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Preface

The International Cross Domain Conference for Machine Learning & Knowledge
Extraction (CD-MAKE) is a joint effort of IFIP TC 5, IFIP TC 12, IFIP WG 8.4,
IFIP WG 8.9, and IFIP WG 12.9 and is held in conjunction with the International
Conference on Availability, Reliability, and Security (ARES). This fifth installment
was organized virtually by SBA Research due to the ongoing COVID-19 pandemic,
and took place during August 17–20, 2021.

The letters CD in CD-MAKE stand for “Cross-Domain” and describe the integration
and appraisal of different fields and application domains to provide an atmosphere to
foster different perspectives and opinions. The conference fosters an integrative
machine learning approach, considering the importance of data science and visual-
ization for the algorithmic pipeline with a strong emphasis on privacy, data protection,
safety, and security. It is dedicated to offering an international platform for novel ideas
and a fresh look on methodologies to put crazy ideas into business for the benefit of
humans. Serendipity is a desired effect, which may lead to the cross-fertilization of
methodologies and the transfer of algorithmic developments.

The acronym MAKE stands for “MAchine Learning & Knowledge Extraction”, a
field of artificial intelligence (AI) that, while quite old in its fundamentals, has just
recently begun to thrive based on both novel developments in the algorithmic area and
the availability of vast computing resources at a comparatively low cost.

Machine learning (ML) studies algorithms that can learn from data to gain
knowledge from experience and to generate decisions and predictions. A grand goal is
in understanding intelligence for the design and development of algorithms that work
autonomously (ideally without a human-in-the-loop) and can improve their learning
behavior over time. The challenge is to discover relevant structural and/or temporal
patterns (“knowledge”) in data, which is often hidden in arbitrarily high dimensional
spaces, and thus simply not accessible to humans. Knowledge extraction is one of the
oldest fields in AI and is seeing a renaissance, particularly in the combination of
statistical methods with classical ontological approaches. AI is currently undergoing a
kind of Cambrian explosion and is the fastest-growing field in computer science today
thanks to the usable successes in machine learning. There are many application
domains, e.g., in medicine, etc., with many use cases from our daily lives, e.g., rec-
ommender systems, speech recognition, autonomous driving, etc. The grand challenges
lie in sensemaking, in context understanding, and in decision-making under uncer-
tainty, as well as solving the problem of explainability. Our real world is full of
uncertainties and probabilistic inference enormously influences AI generally and ML
specifically. The inverse probability allows us to infer unknowns, to learn from data,
and to make predictions to support decision-making. Whether in social networks,
recommender systems, health applications, or industrial applications, the increasingly
complex data sets require a joint interdisciplinary effort involving the human-in-control



to foster a better understanding of the ethical and social issues accountability,
retractability, explainability, causability, and privacy, safety and security!

A few words about IFIP: IFIP – the International Federation for Information Pro-
cessing—is the leading multi-national, non-governmental, apolitical organization in
information and communications technologies and computer sciences; it is recognized
by the United Nations (UN) and was established in 1960 under the auspices of the
UNESCO as an outcome of the first World Computer Congress held in Paris in 1959.

IFIP is incorporated in Austria by decree of the Austrian Foreign Ministry
(September 20, 1996, GZ 1055.170/120-I.2/96) granting IFIP the legal status of a
non-governmental international organization under the Austrian Law on the Granting
of Privileges to Non-Governmental International Organizations (Federal Law Gazette
1992/174). IFIP brings together more than 3500 scientists without boundaries from
both academia and industry, organized in more than 100 Working Groups (WGs) and
13 Technical Committees (TCs).

To acknowledge all those who also contributed to the organizational effort and
stimulating discussions at CD-MAKE 2021 would be impossible in a preface like this.
Many people also contributed to the development of this volume, either directly or
indirectly, so, again, it would be impossible to list all of them. We herewith thank all
local, national, and international colleagues and friends for their positive and sup-
portive encouragement. Finally, yet importantly, we thank the Springer management
team and the Springer production team for their professional support.

Thank you to all! Let’s MAKE it!

June 2021 Andreas Holzinger
Peter Kieseberg
Edgar Weippl
A Min Tjoa

vi Preface
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Digital Transformation for Sustainable
Development Goals (SDGs) - A Security,
Safety and Privacy Perspective on AI
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6 St. Pölten University of Applied Sciences, St. Pölten, Austria

Abstract. The main driver of the digital transformation currently
underway is undoubtedly artificial intelligence (AI). The potential of AI
to benefit humanity and its environment is undeniably enormous. AI can
definitely help find new solutions to the most pressing challenges facing
our human society in virtually all areas of life: from agriculture and for-
est ecosystems that affect our entire planet, to the health of every single
human being. However, this article highlights a very different aspect.
For all its benefits, the large-scale adoption of AI technologies also holds
enormous and unimagined potential for new kinds of unforeseen threats.
Therefore, all stakeholders, governments, policy makers, and industry,
together with academia, must ensure that AI is developed with these
potential threats in mind and that the safety, traceability, transparency,
explainability, validity, and verifiability of AI applications in our every-
day lives are ensured. It is the responsibility of all stakeholders to ensure
the use of trustworthy and ethically reliable AI and to avoid the mis-
use of AI technologies. Achieving this will require a concerted effort to
ensure that AI is always consistent with human values and includes a
future that is safe in every way for all people on this planet. In this
paper, we describe some of these threats and show that safety, security
and explainability are indispensable cross-cutting issues and highlight
this with two exemplary selected application areas: smart agriculture
and smart health.

Keywords: Artificial intelligence · Digital transformation ·
Robustness · Resilience · Explainability · Explainable AI · Safety ·
Security · AI risks · AI threats · Smart agriculture · Smart health
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1 Introduction and Motivation

Often referred to as buzzwords, such as AI, Blockchain, Big Data, Internet of
Things (IoT), ..., these technology trends of the last decades are the actual drivers
of the digital transformation that is actually taking place [71,75]. Thus, these
technologies no longer have just an additional support function, rather these
technologies are changing complete process chains and permeate almost all our
areas of life and work, from Smart Agriculture to Smart Health to name just
two application areas. The main driver of digital transformation is undoubtedly
the broad field of artificial intelligence (AI).

AI has gained a lot of attraction in the last decade. Many of the basic con-
cepts date back to the middle of the last century, however the right combination
and synergies of three approaches has led to a revolution that now brings AI
to everyone’s attention: (1) powerful, cost-effective, and available hardware (2)
successful methods from statistical machine learning (e.g., Deep Learning), and
(3) a growing amount of available data. AI-related components now permeate
all sorts of labour, industries and applications, e.g.

– Autonomous AI systems that automate decisions without any human inter-
vention (e.g., fully autonomous self driving cars [44], autonomous medical
diagnosis [2], autonomous drones [19], ...).

– Automated AI systems that perform labor-intensive tasks requiring certain
intelligence, and complete them automatically within a certain domain and
given tasks (e.g., industrial robotic process automatization [1], automated
medical workflows [48], automated forest management [49], ...).

– Assisted AI systems that help humans perform repetitive routine tasks faster
and both quantitatively and qualitatively better (e.g., ambient assisted smart
living [69], weather forecasting, ...).

– Augmented AI systems that help people understand complex and uncertain
future events (e.g., Explainable AI in Digital Pathology [28], Simple Aug-
mented Reality applications [56], Augmented AI in agriculture [68], ...).

This widespread adoption also lowers the barrier to entry for other players
in the domain, whether they are scientists from entirely different domains (e.g.
health, farming, climate research, ...) using AI technology to solve problems or
companies by adding intelligent components to existing tools. While this trend
undeniably brings tremendous benefits, opportunities, and possibilities in terms
of new capabilities and applications, this rising trend can also lead to problems,
especially when it comes to the security, trustworthiness, and privacy of these
systems.

In recent years, the topic of sustainability has gained a lot of attention,
especially with the declaration of the Sustainable Development Goals (SDGs)
by the UN [65] with its 17 core goals. As such, several ideas and approaches
have been put forward for using AI-related technologies to support these goals.
While this is obviously a very valuable approach, we still need to understand the
shortcomings of AI to make these approaches inherently sustainable. While many
researchers reduce the problems of AI to purely theoretical aspects, we will define
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some key issues in this paper. Nevertheless, we believe that AI technologies can
significantly improve our lives and support the SDGs through improved digital
transformation, however much additional work is needed to actually make a
difference.

This paper is organized as follows: Sect. 2 provides an overview of the SDGs
as well as some background and related work on how AI can support these
goals. Here we also present two specific examples that affect virtually everyone
in their daily lives: smart health, with the goal of precision medicine, and smart
agriculture, with the goal of precision farming. In Sect. 3, we analyze a selection
of topics that we believe need to be considered in supporting the goals outlined
in the SDGs through AI technology. While we have derived some of these issues
from the relevant literature, we have added some new ones based on our many
years of practical experience in developing AI-based systems - always with a
focus on safety, security, and privacy. In the Conclusion section, we summarize
the paper.

2 Background and Related Work

In this section, we provide an overview of the background of the Sustainable
Development Goals, as well as an outline of related work that shows how AI-
based systems can support them.

2.1 The UN Sustainable Development Goals (SDGs)

The idea of “sustainable development” was already discussed by the United
Nations Brundtland Commission in 1987: “Sustainable development is develop-
ment that meets the needs of the present without com-promising the ability of
future generations to meet their own needs” [13].

The fundamental concept of sustainability originated at the United Nations
(UN) Conference on Environment and Development (UNCED) in Rio de Janeiro
in 1992 (the so-called “Earth Summit” [63]), where a Declaration of Principles
and Desired Action on International Agreements on Climate Change and Biodi-
versity and a Declaration of Principles on Forests were presented. Subsequently,
in 2002, the commitment to sustainable development was reaffirmed at the World
Summit on Sustainable Development in Johannesburg, South Africa.

The concept was intentionally not clearly defined to allow a way to address
the very different challenges: from planning sustainable cities to sustainable
livelihoods, from sustainable agriculture to smart health, and the efforts to
develop common business standards in the UN Global Compact and the World
Business Council for Sustainable Development [61].

The adoption of the Sustainable Development Goals (SDGs) in 2015 [70]
signaled the commitment of world leaders to a more sustainable path to inclusive
and equitable growth. Also known as the 2030 Agenda, the 17 SDGs cover a wide
range of development-related issues and include 169 targets and 304 indicators
[16], see Fig. 1 for an overview on the 17 SDGs.
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Fig. 1. An overview on the UN Sustainable Development Goals (SDGs) [65]

2.2 Smart Farming and Precision Agriculture - An Example
for Supporting SDGs Through AI

As a first application example, we choose a topic that concerns every inhabitant
of our planet: Smart Farming, i.e. the use of AI in cyber-physical applications for
versatile support of process chains in agriculture. Cyber-physical systems (CPS)
have been established for some time [8] and although CPS are very versatile,
their engineering is most challenging due to the high degree of heterogeneity.
Moreover, the importance of CPS for smart farming is often underestimated,
but they form the basis for future precision farming, for better crop manage-
ment and resource use. In this context, massive amounts of data are already
being generated in great variety, which can be collected, analyzed and used for
decision making. The goal is to develop smart agriculture that will help address
the current major socio-economic challenges worldwide (Goal: “zero hunger”).
This domain is essential as it extends from agriculture itself far beyond primary
production to virtually the entire food supply chain. Here, AI can help in many
ways to gain predictive insights into agricultural operations, make real-time oper-
ational decisions, and redesign business processes. This has to incorporate often
conflicting economic interests, leading to new business models which are devel-
oped this way. Clearly, there are all sorts of challenges of a technical nature
here, however there are also tensions and shifts in roles and power relationships
between different players in the current food supply chain networks. One exam-
ple is the need of an evidence-based and critical investigation on the observed
shift, from individual small farmers to powerful high-tech “agriculture facto-
ries”. At the same time, there are public institutions that are now publishing
data and where, of course, individual privacy must be ensured. The future of
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smart agriculture could play out on a continuum of two extreme scenarios: 1)
closed, proprietary systems in which the farmer is part of a highly integrated
food supply chain, or 2) open, collaborative systems in which the farmer and all
other actors and stakeholders in the chain’s network need the flexibility in choos-
ing business partners for both technology and food production [17,79]. Closely
related to smart agriculture is sustainable forest management. The management
of forest ecosystems is underestimated, but of eminent importance for the sur-
vival of our planet [24] as the restoration of forested land could help to capture
carbon and thus mitigate climate change [6]. Computer-based support tools have
been in use in this domain for some time [66]. However, monitoring of forest areas
is far from trivial, facing major challenges such as high forest density, complexity
and diversity of forest structure, complex topography and climatic conditions,
and difficult access for human researchers. Here, unmanned aerial vehicles are
already making a valuable contribution by enabling the classification of forest
types based on Convolutional Neural Networks [49].

2.3 Smart Health and Precision Medicine - An Example
for Supporting SDGs Through AI

As a second example, we choose a topic that also affects each and every one
of us individually and is also accompanied by a large number of non-trivial
problems: health, and here in particular the emerging domain of smart health.
The trend toward higher life expectancy together with the increasing complexity
of medicine and health services is causing healthcare costs to rise dramatically
worldwide. As a result, enormously high expectations are being placed on AI for
health worldwide.

The concept of smart health [30] has huge potential to support a future P4
medicine (preventive, participative, predictive and personalized) or in short per-
sonalized medicine [23]. The goal of this a.k.a. future precision medicine [14] is in
modeling the complexity of patients health in order to tailor medical decisions,
health practices and therapies to the individual patient - for example, a drug
precisely designed for a patient’s individual needs and specific background in a
given context. This trend towards personalized medicine produces huge amounts
of data, which makes manual analysis difficult and almost impossible for a human
being [26]. For example massive amounts of sensors produce large amounts of
high-dimensional, weakly structured data sets and massive amounts of unstruc-
tured information. In the medical domain, many different modalities contribute
to an outcome. Consequently, the smart health principle makes medicine a truly
data-intensive science. To keep up with these growing volumes of complex data
AI approaches are mandatory, however, in the medical domain there is always a
need for a human-in-the-loop [27], at least the human-in-control - because of legal
aspects [64]. However, the synergies between AI and precision medicine promises
to revolutionize healthcare: whilst precision medicine methods help identify phe-
notypes of patients with less frequent treatment response or special healthcare
needs, AI is being used to support clinician decision making through augmented
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intelligence. Translational research exploring this convergence can help solve pre-
cision medicine’s most difficult challenges, particularly those where non-genomic
and genomic determinants combined with information from patients’ symptoms,
clinical history, and lifestyle habits will enable personalized diagnosis and prog-
nosis [35].

By deploying complex AI systems in physical-digital ecosystems, future
physicians will be supported by their AI assistants in managing their flood of
data from different modalities, which requires explainability and causability [29].
At the same time, patients will be supported by their on-line health assistants,
and moreover, these technologies will support the preventive medicine nature to
enable healthier living, wellness and well-being, which will also lead to enormous
amounts of private data.

In the medical field, the issues of transparency, accountability, and trust are
prerequisites for the integration of AI into daily practice. As the importance of
medical AI will certainly continue to grow strongly in the coming years, it is
imperative that legal and ethical issues are always considered together [53,54].

2.4 Impact of AI on SDGs

There has been ample publications indicating the benefits of certain AI-based
systems on SDGs, as e.g. The academic literature also includes analysis on
related subjects, like in [73], where the authors give a comprehensive study on
the utilization of artificial intelligence in the development of sustainable busi-
ness models. In another paper [3], the authors discuss the impact of the ongoing
Covid pandemic on the SDGs and the efforts taken into reaching them by 2030.
They provide an interesting approach on looking for synergies between different
targets and approaches in order to prioritize them. The publication [25] on the
other hand gives a very good overview on important topics in this area and also
provides a first insight into the challenges associated with using AI for support-
ing SDGs. To the best of our knowledge the most comprehensive study can be
found in [77]. In this work, the authors analyzed all 17 SDGS with their 169
targets with respect to whether AI is beneficial or detrimental for a target, more
specifically, they scored, how beneficial and how detrimental AI is for any given
target. The measurement was made by conducting a consensus-based expert elic-
itation process based on results from previous studies. While the paper added a
short discussion on security-related issues of utilizing AI for achieving the SGDs,
the discussion was rather short and did not go into details.

3 Open Issues on Using AI for SDGs

In this section, we discuss security related issues of intelligent systems, some
of them being typically overlooked and having received little attention in the
academic literature. In this discussion, we use the term security rather loosely
for any technical issue that has a detrimental effect on users. Still, we typically
limit ourselves to the purely technical IT domain and did not include social and
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economic issues like increasing job loss, even though these also might have an
impact on the overall security of a nation. We have loosely grouped these topics
in terms of overarching themes to make the work more stringent, even though
several topics might belong to more than one of these themes.

3.1 Data and Models

Many AI techniques, especially advanced techniques of statistical machine learn-
ing, including neural networks (deep learning) that gathered a lot of attention
during the past years, heavily rely on a key resource: Data. Data is used to
train these networks, i.e. the whole AI system is not only defined by the pure
mathematical/algorithmic side, but to a large extent by the data that was used
for training the system. Thus, a lot of problems in the adoption of intelligent
systems lie in the trustworthiness of data sets, ranging from unintentional bias
that leads to discrimination of people to malicious attacks trying to interfere
with the system and manipulate the decision making process in subtle ways. In
the following we have gathered a selection of issues that we see as key concerns
when trying to solve SGDs through AI-based systems.

Acquiring Training Data. Many aspects of AI hinge on training data, especially
related to issues of trust and quality. Still, acquiring such data is a big problem
for many applications and due to various reasons ranging from Privacy related
issues in the existing medical data to simply no useful data being available at
all. The acquisition of data is especially important, as many other issues can be
related to it, e.g. the problem of bias, backdoors and providing a good ground
truth. Open data might be a solution for this problem in some applications, e.g.
forestation related issues, but it will be hard to find widespread acceptance for
such a bold step in the medical domain.

