is a Picard operator.

Among the numerous papers regarding Meir–Keeler contractions, we mention
the papers of W.-S. Du and Th.M. Rassias [5], J. Jachymski [9] and M. Turinici
[23].

The fixed point theorems have various application in chemistry, biology, com-
puter sciences, differential equations, existence of invariant subspaces of linear
operators, Hyers-Ulam-Rassias stability, and much more. Because of the wide range
of applicatios of the fixed point theory in various fields, many scientists work on
developing new fixed points theorems: in [12], the autors introduce Z-contractions
and prove that are Picard operators, in [6, 17], is proved that weakly contractive
mappings are Picard operators. See also [7] and [2]. In the following papers is
proved, under different assumptions, that F-contractions are Picard operators: [15],
[20] and [25].

In this paper, we prove that Z-contractions, weakly type contractions, and some
type of F -contractions are actually Meir–Keeler contractions.

2 Z-Contractions Are Meir–Keeler Contractions

In [12], the authors introduced a new class of contractions, called Z-contractions.

Definition 2 ([12]) A mapping ζ : [0,∞) × [0,∞) → R is called a simulation
function if it satisfies the following conditions

(i) ζ(0, 0) = 0;
(ii) ζ(t, s) < s − t , for all t, s > 0;
(iii) if {tn}, {sn} are sequences in (0,∞) such that lim

n→∞ tn = lim
n→∞ sn > 0, then

lim sup
n→∞

ζ(tn, sn) < 0

We denote by Z the set of all simulation functions.

Definition 3 ([12]) T is called a Z-contraction if

ζ(d(T x, T y), d(x, y)) ≥ 0, for all x, y ∈ X.

Also in [12], F. Khojasteh et al. prove the following Theorem.
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Theorem 2 ([12]) Let (X, d) be a complete metric space and T a Z-contraction.
Then T has a unique fixed point u and the Picard sequence xn = T xn−1 converges
to u.

We prove that the above result is following from the next Theorem.

Theorem 3 A Z-contraction is a Meir–Keeler contraction.

Proof Let T : X→ X be a Z-contraction. We suppose that T is not a Meir–Keeler.
Then there is ε0 > 0 so that for any δ > 0 there is xδ, yδ ∈ X so that

ε0 ≤ d(xδ, yδ) < ε0 + δ (1)

and

d(T xδ, T yδ) ≥ ε0. (2)

We take δ = 1

n
, n ≥ 1 natural number.

It follows that there are two sequences {xn}, {yn} ⊂ X so that

d(xn, yn) ≥ ε0, n ≥ 1 and lim
n→∞ d(xn, yn) = ε0 (3)

and

d(T xn, T yn) ≥ ε0. (4)

Since T is a Z-contraction, there is ζ a simulation function so that

0 ≤ ζ(d(T xn, T yn), d(xn, yn)). (5)

From (4), (5) and the condition (ii) in Definition 2 it follows

0 ≤ ζ(d(T xn, T yn), d(xn, yn)) < d(xn, yn)− d(T xn, T yn) ≤ d(xn, yn)− ε0.

It follows

lim
n→∞ ζ(d(T xn, T yn), d(xn, yn)) = 0. (6)

But ε0 ≤ d(T xn, T yn) < d(xn, yn)−ζ(d(T xn, T yn), d(xn, yn))which implies that

lim
n→∞ d(T xn, T yn) = ε0.

From condition (iii) in Definition 2 we have
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lim sup
n→∞

ζ(d(T xn, T yn), d(xn, yn)) < 0

in contradiction with relation (6).

3 Weakly Type Contractions Are Meir–Keeler Contractions

A significant number of generalizations of the contraction principle were obtain over
the years. We mention here the result of Alber and Guerre-Delabriere [1] in Hilbert
Spaces. B.E. Rhoades [17] showed that their is also valid in complete metric spaces.
Moreover, B.E. Rhoades obtain the result presented in the next Theorem, without
using an additional condition on φ, namely lim

t→∞φ(t) = ∞.
Definition 4 ([17]) A mapping T : X→ X, where (X, d) is a metric space, is said
to be weakly contractive if

d(T x, T x) ≤ d(x, y)− φ(d(x, y)),

where x, y ∈ X and φ : [0,∞) → [0,∞) is a continuous and nondecreasing
function such that φ(t) if and only if t = 0.

Theorem 4 ([17]) If T : X→ X is a weakly contractive mapping, where (X, d) is
a complete metric space, then T has a unique fixed point.

In 2008, P.N. Dutta and B.S. Choudhury [6] obtain a generalization of the result of
the above result. The main results of [6] state as follows.

Theorem 5 ([6]) Let (X, d) be a complete metric space and let T : X → X be a
self-mapping satisfying the inequality

ψ(d(T x, T y)) ≤ ψ(d(x, y))− φ(d(x, y)),

where ψ, φ : [0,∞) → [0,∞) are both continuous and monotone nondecreasing
functions with ψ(t) = 0 = φ(0) if and only if t = 0. Then T has a unique fixed
point.

M. Eslamian and A. Abkar (see [7]) generalizes the main results from [6] and [17].
See also [2].

Theorem 6 [7] Let (X, d) be a complete metric space and T : X → X be such
that

ψ(d(T x, T y)) ≤ α(d(x, y))− β(d(x, y)), (7)

for all x, y ∈ X, where ψ, α, β : [0,∞) → [0,∞) are such that ψ is continuous
and nondecreasing, α is continuous, β is lower semi-continuous,
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ψ(t) = 0 if and only if t = 0, α(0) = β(0) = 0, (8)

and

ψ(t)− α(t)+ β(t) > 0 for all t > 0. (9)

Then T has a unique fixed point.

We consider the following generalization of contractions.

Definition 5 Let (X, d) be a metric space and T : X→ X be such that

ψ(d(T x, T y)) ≤ α(d(x, y))− β(d(x, y)),

for all x, y ∈ X, whereψ, α, β : [0,∞)→ [0,∞) are such thatψ is nondecreasing,
α is continuous, β is lower semi-continuous, and

ψ(t)− α(t)+ β(t) > 0 for all t > 0.

Then we say that T is a weakly type contraction.

Theorem 7 If T is a weakly type contraction on a complete metric space, then T
is a Meir–Keeler contraction.

Proof We suppose that T is not a Meir–Keeler contraction. Then there exists ε0 > 0
and two sequences {xn}, {yn} ⊂ X such that

ε0 ≤ d(xn, yn) < ε0 + 1

n

and

d(T xn, T yn) ≥ ε0, n ≥ 1.

We have

ψ(d(T xn, T yn)) ≥ ψ(ε0) and ψ(d(T xn, T yn)) ≤ α(d(xn, yn))− β(d(xn, yn)).

It follows

ψ(ε0) ≤ α(d(xn, yn))− β(d(xn, yn))

or

β(d(xn, yn)) ≤ α(d(xn, yn))− ψ(ε0).

Using the continuity of α, we have
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lim inf
n→∞ β(d(xn, yn)) ≤ α(ε0)− ψ(ε0).

Since β lower semi-continuous, it follows β(ε0) ≤ α(ε0)−ψ(ε0), in contradiction
with the hypothesis.

By Theorems 1 and 7, we have the following Corollary.

Corollary 1 Let (X, d) be a complete metric space and T be a weakly type
contraction. Then T is a Picard operator.

4 F-Contractions and Meir–Keeler Contractions

In 2012, D. Wardowski [25] generalized the Banach theorem for a new type of
contractions.

We denote by F the set of all functions F : (0,∞)→ R satisfying the following
conditions:

(F1) F is strictly increasing;
(F2) for each sequence {tn}n∈N in R+, lim

n→∞ tn = 0 if and only if

lim
n→∞F(tn) = −∞;

(F3) there exists k ∈ (0, 1) such that lim
n→0+

tkF (t) = 0.

Definition 6 ([25]) Let (X, d) be a metric space and T : X → X. The mapping T
is called an F -contraction relative to F if there exists τ > 0 and F ∈ F such that

τ + F(d(T x, T y)) ≤ F(d(x, y))

holds for any x, y ∈ X with d(T x, T y) > 0.

Theorem 8 ([25]) Let (X, d) be a complete metric space and T : X → X be an
F -contraction. Then T is a Picard operator.

In 2013, Secelean [20] proved that the condition (F2) can be replaced by an
equivalent condition

(F ′2) infF = −∞.

See also [22].
In 2014, Piri and Kumam [15] introduced instead (F3), the following condition:

(F ′3) F is continuous on (0,∞).
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We denote by F ′ the set of all functions F : (0,∞)→ R satisfying the conditions
(F1), (F

′
2), (F

′
3).

Theorem 9 ([15]) Let (X, d) be a complete metric space and T : X → X be an
F -contraction relative to F ′. Then T is a Picard operator.

For other results concerning F -contractions, see the recent papers [16] and [26] and
their references.

We denote by F ′′ the set of all functions F : (0,∞) → R satisfying the
conditions (F ′1) and (F ′′3 ), where

(F ′1) F is nondecreasing

(F ′′3 ) F is continuous at right.

We also consider ϕ : (0,∞) → [0,∞) lower semi-continuous, ϕ(t) > 0, for
t > 0. In the next Theorem, we improve the result of [15].

Theorem 10 If T is a (ϕ, F )-contraction relative to F ′′, i.e.:

ϕ(d(x, y))+ F(d(T x, T y)) ≤ F(d(x, y))

for x, y ∈ X with d(T x, T y) > 0, then T is a Meir–Keeler contraction.

Proof We suppose that T is not a Meir–Keeler. Then there is ε0 > 0 and two
sequences {xn}, {yn} ⊂ X such that

ε0 ≤ d(xn, yn) < ε0 + 1

n

and

d(T xn, T yn) ≥ ε0, n ≥ 1.

We have

F(d(T xn, T yn)) ≥ F(ε0), n ≥ 1

and

ϕ(d(xn, yn))+ F(d(T xn, T yn)) ≤ F(d(xn, yn)).

Hence

ϕ(d(xn, yn))+ F(ε0) ≤ F(d(xn, yn)), n ≥ 1.

We take n→∞ and we obtain
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ϕ(ε0)+ F(ε0) ≤ F(ε0), contradiction.

Theorem 10 is also a generalization of a result of [21]. Our proof is more simple.
We denote by F0 the set of functions F : (0,∞)→ R which are nondecreasing.

In 2020, Popescu and Stan [16] proved, among other interesting results, the
following:

Theorem 11 ([16]) Let (X, d) be a complete metric space and let T be a self-
mapping onX. Assume that T is F -contraction relative to F0, i.e., there exist τ > 0
and F ∈ F such that

τ + F(d(T x, T y)) ≤ F(d(x, y))

holds for any x, y ∈ X with d(T x, T y) > 0. Then T is a Picard operator.

Related to this result, it would be interesting to show that a F -contraction relative
to F0 is Meir–Keeler contraction.

Comments
This paper is a more larger version of an old paper by the same authors: L.Găvruţa
(maiden name of Laura Manolescu), P. Găvruţa and F. Khojasteh, two classes
of Meir–Keeler contractions, https://arxiv.org/pdf/1405.5034.pdf. In this form, the
paper was cited in [8, 10, 11, 13, 24, 27].
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Interpolation of the Zech’s Logarithm:
Explicit Forms

Gerasimos C. Meletiou and Michael Th. Rassias

Abstract Zech’s logarithm is a function closely related to the Discrete Logarithm.
It has applications in communications, cryptography, and computing. In this paper,
we provide polynomial and exponential formulas for Zech’s logarithm over prime
fields.

1 Introduction

Let g be a fixed primitive element for Fq , q = pn, p prime. For every element h, of
F
∗
q , the discrete logarithm of h, with base g, is the unique integer k, 0 ≤ k ≤ q − 2,

satisfying gk = h.
The discrete logarithm problem amounts to finding a quick method (efficient

algorithm) for the computation of k given g and h. In the case that g and k are
known, the computation of h can be done rapidly. (Discrete exponential function
[18], [11, p. 399]. However, obtaining k from g and h does not appear to admit a
fast algorithm [18].

Because of the various cryptographic applications (cf. [3, 4, 10, 15–17]), in
the last decades there has been considerable research activity regarding both
computational, as well as theoretical aspects of computing discrete logarithms in
finite fields. (cf. [10, 16–18])

Zech’s logarithm or Jacobi logarithm is another important function for computa-
tions in finite fields. It has applications in cryptography and coding theory.
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Let g be a primitive element of Fq . The Zech logarithm is defined by Z(n),
0 ≤ n ≤ q − 2, in the equation

1+ gn = gZ(n).

This is related to the discrete logarithm, since

Z(n) = Logg(gn + 1).

In the case 1 + gn = 0 (e.g., the characteristic of the field is odd and n = q−1
2 ,

therefore gn = g q−1
2 = −1), we denote Z(n) = ∞ (in some books/papers −∞) [5,

p. 358], [6]. Obviously, Z(n) is a permutation on the set

{0, 1, . . . , q − 2} ∪ {∞}.

Intuitively, the discrete logarithm and Zech’s logarithm are related problems.
Zech’s logarithms in conjunction with discrete logarithms are used for computa-

tions over relatively small finite fields, since Zech’s logarithms can be pre-computed.
If the elements of F

∗
q are represented as powers of a fixed primitive element

g, then pre-computation of Zech’s logarithms provides a quick way to add (or to
subtract) elements, since

gm + gn = gm(1+ gn−m) = gm+Z(n−m), (cf. [9]).

Conway showed that a table of Zech’s logarithms is useful to perform addition
in GF(pn), (see [2]).

Fast computations in Galois fields are substantial for decoding algorithms for
error-correcting codes ([12, 13]).

Zech’s logarithms have been used for the fast solution of quadratic, cubic, and
quartic equations over GF(2n), (cf. [6]). The results are generalized for fields of
characteristic p, p > 2, (cf. [7]). Fast computations via Zech’s logarithms have been
applied to methods and devices for generating pseudo-random sequences. Some of
these have been patented, (cf. [8]).

As an application of Zech’s logarithms we mention the construction of binary
de Bruijn sequences (binary sequences of order 2n in which each n-tuple occurs
exactly once in one period of the sequence), (cf. [1, 19]). De Bruijn sequences
are well known and well studied. They are applied to various areas, such as
cryptography (pseudo-random number generators, key generators), coding theory,
robotics, communications, bioinformatics, DNA coding, to name a few.
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2 Lagrange and Exponential Interpolation

It is well known that in a finite field Fq , every function g : Fq → Fq admits
a polynomial representation. In addition, there exists a unique polynomial of
degree ≤ q − 1 representing the function. The following proposition provides the
coefficients of the polynomial in the case of prime fields (without loss of generality
we assume f (0) = 0).

Proposition 1 Let f : Zp → Zp, f (0) = 0. Assume that the unique polynomial of

degree ≤ p − 1 which represents f is
∑p−1
i=1 cix

i . Then,

(c1, . . . , cp−1)
⊥ = L · (f (1), . . . , f (p − 1))⊥. (1)

By L we denote the matrix

L = (− jp−1−i) = (− j−i), 1 ≤ i, j ≤ p − 1 ,

where i stands for the row and j stands for the column.

Proof It is profound that L is non-singular since it is a Vandermonde matrix. Define
δ(y, c) as

δ(y, c) :=
{

1 y = c
0 y 	= c (Kronecker’s δ) .

Furthermore,

δ(y, c) = 1− (y − c)p−1 = 1−
p−1∑

i=0

(−c)p−1−i · yi ·
(
p − 1

i

)
.

However,

(
p − 1

i

)
= (p − 1) · · · (p − i)

1 · 2 · · · i = (−1)i (mod p) .

We obtain the following interpolation formula for c 	= 0:

δ(y, c) = −
p−1∑

i=1

yic−i . (2)
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Therefore,

f (x) =
p−1∑

j=1

f (j)δ(x, j) =
p−1∑

j=1

f (j)

⎛

⎝
p−1∑

i=1

xi(−j−i )
⎞

⎠

=
p−1∑

i=1

xi

⎛

⎝
p−1∑

j=1

f (j)(−j−i )
⎞

⎠ =
p−1∑

i=1

cix
i .

We derive that

ci =
p−1∑

j=1

f (j)(−j−i ).
-.

In [14] the discrete exponential function has been represented as a polynomial over
Zp. For the non-zero elements w of the Zp field, the definition

expa(w) := aw, a 	= 0,

is given. Also, the polynomial formula

expa(x) =
p−1∑

i=1

bix
i

is given. The bi’s are given by the formulas:

bi = −
p−1∑

j=1

j−i · aj .

Proposition 2 The discrete exponential functions {expa}a∈Z∗p form a basis for
interpolations of functions f : Zp → Zp. Every function f can be written as
an exponential “polynomial"

f (x) =
p−1∑

i=1

di expi(x), for all x 	= 0 .

Also the coefficients di are given from the equation

(d1, . . . , dp−1)
⊥ = L⊥ · (f (1), . . . , f (p − 1))⊥ . (3)

Proof Consider the vector v(k) = (k, k2, · · · , kp−1)⊥, k = 1, · · · , p − 1. Then,
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L⊥v(k) = (−
p−1∑

j=1

(
k

1

)j
· · · −

p−1∑

j=1

(
k

i

)j
· · · −

p−1∑

j=1

(
k

p − 1

)j
)⊥ .

The i-th (general) entry of the vector is

−
p−1∑

j=1

(
k

i

)j
= δ(k, i),

from (2).
Since L⊥ is non-singular and the vectors

(δ(k, 1), · · · , δ(k, p − 1))⊥, k = 1, · · · , p − 1 ,

consist a basis, then the vectors v(k), k = 1, · · · , p − 1 consist a basis. It is clear
that L⊥ is the basis change matrix, therefore (3) follows. -.

3 Main Computations

Consider the case of a field of prime order Zp, p odd prime, a a generator of Z∗p.
The equation

aZ(x) ≡ ax + 1 (modp)

defines Zech’s logarithm, x = 0, 1, . . . , p − 2, x 	= p−1
2 .

Therefore, Zech’s logarithm can be treated as a function f (x), where f : Zp → Zp.
Since

1 ≡ a0 ≡ ap−1 (modp) ,

we may equivalently assume that x = 1, . . . , p − 1, x 	= p−1
2 .

The following interpolation formula can be derived:

f (x) =
p−1∑

z=1

z · δ(az, ax + 1) .

However,

f (x) =
p−2∑

z=1

z · δ(ax, az − 1) , (4)
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since for the (p − 1)-th term, we have

(p − 1) · δ(ap−1, ax + 1) = (p − 1) · δ(ap−1 − 1, ax)

= δ(0, ax) = 0, for all x .

Also, for x = p−1
2 ,

ax becomes − 1 and δ(ax, az − 1) = 0, for all z.

The “conventional" Zech logarithm of p−1
2 becomes 0 instead of ∞.

Since z 	= p − 1 (or az − 1 	= 0), we derive from (2) that:

δ(ax, az − 1) = −
p−1∑

k=1

(
ax

az − 1

)k
,

therefore from (4) we obtain

f (x) =
p−2∑

z=1

z

⎛

⎝
p−1∑

k=1

−axk
(az − 1)k

⎞

⎠

=
p−1∑

k=1

⎛

⎝
p−2∑

z=1

−z
(az − 1)k

axk

⎞

⎠ .

From the previous computations we obtain the following proposition.

Proposition 3 Let f : Zp → Zp be the “conventional” Zech’s logarithm, that is

the function which coincide with Z(x), for x 	= 0, x 	= p−1
2 and f (0) = f (p−1

2 ) =
0. Then,

f (x) =
p−1∑

k=1

dk · expak (x), x 	= 0 ,

where

dk =
p−2∑

z=1

−z
(az − 1)k

.

-.
According to §2 and [16] the discrete exponential function has the form:

akx = (ak)x = expak (x) =
p−2∑

i=1

bix
i ,
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where

bi = −
p−1∑

j=1

j−i (ak)j .

We derive a proposition for the Lagrange interpolation.

Proposition 4 Under the same assumptions as in Proposition 3, it holds

f (x) =
p−1∑

i=1

⎛

⎝
p−1∑

k=1

dkbi

⎞

⎠ xi .

-.

4 Examples

(I) We give examples for p = 7 and p = 11. In the case of Z7 we use the
primitive element 3. The “conventional” Zech’s logarithm is represented from
the polynomial:

3x + x2 + 2x3 + 3x4 + 3x5 + 6x6 (5)

and from the exponential “polynomial”

6 ·exp1(x)+3 ·exp2(x)+4 ·exp3(x)+6 ·exp4(x)+5 ·exp5(x)+6 ·exp6(x) .

(6)

(II) In the case of the Z11, we select 2 as primitive element. Then, the Zech’s
logarithm is given by

0x + 10x2 + 7x3 + 4x4 + 7x5 + 10x6 + 7x7 + 9x8 + 10x9 + 10x10 . (7)

Also, the exponential polynomial is

10 · exp1(x)+ 9 · exp2(x)+ 1 · exp3(x)+ 2 · exp4(x)+ 3 · exp5(x)

+ 2 · exp6(x)+ 0 · exp7(x)+ 3 · exp8(x)+ 1 · exp9(x)+ 3 · exp10(x) .

(8)

The number of terms in (5), (6), (7), and (8) is almost p − 1.
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5 Conclusions

In general the expressions for the coefficients in Propositions 3 and 4 are complex;
It is like in the case of discrete exponential function [14], the resulting polynomial
formula is of theoretical and no computational interest. In addition to this, comput-
ing Zech’s logarithms in large finite fields does not appear to admit a fast algorithm.
Zech’s logarithms are useful in general for pre-computation in small fields.
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Numerical Calculations on Multi-Photon
Processes in Alkali Metal Vapors

Nikolaos Merlemis, Andreas Lyras, Georgios Papademetriou,
Dionysios Pentaris, and Thomas Efthimiopoulos

Abstract We present the theoretical framework and the approximations needed
to numerically simulate the response of alkali metal atoms under multi-photon
excitation. By applying the semi-classical approximation, we obtain a system of
coupled ordinary and partial differential equations accounting both for the nonlinear
dynamics of the atomic medium and the spatiotemporal evolution of the emitted
fields. The case of two-photon excitation by a laser field with an additional one-
photon coupling field is investigated by numerically solving the set of differential
equations employing a self-consistent computational scheme. The computation
of the emission intensities and atomic level populations and coherences is then
possible.

1 Introduction

Systems of ordinary and partial differential equations have been extensively used
in quantum physics and are considered fundamental in order to theoretically
understand laser radiation—matter interaction and nonlinear optics. Nonlinear
optics is the branch of physics that describes the behavior of light in nonlinear
media, that is, media that respond nonlinearly to an applied electromagnetic field
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[1]. The nonlinearity is typically observed only at very high light intensities, such as
those provided by lasers. In nonlinear optics, the superposition principle no longer
holds. Alkali metal atoms have been extensively used as model systems due to their
low-lying energy levels. Consequently, the excitation and experimental study of the
nonlinear response of alkali metal atom systems using two-photon schemes is easily
feasible using laser systems in the visible range of the spectrum. The theoretical
description and computation of the nonlinear processes observed in experiments
can be implemented using systems of differential equations and by applying either
semi-classical approximations, where the atom is treated quantum mechanically but
the participating fields classically, or fully quantum descriptions (quantum optics).

Resonant or near resonant multi-photon interaction of laser pulses with atomic
systems and the induced nonlinear response in terms of generated radiation have
been important research topics. Two-photon excitation, whereby nanosecond (ns)
or femtosecond (fs) laser pulses are tuned near a two-photon resonance, has been
extensively used to study the atomic system dynamics in a vapor cell. Well known
nonlinear phenomena can be easily observed under two-photon excitation, such
as the partially coherent amplified spontaneous emission (ASE), stimulated hyper
Raman scattering (SHRS) and four-wave mixing emissions (FWM) [2–11]. Forward
and backward propagating fields that are emitted axially or conically have also
been recorded depending on the laser field detuning and propagation characteristics
of the laser beam [12–14]. Excitation of alkali metal vapors have been proven
a convenient methodology for the study of phase matching mechanisms, wave
mixing emissions, multi-photon mechanisms, energy transfer between atomic states,
efficient generation of laser radiation and ultrafast processes [15–27].

Internally generated radiations resulting from the two-photon excitation of alkali
metal atoms have been shown to compete with the laser pulse to nonlinearly
modify the response of the atomic system, specifically the emitted pulse shapes,
the temporal evolution of the emitted pulses and the population distribution in
atomic levels. In addition, destructive quantum interference (QI) can take place
between laser photons and internally generated photons connecting the same levels
modifying the nonlinear response of the system [3, 6, 12, 14, 28]. In addition,
several different approaches for the realization of atomic memories in closed
systems had been proposed over the past decades [29–32]. Atomic coherence and
electromagnetically induced transparency (EIT) [3, 33–37], slow light propagation
[38] and lasing without inversion (LWI) [39–43] have been also extensively studied.
The theoretical study and experimental demonstration of the manipulation of
quantum states between fields and atoms have made feasible the production of
quantum memory devices that can efficiently delay or store the quantum states of
light fields in order to write, store and “read-out” faithfully these states and the
information they carry.

Optical free induction decay (OFID) [44] can become a useful method for
studying light-matter interactions, in particular for probing dipole dephasing times
in gases and solids. The interaction of an atom with two laser pulses, a pump and
a coupling one, in a temporally counterintuitive order (the coupling precedes the
pump) have also been considered as an effective method to enhance the nonlin-
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earities of an atomic system [45–49]. In general, enhancement of the internally
generated fields occurs if the arrival of a pump pulse follows the coherent coupling
pulse or if they partially overlap. In the case of a three-level system, the coupling
laser, either between the ground and the low excited state (V-type system) or
between the two excited states (#-type system), creates a coherent superposition
of the two states, resulting in enhancement of the parametric emissions driven by
the pump laser connecting the ground state to the high excited one [48]. In addition,
enhancing the nonlinearities via the use of resonant atomic transitions, has led to the
investigation of FWM processes in a counterintuitive pulse sequence [50, 51], which
results in the enhancement of the parametric emissions and additional flexibility in
their temporal control. It was shown, by using a single pump field, that the response
of the system is affected mainly by the pump intensity, the atomic density, and the
elastic dephasing collision rates [52]. Finally, observed suppression of emissions
due to QI effects, and ionization losses to the continuum (open atomic systems) in
the case of focused laser pulses should also be taken into account in computations
for a more complete description of the atomic system response [4, 53–60].

In this work, we review the theoretical framework and the approximations needed
to simulate the atomic response of alkali metal atoms under two-photon excitation
by a laser field. By applying the semi-classical approximation, where the atoms
are treated quantum mechanically and the fields classically, we obtain a system
of coupled ordinary and partial differential equations for the propagation of the
emission fields in the nonlinear atomic medium. The calculation of the emission
intensities and the atomic level populations and coherences is then possible after
certain additional justifiable approximations are introduced.

2 Theoretical Modeling and Approximations

Two-photon excitation of alkali metal atoms is possible when the orbital angular
momentum and parity of the initial |1〉 and final |2〉 atomic states satisfy certain
selection rules. A typical configuration for the two-photon excitation should include
many energy levels having lower energy than |2〉 (closed system) and possibly the
continuum if ionization is taken into account due to absorption of an additional
photon (open system). In order to simplify the model and the calculations, the most
intense emissions and the associated energy levels are typically included. In this
work, the four-level model for the simulation of the atomic system is similar to that
presented in [59], where the transition |1〉 − |2〉 is excited by two photons, while
the de-excitation of atomic state |2〉 is possible through the lower energy atomic
states |3〉 and |4〉. The external laser pulse waveform (pump field) used to provide
the two photons for the excitation has an intensity which varies with time t . This is
simulated in the model either as a secant hyperbolic function F(t) = sech2(t/tc) for
t < 0 and Gaussian function F(t) = exp(−t2/t2c ) for t > 0 or as a single Gaussian
function, depending on the waveform characteristics of the experimental laser used
to excite the two-photon transition (tc is the temporal Full Width at Half Maximum
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(FWHM) or pulse duration). In order to apply the model and compute the nonlinear
response with realistic atomic parameters, potassium atoms are used and levels |1〉,
|2〉, |3〉, |4〉 correspond to the potassium atomic levels 4S1/2, 6S1/2, 4P3/2 and 5P3/2,
respectively. Emissions are generated at one photon allowed transitions (electric
dipole selection rules [61]) at frequencies ω24, ω41, ω23 and ω31 that correspond to
the dipole allowed atomic transitions |2〉 ↔ |4〉, |4〉 ↔ |1〉, |2〉 ↔ |3〉 and |3〉 ↔ |1〉.

The semi-classical approximation is used for the interaction of the atom with the
electromagnetic field of the laser pulse. This is adequate to simulate experimental
results in the case of intense excitation laser fields, where the photon creation and
annihilation operators used in a quantum mechanical description of the field can be
replaced with the amplitude of the time-dependent classical field. In this case, the
Hamiltonian for the interaction of the atom with the electromagnetic field is given by

HI = 1

2m
[ 7p − e 7A(7r, t)]2 + eφ(7r, t) (1)

where 7A(7r, t) and φ(7r, t) are the vector and scalar potentials of the field. In the
Coulomb gauge, φ(7r, t) = 0, and in the dipole approximation, where 7A(7r, t) ≈
7A(7r0, t), we can ignore the spatial derivatives of the vector potential, and using the

unitary transformation |ψ(t)〉 = exp

[
ie7r
h̄
· 7A(7r, t)

]
|χ(t)〉 for the state vector and

the Schrödinger equation

ih̄
∂

∂t
|ψ(t)〉 = H |ψ(t)〉 (2)

we can finally write the total Hamiltonian as H = H0 + HI , where HI =
−e7r · 7E(7r0, t) is the electric dipole interaction Hamiltonian and H0 the atomic
Hamiltonian.

The unitary transformation of the Hamiltonian from the Schrödinger picture
to the interaction picture is effected by applying the unitary operator U0(t) =
exp[− i

h̄
H0t]:

H(I) = U†
0H

(S)U0(t) (3)

The free atom Hamiltonian H0 can be written in the form H0 = ∑
h̄ωi |i〉〈i|

where h̄ωi is the energy of the |i〉 state. Finally, the unitary transformation leads to
a Hamiltonian H(I) in the interaction picture [5, 59, 62] that has the form:

H(I) =− h̄(Ω(2)12 |1〉〈2|e−iΔ12t +Ω14|1〉〈4|e−iΔ14t +Ω13|1〉〈3|e−iΔ13t+
+Ω23|2〉〈3|e−iΔ23t +Ω24|2〉〈4|e−iΔ24t )+H.c. (4)

The two-photon Rabi frequency Ω(2)12 is expressed as a linear function of the
maximum laser intensity Imax [63]:
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Ω
(2)
12 (t) =

μ
(2)
12

cε0h̄
ImaxF(t) (5)

The two-photon matrix element μ(2)12 is calculated using an effective Green’s
function approach in the context of the single-channel quantum defect theory [64–
67], a technique well established for the calculation of multi-photon matrix elements
in alkali metal atoms. The contribution of all non-resonant virtual intermediate
states, including the continuum as well, should be included in the calculations.
However, taking into account only the contributions of states |3〉 and |4〉 is a good
approximation in the proposed model. In deriving the density operator equations of
motion, the non-resonant virtual atomic levels effectively contributing to the two-
photon excitation are adiabatically eliminated. The internally generated radiations,
with electric fields

Eij (z, t) = εij (z, t) exp[−i(νij t − kij z)]/2+ c.c. (6)

are included in the model in the form of the single-photon Rabi frequencies Ωij ,
which are proportional to the complex amplitudes εij (ζ, t) of the emitted fields at
transition |i〉 ↔ |j 〉. The detuning from the transition |i〉 ↔ |j 〉, is denoted as
Δij = νij − ωij , where νij is the frequency of the generated field, with indices ij
taking values from the set 1, 2, 3, 4 as appropriate. In the computations below, it is
assumed that Δ12 = 0 (two-photon detuning of the pump) and Δij = 0 (single-
photon detunings).

In order to derive the equations for the atom, we apply the density operator
formulation, where the density operator is defined as ρ̂ =∑

i ai |i〉〈i| with ai being
the probability of the system to be in the |i〉 state. Knowing the density operator
matrix elements we can extract any information for the atomic system as it can be
shown that for an observable A and its corresponding operator Â, the expectation
value is 〈Â〉 = Tr(ρ̂Â). The time evolution of the density matrix is governed by the
Schrödinger–von Neumann equation: ih̄ ∂

∂t
ρ̂ = [Ĥ , ρ̂], where [Ĥ , ρ̂] = Ĥ ρ̂ − ρ̂Ĥ

is the commutator. By applying the rotating wave approximation (RWA) with
the transformation ρij = σij exp(−iωij t), the following set of coupled ordinary
differential equations is obtained:

σ̇11 = i
(
Ω
(2)
12 σ21 −Ω(2)21 σ12 +Ω14σ41 −Ω41σ14+

+Ω13σ31 −Ω31σ13
)+ Γ2Rσ22 + Γ31σ33 + Γ41σ44 (7)

σ̇22 = i(Ω(2)21 σ12 −Ω(2)12 σ21 +Ω24σ42 −Ω42σ24 +Ω23σ32 −Ω32σ23)

− (Γ2R + Γ23 + Γ24)σ22 (8)

σ̇33 = i(Ω32σ23 −Ω23σ32 +Ω31σ13 −Ω13σ31)− Γ31σ33 + Γ23σ22 (9)

σ̇44 = i
(
Ω41σ14 −Ω14σ41 +Ω42σ24 −Ω24σ42

)
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− Γ41σ44 + Γ24σ22 (10)

σ̇12 = i (Δ12 + i (γ12 + γcol)) σ12 + iΩ(2)12 (σ22 − σ11)+
+ i(Ω14σ42 +Ω13σ32 −Ω32σ13 −Ω42σ14

)
(11)

σ̇13 = i
(
Δ13 + i(γ13 + γcol)

)
σ13 + iΩ13(σ33 − σ11)

+ i(Ω41σ43 +Ω12σ23 −Ω23σ12
)

(12)

σ̇14 = i (Δ14 + i (γ14 + γcol)) σ14 + iΩ14(σ44 − σ11)+
+ i(Ω(2)12 σ24 +Ω13σ34 −Ω24σ12) (13)

σ̇23 = −i (Δ12 −Δ13 − i (γ23 + γcol)) σ23 + i
(
Ω23(σ33 − σ22)+

+Ω(2)21 σ13 +Ω24σ43 −Ω13σ21
)

(14)

σ̇24 = −i (Δ12 −Δ14 − i (γ24 + γcol)) σ24+
+ i

(
Ω24(σ44 − σ22)+Ω(2)21 σ14 +Ω23σ34 −Ω14σ21

)
(15)

σ̇34 = −i (Δ14 −Δ13 − i (γ34 + γcol)) σ34 + i (Ω31σ14 +Ω32σ24−
− Ω14σ31 −Ω24σ32) (16)

+ c. c.

The coherence decay rates of the four-level model system of potassium atom
are phenomenologically added as γ12, γ24, γ41, γ23, γ31 and they are calculated by
the formula γij = ∑

Γij /2, (i 	= j ), where the decay constant Γij is the inverse
lifetime (ns−1) of transition |i〉 ↔ |j 〉 [5, 62, 68–71]. In addition, the contribution
of collision dephasing rate γcol is considered in the non-diagonal density matrix
elements, simulating the elastic collisions of potassium atom with the buffer gas
used in the experiments. The effective decay Γ2R in (7), is obtained from the
contribution of the states |4〉, |3〉 and the intermediate ones |3D3/2〉 and |5S1/2〉,
through which the atom decays from the state |2〉 to |1〉 [3, 5, 31].

In order to account for the generation of the internally generated fields and their
propagation along the z axis, the Maxwell equations are used for the field amplitudes
(or Rabi frequencies) within the slowly varying envelope approximation (SVEA).
Transformed in the retarded time frame by the transformation τ = t − z/c and
z = ζ , they read as:

∂

∂ζ
Ωij (ζ, τ ) = i kij

4ε0h̄
μijpij (ζ, τ )

where pij (ζ, τ ) = NTr(μ̂ρ̂) is the quantum mechanical atomic polarization, N the
atomic density of potassium, ε0 the permittivity of free space, kij the wave-number
for each transition and μij the matrix element of the electric dipole operator for the
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corresponding single-photon transition [63]. The matrix elements of the transitions
of interest are taken from [61]: μ24 = 10.7 a.u., μ41 = −0.453 a.u., μ23 = 1.07 a.u.
and μ31 = −5.13 a.u., respectively. The two-photon matrix element of the pumping
transition is calculated to be μ(2)12 = −950 a.u., where a.u. denotes atomic units [63].
Finally, the propagation equations for the internally generated Rabi frequencies in a
co-propagating reference frame assumed the following form:

∂

∂ζ
Ω24(ζ, τ ) = iN k24

2ε0h̄
μ2

24σ24 (17)

∂

∂ζ
Ω41(ζ, τ ) = iN k41

2ε0h̄
μ2

14σ41 (18)

∂

∂ζ
Ω23(ζ, τ ) = iN k23

2ε0h̄
μ2

23σ23 (19)

∂

∂ζ
Ω31(ζ, τ ) = iN k31

2ε0h̄
μ2

13σ31 (20)

The set of coupled equations (7)–(20) are the Maxwell-Bloch equations of our
system and can be numerically solved self-consistently obtaining the spatiotemporal
dependence for the unknown quantities Ωij and σij . The intensity Iij of the

generated emissions is calculated as Iij = 2h̄2ε0c

μ2
ij

Ω2
ij .

In addition, transition |4〉 ↔ |1〉 or |3〉 ↔ |1〉 can be excited in our model by
an external field in order to compute the characteristics of the system under a V-
type coupling scheme (laser pump field excites the two-photon transition while an
external coupling field is applied on the one-photon transition). The tunable external
coupling field is considered to have maximum intensity I c14 and the same waveform
and duration as the pump laser field, in a pump-coupling excitation scheme. In the
case of |4〉 ↔ |1〉 coupling (V14 coupling scheme), the new coupling Rabi frequency

denoted as Ωc14 = μ14
2h̄

√
2
cε0

√|I c14|F(τ) is added in every term containing Ω14

replacingΩ14 with (Ω14+Ωc14) andΩ41 with (Ω41+Ωc14) in the set of Eqs. (7), (10),
(11), (12), (13), (15), and (16), while the system interaction Hamiltonian describing
the V-type coupling scheme takes the following form:

H(I) =− h̄(Ω(2)12 |1〉〈2|e−iΔ12t + (Ω14 +Ωc14)|1〉〈4|e−iΔ14t +Ω13|1〉〈3|e−iΔ13t+
+Ω23|2〉〈3|e−iΔ23t +Ω24|2〉〈4|e−iΔ24t )+H.c. (21)

We assume that both external fields resonantly excite the transitions of interest
and as a consequence Δ12 = 0 and Δc14 = 0 (the latter is the coupling field
detuning). The |3〉 ↔ |1〉 external excitation (V13 coupling scheme) can be
investigated in a similar way.

Furthermore, an external coupling laser field with maximum intensity I c23 and
the same waveform and duration can be used to excite the upper single-photon
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transition |2〉 ↔ |3〉, in a #-type pump-coupling scheme. In this case, the Rabi

frequency of the coupling field is defined as Ωc23 = μ23
2h̄

√
2
cε0

√|I c23|F(τ), and both

pump and coupling fields are assumed to resonantly excite the transitions of interest,
so Δ12 = 0 and Δc23 = 0 (single-photon detuning of the coupling). The coupling
Rabi frequency is also added in every term containing Ω23 and Ω32 in the set of
Eqs. (8), (9), (11), (12), (14), (15) and (16) with the new Hamiltonian describing the
#-type coupling scheme being:

H(I) =− h̄(Ω(2)12 |1〉〈2|e−iΔ12t +Ω14|1〉〈4|e−iΔ14t +Ω13|1〉〈3|e−iΔ13t+
+ (Ω23 +Ωc23)|2〉〈3|e−iΔ23t +Ω24|2〉〈4|e−iΔ24t )+H.c. (22)

The enhancements observed for the internally generated emissions in the case of
a V-type or a #-type coupling scheme are discussed in [69–71].

An important phenomenon that can interfere with the model described is the
ionization process. In the previous discussion, the atomic system is presented as
a closed system, meaning that the atoms are excited and participate in several
processes due to the interaction with the electromagnetic fields, but they remain
unaltered (no electrons are absorbed or lost) and finally, after a certain period of
time, the atoms return to their original state |1〉. This means that the number of
participating atoms in the model remains constant. However, ionization processes
are possible due to the strong intensities of the electromagnetic fields used, for
example, three pump laser photons can cause the extraction of an electron and
the subsequent ionization of the atom. Since ionized atoms are different than the
neutral atoms and the model becomes extremely complicated if ions are also taken
into account, a different approach is needed. In order to take into consideration the
ionization process, we assume that ions generated are extracted from the system and
do not participate in the model. Consequently, we discuss the atomic model as an
open system in which neutral atoms population decreases with time. The effect of
the ionization process (transition to the continuum) was presented in [59] in the case
of the potassium atom.

In order to include the transition to the continuum through the two-photon
resonant, three-photon ionization mechanism [62], the Maxwell-Bloch equations
have to be transformed. At first, the sum of the population derivatives is non-zero,
in contrast to a closed four-level system, so Eq. (8) has to be modified by the addition
of the term −ΓionImaxF (τ)σ22.
Imax is the pump laser peak intensity and Γion is the ionization width (more

information about the ionization rate in an open atomic system can be found in
[59]). In addition, the term −ΓionImaxF (τ)σmn/2 must be added in Eqs. (11), (14),
and (15), since all transitions connected with state |2〉 are affected by the transition
from the state to the continuum (quantified by the factor Γion) due to the two-
photon resonant, three-photon ionization process. Furthermore, in order to take into
account ionization from state |4〉 (system loses from state |4〉 to the continuum) by
the absorption of one laser photon, the term −Γ ′ionImaxF (τ)σ44 is also added in
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Eq. (10), and the term −Γ ′ionImaxF (τ)σmn/2 is also added in Eqs. (13), (15), and
(16), which are related to the off-diagonal matrix elements.

For short laser pulses, such as in the femtosecond (fs) range, the propagation of
both the pump and coupling laser fields in the medium has to be taken into account.
For the coupling Rabi frequency we add another equation in the form of (17)–(20):

∂

∂ζ
Ωc(ζ, τ ) = iN kc

2ε0h̄
μ2
cσc (23)

where c is to be replaced with the appropriate numbers of the coupled transitions.
The two-photon field propagation is governed [12] by the equation

∂

∂ζ
Ω
(2)
12 (ζ, τ ) = iN

k12

2ε0h̄
4K(2)12 σ12Ω

(2)
12 (24)

where the second order coupling strength K(2)12 = 1
2h̄

∑
i
μ2iμi1
ω2i−ω1

is calculated over
all the virtual states between the states |1〉 and |2〉.

3 Results and Discussion

The set of differential equations (7)–(20) and (23), (24) is numerically solved
employing a FORTRAN code. We calculate both the field and atomic variables by
taking alternate steps in space and time along two grids of constant step size, one
spatial, along the propagation axis, and one temporal, starting from known initial
conditions for the atomic variables at each position and known boundary conditions
for the field variables at each time [72]. Initially, the atoms are considered to be
at the ground state for each ζ at τ = 0, while the boundary conditions for the
generated Rabi frequency Ωij at ζ0 = 0 correspond to the quantum noise level,
which induces single-photon transitions by quantum fluctuations, with a typical
value of Ωij (0, τ ) ∝ ε0(0, τ ) = 10−4 V/cm [73].

To solve the first-order coupled differential equations, either with respect to time
or with respect to position, we employ the fourth-order Runge–Kutta method of
constant step size. This method is simple but sufficiently accurate and allows for
explicit control of the step sizes to match the requirements of the physics problem
and provide the necessary detail in the representation of the evolution of both the
atomic and field variables. In our system both the duration of the pump pulse and the
total propagation length are fixed. We have chosen to advance the set of variables in
time at discrete positions and we typically study the outcome at the exit face of the
vapor cell that allows us to compare directly with experimental results.

However, for short, sub-ps pulsed excitation a very small time step is needed to
accurately describe the atomic and field evolution, even more so since the pump
pulse should be also propagated. In typical computing platforms, the execution time
of the code becomes prohibitively large, so the total propagation length was limited
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Fig. 1 Intensities versus time for the internally generated emissions at the |2〉−|4〉 and the |4〉−|1〉
transitions. The system parameters are: Laser intensity Imax = 45 GW/cm2, coupling intensity
I c14 = 5 W/cm2, pulses FWHM τc = 40 fs, pump-coupling temporal separation Δt = −2 ps and
atomic density N = 4× 1015 cm−3

to 1 cm. This length corresponds to typical vapor cell sizes used in experimental
setups and, in principle, longer propagation lengths can be studied numerically given
sufficient computational resources.

In the following computations the atomic system is assumed to be open in order
to take into account ionization processes. Short pulse excitation (0.04 ps pulses)
and a V-coupling scheme are applied, with the coupling field having the same pulse
characteristics as the excitation pulse applied at the two-photon transition. In this
case, emissions at ω24 and ω41 partially overlap temporally within the excitation
pulse duration and are clearly synchronized as is evident in Fig. 1. Populations of
state |3〉 and emissions at ω23 and ω31 remain in the noise regime for the parameters
used in our model, so they are not shown in the following figures and discussion.

In Fig. 2, the populations of the atomic states are shown. It is evident that state |3〉
remains unpopulated at all times and that state |2〉 builds its maximum population
during the short excitation pulse duration of 0.04 ps. The system assumes a steady
state driven by short pulses of internally generated emissions and subsequently
spontaneous decay that drives the population back to the ground state via a cascade
of emissions. The time scale of spontaneous emission is far longer than the one
depicted in the figures.

Further insight into the evolution of the internally generated emissions is
provided by the study of the coherences, i.e., the off-diagonal matrix elements of
the atomic density operator. In Fig. 3a and b the calculated time profiles of both
σ24 and σ41 are depicted. Their time evolution correlates well with the calculated
intensities for the corresponding emissions, shown in Fig. 1. In particular, the time
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Fig. 2 Populations of the states |1〉 ↔ |4〉 versus time. The system parameters are the same as in
Fig. 1
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Fig. 3 Coherences of the |2〉 ↔ |4〉 (a) and of the |4〉 ↔ |1〉 (b) transition versus time. The system
parameters are the same as in Fig. 1

evolution of the imaginary parts of both coherences provides an insight into the
multi-peaked emission profile at ω24 and the gradual build-up and broad emission
profile at ω41.

The introduction of a weak coupling pulse, either in the |1〉 ↔ |3〉 or the
|2〉 ↔ |3〉 transitions, transforms the system’s dynamics, and significantly enhances
the ω23 and ω31 radiations, while no significant population in state |3〉 is obtained. In
Fig. 4 the coupling field connecting the |1〉 ↔ |3〉 states (V13 coupling scheme) with
maximum intensity I c13 = 1 kW/cm2 enhance the emissions via state |3〉 (termed
path-2 emissions) several orders of magnitude, while the emissions via state |4〉
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Fig. 4 Intensities of the ω31 emission with excitation intensity 45GW/cm2 and a |1〉-|3〉 coupling
field of I c13 = 1kW/cm2 (solid line) and without the coupling field (dashed line). The enhancement
of the ω31 emission is 13 orders of magnitude

(termed path-1 emissions) are unaffected. Furthermore, the internally generated
path-2 radiations are synchronous to the path-1 ones and to the excitation pulse,
an indication of a parametric process. For a coupling pulse of strength comparable
to the excitation pulse, the dynamics of the system is reversed and the energy is
transferred through the path-2 emissions while the path-1 ones are negligible. The
reliable numerical investigation of the system dynamics offers valuable insights for
the efficient control of the emissions in the system, guiding future experimental
work.

The relative temporal delay of the two pulses can be used to estimate the
coherence relaxation time (CRT) of the atomic states. For the V14 or the V13
coupling schemes, the induced coherence by the coupling field, when it precedes
the pump, enhances the ω41 or the ω31 emissions, so the exponential increase in
the corresponding intensities, that can be accurately calculated as a function of
time, can provide an estimate the CRT of the |4〉 or the |3〉 states, respectively.
When the coupling pulse follows the pump, the effect on the ω41 or ω31 emissions
is governed by the σ12 coherence and the calculated exponential decrease in the
corresponding intensities provides an estimate of the CRT of the |2〉 state. The
theoretical calculations are in good agreement with the experiment [70, 71] in the
V14 system. The coupling field in a # configuration which connects the upper |2〉
state with the |4〉 or the |3〉 ones, does not induce coherence when it precedes
the pump (negative temporal delay), a condition that was observed both in the
experiment and in the theoretical calculations [62], where it is shown that for
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positive temporal delays the ω41 or ω31 radiation enhancement can provide an
estimate of the CRT for the |2〉 state.

4 Conclusions

The semi-classical approximation, where the atoms are treated quantum mechan-
ically and the fields classically, is employed in order to compute the atomic
response of alkali metal atoms under different multi-photon processes. In the
case of a four-level atomic system and two-photon excitation by a laser field, a
system of coupled linear ordinary and partial differential equations is numerically
solved self-consistently in order to compute the atomic parameters (populations and
coherences) and the emission fields propagating in the nonlinear atomic medium.
The numerical solution provides a comprehensive spatiotemporal description of the
evolution of both the driven atomic system and the input and internally generated
fields that afford direct comparison with experimental results.
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degenerate four-wave mixing in hot potassium vapor. Laser Phys. Lett. 13(1), 015205 (2016)

20. H. Yu, F. Chen, Q. Pan, Y. He, J. Xie, Modeling and analysis of the pumping threshold
characteristics in one-color two-photon excited Cs vapor. IEEE J. Quantum Electron. 56(2),
1500106 (2020)

21. N.R. De Melo, S.S. Vianna, Frequency shift in three-photon resonant four-wave mixing by
internal atom-field interaction. Phys. Rev. A: At. Mol. Opt. Phys. 92(5), 053830 (2015)
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for solving strongly general variational-like inequalities. Convergence analysis of
the proposed method is investigated using the pseudo-monotonicity of the operator.
Some special cases are also discussed. Results obtained in this paper can be viewed
as a refinement and improvement of previously known results.

1 Introduction

Convexity theory is a branch of Mathematics with a wide range of applications
in industry, physical, social, and engineering sciences. Researches in this domain
have established important and novel connections with all areas of pure and applied
sciences. The general theory of convexity started soon after the introduction of
differential and integral calculus by Newton and Leibniz, although some individual
optimization problems had been investigated before that. It is worth mentioning that
the first phase of the development of convexity was characterized by a combination
of philosophical concepts, mathematical methods, and physical problems. Moti-
vated by geometrical considerations, Euler deduced his first principle which is now
referred to as Euler’s differential equation for the determination of maximizing and
minimizing arcs. By convexity, we mean maximum and minimum problems arising
in game theory, mechanics, geometrical optics, general relativity theory, economics,
transportation, differential geometry, and related areas.

We point out that the history of convexity comprises distinct stages. The basic
search of solutions of variational problems, led through the work of Euler, Lagrange,
Legendre, Jacobi, and many others, developed along the lines of differential and
integral equations as well as functional analysis. The Hamiltonian-Jacobi theory
represents a general framework for the mathematical description of the propagation
of actions in nature and optimal modelling of control processes in daily life. Using
the ideas and techniques of Hamiltonian-Jacobi theory in mechanics, Cartan intro-
duced differential geometry and his exterior calculus in the calculus of variations.
Many basic equations of mathematical physics result from variational problems. It is
known that the gauge fields theories constitute a continuation of Einstein’s concept
of describing physical effects mathematically in terms of differential geometry.
These theories play a fundamental role in the modern theory of elementary particles
and are the right tool of building up a unified theory of elementary particles, which
includes all kinds of known interactions. For example, the Weinberg-Salam theory
unifies weak and electromagnetic interactions. It is also known that the variational
formulation of field theories allows for a degree of unification absent in terms of
differential equations. Variational principles play an important part in the existence
and stability of solitons, which occur in almost every branch of physics.

Optimization came into being because of equilibrium problems arising in
economics and transportation from the 1950s onwards. In recent years, several
new generalizations of convex functions have been introduced using novel and
innovative ideas to tackle difficult problems, which arise in various fields of
pure and applied sciences. Mohsen et al. [16] as well as Noor and Noor [28]
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introduced the concept of higher order strongly convex functions and studied their
properties. These results can be viewed as significant refinements of the results of
Lin and Fukushima [13] and Alabdali et al. [1] for higher order strongly uniformly
convex functions. Higher order strongly convex functions include strongly convex
functions as a special case, which were introduced and studied by Polyak [30].
Karmardian[12] used strongly convex functions to discuss the unique existence
of a solution of nonlinear complementarity problems. With appropriate choice of
non-negative arbitrary functions, one can obtain various known classes of convex
functions. For the properties of strongly convex functions and their variant forms,
cf. Adamek [2], Awan et al. [3] Nikodem et al. [18] as well as Noor and Noor [25–
29].

Hanson [11] introduced the concept of invex function for differentiable functions,
which played significant role in mathematical programming. Ben-Israel and Mond
[4] introduced the concept of invex set and preinvex functions. It is known that
differentiable preinvex functions are invex functions. The converse also holds under
certain conditions, cf. [15]. Noor [20] proved that the minimum of differentiable
preinvex functions on the invex set can be characterized by a class of variational
inequalities, known as variational-like inequalities. For recent developments in
variational-like inequalities and invex equilibrium problems, cf. [18, 19, 27] and the
references therein. Noor at el. [20, 21, 26, 29] investigated the properties of strongly
preinvex functions and their variant forms.

In many problems, a set may not be convex. To overcome this, the underlying set
can be made convex with respect to an arbitrary function. This fact motivated Noor
[24] to introduce the concept of general convex sets and general convex functions
involving an arbitrary function. Cristescu at al[8, 9] have investigated algebraic and
topological properties of general convex sets defined by Noor [24] in order to deduce
their shape. These general sets constitute a subclass of star-shaped sets, which have
Youness [36] type convexity. A representation theorem based on extremal points
is given for the class of bounded general convex sets. Results showing that this
convexity is a frequent property in connection with a wide range of applications
are given, cf. [8, 9]. Noor [24] has shown that the optimality conditions of the
differentiable general convex functions can be characterized as a class of variational
inequalities called general variational inequalities, the origin of which can be traced
back to Stampacchia [32]. Noor and Noor [23, 25–29] introduced the higher order
strongly general convex functions and studied their properties. For the formulation,
applications, numerical methods, sensitivity analysis and other aspects of general
variational inequalities, cf. [17–22, 26–30, 32, 35, 38] and the references therein.

We would like to point out that preinvex functions and general convex functions
are two different generalizations and extensions of convex functions in various
directions. These types of functions have played a leading role in the development
of various branches of pure and applied sciences. Inspired by the research work
conducted in this field, we introduce and consider another class of non-convex
functions with respect to the arbitrary non-negative bifunction. This class of non-
convex functions is called the higher order strongly general preinvex functions.
Several new concepts of monotonicity are introduced. We establish the relationship
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between these classes and derive some new results under some mild conditions.
As a novel and innovative application of these higher order strongly affine general
preinvex functions, we obtain the parallelogram-like laws for uniformly Banach
spaces. We have shown that the minimum of a differentiable higher order strongly
general preinvex function on the general invex set can be characterized by a
class of variational-like inequalities. These results motivated us to consider the
higher order strongly general variational-like inequalities. Due to the inherent
nonlinearity, the projection method and its variant form cannot be used to suggest
the iterative methods for solving these general variational-like inequalities. To
overcome these drawbacks, we use the technique of the auxiliary principle (cf.
[10, 14, 23, 29, 38]) to suggest an implicit method for solving general variational-
like inequalities. Convergence analysis of the proposed method is investigated under
pseudo-monotonicity, which is a weaker condition than monotonicity. As special
cases, one can obtain various new and refined versions of known results. It is hoped
that the ideas and techniques featured in this paper may stimulate further research
in this field.

2 Preliminary Results

Let K be a nonempty closed set in a real Hilbert space H . We denote by 〈·, ·〉 and
‖ · ‖ the inner product and norm, respectively. Let F : K → R be a continuous
function and let g : [0,∞)→ R be a non-negative function.

Definition 1 ([9, 17]) The set K in H is said to be a convex set, if

u+ t (v − u) ∈ K, ∀u, v ∈ K, t ∈ [0, 1].

Definition 2 ([9, 17]) A function F is said to be a convex function, if

F((1− t)u+ tv) ≤ (1− t)F (u)+ tF (v), ∀u, v ∈ K, t ∈ [0, 1].

If the convex function F is differentiable, then u ∈ K is the minimum of F if
and only if u ∈ K satisfies the inequality

〈F ′(u), v − u〉 ≥ 0, ∀v ∈ K,

which is called the variational inequality, introduced and studied by Stampacchia
[32] in 1964. For the applications, formulation, sensitivity, dynamical systems,
generalizations, and other aspects of the variational inequalities, cf. [10, 19–
23, 26, 29, 32, 38] and the references therein.

It is known that in many problems the underlying set may not be a convex set. To
overcome this drawback, Noor [24] introduced the general convex set with respect
to an arbitrary function.
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Definition 3 ([24]) The setKg inH is said to be a general convex set, if there exists
an arbitrary function g, such that

(1− t)u+ tg(v) ∈ Kg, ∀u, v ∈ H : u, g(v) ∈ Kg, t ∈ [0, 1].

If g = I, the identity operator, then general convex set reduces to the classical
convex set. Clearly every convex set is a general convex set, but the converse is
not true. Cristescu et al. [8] discussed various applications of the general convex
sets related to the necessity of adjusting investment or development projects due
to environmental or social reasons. They have discussed the applications of the
general convex sets in the problem of modernizing the railway transport system
and have investigated the shape properties of the general convex sets with respect to
a projection.

For the properties and applications of the general convex sets, cf. Noor [24] and
Cristescu et al. [8, 9]. It is worth mentioning that this general convex set is different
than the g-convex set introduced by Youness [36].

For the sake of simplicity, we always assume that ∀u, v ∈ H : u, g(v) ∈ Kg,
unless otherwise specified.

Definition 4 A function F is said to be a general convex (g-convex) function, if
there exists an arbitrary non-negative function g, such that

F((1− t)u+ tg(v)) ≤ (1− t)F (u)+ tF (g(v)), ∀u, g(v) ∈ Kg, t ∈ [0, 1].

The general convex functions were introduced by Noor [24]. Noor [24] proved that
the minimum u ∈ H : g(u) ∈ Kg of the differentiable general convex functions F
can be characterized by the class of variational inequalities of the type:

〈F ′(u), g(v)− u〉 ≥ 0, ∀v ∈ H : g(v) ∈ Kg,

which are known as general variational inequalities, introduced and studied by Noor
[24] in 2008.

Ben-Israel and Mond [4] introduced the concept of invex set and preinvex
functions, which has inspired a great deal of interest of the applications of invex sets
and preinvex functions in mathematical programming and optimization problems.

Definition 5 ([4]) The set Kη in H is said to be an invex set with respect to an
arbitrary bifunction η(·, ·), if

u+ tη(v, u) ∈ Kη, ∀u, v ∈ Kη, t ∈ [0, 1].

The invex set Kη is also called η-connected set. Note that the invex set with
η(v, u) = v − u is a convex set K, but the converse is not true. For example,
the set Kη = R − (− 1

2 ,
1
2 ) is an invex set with respect to η, where
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η(v, u) =
{
v − u, for v > 0, u > 0 or v < 0, u < 0
u− v, for v < 0, u > 0 or v < 0, u < 0.

It is clear that Kη is not a convex set.
In the sequel, Kη will be a nonempty closed invex set in H with respect to the

bifunction η(·, ·), unless otherwise specified.
Clearly the general convex set and invex set are two different generalizations of

the convex set and have important applications. It is natural to unify these concepts.
This fact motivated us to introduce the following:

Definition 6 A set Kgη ⊂ H is said to be a general invex set with respect to an
arbitrary function g and bifunction η(., .), if

u+ tη(g(v), u) ∈ Kgη, ∀u, v ∈ H : u, g(v) ∈ Kgη, t ∈ [0, 1],

which was introduced by Noor [22] in 2008.

Definition 7 The function F on the invex setKgη is said to be higher order strongly
general preinvex with respect to the bifunction η(·, ·) and function g, if there exists
a constant μ > 0, such that

F(u+ tη(g(v), u)) ≤ (1− t)F (u)+ tF (g(v))
−μ{tp(1− t)+ t (1− t)p}‖η(g(v), u)‖p,
∀u, g(v) ∈ Kgη, t ∈ [0, 1], p > 1.

The function F is said to be higher order strongly general preconcave if and only
if −F is a higher order strongly general preinvex function. Note that every higher
order strongly general convex function is a higher order strongly general preinvex
function, but the converse is not true. It is worth mentioning that for g = I, higher
order strongly preinvex functions were introduced by Noor and Noor [29]. Awan et
al. [3] derived the error estimates for higher order strongly preinvex functions and
their variant forms.

I. If η(v, u) = g(v) − u, then the higher order strongly generalized preinvex
function becomes higher order strongly general convex function, that is,

Definition 8 The function F on the general convex set Kg is said to be higher
order strongly general convex with respect to a function g, if there exists a constant
μ > 0, such that

F(u+ t (g(v)− u)) ≤ (1− t)F (u)+ tF (g(v))
−μ{tp(1− t)+ t (1− t)p}‖g(v)− u‖p,∀u, g(v) ∈ Kg, t ∈ [0, 1],

which was introduced and studied by Noor and Noor [28].
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For properties of the higher order strongly general convex functions in variational
inequalities and equilibrium problems, cf. Noor [28].

II. If η(g(v), u) = v − u, then the higher order strongly general preinvex function
becomes higher order strongly convex functions, that is,

Definition 9 The function F on the convex setK is said to be higher order strongly
convex, if there exists a constant μ > 0, such that

F(u+ t (v − u)) ≤ (1− t)F (u)+ tF (v)− μ{tp(1− t)+ t (1− t)p}‖v − u‖p,
∀u, g(v) ∈ K, t ∈ [0, 1],

which were introduced and studied by Mohsen et al. [16].

For properties of the higher order strongly convex functions in variational inequali-
ties and equilibrium problems, cf. Noor [20–22, 25, 27, 28].

III. If p = 2, then Definition 7 becomes:

Definition 10 A function F is said to be strongly general preinvex with respect to
the function g, if

F(u+ tη(g(v), u)) ≤ (1− t)F (u)+ tF (g(v))− μt(1− t)‖η(g(v), u)‖2,

∀u, g(v) ∈ Kgη, t ∈ [0, 1].

IV. If μ = 0, then Definition 7 becomes:

Definition 11 A function F is said to be a general preinvex function with respect
to the function g, if

F(u+ tη(g(v), u)) ≤ (1− t)F (u)+ tF (g(v)), ∀u, g(v) ∈ Kgη, t ∈ [0, 1]. (1)

Definition 12 The function F on the general invex setKgη is said to be higher order
strongly general quasi-preinvex with respect to the bifunction η(·, ·) and a function
g, if there exists a constant μ > 0, such that

F(u+tη(g(v), u))≤max{F(u), F (g(v))}−μ{tp(1−t)+t (1− t)p}‖η(g(v), u)‖p,
∀u, g(v) ∈ Kgη, t ∈ [0, 1], p > 1.

Definition 13 The function F on the general invex setKgη is said to be higher order
strongly general log-preinvex with respect to the bifunction η(·, ·) and a function g,
if there exists a constant μ > 0, such that

F(u+tη(g(v), u))≤ (F (u))1−t (F (g(v)))t−μ{tp(1−t)+ t (1− t)p}‖η(g(v), u)‖p,
∀u, g(v) ∈ Kgη, t ∈ [0, 1], p > 1,
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where F(·) > 0.

From the above definitions, we have

F(u+ tη(g(v), u)) ≤ (F (u))1−t (F (g(v)))t
−μ{tp(1− t)+ t (1− t)p}‖η(g(v), u)‖p

≤ (1− t)F (u)+ tF (g(v)))
−μ{tp(1− t)+ t (1− t)p}‖η(g(v), u)‖p

≤ max{F(u), F (g(v))}
−μ{tp(1− t)+ t (1− t)p}‖η(g(v), u)‖p, p ≥ 1.

This shows that every higher order strongly general log-preinvex function is a
higher order strongly general preinvex function and every higher order strongly
general preinvex function is a higher order strongly general quasi-preinvex function.
However, the converse is not true.

Definition 14 The function F on the invex set Kgη is said to be a higher order
strongly affine function with respect to the bifunction η(·, ·) and a function g, if
there exists a constant μ > 0, such that

F(u+ tη(g(v), u)) = (1− t)F (u)+ tF (g(v))− μ{tp(1− t)
+t (1− t)p}‖η(g(v), u)‖p,
∀u, g(v) ∈ Kgη, t ∈ [0, 1].

For t = 1, Definitions 7 and 14 reduce to the following condition:

Condition A

F(u+ η(g(v), u)) ≤ F(g(v)), ∀u, g(v) ∈ Kgη.

Definition 15 The differentiable function F on the invex set Kgη is said to be a
higher order strongly general invex function with respect to the bifunction η(·, ·)
and a function g, if there exists a constant μ > 0 such that

F(g(v))− F(u) ≥ 〈F ′(u), η(g(v), u)〉 + μ‖η(g(v), u)||p, ∀u, v ∈ Kgη,

where F ′(u) is the differential of F at u.

It is noted that if μ = 0 and g = I, then the Definition 10 reduces to the
definition of the invex function as introduced by Hanson [11]. It is well known
that the concepts of preinvex and invex functions have played a significant role in
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mathematical programming and optimization theory, cf. [4, 11, 15, 31, 34, 35, 37]
and the references therein.

Remark 1 Note that if μ = 0, then the Definitions 10–13 appear to be original.

Definition 16 An operator T : Kgη → H is said to be:

1. higher order strongly gη-monotone, if and only if there exists a constant α > 0
such that

〈T u, η(g(v), u)〉 + 〈T v, η(u, g(v))〉 ≤ −α{‖η(g(v), u)‖p + ‖η(u, v)‖p},
u, g(v) ∈ Kgη.

2. η-monotone, if and only if

〈T u, η(g(v), u)〉 + 〈T v, η(u, g(v))〉 ≤ 0, u, g(v) ∈ Kgη.

3. higher order strongly gη-pseudomonotone, if and only if there exists a constant
ν > 0 such that

〈T u, η(g(v), u)〉 + ν‖η(g(v), u)‖p ≥ 0 ⇒ −〈T v, η(u, g(v))〉 ≥ 0,

u, g(v) ∈ Kgη.

4. higher order strongly relaxed η-pseudomonotone, if and only if there exists a
constant μ > 0 such that

〈T u, η(g(v), u)〉 ≥ 0 ⇒ −〈T v, η(u, g(v)〉 + μ‖η(u, g(v))‖p ≥ 0,

u, g(v) ∈ Kgη.

5. strictly gη-monotone, if and only if

〈T u, η(g(v), u)〉 + 〈T v, η(u, g(v))〉 < 0, u, g(v) ∈ Kgη.

6. gη-pseudomonotone, if and only if

〈T u, η(g(v), u)〉 ≥ 0 ⇒ 〈T v, η(u, g(v))〉 ≤ 0, u, g(v) ∈ Kgη.

7. quasi gη-monotone, if and only if

〈T u, η(g(v), u)〉 > 0 ⇒ 〈T v, η(u, g(v))〉 ≤ 0, u, g(v) ∈ Kgη.

8. strictly gη-pseudomonotone, if and only if

〈T u, η(g(v), u)〉 ≥ 0 ⇒ 〈T v, η(u, g(v))〉 < 0, u, g(v) ∈ Kgη.
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Definition 17 A differentiable function F on the invex setKgη is said to be a higher
order strongly pseudo gη-invex function, if and only if there exists a constant μ > 0
such that

〈F ′(u), η(v, u)〉 + μ‖η(v, u)‖p ≥ 0 ⇒ F(v)− F(u) ≥ 0, ∀u, g(v) ∈ Kgη.

Definition 18 A differentiable function F on Kgη is said to be a higher order
strongly quasi-invex function, if and only if there exists a constant μ > 0 such
that

F(v) ≤ F(u)
⇒
〈F ′(u), η(v, u)〉 + μ‖η(u, v)‖p ≤ 0, ∀u, g(v) ∈ Kgη, p > 1.

Definition 19 The function F on the set Kgη is said to be pseudo-invex, if

〈F ′(u), η(v, u)〉 ≥ 0 ⇒ F(v) ≥ F(u), ∀u, g(v) ∈ Kgη.

Definition 20 The differentiable function F on the Kgη is said to be a higher order
strongly general quasi-invex function, if

F(v) ≤ F(u)⇒ 〈F ′(u), η(v, u)〉 ≤ 0, ∀u, g(v) ∈ Kgη.

We also need the following assumption regarding the bifunction η(., .), which
can be viewed as a generalization of the condition of Mohan and Neogy [15].

Condition C
Let η(·, ·) : Kη ×Kη → H satisfy the assumptions

η(u, u+ tη(g(v), u)) = −tη(g(v), u)
η(g(v), u+ tη(g(v), u)) = (1− t)η(g(v), u), ∀u, g(v) ∈ Kgη, t ∈ [0, 1].

Clearly for t = 0, we have η(u, g(v)) = 0, if and only if u = g(v),∀u, v ∈ Kgη.
One can easily show (see [11, 15]) that

η(u+ tη(g(v), u), u) = tη(g(v), u),∀u, v ∈ Kgη.

3 Main Results

In this section, we consider some basic properties of higher order strongly general
preinvex functions on the general invex set Kgη.
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Theorem 1 Let F be a differentiable function on the invex setKgη in H and let the
condition C hold true. Then a function F is a higher order strongly general preinvex
function, if and only if F is a higher order strongly general invex function.

Proof Let F be a higher order strongly general preinvex function on the invex set
Kgη. Then

F(u+ tη(g(v), u)) ≤ (1− t)F (u)+ tF (g(v))− μ{tp(1− t)
+t (1− t)p}‖η(g(v), u)‖p,

∀u, g(v) ∈ Kgη, t ∈ [0, 1], p > 1,

which can be written as

F(g(v))− F(u) ≥
{
F(u+ tη(g(v), u))− F(u)

t

}

+μ{tp−1(1− t)+ (1− t)p}‖η(g(v), u)‖p.

Taking the limit in the above inequality as t → 0, we have

F(g(v))− F(u) ≥ 〈F ′(u), η(g(v), u))〉 + μ‖η(g(v), u)‖p.

This shows that F is a higher order strongly general invex function.
Conversely, let F be a higher order strongly general invex function on the invex

set Kgη. Then,

∀u, g(v) ∈ Kgη, t ∈ [0, 1], g(vt ) = u+ tη(g(v), u) ∈ Kgη
and using the condition C, we have

F(g(v))− F(u+ tη(g(v), u))
≥ 〈F ′(u+ tη(g(v), u)), η(g(v), u+ tη(g(v), u))〉
+μ‖η(g(v), u+ tη(g(v), u))‖p

= (1− t)F ′(u+ tη(g(v), u)), η(g(v), u)〉 + μ(1− t)p‖η(g(v), u)‖p. (2)

In a similar way, we have

F(u)− F(u+ tη(g(v), u))
≥ 〈F ′(u+ tη(g(v), u)), η(u, u+ tη(g(v), u))〉 + μ‖η(u, u+ tη(g(v), u))‖p
= −tF ′(u+ tη(g(v), u)), η(g(v), u)〉 + μtp‖η(g(v), u)‖p. (3)
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Multiplying (2) by t and (3) by (1− t) and adding the resultant, we have

F(u+ tη(g(v), u)) ≤ (1− t)F (u)+ tF (g(v))− {tp(1− t)
+t (1− t)p}‖η(g(v), u)‖p,

showing that F is a higher order strongly general preinvex function.

Theorem 2 Let F be differentiable higher order strongly general preinvex function
on the invex set Kgη. If F is a higher order strongly general invex function, then

〈F ′(u), η(g(v), u))〉 + 〈F ′(g(v)), η(u, g(v))〉
≤ −μ{‖η(g(v), u)‖p + ‖η(u, g(v))‖p},∀u, g(v) ∈ Kgη. (4)

Proof Let F be a higher order strongly general invex function on the general invex
set Kgη. Then

F(g(v))− F(u) ≥ 〈F ′(u), η(g(v), u))〉
+μ‖η(g(v), u)‖p,∀u, g(v) ∈ Kgη. (5)

Interchanging the role of u and g(v) in (5), we have

F(u)− F(g(v)) ≥ 〈F ′(g(v)), η(u, v)〉 + μ‖η(u, g(v))‖p, ∀u, g(v) ∈ Kgη.(6)

Adding (5) and (6), we have

〈F ′(u), η(g(v), u))〉 + 〈F ′(g(v)), η(u, g(v))〉
≤ −μ{‖η(g(v), u)‖p + ‖η(u, g(v))‖p},∀u, g(v) ∈ Kgη, (7)

which shows that F ′(.) is a higher order strongly η-monotone operator.

We note that the converse of Theorem 2 is true only for p = 2. However, we have:

Theorem 3 If the differential F ′(.) is higher order strongly η-monotone, then

F(g(v))− F(u) ≥ 〈F ′(u), η(g(v), u)〉
+ 2

p
μ‖η(g(v), u)‖p.

Proof Let F ′(.) be higher order strongly η-monotone. From (7), we have

〈F ′(g(v)), η(u, g(v))〉 ≥ 〈F ′(u), η(g(v), u))〉
−μ{‖η(g(v), u)‖p + ‖η(u, g(v))‖p}. (8)
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Since Kgη is a general invex set, ∀u, g(v) ∈ Kgη, t ∈ [0, 1],

g(vt ) = u+ tη(g(v), u) ∈ Kgη.

Taking g(v) = g(vt ) in (8) and using Condition C, we have

〈F ′(g(vt )), η(u, u+ tη(g(v), u))〉 ≤ 〈F ′(u), η(u+ tη(g(v), u), u))〉
−μ{‖η(u+ tη(g(v), u), u)‖p
+‖η(u, u+ tη(g(v), u)‖p}

= −t〈F ′(u), η(g(v), u)〉 − 2tpμ‖η(g(v), u)‖p,

which implies that

〈F ′(vt ), η(g(v), u)〉 ≥ 〈F ′(u), η(g(v), u)〉 + 2μtp−1‖η(g(v), u)‖p. (9)

Let ξ(t) = F(u+ tη(g(v), u)). Then, from (9), we have

ξ ′(t) = 〈F ′(u+ tη(g(v), u)), η(g(v), u)〉
≥ 〈F ′(u), η(g(v), u)〉 + 2μtp−1‖η(g(v), u)‖p. (10)

Integrating (10) between 0 and 1, we have

ξ(1)− ξ(0) ≥ 〈F ′(u), η(g(v), u)〉 + 2

p
μ‖η(g(v), u)‖p,

that is,

F(u+ tη(g(v), u))− F(u) ≥ 〈F ′(u), η(g(v), u)〉 + 2

p
μ‖η(g(v), u‖p).

By using Condition A, we have

F(gv))− F(u) ≥ 〈F ′(u), η(g(v), u)〉 + 2

p
μ‖η(g(v), u)‖p,

which is the desired result.

We now give a necessary condition for a higher order strongly η-pseudo-invex
function.

Theorem 4 Let F ′(.) be a higher order strongly relaxed η-pseudomonotone oper-
ator and Conditions A and C hold true. Then F is a higher order strongly
η-pseudo-invex function.
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Proof Let F ′ be higher order strongly relaxed η-pseudomonotone. Then,
∀u, g(v) ∈ Kgη,

〈F ′(u), η(g(v), u)〉 ≥ 0,

implies that

− 〈F ′(g(v)), η(u, v)〉 ≥ α‖η(u, g(v))‖p. (11)

Since K is an invex set, ∀u, g(v) ∈ Kgη, t ∈ [0, 1],

g(vt ) = u+ tη(g(v), u) ∈ Kη.

Taking g(v) = g(vt ) in (11) and using Condition C, we have

− 〈F ′(u+ tη(g(v), u)), η(u, v)〉 ≥ tα‖η(g(v), u)‖p. (12)

Let

ξ(t) = F(u+ tη(g(v), u)), ∀u, g(v) ∈ Kgη, t ∈ [0, 1].

Then, using (12), we have

ξ ′(t) = 〈F ′(u+ tη(g(v), u)), η(u, v)〉 ≥ tα‖η(g(v), u)‖p.

Integrating the above relation between 0 to 1, we have

ξ(1)− ξ(0) ≥ α
2
‖η(g(v), u)‖p,

that is,

F(u+ tη(g(v), u))− F(u) ≥ α
2
‖η(g(v), u)‖p,

which implies, using Condition A,

F(g(v))− F(u) ≥ α
2
‖η(g(v), u)‖p,

showing that F is a higher order strongly η-pseudo-invex function.

Theorem 5 Let the differential F ′(u) of a differentiable higher order strongly
general preinvex function F(u) be Lipschitz continuous on the invex set Kgη with a
constant β > 0. Then
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F(u+η(g(v), u))−F(u) ≤ 〈F ′(u), η(g(v), u)〉+β
2
‖η(g(v), u)‖2, u, g(v) ∈ Kgη.

Proof The proof follows from Noor and Noor [26].

Definition 21 The function F is said to be sharply higher order strongly general
pseudo preinvex, if there exists a constant μ > 0 such that

〈F ′(u), η(g(v), u)〉 ≥ 0

⇒
F(g(v)) ≥ F(v + tη(g(v), u))+ μ{tp(1− t)+ t (1− t)p}‖η(g(v), u)‖p,

∀u, g(v) ∈ Kgη, t ∈ [0, 1].

Theorem 6 Let F be a higher order strongly sharply general pseudo preinvex
function on Kgη with a constant μ > 0. Then

−〈F ′(g(v)), η(g(v), u)〉 ≥ μ‖η(g(v), u)‖p, ∀u, g(v) ∈ Kgη.

Proof Let F be a higher strongly sharply pseudo preinvex function on Kη. Then

F(g(v)) ≥ F(v + tη(g(v), u))+ μ{tp(1− t)+ t (1− t)p}‖η(g(v), u)‖p,
∀u, g(v) ∈ Kgη, t ∈ [0, 1],

from which we have

F(g(v)+ tη(g(v), u))− F(g(v))
t

+ μ{tp−1(1− t)+ (1− t)p}‖η(g(v), u‖p) ≤ 0.

Taking the limit in the above inequality, as t → 0, we have

−〈F ′(g(v)), η(g(v), u)〉 ≥ μ‖η(g(v), u)‖p,

which is the desired result.

Definition 22 A function F is said to be a pseudo preinvex function, if there
exists a strictly positive bifunction B(., .), such that

F(g(v)) < F(u)

⇒
F(u+ tη(g(v), u)) < F(u)+ t (t − 1)B(g(v), u),∀u, g(v) ∈ Kgη, t ∈ [0, 1].
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Theorem 7 If the function F is a higher order strongly general preinvex function
such that F(g(v)) < F(u), then F is a higher order strongly general pseudo
preinvex function.

Proof Since F(v) < F(u) and F is higher order strongly preinvex function, then
∀u, g(v) ∈ Kgη, t ∈ [0, 1], we have

F(u+ tη(g(v), u)) ≤ F(u)+ t (F (g(v))− F(u))
−μ{tp(1− t)+ t (1− t)p}‖η(g(v), u)‖p

< F(u)+ t (1− t)(F (g(v))− F(u))
−μ{tp(1− t)+ t (1− t)p}‖η(g(v), u)‖p

= F(u)+ t (t − 1)(F (u)− F(g(v)))
−μ{tp(1− t)+ t (1− t)p}‖η(g(v), u)‖p

< F(u)+ t (t − 1)B(u, g(v))

−μ{tp(1− t)+ t (1− t)p}‖η(g(v), u)‖p,∀u, g(v) ∈ Kgη,

where

D(u, g(v)) = F(u)− F(g(v)) > 0.

This shows that the function F is higher order strongly general pseudopreinvex.

4 Applications

In this section, we show that the characterizations of uniformly Banach spaces
involving the notion of higher order strongly general invexity can be established.

Considering F(u) = ‖u‖p in Definition 14, we have

‖u+ tη(g(v), u)‖p = (1− t)‖u‖p + t‖g(v)‖p
− μ{tp(1− t)+ t (1− t)p}‖η(g(v), u)‖p,
∀u, g(v) ∈ Kgη, t ∈ [0, 1], p > 1. (13)

Setting t = 1
2 in (13), we have

‖2u+ η(g(v), u)
2

‖p + μ 1

2p
‖η(g(v), u)‖p = 1

2
‖u‖p + 1

2
‖g(v)‖p,

∀u, g(v) ∈ Kgη,
(14)
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which is known as the parallelogram-like laws for the Banach spaces involving the
bifunction η(., .) and the arbitrary function g.

If η(g(v), u) = g(v)− u, then (14) reduces to the parallelogram-like law as:

‖g(v)+ u‖p + μ‖g(v)− u‖p = 2p−1{‖u‖p + ‖g(v)‖p},∀u, v ∈ Kg, (15)

which is called the parallelogram-like law and can be used to characterize the
uniform Banach spaces.

If g = I,then (15) reduces to the parallelogram-like law as:

‖v + u‖p + μ‖v − u‖p = 2p−1{‖u‖p + ‖v‖p},∀u, v ∈ K, (16)

which is known as the parallelogram-like law for the uniform Banach spaces.
Xu [33] obtained these characterizations of p-uniform convexity and q-uniform
smoothness of a Banach space via the functionals ‖.‖p and ‖.‖q, respectively.
Bynum [5] and Chen et al. [6, 7] have studied the properties and applications of the
parallelogram laws for the Banach spaces in prediction theory and applied sciences.

5 General Variational-Like Inequalities

In this section, we introduce and consider a new class of variational-like inequalities,
which arises as an optimality condition of differentiable general preinvex functions,
which is the main motivation of our next result.

Theorem 8 Let F be a differentiable higher order strongly general preinvex
function with modulus μ > 0. If u ∈ Kgη is the minimum of the function F, then

F(g(v))− F(u) ≥ μ‖η(g(v), u)‖p, ∀u, g(v) ∈ Kgη. (17)

Proof Let u ∈ Kgη be a minimum of the function F. Then

F(u) ≤ F(g(v)),∀g(v) ∈ Kgη. (18)

Since Kη is an invex set, it follows that ∀u, g(v) ∈ Kgη, t ∈ [0, 1],

g(vt ) = u+ tη(g(v), u) ∈ Kgη.

Setting g(v) = g(vt ) in (18), we have

0 ≤ lim
t→0

{F(u+ tη((g(v).u))− F(u)
t

} = 〈F ′(u), η(g(v), u)〉. (19)
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Since F is a differentiable higher order strongly general preinvex function, we
obtain that

F(u+ tη(g(v), u)) ≤ F(u)+ t (F (g(v))− F(u))
−μ{tp(1− t)+ t (1− t)p}‖η(g(v).u)‖p,∀u, g(v) ∈ Kgη,

from which, using (19), we have

F(g(v))− F(u) ≥ lim
t→0

{F(u+ tη(g(v), u))− F(u)
t

} + μ‖η(g(v), u)‖p

= 〈F ′(u), η(g(v), u)〉 + μ‖η(g(v), u)‖p,

which is the required result (17).

Remark We would like to mention that, if

〈F ′(u), η(g(v), u)〉 + μ‖η(g(v), u)‖p ≥ 0, ∀u, g(v) ∈ Kgη, (20)

then u ∈ Kη is the minimum of the function F.
The inequality of the type (20) is called the higher order strongly general

variational-like inequality. We now consider a more general variational-like inequal-
ity of which (20) is a special case.

For given two operators T , g, we consider the problem of finding u ∈ u ∈ Kgη
for a constant μ such that

〈T u, η(g(v), u)〉 + μ‖η(g(v), u)‖p ≥ 0, ∀g(v) ∈ Kgη, p > 1, (21)

which is called the higher order strongly general variational-like inequality.
We now discuss several special cases of the problem (21).

(i) If T u = F ′(g(u)), then problem (21) is exactly the general variational-like
inequality (20).

(ii) If μ = 0, then (21) is equivalent to finding u ∈ Kgη, such that

〈T u, η(g(v), u)〉 ≥ 0, ∀g(v) ∈ Kgη, (22)

which is known as the general variational-like inequality.
(iii) If η(g(v(, u)) = g(v)−u, then problem (21) reduces to the problem of finding

u ∈ Kg such that

〈T u, g(v)− u〉 + μ‖g(v)− u‖p ≥ 0, ∀g(v) ∈ Kg, p > 1, (23)
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which is called the higher order general variational inequality, introduced and
studied by Noor and Noor [28].

For suitable and appropriate choice of the parameter μ and p, one can obtain
several new and known classes of variational inequalities. We note that the
projection method and its variant forms can be used to study the higher order
strongly general variational inequalities (21) due to its inherent structure. This fact
motivated us to consider the auxiliary principle technique, which is mainly due to
Lions and Stampacchia [14], Glowinski et al. [10], as developed by Noor [20, 21, 23]
and Noor et al. [28, 29]. We use this technique to suggest some iterative methods
for solving the general variational-like inequalities (21).

For given u ∈ Kgη satisfying (21), consider the problem of finding w ∈ Kgη,
such that

〈ρTw, η(g(v),w)〉 + 〈w − u, v − w〉 + ν‖η(g(v),w)‖p ≥ 0, (24)

∀g(v) ∈ Kgη, p > 1,

where ρ > 0 is a parameter. The problem (24) is called the auxiliary higher order
strongly general variational-like inequality. It is clear that the relation (24) defines
a mapping connecting the problems (21) and (24). We note that, if w(u) = u, then
w is a solution of problem (21). This simple observation enables us to suggest an
iterative method for solving (21).

Algorithm 1 For given u0 ∈ Kgη, find the approximate solution un+1 by the
scheme

〈ρT un+1, η(g(v), un+1)〉 + 〈un+1 − un, v − un+1〉
+ν‖η(g(v), un+1)‖p ≥ 0, ∀g(v) ∈ Kgη, p > 1. (25)

The Algorithm 1 is known as the implicit method. Such type of methods have been
studied extensively for various classes of variational inequalities, cf. [20, 21, 23, 29]
and the reference therein.

If ν = 0, then Algorithm 1 reduces to:

Algorithm 2 For given u0 ∈ Kgη, find the approximate solution un+1 by the
scheme

〈ρT un+1, η(g(v), un+1)〉 + 〈un+1 − un, v − un+1〉 ≥ 0,∀g(v) ∈ Kgη,

which appears to be new, even for solving the general variational-like inequalities
(22).

In order to study the convergence analysis of Algorithm 1, we need the following
concept.

Definition 23 The operator T is said to be pseudo gη-monotone with respect to
μ‖η(g(v), u)‖p, p > 1, if
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〈ρT u, η(g(v), u)〉 + μ‖η(g(v), u)‖p ≥ 0,∀g(v) ∈ Kgη, p > 1,

*⇒
−〈ρT v, η(v, g(u))〉 − μ‖η(g(v), v)‖p ≥ 0,∀g(v) ∈ Kgη, p > 1.

If μ = 0, then Definition 23 reduces to:

Definition 24 The operator T is said to be pseudo g-monotone, if

〈ρT u, η(g(v), u)〉 ≥ 0,∀g(v) ∈ Kgη
*⇒
〈ρT v, η(v, g(u))〉 ≥ 0,∀g(v) ∈ Kgη,

which appears to be new.
We now study the convergence analysis of Algorithm 1.

Theorem 9 Let u ∈ Kgη be a solution of (21) and un+1 be the approximate solution
obtained from Algorithm 1. If T is a pseudo gη- monotone operator, then

‖un+1 − u‖2 ≤ ‖un − u‖2 − ‖un+1 − un‖2. (26)

Proof Let u ∈ Kgη be a solution of (21). Then

〈ρT u, η(g(v), u)〉 + μ‖η(g(v), u)‖p ≥ 0,∀g(v) ∈ Kgη,

implies that

− 〈ρT v, η(g(u), v)〉 − μ‖η(g(u), v)‖p ≥ 0,∀g(v) ∈ Kgη. (27)

Now taking v = un+1 in (27), we have

− 〈ρT un+1, η(un+1, g(u))〉 − μ‖η(un+1, g(u))‖p ≥ 0. (28)

Taking v = u in (25), we have

〈ρT un+1, η(g(u), un+1)〉 + 〈un+1 − un, v − un+1〉 + ν‖η(g(u), un+1)‖p ≥ 0.
(29)

∀g(v) ∈ K,p > 1.

Combining (28) and (29), we have

〈un+1 − un, un+1 − u〉 ≥ 0.
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Using the inequality

2〈a, b〉 = ‖a + b‖2 − ‖a‖2 − ‖b‖2,∀a, b ∈ H,

we obtain

‖un+1 − u‖2 ≤ ‖un − u‖2 − ‖un+1 − un‖2,

which is the desired result (26).

Theorem 10 Let the operator T be pseudo gη-monotone. If un+1 is the approxi-
mate solution obtained from Algorithm 1 and u ∈ Kgη is the exact solution (21),
then

lim
n→∞un = u.

Proof Let u ∈ K be a solution of (21). Then, from (26), it follows that the sequence
{‖u− un‖} is nonincreasing and consequently {un} is bounded. From (26), we have

∞∑

n=0

‖un+1 − un‖2 ≤ ‖u0 − u‖2,

from which, it follows that

lim
n→∞‖un+1 − un‖ = 0. (30)

Let û be a cluster point of {un} and the subsequence {unj } of the sequence un
converge to

û ∈ H.

Replacing un by unj in (25), taking the limit nj → 0 and by (30), we have

〈T û, g(v)− û〉 + μ‖g(v)− û‖p ≥ 0, ∀g(v) ∈ Kgη, p > 1.

This implies that û ∈ Kgη satisfies (21) and

‖un+1 − un‖2 ≤ ‖un − û‖2.

Thus it follows from the above inequality that the sequence un has exactly one
cluster point û and

lim
n→∞un = û.



664 M. A. Noor et al.

In order to implement the implicit Algorithm 1, one uses the predictor-corrector
technique. Consequently, Algorithm 1 is equivalent to the following iterative method
for solving the general variational inequality (21).

Algorithm 3 For a given u0 ∈ Kgη, find the approximate solution un+1 by the
schemes

〈ρT un, η(g(v), yn)〉 + 〈yn−unv−yn〉+μ‖η(g(v), yn)‖p ≥ 0,∀g(v) ∈ Kgη, p > 1

〈ρTyn, η(g(v), yn)〉 + 〈un−yn, v−yn〉μ‖η(g(v), un)‖p ≥ 0,∀g(v) ∈ Kgη, p > 1.

Algorithm 3 is called the two-step method and appears to be new.
Using the auxiliary principle technique, one can suggest several iterative methods

for solving the higher order strongly general variational inequalities and related
optimization problems. We have only given some glimpse of the higher order
strongly general variational inequalities. It is an interesting problem to explore the
applications of such type of variational inequalities in various fields of pure and
applied sciences.

Conclusion
In this paper, we have introduced and studied a new class of convex functions,
which are called higher order strongly general preinvex functions. It is shown that
several new classes of strongly convex functions can be obtained as special cases of
these higher order strongly general preinvex functions. We have studied the basic
properties of these functions. New parallelogram laws for uniformly Banach spaces
have been derived as applications of the higher order strongly general preinvex
functions. It is an open problem to study the applications of these parallelogram
laws. We have also considered a new class of general variational-like inequalities.
Using the auxiliary principle technique, an implicit iterative method is suggested
for finding the approximate solution of general variational-like inequalities. Using
the pseudo-monotonicity of the operator, convergence criteria are discussed. Some
special cases are considered as applications of the main results.
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A Variational Formulation of Network
Games with Random Utility Functions

Mauro Passacantando and Fabio Raciti

Abstract We consider a class of games played on networks in which the utility
functions consist of both deterministic and random terms. In order to find the Nash
equilibrium of the game we formulate the problem as a variational inequality in a
probabilistic Lebesgue space which is solved numerically to provide approximations
for the mean value of the random equilibrium. We also numerically compare the
solution thus obtained, with the solution computed by solving the deterministic
variational inequality derived by taking the expectation of the pseudo-gradient of
the game with respect to the random parameters.

1 Introduction

Games played on networks are a class of non-cooperative games where players are
considered as nodes of a graph, and direct connections between any two players
are represented by arcs connecting them. A basic assumption is that the utility
function of a given, arbitrary, player depends on his/her strategy, as well as on the
strategies of his/her neighbors in the graph. Therefore, it seems natural that this
setting has proved to be very useful in describing social or economic interactions
among various types of agents. In this regard it is interesting to investigate the two
classes of games with strategic complements and substitutes. Roughly speaking,
in the first case, the incentive for a player to take an action increases when the
number of his/her social contacts who take the action increases, while in the second
case this monotonic relation is reversed. As is usual in game theory, equilibrium
concepts are considered of paramount importance, and in this context, the study
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of Nash equilibria is investigated with respect to the algebraic or graph-theoretic
properties of the network structure. This line of research was initiated with the
seminal paper by Ballester et al. [1], who also used some centrality measures to
assess the importance of the various players, along the same lines of Katz and
Bonacich (see, e.g., [3]). The interested reader can find in the beautiful survey by
Jackson and Zenou [7] an account of the main concepts about network games, along
with a wealth of social and economic applications. Most of the scholars dealing with
this topic tackle the corresponding problems with classic game-theoretical methods,
such as best response analysis and fixed point theory. However, quite recently some
authors utilized the variational inequality approach to provide a deep analysis of
many aspects of these games and the interesting paper by Parise and Ozdaglar [12]
provides a self-consistent treatment of many interesting developments. The fact
that Nash equilibrium problems admit, under suitable hypotheses, an equivalent
variational inequality formulation was recognized long time ago by Gabay and
Moulin [6]. It seems, though, that this powerful tool has not been fully applied
to the topic of network games. In this note we allow for the possibility that the
utility functions also depend on a random parameter ω of an abstract sample space
Ω , and then derive the corresponding parametric variational inequality. However,
our objective here is to compute the mean value of the equilibrium, hence, we wish
that the solution admits finite first and (possibly) second moments. In this regard,
an integral variational inequality in the probabilistic Lebesgue space L2(Ω, P ) fits
our requirements. This variational inequality is then transformed to the image space
of the random variables involved so as to be numerically approximated. The theory
of random (or stochastic) variational inequalities has been developed by various
authors in the last fifteen years, with different methodologies. We follow here the
so-called Lp approach and refer the interested reader to [5, 8, 9] for a detailed
account of the theoretical framework and for several applications. For a description
of different approaches, as well as for other interesting developments, the reader
can see [15], where the authors also describe the so-called expected value approach
which we compare with our approach by means of a worked out example.

The paper is organized as follows. In the following Sect. 2 we introduce the
notation, and briefly outline the basic network game classes. Moreover, we define
the random Nash equilibrium and the associated variational inequality. In Sect. 3, we
describe in detail the linear-quadratic model, investigate the monotonicity property
of the relevant operator, and introduce the associated integral variational inequality.
In Sect. 4, we numerically solve a test problem. A short concluding section ends the
paper.
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2 Network Game Classes and Variational Inequality
Approach

We begin this section by recalling a few concepts and definitions of graph theory that
will be used in the sequel. We warn the reader that the terminology is not uniform in
the related literature. Formally, a graph g is a pair of sets (V ,E), where V is the set
of nodes and E is the set of arcs, formed by pairs of nodes (v,w). Arcs which have
the same end nodes are called parallel, while arcs of the form (v, v) are called loops.
We consider here simple graphs, that is graphs with no parallel arcs or loops. In our
setting, the players will be represented by the n nodes in the graph. Moreover, we
consider here indirect graphs: the arcs (v,w) and (w, v) are the same. Two nodes
v and w are adjacent if they are connected by an arc, i.e., if (v,w) is an arc. The
information about the adjacency of nodes can be stored in the adjacency matrix G
whose elements gij are equal to 1 if (vi, vj ) is an arc, 0 otherwise. G is thus a
symmetric and zero diagonal matrix. Given a node v, the nodes connected to v with
an arc are called the neighbors of v and are grouped in the set Nv(g). The number
of elements of Nv(g) is the degree of v.

We now proceed to specify the game that we will consider. For simplicity, the set
of players will be denoted by {1, 2, . . . , n} instead of {v1, v2, . . . , vn}. We denote
with Ai ⊂ R the action space of player i, while A = A1×· · ·×An and the notation
a = (ai, a−i ) will be used when we want to distinguish the action of player i from
the action of all the other players. Let (Ω, P ) be a probability space. Each player i
is endowed with a payoff function

ui : Ω × A→ R

that he/she wishes to maximize for almost every elementary event ω ∈ Ω , that is
P -almost surely.

The notation ui(ω, a, g) is often utilized when one wants to emphasize the
influence of the graph structure. The solution concept that we consider here is the
Nash equilibrium of the game, that is, we seek a random vector a∗ : Ω → A such
that for each i ∈ {1, . . . , n}, and, P -a.s.:

ui(a
∗
i (ω), a

∗−i (ω)) ≥ ui(ai, a∗−i (ω)), ∀ ai ∈ Ai. (1)

A peculiarity of network games is that the vector a−i is only made up of components
aj such that j ∈ Ni(g), that is, j is a neighbor of i.

We mentioned in the introduction that it is convenient to consider two specific
classes of games which allow a deeper investigation of the patterns of interactions
among players. For any given player i it is interesting to distinguish how variations
of the actions of player’s i neighbors affect his/her marginal utility. In the case where
the utility functions are twice continuously differentiable the following definitions
clarify this point.
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Definition 1 We say that the network game has the property of strategic substitutes
if for each player i and P -a.s. the following condition holds:

∂2ui(ω, ai, a−i )
∂aj ∂ai

< 0, ∀(i, j) : gij = 1, ∀ a ∈ A.

Definition 2 We say that the network game has the property of strategic comple-
ments if for each player i and P -a.s. the following condition holds:

∂2ui(ω, ai, a−i )
∂aj ∂ai

> 0, ∀(i, j) : gij = 1,∀ a ∈ A.

Let us notice that we are requiring that each of the two properties specified above
holds for almost every ω ∈ Ω , i.e., we assume that the game class does not change
according to the random variable.

For the subsequent development it is important to recall that if the ui are contin-
uously differentiable functions on A, the Nash equilibrium problem is equivalent to
the variational inequality V I (F,A): find a∗ ∈ A such that, P -a.s.

F(ω, a∗(ω))4(a − a∗(ω)) ≥ 0, ∀ a ∈ A, (2)

where

[F(ω, a)]4 := −
(
∂u1

∂a1
(ω, a), . . . ,

∂un

∂an
(ω, a)

)
(3)

is also called the pseudo-gradient of the game, according to the terminology
introduced by Rosen [14]. For an account of variational inequalities the interested
reader can refer to [4, 10, 11]. We recall here some useful monotonicity properties.

Definition 3 F : Ω × R
n→ R

n is said to be monotone on A iff:

[F(ω, x)− F(ω, y)]4(x − y) ≥ 0, ∀ x, y ∈ A, ∀ ω ∈ Ω.

If the equality holds only when x = y, F is said to be strictly monotone.

A stronger type of monotonicity is given by the following

Definition 4 F : Ω × R
n → R

n is said to be β-strongly monotone on A iff, for
every ω, we can find β(ω) > 0:

[F(ω, x)− F(ω, y)]4(x − y) ≥ β(ω)‖x − y‖2, ∀ x, y ∈ A.

If we can find a β which does not depend on ω in the above definition, we say that
F is strongly monotone, uniformly with respect to ω.



A Variational Formulation of Random Network Games 671

For linear operators on R
n the two concepts of strict and strong monotonicity

coincide and are equivalent to the positive definiteness of the Jacobian matrix of the
operator.

Conditions that ensure the unique solvability of a variational inequality problem
are given by the following theorem (see, e.g., [4, 10, 11]), which can be applied to
our framework for each (or almost each) fixed ω.

Theorem 1 IfK ⊂ R
n is a compact convex set and F : Rn→ R

n is continuous on
K , then the variational inequality problem V I (F,K) admits at least one solution.
In the case that K is unbounded, existence of a solution may be established under
the following coercivity condition:

lim‖x‖→+∞
[F(x)− F(x0)]4(x − x0)

‖x − x0‖ = +∞,

for x ∈ K and some x0 ∈ K . Furtheremore, if F is strictly monotone on K , then
the solution is unique.

3 The Random Linear-Quadratic Model

In what follows Ai can be either R+ for any i ∈ {1, . . . , n}, or [0, Li], hence A =
R
n+ or [0, L1] × . . .× [0, Ln]. The payoff of player i is given by

ui(ω, a, g) = α(ω)ai − 1

2
a2
i + ϕ(ω)ai

n∑

i=1

gij aj − γ ai
n∑

i=1

aj , (4)

where α(ω), ϕ(ω) > 0, P -a.s. and γ is a positive real number. The term involving
the adjacency matrix describes the local complementarities (ϕ(ω) > 0), which
means that the neighbors of each player contribute to positively enhance his/her
strategy. On the other hand, the term involving γ has opposite sign, thus describing
strategic substitutes and it is of global nature.

The pseudo-gradient’s components of this game are easily computed as:

Fi(ω, a, g) = (1+ γ )ai − ϕ(ω)
n∑

j=1

gij aj − γ
n∑

j=1

aj − α(ω) i ∈ {1, . . . , n},

which can be written in compact form as:

F(ω, a, g) = [(1+ γ )I − ϕ(ω)G+ γU ] a − α(ω)1, (5)

where U is the n × n matrix whose entries are all equal to one and
1 = (1, . . . , 1)4 ∈ R

n.
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We will seek random Nash equilibrium points by solving the following varia-
tional inequality: for each ω, find a∗(ω) ∈ A, such that for all a ∈ A and P -a.s. we
have

[(1+ γ )Ia∗(ω)− ϕ(ω)Ga∗(ω)]4(a − a∗(ω))+ [γU a∗(ω)]4(a − a∗(ω))
≥ α(ω)14(a − a∗(ω)).

(6)
For the subsequent developments it is important to study the monotonicity properties
of the operator F in the above variational inequality.

Lemma 1 Let F be as in (5) and ρ(G) be the spectral radius of G. For all ω such
that ϕ(ω) < (1+ γ )/ρ(G), F is strictly monotone. Moreover, if ϕ is a real number
such that 0 < ϕ < (1+ γ )/ρ(G), then F is strongly monotone uniformly in the set
{ω : 0 < ϕ(ω) ≤ ϕ}, in the sense that it exists β > 0 such that

[F(ω, a)− F(ω, a′)]4(a − a′) ≥ β‖a − a′‖2,

for all a, a′ ∈ R
n and for all ω such that ϕ(ω) ∈ (0, ϕ].

Proof It is sufficient to study the linear part of F . Thus, let us consider the
expression:

(1+ γ )Ia − ϕ(ω)Ga + γU a

and notice that for every γ > 0 the matrix γ U is positive semidefinite, thus defining
a monotone operator. Because the sum of a strongly (strictly) monotone and a
monotone operator gives a strongly (strictly) monotone operator, we seek conditions
which ensure the strong monotonicity of (1+γ )I−ϕ(ω)G. To this end, let us notice
thatG is a zero trace matrix, hence its largest eigenvalue is positive. Moreover, it can
be proved that the largest eigenvalue ofG coincides with its spectral radius ρ(G). It
follows that, for each ω, the minimum eigenvalue of (1+ γ )I − ϕ(ω)G is given by
1+ γ − ϕ(ω)ρ(G), which is positive whenever ϕ(ω)ρ(G) < 1+ γ . Thus, for each
ω such that ϕ(ω) ∈ (0, (1+ γ )/ρ(G)], we get

a4[(1+ γ )I − ϕ(ω)G]a ≥ [1+ γ − ϕ(ω)ρ(G)] ‖a‖2.

Furthermore, let ϕ be a real number such that 0 < ϕ < (1 + γ )/ρ(G), and β =
1+ γ − ϕρ(G). We then obtain that:

a4[(1+ γ )I − ϕ(ω)G]a ≥ β‖a‖2

holds for any ω such that 0 < ϕ(ω) ≤ ϕ. �
We now proceed to provide an integral formulation of the variational inequality

(6). Thus, we make the additional assumptions that the random variable α has
finite second order moment, that is, α ∈ L2(Ω, P ), while ϕ ∈ L∞(Ω, P ), with
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0 < ϕ ≤ ϕ(ω) ≤ ϕ. We can now consider the variational inequality problem

of finding a∗ ∈ L2(Ω, P ), such that a∗(ω) ∈ A, and ∀a ∈ L2(Ω, P ) such that
a(ω) ∈ A:

∫

Ω

{
[(1+ γ )Ia∗(ω)− ϕ(ω)Ga∗(ω)]4(a − a∗(ω))

+ [γ U a∗(ω)]4(a − a∗(ω))
}
dP (ω) ≥

∫

Ω

α(ω)14(a − a∗(ω))dP (ω).
(7)

Remark 1 The theoretical investigation of the above variational inequality requires
tools from infinite dimensional functional analysis that are beyond the scope of this
paper. The interested reader can see [10] or the papers cited in the introduction for
more details. Here, we only mention that under the relevant assumption of uniform
strong monotonicity of F we get the existence and uniqueness of the solution a∗.

We now transform the variational inequality (7) in the image space of the two
random variables involved. To this end, let y = α(ω), z = ϕ(ω), and P the
probability induced by P on the image space of the two random variables. We thus
have to consider the variational inequality problem of finding a∗ ∈ L2(R2,P) such
that a∗(y, z) ∈ A, and for each a ∈ L2(R2,P) with a(y, z) ∈ A, we get

∫ ∞

−∞

∫ ϕ

ϕ

{
[(1+ γ )Ia∗(y, z)− zGa∗(y, z)]4[a(y, z)− a∗(y, z)]

+ [γUa∗(y, z)]4[a(y, z)− a∗(y, z)]
}
dP(y, z)

≥
∫ ∞

−∞

∫ ϕ

ϕ

y14[a(y, z)− a∗(y, z)] }dP(y, z).
(8)

We denote by EP[a∗(y, z)] the expected value of the solution with respect to the
probability measure P on the image space of the random variables. The Lp theory
of random variational inequalities provides an approximation procedure for the
expected values and we refer again the interested reader to the references mentioned
in the introduction for a thorough treatment of this matter. In the subsequent section
we apply this approximation procedure to a worked out example. Moreover, we
compare our results with the ones obtained by solving the deterministic variational
inequality obtained by taking the expectation EP[F(y, z)] of the pseudo-gradient
with respect to the random variables involved. This second solution concept is
known as the expected value approach and, in this case, leads in a straightforward
manner to solving a finite dimensional variational inequality, since the expectation
of the pseudo-gradient can be computed exactly. Nevertheless, as it will be
illustrated by the numerical examples of the following section, the two approaches
can give quite different results for certain parameter ranges.
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Fig. 1 Network topology of Example 1

4 Numerical Experiments

In this section, we show some preliminary numerical experiments for the random
linear-quadratic network game described in Sect. 3.

Example 1 We consider the network shown in Fig. 1 (see also [2]) with 8 nodes
(players). The spectral radius of the adjacency matrix G is ρ(G) 9 3.1019. We set
the congestion parameter γ = 0.1 and the upper bounds Li = 5 for any player
i = 1, . . . , 8. We assume that the random variable y = α(ω) varies in the interval
[1, 10] with either uniform distribution (denoted by y ∼ U(1, 10)) or truncated
normal distribution with mean 5.5 and standard deviation 0.9 (y ∼ N(5.5, 0.9)),
while the random variable z = ϕ(ω) varies in the interval [0.01, 0.34] with either
uniform distribution (z ∼ U(0.01, 0.34)) or truncated normal distribution with
mean 0.175 and standard deviation 0.033 (z ∼ N(0.175, 0.033)). Notice that
(1 + γ )/ρ(G) 9 0.3546, hence the assumption of Lemma 1 is satisfied and the
operator F is uniformly strongly monotone.

The approximation procedure considers a uniform partition of both intervals
[1, 10] and [0.01, 0.34] into N subintervals and solves N2 finite dimensional
variational inequalities for each N .

Table 1 reports in columns 2–6 the convergence of the mean values of the
approximate solution obtained for different values of N , when the random variables
y and z vary in the corresponding intervals with uniform distribution. Moreover,
column 7 shows the solution given by the expected value approach, while the last
column shows the percentage difference between columns 6 and 7. Notice that the
difference between the approximate solution found by the Lp approach and the
solution given by the expected value approach is significant, especially for the first
4 components.

Tables 2, 3, and 4 report the convergence of the mean values of the approximate
solution and its comparison with the solution given by the expected value approach
when y and z vary with different distributions. We remark that the difference
between the approximate solution found by the Lp approach and the solution given
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Table 1 Convergence of the mean values of the approximate solution (col. 2–6) for y ∼ U(1, 10)
and z ∼ U(0.01, 0.34) and comparison with the solution given by the expected value approach
(col. 7–8)

N Expected value

Variables 32 64 128 256 512 approach sol. Diff.

x1 3.651 3.697 3.720 3.732 3.737 4.264 −12.34%

x2 3.651 3.697 3.720 3.732 3.737 4.264 −12.34%

x3 3.651 3.697 3.720 3.732 3.737 4.264 −12.34%

x4 3.788 3.835 3.858 3.869 3.875 4.744 −18.33%

x5 3.270 3.311 3.332 3.342 3.348 3.504 −4.45%

x6 3.368 3.409 3.429 3.439 3.444 3.750 −8.14%

x7 3.140 3.179 3.198 3.208 3.213 3.269 −1.71%

x8 3.140 3.179 3.198 3.208 3.213 3.269 −1.71%

Table 2 Convergence of the mean values of the approximate solution (col. 2–6) for
y ∼ N(5.5, 0.9) and z ∼ U(0.01, 0.34) and comparison with the solution given by the expected
value approach (col. 7–8)

N Expected value

Variables 32 64 128 256 512 approach sol. Diff.

x1 4.035 4.085 4.110 4.122 4.128 4.264 −3.18%

x2 4.035 4.085 4.110 4.122 4.128 4.264 −3.18%

x3 4.035 4.085 4.110 4.122 4.128 4.264 −3.18%

x4 4.220 4.267 4.289 4.300 4.305 4.744 −9.25%

x5 3.457 3.513 3.540 3.554 3.561 3.504 1.65%

x6 3.678 3.739 3.770 3.785 3.792 3.750 1.14%

x7 3.278 3.337 3.366 3.381 3.389 3.269 3.67%

x8 3.278 3.337 3.366 3.381 3.389 3.269 3.67%

Table 3 Convergence of the mean values of the approximate solution (col. 2–6) for y ∼ U(1, 10)
and z ∼ N(0.175, 0.033) and comparison with the solution given by the expected value approach
(col. 7–8)

N Expected value

Variables 32 64 128 256 512 approach sol. Diff.

x1 3.628 3.675 3.698 3.710 3.715 4.264 −12.86%

x2 3.628 3.675 3.698 3.710 3.715 4.264 −12.86%

x3 3.628 3.675 3.698 3.710 3.715 4.264 −12.86%

x4 3.803 3.850 3.873 3.884 3.890 4.744 −18.01%

x5 3.259 3.301 3.322 3.333 3.338 3.504 −4.72%

x6 3.408 3.450 3.470 3.480 3.485 3.750 −7.05%

x7 3.156 3.195 3.215 3.225 3.230 3.269 −1.19%

x8 3.156 3.195 3.215 3.225 3.230 3.269 −1.19%
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Table 4 Convergence of the mean values of the approximate solution (col. 2–6) for y ∼
N(5.5, 0.9) and z ∼ N(0.175, 0.033) and comparison with the solution given by the expected
value approach (col. 7–8)

N Expected value

Variables 32 64 128 256 512 approach sol. Diff.

x1 4.062 4.132 4.167 4.184 4.192 4.264 −1.68%

x2 4.062 4.132 4.167 4.184 4.192 4.264 −1.68%

x3 4.062 4.132 4.167 4.184 4.192 4.264 −1.68%

x4 4.385 4.448 4.478 4.493 4.500 4.744 −5.15%

x5 3.395 3.452 3.480 3.494 3.501 3.504 −0.07%

x6 3.648 3.710 3.741 3.757 3.765 3.750 0.41%

x7 3.207 3.259 3.286 3.299 3.306 3.269 1.15%

x8 3.207 3.259 3.286 3.299 3.306 3.269 1.15%

by the expected value approach is rather small when both random variables y and z
vary with truncated normal distribution.

5 Conclusions and Future Research Directions

In this chapter we investigated a model of network games with random utility
functions by means of its reformulation as a variational inequality in a probabilistic
Lebesgue space. We illustrated our methodology through a worked out example
which was numerically solved in order to approximate the mean value of the
unique random Nash equilibrium of the game. Furthermore the approximated mean
value thus computed was compared with the Nash equilibrium which is obtained
by solving a deterministic variational inequality derived by taking the expectation
of the pseudo-gradient of the game. Future research work could be performed
with nonlinear random utility functions. Another promising research perspective
is the variational inequality formulation of generalized network games (with shared
constraints), which was initiated in [13] and offers a wealth of potential theoretical
developments and possible applications.
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Fixed Point Theory in Graph Metric
Spaces

A. Petruşel and G. Petruşel

Abstract Let (X, d) be a metric space, G be a graph associated with X and f :
X→ X be an operator which satisfies two main assumptions:

(1) f is generalized G-monotone;
(2) f is a G-contraction with respect to d.

In the above framework, we will present sufficient conditions under which:

(i) f is a Picard operator;
(ii) the fixed point problem x = f (x), x ∈ X is well-posed in the sense of Reich

and Zaslavski;
(iii) the fixed point problem x = f (x), x ∈ X has the Ulam-Hyers stability

property;
(iv) f has the Ostrowski stability property;
(v) f satisfies to some Gronwall type inequalities.

Some open questions are presented.

2010 Mathematics Subject Classification 47H10, 34G20, 45N05, 06A06,
47H09, 47H07, 54E35, 54H25

A. Petruşel (�)
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1 Introduction

Metric fixed point theory is an important branch of Nonlinear Analysis with a strong
development in the last decades. For recent results and problems in metric fixed
point theory see [1, 2, 8, 18, 27, 28, 30, 31, 34, 35, 38–40, 46],. . .

Metric fixed point theorems were often related to different other structures, in
order to relax the contraction type conditions on the operator. Ordered structures
are an example in this sense. As a consequence, many fixed point results in ordered
metric spaces are proved in the last 15 years. The starting point of this research
direction was the paper of Ran and Reurings, see [33]. For other results of this type
see also [7, 12, 15, 19, 20, 22–24, 26, 32, 43, 47], . . .

An effective extension of the above framework was given by Jachymski in
[17], where the metric space is endowed with a graph structure. Several recent
contributions in this context were given in the following works and the references
therein: [3–5, 9, 10, 13, 21, 25, 29, 41, 42, 45], . . .

The aim of this paper is to present a study of the fixed point equation x = f (x),
where f : Z ⊆ X → X is a given single-valued operator in a metric space
(X, d) endowed with a graph G := (V (G),E(G)), under the following two main
assumptions:

(1) f is generalized G-monotone;
(2) f is a G-contraction with respect to d.

Finally, some open problems are presented. Our results extend and generalize
some results from [29].

2 Preliminaries

Let X be a nonempty set and f : X → X be an operator. Then, we will denote
by f 0 := 1X, f 1 := f, . . . , f n+1 = f ◦ f n, n ∈ N the iterate operators of f .
By I (f ) := {Y ⊂ X|f (Y ) ⊆ Y } we will denote the set of all nonempty invariant
subsets of f and by Ff := {x ∈ X| x = f (x)} we denote the fixed point set of f .
Also, by Graph(f ) := {(x, y) ∈ X ×X|f (x) = y} we denote the graphic of f .

We recall now the following important concepts for the theory of Picard and
weakly Picard operators.

Definition 1 Let (X, d) be a metric space. An operator f : X → X is, by
definition, a Picard operator (briefly PO) if:

(i) Ff = {x∗};
(ii) (f n(x))n∈N → x∗ as n→∞, for all x ∈ X.

For example, on a complete metric space (X, d) any operator f : X → X

satisfying Banach’s contraction condition with constant L, i.e., L ∈]0, 1[ and
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d(f (x), f (y)) ≤ Ld(x, y), for every (x, y) ∈ X ×X

is a PO.

Definition 2 Let (X, d) be a metric space. Then, f : X → X is called a weakly
Picard operator (briefly WPO) if, for all x ∈ X, the sequence (f n(x))n∈N converges
and the limit (which may depend on x) is a fixed point of f .

For example, any continuous graphic contraction f : X → X on a complete
metric space (X, d), (i.e., f satisfies Banach’s contraction condition with constant
L, for every pair (x, y) ∈ Graph(f )) is a WPO.

Notice that, if f : X→ X is a WPO, then the following set retraction

f∞ : X→ Ff , f
∞(x) := lim

n→∞ f
n(x)

is well defined.
The following abstract Gronwall type lemma takes place for WPOs.

Lemma 1 Let (X, d,%) be an ordered metric space and f : X → X be an
operator. We suppose:

(a) f is a WPO;
(b) f is increasing with respect to %.

Then, we have:

(i) the operator f∞ is increasing;
(ii) x ∈ X, x % f (x) implies x % f∞(x);
(iii) x ∈ X, x , f (x) implies x , f∞(x).

In particular, if f is a PO and we denote by x∗f its unique fixed point, then the
above result takes place with f∞(x) = x∗f , for each x ∈ X.

Another important concept is given below.

Definition 3 Let (X, d) be a metric space. Then, f : X→ X is called a ψ-weakly
Picard operator (briefly ψ-WPO) if f is a WPO, ψ : R+ → R+ is an increasing,
continuous in 0 with ψ(0) = 0, such that the following relation holds:

d(x, f∞(x)) ≤ ψ(d(x, f (x))), for all x ∈ X.

In particular, if f is a PO and x∗ ∈ X denotes its unique fixed point, then f is said
to be a ψ-Picard operator (briefly ψ-PO) if

d(x, x∗) ≤ ψ(d(x, f (x))), for all x ∈ X.

In both cases, if ψ(t) := ct , for every t ∈ R+ (for some c > 0), then f is called a
c-WPO, respectively c-PO.
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For example, on a complete metric space (X, d) any Banach contraction with
constant L is a 1

1−L -PO, while any continuous graphic contraction with constant L

is a 1
1−L -WPO.

We present now some concepts from stability theory (see [37, 38]).
Let (X, d) be a metric space and f : X → X be an operator. In this context we

have the following notions.

Definition 4

(a) The fixed point problem x = f (x) is well-posed in the sense of Reich and
Zaslavski if Ff = {x∗} and for any sequence {un} in X with d(un, f (un))→ 0
we have that un→ x∗ as n→∞;

(b) The operator f has the Ostrowski stability property if Ff = {x∗} and for any
sequence {yn} in X with d(yn+1, f (yn)) → 0 we have that yn → x∗ as n →
∞;

(c) The fixed point problem x = f (x) is Ulam-Hyers stable if there exists c > 0
such that, for every ε > 0 and any z ∈ X with d(z, f (z)) ≤ ε, there exists
x∗ ∈ Ff with d(z, x∗) ≤ c · ε;

(d) The fixed point problem x = f (x) is generalized Ulam-Hyers stable if there
exists a function ψ : R+ → R+ increasing, continuous at 0 and ψ(0) = 0 such
that for every ε > 0 and any z ∈ X with d(z, f (z)) ≤ ε, there exists x∗ ∈ Ff
with d(z, x∗) ≤ ψ(ε).

For example, in the case of contraction mappings, we have the following result.

Theorem 1 (Saturated Principle of Contraction, [38]) Let (X, d) be a complete
metric space and f : X → X be a Banach contraction with constant L. Then the
following conclusions hold:

(i) there exists x∗ ∈ X such that Ff = Ff n = {x∗};
(ii) f is a PO;
(iii) f is a 1

1−L -PO;
(iv) the fixed point problem x = f (x) is well-posed;
(v) the operator f has the Ostrowski property;
(vi) the operator f has the limit shadowing property;
(vii) the operator f has the shadowing property;
(viii) the fixed point equation x = f (x) is Ulam-Hyers stable.

If (X, d) is a metric space, then let us consider a directed graph G :=
(V (G),E(G)), such that the set V (G) of its vertices coincides with X and the set
E(G) of the edges of the graph contains the diagonal Δ := {(x, x) : x ∈ X} of
X×X. Assume also thatG has no parallel edges, which yields that one can identify
G with the pair (V (G),E(G)).

The purpose of this paper is to present an extended study of the fixed point
equation x = f (x) in the case of a metric space endowed with and a directed graph.
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3 Main Results

Let (X, d) be a metric space and G := (V (G),E(G)) be a directed graph.
Throughout this paper we assume that the set V (G) of its vertices coincides withX,
the set E(G) of the edges of the graph contains the diagonal Δ := {(x, x) : x ∈ X}
of X×X andG has no parallel edges. We will say thatG is associated with (X, d).
If, additionally, for every sequence (xn)n∈N, (yn)n∈N inX such that (xn, yn) ∈ E(G)
for every n ∈ N, xn→ x, yn→ y as n→∞, we have that (x, y) ∈ E(G), then we
say that (X, d,G) is a graph metric space.

Let f : X → X be an operator. We define (f × f )(x, y) := (f (x), f (y)), for
(x, y) ∈ X×X and we denote byOf (x) := {f n(x)|n ∈ N} the orbit of f at x ∈ X.

Definition 5 An operator f : X → X is called a Banach G-contraction with
constant L (see Definition 2.1 in [17]) if:

(a) f is edge preserving, i.e., E(G) ∈ I (f × f );
(b) L ∈]0, 1[ and the following implication holds:

(x, y) ∈ E(G) ⇒ d (f (x), f (y)) ≤ Ld(x, y).

If x and y are vertices of G, then a path in G from x to y of length k ∈ N
∗

is a finite sequence (xn)n∈{0,1,2,...,k} of vertices such that x0 = x, xk = y and
(xi−1, xi) ∈ E(G) for i ∈ {1, 2, . . . , k}. Notice that a graph G is connected if there
is a path between any two vertices and it is weakly connected if G̃ is connected,
where G̃ denotes the undirected graph obtained fromG by ignoring the direction of
edges. Notice that G̃ can be view as a directed graph with the set E(G) symmetric.
If G−1 is the graph obtained from G by reversing the direction of edges, i.e.,

E(G−1) = {(x, y) ∈ X ×X : (y, x) ∈ E(G)}, (1)

then, we can write

E(G̃) = E(G) ∪ E(G−1). (2)

In the above context, if f : X→ X is an operator, then we denote

X
f
G := {x ∈ X : (x, f (x)) ∈ E(G)}.

Observe that Xf
G̃
:= {x ∈ X : (x, f (x)) ∈ E(G̃)}. Obvious, in general XfG ⊂ XfG̃,

but for the case of a symmetric graph G we have equality between the above sets.

Definition 6 LetX be a nonempty set,G := (V (G),E(G)) be a directed graph and
f : X→ X be an operator. Then, f is called a generalized G-monotone operator if
(f × f )(E(G̃)) ⊂ E(G̃), i.e., E(G̃) ∈ I (f × f ).
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Notice that any edge preserving operator is generalized G-monotone, but the
reverse implication, in general, does not hold.

Remark 1 Let f : X→ X be an operator such that there exists a constant L ∈]0, 1[
such that the following implication holds:

(b′) (x, y) ∈ E(G̃) ⇒ d (f (x), f (y)) ≤ Ld(x, y).

Notice that, due to the symmetry of the contraction assumption, the above condition
(b′) and condition (b) in Definition 5 are equivalent.

Remark 2 If f : X → X be an operator on a metric space (X, d) endowed with a
directed graph G, then we observe that:

(a) Ff ⊂ XfG;
(b) If f is edge preserving, then:

(i) f (XfG) ⊂ XfG;

(ii) for x ∈ XfG we have Of (x) ⊂ XfG;
(iii) if x∗ ∈ Ff and XGx∗ := {x ∈ X|(x, x∗) ∈ E(G)}, then XGx∗ ∈ I (f ), i.e.,

f (XGx∗) ⊂ XGx∗ .
(c) If f is generalized G-monotone, then:

(i) f (Xf
G̃
) ⊂ Xf

G̃
;

(ii) for x ∈ Xf
G̃

we have Of (x) ⊂ XfG̃;

(iii) if x∗ ∈ Ff , then XG̃x∗ ∈ I (f ), i.e., f (XG̃x∗) ⊂ XG̃x∗ .
We give now some examples of generalized G-monotone operators.

Example 1

(1) Let (X,%) be an ordered set. Any monotone operator with respect to %
(increasing or decreasing) f : X → X is a generalized G-monotone operator
with respect to G := (V (G) := X,E(G)), where E(G) := {(x, y) ∈
X ×X|x % y} or E(G) := {(x, y) ∈ X ×X|y % x}.

(2) Let X and Y be two nonempty sets endowed with a directed graph G1 and
G2, respectively. Let f : X → X be a generalized G1-monotone operator
and g : Y → Y be a generalized G2-monotone operator. Let Z := X ∪ Y
be the disjoint union of the sets X and Y . We consider on Z the following
directed graph G := (V (G),E(G)), where V (G) = V (G1) ∪ V (G2) and
E(G) := E(G1) ∪ E(G2).

In the above conditions, the operator h : Z→ Z defined by

h(z) =
{
f (z), if z ∈ X
g(z), if z ∈ Y
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is generalized G-monotone and Zh
G̃
= Xf

G̃1
∪ Yg

G̃2
.

We introduce now a new class of sets, which will be used in our main theorems.

Definition 7 LetX be a nonempty set andG := (V (G),E(G)) be a directed graph.
Then X is said to be a generalized G-directed set if for each pair of elements x, y ∈
X there exists z ∈ X such that (x, z) and (y, z) are in E(G̃).

If G is a graph such that E(G) is symmetric, then for x ∈ X we denote

[x]G := {y ∈ X : there is a path in G from x to y}.

Before our first main result, we recall the following known concept.

Definition 8 Let (X, d) be a metric space and f : X → X be an operator. Then,
two elements x, y ∈ X are called asymptotically equivalent if

d(f n(x), f n(y))→ 0 as n→∞.

The following result is fundamental in our approach.

Theorem 2 Let (X, d) be a metric space and G := (V (G),E(G)) be a directed
graph associated with X. Let f : X → X be a generalized G-monotone operator.
We suppose:

(i) X is a generalized G-directed set;
(ii) if (x, y) ∈ E(G̃), then x and y are asymptotically equivalent;
(iii) Xf

G̃
	= ∅ and f : Xf

G̃
→ X

f

G̃
is a WPO.

Then, f : X→ X is a PO.

Proof Let x ∈ X be arbitrarily chosen. Let y ∈ Xf
G̃

. For the pair (x, y) ∈ X × X,

by (i), there is z ∈ X such that (x, z), (y, z) ∈ E(G̃). By (ii) it follows that

d(f n(x), f n(z))→ 0 and d(f n(y), f n(z))→ 0, and n→∞.

By (iii) we have that f n(y)→ f∞(y) ∈ Ff as n→∞. Thus, f n(x)→ f∞(y) as
n → ∞, for every x ∈ X. If we denote x∗ := f∞(y) ∈ Ff , then f n(x) → x∗ as
n→∞, for every x ∈ X. If there exits u ∈ Ff with u 	= x∗, then u = f n(u)→ x∗,
a contradiction. As a conclusion, f is a PO.

Remark 3 In particular, if (X, d,%) is an ordered metric space (see [29]) and we
define a graph G by

V (G) = X,E(G) := {(x, y) ∈ X ×X : x % y},

then E(G̃) = X% and the above result reduces to Lemma 4.1 in [29].



686 A. Petruşel and G. Petruşel

In what follows, we will propose some metric assumptions on f which assure
that the following conditions are realized:

(i) (x, y) ∈ E(G̃)⇒ x and y are asymptotically equivalent;
(ii) f : Xf

G̃
→ X

f

G̃
is a WPO.

We recall from [17] that f : X → X is called orbital G-continuous on X
if for all x ∈ X and for any sequence (n(i))i∈N of positive integers such that
(f n(i)(x), f n(i)+1(x)) ∈ E(G) for every i ∈ N, the following implication holds

lim
i→∞ f

n(i)(x) = y ⇒ lim
i→∞ f

n(i)+1(x) = f (y).

If for all x ∈ X and any sequence (xn)n∈N such that (xn, xn+1) ∈ E(G) for every
n ∈ N, the following implication holds

lim
n→∞ xn = x ⇒ lim

n→∞ f (xn) = f (x),

then we say that f is G-continuous on X. Notice that “continuity” implies "G-
continuity" implies “orbital G-continuity”, see [17] for other details.

The next result is known as Cauchy-Toeplitz lemma, see, for example, [39]

Lemma 2 (Cauchy-Toeplitz Lemma) Let (an)n∈N be a sequence in R+, such
that the series

∑

n≥0

an is convergent and (bn)n∈N be a sequence in R+ such that

lim
n→∞ bn = 0. Then

lim
n→∞(

n∑

k=0

an−kbk) = 0.

Now, from Theorem 2, we obtain the following useful result for applications.

Theorem 3 Let (X, d) be a complete metric space and G := (V (G),E(G)) be a
directed graph such that (X, d,G) is a graph metric space. Let f : X → X be a
generalized G-monotone operator. We suppose:

(i) (X,%) is a generalized G-directed set;
(ii) there exists L ∈]0, 1[ such that

d(f (x), f (y)) ≤ Ld(x, y), for every (x, y) ∈ E(G);

(iii) Xf
G̃
	= ∅ and f : X→ X is G-continuous.

Then, the following conclusions hold:

(1) f : X→ X is a PO;
(2) f : Xf

G̃
→ X

f

G̃
is a 1

1−L -PO;
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(3) f : XGx∗ → XGx∗ is L-quasicontraction;
(4) f : XGx∗ → XGx∗ is a

1
1−L -PO;

(5) if (yn)n∈N ⊂ XGx∗ and d(yn, f (yn))→ 0 as n→∞, then yn→ x∗ as n→∞,
i.e., the fixed point problem is well-posed in the sense of Reich and Zaslavski
for f |XG

x∗
;

(6) if (yn)n∈N ⊂ XGx∗ and d(yn+1, f (yn)) → 0 as n → ∞, then yn → x∗ as
n→∞, i.e., f |XG

x∗
has the Ostrowski property.

Proof Notice first that, by the symmetry of the metric assumption on f (see
Remark 1), the condition (ii) is satisfied for all (x, y) ∈ E(G̃).
(1) By (ii) it follows that for every (x, y) ∈ E(G̃), the elements x and y are

asymptotically equivalent. By the generalized G-monotonicity of f and (ii) it
follows that f : Xf

G̃
→ X

f

G̃
is a graphic L-contraction. SinceXf

G̃
is closed inX,

by the graphic contraction principle (see [30]) we have that f n(x)→ f∞(x) as
n→∞, for each x ∈ Xf

G̃
. By the G-continuity of f , we get that f∞(x) ∈ Ff ,

i.e., f : Xf
G̃
→ X

f

G̃
is a WPO. The first conclusion follows by Theorem 2.

(2) By (1) we have that Ff = {x∗}. Let x ∈ Xf
G̃

be arbitrarily chosen. Since

f : Xf
G̃
→ X

f

G̃
is a graphic L-contraction, using Remark 1, for every x ∈ Xf

G̃
,

we have that

d(x, x∗) ≤ d(x, f (x))+ d(f (x), f 2(x))+ · · · + d(f n(x), f n+1(x))

+ d(f n+1(x), x∗)

≤ 1

1− Ld(x, f (x))+ d(f
n+1(x), x∗), for all n ∈ N

∗.

Letting n→∞, we obtain that

d(x, x∗) ≤ 1

1− Ld(x, f (x)), for each x ∈ Xf
G̃
.

Thus f : Xf
G̃
→ X

f

G̃
is a 1

1−L -PO.

(3) Let x ∈ XGx∗ . Then d(f (x), x∗) = d(f (x), f (x∗)) ≤ Ld(x, x∗). Thus, f |XG
x∗

is an L-quasicontraction.
(4) By (1) it follows that f : XGx∗ → XGx∗ is a PO. Then, for every x ∈ XGx∗ , we

have d(x, x∗) ≤ d(x, f (x))+ d(f (x), x∗) ≤ d(x, f (x))+ Ld(x, x∗). Thus

d(x, x∗) ≤ 1

1− Ld(x, f (x)), for all x ∈ XGx∗ .

(5) Let (yn)n∈N ⊂ Xx∗ such that d(yn, f (yn)) → 0 as n → ∞. Then, for every
n ∈ N, we have
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d(yn, x
∗) ≤ d(yn, f (yn))+ d(f (yn), x∗) ≤ d(yn, f (yn))+ Ld(yn, x∗).

Then,

d(yn, x
∗) ≤ 1

1− Ld(yn, f (yn))→ 0 as n→∞.

(6) Let (yn)n∈N ⊂ XGx∗ such that d(yn+1, f (yn))→ 0 as n→∞. Then, for every
n ∈ N, we have

d(yn+1, x
∗) ≤ d(yn+1, f (yn))+d(f (yn), x∗) ≤ d(yn+1, f (yn))+Ld(yn, x∗)

≤ d(yn+1, f (yn))+ Ld(yn, f (yn−1))+ L2d(yn−1, x
∗) ≤ · · ·

≤
n∑

k=0

Ln−kd(yk+1, f (yk))+ Ln+1d(y0, x
∗).

The conclusion follows by Cauchy-Toeplitz Lemma.

Finally, the following Gronwall type lemma takes place for in a graph metric
space.

Theorem 4 Let (X, d,G) be a graph metric space and f : X→ X be an operator.
We suppose:

(a) f is a WPO;
(b) f is edge preserving.

Then, we have:

(i) the operator f∞ is edge preserving;
(ii) if, additionally, G has the following transitivity property:

(x, y), (y, z) ∈ E(G)⇒ (x, z) ∈ E(G),

then the following implication holds

x ∈ Xf
G̃
⇒ (x, f∞(x)) ∈ E(G̃).

Proof

(i) Let (x, y) ∈ E(G). By (b) we have (f n(x), f n(y)) ∈ E(G), for every n ∈ N.
By (a) we know that f n(x) → f∞(x) and f n(y) → f∞(y) as n → ∞. By
the graph metric space condition we obtain (f∞(x), f∞(x)) ∈ E(G).

(ii) Let x ∈ Xf
G̃

be arbitrary. Then (x, f (x)) ∈ E(G) ∪ E(G−1). Assume first that

(x, f (x)) ∈ E(G). By (b) we obtain that (f n(x), f n+1(x)) ∈ E(G), for every
n ∈ N. Thus, (x, f n(x)) ∈ E(G) for every n ∈ N. By the graph metric space



Fixed Point Theory in Graph Metric Spaces 689

condition we obtain (x, f∞(x)) ∈ E(G). The case (x, f (x)) ∈ E(G−1) is
similar.

Remark 4 In particular, if f is a PO and we denote by x∗f its unique fixed point,
then the above result takes place with f∞(x) = x∗f , for each x ∈ X.

Remark 5 If (X, d,%) be an ordered metric space and we define the graph G by
V (G) := X and E(G) := {(x, y) ∈ X × X|x % y}, then Theorem 4 reduces to
Lemma 1.

Remark 6

(1) It is an open problem to prove the above result under the weaker condition of
orbital G-continuity of f on X.

(2) Another open problem is to extend the above result by considering the case of
a ϕ-contraction in a graph metric space, see [29].

(3) Finally, a nice research direction is to extend the above results to different
generalized metric spaces endowed with a graph.
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Approximate Solution of Fredholm
Integral and Integro-Differential
Equations with Non-Separable Kernels

E. Providas

Abstract This chapter deals with the approximate solution of Fredholm integral
equations and a type of integro-differential equations having non-separable kernels,
as they appear in many applications. The procedure proposed consists of firstly
approximating the non-separable kernel by a finite partial sum of a power series
and then constructing the solution of the degenerate equation explicitly by a direct
matrix method. The method, which is easily programmable in a computer algebra
system, is explained and tested by solving several examples from the literature.

1 Introduction

Integral and integro-differential equations appear in many applications in sciences
and engineering. Integral equations have been studied extensively and there is today
accumulated knowledge which one can find in good treatises, see, for example,
[6, 10, 16]. Integro-differential equations are a less researched topic and usually
they occupy a separate chapter in integral equations text books [13, 15]. Integral
and Integro-differential equations are usually solved by numerical methods, see,
for example, the monograph [1]. Direct solution methods have also been used, as
it can be seen in the above-mentioned references, in the cases where the kernels
are degenerate. Recently, the author with his co-authors developed a direct matrix
method for solving exactly integro-differential equations with separable kernels [7–
9, 12]. However, in many engineering applications, such as nonlocal or gradient
elasticity [4, 5, 11, 14] and hydrodynamics [2], integral and integro-differential
equations emerge with non-separable kernels. The aim of this article is to propose a
procedure by which the non-separable kernel is approximated by a degenerate one
and then solving the integral or integro-differential equation explicitly by the direct
matrix method above.
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In Sect. 2, we present a direct matrix method for obtaining in closed form the
unique solution of the Fredholm integral equation

Iu(x) = u(x)−
∫ b

a

K(x, s)u(s)ds = f (x), x ∈ [a, b], (1)

where I : C[a, b] → C[a, b] is a linear operator, K(x, s) is a given kernel
function which is assumed to be continuous on the closed square Q(a, b) =
{(x, s) : a ≤ x ≤ b, a ≤ s ≤ b} and separable, f (x) ∈ C[a, b] is an input free
function, and u(x) is the unknown function describing the response of the system
modeled by (1). Also, we propose a technique for establishing uniqueness and
constructing in closed form the solution of the Fredholm integro-differential
equation

Bu(x) = Âu(x)−
∫ b

a

K(x, s)Âu(s)ds = f (x), x ∈ [a, b],

D(B) = D(Â), (2)

where Â : C[a, b] → C[a, b] is a bijective linear differential operator incorporating
initial or boundary conditions, and B : C[a, b] → C[a, b] is a linear operator with
D(B) = D(Â). As an example of equations of this kind, we refer to the case of
modeling the Euler-Bernoulli beams using Eringen’s integral formulation [14].

In Sect. 3, we find approximate solutions to Fredholm integral equations with
non-separable kernel functions K(x, s). The approach we follow consists of repre-
senting K(x, s) as a power series at a point and replacing K(x, s) in the integral
equation by the partial sum Kn(x, s) of the power series. The resulting degenerate
integral equation is then solved by the direct matrix method.

The same procedure is employed in Sect. 4 to acquire an approximate solution of
Fredholm integro-differential equations with non-separable kernels.

Finally, some conclusions regarding the efficiency of the method proposed are
quoted in Sect. 5.

2 Direct Matrix Methods

Let the integral equation (1) and assume that the kernel K(x, s) is a separable
function which has the specific form

K(x, s) =
n∑

k=1

gk(x)hk(s), x, s ∈ [a, b], (3)
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where gk(x), hk(s) ∈ C[a, b]. Also, it is assumed without loss of generality that
the sets of the functions {gk(x)} and {hk(x)} are linearly independent; otherwise,
the number of functions should be lessened. Then the integral equation (1) becomes

Iu(x) = u(x)−
n∑

k=1

gk(x)

∫ b

a

hk(s)u(s)ds = f (x), x ∈ [a, b]. (4)

We introduce the vector of functions

g = (
g1 g2 . . . gn

)
, gk = gk(x) ∈ C[a, b], k = 1, 2, . . . , n, (5)

and the vector of linear bounded functionals

2(u) =

⎛

⎜⎜⎜⎝

21(u)

22(u)
...

2n(u)

⎞

⎟⎟⎟⎠ , 2k(u) =
∫ b

a

hk(s)u(s)ds, k = 1, 2, . . . , n, (6)

and write Eq. (4) as

Iu = u− g2(u) = f, (7)

where f = f (x), u = u(x) ∈ C[a, b].
For the solution of (7), we state and prove the next theorem where use is made of

the notations

2(g) =

⎡

⎢⎢⎢⎣

21(g1) 21(g2) · · · 21(gn)

22(g1) 22(g2) · · · 22(gn)
...

...
. . .

...

2n(g1) 2n(g2) · · · 2n(gn)

⎤

⎥⎥⎥⎦ , 2(f ) =

⎛

⎜⎜⎜⎝

21(f )

22(f )
...

2n(f )

⎞

⎟⎟⎟⎠ , (8)

In is the n× n identity matrix and 0 the zero column vector. We note that

2(gN) = 2(g)N, (9)

where N is an n × m, m ∈ N, constant matrix. Finally, it is recalled that a linear
operator P : C[a, b] → C[a, b] is said to be correct if P is bijective and its inverse
P−1 is bounded on C[a, b].
Theorem 1 In C[a, b], let the vectors g and 2 be defined as in (5) and (6),
respectively, and I : C[a, b] → C[a, b] be the linear operator

Iu = u− g2(u). (10)
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Then the operator I is bijective on C[a, b] if and only if

det W = det[In −2(g)] 	= 0, (11)

and the unique solution of the integral equation Iu = f , for any f ∈ C[a, b], is
given by the formula

u = I−1f = f + gW−12(f ). (12)

The operator I is correct.

Proof

(i) Let det W 	= 0 and u ∈ kerI. Then,

Iu = u− g2(u) = 0, (13)

and by acting by the vector 2 on both sides of (13), we get

2(u− g2(u)) = [In −2(g)]2(u) = W2(u) = 0, (14)

which implies that 2(u) = 0. Substitution into (13) yields Iu = u = 0, which
means that the kerI = {0} and hence the operator I is injective. Conversely,
we prove that if I is an injective operator then det W 	= 0, or equivalently, if
det W = 0, then I is not injective. Let det W = 0. Then there exists a nonzero
vector c = col(c1, . . . , cn) such that Wc = 0. Let the element u0 = gc and
note that u0 	= 0; otherwise, u0 = gc = 0 implies Wc = [In − 2(g)]c =
c−2(gc) = c = 0. From Eq. (13), we get

Iu0 = gc− g2(g)c = g[In −2(g)]c = gWc = g0 = 0, (15)

which means that kerI 	= 0 and so I is not injective.

By applying now the vector 2 on Iu = f , we have

[In −2(g)]2(u) = W2(u) = 2(f ). (16)

Since det W 	= 0 it follows that 2(u) = W−12(f ) and hence

Iu = u− gW−12(f ) = f, (17)

from where formula (12) is obtained. Moreover, since the input function f ∈
C[a, b] is arbitrary, we have R(I) = C[a, b] which means that I is bijective.

Lastly, in (12) the functionals 2k are bounded on C[a, b] and hence the operator
I−1 is bounded. Thus, if the operator I is bijective then it is correct. -.
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Let now the mth order linear differential operator A : C[a, b] → C[a, b]:

Au = am(x)d
mu

dxm
+ am−1(x)

dm−1u

dxm−1 + · · · + a1(x)
du

dx
+ a0(x), (18)

where the coefficients ai(x) ∈ C[a, b], i = 0, . . . , m, am(x) 	= 0, and Â :
C[a, b] → C[a, b] be a restriction of A on D(Â) by specifying initial or boundary
conditions. We assume that Â is a bijective operator and that the inverse Â−1 is
known. Further, let K(x, s) be degenerate as in (3), and the vectors g and 2 be as
in (5) and (6), respectively. Then the Fredholm integro-differential equation (2) can
be put in the form

Bu = Âu− g2(Âu) = f, D(B) = D(Â). (19)

The existence and uniqueness criteria and the solution of the integro-differential
equation (19) are provided by the following theorem.

Theorem 2 Let the restriction Â : C[a, b] → C[a, b] be a bijective linear operator
and Â−1 its inverse, the vectors g and 2 as in (5) and (6), respectively, and B :
C[a, b] → C[a, b] the linear operator

Bu = Âu− g2(Âu), D(B) = D(Â). (20)

Then the following statements are true:

(i) The operator B is bijective on C[a, b] if and only if

det W = det[In −2(g)] 	= 0, (21)

and the unique solution to problem Bu = f , for any f ∈ C[a, b], is given by
the formula

u = B−1f = Â−1f + Â−1gW−12(f ). (22)

(ii) If in addition the inverse operator Â−1 is bounded on C[a, b], then the operator
B correct.

Proof

(i) Set Âu = y, y ∈ C[a, b], and express Bu = f as

y − g2(y) = f. (23)

This is an integral equation of the type (7). From Theorem 1 follows that
Eq. (23) has a unique solution if and only if

det W = det[In −2(g)] 	= 0, (24)
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and that its unique solution is given by

y = f + gW−12(f ). (25)

Acting by the operator Â−1 on both sides of (25), we get

Â−1y = Â−1f + Â−1gW−12(f ). (26)

and hence

u = Â−1f + Â−1gW−12(f ), (27)

which is the solution formula (22). Furthermore, since f ∈ C[a, b] is arbitrary,
we have R(B) = C[a, b] which means that B is bijective.

(ii) Suppose that (21) is true and that the operator Â−1 is bounded on C[a, b]. Then
by (i) the operator B is bijective and the unique solution to Bu = f is given
by (22). Additionally, in (22) the operator Â−1 and the functionals 21, . . . , 2n
are bounded on C[a, b] and hence the operator B−1 is bounded too. Therefore
the operator B is correct.

-.

3 Approximate Solution of Integral Equations with
Non-Separable Kernels

Let the integral equation (1) and suppose the kernel function K(x, s) is non-
separable, but it can be represented as a power series in s at a point s0 such that

K(x, s) =
∞∑

k=0

pk(x)(s − s0)k, (28)

where the functions pk(x) are continuous functions. We truncate this series and take
the partial sum of the first n+ 1 terms, namely

Kn(x, s) =
n+1∑

k=1

pk−1(x)(s − s0)k−1. (29)

We replace the kernel K(x, s) in (1) by (29) to obtain the degenerate Fredholm
integral equation

Inũ(x) = ũ(x)−
n+1∑

k=1

pk−1(x)

∫ b

a

(s−s0)k−1ũ(s)ds = f (x), x ∈ [a, b], (30)
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where In : C[a, b] → C[a, b] is a linear operator. Further, we define the vectors

g = (
g1 g2 . . . gn+1

) = (
p0(x) p1(x) . . . pn(x)

)
, (31)

and

2(ũ) =

⎛

⎜⎜⎜⎝

21(ũ)

22(ũ)
...

2n+1(ũ)

⎞

⎟⎟⎟⎠ , 2k(ũ) =
∫ b

a

(s − s0)k−1ũ(s)ds, k = 1, 2, . . . , n+ 1,

(32)
and write Eq. (30) in the compact form

Inũ = ũ− g2(ũ) = f. (33)

The solution ũ = I−1
n f of (33) can be obtained by applying Theorem 1. This

solution is an approximate solution to (1) having a non-separable kernel K(x, s)
which was expressed as in (29).

An estimation of the error |u − ũ| can be found by using standard analysis
techniques [6, 16]. A similar procedure would have resulted if we had used a power
series in x or a double power series.

Example 1 Let us derive an approximate solution of the Fredholm integral equation
of the second kind

u(x)−
∫ 1/2

0
e−x2s2

u(s)ds = f (x), 0 ≤ x ≤ 1

2
, (34)

for any f (x) ∈ C[0, 1
2 ]. The kernel is non-separable and therefore we take its Taylor

series expansion in the variable s (or in x) about the point 0, viz.

K(x, s) = e−x2s2 = 1− x2s2 + 1

2
x4s4 − 1

6
x6s6 · · ·

=
∞∑

k=0

(−1)k

k! x2ks2k.

By taking the partial sum

Kn(x, s) =
n+1∑

k=1

(−1)k−1

(k − 1)! x
2(k−1)s2(k−1),
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and placing it in (34), we get the companion equation

ũ(x)−
n+1∑

k=1

(−1)k−1

(k − 1)! x
2(k−1)

∫ 1/2

0
s2(k−1)ũ(s)ds = f (x), 0 ≤ x ≤ 1

2
. (35)

We define the vectors

g = (
g1(x) g2(x) . . . gn+1(x)

) =
(

1 −x2 . . .
(−1)n

n! x
2n
)
,

and

2(ũ(s)) =

⎛

⎜⎜⎜⎝

21(ũ(s))

22(ũ(s))
...

2n+1(ũ(s))

⎞

⎟⎟⎟⎠ =

⎛

⎜⎜⎜⎜⎝

∫ 1/2
0 ũ(s)ds∫ 1/2

0 s2ũ(s)ds
...∫ 1/2

0 s2nũ(s)ds

⎞

⎟⎟⎟⎟⎠
,

and write (35) as

Inũ(x) = ũ(x)− g(x)2(ũ(s)) = f (x). (36)

Then, we construct the matrix

2(g) =

⎡

⎢⎢⎢⎣

21(g1(s)) 21(g2(s)) · · · 21(gn+1(s))

22(g1(s)) 22(g2(s)) · · · 22(gn+1(s))
...

...
. . .

...

2n+1(g1(s)) 2n+1(g2(s)) · · · 2n+1(gn+1(s))

⎤

⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎢⎢⎢⎣

21(1) 21(−s2) · · · 21

(
(−1)n

n! s
2n
)

22(1) 22(−s2) · · · 22

(
(−1)n

n! s
2n
)

...
...

. . .
...

2n+1(1) 2n+1(−s2) · · · 2n+1

(
(−1)n

n! s
2n
)

⎤

⎥⎥⎥⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

∫ 1/2
0 ds − ∫ 1/2

0 s2ds · · · (−1)n

n!
∫ 1/2

0 s2nds

∫ 1/2
0 s2ds − ∫ 1/2

0 s4ds · · · (−1)n

n!
∫ 1/2

0 s2(n+1)ds

...
...

. . .
...

∫ 1/2
0 s2nds − ∫ 1/2

0 s2(n+1)ds · · · (−1)n

n!
∫ 1/2

0 s4nds

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

,

and thus the matrix
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W = In+1 −2(g).

If det W 	= 0, then Eq. (36) has exactly one solution. To obtain the solution, we put
up the vector

2(f ) =

⎛

⎜⎜⎜⎝

21(f )

22(f )
...

2n+1(f )

⎞

⎟⎟⎟⎠ =

⎛

⎜⎜⎜⎜⎝

∫ 1/2
0 f (s)ds∫ 1/2

0 s2f (s)ds
...∫ 1/2

0 s2nf (s)ds

⎞

⎟⎟⎟⎟⎠
,

and by Theorem 1 compute

ũ = f + gW−12(f ).

Let f (x) = 1 [10]. Then for n = 2, n = 4, and n = 6, we have

K2(x, s) = 1− x2s2 + 1

2
x4s4,

K4(x, s) = 1− x2s2 + 1

2
x4s4 − 1

6
x6s6 + 1

24
x8s8,

K6(x, s) = 1− x2s2 + 1

2
x4s4 − 1

6
x6s6 + 1

24
x8s8 − 1

120
x10s10 + 1

720
x12s12,

and the approximate solutions

ũ2 = 1.993199− 0.082541x2 + 0.006183x4,

ũ4 = 1.993198− 0.082541x2 + 0.006183x4 − 0.000368x6 + 0.000018x8,

ũ6 = 1.993198− 0.082541x2 + 0.006183x4 − 0.000368x6 + 0.000018x8

−7.309486× 10−7x10 + 2.576526× 10−8x12,

respectively, where all coefficients have been rounded up to six decimal digits. The
results are in very good agreement with those obtained in [10] where the same
problem has been solved for n = 2.

Example 2 Consider the inhomogeneous Fredholm integral equation

u(x)− 1

2

∫ 1

−1
sin

(πsx
2

)
u(s)ds = f (x), −1 ≤ x ≤ 1, (37)

where f (x) ∈ C[−1, 1]. The kernel is non-separable, but it can be represented in
Taylor series in x (or in s) about the point 0, namely
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K(x, s) = sin
(πsx

2

)
= πsx

2
− π

3s3x3

48
+ π

5s5x5

3840
· · ·

=
∞∑

k=0

(−1)k
π2k+1s2k+1x2k+1

22k+1(2k + 1)! .

After replacing K(x, s) in (37) with the partial sum

Kn(x, s) =
n+1∑

k=1

(−1)k−1π
2k−1s2k−1x2k−1

22k−1(2k − 1)! ,

we get the auxiliary equation

ũ(x)− 1

2

n+1∑

k=1

(−1)k−1 π2k−1x2k−1

22k−1(2k − 1)!
∫ 1

−1
s2k−1ũ(s)ds = f (x), −1 ≤ x ≤ 1.

(38)
We set up the vectors

g = (
g1(x) g2(x) . . . gn+1(x)

) = 1

2

(
πx
2 −π3x3

48 . . . (−1)n π
2n+1x2n+1

22n+1(2n+1)!
)
,

and

2(ũ(s)) =

⎛

⎜⎜⎜⎝

21(ũ(s))

22(ũ(s))
...

2n+1(ũ(s))

⎞

⎟⎟⎟⎠ =

⎛

⎜⎜⎜⎜⎝

∫ 1
−1 sũ(s)ds∫ 1
−1 s

3ũ(s)ds
...∫ 1

−1 s
2n+1ũ(s)ds

⎞

⎟⎟⎟⎟⎠
,

and write (38) as

Inũ(x) = ũ(x)− g(x)2(ũ(s)) = f (x). (39)

Then, we form the matrix

2(g) =

⎡

⎢⎢⎢⎣

21(g1(s)) 21(g2(s)) · · · 21(gn+1(s))

22(g1(s)) 22(g2(s)) · · · 22(gn+1(s))
...

...
. . .

...

2n+1(g1(s)) 2n+1(g2(s)) · · · 2n+1(gn+1(s))

⎤

⎥⎥⎥⎦

and compute the matrix

W = In+1 −2(g).
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If det W 	= 0, then Eq. (39) admits exactly one solution. By setting up the vector

2(f ) =

⎛

⎜⎜⎜⎝

21(f )

22(f )
...

2n+1(f )

⎞

⎟⎟⎟⎠ ,

we can determine the solution from Theorem 1, which is

ũ = f + gW−12(f ).

Let f (x) = x3 [16], which is continuous in [−1, 1]. Then, for n = 2, n = 4, and
n = 6, we get

K2(x, s) = πsx

2
− π

3s3x3

48
+ π

5s5x5

3840
,

K4(x, s) = K2(x, s)− π
7s7x7

645120
+ π9s9x9

185794560
,

K6(x, s) = K4(x, s)− π11s11x11

81749606400
+ π13s13x13

51011754393600
,

and the approximate solutions

ũ2(x) = 0.565621x + 0.847692x3 + 0.014047x5,

ũ4(x) = 0.565421x + 0.847751x3 + 0.014042x5 − 0.000660x7 + 0.000019x9,

ũ6(x) = 0.565421x + 0.847751x3 + 0.014042x5 − 0.000660x7 + 0.000019x9

−3.627733× 10−7x11 + 5.024528× 10−9x13,

respectively, where the coefficients have been rounded up to six decimal places.
The same problem is solved in [16] for n = 2 using other techniques such as the
resolvent kernel, Simpson’s rule, or Gaussian quadrature. The results obtained here
for n = 2 are identical with those reported in [16] with six decimal digits.

4 Approximate Solution of Integro-Differential Equations
with Non-Separable Kernels

Let the integro-differential equation (2) with a kernel function K(x, s) which is
non-separable, but it can be expanded in a power series in x at a point x0

K(x, s) =
∞∑

k=0

hk(s)(x − x0)
k, (40)
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where the functions hk(s) are continuous functions. We consider the partial sum of
the first n+ 1 terms

Kn(x, s) =
n+1∑

k=1

hk−1(s)(x − x0)
k−1, (41)

and place it in (2) instead ofK(x, s). As a result, we obtain the degenerate Fredholm
integro-differential equation

Bnũ(x) = Âũ(x)−
n+1∑

k=1

(x − x0)
k−1

∫ b

a

hk−1(s)Âũ(s)ds = f (x), x ∈ [a, b],
(42)

where Bn : C[a, b] → C[a, b] is a linear operator with D(Bn) = D(Â). Define the
vectors

g = (
g1 g2 . . . gn+1

) = (
1 x − x0 . . . (x − x0)

n
)
, (43)

and

2(Âũ) =

⎛

⎜⎜⎜⎝

21(Âũ)

22(Âũ)
...

2n+1(Âũ)

⎞

⎟⎟⎟⎠ , 2k(Âũ) =
∫ b

a

hk−1(s)Âũ(s)ds, k = 1, 2, . . . , n+ 1,

(44)
and formulate Eq. (42) as

Bnũ = Âũ− g2(Âũ) = f. (45)

By using Theorem 2, we can compute the solution ũ = B−1
n f of (45), which

is an approximate solution of Eq. (2) having the non-separable kernel K(x, s)
approximated by (41).

As before, an evaluation of the error |u − ũ| can be found by using standard
analysis techniques [6, 16]. A similar procedure results if one uses a power series in
s or a double power series.