Providing a Ground Truth. Related to the issue of generating suitable sets of
training data lies the issue of finding a ground truth. This is especially critical
in highly complex research questions, where either it is impossible to gather
an oversight of the complete data available or the interpretation of the data is
depending on other parameters that are hard to impossible to objectify, like e.g.
political opinions. Gathering an oversight on a topic can be difficult either due
to the sheer amount of information available, but also due to the information
being stored in secluded data vaults. e.g. sensitive medical information. There
are an ample number of projects that aim at connecting and joining these data
faults in a secure and privacy respecting way. As an example for the latter,
finding ground truths in fake news detection is especially difficult [10], as news
can never cover a complex topic with a lot of subjective decisions and opinions as
a whole, thus making it hard to decide, when information was cut maliciously.
Furthermore, many legit new outlets also put some kind of spin at the news
they are reporting, consciously or unconsciously, by using different terms for the
same people (e.g. “freedom fighters” versus “terrorists”) or things. Furthermore,
when looking at long-standing conflicts, reports have to cut somewhere in time in



8 A. Holzinger et al.

order to not become history books - thus often removing important background
information. Still, finding a ground truth can also be very challenging in purely
technical applications for AI, e.g. in intrusion detection systems (IDS) [15] based
on collecting “normal behavior” in order to later detect suspicious traffic.

Bias and Data Quality. Often it is difficult to even find enough data on a subject
in order to train a neural network, so the topic of data quality is currently
overlooked in many cases [33]. Still, in the recent past, several issues surrounding
deficient training data have emerged [52], most prominently regarding racial bias
in sensitive applications like predictive policing. Bias is an especially important
issue to tackle, as bias in AI applications, e.g. decision support, can become
self-reinforcing: If e.g. a certain population is over-proportionally included in a
training set the algorithm could advise to look deeper in said population - thus
to find even more suitable examples reinforcing the original bias resulting in a
spiral of bias reinforcement [57]. There have been several discussions regarding
racial bias in predictive policing (see e.g. [57,67]), even though a structured study
painted a more complex situation when looking at arrest rates [11]. Still, even
besides issues of bias, assessing data quality is a difficult task which requires a
lot of further research [5].

Data Preparation and Cleansing. A topic that is typically overlooked in purely
theoretical papers, is that data often needs to be prepared in order to be use-
ful. For example, data is often incomplete or contains erroneous records [50].
This is not only true for training data, but also for the processing data. Thus
data cleansing is typically applied to the data streams which works on differ-
ent levels with different techniques [5], by e.g.deleting faulty records, assigning
defaults or trying to guess the most probable correct version. This, of course,
introduces changes into the data and, in case of training data, into the sub-
sequently calculated model, resulting in different models, i.e. a direct impact
of the data cleansing process into the very definition of the neural network at
worst. Currently, there is not much discussion on this issue in the scientific com-
munity, especially not regarding the legal and organisational implications. It is
also a very hard question, which model is more correct when facing two dif-
ferent cleansing strategies that result into different models. The same problems
arise in other data preparation steps, e.g. reduction of noise in audio files [74] or
pictures, which of course need to be done with respect to the state of the art,
but often use heuristic algorithms that sport different results depending on var-
ious side parameters (see e.g. [36]). The impact of these data preparation steps
need to be analyzed carefully regarding their impact. Selecting an AI technique
that is sufficiently stable against the expected level of instability in the data
sets is an absolute must, unfortunately, stability has often been pushed into the
background of the tool development process.

Sharing Models and Training Data. Sharing data and even trained models is
an interesting approach in order to battle the problems of acquiring training
data (see [80] for a solution platform). When sharing training data in order to
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enable other parties to train their models, questions of privacy, but also regarding
the intrinsic value of the data, need to be kept in mind [81]. Thus, it might
be advisable to use fingerprinting technologies in order to be able to detect
data leaks [9,39]. There might also be laws and regulations that need to be
complied with in the sharing process. Furthermore, there is always the problem
of assessing the quality of the shared data with respect to e.g. sample selection,
data preparation and overall data quality (see e.g. [34] for a novel blockchain
based solution). Still, pooling data and sharing them with other player might be a
viable strategy in many application areas related to SDGs in order to circumvent
training data shortage. Another related strategy lies in sharing the models, also
called pre-trained systems. Here, the original training data is not given away, but
solely the trained model, which, of course, hast to adhere to certain prerequisites
specific to the system it is later used in. Pre-trained models are often claimed to
solve many of the issues associated with the sharing of training data, especially
to those related to the GDPR [60] and privacy, still, this needs to be taken
with a grain of salt: On the one hand, there have been attacks against pre-
trained models [42,46] devised in the past that had some success in recreating
information on the original training data of a model, depending on the models
complexity and the availability of side information. Still, what is even more a
problem, is the amount of trust that has to be placed into the generator of the
model in question:

– It is typically impossible to infer anything on the raw training data used for
building the model like using sanity checks or verifying data records. The
user must therefore trust the generator that the training data had sufficient
quality and is unbiased.

– It is very hard for the user to control, whether backdoors were included into
the model [22], e.g. a model trained on the impact of emissions could lead
to correct results in all cases, except when a special emission pattern typical
for e.g. a specific car brand is encountered. In this special case, the model
suddenly calculates a far better result.

Especially the backdoor issue is a major trust problem, especially when a lot of
risk and investments are involved. The generator of the model must be extremely
trustworthy, still another problem derives from the closed nature of a pre-trained
model: It is extremely difficult to expand this model with new data in a controlled
way, i.e. even in cases of algorithms that feed new information back into the
model and thus expand on the pre-trained model, a lot of transparency is lost
due to the unknown nature of the original model training data set. As a result,
pre-trained models result in a lot of additional issues, still, for several applications
they will be the only feasible solution in the near future.

3.2 Providing Trustworthy Systems

Trust is one of the major issues when it comes to IT-systems that are deployed
in critical environments, resulting in the notion of trustworthy artificial intelli-
gence [78]. While this is not related to the SDGs outlined in Sect. 2.1 at first
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glance, it must be taken into account that (i) some of them relate to people and
their data making them sensible data driven applications and (ii) others relate
to barriers for big industrial corporations, again, requiring measures to be put in
place in order to make people trust them not to be manipulated. On a side note,
the topic of explainability is of high importance for providing trust, as outlined
in [31].

Security Testing. Testing systems for security is a major aspect in finding vul-
nerabilities in existing systems and providing remedies in the form of patches.
Several testing methods are employed, ranging from code-reviews, where the
analyst is in the possession of the systems source code, over architecture analy-
sis to black-box testing methods like digital twins or penetration testing. All of
these techniques become increasingly difficult in the presence of AI (see [45] for
a survey): For the architecture review, while it certainly stays useful in order to
find fundamental flaws like problematic access control, insecure system design
and so on, the AI component is typically a black box: The training data virtually
defines large parts of the AI behavior, while not being represented in the archi-
tecture. The same holds true for source code reviews, since the training data is
not within the source code, the very aspects that define the AI are not included.
But even when including the training data and the trained model in the review,
in general not much useful information can be deduced from them due to the
explainability problem [21]. As for penetration testing, AI components add an
additional layer of complexity as outlined in [72], where the authors also provided
some first attempts for a methodological approach towards the topic. Also with
respect to digital twins, side-effects and internal workings of such complexity
typically cannot be simulated within reasonable time and financial limits. When
using pre-trained models, security testing becomes even more cumbersome, as
already outlined in the paragraphs on pre-trained models and bias in Sect. 3.1.

Privacy and Profiling. When utilizing AI for enhancing the targets of SDGs it
can be tempting to use as fine-granular data as possible in order to gather good
results. This can be a problem with respect to end user privacy [37], especially
when dealing with personal data, e.g. when analysing issues of gender equality
(SDG 5) or health (SDG 3). While certainly beneficial for the results of the AI
component [51], this can be detrimental to end user interests, especially in cases,
where the users in question are within a suppressed minority, i.e. it must be made
sure that the means that are planned to support the SDGs are not misused in
order to hurt them. User profiling [18] can be seen as an extreme form of privacy
violation, as digital models of users and their interests, as well as preferences
are generated and subsequently exploited, e.g. in order to well-placed targeted
marketing. Still, the big companies like Facebook and Google can derive much
more from this data. Keeping privacy in mind is thus a fundamental step for
designing any AI-based application supporting SDGs.

Data Manipulation Detection. Manipulation can take place at many steps inside
a data driven workflow (without guarantee of completeness):
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– At the collection phase by only collecting data suitable to the attacker.
– Whenever data resides in a data store, e.g. a database.
– Through the introduction of faulty data into the data streams (see also adver-

sarial machine learning).
– During the calculation and processing stages, especially within complex

enrichment workflows, often including external enrichment data of varying
volatility.

– When the results are sent to the human decision makers (in case they are still
foreseen in the system).

– In case of feedback loops in expert systems in the mechanisms that report
the feedback from the (human) expert to the machine learning entity.

Detecting such manipulations, which can often be carried out trivially, espe-
cially by an internal attacker like a disgruntled database administrator, a strict
integrity providing process like a chain of custody [20] has to be put in place
in order to mitigate these threats. It must be kept in mind though that these
mechanisms must be secure against very potent internal attackers, like e.g. put
forward in [38].

Adversarial Machine Learning. In adversarial machine learning [32], an attacker
tries to change the underlying decision model of an AI component by feeding it
with specifically crafted data. Often, this feeding needs to be done slowly in order
to go undetected. While current attacks are rather quite low-level in nature, their
effects can be stunning and might even allow attackers to introduce backdoors
into existing systems. Due to the explainability problem, the resulting changed
models are often hard to detect, and detection typically focuses on the feeding
process though. See publication [62] for an in-depth description of this issue.

Resilience and Stability. When using AI-based systems in order to tackle targets
derived from the SDGs, a certain level of resilience [47] is direly needed, i.e.
the system needs to be able to adapt to successful attacks and maybe even
change. This is especially important, as an unreliable system will lose acceptance
rather quickly. The same holds true for the topic of stability, where we use two
different meanings for the term stability : (i) A system that is running stable
and uninterrupted and (ii) The utilization of algorithms that do not behave
chaotic, i.e. the output should not change too drastically when making small
changes to the input. While the reason for the importance of the first meaning
is rather straightforward and can be seen as a part of resilience, the second one
is required in order to deal correctly with rounded and/or inaccurate inputs in
a correct manner: Since input data, especially concerning natural processes, can
never exceed a certain, sometimes quite low, margin for accuracy, an algorithm
that reacts very strong on such differences might be useless in a practical context.

3.3 Control

Control in this context means: Who runs the system, who is responsible for the
code, for the data, who can change the software - all these elements are vital to
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clarify when tackling the grand challenges put forward by the SDGs, especially
as a lot of financial and political impact is caused by many of them.

Control over Data. Perhaps one of the most important aspects often overlooked
in supporting the SDGs with AI-based systems is the issue of control over the
data that is processed. This does not only refer to the training data sets, but also
the actual processing data that is analyzed. For example, car companies have
been found out to change their motor software in order to detect test settings and
adjust the exhaust accordingly. Large companies trying to game such systems
needs to be taken into account in many measures, especially regarding climate
related SDGs.

Control over Systems. What has been said about the data can also be put
forward for the system - the one who controls the system can exert a lot of
power over the important topics put forward in the SDGs and the methods used
to support them.

Control over Rules. Even more overlooked, control over measures to support
SDGs can be achieved quite elegantly and simple by being in charge of making
the rules: By being able to specify side or target parameters, big companies
might try to seemingly fulfill targets set out through the SGDs, but rather than
changing root causes just working around them.

3.4 Transparency

Transparency is a very problematic topic in AI [43], especially due to the problem
of providing explainable artificial intelligence for systems exceeding quite a low
level of complexity. Thus, while this issue has been the root cause for many
of the problems already outlined before, we want to discuss some issues very
specific to different notions of transparency in data driven systems, ranging
from transparency regarding the internal workings of the AI system to issues of
reproducibility.

Functional Testing. Functional testing typically involves testing a system for its
proper working, i.e. identifying that all features have been implemented, the cor-
rect results are calculated and so forth. This is typically done by providing test
cases, but also incorporates more advanced techniques like fuzzying or combina-
torial testing [55]. For an AI system, it might be hard to determine the actual
test cases, i.e. it might not be simple to define the correct function set of the
system, especially when thinking of systems in the area of decision support: Did
the IDS not report because of an active decision, or because it simply did not
call the respective analysis routines at all (a slightly exaggerated example).

Process Transparency. When using data in cascades of intelligent systems, and
especially when training neural networks with said data, transparency becomes
rather difficult, especially being able to answer questions on the actual sources
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of information particles that were later on aggregated. This can be a very prob-
lematic attack vector for processes that aggregate data from sources of different
sensibility [12], be it patient data or vital information on secret business processes
of a company. Thus, in order to mitigate a large amount of attacks, transparency
over the whole process chain needs to be provided. In case of utilizing sensible
personal information, this is also a requirement derived from the GDPR, but
related issues can also be encountered in other applications domain, especially
within (military) intelligence. In case of AI-supported SDGs, such information
can e.g. incorporate sensitive internal technical details of machines, where a suc-
cessful attack going for extraction of (parts of) this information can cause great
damage to the original data owner. Process transparency is also vital in case of
re-processing of data.

Reproducibility. In many cases it can be important to exactly reproduce a result
(i) in order to proof that it was actually produced the first time or (ii) in order
to learn from the calculation process and maybe challenge and adapt it:

– Reproducing a state of knowledge of the human decision maker: AI systems
are currently often seen in a supporting role for human decision makers, i.e.
the AI analysis the data for patterns and provides a human with the results
who is then in charge of the decision. Especially in sensitive and time critical
environments, the human decision maker has to take a decision under a lot
of stress based on incomplete information. If the decision was wrong, amply
time will be dedicated to the subsequent blame game. Thus, it is vital for the
human decision maker to be able to reproduce the exact state of knowledge
at the point of decision making [41]. This is also very important in order to
learn from mistakes and improve on the decision making process as a whole,
including the human, as well as the AI component.

– Re-processing data: In many applications, data needs to be re-processed, i.e.
the analytical workflows have to be redone on data that has already been
processed once. This can have implications in case the process data is fed
back into the model, as it would increase the impact of re-processed data,
since it would be included into the model again as often as it is re-processed.

– Post-processing data: Sometimes time-sensitive data (e.g. call detail records
in telecommunications) arrives late in the analysis process, but still needs to
be processed as if it had arrived on the correct time. This is very difficult with
respect to the versioning of models and enrichment data, especially in case of
feeding back results into the model. The difference between post-processing
and re-processing is that re-processing uses the models and enrichment data
current at the time of re-processing, while in post-processing the original
state at the time the processing should have originally happened needs to be
provided.

There are a set of problems surrounding the topic of reproducibility, with the
following being most important from our perspective with respect to security:

– Changes in the model: Especially in algorithms that continuously change the
model (e.g. self learning algorithms [4]), it can be very hard to (i) track the
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impact of changes to the model on the decision making process and (ii) go back
in time for post-processing. Here, a very fine-granular and still manageable
solution for model versioning needs to be provided.

– Heuristic approaches: In case of e.g. random values introduced into the algo-
rithm, running the same algorithm on the same data set using the same model
and enrichment information can (and typically will) result in differences in
the results. Thus, in order to provide a high level of reproducibility and trans-
parency, all internal values need to be logged in order to be able to redo the
whole process.

– Volatile enrichment data: Also enrichment information can be tricky, espe-
cially when it is not hosted by the AI system but externally and only invoked
through limited interfaces. Managing and versioning this information is vital
in order to provide a decent level of reproducibility in many data driven
systems.

Deletion and Rectification. Sometimes it becomes necessary to delete or rectify
data inside a workflow. Reasons can be different, but especially within the legal
domain of the GDPR, persons have the right to revoke their consent to voluntary
data processing and having their data deleted from the databases. Changing data
in AI processes can be hard, especially when the information had been used in
order to train a neural network [7]. While removing the deleted data from the
actual trained network might not be required from a legal point of view [76],
it can become important in cases where the data is wrong and has an impact
on the decision making process, e.g. by introducing a class of cases not actually
existing, by introducing bias into the model or a backdoor. Thus, mechanisms
on a technical and also on an organizational level must be put into place in order
to be able to deal with such requests in an ordered and timely manner.

3.5 Other Issues

In this section, we have gathered some other issues that need to be discussed
when planning to support a SDG-target with an intelligent system.

Liability. There is still a much debate inside the legal academic world, as to who
is going to be held responsible for damages caused by AI systems [59], especially
in expert in the loop systems [58]. In the case of using AI for SDG targets, the
topics addressed can be very complex (e.g. climate models) when compared to
end user apps, with a high impact of the resulting recommendations on society,
the economy and other fields directly affecting millions to billions of citizens in
the world. Thus, since these big questions ought to be solved on an international
level headed by the UN, liability needs to be solved on an international basis
too.

Over-Engineering Due to Ubiquitous AI. This is a very new issue that we did
not encounter in any literature, still, we believe it is a big issue with respect to
security: In many recent technologies it can be seen that the development path
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leads from the technology being exotic and expensive first to a fast decline of
costs, thus making the technology available to virtually anyone at low costs. This
can also be seen in the realm of AI, where AI-based applications become increas-
ingly ubiquitous with many new applications targeting ever increasing customer
basis. In addition it can be seen that implementations tend to gravitate towards
the use of standard technologies and frameworks, i.e. many implementations go
back to the same basic technologies. In order for such a basic technology to
survive, it must provide the capabilities required by most implementations, else
other frameworks will take its place. This means that even for implementations
only requiring a small an primitive subset of technique, typically rather powerful
frameworks are used. We can also see this trend in the hardware world, where
even for very primitive sensors, standard chips are deployed that run a full UNIX
with many advanced features. This is rather problematic from a security stand-
point. While it can certainly be argued in many other technologies that using
the same fundamental frameworks is in contrary beneficial to the overall security
of the system due to the high amount of security analysis received by a single
framework, powerful systems also allow for sophisticated attack vectors and typ-
ically result in bigger attack surfaces [40]. With respect to AI, additionally the
explainability problem must be considered. Using powerful off-the-shelf frame-
works can thus result in the utilization of very powerful and highly complex
systems for very simple tasks, e.g. (as an exaggerated example) using a trained
deep neural network instead of a simple rule set in a decision support system.
This problem, combined with the trend of providing AI almost anywhere results
in huge amounts of (critical) systems that can only be tested for security at a
very high price, thus introducing a huge uncharted attack surface.