Example 3 Consider the Fredholm integro-differential equation

u′(x)−
∫ 1

0
exsu′(s)ds = f (x), 0 ≤ x ≤ 1, u(0) = 1, (46)

for an input function f (x) ∈ C[0, 1]. By means of v(x) = u(x) − 1, we can
transform this equation to the following one with a homogeneous condition
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v′(x)−
∫ 1

0
exsv′(s)ds = f (x), 0 ≤ x ≤ 1, v(0) = 0. (47)

The kernel is non-separable, but it can be represented as Taylor series in x (or in s)
about 0 as

K(x, s) = exs = 1+ sx + 1

2
s2x2 + 1

6
s3x3 + · · ·

=
∞∑

k=0

skxk

k! .

Let the partial sum

Kn(x, s) =
n+1∑

k=1

sk−1xk−1

(k − 1)! ,

which when is placed in (47) instead of K(x, s) yields the auxiliary equation

ṽ′(x)−
n+1∑

k=1

xk−1
∫ 1

0

sk−1

(k − 1)! ṽ
′(s)ds = f (x), 0 ≤ x ≤ 1. (48)

Take the operator Â : C[0, 1] → C[0, 1] to be

Âṽ(x) = ṽ′(x), D(Â) = {ṽ(x) ∈ C1[0, 1] : ṽ(0) = 0},

which is bijective and its inverse is

Â−1f (x) =
∫ x

0
f (s)ds, f (x) ∈ C[0, 1].

Set up the vectors

g = (
g1(x) g2(x) . . . gn+1(x)

) = (
1 x . . . xn

)
,

and

2(Âṽ(s)) =

⎛

⎜⎜⎜⎜⎜⎜⎝

21 (Âṽ(s))

22 (Âṽ(s))

...

2n+1 (Âṽ(s))

⎞

⎟⎟⎟⎟⎟⎟⎠
=

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

∫ 1
0 Âṽ(s)ds

∫ 1
0 s Âṽ(s)ds

...

∫ 1
0
sn

n! Âṽ(s)ds

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

,
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and write (48) as

Âṽ(x)− g(x)2(Âṽ(s)) = f (x). (49)

Form the matrix

2(g) =

⎡

⎢⎢⎢⎣

21(g1(s)) 21(g2(s)) · · · 21(gn+1(s))

22(g1(s)) 22(g2(s)) · · · 22(gn+1(s))
...

...
. . .

...

2n+1(g1(s)) 2n+1(g2(s)) · · · 2n+1(gn+1(s))

⎤

⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎣

21(1) 21(s) · · · 21(s
n)

22(1) 22(s) · · · 22(s
n)

...
...

. . .
...

2n+1(1) 2n+1(s) · · · 2n+1(s
n)

⎤

⎥⎥⎥⎦

and then the matrix

W = In+1 −2(g).

If det W 	= 0, then Eq. (49) has exactly one solution. To obtain the solution, we
construct the vector

2(f ) =

⎛

⎜⎜⎜⎜⎜⎜⎝

21 (f )

22 (f )

...

2n+1 (f )

⎞

⎟⎟⎟⎟⎟⎟⎠
=

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

∫ 1
0 f (s)ds

∫ 1
0 sf (s)ds

...

∫ 1
0

sn

n! f (s)ds

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

,

and by Theorem 2 compute

ṽ = Â−1f + Â−1gW−12(f ) and then ũ = ṽ + 1.

Let

f (x) = ex + 1− ex+1

x + 1
, 0 ≤ x ≤ 1,

as in a comparable problem in [3]. Then Eq. (46) admits the exact solution u(x) =
ex . We take Taylor series expansions for both K(x, s) and f (x) in x around 0. For
n = 2, we have
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K2(x, s) = 1+ sx + 1

2
s2x2, f2(x) = 2− e − (e − 3)x2

2
,

and analogous expressions for n = 4 and n = 8. The corresponding solutions are as
follows

ũ2 = 1.0+ 1.184093x + 0.542764x2 + 0.175518x3,

ũ4 = 1.0+ 1.005793x + 0.501306x2 + 0.166926x3 + 0.041710x4 + 0.008340x5,

ũ8 = 1.0+ 1.000001x + 0.500000x2 + 0.166667x3 + 0.0416667x4

+0.008333x5 + 0.001389x6 + 0.000198x7 + 0.000025x8 + 0.000003x9,

respectively, where all coefficients have been rounded up to six decimal digits. The
results are of high accuracy and agree with the exact solution u(x) = ex .

5 Conclusions

An efficient matrix procedure for solving Fredholm integral and integro-differential
equations has been presented. The procedure involves the approximation of the
non-separable kernel by a degenerate one, such as the partial sum of a power
series, and the application of a direct matrix method to obtain the solution. We
have programmed the method into Maxima computer algebra system and solved
several example problems. In all cases the results obtained are of very high accuracy.
The novelty and the main advantage of the method is the management of the
computations involved and that it can be repeated many times with easiness and
a large number of terms of the series.
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Ordinary, Super and Hyper Relators Can
Be Used To Treat the Various
Generalized Open Sets in a Unified Way

Themistocles M. Rassias and Árpád Száz

Abstract If R is a family of relations on X to Y , U is a family of relations on
P(X) to Y , and V is a family of relations on P(X) to P(Y ), then we say that R
is an ordinary relator, U is a super relator, and V is a hyper relator on X to Y .

We show that the X = Y , U = {U } and V = {V } particular case of the
non-conventional three relator space (X, Y )(R, U, V ) can be used to treat, in
a unified way, the various generalized open sets studied by a great number of
topologists.

1 Motivations

If T is a family of subsets of a set X such that T is closed under finite
intersections and arbitrary unions, then the family T is called a topology on X,
and the ordered pair X(T ) = (X, T ) is called a topological space.

The members of T are called the open subsets of X. While, the members of
F = {Ac : A ∈ T }, where Ac = X \ A, are called the closed subsets of X.
Moreover, the members of T ∩ F are called the clopen subsets of X.

Since ∅ = ⋃ ∅ and X = ⋂ ∅, we necessarily have {∅, X} ⊆ T ∩ F.
Therefore, if in particular T = {∅ , X}, then T is called minimal [78] instead of
indiscrete. While, if T ∩ F = {∅ , X}, then T is called connected [119, p. 31].

For a subset A of X (T ), the sets A◦ = int(A) = ⋃
T ∩P(A),

A− = cl(A) = int( Ac)c and A† = res(A) = cl(A) \ A
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are called the interior, closure and residue of A, respectively.
Thus, − is a Kuratowski closure operation on P(X). That is, ∅− = ∅, and −

is extensive, idempotent and additive in the sense that, for any A , B ⊆ X, we have
A ⊆ A−, A−− = A− and (A ∪ B)− = A− ∪ B−.

In particular, the members of the families

D = {
A ⊆ X : A− = X }

and N = {
A ⊆ X : A−◦ = ∅ }

are called the dense and rare (or nowhere dense) subsets of X(T ), respectively.
In 1922, a subset A of a closure space X(−) was called regular open by

Kuratowski [47] if A = A−◦. While, in 1937, a subset A of a topological space
X (T ) was called regular open by Stone [83] if A = B ◦ for some B ∈ F.

The importance of regular open subsets of X (T ) lies mainly in the fact that
their family forms a complete Boolean algebra [35, p. 66] with respect to the
operations defined by A′ = A−c , A ∧ B = A ∩ B and A ∨ B = (A ∪ B)′′ .

In 1982, a subset A of X(T ) was called preopen by Mashhour et al. [58] if
A ⊆ A−◦. However, by Dontchev [25], preopen sets, under different names, were
much earlier studied by several mathematicians.

For instance, in 1964, Corson and Michael [12] called a subset A of X(T )
locally dense if it is a dense subset of some V ∈ T in the sense that A ⊆ V ⊆ A−.
Moreover, they noted that this property is equivalent to the inclusion A ⊆ A−◦.

This equivalence was later also stated by Jun et al. [41]. Moreover, Ganster [31]
proved that A is preopen if and only if there exist V ∈ T and B ∈ D such that
A = V ∩ B. ( See also Dontchev [25].)

In 1963, a subset A of X (T ) was called semi-open by Levine [52] if there
exists V ∈ T such that V ⊆ A ⊆ V −. First of all, he showed that the set A is
semi-open if and only if A ⊆ A◦−.

Moreover, he also proved that if A is a semi-open subset of X(T ), then there
exist V ∈ T and B ∈ N such that A = V ∪ B and V ∩ B = ∅. In addition, he
also noted that the converse statement is false.

Levine’s statement closely resembles a famous stability theorem of Hyers [39]
which says that an ε-approximately additive function of one Banach space to
another is the sum of an additive function and an ε-small function.

Analogously to the paper of Hyers, Levine’s paper has also attracted the interest
of a surprisingly great number of mathematicians. For instance, by the Google
Scholar, it has been cited by 3036 works.

Moreover, the above statement of Levine was improved by Dlaska et al. [24]
who observed that a subset A of X(T ) is semi-open if and only if there exist
V ∈ T and B ⊆ V † such that A = V ∪ B.

The latter observation was later reformulated, in a more convenient form, by
Duszyński and Noiri [26] who noted that a subset A of X(T ) is semi-open if and
only if there exists B ⊆ A◦ † such that A = A◦ ∪ B.

In particular, in 1965 and 1971, Njåstad [64] and Isomichi [40], being not
aware of the paper of Levine, studied semi-open sets under the names β-sets and
subcondensed sets, respectively.
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Moreover, Njåstad called a subset A of X(T ) to be an α-set if A ⊆ A◦−◦.
And, he proved that the set A is an α-set if and only if there exist V ∈ T and
B ∈ N such that A = V \ B.

He also proved that A is an α-set if and only if its intersection with every β-set
is a β–set. Thus, the family of all α-sets is a topology. The fact that the semi-open
sets form only a generalized topology was already noticed by Levine.

A further important property of α-sets was established by Noiri [65] and Reilly
and Wamanamurthy [77], in 1984 and 1985, respectively, who proved that a set is
α-open if and only if it is both preopen and semi-open.

In 1983, the subset A was called β-open by Abd El-Monsef et al. [1] if A ⊆
A−◦−. Moreover, in 1986 Andrijević [2] used the term semi-preopen instead of
β-open without knowing of [1].

Actually, Andrijević called a subset A of X(T ) to be semi-preopen if there
exists a preopen subset V of X(T ) such that V ⊆ A ⊆ V −. And, he showed that
this is equivalent to the inclusion A ⊆ A−◦−.

Moreover, in 1996, a subset A of X(T ) was called b-open by Andrijević [3]
if A ⊆ A◦− ∪ A−◦. And, he proved that A is b-open if and only if there exist a
preopen subset B and a semi-open subset C of X(T ) such that A = B ∪ C .

In 1961, a subset A of a topological space X (T ) was said to have property Q
by Levine [51] if A◦− = A−◦. He proved that A has property Q if and only if
there exist V ∈ T ∩F and B ∈ N such that A = VΔB. ( See also [8, 11].)

While, in 1991, a subset A of X(T ) was called a δ-set by Chattopadhyay and
Bandyopadhyay [9] if A−◦ ⊆ A◦−. Moreover, in 2001, δ-open sets, under the
name quasi-open sets, were more systematically studied by Császár [16, 17].

In 1992, Ganster et al. [32] already proved that A is a δ-set if and only if
A = V ∪ N for some V ∈ T and B ∈ N. Thus, δ-sets coincide with the simply
open sets of Biswas [6] and Neubrunnová [63]. ( See also [46, 61, 62].)

Actually, such sets were also first studied by Kuratowski [48, p. 69] in a more
general framework. By his definition, a subset A of X(T ) has to be called open
modulo nowhere dense sets if there exists V ∈ T such that AΔV ∈ N.

In our former papers [75, 76], we have shown that the above definitions and
several theorems on generalized open sets can be naturally extended not only to
generalized topological and closure spaces, but also to relator spaces [85, 98].

Generalized neighbourhood, topological, closure and proximity spaces have
mainly been studied by [7, 18, 21, 23, 48, 59, 79]. While, generalized uniformity
spaces have formerly been also studied by [30, 60, 70, 120]. (See also [5, 10, 23].)

Now, extending some ideas of Gargouri and Rezgui [34], Premska [71, 72] and
our former papers [73, 74], we shall show that the various generalized open sets
can even be much better studied in some non-conventional three relator spaces.

2 Preliminaries

If R ⊆ X×Y , then we say that R is a relation or an ordinary relation on X to
Y . Namely, if U is a relation on P(X) to Y , and V is a relation on P (X) to
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P (Y ), then we may naturally say that U is a super relation and V is a hyper
relation on X to Y .

For any x ∈ X and A ⊆ X, the sets R (x) = {y ∈ Y : (x , y) ∈ R}
and R [A ] = ⋃

x∈A R (x) will be called the images or neighbourhoods of x
and A under R, respectively. Thus, the sets U (A) and V (A) are also images or
neighbourhoods of A under U and V , respectively.

For the ordinary relation R, we may naturally define a super relation R ? on X
to Y such that R ?(A) = R [A ] for all A ⊆ X. While, for the super relation U ,
we may also define an ordinary relation U @ on X to Y such that U @(x) = U ({x })
for all x ∈ X.

Namely, thus the maps ? and @ form a partial Galois connection such that
R ? ⊆ U always implies R ⊆ U @, however for the converse implication we have
to assume that U is quasi-increasing in the sense that U

({x }) ⊆ U (A), i. e.,
U @(x) ⊆ U (A) for all x ∈ A ⊆ X.

Actually, we always have R ?@ = R, and R ? is always union-preserving. Thus,
for instance, U ◦ = U @ ? is also union-preserving. Moreover, we have U = U ◦
if and only if U is union-preserving. Therefore, only the union-preserving super
relations can be identified with the ordinary ones.

For the super relation U , by using appropriate complements, we may also
naturally define a dual super relation U 3 on X to Y such that U 3(A) = U (Ac)c
for all A ⊆ X. Thus, if in particular U is a closure relation on X, then U 3 is an
interior relation on X. A similar notation was formerly used by Császár [14].

Now, if R is a family of ordinary relations, U is a family of super relations and
V is a family hyper relations on X to Y , then we may naturally say that R is an
ordinary relator, U is a super relator and V is a hyper relator on X to Y . Such
relators have already been briefly considered in [73, 113, 117].

Moreover, we may also naturally consider the non-conventional three relator
space (X, Y )(R, U, V ), and its certain adjoint (X, Y )(U@ , R ? , V ). How-
ever, practically it would be enough to consider only the particular case when
X = Y , and moreover R is countable and both U and V are singletons.

Thus, for any A ⊆ X, B ⊆ Y and x ∈ X, we may naturally define :

(1) A ∈ Int U(B) if U (A) ⊆ B for some U ∈ U ;
(2) A ∈ Cl U(B) if U (A) ∩ B 	= ∅ for all U ∈ U ;
(3) x ∈ int U(B) if {x} ∈ Int U(B) ;
(4) x ∈ cl U(B) if {x} ∈ Cl U(B) ;
(5) B ∈ E U if int U(B) 	= ∅ ;
(6) B ∈ D U if cl U(B) = X .

Moreover, in the X = Y particular case, for any A ⊆ X, we may also define :

(7) A ∈ τU if A ∈ Int U(A) ; (8) A ∈ τ-U if Ac /∈ Cl U(A) ;
(9) A ∈ TU if A ⊆ int U(A) ; (10) A ∈ FU if cl U(A) ⊆ A ;

(11) A ∈ NU if cl U(A) /∈ EU ; (12) A ∈ MU if int U(A) ∈ D U .
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Now, by using the super relator R ? = {R ? : R ∈ R }, for instance we may
also naturally define IntR = IntR ? and intR = intR ? . Thus, by using the super
relator U ◦ = {U ◦ : U ∈ U } and the ordinary relator U @ = {U @ : U ∈ U }, it
can be easily shown that Int U ◦ = Int U@ and int U = int U@ .

Moreover, in the X = Y particular case, for instance we may also naturally
define τR = τR ? and TR = TR? . Thus, by our former statements, we evidently
have τU◦ = τU@ and TU = TU@ . Therefore, a great deal of the theory of ordinary
relators cannot be generalized by using super relators.

In the present paper, we shall also show that

τ-U =
{
A ⊆ X : ∃ U ∈ U : A ⊆ U 3(A) } .

Thus, for the dual super relator U 3 = {U 3 : U ∈ U }, we can state that

τ-U 3 = {
A ⊆ X : ∃ U ∈ U : A ⊆ U (A) } .

The U = {U } particular case of the latter statements already allows of a
unification of several generalized open sets. Namely, if for instance

U (A) = clR

(
intR(A)

)
, and thus U 3(A) = intR

(
clR(A)

)

for all A ⊆ X, then τ-U and τ-U3 are just the families of all topologically preopen
and semi-open subsets of the relator space X (R ) considered first in [75].

Now, for instance we may also naturally define

T k
R
= T kV

R
= clV (TR) and T �

R
= T �V

R
= clV −1 (TR) ,

where V −1 = {
V −1 : V ∈ V }. Namely, thus we can easily prove that

T �
R
= {B ⊆ X : ∀ V ∈ V : ∃ A ∈ TR : B ∈ V (A) }

and

T k
R
= {A ⊆ X : ∀ V ∈ V : ∃ B ∈ TR : B ∈ V (A) } .

Therefore, the V = {V } particular case of the latter statements allow of a
unification of several further generalized open sets. Namely, if for instance

V (A) = {
B ⊆ X : A ⊆ B ⊆ clR(A)

}

for all A ⊆ X, then T �V
R

and T kV
R

are just the families of all topologically
quasi-open and pseudo-open subsets of the relator space X(R ) considered first in
[75].
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3 A Few Basic Facts on Relations

A subset F of a product set X×Y is called a relation on X to Y . In particular, a
relation on X to itself is called a relation on X. And, ΔX = {(x , x) : x ∈ X} is
called the identity relation of X.

If F is a relation on X to Y , then by the above definitions we can also state that
F is a relation on X∪Y . However, the latter view of the relation F would be quite
unnatural for several purposes.

If F is a relation on X to Y , then for any x ∈ X and A ⊆ X the sets F(x) =
{ y ∈ Y : (x , y) ∈ F } and F [A ] = ⋃ {F (x) : x ∈ A} are called the images
or neighbourhoods of x and A under F , respectively.

If (x , y) ∈ F , then instead of y ∈ F (x), we may also write x F y. However,
instead of F [A ], we cannot write F (A). Namely, it may occur that, in addition
to A ⊆ X, we also have A ∈ X.

Now, the sets DF = {x ∈ X : F (x) 	= ∅} and RF = F [X ] may be called
the domain and range of F , respectively. If in particular DF = X, then we may
say that F is a relation of X to Y , or that F is a non-partial relation on X to Y .

In particular, a relation f on X to Y is called a function if for each x ∈ Df
there exists y ∈ Y such that f (x) = {y }. In this case, by identifying singletons
with their elements, we may simply write f (x) = y instead of f (x) = {y }.

Moreover, a function 3 of X to itself is called a unary operation on X. While, a
function ∗ of X2 to X is called a binary operation on X. And, for any x, y ∈ X,
we usually write x3 and x ∗ y instead of 3(x) and ∗((x , y)), respectively.

If F is a relation on X to Y , then a function f of DF to Y is called a selection
function of F if f (x) ∈ F(x) for all x ∈ DF . By using the Axiom of Choice, it
can be shown that every relation is the union of its selection functions.

For a relation F on X to Y , we may naturally define two set-valued functions
ϕF of X to P(Y ) and ΦF of P(X) to P(Y ) such that ϕF (x) = F (x) for all
x ∈ X and ΦF (A) = F [A ] for all A ⊆ X.

Functions of X to P(Y ) can be naturally identified with relations on X to Y .
While, functions of P(X) to P(Y ) are more general objects than relations on X
to Y . In [107, 113, 114], they were briefly called corelations on X to Y .

However, if R is a relation on X to Y , U is a relation on P(X) to Y , and
V is a relation on P(X) to P(Y ), then it is better to say that R is an ordinary
relation, U is a super relation and V is a hyper relation on X to Y [117].

If F is a relation on X to Y , then F =⋃
x∈X {x}×F(x). Therefore, the images

F(x), where x ∈ X, uniquely determine F . Thus, a relation F on X to Y can
also be naturally defined by specifying F(x) for all x ∈ X.

For instance, the complement F c and the inverse F −1 can be defined such that
F c(x) = F (x)c for all x ∈ X and F −1(y) = {x ∈ X : y ∈ F (x)} for all y ∈
Y . Namely, thus we also have F c = X×Y \F and F −1= {(y , x) : (x , y) ∈ F }.

Moreover, if in addition G is a relation on Y to Z, then the composition G ◦F
can be defined such that (G ◦ F )(x) = G [F(x) ] for all x ∈ X. Thus, it can be
easily shown that (G ◦ F )[A ] = G [

F [A ] ] also holds for all A ⊆ X.
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While, if G is a relation on Z toW , then the box product F
G can be defined
such that (F 
G)(x, z) = F(x) ×G(z) for all x ∈ X and z ∈ Z. Thus, it can
be shown that (F 
G)[A ] = G ◦ A ◦ F −1 for all A ⊆ X×Z [105].

Hence, by taking A = {(x , z)}, and A = ΔY if Y = Z, one can at once see
that the box and composition products are actually equivalent tools. However, the
box product can be immediately defined for any family of relations.

Now, a relation R on X may be briefly defined to be reflexive on X if ΔX ⊆ R,
and transitive if R ◦R ⊆ R. Moreover, R may be briefly defined to be symmetric
if R−1 ⊆ R, and antisymmetric if R ∩ R−1 ⊆ ΔX.

Thus, a reflexive and transitive (symmetric) relation may be called a preorder
(tolerance) relation. And, a symmetric (antisymmetric) preorder relation may be
called an equivalence (partial order) relation.

For any relation R on X, we may also define R 0 = ΔX and Rn = R ◦ R n−1

if n ∈ N. Moreover, we may also define R∞ = ⋃∞
n=0 R

n . Thus, it can be shown
that R∞ is the smallest preorder relation on X containing R [36].

For A ⊆ X, the Pervin relation RA = A2∪Ac×X is an important preorder on
X [70]. While, for a pseudometric d on X, the Weil surrounding Br = {(x, y) ∈
X2 : d (x, y) < r }, with r > 0, is an important tolerance on X [120].

Note that SA = RA∩R−1
A = RA∩RAc = A2∩(Ac)2 is already an equivalence

relation on X. And, more generally if A is a cover (partition) of X, then SA =⋃
A∈A A2 is a tolerance (equivalence) relation on X.
As an important generalization of the Pervin relation RA, for any A ⊆ X and

B ⊆ Y , we may also naturally consider the Hunsaker–Lindgren relation R(A,B) =
A×B ∩ Ac×Y [38]. Namely, thus we evidently have RA = R(A,A).

The Pervin relations RA and the Hunsaker–Lindgren relations R(A,B) were
actually first used by Davis [23] and Császár [13, pp. 42 and 351] in some less
explicit and convenient forms, respectively.

4 Some Basic Properties of Super Relations

Notation 1 In this section, we shall assume that U is a super relation on X to Y .

Remark 1 Thus, by our former definitions, U is actually an ordinary relation on
P (X) to Y , i. e., it is an arbitrary subset of P (X)×Y .

Moreover, U can be identified with the set-valued function ϕU , defined by
ϕU (A) = U (A) for all A ⊆ X, which is a particular subset of P(X)×P(Y ).

Thus, several properties of the super relation U can be easily defined with the
help of the set-valued function ϕU . For instance, we may naturally introduce

Definition 1 The super relation U will be called

(1) increasing if U (A) ⊆ U (B) for all A ⊆ B ⊆ X ;
(2) quasi-increasing if U

({x }) ⊆ U(A) for all x ∈ A ⊆ X ;
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(3) union-preserving if U
( ⋃

A
) =⋃

A∈A U (A) for all A ⊆ P(X).

Thus, we can at once state the following two theorems.

Theorem 1 The following assertions are equivalent :

(1) U is quasi-increasing ;
(2)

⋃
x∈A U

({x }) ⊆ U (A) for all A ⊆ X .

Theorem 2 The following assertions are equivalent :

(1) U is increasing ;
(2) U

( ⋂
A
) ⊆⋂

A∈A U (A) for all A ⊆ P(X) ;
(3)

⋃
A∈A U (A) ⊆ U( ⋃ A

)
for all A ⊆ P(X).

Proof If A ⊆ B ⊆ X, then by the A = {A, B } particular case of (3) we have
U (A) ⊆ U (A) ∪ U (B) ⊆ U (A ∪ B) = U (B), and thus (1) also holds.

Moreover, by using Definition 1 and Theorem 2, we can also easily prove

Theorem 3 The following assertions are equivalent :

(1) U is union-preserving ;
(2) U (A) =⋃

x∈A U
({x }) for all A ⊆ X .

Proof If (1) holds, then because of A = ⋃
x∈A {x } it is clear that also holds.

While, if (2) holds, then we can at once see that U increasing. Thus, by Theorem 2,
we have

⋃
A∈A U (A) ⊆ U ( ⋃

A
)

for all A ⊆ P(X). Therefore, to obtain (1),
we need only prove the converse inclusion.

For this, note that if A ⊆ P(X), then by (2) we have

U
( ⋃

A
) =

⋃

x∈⋃
A

U
({x }) .

Therefore, if y ∈ U ( ⋃
A
)
, then there exists x ∈ ⋃

A such that y ∈ U({x }).
Thus, in particular there exists A0 ∈ A such that x ∈ A0, and so {x } ⊆ A0.
Hence, by using the increasingness of U , we can already see that

y ∈ U({x }) ⊆ U (A0) ⊆
⋃

A∈A
U (A) .

Therefore, U
( ⋃

A
) ⊆⋃

A∈A U (A) also holds.

Remark 2 In particular, a super relation U on X to itself may be simply called a
super relation on X.

Thus, a super relation U on X may be called extensive, intensive, involutive and
idempotent if A ⊆ U(A), U(A) ⊆ A, U

(
U(A)

) = A and U
(
U(A)

) = U (A)
for all A ⊆ X, respectively.
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Moreover, an increasing involutive (idempotent) super relation may be called an
involution (projection) relation. While, an extensive (intensive) projection relation
may be called a closure (interior) relation.

5 Relationships Between Ordinary and Super Relations

Notation 2 In this and the next two sections, we shall assume that R and S are
ordinary relations, and U and V are super relations on X to Y .

In [113], having in mind Galois connections [22, 104], we have introduced

Definition 2 For the ordinary relation R, we define a super relation R ? on X to
Y such that

R ?(A) = R [A ] for all A ⊆ X.

While, for the super relation U , we define an ordinary relation U @ on X to Y such
that

U @(x) = U ({x }) for all x ∈ X.

The appropriateness of the above definitions is apparent from the following two
theorems whose proofs are included here only for the reader’s convenience.

Theorem 4 R ? ⊆ U implies R ⊆ U @ .
Proof If R ? ⊆ U , then in particular we have

R (x) = R [{x }] = R ?({x }) ⊆ U ({x }) = U @(x)

for all x ∈ X. Therefore, R ⊆ U @ also holds.

Remark 3 For the latter inclusion, we have only needed that R ?@ ⊆ U @. However,
later we shall see that R ?@ = R, and thus R ⊆ U @ is actually equivalent to
R ?@ ⊆ U @.

Theorem 5 The following assertions are equivalent :

(1) U is quasi-increasing ;
(2) R ⊆ U @ implies R ? ⊆ U for any relation R on X to Y .

Proof If R ⊆ U @ and (1) holds, then by the corresponding definitions and
Theorem 1, we have

R ?(A) = R [A ] =
⋃

x∈A
R (x) ⊆

⋃

x∈A
U @(x) =

⋃

x∈A
U
({x }) ⊆ U (A)
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for all A ⊆ X. Therefore, R ? ⊆ U , and thus (2) also holds.
While, if (2) holds, then because of U @ ⊆ U @ we have U @ ? = ( U @)? ⊆ U .

Therefore, for any A ⊆ X, we have U @ ?(A) ⊆ U (A). Moreover, by using the
corresponding definitions, we can see that

U @ ?(A) = (
U @

)?
(A) = U @ [A ] =

⋃

x∈A
U @(x) =

⋃

x∈A
U
({x }) .

Therefore,
⋃
x∈A U

( {x }) ⊆ U (A), and thus assertion (1) also holds.

Now, as an immediate consequence of the above two theorems, we can also state

Corollary 1 If U is quasi-increasing, then

R ? ⊆ U ⇐⇒ R ⊆ U @ .

Remark 4 This shows that the operations ? and @ establish a partial Galois
connection between the complete posets P(X× Y ) and P

(
P(X)× Y ).

Therefore, we may also naturally introduce the following

Definition 3 The super relation

U ◦ = U @ ?

will be called the Galois interior of U .

Thus, by the proof of Theorem 5, we can at once state the following

Theorem 6 For any A ⊆ X, we have

U ◦
(
A
) = ⋃

x∈A U
({x }).

Hence, it is clear that, in particular, we also have

Corollary 2 For any x ∈ X, we have U ◦({x }) = U ({x }).
Example 1 If in particular U (A) = Ac for all A ⊆ X, then for any A ⊆ X we
have

U ◦(A) =
⎧
⎨

⎩

∅ if card (A) = 0,
Ac if card (A) = 1 ,
X if card (A) > 1 .

Namely, by Theorem 6 and De Morgan’s law, we have

U ◦
(
A
) = ⋃

x∈A U
({x }) = ⋃

x∈A {x }c =
( ⋂

x∈A {x }
)c
,

whence the required equalities immediately follow.
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6 Further Theorems on the Operations �, � and ◦

Several properties of the operations ?, @ and ◦ can be immediately derived from
the general theory of Galois and Pataki connections [102, 104, 115].

However, because of the simplicity of Definition 2, it is now more convenient to
use some direct proofs to establish the following four theorems.

Theorem 7 The operations ?, @ and ◦ are increasing.

Proof For instance, if U ⊆ V , then U (A) ⊆ V (A) for all A ⊆ X. Thus, in
particular we also have U @(x) = U

({x }) ⊆ V
({x }) = V @(x) for all X ∈ X.

Therefore, U @ ⊆ V @ also holds.

Theorem 8 R ? is a union-preserving super relation on X to Y such that

(1) R ?@ = R ; (2) R ?◦ = R ?.
Proof By the corresponding definitions, we have

R ?(A) = R [A ] = ⋃
x∈A R (x) =

⋃
x∈A R

[{x }] = ⋃
x∈A R ?

({x })

for all A ⊆ X. Thus, by Theorem 3, the super relation R? is union-preserving.
Moreover, we can easily see that

R ?@(x) = (
R ?

)@
(x) = R ?({x }) = R [{x }] = R(x)

for all x ∈ X. Thus, assertion (1) is also true.
Now, by using Definition 3 and assertion (1), we can also easily that

R ?◦ = (
R ?

)◦ = (
R ?

)@ ? = (
R ?@

)? = R ? .

Corollary 3 We have R ⊆ S if and only if R ? ⊆ S ?.
Theorem 9 U ◦ is a union-preserving super relation on X to Y such that

(1) U ◦@ = U @ ; (2) U ◦◦ = U ◦.
Proof From Definition 3, by using Theorem 8, we can see that U ◦ is union-
preserving and

U ◦@ = (
U ◦

)@ = (
U @ ?

)@ = (
U @

)?@ = U @.

Assertion (1) is also an immediate consequence of Definition 2 and Corollary 2.
Moreover, by using Theorem 6 and its corollary, we can easily see that

U ◦◦(A) = (
U ◦

)◦
(A) = ⋃

x∈A U ◦
({x }) = ⋃

x∈A U
({x }) = U ◦(A)

for all A ⊆ X. Therefore, assertion (2) is also true.
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Theorem 10 The following assertions are equivalent :

(1) U ◦ = U ; (2) U is union-preserving ;
(3) U = R ? for some relation R on X to Y .

Proof If (2) holds, then by Theorems 6 and 3 we can see that

U ◦(A) = ⋃
x∈A U

({x }) = U (A)

for all A ⊆ X. Therefore, (1) also holds.
Now, since (1) trivially implies (3), we need only note that if (3) holds, then by

Theorem 8 assertion (2) also holds.

Corollary 4 If U and V are union-preserving, then U ⊆ V if and only if U @ ⊆
V @.

Finally, we note that, by using our former results, the following four theorems
can also be proved.

Theorem 11 We have

(1) U ⊆ U ◦ ⇐⇒ U (A) ⊆ U @[A ] for all A ⊆ X;
(2) U ◦ ⊆ U ⇐⇒ U is quasi-increasing ⇐⇒ U @[A ] ⊆ U (A) for all

A ⊆ X;
(3) U ◦ = U ⇐⇒ U is union-preserving ⇐⇒ U (A) = U @[A ] for all

A ⊆ X.
Theorem 12 We have

(1) U ◦ ⊆ V *⇒ U ◦ ⊆ V ◦ ⇐⇒ U @ ⊆ V @ ;
(2) U ◦ ⊆ V ◦ *⇒ U ◦ ⊆ V if V is quasi-increasing ;
(3) U ⊆ V ⇐⇒ U ◦ ⊆ V ◦ if U and V are union-preserving.

Theorem 13 If U = R ?, then
(1) U is a union-preserving super relation on X to Y such that U @ = R ;
(2) U is the smallest quasi-increasing super relation on X to Y such that

R ⊆ U @ ;
(3) U is the largest union-preserving super relation on X to Y such that U @ ⊆ R.
Theorem 14 If R = U @ , then
(1) R ? ⊆ U if and only if U is quasi-increasing ;
(2) R ? = U if and only if U is union-preserving ;
(3) If U is quasi-increasing, then R is the largest relation on X to Y such that

R ? ⊆ U ;
(4) if U is union-preserving, then R is the smallest relation on X to Y such

that U ⊆ R ? .
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7 Relationally Defined Inverses of Super Relations

Because of Remark 4, we may also naturally introduce the following

Definition 4 The super relation

U−1 = U @−1 ?

will be called the relationally defined inverse of U .

Remark 5 To feel the necessity of this bold inverse U−1 , note that the ordinary
inverse U−1 of U is not a super relation.

While, the ordinary inverse ϕ−1
U of the associated set-valued function ϕU , which

can be identified with U , is usually a hyper relation.

Now, using the corresponding definitions and Theorem 8, we can easily prove
the following three theorems.

Theorem 15 We have

(1) R ?−1 = R−1 ? ; (2) R ?−1 @ = R−1.

Proof By Definition 4 and Theorem 8, we have

R ?−1 = R ? @−1 ? = R−1 ? , and thus also R ?−1 @ = R−1 ? @ = R−1 .

Theorem 16 U−1 is a union-preserving super relation on Y to X such that

(1) U−1 @ = U @−1 ; (2) U ◦−1 = U−1 .

Proof By Definitions 4 and 3 and Theorem 8 we have

U−1 @ = U @−1 ? @ = U @−1 and U ◦−1= U @ ? @−1 ? = U @−1 ? = U−1 .

Remark 6 Note that if U @ is symmetric, then U−1 = U @−1 ? = U @ ? = U ◦.
Thus, if in addition U is union-preserving, then U−1 = U .

In this respect, it is also worth noticing that if in particular U is as in Example 1,
then U @ is symmetric. Thus, by the above observation, U−1 = U ◦.
Theorem 17 We have

(
U−1

)−1 = U ◦ .

Proof By the corresponding definitions and Theorem 8, we have

(
U−1

)−1 = U @−1 ? @−1 ? = U @−1−1 ? = U @ ? = U ◦ .

Hence, by using Theorem 10, we can immediately derive
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Corollary 5 The following assertions are equivalent :

(1) U = (
U−1

)−1
; (2) U is union-preserving.

Moreover, as a counterpart of Theorem 6, we can also prove the following

Theorem 18 For any B ⊆ Y , we have

U−1 (B) = {
x ∈ X : U

({x }) ∩ B 	= ∅ } .

Proof By the corresponding definitions, we have

U−1(B) = (
U @−1 ?)(B) = U @−1 [B ] .

Moreover, it is clear that, for any x ∈ X, we have

x ∈ U @−1 [B ] ⇐⇒ U @(x) ∩ B 	= ∅ ⇐⇒ U
({x }) ∩ B 	= ∅ .

Therefore, the required equality is true.

Remark 7 From the above proof, by Theorem 16, we can also see that

U−1(B) = U @−1 [B ] = U−1 @ [B ] .

8 Functionally and Relationally Defined Compositions
of Super Relations

Notation 3 In this section, we shall assume that R is an ordinary relation and U
is super relation on X to Y .

Moreover, we shall also assume that S is an ordinary relation and V is super
relation on Y to Z.

By the usual identification of U with ϕU , we may also naturally introduce

Definition 5 The super relation V ◦ U , defined such that

( V ◦ U )(A) = V (U (A))

for all A ⊆ X, will be called the functionally defined composition of V and U .

Remark 8 Namely, thus we have

ϕV ◦U (A) = ( V ◦ U )(A) = V (U (A)) = ϕV
(
ϕU(A)

) = ( ϕV ◦ ϕU )(A)

for all A ⊆ X, and thus ϕV ◦U = ϕV ◦ϕU .
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The appropriateness of Definition 5 is also quite obvious from the following three
simple theorems and their corollaries.

Theorem 19 We have

(
S ◦ R )? = S ? ◦ R ? .

Corollary 6 We have

(1) ( S ◦ U @)? = S ?◦ U if U is union-preserving ;
(2) ( V @◦ R )? = V ◦ R ? if V is union-preserving.

Theorem 20 If V is union-preserving, then

(
V ◦ U )@ = V @ ◦ U @ .

Proof By the corresponding definitions and Theorem 10, we have

( V ◦ U )@(x) = ( V ◦ U )( {x }) = V (
U
( {x })) = V (

U @(x)
)

= V ◦(U @(x)) = V @ ?(U @(x)) = V @[U @(x)] = (
V @ ◦ U @)(x)

for all x ∈ X. Therefore, the required equality is also true.

Corollary 7 We have

(1) ( S ? ◦ U )@ = S ◦ U @ ;
(2) ( V ◦ R ?)@ = V @◦ R if V is union-preserving.

Theorem 21 If V is union-preserving, then

( V ◦ U )−1 = U−1 ◦ V −1 .

Proof By Definition 4 and Theorems 20, and 19, we have

( V ◦ U )−1 = ( V ◦ U )@−1 ? = (
V @ ◦ U @)−1 ?

=
(
U @−1 ◦ V @−1

)? = U @−1 ? ◦ V @−1 ? = U−1 ◦ V −1 .

Corollary 8 We have ( S�◦ U )−1 = U−1 ◦ S−1�.

Remark 9 By using Definition 5, it can also be easily seen that the functionally
defined composition of super relations is associative.

Now, analogously to Definition 4, we may also naturally introduce

Definition 6 The super relation

V • U = (
V @ ◦ U @)?
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will be called the relationally defined composition of V and U .

The appropriateness of this definition is apparent from the following theorems.

Theorem 22 We have

(1) S? • R ? = (
S ◦ R)? (2) ( S? • R ? )@ = S ◦ R.

Theorem 23 V • U is a union-preserving super relation such that

V • U = V ◦ ◦ U ◦ .

Proof From Definition 6, by Theorem 8, it is clear that V •U is a union-preserving.
Moreover, by using Theorem 19 and Definition 3, we can see that

V • U = (
V @ ◦ U @)? = V @ ? ◦ U @ ? = V ◦ ◦ U ◦ .

Thus, in particular, by Theorem 10, we can also state the following

Corollary 9 If both U and V are union-preserving, then V • U = V ◦ U .
Remark 10 From Theorem 23, by using Theorems 6 and 9, we can also infer that

(
V • U )

(A) =
⋃

x∈A

⋃

y∈U({x})
V
({y })

for all A ⊆ X.

Now, by using our former results, we can also prove the following

Theorem 24 We have

(
V • U )−1 = U−1◦ V −1 .

Proof By Theorems 23, 9, 21, and 16, it is clear that

(
V • U )−1 = ( V ◦ ◦ U ◦)−1 = U ◦−1◦ V ◦−1 = U−1◦ V −1 .

Remark 11 Moreover, by using Theorem 23 and Remark 9, it can be easily seen
that the relationally defined composition of super relations is also associative.

9 The Duals of Super and Hyper Relations

Having in mind the relationship between the usual closure and interior operations,
we may naturally introduce the following
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Definition 7 For a super relation U on X to Y , we define a dual super relation
U 3 on X to Y such that

U 3(A) = U (Ac) c

for all A ⊆ X.

Thus, we can easily prove the following four theorems.

Theorem 25 If U and V are super relations on X to Y , then

(1) U = U 33 ; (2) U ⊆ V implies V 3 ⊆ U 3.
Proof To prove (2), note that if U ⊆ V , then U (Ac) ⊆ V (Ac), and thus

V 3(A) = V (Ac)c ⊆ U (Ac)c = U 3(A)
for all A ⊆ X. Therefore, V 3 ⊆ U 3 also holds.

Theorem 26 If U is a super relation on X to Y , then

(1) U 3 is increasing if and only if U is increasing ;
(2) U 3 is union-preserving if and only if U is intersection-preserving ;
(3) U 3 is intersection-preserving if and only if U is union-preserving.

Proof If for instance U is union-preserving, then by the corresponding definitions
and De Morgan’s law we have

U 3
( ⋂

A∈A A
) = U

⎛

⎝

⎛

⎝
⋂

A∈A
A

⎞

⎠
c⎞

⎠
c

= U
⎛

⎝
⋃

A∈A
Ac

⎞

⎠
c

=
⎛

⎝
⋃

A∈A
U (Ac)

⎞

⎠
c

=
⋂

A∈A
U (Ac)c =

⋂

A∈A
U 3(A)

for all A ⊆ P(X). Therefore, U 3 is intersection-preserving.
Thus, the “if part” of assertion (3) is true. Hence, since U 33 = U , it is clear that

the “only if part” of assertion (2) is also true.

Theorem 27 If U is a super relation on X to Y , then

(1) U 3 is intensive if and only if U is extensive ;
(2) U 3 is extensive if and only if U is intensive ;
(4) U 3 is involutive if and only if U is involutive ;
(5) U 3 is idempotent if and only if U is idempotent.

Proof For instance if U is idempotent, then by the corresponding definitions

U 3
(
U 3(A)

) = U 3(U (Ac)c ) = U (
U (Ac)

)c = U (Ac)c = U 3(A)

for all A ⊆ X. Therefore, U 3 is also idempotent.
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Thus, the “if part” of assertion (5) is true. Hence, since U 33 = U , it is clear that
the “only if part” of assertion (5) is also true.

Theorem 28 If U is a super relation on X to Y and V is a super relation on Y
to Z, then

(1) (V ◦ U )3 = V 3 ◦ U 3 ; (2) (V • U )3 = V ◦3 ◦ U ◦3.
Proof By Definitions 7 and 5, we have

(V ◦ U )3(A) = (V ◦ U )(Ac)c = V (
U (Ac)

)c

= V (
U 3(A)c

)c = V 3(U 3(A)) = (
V 3 ◦ U 3)(A)

for all A ⊆ X. Thus, assertion (1) is true.
Now, by using Theorem 23 and assertion (1), we can see that assertion (2) is also

true.

Remark 12 Concerning the super relation U ◦3 , by using Definition 7 and Theo-
rem 6 we can only note that

U ◦ 3(A) = U ◦( Ac)c =
( ⋃

x∈Ac U
( {x })

)c =
⋂

x∈Ac U
( {x })c

for all A ⊆ X.

Analogously to Definition 7, we may also naturally introduce the following

Definition 8 For a hyper relation V on X to Y , we define two dual hyper relations
V 3 and V � on X to Y such that

V 3(A) = V (Ac)c = P (Y ) \ V (Ac)

and

V �(A) = [
V (Ac)

]c = {
Bc : B ∈ V (Ac)}

for all A ⊆ X.

Remark 13 Thus, some properties of the hyper relations V 3 and V � can also be
easily derived from those of the hyper relation V .

Moreover, having in mind the derivations of small closures and interiors from the
big ones [85, 91], we may also naturally introduce the following

Definition 9 For a hyper relation V on X to Y , we define a super relation V � on
X to Y such that

V �(A) = {
y ∈ Y : {y } ∈ V (A) }

for all A ⊆ X.
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Remark 14 Thus, we may also naturally consider the ordinary relation V � @. In
particular, we may define intR = Int �

R
and σR = int @

R
for any relator R.

In accordance with [113], we shall see that hyper relations can be derived from
super, and thus also from ordinary relations and relators in several natural ways.

10 A Few Basic Facts on Relators

A family R of relations on one set X to another Y is called a relator on X to Y ,
and the ordered pair (X, Y )(R ) = (

(X, Y ), R
)

is called a relator space. For the
origins of this notion, see [85, 97], and the references in [85].

If in particular R is a relator on X to itself, then R is simply called a relator
on X. Thus, by identifying singletons with their elements, we may naturally write
X(R ) instead of (X, X)(R ). Namely, (X, X) = {{X}, {X, X}} = {{X}}.

Relator spaces of this simpler type are already substantial generalizations of the
various ordered sets [22, 109] and uniform spaces [30, 44]. However, they are
insufficient for some important purposes. (See, [33, 97, 106, 108, 111, 118].)

A relator R on X to Y , or the relator space (X, Y )(R ), is called simple if
R = {R} for some relation R on X to Y . Simple relator spaces (X, Y )(R) and
X(R) were called formal contexts and gosets in [33] and [109], respectively.

Moreover, a relator R on X, or the relator space X(R ), may, for instance, be
naturally called reflexive if each member of R is reflexive on X. Thus, we may also
naturally speak of preorder, tolerance and equivalence relators.

For instance, for a family A of subsets of X, the family RA = {RA : A ∈ A },
where RA = A2 ∪ Ac×X, is an important preorder relator on X. Such relators
were first used by Pervin [70] and Levine [55].

While, for a family D of pseudo-metrics on X, the family RD = {Bdr : r >
0, d ∈ D }, where Bdr = {(x, y) : d(x, y) < r }, is an important tolerance relator
on X. Such relators were first considered by Weil [120].

Moreover, if S is a family of covers (partitions) of X, then the family RS =
{SA : A ∈ S}, where SA = ⋃

A∈A A2, is an important tolerance (equivalence)
relator on X. Equivalence relators were first studied by Levine [54].

If 3 is a unary operation for relations on X to Y , then for any relator R on X
to Y we may naturally define R 3 = {

R3 : R ∈ R
}
. However, this plausible

notation may cause some confusions whenever, for instance, 3 = c.
In particular, for any relator R on X, we may naturally define R∞ = {

R∞ :
R ∈ R

}
. Moreover, we may also define R ∂ = {

S ⊆ X2 : S∞ ∈ R
}

. These
operations were first introduced by Mala [56, 57] and Pataki [68, 69].

While, if ∗ is a binary operation for relations, then for any two relators R and
S we may naturally define R ∗S = {

R ∗ S : R ∈ R , S ∈ S
}
. However, this

plausible notation may again cause some confusions whenever, for instance, ∗ = ∩.
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Therefore, in general we rather write R ∧ S = {
R ∩ S : R ∈ R , S ∈ S

}
.

Moreover, for instance, we also write R2R−1 = {
R∩R−1 : R ∈ R

}
. Note that

thus R2R−1 is a symmetric relator such that R2R−1⊆ R ∧R−1 .
A function � of the family of all relators on X to Y is called a direct (indirect)

unary operation for relators if, for every relator R on X to Y , the value R� =
� (R ) is a relator on X to Y (on Y to X).

For instance, c and −1 are involution operations for relators. While, ∞ and ∂
are projection operations for relators. Moreover, the operation � = c, ∞ or ∂ is
inversion compatible in the sense that R � −1 = R−1 �.

More generally, a function F of the family of all relators on X to Y is called a
structure for relators if, for every relator R on X to Y , the value FR = F (R ) is
in a power set depending only on X and Y .

For instance, if intR(B) = {x ∈ X : ∃ R ∈ R : R (x) ⊆ B } for every relator
R on X to Y and B ⊆ Y , then the function F, defined by F (R ) = intR, is a
structure for relators such that F (R ) ∈ P (P(Y )×X).

Concerning structures and operations for relators, we can use the same termi-
nology as in Definition 1 and Remark 2. Thus, by Theorem 3, the structure F is
union-preserving if and only if FR = ⋃

R∈R FR for every relator R.
By using Pataki connections [68, 115], several closure operations can be derived

from union-preserving structures. However, more generally, one can find first the
Galois adjoint G of such a structure F, and then take �F = G ◦ F [101].

Now, for an operation � for relators, a relator R on X to Y may be naturally
called �-fine if R� = R. And, for some structure F for relators, two relators R
and S on X to Y may be naturally called F-equivalent if FR = FS.

Moreover, for a structure F for relators, a relator R on X to Y may, for instance,
be naturally called F-simple if FR = FR for some relation R on X to Y . Thus,
in particular singleton relators have to be actually called properly simple.

Analogously to our former definition of an ordinary relator R on X to Y , a
family U ( resp. V ) of super relations (resp. hyper relations) on X to Y may now
be naturally called a super relator (resp. hyper relator) on X to Y .

Note that thus U @ = {U @ : U ∈ U} is a relator, while R ? =
{R? : R ∈ R} is a super relator on X to Y . Thus, in addition to the non-
conventional birelator space (X, Y )(R, U), we may also naturally consider its
adjoint (X, Y )(U @ , R ?).

Now, a super relator U on X to Y may, for instance, be naturally called quasi-
increasing if each member of it is quasi-increasing. Moreover, a super relator U on
X may for instance be called reflexive if the ordinary relator U @ is reflexive.

Note that reflexivity, and several other properties need not be defined separately
for hyper relators. Moreover, several structures for ordinary relators can be naturally
derived from the corresponding structures for super relators.
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11 Structures Derived from Super Relators

Notation 4 In this and the next two sections, we shall assume that U is a super
relator on X to Y .

Definition 10 For any A ⊆ X, B ⊆ Y and x ∈ X, y ∈ Y we define :

(1) A ∈ Int U(B) if U (A) ⊆ B for some U ∈ U ;
(2) A ∈ Cl U(B) if U (A) ∩ B 	= ∅ for all U ∈ U ;
(3) x ∈ int U(B) if {x} ∈ Int U(B) ;
(4) x ∈ σU(y) if x ∈ int U

({y }) ;
(5) x ∈ cl U(B) if {x} ∈ Cl U(B) ;
(6) x ∈ ρU(y) if x ∈ cl U

({y }) ;
(7) B ∈ E U if int U(B) 	= ∅ ;
(8) B ∈ D U if cl U(B) = X .

Remark 15 The relations Int U, int U and σU will be called the proximal,
topological and infinitesimal interiors generated by U, respectively. While, the
members of the families, E U and D U will be called the fat and dense subsets
of the super relator space (X, Y )(U), respectively.

The origins of the relations Cl U and Int U go back to Efremović’s proximity δ
[27] and Smirnov’s strong inclusion � [81], respectively. While, the convenient
notations Cl U and Int U, and family EU, together with its dual D U , was first
explicitly used by the second author in [85, 89, 91, 100] for an ordinary relator.

The following theorem shows that the big closure and interior relations are equi-
valent tools in a super relator space.

Theorem 29 For any B ⊆ Y we have

(1) Cl U(B) = Int U( B
c )c ; (2) Int U(B) = Cl U( B

c )c.

Proof For any A ⊆ X, we have

A ∈ Cl U(B) ⇐⇒ ∀ U ∈ U : U (A) ∩ B 	= ∅ ⇐⇒
∀ U ∈ U : U (A) 	⊆ Bc ⇐⇒ A /∈ Int U( B

c ) ⇐⇒ A ∈ Int U( B
c )c.

Therefore, assertion (1) is true. Now, assertion (2) can be derived from (1) by using
complementations.

Remark 16 By using the notation CY (B) = B c, assertion (1) can be expressed in
the more concise form that Cl U =

(
Int U ◦CY

)c or Cl U =
(

Int U

)c ◦ CY .

By using the definitions of the relations Cl U and Int U , we can also easily prove
the following two theorems.
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Theorem 30 We have

(1) Cl U(∅) = ∅ if and only if U 	= ∅ ;
(2) Cl U( B1) ⊆ Cl U( B2) if B1 ⊆ B2 ⊆ Y .
Theorem 31 We have

(1) Int U(Y ) = P(X) if and only if U 	= ∅ ;
(2) Int U( B1) ⊆ Int U( B2) if B1 ⊆ B2 ⊆ Y .
Remark 17 Note that if in particular U = ∅, then by the corresponding definitions
we have Int U(B) = ∅ and Cl U(B) = P (X) for all B ⊆ Y .

Moreover, it is also worth noticing that Int U(∅) = ∅ ( Cl U(Y ) = P(X)
)

if and
only if U is non-partial in the sense that U (A) 	= ∅ for all A ⊆ X and U ∈ U.

Now, as an immediate consequence of the increasingness of the relations Cl U

and Int U, we can also state

Corollary 10 The relations Cl−1
U

and Int−1
U

are ascending-valued.

Moreover, in addition to Theorems 30 and 31, we can also easily prove

Theorem 32 For any super relation U on X to Y ,

(1) ClU is union-preserving ; (2) IntU is intersection-preserving.

Proof To prove (2), note that if B ⊆ P(Y ), then by the U = {U } particular case
of Theorem 31 we have IntU

( ⋂
B

) ⊆ IntU(B) for all B ∈ B. Therefore,

IntU
( ⋂

B
) ⊆ ⋂

B∈B IntU (B) .

Moreover, if A ∈ ⋂
B∈B IntU (B), then A ∈ IntU (B), and thus U (A) ⊆ B

for all B ∈ B. Therefore, U (A) ⊆⋂
B, and thus A ∈ IntU

( ⋂
B

)
. Therefore,

⋂
B∈B IntU (B) ⊆ IntU

( ⋂
B

)
,

and thus the corresponding equality is also true.

Because of the definitions of the relations Cl U and Int U , we can at once state

Theorem 33 We have

(1) Cl U = ⋂
U∈U ClU ; (2) Int U = ⋃

U∈U IntU .

Corollary 11 The mapping

(1) U �→ Int U is union-preserving ;
(2) U �→ Cl U is intersection-preserving.

Proof Assertion (1) can be derived from assertion (2) of Theorem 33, by using
Theorem 3. While, assertion (2) can be derived from assertion (1) by using
Theorem 29.
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Now, by calling the super relator U quasi-increasing if each of its member is
quasi-increasing, we can also establish some important relationships between small
and big closures and interiors.

Theorem 34 If U is quasi-increasing, then for any A ⊆ X and B ⊆ Y
(1) A ∈ Int U(B) implies A ⊆ intU(B) ;
(2) A ∩ cl U(B) 	= ∅ implies A ∈ Cl U(B).

Proof For instance, if A ∈ Int U(B), then there exists U ∈ U such that U (A) ⊆
B. Thus, since U is quasi-increasing, we have U

({x }) ⊆ U (A) ⊆ B for all
x ∈ A. Hence, we can already see that {x } ∈ Int U(B), and thus also x ∈ int U(B)

for all x ∈ A. Therefore, A ⊆ intU(B) also holds.

In addition to this theorem, it is also worth proving the following

Theorem 35 For any union-preserving super relation U on X to Y , we have

(1) IntU (B) = P
(

intU (B)
)
; (2) ClU (B) = P

(
clU (B)c

)c
.

Proof To prove (1), note that if A ∈ P
(

intU (B)
)
, then A ⊆ intU (B).

Therefore, x ∈ intU (B), and thus {x } ∈ IntU (B) for all x ∈ A. This implies
that U

({x }) ⊆ A for all x ∈ A.
Moreover, since U is union-preserving, U (A) = ⋃

x∈A U
({x }). Therefore,

U (A) ⊆ A, and thus A ∈ IntU (B). This proves that P
(

intU (B)
) ⊆ IntU (B).

The converse inclusion is immediate from Theorem 34.
While, to prove (2), note that, for any A ⊆ X, we have

A ∩ clU (B) 	= ∅ ⇐⇒ A 	⊆ clU (B)
c

⇐⇒ A /∈ P
(

clU (B)
c
) ⇐⇒ A ∈ P

(
clU (B)

c
)c
.

Remark 18 Theorems 32 and 35 can be generalized by calling the super relator U
proximally simple if Cl U = ClU for some super relation U .

12 Basic Theorems on the Small Closure and Interior

By using Definition 10 and the corresponding results of Sect. 11, we can easily
establish the following theorems.

Theorem 36 For any x ∈ X and B ⊆ Y , we have
(1) x ∈ int U(B) if and only if U @(x) ⊆ B for some U ∈ U ;
(2) x ∈ cl U (B) if and only if U @(x) ∩ B 	= ∅ for all U ∈ U.

Proof To prove (1), note that, by Definitions 10 and 2, for any x ∈ X we have

x ∈ intU (B) ⇐⇒ {x} ∈ IntU (B) ⇐⇒ ∃ U ∈ U : U ({x}) ⊆ B ⇐⇒ U @ (x) ⊆ B.
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Theorem 37 For any B ⊆ Y , we have
(1) cl U(B) = int U( B

c )c ; (2) int U(B) = cl U( B
c )c.

Remark 19 By using the notations

B− = cl U(B) and B ◦ = int U(B) ,

assertion (1) can be expressed in the concise form that − = c ◦ c or − c = c ◦.

Theorem 38 We have

(1) cl U(B1) ⊆ cl U(B2) if B1 ⊆ B2 ⊆ Y ;
(2) cl U(∅) = ∅ if and only if either X = ∅ or U 	= ∅.
Theorem 39 We have

(1) int U(B1) ⊆ int U(B2) if B1 ⊆ B2 ⊆ Y ;
(2) int U(Y ) = X if and only if either X = ∅ or U 	= ∅.
Remark 20 Note that if in particular U = ∅, then by Remark 17 we have
int U(B) = ∅ and cl U(B) = X for all B ⊆ Y .

Moreover, it is also worth noticing that int U(∅) = ∅ (
cl U(Y ) = X

)
if and

only if U is quasi-non-partial in the sense that U @(x) 	= ∅ for all x ∈ X and
U ∈ U.

Theorem 40 If A, B ⊆ Y such that A ∩ B = ∅, then

cl U(A) ∩ int U(B) = ∅.
Proof By using Theorems 38 and 37, we can see that

A ∩ B = ∅ *⇒ A ⊆ B c *⇒ A− ⊆ B c− *⇒ A− ⊆ B ◦ c *⇒ A− ∩ B ◦ = ∅ .

Theorem 41 For any super relation U on X to Y ,

(1) clU is union-preserving ; (2) intU is intersection-preserving.

Theorem 42 We have

(1) cl U = ⋂
U∈U clU ; (2) int U = ⋃

U∈U intU .

Corollary 12 The mapping

(1) U �→ int U is union-preserving;
(2) U �→ cl U is intersection-preserving.

Theorem 43 For any B ⊆ Y , we have
(1) cl U(B) = ⋂

U∈U U−1(B) ;
(2) int U(B) = ⋃

U∈U U−1 3(B).

Proof By Theorems 36 and 18, for any x ∈ X we have
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x ∈ cl U(B) ⇐⇒ ⇐⇒ ∀ U ∈ U : U ({x }) ∩ B 	= ∅
⇐⇒ ∀ U ∈ U : x ∈ U−1(B) ⇐⇒ x ∈⋂

U∈U U−1(B).

Therefore, assertion (1) is true.
From assertion (1), by using Theorem 37 and Definition 7, we can see that

assertion (2) is also true.

From the above theorem, by taking {y } in place of B, we can derive

Corollary 13 We have

ρU =
⋂

U @−1 = ( ⋂
U @ )−1

.

By using Definition 10, we may also introduce some notions of the boundary,
residue and border of a set. ( See Kuratowski [47] and Elez and Papaz [29] for
some similar definitions.)

Definition 11 For any B ⊆ Y , we define

(1) bnd U(B) = cl U(B) \ int U(B).

Moreover, if in particular X = Y , then for any A ⊆ X we also define

(2) resU(A) = cl U(A) \ A ; (3) bor U(A) = A \ int U(A).

Remark 21 If in particular U is a reflexive in the sense that x ∈ U @(x) for all
x ∈ X and U ∈ U, then for any A ⊆ X we have int U(A) ⊆ A ⊆ cl U(A).

Therefore,

bnd U(A) = res U(A) ∪ bor U(A) = res U(A) ∪ res U(A
c).

Namely, by using Definition 11 and Theorem 37, we can easily see that

res U(A
c) = Ac− \ Ac = Ac− ∩ Ac c = A◦ c ∩ A = A \ A◦ = bor U(A) .

Note that if A ∈ TU in the sense that A ⊆ int U(A), then bor U(A) = ∅.
Therefore, in this particular case, by the above equality, we can simply state that
bnd U(A) = res U(A).

13 Basic Theorems on Fat and Dense Sets

By using Definition 10 and the results of Sect. 12, we can easily establish the
following theorems.
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Theorem 44 For any B ⊆ Y , we have
(1) B ∈ EU if and only if U @(x) ⊆ B for some x ∈ X and U ∈ U ;
(2) B ∈ DU if and only if U @(x) ∩ B 	= ∅ for all x ∈ X and U ∈ U.

Theorem 45 For any B ⊆ Y , we have
(1) B ∈ DU if and only if X = U @−1 [B ] for all U ∈ U ;
(2) B ∈ EU if and only if X 	= U @−1 [Bc ] for some U ∈ U.

Theorem 46 For any B ⊆ Y we have

(1) B ∈ DU ⇐⇒ Bc /∈ EU ;
(2) B ∈ EU ⇐⇒ Bc /∈ DU .

Proof To prove (1), note that, by Definition 10 and Theorem 37, we have

B ∈ DU ⇐⇒ cl U(B) = X ⇐⇒ int U(B
c)c = X

⇐⇒ int U(B
c) = ∅ ⇐⇒ Bc /∈ EU .

Remark 22 By Theorems 44 and 46, we can at once see that U @(x) ∈ EU, and
thus U @ c (x) = U @(x)c /∈ DU for all x ∈ X and U ∈ U.

Theorem 47 For any B ⊆ Y we have

(1) B ∈ DU if and only if B ∩ E 	= ∅ for all E ∈ EU ;
(2) B ∈ EU if and only if B ∩D 	= ∅ for all D ∈ DU .

Proof This theorem can, in principle, be derived from Theorem 46. However, it can
be more easily proved with the help of Theorem 44.

Namely, if for instance B ∈ D U , then for any x ∈ X and U ∈ U we have
U @(x)∩B 	= ∅ Moreover, if E ∈ E U , then there exists x0 ∈ X and U0 ∈ U such
that U @0 (x0) ⊆ E. Therefore, ∅ 	= U @0 (x0) ∩ B ⊆ E ∩ B, and thus B ∩ E 	= ∅.

Theorem 48 We have

(1) ∅ /∈ DU if and only if X 	= ∅ and U 	= ∅ ;
(2) B ∈ DU and B ⊆ C ⊆ Y imply C ∈ DU .

Theorem 49 We have

(1) Y ∈ EU if and only if X 	= ∅ and U 	= ∅ ;
(2) B ∈ EU and B ⊆ C ⊆ Y imply C ∈ EU .

Remark 23 If U is super relator on X to Y such that X 	= ∅ and U 	= ∅, then
we shall say that U is a non-degenerated.

In addition to Theorems 48 and 49, it is also worth noticing that, by Remark 20,
we have ∅ /∈ EU

(
Y ∈ DU

)
if and only if U is quasi-non-partial.

Moreover, it is also worth mentioning that if U is a super relation on X to Y ,
then the stack EU has a base B with card (B) ≤ card (X). ( See Pataki [67].)
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Theorem 50 We have

(1) EU = ⋃
U∈U EU ; (2) DU =⋂

U∈U DU .

Corollary 14 The mapping

(1) R �→ ER is union-preserving;
(2) R �→ DR is intersection-preserving.

Remark 24 Finally, we note that, by using the notation

UU(x) = int−1
U
(x) = {

B ⊆ Y : x ∈ int U(B)
}
,

we can also prove that EU = ⋃
x∈X UU(x).

14 Further Structures Derived from Super Relators

Notation 5 In this and the next section, we shall already assume that U is a super
relator on X.

By using Definition 10, we may also naturally introduce the following

Definition 12 For any A ⊆ X, we define :

(1) A ∈ τU if A ∈ Int U(A) ; (2) A ∈ τ-U if Ac /∈ Cl U(A) ;
(3) A ∈ TU if A ⊆ int U(A) ; (4) A ∈ FU if cl U(A) ⊆ A ;
(5) A ∈ NU if cl U(A) /∈ EU ; (6) A ∈ MU if int U(A) ∈ D U.

Remark 25 The members of the families, τU and TU and NU will be called
the proximally open, topologically open and rare (or nowhere dense) subsets of the
super relator space X(U), respectively.

The family τU was introduced by the second author in [89, 91] for an ordinary
relator U. While, the notation τ-U was suggested by János Kurdics who first noticed
that connectedness is a particular case of well-chainedness [49, 50].

Analogously to well-chainedness and connectedness [69, 78], convergence and
continuity [85, 110], completeness and compactness [93, 96], Lebesgue and Baire
properties [87, 99], can also be most nicely treated in relator spaces.

By using the corresponding definitions and results of Sects. 11–13, we can easily
establish the following theorems.

Theorem 51 For any A ⊆ X, we have
(1) A ∈ τU if and only if U (A) ⊆ A for some U ∈ U ; (2) A ∈ τ-U if

and only if A ∩ U (Ac) = ∅ for some U ∈ U.

Theorem 52 For any A ⊆ X, we have
(1) A ∈ τ-U ⇐⇒ Ac ∈ τU ; (2) A ∈ τU ⇐⇒ Ac ∈ τ-U .
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Proof To prove (1), note that, by Definition 12 and Theorem 29, we have

A ∈ τ-U ⇐⇒ Ac /∈ Cl U(A) ⇐⇒ Ac /∈ Int U( A
c )c

⇐⇒ Ac ∈ Int U( A
c) ⇐⇒ Ac ∈ τU .

Theorem 53 The following assertions are equivalent :

(1) ∅ ∈ τ-U ; (2) X ∈ τU ; (3) U 	= ∅; (4) τU 	= ∅; (5) τ-U 	= ∅.
Theorem 54 The following assertions are equivalent :

(1) ∅ ∈ τU ; (2) X ∈ τ-U ; (3) U (∅) = ∅ for some U ∈ U .

Theorem 55 We have

(1) τU = ⋃
U∈U τU ; (2) τ-U = ⋃

U∈U τ-U .

Corollary 15 The mappings

U �→ τU and U �→ τ-U

are union-preserving.

Theorem 56 If U is quasi-increasing, then

(1) τU ⊆ TU ; (2) τ-U ⊆ FU .

Proof To prove (1), note that if A ∈ τU, then by Definition 12 we have A ∈
Int U(A). Hence, by using Theorem 34, we can infer that A ⊆ intU(A). Thus, by
Definition 12, we also have A ∈ TU.

Corollary 16 If U is a union-preserving super relation on X, then

(1) τU = TU ; (2) τ-U = FU .

Proof To prove the inclusion TU ⊆ τU , note that if A ∈ TU, then by Definition 12
we have A ⊆ intU (A). Hence, by using Theorem 35, we can infer that A ∈
IntU (A). Thus, by Definition 12, we also have A ∈ τU .

In addition to this corollary, it is also worth proving the following

Theorem 57 If U is an increasing super relation on X, then

(1) τ-U is closed under arbitrary unions ;
(2) τU is closed under arbitrary intersections.

Proof If A ⊆ τU , then for any A ∈ A we have A ∈ τU . Therefore, by
Theorem 51, we have U (A) ⊆ A.

Hence, by using the increasingness of U , we can see that U
( ⋂

A
) ⊆ U (A) ⊆

A for all A ∈ A, and thus U
(⋂

A
) ⊆ ⋂

A. Therefore, by Theorem 51, we
also have

⋂
A ∈ τU .

This proves assertion (2). Hence, by Theorem 52, assertion (1) follows.
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Now as a useful consequence of the latter results, we can also state

Corollary 17 If U is a union-preserving super relation on X, then the families
τU and τ-U are closed under arbitrary unions and intersections.

Proof To prove the stated properties of τU , note that by Theorem 57 the family τU
is closed under arbitrary intersections.

Moreover, by using Theorem 51, we can easily see that τU is also closed under
arbitrary unions.

Remark 26 Thus, if U is a union-preserving super relation on X, then the families
τU and τ-U are Alexandrov topologies on X [4, 82].

15 Basic Theorems on Topologically Open Sets

Now, by using Definition 12 and the corresponding results of Sects. 12 and 13, we
can easily establish the following theorems.

Theorem 58 For any A ⊆ X, we have
(1) A ∈ TU if and only if for each x ∈ A there exists U ∈ U such that U @(x) ⊆

A ;
(2) A ∈ FU if and only if for each x ∈ Ac there exists U ∈ U such that

A ∩ U @(x) = ∅.
Theorem 59 For any A ⊆ X, we have
(1) A ∈ FR ⇐⇒ Ac ∈ TR ; (2) A ∈ TR ⇐⇒ Ac ∈ FR .

Theorem 60 If A ⊆ X and B ∈ TU such that A ∩ B = ∅, then

cl U(A) ∩ B = ∅.

Proof If A ∩ B = ∅, then Theorem 40 we have A− ∩ B ◦ = ∅. Hence, by
Definition 12, we can see that A− ∩ B = ∅ also holds.

Remark 27 If U is reflexive, then A ⊆ A−. Therefore, A− ∩ B = ∅ also implies
A ∩ B = ∅.

Theorem 61 We have

(1) A ⊆ FU implies
⋂

A ∈ FU ;
(2) ∅ ∈ FU if and only if either X = ∅ or U 	= ∅.
Theorem 62 We have

(1) A ⊆ TU implies
⋃

A ∈ TU ;
(2) X ∈ TU if and only if either X = ∅ or U 	= ∅.
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Remark 28 From the A = ∅ particular cases of the latter two theorems, we can
also see that ∅ ∈ TU and X ∈ FU are always true.

Now, in contrast to Theorems 33, 42, 50, and 55, we can only prove

Theorem 63 The mappings

U �→ TU and U �→ FU

are increasing.

Corollary 18 We have

(1)
⋃
U∈U TU ⊆ TU ; (2)

⋃
U∈U FU ⊆ FU .

The following example shows that the corresponding equalities need not be true.

Example 2 If card(X) > 2 and x1 , x2 ∈ X such that x1 	= x2, and

Ri = { xi }2 ∪ ({ xi }c
)2

for all i = 1, 2, then R = {R1 , R2} is an equivalence relator on X such that for
the associated super relator R ? = {R ?1 , R ?2 } we have

{ x1 , x2} ∈ TR ? \ (TR?1 ∪TR?2
)
, and thus TR ? 	⊆ TR?1 ∪ TR?2 .

By Theorem 8 and the definitions of the relations Ri , we have

R ?@1 (x1) = R1(x1) = { x1},
R ?@1 (x2) = R1(x2) = { x1}c ;
R ?@2 (x1) = R2(x1) = { x2}c,
R ?@2 (x2) = R2(x2) = { x2}.
Hence, by Theorem 58, we can see that { x1 , x2} ∈ TR ? , but { x1 , x2} /∈ TR

?
1

and { x1 , x2} /∈ TR
?

2
.

Finally, we note that the following theorems are also true.

Theorem 64 We have

(1) TU \ {∅} ⊆ EU ; (2) D U ∩FU ⊆ {X}.
Remark 29 Hence, by using global complementations, we can easily infer that
FU ⊆

(
D U

)c ∪ {X} and D U ⊆
(
FU

)c ∪ {X}.
Theorem 65 For any A ⊆ X we have

(1) A ∈ EU if V ⊆ A for some V ∈ TU \ {∅} ;
(2) A ∈ DU only if A \W 	= ∅ for all W ∈ FU \ {X}.
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Theorem 66 For any A ⊆ X, we have
(1) A ∈ MU ⇐⇒ Ac ∈ NU ;
(2) A ∈ NU ⇐⇒ Ac ∈ MU .

Proof To prove (1), note that, by Definition 12 and Theorems 46 and 37,

A ∈ MU ⇐⇒ A◦ ∈ DU ⇐⇒ A◦ c /∈ EU ⇐⇒ Ac− /∈ EU ⇐⇒ Ac ∈ NU .

16 Structures Derived from the Super Relator U ◦

From Theorem 36, by using Theorem 9, we can immediately derive

Theorem 67 For any super relator U on X to Y , we have

(1) cl U ◦ = cl U ; (2) int U ◦ = int U.

Proof Note that, by Theorem 9, we have U ◦ @ = U @ for all U ∈ U. Therefore,
U ◦ @ = U @. Thus, Theorem 36 can be used to obtain the required equalities.

From this theorem, by Definition 10, it is clear that we also have

Corollary 19 For any super relator U on X to Y , we have

(1) E U ◦ = E U ; (2) D U ◦ = D U.

Now, by Theorem 67 and Definition 12, we can also state the following

Corollary 20 For any super relator U on X, we have

(1) T U ◦ = T U ; (2) F U ◦ = F U ;
(3) N U ◦ = N U ; (4) M U ◦ = M U.

The following example shows that, even for a super relation U , we may have
IntU ◦ 	= IntU , and thus also ClU ◦ 	= ClU

Example 3 If X = {1, 2} and U is super relation on X such that, for any A ⊆ X,

U (A) = A if A 	= X and U (A) = {1} if A = X,
then

(1) IntU(∅) = {∅}, IntU(X) = P(X),
IntU

({1}) = {∅, {1}, X}, IntU
({2}) = {∅, {2}} ;

(2) intU(A) = A for all A ⊆ X ;
(3) τU = TR = P(X) ; (4) , EU = P(X) \ {∅} ; (5) NU = {∅} ;

and moreover

(6) U @(x) = {x } for all x ∈ X; (7) U ◦(A) = A for all A ⊆ X;
(8) IntU ◦(A) = P(A) for all A ⊆ X; (9) intU ◦(A) = A for all A ⊆ X;

(10) τU◦ = TU◦ = P(X) ; (11) EU◦ = P(X) \ {∅} ; (12) NU ◦ = {∅}.
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Remark 30 Concerning the above super relation U , it is also noteworthy that

(13) IntU
({1}) 	= IntV

({1}) for any quasi-increasing super relator V on X.

Namely, if V is a super relator on X such that IntU
({1}) ⊆ IntV

({1}),
then because of X ∈ IntU

({1}), we also have X ∈ IntV

({1}). Thus, there
exists V ∈ V such that V (X) ⊆ {1}. Hence, if V is quasi-increasing, we
can infer that V

({2}) ⊆ {1}, and thus {2} ∈ IntV

({1}) also holds. Therefore,
IntV

({1}) 	⊆ IntU
({1}).

Note that if in particular R is an ordinary relator on X, then by Theorem 8
the associated super relator R ? = {R ? : R ∈ R} is union-preserving, and thus
in particular it is increasing. Therefore, as an important particular case of assertion
(13), we can also state that IntU

({1}) 	= Int R?
({1}), and thus IntU 	= IntR? .

This shows that super relators are, in general, more powerful tools than ordinary
relators.

17 Structures Derived from Ordinary Relators

Notation 6 In this and the next two sections, we shall assume that R is an ordinary
relator and U is a super relator on X to Y .

By Theorem 8, the family R ? = {R ? : R ∈ R} is a union-preserving super
relator on X. Thus, in particular, we may naturally introduce the following

Definition 13 For any structure F for super relators on X to Y , we define

FR = FR ? .

By the corresponding definitions, we have U ◦ = U @ ? = (
U @)?. Therefore,

by Definition 13, we can at once state the following

Theorem 68 We have

(1) Cl U ◦ = Cl U @ ; (2) Int U ◦ = Int U @ .

Hence, by Theorem 10, it is clear that in particular we also have

Corollary 21 If U is union-preserving, then

(1) Cl U = Cl U @ ; (2) Int U = Int U @ .

However, it is now more important to note that, for any R ∈ R and A ⊆ X, we
have R ?(A) = R [A ]. Therefore, by Definitions 10 and 13, we have

Theorem 69 For any A ⊆ X, B ⊆ Y and x ∈ X, y ∈ Y we have

(1) A ∈ IntR(B) ⇐⇒ R [A ] ⊆ B for some R ∈ R ;
(2) A ∈ ClR(B) ⇐⇒ R [A ] ∩ B 	= ∅ for all R ∈ R ;
(3) x ∈ intR(B) ⇐⇒ {x} ∈ IntR(B) ;
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(4) x ∈ σR(y) ⇐⇒ x ∈ intR

({y }) ;
(5) x ∈ clR(B) ⇐⇒ {x} ∈ ClR(B) ;
(6) x ∈ ρR(y) ⇐⇒ x ∈ clR

({y }) ;
(7) B ∈ ER ⇐⇒ intR(B) 	= ∅ ;
(8) B ∈ DR ⇐⇒ clR(B) = X .

By using this theorem and the results of Sect. 11, we can easily establish the
subsequent theorems.

Theorem 70 For any B ⊆ Y we have

(1) ClR(B) = IntR( B
c )c ; (2) IntR(B) = ClR( B

c )c.

Theorem 71 We have

(1) ClR−1 = Cl−1
R

; (2) IntR−1 = CY ◦ Int−1
R
◦CX.

Proof To prove (1), note that, for any A ⊆ X and B ⊆ Y , we have

B ∈ ClR−1(A) ⇐⇒ ∀ R ∈ R : R−1 [B ] ∩ A 	= ∅ ⇐⇒
∀ R ∈ R : B ∩ R [A ] 	= ∅ ⇐⇒ A ∈ ClR(B) ⇐⇒ B ∈ Cl−1

R
(A).

Remark 31 Hence, we can see that, despite their equivalence, closures are some-
times more convenient tools than interiors.

Moreover, this theorem, together with the next two theorems, also shows that
ordinary relators are less general, but more flexible tools than super relators.

Recall that, for U ∈ U, instead of its ordinary inverse U−1, which is not a super
relation, we had to consider its relationally generated inverse U−1 = U @−1 ?.

Theorem 72 We have

(1) ClR(∅) = ∅, resp. Cl−1
R
(∅) = ∅, if and only if R 	= ∅ ;

(2) ClR(B1) ⊆ ClR(B2) if B1 ⊆ B2 ⊆ Y and Cl−1
R
(A1) ⊆ Cl−1

R
(A2) if

A1 ⊆ A2 ⊆ X.
Remark 32 Note that if in particular R = ∅, then we have ClR(B) = P(X) for
all B ⊆ X.

Moreover, ClR(Y ) = P(X)\{∅} if and only if R is non-partial, i. e., R (x) 	=
∅ for all x ∈ X and R ∈ R.