4 Conclusion

Artificial intelligence permeates almost all areas of life and work. In this paper,
we have developed a brief overview on the topic of supporting the targets of the
UN Sustainable Development Goals (SDGs) from a security, safety, and privacy
perspective. To this end, we have identified potential problems and threats that
AI-based systems are causing now and will cause in the future - in particular,
novel threats that are not even thought of in the initial euphoria of planning,
developing, or even deploying AI. We discuss this using two selected application
areas, Smart Agriculture and Smart Health, both of which are of eminent impor-
tance to each and everyone of us. These findings are for scientists, developers
and policy makers when considering the impact such solutions to the SDGs will
have on industry and society. This inevitably leads to many conflicting interests
and strong attacker motivation by powerful entities. Moreover, the goal of this
paper is to provide starting points for future work. While we strongly believe
that artificial intelligence will play an important role in supporting the goals
articulated by the SDGs, implementation must be done carefully to reduce col-
lateral damage and/or not to undermine the original intent by creating tools to
the detriment of the supported goals.
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Abstract. Question Answering (QA) is key for making possible a robust
communication between human and machine. Modern language mod-
els used for QA have surpassed the human-performance; however, these
models require large amounts of human-generated training data which
are costly and time-consuming to create. This paper studies augment-
ing human-made datasets with synthetic data as a way of surmounting
this problem. A state-of-the-art model based on deep transformers is
used to inspect the impact of using synthetic answerable and unanswer-
able questions to complement a well-known human-made dataset. The
results indicate a tangible improvement in the performance of the lan-
guage model (measured in terms of F1 and EM scores) trained on the
mixed dataset. Specifically, unanswerable question-answers prove more
effective in boosting the model: the F1 score gain from adding to the
original dataset the answerable, unanswerable, and combined question-
answers were 1.3%, 5.0%, and 6.7%, respectively.
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1 Introduction

1.1 Problem Statement

Question Answering (QA) is essential to enabling effective communication
between humans and machines. As a computer science discipline, it falls under
information retrieval and natural language processing (NLP), and it concerns
building machines able to answer questions asked by humans in natural lan-
guages [5]. Recent years have seen significant progress in Question Answering
owing to novel comprehensive public datasets, e.g. SQuAD [19], TriviaQA [10],
HOTPOTQA [25], and modern deep-learning models, most notably BERT [6].
As an instance of these advancements in Extractive Question Answering (EQA),
state-of-the-art models trained on SQuAD dataset have surpassed human per-
formance [6], while BERT model has a performance on par with human’s on the
updated version of the dataset, SQuAD 2.0 [6].
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Yet, the mentioned achievements come at a price: massive human-made train-
ing datasets. Generating this massive training data is typically crowd-sourced,
and the process takes considerable time and resources [15]. Further, training
models on these large datasets is time-consuming and computationally expen-
sive. The problem exacerbates when models are trained on languages other than
English which is well-researched and has an abundance of training data avail-
able for different tasks. To tackle these challenges, some researchers have tried to
create more effective models which can perform better than current models on
existing datasets, while others have developed more complex datasets or devised
methods of synthesizing training data to get better results from current EQA
models. The following section briefly reviews some of these efforts during the
past few years.

1.2 Prior Research

Researchers have adopted three major approaches for creating more effective QA
systems: (1) create more effective models to better leverage existing datasets,
(2) generate more actual training/test data using crowd-sourcing or (3) gener-
ate synthetic training/test data to improve the performance of existing models.
These approaches are briefly explored below.

Model Development. Qi et al. [17] focus on the task of QA across multi-
ple documents which requires multi-hop reasoning. Their main hypothesis is
that the current QA models are too expensive to scale up efficiently to open-
domain QA queries, so they create a new QA model called GOLDEN (Gold
Entity) Retriever, able to perform iterative-reasoning-and-retrieval for open-
domain multi-hop question answering. They train and test the proposed model
on HOTPOTQA multi-hop dataset. One highlight of Qi et al. model is that they
avoid computationally demanding neural models, such as BERT, and instead use
off-the-shelf information retrieval systems to look for missing entities. They show
that the proposed QA model outperforms several state-of-the-art QA models on
HOTPOTQA test-set.

In another work, Wang et al. [21] develop an open-domain QA system, called
R3, with two innovative features in its question-answering pipeline: a ranker to
rank the retrieved passages (based on the likelihood of retrieving the ground-
truth answer to a query), and a reader to extract answers from the ranked
passages using Reinforcement Learning (RL). Modern deep learning models for
open-domain QA use large text corpora as training sets, and use a two-step pro-
cess to answer questions: (1) Information Retrieval (IR) to select the relevant
passages, and (2) Reading Comprehension (RC) to select candidate phrases con-
taining the answer [2,7]. The model proposed in this paper follows this same
structure: Ranker module acts as the IR while Reader module acts as the RC.
Wang et al. use SGD/backprop to train their Reader and to maximize the prob-
ability that the selected span contains the potential answer to the query. They
train the Ranker using REINFORCE [23] RL algorithm with a reward func-
tion evaluating the quality of the answers extracted from the passages Ranker
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sends to Reader. They show that this configuration is robust against semantical
differences between the question and the passage.

In another study, Lee et al. [13] implemented a recurrent network (called
RASOR) on SQuAD dataset for question answering, which resulted in a model
with higher EM and F1 score compared to the most successful models up to
the date [Match-LSTM]. In analysis, Lee et al. state that a recurrent net enables
sharing computation for shared substructures across candidate spans for answer-
ing the asked question, and this has resulted in the improved performance of their
model compared to the baseline models studied in the paper.

Actual Data Generation. Lewis et al. [14] took on the challenge of ‘cross-
lingual EQA’ by developing a multi-lingual benchmark dataset, called MLQA.
This dataset covered seven languages including English and Vietnamese with
more than 12k instances in English and 5k in the other six languages. They also
managed to make each instance included in the benchmark to be paralleled across
at least four of their chosen languages. Lewis et al. aimed to reduce the overfit
observed in cross-lingual QA models. As their baseline models, Lewis et al. used
BERT and XLM models [14]. The dataset they developed only included develop-
ment and testing set, so for training baseline models, they used the SQuAD v1.1
dataset. Using their test/dev dataset, Lewis et al. finally showed that the trans-
fer results for state-of-the-art models (in terms of EM and F1 score) largely lag
behind the training results; hence, more work is required to reduce the variance
of high-performance models in EQA.

In a recent paper, Reddy et al. [20] develop a dataset focused on Conversa-
tional Question-Answering, called CoQA. They hypothesize that machine QA
systems should be able to answer questions asked based on conversations, as
humans can do. Their dataset includes 127k question-answer pairs from 8k con-
versation passages across 7 distinct domains. Reddy et al. show that the state-
of-the-art language models (including Augmented DrQA and DrQA+PGNet)
are only able to secure an F1 score of 65.4% on CoQA dataset, falling short
of the human-performance by more than 20 points. The results of their work
shows a huge potential for further research on conversational question answer-
ing which is key for natural human-machine communication. Previously, Choi et
al. [4] had conducted a similar study on conversational question answering, and
using high-performance language models, they obtained an F1 score 20 points
less than that of humans on their proposed dataset, called QuAC.

In another work, Rajpurkar et al. [18] focus on augmenting the existing QA
datasets with unanswerable questions. They hypothesize that the existing QA
models get trained only on answerable questions and easy-to-recognize unanswer-
able questions. To make QA models robust against unanswerable questions, they
augment SQuAD dataset with 50k+ unanswerable questions generated through
crowd-sourcing. They observe that the strongest existing language models strug-
gle to achieve an F1 score of 66% on their proposed update to SQuAD dataset
(called SQuAD 2.0), while achieving an F1 score of 86% on the initial version
of the dataset. Rajpurkar et al. state that this newly developed dataset may
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spur research in QA on stronger models which are robust against unanswerable
questions.

Synthetic Data Generation. Lewis et al. [15] take on the challenge of expen-
sive data-generation for Question Answering task by generating data and train-
ing QA models on synthetic datasets. They propose an unsupervised model for
question-generating which powers the training process for an EQA model. Lewis
et al. aim to make possible training effective EQA models with scarce or lack-
ing training data, especially in non-English contexts. Their question-generation
framework generates training data from Wikipedia excerpts. Training data in
this work is generated as follows:

1. A paragraph is sampled from English Wikipedia
2. A set of candidate answers within that context get sampled using pre-trained

models, such as Named-Entity Recognition (NER) or Noun-Chunkers, to
identify such candidates

3. Given a candidate answer and context, “fill-in-the-blank” cloze questions are
extracted

4. Cloze questions are converted into natural questions using an unsupervised
cloze-to-natural-question translator.

The generated data is then supplied to question-answering model as training
data. BERT-LARGE model trained on this data can achieve 56.4% F1 score,
largely outperforming other unsupervised approaches. Before this paper, (i) gen-
erating training data for SQuAD question-answering and (ii) using unsupervised
methods [instead of supervised methods] to generate training data directly on
question-answering task were not explored as thoroughly.

In a similar work, Zhu et al. [27] propose a model to automatically generate
unanswerable questions based on paragraph-answerable-question pairs for the
task of machine reading comprehension. They use this model to augment SQuAD
2.0 dataset and achieve improved F1 scores, compared to the non-augmented
dataset, using two state-of-the-art QA models. To create the model for generating
unanswerable-questions, Zhu et al. adopt a pair-to-sequence architecture which
they show outperforms models with a typical sequence-to-sequence question-
generating architecture.

In an earlier work from 2017, Duan et al. [8] propose a question-generator
which can use two approaches for generating questions from a given passage
(in particular, Community Question Answering websites): (1) a Convolutional
Neural Network model for a retrieval-based approach, and (2) a Recurrent Neural
Network model for a generation-based approach. They show that the questions
synthesized by their model (based on data from YahooAnswers) can outperform
the existing generation systems (based on BLEU metric), and it can augment
several existing datasets, including SQuAD and WikiQA, for training better
language models.
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1.3 Objective and Contributions

This paper hypothesizes that for the task of Question Answering (QA), aug-
menting real data with synthesized data can help train models with a better
performance compared to models trained only on real data. This work validates
this on the task of Extractive Question Answering (EQA) using BERT language
model [6] trained on different combinations of real and artificial data, based
on SQuAD 2.0 [18] dataset (as the source of real data) and machine-generated
answerable and unanswerable question-answer pairs (as the source of synthetic
data). We will use F1 and Exact Match (EM) metrics to measure the perfor-
mance of the developed models. We use an unsupervised generator-discriminator
model based on cloze translation to generate answerable questions, following the
work by Lewis et al. [15], and then alter the model to enable it to generate
unanswerable questions. We expect the language model trained on augmented
data to outperform the model trained on vanilla real data. We also expect mod-
els trained on synthetic data composed of both ANS and UNANS questions to
yield better results than those trained on synthetic data composed of only ANS
or only UNANS questions.

2 Method

2.1 Proposed Model

BERT model trained on 20% of SQuAD 2.0 dataset will act as our baseline
model. Improved models will be created by training BERT model on SQuAD
2.0 augmented with (1) answerable questions (ANS) from the work by Lewis et
al. [15], (2) UNANS questions (UNANS) generated by the authors of this paper,
and (3) a mixture of ANS and UNANS questions. Section 3 provides more details
on the experiment designs. The following paragraphs describe the models used
to generate the ANS and UNANS datasets.

The model generating synthetic answerable questions was developed by Lewis
et al. [15]. It takes as its input a paragraph from English Wikipedia, and uses
a Named Entity Recoginition (NER) system - a system that locates and classi-
fies named entities in the text into predefined categories such as people, date,
location, organization, etc. - to identify a set of potential answers which it then
uniformly samples from. Next, an answer a is generated by identifying a sub-
clause around the named entity using an English syntactic parser. To generate
the maximum likelihood question p(q|a, c) from the context c (the paragraph)
and answer a, the model produces a cloze statement – i.e. a statement with a
masked answer – from the identified sub-clause. An example would be “I ate at
McDonald’s” which maps to “I ate at [MASK]”. Then the system uses unsu-
pervised Neural Machine Translation (NMT) [12] to translate the cloze question
into a natural question, and it finally outputs the generated question-answer
pair. Figure 1 provides an illustration of question generation pipeline.
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Fig. 1. A pipeline for generating answerable question-answer pairs
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We plan to enhance Lewis et al.’s model by enabling it to generate both ANS
and UNANS questions. To do this, we will first refactor the model as follows:

1. Model will produce outputs in the same form as SQuAD 2.0 dataset
2. Instead of treating each Wikipedia paragraph as a standalone article, the

model will preserve information regarding a paragraph or multiple paragraphs
belonging to an article.

To produce UNANS questions we will run the modified model and get ANS
synthetic questions. ANS synthetic questions will consist of (paragraph, question,
answer) tuples, grouped by article. Afterwards we will remove the generated
answers from the output, split each paragraph from its corresponding question
in the tuple and randomly pair the question with another paragraph within the
same article. This ensures that the questions are indeed unanswerable, since
they will be detached from their original context, while staying relevant to the
original paragraphs. Sustaining this relevance also helps make the unanswerable
questions resilient against word-overlap heuristic [26] because the paragraphs
will belong to the same article.

At the end, we will evaluate how well the synthetic training examples com-
plement the SQuAD 2.0 human-labeled data: We will use EM and F1 scores
to assess the performance of BERT model (implemented by HuggingFace1) on
EQA among models trained only on human-generated data and models trained
on human-generated data combined with the two sets of synthetic datasets, i.e.
ANS and UNANS examples. The GitHub repository of this work contains the
entire modeling pipeline required for replicating the results.

2.2 Dataset

In this paper, we train the language models for EQA on the renowned Stanford
Question Answering Dataset (SQuAD) 2.0 [18]. This dataset is an updated ver-
sion of SQuAD 1.0 [19] which was a reading comprehension dataset comprised
of 100k+ questions built around Wikipedia articles. SQuAD 2.0 was created
by adding 50k crowd-sourced (adversarial) unanswerable questions to the initial
dataset.

As the source of answerable synthetic questions, we use the dataset gener-
ated by Lewis et al. [15]2. See Fig. 2 for a synthetic question-answer example.
The dataset contains 3.9M answerable question-answer pairs created using a
cloze-translating generator. This data is generated in SQuAD 1.0 standard for-
mat: we will convert the data into SQuAD 2.0 format to be able to merge
it with human-generated question-answer pairs from SQuAD 2.0 dataset. The
dataset Lewis et al. [15] generated with their model includes only answerable
questions. To generate the required unanswerable data, we modify their data-
generation pipeline. We have used pre-processed Wikipedia dump3 as an input

1 https://huggingface.co/ (Last access: 07/01/2020).
2 github.com/facebookresearch/UnsupervisedQA (Last access: 07/10/2020).
3 https://dumps.wikimedia.org/ (Last access: 07/10/2020).

https://huggingface.co/
https://github.com/facebookresearch/UnsupervisedQA
https://dumps.wikimedia.org/
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to the updated/modified question-answer generation model to generate around
80k unanswerable training examples in SQuAD 2.0 format. Figure 3 contains
an instance of the generated unanswerable question-answer pair. All the data
required to replicate this paper can be obtained and generated using the instruc-
tions from the GitHub repository of this paper.

Context: As the ”Bad Boys” era was fading, they were eliminated in five games
in the first round of the playoffs by the New York Knicks. The Pistons would
not return to the playoffs until 1996. Following the season, Chuck Daly left to
coach the New Jersey Nets, and John Salley was traded to the Miami Heat.
Meanwhile, the Bulls-Pistons rivalry took another ugly turn as Thomas was
left off the Dream Team coached by Daly, reportedly at the request of Michael
Jordan.
Question: Who left to coach the New Jersey Nets ?
Answer: Chuck Daly

Fig. 2. An example of a synthetic answerable question-answer pair.

Context: A fiscal deficit is often funded by issuing bonds, such as Treasury
bills or consols and gilt-edged securities. These pay interest, either for a fixed
period or indefinitely. If the interest and capital requirements are too large, a
nation may default on its debts, usually to foreign creditors. Public debt or
borrowing refers to the government borrowing from the public.
Question: Who can argue that fiscal policy can still be effective , especially in
a liquidity trap where , they argue , crowding out is minimal ?
Answer: N/A

Fig. 3. An example of a synthetic unanswerable question-answer pair.

2.3 Evaluation Metrics

We will use macro-averaged F1 score and EM to evaluate the performance of
the models trained in this work. F1 score shows the precision and recall for the
words selected as part of the answer actually being part of the correct answer.
We first compute the F1 score of the model’s predictions against the ground-
truth answer represented as bags of tokens, then take the maximum F1 score
across all possible answers for a given question, and finally average over all of
the questions. EM, on the other hand, indicates the number of exactly correct
answers with the same start and end indices.
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3 Experiments

We expect to achieve more reliable models for the task of EQA when augmenting
actual training data with synthetic data. The synthetic data (question-answers)
used for augmenting the actual data in this project has two types: answerable
and unanswerable questions. Lewis et al. [15] observed that synthetic answerable
questions can boost the performance of QA models when added to actual data
from SQuAD 1.1 dataset. Also, Zhu et al. [27] observed that mixing synthetic
unanswerable questions derived from human-generated training examples into
actual data from SQuAD 2.0 can improve the performance of EQA models. We
hence expect that augmenting an actual dataset, i.e. SQuAD 2.0 in this work,
with a mix of ANS and UNANS can yield an even better performance than using
each of them alone to enhance the dataset.

We have devised several experiments to test the mentioned hypothesis with
training examples described below:

1. Experiment 0 [Baseline]: Using 26,063 examples from SQuAD 2.0 dataset [the
entire dataset was not selected to make the training tractable]

2. Experiment 1-1 [ANS Augmentation]: Using 26,063 examples from SQuAD
2.0, and 391,549 from ANS (from [15])

3. Experiment 1-2 [UNANS Augmentation]: Using 26,063 examples from
SQuAD 2.0, and 76,818 from UNANS

4. Experiment 2 [ANS+UNANS Augmentation]: Using 26,063 examples from
SQuAD 2.0, 314,731 from ANS, and 76,818 from UNANS

Experiment 0 provides a baseline to compare the other experiment results
against. Experiment 1 looks into the impact of exclusive ANS or UNANS data
augmentation. Finally, Experiment 2 will show the results of mixing the two
approaches of augmentation together.

BERT model adapted to EQA was used to run the mentioned experiments,
and the results were evaluated on a set of held-out human-generated data points
consisting of 3,618 question-answer pairs. We have tuned the hyper-parameters
of the model (number of training epochs, maximum sequence length, etc.) based
on our observations from Experiment 0, since it involves a relatively small dataset
and is easy to experiment with. We will use these obtained optimal hyper-
parameters for the rest of the experiments. During our initial experimentation,
we observed that training BERT on the full SQuAD 2.0 dataset takes 9 h on a
1480 MHz 3584 core NVIDIA 1080 TI GPU, so to avoid excessive training times,
we decided to use only 20% of the SQuAD dataset and accordingly use a limited
portion of the synthetic questions generated by Lewis et al. [15].
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Table 1. Results of the three experiments

Experiment F1 (%) EM (%)

0 57.61 61.27

1-1 58.90 62.56

1-2 62.56 65.81

2 64.28 66.36

4 Results and Discussion

Table 1 shows the results of the experiments. A few observations can be made
based on these results:

– Experiments 1-1 and 1-2 demonstrate that, as expected, adding either ANS
or UNANS questions to the human-generated training examples boosts F1
and EM scores of the BERT model for both cases compared to Baseline.

– The results further show that adding the UNANS data to the original dataset
(experiment 1-2) has a stronger impact than adding the ANS data (exper-
iment 1-1). Table 2 indicates this point: the normalized impact of adding a
single example from the UNANS dataset is almost four-times larger than that
of the ANS dataset on the F1 and EM scores compared to the baseline. This
can be justified with the following: the original training set has a small por-
tion (only around 1/3) of unanswerable questions, so our synthetic dataset
increases the proportion of unanswerable questions and makes the training
data more balanced in this regard.

– Finally, the results of experiment 2 show that augmenting the SQUAD 2.0
dataset with both ANS and UNANS at the same time leads to an even greater
performance compared to using either of the two datasets to enhance the
human-made data, i.e. compared to experiments 1-1 and 1-2.

These results confirm our hypothesis mentioned in Sect. 1.3, and show a potential
for our novel synthesized unanswerable dataset to further boost the performance
of language models similar to BERT for the task of EQA.

Table 2. Comparison between the relative impact of each dataset on the model scores:
ANS vs. UNANS

ANS UNANS

Gain in F1 (%/example) 0.022 0.086

Gain in EM (%/example) 0.021 0.074

5 Conclusions

This paper studies the impact of augmenting human-made data with synthetic
data on the task of Extractive Question Answering by using BERT [6] as the
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language model and SQuAD 2.0 [18] as the baseline dataset. Two sets of syn-
thetic data are used for augmenting the baseline data: a set of answerable and
another set of unanswerable questions-answers. Conducted experiments show
that using both these synthetic datasets can tangibly improve the performance of
the selected language model for EQA, while the UNANS data, generated by the
authors, has a more pronounced impact on improving the performance. Adding
the UNANS dataset to the original data yields a gain of 5% in both F1 and EM
scores, whereas the ANS dataset yields around a quarter of this gain. Enhancing
the original data with a combination of the two synthetic datasets improves the
F1 score of BERT on the test-set by 7% and the EM score by 5% which are
sizable improvements compared to the performance of the baseline models and
similar efforts in the literature. The obtained results indicate the great poten-
tial of using synthetic data to complement the costly human-generated datasets:
This augmentation can help provide the massive data required for training the
modern language models at a very low cost.

6 Limitations

The presented approach has limitations similar to [15]: Although we tried to
avoid using any human-labeled data for generating the synthetic question-
answers, the question-generating models rely on manually-labeled data from
OntoNotes 5 (for NER system) and Penn Treebank (for extracting subclauses).
Further, the question-generation pipeline of this work uses English language-
specific heuristics. Hence, the applicability of this approach is limited to lan-
guages and domains that already have a certain amount of human-labeled data
for question generation, and porting this model to another language would
require extra preparatory efforts.

An extensive amount of training examples are required to achieve tangible
performance gains, and this results in substantial training times and compute
costs for both generating synthetic data and training the BERT model. These
high training times and resource costs prevented us from performing the exper-
iments on the full SQuAD 2.0 dataset. Nonetheless, given the homogeneity of
the original dataset, we expect the synthetic training examples to bring similar
performance improvements if added to the full dataset with similar proportions.

7 Future Work

The work presented in this manuscript can be extended in several ways:

– Developing a more sophisticated unsupervised model for unanswerable ques-
tion generation can be a great extension of this work. Some potential
approaches include devising heuristics such as word/synonym overlap for fil-
tering the generated questions and employing the pair-to-sequence model by
Zhu et al. [27] on the synthetic training data.
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– The computational power available to the authors limited the size of the data
used for running the experiments in this work: future efforts can run more
extensive experiments to further examine the synthetic data augmentation
studied here.

– Breaking down the question types into how, what, where, when, etc. and
studying the individual impacts of each question-answer type can also clarify
the individual impact of each question type on the performance of the lan-
guage model. The insights gained from such experiment can help fine-tune
the generated data to achieve more effective synthetic datasets.

– Using new language models, e.g. FPNet [24], with the proposed method and
using new specialized hardware for training (optimizing) the models, e.g.,
quantum and digital annealers [11,16,22], would also be interesting extensions
of this work.

– It would also be interesting to apply the proposed method to other QA tasks
such as visual QA [1] and counterfactual QA [3,9].

Acknowledgments. We would like to thank the CS224N and CS224U course staff
from Stanford University, especially Professor Chris Potts, for their guidance and feed-
back on this research.

Authorship Statements. Liubov implemented unanswerable question generation

pipeline and the scripts to process and partition the data. Pouya worked on designing

the experiments and composing the paper.

References

1. Antol, S., et al.: VQA: visual question answering. In: Proceedings of the IEEE
International Conference on Computer Vision, pp. 2425–2433 (2015)

2. Chen, D., Fisch, A., Weston, J., Bordes, A.: Reading Wikipedia to answer open-
domain questions. arXiv preprint arXiv:1704.00051 (2017)

3. Chen, L., Yan, X., Xiao, J., Zhang, H., Pu, S., Zhuang, Y.: Counterfactual sam-
ples synthesizing for robust visual question answering. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10800–
10809 (2020)

4. Choi, E., et al.: QuAC: question answering in context. arXiv preprint
arXiv:1808.07036 (2018)

5. Cimiano, P., Unger, C., McCrae, J.: Ontology-Based Interpretation of Natural
Language. Morgan & Claypool Publishers (2014)

6. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of
deep bidirectional transformers for language understanding. arXiv preprint
arXiv:1810.04805 (2018)

7. Dhingra, B., Liu, H., Yang, Z., Cohen, W.W., Salakhutdinov, R.: Gated-attention
readers for text comprehension. arXiv preprint arXiv:1606.01549 (2016)

8. Duan, N., Tang, D., Chen, P., Zhou, M.: Question generation for question answer-
ing. In: Proceedings of the 2017 Conference on Empirical Methods in Natural
Language Processing, pp. 866–874 (2017)

http://arxiv.org/abs/1704.00051
http://arxiv.org/abs/1808.07036
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1606.01549


When in Doubt, Ask 33

9. Holzinger, A., Malle, B., Saranti, A., Pfeifer, B.: Towards multi-modal causability
with graph neural networks enabling information fusion for explainable AI. Inf.
Fusion 71, 28–37 (2021)

10. Joshi, M., Choi, E., Weld, D.S., Zettlemoyer, L.: TriviaQA: a large scale dis-
tantly supervised challenge dataset for reading comprehension. arXiv preprint
arXiv:1705.03551 (2017)

11. Kalehbasti, P.R., Ushijima-Mwesigwa, H., Mandal, A., Ghosh, I.: Ising-based lou-
vain method: clustering large graphs with specialized hardware. arXiv preprint
arXiv:2012.11391 (2020)

12. Lample, G., Ott, M., Conneau, A., Denoyer, L., Ranzato, M.: Phrase-based &
neural unsupervised machine translation. In: Proceedings of the 2018 Conference
on Empirical Methods in Natural Language Processing (EMNLP) (2018)

13. Lee, K., Salant, S., Kwiatkowski, T., Parikh, A., Das, D., Berant, J.: Learning
recurrent span representations for extractive question answering. arXiv preprint
arXiv:1611.01436 (2016)
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Abstract. We introduce a reinforcement learning based containment
system for self-propagating malware in local networks. The system is
trained with real-world software and malware and leverages a network
of virtual machines for execution and propagation. Instead of relying
on labels as is common with supervised learning, we follow a trial-and-
error approach in order to learn how to link network traffic to malware
infections.

Keywords: Reinforcement learning · Machine learning · Network
security

1 Introduction

In 2017, two computer viruses – WannaCry and NotPetya – emerged and
together were responsible for an estimated damage of about 14 billion dollars
worldwide. These viruses were typical examples of ransomware, where the mali-
cious software encrypts valuable information of the victim and demands a ran-
som in exchange for the decryption key. One particularly dangerous behaviour of
these two viruses was inherent in their method of dissemination: Both exploited
a vulnerability in the file sharing protocol SMB implemented in older versions
of Microsoft Windows. This allowed an infected host to write and execute new
files on any computer within the local network that accepted the vulnerable
protocol version. Before the malware presented the user its ransom note, it had
already distributed itself to other hosts on the local network. For each newly
infected host the ransomware again tried to infect other hosts on the network,
multiplying the threat to the network. By the time the first ransom note was dis-
played, many more hosts had already been affected. Therefore, a counteracting
entity needed to react fast and also keep track of potentially infected hosts, since
one unrecognised infection would threaten the whole network all over again. For
human security experts such scenarios are a tough challenge and can often only
be resolved by inflicting collateral damage to the rest of the operative network.
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The field of reinforcement learning (RL) achieved tremendous accomplish-
ments in recent years. The combination of traditional RL methods and deep
learning techniques managed to outperform even some of the best human spe-
cialists when executing complicated tasks. Starting at the old games of the Atari
2600 [15], RL agents also outplayed human experts in the board game Go (first
based on domain knowledge [19], later entirely through self-play [17]) and the
complex real-time computer games Dota 2 [4] and Starcraft 2 [24]. These agents
showed that reinforcement learning is capable of finding (nearly) optimal poli-
cies in environments that are high-dimensional (in states as well as in actions),
(quasi) time-continuous, scarce of reward, and partially observable.

Due to the ability of RL agents to make quick decisions in difficult situations
that may have long-term impacts, we show that RL is well suited to prevent self-
propagating malware from spreading in local networks. Traditional approaches
for solving this problem comprise Intrusion Detection-(IDS) or Intrusion Preven-
tion Systems (IPS), which are built upon supervised learning techniques [23,28].
Such systems act in accordance to predefined responses, if any, and require a
lot of labelled data which is time consuming and/or expensive to gather. Threat
response also relies heavily on expert domain knowledge and usually suffers from
a certain degree of bias. We argue that an RL approach has 3 key advantages
over traditional supervised learning solutions:

1. RL is able to counteract threats not just in a timely manner, but also tailored
individually to different situations, in contrast to the predefined reactions of
supervised learning. The granularity of individual reactions is defined by the
action space.

2. Given a rich action space, RL is able to decrease uncertainty by interacting
with the object in question before reacting further. A supervised learning
system can be understood as an observer who is restricted to images of an
object in order to determine what it might be and how to interact with it.
Conversely, RL enables the observer to directly interact with the object and
to observe its immediate reactions. For example, the observer could twist and
turn the object to change its point of view before making a final decision on
a future reaction. In the specific context of self-propagating malware, an RL
agent could send specific network packets to a potentially infected host and
look for anomalies in the response of the host.

3. RL does not require labelled data. An RL agent requires an environment
with which it can interact. Once the environment exists, the amount of data
generated by agent interactions can be arbitrarily large. In the scenario of self-
propagating malware, labelling all data packets that indicate an infection of
a host is a very time-consuming task. RL on the other hand does not need to
know initially which data packets are linked to an infection. It simply rewards
an agent if it contained an infection and the agent learns the distinguishing
factors by itself.

To the best of our knowledge, we present the first RL based containment system
for self-propagating malware in local networks. We do so by leveraging virtual
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machines in combination with real-world software and malware and without the
need of labels. Instead, it follows a trial-and-error paradigm.

The rest of this paper is structured as follows: Sect. 2 discusses related work,
Sect. 3 introduces the methodical approach to implementing our system, Sect. 4
describes the experiments and presents the results, Sect. 5 discusses these results
in detail, and Sect. 6 concludes this paper.

2 Related Work

As mentioned before, current IDS/IPS are usually based on supervised learning
[23] and typically consist of multiple components [11]:

– a monitoring component, which can either be host-based or network-based,
– an analysis and recognition component,
– and an alarm component that provides further procedural instructions in case

of detection.

In contrast, RL systems only consist of two components – an agent and its
environment, whereas most of the intelligence relies on the agent. IDS/IPS can
be distinguished into signature-based and anomaly-based systems [5,7,16]. The
former are only able to detect known attacks, the later suffer from a high false
positive rate. Both require labelled data in order to operate. RL does not rely on
labelled data and, if paired with a function approximation method, is capable
of generalising from observed states. The fundamental difference between super-
vised learning and RL is also the reason why benchmark data sets for intrusion
detection or malware classification like [10,12,21] are not applicable.

Only few, very recent works in the realm of network security are based on RL.
In [29] the authors use RL for automatic feature selection in order to later apply
them to a traditional supervised learning approach. [18] focuses on anomalies
that are injected into a simulated network and the reward is output based on
a correct detection. [2,25,26] deploy tabular temporal-difference learning meth-
ods to live sequences of traffic. In [27], a method based on temporal difference
learning together with a kernel approximation is used to solve a Markov chain
prediction problem. In [9], an actor critic approach is used to apply intrusion
detection in the specific case of cyber-physical systems. [14] introduces different
deep RL methods for intrusion detection. This approach does use classical RL
algorithms, but depends heavily on a deliberately small discounting factor. This
results in the overvaluing of the immediate reward while not taking long-term
effects into consideration.

In contrast to above related work, we focus on self-propagating malware for
conventional client computers by leveraging virtual machines running real-world
software and operating systems, instead of simulating the data. Even though it
makes sense to use standardised problems and performance metrics, we decided
to use a setup with virtual machines to show a functional real-world proof of
concept for the proposed method. This way, we can make solid statements about
practical applicability, since “secondary variables” such as latency and the actual
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interactions in the defence against threats are rarely captured by existing data
sets.

3 Methods

In order to let an RL agent learn to quarantine (potentially) infected hosts
within a computer network, we decided to use an episodic approach, because
a network in which every host is infected marks a clear terminal state in the
environment. During one episode a host gets infected at a random point in time
and the agent needs to learn to intervene only in that case. Each episode is
divided into equidistant time-steps where the agent can choose an action. For a
small proportion of episodes no infection happens within the network, enabling
the agent to learn when not to intervene.

3.1 Environment

We consider a Markov decision process M = (S,A,R, p, χ, γ), where S is a
state space, A is an action space, R : S × A → R is a reward function, p :
S × A × S → [0, 1] is a transition probability function, χ ∈ Δ(S) is the initial
state distribution, and γ ∈ [0, 1) is a discount factor. The initial state distribution
χ is deterministic, because the environment starts each episode from the same
clean initial state. We set the discount factor to γ = 0.99, because the agent
should consider long-term effects.

State Space. We require the state space to contain all relevant information for
the agent to base its decision on. In our setup this includes information about
all network packets sent within a reasonable amount of time. Each packet is
encoded via a feature vector φ ∈ N

d, which is a one-hot-encoding where a 1
stands for one data packet, and the dimension the 1 is placed in determines the
contextual information. The feature selection is more thoroughly explained in
Subsect. 3.2. The state of the environment is then defined as

s := (
Nt∑

i=0

φi,

t∑

j=t−10

Nj∑

i=0

φi), (1)

where Nj is the number of network packets in time-step j, and t is the current
time-step. The first component of the state vector is a short term depiction of the
current situation, summing up all feature vectors of network packets from the
previous time-step. The second component adds more context as it additionally
sums up all feature vectors of packets from the previous 10 time-steps. Having
the agent only look at the network traffic of the previous time-step enables it
to react to short term events, but makes it oblivious to longer-lasting trends.
For this reason, the second component was added. This definition results in
S = N

d × N
d.
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Action Space. The action space consists of only two actions A =
{continue, cut} in order to record and replay single episodes. This is due to
execution time reasons and is explained in more detail in Sect. 4. The action
continue lets the environment continue without interruption and the action cut
disconnects a host from the rest of the network and ends the episode. Figure 1
depicts the backup diagram of the environment, which displays the connections
between states and actions.

Fig. 1. A backup diagram of the environment. White circles represent states, black
circles represent actions and white squares represent terminal states.

Reward Function. The desired behaviour the agent should learn is to a) cut
the network connection to a host as soon as an infection has happened, and b) to
not intervene otherwise. In order to accomplish these goals, the reward function
is defined as: let I ∈ N be the time-step an infection happens on a host and let
T ∈ N be the final time-step. Also let I ≤ T denote that during an episode a
host is infected and T < I that there is no infection during an episode. Finally
let t ∈ N be the current time-step. The reward function R : N × N × A → R is
defined as

R(I, t, continue) :=

⎧
⎪⎨

⎪⎩

0 if t < T

1 if t = T < I

−1 if I < t = T

R(I, t, cut) :=

{
−1 if t ≤ I
1

t−I if I < t
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Fig. 2. An example reward function for the action cut. In this scenario the infection
of the host happens in time-step 10. If the action cut is applied before or at the same
time-step as the infection, then a reward of −1 is given. If the action is applied after
the infection, then the reward is 1

t−10
, where t is the current time-step.

The rapid decrease in reward for past infections ensures that the agent prefers
to disconnect the network link earlier than later. On the other hand, the negative
reward punishes the agent if it acts too early or not at all when it should have
done so. Figure 2 graphically explains the reward function for the action cut.
Note that the reward is also −1 if the agent cuts the network connection to
an infected host in the same time-step as the infection happens, because there
couldn’t have been a prior indication of that infection. In such a scenario, the
agent was simply lucky, but its decision was not based on learned behaviour.

3.2 Feature Selection

For feature selection we only consider metadata, since the corresponding fea-
tures already resulted in a very high-dimensional space. In our feature selection
method, data packets are distinguished by their type and by their destination.
Because all of the relevant data that determines the type and destination is of
categorical nature, our approach uses one dimension in the feature vector for
each combination of these categorical values. This results in a very high, yet
mutually exclusive, number of dimensions.