Theorem 73 We have

(1) IntR(Y ) = P(X), resp. Int−1
R
(∅) = P(Y ), if and only if R 	= ∅ ;

(2) IntR(B1) ⊆ IntR(B2) if B1 ⊆ B2 ⊆ Y and Int−1
R
(A2) ⊆ Int−1

R
(A1) if

A1 ⊆ A2 ⊆ X.
Remark 33 Conversely, from [91], we can see that, for any such hyper relation
Int on Y to X, there exists a nonvoid relator R on X to Y such that Int = IntR .
Thus, generalized proximity relations should not be studied without generalized
uniformities.
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Theorem 74 For an ordinary relation R on X to Y ,

(1) ClR and Cl−1
R are union-preserving ;

(2) IntR and Int−1
R are intersection-preserving.

Theorem 75 We have

(1) ClR = ⋂
R∈R ClR ; (2) IntR =⋃

R∈R IntR .

Corollary 22 The mapping

(1) R �→ IntR is union-preserving;
(2) R �→ ClR is intersection-preserving.

Theorem 76 For any A ⊆ X and B ⊆ Y
(1) A ∈ IntR(B) implies A ⊆ intR(B) ;
(2) A ∩ clR(B) 	= ∅ implies A ∈ ClR(B).

Theorem 77 For an ordinary relation R on X to Y , we have

(1) IntR (B) = P
(

intR (B)
)
; (2) ClR (B) = P

(
clR (B)c

)c
.

Remark 34 Theorems 74 and 77 can be generalized by calling the ordinary relator
R proximally simple if ClR = ClR for some ordinary relation R.

18 Further Theorems on Small Closures and Interiors

By using Definition 13 and the results of Sect. 12, we can easily establish the
following theorems.

Theorem 78 For any x ∈ X and B ⊆ Y , we have
(1) x ∈ intR(B) if and only if R (x) ⊆ B for some R ∈ R ;
(2) x ∈ clR (B) if and only if R (x) ∩ B 	= ∅ for all R ∈ R.

Theorem 79 For any B ⊆ Y we have

(1) clR(B) = intR( B
c )c ; (2) intR(B) = clR( B

c )c.

Theorem 80 We have

(1) clR(B1) ⊆ clR(B2) if B1 ⊆ B2 ⊆ Y ;
(2) clR(∅) = ∅ if and only if either X = ∅ or R 	= ∅.
Remark 35 If in particular, R = ∅, then we have clR(B) = X, and thus
intR(B) = ∅ for all B ⊆ Y .

Moreover, it is also worth noticing that clR(Y ) = X, and thus intR(∅) = ∅ if
and only if R is non-partial.
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Theorem 81 We have

(1) intR(B1) ⊆ intR(B2) if B1 ⊆ B2 ⊆ Y ;
(2) intR(X) = X if and only if either X = ∅ or R 	= ∅.
Remark 36 Conversely, from [91], we can see that, for any such super relation int
on Y to X, there exists a nonvoid relator R on X to Y such that int = intR .
Thus, generalized closure relations should not also be studied without generalized
uniformities.

Theorem 82 For an ordinary relation R on X to Y ,

(1) clR is union-preserving ; (2) intR is intersection-preserving.

Theorem 83 We have

(1) clR = ⋂
R∈R clR ; (2) intR = ⋃

R∈R intR .

Corollary 23 The mapping

(1) R �→ intR is union-preserving; (2) R �→ clR is intersection-preserving.

Theorem 84 For any B ⊆ Y , we have
(1) clR(B) =

⋂
R∈R R−1 [B ] ; (2) intR(B) =

⋃
R∈R R−1 [Bc ]c .

Corollary 24 We have ρR = ⋂
R−1 = ( ⋂

R
)−1

.

Theorem 85 If R is an ordinary relation on X to Y , then for any A ⊆ X and
B ⊆ Y , we have

A ⊆ intR (B) ⇐⇒ clR−1 (A) ⊆ B.

Remark 37 This shows that the mappings

A �→ clR−1(A) and B �→ intR (B)

establish a Galois connection between the posets P(X) and P(Y ).
The above important closure-interior Galois connection, used first in [112], is

not independent from the well-known upper and lower bound one [104].

Now, by Definitions 11 and 13, we can also at once state

Theorem 86 For any B ⊆ Y , we have
(1) bndR(B) = clR(B) \ intR(B).

Moreover, if in particular X = Y , then we also have

(2) resR(A) = clR(A) \ A ; (3) borR(A) = A \ intR(A).

Thus, a counterpart of Remark 21 can also be established. However, it is now
more important to note that, in addition to Theorem 68, we can also prove
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Theorem 87 We have

(1) cl U = cl U @ = cl U ◦ ; (2) int U = int U @ = int U ◦ .

Proof If x ∈ X and B ⊆ Y , then by using Theorems 36 and 78 we can see that

x ∈ cl U(B) ⇐⇒ ∀ U ∈ U : U @(x) ∩ B 	= ∅ ⇐⇒ x ∈ cl U@(B).

Therefore, cl U(B) = cl U @ (B) for all B ⊆ Y , and thus the first part of (1) is also
true. The second part of (1) follows from Theorem 68.

Hence, it is clear that in particular we can also state

Corollary 25 We have

(1) E U = E U @ ; (2) D U = D U @ .

Remark 38 Theorem 87, and its various consequences, shows that a great deal of
the theory of relator spaces cannot actually be generalized by using super relators
instead of the ordinary ones.

19 Further Theorems on Fat and Dense Sets

By using Definition 10 and our former theorems of closures and interiors, we can
also easily establish the following theorems.

Theorem 88 For any B ⊆ Y , we have
(1) B ∈ ER if and only if R (x) ⊆ B for some x ∈ X and R ∈ R ;
(2) B ∈ DR if and only if R (x) ∩ B 	= ∅ for all x ∈ X and R ∈ R.

Theorem 89 For any B ⊆ Y , we have
(1) B ∈ DR if and only if X = R−1 [B ] for all R ∈ R ;
(2) B ∈ ER if and only if X 	= R−1 [Bc ] for some R ∈ R.

Theorem 90 For any B ⊆ Y we have

(1) B ∈ DR ⇐⇒ Bc /∈ ER ; (2) B ∈ ER ⇐⇒ Bc /∈ DR .

Remark 39 By Theorems 88 and 90, we can also state that R (x) ∈ ER, and thus
R (x)c /∈ DR for all x ∈ X and R ∈ R.

Theorem 91 For any B ⊆ Y we have

(1) B ∈ DR if and only if B ∩ E 	= ∅ for all E ∈ ER ;
(2) B ∈ ER if and only if B ∩D 	= ∅ for all D ∈ DR .
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Theorem 92 We have

(1) ∅ /∈ DR if and only if X 	= ∅ and R 	= ∅ ;
(2) B ∈ DR and B ⊆ C ⊆ Y imply C ∈ DR .

Remark 40 In this respect, it is also worth noticing that Y ∈ DR, and thus ∅ /∈ ER

if and only if R is non-partial.

Theorem 93 We have

(1) Y ∈ ER if and only if X 	= ∅ and R 	= ∅ ;
(2) B ∈ ER and B ⊆ C ⊆ Y imply C ∈ ER .

Remark 41 Conversely, from [103], we can see that if A is a nonvoid, ascending
family of subsets of a nonvoid set X, then there exists a nonvoid, preorder relator on
X such that A = ER. Thus, stacks should not also be studied without generalized
uniformities.

Theorem 94 We have

(1) ER = ⋃
R∈R ER ; (2) DR = ⋂

R∈R DR .

Corollary 26 The mapping

(1) R �→ ER is union-preserving; (2) R �→ DR is intersection-preserving.

Remark 42 Now, by Remark 24 and Definition 13, we can also state that

UR(x) = int−1
R
(x) = {

B ⊆ Y : x ∈ intR(B)
}

and ER = ⋃
x∈X UR(x).

20 Further Structures Derived from Ordinary Relators

Notation 7 In this and the next section, we shall already assume that R is an
ordinary relator on X.

Because of Definitions 12 and 13, we can at once state the following:

Theorem 95 For any A ⊆ X, we have
(1) A ∈ τR ⇐⇒ A ∈ IntR(A) ; (2) A ∈ τ-R ⇐⇒ Ac /∈ ClR(A) ;
(3) A ∈ TR ⇐⇒ A ⊆ intR(A) ; (4) A ∈ FR ⇐⇒ clR(A) ⊆ A ;
(5) A ∈ NR ⇐⇒ clR(A) /∈ ER ; (6) A ∈ MR ⇐⇒ intR(A) ∈ DR.

Now, by using the corresponding results of Sect. 14, we can also easily establish
the following theorems.
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Theorem 96 For any A ⊆ X, we have
(1) A ∈ τR if and only if R [A ] ⊆ A for some R ∈ R ;
(2) A ∈ τ-R if and only if A ∩ R [Ac ] = ∅ for some R ∈ R.

Theorem 97 For any A ⊆ X, we have
(1) A ∈ τ-R ⇐⇒ Ac ∈ τR ; (2) A ∈ τR ⇐⇒ Ac ∈ τ-R .

Theorem 98 We have

(1) τ-R = τR−1 ; (2) τR = τ-R−1 .

Proof To prove (1), note that, by Theorems 95, 71, and 70, for any A ⊆ X we
have

A ∈ τ-R ⇐⇒ Ac /∈ ClR (A) ⇐⇒ A /∈ Cl−1
R (A

c ) ⇐⇒
A /∈ ClR−1 (A

c ) ⇐⇒ A ∈ ClR−1 (A
c )c ⇐⇒ A ∈ IntR−1 (A) ⇐⇒ A ∈ τR−1 .

Theorem 99 The following assertions are equivalent :

(1) R 	= ∅ ; (2) τR 	= ∅ ; (3) τ-R 	= ∅ ;
(4) ∅ ∈ τR ; (5) X ∈ τR ; (6) ∅ ∈ τ-R ; (7) X ∈ τ-R.

Remark 43 Conversely, from [103], we can see that if A is a family of subsets
of X containing ∅ and X, then there exists a nonvoid, preorder relator R on X
such that A = τR. Thus, minimal structures should not also be studied without
generalized uniformities.

Theorem 100 We have

(1) τR = ⋃
R∈R τR ; (2) τ-R = ⋃

R∈R τ-R .

Corollary 27 The mappings

R �→ τR and R �→ τ-R

are union-preserving.

Now, by using the corresponding results of Sect. 15, we can quite similarly
establish the following theorems.

Theorem 101 For any A ⊆ X, we have
(1) A ∈ TR if and only if for each x ∈ A there exists R ∈ R such that R (x) ⊆

A ;
(2) A ∈ FR if and only if for each x ∈ Ac there exists R ∈ R such that

A ∩ R (x) = ∅.
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Theorem 102 For any A ⊆ X, we have
(1) A ∈ FR ⇐⇒ Ac ∈ TR ; (2) A ∈ TR ⇐⇒ Ac ∈ FR .

Theorem 103 If A ⊆ X and V ∈ TR such that A ∩ V = ∅, then

clR(A) ∩ V = ∅.

Remark 44 Note that if R is reflexive, then A ⊆ A− for all A ⊆ X. Therefore,
A− ∩ V = ∅ trivially implies A ∩ V = ∅ for all A, V ⊆ X.

Theorem 104 The following assertions hold :

(1) A ⊆ FR implies
⋂
A ∈ FR ;

(2) ∅ ∈ FR if and only if either X = ∅ or R 	= ∅.
Remark 45 From the A = ∅ particular case of this theorem, we can see that X ∈
FR, and thus ∅ ∈ TR are always true.

Theorem 105 The following assertions hold :

(1) A ⊆ TR implies
⋃
A ∈ TR ;

(2) X ∈ TR if and only if either X = ∅ or R 	= ∅.
Remark 46 Conversely, from [103], we can see that if A is a family of subsets
of X such that X ∈ A and A is closed under arbitrary unions, then there exists a
nonvoid, preorder relator R on X such that A = TR. Thus, generalized topologies
should not also be studied without generalized uniformities.

Theorem 106 The mappings

R �→ TR and R �→ FR

are increasing.

Corollary 28 We have

(1)
⋃
R∈R TR ⊆ TR ; (2)

⋃
R∈R FR ⊆ FR .

Remark 47 From Example 2, by Definition 13, we can see that the corresponding
equalities need not be true.

In view of Theorems 75, 83, 94, and 100, this is a serious disadvantage of open
sets on which Topology and Analysis have been mainly based on.

21 Further Theorems on Open and Fat Sets

From the corresponding results of the previous sections, by using Definition 13, we
can also easily establish the following theorems.



748 Th. M. Rassias and Á. Száz

Theorem 107 We have

(1) τR ⊆ TR ; (2) τ-R ⊆ FR .

Corollary 29 For an ordinary relation R on X, we have

(1) τR = TR ; (2) τ-R = FR .

Theorem 108 We have

(1) TR \ {∅} ⊆ ER ; (2) DR ∩FR ⊆ {X}.
Theorem 109 For any A ⊆ X we have

(1) A ∈ ER if V ⊆ A for some V ∈ TR \ {∅} ;
(2) A ∈ DR only if A \W 	= ∅ for all W ∈ FR \ {X}.
Theorem 110 For any A ⊆ X, we have
(1) A ∈ MR ⇐⇒ Ac ∈ NR ;
(2) A ∈ NR ⇐⇒ Ac ∈ MR .

Remark 48 The fat sets are frequently more convenient tools than the topologically
open ones. For instance, if ≤ is a relation on X , then T≤ and E≤ are the families
of all ascending and residual subsets of the goset X(≤ ), respectively.

Moreover, if in particular X = R and R (x) = { x − 1 } ∪ [ x, +∞[ for all
x ∈ X, then R is a reflexive relation on X such that TR = {∅, X }, but ER is
quite a large family. Namely, the supersets of each R(x) are also contained in ER .

Advantages of fat and dense sets over the open and closed ones were first stressed
in [88]. However, their importance lies mainly in the following

Definition 14 If R is an ordinary relator on X to Y , and ϕ and ψ are functions
of a super relator space Γ (W) to X and Y , respectively, then by using the notation

(ϕ 
 ψ)(γ ) = (
ϕ(γ ), ψ(γ )

)

for all γ ∈ Γ , we may also naturally define

(1) ϕ ∈ LimR (ψ ) if (ϕ 
 ψ)−1 [R ] ∈ EW for all R ∈ R ;

(2) ϕ ∈ AdhR (ψ ) if (ϕ 
 ψ)−1 [R ] ∈ DW for all R ∈ R.

Moreover, for any x ∈ X, we may also naturally define :

(3) x ∈ limR(ψ ) if xΓ ∈ LimR(ψ );
(4) x ∈ adhR(ψ ) if xΓ ∈ AdhR(ψ ),

where xΓ is a function of Γ to X such that xΓ (γ ) = x for all γ ∈ Γ .

Remark 49 Fortunately, the small limit and adherence relations are equivalent to
the small closure and interior ones.
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However, the big limit and adherence relations, suggested by Efremović and
švarc [28], are usually stronger tools than the big closure and interior ones.

In this respect, we shall only mention here the following

Theorem 111 If R is an ordinary relator on X to Y , then for any A ⊆ X and
B ⊆ Y the following assertions are equivalent :

(1) A ∈ ClR(B) ;
(2) There exist functions ϕ and ψ of the poset R (⊇ ) to A and B, respectively,

such that ϕ ∈ LimR (ψ ) ;
(3) There exist functions ϕ and ψ of a super relator space Γ (W) to A and B,

respectively, such that ϕ ∈ LimR (ψ ).

Proof For instance, if (1) holds, then for each R ∈ R, we have R [A ] ∩ B 	= ∅.
Therefore, there exist ϕ (R) ∈ A and ψ (R) ∈ B such that ψ (R) ∈ R (

ϕ (R)
)
.

Hence, we can already infer that (ϕ
ψ)(R) = (
ϕ(R), ψ(R)

) ∈ R, and thus also
R ∈ (ϕ 
 ψ)−1 [R ].

Therefore, if R ∈ R, then for any S ∈ R, with R ⊇ S, we have

S ∈ (ϕ 
 ψ)−1 [ S ] ⊆ (ϕ ⊗ ψ)−1 [R ] .

This shows that (ϕ
ψ)−1 [R ] is a fat subset of R (⊇ ), and thus ϕ ∈ LimR (ψ ).

Remark 50 Finally, we note that if R is a relator on X to Y , then according to
[98], for any A ⊆ X and B ⊆ Y , we may also naturally define

(1) A ∈ LbR(B) and B ∈ UbR(A) if A×B ⊆ R for some R ∈ R.

And, in the X = Y particular case, for any A ⊆ X we may also naturally define

(2) MinR(A) = P(A) ∩ LbR(A) ; (3) SupR(A) = MinR

(
UbR(A)

)
.

However, the above algebraic structures are not independent of the former
topological ones. Namely, by using appropriate complements, it can be shown that

LbR = IntR c◦CY and IntR = LbR c◦CY .

Therefore, in contrast to a common belief, some algebraic and topological structures
are just as closely related to each other, by the above equalities, as the exponential
and the trigonometric functions are so by the Euler formulas [84, p. 227].

22 Reflexive, Non-Partial and Non-Degenerated Relators

Definition 15 An ordinary relator R on X is called reflexive if each member R
of R is a reflexive relation on X.
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Remark 51 Thus, the following assertions are equivalent :

(1) R is reflexive ;
(2) x ∈ R (x) for all x ∈ X and R ∈ R ;
(3) A ⊆ R [A ] for all A ⊆ X and R ∈ R.

The importance of reflexive relators is also apparent from the following two
obvious theorems.

Theorem 112 For an ordinary relator R on X, the following assertions are
equivalent :

(1) ρR is reflexive ; (2) R is reflexive ;
(3) A ⊆ clR(A)

(
intR(A) ⊆ A

)
for all A ⊆ X .

Proof To see the equivalence of (1) and (2), recall that ρR =
( ⋂

R
)−1.

Remark 52 Therefore, if R is a reflexive ordinary relator on X, then for any A ⊆
X we have A ∈ TR ( A ∈ FR ) if and only if A = intR(A) (A = clR(A) ).

Theorem 113 For an ordinary relator R on X, the following assertions are
equivalent :

(1) R is reflexive ;
(2) A ∈ IntR(B) implies A ⊆ B for all A, B ⊆ X;
(3) A ∩ B 	= ∅ implies A ∈ ClR(B) for all A, B ⊆ X .

Remark 53 In addition to the above two theorems, it is also worth mentioning that
if R is a reflexive ordinary relator on X, then

(1) IntR is transitive ;
(2) B ∈ ClR(A) implies P(X) = ClR(A)

c ∪ Cl−1
R
(B) ;

(3) intR
(

borR(A)
) = ∅ and intR

(
resR(A)

) = ∅ for all A ⊆ X .

Thus, for instance, for any A ⊆ X we have resR(A) ∈ TR if and only if A ∈ FR.

In contrast to the reflexivity property of an ordinary relator R on X, we
may naturally introduce a great abundance of important symmetry and transitivity
properties of R [86, 89, 90].

However, it is now more important to note that, analogously to Definition 15, we
may also naturally introduce the following

Definition 16 An ordinary relator R on X to Y is called non-partial if each
member R of R is a non-partial relation on X to Y .

Remark 54 Thus, the following assertions are equivalent :

(1) R is non-partial ;
(2) R−1 [Y ] = X for all R ∈ R ;
(3) R(x) 	= ∅ for all x ∈ X and R ∈ R.

The importance of non-partial relators is apparent from the following
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Theorem 114 For an ordinary relator R on X to Y , the following assertions are
equivalent :

(1) R is non-partial ;

(2) ∅ /∈ ER ; (3) DR 	= ∅ ; (4) Y ∈ DR ; (5) ER 	= P(Y ).

Sometimes, we also need the following localized form of Definition 16.

Definition 17 An ordinary relator R on X is called locally non-partial if for each
x ∈ X there exists R ∈ R such that for any y ∈ R (x) and S ∈ R we have
S (y) 	= ∅.

Remark 55 Thus, if either X = ∅ or R is nonvoid and non-partial, then R is
locally non-partial.

Moreover, by using the corresponding definitions, we can also easily prove

Theorem 115 For an ordinary relator R on X, the following assertions are
equivalent :

(1) R is locally non-partial ; (2) X = intR

(
clR(X)

)
.

Proof To prove the implication (1) *⇒ (2), note that if (1) holds, then for each
x ∈ X there exists R ∈ R such that for any y ∈ R (x) and for any S ∈ R we
have S (y) ∩ X = S (y) 	= ∅, and thus y ∈ clR(X).

Therefore, for each x ∈ X there exists R ∈ R such that R (x) ⊆ clR(X), and
thus x ∈ intR

(
clR(X)

)
. Hence, we can already see that X ⊆ intR

(
clR(X)

)
, and

thus (2) also holds.

Remark 56 Thus, the relator R is locally non-partial if and only if X is a
topologically regular open subset of the relator space X(R ).

In addition to Definition 16, it is also worth introducing the following

Definition 18 An ordinary relator R on X to Y is called non-degenerated if both
X 	= ∅ and R 	= ∅.

Thus, analogously to Theorem 114, we can also easily establish the following

Theorem 116 For an ordinary relator R on X to Y , the following assertions are
equivalent :

(1) R is non-degenerated ;

(2) ∅ /∈ DR ; (3) ER 	= ∅ ; (4) Y ∈ ER ; (5) DR 	= P(Y ).

Remark 57 In addition to Theorems 114 and 116, it is also worth mentioning that
if the relator R is paratopologically simple in the sense that ER = ER for some
relation R on X to Y , then the stack ER has a base B with card (B) ≤ card (X).
( See [67, Theorem 5.9] of Pataki.)

The existence of a non-paratopologically simple (actually finite equivalence)
relator, proved first by Pataki [67, Example 5.11], shows that in our definitions of
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the relations LimR and AdhR we cannot restrict ourselves to functions of gosets
(generalized ordered sets) without some loss of generality.

23 Topological and Quasi-Topological Relators

Notation 8 In this section, we shall again assume that R is an ordinary relator
on X.

The following improvement of [86, Definition 2.1] was first considered in [89].
( See [95] for a subsequent treatment.)

Definition 19 The ordinary relator R is called :

(1) quasi-topological if x ∈ intR
(

intR
(
R (x)

))
for all x ∈ X and R ∈ R ;

(2) topological if for any x ∈ X and R ∈ R there exists V ∈ TR such that
x ∈ V ⊆ R (x).

The appropriateness of these definitions is already quite obvious from the
following four theorems.

Theorem 117 The following assertions are equivalent :

(1) R is quasi-topological ;
(2) intR

(
R (x)

) ∈ TR for all x ∈ X and R ∈ R ;
(3) clR( A ) ∈ FR

(
intR( A ) ∈ TR

)
for all A ⊆ X .

Remark 58 Hence, we can see that the ordinary relator R is quasi-topological if
and only if the super relation clR is upper semi-idempotent ( intR is lower semi-
idempotent ).

Theorem 118 The following assertions are equivalent :

(1) R is topological ;
(2) R is reflexive and quasi-topological.

Remark 59 By Theorem 117, the relator R may be called weakly (strongly) quasi-
topological if ρR(x) ∈ FR

(
R (x) ∈ TR

)
for all x ∈ X and R ∈ R.

Moreover, by Theorem 118, the relator R may be called weakly (strongly)
topological if it is reflexive and weakly (strongly) quasi-topological.

The following theorem shows that in a topological relator space X(R ), the
relation intR and the family TR are equivalent tools.

Theorem 119 The following assertions are equivalent :

(1) R is topological ;
(2) intR(A) =

⋃
TR ∩P(A) for all A ⊆ X;

(3) clR(A) =
⋂

FR ∩P−1(A) for all A ⊆ X .
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Now, as an immediate consequence of Theorems 109 and 119, we can also state

Corollary 30 If R is topological, then for any A ⊂ X, we have
(1) A ∈ ER if and only if there exists V ∈ TR \ {∅} such that V ⊆ A;
(2) A ∈ DR if and only if for all W ∈ FR \ {X} we have A \W 	= ∅.

However, it is now more important to note that we can also prove the following

Theorem 120 The following assertions are equivalent :

(1) R is topological ;
(2) R is topologically equivalent to a preorder relator.

Proof To prove the implication (1) *⇒ (2), note that if (1) holds, then by
Definition 19, for any x ∈ X and R ∈ R, there exists V ∈ TR such that
x ∈ V ⊆ R(x). Thus, by using the Pervin preorder relator

S = RTR
= {

RV : V ∈ TR

}
, where RV = V 2 ∪ V c×X,

we can show that intR(A) = intS(A) for all A ⊆ X, and thus intR = intS.

Remark 60 The above theorem can also be proved by using the relators

R∧ = {
S ⊆ X2 : ∀ x ∈ X : x ∈ intR

(
S (x)

) }

and R∧∞ = {
S∞ : S ∈ R∧ } considered mainly in [56, 57, 68, 92].

Note that some important operations for relators were already used by Kenyon
[45], Nakano-Nakano [60] and the second author [85, 94].

In addition to Theorem 117, it is also worth proving the following

Theorem 121 The following assertions are equivalent :

(1) R is quasi-topological;
(2) R ⊆ (

R∧◦R
)∧

; (3) R∧ ⊆ (
R∧◦R∧)∧.

Remark 61 By Száz [86], a relator R on X may be naturally called topologi-
cally transitive if, for each x ∈ X and R ∈ R there exist S, T ∈ R such that
T [ S (x)] ⊆ R (x).

This property can be reformulated in the concise form that R ⊆ (
R◦R)∧ . Thus,

the equivalence (1) and (3) can be expressed by saying that R is quasi-topological
if and only if R∧ is topologically transitive.

In particular, we can easily prove the following

Theorem 122 For an ordinary relation R on X, the following assertions are
equivalent :

(1) R is quasi-topological ; (2) R is transitive.

Hence, it is clear that, even more specially, we can also state
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Corollary 31 An ordinary relation R on X is topological if and only if it is a
preorder relation.

Remark 62 Analogously to Definition 19, the relator R may be called proximal if
for any A ⊆ X and R ∈ R there exists V ∈ τR such that A ⊆ V ⊆ R [A ].

Thus, in addition to the counterparts of Theorems 119 and 120, we can prove that
R is topological if and only if its topological closure (refinement) R∧ is proximal.

24 A Few Basic Facts on Filtered Relators

Notation 9 In this section, we shall assume that R is an ordinary relator on X
to Y .

The following definition was also first investigated in [86, 89].

Definition 20 The relator R is called

(1) properly filtered if for any R, S ∈ R we have R ∩ S ∈ R ;
(2) uniformly filtered if for any R, S ∈ R there exists T ∈ R such that

T ⊆ R ∩ S ;
(3) proximally filtered if for any A ⊆ X and R, S ∈ R there exists T ∈ R

such that T [A ] ⊆ R [A ] ∩ S [A ] ;
(4) topologically filtered if for any x ∈ X and R, S ∈ R there exists T ∈ R

such that T (x) ⊆ R (x) ∩ S (x).
Remark 63 By using the binary operation ∧ and the basic closure operations on
relators, the above properties can be reformulated in some more concise forms.

For instance, we can see that R is topologically filtered if and only if any one of
the properties R ∧R ⊆ R∧ , (R ∧R)∧ = R∧ and R∧ ∧ R∧ = R∧ holds.

However, in general, we only have (R∩S)[A ] ⊆ R [A ]∩S [A ]. Therefore, the
corresponding proximal filteredness properties are, unfortunately, not equivalent.

Despite this, we can easily prove the following theorem which shows the
appropriateness of the above proximal filteredness property.

Theorem 123 The following assertions are equivalent :

(1) R is proximally filtered ;
(2) ClR(A ∪ B) = ClR(A) ∪ ClR(B) for all A, B ⊆ Y ;
(3) IntR(A ∩ B) = IntR(A) ∩ IntR(B) for all A, B ⊆ Y .
Proof To prove the implication (3) *⇒ (1), note that if A ⊆ X and R, S ∈ R,
then by the definition of IntR we have A ∈ IntR

(
R [A ] ) and A ∈ IntR

(
S [A ] ).

Therefore, if (3) holds, then we also have A ∈ IntR

(
R [A ]∩S [A ] ). Thus, by the

definition of IntR, there exists T ∈ R such that T [A ] ⊆ R [A ] ∩ S [A ].
Now, as an immediate consequence of this theorem, we can also state
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Corollary 32 If R is a proximally filtered relator on X, then the families τ-R and
τR are closed under binary unions and intersections, respectively.

Analogously to Theorem 123, we can also easily prove the following

Theorem 124 The following assertions are equivalent :

(1) R is topologically filtered ;
(2) clR(A ∪ B) = clR(A) ∪ clR(B) for all A, B ⊆ Y ;
(3) intR(A ∩ B) = intR(A) ∩ intR(B) for all A, B ⊆ Y .

Thus, in particular, we can also state the following

Corollary 33 If R is a topologically filtered relator on X, then the families FR

and TR are closed under binary unions and intersections, respectively.

The following example shows that, for a non-topological relator R, the converse
of the above corollary need not be true.

Example 4 If X = {1, 2, 3} and Ri is relation on X, for each i = 1, 2, such
that

Ri (1) = { 1, i + 1 } and Ri (2) = Ri (3) = { 2, 3 },

then R = {
R1 , R2

}
is a reflexive relator on X such that TR is closed under

arbitrary intersections, but R is still not topologically filtered.
By the corresponding definitions, it is clear that TR = {∅, {2, 3}, X }

.
Moreover, we can note that Ri (1) 	⊆ R1(1) ∩ R2(1) for each i = 1, 2. Thus,
the relator R is not topologically filtered.

In addition to Theorem 124, in [74] we have also proved the following

Theorem 125 If R is a topologically filtered relator on X, A, B ⊆ X and there
exists V ∈ TR ∩ FR such that A ⊆ V and B ⊆ V c, then

intR(A ∪ B) = intR(A) ∪ intR(B) .

Remark 64 This statement is a straightforward generalization of [51, Lemma 7] of
Levine.

More difficult conditions for the dual equality (A ∩ B)− = A− ∩ B− to hold
were given by Gottschalk [37] and Jung and Nam [42, 43].

Concerning the latter problem, we can only prove here the following

Theorem 126 If R is a nonvoid, reflexive relator on X such that

clR(A ∩ B) = clR(A) ∩ clR(B)

for all A, B ⊆ X, then TR = P (X).
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Proof Namely, if this not the case, then there exists A ⊆ X such that A /∈ TR,
and thus B = Ac /∈ FR. Therefore, B− 	⊆ B, and thus there exists x ∈ B−
such that x /∈ B. Hence, by using the assumptions of the theorem, we can infer that
x ∈ {x }− ∩ B− = ( {x } ∩ B )− = ∅− = ∅, which is a contradiction.

Remark 65 If TR = P (X), then we have TR = TΔX . Hence, by using a
general theorem on quasi-topologically equivalent relators and the definitions of
the operations ∧ and ∞, we can infer that R∧∞ = {ΔX }∧∞ = P(X2)∞.

25 A Few Basic Facts on Quasi-Filtered Relators

Notation 10 In this and the next two sections, we shall already assume that R is
an ordinary relator on X.

Since R ⊆ R∞ for every relation R on X, in addition to Definition 20, we may
also naturally introduce the following

Definition 21 The relator R is called

(1) Quasi-uniformly filtered if for any R, S ∈ R there exists T ∈ R such that
T ⊆ R∞ ∩ S∞ ;

(2) Quasi-proximally filtered if for any A ⊆ X and R, S ∈ R there exists
T ∈ R such that T [A ] ⊆ R∞[A ] ∩ S∞[A ] ;

(3) Quasi-topologically filtered if for any x ∈ X and R, S ∈ R∧ there exists
T ∈ R such that T (x) ⊆ R∞(x) ∩ S∞(x).

Remark 66 Analogously to Remark 63, the above quasi-filteredness properties can
also be reformulated in some more concise forms.

For instance, we can see that R is quasi-topologically filtered if and only if
R∧∞∧R∧∞ ⊆ R∧ , (R∧∞∧R∧∞)∧∞ = R∧∞ or R∧∞∧R∧∞ = R∧∞.

However, it is now more important to note that, by using some former results
on relators, we can also prove the following two theorems which show the appro-
priateness of the above quasi-proximal and quasi-topological filteredness properties.

Theorem 127 The following assertions are equivalent :

(1) R is a quasi-proximally filtered;
(2) τ-R is closed under binary unions ;
(3) τR is closed under binary intersections.

Theorem 128 The following assertions are equivalent :

(1) R is a quasi-topologically filtered;
(2) FR is closed under binary unions ;
(3) TR is closed under binary intersections.
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Remark 67 In this respect it is also worth mentioning that if R is a relator on X
to Y , then the family ER is closed under binary intersections if and only if R
is quasi-directed in the sense that for any x, y ∈ X and R, S ∈ R we have
R (x) ∩ S (y) ∈ ER.

From the above two theorems, by using Corollaries 32 and 33, we can derive

Corollary 34 If R is a proximally (topologically) filtered relator on X, then R
is also quasi-proximally (quasi-topologically) filtered.

Now, by using Theorem 127, we can also easily prove the following

Theorem 129 If R is a quasi-proximally filtered, proximal relator on X, then R
is proximally filtered.

Proof Suppose that A ⊆ X and R, S ∈ R. Then, by Remark 62, there exist
U , V ∈ τR such that A ⊆ U ⊆ R [A ] and A ⊆ V ⊆ S [A ]. Moreover, by
Theorem 127, we can state that U ∩ V ∈ τR. Therefore, by the definition of τR ,
there exists T ∈ R such that T [U ∩V ] ⊆ U ∩V . Hence, we can already see that
T [A ] ⊆ T [U ∩ V ] ⊆ U ∩ V ⊆ R [A ] ∩ S [A ]. Thus, R is proximally filtered.

Moreover, by using Theorem 128, we can quite similarly prove the following

Theorem 130 If R is a quasi-topologically filtered, topological relator on X, then
R is topologically filtered.

Remark 68 Our former Example 4 shows that even a quasi-proximally filtered,
reflexive relator need not be topologically filtered.

Namely, if X and R are as in Example 4, then by the corresponding definitions
it is clear that τR = {∅, {2, 3}, X }

, and thus by Theorem 127 the relator R is
quasi-proximally filtered.

26 Some Further Theorems on Topologically Filtered
Relators

The importance of topologically filtered relators is also apparent from

Theorem 131 If R is topologically filtered, then for any A, B ⊆ X we have

(1) clR(A) ∩ intR(B) ⊆ clR(A ∩ B) ;
(2) intR(A ∪ B) ⊆ intR(A) ∪ clR(B).

Proof Assume that x ∈ A− ∩ B ◦ and R ∈ R. Then, since x ∈ B ◦ , there exists
S ∈ R such that S (x) ⊆ B. Moreover, since R is topologically filtered, there
exists T ∈ R such that T (x) ⊆ R (x) ∩ S (x). Furthermore, since x ∈ A−, there
exists y ∈ A such that y ∈ T (x). Hence, we can already infer that

y ∈ A ∩ T (x) ⊆ A ∩ S (x) ⊆ A ∩ B and y ∈ T (x) ⊆ R (x).
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Therefore, R (x) ∩ (A ∩ B) 	= ∅ for all R ∈ R, and thus x ∈ (A ∩ B)− also
holds. This proves that A− ∩ B ◦ ⊆ (A ∩ B)−, and thus assertion (1) is true.

Now, by applying assertion (1) to the sets Ac and Bc and using De Morgan’s
laws and Theorem 79, we can easily see that assertion (2) is also true.

From this theorem, by using Theorem 95, we can immediately derive

Corollary 35 If R is topologically filtered, then

(1) clR(A) ∩ B ⊆ clR(A ∩ B) for all A ⊆ X and B ∈ TR ;
(2) intR(A ∪ B) ⊆ intR(A) ∪ B for all A ⊆ X and B ∈ FR.

Remark 69 The important inclusion A− ∩ B ⊆ (A ∩ B)−, with B being open,
was first revealed by Kuratowski [48, p. 45].

Later, Császár [14–17, 19, 20] and Sivagami [80] assumed it as an axiom for
an increasing set-to-set function γ .

Now, as some improvements of the above theorem and its corollary, we can also
prove the following theorem and its corollary.

Theorem 132 If R is topologically filtered, then for any A, B ⊆ X we have

(1) clR(A) ∩ intR(B) = clR(A ∩ B) ∩ intR(B) ;
(2) intR(A ∪ B) ∪ clR(B) = intR(A) ∪ clR(B).

Proof To prove (1), note that, by Theorem 131, we have A− ∩ B ◦ ⊆ (A ∩ B)−,
and thus also A− ∩ B ◦ = A− ∩ B ◦ ∩ B ◦ ⊆ (A ∩ B)− ∩ B ◦.

On the other hand, by using Theorem 80, we can see that (A∩B)− ⊆ A−, and
thus also (A ∩ B)− ∩ B ◦ = (A ∩ B)− ∩ B ◦ ∩ B ◦ ⊆ A− ∩ B ◦.
Corollary 36 If R is topologically filtered, then

(1) clR(A) ∩ B = clR(A ∩ B) ∩ B for all A ⊆ X and B ∈ TR ;
(2) intR(A ∪ B) ∪ B = intR(A) ∪ B for all A ⊆ X and B ∈ FR.

Proof To derive assertion (1) from that of Theorem 132, note that if B ∈ TR, then
by Theorem 95 we have B ⊆ B ◦, and thus also B ◦ ∩ B = B.

However, Theorem 132 and its corollary are less important than Theorem 131 and
its corollary. Namely, for instance, by using Corollary 35 and our former theorems
on topological relators, we can already prove the following

Theorem 133 If R is topological and topologically filtered, then

(1) clR(A ∩ B) = clR

(
clR(A) ∩ B

)
for all A ⊆ X and B ∈ TR ;

(2) intR(A ∪ B) = intR

(
intR(A) ∪ B

)
for all A ⊆ X and B ∈ FR.

Proof To prove (1), note that if A ⊆ X and B ∈ TR, then by Corollary 35 we
have A− ∩ B ⊆ (A ∩ B)−. Hence, by using Theorem 117, we can infer that

( A− ∩ B )− ⊆ (A ∩ B)−− ⊆ (A ∩ B)−.
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On the other hand, by Theorems 118 and 112, we have A ⊆ A−, and thus also
A∩B ⊆ A−∩B. Hence, by Theorem 80, we can infer that (A∩B)− ⊆ (

A−∩B )− .
Therefore, the corresponding equality is also true.

From this theorem, by using Theorem 69, we can immediately derive

Corollary 37 If R is topological and topologically filtered, then

(1) clR(A ∩ B) = clR(B) for all A ∈ DR and B ∈ TR ;
(2) intR(A ∪ B) = intR(A) for all A ∈ E c

R
and B ∈ FR.

Now, by modifying an argument of Levine [53], we can also prove

Theorem 134 If R is nonvoid and topological, and A ⊆ X, then
(1) clR( A ∩ B ) = clR(B) for all B ∈ TR implies that A ∈ DR ;
(2) intR(A ∪ B) = intR(A) for all B ∈ FR implies that A /∈ ER.

Proof For instance, if A /∈ DR, then there exists x ∈ X such that x /∈ A−. Thus,
there exists R ∈ R such that A ∩ R (x) = ∅. Moreover, since R is topological,
there exists B ∈ TR such that x ∈ B ⊆ R (x). Thus, we also have A ∩ B = ∅.

Hence, by using the assumption of (1), we can infer that B− = (A ∩ B)− =
∅− = ∅. On the other hand, from x ∈ B, we can now infer that x ∈ {x }− ⊆ B−,
and thus B− 	= ∅. This contradiction proves (1).

Remark 70 If R is nonvoid and reflexive, and A ⊆ X such that clR

(
A ∩ R (x))

= clR

(
R (x)

)
for all x ∈ X and R ∈ R, then we can even more easily prove that

A ∈ DR.

27 Some More Particular Theorems on Topologically
Filtered Relators

The importance of Corollary 35 is also apparent from the following

Theorem 135 If R is quasi-topological and topologically filtered, then for any
A, B ∈ NR we have A ∪ B ∈ NR.

Proof By Theorem 117, we have B− ∈ FR. Hence, by using Theorem 124,
Corollary 35 and the definition of NR, we can see that

(A ∪ B)−◦ = ( A− ∪ B−)◦ ⊆ A−◦ ∪ B− = ∅ ∪ B− = B−.

Moreover, by Theorem 117, we have (A ∪ B)−◦ ∈ TR. Hence, by using the
increasingness of ◦ and the definitions of TR and NR, we can see that

(A ∪ B)−◦ ⊆ (A ∪ B)−◦◦ ⊆ B−◦ = ∅.
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Therefore, (A ∪ B)−◦ = ∅, and thus A ∪ B ∈ NR also holds.

Now, by using this theorem, we can also easily establish the following

Corollary 38 If R is nonvoid, non-partial, quasi-topological and topologically
filtered, then NR is an ideal on X.

Proof By the definition of NR and the increasingness of −◦ , it is clear that NR

is always descending. Moreover, since R is nonvoid and non-partial, we can also
note that ∅−◦ = ∅◦ = ∅. Therefore, ∅ ∈ NR, and thus NR 	= ∅. Furthermore,
from Theorem 135, we know that NR is closed under pairwise unions.

Remark 71 Note that if R is locally non-partial, then by Theorem 115 we have
X−◦ = X. Therefore, if X 	= ∅, then we can also state that X /∈ NR, and thus
NR 	= P(X).

While, if R is quasi-topological and A ∈ NR, then by using Theorem 117
and the increasingness of ◦ we can also see that A−−◦ ⊆ A−◦ = ∅. Therefore,
A−−◦ = ∅, and thus A− ∈ NR also holds.

The importance of topologically filtered relators is also apparent from

Theorem 136 If R is topological and topologically filtered, then for any A ∈ TR

we have

resR(A) ∈ FR \ ER .

Proof By Theorem 102, we have Ac ∈ FR. Moreover, by Theorem 117, we have
A− ∈ FR. Hence, by using Corollary 33, we can see that

A† = A− \ A = A− ∩ Ac ∈ FR .

Moreover, by using Theorems 124, 37, 118, and 112, we can also see that

A† ◦ = (
A− ∩ Ac )◦ = A−◦ ∩ Ac ◦ = A−◦ ∩ A−c ⊆ A− ∩ A−c = ∅,

and thus A† ◦ = ∅. Therefore, A† /∈ ER, and thus A† ∈ FR \ ER .

By this theorem, it is clear that in particular we also have

Corollary 39 If R is topological and topologically filtered, then resR(A) ∈ NR
for all A ∈ TR .

Remark 72 Note that if R is topological and A ∈ TR , then by Theorems 95, 118,
and 112 we have A = A◦. Therefore,

A‡ = bndR(A) = A− \ A◦ = A− \ A = A†.

Moreover, it is also worth noticing that in Theorem 136 and Corollary 39, it
is enough to assume only that R is topological and quasi-topologically filtered.
Namely, in this case, by Theorem 130, R is already topologically filtered.
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28 Proximally Closed Sets in Super Relator Spaces

Notation 11 In this and the next two sections, we shall assume that R is an
ordinary relator and U is a super relator on X.

The importance of the duals of super relations is also apparent from the following

Theorem 137 We have

τ-U =
{
A ⊆ X : ∃ U ∈ U : A ⊆ U 3(A)}.

Proof By Theorems 52 and 51, we have

A ∈ τ-U ⇐⇒ Ac ∈ τU ⇐⇒ ∃ U ∈ U : U (Ac) ⊆ Ac .

Moreover, by the corresponding definitions, we can see that

U (Ac) ⊆ Ac ⇐⇒ A ⊆ U (Ac)c ⇐⇒ A ⊆ U 3(A) .

Therefore, we actually have

A ∈ τ-U ⇐⇒ ∃ U ∈ U : A ⊆ U 3(A) ,

and thus the required equality is true.

From this theorem, by using the notation U3 = {U 3 : U ∈ U }, we can obtain

Corollary 40 We have

τ-U 3 = {
A ⊆ X : ∃ U ∈ U : A ⊆ U (A)} .

Thus, in particular, we can also state the following

Corollary 41 For a super relation U on X, we have

τ-U =
{
A ⊆ X : A ⊆ U 3(A)} and τ-U3 =

{
A ⊆ X : A ⊆ U (A)} .

Remark 73 If U is a union-preserving super relation on X, then by Corollary 16
we have τ-U = FU .

While, if R is an ordinary relation on X, then by Theorem 98 and Corollary 29
we have τ-R = τR−1 = TR−1 .

Example 5 If U is a super relation on X such that

U (A) = clR

(
intR(A)

)
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for all A ⊆ X, then

τ-U =
{
A ⊆ X : A ⊆ intR

(
clR(A)

)}

and

τ-U3 =
{
A ⊆ X : A ⊆ clR

(
intR(A)

)}
.

Namely, by Definition 7 and Theorem 79, we have

U 3(A) = U (Ac)c = clR

(
intR(A

c)
)c = Ac ◦ − c = A− c− c = A−◦

= intR

(
clR(A)

)

for all A ⊆ X.
Moreover, by Corollary 41, for instance we have

τ-U =
{
A ⊆ X : A ⊆ U 3(A)} = {

A ⊆ X : A ⊆ intR

(
clR(A)

)}
.

Remark 74 Thus, if U is as in the above example, then τ-U and τ-U3 are just the
families T

p
R and T s

R
of all topologically preopen and semi-open subsets of the

relator space X(R ) considered in [75].
Moreover, by using the important family

AR = {
A ⊆ X : intR

(
clR(A)

) ⊆ clR

(
intR(A)

) }

considered in [74], we can note that τ-U ∩ AR ⊆ τ-U3 .

29 Two Further Illustrative Examples and Two Further
General Theorems

Analogously to Example 5, we can also establish the following two examples.

Example 6 If U is a super relation on X such that

U (A) = clR

(
intR

(
clR(A)

))

for all A ⊆ X, then

τ-U =
{
A ⊆ X : A ⊆ intR

(
clR

(
intR(A)

)) }

and
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τ-U3 =
{
A ⊆ X : A ⊆ clR

(
intR

(
clR(A)

)) }
.

Namely, by using Definition 7 and Theorem 79, we can see that

U 3(A) = U (Ac)c = clR

(
intR

(
clR(A

c)
))c = Ac− ◦− c

= A ◦ c ◦ − c = A ◦− c− c = A ◦−◦ = intR

(
clR

(
intR(A)

))

for all A ⊆ X. Hence, by Corollary 41, it is clear that the required equalities are
true.

Remark 75 Thus, if U is as in the above example, then τ-U and τ-U3 are just
the families T α

R
and T

β
R of all topologically α-open and β-open subsets of the

relator space X(R ) considered in [75].

Example 7 If U is a super relation on X such that

U (A) = clR

(
intR(A)

) ∪ intR

(
clR(A)

)

for all A ⊆ X, then

τ-U =
{
A ⊆ X : A ⊆ clR

(
intR(A)

) ∩ intR

(
clR(A)

)}

and

τ-U3 =
{
A ⊆ X : A ⊆ clR

(
intR(A)

) ∪ intR

(
clR(A)

)}
.

Namely, by using Definition 7 and Theorem 79, we can see that

U 3(A) = U (Ac)c = (
clR

(
intR(A

c)
) ∪ intR

(
clR(A

c)
))c

= (
Ac ◦− ∪ Ac−◦)c = Ac ◦−c ∩ Ac−◦ c = Ac−◦ ∩ A ◦−

= intR

(
clR(A)

) ∩ clR

(
intR(A)

)
.

Hence, by Corollary 41, it is clear that the required equalities are true.

Remark 76 Thus, if U is as in the above example, then τ-U and τ-U3 are just the
families T a

R
and T b

R
of all topologically a-open and b-open subsets of the relator

space X(R ) considered in [75].

To show that, in some important particular cases, the desirable inclusions TR ⊆
τ-U and TR ⊆ τ-U 3 are true; in addition to Theorem 137 and its corollaries, we
must also prove the following two closely related theorems and their corollaries.

Theorem 138 If for each A ∈ TR there exists U ∈ U such that intR(A) ⊆ U (A),
then TR ⊆ τ-U 3 .
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Proof If A ∈ TR, then by Theorem 95, we have A ⊆ intR(A) . Moreover, by
the assumption of the theorem, there exists U ∈ U such that intR(A) ⊆ U (A).
Therefore, we also have A ⊆ U (A). Hence, by Corollary 41, we can see that
A ∈ τ-U3 . Thus, the required inclusion is also true.

Now, by this theorem, we can also state

Corollary 42 If there exists U ∈ U such that intR ⊆ U , then TR ⊆ τ-U 3 .

Hence, it is clear that in particular we also have

Corollary 43 If U is a super relation on X such that intR ⊆ U , then TR ⊆ τ-U3 .
Now, in addition to Theorem 138 and its corollaries, we can also easily establish

the following theorem and its corollaries.

Theorem 139 If for each A ∈ FR there exists U ∈ U such that U (A) ⊆
clR(A), then TR ⊆ τ-U.

Proof If A ∈ TR, then by Theorem 102 we have Ac ∈ FR. Thus, by the
assumption of the theorem, there exists U ∈ U such that U (Ac) ⊆ clR(A

c).
Hence, by using Theorem 79 and Definition 7, we can infer that

intR(A) = clR(A
c)c ⊆ U (Ac)c = U 3(A) .

Thus, Theorem 138 can be applied to the super relator U 3 to obtain the required
inclusion.

Corollary 44 If there exists U ∈ U such that U ⊆ clR, then TR ⊆ τ-U .

Corollary 45 If U is a super relation on X such that U ⊆ clR, then TR ⊆ τ-U .
Corollaries 43 and 45 allow us to easily establish the following

Example 8 If R is reflexive on X, then TR ⊆ T κ
R

for all κ = p, s , α, β , a, b.
Namely, by Theorem 112, we have

intR(A) ⊆ A ⊆ clR(A)

for all A ⊆ X. Thus, even if U is as in Example 6, then we still have

intR(A) ⊆ U (A) ⊆ clR(A)

for all A ⊆ X. Therefore, by Corollaries 43 and 45 and Remark 75 we have TR ⊆
T κ

R
for κ = α, β.
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30 Some Set-Theoretic Properties of the Families τ-U and
τ-U

�

By using Theorem 51 and the corresponding definitions, or Theorem 137 and its
corollary, we can easily establish the following two theorems.

Theorem 140 The following assertions are equivalent :

(1) ∅ ∈ τ-U ; (2) ∅ ∈ τ-U3 ;
(3) U 	= ∅ ; (4) τ-U 	= ∅ ; (5) τ-U3 	= ∅.
Proof By Theorem 137, it is clear that assertions (1), (3) and (4) are equivalent.
Hence, since U3 	= ∅ if and only if U 	= ∅, we can see that assertions (2), (3) and
(5) are also equivalent.

Theorem 141 The following assertions are true :

(1) X ∈ τ-U if and only if there exists U ∈ U such that U (∅) = ∅ ;
(2) X ∈ τ-U 3 if and only if there exists U ∈ U such that U (X) = X.
Proof From Corollary 40, we can see that assertion (2) is true. Hence, since for any
U ∈ U we have U 3(X) = X ⇐⇒ U (Xc)c = ∅c ⇐⇒ U (∅) = ∅, it is clear
that assertion (1) is also true.

Now, as an immediate consequence of the above two theorems, we can also state

Corollary 46 The following assertions are true :

(1) τ-U is a minimal structure on X if and only if there exists U ∈ U such that
U (∅) = ∅ ;

(2) τ-U 3 is a minimal structure on X if and only if there exists U ∈ U such that
U (X) = X.

In addition to Theorems 140 and 141, we can also easily prove the following

Theorem 142 If U is an increasing super relation on X, then the families τ-U
and τ-U3 are closed under arbitrary unions.

Proof If A ⊆ τ-U3 , then by Corollary 40, for each A ∈ A, we have A ⊆ U (A).
Hence, by using the increasingness of U , we can infer that

⋃
A =⋃

A∈A A ⊆⋃
A∈A U (A) ⊆ ⋃

A∈A U
(⋃

A
) ⊆ U

(⋃
A
)
.

Therefore, by Corollary 40, we have
⋃

A ∈ τ-U3 . Thus, the family τ-U3 is closed
under arbitrary unions.

Now, to prove the same assertion for the family τ-U , it is enough to note only
that if U is increasing, then by Theorem 26 its dual U 3 is also increasing.

Now, by Theorems 141 and 142, we can also state
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Corollary 47 If U is an increasing super relation on X, then

(1) τ-U is a generalized topology on X if and only if U (∅) = ∅ ;
(2) τ-U3 is a generalized topology on X if and only if U (X) = X.
Remark 77 To apply the latter observations to the super relation U considered in
Example 5, we can note that, by Theorems 38 and 39, the super relations clR and
intR are always increasing.

Moreover, by Theorem 78 and the corresponding definitions, we have

(1) clR(∅) = ∅ ⇐⇒ intR(X) = X ⇐⇒ X = ∅ or R 	= ∅ ;
(2) intR(∅) = ∅ ⇐⇒ clR(X) = X ⇐⇒ R is non-partial.

Analogously to Theorem 142, we can also prove the following

Theorem 143 If U is a union-preserving (resp. intersection-preserving) super
relation on X, then the family τ-U

(
resp. τ-U3

)
is closed under arbitrary unions

and intersections.

However, the latter theorem cannot be applied to the super relation U considered
in Example 5.

Therefore, in addition to Theorem 142, it is more important to prove the follo-
wing two closely related theorems.

Theorem 144 If for any A, B ⊆ X and U ∈ U we have

U (A) ∩ intR(B) ⊆ U (A ∩ B) ,

then for any A ∈ τ-U 3 and B ∈ TR we have A ∩ B ∈ τ-U 3 .

Proof If A ∈ τ-U3 , then by Corollary 40 there exists U ∈ U such that A ⊆ U (A).
Moreover, if B ∈ TR, then by Theorem 95, we have B ⊆ intR(B). Hence, by using
the assumption of the theorem, we can see that

A ∩ B ⊆ U (A) ∩ intR(B) ⊆ U (A ∩ B) .

Therefore, by Corollary 40, we also have A ∩ B ∈ τ-U 3 .

Theorem 145 If for any A, B ⊆ X and U ∈ U we have

U (A ∪ B) ⊆ U (A) ∪ clR(B) ,

then for any A ∈ τ-U and B ∈ TR we have A ∩ B ∈ τ-U .

Proof Now, by Definition 7 and the assumption of the theorem, for any A, B ⊆ X
and U ∈ U we have

U 3 (A) ∩ B ◦ = U (Ac)c ∩ B c− c = (
U (Ac) ∪ B c−)c
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⊆ U (Ac ∪ Bc )c = U (
(A ∩ B)c )c = U 3(A ∩ B) .

Therefore, Theorem 144 can be applied to the super relator U ∗.

Remark 78 The latter two theorems can already be applied to the super relation U
considered in Example 5.

Namely, if the relator R is a topologically filtered, then by Theorem 131 we
have

clR(A) ∩ intR(B) ⊆ clR(A ∩ B) and intR(A ∪ B) ⊆ intR(A) ∪ clR(B)

for all A, B ⊆ X.

31 Topological Closures of Families of Sets

Notation 12 In this and the next two sections, we shall assume that R is an
ordinary relator on X and V is a hyper relator on X to Y , and moreover
A ⊆ P(X) and B ⊆ P (Y ).

Definition 22 We define

B k = B kV = cl V(B ) and A � = A �V = cl V −1 (A ) .

Thus, by Theorem 84, we can at once state the following

Theorem 146 We have

(1) A � = ⋂
V ∈V V [A ] ;

(2) B k = ⋂
V ∈V V −1 [B ].

From equality (1), we can immediately derive the following

Theorem 147 For any B ⊆ Y , the following assertions are equivalent :

(1) B ∈ A � ;
(2) For each V ∈ V we have B ∈ V [A ] ;
(3) For each V ∈ V there exists A ∈ A such that B ∈ V (A).

While, from the equality Bk = cl V(B), we can immediately derive

Theorem 148 For any A ⊆ X, the following assertions are equivalent :

(1) A ∈ B k ;
(2) For each V ∈ V we have V (A) ∩B 	= ∅ ;
(3) For each V ∈ V there exists B ∈ B such that B ∈ V (A).

The importance of Definition 22 is apparent from the following
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Example 9 If V is a hyper relation on X such that

V (A) = {
B ⊆ X : A ⊆ B ⊆ clR(A)

}

for all A ⊆ X, then for any B ⊆ X we have

(1) B ∈ A �V if and only if there exists A ∈ A such that A ⊆ B ⊆ clR(A) ;
(2) B ∈ A kV if and only if there exists A ∈ A such that B ⊆ A ⊆ clR(B).

Namely, if for instance B ∈ A kV , then by Theorem 148 there exists A ∈ A
such that A ∈ V (B). Hence, by the definition of V , we can infer that B ⊆ A ⊆
clR(B).

Remark 79 The inclusion A ⊆ clR(B) in a detailed form means only that for each
x ∈ A and R ∈ R there exists y ∈ B such that y ∈ R (x).

Thus, for instance, assertion (2) of Example 9 can be reformulated in the detailed
form that B ∈ A kV if and only if there exists A ∈ A such that for each x ∈ B
we have x ∈ A, and for each x ∈ A and R ∈ R there exists y ∈ B such that
y ∈ R (x).
Remark 80 However, it is now more important to note that if V is in Example 9,
then T �V

R
and T kV

R
are just the families T

q
R and T

ps
R of all topologically quasi-

open and pseudo-open subsets of the relator space X(R ) considered in [75].

Remark 81 In [74, Section 32 ], concerning the families τ-U and T kV
R

mentioned
in Remarks 74 and 80, we have proved that :

(1) T kV
R
⊆ τ-U is always true ;

(2) TR ⊆ T kV
R
⊆ τ- kVU if R is reflexive ;

(3) τ- kVU ⊆ τ-U if R is quasi-topological ;

(4) T kV
R
= τ- kVU = τ-U if R is topological.

Remark 82 In [74], we have proved that if R is topological, then A = τ-U is
actually the smallest subset of P(X) such that TR ⊆ A and A kV ⊆ A.

Moreover, if R is topological and topologically filtered, then for any B ⊆ X

we have B ∈ τ-U if and only if there exist A ∈ TR and D ∈ DR such that
B = A ∩D.

Remark 83 In this respect, it is curious that if R is topological and topologically
filtered, then for any B ∈ τ-U3 there exist A ∈ TR and N ∈ NR such that
B = A ∪N and A ∩N = ∅.

However, the converse statement need not be true. Moreover, the genuine
characterizations of τ-U3 , established in [75, Section 24 ], do not require the relator
R to be topologically filtered.
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32 Some Basic Properties of the Operations k and �

From the general properties of the induced topological closures or Theorems 147
and 148, we can easily establish several useful properties of the operations k and
� introduced in Definition 22.

For instance, by some general theorems on ordinary relators, we can at once state
the following three theorems.

Theorem 149 We have

(1) ∅k = ∅ if and only if V 	= ∅ ;
(2) P (Y )k = P(X) if and only if V is non-partial.

Theorem 150 The following assertions hold :

(1) k is always increasing ;
(2) k is additive if and only if V is topologically filtered ;
(3) k is union-preserving if and only if V is topologically simple.

Theorem 151 In the X = Y particular case, the following assertions hold :

(1) k is extensive if and only if V is reflexive ;
(2) k is upper quasi-idempotent if and only if V is quasi-topological.

Example 10 If V is as in Example 9, then the following assertions are equivalent :

(1) V is reflexive ; (2) V is non-partial ; (3) R is reflexive.

To prove the implication (2) *⇒ (3), note that if (2) holds then for any A ⊆ X
we have V (A) 	= ∅. Therefore, there exists B ⊆ X such that B ∈ V (A). Hence,
by the definition of V , we can infer that A ⊆ B ⊆ clR(A). Therefore, for any
A ⊆ X, we have A ⊆ clR(A). Thus, by Theorem 112, assertion (3) also holds.

Example 11 If the relator R is quasi-topological, then the hyper relation V

considered in Example 9 is transitive, and thus in particular it is also quasi-
topological.

Namely, if B ∈ V (A) and C ∈ V (B), then by the definition of V , we have

A ⊆ B ⊆ clR(A) and B ⊆ C ⊆ clR(B) .

Thus, in particular A ⊆ C. Moreover, by Theorems 80 and 117, we also have

C ⊆ clR(B) ⊆ clR

(
clR(A)

) ⊆ clR(A).

Hence, by the definition of V , we can already see that C ∈ V (A). Therefore,

B ∈ V (A) and C ∈ V (B) imply C ∈ V (A) ,

and thus V is transitive.
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By Theorem 117, we can see that V is quasi-topological if and only if it is
transitive. However, if V is quasi-topological, then it is certainly not true that R is
also quasi-topological.

Remark 84 If in particular R is topological, then by Theorem 118 R is both
reflexive and quasi-topological. Therefore, by Examples 10 and 11, the super
relation considered in Example 9 is both reflexive and quasi-topological. Thus, by
Theorems 150 and 151, we can state that kV is a union-preserving closure relation
on P(X).

To prove the same property of the relation �V , we have to note only that if V
is a preorder, then V −1 is also a preorder. Thus, in particular V −1 is also reflexive
and quasi-topological.

33 Some Set-Theoretic Properties of the Families A � and
B k

Definition 23 The hyper relator V will be called

(1) empty-set-stable if ∅ ∈ V (∅) for all V ∈ V ;
(2) ground-set-stable if Y ∈ V (X) for all V ∈ V.

Thus, by using Theorems 147 and 148, we can easily prove the two theorems.

Theorem 152 If V is empty-set-stable, then

(1) ∅ ∈ A implies ∅ ∈ A � ; (2) ∅ ∈ B implies ∅ ∈ B k .

Proof To prove (1), note that by Theorem 147 we have ∅ ∈ A � if and only if for
each V ∈ V there exists A ∈ A such that ∅ ∈ V (A). Therefore, if ∅ ∈ A and
∅ ∈ V (∅) for all V ∈ V, then ∅ ∈ A�.

Theorem 153 If V is ground-set-stable, then

(1) X ∈ A implies Y ∈ A � ; (2) Y ∈ B implies X ∈ B k .

Proof To prove (2), note that by Theorem 148 we have X ∈ B k if and only if for
each V ∈ V there exists B ∈ B such that B ∈ V (X). Therefore, if Y ∈ B and
Y ∈ V (X) for all V ∈ V, then X ∈ B k .

Now, as an immediate consequence of the above two theorems, we can also state

Corollary 48 If V is both empty-set-stable and ground-set-stable, then

(1) A � is a minimal structure if A is a minimal structure;
(2) B k is a minimal structure if B is a minimal structure.

The appropriateness of Definition 23 is also apparent from the following

Example 12 If V is as in Example 9, then
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(1) V is empty-set-stable ;
(2) V is ground-set-stable if and only if R is non-partial.

To prove (2), note that by the corresponding definitions and Theorem 114 we
have

X ∈ V (X) ⇐⇒ X ⊆ X ⊆ clR(X)

⇐⇒ X = clR(X) ⇐⇒ X ∈ DR ⇐⇒ R is non-partial .

Remark 85 Therefore, if V is as in Example 9, then

(1) ∅ ∈ T �V
R

and ∅ ∈ T kV
R

are always true ;
(2) X ∈ T �V

R
and X ∈ T kV

R
if R is non-partial and either X = ∅ or R 	= ∅.

To prove (2), note that if R is non-partial, then by Example 12 the relation V
is ground-set-stable. While, if either X = ∅ or R 	= ∅, then by Theorem 105 we
have X ∈ TR. Thus, Theorem 153 can be applied.

In addition to Definition 23, it is also worth introducing

Definition 24 The hyper relator V will be called union-compatible if V ∈ V and
Bi ∈ V (Ai) for all i ∈ I imply that

⋃
i∈I
Bi ∈ V

( ⋃
i∈I

Ai

)
.

Remark 86 The intersection-compatibility of V is to be defined quite similarly.
Thus, by letting I = ∅, we can see that if V is union-compatible (intersection-

compatible), then V is in particular empty-set-stable (ground-set-stable).

Theorem 154 If V is union-compatible, then

(1) A � is closed under unions if A is closed under unions ;
(2) B k is closed under unions if B is closed under unions.

Proof To prove (1), note that if Bi ∈ A � for all i ∈ I , and V ∈ V, then by
Theorem 147, for each i ∈ I , there exists Ai ∈ A such that Bi ∈ V (Ai). Hence,
if A is closed under unions, we can infer that

⋃
i∈I Ai ∈ A. Moreover, since V

is union-compatible we can also state that
⋃
i∈I Bi ∈ V

(⋃
i∈I Ai

)
. Therefore,

by Theorem 147, we also have
⋃
i∈I Bi ∈ A �.

Now, as an immediate consequence of Theorems 153 and 154, we can also state

Corollary 49 If V is both union-compatible and ground-set-stable, then

(1) A � is a generalized topology if A is a generalized topology ;
(2) B k is a generalized topology if B is a generalized topology.

Example 13 If V is as in Example 9, then V is union-compatible.
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Namely, if Bi ∈ V (Ai) for all i ∈ I , then Ai ⊆ Bi ⊆ clR( Ai
)

for all i ∈ I .
Hence, by using the increasingness of clR, we can infer that

⋃
i∈I Ai ⊆

⋃
i∈I Bi ⊆

⋃
i∈I clR( Bi ) ⊆ clR

( ⋃
i∈I Ai

)
.

Thus,
⋃
i∈I Bi ∈ V

(⋃
i∈I Ai

)
also holds.

Remark 87 Therefore, if V is as in Examples 9 then the families T �V
R

and T kV
R

are closed under unions. Thus, if in particular R is nonvoid and non-partial, then
the above families are generalized topologies.

Namely, by Example 13, the relation V is union-compatible. Moreover, by
Theorem 105, the family TR is closed under unions. Therefore, by Theorems 154
the families T �V

R
and T kV

R
are also closed under unions. Moreover, if R is

nonvoid and non-partial, then by Remark 85 we also have X ∈ T �V
R

and
X ∈ T kV

R
.

Now, in addition to Example 13, we can also easily establish

Example 14 If V is as in Example 9, then V need not even be finitely intersection-
compatible.

Namely, if for instance X = R and

R = {
Rn : n ∈ N

}
with Rn =

{
(x , y) ∈ X2 : d (x, y) < n−1 }

for all n ∈ N, then by taking

A1 = Q , A2 = Q
c and B1 = B2 = X,

we can see that

Ai ⊆ Bi ⊆ clR(Ai) , and thus Bi ∈ V (Ai)

for i = 1, 2. However,

B1 ∩ B2 	⊆ clR( A1 ∩ A2) , and thus B1 ∩ B2 /∈ V (A1 ∩ A2) .

Remark 88 Therefore, it is not surprising that if X and R are as in Example 14
and V is as in Example 9, then the families T �V

R
and T kV

R
are not closed even

under finite intersections.
Namely, if for instance

A = [ 0, 1] , B = [1, 2] and C = Q , D = {1} ∪Q
c ,

then we can easily see that

A, B ∈ T�V
R
, C, D ∈ TkV

R
, but A∩B /∈ T�V

R
, C∩D /∈ TkV

R
.
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34 A Weak Intersection Property of the Families A k and
A �

Notation 13 In this section, we shall assume that R is an ordinary relator and V
is a hyper relator on X.

Moreover, we shall assume that V is weakly intersection-compatible with respect
to R in the sense that, for any V ∈ V, A, B ⊆ X and C ∈ TR ,

B ∈ V (A) implies B ∩ C ∈ V (A ∩ C ) .

By using this weak intersection property, we can easily prove the following

Theorem 155 If A ⊆ P(X) and B ∈ TR such that A ∩ B ∈ A for all A ∈ A,
then we also have

(1) A ∩ B ∈ A k for all A ∈ A k ; (2) A ∩ B ∈ A � for all A ∈ A �.

Proof If A ∈ A k and V ∈ V, then by Theorem 148 there exists C ∈ A such that
C ∈ V (A). Hence, by using the weak intersection-compatibility of V, we can infer
that

C ∩ B ∈ V (A ∩ B ) .

Moreover, by the assumption of the theorem, we also have C ∩ B ∈ A. Hence, by
Theorem 148, we can see that A ∩ B ∈ A k also holds.

While, if A ∈ A � and V ∈ V, then by Theorem 147 there exists C ∈ A such
that A ∈ V (C). Hence, by using the weak intersection-compatibility of V, we can
infer that

A ∩ B ∈ V (C ∩ B) .

Moreover, by the assumption of the theorem, we also have C ∩ B ∈ A. Hence, by
Theorem 147, we can see that A ∩ B ∈ A k also holds.

Repeated applications of this theorem give the following

Corollary 50 If A and B are as in Theorem 155, then A ∩ B ∈ A κ for all
A ∈ A κ with κ = kk, ��, k� and �k .

Proof For instance, by assertion (1) of Theorem 155, we have A ∩ B ∈ A k for
all A ∈ A k . Hence, for instance, by applying assertion (2) of Theorem 155 to the
family A k instead of A, we can infer that A ∩ B ∈ A k� for all A ∈ A k�.

From this corollary, we can immediately derive the following

Corollary 51 If R is quasi-topologically filtered and B ∈ TR, then A∩B ∈ T κ
R

for all A ∈ T κ with κ = kk, ��, k�, and �k.
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Proof Now, by Theorem 128, we have A∩B ∈ TR for all A ∈ TR. Therefore, by
Theorem 155, we also have A ∩ B ∈ Tκ

R
for all A ∩ B ∈ T κ with κ = �, k.

The appropriateness of our present definition of weak intersection-compatibility
is also apparent from the following

Example 15 If V is as in Example 9 and R is topologically filtered, then V is
weakly intersection-compatible with respect to R.

Namely, if B ∈ V (A), then A ⊆ B ⊆ clR(A). Hence, by using Corollary 35,
we can infer that

A ∩ C ⊆ B ∩ C ⊆ clR(A) ∩ C ⊆ clR( B ∩ C)

for all C ∈ TR. Therefore, B ∩ C ∈ V (A ∩ C) also holds for all C ∈ TR.

The fact that the condition C ∈ TR, in the above proof, cannot be either omitted
or replaced by C ∈ FR can be at once seen from the following

Example 16 If X and R are as in Example 14 and V is as in Example 9, then R
is a properly filtered relator on X such that, for the sets

A = [ 0 , 1 [ B = [ 0 , 1 ] and C = {1} ,

we have B ∈ V (A) and B ∩ C /∈ V (A ∩ C).

35 Some Further Theorems on the Operations � and k

Notation 14 In this section, we shall again assume that R is an ordinary relator
and V is a hyper relator on X.

Moreover, we shall assume that V is strongly closure-compatible with respect to
R in the sense that, for any V ∈ V and A, B ⊆ X,

B ∈ V (A) implies clR(A) ∈ V (B) and clR(B) ∈ V
(

clR(A)
)
.

Remark 89 From the above inclusions, we can infer that

clR(A) ∈ V (B) ⊆ V [V (A) ] = ( V ◦ V )(A) ,
clR(B) ∈ V

(
clR(A)

) ⊆ V [V (B) ] = ( V ◦ V )(B) ,
clR(B) ∈ ( V ◦ V )(B) ⊆ ( V ◦ V ) [V (A) ] = ( V ◦ V ◦ V )(A) .

Therefore, if in particular V is transitive, then we can also state that

clR(A) ∈ V (A) , clR(B) ∈ V (B) and clR(B) ∈ V (A).
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The appropriateness of our present definition of strongly closure-compatibility is
apparent from the following

Example 17 If V is as in Example 9, then V is strongly closure-compatible with
respect to R.

Namely, if A, B ⊆ X such that B ∈ V (A), then by using the definition of V
and the notation A− = clR(A), we can see that

A ⊆ B ⊆ A− .

Hence, by using the increasingness of the operation −, we can already infer that

B ⊆ A− ⊆ B− and A− ⊆ B− ⊆ A−− .

Therefore, by the definition of V , we also have A− ∈ V (B) and B− ∈ V (A−) .

Remark 90 If R is topological, then from the inclusion A− ⊆ B− ⊆ A−−, by
using Theorems 112 and 117, we can also infer that A ⊆ B− ⊆ A−, and thus
B− ∈ V (A).

However, this seems to be a weaker statement than that can be obtained from
Remark 89. Namely, in Example 11, to prove the transitivity of V it was enough to
assume only that R is quasi-topological.

Now, by using the operations k = kV and � = �V, and the elementwise closure
− = clR, we can prove the following

Theorem 156 For any A ⊆ P(X), we have

(1) A � ⊆ A− k ; (2) A k− ⊆ A � ;
(3) A �− ⊆ A− � ; (4) A k− ⊆ A− k .

Proof If A ∈ A k and V ∈ V, then by Theorem 148 there exists B ∈ A such that
B ∈ V (A). Hence, by using the second part of the strong closure-compatibility of
V, we can infer that B− ∈ V (A−). Now, since B− ∈ A−, by Theorem 148 we
can see that A− ∈ A−k . Therefore, A k− ⊆ A−k .

While, if B ∈ A � and V ∈ V, then by Theorem 147 there exists A ∈ A such
that B ∈ V (A). Hence, by using the first part of the strong closure-compatibility
of V, we can infer that A− ∈ V (B). Now, since A− ∈ A−, by Theorem 148 we
can see that B ∈ A− k . Therefore, A � ⊆ A− k .

Thus, we have proved assertions (1) and (4). The proof of assertions (2) and (3)
is quite similar.

From this theorem, by using some basic properties of the operations k and �,
we can easily derive the following two corollaries.

Corollary 52 If V−1 is quasi-topological, then for any A ⊆ P(X) we have

(1) A � k ⊆ A− k ; (2) A k � ⊆ A− k .
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Proof By using Theorems 156, 150, and 151, we can see that

A � k ⊆ A− k k ⊆ A− k and A k � ⊆ A k− k ⊆ A− k k ⊆ A− k .

Remark 91 Note that, by the proof of Theorem 156, assertion (1) does not also need
the second part of the strong closure compatibility of V. While, to prove assertion
(2) both parts seem to be necessary.

Corollary 53 If V−1 is quasi-topological, then for any A ⊆ P(X) we have

(1) A � k− ⊆ A � ; (2) A k �− ⊆ A �.

Proof By using Theorems 156 and the counterparts of Theorem 150 and 151, we
can see that

A �k− ⊆ A �� ⊆ A� and A k �− ⊆ A k−� ⊆ A �� ⊆ A � .

Remark 92 Note that if V is transitive, then V−1 is also transitive. Therefore, both
V and V−1 are quasi-topological.

In this case, we can prove the assertions of the above two corollaries directly.
Moreover, we can also easily prove the following

Theorem 157 If V is transitive, then for any A ⊆ P(X) we have

(1) A k ⊆ A− k ; (2) A �− ⊆ A �.

Proof If A ∈ A k and V ∈ V, then by Theorem 148 there exists B ∈ A such that
B ∈ V (A). Hence, by using Remark 89, we can infer that B− ∈ V (A). Now, since
B− ∈ A−, by Theorem 148 we can see that A ∈ A− k . Therefore, (1) is true.

While, if B ∈ A � and V ∈ V, then by Theorem 147 there exists A ∈ A such
that B ∈ V (A). Hence, by using Remark 89, we can infer that B− ∈ V (A). Now,
by Theorem 147, we can see that B− ∈ A �. Therefore, (2) is also true.

Remark 93 If V is reflexive, then by Theorem 151 and its counterpart, both k and
� are expansive. Therefore, in this case assertions (1) and (2) of Theorem 157 can
be derived from assertions (2) of Corollaries 52 and 53.

36 A Further Theorem on Proximally Closed Sets

Notation 15 In this section, we shall assume that Φ, Ψ and U are super
relations, and V is a hyper relation on X such that

V (A) = {
B ⊆ X : Φ (A) ⊆ B ⊆ Ψ (A) }

for all A ⊆ X.
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Thus, by using our former results, we can easily prove the following

Theorem 158 We have

(1) τ- kV
U3

⊆ τ-U3◦Ψ3 if Φ is extensive and U increasing ;
(2) τ- �V

U3
⊆ τ-Ψ3◦U3 if Φ is extensive and both Ψ and U are increasing.

Proof If A ∈ τ- kVU3 , then by Theorem 148 we can see that there exists B ∈ τ-U3
such that B ∈ V (A). Hence, by using Corollary 41 and the definition of V , we
can infer that

B ⊆ U (B) and Φ (A) ⊆ B ⊆ Ψ (A) .

Thus, if Φ is extensive and U is increasing, then we can also state that

A ⊆ Φ (A) ⊆ B ⊆ U (B) ⊆ U (
Ψ (A)

) = ( U ◦ Ψ )(A) .

Hence, by using Corollary 41, we can infer that A ∈ τ-(U◦Ψ )3 .

While, if A ∈ τ- �VU3 , then by Theorem 147 there exists B ∈ τ-U3 such that
A ∈ V (B). Hence, by using Corollary 41 and the definition of V , we can infer that

B ⊆ U (B) and Φ (B) ⊆ A ⊆ Ψ (B) .

Thus, if Φ is extensive and U is increasing, then we can also state that

B ⊆ U (B) ⊆ U (
Φ (B)

) ⊆ U (A .

Moreover, if Ψ is also increasing, then we can also state that

A ⊆ Ψ (B) ⊆ Ψ (
U (A)

) = ( Ψ ◦ U )(A) .

Hence, by using Corollary 41, we can infer that A ∈ τ-(Ψ ◦U)3 .
The above arguments show that

(a) τ- kV
U3

⊆ τ-(U◦Ψ )3 if Φ is extensive and U is increasing ;
(b) τ- �V

U3
⊆ τ-(Ψ ◦U)3 if Φ is extensive and both U and Ψ are increasing.

Thus, to complete the proof, it remains only to note only that, by Theorem 28, we
have (U ◦ Ψ )3 = U 3◦ Ψ 3 and (Ψ ◦ U )3 = Ψ 3◦ U 3.
Remark 94 From the above theorem, by writing U 3 and Ψ 3 in place of U and Ψ ,
respectively, we can get some simpler assertions for the hyper relation W defined
such that W (A) = {B ⊆ X : Φ (A) ⊆ B ⊆ Ψ 3(A)} for all A ⊆ X.

However, it is now more important to note that, as an immediate consequence of
Theorem 158, we can also state the following
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Corollary 54 If R is a relator on X, and moreover Φ is extensive and

Ψ = clR and U = intR ,

then

(1) T kV
R ⊆ τ-Ψ ◦U ; (2) T �V

R ⊆ τ-U◦Ψ .

Proof From Theorems 80 and 81, we know that Ψ and U are increasing.
Moreover, by Theorem 79 and Definition 7, we have that Ψ 3 = U and U 3 = Ψ .

Furthermore, by using Corollary 41 and Theorem 95, we can see that

τ-U3 =
{
A ⊆ X : A ⊆ U (A) } = {

A ⊆ X : A ⊆ intR(A)
} = TR .

Hence, by Theorem 158, we can already see that

T kV
R = τ- kV

U3
⊆ τ-U3◦Ψ3 = τ-Ψ ◦U and T �V

R = τ- �V
U3

⊆ τ-Ψ3◦U3 = τ-U◦Ψ .