The packet destination (within the LAN) is determined via the IP address.
This address is split in a network- and a host part; in our specific setup, we
distinguish 3 networks consisting of 256 hosts each. Thus, there are 768 different
addresses in this setup. Encoding all addresses, even though only 6 of them are
used, is necessary, because the malware actively enumerates all IP addresses in
the network and listens for replies. Not encoding all possible addresses would
lead to either not being able to model such packets at all, or to not being able to
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distinguish between these addresses. Also all IPv6 packets are grouped together,
regardless of their target, because although it is desired to distinguish IPv6 from
IPv4 traffic, IPv6 is not the main focus of this work (due to its enormous address
space).

The type of the data packet is defined by the network protocols arp, icmp,
tcp, and udp. For tcp and udp, the destination port further identifies the likely
type of service – at least for well-known ports ranging from 1 to 1023. Above
this threshold, all ports are grouped together for convenience reasons. Finally
there is one dimension in the feature vector for each combination of address and
type previously mentioned, resulting in 3,154,436 mutually exclusive dimensions.
Lastly, 4 additional dimensions for a coarser distinction were added, counting all
ip, arp, tcp and udp packets, regardless of their ports or destination addresses.

3.3 Agent

The agent uses the formalism of generalised policy iteration [20] in the setting
of value-based RL to find an optimal policy π∗. We compare SARSA and Q-
Learning as a learning algorithm for the action value function Q. It also uses
an ε-greedy policy, where different values for ε are considered and a memory-
based function approximation is applied. To be specific, we apply the k-nearest
neighbours algorithm in combination with locality sensitive hashing [6] in order
to decrease the query time of the k-NN. This means whenever the value of a
state is queried, the average value of the k-nearest neighbours is calculated and
used as approximation. The buffer size for the k-NN algorithm comprises 100,000
states.

4 Experiments

In order to return from a terminal state where at least one host is infected with
malware to the initial state, where no infection has yet happened, we deployed
virtual machines (VMs) connected via a virtual network. Utilising VMs makes
it possible to use real software as well as malware, which is somewhat rare, due
to the fact that many environments in the RL field are abstract games [3,13] or
simulations of real world scenarios [1,8,22]. Furthermore, VMs are typically used
in companies alongside physical computers, which is why they are representative
of a real-world scenario rather than being a simulation/abstraction thereof. As
previously mentioned, VMs allow operators to create so-called snapshots – an
image of the virtual machine’s state at a specific point in time – which the
VM can be reverted to. This makes it possible to quickly and reliably undo the
damage a malware infection has caused.

In our experiments, the virtual network that connects the VMs corresponds
to a star-shaped topology, meaning there is a central VM all other machines are
directly connected to. We use 4 VMs in total: the central one, called agent VM,
and three VMs that can be infected, called vulnerable VMs. Figure 3 shows a
schematic representation of this setup. The software component that represents
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the agent is located on the agent VM, which also contains some components
of the environment, like feature extraction. Network traffic that originates from
vulnerable VMs is routed via the agent VM, where each connection to another
vulnerable VM can be independently blocked by its firewall. The malware we
selected for our experiments, (NotPetya), is a Windows executable and therefore
only capable to infect Windows hosts. In order to guarantee that the agent VM
cannot be infected by the malware, it was set up to run Linux. Scenarios where
malware actively attacks the agent or the agents’ learning process are not within
the scope of this work. However, such attacks might be an interesting subject of
research for future research.

Fig. 3. A schematic representation of the environment. The green elements depict the
environment, the light brown element represents the agent. VMs 1–3 (the vulnerable
VMs) are only connected to VM4 (the agent VM), which acts as a router and forwards
network data packets. Besides forwarding, the agent VM also captures the data packets
and passes them on to a feature extraction unit. The output of this process is then
buffered and handed to the agent in the environments state representation. Based on
this information the agent then chooses an action. (Color figure online)

Each episode is limited to 10 min of real time, which is divided into equal
time-steps of 1 s. During an episode, malware is released on one machine at
a random time-step, which then tries to spread to all machines on the local
network. At each time-step the agent can interact with the network. This results
in a maximum of 600 actions per episode. In order to prevent the agent from
interfering with benign hosts, baseline episodes are introduced, where no malware
is released. In these episodes the agent should learn to not to interfere with the
network. At the beginning of each episode, there is a 20% chance for it to become
a baseline episode. The reason behind this particular probability threshold is that
finding the earliest time-step after an infection is the critical part of the agents
abilities, whereas not interfering in baseline episodes is comparatively simple,
especially in our setup. Nevertheless, such baseline episodes are necessary to
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prevent the agent from learning to always interfere with the network. However,
we are aware that the resulting ratio of baseline-to-infected episodes does not
reflect the real world, where infection-less episodes are much more likely to occur.

In order to save time during the experiment the environment is adapted to
record and replay episodes faster than real-time during the learning process.
The downside of this approach is a more restricted action space, since not every
consequence of every action at each time-step can be recorded. Therefore the
agent’s observations are limited to a single network interface instead of all three.
Additionally, its action space is reduced to two distinct actions, one no-operation
action called continue, and one for blocking all network traffic called cut. When
the agent selects the continue action, the episode continues normally and with-
out any agent interaction. By blocking all network traffic, the host is effectively
placed in quarantine where it remains until a human expert has finished inspect-
ing it. Since this block cannot be lifted during an episode, the host stays in the
same state for the rest of the episode, where it is incapable of sending network
messages to other hosts. Note that the agent cannot cut a host’s network con-
nection a second time. Since there is no benefit in continuing until the episode
runs its predetermined course, the cut action effectively ends the episode as soon
as it is applied. For a recorded episode, this means that in the case of continue
action, all recorded messages are replayed in the order they originally appeared.
In the case of cut, all further recorded messages are suppressed and the episode
ends immediately.

Network traffic is captured using tshark1, a well-established tool used for
live network data monitoring and analysis. For the record/replay functionality,
the recorded network packets are stored in JSON format. During replay, only
certain features are extracted from the JSON data. These features are gathered
in a feature vector, which serves as the input to the state representation of
the environment. More details on the feature selection process are provided in
Subsect. 3.2.

In a real-world scenario the initial infection on the network often requires
user interaction. A malicious link on a website or a malicious attachment in
an e-mail are common initial incident vectors. In our environment this initial
user behaviour is simulated. The file containing the actual malware is already
in place on every vulnerable VM, but is not executed by default. A small script
that automatically runs at startup listens on a specific port for the instruction to
infect the machine. This port is not included in the data collection of the agent
VM, as it would enable the agent to learn to look out for this very instruction.
As soon as such an instruction comes from the agent VM the script executes the
stored malicious file and releases the malware on the host and into the network.
The agent VM is the only VM that sends such infection instructions to the
vulnerable VMs.

For the experiments we created a data set of 20 recorded episodes. Due to
the 20% probability of an episode to become a baseline episode, this resulted
in 3 episodes in which no infection happened and 17 with a random infection

1 https://www.wireshark.org/docs/man-pages/tshark.html.

https://www.wireshark.org/docs/man-pages/tshark.html
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time-step. This data set is then extended by two of similar size in order to see
how representative the generated data is and how the transfer of a trained model
between the data sets performs. Please note that this is not considered transfer
learning as we are not using a trained model for different problems, but rather
have several sets of samples from the same distribution. We conducted a hyper-
parameter search for the three parameters step-size α, greedyness ε and amount
of nearest neighbours k via a grid search. Values considered in the search were
for α: [0.1, 0.2, 0.4, 0.6, 0.8], for ε: [0.1, 0.001, 0.0001] and for k: [1, 5]. The best
performing hyper-parameters were α = 0.4, ε = 0.0001 and k = 1. Figure 4
depicts the average reward for an agent with these hyper-parameters. The data
sets can be fount at https://github.com/seresheim/self-propagating-malware-
containment-via-reinforcement-learning.

Fig. 4. Average reward of an agent with the hyper-parameters α = 0.4, ε = 0.0001 and
k = 1. A reward of 1 means the agent cut the network connection exactly one time-step
after an infection, a reward of 0.5 means it cut the connection two time-steps after an
infection, 0.33 after 3, etc. A reward of −1 is given in a bad outcome (no intervention
or intervened too early). The results are averages over 50 runs.

Besides the initial data set (data set 1), two additional data sets of similar size
were recorded (data set 2 and data set 3) to further evaluate the setup. Figure 5a
shows a comparison of all 3 data sets, when the agent is only trained on a single
data set. The sub-figures Fig. 5b, Fig. 5c, and Fig. 5d show comparisons between
the data sets. In each of these sub-figures in the first 50 episodes all 3 agents were
trained on one of the 3 different data sets, each agent on a separate one. After 50
episodes, all agents were switched to the same data set. Thus these 3 sub-figures
display how beneficial it is to transfer knowledge based on one particular data
set to an environment based on another data set. If the data distributions of
the data sets are the same, then an agent with transferred knowledge should
perform as well as an agent that was trained only on the switched to data set.

https://github.com/seresheim/self-propagating-malware-containment-via-reinforcement-learning
https://github.com/seresheim/self-propagating-malware-containment-via-reinforcement-learning
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Fig. 5. Besides the initial data set (data set 1), two additional data sets were recorded.
Figure (a) shows a comparison of the 3 data sets with agents performing on the sets
separately. Figures (b)–(d) show a comparison of transferred knowledge. For the first
50 episodes, each agent trains on its separate data set. After 50 episodes all agents are
transferred to the same baseline data set. This shows how good a trained knowledge
base performs on a different data set. Each line in all 4 subplots is averaged over 50
runs.

Finally, Fig. 6, Fig. 7, and Fig. 8 show the results when these three data sets
are each split into a training- and test set. This split is done in a ratio of 3:1.
Each figure uses an agent that only learns from the test set as an upper bound.
Such an agent is clearly overfit to the test set, but also shows an estimate of the
maximum possible average reward. The training phase includes 100 episodes of
the training set and the following test phase includes 50 episodes of the test set.

5 Discussion

The results of Fig. 4 show that our general concept is feasible and that an agent
is capable to learn how to distinguish between malicious and benign network
traffic without requiring labels for each data packet or time frame. The figure
also shows that the agent is not able to achieve the maximum reward. We suspect
the reason behind this is a discrepancy between the time-step the environment
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Fig. 6. A train-test comparison on data set 1. Data set 1 is split into a training- and
test set (3:1). An agent is then trained on the training set and evaluated on the test
set. Another agent solely operating on the test set acts as upper bound. Each line in
the graph is averaged over 50 runs.

records the release of the malware and the earliest time-step the malware sends
out data packets. The reward calculation heavily depends on the assumption
that this time difference is negligible. The theoretical maximum of the reward
function (1) is only met if the agent cuts the network connection to the infected
host exactly one time-step after the infection has happened. If the malware does
not interact with the network for several time-steps, the agent is not able to
detect the infection that early. Instead it can only detect the infection when the
malware first sends data packets across the network, resulting in a lower actual
reward maximum.

Fig. 7. A train-test comparison on data set 2. Data set 2 is split into a training- and
test set (3:1). An agent is then trained on the training set and evaluated on the test
set. Another agent solely operating on the test set acts as upper bound. Each line in
the graph is averaged over 50 runs.
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Fig. 8. A train-test comparison on data set 3. Data set 3 is split into a training- and
test set (3:1). An agent is then trained on the training set and evaluated on the test
set. Another agent solely operating on the test set acts as upper bound. The base line
is averaged over 50 runs, the train-test split is averaged over 100 runs.

In our experiments of Fig. 5a, the results indicate that three separate agents
with the same hyper-parameters trained on our three data sets do not achieve
the same average reward. We suspect the graphs for data set 2 and data set 3
in Fig. 5a perform poorly, because of the previously described effect of latency
in the malware’s execution. In essence, we assume that the distribution of the
latency is different in the three data sets.

Switching from data set 1 to one of the other two results in a performance
drop, as depicted in Fig. 5c and Fig. 5d. This is expected, considering the time
delay assumption holds. Furthermore, the performance after the switch from
data set 1 to 2 or 3 does not significantly decrease in comparison to the respec-
tive baseline. Switching from data set 2 or 3 to data set 1 (Fig. 5b) results in a
steep increase in average reward in the first few episodes after the change. This
reinforces the time delay assumption, since an increase based on new experi-
ence would require more episodes in the new environment. On the other hand,
the average reward does not increase immediately to the level of the baseline,
therefore also suggesting a difference in data distribution.

Figure 6 shows no performance drop after the switch from training data to
test data. The results nearly match the ones of the baseline, suggesting the data
of train- and test set are of similar distribution and the agent is capable of
learning the relevant information from the training set. Figure 7, on the other
hand, shows a significant drop in average reward immediately after the change of
the data set, and a lower overall performance than the baseline agent thereafter.
A likely explanation for this outcome is the agent lacking necessary information
it requires in the test set. Since the model (the k-NN algorithm) uses raw data,
we assume that the information is generally missing from the training data set
and not excluded in the model building process. Figure 8 displays a similar image
to Fig. 6, albeit in a lower range of average reward as well as with a larger gap to
the baseline. A closer inspection of the raw data of individual runs indicated that
the learning success depends on the replay order of the recorded episodes, further
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indicating that some time-steps are better predictors in the k-NN algorithm than
others. We suspect this phenomenon occurs due to a lack of intelligence in the
accumulation mechanism of data points for the k-NN buffer. Currently all data
is added to the comparison buffer in a first-in, first-out order, regardless of the
data present in the buffer. Adding more intelligence to the selection process of
which data points to add, which to keep, and which to discard could add more
value to the overall structure.

6 Conclusion

In this paper, we demonstrated that it is possible to create a self-propagating
malware containment system through trial- and error learning. For that pur-
pose, we applied reinforcement learning algorithms to an environment of virtual
machines containing real world software as well as real-world malware. In partic-
ular, we compared SARSA and Q-Learning by leveraging a k-nearest neighbours
based function approximation approach. This approach compares states via the
amount of data packets sent within a certain time-span, grouped by destina-
tion and packet type. The agents’ action space contains only a non-response
action as well as a network connection cut. Our empirical results show that a
trained agent is capable of distinguishing when to cut a network connection to
an infected host and when to not intervene with the system. Additionally, the
RL based approach allows our agent to learn the difference between benign and
malicious data packets without the need of labelling each packet.
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Abstract. Natural Language Processing has improved tremendously
with the success of Deep Learning. Neural Machine Translation (NMT)
has arisen as the most powerful with the power of Deep Learning. The
same idea has been recently applied to source code. Code Generation
(CG) is the task of generating source code from natural language input.
This paper introduces a Python parallel corpus of natural language intent
and source code pairs. It also proposes a Code Generation model based
on Transformer architecture used for NMT by using code tokenization
and code embeddings on the custom parallel corpus. The proposed archi-
tecture achieved a good BLEU score of 32.4 and Rouge-L of 82.1, which
is on par with natural language translation.

Keywords: Deep learning · Attention · Transformer · Code
generation · Python · Neural machine translation

1 Introduction

Code Generation (CG), summarization, and retrieval are the main applications
of Natural Language Processing (NLP) in the Software Engineering domain [5].
These three tasks, mostly powered by the data-driven models, rely on a parallel
corpus of natural language intent and source code for training and evaluation. CG
aims to generate code based on Natural Language Intent i.e., description of the
problem. It is an indispensable activity of the programmers while implementing
specific intents. Enhancing software quality and improving the productivity of
the programmer are dependent on the correct code [7]. However, generating the
source code is time-consuming, costly, and error-prone. Therefore Automatic
Code Generation process becomes greatly important for software development.

Many researchers these days employing encoder-decoder frameworks for
sequence-to-sequence (seq2seq) learning, which are popular for Neural Machine
Translation (NMT). In seq2seq models, the encoder takes a sentence and pro-
duces another sentence as output [17]. Attention Mechanism can be added to
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help the model to focus on the relevant information [1] and it helped improve
the performance of NMT applications. As a continuation, Transformer architec-
ture [18] was proposed by Google to perform seq2seq tasks well. There are a lot
of benefits for transformers when compared with traditional seq2seq models like
it also employs attention, and lends itself to parallelization which makes proper
utilization of GPUs.

Fig. 1. Two example records from the parallel corpus of natural language intent and
source code pairs.

This paper proposes an NMT model to translate a problem description given
in the English Language to a Python source code snippet. The proposed model
is based on Transformer architecture, and Attention is employed to learn the
alignment between the text and the code. The task can be described as follows
- Given a parallel corpus of Problem Description and Python Source Code pairs
as shown in Fig. 1, create a model that generates a well-indented Python Source
Code of the Problem Description. This task involves solving several subproblems
because of the associated challenges with programming languages. The model
learns a mapping from X to Y where X = {x(i)}, a set of problem descriptions,
x(i) = {x(i)

1 , x
(i)
2 · · ·x(i)

n } denotes the token sequence of ith example description
and Y = {y(i)}, a set of source code snippets, y(i) = {y(i)1 , y

(i)
2 · · · y(i)m } denotes

the token sequence of ith example source code.
Contributions of this paper

– Creation of a parallel corpus for Python Code Generation from Natural Lan-
guage description.

– Train a Transformer based NMT model to generate Python Code.
– Study the effect of Python Code Tokenization on the accuracy of the model.
– Study the effect of Pre-trained Code Embeddings on the accuracy of the

model.
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The remaining part of the paper is organized as follows. Section 2 introduces
the proposed approach for python code generation, Sect. 3 gives an insight into
the curated dataset and its statistics, Sect. 4 provides a clear explanation about
the setting of baseline models on the dataset, and Sect. 5 presents the results
obtained by the three models on the dataset followed by the conclusion.

2 Proposed Approach

This paper proposes a novel approach based on Transformer architecture, by
incorporating source code tokenization and code embeddings as shown in Fig. 2.