Remark 95 Note that, from the Φ = Δ particular case of this corollary, we can
already derive assertion (1) of Remark 81 and its dual.

Moreover, Theorem 158 is not a substantial generalization of Corollary 54.
Namely, by [91], for an increasing super relation U on X, with U (X) = X,
there exists a nonvoid relator R on X such that U = intR.

Remark 96 Now, following O’Neil [66] and [116], we may also safely state that :
Two or three relators are better than one.

Note that by using two ordinary relators R and S, a super relator U, and a
hyper relator V on X, our present results can be greatly generalized.

Moreover, the non-conventional three relator space X (R, U, V) can probably
be also used for other purposes than generalizations of topologically open sets.
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2. D. Andrijević, Semi-preopen sets. Mat. Vesnik 38, 24–32 (1986)
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Applications of Apostol-type Numbers
and Polynomials: Approach to
Techniques of Computation Algorithms
in Approximation and Interpolation
Functions

Yilmaz Simsek

Abstract The purpose of this chapter is to survey and make a compilation that
covers many families of the special numbers and polynomials including the Apostol-
Bernoulli numbers and polynomials, the Apostol-Euler numbers and polynomials,
the Apostol-Genocchi numbers and polynomials, the Fubini numbers, the Stirling
numbers, the Frobenius-Euler polynomials, and the others, blending new results
for of the polynomials Wn(x; λ), which were given in: Y. Simsek, Computation
methods for combinatorial sums and Euler-type numbers related to new families
of numbers, Math. Meth. Appl. Sci., 40 (2017), 2347–2361. Many well-known
results of these polynomials are given in this chapter. Using these known and
new results, a large number of new formulas and new relations are created.
Some well-known relations among the polynomials Wn(x; λ), the Bernoulli and
Euler polynomials of higher order, Apostol-type polynomials (Apostol-Bernoulli
polynomials, Apostol-Euler polynomials, Apostol-Genocchi polynomials, etc.) are
given. It has been presented in new relations related to these polynomials. Some
open problems are raised from the results for the polynomials Wn(x; λ). Behaviors
of the polynomials Wn(x; λ) under integral transforms are also examined in this
chapter. Firstly, Laplace transform of the polynomials Wn(x; λ) is given. With the
help of this transformation, new infinite series representations are found. Then,
the behavior of the polynomials Wn(x; λ) under the Melin transform is also given
with help of the works Kucukoglu et al. (Quaest Math 42(4):465–478, 2019) and
Simsek (AIP Conf Proc 1978:040012-1–040012-4, 2018). With the aid of this
transformation, some relationships with the family of zeta functions are also blended
in detail with the previously well-known results using values from negative integers.
Since these results are known to be used frequently in both approximation theory,
number theory, analysis of functions, and mathematical physics, these results can
potentially be used in these scientific areas. In addition, it has been tried to give
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a detailed perspective on the applications of the polynomials Wn(x; λ) with their
generating functions in approximation theory. Firstly, with the help of computational
algorithms, basic known information about numerical values and graphics of these
polynomials are introduced. With the help of the algorithm given for these numerical
values, the approach steps are tried to be given in detail. These details are then
illustrated on graphics and shapes, so that the visual approach steps are made clearer.
As a result, this chapter is compiled by blending, interpreting, and comparing the
fundamental properties of the polynomials Wn(x; λ) and the numbers Wn(λ) with
their generating functions and other special numbers and polynomials.

1 Preliminaries

The numbers are based on very ancient times. Therefore, there is a very close
relationship between numbers and civilized communities. These civilized societies
enabled the numbers to improve and to be used in daily life and trade. Each scientific
development of human history has developed in proportion to numbers. As a result
of the existence of different number sets outside of geometry, theory of analysis and
functions, algebra and number theory, which are the main areas of mathematics, as
well as other fields of physics and engineering, were provided and developed. Of
course, it is not unusual to give the development and applications of numbers in this
section. This development of numbers is based on similar development, especially
in the presence and application of polynomials. When constructing any (special)
family of polynomials, the problem of finding their coefficients depend on (special)
numbers arises. This kind of problem requires difficult approaches and methods
in order to discover explicit coefficient relations involving (special) numbers. The
reason why (special) polynomials are important is that they can be applied easily
in many areas, especially mathematics, physics, and engineering. Since algebraic
operations with polynomials, derivative operation and integral operation are very
easy, they are used in many other areas in mathematical modeling, approximation
theory, modeling solution of real-world problems, and other problems. This section
focuses on the investigation and survey of the polynomials Wn(x; λ) and the
numbers Wn(λ) with generating functions. These polynomials are given relations
with many families of special numbers and polynomials. Later on, their known
relationships with the theory of approximation are examined and surveyed in
detail. Because theory of approximation and its applications arise in all branches
of engineering, physics, applied mathematics, and in many other disciplines. We
believe that many results of the polynomials Wn(x; λ) and the numbers Wn(λ)
with generating functions involving their approximations and numerical values may
potentially be used in all branches of previous areas.

In recent years, we observe that techniques of the approximation are used
frequently in approach theory, mathematics, statistics, probability theory, physics,
engineering, economics, and other sciences. Recalling that, in mathematics and
their applications, techniques of the approximation are related to how functions can
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best be approximated with simpler functions, and with quantitatively designating
the errors presented thereby. There are various desire reasons for studying and
investigating the approximation theory with their applications. Because approxi-
mation theory needs to represent functions in computer calculations to an interest
in the theory of mathematics and other areas. Recently, approximation theory with
its algorithms have been used in several areas of the sciences and also in many
industrial and commercial areas.

In the work of Surana [122], he mentioned that all numerical methods are
grouped in two categories as follows:

The first category: The numerical methods that do not involve any approxima-
tions. In such methods the calculated numerical solutions are exact solutions of the
mathematical models within the accuracy of computations on the computer. Such
methods refer to numerical methods or numerical methods without approximation.

The second category: Those methods in which the numerically calculated
solution is always approximate. Such methods refer to methods of approximation
or numerical methods with approximations. In such methods often one can pro-
gressively approach (converge to) the true solution but can never obtain precise
theoretical solution.

This chapter presents an analysis of the polynomials Wn(x; λ) including the
Apostol-Bernoulli numbers and polynomials, the Apostol-Euler numbers and poly-
nomials, the Apostol-Genocchi numbers and polynomials, the Fubini numbers and
polynomials, and other special numbers and polynomials with their interpolation
functions and their approximations and numerical values, and also asymptotic
behavior.

This present chapter also deals with some fundamental properties of the poly-
nomials W(k)

n (x, λ) and the numbers W(k)
n (λ), which was given by Kucukoglu and

Simsek [42], with properties of their computational algorithms and their numerical
methods with approximations of the polynomials by the help of rational functions.
It is also providing the necessary materials about different family of special
polynomials and numbers with their generating functions.

With the help of these computational algorithms arising from the recurrence
formula for the numbers W(k)

n (λ), in this chapter, we calculate further numerical
solutions, and also numerical methods with approximations of the polynomials
W
(k)
n (x, λ) with their related functions. By using these further numerical solutions,

and also numerical methods with approximations of the polynomials W(k)
n (x, λ),

we study on approximations of the functions G (λ, p, k) by the rational functions
W
(k)
n (λ).
Let N := {1, 2, 3, . . . } be the set of positive integers. Let N0 := N ∪ {0} be the

set of nonnegative integers. Let R be the set of real numbers and R
+ denote the set

of positive real numbers. Let C be the set of the complex numbers.
Here, we begin by recalling some definitions and notations for the special

numbers and polynomials including their generating functions as follows:
The Apostol-Bernoulli polynomials B(k)

n (x;w) of degree n − 1 and order k are
defined by the following generating function:
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FB(t, x;w; k) =
(

t

wet − 1

)k
ext =

∞∑

n=0

B(k)
n (x;w)

tn

n! , (1)

where B(1)
n (x;w) denotes the Apostol-Bernoulli polynomials (cf. [1]; and see also

the references cited therein).
Assuming that log is the principal branch of the logarithm; that is, for w 	= 0,

log (w) = Log |w| + i arg(w),

with

π < log (w) ≤ π

and

Log1 = 0.

The radius of convergence of the series for the function FB(t, x;w; 1) in (1) is
2π when w = 1 and |log (w)| when w 	= 1 (cf. [57, 61]). Here, main problem is to
give comments on a relation between Bn(x;w) and Bn(x) for suitable value of w.
In [61], Navas et al. gave the following valuable comments:

For λ = 1, Bn(x;w) reduces to the Bernoulli polynomials Bn(x), that is

Bn(x; 1) = Bn(x).

There is a limiting relationship between Bn(x;w) and Bn(x) as w → 1, but it
is not obtained easily. Another aspect of this discontinuity is that, although the
polynomials Bn(x) is monic of degree n, since B0(w) = 0, for w 	= 1 the degree
of polynomials Bn(x;w) is n− 1 (cf. [1–121]).

It is time to give some of the special case of Eq. (1) as follows:
When x = 0, these polynomials are reduced to the Apostol-Bernoulli numbers

B(k)
n (w) of order k with

B(k)
n (w) = B(k)

n (0;w)

(cf. [57]). Note that

B(k)
0 (x;w) = 0

and

B(0)
n (x;w) = xn.
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Note that the notation B(k)
n (x;w) does not denote the k-th derivative of

Bn(x;w).
Some well-known computation formulas for the Apostol-Bernoulli numbers

B(k)
n (w) of order k and the Apostol-Bernoulli polynomials B(k)

n (x;w) of order k
are given as follows:

B(c+d)
n (w) =

n∑

j=0

(
n

j

)
B(c)
j (w)B

(d)
n−j (w) (2)

and

B(c+d)
n (x;w) =

n∑

v=0

(
n

v

)
xn−v

v∑

j=0

(
v

j

)
B(c)
j (w)B

(d)
v−j (w). (3)

By using (1), we have

∞∑

n=0

(n)kx
n−ktn

n! =
k∑

b=0

(−1)k−b
(
k

b

)
wb

∞∑

n=0

n∑

j=0

(
n

j

)
bn−jB(k)

j (x;w)
tn

n! ,

where

(n)k = n (n− 1) (n− 2) . . . (n− k + 1) ,

with (n)0 = 1.
Comparing the coefficients of tn

n! on both sides of the previous equation, we
obtain the following relation:

Theorem 1 Let n ≥ k ≥ 0. Then we have

k∑

b=0

(−1)k−b
(
k

b

)
wb

n∑

j=0

(
n

j

)
bn−jB(k)

j (x;w) = (n)kxn−k.

It should be noted that

Bn(x;w) = B(1)
n (x;w),

and

Bn(w) = B(1)
n (w),

(cf. [1–121]).
Putting k = 1 in (1), we have a few well-known values of the Apostol-Bernoulli

polynomials with the aid of (1) as follows:
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B0 (x;w) = 0,

B1 (x;w) = 1

w − 1
,

B2 (x;w) = 1

w − 1
x − 2w

(w − 1)2
,

B3 (x;w) = 3

w − 1
x2 − 6w

(w − 1)2
x + 3w (w + 1)

(w − 1)3
,

B4 (x;w) = 4

w − 1
x3 − 12w

(w − 1)2
x2 + 12w (w + 1)

(w − 1)3
x − 4w

(
w2 + 4w + 1

)

(w − 1)4
,

B5 (x;w) = 5

w − 1
x4 − 20w

(w − 1)2
x3 + 30w (w + 1)

(w − 1)3
x2 − 20w

(
w2 + 4w + 1

)

(w − 1)4
x

+5w
(
w3 + 11w2 + 11w + 1

)

(w − 1)5
,

and so on.
Putting x = 0, since Bn (w) = Bn (0;w), we also have a few well-known values

of the Apostol-Bernoulli numbers:

B0 (w) = 0,

B1 (w) = 1

w − 1
,

B2 (w) = − 2w

(w − 1)2
,

B3 (w) = 3w (w + 1)

(w − 1)3
,

B4 (w) = −4w
(
w2 + 4w + 1

)

(w − 1)4
,

B5 (w) = 5w
(
w3 + 11w2 + 11w + 1

)

(w − 1)5
,

and so on.
Substituting some special values of x and k = 1 into (1), we also have the

following well-known results:

wB1(1;w) = 1+B1(w)

and for n ≥ 2,
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wBn(1;w) = Bn(w),

Bn(x;w) =
n∑

j=0

(
n

j

)
xn−jBj (w), (4)

and

wBn(x + 1;w)−Bn(x;w)nxn−1 (5)

(cf. [1]).
In [7], Bayad gave the Fourier series of the Apostol-Bernoulli polynomials. Let

w ∈ C \ {0}. For 0 < x < 1 if n = 1, 0 ≤ x ≤ 1 if n ≥ 2. Then we have

Bn (x;w) = −n!
wx(2πi)n

3∑

k∈Z

e2πikx

(
k − log(w)

2πi

)n , (6)

where

3∑

k∈Z
=

∑

k∈Z\{0}

if w = 1 and;

3∑

k∈Z
=

∑

k∈Z

if w 	= 1 (cf. [7]).
In the following theorem, asymptotic expansion for the Apostol-Bernoulli

numbers was given by Navas et al. [61]:
Note that a set P is denoted poles of the function FB(t, x;w; 1). This set is given

by

P = {t = 2πim− log (w) : m ∈ Z, t ∈ C}

when i2 = −1, w 	= 1 and

P = {t = 2πim : m ∈ Z, t ∈ C}

when w = 1. It is clear that t = 0 is a removable singularity of the function

FB(t, x; 1; 1) = tetx

et − 1



790 Y. Simsek

in the latter case.

Theorem 2 (cf. [61, Proposition 2]) Given w ∈ C, let P1 be a finite subset of the
set of poles P of the generating function (1) of the polynomials Bn (x;w) satisfying

max {|a| : a ∈ P1} < min {|a| : a ∈ P \P1} = λ.

For all integers m ≥ 2, we have

Bm (w)

m! = −
∑

a∈P

1

am
+O

(
1

λm

)
,

where the constant implicit in the order term depends only on w and P .

Consequently, using the appropriate approximating sums over the sets P , the
Fourier series of the polynomials Bm (x;w) at x = 0, which is given as follows:

Bm (x;w)
m! = −

∑

a∈P

eax

am

is an asymptotic expansion for the Apostol-Bernoulli numbers as m → ∞ (cf.
[7, 61, 104]).

By using (1), we now give some properties of the Bernoulli polynomials B(k)n (x)
of degree n and order k are defined by the following generating function:

(
t

et − 1

)k
ext =

∞∑

n=0

B(k)n (x)
tn

n! (7)

such that

B(k)n = B(k)n (0),

where B(k)n denotes the Bernoulli numbers of order k.
These polynomials can be computed by the following formula:

B(c+d)n (x) =
n∑

v=0

(
n

v

)
xn−v

v∑

j=0

(
v

j

)
B
(c)
j B

(d)
v−j (8)

(cf. [1, 21, 57, 59, 70, 114, 117]; and see also the references cited therein).
By differentiating both sides of (7) with respect to t , we have the following well-

known recurrence formula for the polynomial B(k)n (x):

B(k+1)
n (x) =

(
1− n

k

)
B(k)n (x)+ k

(x
n
− 1

)
B
(k)
n−1(x) (9)
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(cf. [59, 117]; and see also the references cited therein).
Substituting n = k into (9), we have

B(n+1)
n (x) = (x − n)B(n)n−1(x).

Putting x = n in the above equation, we have

B(n+1)
n (n) = 0.

Substituting x = 0 into (9), we have

B(k+1)
n =

(
1− n

k

)
B(k)n − kB(k)n−1 (10)

(cf. [59, 117]; and see also the references cited therein).
Substituting n = k into (10), we have

B
(k+1)
k = −kB(k)k−1

= k(k − 1)B(k−1)
k−2 = · · · = (−1)kk!B0

= (−1)kk!

see also [15].
It is time to give few values for the B(k)n with the aid of the Eqs. (9) and (10):

B
(k)
0 = 1,

B
(k)
1 = −1

2
k,

B
(k)
2 = 1

12
(3k2 − k),

B
(k)
3 = −1

8
(k3 − k2),

B
(k)
4 = 1

240
(15k4 − 30k3 + 5k2 + 2k),

B
(k)
5 = − 1

96
(k3 − k2)(3k2 − 7k − 2),

B
(k)
6 = 1

4032
(63k6 − 315k5 + 315k4 + 91k3 − 42k2 − 16k), . . . ,

and so on. Therefore

B
(1)
1 = −1

2
, B

(2)
2 = 5

6
, B

(3)
3 = −9

4
, B

(4)
4 = 251

30
, B

(5)
5 = −475

12
, B

(6)
6 = 19087

84
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B
(7)
7 = −36799

24
, B

(8)
8 = 1070017

90
, B

(9)
9 = −2082753

20
, B

(10)
10 = 134211265

132
, . . .

and so on (cf. [59]; and see also the references cited therein).
It can be easily calculated in other numbers with the help of the formulas given

above. Since

B
(k+1)
k = (−1)kk!,

we have

B
(1)
0 = 0! = 1,

B
(2)
1 = −1

2
2 = (−1)1! = −1,

B
(3)
2 = 1

12
(3.22 − 2) = 2! = 2,

B
(4)
3 = −1

8
(33 − 32) = −3! = −6,

B
(5)
4 = 1

240
(15.44 − 30.43 + 5.42 + 2.4) = 4! = 24,

B
(6)
5 = − 1

96
(53 − 52)(3.52 − 7.5− 2) = −5! = −120,

B
(7)
6 = 1

4032
(63.66 − 315.65 + 315.64 + 91.63 − 42.62 − 16.6) = 720, . . . ,

and so on.
Many computational formulas and relations of such numbers including the

Bernoulli numbers of order k can also be found in different methods. In the
literature, these can be used in other related formulas.

With the help of the well-known formula of the Riemann zeta function, asymp-
totic behavior of the Bernoulli polynomials is given as follows:

Dilcher [24] gave asymptotic behavior of the Bernoulli Polynomials, the Euler
Polynomials, and the generalized Bernoulli Polynomials. He gave many novel
properties of these asymptotic behavior for these polynomials. One of them is given
as follows:

For all w ∈ C, m ∈ N with k = [
m
2

]
, m ≥ 2, we have the following well-known

relation:
∣∣∣∣∣∣
(−1)k

(2π)m

(2m)!
m∑

j=0

(
m

j

)
wn−j

2j
− Tm(2πw)

∣∣∣∣∣∣
<

1

2m
e

4π
w ,
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where Tm(w), denotes the sections of the cosine and sine functions, is defined by

T2m(w) =
m∑

j=0

(−1)j
w2j

(2j)! ,

and

T2m+1(w) =
m∑

j=0

(−1)j
w2j+1

(2j + 1)! ,

[c] denotes the integral part of c (∈ R) (cf. [24, Theorem 1]). Since uniformly
convergent on a compact subset to cos(2πw) if m is even an integer, and to
sin(2πw) if m is an odd integer. Making replace w + 1

2 by u, we arrive at the
following well-known sequences converge uniformly on compact subsets of C:

(−1)m−1 (2π)
2m

2(2m)!B2m(u)→
∞∑

j=0

(−1)j
(2πu)2j

(2j)!

and

(−1)m−1 (2π)
2m+1

2(2m+ 1)!B2m+1(u)→
m∑

j=0

(−1)j
(2πu)2j+1

(2j + 1)!

(cf. [24, Corollary 1]; and for details, see also [60, 77, 88, 91, 104]; and the references
cited therein).

The Apostol-Euler polynomials E(k)n (x; λ) of degree n and order k are defined by
means of the following generating function:

FE(t, x;w; k) =
(

2

wet + 1

)k
ext =

∞∑

n=0

E(k)n (x;w)
tn

n! , (11)

where w ∈ C and |t | < |log (−w)|, so that, in the special case when x = 0, these
polynomials are reduced to the Apostol-Euler numbers E(k)n (w) of higher order with

E(k)n (w) = E(k)n (0;w)

(cf. [53, 57]; and the references cited therein).
By using (11), we have

∞∑

n=0

2kxntn

n! =
k∑

b=0

(
k

b

)
wb

∞∑

n=0

n∑

j=0

(
n

j

)
bn−jE(k)j (x;w)

tn

n! .
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Comparing the coefficients of t
n

n! on both sides of the previous equation, we obtain
the following relation:

Theorem 3 Let n, k ∈ N0. Then we have

k∑

b=0

(
k

b

)
wb

n∑

j=0

(
n

j

)
bn−jE(k)j (x;w) = 2kxn.

It should be note that

En(x;w) = E(1)n (x;w),

En(w) = E(1)n (w)

and

En = En(1),

where En(x;w), En(w), andEn denote the Apostol-Euler polynomials, the Apostol-
Euler numbers, and the classical Euler numbers of the first kind, respectively (cf.
[1, 39, 53, 57, 70, 114, 115, 117, 119]; and see also the references cited therein).

In [7], Bayad also gave the Fourier series of the Apostol-Euler polynomials. Let
w ∈ C \ {0}. For 0 < x < 1 if n = 0, 0 ≤ x ≤ 1 if n ≥ 1. Then we have

En (x;w) = 2 (n)!
wx(2πi)n+1

33∑

k∈Z

e
2πi

(
k− 1

2

)
x

(
k − 1

2 − log(w)
2πi

)n+1 , (12)

where
33∑
k∈Z

= ∑
k∈Z\{0}

if w = −1 and
33∑
k∈Z

= ∑
k∈Z

if w 	= −1 (cf. [7]).

Taking into account cos
(
πu− π

2

) = sin (πu) and sin
(
πu− π

2

) = − cos (πu),
we arrive at the following well-known results for the Euler polynomials:

(−1)m
π2m+1

4(2m)!E2m(u)→ sin(πu)

and

(−1)m+11 π2m+2

4(2m+ 1)!E2m+1(u)→ cos(πu)

(cf. [24, Corollary 3]; and see also [60, 77, 88, 91, 104]; and the references cited
therein).
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In [39], Kim et al. considered the modification of the Apostol-Bernoulli polyno-
mials and gave the following generating function for the w-Bernoulli polynomials
Bn (w; x):

log (w)+ t
wet − 1

etx =
∞∑

n=0

Bn (w; x) t
n

n! , (13)

so that,

Bn (w) = Bn (w; 0) ,

where Bn (w) denotes the w-Bernoulli numbers and some values of these numbers
are given as follows:

B0 (w) = log (w)

w − 1
,

B1 (w) = w − 1− w log (w)

(w − 1)2
,

and so on (cf. [31, 39, 97]; and see also the references cited therein).
Combining (13) with (1), we have

(
log (w)

t
+ 1

)
FB(t, 0;w; 1) = log (w)+ t

wet − 1
.

By using the above functional equation, we get

log (w)
∞∑

n=0

Bn(w)
tn

n! +
∞∑

n=0

nBn−1(w)
tn

n! =
∞∑

n=0

nBn−1 (w)
tn

n! .

Comparing the coefficients of t
n

n! on both sides of the previous equation, we obtain
the following explicit known representation for the numbers Bn (w) and Bn(w):

Bn−1 (w) = log (w)

n
Bn(w)+Bn−1(w),

where n ∈ N.
In [39], Kim et al. derived a summation formula in connection with w-Bernoulli

numbers and polynomials as follows ( cf. [39, p. 9]):

Bl (w; k)− w−kBl (w) = l
k−1∑

n=0

wn−knl−1. (14)
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Making use of the Eq. (14), we have the following well-known sums of powers
of consecutive integers including the Bernoulli numbers and polynomials, the Euler
numbers and polynomials, and the Genocchi numbers and polynomials

m−1∑

j=1

jn = Bn+1(m)− Bn+1

n+ 1
,

m−1∑

j=1

(−1)j jn = En + (−1)m+1En(m)

2
,

and

m−1∑

j=1

(−1)j jn = Gn+1 + (−1)m+1Gn+1(m)

2(n+ 1)
,

where n ∈ N0 and m ∈ N\ {1} (cf. [30, 34, 69, 90, 110, 116, 120]).
Combining (1) and (11), we get

FB(t, x; λ; k) = FB
(
t

2
, x; λ 1

2 ; k
)
FE

(
t

2
, x; λ 1

2 ; k
)
.

Note that there exist very kind of functional equation, including the Apostol-type
numbers and polynomials, similar to the above functional equation (cf. [1–118]).

In this context, using the above equation, we have

∞∑

n=0

B(k)
n (x;w)

tn

n! =
∞∑

n=0

B(k)
n (x;w

1
2 )
tn

2nn!
∞∑

n=0

E(k)n (x;w
1
2 )
tn

2nn! .

Therefore

∞∑

n=0

B(k)
n (x;w)

tn

n! =
∞∑

n=0

n∑

b=0

(
n

b

)
B(k)
b (x;w

1
2 )E(k)n−b(x;w

1
2 )
tn

2nn! .

Comparing the coefficients of tn

n! on both sides of the above equation yields the
following presumably known relation:

B(k)
n (x;w) =

1

2n

n∑

b=0

(
n

b

)
B(k)
b

(
x;w 1

2

)
E(k)n−b

(
x;w 1

2

)
. (15)

The Apostol-Genocchi polynomials G(k)n (x;w) of degree n and order k are
defined by the following generating function:
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FG(t, x; λ; k) =
(

2t

wet + 1

)k
ext =

∞∑

n=0

G(k)n (x;w)
tn

n! , (16)

where w ∈ C and |t | < |log (−w)|, so that, in the special case when x = 0, these
polynomials are reduced to the Apostol-Genocchi numbers G(k)n (w) of higher order
with

G(k)n (w) = G(k)n (0;w)

(cf. [55, 56, 58]; and see also the references cited therein).
By using (16), we have

∞∑

n=0

2k(n)kxn−ktn

n! =
k∑

b=0

(
k

b

)
wb

∞∑

n=0

n∑

j=0

(
n

j

)
bn−jG(k)j (x;w)

tn

n! .

Comparing the coefficients of t
n

n! on both sides of the previous equation, we obtain
the following relation:

Theorem 4 Let n, k ∈ N0 with n ≥ k. Then we have

k∑

b=0

(
k

b

)
wb

n∑

j=0

(
n

j

)
bn−jG(k)j (x;w) = 2k(n)kx

n−k.

It should be noted that

Gn(x;w) = G(1)n (x;w),

Gn(w) = G(1)n (w),

and

Gn = Gn(1),

where Gn(x;w), Gn(w), and Gn denote the Apostol-Genocchi polynomials, the
Apostol-Genocchi numbers and the Genocchi numbers, respectively (cf. [55, 56,
58, 70, 117]; and see also the references cited therein).

Combining (11) and (16), we have

FG(t, x;w; k) = tkFE (t, x;w; k) .
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By using the above equation, we get

∞∑

n=0

G(k)n (x;w)
tn

n! = t
k
∞∑

n=0

E(k)n (x;w)
tn

n! .

Therefore

∞∑

n=0

G(k)n (x;w)
tn

n! =
∞∑

n=0

(n)kE
(k)
n−k(x;w)

tn

n! .

Comparing the coefficients of t
n

n! on both sides of the above equation, we have the
following known relation:

G(k)n+k(x;w) = (n+ k)kE(k)n (x;w)

(cf. [1–121]).
Combining the above equation with (15) yields the following presumably known

relation:

Theorem 5

B(k)
n (x;w) =

1

2n

n∑

b=0

(
n

b

)
(n+ k − b)kB(k)

b

(
x;w 1

2

)
G(k)n+k−b

(
x;w 1

2

)
,

where assuming that n+ k ≥ b.
In [7], by using different method that of [54], Bayad also gave the following

Fourier expansions of the Apostol-Genocchi polynomials:
Let w ∈ C \ {0}. For 0 < x < 1 if n = 0, 0 ≤ x ≤ 1 if n ≥ 1. The following

equality holds true:

Gn (x;w) = 2 (n)!
wx(2πi)n

33∑

k∈Z

e
2πi

(
k− 1

2

)
x

(
k − 1

2 − log(w)
2πi

)n , (17)

(cf. [7]).
The Frobenius-Euler polynomials H (k)

n (x|λ) of degree n and order k are defined
by means of the following generating function:

FH (t, x; λ; k) =
(

1− λ
et − λ

)k
ext =

∞∑

n=0

H (k)
n (x|λ) t

n

n! , (18)
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where λ ∈ C\ {1}, for x = 0, the polynomials H (k)
n (0|λ) are reduced to the

Frobenius-Euler numbers H (k)
n (λ) of higher order:

H (k)
n (λ) = H (k)

n (0|λ).

For k = 1, the numbers H (k)
n (λ) are reduced to the Frobenius-Euler numbers (or

Euler Frobenius numbers) H (1)
n (λ):

Hn(λ) = H (1)
n (λ).

A relation between the numbers H (k)
m (λ) and the polynomials H (k)

n (x|λ) is
given by

H (k)
n (x|λ) =

n∑

m=0

(
n

m

)
xn−mH (k)

m (λ) (19)

(cf. [35, 39, 40, 74, 76, 78–80, 86, 89, 93, 98, 103, 108, 111]; and see also the
references cited therein).

The second kind Apostol-type Euler numbers of order −k are defined by the
following generating functions:

FN(t;−k, λ) =
(
λet + λ−1e−t

2

)k
=

∞∑

n=0

E∗(−k)n (λ)
tn

n! (20)

(cf. [99, 102]; see also the references cited therein).
By using (20), we have

∞∑

n=0

1

2k

k∑

b=0

(
k

b

)
λ2j−k(2j − k)n t

n

n! =
∞∑

n=0

E∗(−k)n (λ)
tn

n! .

Comparing the coefficients of t
n

n! on both sides of the previous equation, we obtain
the following known relation:

Theorem 6 Let n, k ∈ N0. Then we have

E∗(−k)n (λ) = 1

2k

k∑

b=0

(
k

b

)
λ2j−k(2j − k)n.

For the proof of the above theorem, see [99, 102], and see also the references
cited therein).

The numbers y2(n, k; λ) are defined by the following generating function:
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Fy2(t, k; λ) =
1

(2k)!
(
λet + λ−1e−t + 2

)k =
∞∑

n=0

y2(n, k; λ) t
n

n! , (21)

(cf. [102]).
By using (21), we have

Fy2(t, k; λ) =
1

(2k)!
k∑

b=0

(
k

b

)
2k+b−jFN(t;−b, λ).

Using the above equation yields

∞∑

n=0

y2(n, k; λ) t
n

n! =
∞∑

n=0

1

(2k)!
k∑

b=0

(
k

b

)
2k+b−jE∗(−b)n (λ)

tn

n! .

Comparing the coefficients of tn

n! on both sides of the previous equation, we
obtain the following known relation:

Theorem 7 Let n, k ∈ N0. Then we have

y2(n, k; λ) = 1

(2k)!
k∑

b=0

(
k

b

)
2k+b−jE∗(−b)n (λ).

The λ-array polynomials Snk (x; λ) (of degree n and order k) are given by the
following generating function:

FA (t, x, k; λ) =
(
λet − 1

)k

k! ext =
∞∑

n=0

Snk (x; λ)
tn

n! , (22)

where k ∈ N0 and λ ∈ C (cf. [10, 93]) which, for λ = 1, yields the classical array
polynomials Snk (x), which are defined by the following explicit formula:

Snk (x) =
1

k!
k∑

j=0

(−1)k−j
(
k

j

)
(x + j)n (23)

with S0
0 (x) = S0

n (x) = 1, Sn0 (x) = xn and S0
0 (x) = 0 when k > n. Moreover, for

x = 0, the λ-array polynomials Snk (x; λ) reduce to the λ-Stirling numbers, that is:

S (n, k; λ) = Snk (0; λ) , (24)

(cf. [10, 58, 93, 115]). In the special case of λ = 1, the λ-Stirling numbers reduce to
the Stirling numbers of the second kind, that is
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S2 (n, k) = S (n, k; 1)

which are defined by

FS (t, k) =
(
et − 1

)k

k! =
∞∑

n=0

S2 (n, k)
tn

n! , (25)

and

xn =
n∑

k=0

S2 (n, k) (x)k , (26)

(cf. [21, 117]; see also the references cited therein).
By combining (22) and (25), the following functional equation is obtained:

FA (t, x, k; λ) = ext
k∑

b=0

(−1)k−b 1
(
k
b

)
(k − b)!B

k
b(λ)FS (t, b) , (27)

where Bkb(λ) denotes the Bernstein basis function, which are defined by means of
the following well-known generating function:

(λt)m

m! e
(1−λ)t =

∞∑

n=0

Bnm(λ)
tn

n! , (28)

where

Bnm(λ) =
{(n
m

)
λm(1− λ)n−m if 0 ≤ m ≤ n, n,m ∈ N0

0 otherwise.

The Bernstein polynomials, which are linear combination of the Bernstein basis
function, are used to prove the Weierstrass approximation theorem that every real-
valued continuous function on a real interval [a, b] can be uniformly approximated
by polynomial functions over R (cf. [51, 94, 96, 111]; see also the references cited
therein).

By using (27), we get

∞∑

n=0

Snk (x; λ)
tn

n! =
∞∑

n=0

k∑

b=0

(−1)k−b
Bkb (λ)(
k
b

)
(k − b)!

n∑

j=0

(
n

j

)
S2 (n, k)

tn

n! .

Comparing the coefficients of t
n

n! on both sides of the above equation, we have the
following theorem:



802 Y. Simsek

Theorem 8 Let n, k ∈ N0. Then we have

Snk (x; λ) =
k∑

b=0

(−1)k−b
Bkb (λ)(
k
b

)
(k − b)!

n∑

j=0

(
n

j

)
S2 (n, k) .

The Stirling number of the first kind S1 (n, k) are defined by

(x)n =
n∑

k=0

S1 (n, k) x
k (29)

(cf. [17, 116, 117]; see also the references cited in each of these earlier works).
Note that the numbers of the first kind S1 (n, k) are also defined by means of the

following generating function:

∞∑

n=0

S1 (n, k)
zn

n! =
(log (1+ z))k

k! ,

where k ∈ N0 (cf. [17, 21, 116, 117]; and the references cited therein).

2 Apostol-Type Numbers and Polynomials with Their
Properties and Relations

In [99], Simsek introduced the numbers Wn(λ) and their higher order W(k)
n (λ),

respectively, by the following generating functions:

Fw(t; λ) = 1

λet + λ−1e−t + 2
=

∞∑

n=0

Wn(λ)
tn

n! , (30)

and

Fw(t; λ; k) = 1
(
λet + λ−1e−t + 2

)k =
∞∑

n=0

W(k)
n (λ)

tn

n! , (31)

where n, k ∈ N0 and λ ∈ C (cf. [99]). In (30) and (31), we have the following
restriction on the value of t : For λ ∈ C we have |t | < |log (−λ)| with 1k = 1.

By combining (30) with (11) with k = 1, we get

∞∑

n=0

Wn(λ)
tn

n! = λ
∞∑

n=0

En

(
1

2
; λ

)
tn

n!
∞∑

n=0

En

(
1

2
; λ

)
tn

n! .



Applications of Apostol-type Numbers and Polynomials. . . 803

By using the Cauchy product rule for the series in the above equation we obtain

∞∑

n=0

Wn(λ)
tn

n! = λ
∞∑

n=0

n∑

j=0

(
n

j

)
Ej

(
1

2
; λ

)
En−j

(
1

2
; λ

)
tn

n! .

Comparing the coefficients of t
n

n! on both sides of the above equation, we have the
following theorem:

Theorem 9 Let n ∈ N0. Then we have

Wn(λ) = λ
n∑

j=0

(
n

j

)
Ej

(
1

2
; λ

)
En−j

(
1

2
; λ

)
.

Combining (20) with (31), we have

1 =
k∑

b=0

(
k

b

)
2k

∞∑

n=0

E∗(−b)n (λ)
tn

n!
∞∑

n=0

W(k)
n (λ)

tn

n! .

Therefore

1 =
k∑

b=0

(
k

b

)
2k

∞∑

n=0

n∑

j=0

(
n

j

)
E
∗(−b)
n−j (λ)W

(k)
j (λ)

tn

n! .

By comparing the coefficients of t
n

n! on both sides of the above equation, we obtain
the following result:

Theorem 10 Let n, k ∈ N0. Then we have

k∑

b=0

(
k

b

)
2k

n∑

j=0

(
n

j

)
E
∗(−b)
n−j (λ)W

(k)
j (λ) = 0.

Substituting λ = 1 into (30), we obtain the following equation:

1

et + e−t + 2
=

∞∑

n=0

Wn(1)
tn

n! .

Therefore

1

4

∞∑

n=0

E(2)n (1)
tn

n! =
∞∑

n=0

Wn(1)
tn

n! .
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By comparing the coefficients of t
n

n! on both sides of the above equation, we obtain

Wn(1) = 1

4
E(2)n (1), (32)

where

E(2)n (1) =
n∑

j=0

(
n

j

)
E
(2)
j

=
n∑

j=0

j∑

b=0

(
n

j

)(
j

b

)
EbEj−b,

where Eb denotes the Euler numbers of the first kind.
Substituting λ = 1 into (31), we obtain the following equation:

22kekt

(et + 1)2k
=

∞∑

n=0

22kW(k)
n (1)

tn

n! .

Therefore

∞∑

n=0

E(k)n (k)
tn

n! =
∞∑

n=0

22kW(k)
n (1)

tn

n! .

By comparing the coefficients of t
n

n! on both sides of the above equation, we obtain

W(k)
n (1) =

1

4k
E(k)n (k), (33)

where E(k)n (k) denotes the Euler polynomials of the first kind of order k.
By using (31), we have

λkekt

(λet + 1)2k
=

∞∑

n=0

W(k)
n (λ)

tn

n! .

Putting λ = −1 in the above equation, after some elementary calculations, we
have

∞∑

m=0

B(2k)m

tm

m! =
∞∑

m=0

(
m

2k

)
(2k)!

m−2k∑

j=0

(−1)m−j−k
(
m− 2k

j

)
km−2k−jW(k)

j (−1)
tm

m! .
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By comparing the coefficients of t
n

n! on both sides of the above equation, we obtain
the following result:

Theorem 11 Let m, k ∈ N0 with m ≥ 2k. Then we have

B(2k)m =
(
m

2k

)
(2k)!

m−2k∑

j=0

(−1)m−j−k
(
m− 2k

j

)
km−2k−jW(k)

j (−1). (34)

With the aid of the Bernoulli numbers of order 2k and (34), we have

1−2k∑

j=0

(−1)j−k
(

1− 2k

j

)
k1−2k−jW(k)

j (−1) = k

6
( 1

2k

)
(2k)! ,

2−2k∑

j=0

(−1)j−k
(

2− 2k

j

)
k2−2k−jW(k)

j (−1) = k(6k − 1)

6
( 2

2k

)
(2k)! ,

3−2k∑

j=0

(−1)j−k
(

3− 2k

j

)
k3−2k−jW(k)

j (−1) = k
2(2k − 1)

2
( 3

2k

)
(2k)! ,

4−2k∑

j=0

(−1)j−k
(

4− 2k

j

)
k4−2k−jW(k)

j (−1) = k(120k3 − 120k2 + 10k + 2)

120
( 4

2k

)
(2k)! ,

5−2k∑

j=0

(−1)j−k
(

5− 2k

j

)
k5−2k−jW(k)

j (−1) = k
2(2k − 1)(12k2 − 14k − 2)

24
( 5

2k

)
(2k)! ,

and

6−2k∑

j=0

(−1)j−k
(

6− 2k

j

)
k6−2k−jW(k)

j (−1)

= k(2016k5 − 4940k4 + 2520k3 + 364k2 − 84k − 16)

2016
( 6

2k

)
(2k)! ,

and so on. So the following some research problems can be given to the readers.
Therefore, if we continue with the above processes, we can naturally raise the
following open question:
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Problem 1 Let v, d ∈ N and a0, a1, a2, · · · , av−1, av ∈ Z.

v−2k∑

j=0

(−1)j−k
(
v − 2k

j

)
kv−2k−jW(k)

j (−1) = Pv(k)

d
(
v
2k

)
(2k)! ,

where Pv(k) is a polynomial in k of degree v. That is

Pv(k) = a0k
v + a1k

v−1 + a2k
v−2 + · · · + av−1k + av.

Explore properties of the coefficients of the polynomial Pv(k) with constant d?
What can you say about the factors of the polynomial Pv(k)?

Theorem 12 (cf. [99]) Let n ∈ N. Then the numbers Wn(λ) are given by the
following recurrence relation:

2Wn(λ)+ λ
n∑

m=0

(
n

m

)
Wm(λ)+ λ−1

n∑

m=0

(−1)n−m
(
n

m

)
Wm(λ) = 0 (35)

with the initial condition:

W0(λ) = λ

(λ+ 1)2
.

Proof Applying the Umbral calculus convention to the Eq. (30), after some alge-
braic calculations with the aid of the Cauchy product rule for the related series, we
have

1 = λ
∞∑

n=0

n∑

m=0

(
n

m

)
Wm(λ)

tn

n! + λ
−1

∞∑

n=0

n∑

m=0

(−1)n−m
(
n

m

)
Wm(λ)

tn

n!

+2
∞∑

n=0

Wn(λ)
tn

n! .

By comparing the coefficients of t
n

n! on both sides of the above equation, we arrive
at the assertion of Theorem 12.

For n ∈ N, another form of the recurrence relation (35) is given by

Wn(λ) = W0(λ)

n−1∑

m=0

(
(−1)n−m+1 λ−1 − λ

)(n
m

)
Wm(λ), (36)

(cf. [41, 42, 99]).
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The well-known computation formulas of the numbers Wn(λ), given in the
Eq. (35) and (36), can be given by other methods and techniques. This formula can
be given in the well-known division technique for the series below. Let us briefly
give this technique:

We set

∞∑
n=0
An(λ)

tn

n!
∞∑
n=0
Bn(λ)

tn

n!
=

∞∑

n=0

Cn(λ)
tn

n! ,

where

C0(λ) = A0(λ)

B0(λ)

with B0(λ) 	= 0. Therefore,

∞∑

n=0

An(λ)
tn

n! =
∞∑

n=0

Bn(λ)
tn

n!
∞∑

n=0

Cn(λ)
tn

n! .

The Cauchy product of these two power series on the left side of the above equation
is given by

∞∑

n=0

An(λ)
tn

n! =
∞∑

n=0

n∑

j=0

(
n

j

)
Bj (λ)Cn−j (λ)

tn

n! .

By comparing the coefficients of t
n

n! on both sides of the above equation, we obtain

An(λ) =
n∑

j=0

(
n

j

)
Bj (λ)Cn−j (λ).

Hence

An(λ) = Cn(λ)B0(λ)+
n∑

j=1

(
n

j

)
Bj (λ)Cn−j (λ).

SinceB0(λ) 	= 0, a known computation formula of the coefficientsCn(λ) is given by

Cn(λ) = An(λ)
B0(λ)

− 1

B0(λ)

n∑

j=1

(
n

j

)
Bj (λ)Cn−j (λ). (37)
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By applying (37) to (30), we get

1

λ
∞∑
n=0

tn

n! + λ−1
∞∑
n=0
(−1)n t

n

n! + 2
=

∞∑

n=0

Wn(λ)
tn

n! .

From the above equation, we obtain

A0(λ) = 1

and for n > 0

An(λ) = 0.

B0(λ) = λ+ λ−1 + 2

and for n > 0

Bn(λ) = 1

n!
(
λ+ (−1)nλ−1

)
.

Therefore

W0(λ) = A0(λ)

B0(λ)
= 1

λ+ λ−1 + 2
,

W1(λ) = A1(λ)

B0(λ)
− 1

B0(λ)

1∑

j=1

(
n

j

)
Bj (λ)Cn−j (λ)

= −λ (λ− 1)

(λ+ 1)3
.

Consequently, combining (37) with the recurrence relation given by (35), first
few values of the numbersWn(λ) are computed as follows:

W2(λ) = λ
(
λ2 − 4λ+ 1

)

(λ+ 1)4
,

W3(λ) = −λ
(
λ3 − 11λ2 + 11λ− 1

)

(λ+ 1)5
,

and so on (cf. [41, 42, 99]).
In [99], we gave the polynomials W(k)

n (x; λ) of degree n and order k by the
following generating function:
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Gw(t, x, k; λ) = etxFw(t, k; λ) =
∞∑

n=0

W(k)
n (x; λ)

tn

n! , (38)

where n, k ∈ N0, x ∈ R, λ ∈ C, (cf. [99]).
The following relationship between the numbers W(k)

n (λ) and the polynomials
W
(k)
n (x; λ) is given by the following theorem:

Theorem 13 (cf. [99]) Let n, k ∈ N0. Then we have

W(k)
n (x; λ) =

n∑

m=0

(
n

m

)
xn−mW(k)

m (λ). (39)

Substituting x = 1 into (39), we have

W(k)
n (1; λ) =

n∑

m=0

(
n

m

)
W(k)
m (λ). (40)

Notice that

W(k)
n (λ) = W(k)

n (0; λ), (41)

with

Wn(λ) = W(1)
n (λ)

and

Wn(x; λ) = W(1)
n (x; λ)

(cf. [99]).
In [100], we gave several computation formulas for the numbersW(k)

n (λ).

Theorem 14 (cf. [100]) Let n ∈ N0. Then we have

W(c+d)
n (λ) =

n∑

m=0

(
n

m

)
W(c)
m (λ)W

(d)
n−m(λ). (42)

Proof (cf. [100]) By using (31), one has the following functional equation:

Fw(t; λ; c + d) = Fw(t; λ; c)Fw(t; λ; d).



810 Y. Simsek

The above functional equation gives us the following series equations:

∞∑

n=0

W(c+d)
n (λ)

tn

n! =
∞∑

n=0

W(c)
n (λ)

tn

n!
∞∑

n=0

W(d)
n (λ)

tn

n! .

Therefore

∞∑

n=0

W(c+d)
n (λ)

tn

n! =
∞∑

n=0

n∑

m=0

(
n

m

)
W(c)
m (λ)W

(d)
n−m(λ)

tn

n! .

Comparing the coefficients of t
n

n! on both sides of the above equation, we arrive at
the assertion of Theorem 14.

By using (42), we may compute the values of the numbersW(k)
n (λ). For instance,

setting c = d = 1 in (42), we have

W
(2)
0 (λ) = λ2

(λ+ 1)4
,

W
(2)
1 (λ) = 2λ2 (1− λ)

(λ+ 1)5
,

and so on.
These numbers W(k)

n (λ) also satisfy the following computation formula (cf. [42,
100]):

W(k)
n (λ) =

n∑

m=0

(
n

m

)
W(k−1)
m (λ)Wn−m(λ) (43)

so that, by (43), a few values of the numbersW(k)
n (λ) are given as follows:

W
(2)
0 (λ) = λ2

(λ+ 1)4
,

W
(2)
1 (λ) = 2λ2 (1− λ)

(λ+ 1)5
,

W
(2)
2 (λ) = 4λ2

(
λ2 − 3λ+ 1

)

(λ+ 1)6
,

W
(3)
0 (λ) = λ3

(λ+ 1)6
,

W
(3)
1 (λ) = 3λ3 (1− λ)

(λ+ 1)7
,
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W
(3)
2 (λ) = 3λ3

(
3λ2 − 8λ+ 3

)

(λ+ 1)8
,

and so on.
By using the mathematical induction method with (43), we have

W
(k)
1 (λ) = λk (1− λ)

(λ+ 1)2k+1
+ λ

(λ+ 1)2
W
(k−1)
1 (λ)

W
(k−1)
1 (λ) = λk−1 (1− λ)

(λ+ 1)2k−1 +
λ

(λ+ 1)2
W
(k−2)
1 (λ)

...

W
(2)
1 (λ) = λ2 (1− λ)

(λ+ 1)5
+ λ

(λ+ 1)2
W
(1)
1 (λ).

By the above iteration steps, we get the following formula for the numbersW(k)
1 (λ):

W
(k)
1 (λ) = kλk (1− λ)

(λ+ 1)2k+1 . (44)

Theorem 15 (cf. [100]) Let n ∈ N. Then we have

n∑

c=0

k∑

j=0

j∑

v=0

(
n

c

)(
k

j

)(
j

v

)
2kλ2v

(2λ)j
W(k)
c (λ) (2v − j)n−c = 0.

Relations among the Apostol-type numbers Wn(λ), the Apostol-Bernoulli num-
bers, the Apostol-Euler numbers, and the Apostol-Genocchi numbers of order 2 are,
respectively, given as follows:

Wn(λ) = λ
4
E(2)n (1; λ) (45)

(cf. [99]),

Wn−2(−λ) = λ

n (1− n)B
(2)
n (1; λ), (46)

and

Wn−2(λ) = λ

4n (n− 1)
G(2)n (1; λ), (47)
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(cf. [100]).
Generating functions, defined by Eqs. (30), (31), and (38), are associated with

many well-known special number families and polynomial families. These relations
will be given in the following sections with detailed and special notes.

Using (31), we get

(
−1

2

)k ∞∑

n=0

a(k)n (k)
tn

n! =
∞∑

n=0

W(k)
n

(
−1

2

)
tn

n! ,

where a(k)n (k) denotes the Fubini type polynomials which are defined by means of
the following generating function:

2k

(2− et )2k e
tx =

∞∑

n=0

a(k)n (x)
tn

n!

(cf. for details, see [32]). By comparing the coefficients of t
n

n! on both sides of the
above equation, we have

W(k)
n

(
−1

2

)
= (−1)ka(k)n (k). (48)

When k = 1, we have

1

2
an = wg(n).

On the other hand in [33], Kilar and Simsek gave the following identity:

a(k)n (x) = (−1)k W(k)
n

(
x − k;−1

2

)
.

Putting x = k in the above equation, we also arrive at (48).
In works [21, 27, 32], we see that the numbers wg(n) are the nth ordered Bell

numbers. These are evaluated by summation of the Stirling numbers of the second
kind, which count the number of partitions of an n-element set into k nonempty
subsets, expanded out into a double summation involving binomial coefficients
(with the help of well-known formula expressing and representing the Stirling
numbers of the first kind as a sum of binomial coefficients), or given by an infinite
series.

wg(n) =
n∑

m=0

m!S2(n,m).



Applications of Apostol-type Numbers and Polynomials. . . 813

These numbers can be expressed by the ordered Bell numbers are the numbers in
the first column of the infinite matrix

(2I −M)−1,

where I is the identity matrix and M is an infinite matrix form of Pascal’s triangle.
By using contour integration with the Cauchy residue theorem to the generating
function for wg(n):

1

2− et =
∞∑

n=0

wg(n)
tn

n! ,

(|t | < log 2), the ordered Bell numberswg(n), (or can be named the Fubini numbers,
can be represented by the Cauchy’s integral and the infinite series, respectively:

wg(n) =
∫

γ

dz

zn+1(2− ez) , (49)

where γ is a closed loop enclosing the origin, but no other singularities of the
integrand; and

wg(n) = n!
2

∞∑

m=−∞

1

(log 2+ 2πim)n+1 ,

where n ∈ N. Since log 2 is less, these numbers are approximated as follows:

wg(n) ≈ n!
2

1

(log 2)n+1 ,

that is this approximation gives us the numberswg(n) exceed the corresponding fac-
torials by an exponential factor. Therefore, using (49) with the analytic continuation
of the Riemann zeta function, Bailey [5] gave the following relation:

wg(n) = n!
2

1

(log 2)n+1 + o(Γ (n)).

By using the above approach, we have

lim
n→∞

nwg(n− 1)

wg(n)
= log 2

(cf. [5, 21, 113]).
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Here we note that in the light of the theory of approach to the approximation error
and other formulas given for the numbers wg(n) given above, similar properties
involving the approximation error by considering all the singularities and the
analytic continuation, on the complex plane, of the generating functions Fw(t; λ)
and Fw(t; λ; k) of numbersWn(λ) andW(k)

n (λ) can now be examined. These stages
of research and investigation are left to the readers.

The following theorem shows that the numbers Wn(λ) are associated with the
numbers y2(n, k; λ):
Theorem 16 (cf. [99]) Let n ∈ N. Then we have

n∑

m=0

(
n

m

)
W
(k)
n−m(λ)y2(m, k; λ) = 0.

Theorem 17 (cf. [99]) Let n, k ∈ N0. Then we have

W(k)
n (x; λ) =

1

4k

n∑

m=0

(−1)n−m
(
n

m

)
E(k)m

(x
2
; λ

)
E(k)n−m

(
−x

2
; λ−1

)
. (50)

Proof (cf. [99]) By using (38) and (11), one has the following well-known
functional equation:

22kGw(t, x, k; λ) = FE

(
t,
x

2
; k, λ

)
FE

(
−t,−x

2
; k, λ−1

)
.

By the help of (38) and (11) with the above equation, one has

∞∑

n=0

22kW(k)
n (x; λ)

tn

n!

=
∞∑

n=0

n∑

m=0

(−1)n−m
(
n

m

)
E(k)m

(x
2
; λ

)
E(k)n−m

(
−x

2
; λ−1

) tn

n! .

Comparing the coefficients of t
n

n! on both sides of the above equation, we arrive at
the assertion of Theorem 17.

By using (21) and (31), we have

Fw(t; λ;−k) = (2k)!Fy2(t, k; λ). (51)

Using (51), we have the following relation between the numbers W(−k)
n (λ) and the

numbers y2(n, k; λ):
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Theorem 18 (cf. [99]) Let n, k ∈ N0. Then we have

W(−k)
n (λ) = (2k)!y2(n, k; λ). (52)

Using (20) and (31), we have

FN(t;−k, λ) =
k∑

m=0

(
k

m

)
1

2m
Fw(t; λ;−m). (53)

By applying the above equation, a relation between the numbers E∗(−k)n (λ) and
W
(−k)
n (λ) is given by the following theorem:

Theorem 19 (cf. [99]) Let n, k ∈ N0. Then we have

E∗(−k)n (λ) =
k∑

m=0

(
k

m

)
W
(−m)
n (λ)

2m
.

Remark 1 For a table including a few values of the numbers W(−k)
n (λ), the reader

may glance at [99].

3 Identities and Derivative Formulas Arising from the
Partial Differential Equations Including the Generating
Functions for the Numbers W

(k)
n (λ) and the Polynomials

W
(k)
n (x;λ)

In [41], by differentiating the generating functions for the numbersW(k)
n (λ) and the

polynomials W(k)
n (x; λ) with respect to their parameters, Kucukoglu and Simsek

presented partial differential equations including these functions. By making use of
these equations, they provided some formulas, relations, and identities including
these numbers and polynomials and their derivatives. By using a collection of
the generating functions for the Apostol-type numbers and polynomials of higher
order and their functional equations, they also investigated the numbers W(k)

n (λ)

and the polynomials W(k)
n (x; λ) and their relationships with other well-known

special numbers and polynomials including the Apostol-Bernoulli numbers and
polynomials of higher order, the Apostol-Euler numbers and polynomials of higher
order, the Frobenius-Euler numbers and polynomials of higher order, the λ-array
polynomials, the λ-Stirling numbers, and the λ-Bernoulli numbers and polynomials.
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Theorem 20 (cf. [41]) Let k ∈ N and n ∈ N. Then we have

n∑

m=0

(
n

m

)(
λ2 − (−1)n−m

)
W(k+1)
m (x; λ) = λxW

(k)
n (x; λ)−W(k)

n+1(x; λ)
k

.

Proof (cf. [41]) Differentiating both sides of (31) and (38) with respect to t yields,
respectively, the following partial differential equations:

∂

∂t
{Fw(t; λ; k)} = −k

(
λet − λ−1e−t

)
Fw(t; λ; k + 1), (54)

and

∂

∂t
{Gw(t, x; λ; k)} = xGw(t, x; λ; k)− k

(
λet − λ−1e−t

)
Gw(t, x; λ; k + 1).

(55)
Combining (38) and (55) yields the following relation:

x

∞∑

n=0

W(k)
n (x; λ)

tn

n! −
∞∑

n=0

W
(k)
n+1(x; λ)

tn

n!

= k
∞∑

n=0

n∑

m=0

(
n

m

)(
λ2 − (−1)n−m

)
W(k+1)
m (x; λ) t

n

n! .

In order to complete proof of the assertion of Theorem 20, now it is time to compare
the coefficients of t

n

n! on both sides of the above equation.

We now give some the special case of Theorem 20. When x = 0 with (41) yields
the following result:

Corollary 1 (cf. [41]) Let k ∈ N and n ∈ N. Then we have

W
(k)
n+1(λ) =

k

λ

n∑

m=0

(
(−1)n−m − λ2

)(n
m

)
W(k+1)
m (λ).

When x = 1 with (41) yields the following result:

Corollary 2 Let k ∈ N and n ∈ N. Then we have

n∑

m=0

(
n

m

) (
1− (−1)n−m

)
W(k+1)
m (1; 1) = W

(k)
n (1; 1)−W(k)

n+1(1; 1)

k
. (56)
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Comparing (56) with (40), we have

n∑

m=0

(
n

m

) (
1− (−1)n−m

) m∑

b=0

(
m

b

)
W
(k+1)
b (1, 1)

= 1

k

n∑

b=0

((
n

b

)
−
(
n+ 1

b

))
W
(k)
b (1, 1)−

1

k
W
(k)
n+1(1; 1).

Substituting the following the well-known the Pascal’s rule (or Pascal’s formula),
which is a combinatorial identity about binomial coefficients, into the above
equation

(
n− 1

b

)
+
(
n− 1

b − 1

)
=

(
n

b

)
,

we get

n∑

m=0

(
n

m

) (
1− (−1)n−m

) m∑

b=0

(
m

b

)
W
(k+1)
b (1, 1)

= 1

k

n∑

b=0

(
n

b − 1

)
W
(k)
b (1, 1)−

1

k
W
(k)
n+1(1; 1),

where
(
n

b

)
−
(
n+ 1

b

)
=

(
n

b − 1

)

and assuming that

(
n

−1

)
= 0.

Comparing the above equation with (40), we obtain

1

4k+1

n∑

m=0

(
n

m

) (
1− (−1)n−m

) m∑

b=0

(
m

b

)
W
(k+1)
b (1, 1)

= 1

k

n∑

b=1

(
n

b − 1

)
W
(k)
b (1, 1)−

1

k
W
(k)
n+1(1; 1).

Comparing the above equation with (33), we arrive at the following identity for the
Euler polynomials of the first kind of higher order:
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Theorem 21 Let k ∈ N and n ∈ N. Then we have

n∑

m=0

(
n

m

) (
1− (−1)n−m

) m∑

b=0

(
m

b

)
E(k+1)
n (k + 1) (57)

= 4

k

n∑

b=1

(
n

b − 1

)
E
(k)
b (k)−

4

k
E
(k)
n+1(k).

By using (57), we easily arrive at the following very interesting formulas:

Corollary 3 Let k ∈ N and n ∈ N. Then we have

k

2

n∑

m=0
n−m odd

(
n

m

) m∑

b=0

(
m

b

)
E(k+1)
n (k + 1) =

n∑

b=1

(
n

b − 1

)
E
(k)
b (k)− E(k)n+1(k),

otherwise

E
(k)
n+1(k) =

n∑

b=1

(
n

b − 1

)
E
(k)
b (k).

Theorem 22 (cf. [41])

W
(k)
n+1(λ) = k

(
W(k)
n (λ)− 2λ

n∑

m=0

(
n

m

)
W(k+1)
m (λ)− 2W(k+1)

n (λ)

)

or, equivalently,

W
(k)
n+1(λ) = kW(k)

n (λ)− 2λW(k+1)
n (1; λ)− 2W(k+1)

n (λ).

Proof (cf. [41]) By differentiating both sides of (31) with respect to t , we also have

∂

∂t
{Fw(t; λ; k)} = kFw(t; λ; k)− 2k

(
λet + 1

)
Fw (t; λ; k + 1) .

Thus, we have

∞∑

n=0

W
(k)
n+1(λ)

tn

n! = k
∞∑

n=0

(
W(k)
n (λ)− 2λ

n∑

m=0

(
n

m

)
W(k+1)
m (λ)− 2W(k+1)

n (λ)

)
tn

n! .

Comparing the coefficients of tn

n! on both sides of the above equation yields the
assertion of Theorem 22.
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Theorem 23 (cf. [41])

∂

∂λ
{W(k)

n (x; λ)} = k
n∑

m=0

(
n

m

)(
λ−2(−1)n−m − 1

)
W(k+1)
m (x; λ).

Proof (cf. [41]) Differentiating both sides of Eq. (38) with respect to λ yields the
following partial differential equation:

∂

∂λ
{Gw(t, x; λ; k)} = −k

(
et − λ−2e−t

)
Gw(t, x; λ; k + 1). (58)

From (58), we have

∂

∂λ

∞∑

n=0

W(k)
n (x; λ)

tn

n! = k
∞∑

n=0

(
λ−2(−1)n − 1

) tn

n!
∞∑

n=0

W(k+1)
n (x; λ) t

n

n! .

Therefore

∞∑

n=0

∂

∂λ
W(k)
n (x; λ)

tn

n! = k
∞∑

n=0

n∑

m=0

(
n

m

)(
λ−2(−1)n−m − 1

)
W(k+1)
m (x; λ) t

n

n! .

Comparing the coefficients of tn

n! on both sides of the above equation yields the
assertion of Theorem 23.

Combining the special case of Theorem 23 when x = 0 with (41) yields the
following corollary:

Corollary 4 (cf. [41])

d

dλ
{W(k)

n (λ)} = k
n∑

m=0

(
n

m

)(
λ−2(−1)n−m − 1

)
W(k+1)
m (λ).

Theorem 24 (cf. [41])

∂

∂x
{W(k)

n+1(x; λ)} = (n+ 1)W(k)
n (x; λ). (59)

Proof (cf. [41]) Differentiating both sides of Eq. (38) with respect to x yields the
following partial differential equation:

∂

∂x
{Gw(t, x; λ; k)} = tGw(t, x; λ; k).



820 Y. Simsek

Thus, we have

∞∑

n=0

∂

∂x
W(k)
n (x; λ)

tn

n! =
∞∑

n=0

nW
(k)
n−1(x; λ)

tn

n! .

Comparing the coefficients of tn

n! on both sides of the above equation yields the
assertion of Theorem 24.

By using (59), the following derivative formulas are obtained:

∂2

∂x2
{W(k)

n+1(x; λ)} = (n+ 1)nW(k)
n−1(x; λ),

∂3

∂x3 {W(k)
n+1(x; λ)} = (n+ 1)n(n− 1)W(k)

n−2(x; λ),

therefore, with help of the mathematical induction method, for d ≥ 1, we get

∂d

∂xd
{W(k)

n+1(x; λ)} = (n+ 1)dW
(k)
n−d+1(x; λ).

Remark 2 (cf. [41]) According to Roman [73, Theorem 2.5.8, p. 27], an Appell
sequence sn(x) satisfy the following Appell identity:

sn(x + y) =
n∑

m=0

(
n

m

)
sm(x)y

n−m.

Hence, by (24), one can infer that the polynomialsW(k)
n (x; λ) are Appell sequences

and it is clear that the following identities hold for the polynomialsW(k)
n (x; λ):

W(k)
n (x + y; λ) =

n∑

m=0

(
n

m

)
W(k)
m (x; λ)yn−m

and

W(k)
n (x + y; λ) =

n∑

m=0

(
n

m

)
W(k)
m (y; λ)xn−m. (60)

Substituting x = y = 1 into (60), we have

W(k)
n (2; λ) =

n∑

m=0

(
n

m

)
W(k)
m (1, λ). (61)
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Substituting x = −1 and y = 1 into (60), we have

W(k)
n (λ) =

n∑

m=0

m∑

b=0

(−1)n−m
(
n

m

)(
m

b

)
W(k)
m (λ).

Substituting x = 1 and y = 0 into (60), we have

W(k)
n (1; λ) =

n∑

m=0

(
n

m

)
W(k)
m (λ). (62)

Theorem 25 (cf. [41])

W(k)
n (x + 1; λ)−W(k)

n (x − 1; λ) =
n∑

m=0

(
1− (−1)n−m

) (n
m

)
W(k)
m (x; λ). (63)

Substituting x = 1 into (63), we have

W(k)
n (2; λ)−W(k)

n (λ) =
n∑

m=0

(
1− (−1)n−m

) (n
m

)
W(k)
m (1; λ).

Combining the above equation with (61) and (62), the following result is obtained:

Corollary 5

W(k)
n (λ) =

n∑

m=0

(
n

m

) m∑

b=0

(
m

b

)
W
(k)
b (λ)

−
n∑

m=0

(
1− (−1)n−m

) (n
m

) m∑

b=0

(
m

b

)
W
(k)
b (λ).

Substituting x = 0 into (63), the following result is obtained:

Corollary 6

W(k)
n (−1; λ) =

n∑

b=0

(
n

b

)
W
(k)
b (λ)−

n∑

m=0

(
1− (−1)n−m

) (n
m

)
W(k)
m (λ).

Corollary 7

W(k)
n (−1; λ) =

n∑

b=0

(
n

b

)
W
(k)
b (λ)−

n∑

m=0
n−m odd

(
n

m

)
W(k)
m (λ).
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From (63), the following corollary is obtained:

Corollary 8 (cf. [41])

W
(k)
n (x + 1; λ)−W(k)

n (x − 1; λ)
2

=
n∑

m=0
n−m odd

(
n

m

)
W(k)
m (x; λ). (64)

4 Relations Among the Numbers W
(k)
n (λ), the Polynomials

W
(k)
n (x;λ) and Other Well-Known Apostol-Type Special

Numbers and Polynomials

In this section, relations among the numbers W(k)
n (λ), the polynomials W(k)

n (x; λ)
and other well-known Apostol-type special numbers and polynomials are given.
Moreover, we shall give just brief sketch of the proofs as the details are similar to
those in [41].

4.1 Relations of the Numbers W
(k)
n (λ) and the Polynomials

W
(k)
n (x;λ) with the Apostol-Bernoulli Numbers and

Polynomials of Higher Order

Here, with the aid of the techniques including generating functions and their func-
tional equations, relations among the Apostol-Bernoulli numbers and polynomials
of higher order, the numbersW(k)

n (λ) and the polynomialsW(k)
n (x; λ) are given.

The relation between the polynomials W(k)
n (x; λ) and the Apostol-Bernoulli

polynomials of higher order is given by the following theorem:

Theorem 26 (cf. [41])

B(2k)
n+2k(x; λ) =

(−1)k (n+ 2k)2k
λk

W(k)
n (x − k;−λ). (65)

Proof (cf. [41]) By combining (38) with (1), the following functional equation is
obtained:

t−2kFB(t, x; λ; 2k) = (−1)k λ−kGw(t, x − k, k;−λ). (66)
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It follows from the above functional equation that

∞∑

n=0

1

(n+ 2k)2k
B(2k)
n+2k(x; λ)

tn

n! = (−1)k λ−k
∞∑

n=0

W(k)
n (x − k;−λ)

tn

n! .

Comparing the coefficients of tn

n! on both sides of the above equation yields the
assertion of Theorem 26.

Combining (39) with (65) yields a relation between the numbersW(k)
n (λ) and the

Apostol-Bernoulli polynomials of higher order by the following corollary:

Corollary 9 (cf. [41])

B(2k)
n+2k(x; λ) =

(
n+ 2k

2k

)
(2k)!
λ

n∑

m=0

(
n

m

)
(67)

×
n−m∑

j=0

(−1)n−m−j+k
(
n−m
j

)
xj kn−m−jW(k)

m (−λ).

Substituting k = 1 into (65) yields the following corollary:

Corollary 10 (cf. [41])

B(2)
n+2(x; λ) = −

(n+ 2) (n+ 1)

λ
Wn(x − 1;−λ). (68)

Replacing x by k and λ by −λ in (65) and using (41) yields the following
corollary:

Corollary 11 (cf. [41])

B(2k)
n+2(k;−λ) =

(n+ 2k)2k
λk

W(k)
n (λ). (69)

4.2 Relations of the Numbers W
(k)
n (λ) and the Polynomials

W
(k)
n (x;λ) with the Apostol-Euler Numbers and

Polynomials of Higher Order

Here, with the aid of the techniques including generating functions and their
functional equations, relations among the Apostol-Euler numbers and polynomials
of higher order, the numbersW(k)

n (λ) and the polynomialsW(k)
n (x; λ), are given.
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The relation between the polynomialsW(k)
n (x; λ) and the Apostol-Euler polyno-

mials of higher order is given by the following theorem:

Theorem 27 (cf. [41])

E(2k)n (x; λ) =
(

4

λ

)k
W(k)
n (x − k; λ). (70)

Using (39) and (70), one has the following result:

Corollary 12 (cf. [41])

E(2k)n (x; λ) =
(

4

λ

)k n∑

m=0

n−m∑

j=0

(−k)n−m−j
(
n

m

)(
n−m
j

)
xjW(k)

m (λ). (71)

Equations (32)–(57) are also obtained by using (70). That is, substituting k = 1
into (70) yields the following corollary:

Corollary 13 (cf. [41])

E(2)n (x; λ) =
4

λ
Wn(x − 1; λ). (72)

Replacing x by k in (70) and using (41) yields the following corollary:

Corollary 14 (cf. [41])

E(2k)n (k; λ) =
(

4

λ

)k
W(k)
n (λ). (73)

4.3 Relations of the Numbers W
(k)
n (λ) and the Polynomials

W
(k)
n (x;λ) with the Apostol-Genocchi Numbers and

Polynomials of Higher Order

Here, with the aid of the techniques including the generating functions and
their functional equations, relations among the Apostol-Genocchi numbers and
polynomials of higher order, the numbers W(k)

n (λ) and the polynomials W(k)
n (x; λ)

are given.
The relation between the polynomials W(k)

n (x; λ) and the Apostol-Genocchi
polynomials of higher order is given by the following theorem:
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Theorem 28 (cf. [41])

G(2k)n+2k(x; λ) = (n+ 2k)2k

(
4

λ

)k
W(k)
n (x − k; λ). (74)

Combining (39) with (74) yields a relation between the numbers W(k)
n (λ) and the

Apostol-Genocchi polynomials of higher order by the following corollary:

Corollary 15 (cf. [41])

G(2k)n+2k(x; λ) = (n+ 2k)2k

(
4

λ

)k n∑

m=0

(
n

m

)
(x − k)n−mW(k)

m (λ). (75)

Putting k = 1 in (74), one has the following corollary:

Corollary 16 (cf. [41])

G(2)n+2(x; λ) =
4 (n+ 2) (n+ 1)

λ
Wn(x − 1; λ). (76)

Replacing x by k in (74) and using (41) yields the following corollary:

Corollary 17 (cf. [41])

G(2k)n+2k(k; λ) = (n+ 2k)2k

(
4

λ

)k
W(k)
n (λ). (77)

4.4 Relations of the Numbers W
(k)
n (λ) and the Polynomials

W
(k)
n (x;λ) with the Frobenius-Euler Numbers and

Polynomials of Higher Order

Here, with the aid of the techniques including generating functions and their func-
tional equations, relations among the Frobenius-Euler numbers and polynomials of
higher order, the numbersW(k)

n (λ) and the polynomialsW(k)
n (x; λ) are given.

The relation between the polynomials W(k)
n (x; λ) and the Frobenius-Euler

polynomials of higher order is given by the following theorem:

Theorem 29 (cf. [41])

H (2k)
n (x|λ−1) = (−1)k (λ− 1)2k

λk
W(k)
n (x − k;−λ). (78)
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Combining (39) with (78) yields a relation between the numbersW(k)
n (λ) and the

Frobenius-Euler polynomials of higher order by the following corollary:

Corollary 18 (cf. [41])

H (2k)
n (x|λ−1) = (−1)k (λ− 1)2k

λk

n∑

m=0

(
n

m

)
(x − k)n−mW(k)

m (−λ). (79)

Substituting k = 1 into (78) yields the following corollary:

Corollary 19 (cf. [41])

H (2)
n (x|λ−1) = − (λ− 1)2

λ
Wn(x − 1;−λ). (80)

Replacing x by k in (78) and using (41) yields the following corollary:

Corollary 20 (cf. [41])

H (2k)
n (k|λ−1) = (−1)k (λ− 1)2k

λk
W(k)
n (−λ). (81)

Putting k = 1 in (81), one has the following relation:

Corollary 21 (cf. [41])

H (2)
n (1|λ−1) = − (λ− 1)2

λ
Wn(−λ). (82)

4.5 Relations of the Numbers W
(k)
n (λ) and the Polynomials

W
(k)
n (x;λ) with the λ-array Polynomials, the λ-Stirling

Numbers, and λ-Bernoulli Numbers and Polynomials

Here, with the aid of techniques including generating functions and their func-
tional equations, relations among the λ-array polynomials, the numbers W(k)

n (λ),
the polynomials W(k)

n (x; λ), λ-array polynomials, the λ-Bernoulli numbers and
polynomials, the λ-Stirling numbers are given.
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Theorem 30 (cf. [41])

n∑

m=0

(
n

m

)
Sm2k (−x; λ)W(k)

n−m(x;−λ) =
(−1)k λkkn

(2k)! . (83)

By (24), substituting x = 0 into (83) yields a relation between the λ-Stirling
numbers and the numbersW(k)

n (λ) by the following corollary:

Corollary 22 (cf. [41])

n∑

m=0

(
n

m

)
S (m, 2k; λ)W(k)

n−m(−λ) =
(−1)k λkkn

(2k)! . (84)

Theorem 31 (cf. [41])

v∑

k=0

n∑

m=0

(−1)k (2k)!
(
n

m

)
Sm2k (−x; λ)W(k)

n−m(x;−λ)

= λ
v+1Bn+1 (λ; v + 1)− Bn+1 (λ)

n+ 1
.

Theorem 32 (cf. [41])

n∑

m=0

(
n

m

)
Sm2k (x; λ)W(k)

n−m(x;−λ) =
(−1)k λk

(2k)! (2x + k)n .

Substituting λ = 1 into the above theorem, we have

n∑

m=0

(
n

m

)
Sm2k (x)W

(k)
n−m(x;−1) = (−1)k

(2k)! (2x + k)
n .

Combining the above equation with (23), one has the following corollary:

Corollary 23 (cf. [41])

n∑

m=0

2k∑

j=0

(−1)j
(
n

m

)(
2k

j

)
(x + j)m W(k)

n−m(x;−1) = (−1)k (2x + k)n .
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5 Application of the Laplace Transform and Mellin
Transformation to the Generating Function of
Apostol-Type Polynomials and λ-array Polynomials

5.1 Application of the Laplace Transform to the Generating
Function for the Apostol-Type Polynomials W

(k)
n (x;λ) and

Array Type Polynomials

Here, by applying the Laplace transform to the generating function for the Apostol-
type polynomialsW(k)

n (x; λ) and array type polynomials, infinite series representa-
tion involving these polynomials are introduced.

By (38) and (22), we have

FA (−t,−x, 2k; λ)Gw(−t,−x, k;−λ) = (−1)k λke−(−2x+k)t

(2k)! .

After multiplying both sides of the above equation by tc with c ∈ N0, the Laplace
transform is applied to the resulting equation, the following result is achieved:

∞∑

n=0

(−1)n

n!
n∑

m=0

(
n

m

)
Sm2k (−x; λ)W(k)

n−m(−x;−λ)
∫ ∞

0
tn+ce−2xt dt

= (−1)k λk

(2k)!
∫ ∞

0
tce−kt dt,

where x > 0, and t > 0. After some elementary calculations, we get the following
theorem:

Theorem 33 Let c ∈ N0 and k ∈ N. Then we have

∞∑

n=0

(−1)n(n+ c)!
n!(2x)n+c+1

n∑

m=0

(
n

m

)
Sm2k (−x; λ)W(k)

n−m(−x;−λ) =
(−1)k λkc!
(2k)!kc+1

.

6 Application of the Mellin Transformation to the
Generating Function for the Apostol-Type Numbers
Wn(λ), the Numbers W

(k)
n (λ), and the Polynomials

W
(k)
n (x;λ)

6.1 Interpolation Function Related to the Families of
Zeta-Type Functions

By applying the Mellin transformation to the generating functions of the Apostol-
type numbers Wn(λ), the numbers W(k)

n (λ), and the polynomials W(k)
n (x; λ),
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we give the families of zeta-type functions interpolating these numbers at the
negative integer n. Moreover, some fundamental properties and applications of these
functions are given.

6.2 Interpolation Function for the Apostol-Type Numbers
Wn(λ)

In [100], we studied on the interpolation function for the Apostol-type numbers
Wn(λ). This function is related to the well-known families of zeta-type functions
such as the Hurwitz-Lerch zeta function, the Hurwitz zeta function, and the Riemann
zeta function.

Let s ∈ C. s = u + iv with u > 1. By applying Mellin transformation to (30),
we have

Γ (s)ζW (s; λ) =
∫ ∞

0

t s−1

λe−t + λ−1et + 2
dt, (85)

(cf. [100]). Assuming that
∣∣λet

∣∣ < 1. After some elementary calculations in Eq. (30)
and in Eq. (85), we have the following interpolation function of the Apostol-type
numbersWn(λ):

Let λ, s ∈ C with |λ| < 1 and  (s) > 1. Then an interpolation function, related
to the families of zeta-type functions, for the Apostol-type numbersWn(λ) is defined
by

ζW (s; λ) =
∞∑

m=0

(−2)mλm+1

m! (m+ 1)s
, (86)

(cf. [100]).
By using (86), we have the following Lerch transcendent type function:

ζW (s; λ) =
∞∑

m=0

(−1)m
λm+1

(m+ 1)s−1 .

That is

ζW (s; λ) = λΦ(−λ, s − 1, 1),

where Φ(λ, s, q) denotes the Hurwitz-Lerch zeta function defined by

Φ(λ, s, b) =
∞∑

m=0

λm

(m+ b)s
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(
b ∈ C \ Z−0 ; s ∈ C when |z| < 1;  (s) > 1 when |z| = 1

)
,

in which

Z
−
0 := Z

− ∪ {0} (Z− := {−1,−2,−3, · · · }).

(cf. [117]). When λ = b = 1, the function Φ(λ, s, b) reduces to the Riemann zeta
function (or the Euler-Riemann zeta function):

ζ (s) =
∞∑

m=1

1

ms

(cf. [117]). The Riemann zeta function is a meromorphic function on C. This
function is also holomorphic on C\ {1}. Notice that s = 1 is a simple pole of
this function. Its residue at s = 1 is 1. The Riemann zeta function ζ (s) converges
when (the real part of s)> 1. This function plays many important roles not only
in theory of analytic number theory but also in physics, in probability theory, in
applied statistics, and in other related areas. This function has the following well-
known results:

For n ∈ N. Then we have

ζ (−n) = −Bn
n

and the well-known formula of Euler:

ζ (2n) = (−1)n+1 (2π)
2n B2n

2(2n)! , (87)

(cf. [117]).
Consequently, the zeta-type function ζW (s; λ) interpolates the polynomials

Wn(λ) for negative integer values of n.
By using the Cauchy residue theorem with aid of Hankel’s contour in Eq. (85),

by the principle of analytic continuation, we have the following result:

ζW (−n; λ) = Wn(λ),

where n is a positive integer (cf. [100]).
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6.3 Interpolation Functions for the Numbers W
(k)
n (λ) and the

Polynomials W
(k)
n (x;λ)

Interpolation function of the numbers Wn(λ), the details of which are discussed
in the previous section, similar to this interpolation function, by making similar
discussions for the numbers W(k)

n (λ) and the polynomials W(k)
n (x; λ), their known

interpolation functions can be presented here.
Recently, in [50], Kucukoglu, Simsek, and Srivastava defined a new family of

Lerch-type zeta functions, which are interpolating a certain class of the Apostol-
type numbers of higher order, W(k)

n (x; λ) and the Apostol-type polynomials of
higher order, W(k)

n (x; λ). They also constructed Lerch-type zeta functions which
interpolate the numbers W(k)

n (λ) and the polynomials W(k)
n (x; λ) at negative

integers. Here, we survey these interpolation functions.
Let λ ∈ C. Assuming that |λ| < 1. Let s ∈ C with s = u+iv. Assuming that u >

1. Thus, the interpolation functions for the numbers W(k)
n (λ) and the polynomials

W
(k)
n (x; λ) are defined, respectively, by

ζw (s, k; λ) =
∞∑

m=0

(−1)m
(
m+ 2k − 1

m

)
λm+k

(m+ k)s , (88)

and

ζw (s, x, k; λ) =
∞∑

m=0

(−1)m
(
m+ 2k − 1

m

)
λm+k

(x +m+ k)s , (89)

(cf. [50]).
Assuming that |λet | < 1. Using (31), we have

∞∑

m=0

(−2k

m

)
λm+ke(m+k)t =

∞∑

n=0

W(k)
n (λ)

tn

n! .

Therefore

∞∑

n=0

∞∑

m=0

(−2k

m

)
λm+k(m+ k)n t

n

n! =
∞∑

n=0

W(k)
n (λ)

tn

n! .

By comparing the coefficients of t
n

n! on both sides of the above equation, we have

W(k)
n (λ) =

∞∑

n=0

(−2k

m

)
λm+k(m+ k)n, (90)
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where |λ| < 1.
By combining the principle of analytic continuation with (90), we have the

following modification of the interpolation function for the numbersW(k)
n (λ):

ζ ∗w (s, k; λ) =
∞∑

n=0

(−2k

m

)
λm+k

(m+ k)s , (91)

where λ ∈ C with |λ| < 1and s ∈ C with s = u+ iv and u > 1.
When replacing s by −n; (n ∈ N) in the Eq. (89) and after that using the

following well-known result:

W(k)
n (x; λ) =

∞∑

m=0

(−1)m
(
m+ 2k − 1

m

)
λm+k (x +m+ k)n , (92)

where |λ| < 1 [cf. [50]], we have the following interpolation function for the
polynomialsW(k)

n (x; λ):

ζw (−n, x, k; λ) = W(k)
n (x; λ), (93)

where n ∈ N (cf. [50, Theorem 5 and Corollary 1]). Putting x = 0 in (93), we have
the following interpolation function for the numbersW(k)

n (λ):

ζw (−n, k; λ) = W(k)
n (λ), (94)

(cf. [50, Theorem 5 and Corollary 1]).
Furthermore,

ζ ∗w (−n, k; λ) = W(k)
n (x; λ),

where n ∈ N.
The other method that can be used to construct the interpolation functions of

the polynomials W(k)
n (x; λ) is the application of the Mellin transformation to the

generating function given by (38). Now, we shall give just a brief sketch as the
details are similar to those in [50] as follows: Let λ ∈ C (|λ| < 1) and s ∈ C. Then,
by applying the Mellin transformation to the generating function given by (38), we
have

ζw (s, x, k; λ) = 1

Γ (s)

∫ ∞

0
t s−1Gw(−t, x, λ; k)dt, (95)

where  (s) > 1; k ∈ N0. By using the principle of analytic continuation together
with the Cauchy Residue Theorem to (95), and making use of the same method as
that used earlier by Srivastava et al. [119, p. 254]), the Eq. (93) is obtained.
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In [50], Kucukoglu et al. remarked that, by setting k = 1, (88) is reduced to (86).
That is, we have

ζW (s; λ) = ζw (s, 1; λ) =
∞∑

m=0

(−1)m
λm+1

(m+ 1)s−1 ,

which is directly related to not only the Lerch transcendent function, but also the
Hurwitz zeta function (see, for details [50, 100, 117]).

Some relations of the functions ζw (s, x, k; λ) and ζw (s, k; λ)were given in [50].
Some of them are listed as follows:

A relation between the function ζw (s, x, k; λ) and the Hurwitz-Lerch zeta
function is given by (cf. [50]):

ζw (s, x, 1; λ) = λΦ(−λ, s − 1, x + 1)− xλΦ(−λ, s, x + 1). (96)

A relation between the function ζw (s, k; λ) and the polylogarithm function is
given by (cf. [50]):

ζw (s, 1;−λ) = −Lis−1(λ),

where Lis(z) stands for the polylogarithmic function defined by

Lis(z) =
∞∑

m=1

zm

ms

( (s) > 1
)

(cf. [116, 117]; see also the references cited therein).
A relation between the function ζw (s, k; λ) and the Dirichlet eta function is given

by (cf. [50]):

ζw (s, 1; 1) = η (s − 1) ,

where η(s) stands for the Dirichlet eta function defined by

η (s) =
(

1− 21−s) ζ(s) =
∞∑

m=1

(−1)m−1

ms

in which ζ(s) denotes the Riemann zeta function which is defined by

ζ(s) =
∞∑

m=1

1

ms

( (s) > 1
)

(cf. [116, 117]; see also the references cited therein).
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It is well-known that the Riemann zeta function can be derived by the Mellin
transformation of the generating function for the Bernoulli numbers with the help
of Hankel transformation. By the aid of the Mellin transformation of the Jacobi’s
theta function, the Riemann zeta function can also be derived as follows:

ϑ(z) =
∑

n∈Z
eπizn

2
,

ζ(s) = π
s
2

2Γ
(
s
2

)
∫ ∞

0
(ϑ(it)− 1)t

s
2−1dt,

where  (s) > 1. The above integral is also known as the representation of the
completed zeta function (cf. [62]).

A relation between the function ζw (s, k; λ) and the Riemann zeta function is
given by (cf. [50]):

ζw (s, 1; 1) =
(

1− 22−s) ζ (s − 1) . (97)

A relation between the function ζw (s, 1; 1) and the Bernoulli numbers is given as
follows:

Substituting s = 2n + 1 (with n ∈ N0) into (97), after some elementary
calculations, combining the last equation with (87), we arrive at the following result:

ζw (2n+ 1, 1; 1) = (−1)n+1 (2π)
2n (1− 21−2n

)
B2n

2(2n)! , (98)

where n ∈ N0. By using the following well-known relation between ζ(2k) and the
Eisenstein series

G(z, 2k) =
∑

(0,0) 	=(m,n)∈Z×Z

1

(mz+ n)2k ,

we have

ζ(2k) = 1

2
G(z, 2k)− (2πi)2k

(2k − 1)!
∞∑

j=1

σ2k−1(j)e
2πijz,

where

σm(j) =
∑

d|j
dm,
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and

G(z, 2k) =
∑

(0,0) 	=(m,n)∈Z×Z

1

(mz+ n)2k ,

2 ≤ k ∈ N and z ∈ H = {z = u+ iv ∈ C : v > 0} (cf. [60, 62, 77, 88, 91]; and the
references cited therein).

Combining the above equation with (87), we have

G(z, 2k)− 2
(2πi)2k

(2k − 1)!
∞∑

j=1

σ2k−1(j)e
2πijz = (−1)k+1 (2π)

2k B2k

(2k)! .

Setting k = 1 and λ = −1 in (89), the following functional equations are
obtained (cf. [50]):

ζw (s, 1;−1) = −ζ(s − 1)
( (s) > 1

)
, (99)

and

ζw (s, x, 1;−1) = −ζ(s − 1, x + 1)+ xζ(s, x + 1)
( (s) > 1

)
, (100)

where ζ(s, a) stands for the Hurwitz zeta function defined by (cf. [117]):

ζ(s, a) =
∞∑

m=1

1

(m+ a)s ;
(
a ∈ C \ Z−0 ;  (s) > 1

)
.

Rational approximations to the zeta function are given as follows:
In [6], for each m ∈ N, Ball defined the following sums which converges locally

uniformly to the Riemann zeta function for  (s) > 0:

Fm(s) =
m∑

v=0

am,v

s + v − 1
Bv

and

Gm(s) =
m∑

v=0

(−1)v
am,v

s + v − 1
,

where

m∏

v=1

(
1− t

v

)
=

m∑

v=0

(−1)vam,vt
v.
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Therefore

Fm(s)

(s − 1)Gm(s)
→ ζ(s)

locally uniformly on the set {s ∈ C :  (s) > 0} with the obvious convention at s =
1 (cf. [6]).

From the above computation, one can easily arrive at the well-known results:

Fm(s) ≈ h1−s
m Γ (s)ζ(s)

and

(s − 1)Gm(s) ≈ h1−s
m Γ (s),

where hm is the partial sum

m∑

v=1

1

v

of the harmonic series or related to the harmonic numbers (cf. [6]).
By using the above method, rational approximations for the function ζw (s, k; λ)

and ζW (s; λ) can be investigated. This problem may be dealt with the readers.

7 Functional Equations and Their Associated Raabe-Type
Multiplication Formula for the Polynomials W

(k)
n (x;λ)

In order to give a classification for the family of special polynomials, Raabe formula
or multiplication formula is used. For instance, in the theory of the normalized
polynomials, this formula is very important because these polynomials satisfy
the multiplication formula. The results, which are given here, can be used in the
some following areas: the theory of multiplication formulas related to the periodic
functions and the normalized polynomials occur in Franel’s formula, in the theory
of the Dedekind sums, and in the theory of the Hardy-Berndt sums, in the theory of
the zeta and L-functions, and in the theory of periodic bounded variation, and others
(cf. [81, 87, 88, 90, 91, 93]; see also the references cited therein).

In [50], by using the Chu-Vandermonde identity and interpolation function for
the polynomials W(k)

n (x; λ), Kucukoglu and Simsek gave another family Raabe-
type multiplication formula for the polynomials W(k)

n (x; λ), which is given as
follows:
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Theorem 34 (cf. [50]) Let

Φ∗i (s, x, k; λ) =
∞∑

n=0

(
2k + n− 1

i

)
(−λ)n

(x + n+ k)s ,

then the following Raabe-type multiplication formula holds true:

ζw (s, x, kd; λ)

=
d−1∑

j=0

(−1)j λj

ds

2kd−1∑

l=0

(
d + j − 1

2kd − 1− l
)

1

l!
l∑

v=0

v∑

i=0

S1 (l, v) S2 (v, i) d
vi!

×λdkΦ∗i
(
s,
x + j
d
, k; λd

)
.

Proof We shall give just a brief sketch of the proof as the details are similar to those
in [50]. Using (89), we have

ζw (s, x, k; λ) =
∞∑

m=0

(−1)m
(
m+ 2k − 1

2k − 1

)
λm+k

(x +m+ k)s
( (s) > 1

)
.

By substituting k = kd and m = nd + j (j = 0, 1, . . . , d − 1; n ∈ N0) into the
above equation, and combining the final equation with the following well-known
Chu-Vandermonde identity:

(
x + y
n

)
=

n∑

j=0

(
x

j

)(
y

n− j
)
,

(cf. [17, 21]), we have

ζw (s, x, kd; λ) =
d−1∑

j=0

(−1)j λj

ds

∞∑

n=0

(−1)nd
2kd−1∑

l=0

(
d (2k + n− 1)

l

)

×
(
d + j − 1

2kd − 1− l
) (

λd
)n+k

(
x+j
d
+ n+ k

)s . (101)

Combining (101) with (29) and (26) yields the assertion of Theorem 34.

Remark 3 Let

c
(k)
l,m =

k∑

p=1

(−1)k−p S1 (k, p) S2 (p, l) S2 (p,m) .
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Then, with the combination of the following identity (cf. [63]):

(
xy

k

)
=

k∑

l,m=1

l!m!
k! c

(k)
l,m

(
x

l

)(
y

m

)

with the Eq. (101), other forms of the Raabe-type multiplication formula given in
Theorem 34 can be obtained (cf. [50]).

Theorem 35 (cf. [50]) Let d be an odd positive integer. Then we have

ζw (s, x, 1; λ) =
d−1∑

j=0

(−λ)j
ds

{
dζw

(
s,
x + j
d
, 1; λd

)
(102)

+ jλdΦ(−λd, s, x + j
d

+ 1)

}
.

It is well-known that the Hurwitz-Lerch zeta function is interpolation function of
the Apostol-Bernoulli numbers because of the fact that

Φ(λ,−m, x) =
∞∑

n=0

λn (n+ x)m = −Bm+1(x; λ)
m+ 1

(103)

(cf. [116, 117]; see also the references cited therein). Thus, the combination of (103)
with Theorem 35 yields the following theorem:

Theorem 36 (cf. [50])

Wm (x; λ)=
d−1∑

j=0

(−λ)j dm
{
dWm

(
x + j
d

; λd
)
− jλ

d

m+1
Bm+1

(
x + j
d

+ 1;−λd
)}
.

8 Some Special Power Series Including the Numbers of the
Lyndon Words and Binomial Coefficients

In [42], by using the methods associated with zeta type functions interpolating the
numbers W(k)

n (λ) and the polynomials W(k)
n (x; λ), Kucukoglu and Simsek gave

formulas for special power series representations involving the numbers counting
Lyndon words and the numbersW(k)

n (λ) and the polynomialsW(k)
n (x; λ).

Now, we continue with recalling some definitions and notations associated with
the Lyndon words as follows:
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Fig. 1 Primitive necklaces, consisting of 5 beads of different 2 colors, each representing 2-ary
Lyndon words of length 5

The k-ary Lyndon words of length n, represented by a primitive necklace
consisting of n beads of different k colors, lexicographically smallest element of
the set derived from all primitive words having length n over the k-letter alphabet.
Here, primitive words means that a word cannot be written as a positive power
of its subword. For instance, let us consider the set of alphabets as {0, 1}. All 2-
ary Lyndon words of length 5 which are derived from this alphabet are given as
follows: {00001, 00011, 00101, 00111, 01011, 01111}. It is clear that the elements
of this finite set are primitive words (cf. [11, 22, 42, 43, 45, 47, 49, 52]; and see also
the references cited therein).

Figure 1 illustrates the primitive necklaces, consisting of 5 beads of different 2
colors, each representing 2-ary Lyndon words of length 5.

For further primitive necklaces representatives of the Lyndon words of various
lengths, the interested readers may glance at the works [11, 43, 45, 47–49, 123]; and
also the references cited therein.

Let μ be the Möbius function (see, for details, [2]). Then, the computation
formula that gives the numbers Lk (n) of k-ary Lyndon words of length n is given
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as follows:

Lk (n) = 1

n

∑

d|n
μ
(n
d

)
kd, (104)

where
∑
d|n

stands for the summation running over all positive divisors of the positive

integer n (cf. [11, 22, 42, 43, 45, 47, 49, 52]).
Let n ∈ N, λ ∈ C with |λ| < 1. In [42], Kucukoglu and Simsek defined the

function G (λ, n, k) arising from a power series involving the numbers Lk(n) and
the binomial coefficients as follows:

G (λ, n, k) =
∞∑

m=0

(−2k

m

)
Lm+k (n) λm+k, (105)

(cf. [42]).

Remark 4 Because of the fact that
(−2k

m

)
= (−1)m

(
m+ 2k − 1

m

)
,

the Eq. (105) can be rewritten as

G (λ, n, k) =
∞∑

m=0

(−1)m
(
m+ 2k − 1

m

)
Lm+k(n)λm+k,

(cf. [42]).

Theorem 37 (cf. [42]) Let n ∈ N. Then we have

G (λ, n, k) = 1

n

∑

d|n
μ
(n
d

)
W
(k)
d (λ). (106)

Putting k = 1 in (106), one has the following corollary:

Corollary 24 (cf. [42])

G (λ, n, 1) =
∞∑

m=0

(−1)m (m+ 1) Lm+1 (n) λ
m+1

or equivalently

G (λ, n, 1) = 1

n

∑

d|n
μ
(n
d

)
Wd(λ). (107)
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When we replace n by a prime number p in (106) gives the following corollary:

Corollary 25 (cf. [42]) Let p be a prime number. Then we have

G (λ, p, k) = W
(k)
p (λ)−W(k)

1 (λ)

p
. (108)

By (44), we modify (108) as follows:

Corollary 26 Let p be a prime number. Then we have

pG (λ, p, k) = (λ+ 1)2k+1W
(k)
p (λ)+ kλk (λ− 1)

(λ+ 1)2k+1 .

Remark 5 For some cases of (108) when k = 1 with p = 2 and p = 3, the
interested readers may refer to [42]. Inspired by Kucukoglu and Simsek [42], we
shall give a case of (108) as follows:

By setting k = 3 and p = 2, we get

G (λ, 2, 3) = W
(3)
2 (λ)−W(3)

1 (λ)

p

= 3λ3
(
2λ2 − 4λ+ 1

)

(λ+ 1)8
.

The polynomials Ln (x,m, k) of degree n are defined by (cf. [42]):

Ln(x,m, k) = 1

n

∑

d|n
μ
(n
d

) d∑

j=0

(
d

j

)
(m+ k)d−j xj . (109)

Replacing n by a prime number p in the Eq. (109) yields

Lp (x,m, k) = (x +m+ k)
p − (x +m+ k)
p

,

(cf. [42, Corollary 3.7, p. 102]).
Let n ∈ N, λ ∈ C with |λ| < 1. In [42], Kucukoglu and Simsek also defined

the function H (x; λ, n, k) arising from a power series involving Ln (x,m, k) as
follows:

H (x; λ, n, k) =
∞∑

m=0

(−2k

m

)
Ln (x,m, k) λ

m+k (110)

(cf. [42, Definition 3.8, p. 103]).
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Theorem 38 (cf. [42]) The following identity holds true:

H (x; λ, n, k) = 1

n

∑

d|n
μ
(n
d

)
W
(k)
d (x; λ). (111)

Remark 6 Notice that putting k = 1 in (111), one has

H (x; λ, n, 1) = 1

n

∑

d|n
μ
(n
d

)
Wd(x; λ).

Putting x = 0 in the above equation, we have

H (0; λ, n, k) = G (λ, n, k) ,

(cf. [42, Remark 3.10, p. 103]).

9 Computational Algorithms Arising from the Recurrence
Formula for the Numbers W

(k)
n (λ)

In order to provide numerical evaluations for the numbers Wn(λ), the numbers
W
(k)
n (λ) and the function G (λ, n, k), Kucukoglu and Simsek [42] gave the following

computational algorithms:
For the computation of the numbers Wn(λ), the equation (36) allows to write

Algorithm 1 as follows (see, for details, [42]):

Algorithm 1 Let n ∈ N0 and λ ∈ C. This algorithm will recursively return the
numbersWn(λ) (cf. [42])

procedure W_APOSTOL_TYPE_NUM(n: nonnegative integer, λ)
Begin
Localvariablem : positive integer
if n = 0 then

return λ/power (λ+ 1, 2)
else

return W_APOSTOL_TYPE_NUM (0, λ)

↪→ ∗sum
(
((1/λ) ∗ power (−1, n−m+ 1)− λ) ∗ Binomial_Coef (n,m)

↪→ ∗ W_APOSTOL_TYPE_NUM(n−m, λ) ,m, 1, n
)

end if
end procedure

In addition to the numerical values of the numbers Wn(λ) obtained after
implementing Algorithm 1 when λ = 1

4 and n ∈ {1, 2, 3, 4, 5, 6} given in [42], by
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inspiring from [42], we shall give further numerical values of the numbers Wn(λ)
for the cases when λ ∈ { 1

5 ,
1
4 ,

1
3 ,

1
2 } and n ∈ {0, 1, 2, 3, 4, 5, 6} as follows:

W0

(
1

5

)
= 0.1389, W0

(
1

4

)
= 0.16, W0

(
1

3

)
= 0.1875, W0

(
1

2

)
= 0.2222,

W1

(
1

5

)
= 0.0926, W1

(
1

4

)
= 0.096, W1

(
1

3

)
= 0.0938, W1

(
1

2

)
= 0.0741,

W2

(
1

5

)
= 0.0231, W2

(
1

4

)
= 0.0064, W2

(
1

3

)
= −0.0234, W2

(
1

5

)
= −0.0741,

W3

(
1

5

)
= −0.0617, W3

(
1

4

)
= −0.0883, W3

(
1

3

)
= −0.1172, W3

(
1

2

)
= −0.1235,

W4

(
1

5

)
= −0.1183, W4

(
1

4

)
= −0.1165, W4

(
1

3

)
= −0.0762, W4

(
1

2

)
= 0.0576,

W5

(
1

5

)
= −0.0360, W5

(
1

4

)
= 0.0591, W5

(
1

3

)
= 0.2256, W5

(
1

2

)
= 0.4033,

W6

(
1

5

)
= 0.3339, W6

(
1

4

)
= 0.5127, W6

(
1

3

)
= 0.6028, W6

(
1

2

)
= 0.1454.

For the computation of the numbers W(k)
n (λ), the recurrence relation given in

(43) allows to write Algorithm 2 as follows (see, for details, [42]):

Algorithm 2 Let n ∈ N0, k ∈ N and λ ∈ C. This algorithm will recursively return
the numbersW(k)

n (λ) with the aid of W_APOSTOL_TYPE_NUM procedure given by the
Algorithm 1 (cf. [42])

procedure HIGHER_W_APOSTOL_TYPE_NUM(n: nonnegative integer, λ, k: positive integer)
Begin
Localvariablem : nonnegative integer
if k = 1 then

return W_APOSTOL_TYPE_NUM(n, λ)
else

return sum
(
Binomial_Coef (n,m)∗HIGHER_W_APOSTOL_TYPE_NUM (m, λ, k − 1)

↪→ *HIGHER_W_APOSTOL_TYPE_NUM(n−m, λ, 1) ,m, 0, n
)

end if
end procedure

In addition to the numerical values of the numbersW(k)
n (λ) provided in [42], after

implementing Algorithm 2, by inspiring from [42], we shall give further numerical
values of the numbers W(k)

n (λ) for the cases when k ∈ {1, 2, 3}, λ ∈ { 1
5 ,

1
4 ,

1
3 ,

1
2 }

and n ∈ {0, 1, 2, 3, 4, 5, 6} as follows:

W
(1)
0

(
1

5

)
= 0.1389, W

(1)
0

(
1

4

)
= 0.16, W

(1)
0

(
1

3

)
= 0.1875, W

(1)
0

(
1

2

)
= 0.2222,
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W
(1)
1

(
1

5

)
= 0.0926, W

(1)
1

(
1

4

)
= 0.096, W

(1)
1

(
1

3

)
= 0.0938, W

(1)
1

(
1

2

)
= 0.0741,

W
(1)
2

(
1

5

)
= 0.0231, W

(1)
2

(
1

4

)
= 0.0064, W

(1)
2

(
1

3

)
= −0.0234, W

(1)
2

(
1

2

)
= −0.0741,

W
(1)
3

(
1

5

)
= −0.0617, W

(1)
3

(
1

4

)
= −0.0883, W

(1)
3

(
1

3

)
= −0.1172, W

(1)
3

(
1

2

)
= −0.1235,

W
(1)
4

(
1

5

)
= −0.1183, W

(1)
4

(
1

4

)
= −0.1165, W

(1)
4

(
1

3

)
= −0.0762, W

(1)
4

(
1

2

)
= 0.0576,

W
(1)
5

(
1

5

)
= −0.0360, W

(1)
5

(
1

4

)
= 0.0591, W

(1)
5

(
1

3

)
= 0.2256, W

(1)
5

(
1

2

)
= 0.4033,

W
(1)
6

(
1

5

)
= 0.3339, W

(1)
6

(
1

4

)
= 0.5127, W

(1)
6

(
1

3

)
= 0.6028, W

(1)
6

(
1

2

)
= 0.1454,

W
(2)
0

(
1

5

)
= 0.0193, W

(2)
0

(
1

4

)
= 0.0256, W

(2)
0

(
1

3

)
= 0.0352, W

(2)
0

(
1

2

)
= 0.0494,

W
(2)
1

(
1

5

)
= 0.0257, W

(2)
1

(
1

4

)
= 0.0307, W

(2)
1

(
1

3

)
= 0.0352, W

(2)
1

(
1

2

)
= 0.0329,

W
(2)
2

(
1

5

)
= 0.0236, W

(2)
2

(
1

4

)
= 0.0205, W

(2)
2

(
1

3

)
= 0.0088, W

(2)
2

(
1

2

)
= −0.0219,

W
(2)
3

(
1

5

)
= −0.0043, W

(2)
3

(
1

4

)
= −0.0246, W

(2)
3

(
1

3

)
= −0.0571, W

(2)
3

(
1

2

)
= −0.0878,

W
(2)
4

(
1

5

)
= −0.0754, W

(2)
4

(
1

4

)
= −0.1049, W

(2)
4

(
1

3

)
= −0.1132, W

(2)
4

(
1

2

)
= −0.0146,

W
(2)
5

(
1

5

)
= −0.1481, W

(2)
5

(
1

4

)
= −0.1042, W

(2)
5

(
1

3

)
= 0.0681, W

(2)
5

(
1

2

)
= 0.4048,

W
(2)
6

(
1

5

)
= 0.0468, W

(2)
6

(
1

4

)
= 0.3658, W

(2)
6

(
1

3

)
= 0.8080, W

(2)
6

(
1

2

)
= 0.5999,

W
(3)
0

(
1

5

)
= 0.0028, W

(3)
0

(
1

4

)
= 0.0041, W

(3)
0

(
1

3

)
= 0.0066, W

(3)
0

(
1

2

)
= 0.011,

W
(3)
1

(
1

5

)
= 0.0054, W

(3)
1

(
1

4

)
= 0.0074, W

(3)
1

(
1

3

)
= 0.0099, W

(3)
1

(
1

2

)
= 0.011,

W
(3)
2

(
1

5

)
= 0.0085, W

(3)
2

(
1

4

)
= 0.0093, W

(3)
2

(
1

3

)
= 0.0074, W

(3)
2

(
1

2

)
= −0.0037,

W
(3)
3

(
1

5

)
= 0.0065, W

(3)
3 (0.25) = 0.0003, W

(3)
3

(
1

3

)
= −0.0148, W

(3)
3

(
1

2

)
= −0.0378,

W
(3)
4

(
1

5

)
= −0.0174, W

(3)
4

(
1

4

)
= −0.0393, W

(3)
4

(
1

3

)
= −0.0630, W

(3)
4

(
1

2

)
= −0.0329,

W
(3)
5

(
1

5

)
= −0.0869, W

(3)
5

(
1

4

)
= −0.1030, W

(3)
5

(
1

3

)
= −0.0426, W

(3)
5

(
1

2

)
= 0.2061,

W
(3)
6

(
1

5

)
= −0.1376, W

(3)
6

(
1

4

)
= 0.0201, W

(3)
6

(
1

3

)
= 0.4222, W

(3)
6

(
1

2

)
= 0.6141.
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For the computation of the functions G (λ, n, k), the formula given in (106)
allows to write Algorithm 3 as follows (see, for details, [42]):

Algorithm 3 Let n ∈ N0, k ∈ N and λ ∈ C with |λ| < 1. This algorithm will return
G (λ, n, k) given by (106) with the help of HIGHER_W_APOSTOL_TYPE_NUM proce-
dure given by the Algorithm 2 and the Möbius function denoted by Mobius_Func

procedure (cf. [42])
procedure G_LYNDON_FUNC(λ, n:nonnegative integer, k: positive integer)

Begin
Local variableG← 0
for all positive divisors d of n do
G← G+Mobius_Func(n/d) ∗HIGHER_W_APOSTOL_TYPE_NUM(d, λ, k)

end for
return G

end procedure

In addition to the numerical values of the function G (λ, n, k) provided in [42],
after implementing Algorithm 3, by inspiring from [42], we shall give further
numerical values of the function G (λ, n, k) for the cases when k ∈ {1, 2, 3},
λ ∈ { 1

5 ,
1
4 ,

1
3 ,

1
2 ,− 1

5 ,− 1
4 ,− 1

3 ,− 1
2 } and n ∈ {2, 3, 5} as follows:

G

(
1

5
, 2, 1

)
= −0.0347, G

(
1

4
, 2, 1

)
= −0.0448, G

(
1

3
, 2, 1

)
= −0.0586, G

(
1

2
, 2, 1

)
= −0.0741,

G

(
1

5
, 3, 1

)
= −0.0514, G

(
1

4
, 3, 1

)
= −0.0614, G

(
1

3
, 3, 1

)
= −0.0703, G

(
1

2
, 3, 1

)
= −0.0658,

G

(
1

5
, 5, 1

)
= −0.0257, G

(
1

4
, 5, 1

)
= −0.0074, G

(
1

3
, 5, 1

)
= 0.0264, G

(
1

2
, 5, 1

)
= 0.0658,

G

(
1

5
, 2, 2

)
= −0.0011, G

(
1

4
, 2, 2

)
= −0.0051, G

(
1

3
, 2, 2

)
= −0.0132, G

(
1

2
, 2, 2

)
= −0.0274,

G

(
1

5
, 3, 2

)
= −0.01, G

(
1

4
, 3, 2

)
= −0.0184, G

(
1

3
, 3, 2

)
= −0.0308, G

(
1

2
, 3, 2

)
= −0.0402,

G

(
1

5
, 5, 2

)
= −0.0348, G

(
1

4
, 5, 2

)
= −0.0270, G

(
1

3
, 5, 2

)
= 0.0066, G

(
1

2
, 5, 2

)
= 0.0744,

G

(
1

5
, 2, 3

)
= 0.002, G

(
1

4
, 2, 3

)
= 0.001, G

(
1

3
, 2, 3

)
= −0.0012, G

(
1

2
, 2, 3

)
= −0.0073,

G

(
1

5
, 3, 3

)
= 0.0004, G

(
1

4
, 3, 3

)
= −0.0024, G

(
1

3
, 3, 3

)
= −0.0082, G

(
1

2
, 3, 3

)
= −0.0163,

G

(
1

5
, 5, 3

)
= −0.0185, G

(
1

4
, 5, 3

)
= −0.0221, G

(
1

3
, 5, 3

)
= −0.0105, G

(
1

2
, 5, 3

)
= 0.039.

G

(
− 1

5
, 2, 1

)
= −0.2148, G

(
− 1

5
, 2, 2

)
= 0.354, G

(
− 1

5
, 2, 3

)
= −0.269,
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G

(
− 1

5
, 3, 1

)
= −0.586, G

(
− 1

5
, 3, 2

)
= 1.2085, G

(
− 1

5
, 3, 3

)
= −1.1673,

G

(
− 1

5
, 5, 1

)
= −5.0537, G

(
− 1

5
, 5, 2

)
= 17.6331, G

(
− 1

5
, 5, 3

)
= −27.7319,

G

(
− 1

4
, 2, 1

)
= −0.4445, G

(
− 1

4
, 2, 2

)
= 0.9438, G

(
− 1

4
, 2, 3

)
= −0.995,

G

(
− 1

4
, 3, 1

)
= −1.3169, G

(
− 1

4
, 3, 2

)
= 3.5848, G

(
− 1

4
, 3, 3

)
= −4.8123,

G

(
− 1

4
, 5, 1

)
= −14.4856, G

(
− 1

4
, 5, 2

)
= 68.5018, G

(
− 1

4
, 5, 3

)
= −149.0504,

G

(
− 1

3
, 2, 1

)
= −1.3125, G

(
− 1

3
, 2, 2

)
= 4.2188, G

(
− 1

3
, 2, 3

)
= −7.2773,

G

(
− 1

3
, 3, 1

)
= −4.5, G

(
− 1

3
, 3, 2

)
= 19.125, G

(
− 1

3
, 3, 3

)
= −42.1875,

G

(
− 1

3
, 5, 1

)
= −74.25, G

(
− 1

3
, 5, 2

)
= 563.625, G

(
− 1

3
, 5, 3

)
= −2007.2813,

G

(
− 1

2
, 2, 1

)
= −10, G

(
− 1

2
, 2, 2

)
= 76, G

(
− 1

2
, 2, 3

)
= −336,

G

(
− 1

2
, 3, 1

)
= −48, G

(
− 1

2
, 3, 2

)
= 504, G

(
− 1

2
, 3, 3

)
= −2880,

G

(
− 1

2
, 5, 1

)
= −1872, G

(
− 1

2
, 5, 2

)
= 36072, G

(
− 1

2
, 5, 3

)
= −331776.

10 Illustrations and Observations on Approximations of the
Functions G (λ, p, k) by the Rational Functions W

(k)
n (λ)

In [42], Kucukoglu and Simsek simulated the numbers Wn(λ) and W(k)
n (λ) and

the functions G (λ, n, k) by their numerical evaluations and plots drawn by imple-
mentation of the computational algorithms of Algorithms 1, 2, and 3 mentioned in
previous section. Furthermore, some illustrations and observations on approxima-
tions of the functions G (λ, p, k) by the rational functions W(k)

n (λ). Notice that this
approach can provide an idea for reduction of the algorithmic complexity of one of
the computational algorithms mentioned above.

Note that the numbers W(k)
n (λ) are rational functions of real variable λ. Thus,

by inspiring from [42], we shall give some further plots of the rational functions
W
(k)
n (λ) in addition to Fig. 5.1 given by Kucukoglu and Simsek [42]. For this

purpose, after implementing Algorithm 1 for the cases when k = 1, 2, 3, n =
0, 1, . . . , 6 and λ ∈ [0, 15], Figs. 2, 3, and 4 are obtained as follows:

The following figures illustrates the effects of k on the shape of the curve of the
rational functionsW(k)

n (λ).
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Fig. 2 Plots of the rational functions W(k)
n (λ) for the cases k = 1, n ∈ {0, 1, . . . , 6} and λ ∈

[0, 15]

Fig. 3 Plots of the rational functions W(k)
n (λ) for the cases k = 2, n ∈ {0, 1, . . . , 6} and λ ∈

[0, 15]

Next, by inspiring from [42], we shall give some further plots of the functions
G (λ, p, 1) in addition to Fig. 5.2 given by Kucukoglu and Simsek [42]. For this
purpose, after implementing Algorithm 3 for the cases when k = 1, 2, 3, p =
2, 3, 5, 7, 11, 13 and λ ∈ [0, 15], Figs. 5, 6, and 7 are obtained as follows:

The following figures illustrates the effects of k on the shape of the curve of the
functions G (λ, p, 1).
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Fig. 4 Plots of the rational functions W(k)
n (λ) for the cases k = 3, n ∈ {0, 1, . . . , 6} and λ ∈

[0, 15]

Fig. 5 Plots of the functions G(λ, p, k) for the cases k = 1, p ∈ {2, 3, 5, 7} and λ ∈ [0, 15]

Next, by inspiring from [42], we shall give some illustrations and observations
on approximations for the functions G (λ, p, k) by the rational functions W(k)

n (λ)

with small error in order to present an approach for the reduction of the algorithmic
complexity of Algorithm 3.
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Fig. 6 Plots of the functions G(λ, p, k) for the cases k = 2, p ∈ {2, 3, 5, 7} and λ ∈ [0, 15]

Fig. 7 Plots of the functions G(λ, p, k) for the cases k = 3, p ∈ {2, 3, 5, 7} and λ ∈ [0, 15]

In order to give approximations for the functions G (λ, p, k) by the rational
functions GApprox (λ, p, k), we need to the following well-known simplest theorem
which was given by Weierstrass in 1885:
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Theorem 39 (cf. [23] (Weierstrass 1885)) Each continuous real functions f on
[a, b] is uniformly approximable by algebraic polynomials: for each ε > 0 there
is some algebraic polynomialsQn(x) of degree ≤ n with

|f (x)−Qn(x)| ≤ ε,

a ≤ x ≤ b.
It is well-known that the functions W(k)

n (λ) are rational functions with variable
λ. Here, assuming that |λ| < 1 and p be a prime number. Setting

GApprox (λ, p, k) = W
(k)
p (λ)

p
.

After some elementary calculations with aid of the Weierstrass approximation
theorem, we easily arrive at the following well-known result:

∣∣G (λ, p, k)− GApprox (λ, p, k)
∣∣ ≤ εp (k) , (112)

such that

εp (k) = k/p,

see, for details, [42].
It is time to give some plots using the above approximations values for εp (k) .

Inspiring from [42], we shall give some further plots in order to illustrate approx-
imations for the functions G (λ, p, k) by the rational functions GApprox (λ, p, k),
with an error less than εp (k) = k/p.

Due to Eq. (112), for sufficiently large p, that is, when p→∞, then εp (k)→ 0.
Consequently, for sufficiently large p, the curves of the functions G (λ, p, k) and
GApprox (λ, p, k) tend to overlap. This indicates that by using the rational functions
GApprox (λ, p, k) instead of G (λ, p, k), Algorithm 3 can be implemented more
efficiently for sufficiently large prime numbers.

For these special cases for k ∈ {1, 2, 3}, p ∈ {2, 3, 5, 7, 11}, and λ ∈ [0, 15],
the following figures (Figs. 8, 9, and 10) are plotted. In these related figures, the red
curves are corresponding to the rational functions GApprox (λ, p, k) while the black
ones are corresponding to the functions G (λ, p, k).

Remark 7 The above evaluation on approximations for the functions arising from
the special power series is given with the inspiration of [42, 48], and it is given
by using similar techniques as ones in [42, 48]. In the special case when k = 1,
the approach applied in this section is reduced to that of [42]. For evaluation on
approximations performed with the Apostol-type numbers, the interested reader
may glance at the aforementioned studies.
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Fig. 8 Approximation of the function G (λ, p, k) by the rational function GApprox (λ, p, k) for the
cases: (a) p = 2, ε2 (1) = 1/2; (b) p = 3, ε3 (1) = 1/3; (c) p = 5, ε5 (1) = 1/5; (d) p = 7,
ε7 (1) = 1/7; (e) p = 11, ε11 (1) = 1/11 with k = 1 and λ ∈ [0, 15]
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Fig. 9 Approximation of the function G (λ, p, k) by the rational function GApprox (λ, p, k) for the
cases: (a) p = 2, ε2 (2) = 1; (b) p = 3, ε3 (2) = 2/3; (c) p = 5, ε5 (2) = 2/5; (d) p = 7,
ε7 (2) = 2/7; (e) p = 11, ε11 (2) = 2/11 with k = 2 and λ ∈ [0, 15]
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Fig. 10 Approximation of the function G (λ, p, k) by the rational function GApprox (λ, p, k) for
the cases: (a) p = 2, ε2 (3) = 3/2; (b) p = 3, ε3 (3) = 1; (c) p = 5, ε5 (3) = 3/5; (d) p = 7,
ε7 (3) = 3/7; (e) p = 11, ε11 (3) = 3/11 with k = 3 and λ ∈ [0, 15]
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11 Further Remarks and Observation on the Bernstein
Polynomials and Their Approximations

The Bernstein polynomials, introduced about 115 years ago as a means to construc-
tively prove the ability of polynomials to approximate any continuous function, to
any desired accuracy, over a prescribed interval. Their slow convergence rate, and
the lack of digital computers to efficiently construct them, caused the Bernstein
polynomials to lie dormant in the theory rather than practice of approximation for
the better part of a century. On the other hand, the Bernstein polynomials found its
true vocation not only in approximation of functions by polynomials, but also in
exploiting computers to interactively design (vector-valued) polynomial functions,
that is parametric curves and surfaces.

We now give the following classes of functions on f ∈ C [0, 1] and approx-
imable by polynomials, which are taken from the work of Devore and Lorentz [23]
involving Problems 5.4–5.6.

If the function f is continuous on [0,∞] and has limit zero for x →+∞, then

lim
x→∞ Sy(x) = f (x)

uniformly for 0 ≤ x <∞ where Sy(x) is defined by

Sy(x) =
∞∑

j=0

(xy)j

j ! f
(
j

y

)
e−yx, (113)

where y > 0.
By combining (28) with (113), we obtain

Sy(λ) = e−y
∞∑

j=0

∞∑

n=0

Bnj (λ)f

(
j

y

)
yn

n! .

Since Bnj (x) = 0 for j > n, then after some elementary calculations with the aid of
the Cauchy product for series, we get

Sy(λ) =
∞∑

n=0

n∑

l=0

(−1)n−l
(
n

l

) l∑

j=0

Blj (λ)f

(
j

y

)
yn

n! .

Observe that

l∑

j=0

Blj (λ)f

(
j

y

)
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associated with the Bernstein polynomials of f for y ∈ N. These well-known
polynomials are defined as follows:

Bl(f, λ) =
l∑

j=0

Blj (λ)f

(
j

l

)
.

If f > 0, Bl(f, λ) is a bounded operator of norm 1 for λ ∈ [0, 1]. It is easy to see
that for f ∈ C [0, 1], Bl(f, λ)→ f , n→∞ (cf. [23]).

On the other hand for f ∈ C [0, 1] with f (0) = f (1) = 0, then a family of
polynomials with integer coefficients

Pl−1(x) =
l−1∑

j=0

Blj (λ)f

(
j

l

)

convergence uniformly to the related function f (x). The function f ∈ C [0, 1] is
approximal by polynomials with integer coefficients if and only if f (0), f (1) ∈ Z

(cf. [23]).
Therefore, there are various applications of the operator Bl(f, λ) and Sy(λ) in

the theory of approximation of operators, in theory of special polynomials and in
the other areas.

Acknowledgments This chapter is dedicated to the soul of my beloved mother.
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60. G.V. Milovanović, Y. Simsek, Dedekind and Hardy type sums and Trigonometric sums

induced by quadrature formulas, in Trigonometric Sums and Their Applications, ed. by A.M.
Raigorodskii, M.Th. Rassias. (Springer, Switzerland, 2020), pp. 183–228

61. L.M. Navas, F.J. Ruiz, J.L. Varona, Asymptotic estimates for Apostol-Bernoulli and Apostol-
Euler polynomials. Math. Comput. 81, 1707–1722 (2012)

62. J. Neukirch, Algebraic Number Theory (Springer, Berlin, 1999)
63. B. Osgood, W. Wu, Falling factorials, generating functions, and conjoint ranking tables. J.

Integer Seq. 12, Article 09.7.8, 1–13 (2009)

https://doi.org/10.1007/s00009-017-1025-4


858 Y. Simsek

64. G. Ozdemir, Y. Simsek, G.V. Milovanovic, Generating functions for new families of special
polynomials and numbers including Apostol-Type and Humbert-Type polynomials. Mediterr.
J. Math. 14(117), 1–17 (2017)

65. H. Ozden, Y. Simsek, Interpolation function of the (h, q)-extension of twisted Euler numbers.
Comput. Math. Appl. 56, 898–908 (2008)

66. H. Ozden, Y. Simsek, Unified representation of the family of L-functions. J. Inequal. Appl.
2013(64), 345–357 (2013)

67. H. Ozden, Y. Simsek, Modification and unification of the Apostol-type numbers and
polynomials and their applications. Appl. Math. Comput. 235, 338–351 (2014)

68. H. Ozden, Y. Simsek, Unified presentation of p-adic L-functions associated with unification
of the special numbers. Acta Math. Hungar. 144(2), 515–529 (2014)

69. H. Ozden, I.N. Cangul, Y. Simsek, Multivariate interpolation functions of higher-order q-
Euler numbers and their applications. Abstr. Appl. Anal. 2008, 1–16 (2008). Article ID
390857

70. H. Ozden, Y. Simsek, H.M. Srivastava, A unified presentation of the generating functions of
the generalized Bernoulli, Euler and Genocchi polynomials. Comput. Math. Appl. 60, 2779–
2787 (2010)

71. D. Ráducanu, H.M. Srivastava, A new class of analytic functions defined by means of a
convolution operator involving the Hurwitz-Lerch zeta function. Integr. Transforms Spec.
Funct. 18, 933–943 (2007)

72. Th.M. Rassias, H.M. Srivastava, Some classes of infinite series associated with the Riemann
zeta and polygamma functions and generalized harmonic numbers. Appl. Math. Comput.
131(2–3), 593–605 (2002)

73. S. Roman, The Umbral Calculus (Academic Press, New York, 1984)
74. C.S. Ryoo, A note on the Frobenius-Euler polynomials. Proc. Jangjeon Math. Soc. 14(4),

495–501 (2011)
75. I.J. Schoenberg, Cardinal Interpolation and Spline Functions IV. The Exponential Euler

Splines, in Linear Operators and Approximation/Lineare Operatoren und Approxima-
tion. International Series of Numerical Mathematics/Internationale Schriftenreihe zur
Numerischen Mathematik/Série Internationale D’Analyse Numérique, ed. by P.L. Butzer, J.P.
Kahane, B. Sz ökefalvi-Nagy, vol. 20 (Birkhäuser, Basel, 1972)

76. Y. Simsek, On q-analogue of the twisted L-functions and q-twisted Bernoulli numbers. J.
Korean Math. Soc. 40(6), 963–975 (2003)

77. Y. Simsek, Generalized Dedekind sums associated with the Abel sum and the Eisenstein and
lambert series. Adv. Stud. Contemp. Math. 9(2), 125–137 (2004)

78. Y. Simsek, On twisted generalized Euler numbers. Bull. Korean Math. Soc. 41(2), 299–306
(2004)

79. Y. Simsek, Theorems on twisted L-function and twisted Bernoulli numbers. Adv. Stud.
Contemp. Math. 11(2), 205–218 (2005)

80. Y. Simsek, q-analogue of the twisted l-series and q-twisted Euler numbers. J. Number Theory
110(2), 267–278 (2005)

81. Y. Simsek, q-Dedekind type sums related to q-zeta function and basic l- series. J. Math. Anal.
Appl. 318(1), 333–351 (2006)

82. Y. Simsek, Twisted (h, q)-Bernoulli numbers and polynomials related to twisted (h, q)-zeta
function and L-function. J. Appl. Math. Anal. Appl. 324(2), 790–804 (2006)

83. Y. Simsek, On p-adic twisted q-L-functions related to generalized twisted Bernoulli numbers.
Russ. J. Math. Phys. 13(3), 340–348 (2006)

84. Y. Simsek, On twisted q-Hurwitz zeta function and q-two-variable L-function. Appl. Math.
Comput. 187(1) (2007), 466–473.

85. Y. Simsek, The behavior of the twisted p-adic (h, q)-L-functions at s = 0. J. Korean Math.
Soc. 44(4), 915–929 (2007)

86. Y. Simsek, Generating functions of the twisted Bernoulli numbers and polynomials associated
with their interpolation functions. Adv. Stud. Contemp. Math. 2(2), 251–278 (2008)



Applications of Apostol-type Numbers and Polynomials. . . 859

87. Y. Simsek, Multiple interpolation functions of higher order (h, q)-Bernoulli numbers. AIP
Conf. Proc. 1048, 486–489 (2008)

88. Y. Simsek, q-Hardy-Berndt type sums associated with q-Genocchi type zeta and q-l-
functions. Nonlinear Anal. 71(12), e377–e395 (2009)

89. Y. Simsek, Twisted p-adic (h,q)-L-functions. Comput. Math. Appl. 59(6), 2097–2110 (2010)
90. Y. Simsek, Complete sum of products of (h; q)-extension of Euler polynomials and numbers.

J. Difference Equ. Appl. 16(11), 1331–1348 (2010)
91. Y. Simsek, Special functions related to Dedekind-type DC-sums and their applications. Russ.

J. Math. Phys. 17(4), 495–508 (2010)
92. Y. Simsek, Identities associated with generalized Stirling type numbers and Eulerian type

polynomials. Math. Comput. Appl. 18(3), 251–263 (2013)
93. Y. Simsek, Generating functions for generalized Stirling type numbers, array type polyno-

mials, Eulerian type polynomials and their applications. Fixed Point Theory Appl. 2013(87),
1–28 (2013)

94. Y. Simsek, Functional equations from generating functions: a novel approach to deriving
identities for the Bernstein basis functions. Fixed Point Theory Appl. 2013(80), 1–13 (2013)

95. Y. Simsek, Families of Twisted Bernoulli numbers, Twisted Bernoulli polynomials, and their
applications, in Analytic Number Theory, Approximation Theory, and Special Functions, ed.
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Spectra of Signed Graphs

Irene Triantafillou

Abstract A signed graph is a graph that has a sign assigned to each of its edges.
Signed graphs were introduced by Harary in 1953 in relation to certain problems
in social psychology, and the matroids of signed graphs were first introduced by
Zaslavsky in 1982. The investigation of the spectra of signed graphs has gained
much attention in recent years by various authors. In this chapter, we focus on some
of the most important results related to the eigenvalues of the adjacency and the
Laplacian matrices of signed graphs.

1 Introduction and Preliminaries

Let G = (V (G),E(G)) be a simple graph with nonempty vertex set V (G) =
{v1, v2, . . . , vn} and edge set E(G). The adjacency matrix, A(G), of a graph G on
n vertices is defined as the n × n symmetric matrix whose entries aij are aij = 1
if vertex vi is adjacent to vertex vj , and aij = 0 otherwise. The degree of a vertex
v, deg(v), is the number of edges incident to v, and the degree matrix of a graph of
order n is the diagonal matrix D(G) = diag(deg(v1), deg(v2), . . . , deg(vn)). The
Laplacian matrix, L(G), of a graph G is the matrix defined as L(G) = D(G) −
A(G). Both the adjacency and the Laplacian matrices are among the most studied
matrices in spectral graph theory as they provide useful information about the graph
(e.g. the number of the graph’s edges, the number of its connected components, etc.)
and have various applications (see e.g. [13, 36]).

A signed graph, Γ = (G, σ), is a pair of an unsigned graphG = (V (G),E(G)),
called the underlying graph and a mapping σ : E(G) → {+1,−1} called the
sign function or signature. The edges to which +1 (respectively, −1) is assigned are
called positive edges (respectively, negative edges) and a signed graph is said to be
all-positive (respectively, all-negative) if all of its edges are positive (respectively,
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negative). The adjacency matrix of a signed graph, A(Γ ) = (aσij ), is the matrix with
entries aσij = σ(ij)aij , where A(G) = (aij ). In an analogous manner, the Laplacian
matrix of a signed graph, Γ = (G, σ), is defined as L(Γ ) = D(G) − A(Γ ). The
spectrum of a signed graph is the set of the eigenvalues of its adjacency matrix
together with their multiplicities. The set of eigenvalues (with their multiplicities)
of the Laplacian matrix is called the Laplacian spectrum. In this chapter, we refer to
the eigenvalues of the adjacency matrix as the eigenvalues of the signed graph and
we refer to the eigenvalues of the Laplacian matrix as the Laplacian eigenvalues.

Signed graphs were first introduced by Harary in [25] to address several problems
in social psychology. Harary proposed the concept of the signed graph as a way
to describe the relation between people (vertices) being friendly (positive edges)
or unfriendly or hostile (negative edges). Since then, there has been an extensive
research on the applications of signed graphs [29, 30, 40, 45]. Zaslavsky introduced
the matroids of signed graphs in [44], in which a matrix-tree theorem for signed
graphs was also given (see also [11]). The spectrum of signed graphs is an area that
has gained much attention recently by many authors [3, 7, 8, 20, 26, 27, 37, 43].

A path on n vertices in a signed graph is called positive (respectively, negative)
if the product of its edge signs (

∏n−1
i=1 σ(ei)) is positive (respectively, negative).

Equivalently, if the number of negative edges in a path is even (odd), then the path
is positive (negative). As the cycle is a closed path, the sign of a cycle in a signed
graph is also defined as the product of its edge signs. We call a cycle balanced or
positive if the number of its negative edges is even, otherwise we call the cycle
unbalanced or negative. A signed graph, Γ , is called balanced if all of its cycles
are positive. In [25], Harary gave a necessary and sufficient condition for a signed
graph Γ to be balanced: there exists a bipartition of the vertex set V into subsets X
and Y (one of which may be empty) such that all edges between the same subsets
are positive and all edges that have one end point in X and one in Y are negative. We
will focus on some of the most well-known results on the balance of signed graphs
in the following sections.

Another important concept in the study of signed graphs is the concept of
switching. Let Γ = (G, σ) be a signed graph and θ : V → {+1,−1} a sign
function. Switching of the signed graph, Γ , by θ means changing the signature σ
to σθ (uv) = θ(u)σ (uv)θ(v) (uv ∈ E(Γ )), while leaving the underlying graph,
G, unchanged. The new signed graph formed is denoted by Γ θ = (G, σ θ ), and
it is called the switching equivalent of Γ . We write Γ θ ∼ Γ . The two signed
graphs Γ θ and Γ share many invariants, such as the set of positive cycles, and
switching of a signed graph also preserves its spectrum [26, 46]. We say that the
n × n matrices, M1 and M2, are signature similar if there exists a diagonal matrix
S = diag(s1, s2, . . . , sn), where si = ±1, such that M2 = SM1S

−1. Note that
S−1 = S and that two signature similar matrices have the same eigenvalues.

In this chapter, we denote the path, cycle, and complete graph with n vertices by
Pn, Cn, and Kn, respectively.
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2 Adjacency Matrix of Signed Graphs

In this section, we focus on some of the most important results regarding the
adjacency matrix, A(Γ ), of a signed graph. As already mentioned, switching does
not change the spectrum of the adjacency matrix [46], a direct result from the
following proposition.

Proposition 1 ([46]) Let Γ1 and Γ2 be two signed graphs of the same order. Γ1 and
Γ2 are switching equivalent if and only if A(Γ2) = S−1A(Γ1)S for some diagonal
matrix S with entries ±1 in its diagonal.

A balanced graph can be switched to an all-positive graph, that is, Γ ∼ (G,+),
[44]. The following results were obtained for balanced graphs in regard to their
adjacency matrices.

Proposition 2 ([44]) Let Γ = (G, σ) be a signed graph. Γ is balanced if and only
if there exists a diagonal matrix, S, with entries ±1 such that SA(Γ )S = A(G).
Proposition 3 ([1]) Let Γ = (G, σ) be a signed graph. Then, Γ is balanced if and
only if Γ and G have the same set of eigenvalues (counting multiplicities).

Another well-known result about the adjacency matrix of a signed graph was
proved in [46].

Theorem 1 ([46]) The (i, j)-entry of Ak(Γ ) is Ak(Γ ) = w+ij (k) − w−ij (k), where
w+ij (k) and w

−
ij (k) denote the number of positive and negative walks (walks with

even and odd negative edges), respectively.

A corollary of the above theorem regarding the trace of the adjacency matrices
A2(Γ ) and A3(Γ ) was given in [7, 46].

Corollary 1 ([7, 46]) If Γ is a signed graph of order n, then

(i) trace(A2(Γ )) = trace(diag(deg(v1), deg(v2), . . . , deg(vn)));
(ii) trace(A3(Γ )) = 6(t+ − t−), where t+ and t− denote the number of positive

and negative triangles, respectively.

The Sachs theorem [12] for calculating the coefficients of the characteristic
polynomial of the adjacency matrix of a graph is written for signed graphs as
follows:

Theorem 2 ([8]) Let Γ be a graph of order n and with characteristic polynomial
φG(x) = |xI − A| = xn + a1x

n−1 + a2x
n−2 + . . .+ an−1x + an. Then,

ai =
∑

U∈Ui

(−1)p(U)2|c(U)|σ(U),
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for j = 1, 2, . . . , n, where Ui consists of K2 edges and cycles (also known as basic
figures) of order i, p(U) denotes the number of components of U , c(U) is the set of
all cycles of U , and σ(U) =∏

C∈c(U) σ (C).

Schwenk’s formulas after the deletion of a vertex and an edge, respectively, can
be written for signed graphs.

Theorem 3 ([7, 23]) Let Γ be a signed graph. For any vertex v ∈ G and edge
e ∈ E, it holds

φ(Γ, x) = xφ(Γ − v, x)−
∑

u∼v
φ(Γ − u− v, x)− 2

∑

C∈Cv
σ (C)φ(Γ − C, x),

φ(Γ, x) = φ(Γ − e, x)− φ(Γ − u− v, x)− 2
∑

C∈Ce
σ (C)φ(Γ − C, x),

where Ca denotes the set of cycles passing through a.

Interlacing also holds for signed graphs.

Theorem 4 Let Γ = (G, σ) be a signed graph on n vertices, and let λ1(Γ ) ≥
λ2(Γ ) ≥ . . . ≥ λn(Γ ) be the eigenvalues of its adjacency matrix in non-increasing
order. Then,

λ1(Γ ) ≥ λ1(Γ − v) ≥ λ2(Γ ) ≥ λ2(Γ − v) ≥ . . . ≥ λn−1(Γ − v) ≥ λn(Γ ),

where Γ − v is the induced subgraph of Γ after vertex v is deleted.

3 Laplacian Spectra of Signed Graphs

The Laplacian matrix L(Γ ) = D(G) − A(Γ ) is a real symmetric matrix that is
positive semi-definite (L(Γ ) = B(Γ )BT (Γ ), where B(Γ ) is the incidence matrix
of the signed graph). It is easy to see that if the signed graph is all-positive, Γ =
(G,+), then its Laplacian matrixL(Γ ) coincides withL(G), and if it is all-negative,
Γ = (G,−), then it coincides with matrix Q(G) = D(G) + A(G), also known
as the signless Laplacian matrix. In this section, we focus on some of the most
important results regarding the eigenvalues of the Laplacian matrix of signed graphs.

The matrix-tree theorem for signed graph was generalized by Chaiken [11] and
Zaslavsky [44], respectively. In [8], Belardo provided a formula for the coefficients
of the Laplacian polynomial of signed graphs based on signed TU-subgraphs. A
signed TU-subgraph of a signed graph Γ is a signed subgraph whose components
are trees or unicyclic graphs that are unbalanced (the unique cycle has sign −1). If
H is a signed TU-subgraph, then H = T1 ∪ T2 ∪ . . . ∪ Tr ∪ U1 ∪ U2 ∪ . . . ∪ Us ,



Spectra of Signed Graphs 865

where Ti’s and Uj ’s denote trees and unbalanced unicyclic graphs, respectively. The
weight of the signed TU-subgraph H is defined as w(H) = 4s

∏r
i=1 |Ti |.

Theorem 5 ([8]) Let Γ be a signed graph. Let ψ(Γ, x) = xn + b1x
n−1 + . . . +

bn−1x + bn be the Laplacian characteristic polynomial of Γ . Then,

bi = (−1)i
∑

H∈Hi

w(H)

for i = 1, 2, . . . , n, where Hi denotes the set of signed TU-subgraphs of Γ
containing i edges.

The following is a well-known result regarding the balance of a signed graph.

Proposition 4 ([27]) Let Γ = (G, σ) be a connected signed graph and L(Γ ) its
Laplacian matrix. Then, Γ is balanced if and only if det (L(Γ )) = 0.

For switching equivalent graphs, the following proposition holds.

Proposition 5 ([27]) Let Γ1 = (G, σ1) and Γ2 = (G, σ2) be signed graph having
the same underlying graph. Then, Γ1 ∼ Γ2 if and only if L(Γ1) and L(Γ2) are
signature similar.

For signed graphs, edge interlacing for the Laplacian spectra is written as follows.

Theorem 6 ([7, 27]) Let μ1(Γ ) ≥ μ2(Γ ) ≥ . . . ≥ μn(Γ ) be the Laplacian
eigenvalues of the signed graph Γ = (G, σ) in non-increasing order and Γ − e
the signed graph obtained by the deletion of edge e from Γ . Then,

μ1(Γ ) ≥ μ1(Γ − e) ≥ μ2(Γ ) ≥ μ2(Γ − e) ≥ . . . ≥ μn(Γ ) ≥ μn(Γ − e).

3.1 Largest Laplacian Eigenvalue

Let μ1(Γ ) ≥ μ2(Γ ) ≥ . . . ≥ μn(Γ ) be the Laplacian eigenvalues of the signed
graph Γ = (G, σ) in non-increasing order, where μ1(Γ ) denotes the largest
Laplacian eigenvalue.

Proposition 6 ([27]) Let Γ = (G, σ) be a connected signed graph on n vertices.
Then, μ1(Γ ) ≤ μ1(−Γ ), where −Γ is an all-negative graph. Equality holds if and
only if (G, σ) ∼ (G,−).

In the last 50 years, there has been an extensive research on the Laplacian matrix
of a graph and several important results relating the eigenvalues of the Laplacian
matrix of an unsigned graph and various graph parameters have been found [5, 18,
31, 35, 36]. In [27], some of these results regarding the largest Laplacian eigenvalue
have been generalized for signed graphs.
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Theorem 7 ([27]) Let Γ = (G, σ) be a signed graph on n vertices. Then,μ1(Γ ) ≤
2(n − 1). Equality holds if and only if Γ is switching equivalent to the complete
graph Kn with all negative edges.

Theorem 8 ([27]) Let Γ = (G, σ) be a connected signed graph. Then,

(i) μ1(Γ ) ≤ max{deg(u)+ deg(v) : uv ∈ E}.
(ii) μ1(Γ ) ≤ max{deg(u)+m(u) : u ∈ V }.
(iii) μ1(Γ ) ≤ max{ (deg(u)(deg(u)+m(u))+deg(v)(deg(v)+m(v))deg(u)+deg(v) : uv ∈ E},
where m(v) is the 2-degree of vertex v, that is, m(v) = 1

deg(v)

∑
uv∈E deg(u).

Equality holds if and only if (G, σ) ∼ (G,−) and G is regular bipartite or
semiregular bipartite.

In the same paper, a lower bound for the largest Laplacian eigenvalue was also
provided.

Theorem 9 ([27]) Let Γ = (G, σ) be a signed graph. Then, μ1(Γ ) ≥
max{deg(v)+ 1, v ∈ V (G)}.

We close this subsection, with a theorem that identifies certain values of the
largest Laplacian eigenvalue that do not exceed 4 with the structure of the signed
graph.

Theorem 10 ([7]) Let Γ = (G, σ) be a connected signed graph. Then, the
following hold:

(i) μ1(Γ ) = 0 if and only if Γ = K1.
(ii) μ1(Γ ) = 2 if and only if Γ = K2.
(iii) μ1(Γ ) = 3 if and only if Γ ∈ {P3, (K3,+)}.
(iv) 3 < μ1(Γ ) < 4 if and only if Γ ∈ {Pn(n ≥ 4), (C2n, σ ), (C2n+1,+)(n ≥ 2)}.
(v) μ1(Γ ) = 4 if and only if Γ ∈ {(C2n,+), (C2n+1, σ )(n ≥ 2),K1,3, (K

+
1,3,+),

(K−4 ,+), (K4,+)},
where σ denotes the unbalanced cycle and K+1,3 and K−4 are obtained from K1,3
and K4 by adding and deleting an edge, respectively.

3.2 Least Laplacian Eigenvalue

The Laplacian matrix is positive semi-definite, and therefore its Laplacian eigen-
values are μ1 ≥ μ2 ≥ . . . ≥ μn ≥ 0. A very well-known result about the least
Laplacian eigenvalue μn is the following lemma.

Lemma 1 Let Γ = (G, σ) be a signed graph. Then, Γ is balanced if and only if
its least Laplacian eigenvalue μn = 0.

The least eigenvalue μn also measures how “far” the signed graph is from being
balanced. Similarly to the algebraic connectivity [18] and the algebraic bipartiteness
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[14] of a graph, the least Laplacian eigenvalue of a signed graph has been called
the algebraic frustration. The frustration number and the frustration index are two
parameters that have been shown to bound μn. The frustration number, ν(Γ ), is
the minimum number of vertices deleted from the graph such that the new formed
graph is balanced, and the frustration index, ε(Γ ), is the minimum number of edges
deleted so that the new graph is balanced. An upper bound for the least Laplacian
eigenvalue in relation to the frustration number of a signed graph was given in the
following theorem.

Theorem 11 ([6]) Let Γ = (G, σ) be a signed graph on n vertices. Then,

μn(Γ ) ≤ ν(Γ ) ≤ ε(Γ ).

The frustration index and the least Laplacian eigenvalue were also linked in [34].

Theorem 12 ([34]) Let Γ = (G, σ) be a signed graph on n vertices, and letD(G)
be the largest vertex degree of G. Then,

n

4
μn(Γ ) ≤ ε(Γ ) ≤ n√

2

√
μn(Γ )(2D(G)− μn(Γ )).

For unbalanced blocks (connected signed graphs without cut vertices), a lower
bound was provided for the least Laplacian eigenvalue of a signed graph in regard
to the length of its longest negative cycle.

Theorem 13 ( [42]) Let Γ = (G, σ) be an unbalanced block on n vertices, and let
lu denote the length of the longest negative cycle of Γ . Then,

μn(Γ ) >
4

lun
.

We close this subsection with an upper bound for μn in relation to the degrees of
two adjacent vertices.

Proposition 7 ([26]) Let u and v be adjacent vertices of a signed graph Γ on n
vertices. Then, μn(Γ ) ≤ 1

2 (deg(u)+ deg(v)− 2).

4 Spectra and Signed Graph Structure

In this section, we focus on some results examining the spectra of a signed graph in
relation to its structure.
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4.1 Paths and Cycles

For certain families of signed graphs, such as the signed paths and cycles, the spectra
of the adjacency and the Laplacian matrix have been calculated.

Theorem 14 ([12]) The eigenvalues of the adjacency matrix of a signed path, Pn,
are given by λj = 2cos πj

n+1 , j = 1, 2, . . . , n.

Theorem 15 ( [19]) The Laplacian eigenvalues of a signed path, Pn, are given by
μj = 2(1+ cos πj

n
), j = 1, 2, . . . , n.

As already mentioned, the signed cycle can be either positive or negative
(balanced or unbalanced). The respective eigenvalues in each case are given in the
following theorem.

Theorem 16 ([28, 41]) The eigenvalues of a signed cycle,Cn, with r negative edges
are given by

λj = 2cos
(2j − [r])π

n
,

where [r] = 0 if r is even and [r] = 1 if r is odd, and j = 1, 2, . . . , n.

From the above theorem, it is easy to calculate the Laplacian eigenvalues of the
singed graph.

Theorem 17 ([19, 36]) The Laplacian eigenvalues of a signed cycle, Cn, with r
negative edges and [r] defined as in the above theorem are given by

μj = 2− 2cos
(2j − [r])π

n
,

where j = 1, 2, . . . , n.

It is well known that the unsigned paths and cycles are determined by their
spectrum. This is not true for all cases of signed paths and cycles as they admit
cospectral non-isomorphic graphs. The signed paths Pn that are determined by their
spectrum were identified in regard to their order n.

Theorem 18 ([2]) The signed path Pn is determined by its spectrum if and only if

(i) n is even and n 	= 8, 14;
(ii) n ≡ 1(mod4) and n /∈ {13, 17, 29};
(iii) n ≡ 3(mod4) and n = 3.

Similar results were obtained for signed cycles.

Proposition 8 ([7]) Let (C2n,+) be a balanced cycle of even order, and let 2n =
2t+1r , where t and r are positive integers and r is odd. If r ≥ 3, then (C2t+1r ,+)
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is L-cospectral with (C2s r ,+) ∪ti=s (C2i r , σ ), where 0 ≤ s ≤ t . If r = 1, then
(C2t+1,+) is L-cospectral with (C2s ,+) ∪ti=s (C2i , σ )), where 2 ≤ s ≤ t .

More results on the spectral characterizations of signed cycles can be found in
[3]. For L-cospectral graphs, the following theorem has been proved.

Theorem 19 ([7]) Let Γ = (G, σ) and Λ = (H, σ ′) be two L-cospectral signed
graphs. Then,

(i) Γ and Λ have the same number of vertices and edges.
(ii) Γ and Λ have the same number of balanced components.
(iii) Γ and Λ have the same Laplacian spectral moments.
(iv) Γ and Λ have the same sum of squares of degrees,

∑n
i=1 dG(vi)

2 =∑n
i=1 dH (vi)

2.
(v) 6(t−Γ − t+Γ )+

∑n
i=1 dG(vi)

3 = 6(t−Λ − t+Λ)+
∑n
i=1 dH (vi)

3,

where t+ and t− denote the number of positive and negative triangles, respectively.

4.2 Signed Unicyclic Graphs

A class of graphs that has been shown to be determined by the spectrum of its
adjacency and its Laplacian matrix is known as the lollipop graph [10, 24]. The
lollipop graph is the graph obtained by appending a cycle to a pendant vertex of
a path. Recently, the next result was obtained for signed lollipop graphs (while the
case for the adjacency matrix remains open).

Theorem 20 ([7]) The signed lollipop graph is determined by the spectrum of its
Laplacian matrix.

Unicyclic graphs have been researched extensively in regard to the relation
between their spectrum and the graph structure [15, 32, 47]. A parameter that has
been considered in these studies is their nullity. The nullity, η(G), of a graph is the
multiplicity of its zero eigenvalue. It is well known that for a graph of order n it
holds that 0 ≤ η(G) ≤ n − 2. Recently, certain results on the nullity and rank of
unsigned graphs have been generalized for the signed case. In [16], it was shown
that a signed unicyclic graph of order n has nullity n−2 and n−3 if and only if it is
the balanced cycle C4 and cycle C3, respectively. Signed unicyclic graphs of nullity
n− 4 and n− 5 were also identified. Other results on the nullity and rank of signed
graphs can be found, for example, in [17] and [33].

4.3 Signed Graphs with Two Distinct Eigenvalues

It is well known that the complete graph Kn is the only graph with two distinct
eigenvalues in its spectrum, but this is not true for signed graphs. The characteriza-
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tion of signed graphs with just two eigenvalues has gained much attention recently
(see [21, 37, 39, 43]). Some interesting results that describe the properties of such
graphs are given in the following theorems.

Theorem 21 ([37]) Let Γ = (G, σ) be a signed graph with exactly two distinct
eigenvalues. Then, its underlying graph G is regular.

Theorem 22 ([21]) Let Γ = (G, σ) be a signed graph, and let G be triangle-free
and a k-regular graph. Γ has two distinct eigenvalues if and only if the number of
positive paths and the number of negative paths of length two between each pair of
non-adjacent vertices are equal, in which case A(Γ )2 = kIn.

Several signed graphs with two distinct eigenvalues have been identified until
now: graphs of order at most 10, graphs with negative eigenvalue greater than 2, or
graphs that belong to the class of signed line graphs [43]. However, the problem of
characterizing all signed graphs with two (or few) eigenvalues remains open.

4.4 Graphs with Symmetric Spectrum

We close this section with a note on signed graphs with symmetric spectrum. A
well-known result is that the spectrum of an unsigned graph is symmetric if and
only if the graph is bipartite. That is not the case for signed graphs. All signed
bipartite graphs have symmetric spectrum, but there are signed graphs that are not
bipartite yet they have a symmetric spectrum. A sign-symmetric graph is a signed
graph Γ = (G, σ) that is switching isomorphic to −Γ = (G,−σ). The following
theorem is known for sign-symmetric graphs.

Theorem 23 If Γ = (G, σ) is a sign-symmetric graph, then Γ has a symmetric
spectrum.

It is well known that the Seidel matrix of a graph G of order n is the adjacency
matrix of a signed complete graph Γ of the same order where the edges of G form
all the negative edges in Γ . In [4], a family of signed complete graphs having a
symmetric spectrum was constructed as follows.

Theorem 24 ([4]) Let n be an even positive integer, and let V1 and V2 be two
disjoint sets of size n2 . LetG be an arbitrary graph with the vertex set V1. Construct
the complement of G, Gc, with the vertex set V2. Assume that Γ = (Kn, σ ) is a
signed complete graph in which E(G) ∪ E(Gc) is the set of negative edges. Then,
the spectrum of Γ is symmetric.

Recently, the problem of finding non-complete connected signed graphs with
symmetric spectrum that are not sign-symmetric was posed in [9]. Several such
families of not sign-symmetric graphs were constructed in [38] and [22]. An
example is the graph given in the figure below.
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Fig. 1 Signed graph Γs

1

2

3

4

5

6

s vertices

Theorem 25 For s ≥ 0, the graph Γs has a symmetric spectrum, but it is not sign-
symmetric (Fig. 1, [22]).
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Abstract A geometric extension is given for the perturbed contraction principle in
Aydi et al. [Abstr. Appl. Anal., Volume 2013, Article ID 312479].
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1 Introduction

Let X be a nonempty set. Call the subset Y of X almost singleton (in short,
asingleton) when y1, y2 ∈ Y *⇒ y1 = y2; and singleton if, in addition, Y is
nonempty; note that in this case Y = {y}, for some y ∈ X.

Take a metric d : X × X → R+ := [0,∞[ over X; the couple (X, d) is then
referred to as a metric space. Furthermore, take a selfmap T ∈ F(X). [Here, for
each couple A,B of nonempty sets, F(A,B) stands for the class of all functions
from A to B; when A = B, we write F(A) in place of F(A,A)]. Denote Fix(T ) =
{x ∈ X; x = T x}; each point of this set is referred to as fixed under T . These points
are to be determined in the context below, comparable with the one in Rus [37, Ch
2, Sect 2.2]:

(pic-0) We say that T is fix-asingleton, when Fix(T ) is an asingleton; likewise, we
say that T is fix-singleton when Fix(T ) is a singleton

(pic-1) We say that x ∈ X is a Picard point (modulo (d; T )) if the iterative
sequence (T nx; n ≥ 0) is d-Cauchy; when this property holds for all
x ∈ X, we say that T is a Picard operator (modulo d)
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(pic-2) We say that x ∈ X is a strong Picard point (modulo (d; T )) if the iterative
sequence (T nx; n ≥ 0) is d-convergent and limn(T nx) ∈ Fix(T ); when
this property holds for all x ∈ X, we say that T is a strong Picard operator
(modulo d).

The basic result in this area (referred to as Banach contraction principle; in short,
(B-cp)) may be stated as follows. Call T : X → X, (d, μ)-contractive (where
μ ≥ 0), provided

(con) d(T x, T y) ≤ μd(x, y), ∀x, y ∈ X.

Theorem 1 Assume that T is (d, μ)-contractive, for some μ ∈ [0, 1[. In addition,
let X be d-complete. Then,

(11-a) T is fix-singleton: Fix(T ) = {z}, for some z ∈ X
(11-b) T is strong Picard (modulo d): limn T nx = z, for each x ∈ X.

This result, obtained in 1922 by Banach [3], found some basic applications to the
operator equations theory. Consequently, a multitude of extensions for (B-cp) were
proposed. The most general ones have the implicit relational form

(s-i-con) (d(T x, T y), d(x, y), d(x, T x), d(y, T y), d(x, T y), d(T x, y)) ∈ M,
for all x, y ∈ X, x∇y,

where M ⊆ R6+ is a (nonempty) subset, and ∇ is a relation over X. In particular,
when M is the zero-section of a certain function F : R6+ → R, the implicit
contractive condition above has the familiar form:

(f-i-con) F(d(T x, T y), d(x, y), d(x, T x), d(y, T y), d(x, T y), d(T x, y)) ≤ 0,
for all x, y ∈ X, x∇y.

For the explicit trivial relation case of it, characterized as

(f-e-con) d(T x, T y) ≤ G(d(x, y), d(x, T x), d(y, T y), d(x, T y), d(T x, y)),
for all x, y ∈ X

(whereG : R5+ → R+ is a function), some consistent lists of such contractions may
be found in the survey papers by Rhoades [35] or Collaco and E Silva [12]; these, in
particular, include a lot of outstanding results in the area due to Boyd and Wong [6],
Reich [34], and Matkowski [25]. Likewise, for the implicit setting above, certain
technical aspects have been considered by Leader [24] and Turinici [41]. On the
other hand, in the case of ∇ being a (partial) order on X, some early results were
obtained in the 1986 papers by Turinici [43, 44]; two decades later, these results have
been rediscovered—at the level of Banach contractive maps—by Ran and Reurings
[33]; see also Nieto and Rodriguez-Lopez [32]. Furthermore, an extension—to the
same framework—of Leader’s contribution was performed in Agarwal et al. [1];
and, since then, the number of such papers increased rapidly. Finally, the case of ∇
being amorphous (i.e., it has no regularity properties at all) has been discussed (via
graph techniques) in Jachymski [19] and (from a general perspective) by Samet and
Turinici [38].

A basic particular case of the implicit contractive property above is
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(2s-i-con) (d(T x, T y), d(x, y)) ∈ M, for all x, y ∈ X, x∇y,

where M ⊆ R2+ is a (nonempty) subset. The classical example in this direction
(again over the trivial relation setting) is due to Meir and Keeler [28]; further
refinements of the method were proposed by Matkowski [27] and Cirić [10]. Having
these precise, it is our aim in the following to propose a perturbation enlargement
of these results, which, in particular, includes the old (metrical) constructions due to
Khan et al. [23] and Berinde [4] as well as the recent ones introduced by Aydi et al.
[2]. Further aspects will be delineated elsewhere.

2 Dependent Choice Principles

Throughout this exposition, the axiomatic system in use is Zermelo-Fraenkel’s
(abbreviated (ZF)), as described by Cohen [11, Ch 2]. The notations and basic facts
to be considered are standard; some important ones are discussed below.

(A) Let X be a nonempty set. By a relation over X, we mean any (nonempty) part
R ⊆ X × X; then, (X,R) will be referred to as a relational structure. Note
that R may be regarded as a mapping between X and exp[X] (= the class of all
subsets in X). In fact, let us simplify the string (x, y) ∈ R as xRy, and put

X(x,R) = {y ∈ X; xRy} (the section of R through x), x ∈ X;

then, the desired mapping representation is (R(x) = X(x,R); x ∈ X). A basic
example of such object is

I = {(x, x); x ∈ X} [the identical relation over X].

Given the relations R, S over X, define their product R ◦S as

(x, z) ∈ R ◦S, if there exists y ∈ X with (x, y) ∈ R, (y, z) ∈ S.

Also, for each relation R in X, denote

R−1 = {(x, y) ∈ X ×X; (y, x) ∈ R} (the inverse of R).

Finally, given the relations R and S on X, let us say that R is coarser than S (or,
equivalently, S is finer than R), provided

R ⊆ S; i.e., xRy implies xSy.

Given a relation R on X, the following properties are to be discussed here:

(P1) R is reflexive: I ⊆ R.
(P2) R is irreflexive: I ∩R = ∅.
(P3) R is transitive: R ◦R ⊆ R.
(P4) R is symmetric: R−1 = R.
(P5) R is antisymmetric: R−1 ∩R ⊆ I.