Fig. 2. Architecture of NMT model to translate natural language intent to python
source code

The encoder and decoder layers of the proposed architecture are identical to
the ones proposed in [18] and it is shown in Fig. 3. The entire Transformer archi-
tecture follows stacked self-attention and feed-forward fully connected layers for
both the encoder and decoder as shown in Fig. 3. Our model used a stack of 3
such identical layers. The encoder takes Natural Language Intent whereas the
decoder works on Python Source Code. Since the Transformer models contain
no recurrence and convolution operations, the positional information is provided
by learning the positional embeddings and summed with the inputs at encoder
and decoder. The learned Code Embeddings are also added along with input
embeddings before sending to the decoder to provide more contextual informa-
tion on python source code. The predictions of the decoder were passed to the
test code block, which generates a well-indented source code.
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Fig. 3. The transformer - model architecture [18]

3 Dataset

The Dataset is a parallel corpus of a description of the problem in Natural
Language (source) and python source code (target). An example record is shown
in the Fig. 1. The data is collected from various sources and it is open for public
use.

3.1 Extraction and Preparation

The Dataset is extracted from public GitHub repositories labeled as contain-
ing Python source code1, Stackoverflow2, ProjectEuler3, and few examples were
crowdsourced from graduate students. Crowd sourcing of Python examples
helped to reduce class imbalance problem. 12473 files were successfully collected
by crowdsourcing and extraction. The dataset has many duplicate source codes,
very noisy, and the code examples are very diverse. They contain simple code
snippets of a single line and many lines, simple functions, complex functions,
code consisting of many functions, classes, etc., and need a lot of preprocessing.
The length of the code samples is ranging from 10 to 7199 characters. Prepro-
cessing plays a very crucial role with this data because of the noise and the
variance in the code lengths.

Initially, the number of pairs in the corpus is 42473 and it is further processed
in the following ways. To build the Python corpus, we removed the source codes

1 https://github.com/trending/python.
2 https://stackoverflow.com/questions/405374/python-source-code-collection.
3 https://projecteuler.net/.

https://github.com/trending/python
https://stackoverflow.com/questions/405374/python-source-code-collection
https://projecteuler.net/
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which are of other languages. The empty lines and decorative elements do not
contribute to training, hence removed. As NMT systems show lower translation
quality on very long sequences [10], a simple rule is adopted to filter out all the
source code snippets having a length higher than 1000 characters. The Natu-
ral Language intent is tokenized using Spacy English tokenizer and the python
source code is by a custom tokenizer. The number of pairs in the corpus after
preprocessing is 4299.

An example of an extracted Natural Language Description and Python source
code is provided in Fig. 1.

3.2 Dataset Description

The final dataset consists of python source codes of varying lengths ranging
from 10 characters to 1000 characters. An example extracted source code whose
length is 10 characters is

a , b = b , a

Fig. 4. Distribution of text and code lengths

The distribution of the Text and Source code lengths is shown in the Fig. 4.
The majority of the questions have a length of 50 to 150 characters. But there is
a lot of variance in the distribution of source code snippets. There is no relation
between the Question text of the problem and the respective source code. The
corpora summary statistics were reported in Table 1. The dataset is partitioned
with a train-test-split of 85% − 15% into training and validation sets.

4 Experiments

This section discusses the training data preparation, baseline models, training
details, and their outcomes. This study used two human-level translation evalu-
ation criteria, which are BLEU and ROUGE scores along with two general eval-
uation metrics, Cross Entropy Loss and Perplexity. All the experiments given
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below are performed using GPU, Tesla K80 with 25 GB RAM provided by
Google Colab. All the implementations are available for public use4.

Table 1. Statistics of the corpora

Mean Std. Median Max Min

Description 74.48 31.77 68 309 23

Source code 167.0 131.6 128 963 10

The transformer implementation is adopted as a baseline model and imple-
mented with few changes. The models were evaluated in three training settings.
First, both the source and target are tokenized using an English spacy tokenizer
and fed to the transformers Encoder and Decoder layers. Second, the target
source code is tokenized with the help of CuBERT [8] and fed to the decoder
layer. Third, Code Embeddings were learned and added before fed to the decoder
layer.

4.1 Baseline Model

Since the dataset is completely new, containing source codes only specific to the
Python programming language, it is useful to assess its difficulty by providing
some baseline results for other researchers to compare and improve upon. To
obtain baseline results, we train the NMT model based on the Transformer
architecture [18] by following the implementation of the Sockeye [6] toolkit for
NMT. The encoder and decoder of the Transformer respectively have 3 sub-
layers and 8 heads for multi-head attention mechanism. We train our models
with Adam optimizer [9] and ReduceLRonPlateau [13] scheduler. The remaining
hyperparameters are listed in Table 2.

Table 2. Parameters used for Text2PyCode model training

Parameter Value

Encoder layers 3

Decoder layers 3

Encoder embedding dimensions 512

Decoder embedding dimensions 512

Encoder attention heads 8

Decoder attention heads 8

Dropout 0.1

Learning rate 1e-3

Epochs 100

Batch size 64

4 https://github.com/sridevibonthu/Text2PyCode.

https://github.com/sridevibonthu/Text2PyCode
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Initial Model. This model is trained on the inputs tokenized by Spacy5 English
tokenizer which can split compound adjectives and nouns in English. In this
setup, both the Encoder and Decoder layers fed the word embeddings created
by following the Word2Vec [2,12] algorithm.

Tokenized Model. The Spacy tokenizer has only been evaluated on English,
German and Spanish sentences and it has no model for any programming Lan-
guage. The 16 tokens obtained for a python code snippet with the Spacy tok-
enizer is shown below. The exponentiation operator ∗∗ is tokenized into two,
whereas range(1 into one token.

t o k en i z e t e x t (” p r in t ( [ x ∗∗ 2 ] f o r x in range (1 , 10 ) )” )

[ ’ pr int ’ , ’ ( ’ , ’ [ ’ , ’ x ’ , ’∗ ’ , ’∗ ’ , ’ 2 ’ , ’ ] ’ , ’ f o r ’ ,
’ x ’ , ’ in ’ , ’ range (1 ’ , ’ , ’ , ’ 10 ’ , ’ ) ’ , ’ ) ’ ]

To address the above issue, a code tokenizer CuBERT is used to tokenize the
source code before sending to the decoder layers. The CuBERT is a pre-trained
contextual embedding of source code [8]. The above example after tokenization
has resulted in 18 tokens as shown below.

token i z e code (” p r in t ( [ x ∗∗ 2 ] f o r x in range (1 , 10 ) )” )

[ ’ pr int ’ , ’ ( ’ , ’ [ ’ , ’ x ’ , ’∗∗ ’ , ’ 2 ’ , ’ ] ’ , ’ f o r ’ , ’ x ’ ,
’ in ’ , ’ range ’ , ’ ( ’ , ’ 1 ’ , ’ , ’ , ’ 10 ’ , ’ ) ’ , ’ ) ’ , ’ ’ ]

Final Model. NLP has improved tremendously after the success of the word
embedding techniques [4]. The pre-trained word embeddings like Word2Vec [12],
Glove [15], FastText [15] are all trained on natural languages and their con-
text vectors cannot hold the semantics of source code tokens. With the help of
the GenSim [16] library of Python, we have trained code embeddings on the
CoNala [19] python corpus6. These pre-trained vectors are also added while
building vocabulary to the model. The final model architecture is shown in the
Fig. 2.

4.2 Metrics

To quantify the performance of the baselines, we choose the four performance
measures, which are widely used in NMT studies. They are Cross-Entropy Loss,
Perplexity, BLEU, and ROUGE scores. For loss, and perplexity lower values
are better and for BLEU, and ROUGE the higher the value of the performance
measure, the better the performance of the model. Cross Entropy loss is the
very common loss function used in NMT and it is detailed in Eq. 1 where |S| is

5 https://spacy.io.
6 https://conala-corpus.github.io/.

https://spacy.io
https://conala-corpus.github.io/


58 S. Bonthu et al.

the length of the sentence, |V | is the length of the vocabulary and ŷw,e is the
predicted probability of the vocab entry e on word w and yw,e can be either 1
or 0 based on whether the vocab the vocab entry is correct or not.

|S|∑

w=1

|V |∑

e=1

yw,elog(ŷw,e (1)

Perplexity of a Language Model is the average branching factor in predicting
the next word [3]. Perplexity is calculated using the Eq. 2, where N is the number
of words. Lower perplexity value indicates a better model.

PP (W ) =
1

P (w1, w2, · · ·wn)
1
N

= N

√
1

P (w1, w2, · · ·wn)

(2)

BLEU [14] calculates the similarity by computing the n-gram precision of a
system translated sentence to the reference sentence. Its computation is shown
in Eq. 3. where pn is the geometric average of the modified n-gram precision,
using N number of N -grams and wn are positive weights summing to one. BP
stands for brevity penalty. It is computed based on the length of the candidate
translation and reference length.

BLEU = BP · exp
(

N∑

n=1

wnlogpn

)
(3)

ROUGE is a framework for automatic evaluation of summaries [11]. The
variants of this metric are ROUGE-N, ROUGE-L, ROUGE-W, ROUGE-S. We
reported ROUGE-1, ROUGE-2 and ROUGE-L for our experiments. ROUGE-N
is computed as shown in Eq. 4 where n stands for the length of the n-gram, gramn

is the maximum number of n-grams co-occuring in a candidate summary and
Countmatch(gramn) is the n-grams co-occurring in a set of reference summaries.

ROUGE − N =

∑
S∈ReferenceSummaries

∑
gramn∈S Countmatch(gramn)

∑
S∈ReferenceSummaries

∑
gramn∈S Count(gramn)

(4)

5 Results

Results of all three experiments on the Python parallel corpus are tabulated.
We report Cross Entropy loss and perplexity in Table 3 and BLUE and ROUGE
scores in Table 4. Perplexity and loss of both Tokenized and the proposed final
model Fig. 2 have a very small difference. BLEU score and ROUGE score are
clearly stating that the proposed model which equips both code tokens and code
embeddings is performing well.
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Table 3. Validation loss and perplexity

Model Tokenization Embeddings Val. loss Perplexity

Initial model No No 1.412 4.105

Tokenized model Yes No 1.236 3.443

Final model Yes Yes 1.218 3.382

Table 4. BLEU and ROUGE Scores on the three models

Model Tokenization Embeddings BLEU ROUGE

R1 R2 RL

Initial model No No 20.59 P 73.7 60.0 78.9

R 67.8 57.2 68.8

F1 67.1 56.5 71.6

Tokenized model Yes No 26.74 P 76.6 65.1 84.4

R 79.3 66.8 79.0

F1 75.4 64.0 79.9

Final model Yes Yes 32.40 P 79.5 68.9 85.1

R 81.5 71.3 81.3

F1 78.4 68.3 82.1

6 Conclusion

Automatic Code Generation has the potential to make programmers working
in software companies or projects more efficient by allowing them to integrate
various codes more easily from natural language intents thereby it improves the
programmer’s productivity. In this paper, we aim to create a parallel corpus and
build a model based on Transformer architecture for CG. In order to enhance
the model, code tokenization and code embeddings are leveraged. The experi-
mental results of the proposed architecture on the source code dataset are on par
with the results of Natural Language translation. This work can be extended to
generate comments along with source code for the problem descriptions. It can
also be extended to translate source code from one language to another.
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Abstract. Automated Short Answer Grading (ASAG) is the task of
assessing short answers authored by students by leveraging computa-
tional methods. The task of ASAG is investigated for many years, but
this task continues to draw attention because of the associated research
challenges. One of the core constraints of ASAG is the limited availability
of domain-relevant training data. The task of ASAG can be tackled with
several approaches and they can be broadly categorized into the tradi-
tional approaches based on handcrafted features and the Deep Learning
based approaches. Researchers are applying Deep Learning Approaches
for the past five years to address this problem owing to the increasing
popularity of this area. The paper aims to summarize various existing
deep learning approaches researchers followed to address this problem
and to investigate whether Deep Learning based techniques are outper-
forming traditional approaches from the selected 38 papers. The paper
also outlines several state-of-the-art datasets that can be used to do this
work and the evaluation metrics to be used for both Regression and
Classification settings.

Keywords: Short Answer Grading · Natural Language Processing ·
Deep learning · Evaluation metrics · Corpora · LSTM · Attention

1 Introduction

The application of Natural Language Processing(NLP) techniques to assess the
short answers authored by students is referred to as Automatic Short Answer
Grading (ASAG). The prime objective of ASAG is to automatically score the
free-text answers from the students according to the corresponding reference
answers [43], and it has attracted great attention from a variety of research
communities. The alarming spread of the novel Corona virus (COVID-19) with
its domino effect placed many industries in crisis. This outbreak has not spared
the education sector either. Institutions shifted to online teaching mode as is has
become a preferred way to facilitate learning during the lockdown period and

c© IFIP International Federation for Information Processing 2021
Published by Springer Nature Switzerland AG 2021
A. Holzinger et al. (Eds.): CD-MAKE 2021, LNCS 12844, pp. 61–78, 2021.
https://doi.org/10.1007/978-3-030-84060-0_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-84060-0_5&domain=pdf
http://orcid.org/0000-0002-1971-4965
http://orcid.org/0000-0002-8771-6006
http://orcid.org/0000-0003-2150-7807
https://doi.org/10.1007/978-3-030-84060-0_5


62 S. Bonthu et al.

with this approach the assessment has become a major challenge. Assessment
can be done through multiple choice questions (MCQ), one-word answers, short
answers, and essay answers [12]. Short and essay answers have been recognized
as tools to perform a deeper assessment of student’s knowledge than MCQs.
Because of the powerful technology available now-a-days, many are learning
new concepts through MOOCs. Most of the online courses follow peer grading for
accurate answer grading [49], but peer graders possess different mindsets thereby,
a lot of variation in grades obtained. Grading short answers and essay answers
accurately by human graders is becoming tedious as they have to evaluate a
soft copy. Automation in the evaluation of short and essay answers is a growing
need in the field of education through which evaluation can be done easily, fairly,
quickly, and without any bias. There is also a need of providing useful feedback
on answers to students which is again a cumbersome job to teachers.

In the learning process, the assessment of knowledge plays a key role in effec-
tive teaching [32]. Manual scoring takes a considerable amount of time and the
provision of meaningful feedback even takes more. Manual scoring of answers can
suffer from inconsistency since the human grader must infer meaning from the
candidate’s answer which is a free text comprised of the candidate’s own words.
The human grader may also get strained after evaluating few responses and the
way he corrects the other responses may also change. But on the other hand,
accepting free text answers from students is a widely preferred assessment tool,
and should be used throughout the learning process, due to their effectiveness in
developing the cognitive skills of students and also demonstrating knowledge in
short texts [28]. Therefore there is a need to develop tools for addressing these
challenges in assessment.

ASAG is not a new approach, but it needs to adopt the latest technologies
in the current scenarios has become important. The problem of short answer
grading has attracted significant attention of researchers over the years. Vari-
ous approaches, starting from traditional hand-crafted features [32,45] to more
recent deep learning models [41] and their combination [27] were available. As
shown in Fig. 1 the method-eras for the ASAG problem was viewed as rule-based
and statistical methods [8] earlier. From 2007 people started using Machine
Learning and from 2015 using Deep Learning. Due to the increased popularity
of Deep Learning in the areas of computer vision, speech and text, researchers
started employing it in this domain, to achieve accurate automatic grading sys-
tems. Therefore we researched the works that employed deep learning methods
to solve the ASAG problem as no survey specific to deep learning methods is
present.

The ASAG problem has been modelled as a supervised learning problem.
It can be viewed as either a regression task or a classification task based on
whether the student answer is assigned a mark/grade or categories like ‘correct’,
‘partially correct’, ‘incorrect’ [44]. Input to this problem is a pair of short answers
consisting of Reference Answer (Qr) and Student Answer (Qs) to a question Q.
Output is a label(classification) or a grade(Regression) based on the extent of
similarity between Qr and Qs.
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Fig. 1. The era of ASAG system.

For regression models, the objective is to learn

Y = f( �X, �w) (1)

where �X refers to the input feature vector obtained by finding similarity between
Qr and Qs. �x = x1, x2, ...xn is an n-dimensional similarity vector of a pair
(Qr, Qs). �w is the model parameters to be estimated.

For classification problems, the objective is to represent the score with a
category k for every data instance, like

score(Xi, k) = βk · Xi (2)

where βk is the vector of weights corresponding to category k and Xi is feature
vector based on similarity for data instance i i.e., the pair (Qr, Qs). The final
category is obtained by considering the highest scored category.

k∗ = argmax
i

score(Xi, k) (3)

The goal of this paper is to study the Deep Neural Network approaches fol-
lowed for this task and their impact on ASAG when compared with traditional
machine learning approaches as they are capable of automatically inducing syn-
tactic and semantic features from the text [26]. To the best of our knowledge,
there are three [8,18,42] literature studies on Short Answer Grading without
restrictions on the approach. There is no study dedicated to Deep Learning
approaches to solve the ASAG task.

The organization of the remaining paper is as follows. In Sect. 2 the method-
ology of the research is presented, Sect. 3 addressed the existing Corpora to carry
out this task, Sect. 4 presents the overview of the Evaluation Metrics, Sect. 5 dis-
cusses the various state-of-the-art Deep Learning approaches. Section 6 presents
the observations of the authors for the framed Research Questions. Finally, the
conclusions of the work can be seen in Sect. 7.
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2 Methodology

This survey seeks to explore, analyze and understand the current state-of-the-art
of ASAG with a focus on the ASAG works that used deep learning approaches.
The elaborated Research Questions to address the objective of the survey are:

– RQ1: “What are the various datasets available to perform ASAG?”
– RQ2: “What are the various Evaluation Metrics used to measure the perfor-
mance of ASAG tasks?”

– RQ3: “Which Deep Learning approaches are used?”
– RQ4: “What are the results obtained?”

The search keywords identification is made based on the preliminary research.
The identified keywords are “Automatic, Short Answer Grading, Scoring,
Assessment, Natural Language Processing, Deep Learning, Question, Answer,
Response, etc.”. Similar words from the keywords are grouped and a search query
is created using Boolean operators to search for research contributions. The pri-
mary online databases considered as sources for this survey are Google Scholar,
IEEE Xplore, ACM Digital Library, Elsevier-ssrn, EBSCO, ACL Anthology.
ACL Anthology1 is a great source for this survey as it hosts 64000 papers espe-
cially on the study of NLP. The total number of retrieved papers from the
databases is 2000 in number. After removing the duplicates, we were left with
676 papers. In the next stage, we removed few papers based on the title, as
the survey mainly concentrates on the Deep Learning approaches. The resul-
tant 87 papers were skimmed through the title, abstract, introduction, their
contributions, model architecture, novelty, published venue etc., After the filter-
ing process, the number of papers considered for this survey is 38. From these
38 papers, the datasets, metrics, deep learning techniques are further studied
concerning the framed Research Questions.

3 Corpora

One of the primary challenges in addressing the ASAG problem is the non-
availability of the datasets of natural responses. A great variety of datasets are
used in the reviewed papers, they show a lot of variation in terms of the language,
the topic of the question, grading scale, number of questions, reference answers.
This section describes six majorly used datasets of the English language from
the 38 reviewed papers and provides an overview of the dataset details and their
pros and cons. A prime observation is that many of the ASAG datasets like
ASAP, SemEval-2013, Joint SRA(Beetle & ScientsBank) are released through
competitions. Table 1 provides a glimpse of example records from the Texas
and SemEval-2013 datasets. Table 2 provides an idea about the usage of these
datasets by the Deep Learning community.

ASAP - Kaggle provides a dataset for doing ASAG with the name
ASAP-AES, for Hewlett Foundations Automated Assessment Prize competition
1 https://www.aclweb.org/anthology/.

https://www.aclweb.org/anthology/
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Table 1. Example of model question, reference answers and students answers from
SemEval-2013 and Texas datasets.

Texas

Question What is the role of a prototype program in problem solving?

Model Answer To simulate the behaviour of portions of the desired software product

Model Vocabulary Simulate, behaviour, portion, desire, software, product

Student Answer 1 High risk problems are address in the prototype program to make sure

that the program is feasible. A prototype may also be used to show a

company that the software can be possibly programmed

Student Answer 2 It simulates the behavior of portions of the desired software product

SemEval-2013

Question Lee has an object he wants to test to see if it is an insulator or a
conductor. He is going to use the circuit you see in the picture
Explain how he can use the circuit to test the object

Reference Answer If the motor runs, the object is a conductor

Student Answer He could know if it works

(ASAP) on Kaggle [20]. It can be downloaded from the official website of Kag-
gle2. This dataset contains 10686 samples belong to 8 different sets of essays
and each of them is generated from a single prompt. These essays range from a
length of 150 to 550 words per response on average. All the essays in the dataset
were hand-graded by either two or three instructors. The main challenge with
this dataset is every set has a different grading scale.

Beetle and ScientsBank - Students Response Analysis (SRA) was a task
of annotating student-authored answers with categories that in turn will help the
dialog systems to generate suitable and useful feedback on errors. The SRA cor-
pus mainly consists of two distinct corpora: (1) BEETLE data, which is entirely
based on transcripts of students interacting with the BEETLE II tutorial dia-
logue system [13], and (2) SCIENTSBANK data, which is based on the cor-
pus of student answers to assessment questions collected by Nielsen et al. [36].
The BEETLE corpus mainly comprised of 56 questions in the domain of basic
electricity and electronics requiring one or two sentence answers, and it has
nearly 3000 student answers to those 56 questions. The SCIENTSBANK cor-
pus contains approximately 10, 000 answers to 197 assessment questions in 15
different science domains. Student answers in the BEETLE corpus are anno-
tated manually by trained human using a scheme that straightforwardly maps
to SRA annotations. A fine-grained scheme that automatically labels using a
set of question-specific heuristics and also manually revising them based on the
definition of the class [13], is adopted to convert the labels of SCIENTSBANK
corpus into SRA labels. The researchers who want to work on these datasets
need to further filter and transform the corpus to produce training and test data
sets.

2 https://www.kaggle.com/.

https://www.kaggle.com/
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Texas - This dataset consists of 80 questions collected from an undergradu-
ate course titled Data Structures. Questions scattered across ten different assign-
ments and two tests, each on a related set of topics along with 2, 273 student
responses. Students Answers were graded by two human graders who consider the
model answer provided for each question. The average of the two scores assigned
by human graders is used as the final gold score for each student answer [14].
The dataset can be obtained from the archive hosted at the website3.

Cairo - Cairo University’s dataset consists of a total of 610 questions which
are 10 answers for 61 questions. These are collected from only one chapter of the
official Egyptian curriculum for the Environmental Science course. The average
length of a student’s answer is 2.2 sentences, 20 words, or 103 characters. The
dataset contains a collection of students’ responses along with their grades that
vary between 0 and 5 according to an assessment of two human evaluators. An
English version of the Cairo University data set is also available to research this
area. This dataset can be downloaded from the webpage4.

Powergrading - The Powergrading dataset [3] contains 10 individual
prompts from U.S. immigration exams with about 700 responses each. Each
prompt is accompanied by one or more reference responses. Responses in this
dataset are repetitive as they are very short and the percentage of correct answers
is very high. This dataset can be utilized to test the model’s ability to perform
well on extremely short responses. It was originally used for the task of (unsuper-
vised) clustering [3] so that there are no state-of-the-art scoring results available
for this dataset.

Statistics - Stefano Menini et al. released a dataset [30] with the name
Statistics to perform short answer grading which is publicly available at the
webpage5. This data has been partially collected using data from the real statis-
tics exams spanning different years, and the same is partially extended by the
authors of this paper. The dataset contains the group of sentences written by
students, with a unique sentence ID, the type of statistical analysis it refers to,
its degree in a range from 0 to 1, and its fail/pass result, flanked with a manually
defined gold standard (i.e., the correct answer).

4 Evaluation Metrics

Evaluation metrics are used to quantitatively measure the performance of the
ASAG models or to compare the performance with the baselines. As show in
Fig. 2 different metrics can be used based on the way the ASAG system is built
i.e., as a classifier or as a regressor. This section provides an insight into the
metrics that can be used with ASAG regressor and classifier.

3 http://lit.csci.unt.edu/index.php/Downloads.
4 http://www.aucegypt.edu/src/datasets.htm.
5 https://zenodo.org/record/3257363.

http://lit.csci.unt.edu/index.php/Downloads
http://www.aucegypt.edu/src/datasets.htm
https://zenodo.org/record/3257363


Automated Short Answer Grading Using Deep Learning: A Survey 67

Fig. 2. Evaluation Metrics for ASAG task.

4.1 Regression Metrics

Root Mean Square Error (RMSE). RMSE is a standard way to measure
the performance of a regression model. Formally it is defined as “root of the
residual sum of squares resulting from comparing the predictions ŷ and ground
truth y” [19]. RMSE is calculated by following the Eq. 4.√

1
n

∑
i=1

n
(ŷi − yi)2

n
(4)

Concerning to ASAG task, in the Eq. 4 ŷ1, ŷ2, ..., ŷn are predicted grades, and
y1, y2, ..., yn are grades assigned by human graders and n is the number of obser-
vations. RMSE measure is simple to calculate, but the drawback is the RMSE
value depends on the order of magnitude of the observed values [35].

Correlation Co-efficient. The correlation coefficient measures the strength
of association between two variables. The value of the coefficient indicates the
degree of association and it varies between +1 and −1 [5]. A positive value is
required for the ASAG task, as it needs a strong correlation between reference
answers and student answers. Researchers are using the Pearson Correlation
coefficient or Spearman’s correlation coefficient for short answer grading tasks.
Pearson’s r is calculated as shown in the Eq. 5.

r =
∑

(xi − x̄)(yi − ȳ)√∑
(xi − x̄)2

∑
(yi − ȳ)2)

(5)

where r is pearson’s correlation coefficient, xi is the grade assigned by the human
grader, x̄ is the mean of the values of x-variable, yi is the grader predicted by
the model and ȳ is the mean value of the y variable.

The Spearman’s ρ is calculated by using the Eq. 6.

ρ = 1 − 6
∑

d2i
n(n2 − 1)

(6)
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where ρ is the Spearman’s correlation coefficient, di is the difference between
the human assigned grade and the predicted grade and n is the number of
observations.

Pearson’s r evaluates the linear relation between two variables whereas Spear-
man’s ρ is based on the ranked values for each variable rather than the raw data.

4.2 Classification Metrics

4.3 F1-Score

F1-score is the common performance measure of classifiers. It is the harmonic
mean of Precision and Recall and it is calculated using the Eq. 7.

F1Score =
2 × Precision × Recall

Precision + Recall
(7)

where
Precision =

TruePositive

TruePositive + FalsePositive

Recall =
TruePositive

TruePositive + FalseNegative

F1-score metric is more preferable when the class distribution is imbal-
anced [16]. The two variants of the F1-score used for the ASAG task are macro-
F1 and weighted-F1 scores.

Macro-averaged-F1 score or macro-F1 is an arithmetic mean of the per-class
F1 scores, It is used to assess the quality of problems with multiple binary labels
or classes, but it gives the same importance to each label/class [34]. Its value
varies from 0 to 1, and 1 is the best value. It is computed by using the Eq. 8.

Macro−F1 = 2× MacroAveragePrecision × MacroAverageRecall

MacroAveragePrecision−1 + MacroAverageRecall−1
(8)

where k is the generic class and K is the Number of classes

MacroAveragePrecision =
∑K

k=1 Precisionk

K

MacroAverageRecall =
∑K

k=1 Recallk
K

Precisionk =
TPk

TPk + FPk

Recallk =
TPk

TPk + FNk

Weighted-average-F1 score, or weighted-F1, is the weighted F1 score of each
class by the number of samples from that class [38].
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Cohen’s Kappa. Cohen’s kappa statistic handles both multi-class and imbal-
anced class problems well and it is developed to account for the possibility that
answer graders guess on at least some variable due to uncertainty [29]. It is
calculated by following the Eq. 9.

κ =
po − pe
1 − pe

= 1 − 1 − po
1 − pe

(9)

where po and pe are observed and expected agreement respectively. The kappa
value can range from -1 to +1. Values of 0 or less, indicate that the trained
answer grader is useless. It is the most widely used statistic, but the acceptable
level of kappa value is questioned in few areas like health research [29].

Quadratic Weighted Kappa. The QWK metric is used to calculate the level
of agreement between two ratings [6]. Concerning the ASAG task, it can be used
to find the agreement between the predicted grades and the ground truth. It also
considers the by chance probability of assigning the same grade to a sample by
both raters. Generally, it ranges from 0 to 1 and it can also be negative if there
is less agreement. To calculate QWK, first, the weight matrix W is constructed
according to Eq. 10.

Wi,j =
(i − j)2

(N − 1)2
(10)

where i is the rating assigned by the human grader, j is the predicted rating and
N is the total number of ratings. Next, the QWK is calculated according to the
equation.

k = 1 =

∑
i,j Wi,jOi,j∑
i,j Wi,jEi,j

(11)

Here the matrix O contains the scores observed such that rating i is given by
human grader and j is assigned by the model. Oij corresponds to the adoption
records that have a rating of i and predicted a rating of j. E is the histogram
matrix of expected ratings, obtained by multiplying the histogram vectors of
both human grader score and model predicted score.

5 Deep Learning Approaches

The researchers employed various mechanisms like Transfer Learning, Siamese
LSTM, clustering, Latent Semantic Analysis, Bidirectional Transformers, Para-
graph Embeddings, Deep Autoencoders, Attention Networks, Transformer based
pretraining from the past few years. Recent advancements in the domain of deep
learning for NLP made it promising to use deep learning architectures, such
as the Attention mechanism, Transformer, for increasingly complex NLP tasks.
Some of the promising contributions using Deep Learning based experiments
from 2016 were shown in Fig. 3 and the Table 2 summarizes their performance.
Many of the researchers have done experimentation on LSTM [22,33,39,51] and
its variants.
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Fig. 3. Prominent contributions using Deep Learning.

LSTM - LSTMs are complex activation units that can selectively remember or
forget things. Kumar et al. [22] applied Siamese bidirectional LSTMs, a pooling
layer based on Earth-Mover-Distance (EMD) across all hidden states from both
the LSTMs of the Siamese Network and a flexible final regression layer to out-
put scores to address the ASAG problem. Authors enhanced training through a
task-specific data augmentation strategy and they experimented on a publicly
available dataset (SemEval) and scored an RMSE of 0.830 superior to the base-
lines on LSTM. Riordan et al. [41] explored the effectiveness of multiple architec-
tures on three publicly available datasets: ASAP-SAS, Powergrading, SRA and
answered the questions like convolution layer produce useful features or not,
can we use smaller hidden layers, the role of bi-directional LSTMs, Attention
and concluded that the basic neural architectures of pretrained embedding with
LSTM is reasonably effective architecture for short answer grading. Conneau
et al. [10] proposed a novel Joint Multi-Domain neural model (JMD-ASAG)for
ASAG by using bi-LSTMS and similarity scorers per domain, that learns both
generic and domain-specific aspects simultaneously. It achieves this by utiliz-
ing multiple domain-specific corpora SemEval-2013, and without requiring a
large generic corpus. Prabhudesai et al. [39] proposed a Siamese Bi-directional
LSTM Neural Network based Regressor which combines the benefits of both
Deep Learning and Feature Engineering. The novel approach, authors followed
is the augmentation of the data based on highly rated reference answers to
improve the training.
Attention - It is the most influential idea in the areas of Deep Learning for
NLP. The central idea behind Attention is to utilize all the states of intermedi-
ate encoders to construct the context vectors required by the decoders. Liu et
al. [24] proposed a generalized end-to-end ASAG framework that aims at extract-
ing linguistic information from the student and reference answers automatically
and to model the semantic relations between student and reference answers accu-
rately. The evaluation of this model is done on a real-world K12 dataset. Their
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model leveraged the multi-way attention and transformer layers to improve the
matching between words in a sentence [47]. Authors adopted AUC and accu-
racy as metrics and this model outperformed several state-of-the-art baselines
like Logistic regression, Gradient boosted decision tree, Multichannel convolu-
tional neural networks, Sentence embedding by Bidirectional Transformer block
(Bi-Transformer), Multiway Attention Network (MAN), Manhattan LSTM with
max-pooling (MaLSTM) with an accuracy of 0.8899 and an AUC score of 0.9444.
Gong et al. [15] also proposed a deep learning based method with an attention
mechanism to solve this task. The proposed method combines pretrained embed-
ding word vector and Recurrent Neural Network (RNN) model with attention
to learn answer vector and then learns response answer vector and reference
answer vector are fed to the logistic regression model to predict response answer
score. Authors are claiming that they have achieved a relative 10% increase in
performance compared to the baseline model results by over 8% in some of the
question prompts as evaluated by Quadratic Weighted Kappa (QWK), showing
performance comparable to humans.
Transformers - The paper ‘Attention Is All You Need’ [48] introduced a novel
architecture called Transformer. As the title indicates, it leverages the attention
mechanism. BERT(Bidirectional Representation of the Transformer) is the state-
of-the-art model for learning textual representations. Wang et al. [50] introduced
ml-BERT method for grading short answer questions to advance the existing
models in ASAG when the training data is not sufficient. The authors combined
BERT, with meta-learning, a training framework that leverages additional data
and learning tasks to improve model performance when labeled data is limited.
With the incorporation of meta-learning, the model achieved a remarkable accu-
racy of 80.17% and an F1 score of 0.815 when compared with the baseline BERT
model whose accuracy is 77.8%. Camus et al. [9] investigated Transformers for
ASAG with fine-tuning different pretrained Transformer based architectures and
they also showed that models trained with knowledge distillation are feasible for
use in short answer grading. Sung et al. [46] proposed two ways to update the
pre-trained BERT language model for the short answer grading. The authors
illustrated the utilization of unstructured textbook data and labeled question-
answer data for the model update. On the benchmarking dataset of SemEval-
2013, they report up to 10% absolute improvement in macro-average-F1 over
state-of-the-art results. The authors also addressed the training time to come
up with an optimal model and indicated that task-specific transfer takes place
within the initial few epochs only.

Some authors experimented skip-thought vectors, various kinds of embed-
dings with deep learning models. Saha et al. [43] developed novel token-level
features that are specifically tuned for understanding partially correct sentences.
Gomaa et al. [14] proposed a scoring system for short answers, with the name
Ans2vec. This approach utilizes skip-thought vectors to convert model and stu-
dent’s answers into meaningful vectors to measure similarity between them. This
model tested against 3 different benchmarking datasets and for the Texas dataset
it achieved 0.63 as Pearson correlation value. Yaman, et al. [23] proposed a super-
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vised regression model, AutoSAS which can be used to grade short answers easily
in a classroom setting. This work mainly leveraged the features such as Weighted
Keywords and Word2Vec/Doc2Vec embeddings. Examples of such features are
prompt information, weighted keywords, lemmatized response, and lexical over-
lap. Authors have also concluded that the additional features like word frequency,
difficulty, statistics of the word, and sentence length do not figure highly either
in ranking or the accuracy values being affected significantly. Authors claim
that AutoSAS obtained state-of-the-art performance and achieves better perfor-
mance.

6 Results

This study is conducted to help the researchers who want to solve the ASAG
problem using deep learning. To fulfil this aim we framed a set of four Research
questions and presented in Sect. 2. We have studied a set of recent 38 papers
on Deep Learning approaches to solve Short Answer grading. Our findings and
observations are summarized below.