This yields the classes of relations to be used; the following ones are important for
our developments:
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(C0) R is amorphous (i.e., it has no properties at all).
(C1) R is a quasi-order (reflexive and transitive).
(C2) R is a strict order (irreflexive and transitive).
(C3) R is an equivalence (reflexive, transitive, and symmetric).
(C4) R is a (partial) order (reflexive, transitive, and antisymmetric).
(C5) R is the trivial relation (i.e., R = X ×X).

(B) A basic example of relational structure is to be constructed as below. Let

N = {0, 1, 2, . . .}, where 0 = ∅, 1 = {0}, 2 = {0, 1}, . . . ,
denote the set of natural numbers. Technically speaking, the basic (algebraic
and order) structures over N may be obtained by means of the (immediate)
successor function suc : N → N and the following Peano properties
(deductible in our axiomatic system (ZF)):

(pea-1) (0 ∈ N and) 0 /∈ suc(N).
(pea-2) suc(.) is injective (suc(n) = suc(m) implies n = m).
(pea-3) ifM ⊆ N fulfills [0 ∈ M] and [suc(M) ⊆ M], thenM = N .

(Note that, in the absence of our axiomatic setting, these properties become the
well-known Peano axioms, as described in Halmos [16, Ch 12]; we do not give
details). In fact, starting from these properties, one may construct, in a recurrent
way, an addition (a, b) �→ a + b over N , according to

(∀m ∈ N ): m+ 0 = m; m+ suc(n) = suc(m+ n).
This, in turn, makes possible the introduction of a (partial) order (≤) over N ,
as

(m, n ∈ N ): m ≤ n iff m+ p = n, for some p ∈ N .

Concerning the properties of this structure, the most important one writes

(N,≤) is well ordered: any (nonempty) subset of N has a first element.

Denote, for simplicity,

N(r,≤) = {n ∈ N; r ≤ n} = {r, r + 1, . . . , }, r ≥ 0,
N(r,>) = {n ∈ N; r > n} = {0, . . . , r − 1}, r ≥ 1;

the latter one is referred to as the initial interval (in N ) induced by r . Any set
P with N ∼ P (in the sense, there exists a bijection from N to P ) will be
referred to as effectively denumerable. In addition, given some natural number
n ≥ 1, any (nonempty) set Q with N(n,>) ∼ Q will be said to be n-finite;
when n is generic here, we say that Q is finite. As a combination of these, we
say that the (nonempty) set Y is (at most) denumerable iff it is either effectively
denumerable or finite.

Having these precise, let the notion of sequence (in X) be used to designate
any mapping x : N → X. For simplicity reasons, it will be useful to denote it as
(x(n); n ≥ 0) or (xn; n ≥ 0); moreover, when no confusion can arise, we further
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simplify this notation as (x(n)) or (xn), respectively. Also, any sequence (yn :=
xi(n); n ≥ 0) with

(i(n); n ≥ 0) is strictly ascending (hence, i(n)→∞ as n→∞)

will be referred to as a subsequence of (xn; n ≥ 0). Note that, under such a
convention, the relation “subsequence of” is transitive; i.e.,

(zn)=subsequence of (yn) and (yn)=subsequence of (xn)
imply (zn)=subsequence of (xn).

(C) Remember that an outstanding part of (ZF) is the Axiom of Choice (abbreviated
(AC)); which, in a convenient manner, may be written as

(AC) For each couple (J,X) of nonempty sets and each function
F : J → exp(X), there exists a (selective) function
f : J → X, with f (ν) ∈ F(ν), for each ν ∈ J .

(Here, exp(X) stands for the class of all nonempty elements in exp[X]).
Sometimes, when the ambient set X is endowed with denumerable type
structures, the existence of such a selective function (over J = N ) may be
determined by using a weaker form of (AC), referred to as Dependent Choice
principle (in short, (DC)). Call the relation R over X proper when

(X(x,R) =)R(x) is nonempty, for each x ∈ X.

Then, R is to be viewed as a mapping between X and exp(X), and the couple
(X,R) will be referred to as a proper relational structure. Furthermore, given
a ∈ X, let us say that the sequence (xn; n ≥ 0) in X is (a;R)-iterative,
provided

x0 = a, and xnRxn+1 (i.e., xn+1 ∈ R(xn)), for all n.

Proposition 1 Let the relational structure (X,R) be proper. Then, for each a ∈ X,
there is at least an (a;R)-iterative sequence in X.

This principle—proposed, independently, by Bernays [5] and Tarski [40]—is
deductible from (AC), but not conversely; cf. Wolk [48]. Moreover, by the devel-
opments in Moskhovakis [30, Ch 8] and Schechter [39, Ch 6], the reduced system
(ZF-AC+DC) is comprehensive enough so as to cover the “usual” mathematics; see
also Moore [29, Appendix 2].

Let (Rn; n ≥ 0) be a sequence of relations on X. Given a ∈ X, let us say that
the sequence (xn; n ≥ 0) in X is (a; (Rn; n ≥ 0))-iterative, provided

x0 = a, and xnRnxn+1 (i.e., xn+1 ∈ Rn(xn)), for all n.

The following Diagonal Dependent Choice principle (in short, (DDC)) is available.

Proposition 2 Let (Rn; n ≥ 0) be a sequence of proper relations on X. Then, for
each a ∈ X, there exists at least one (a; (Rn; n ≥ 0))-iterative sequence in X.
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Clearly, (DDC) includes (DC), to which it reduces when (Rn; n ≥ 0) is constant.
The reciprocal of this is also true. In fact, letting the premises of (DDC) hold, put
P = N ×X, and let S be the relation over P introduced as

S(i, x) = {i + 1} ×Ri (x), (i, x) ∈ P .

It will suffice applying (DC) to (P,S) and b := (0, a) ∈ P to get the conclusion in
our statement; we do not give details.

Summing up, (DDC) is provable in (ZF-AC+DC). This is valid as well for its
variant, referred to as Selected Dependent Choice principle (in short, (SDC)).

Proposition 3 Let the map F : N → exp(X) and the relation R over X fulfill

(∀n ∈ N ): R(x) ∩ F(n+ 1) 	= ∅, for all x ∈ F(n).
Then, for each a ∈ F(0), there exists a sequence (x(n); n ≥ 0) in X, with

x(0) = a, x(n) ∈ F(n), x(n+ 1) ∈ R(x(n)), ∀n.
As before, (SDC) *⇒ (DC) (⇐⇒ (DDC)); just take (F (n) = X; n ≥ 0). But,

the reciprocal is also true, in the sense (DDC) *⇒ (SDC). This follows from the
following proposition reasoning below:

Proof of Proposition 3 Let the premises of (SDC) be true. Define a sequence of
relations (Rn; n ≥ 0) over X, as: for each n ≥ 0,

Rn(x) = R(x) ∩ F(n+ 1), if x ∈ F(n),
Rn(x) = {x}, otherwise (x ∈ X \ F(n)).
Clearly, Rn is proper, for all n ≥ 0. So, by (DDC), it follows that for the starting
a ∈ F(0), there exists an (a, (Rn; n ≥ 0))-iterative sequence (x(n); n ≥ 0) in
X. Combining with the very definition above, one derives that conclusion in the
statement is holding.

In particular, when R = X × X, the regularity condition imposed in (SDC)
holds. The corresponding variant of the underlying statement is just (AC(N)) (= the
Denumerable Axiom of Choice). Precisely, we have the following statement.

Proposition 4 Let F : N → exp(X) be a function. Then, for each a ∈ F(0), there
exists a function f : N → X with f (0) = a and f (n) ∈ F(n), ∀n ∈ N .

As a consequence of the above facts, (DC) *⇒ (AC(N)) in (ZF-AC). A direct
verification of this is obtainable by takingQ = N ×X and introducing the relation
S over it, according to

S(n, x) = {n+ 1} × F(n+ 1), n ∈ N , x ∈ X;

we do not give details. The reciprocal of the written inclusion is not true; see, for
instance, Moskhovakis [30, Ch 8, Sect 8.25].
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3 Conv-Cauchy Structures

Let X be a nonempty set, and S(X) stands for the class of all sequences (xn) in X.
By a (sequential) convergence structure on X, we mean any part C of S(X) × X,
with the properties (cf. Kasahara [22]):

(conv-1) C is hereditary:
((xn); x) ∈ C *⇒ ((yn); x) ∈ C, for each subsequence (yn) of (xn)

(conv-2) C is reflexive: for each u ∈ X,
the constant sequence (xn = u; n ≥ 0) fulfills ((xn); u) ∈ C.

For each sequence (xn) in S(X) and each x ∈ X, we write ((xn); x) ∈ C as xn
C−→

x; this reads

(xn), C-converges to x (also referred to as: x is the C-limit of (xn)).

The set of all such x is denoted C− limn(xn); when it is nonempty, we say that (xn)
is C-convergent. The following condition is to be optionally considered here:

(conv-3) C is separated:
C− limn(xn) is an asingleton, for each sequence (xn);

when it holds, xn
C−→ z will also be written as C− limn(xn) = z.

Furthermore, by a (sequential) Cauchy structure on X, we shall mean any part
H of S(X) with (cf. Turinici [45]):

(Cauchy-1) H is hereditary:
(xn) ∈ H *⇒ (yn) ∈ H, for each subsequence (yn) of (xn).

(Cauchy-2) H is reflexive: for each u ∈ X,
the constant sequence (xn = u; n ≥ 0) fulfills (xn) ∈ H.

Each element of H will be referred to as a H-Cauchy sequence in X.
Finally, given the couple (C,H) as before, we shall say that it is a conv-Cauchy

structure on X. The optional conditions about the conv-Cauchy structure (C,H) to
be considered here are

(CC-1) (C,H) is regular: each C-convergent sequence is H-Cauchy.
(CC-2) (C,H) is complete: each H-Cauchy sequence is C-convergent.

A standard way of introducing such structures is the (pseudo)metrical one. By a
pseudometric over X, we shall mean any map d : X × X → R+. Given such an
object, the following properties are to be optionally used:

(ref) d is reflexive: x = y implies d(x, y) = 0.
(tri) d is triangular: d(x, z) ≤ d(x, y)+ d(y, z), ∀x, y, z ∈ X.
(suf) d is sufficient: d(x, y) = 0 implies x = y.
(sym) d is symmetric: d(x, y) = d(y, x), ∀x, y ∈ X.

This yields the classes of pseudometrics to be used:

(p1) d is r-pseudometric (reflexive).
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(p2) d is t-pseudometric (triangular).
(p3) d is rs-pseudometric (reflexive and sufficient).
(p4) d is almost semimetric (reflexive and triangular).
(p5) d is semimetric (reflexive, triangular, and symmetric).
(p6) d is almost metric [or quasi-metric] (reflexive, triangular, and sufficient).
(p7) d is metric (reflexive, triangular, sufficient, and symmetric).

Let in the following d(., .) be a reflexive pseudometric (in short, r-pseudometric) on
X; in this case, (X, d) is called an r-pseudometric space.

Given the sequence (xn) in X and the point x ∈ X, we say that (xn) d-converges

to x (written as xn
d−→ x) provided d(xn, x)→ 0 as n→∞; i.e.,

∀ε > 0, ∃i = i(ε): i ≤ n *⇒ d(xn, x) < ε.

By this very definition, we have the hereditary and reflexive properties:

(d-conv-1) (
d−→) is hereditary:

xn
d−→ x implies yn

d−→ x, for each subsequence (yn) of (xn).

(d-conv-2) (
d−→) is reflexive: for each u ∈ X,

the constant sequence (xn = u; n ≥ 0) fulfills xn
d−→ u.

As a consequence, (
d−→) is a sequential convergence on X. The set of all such

limit points of (xn) will be denoted limn(xn); if it is nonempty, then (xn) is called

d-convergent. Finally, note that (
d−→) is not separated, in general. However, this

property holds, provided (in addition)

(sym) d is triangular, sufficient, and symmetric (hence, a metric on X).

The following Lipschitz property of certain pseudometrics with respect to their
variables will be useful in applications.

Proposition 5 Suppose that d(., .) is a semimetric. Then,

(31-1) the mapping (x, y) �→ d(x, y) is d-Lipschitz, in the sense

|d(x, y)− d(u, v)| ≤ d(x, u)+ d(y, v), for all (x, y), (u, v) ∈ X ×X
(31-2) d(., .) is (sequentially) continuous in its variables:

xn
d−→ x and yn

d−→ y imply d(xn, yn)→ d(x, y).

Proof

(i) By the semimetric properties, we have for each (x, y) and (u, v) in X ×X
d(x, y) ≤ d(x, u)+ d(u, v)+ d(v, y);

wherefrom d(x, y)− d(u, v) ≤ d(x, u)+ d(y, v);
d(u, v) ≤ d(u, x)+ d(x, y)+ d(y, v);
wherefrom d(u, v)− d(x, y) ≤ d(x, u)+ d(y, v),

and, from this, all is clear.
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(ii) Evident, by the preceding stage.

Furthermore, call the sequence (xn) (in X) d-Cauchy when d(xm, xn) → 0 as
m, n→∞, m < n; i.e.,

∀ε > 0, ∃j = j (ε): j ≤ m < n *⇒ d(xm, xn) < ε;

the class of all these will be denoted as Cauchy(d). As before, we have the
hereditary and reflexive properties

(d-Cauchy-1) Cauchy(d) is hereditary: (xn) is d-Cauchy
implies (yn) is d-Cauchy, for each subsequence (yn) of (xn).

(d-Cauchy-2) Cauchy(d) is reflexive: for each u ∈ X,
the constant sequence (xn = u; n ≥ 0) is d-Cauchy;

hence, Cauchy(d) is a Cauchy structure on X.

Finally, the couple ((
d−→), Cauchy(d)) will be referred to as a conv-Cauchy

structure on X generated by d. Note that, by the imposed (upon d) conditions,
this conv-Cauchy structure is not (regular or complete), in general. But, when d
is sufficient, triangular, and symmetric (hence, a metric), the regularity condition
holds.

Concerning this combined structure over the ambient r-pseudometric space
(X, d), the following question is of interest. Remember that, by definition, any
subsequence of a d-convergent sequence is also d-convergent, with the same limit.
Suppose now that a certain subsequence of a sequence is d-convergent; then, we
may ask of to what extent it is true that the sequence itself is d-convergent (with the
same limit). A positive answer to this may be given if d is, in addition, triangular
(hence, an almost semimetric).

Proposition 6 Given the almost semimetric space (X, d), let the d-Cauchy
sequence (xn; n ≥ 0) in X and the point v ∈ X be taken according to

yn
d−→ v, for some subsequence (yn = xk(n); n ≥ 0) of (xn; n ≥ 0).

Then, necessarily, xn
d−→ v as n→∞.

Proof Let ε > 0 be arbitrary fixed. From the d-Cauchy property, there exists some
rank m(ε) ≥ 0, such that

m(ε) ≤ i ≤ j *⇒ d(xi, xj ) < ε/2.

On the other hand, by the subsequential convergence property, we have that, for the
same ε > 0, there exists some n(ε) ≥ m(ε), such that

n(ε) ≤ n *⇒ d(yn, v) = d(xk(n), v) < ε/2.

Finally, as (k(n); n ≥ 0) is strictly ascending, we must have

k(n) ≥ n, for all n ≥ 0; hence, k(n) ≥ n(ε), for all n ≥ n(ε).
Combining these, we have, for each n ≥ n(ε)(≥ m(ε)),
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d(xn, v) ≤ d(xn, xk(n))+ d(xk(n), v) < ε/2+ ε/2 = ε,
and the conclusion follows.

Returning to the general case, some (weaker than Cauchy) properties of
sequences in our pseudometric structure may be introduced as below. Call the
sequence (xn) in X

(d-asy) d-asymptotic, if limn d(xn, xn+1) = 0,
(d-to-asy) d-total-asymptotic, if limn d(xn, xn+i ) = 0, ∀i ∈ N(1,≤).
Clearly, for each sequence (xn) in X

d-Cauchy *⇒ d-total-asymptotic *⇒ d-asymptotic;

but, the converse is not in general true.
An appropriate setting to discuss the converse relationship between these

asymptotic concepts is the triangular one. In this direction, we have the following
statement:

Proposition 7 Supposed that d is an almost semimetric on X. Then, for each
sequence (xn) in X,

(xn) is d-asymptotic iff (xn) is d-total-asymptotic.

Proof Clearly, it will suffice verifying the left to right inclusion. Let i ∈ N(1,≤)
be arbitrary fixed. By the triangular inequality,

(d(xn, xn+i ) ≤ ρn + . . .+ ρn+i−1, ∀n), where (ρn := d(xn, xn+1); n ≥ 0).

By the imposed hypothesis, the right member of this relation tends to zero as n→
∞; wherefrom, (xn) is d-total-asymptotic.

We close this section with a few remarks involving convergent real sequences.
For each sequence (rn) in R and each element r ∈ R, denote

rn→ r+ (resp., rn→ r−), when rn→ r and [rn > r (resp., rn < r), ∀n].

Proposition 8 Let the sequence (rn; n ≥ 0) in R and the number ε ∈ R be such
that rn → ε+. Then, there exists a subsequence (r∗n := ri(n); n ≥ 0) of (rn; n ≥ 0),
with

(r∗n ; n ≥ 0) is strictly descending and r∗n → ε+.
Proof Put i(0) = 0. As ε < ri(0) and rn→ ε+, we have that

A(i(0)) := {n > i(0); rn < ri(0)} is not empty;
hence, i(1) := min(A(i(0))) is an element of it, and ri(1) < ri(0).

Likewise, as ε < ri(1) and rn→ ε+, we have that

A(i(1)) := {n > i(1); rn < ri(1)} is not empty;
hence, i(2) := min(A(i(1))) is an element of it, and ri(2) < ri(1).
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This procedure may continue indefinitely and yields (without any choice technique)
a strictly ascending rank sequence (i(n); n ≥ 0) (hence, i(n)→∞ as n→∞) for
which the attached subsequence (r∗n := ri(n); n ≥ 0) of (rn; n ≥ 0) fulfills

r∗n+1 < r
∗
n , for all n; hence, (r∗n) is (strictly) descending.

On the other hand, by this very subsequence property,

(r∗n > ε, ∀n), and limn r∗n = limn rn = ε.
Putting these together, we get the desired fact.

A bidimensional counterpart of these facts may be given along the lines below.
Let π(t, s) (where t, s ∈ R) be a logical property involving pairs or real numbers.
Given the couple of real sequences (tn; n ≥ 0) and (sn; n ≥ 0), call the
subsequences (t∗n ; n ≥ 0) of (tn) and (s∗n; n ≥ 0) of (sn), compatible when

(t∗n = ti(n)n ≥ 0), and (s∗n = si(n); n ≥ 0),
for the same strictly ascending rank sequence (i(n); n ≥ 0).

Proposition 9 Let the couple of real sequences (tn; n ≥ 0), (sn; n ≥ 0) and the
pair of real numbers (a, b) be such that

tn→ a+, sn→ b+ as n→∞ and (π(tn, sn) is true, ∀n).
There exists then a couple of subsequences (t∗n ; n ≥ 0) of (tn; n ≥ 0) and (s∗n; n ≥
0) of (sn; n ≥ 0), respectively, with

(35-1) (t∗n ; n ≥ 0) and (s∗n; n ≥ 0) are strictly descending and compatible.
(35-2) t∗n → a+, s∗n → b+, as n→∞, and π(t∗n , s∗n) holds, for all n.

Proof By the preceding statement, (tn) admits a subsequence (Tn := ti(n); n ≥ 0),
with the properties

(Tn; n ≥ 0) is strictly descending, and (Tn→ a+, as n→∞).

Denote (Sn := si(n); n ≥ 0); clearly,

(Sn; n ≥ 0) is a subsequence of (sn; n ≥ 0) with Sn→ b+ as n→∞.

Moreover, by this very construction, π(Tn, Sn) holds, for all n. Again by the
statement above, there exists a subsequence (s∗n := Sj(n) = si(j (n)); n ≥ 0) of
(Sn; n ≥ 0) (hence, of (sn; n ≥ 0) as well), with

(s∗n; n ≥ 0) is strictly descending, and (s∗n → b+, as n→∞).

Denote further (t∗n := Tj(n) = ti(j (n)); n ≥ 0); this is a subsequence of (Tn; n ≥ 0)
(hence, of (tn; n ≥ 0) as well), with

(t∗n ; n ≥ 0) is strictly descending, and (t∗n → a+, as n→∞);

Finally, by this very construction (and a previous relation), π(t∗n , s∗n) holds, for all
n. Summing up, the couple of subsequences (t∗n ; n ≥ 0) and (s∗n; n ≥ 0) have all
needed properties, and the conclusion follows.
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Note that further extensions of this result are possible, in the framework of quasi-
metric spaces, taken as in Hitzler [17, Ch 1, Sect 1.2]; we shall discuss them in a
separate paper.

4 Meir–Keeler Relations

Let Ω ⊆ R0+ × R0+ be a relation over R0+; as a rule, we write (t, s) ∈ Ω as tΩs.
The starting global property to be considered upon this object is

(u-diag) Ω is upper diagonal: tΩs implies t < s.

Denote the class of all upper diagonal relations as udiag(R0+). Our exposition below
is essentially related to this basic condition.

To begin with, let us consider the global properties

(1-decr) Ω is first variable decreasing:
t1, t2, s ∈ R0+, t1 ≥ t2, and t1Ωs imply t2Ωs.

(2-incr) Ω is second variable increasing:
t, s1, s2 ∈ R0+, s1 ≤ s2, and tΩs1 imply tΩs2.

Then, define the sequential condition below (for upper diagonal relations):

(M-ad) Ω in Matkowski admissible:
(tn; n ≥ 0) in R0+ and (tn+1Ωtn, ∀n) imply limn tn = 0.

To discuss it, the following geometric conditions over udiag(R0+) are in effect:

(g-mk) Ω has the geometric Meir–Keeler property:
∀ε > 0, ∃δ > 0: tΩs, ε < s < ε + δ *⇒ t ≤ ε.

(g-bila-s) Ω is geometric bilateral separable:
∀β > 0, ∃γ ∈]0, β[, ∀(t, s): t, s ∈]β − γ, β + γ [ *⇒ (t, s) /∈ Ω .

(g-left-s) Ω is geometric left separable:
∀β > 0, ∃γ ∈]0, β[, ∀t : t ∈]β − γ, β[ *⇒ (t, β) /∈ Ω .

The former of these local conditions—related to the developments in Meir and
Keeler [28]—is strongly related to the Matkowski admissible property we just
introduced. Precisely, the following basic fact is available.

Theorem 2 Under these conditions, one has in (ZF-AC+DC):

(41-a) (for each Ω ∈ udiag(R0+)),
Ω is geometric Meir–Keeler implies Ω is Matkowski admissible.

(41-b) (for each first variable decreasing Ω ∈ udiag(R0+)),
Ω is Matkowski admissible implies Ω is geometric Meir–Keeler.

Hence, summing up,

(41-c) (for each first variable decreasing Ω ∈ udiag(R0+)),
Ω is geometric Meir–Keeler iff Ω is Matkowski admissible.
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Proof Three basic stages must be passed.

(i) Suppose that Ω ∈ udiag(R0+) is geometric Meir–Keeler; we have to establish
thatΩ is Matkowski admissible. Let (tn; n ≥ 0) be a sequence in R0+, fulfilling
(tn+1Ωtn, for all n). By the upper diagonal property, we get

(tn+1 < tn, for all n); i.e., (tn) is strictly descending.

As a consequence, τ := limn tn exists in R+, with, in addition, tn > τ , ∀n.
Assume by contradiction that τ > 0, and let σ > 0 be the number assured by
the geometric Meir–Keeler property. By definition, there exists an index n(σ),
with

(tn+1Ωtn and) τ < tn < τ + σ , for all n ≥ n(σ).
This, by the quoted property, gives (for the same ranks)

τ < tn+1 ≤ τ , a contradiction.

Hence, necessarily, τ = 0, and the conclusion follows.
(ii) Suppose that the first variable decreasing Ω ∈ udiag(R0+) is Matkowski

admissible; we have to establish that Ω is geometric Meir–Keeler. Suppose
by contradiction that this is not true; that is (for some ε > 0)

H(δ) := {(t, s) ∈ Ω; ε < s < ε + δ, t > ε} is nonempty, for each δ > 0.

Taking a zero converging sequence (δn; n ≥ 0) in R0+, we get by the
Denumerable Axiom of Choice (AC(N)) [deductible, as precise, in (ZF-
AC+DC)], a sequence ((tn, sn); n ≥ 0) in R0+ × R0+, so as

(∀n): (tn, sn) is an element ofH(δn); or, equivalently (by definition and upper
diagonal property) (tnΩsn and) ε < tn < sn < ε + δn.

Note that, as a direct consequence,

(tnΩsn, for all n), and tn→ ε+, sn→ ε+, as n→∞.

Put i(0) = 0. As ε < ti(0) and sn→ ε+ as n→∞, we have that

A(i(0)) := {n > i(0); sn < ti(0)} is not empty;
hence, i(1) := min(A(i(0))) is an element of it, and si(1) < ti(0);
wherefrom, si(1)Ωsi(0) (as Ω is first variable decreasing).

Likewise, as ε < ti(1) and sn→ ε+ as n→∞, we have that

A(i(1)) := {n > i(1); sn < ti(1)} is not empty;
hence, i(2) := min(A(i(1))) is an element of it, and si(2) < ti(1);
wherefrom, si(2)Ωsi(1) (as Ω is first variable decreasing).

This procedure may continue indefinitely and yields (without any choice
technique) a strictly ascending rank sequence (i(n); n ≥ 0) in N for which
the attached subsequence (rn := si(n); n ≥ 0) of (sn; n ≥ 0) fulfills
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rn+1Ωrn, for all n; whence rn→ 0 (as Ω is Matkowski admissible).

On the other hand, by our subsequence property,

(rn > ε, ∀n) and limn rn = limn sn = ε; that is, rn→ ε+.

The obtained relation is in contradiction with the previous one. Hence, the
working condition cannot be true, and we are done.

(iii) Evident, by the above.

In the following, equivalent (sequential) conditions are given for the properties
appearing in our (geometric) concepts above. Given the upper diagonal relation Ω
over R0+, let us introduce the (asymptotic type) conventions

(a-mk) Ω is asymptotic Meir–Keeler:
there are no strictly descending sequences (tn) and (sn) in R0+ and no elements ε
in R0+, with ((tn, sn) ∈ Ω , ∀n) and (tn→ ε+, sn→ ε+).

(a-bila-s) Ω is asymptotic bilateral separable:
there are no sequences (tn; n ≥ 0) and (sn; n ≥ 0) in R0+ and no elements
β ∈ R0+, with ((tn, sn) ∈ Ω , ∀n) and (tn→ β, sn→ β).

(a-left-s) Ω is asymptotic left separable:
there are no strictly ascending sequences (tn) in R0+
and no elements β in R0+, with ((tn, β) ∈ Ω , ∀n) and (tn→ β−).

Remark 1 The relationships between our first and second concepts are described as

(for each upper diagonal relation Ω ⊆ R0+ × R0+)
Ω is asymptotic bilateral separable implies Ω is asymptotic Meir–Keeler.

In fact, let the upper diagonal relation Ω ⊆ R0+ × R0+ be asymptotic bilateral
separable, and assume by contradiction that Ω is not asymptotic Meir–Keeler:

there exist strictly descending sequences (tn) and (sn) in R0+ and elements ε in R0+,
with ((tn, sn) ∈ Ω , ∀n) and (tn→ ε+, sn→ ε+); hence (tn→ ε, sn→ ε).

This tells us that Ω is not asymptotic bilateral separable; in contradiction with the
working hypothesis; and the assertion follows.

Passing to the relationships between the asymptotic concepts and their geometric
counterparts, we have the result below.

Theorem 3 The following generic relationships are valid (for an arbitrary upper
diagonal relation Ω ⊆ R0+ × R0+), in the reduced system (ZF-AC+DC):

(42-a) geometric Meir–Keeler is equivalent with asymptotic Meir-Keeler.
(42-b) geometric bilateral separable is equivalent with

asymptotic bilateral separable.
(42-c) geometric left separable is equivalent with asymptotic left separable.
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Proof There are three steps to be passed.

(i-1) Let Ω ∈ udiag(R0+) be a geometric Meir–Keeler relation; but—contrary to
the conclusion—assume that Ω does not have the asymptotic Meir–Keeler
property:

there are two strictly descending sequences (tn) and (sn) in R0+ and an
element ε in R0+, with ((tn, sn) ∈ Ω , ∀n) and (tn→ ε+, sn→ ε+).

Let δ > 0 be the number given by the geometric Meir–Keeler property ofΩ .
By definition, there exists a (common) rank n(δ), such that

n ≥ n(δ) implies ε < tn < ε + δ, ε < sn < ε + δ.
From the second relation, we must have (by the hypothesis aboutΩ) tn ≤ ε,
for all n ≥ n(δ). This, however, contradicts the first relation above. Hence,
Ω is asymptotic Meir–Keeler, as asserted.

(i-2) Let Ω ∈ udiag(R0+) be an asymptotic Meir–Keeler relation; but—contrary
to the conclusion—assume thatΩ does not have the geometric Meir–Keeler
property; that is (for some ε > 0)

H(δ) := {(t, s) ∈ Ω; ε < s < ε + δ, t > ε} 	= ∅, for each δ > 0.

Taking a zero converging sequence (δn; n ≥ 0) in R0+, we get by the
Denumerable Axiom of Choice (AC(N)) [deductible, as precise, in (ZF-
AC+DC)], a sequence ((tn, sn); n ≥ 0) in R0+ × R0+, so as

(∀n): (tn, sn) is an element of H(δn); or, equivalently (by definition and
upper diagonal property) ((tn, sn) ∈ Ω and) ε < tn < sn < ε + δn.

Note that, as a direct consequence,

(tnΩsn, for all n), and tn→ ε+, sn→ ε+, as n→∞.

By a previous result, there exist a compatible couple of subsequences (t∗n :=
ti(n); n ≥ 0) of (tn; n ≥ 0) and (s∗n := si(n); n ≥ 0) of (sn; n ≥ 0), with

(t∗nΩs∗n , ∀n); (t∗n ), (s∗n) are strictly descending; t∗n → ε+ and s∗n → ε+.

This, however, is in contradiction with respect to the posed hypothesis upon
Ω; wherefrom, our assertion follows.

(ii-1) Let Ω ∈ udiag(R0+) be a geometric bilateral separable relation; we have to
establish thatΩ is asymptotic bilateral separable. Suppose—contrary to this
conclusion—that Ω is not endowed with such a property; that is,

there are two sequences (tn; n ≥ 0) and (sn; n ≥ 0) in R0+ and an element
β ∈ R0+, with ((tn, sn) ∈ Ω , ∀n) and (tn→ β, sn→ β).

Let γ ∈]0, β[ be the number given by the geometric bilateral separable
property of Ω . By definition, there exists a (common) index k = k(γ ), such
that
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(∀n): β − γ < Tn := tn+k < β + γ , β − γ < Sn := sn+k < β + γ .

This, along with [TnΩSn, ∀n], contradicts the geometric bilateral separable
property of Ω . Hence, Ω is asymptotic bilateral separable.

(ii-2) LetΩ ∈ udiag(R0+) be an asymptotic bilateral separable relation; we have to
establish that Ω is geometric bilateral separable. Suppose—contrary to this
conclusion—that Ω is not endowed with such a property; that is (for some
β > 0)

K(γ ) := {(t, s) ∈ Ω; t, s ∈]β − γ, β + γ [} 	= ∅, for each γ ∈]0, β[.
Taking a strictly descending sequence (γn; n ≥ 0) in ]0, β[ with γn → 0+,
we get by the Denumerable Axiom of Choice (AC(N)) [deductible, as
precise, in (ZF-AC+DC)], a sequence ((tn, sn); n ≥ 0) in Ω , so as

(∀n): (tn, sn) is an element ofK(γn); or, equivalently (by the very definition
above) (tn, sn) ∈ Ω and tn, sn ∈]β − γn, β + γn[.

By the second half of this last relation, we must have (tn→ β, sn→ β), and
this, along with the first half of the same, contradicts the imposed hypothesis.
Hence, necessarily, Ω is geometric bilateral separable.

(iii-1) Let Ω ∈ udiag(R0+) be a geometric left separable relation; we have to
establish that Ω is asymptotic left separable. Suppose—contrary to this
conclusion—that Ω is not endowed with such a property; that is,

there exist a strictly ascending sequence (tn; n ≥ 0) and an element β ∈
R0+,
with ((tn, β) ∈ Ω , ∀n) and (tn→ β−).

Let γ ∈]0, β[ be the number given by the geometric left separable property
of Ω . By definition, there exists a rank h = h(γ ), such that

(∀n): β − γ < Tn := tn+h < β.

This, along with [TnΩβ, ∀n], contradicts the geometric left separable
property of Ω . Hence, Ω is asymptotic left separable.

(iii-2) Let Ω ∈ udiag(R0+) be an asymptotic left separable relation; we have
to establish that Ω is geometric left separable. Suppose—contrary to this
conclusion—that Ω is not endowed with such a property; that is (for some
β > 0)

L(γ ) := {t ∈]β − γ, β[; (t, β) ∈ Ω} 	= ∅, for each γ ∈]0, β[.
Taking a strictly descending sequence (γn; n ≥ 0) in ]0, β[ with γn → 0+,
we get by the Denumerable Axiom of Choice (AC(N)) [deductible, as
precise, in (ZF-AC+DC)], a sequence (tn; n ≥ 0) in R0+, so as

(∀n): tn is an element of L(γn); or, equivalently (by the very definition
above) β − γn < tn < β, and (tn, β) ∈ Ω .
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By the first half of this last relation, tn → β−, and this, along with an
auxiliary fact, tells us that there exists a subsequence (t∗n := ti(n); n ≥ 0)
of (tn; n ≥ 0), with

(t∗n ; n ≥ 0) is strictly ascending, and t∗n → β−.

On the other hand, by the second half of our underlying relation, [(t∗n , β) ∈
Ω , ∀n]. Putting these together yields a contradiction with the asymptotic left
separable property of Ω . Hence, Ω is geometric left separable, as claimed.

In the following, some basic examples of (upper diagonal) Matkowski admissible
and geometric Meir–Keeler relations are given. The general scheme of constructing
these may be described along the lines below.

Let R(±∞) := R∪{−∞,∞} stand for the set of all extended real numbers. For
each relation Ω over R0+, let us associate a function ξ : R0+ × R0+ → R(±∞), as

ξ(t, s) = 0, if (t, s) ∈ Ω; ξ(t, s) = −∞, if (t, s) /∈ Ω .

It will be referred to as the function generated by Ω; clearly,

(t, s) ∈ Ω iff ξ(t, s) ≥ 0.

Conversely, given a function ξ : R0+×R0+ → R(±∞), we may associate it a relation
Ω over R0+ as

Ω = {(t, s) ∈ R0+ × R0+; ξ(t, s) ≥ 0} (in short, Ω = [ξ ≥ 0]),
referred to as the positive section of ξ .

Note that the correspondence between the function ξ and its associated relation
[ξ ≥ 0] is not injective, because, for the function η := λξ (where λ > 0), its
associated relation [η ≥ 0] is identical with the relation [ξ ≥ 0] attached to ξ .

Now, call the function ξ : R0+ × R0+ → R(±∞), upper diagonal provided

(u-diag) ξ(t, s) ≥ 0 implies t < s.

All subsequent constructions are being considered within this setting. The former of
these concerns the sequential condition for upper diagonal functions:

(M-ad) ξ in Matkowski admissible:
(tn; n ≥ 0) in R0+ and (ξ(tn+1, tn) ≥ 0, ∀n) imply limn tn = 0.

In a strong connection with this, the second group of such objects involves the
geometric properties for upper diagonal functions:

(g-mk) ξ is geometric Meir–Keeler:
∀ε > 0, ∃δ > 0: ξ(t, s) ≥ 0, ε < s < ε + δ *⇒ t ≤ ε;

(g-bila-s) ξ is geometric bilateral separable:
∀β > 0, ∃γ ∈]0, β[, ∀(t, s): t, s ∈]β − γ, β + γ [ *⇒ ξ(t, s) < 0;

(g-left-s) ξ is geometric left separable:
∀β > 0, ∃γ ∈]0, β[, ∀t : t ∈]β − γ, β[ *⇒ ξ(t, β) < 0;

as well as the asymptotic versions of these. The relationships between the geometric
Meir–Keeler condition and the Matkowski one attached to upper diagonal functions
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are nothing else than a simple translation of the previous ones involving upper
diagonal relations; this is also valid for the relationships between the geometric and
asymptotic concepts attached to upper diagonal functions.

Summing up, the duality principles below are holding:

(DP-1) any concept (like the ones above) about (upper diagonal) relations over
R0+ may be written as a concept about (upper diagonal) functions in the class
F(R0+ × R0+, R(±∞)).

(DP-2) any concept (like the ones above) about (upper diagonal) functions in the
class F(R0+ ×R0+, R(±∞)) may be written as a concept about (upper diagonal)
relations over R0+.

For the rest of our exposition, it will be convenient working with relations over R0+
and not with functions in F(R0+ × R0+, R(±∞)); this, however, is nothing but a
methodology question.

We may now pass to the description of some basic objects in this area.

Part-Case (I) Let F(re)(R0+, R) be the family of all ϕ ∈ F(R0+, R), with

ϕ is regressive: ϕ(t) < t , for all t ∈ R0+.

For each ϕ ∈ F(re)(R0+, R), let us introduce the geometric property

(MK-a) ϕ is Meir–Keeler admissible:
∀ε > 0, ∃δ > 0, such that (ε < s < ε + δ) implies ϕ(s) ≤ ε;

suggested—essentially—by the classical developments in Meir and Keeler [28].
To get concrete circumstances under which it holds, let us consider the triple of
sequential conditions

(M-a) ϕ is Matkowski admissible:
for each (tn; n ≥ 0) in R0+ with (tn+1 ≤ ϕ(tn),∀n), we have limn tn = 0.

(Nd-a) ϕ is nondiagonal admissible:
there are no strictly descending sequences (tn; n ≥ 0) in R0+
and no elements ε in R0+ with tn→ ε+, ϕ(tn)→ ε+.

(The former convention is taken from Matkowski [25, 26], but the latter seems to be
new). Here, for the sequence (rn; n ≥ 0) in R and the point r ∈ R, we denoted

rn→ r+ if rn→ r and rn > r , for all n ≥ 0.

Theorem 4 For each ϕ ∈ F(re)(R0+, R), we have in (ZF-AC+DC)

Meir–Keeler admissible *⇒ Matkowski admissible *⇒ nondiagonal admissible
*⇒Meir–Keeler admissible.

Hence, the Meir–Keeler admissible, Matkowski admissible, and nondiagonal admis-
sible properties are equivalent over F(re)(R0+, R).
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Proof

(i) Suppose that ϕ ∈ F(re)(R0+, R) is Meir–Keeler admissible; we claim that
it is Matkowski admissible. Let (sn; n ≥ 0) be a sequence in R0+ with the
property (sn+1 ≤ ϕ(sn); n ≥ 0). Clearly, (sn) is strictly descending in R0+;
hence, σ := limn sn exists in R+. Suppose by contradiction that σ > 0, and let
ρ > 0 be given by the Meir–Keeler admissible property of ϕ; that is,

σ < t < σ + ρ implies ϕ(t) ≤ σ .

By the above convergence relations, there exists some rank n(ρ), such that

n ≥ n(ρ) implies σ < sn < σ + ρ.

But then, we get (for the same ranks)

σ < sn+1 ≤ ϕ(sn) < sn < σ + ρ.

The obtained relations are in contradiction with the Meir–Keeler admissible
property. Hence, σ = 0, and the assertion follows.

(ii) Suppose that ϕ ∈ F(re)(R0+, R) is Matkowski admissible; we assert that ϕ is
nondiagonal admissible. For, if ϕ is not endowed with such a property, there
must be a strictly descending sequence (tn; n ≥ 0) in R0+ and an ε > 0, such
that

tn→ ε+ and ϕ(tn)→ ε+, as n→∞.

Put i(0) = 0. As ε < ϕ(ti(0)) and tn→ ε+, we have that

A(i(0)) := {n > i(0); tn < ϕ(ti(0))} is not empty;
hence, i(1) := min(A(i(0))) is an element of it, and ti(1) < ϕ(ti(0)).

Likewise, as ε < ϕ(ti(1)) and tn→ ε+, we have that

A(i(1)) := {n > i(1); tn < ϕ(ti(1))} is not empty;
hence, i(2) := min(A(i(1))) is an element of it, and ti(2) < ϕ(ti(1)).

This procedure may continue indefinitely and yields (without any choice
technique) a strictly ascending rank sequence (i(n); n ≥ 0) for which the
attached subsequence (sn := ti(n); n ≥ 0) of (tn; n ≥ 0) fulfills

sn+1 < ϕ(sn)(< sn), for all n.

On the other hand, by this very subsequence property,

(sn > ε, ∀n) and limn sn = limn tn = ε.
The obtained relations are in contradiction with the Matkowski property of ϕ;
hence, the working condition cannot be true, and we are done.

(iii) Suppose that ϕ ∈ F(re)(R0+, R) is nondiagonal admissible; we show that ϕ is
Meir–Keeler admissible. For, otherwise, one has (for some ε > 0)

H(δ) := {t ∈ R0+; ε < t < ε + δ, ϕ(t) > ε} is not empty, for each δ > 0.
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Taking a strictly descending sequence (δn; n ≥ 0) in R0+ with δn → 0, we
get by the Denumerable Axiom of Choice (AC(N)) [deductible, as precise, in
(ZF-AC+DC)], a sequence (tn; n ≥ 0) in R0+, so as

(tn ∈ H(δn), ∀n); or, equivalently (by definition, and ϕ=regressive)
(ε < ϕ(tn) < tn < ε + δn, ∀n); hence, ϕ(tn)→ ε+ and tn→ ε+.

By a previous result, there exists a subsequence (rn := ti(n)) of (tn), such that

(rn) is strictly descending and rn→ ε+; hence, necessarily, ϕ(rn)→ ε+.

But, this last relation is in contradiction with the nondiagonal admissible
property of our function. Hence, the assertion follows, and we are done.

A basic particular case of these developments may be described as below. Let
F(re, in)(R0+, R) stand for the class of all ϕ ∈ F(re)(R0+, R), with

ϕ is increasing on R0+ (0 < t1 ≤ t2 implies ϕ(t1) ≤ ϕ(t2)).
Clearly, for each ϕ ∈ F(re, in)(R0+, R), its Matkowski admissible property reads

(M-adm) (∀t > 0): limn ϕn(t) = 0, as long as (ϕn(t); n ≥ 0) exists.

Here, as usual, we denoted for each t > 0

ϕ0(t) = t , ϕ1(t) = ϕ(t), . . . , ϕn+1(t) = ϕ(ϕn(t)), n ≥ 1.

Note that such a construction may be non-effective; for example,

ϕ2(t) = ϕ(ϕ(t)) is undefined whenever ϕ(t) ≤ 0.

Remark 2 By a preceding result, we have, in (ZF-AC+DC),

(for each ϕ ∈ F(re, in)(R0+, R)):
Meir-Keeler admissible is equivalent with Matkowski admissible.

However, for technical reasons, we will provide an argument for the second half of
it (see also Jachymski [18]).

Assume that ϕ ∈ F(re, in)(R0+, R) is Matkowski admissible; we want to
establish that it is Meir–Keeler admissible. If this property fails, then (for some
γ > 0)

∀β > 0, ∃t ∈]γ, γ + β[, such that ϕ(t) > γ .

Combining with the increasing property of ϕ, one gets

(∀t > γ ): ϕ(t) > γ [whence (by induction): ϕn(t) > γ , for each n].

Fixing some t > γ and passing to limit as n → ∞, one derives 0 ≥ γ , a
contradiction, hence the claim.

Some important examples of such functions may be given along the lines below.
For any ϕ ∈ F(re)(R0+, R) and any s ∈ R0+, put
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Λ+ϕ(s) = inf0<ε<s Φ(s+)(ε); where Φ(s+)(ε) = supϕ(]s, s + ε[)
Λ±ϕ(s) = inf0<ε<s Φ(s±)(ε); where Φ(s±)(ε) = supϕ(]s − ε, s + ε[).

From the regressive property of ϕ, these limit quantities fulfill

(−∞ ≤) Λ+ϕ(s) ≤ Λ±ϕ(s) ≤ s, ∀s ∈ R0+,

but the case of such limits having infinite values cannot be avoided.
The following auxiliary fact will be useful.

Proposition 10 For ϕ ∈ F(re)(R0+, R) and s ∈ R0+, we have in (ZF-AC+DC)

(41-1) lim supn(ϕ(tn)) ≤ Λ+ϕ(s), for each sequence (tn) in R0+ with tn→ s+;
(41-2) lim supn(ϕ(tn)) ≤ Λ±ϕ(s), for each sequence (tn) in R0+ with tn→ s;
(41-3) there exists a strictly descending sequence (rn) in R0+ with
rn→ s+ and ϕ(rn)→ Λ+ϕ(s);

(41-4) there exists a sequence (rn) in R0+ with rn→ s and ϕ(rn)→ Λ±ϕ(s).
Proof

(i) Given ε ∈]0, s[, there exists a rank p(ε) ≥ 0 such that s < tn < s + ε, for all
n ≥ p(ε); hence,

lim supn(ϕ(tn)) ≤ sup{ϕ(tn); n ≥ p(ε)} ≤ Φ(s+)(ε).
It suffices taking the infimum over ε in this relation to get the desired fact.

(ii) The argument is very similar with the preceding one; so, it will be omitted.
(iii) Denote for simplicity

α = Λ+ϕ(s); hence, α = inf0<ε<s Φ(s+)(ε), and −∞ ≤ α ≤ s.
Then, define (βn := Φ(s+)(2−n−1s); n ≥ 0); it is a sequence in R, because

(∀n): −∞ < ϕ(t) < t < s + 2−n−1s, for each t ∈]s, s + 2−n−1s[.
Moreover, we have by definition that

(βn) is descending (βn ≥ α, ∀n), infn βn = α; hence, limn βn = α.

Furthermore, denote

(γn = βn − 3−n; n ≥ 0); hence, γn < βn,∀n; limn γn = limn βn = α.

From the supremum definition,

Hn := {t ∈]s, s + 2−n−1s[;ϕ(t) > γn} 	= ∅, for all n ≥ 0.

This, along with Denumerable Axiom of Choice (deductible in (ZF-AC+DC)),
yields a sequence (tn) with

(∀n): tn ∈ Hn; that is, tn ∈]s, s + 2−n−1s[, ϕ(tn) > γn,
as well as (by definition), ϕ(tn) ≤ βn;

so, putting these together, [tn → s+ and ϕ(tn) → α]. By a previous result,
there exists a subsequence (rn := ti(n)) of (tn), with



896 M. Turinici

(rn) is strictly descending and rn→ ε+; hence, ϕ(rn)→ α.

In other words, the obtained sequence (rn; n ≥ 0) has all desired properties.
(iv) The argument is very similar with the preceding one; so, it will be omitted.

Call ϕ ∈ F(re)(R0+, R), Boyd-Wong admissible [6] if

(bw-adm) Λ+ϕ(s) < s, for all s > 0.

In particular, ϕ ∈ F(re)(R0+, R) is Boyd–Wong admissible provided it is upper
semicontinuous at the right on R0+:

Λ+ϕ(s) ≤ ϕ(s), for each s ∈ R0+.

This, e.g., is fulfilled when ϕ is continuous at the right on R0+; for, in such a case,

Λ+ϕ(s) = ϕ(s), for each s ∈ R0+.

On the other hand, ϕ ∈ F(re)(R0+, R) is Boyd–Wong admissible when

ϕ is strongly Boyd–Wong admissible: Λ±ϕ(s) < s, ∀s ∈ R0+.

A basic particular case to be discussed concerns the class F(re, in)(R0+, R). For
each ϕ ∈ F(re, in)(R0+, R), denote

ϕ(s + 0) := limt→s+ ϕ(t), s ∈ R0+ (the right limit of ϕ at s).

Clearly, this limit always exists; moreover, by the involved definitions,

(for each ϕ ∈ F(re, in)(R0+, R)): Λ+ϕ(s) = ϕ(s + 0), s ∈ R0+;

and this yields the useful characterization formula:

(for each ϕ ∈ F(re, in)(R0+, R)):
ϕ is Boyd–Wong admissible iff ϕ(s + 0) < s, for all s > 0.

A related functional property may be introduced as below. Let ϕ ∈
F(re)(R0+, R) be a function; we call it Geraghty admissible [15], provided

(tn; n ≥ 0)= sequence in R0+ and ϕ(tn)/tn→ 1 imply tn→ 0.

Proposition 11 The following assertions hold over F(re)(R0+, R):

(42-1) each Geraghty admissible function is Boyd–Wong admissible;
(42-2) there exist Boyd–Wong admissible functions

that are not Geraghty admissible;
(42-3) each Boyd–Wong admissible function

is Meir–Keeler admissible; or, equivalently, Matkowski admissible;
(42-4) there are Meir–Keeler (or, equivalently, Matkowski) admissible functions

that are not Boyd–Wong admissible.
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Proof

(i) Suppose that ϕ ∈ F(re)(R0+, R) is Geraghty admissible; we have to establish
that it is Boyd–Wong admissible. Suppose not: there exists some s ∈ R0+
with Λ+ϕ(s) = s. Combining with a preceding fact, there must be a strictly
descending sequence (rn; n ≥ 0) in R0+, with

rn→ s+ and ϕ(rn)→ s; whence ϕ(rn)/rn→ 1;

i.e., ϕ is not Geraghty admissible. The obtained contradiction proves our claim.
(ii) Let us consider the function

ϕ ∈ F(re)(R0+, R): ϕ(t) = t (1− e−t ), t > 0.

Clearly, ϕ is continuous, hence, Boyd–Wong admissible. On the other hand,
taking the sequence (tn = n+ 1; n ≥ 0) in R0+, we have

ϕ(tn)/tn→ 1, and tn→∞; hence, ϕ is not Geraghty admissible.

(iii) (cf. Boyd and Wong [6]) Suppose that ϕ ∈ F(re)(R0+, R) is Boyd–Wong
admissible; we have to establish that it is Meir–Keeler (or, equivalently,
Matkowski) admissible. Fix γ > 0; hence, Λ+ϕ(γ ) < γ . By definition, there
exists β > 0 with

γ < t < γ + β implies ϕ(t) < γ , proving that ϕ is Meir–Keeler admissible.

(iv) (see also Turinici [42]) Let us consider the function ϕ ∈ F(re, in)(R0+, R),
according to (for some r > 0)

(ϕ(t) = t/2, if t ≤ r), (ϕ(t) = r , if t > r).

Clearly, ϕ is Matkowski admissible; or, equivalently, Meir–Keeler admissible.
On the other hand,

(Λ+ϕ(r) =)ϕ(r + 0) = r; whence, ϕ is not Boyd–Wong admissible;

and this proves our claim.

Having these precise, take a function χ ∈ F(re)(R0+, R) and define the
associated relation Ω := Ω[χ ] over R0+, as

(t, s ∈ R0+): (t, s) ∈ Ω iff t ≤ χ(s).
Clearly, Ω is upper diagonal. In fact, let t, s ∈ R0+ be such that tΩs; i.e., t ≤ χ(s).
As χ is regressive, one has χ(s) < s, and this yields t < s, whence the conclusion
follows. Further properties of this relation are deductible from

Proposition 12 Let the function χ ∈ F(re)(R0+, R) be given and Ω := Ω[χ ]
stand for the associated upper diagonal relation over R0+. Then,

(43-1) Ω is first variable decreasing and geometric/asymptotic left separable;
(43-2) Ω is geometric/asymptotic Meir–Keeler when the starting function χ is

Meir–Keeler admissible (or, equivalently, Matkowski admissible);
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(43-3) Ω is geometric/asymptotic bilateral separable (hence, necessarily, geo-
metric/asymptotic Meir–Keeler) when χ is strongly Boyd–Wong admissible.

Proof

(i) The first half is clear, and the second half is a direct consequence of

Ω−1(s) =]0, χ(s)] (and χ(s) < s), for each s ∈ R0+.

(ii) Let ε > 0 be given and δ > 0 be the number associated with it, via Meir–Keeler
admissible property for χ . Given t, s ∈ R0+ with tΩs, ε < s < ε + δ, we have
[t ≤ χ(s), ε < s < ε + δ]. This, according to the underlying property of χ ,
gives χ(s) ≤ ε [hence, t ≤ ε]; wherefrom, Ω has the geometric Meir–Keeler
property.

(iii) Suppose, by absurd, that Ω is not asymptotic bilateral separable:

there are sequences (tn; n ≥ 0) and (sn; n ≥ 0) in R0+ and elements β ∈ R0+,
with ((tn, sn) ∈ Ω , ∀n) and (tn→ β, sn→ β).

By the definition of our relation,

(tn ≤ χ(sn), ∀n), and tn→ β, sn→ β.

Passing to lim sup as n→∞ yields (by a previous result) β ≤ Λ±χ(β) < β,
a contradiction, and this proves our assertion.

Part-Case (II) Let (ψ, ϕ) be a couple of functions over F(R0+, R), with

(norm) (ψ, ϕ) is normal:
ψ is increasing and ϕ is strictly positive [ϕ(t) > 0, ∀t > 0].

(This concept may be related to the one introduced by Rhoades [36]; see also Dutta
and Choudhury [14]). Then, define the relationΩ = Ω[ψ, ϕ] in exp(R0+ × R0+), as

(t, s) ∈ Ω iff ψ(t) ≤ ψ(s)− ϕ(s).
We claim that, necessarily, Ω is upper diagonal. In fact, let t, s ∈ R0+ be such that

(t, s) ∈ Ω; i.e., ψ(t) ≤ ψ(s)− ϕ(s).
By the strict positivity of ϕ, one gets ψ(t) < ψ(s); and this, along with the
increasing property of ψ , shows that t < s; whence the conclusion follows.

Further properties of this relation are available under certain supplementary
conditions about the normal couple (ψ, ϕ), like below:

(as-pos) ϕ is asymptotic positive:
for each strictly descending sequence (tn; n ≥ 0) in R0+ and each ε > 0
with tn→ ε+, we must have lim supn(ϕ(tn)) > 0.

(bd-osc) (ψ, ϕ) is limit-bounded oscillating:
for each sequence (tn; n ≥ 0) in R0+ and each β > 0 with tn→ β,
we have lim supn(ϕ(tn)) > ψ(β + 0)− ψ(β − 0).

(bd-le-osc) (ψ, ϕ) is bounded left oscillating:
for each β > 0, we have ϕ(β) > ψ(β)− ψ(β − 0).
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The following inclusion is clear

(for each normal couple (ψ, ϕ)):
(ψ, ϕ) is limit-bounded oscillating implies ϕ is asymptotic positive.

On the other hand, sufficient conditions under which the asymptotic property holds
are obtainable (under the same normality setting) via

(ϕ=increasing or continuous) implies ϕ=asymptotic positive.

In fact, let the strictly descending sequence (tn; n ≥ 0) in R0+ and the number ε > 0
be such that tn→ ε+. When ϕ=increasing, we have (by normality)

ϕ(tn) ≥ ϕ(ε) > 0, ∀n; whence lim supn(ϕ(tn)) ≥ ϕ(ε) > 0.

On the other hand, when ϕ=continuous, the same normality condition yields

lim supn(ϕ(tn)) = limn(ϕ(tn)) = ϕ(ε) > 0, and the conclusion follows.

Proposition 13 Let (ψ, ϕ) be a normal couple of functions over F(R0+, R) and
Ω := Ω[ψ, ϕ] be the associated upper diagonal relation. Then,

(44-1) if ϕ is asymptotic positive, then the associated relation Ω is asymp-
totic/geometric Meir-Keeler;

(44-2) if (ψ, ϕ) is limit-bounded oscillating, then Ω is asymptotic/geometric
bilateral separable (hence, asymptotic/geometric Meir–Keeler as well);

(44-3) if (ψ, ϕ) is bounded left oscillating, then the associated relation Ω
is asymptotic/geometric left separable.

Proof

(i) Suppose by contradiction that Ω is not asymptotic Meir–Keeler:

there exist strictly descending sequences (tn) and (sn) in R0+
and elements ε in R0+ with ((tn, sn) ∈ Ω , ∀n) and (tn→ ε+, sn→ ε+).

By the former of these, we get

(0 <)ϕ(sn) ≤ ψ(sn)− ψ(tn), ∀n.

Passing to limit as n→∞, and noting that limn ψ(sn) = limn ψ(tn) = ψ(ε+
0), one gets limn ϕ(tn) = 0, in contradiction with the asymptotic positivity of
ϕ. So, necessarily, Ω has the asymptotic Meir–Keeler property, as claimed.

(ii) Suppose by contradiction that Ω is not asymptotic bilateral separable; i.e.,

there exist sequences (tn) and (sn) in R0+ and elements β in R0+,
with ((tn, sn) ∈ Ω , ∀n) and (tn→ β, sn→ β).

By the former of these, we get

(0 <)ϕ(sn) ≤ ψ(sn)− ψ(tn), ∀n.
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Passing to lim sup as n→∞ yields lim supn ϕ(sn) ≤ ψ(β + 0) − ψ(β − 0),
in contradiction with (ψ, ϕ) being limit-bounded oscillating. This tells us that
Ω is asymptotic bilateral separable, as claimed.

(iii) Suppose by contradiction that Ω is not asymptotic left separable:

there exist strictly ascending sequences (tn) in R0+
and elements β in R0+, with ((tn, β) ∈ Ω , ∀n) and (tn→ β−).

By the former of these, we get

ψ(tn) ≤ ψ(β)− ϕ(β), ∀n.

Passing to lim sup as n→∞ yields (as ψ=increasing)

ψ(β − 0) ≤ ψ(β)− ϕ(β); that is, ϕ(β) ≤ ψ(β)− ψ(β − 0),

in contradiction with (ψ, ϕ) being bounded left oscillating. This tells us thatΩ
is asymptotic left separable, as claimed.

In the following, some basic (and useful) particular choices for the couple (ψ, ϕ)
above are to be discussed.

Part-Case (II-a) The construction in the preceding step (involving a certain χ ∈
F(re)(R0+, R)) is nothing else than a particular case of this one, corresponding to

ψ(t) = t , ϕ(t) = t − χ(t), t ∈ R0+.

Part-Case (II-b) Let λ : R0+ →]1,∞[ and μ : R0+ →]0, 1[ be a couple of
functions, with λ=increasing. Define a relation Ω := Ω[[λ,μ]] over R0+ as

tΩs iff λ(t) ≤ [λ(s)]μ(s).
This will be referred to as the Jleli–Samet relation attached to λ(.) and μ(.).
(The proposed convention comes from the developments in Jleli and Samet [21],
corresponding to μ(.)=constant). By a direct calculation, it is evident that

tΩs iff tΩ[ψ, ϕ]s; where ψ(t) = log[log(λ(t))], ϕ(t) = − log(μ(t)), t > 0.

Hence, this construction is entirely reducible to the standard one in this series.

Part-Case (II-c) Let the couple (ψ, α) over F(R0+, R) be admissible; i.e.,

(admi-1) ψ(.) is increasing, right continuous, and strictly positive.
(admi-2) −α(.) is right lsc on R0+, and γ := ψ − α is strictly positive.

Proposition 14 Let the functions (ψ, α) be as before. Then,

(45-1) The couple (ψ, γ ) (where γ = ψ − α) is a normal couple over F(R0+, R),
with γ=asymptotic positive.

(45-2) The associated to (ψ, γ ) relation

tΩs iff ψ(t) ≤ ψ(s)− γ (s) (that is, ψ(t) ≤ α(s))
is upper diagonal and asymptotic/geometric Meir–Keeler.
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Proof

(i) By definition, ψ is increasing and γ is strictly positive.
(ii) Suppose by contradiction that γ (.) is not asymptotic positive: there exist ε > 0

and a strictly descending sequence (tn) in R0+, with

tn→ ε+ and lim supn(γ (tn)) = 0; whence, limn(γ (tn)) = 0.

The last relation gives

limn(−α(tn)) = −ψ(ε) (as ψ is right continuous).

Combining with −α(.) being right lsc on R0+ yields (by this limit process)

−α(ε) ≤ −ψ(ε); or, equivalently, γ (ε) ≤ 0,

in contradiction with the strict positivity of γ . Hence, our working assumption
is not acceptable, and the claim follows.

(iii) Evident, by our previous facts.

Part-Case (II-d) Let ψ ∈ F(R0+, R) andΔ ∈ F(R) be a couple of functions. The
following regularity condition involving these objects will be considered here

(BV-c) (ψ,Δ) is a Bari–Vetro couple:
ψ is increasing and Δ is regressive (Δ(r) < r , for all r ∈ R).

In this case, by definition,

ϕ(t) := ψ(t)−Δ(ψ(t)) > 0, for all t > 0,

so that (ψ, ϕ) is a normal couple of functions over F(R0+, R). Let Ω := Ω[ψ,Δ]
be the (associated) Bari–Vetro relation over R0+, introduced as

tΩs iff ψ(t) ≤ Δ(ψ(s)).
(This convention is related to the developments in Di Bari and Vetro [13]). From
(BV-c), Ω is an upper diagonal relation over R0+. It is natural then to ask under
which extra assumptions about our data we have that Ω is an asymptotic Meir–
Keeler relation. The simplest one may be written as

(a-reg) Δ is asymptotic regressive:
for each descending sequence (rn) in R and each α ∈ R with rn→ α,
we have that lim infn Δ(rn) < α.

Note that, by the non-strict character of the descending property above, one has

Δ is asymptotic regressive implies Δ is regressive.

Proposition 15 Let the functions (ψ ∈ F(R0+, R),Δ ∈ F(R)) be such that

(ψ,Δ) is an asymptotic Bari–Vetro couple; i.e.,
ψ is increasing and Δ is asymptotic regressive.

Then,
(46-1) the above defined function ϕ is asymptotic positive;
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(46-2) the associated relation Ω is upper diagonal and asymptotic Meir–Keeler
(hence, geometric Meir–Keeler).

Proof

(i) Let the strictly descending sequence (tn; n ≥ 0) in R0+ and the number ε > 0
be such that tn→ ε+; we must derive that lim supn(ϕ(tn)) > 0. Denote

(rn = ψ(tn), n ≥ 0); α = ψ(ε + 0).

By the imposed conditions (and ψ=increasing)

(rn) is descending and rn→ α as n→∞.

In this case,

lim supn ϕ(tn) = lim supn[rn −Δ(rn)] = α − lim infn Δ(rn) > 0,

hence the claim.
(ii) The assertion follows at once from (ψ, ϕ) being a normal couple with

(ϕ=asymptotic positive) and a previous remark involving these objects.

In particular, when ψ and Δ are continuous, our theorem reduces to the one in
Jachymski [20].

5 Statement of the Problem

Let X be a nonempty set and d : X × X → R+ be a metric over X; then, (X, d)
will be called a metric space. Furthermore, let (≤) be a quasi-order on X; the triple
(X, d,≤) will be referred to as a quasi-ordered metric space. Let (<) stand for the
relation

x < y iff x ≤ y and x 	= y [clearly, (<) is irreflexive].

Finally, call the subset Y of X (≤)-asingleton if [y1, y2 ∈ Y , y1 ≤ y2] imply
y1 = y2, and (≤)-singleton if, in addition, Y is nonempty.

(A) Take some T ∈ F(X), and assume in the following that

(s-pro) T is semi-progressive (X(T ,≤) := {x ∈ X; x ≤ T x} 	= ∅);
(incr) T is increasing (x ≤ y implies T x ≤ Ty).

We are interested in establishing sufficient conditions under which Fix(T ) 	= ∅.
The basic directions for getting this are described in our list below, comparable with
the one proposed by Turinici [46]:

(pic-0) We say that T is fix-(≤)-asingleton, when Fix(T ) is a (≤)-asingleton;
likewise, T is called fix-(≤)-singleton when Fix(T ) is a (≤)-singleton.

(pic-1) We say that x ∈ X(T ,≤) is a Picard point (modulo (d,≤; T )) if the
iterative sequence (T nx; n ≥ 0) is d-Cauchy; when this property holds
for all x ∈ X(T ,≤), then T is called a Picard operator (modulo (d,≤)).
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(pic-2) We say that x ∈ X(T ,≤) is a strong Picard point (modulo (d,≤; T )) if the
iterative sequence (T nx; n ≥ 0) is d-convergent and limn(T nx) ∈ Fix(T );
when this property holds for all x ∈ X(T ,≤), then T is called a strong
Picard operator (modulo (d,≤)).

(pic-3) We say that x ∈ X(T ,≤) is a Bellman Picard point (modulo (d,≤; T )) if
the iterative sequence (T nx; n ≥ 0) is d-convergent, limn(T nx) ∈ Fix(T ),
and T nx ≤ limn(T nx), ∀n; when this property holds for all x ∈ X(T ,≤),
then T is called a Bellman Picard operator (modulo (d,≤)).

The regularity conditions for such properties are being founded on ascending
orbital full concepts (in short, (a-o-f)-concepts). Call the sequence (zn; n ≥ 0) in X

ascending, if zi ≤ zj whenever i ≤ j ;
T -orbital, if (zn = T nx; n ≥ 0), for some x ∈ X; and
full, when n �→ zn is injective (i 	= j implies zi 	= zj );
the intersection of these notions yields the precise ones.

(reg-1) Call X (a-o-f,d)-complete, provided (for each (a-o-f)-sequence) d-Cauchy
*⇒ d-convergent.

(reg-2) We say that T is (a-o-f,d)-continuous, if ((zn)=(a-o-f)-sequence and zn
d−→

z) imply T zn
d−→ T z.

(reg-3) Call (≤), (a-o-f,d)-selfclosed when ((zn)=(a-o-f)-sequence and zn
d−→ z)

imply (zn ≤ z, for each n).

When some of the ascending, orbital, and full properties are ignored, these
conventions may be written in terms of remaining concepts; we do not give details.

(B) As an essential completion of these facts, we have to discuss the contractive
type conditions to be used. Some preliminaries are needed. Let us introduce
the mappings: for each x, y ∈ X,

P0(x, y) = d(T x, T y), L1(x, y) = min{d(x, y), d(T x, T y)},
L(x, y) = min{d(x, T x), d(y, T y), d(x, y), d(T x, T y)},
M1(x, y) = max{d(x, T x), d(y, T y)},M(x, y) = diam{x, T x, y, T y}.

Here, for each (nonempty) subset Z in X, we put

diam(Z) = sup{d(x, y); x, y ∈ Z} (the diameter of Z).

Let P be a generic map in F(X × X,R). For an easy reference, we give
the list of normality conditions to be optionally fulfilled by P .

(I) The first group of conditions—stated with the aid of some other mapping K
in F(X ×X,R)—is of positive boundedness type:

(posi) (P,K) is positive: x ≤ y, K(x, y) > 0 implies P(x, y) > 0.
(bd) (P,K) is bounded: x ≤ y implies P(x, y) ≤ K(x, y).
(fix-bd) (P,K) is fix bounded: (x, y ∈ Fix(T ), x ≤ y) imply P(x, y) ≤
K(x, y).



904 M. Turinici

Technically speaking, this has the role of handing the contractive condition
in different stages of the proof.

(II) The second group of conditions is of telescopic-boundedness type:

(n-tele) P is telescopic null: x ≤ T x implies P(x, T x) = 0.
(t-bd) P is telescopic bounded: x ≤ T x implies P(x, T x) ≤ M1(x, T x).

This group may be viewed as a complement of the preceding one. It has the
role of getting the d-Cauchy property of a d-asymptotic iterative sequence
and/or making applicable the contractive property for the limit of a d-
convergent iterative sequence.

(III) The third group of conditions is of orbitally small and orbitally Cauchy type.
Remember that the sequence (xn) is d-asymptotic, provided

limn d(xn, xn+1) = 0; or, equivalently, limn d(xn, xn+i ) = 0, ∀i ≥ 1.

Given the d-asymptotic sequence (xn) in X and the number γ > 0, denote

n(γ )=the minimal index h with n ≥ h*⇒ (d(xn, xn+1), d(xn, xn+2) < γ ).

This will be referred to as the asymptotic rank of γ . Clearly,

0 < γ1 ≤ γ2 *⇒ n(γ1) ≥ n(γ2) (i.e., γ �→ n(γ ) is decreasing).

We may now state the announced properties:

(o-sm) P is orbitally small: for each d-asymptotic (a-o-f)-sequence
(xn = T nx0; n ≥ 0) in X(T ,≤) and each couple (ε, δ) with ε > δ >

0, there exists γ = γ (ε, δ) ∈]0, δ/6[ (and the attached asymptotic rank
n(γ )), such that for each j ≥ 2 and each k ≥ n(γ ) with
d(xm, xm+i ) < ε + δ/2 for (m ≥ k, i ∈ {1, . . . , j}), we have
P(xn, xn+j ) < ε + δ, whenever (n ≥ k, d(xn, xn+j+1) ≥ ε + δ/2).

(o-C) P is orbitally Cauchy: for each d-asymptotic (a-o-f)-sequence
(xn = T nx0; n ≥ 0) in X(T ,≤), we have Pn→ 0 as n→∞,
where (Pn := sup{P(xn, xn+i ); i ≥ 1}; n ≥ 0).

These have the essential role of deducing the d-Cauchy property for the d-
asymptotic iterative sequences to be considered.

Concerning the former concept, the following practical criterion is to be
noted.

Proposition 16 Under the above conventions,

(51-1) if the couple (P,M) is bounded, then P is orbitally small;
(51-2) if the maps P1, P2 : X ×X→ R+ are orbitally small,

then P3 := max{P1, P2} is orbitally small.
Proof

(i) Let the d-asymptotic (a-o-f)-sequence (xn = T nx0; n ≥ 0) in X(T ,≤) and the
couple (ε, δ) with ε > δ > 0 be given. Furthermore, take some γ ∈]0, δ/6[,
and let n(γ ) stand for the attached asymptotic rank. We claim that



Perturbed Geometric Contractions in Ordered Metric Spaces 905

for each j ≥ 2 and each k ≥ n(γ ) with d(xm, xm+i ) < ε + δ/2 for
(m ≥ k, i ∈ {1, . . . , j}), one derives P(xn, xn+j ) < ε + δ, for each n ≥ k;

and this will complete the argument. In fact, let n ≥ k be arbitrary fixed. By the
working hypothesis above, we have

d(xn, xn+j ), d(xn+1, xn+j ), d(xn+1, xn+j+1) < ε + δ/2,

and, by the very definition of our index n(γ ),

d(xn, xn+1), d(xn+j , xn+j+1) < γ < δ/2 < ε + δ/2.

Finally, taking the triangular inequality into account, one gets (by the choice
of γ )

d(xn, xn+j+1) ≤ d(xn, xn+1)+ d(xn+1, xn+j+1) < γ + ε + δ/2 < ε + δ.
Putting these together yields (via (P,M)=bounded)

P(xn, xn+j ) ≤ M(xn, xn+j ) < ε + δ, and our claim follows.

(ii) Given (ε, δ) with ε > δ > 0, let γ1 ∈]0, δ/6[ (with the associated asymptotic
rank n(γ1)) and γ2 ∈]0, δ/6[ (with the associated asymptotic rank n(γ2)) be
assured by the orbitally small property of P1 and P2, respectively. Then, let us
put

γ3 = min{γ1, γ2} (hence, n(γ3) ≥ max{n(γ1), n(γ2)});
we claim that the desired property of P3 is fulfilled with respect to the obtained
pair (γ3, n(γ3)). In fact, let j ≥ 2 and k ≥ n(γ3) be such that

(hyp) d(xm, xm+i ) < ε + δ/2 for (m ≥ k, i ∈ {1, . . . , j});
we have to establish that

(con) P3(xn, xn+j ) < ε + δ, whenever (n ≥ k, d(xn, xn+j+1) ≥ ε + δ/2).

To verify this, note that by (hyp), one gets for each h ∈ {1, 2}
(k ≥ n(γh) and) d(xm, xm+i ) < ε + δ/2 for (m ≥ k, i ∈ {1, . . . , j}).

So, letting n ≥ k(≥ n(γ3)) be as in the premise of (con), we have (by the
admitted properties of P1 and P2)

Ph(xn, xn+j ) < ε + δ, h ∈ {1, 2}, whence P3(xn, xn+j ) < ε + δ,
and the conclusion follows.

(IV) The fourth group of conditions is of asymptotic type:

(o-conv) P is orbitally convergent:
for each (a-o-f)-sequence (xn = T nx0; n ≥ 0) in X(T ,≤), and each z ∈ X
with
xn

d−→ z, (xn < z, ∀n), and d(z, T z) > 0, we have P(xn, z)→ 0.
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(o-sg-asy) P is orbitally singular asymptotic: for each (a-o-f)-sequence
(xn = T nx0; n ≥ 0) in X(T ,≤), and each z ∈ X with

xn
d−→ z, (xn < z, ∀n), and d(z, T z) > 0, we have lim infn P (xn, z) <

d(z, T z).
(o-reg-asy) P is orbitally regular asymptotic: for each (a-o-f)-sequence
(xn = T nx0; n ≥ 0) in X(T ,≤), and each z ∈ X with

xn
d−→ z, (xn < z, ∀n), and d(z, T z) > 0, we have P(xn, z)→ d(z, T z)

(o-sr-asy) P is orbitally strongly regular asymptotic: for each (a-o-f)-
sequence (xn = T nx0; n ≥ 0) in X(T ,≤), and each z ∈ X with

xn
d−→ z, (xn < z, ∀n), and d(z, T z) > 0, we have P(xn, z) →→

d(z, T z).

Here, given the sequence (rn; n ≥ 0) in R and the point r ∈ R, we denoted

rn→→ r , if there exists a subsequence (sn = ri(n); n ≥ 0) of (rn; n ≥ 0)
such that [sn = r , ∀n ≥ 0].

Technically speaking, these have the role of deducing the fixed point property
of the limit of our iterative sequence in the final stage of the proof.

(C) Having these precise, we may now pass to the contraction requirement upon
our data. Letting (P,G,H) be a triple of maps over F(X ×X,R+), denote

Q0 = P0 −G,Q = P −H (where P0 is taken as before).

Let us say that (Q0,Q) is Meir–Keeler (d,≤)-contractive, in case

(mk-1) [x ≤ y,Q(x, y) > 0] implyQ0(x, y) < Q(x, y),
referred to as (Q0,Q) is strictly nonexpansive (modulo (d,≤)).

(mk-2) for each ε > 0, there exists δ > 0, such that
(x ≤ y, ε < Q(x, y) < ε + δ) *⇒ Q0(x, y) ≤ ε,
expressed as (Q0,Q) has the Meir–Keeler property (modulo (d,≤)).

Note that, by the former of these, the Meir–Keeler property gives

(mk-3) for each ε > 0, there exists δ > 0, such that
(x ≤ y, 0 < Q(x, y) < ε + δ) *⇒ Q0(x, y) ≤ ε,
referred to as (Q0,Q) has the extended Meir–Keeler property (modulo
(d,≤)).
In particular, if G = H = 0, P = d, this convention is comparable with

the one in Meir and Keeler [28], subsequently refined by Matkowski [27] and
Cirić [10].

A geometric version of the above concept may be given along the lines below.
Remember that the relation Ω ∈ exp(R0+ × R0+) is called upper diagonal, if

(u-diag) (t, s) ∈ Ω implies t < s;

the class of all these will be denoted as udiag(R0+). Then, along the class udiag(R0+),
define the geometric concepts
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(g-mk) Ω has the geometric Meir–Keeler property:
∀ε > 0, ∃δ > 0: tΩs, ε < s < ε + δ *⇒ t ≤ ε;

(g-bila-s) Ω is geometric bilateral separable:
∀β > 0, ∃γ ∈]0, β[, ∀(t, s): t, s ∈]β − γ, β + γ [ *⇒ (t, s) /∈ Ω;

(g-left-s) Ω is geometric left separable:
∀β > 0, ∃γ ∈]0, β[, ∀t : t ∈]β − γ, β[ *⇒ (t, β) /∈ Ω;

as well as the asymptotic ones

(a-mk) Ω has the asymptotic Meir–Keeler property:
there are no strictly descending sequences (tn) and (sn) in R0+ and no elements
ε in R0+, with ((tn, sn) ∈ Ω , ∀n) and (tn→ ε+, sn→ ε+);

(a-bila-s) Ω is asymptotic bilateral separable:
there are no sequences (tn; n ≥ 0) and (sn; n ≥ 0) in R0+ and no elements
β in R0+, with ((tn, sn) ∈ Ω , ∀n) and (tn→ β, sn→ β);

(a-left-s) Ω is asymptotic left separable:
there are no strictly ascending sequences (tn) in R0+
and no elements β in R0+, with ((tn, β) ∈ Ω , ∀n) and (tn→ β−).

Note that, by a previous auxiliary fact,

(g-eq-a) each geometric notion is equivalent with its asymptotic counterpart.

Given Ω ∈ exp(R0+ × R0+), let us say that (Q0,Q) is (d,≤;Ω)-contractive,
provided

(Om-con) (Q0(x, y),Q(x, y)) ∈ Ω ,
whenever (x ≤ y,Q0(x, y) > 0,Q(x, y) > 0).

Proposition 17 Suppose that the couple (Q0,Q) is (d,≤;Ω)-contractive where
the relation Ω ∈ exp(R0+ × R0+) is upper diagonal and geometric Meir–Keeler.
Then, (Q0,Q) is Meir–Keeler (d,≤)-contractive.
Proof

(i) Let x, y ∈ X be such that x ≤ y, Q(x, y) > 0. If Q0(x, y) ≤ 0, then
Q0(x, y) < Q(x, y). Suppose now that Q0(x, y) > 0. As a consequence
of this, (t, s) ∈ Ω , where t := Q0(x, y), s := Q(x, y). Combining with
the upper diagonal property of Ω , one gets t < s; i.e., Q0(x, y) < Q(x, y).
Summing up, (Q0,Q) is strictly nonexpansive (modulo (d,≤)).

(ii) Let ε > 0 be arbitrary fixed and δ > 0 be the number assured by the geometric
Meir–Keeler property for Ω . Furthermore, let x, y ∈ X be such that

x ≤ y and ε < Q(x, y) < ε + δ; hence, ε < s < ε + δ, where s := Q(x, y).
If Q0(x, y) ≤ 0, then Q0(x, y) < ε. Suppose now that Q0(x, y) > 0. By
definition, we must have (t, s) ∈ Ω , where t := Q0(x, y), and this, along with
ε < s < ε + δ and the geometric Meir–Keeler property for Ω , gives t ≤ ε;
i.e., Q0(x, y) ≤ ε, whence (Q0,Q) has the Meir–Keeler property (modulo
(d,≤)). Putting these together, it follows that (Q0,Q) is Meir–Keeler (d,≤)-
contractive, and we are done.
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In the following, a kind of reciprocal for this result is formulated. Given the
triple of maps P,G,H ∈ F(X × X,R+), let Ω := Ω[d,≤;Q0;Q] stand for the
associated relation over R0+:

Ω = {(Q0(x, y),Q(x, y)); x ≤ y,Q0(x, y),Q(x, y) > 0};
or, in other words,
(t, s) ∈ Ω iff t = Q0(x, y), s = Q(x, y), where x ≤ y,Q0(x, y),Q(x, y) > 0.

Proposition 18 Under these conventions, we have

(53-1) If (Q0,Q) is Meir–Keeler (d,≤)-contractive, then the attached relation
Ω := Ω[d,≤;Q0;Q] over R0+ is upper diagonal and geometric Meir–
Keeler

(53-2) (Q0,Q) is Meir–Keeler (d,≤)-contractive if and only if the attached
relation Ω := Ω[d,≤;Q0;Q] over R0+ is upper diagonal and geometric
Meir–Keeler.

Proof

(i) Suppose that (Q0,Q) is Meir–Keeler (d,≤)-contractive; we have to establish
that Ω := Ω[d,≤;Q0;Q] is upper diagonal and geometric Meir–Keeler.
There are two steps to be passed.

(i-1) Let (t, s) ∈ R0+ × R0+ be such that (t, s) ∈ Ω; hence (by definition),

t = Q0(x, y), s = Q(x, y), where x ≤ y,Q0(x, y) > 0,Q(x, y) > 0.

From the strict nonexpansive property of (Q0,Q), we must have

Q0(x, y) < Q(x, y); or, equivalently, t < s,

which shows that Ω is upper diagonal.
(i-2) Let ε > 0 be arbitrary fixed and δ > 0 be the number associated by the Meir–

Keeler property for (Q0,Q). Furthermore, let (t, s) ∈ R0+ × R0+ be taken
as

(t, s) ∈ Ω and ε < s < ε + δ.
From the former of these, we have

t = Q0(x, y), s = Q(x, y), where x ≤ y,Q0(x, y) > 0,Q(x, y) > 0;
so, combining with the latter, x ≤ y, and ε < Q(x, y) < ε + δ.

By the Meir–Keeler property for T , we get

Q0(x, y) ≤ ε; i.e., under our notation, t ≤ ε,
so that Ω has the geometric Meir–Keeler property.

(ii) Suppose that the associated relation Ω := Ω[d,≤;Q0;Q] over R0+ is upper
diagonal and geometric Meir–Keeler. By the very definition of this object,
(Q0,Q) is (d,≤;Ω)-contractive. Combining with the preceding result, one
derives that (Q0,Q) appears as Meir–Keeler (d,≤)-contractive, and the
conclusion follows.
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As a consequence of this, it follows that the Meir–Keeler (d,≤)-contractive
property of (Q0,Q) is finally reducible to the upper diagonal and geometric
Meir–Keeler properties for the associated relationΩ[d,≤;Q0;Q]. Concerning this
aspect, remember that various examples of such objects were provided in a previous
place. Some other aspects will be treated a bit further.

6 Main Result

Let (X, d,≤) be a quasi-ordered metric space and T ∈ F(X) be a selfmap of X,
supposed to be semi-progressive and increasing. The general directions under which
the problem of determining fixed points of T is to be solved were already made
precise; moreover, the (sufficient) regularity conditions and metrical contractive
properties of the same were settled.

The main result of this exposition (referred to as the perturbed Meir–Keeler
theorem on ordered metric spaces; in short, (MK-pert-oms)) may be stated as below.

Theorem 5 Assume that the couples of mappings (P0, P ) and (G,H) over F(X×
X,R+) and the relation Ω ∈ exp(R0+ × R0+) are taken so as

(61-i) (P0 −G,P −H) is (d,≤;Ω)-contractive;
(61-ii) P is telescopic bounded and orbitally small;
(61-iii) G is telescopic null, orbitally Cauchy, and orbitally convergent;
(61-iv) (P −H,L) is positive, and H is telescopic null;
(61-v) Ω is upper diagonal and geometric/asymptotic Meir–Keeler.

In addition, let X be (a-o-f,d)-complete. Then,

(61-a) T is a strong Picard operator (modulo (d,≤)), provided (in addition) T is
(a-o-f,d)-continuous;

(61-b) T is a Bellman Picard operator (modulo (d,≤)), if (in addition) (≤) is (a-
o-f,d)-selfclosed, and one of the extra conditions holds;

(61-b1) P is orbitally singular asymptotic;
(61-b2) P is orbitally regular asymptotic and Ω is endowed with the

geometric/asymptotic bilateral separable property;
(61-b3) P −H is orbitally strongly regular asymptotic andΩ is endowed

with the geometric/asymptotic left separable property;

(61-c) T is fix-(≤)-asingleton, provided (in addition) (P − H,L1) is positive and
(P −H,P0 −G) is fix bounded.

Proof There are several steps to be passed.
Part 0. Let us start with the last assertion in this statement. Take a couple of points
(z1, z2) over Fix(T ) with z1 ≤ z2, and suppose, by contradiction, that z1 	= z2;
hence, z1 < z2, δ := d(z1, z2) > 0. By definition,

L1(z1, z2) = δ > 0; whence, (P −H)(z1, z2) > 0,
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if we remember that (P −H,L1) is positive. By the fix bounded property,

(rela-1) (0 <)(P−H)(z1, z2) ≤ (P0−G)(z1, z2); whence, (P0−G)(z1, z2) > 0.

Consequently, the contractive condition is applicable to (z1, z2) and gives

(rela-2) ((P0 −G)(z1, z2), (P −H)(z1, z2)) ∈ Ω ,
so that (P0 −G)(z1, z2) < (P −H)(z1, z2) (in view of Ω=upper diagonal).

Since the obtained relations (rela-1) and (rela-2) are contradictory, it results that our
working assumption is not acceptable, so that z1 = z2.

Having these precise, take some x0 ∈ X(T ,≤), and put (xn = T nx0; n ≥ 0);
clearly, this is an ascending orbital sequence. If xn = xn+1 for some n ≥ 0, we are
done; so, without loss, one may assume that the semi-full condition holds

(s-full) (∀n): xn 	= xn+1; hence, xn < xn+1, ρn := d(xn, xn+1) > 0.

Part 1 We firstly assert that the following relations hold:

(iter) (∀n): (ρn+1, P (xn, xn+1)) ∈ Ω , ρn+1 < P(xn, xn+1) ≤ ρn.
In fact, let n ≥ 0 be arbitrary fixed. For the moment, we must have

P0(xn, xn+1) = (P0 −G)(xn, xn+1) = ρn+1 > 0
(as G is taken as telescopic null).

In addition (by the semi-full property),

L(xn, xn+1) = min{ρn, ρn+1} > 0; hence, P(xn, xn+1) = (P −H)(xn, xn+1) > 0
(as (P −H,L) is positive, and H is telescopic null).

Putting these together yields, by the contractive condition (and Ω=upper diagonal),

(∀n): (ρn+1, P (xn, xn+1)) ∈ Ω , and ρn+1 < P(xn, xn+1).

On the other hand, as P is telescopic bounded, we must have

P(xn, xn+1) ≤ M1(xn, xn+1) = max{ρn, ρn+1}.
Combining with the preceding relation gives, for each n ≥ 0,

ρn+1 < max{ρn, ρn+1}; wherefrom, ρn+1 < ρn,M1(xn, xn+1) = ρn,
and the claim follows.

Part 2 From the preceding part, one derives (ρn+1 < ρn, ∀n), so that the sequence
(ρn; n ≥ 0) is strictly descending; wherefrom, ρ := limn ρn exists as an element of
R+. Assume by contradiction that ρ > 0, and let σ > 0 be the number given by the
Meir–Keeler property of Ω . By definition, there exists a rank n(σ) with

n ≥ n(σ) implies ρ < (ρn+1 <)ρn < ρ + σ .

On the other hand, taking (iter) into account,

(∀n): (0 <) ρn+1 < P(xn, xn+1) ≤ ρn; so, combining with the above,
n ≥ n(σ) implies (ρn+1, P (xn, xn+1)) ∈ Ω , and ρ < P(xn, xn+1) < ρ + σ .
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By the underlying Meir–Keeler property, we then get

(∀n ≥ n(σ)): (ρ < ρn+1 and) ρn+1 ≤ ρ,

a contradiction. Hence, ρ = 0, so that

ρn := d(xn, xn+1) = d(xn, T xn)→ 0, as n→∞;
or, in other words, (xn; n ≥ 0) is d-asymptotic.

Part 3 Suppose that

there exist i, j ∈ N such that i < j , xi = xj .
By the very meaning of our iterative process, we have xi+1 = xj+1; hence, ρi = ρj ,
in contradiction with the strict descending property of (ρn; n ≥ 0). Hence, our
working hypothesis cannot hold; wherefrom,

(xn) is a full sequence (i < j implies xi 	= xj ; hence, xi < xj , d(xi, xj ) > 0).

Part 4 Summing up, the iterative sequence (xn = T nx0; n ≥ 0) in X(T ,≤) is
ascending, orbital, full, and d-asymptotic. We now establish that (xn; n ≥ 0) is d-
Cauchy. Let ε > 0 be given and δ > 0 be assured by the Meir–Keeler property of
Ω; without loss, one may assume that δ < ε. Furthermore, given the couple (ε, δ)
as before, let the number γ ∈]0, δ/6[ [and the associated asymptotic rank n(γ )] be
given via P=orbitally small. Finally, take some rank m(γ ) > n(γ ) according to

(rela-G) n ≥ m(γ ) implies Gn := sup{G(xn, xn+i ); i ≥ 1} < δ/6
(possible, as G is supposed to be orbitally Cauchy).

We claim, via ordinary induction, that

(d-C;i) d(xn, xn+i ) < ε + δ/2, for each n ≥ m(γ ),
holds, for all i ≥ 1; from this, the d-Cauchy property of (xn) follows. The case
i ∈ {1, 2} is evident, via m(γ ) > n(γ ) and

(d-asy) (∀i ∈ {1, 2}): d(xn, xn+i ) < γ < δ/6 < δ/2, for each n ≥ n(γ ).
Suppose that (d-C;i) holds for all i ∈ {1, . . . , j}, where j ≥ 2; we must establish
that

(d-C;j+1) d(xn, xn+j+1) < ε + δ/2, for all n ≥ m(γ )
holds too. Suppose by contradiction that (d-C;j+1) would be false:

C(ε, δ) := {n ∈ N(m(γ ),≤); d(xn, xn+j+1) ≥ ε + δ/2} is nonempty,

and put n = minC(ε, δ). By (d-asy) and triangular inequality,

d(xn+1, xn+j+1) ≥ d(xn, xn+j+1)− d(xn, xn+1) ≥ ε + δ/2− δ/6 = ε + δ/3;

wherefrom, in view of (rela-G),

(P0 −G)(xn, xn+j ) = d(xn+1, xn+j+1)−G(xn, xn+j ) ≥ ε + δ/3−Gn > ε > 0.

On the other hand, by the full property of (xn),
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xn < xn+j and L(xn, xn+j ) > 0, whence (P −H)(xn, xn+j ) > 0

if we remember that (P −H,L) is positive. Putting these together, one derives that
the contraction property holds

((P0 −G)(xn, xn+j ), (P −H)(xn, xn+j )) ∈ Ω .

Moreover, by the choice of our data and P=orbitally small,

(0 <)(P −H)(xn, xn+j ) ≤ P(xn, xn+j ) < ε + δ.
Combining with the underlying Meir–Keeler property of Ω gives

d(xn+1, xn+j+1)−G(xn, xn+j ) = (P0 −G)(xn, xn+j ) ≤ ε;
wherefrom, again taking (rela-G) into account,

d(xn+1, xn+j+1) ≤ ε +G(xn, xn+j ) ≤ ε +Gn < ε + δ/6.

Combining with the triangular inequality gives, finally,

d(xn, xn+j+1) ≤ d(xn, xn+1)+ d(xn+1, xn+j+1) < ε + δ/6+ δ/6 < ε + δ/2,

in contradiction with the choice of n ∈ C(ε, δ). Hence, the precise inductive relation
holds; wherefrom, (xn; n ≥ 0) is d-Cauchy, as claimed.

Part 5 As X is (a-o-f,d)-complete,

xn
d−→ z as n→∞, for some (uniquely determined) z ∈ X.

There are several cases to discuss.

Case 5a Suppose that T is (a-o-f,d)-continuous. Then, yn := T xn
d−→ T z as

n → ∞. On the other hand, (yn = xn+1; n ≥ 0) is a subsequence of (xn; n ≥ 0);

whence yn
d−→ z, and this yields (as d is separated), z = T z.

Case 5b Suppose that (≤) is (a-o-f,d)-selfclosed. For the moment,

(xn ≤ z, ∀n); hence, (T xn ≤ T z, ∀n), as T =increasing.

We show that b := d(z, T z) > 0 yields a contradiction.

From the d-convergence relation (and a metrical property of d(., .))

d(xn, z), d(T xn, z)→ 0, d(xn, T xn)→ 0, as n→∞;
d(xn, T z), d(T xn, T z)→ b, as n→∞.

On the other hand, by the full property of (xn; n ≥ 0),

E := {n ∈ N; (xn+1 =)T xn = T z} is an asingleton,

so that the following separation property holds:

(sepa) ∃h = h(z): n ≥ h *⇒ xn 	= z, T xn 	= T z; hence, xn < z, T xn < T z.

Without loss of generality, one may assume that h = 0 in this relation; that is,
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(sepa-0) (∀n): xn 	= z, T xn 	= T z; hence, xn < z, T xn < T z.

For, otherwise, passing to the subsequence

(un = xh+n; n ≥ 0) (hence, (un = T nu0; n ≥ 0), where u0 = xh),

this property holds, as well as the remaining ones

(un; n ≥ 0) is an (a-o-f)-sequence with un
d−→ z as n→∞.

Having these precise, we have, as a direct consequence,

(∀n): L(xn, z) > 0; hence, (P −H)(xn, z) > 0,

in view of (P −H,L) being positive. Moreover,

(lim-G) limn G(xn, z) = 0 (as G=orbitally convergent),
so that (by the above) limn(P0 −G)(xn, z) = b > 0.

This, by definition, tells us that

(posi) (∃k ≥ 0): n ≥ k *⇒ (P0 −G)(xn, z) = d(T xn, T z)−G(xn, z) > 0.

Again without loss of generality, one may assume that k = 0 in this relation; that is,

(posi-0) (∀n): (P0 −G)(xn, z) = d(T xn, T z)−G(xn, z) > 0.

[The argument was already developed; so, we do not repeat it]. As a consequence,
the geometric contractive condition is applicable to (xn, z), for all n, and gives

(contra) (∀n): ((P0 −G)(xn, z), (P −H)(xn, z)) ∈ Ω; whence,
(P0 −G)(xn, z) < (P −H)(xn, z) (as Ω=upper diagonal).

There are several sub-cases to be analyzed.

Alter 1 Assume that P is orbitally singular asymptotic. Passing to lim inf as n→
∞ in the second part of relation (contra) above gives (via H ≥ 0)

b = lim infn(P0 −G)(xn, z) ≤ lim infn(P −H)(xn, z) ≤ lim infn P (xn, z).

This, however, contradicts the very choice of P . Hence, necessarily, b = 0 [i.e.,
z = T z], and the conclusion follows.

Alter 2 Suppose that P is orbitally regular asymptotic, and Ω is geomet-
ric/asymptotic bilateral separable. By (contra) (the second half) and (H ≥ 0),

(∀n): (P0 −G)(xn, z) < (P −H)(xn, z) ≤ P(xn, z); whence,
limn(P −H)(xn, z) = b [by (lim-G) and the choice of P ].

This, again via (lim-G) and (contra), cannot be in agreement with the bilateral
separable property of Ω . Hence, necessarily, b = 0; i.e., z = T z.
Alter 3 Suppose that P − H is orbitally strongly regular asymptotic, and Ω is
geometric/asymptotic left separable. By the very definition above, there exists a
subsequence (yn := xi(n); n ≥ 0) of (xn; n ≥ 0), with (according to (lim-G))
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(βn := (P0 −G)(yn, z)→ b as n→∞ and) (P −H)(yn, z) = b, for all n.

By the contractive property (contra), we get

(βn, b) ∈ Ω (hence, βn < b), ∀n); as well as (by the above) βn→ b− as n→∞.

From a previous auxiliary fact, there exists a subsequence (γn := βi(n); n ≥ 0) of
(βn; n ≥ 0), with

(γn) is strictly ascending, (γn, b) ∈ Ω (hence, γn < b), ∀n),
with, in addition, limn γ = b; whence, γn→ b− as n→∞.

This, however, is not compatible with the left separated property of Ω . Hence, b =
0; i.e., z = T z, and the conclusion follows. The proof is thereby complete.

Note that multivalued enlargements of these facts are possible, under the lines in
Nadler [31], and the obtained facts extend some related statement in Choudhury and
Metiya [9]; we shall discuss these in a separate paper.

7 Particular Cases

Let (X, d,≤) be a quasi-ordered metric space. Furthermore, let T be a selfmap ofX,
supposed to be semi-progressive and increasing. As precise, we have to determine
appropriate conditions under which Fix(T ) is nonempty. The specific directions
under which this problem is to be solved were already listed. Sufficient conditions
for getting such properties are being founded on the ascending orbital full concepts
we just introduced. Finally, the specific contractive properties to be used have been
described, and the main result incorporating all these is the already formulated one.
It is our aim in the sequel to derive some particular cases of it, with a technical
relevance. Remember that we defined the (basic) maps [for x, y ∈ X]

P0(x, y) = d(T x, T y), L1(x, y) = min{d(x, y), d(T x, T y)},
L(x, y) = min{d(x, T x), d(y, T y), d(x, y), d(T x, T y)},
M1(x, y) = max{d(x, T x), d(y, T y)},M(x, y) = diam{x, T x, y, T y}.

Furthermore, let us complete this with the family of functions [for x, y ∈ X]

A0(x, y) = max{d(x, T x), d(y, T y)}, A1(x, y) = d(T x, T y),
A2(x, y) = (1− ξ)d(x, T x)+ ξd(y, T y) (where 0 ≤ ξ < 1),
A3(x, y) = (1− η)d(x, y)+ ηd(T x, T y) (where 0 ≤ η < 1)
A4(x, y) = (1/2)[d(x, T y)+ d(T x, y)].

For a final completion, let us introduce the diagonal type subset of R2+
Δ = {(λ, μ) ∈ R+ × R0+; λ ≤ μ}.
This set is decomposed in two (mutually disjoint) parts, expressed as

Δs = {(λ, μ) ∈ Δ; λ < μ} (the singular part),
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Δr = {(λ, μ) ∈ Δ; λ = μ} = {(ν, ν); ν ∈ R0+} (the regular part).

For each (λ, μ) ∈ Δ, let us introduce the map B := B[λ,μ] : X ×X→ R+, as

B(x, y) = d(y, T y)[λ+ d(x, T x)]/[μ+ d(x, y)], x, y ∈ X.

Furthermore, let us define the singular and regular maps

A5=one of the maps B[λ,μ] with (λ, μ) ∈ Δs ;
A6=one of the maps B[λ,μ] with (λ, μ) ∈ Δr

(or, equivalently,
A6=one of the maps B[ν, ν] with ν ∈ R0+);

the reason of such a splitting will become clear a bit further. Finally, for each
(α, β) ∈ Δ, let us introduce the map C := C[α, β] : X ×X→ R+, as

C(x, y) = d(x, T x)[α + d(y, T y)]/[β + d(T x, T y)], x, y ∈ X.

Then, let us define

A7=one of the maps C[α, β] with (α, β) ∈ Δ.

Fix in the following ξ, η ∈ [0, 1[, (λ, μ) ∈ Δs , (ν, ν) ∈ Δr , (α, β) ∈ Δ, and
(according to the previous conventions) denote

Z = {0, 1, 2, 3, 4, 5, 6, 7}; hence, card(exp(Z)) = 28 − 1 = 255.

For each subset Θ ∈ exp(Z), let E(Θ) ∈ F(X ×X,R+) be the mapping

E(Θ)(x, y) = max{Ai(x, y); i ∈ Θ}, x, y ∈ X.

The maps P : X ×X→ R+ to be considered are of the form

P = E(Θ); where Θ ∈ exp(Z).

So, it remains to establish which maps in this family are compatible with the
conditions required by the variant of our main result, characterized as

(H-zero) H(x, y) = 0, for x, y ∈ X (hence, H is telescopic null).

A technical motivation of this restriction is due to the fact that, unfortunately, the
strong orbitally regular asymptotic property of P−H = E(Θ)−H is pretty difficult
to be assured for H 	= 0. So, for a complete translation of our main result to this
particular case, the only option to be considered is to take H = 0 in the sequel.
But, for an incomplete translation of the same—founded on this alternative being
ignored—the case of H 	= 0 is technically acceptable.

To begin with, define the set-family

Z∗ = {Θ ∈ exp(Z); {0, 1, 2, 3, 5, 6, 7} ∩Θ 	= ∅};
as we will see, all conditions to be discussed are essentially depending on it.

(I) A first set of answers refers to the positive and boundedness conditions
(expressed in terms of a certain map K ∈ F(X ×X,R+)):
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(pos) (P,K) is positive: x ≤ y and K(x, y) > 0 imply P(x, y) > 0;
(bd) (P,K) is bounded: x ≤ y implies P(x, y) ≤ K(x, y);
(fix-bd) (P,K) is fix bounded: x, y ∈ Fix(T ) and x ≤ y imply P(x, y) ≤
K(x, y).

Proposition 19 The following assertions hold for the arbitrary fixed Θ ∈ Z∗:
(71-1) (E(Θ), L) is positive and ((E(Θ), L1) is positive if {1, 3} ∩Θ 	= ∅).
(71-2) (E(Θ),M) is bounded when Θ ⊆ {0, 1, 2, 3, 4}.
(71-3) (E(Θ),M) is fix bounded.

Proof

(i) Let x, y ∈ X be such that x ≤ y, L(x, y) > 0. Then, Ai(x, y) > 0, for
all i ∈ {0, . . . , 7}, i 	= 4, and the conclusion follows, by the choice of Θ .
Likewise, let x, y ∈ X be such that x ≤ y, L1(x, y) > 0. Then, Ai(x, y) > 0,
i ∈ {1, 3}, and we are done.

(ii) By definition, we have Ai(x, y) ≤ M(x, y), ∀x, y ∈ X, ∀i ∈ {0, 1, 2, 3, 4},
and this, along with Θ ⊆ {0, 1, 2, 3, 4}, gives the stated conclusion.

(iii) Let x, y ∈ Fix(T ) be such that x ≤ y. By definition,

Ai(x, y) = d(x, y) = M(x, y), i ∈ {1, 3, 4}; Aj(x, y) = 0 ≤ M(x, y),
j ∈ {0, 2},
B[λ,μ](x, y) = 0 ≤ M(x, y), (λ, μ) ∈ Δ; C[α, β](x, y) = 0 ≤ M(x, y),
(α, β) ∈ Δ;

wherefrom, combining with the maps A5 or A6 having the form B[λ,μ] and
the map A7 having the form C[α, β], we are done.

(II) The second answer refers to the telescopic boundedness condition

(t-bd) P is telescopic bounded: x ≤ T x implies P(x, T x) ≤ M1(x, T x).

Proposition 20 All maps P = E(Θ), where Θ ∈ Z∗ are telescopic bounded.
Proof Firstly, we prove that any function P = E({i}) = Ai where i ∈ Z has such
a property. Given the arbitrary point x ∈ X(T ,≤), we have

A0(x, T x) = M1(x, T x), A1(x, T x) = d(T x, T 2x) ≤ M1(x, T x),
A2(x, T x) ≤ (1− ξ + ξ)M1(x, T x) = M1(x, T x),
A3(x, T x) ≤ (1− η + η)M1(x, T x) = M1(x, T x),
A4(x, T x) = (1/2)d(x, T 2x) ≤ (1/2)[d(x, T x)+ d(T x, T 2x)] ≤ M1(x, T x);
B[λ,μ](x, T x) = d(T x, T 2x)[λ + d(x, T x)]/[μ + d(x, T x)] ≤ (T x, T 2x) ≤
M1(x, T x), C[α, β](x, T x) = d(x, T x)[α+ d(T x, T 2x)]/[β + d(T x, T 2x)] ≤
d(x, T x) ≤ M1(x, T x),

and this, along with the maps A5 or A6 having the form B[λ,μ] and the map A7
having the form C[α, β], proves the claim. Secondly, the property in question is
transferable to E(Θ) = max{Ai; i ∈ Θ}, and from this, all is clear.

(III) The next answer refers to the orbitally small property.
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Proposition 21 All maps P = E(Θ), where Θ ∈ Z∗ are orbitally small.
Proof It will suffice to establish that all mapsQ ∈ {Ai; i ∈ Z} have such a property.
There are two cases to be discussed.

Case 1 Q ∈ {A0, A1, A2, A3, A4}. By definition, we have Ai(x, y) ≤ M(x, y),
for all x, y ∈ X, and all i ∈ {0, 1, 2, 3, 4}; i.e., the couples (Q,M), where Q ∈
{A0, A1, A2, A3, A4} are bounded; this, along with a previous auxiliary fact, assures
us that the underlying maps are orbitally small.

Case 2 Q ∈ {A5, A6, A7}; or, equivalently, Q ∈ {B,C}, where B = B[λ,μ], for
some (λ, μ) ∈ Δ, and C = C[α, β], for some (α, β) ∈ Δ. Take the d-asymptotic
(a-o-f)-sequence (xn = T nx0; n ≥ 0) in X(T ,≤), as well as the couple (ε, δ) with
ε > δ > 0. Furthermore, let γ ∈]0, δ/6[ be arbitrary for the moment and n(γ ) be
the attached asymptotic rank. Finally, let j ≥ 2, k ≥ n(γ ), n ≥ k fulfill

d(xm, xm+i ) < ε + δ/2 for (m ≥ k, i ∈ {1, . . . , j}); d(xn, xn+j+1) ≥ ε + δ/2;

we intend to show that, by an appropriate choice of γ , one derives Q(xn, xn+j ) <
ε + δ. Denote, as usual, (ρn = d(xn, xn+1); n ≥ 0). By these hypotheses, we have

d(xn, xn+j+1) ≤ d(xn, xn+j )+ ρn+j < ε + δ/2+ γ .

On the other hand, the triangular inequality (and n ≥ k ≥ n(γ )) gives

d(xn, xn+j ) ≥ d(xn, xn+j+1)− ρn+j ≥ ε + δ/2− γ ,
d(xn+1, xn+j+1) ≥ d(xn, xn+j+1)− ρn ≥ ε + δ/2− γ .

In this case, by definition,

(ev-1) B(xn, xn+j ) = ρn+j [λ+ ρn]/[μ+ d(xn, xn+j )] ≤
ρn+j [λ+ ρn]/[μ+ ε + δ/2− γ ] < γ [λ+ γ ]/[μ+ ε + δ/2− γ ],

(ev-2) C(xn, xn+j ) = ρn[α + ρn+j ]/[β + d(xn+1, xn+j+1)] ≤
ρn[α + ρn+j ]/[β + ε + δ/2− γ ] < γ [α + γ ]/[β + ε + δ/2− γ ].

Denote, for 0 < γ < δ/6,

Φ(γ ) = γ [λ+ γ ]/[μ+ ε + δ/2− γ ], Ψ (γ ) = γ [α + γ ]/[β + ε + δ/2− γ ].
By the above evaluations, we have

B(xn, xn+j ) < Φ(γ ), C(xn, xn+j ) < Ψ (γ ) (for all such γ ).

On the other hand,

limγ→0+Φ(γ ) = 0 < ε + δ, limγ→0+ Ψ (γ ) = 0 < ε + δ.
This tells us that, if γ ∈]0, δ/6[ is small enough, we have

B(xn, xn+j ) < Φ(γ ) < ε + δ; C(xn, xn+j ) < Ψ (γ ) < ε + δ.
Putting these together yields the desired conclusion involving the maps (Ai; i ∈ Z).
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Case 3 The final conclusion relative to the maps E(Θ) is now clear [by a previous
auxiliary fact] via E(Θ) = max{Ai; i ∈ Θ} and all maps Ai where i ∈ Θ being
endowed with the orbitally small property.

(IV) Concerning the orbital asymptotic properties, the situation is a little bit
complicated. Precisely, the following synthetic answer is available.

Proposition 22 The following are valid, for the subset Θ ∈ Z∗:
(74-1) Each (admissible) map P = E(Θ), where {0, 1, 6} ∩ Θ = ∅ is orbitally

singular asymptotic.
(74-2) Each (admissible) map P = E(Θ), where {0, 1, 6} ∩ Θ 	= ∅, is orbitally

regular asymptotic.
(74-3) Each (admissible) map P = E(Θ), where {1, 6} ∩ Θ = ∅ and 0 ∈ Θ , is

orbitally strongly regular asymptotic.

Proof Let the (a-o-f)-sequence (xn = T nx0; n ≥ 0) inX(T ,≤) and the point z ∈ X
be such that

xn
d−→ z, (xn < z for all n), and b := d(z, T z) > 0.

From the convergence relation (and taking a metrical property of d(., .) into
account), one gets, as n→∞,

d(xn, z), d(T xn, z)→ 0, d(xn, T xn)→ 0, d(xn, T z), d(T xn, T z)→ b.

This, by definition, gives (as n→∞)

A0(xn, z) → b, A1(xn, z) → b, A2(xn, z) → ξb < b, A3(xn, z) → ηb < b,
A4(xn, z) → b/2 < b; wherefrom, any map Q ∈ {A2, A3, A4} is orbitally
singular asymptotic and any mapQ ∈ {A0, A1} is orbitally regular asymptotic.

Moreover, again by definition, we have (putting (ρn := d(xn, xn+1); n ≥ 0)) for
each (λ, μ) ∈ Δ, (α, β) ∈ Δ, and all n,

B[λ,μ](xn, z) = b[λ+ ρn]/[μ+ d(xn, z)],
C[α, β](xn, z) = ρn[α + b]/[β + d(xn+1, T z)].
This, by a limit process, gives

limn A5(xn, z) = bλ/μ < b, limn A6(xn, z) = bν/ν = b, limn A7(xn, z) = 0 < b,
which tells us that any map Q ∈ {A5, A7} is orbitally singular asymptotic and the

mapQ = A6 is orbitally regular asymptotic.

Finally, the same convergence properties of the sequences (Ai(xn, z); n ≥ 0), where
i ∈ {2, 3, 4, 5, 7}, tell us that, for a sufficiently large n(z) ≥ 0, we must have

(for all n ≥ n(z)): A0(xn, z) = b, and Ai(xn, z) < b, ∀i ∈ {2, 3, 4, 5, 7},
which, in particular, tells us that A0 is orbitally strongly regular asymptotic.

By the above discussion, it is clear that our conclusion follows.
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(V) Finally, let us make some remarks about the remaining properties appearing
there. Call J : X ×X→ R+, regular provided

(reg) J is telescopic null, orbitally Cauchy, and orbitally convergent.

Two examples are of interest; namely, for some U,W ∈ F1(R+), V ∈
F2(R+),

(ex-1) J (U)(x, y) = U(min{d(x, T x), d(y, T y), d(x, T y), d(T x, y)}),
x, y ∈ X,

(ex-2) J (W, V )(x, y) = W(d(x, T x)d(y, T y))V (d(x, T y)d(T x, y)),
x, y ∈ X.

Here, for simplicity, we denoted

F1(R+) = {U ∈ F(R+); U=increasing and U(t)→ 0 = U(0) as t → 0},
F2(R+) = {V ∈ F(R+); V (0) = 0 and V∞ := supV (R+) <∞}.

Proposition 23 We have, for each J ∈ {J (U), J (W, V )},
(75-1) J is necessarily regular (see above).
(75-2) (E(Θ), P0 − J ) is fix bounded, for each Θ ∈ Z∗.
Proof

(i) Clearly, J is telescopic null; since, for each x ∈ X,

J (U)(x, T x) = U(0) = 0;
J (W, V )(x, T x) = W(d(x, T x)d(T x, T 2x))V (0) = 0.

(ii) On the other hand, J is orbitally Cauchy; i.e.,

for each d-asymptotic (a-o-f)-sequence (xn = T nx0; n ≥ 0) in X(T ,≤), we
have Jn→ 0 as n→∞, where (Jn := sup{J (xn, xn+i ); i ≥ 1}; n ≥ 0).

In fact, let (xn) be as in this premise. By definition, we have

ρn := d(xn, xn+1)→ 0; whence, τn := sup{ρn, ρn+1, . . .} → 0.

This yields, in a direct way,

(J = J (U)): J (xn, xn+i ) ≤ U(ρn), ∀n ≥ 0, ∀i ≥ 1, whence Jn→ 0.
(J = J (W, V )): J (xn, xn+i ) ≤ V∞W(τ 2

n ), ∀n ≥ 0, ∀i ≥ 1, whence Jn→ 0.

(iii) Finally, J is orbitally convergent, in the sense,

(o-conv) for each (a-o-f)-sequence (xn = T nx0; n ≥ 0) in X(T ,≤), and

each z ∈ X with xn
d−→ z, (xn < z, ∀n), and b := d(z, T z) > 0, we have

J (xn, z)→ 0.

In fact, let (xn) and z be as in this premise. Then (cf. the above notation),

(J = J (U)): J (xn, z) ≤ U(ρn), ∀n, whence J (xn, z)→ 0.
(J = J (W, V )): J (xn, z) ≤ V∞W(ρnb), ∀n; so, J (xn, z)→ 0.
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(iv) The required property means

x, y ∈ Fix(T ), x ≤ y imply E(Θ)(x, y) ≤ P0(x, y)− J (x, y);
or, equivalently (via J (x, y) = 0, x, y ∈ Fix(T ))

x, y ∈ Fix(T ), x ≤ y imply E(Θ)(x, y) ≤ P0(x, y) = M(x, y);
i.e., (E(Θ),M) is fix bounded.

But, according to a previous fact, this last property is fulfilled by any map
E(Θ); wherefrom, all is clear.

By these developments, it results that G ∈ {J (U), J (W, V )} fulfills all condi-
tions in the main result where the regularity condition appears. On the other hand,
H ∈ {J (U), J (W, V )} fulfills the positivity condition in the main result involving
P = E(Θ), under restrictive conditions upon Θ , U , W , and V . Precisely, we have
the following statement:

Proposition 24 The following are valid, for a given Θ ∈ Z∗,
(76-1) the couple (E(Θ) − J (U), L) is positive, whenever {0, 2} ∩ Θ 	= ∅ and
U(t) < t , for all t > 0.

(76-2) (E(Θ)−J (W, V ), L) is positive, under 0 ∈ Θ and V∞W(t2) < t , ∀t > 0.

Proof Let x, y ∈ X be such that

x ≤ y, L(x, y) > 0; hence, min{d(x, T x), d(y, T y)} > 0.

Under these conditions, one gets

(pp-1) J (U)(x, y) ≤ U(min{d(x, T x), d(y, T y)}) <
min{d(x, T x), d(y, T y)} ≤ min{A0(x, y), A2(x, y)} ≤ E(Θ)(x, y);

(pp-2) J (W, V )(x, y) ≤ V∞W(d(x, T x)d(y, T y)) ≤
V∞W(A2

0(x, y)) < A0(x, y) ≤ E(Θ)(x, y);
and the assertion follows.

In other words, the couple of maps (E(Θ),H), where the subset Θ ∈ Z∗
and the map H ∈ {J (U), J (W, V )} are taken as before, may be operational for
the existence part of our main result that excludes the orbitally strongly regular
asymptotic alternative. But, if we want that a complete translation of our main result
be reached (so as to include the orbitally strongly regular asymptotic alternative as
well), the only option to be considered is H = 0, because the underlying property
of E(Θ)−H is holding only if this choice is effective.

Now, by simply combining this with our main result, one gets the following
rational type fixed point statement (referred to as Rational Function Meir–Keeler
theorem; in short, (MK-f-ra)).

Theorem 6 Assume that the couple (P0 − G,E(Θ)) is (d,≤;Ω)-contractive, for
some regular map G : X × X → R+, some subset Θ ∈ Z∗ and some relation
Ω ∈ exp(R0+ × R0+), with

Ω is upper diagonal and geometric/asymptotic Meir–Keeler.
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In addition, let X be (a-o-f,d)-complete. Then,

(71-a) T is a strong Picard operator (modulo (d,≤)), provided (in addition) T is
(a-o-f,d)-continuous;

(71-b) T is a Bellman Picard operator (modulo (d,≤)), provided (≤) is (a-o-f,d)-
selfclosed, and one of the following groups of extra conditions is holding;

(71-b1) {0, 1, 6) ∩Θ = ∅;
(71-b2) {0, 1, 6} ∩Θ 	= ∅, and Ω is geometric/asymptotic bilateral separable;
(71-b3) {1, 6} ∩Θ = ∅, 0 ∈ Θ , and Ω is geometric/asymptotic left separable.

It remains now to expose some examples of relations Ω with such properties.
Ex-I) Letting χ ∈ F(re)(R0+, R), consider the optional extra conditions:

(MK-adm) χ is Meir–Keeler admissible:
∀γ > 0, ∃β > 0, (∀t): γ < t < γ + β *⇒ ϕ(t) ≤ γ

(BW-s-adm) χ is strongly Boyd–Wong admissible: Λ±χ(s) < s, for all s > 0.

Given the functional couple (P,G) over F(X×X,R+), let us say that (P0−G,P )
is (d,≤;χ)-contractive, if

(P0 −G)(x, y) ≤ χ(P (x, y)), ∀x, y ∈ X, x ≤ y, P(x, y) > 0.

As a direct consequence of the above result, we get the following rational type
fixed point statement (referred to as Rational Function Boyd–Wong theorem; in
short, (BW-f-ra)).

Theorem 7 Assume that (P0−G,E(Θ)) is (d,≤;χ)-contractive, for some regular
mapping G : X × X → R+, some subset Θ ∈ Z∗ and some function χ ∈
F(re)(R0+, R) with the Meir–Keeler admissible property. In addition, let X be (a-
o-f,d)-complete. Then, the following conclusions hold:

(72-a) T is a strong Picard operator (modulo (d,≤)), provided (in addition) T is
(a-o-f,d)-continuous;

(72-b) T is a Bellman Picard operator (modulo (d,≤)), provided (≤) is (a-o-f,d)-
selfclosed, and one of the following groups of extra conditions is holding:

(72-b1) {1, 6} ∩Θ = ∅;
(72-b2) {1, 6} ∩Θ 	= ∅ and χ is strongly Boyd–Wong admissible.

Proof Let Ω := Ω[χ ] stand for the relation over R0+
(t, s ∈ R0+): (t, s) ∈ Ω iff t ≤ χ(s) [clearly, Ω is upper diagonal].

By a series of auxiliary facts involving these objects, we have

(p-1) Ω is Meir–Keeler admissible when χ ∈ F(re)(R0+, R) is endowed with the
Meir–Keeler admissible property;

(p-2) Ω is geometric/asymptotic bilateral separable when χ ∈ F(re)(R0+, R) is
strongly Boyd–Wong admissible;

(p-3) Ω is geometric/asymptotic left separable;

and, from this, all is clear.
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(Ex-II) Let (ψ, ϕ) be a pair of functions over F(R0+, R), fulfilling

(norm) (ψ, ϕ) is normal:
ψ is increasing and ϕ is strictly positive (ϕ(R0+) ⊆ R0+).

The following extra conditions upon this normal couple are to be considered:

(as-pos) ϕ is asymptotic positive:
for each strictly descending sequence (tn; n ≥ 0) in R0+ and each ε > 0
with tn→ ε+, we must have lim supn(ϕ(tn)) > 0.

(bd-osc) (ψ, ϕ) is limit-bounded oscillating:
for each sequence (tn; n ≥ 0) in R0+ and each β > 0 with tn→ β,
we have lim supn(ϕ(tn)) > ψ(β + 0)− ψ(β − 0).

(bd-le-osc) (ψ, ϕ) is bounded left oscillating:
for each β > 0, we have ϕ(β) > ψ(β)− ψ(β − 0).

Given the couple of maps (P,G) over F(X × X,R+) and the (normal) couple
(ψ, ϕ) over F(R0+, R), let us say that (P0 −G,P ) is (d,≤;ψ, ϕ)-contractive if

ψ((P0 −G)(x, y)) ≤ ψ(P (x, y))− ϕ(P (x, y)),
∀x, y ∈ X, x ≤ y, (P0 −G)(x, y) > 0, P(x, y) > 0.

As another direct consequence of the above result, we get the following rational
type fixed point statement (referred to as Rational Function Rhoades theorem; in
short, (R-f-ra)).

Theorem 8 Assume that (P0 − G,E(Θ)) is (d,≤;ψ, ϕ)-contractive, for some
regular mapping G : X × X → R+, some subset Θ ∈ Z∗ and some normal
couple (ψ, ϕ) over F(R0+, R), with ϕ=asymptotic positive. In addition, let X be
(a-o-f,d)-complete. Then,

(73-a) T is a strong Picard operator (modulo (d,≤)), provided (in addition) T is
(a-o-f,d)-continuous;

(73-b) T is a Bellman Picard operator (modulo (d,≤)), provided (≤) is (a-o-f,d)-
selfclosed, and one of the following groups of extra conditions is holding:

(73-b1) {0, 1, 6} ∩Θ = ∅;
(73-b2) {0, 1, 6} ∩Θ 	= ∅ and (ψ, ϕ) is limit-bounded oscillating;
(73-b3) {1, 6} ∩Θ = ∅, 0 ∈ Θ , and (ψ, ϕ) is bounded left oscillating.

Proof Let Ω := Ω[ψ, ϕ] stand for the relation over R0+
(t, s ∈ R0+): (t, s) ∈ Ω iff ψ(t) ≤ ψ(s)− ϕ(s) (clearly, Ω is upper diagonal).

By a series of auxiliary facts involving these objects, we have

(q-1) Ω is Meir–Keeler admissible when ϕ is asymptotic positive;
(q-2) Ω is geometric/asymptotic bilateral separable when the couple (ψ, ϕ) is

limit-bounded oscillating;
(q-3) Ω is geometric/asymptotic left separable, when the couple (ψ, ϕ) is

bounded left oscillating;

and, from this, all is clear.
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Some particular cases of this result may be described as follows.

Case 1 Suppose that (≤) is the trivial quasi-order on X and G = 0. Then, the
Rational Function Boyd–Wong theorem (BW-f-ra) includes in a direct way the basic
statements due to Boyd and Wong [6], Matkowski [25], and Leader [24], and the
Rational Function Rhoades theorem (R-f-ra) extends some contributions in Dutta
and Choudhury [14].

Case 2 Suppose that (≤) is a (partial) order andG = 0. Then, the Rational Function
Boyd–Wong theorem (BW-f-ra) includes the related statements in Agarwal et al. [1]
and Cabrera et al. [7], and the Rational Function Rhoades theorem (R-f-ra) extends
some related facts in Yadava et al., [49]; see also Turinici [47].

Case 3 Suppose that (≤) is again a (partial) order. Then, under G = J (U), the
Rational Function Boyd–Wong theorem (BW-f-ra) includes the related statement in
Aydi et al [2]. The variant of this result with H = J (W, V ) seems to be new.

Finally, it is worth noting that, by the used techniques, our particular fixed point
statement does not include the one in Chandok et al. [8]. However, if one starts from
a certain refinement of our developments, this inclusion holds; further aspects will
be considered elsewhere.

References

1. R.P. Agarwal, M.A. El-Gebeily, D. O’Regan, Generalized contractions in partially ordered
metric spaces. Appl. Anal. 87, 109–116 (2008)

2. H. Aydi, S.H. Amor, E. Karapinar, Berinde-type generalized contractions on partial metric
spaces. Abstr. Appl. Anal. 2013, 312479 (2013)

3. S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations
intégrales. Fund. Math. 3, 133–181 (1922)

4. V. Berinde, Approximating fixed points of weak contractions using the Picard iteration.
Nonlinear Anal. Forum 9, 43–53 (2004)

5. P. Bernays, A system of axiomatic set theory. Part III: Infinity and enumerability analysis. J.
Symbol. Logic 7, 65–89 (1942)

6. D.W. Boyd, J.S.W. Wong, On nonlinear contractions. Proc. Am. Math. Soc. 20, 458–464 (1969)
7. I. Cabrera, J. Harjani, K. Sadarangani, A fixed point theorem for contractions of rational type

in partially ordered metric spaces. Ann. Univ. Ferrara 59, 251–258 (2013)
8. S. Chandok, B.S. Choudhury, N. Metiya, Fixed point results in ordered metric spaces for

rational type expressions with auxiliary functions. J. Egypt. Math. Soc. 23, 95–101 (2015)
9. B.S. Choudhury, N. Metiya, Fixed point theorems for almost contractions in partially ordered

metric spaces. Ann. Univ. Ferrara 58, 21–36 (2012)
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On G(σ,h)-Convexity of the Functions and
Applications to Hermite-Hadamard’s
Inequality

Muhammad Uzair Awan, Muhammad Aslam Noor, Khalida Inayat Noor,
Yu-Ming Chu, and Sara Ellahi

Abstract The aim of this chapter is to introduce the notion of G(σ,h)-convex
functions a generalized exponentially (σ, h)-convex functions. We show that for
suitable choices of real function h(.), the class of G(σ,h)-convex functions reduces
to some other new classes of Gσ -convex functions. We also show that for G = exp,
we have another new class which is called as G(σ,h)-convex function. For the
applications of this class we derive some new variants of Hermite-Hadamard’s
inequality using the class of G(σ,h)-convex functions. In the last section, we define
the class of strongly G(σ,h)-convexity. We also derive a new Hermite-Hadamard like
inequality involving strongly G(σ,h)-convexity. Several new special cases which can
be deduced from the main results of the chapter are also discussed.

1 Introduction and Preliminaries

An interval I is said to be a σ -convex set, if

Mσ(u, v;μ) = [μuσ + (1− μ)vσ ] 1
σ ∈ I, ∀u, v ∈ I, μ ∈ [0, 1], σ 	= 0.

And function X : I → R is said to be σ -convex function, if

X(Mσ (u, v;μ)) ≤ μX(u)+ (1− μ)X(v), ∀u, v ∈ I, μ ∈ [0, 1].
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Fang and Shi [11] generalized the notion of σ -convex functions and introduced the
notion of (σ, h)-convex functions.

Definition 1 ([11]) Let h : (0, 1)→ R be a real function. We say that X : I → R

be a (σ, h)-convex functions, if

X(Mσ (u, v;μ)) ≤ h(μ)X(u)+ h(1− μ)X(v), ∀u, v ∈ I, μ ∈ (0, 1).

Note that for σ = 1, the class of (σ, h)-convex functions reduces to the class of
h-convex functions which was introduced and studied by Varosanec [20]. We can
recapture the class of harmonic convex functions [14] from the class of (σ, h)-
convex functions by taking σ = −1. We can also get other classes of σ -convexity
by taking suitable choices of function h(.). For some recent studies on (σ, h)-convex
functions and its generalizations, see [2, 15, 17, 18].
Dragomir and Gomm introduced the class of exponential convex functions as:

Definition 2 ([7]) A real valued function X : I = [a1, a2] ⊂ R → R is said to be
exponentially convex function, if

eX(μa1+(1−μ)a2) ≤ μeX(a1) + (1− μ)eX(a2), ∀a1, a2 ∈ I, μ ∈ [0, 1].

Polyak [19] introduced the notion of strongly convex functions and discussed its
basic properties. For some recent investigations on strong convexity property of
functions, see [1–3].
Hermite-Hadamard’s inequality is one of the most studied inequality involving
convex functions. This result provides us a necessary and sufficient condition for
a function to be convex. It reads as:

Theorem 1 Let X : I = [a1, a2] → R be a convex function. If X ∈ [a1, a2], then

X

(
a1 + a2

2

)
≤ 1

a2 − a1

a2∫

a1

X(u)du ≤ X(a1)+X(a2)

2
.

Fang and Shi [11] also proved several variants of classical inequalities including
Hermite-Hadamard’s inequality utilizing the notion of (σ, h)-convex functions.
Dragomir and Gomm [7] obtained a variant of Hermite-Hadamard’s inequality
using exponentially convex function. For some more details on convexity, its
generalizations and related inequalities interested readers are referred to [1, 3–5, 8–
10, 12, 13, 19, 21].
Research work going on in the field of inequalities involving convexity and
its generalizations leads us to give a new generalization of exponential convex
functions. This new class is named as G(σ,h)-convex functions. As special cases
of this class we also define some other classes of exponentially convexity. We
also derive some new variants of Hermite-Hadamard’s inequality using the class of
G(σ,h)-convex functions and discuss some new special cases of the obtained result.
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In the last section, we define the notion of strongly G(σ,h)-convex functions and
derive a new version of Hermite-Hadamard’s inequality. This is the main motivation
of this chapter.

2 Results and Discussions

2.1 G(σ,h)-Convexity

In this section, we first define the class of G(σ,h)-convex functions and discuss
some other types of exponentially convex functions. After that we derive some
new variants of Hermite-Hadamard’s inequality using the class of G(σ,h)-convex
functions.

Definition 3 Let h : (0, 1)→ R be a real function. We say that a function X : I →
R is said to be an G(σ,h)-convex function with G ≥ 1, if

GX
(
[μa1

σ+(1−μ)a2
σ ] 1
σ

)
≤ h(μ)GX(a1) + h(1− μ)GX(a2), ∀a1, a2 ∈ I, μ ∈ (0, 1).

Note that if we take h(μ) = μ in Definition 3, then we have the class of Gσ -convex
function.

Definition 4 A function X : I → Ris said to be an Gσ -convex function with
G ≥ 1, if

GX([μa1
σ+(1−μ)a2

σ ] 1
σ ) ≤ μGX(a1) + (1− μ)GX(a2), ∀a1, a2 ∈ I, μ ∈ [0, 1].

If we take h(μ) = μs where s ∈ (0, 1] in Definition 3, then we have the class of
Breckner type of G(σ,s)-convex function.

Definition 5 A function X : I → R is said to be Breckner type of G(σ,s)-convex
function with G ≥ 1, if

GX([μa1
σ+(1−μ)a2

σ ] 1
σ ) ≤ μsGX(a1) + (1− μ)sGX(a2), ∀a1, a2 ∈ I, μ ∈ [0, 1].

If we take h(μ) = μ−s where s ∈ [0, 1] in Definition 3, then we have the class of
Godunova-Levin type of G(σ,s)-convex function.

Definition 6 A function X : I → R is said to be Godunova-Levin type of G(σ,s)-
convex function with G ≥ 1, if

GX([μa1
σ+(1−μ)a2

σ ] 1
σ ) ≤ μ−sGX(a1) + (1− μ)−sGX(a2), ∀a1, a2 ∈ I, μ ∈ (0, 1).
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If we take h(μ) = 1 in Definition 3, then we have the class of G(σ,P )-convex
function.

Definition 7 A function X : I → R is said to be G(σ,P )-convex function with
G ≥ 1, if

GX([μa1
σ+(1−μ)a2

σ ] 1
σ ) ≤ GX(a1) + GX(a2), ∀a1, a2 ∈ I, μ ∈ (0, 1).

If we take h(μ) = μ(1−μ) in Definition 3, then we have the class of G(σ,tgs)-convex
function.

Definition 8 A function X : I → R is said to be G(σ,tgs)-convex function with
G ≥ 1, if

GX([μa1
σ+(1−μ)a2

σ ] 1
σ ) ≤ μ(1− μ)[GX(a1) + GX(a2)], ∀a1, a2 ∈ I, μ ∈ (0, 1).

Note that if we take G = 1, then we have the class of (σ, h)-convex functions [11].
We would like to point out here that if we take σ = 1, then we have different classes
Gh-convex functions. Also if we take σ = −1, then we have some new classes of
harmonically Gh-convex functions. For example, if we take σ = −1 in Definition 3,
then we have the class of harmonically Gh-convex function.

Definition 9 Let h : (0, 1) → R be a real function. We say that a function X :
I \ {0} → R is said to be a harmonically Gh-convex function, if

G
X
(

a1a2
(1−μ)a1+μa2

)

≤ h(μ)GX(a1) + h(1− μ)GX(a2), ∀a1, a2 ∈ I, μ ∈ (0, 1).

Now for different suitable choices of real function h(.), we have some other new
classes of harmonically Gh-convex function. We left the details for interested
readers.
Another interesting special case of Definition 3 is taking G = exp, then we have the
class of eσ,h-convex functions, which is defined as:

Definition 10 Let h : (0, 1) → R be a real function. We say that a function X :
I → R is said to be an e(σ,h)-convex function, if

eX([μa1
σ+(1−μ)a2

σ ] 1
σ ) ≤ h(μ)eX(a1) + h(1− μ)eX(a2), ∀a1, a2 ∈ I, μ ∈ (0, 1).

We now derive new variants of Hermite-Hadamard’s inequality using the Defini-
tion 3.

Theorem 2 Let h : (0, 1)→ R be a real function. If X : I = [a1, a2] ⊂ R→ R is
an G(σ,h)-convex function and X ∈ L[a1, a2], then
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1

2h
( 1

2

)GX
([
a1
σ+a2σ

2

] 1
σ
)
≤ σ

a2
σ − a1

σ

a2∫

a1

uσ−1GX(u)du

≤ [GX(a1) + GX(a2)]
1∫

0

h(μ)dμ.

Proof Since it is given that X is an G(σ,h)-convex function, then

G
X

([
a1
σ+a2σ

2

] 1
σ

)

≤ h
(1

2

) [
GX([μa1

σ+(1−μ)a2
σ ] 1
σ ) + GX

(
[(1−μ)a1

σ+μa2
σ ] 1
σ

)]
.

Integrating both sides of above inequality, we have

1∫

0

GX
([
a1
σ+a2σ

2

] 1
σ
)
dμ

≤ h
(1

2

)
⎡

⎣
1∫

0

GX
(
[μa1

σ+(1−μ)a2
σ ] 1
σ

)
dμ+

1∫

0

GX
(
[(1−μ)a1

σ+μa2
σ ] 1
σ

)
dμ

⎤

⎦ .

This implies

1

2h
( 1

2

)GX
([
a1
σ+a2σ

2

] 1
σ
)
≤ σ

a2
σ − a1

σ

a2∫

a1

uσ−1GX(u)du. (1)

Also

GX([μa1
σ+(1−μ)a2

σ ] 1
σ ) ≤ h(μ)GX(a1) + h(1− μ)GX(a2).

Integrating both sides of above inequality, we have

σ

a2
σ − a1

σ

a2∫

a1

uσ−1GX(u)du ≤ [GX(a1) + GX(a2)]
1∫

0

h(μ)dμ. (2)

On summation of (1) and (2), we have the required results.

We now discuss some special cases of Theorem 2.

I. If h(μ) = μ in Theorem 2, then we have a new result for Gσ -convex function,
which reads as:
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Corollary 1 Under the assumptions of Theorem 2, ifX is Gσ -convex function, then

GX
([
a1
σ+a2σ

2

] 1
σ
)
≤ σ

a2
σ − a1

σ

a2∫

a1

uσ−1GX(u)du ≤ GX(a1) + GX(a2)

2
.

II. If h(μ) = μs in Theorem 2, then we have a new result for Breckner type of
G(σ,s)-convex function, which reads as:

Corollary 2 Under the assumptions of Theorem 2, if X is Breckner type of G(σ,s)-
convex function, then

2s−1GX
([
a1
σ+a2σ

2

] 1
σ
)

≤ σ

a2
σ − a1

σ

a2∫

a1

uσ−1GX(u)du ≤ GX(a1) + GX(a2)

s + 1
.

III. If h(μ) = μ−s in Theorem 2, then we have a new result for Godunova-Levin
type of G(σ,s)-convex function, which reads as:

Corollary 3 Under the assumptions of Theorem 2, if X is Godunova-Levin type of
G(σ,s)-convex function, then

1

2s+1 GX
([
a1
σ+a2σ

2

] 1
σ
)
≤ σ

a2
σ − a1

σ

a2∫

a1

uσ−1GX(u)du ≤ GX(a1) + GX(a2)

1− s .

IV. If h(μ) = 1 in Theorem 2, then we have a new result for G(σ,P )-convex
function, which reads as:

Corollary 4 Under the assumptions of Theorem 2, if X is G(σ,P )-convex function,
then

1

2
GX

([
a1
σ+a2σ

2

] 1
σ
)
≤ σ

a2
σ − a1

σ

a2∫

a1

uσ−1GX(u)du ≤ GX(a1) + GX(a2).

V. If h(μ) = μ(1−μ) in Theorem 2, then we have a new result for G(σ,tgs)-convex
function, which reads as:

Corollary 5 Under the assumptions of Theorem 2, if X is G(σ,tgs)-convex function,
then
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2GX
([
a1
σ+a2σ

2

] 1
σ
)
≤ σ

a2
σ − a1

σ

a2∫

a1

uσ−1GX(u)du ≤ GX(a1) + GX(a2)

6
.

VI. Now if we take σ = −1 in Theorem 2, then we have a new result for the class
of harmonically G(σ,h)-convex functions.

Corollary 6 Let h : (0, 1)→ R be a real function. If X : I = [a1, a2] ⊂ R+ → R

is an harmonically G(σ,h)-convex function and X ∈ L[a1, a2], then

1

2h
( 1

2

)G
X
(

2a1a2
a1+a2

)
≤ a1a2

a2 − a1

a2∫

a1

u−2GX(u)du ≤ [GX(a1) + GX(a2)]
1∫

0

h(μ)dμ.

VII. If we take h(μ) = μ in Corollary 6, we have the result for harmonically
exp−σ -convex function.

Corollary 7 Under the assumptions of Corollary 6, if X is harmonically exp−σ -
convex function, then

G
X
(

2a1a2
a1+a2

)
≤ a1a2

a2 − a1

a2∫

a1

u−2GX(u)du ≤ GX(a1) + GX(a2)

2
.

VIII. If we take h(μ) = μs in Corollary 6, we have the result for Breckner type of
harmonically G(σ,s)-convex function.

Corollary 8 Under the assumptions of Corollary 6, if X is Breckner type of
harmonically G(σ,s)-convex function, then

2s−1G
X
(

2a1a2
a1+a2

)
≤ a1a2

a2 − a1

a2∫

a1

u−2GX(u)du ≤ GX(a1) + GX(a2)

s + 1
.

IX. If we take h(μ) = μ−s in Corollary 6, we have the result for Godunova-Levin
type of harmonically G(σ,s)-convex function.

Corollary 9 Under the assumptions of Corollary 6, ifX is Godunova-Levin type of
harmonically G(σ,s)-convex function, then

1

2s+1
G
X
(

2a1a2
a1+a2

)
≤ a1a2

a2 − a1

a2∫

a1

u−2GX(u)du ≤ GX(a1) + GX(a2)

1− s .

X. If we take h(μ) = 1 in Corollary 6, we have the result for harmonically G(σ,P )-
convex function.
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Corollary 10 Under the assumptions of Corollary 6, if X is harmonically G(σ,P )-
convex function, then

1

2
G
X
(

2a1a2
a1+a2

)
≤ a1a2

a2 − a1

a2∫

a1

u−2GX(u)du ≤ GX(a1) + GX(a2).

XI. If we take h(μ) = μ(1−μ) in Corollary 6, we have the result for harmonically
G(σ,tgs)-convex function.

Corollary 11 Under the assumptions of Corollary 6, if X is harmonically G(σ,tgs)-
convex function, then

2G
X
(

2a1a2
a1+a2

)
≤ a1a2

a2 − a1

a2∫

a1

u−2GX(u)du ≤ GX(a1) + GX(a2)

6
.

We now drive a new variant of Hermite-Hadamard’s inequality utilizing product
of two G(σ,h)-convex functions. First of all for the sake of simplicity, we let
M(a1, a2) := GX(a1)GY (a1) + GX(a2)GY (a2) and N(a1, a2) := GX(a1)GY (a2) +
GX(a2)GY (a1).

Theorem 3 Let h1, h2 : (0, 1) → R be two real functions, X : I = [a1, a2] ⊂
R → R be an G(σ,h1)-convex function, Y : I = [a1, a2] ⊂ R → R be an G(σ,h2)-
convex function and XY ∈ L[a1, a2], then

1

2h1
( 1

2

)
h2
( 1

2

)GX
([
a1
σ+a2σ

2

] 1
σ
)
GY

([
a1
σ+a2σ

2

] 1
σ
)

−
⎡

⎣M(a1, a2)

1∫

0

h1(μ)h2(1− μ)dμ+N(a1, a2)

1∫

0

h1(μ)h2(μ)dμ

⎤

⎦

≤ σ

a2
σ − a1

σ

a2∫

a1

uσ−1GX(u)GY (u)du

≤ M(a1, a2)

1∫

0

h1(μ)h2(μ)dμ+N(a1, a2)

1∫

0

h1(μ)h2(1− μ)dμ.



On G(σ,h)-Convex Functions 935

Proof Since X and Y are G(σ,h1) and G(σ,h2) convex functions, respectively, so we
have

GX
([
a1
σ+a2σ

2

] 1
σ
)
GY

([
a1
σ+a2σ

2

] 1
σ
)

= GX
([
μa1

σ+(1−μ)a2σ
2 + (1−μ)a1σ+μa2σ2

] 1
σ
)
GY

([
μa1

σ+(1−μ)a2σ
2 + (1−μ)a1σ+μa2σ2

] 1
σ
)

≤ h1

(1

2

)[
GX

([
μa1

σ+(1−μ)a2
σ
] 1
σ
)
+ GX

([
(1−μ)a1

σ+μa2
σ
] 1
σ
)]

× h2

(1

2

)[
GY

([
μa1

σ+(1−μ)a2
σ
] 1
σ
)
+ GX

([
(1−μ)a1

σ+μa2
σ
] 1
σ
)]

≤ h1

(1

2

)
h2

(1

2

)[
GX

([
μa1

σ+(1−μ)a2
σ
] 1
σ
)
GY

([
μa1

σ+(1−μ)a2
σ
] 1
σ
)]

+ h1

(1

2

)
h2

(1

2

)[
GX

([
(1−μ)a1

σ+μa2
σ
] 1
σ
)
GY

([
(1−μ)a1

σ+μa2
σ
] 1
σ
)]

+ h1

(1

2

)
h2

(1

2

) [
h1(μ)G

X(a1) + h1(1− μ)GX(a2)
]

×
[
h2(1− μ)GY (a1) + h2(μ)G

Y (a2)
]

+ h1

(1

2

)
h2

(1

2

) [
h1(1− μ)GX(a1) + h1(μ)G

X(a2)
]

×
[
h2(μ)G

Y (a1) + h2(1− μ)GY (a2)
]

= h1

(1

2

)
h2

(1

2

)[
GX

([
μa1

σ+(1−μ)a2
σ
] 1
σ
)
GY

([
μa1

σ+(1−μ)a2
σ
] 1
σ
)]

+ h1

(1

2

)
h2

(1

2

)[
GX

([
(1−μ)a1

σ+μa2
σ
] 1
σ
)
GY

([
(1−μ)a1

σ+μa2
σ
] 1
σ
)]

+ h1

(1

2

)
h2

(1

2

)
[{h1(μ)h2(1− μ)+ h1(1− μ)h2(μ)}M(a1, a2)]

+ h1

(1

2

)
h2

(1

2

)
[{h1(μ)h2(μ)+ h1(1− μ)h2(1− μ)}N(a1, a2)] .
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After integrating with respect to μ on [0, 1], we have

1

2h1
( 1

2

)
h2
( 1

2

)GX
([
a1
σ+a2σ

2

] 1
σ
)
GY

([
a1
σ+a2σ

2

] 1
σ
)

−
⎡

⎣M(a1, a2)

1∫

0

h1(μ)h2(1− μ)dμ+N(a1, a2)

1∫

0

h1(μ)h2(μ)dμ

⎤

⎦

≤ σ

a2
σ − a1

σ

a2∫

a1

uσ−1GX(u)GY (u)du. (3)

Also since X and Y are G(σ,h1) and G(σ,h2) convex functions, respectively, so we
have

GX
([
μa1

σ+(1−μ)a2
σ
] 1
σ
)
GY

([
μa1

σ+(1−μ)a2
σ
] 1
σ
)

≤ h1(μ)h2(μ)G
X(a1)GY (a1) + h1(1− μ)h2(μ)G

X(a2)GY (a1)

+ h1(μ)h2(1− μ)GX(a1)GY (a2) + h1(1− μ)h2(1− μ)GX(a2)GY (a2).

Integrating both sides of above inequality with respect to μ on [0, 1] yields

σ

a2
σ − a1

σ

a2∫

a1

uσ−1GX(u)GY (u)du

≤ M(a1, a2)

1∫

0

h1(μ)h2(μ)dμ+N(a1, a2)

1∫

0

h1(μ)h2(1− μ)dμ. (4)

Summing up inequalities (3) and (4) completes the proof.

We now discuss some special cases of Theorem 3.

I. If h1(μ) = μ = h2(μ) in Theorem 3, then we have a new result for exp−σ -
convex function, which reads as:

Corollary 12 Under the assumptions of Theorem 3, if X and Y are exp−σ -convex
function, then

2GX
([
a1
σ+a2σ

2

] 1
σ
)
GY

([
a1
σ+a2σ

2

] 1
σ
)
−
[

1

6
M(a1, a2)+ 1

3
N(a1, a2)

]
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≤ σ

a2
σ − a1

σ

a2∫

a1

uσ−1GX(u)GY (u)du ≤ 1

3
M(a1, a2)+ 1

6
N(a1, a2).

II. If h1(μ) = μs = h2(μ) in Theorem 3, then we have a new result for Breckner
type of G(σ,s)-convex function, which reads as:

Corollary 13 Under the assumptions of Theorem 3, if X and Y are Breckner type
of G(σ,s)-convex function, then

1

21−2s GX
([
a1
σ+a2σ

2

] 1
σ
)
GY

([
a1
σ+a2σ

2

] 1
σ
)

−
[
B(s + 1, s + 1)M(a1, a2)+ 1

2s + 1
N(a1, a2)

]

≤ σ

a2
σ − a1

σ

a2∫

a1

uσ−1GX(u)GY (u)du

≤ 1

2s + 1
M(a1, a2)+ B(s + 1, s + 1)N(a1, a2).

III. If h1(μ) = μ−s = h2(μ) in Theorem 3, then we have a new result for
Godunova-Levin type of G(σ,s)-convex function, which reads as:

Corollary 14 Under the assumptions of Theorem 3, if X and Y are Godunova-
Levin type of G(σ,s)-convex function, then

1

21+2s GX
([
a1
σ+a2σ

2

] 1
σ
)
GY

([
a1
σ+a2σ

2

] 1
σ
)

−
[
B(1− s, 1− s)M(a1, a2)+ 1

1− 2s
N(a1, a2)

]

≤ σ

a2
σ − a1

σ

a2∫

a1

uσ−1GX(u)GY (u)du

≤ 1

1− 2s
M(a1, a2)+ B(1− s, 1− s)N(a1, a2).

IV. If h1(μ) = 1 = h2(μ) in Theorem 3, then we have a new result for G(σ,P )-
convex function, which reads as:

Corollary 15 Under the assumptions of Theorem 3, if X and Y are G(σ,P )-convex
function, then
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1

2
GX

([
a1
σ+a2σ

2

] 1
σ
)
GY

([
a1
σ+a2σ

2

] 1
σ
)
− [M(a1, a2)+N(a1, a2)]

≤ σ

a2
σ − a1

σ

a2∫

a1

uσ−1GX(u)GY (u)du ≤ M(a1, a2)+N(a1, a2).

V. If h1(μ) = μ(1 − μ) = h2(μ) in Theorem 3, then we have a new result for
G(σ,tgs)-convex function, which reads as:

Corollary 16 Under the assumptions of Theorem 3, if X and Y are G(σ,tgs)-convex
function, then

8GX
([
a1
σ+a2σ

2

] 1
σ
)
GY

([
a1
σ+a2σ

2

] 1
σ
)
− 1

30
[M(a1, a2)+N(a1, a2)]

≤ σ

a2
σ − a1

σ

a2∫

a1

uσ−1GX(u)GY (u)du ≤ 1

30
[M(a1, a2)+N(a1, a2)] .

VI. Now if we take σ = −1, then we have the result for harmonically G(σ,h)-convex
functions.

Corollary 17 Under the assumptions of Theorem 3, if X : I = [a1, a2] ⊂
(0,∞) → R is an harmonically G(σ,h1)-convex function and harmonically Y :
I = [a1, a2] ⊂ (0,∞) → R is an harmonically G(σ,h2)-convex function and
XY ∈ L[a1, a2], then we have

1

2h1
( 1

2

)
h2
( 1

2

)G
X
(

2a1a2
a1+a2

)
G
Y
(

2a1a2
a1+a2

)

−
⎡

⎣M(a1, a2)

1∫

0

h1(μ)h2(1− μ)dμ+N(a1, a2)

1∫

0

h1(μ)h2(μ)dμ

⎤

⎦

≤ σ

a2
σ − a1

σ

a2∫

a1

u−2GX(u)GY (u)du

≤ M(a1, a2)

1∫

0

h1(μ)h2(μ)dμ+N(a1, a2)

1∫

0

h1(μ)h2(1− μ)dμ.

VII. If we take h1(μ) = μ = h2(μ) in Corollary 17, then we have result for
harmonically exp-convex function.
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Corollary 18 Under the assumptions of Corollary 17, if X, Y : I = [a1, a2] ⊂
(0,∞)→ R are harmonically exp−σ -convex functions and XY ∈ L[a1, a2], then
we have

2G
X
(

2a1a2
a1+a2

)
G
Y
(

2a1a2
a1+a2

) [
1

6
M(a1, a2)+ 1

3
N(a1, a2)

]

≤ σ

a2
σ − a1

σ

a2∫

a1

u−2GX(u)GY (u)du ≤ 1

3
M(a1, a2)+ 1

6
N(a1, a2).

VIII. If h1(μ) = μs = h2(μ) in Corollary 17, then we have a new result for
Breckner type of harmonically exp−s-convex function, which reads as:

Corollary 19 Under the assumptions of Corollary 17, ifX and Y are Breckner type
of harmonically exp−s-convex function, then

1

21−2s G
X
(

2a1a2
a1+a2

)
G
Y
(

2a1a2
a1+a2

)
−
[
B(s + 1, s + 1)M(a1, a2)+ 1

2s + 1
N(a1, a2)

]

≤ σ

a2
σ − a1

σ

a2∫

a1

u−2GX(u)GY (u)du

≤ 1

2s + 1
M(a1, a2)+ B(s + 1, s + 1)N(a1, a2).

IX. If h1(μ) = μ−s = h2(μ) in Corollary 17, then we have a new result for
Godunova-Levin type of harmonically exp−s-convex function, which reads
as:

Corollary 20 Under the assumptions of Corollary 17, if X and Y are Godunova-
Levin type of harmonically G(σ,s)-convex function, then

1

21+2sG
X
(

2a1a2
a1+a2

)
G
Y
(

2a1a2
a1+a2

)
−
[
B(1− s, 1− s)M(a1, a2)+ 1

1− 2s
N(a1, a2)

]

≤ σ

a2
σ − a1

σ

a2∫

a1

u−2GX(u)GY (u)du

≤ 1

1− 2s
M(a1, a2)+ B(1− s, 1− s)N(a1, a2).

X. If h1(μ) = 1 = h2(μ) in Corollary 17, then we have a new result for
harmonically exp−P -convex function, which reads as:
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Corollary 21 Under the assumptions of Theorem 3, if X and Y are harmonically
exp−P -convex function, then

1

2
G
X
(

2a1a2
a1+a2

)
G
Y
(

2a1a2
a1+a2

)
− [M(a1, a2)+N(a1, a2)]

≤ σ

a2
σ − a1

σ

a2∫

a1

u−2GX(u)GY (u)du ≤ M(a1, a2)+N(a1, a2).

XI. If h1(μ) = μ(1 − μ) = h2(μ) in Corollary 17, then we have a new result for
harmonically exp−tgs-convex function, which reads as:

Corollary 22 Under the assumptions of Corollary 17, ifX and Y are harmonically
exp−tgs-convex function, then

8G
X
(

2a1a2
a1+a2

)
G
Y
(

2a1a2
a1+a2

)
− 1

30
[M(a1, a2)+N(a1, a2)]

≤ σ

a2
σ − a1

σ

a2∫

a1

u−2GX(u)GY (u)du ≤ 1

30
[M(a1, a2)+N(a1, a2)] .

2.2 Strongly G(σ,h)-Convexity

We now define the class of strongly G(σ,h)-convex functions.

Definition 11 Let h : (0, 1) → R be a real function. We say that a function X :
I → R is said to be strongly G(σ,h)-convex function with G ≥ 1, if

GX([μa1
σ+(1−μ)a2

σ ] 1
σ ) ≤ h(μ)GX(a1) + h(1− μ)GX(a1) − μμ(1− μ)(a2

σ − a1
σ )2,

∀a1, a2 ∈ I, μ ∈ (0, 1), μ > 0.

Now if we take h(μ) = μ in Definition 11, then we have the class of strongly
Gσ -convex function.

Definition 12 A function X : I → R is said to be strongly Gσ -convex function
with G ≥ 1, if

GX([μa1
σ+(1−μ)a2

σ ] 1
σ ) ≤ μGX(a1) + (1− μ)GX(a1) − μμ(1− μ)(a2

σ − a1
σ )2,

∀a1, a2 ∈ I, μ ∈ [0, 1], μ > 0.
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If we take h(μ) = μs where s ∈ (0, 1] in Definition 11, then we have the class of
Breckner type of strongly G(σ,s)-convex function.

Definition 13 A function X : I → Ris said to be Breckner type of strongly G(σ,s)-
convex function with G ≥ 1, if

GX([μa1
σ+(1−μ)a2

σ ] 1
σ ) ≤ μsGX(a1) + (1− μ)sGX(a1) − μμ(1− μ)(a2

σ − a1
σ )2,

∀a1, a2 ∈ I, μ ∈ [0, 1], μ > 0.

If we take h(μ) = μ−s where s ∈ [0, 1] in Definition 11, then we have the class of
Godunova-Levin type of strongly G(σ,s)-convex function.

Definition 14 A functionX : I → Ris said to be Godunova-Levin type of strongly
G(σ,s)-convex function with G ≥ 1, if

GX([μa1
σ+(1−μ)a2

σ ] 1
σ ) ≤ μ−sGX(a1) + (1− μ)−sGX(a1) − μμ(1− μ)(a2

σ − a1
σ )2,

∀a1, a2 ∈ I, μ ∈ (0, 1), μ > 0.

If we take h(μ) = 1 in Definition 11, then we have the class of strongly G(σ,P )-
convex function.

Definition 15 A function X : I → R is said to be strongly G(σ,P )-convex function
with G ≥ 1, if

GX([μa1
σ+(1−μ)a2

σ ] 1
σ ) ≤ GX(a1) + GX(a1) − μμ(1− μ)(a2

σ − a1
σ )2,

∀a1, a2 ∈ I, μ ∈ [0, 1], μ > 0.

If we take h(μ) = μ(1 − μ) in Definition 11, then we have the class of strongly
G(σ,tgs)-convex function.

Definition 16 A functionX : I → R is said to be strongly G(σ,tgs)-convex function
with G ≥ 1, if

GX([μa1
σ+(1−μ)a2

σ ] 1
σ ) ≤ μ(1− μ)[GX(a1) + GX(a1)] − μμ(1− μ)(a2

σ − a1
σ )2,

∀a1, a2 ∈ I, μ ∈ (0, 1), μ > 0.

Now similarly as we have discussed in the previous section, we also point out here
that if we take σ = 1, then we have different classes strongly Gh-convex functions.
And if we take σ = −1, then we have new classes of harmonically strongly Gh-
convex functions. For example, if we take σ = −1 in definition 11, then we have
the class of harmonically strongly Gh-convex function.

Definition 17 Let h : (0, 1) → R be a real function. We say that a function X :
I \ {0} → R is said to be an harmonically strongly Gh-convex function, if
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G
X
(

a1a2
(1−μ)a1+μa2

)
≤ h(μ)GX(a1) + h(1− μ)GX(a1) − μμ(1− μ)(a2

−1 − a1
−1)2,

∀a1, a2 ∈ I, μ ∈ (0, 1), μ > 0.

For different suitable choices of the real function h(.), we have some other new
classes of harmonically strongly Gh-convex function. Also note that if we take μ =
0, then we recapture all of the definitions of previous section from these newly
introduced definitions.

Theorem 4 Let h : (0, 1)→ R be a real function. If X : I = [a1, a2] ⊂ R→ R is
strongly G(σ,h)-convex function and X ∈ L[a1, a2], then

1

2h
( 1

2

)
[

GX
([
a1
σ+a2σ

2

] 1
σ
)
+ μ

12
(a2

σ − a1
σ )2

]

≤ σ

a2
σ − a1

σ

a2∫

a1

uσ−1GX(u)du ≤ [GX(a1) + GX(a2)]

×
1∫

0

h(μ)dμ− μ
6
(a2

σ − a1
σ )2.

Proof Since it is given that X is an G(σ,h)-convex function, then

GX
([
a1
σ+a2σ

2

] 1
σ
)

≤ h
(1

2

) [
GX([μa1

σ+(1−μ)a2
σ ] 1
σ ) + GX([(1−μ)a1

σ+μa2
σ ] 1
σ )

]

− μ
4
(1− 2μ)2(a2

σ − a1
σ )2.

Integrating both sides of above inequality with respect to μ ∈ [0, 1], we have

1

2h
( 1

2

)
[

GX
([
a1
σ+a2σ

2

] 1
σ
)
+ μ

12
(a2

σ − a1
σ )2

]
≤ σ

a2
σ − a1

σ

a2∫

a1

uσ−1GX(u)du.

(5)

Also

GX([μa1
σ+(1−μ)a2

σ ] 1
σ ) ≤ h(μ)GX(a1) + h(1− μ)GX(a2) − μμ(1− μ)(a2

σ − a1
σ )2.
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Integrating both sides of above inequality with respect to μ on [0, 1], we have

σ

a2
σ − a1

σ

a2∫

a1

uσ−1GX(u)du ≤ [GX(a1) + GX(a2)]
1∫

0

h(μ)dμ− μ
6
(a2

σ − a1
σ )2.

(6)

On summation of (5) and (6), we have the required results.

Remark 1 We would like to point out here that for different suitable choices of
the function h(.), we have several other new versions of Hermite-Hadamard like
inequalities. Also for σ = −1 we get the results for harmonically strongly Gh-
convex function. We left the details for interested readers. Also note that if we take
G = exp, then we have the results for e(σ,h)-convex functions.
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