RQ1: “What are the various datasets available to perform ASAG?” - To address
this question, we have studied the strengths and weaknesses of the datasets that
are used by a majority of the research community and presented the details in
Sect. 3. Deep Learning requires more data than traditional machine learning to
train the model [2]. Many of the datasets meant for short answer grading have a
minimal number of records. The student answers in few datasets are either well-
formed or nonsentential responses. There is a need for good corpora with many
training records to apply deep learning. Another observation is that the questions
in the datasets are collected from the subjects like Environmental science, Data
Structures, etc. None of the datasets cover questions from programming subjects
to test the real strengths of Deep Learning approaches.
RQ2: “What are the various Evaluation Metrics used to measure the perfor-
mance of ASAG tasks?” - Evaluation metrics of the ASAG task vary based
on the way the problem is solved. Section 2 provides an insight on the metrics
for both the Regression and the Classification setting of the ASAG task. Most
ASAG challenges specify the metric to measure the performance. It is easy to
calculate all ASAG metrics and most of them are available as part of the open
source libraries available.
RQ3: “Which Deep Learning approaches are used?” - Approaches followed in
all the 38 papers were studied. The pros and cons observed in papers that have
proposed well performing models are presented in Table 3. Researchers have
used various deep neural networks like Fully Connected Networks, Convolutional
Neural Networks, Recurrent Neural Networks like LSTM and transformers to
address the ASAG task. We have observed that many authors have acquired
good performance through LSTM with attention, but LSTM are sequential in
nature and cannot benefit the usage of GPUs.
RQ4: “What are the results obtained?” - The Deep Learning model will not
alone determine the success of the ASAG system pipeline in production. The
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Table 3. Strengths and weaknesses of the Deep Models of ASAG

Pros Cons

[1] Learnt and used sentence specific
embeddings

Not able to distinguish the occurrence of
single word in multiple places as
gradients are calculated at the end

[22] Proposed a framework by cascading 3
neural building blocks. Siamese BiLSTM,
pooling layers based on
Earth-Mover-Distance, regression layer

[41] Experimented neural architectures and
shown that they can outperform
non-neural using LSTM

Performance is marginal in one datasets
out of the tested 3

[39] Proposed a siamese architecture with
both CNN and LSTM

Convolution layer can process entire text
at a time on top LSTM is placed, which
is sequential

[43] Proposed a feature encoding based on
partial similarities of tokens

[14] Proposed an uncomplicated short answer
grading model by employing skip-thought
vectors

Achieved good accuracy on few but not
on Cairo dataset

[15] Followed new HanLP tokenization

[23] Augmentation, Ablation study, feedback
provision

Tested on a single dataset

[24] Parallel computation is possible as the
model is based on transformer

Compared baselines are not of ASAG

[50] A method to augment the BERT with
meta-learning to improve its performance
is proposed

Tested on their custom dataset

[27] Used multiple data augmentation
strategies, and also done ablation studies

Improvement in the performance is
marginal

[40] Introduced stacking architecture for
XGBoost and Neural Networks, and
handled class imbalance problems

Tested the approach on only one dataset

latency of the inference time, the ease of fine-tuning, and reproducibility of the
model on a similar and smaller dataset also plays role in the success. Many of
the ASAG systems proposed using Deep Learning approaches performed well
when compared against several state-of-the-art models which used hand-crafted
features and the time required for feature extraction is reduced. Researchers dis-
cussed the benefit of providing feedback to the students on their responses auto-
matically, but no deep learning model has trained on that. Even though many
Deep Learning models proposed and achieved accuracy, they still leave space for
new techniques and methods to achieve higher performance. Among the models
studied, the ones which employed attention mechanism performed well. Encod-
ing text is at the heart of understanding language. The encoding models like
Deep Averaging Network(DAN) which uses multi-task learning [37] are designed
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to be as general-purpose as possible. This implies that researchers can combine
self-attention, co-attention, hierarchical-attention, and multiple-attention in dif-
ferent ways and experiment to achieve better performance. In the last year, the
Transformer model was followed by Reformer [21], Longformer [4], GTrXL [11],
etc., and BERT was followed by XLNet [54], RoBERTa [25], T5 [53], etc.,
and new tokenizations like Byte-Pair encoding, Word-Piece Encoding, Sentence-
Piece Encoding were introduced [31]. Transformers are quadratic. These all can
be tested for better accuracy on existing deep learning models of the ASAG
system. GPT3 [7] is pretty huge with 175GB parameters, and because of its
capacity GPU inferences can be costly. Quantization, pruning techniques, and
usage of onnx can decrease the inference time 10–40 times [17]. We may not need
a model as big as BERT-base all the time and the inference latency requirements
to push a need to make smaller models [52]. Researchers should work on finding
a sweet spot between training the model from scratch and transfer learning.

7 Conclusion and Future Challenges

An ASAG system that takes less amount of time to train, infer, and more accu-
rate is the need of the now-a-days education sector. This is a research problem for
many decades and researchers have started adopting Deep Learning approaches
for the past 5 years. This paper examines the existing models based on deep neu-
ral networks, the corpora, and the evaluation metrics used for this task. Among
the studied models, the ones which employed attention mechanism performed
well and it is also identified that there are limited corpora to work in this area.
There is a need for coming up with new good datasets which also involve recent
subjects like programming languages and there is a lot of scopes to continue
working in this domain by employing improved encoding mechanisms, GPT,
quantization, pruning, etc.

In Sect. 5, we discussed the methodological decisions made by authors in
current Deep Learning approaches for ASAG, and in Sect. 6, we also shared
our views on the reviewed papers. Based on this study, potential next steps
to ameliorate the results are formulated as our research agenda. The major
challenges identified and that should be addressed in future research are - (a)
A corpus covering technical questions with a good number of training examples
is identified as a need, as many of the university campuses are training their
students for placements. (2) An ASAG model which can learn from context
and takes less training, inference time. (3) A model which provides immediate
feedback along with the grade.
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Abstract. Recent efforts have uncovered various methods for providing
explanations that can help interpret the behavior of machine learning
programs. Exact explanations with a rigorous logical foundation pro-
vide valid and complete explanations, but they have an epistemological
problem: they may be too complex for humans to understand and too
expensive to compute even with automated reasoning methods. Inter-
pretability requires good explanations that humans can grasp and can
compute.

We take an important step toward specifying what good explanations
are by analyzing the epistemically accessible and pragmatic aspects of
explanations. We characterize sufficiently good, or fair and adequate,
explanations in terms of counterfactuals and what we call the conundra
of the explainee, the agent that requested the explanation. We provide a
correspondence between logical and mathematical formulations for coun-
terfactuals to examine the partiality of counterfactual explanations that
can hide biases; we define fair and adequate explanations in such a set-
ting. We then provide formal results about the algorithmic complexity
of fair and adequate explanations.

1 Introduction

Explaining the predictions of sophisticated machine-learning algorithms is an
important issue for the foundations of AI. Recent efforts [4,19,34,35,38] have
shown various methods for providing explanations. Among these, model-based,
logical approaches that completely characterise one aspect of the decision
promise complete and valid explanations.

Such logical methods are thus a priori desirable, but they have an epistemo-
logical problem: they may be too complex for humans to understand or even to
write down in human-readable form. Interpretability requires epistemically acces-
sible explanations, explanations humans can grasp and compute. Yet what is a
sufficiently complete and adequate epistemically accessible explanation, a good
explanation still needs analysis [30]. We propose to characterize sufficiently good,
or fair and adequate, explanations in terms of counterfactuals—explanations,
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that is that are framed in terms of what would have happened had certain con-
ditions (that do not obtain) been the case—and what we call the conundrum and
fairness requirements of the explainee, the person who requested the explana-
tion or for whom the explanation is intended). It is this conundrum that makes
the explainee request an explanation. Counterfactual explanations, as we argue
below, are a good place to start for finding accessible explanations, because they
are typically more compact than other forms of explanation.

We argue that a fair and adequate explanation is relative to the cognitive
constraints and fairness requirements of an explainee E [1,5,28]. E asks for an
explanation for why π when she wasn’t expecting π. Her not expecting π follows
from beliefs that must now be revised—how to specify this revision is the conun-
drum of E . An adequate explanation is a pragmatic act that should solve the
conundrum that gave rise to the request for explanation; solving the conundrum
makes the explanation useful to E [15]. In addition, an adequate explanation must
lay bare biases that might be unfair or injurious to E (the fairness constraint).
In effect, this pragmatic act is naturally modelled in a game theoretic setting
in which the explainer must understand explainee E’s conundrum and respond
so as to resolve it. A cooperative explainer will provide an explanation in terms
of the type he assigns to E, as the type will encode the relevant portions of E’s
cognitive state. On the other hand the explainee will need to interpret the puta-
tive explanation in light of her model of the explainer’s view of his type. Thus,
both explainer and explainee have strategies that exploit information about the
other—naturally suggesting a game theoretic framework for analysis.

In developing our view of fair and adequate explanations, we will exploit
both the logical theory of counterfactuals [26] and mathematical approaches for
adversarial perturbation techniques [4,9,23,24,33,40]. We provide a correspon-
dence between logical and mathematical formulations for counterfactuals, and
we analyze how counterfactual explanations can hide biases. We then formalize
conundra and fair and adequate explanations, and we develop a game theoretic
setting for proving computational complexity results for finding fair and ade-
quate explanations in non cooperative settings.

2 Background on Explanations

Following [1,5], we take explanations to be answers to why questions. Consider
the case where a bank, perhaps using a machine learning program, judges E ’s
application for a bank loan and E is turned down. E is in a position to ask a why
question like,

(1) why was I turned down for a loan?

when her beliefs would not have predicted this. Her beliefs might not have been
sufficient to infer that she wouldn’t get a loan; or her beliefs might have been
mistaken—they might have led her to conclude that she would get the loan. In
any case, E must now revise her beliefs to accord with reality. Counterfactual
explanations, explanations expressed with counterfactual statements, help E do
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this by offering an incomplete list of relevant factors that together with unstated
properties of E entail the explanandum—the thing E needs explained, in this case
her not getting the loan. For instance, the bank might return the following answer
to (1):

(2) Your income is e50K per year.

(3) If your income had been e100K per year, you would have gotten the loan.

The counterfactual statement (3) states what given all of E ’s other qualities
would have been sufficient to get the loan. But since her income is in fact not
e100K per year, the semantics of counterfactuals entails that E does not get the
loan. (3) also proposes to E how to revise her beliefs to make them accord with
reality, in that it suggests that she mistakenly thought that her actual salary
was sufficient for getting the loan and that the correct salary level is e100K per
year.1

Counterfactual explanations, we have seen, are partial, because they do not
explicitly specify logically sufficient conditions for the prediction. They are also
local, because their reliance on properties of a particular sample makes them
valid typically only for that sample. Had we considered a different individual,
say D, the bank’s explanation for their treatment of D might have differed. D
might have had different, relevant properties from E ; for instance, D might be
just starting out on a promising career with a salary of e50K per year, while E
is a retiree with a fixed income.

The partiality and locality of counterfactuals make them simpler and more
epistemically accessible than other forms of explanation. Moreover, the logical
theory of counterfactuals enables us to move from a counterfactual to a complete
and logically valid explanation. So in principle counterfactual explanations can
provide both rigour and epistemic accessibility. But not just any partiality will
do, since partiality makes possible explanations that are misleading, that hide
injurious or unfair biases. To show how the partiality of counterfactual explana-
tions can hide unfair biases, consider the following scenario. The counterfactual
in (2) might be true but it also might be misleading, hiding an unfair bias. (1)–
(2) can be true while another, more morally repugnant explanation that hinges
on E ’s being female is also true. Had E been male, she would have gotten the
loan with her actual salary of e50K per year. A fair and adequate explanation
should expose such biases.

We now move to a more abstract setting. Let f̂ : Xn → Y be a machine
learning algorithm, with Xn an n-dimenstional feature space encoding data and
Y the prediction space. Concretely, we assume that f̂ is some sort of classifier.
When f̂ = π, an explainee may want an explanation, an answer to the ques-
tion,“why π?” We will say that an explanation is an event by an explainer, the

1 [10] provide a superficially similar picture to the pragmatic one we present, but their
aim is rather different, to provide a semantics for argumentation frameworks. For
us the pragmatic aspect of explanations is better explained via a game theoretic
framework; see below.
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provider of the explanation, directed towards the explainee (the person request-
ing the explanation or to whom the explanation is directed) with a conundrum.
An explanation will consist of of an explanandum, the event or prediction to
be explained, an explanans, the information that is linked in some way to the
explanandum so as to resolve the explainee’s conundrum. When the explanation
is about a particular individual, we call that individual the focal point of the
explanation.

Explanations have thus several parameters. The first is the scope of the expla-
nation. For a global explanation of f̂ , the explainee wants to know the behavior
of f̂ over the total space Xn. But such an explanation may be practically uncom-
putable; and for many purposes, we might only want to know how f̂ behaves on
a selection of data points of interest or focal points, like E ’s bank profile in our
example.2 Explanations that are restricted to focal points are local explanations.

Explanations of program behavior also differ as to the nature of the
explanans. In this paper, we will be concerned with external explanations that
involve an explanatory link between features of input or feature space X and
the output in Y without considering any internal states of the learning mecha-
nism [11]. These are attractive epistemically, because unpacking the algorithms’
internal states and assigning them a meaning can be a very complicated affair.

A third pertinent aspect of explanations concerns the link between explanans
and the explanandum. [14,18,19] postulate a deductive or logical consequence
link between explanans and explanandum. [19] represent f̂ as a set of logic for-
mulas M(f̂). By assuming features with binary values3, an instance is then
a set of literals that assigns values to every feature in the feature space. An
abductive explanation of why π is a subset minimal set of literals I such that
M(f̂), I |= π. Abductive explanations exploits universal generalizations and a
deductive consequence relation. They explain why any instance x̂ that has I is
such that f̂(x̂) = π and hence are known as global explanations [29].

Counterfactuals offer a natural way to provide epistemically accessible, par-
tial explanations of properties of individuals or focal points. The counterfactual
in (3) gives a sufficient reason for E ’s getting the loan, all other factors of her
situation being equal or being as equal as possible (ceteris paribus) given the
assumption of a different salary for E . Such explanations are often called local
explanations [8,29], as they depend on the nature of the focal point; they are also
partial [38], because the antecedent of a counterfactual are not by themselves log-
ically sufficient to yield the formula in the consequent. Deductive explanations,
on the other hand, are invariant with respect to the choice of focal point. But
because counterfactual explanations exploit ceteris paribus conditions, factors
that deductive explanations must mention can remain implicit in a counterfac-
tual explanation. Thus, counterfactual explanations are typically more compact

2 We are implicitly assuming that f̂ is too complex or opaque for its behaviour to be
analyzed statically.

3 By increasing the number of literals we can simulate non binary values, so this is
not really a limitation as long as the features are finite.
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and thus in principle easier to understand.4 Counterfactuals are also intuitive
vehicles for explanations as they also encode an analysis of causation [26].

2.1 Counterfactual Explanations for Learning Algorithms

The canonical semantics for a counterfactual language L, which is a propositional
language to which a two place modal operator �→ is added, as outlined in [26]
exploits a possible worlds model for propositional logic, A = 〈W,≤, [[.]]〉, where:
W is a non-empty set (of worlds), ≤ is a ternary similarity relation (w′ ≤w w′′),
and [[.]] : P → W → {0, 1} assigns to elements in P , the set of proposition letters
or atomic formulas of the logic, a function from worlds to truth values or set
of possible worlds. Then, where |= represents truth in such a model, we define
truth recursively as usual for formulas of ordinary propositional logic and for
counterfactuals ψ �→ φ, we have:

Definition 1. A, w |= ψ � → φ just in case: ∀w′, if A, w′ |=
ψ and ∀w′′(A, w′′ |= ψ → w′ ≤w w′′), then: A, w′ |= φ

What motivates this semantics with a similarity relation? We can find both
epistemic and metaphysical motivations. Epistemically, finding a closest or most
similar world in which the antecedent φ of the counterfactual φ �→ ψ is true
to evaluate its consequent ψ follows a principle of belief revision [12], according
to which it is rational to make minimal revisions to one’s epistemic state upon
acquiring new conflicting information. A metaphysical motivation comes from
the link Lewis saw between counterfactuals and causation; ¬φ�→ ¬ψ implies
that if φ hadn’t been the case, ψ wouldn’t have been the case, capturing much
of the semantics of the statement φ caused ψ. The truth of such intuitive causal
statements, however, relies on the presence of a host of secondary or enabling
conditions. Intuitively the statement that if I had dropped this glass on the
floor, it would have broken is true; but in order for the consequent to hold
after dropping the glass, there are many elements that have to be the same
in that counterfactual situation as in the actual world—the floor needs to be
hard, there needs to be a gravitational field around the strength of the Earth’s
that accelerates the glass towards the floor, and many other conditions. In other
words, in order for such ordinary statements to be true, the situation in which
one evaluates the consequent of a counterfactual has to resemble very closely the
actual world.

Though intuitive, as this logical definition of counterfactuals stands, it is
not immediately obvious how to apply it to explanations of learning algorithm
behavior. We need to adapt it to a more analytical setting. We will do so by
interpreting the similarity relation appealed to in the semantics of counterfac-
tuals as a distance function or norm as in [39] over the feature space Xn, an
n-dimensional space, used to describe data points. To fill out our semantics for
counterfactuals in this application, we identify instances in Xn as the relevant
“worlds” for the semantics of the counterfactuals. We now need to specify a

4 See [18] for some experimental evidence of this.
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norm for Xn. A very simple norm assumes that each dimension of Xn is orthog-
onal and has a Boolean set of values; in this case, Xn has a natural L1 norm
or Manhattan or edit distance [36].5 While this assumption commits us to the
fact that the dimensions of Xn capture all the causally relevant factors and that
they are all independent—both of which are false for typical instances of learning
algorithms, it is simple and makes our problem concrete. We will indicate below
when our results depend on this simplifying assumption.

A logic of counterfactuals can now exploit the link between logic formulas,
features of points in Xn, and a learning algorithm f̂ described in [19,22]. Suppose
a focal point x̂ is such that f̂(x̂) = η. A counterfactual A �→ π that is true at
the point x̂, where π is a prediction incompatible with η, has an antecedent that
is a conjunction of literals, each literal defining a feature value, and that provides
a sufficient and minimal shift in the features of x̂ to get the prediction π. Each
counterfactual that explains the behavior of f̂ around a focal point x̂ ∈ Xn thus
defines a minimal transformation of the features of x̂ to change the prediction.
We now define the transformations on Xn that counterfactuals induce.

Definition 2. Let i ⊂ n. A fixed transformation Δi is a function Δi : Xn → Xn

such that for x ∈ Xn, if Δi(x) = y, then x and y differ only in the dimensions
in i. We write x =i x′ to mean that x and x′ share the same values along
dimensions i. Given x ∈ Xn, and f̂(x) = η and where ‖.‖Xn is a natural norm
on Xn, we shall be interested in the following types of transformations.

(i) Δi(x) is appropriate if f̂(Δi(x)) = π where η and π are two incompatible
predictions in Y .

(ii) Δi(x) is minimally appropriate if it is appropriate and in addition, ∀x′ ∈ X

such that Δi(x) =i x′ and f̂(x′) = π, ‖x′ − x‖Xn ≥ ‖Δi(x) − x‖Xn .
(iii) Δi(x) is sufficiently appropriate if it is appropriate and in addition, for any

j � i, Δj(x) is not appropriate.
(iv) Δi(x) is sufficiently minimally appropriate if it is both sufficiently and mini-

mally appropriate.

Note that when X is a space of Boolean features, then conditions (ii) and (iv) of
Definition 2 trivially hold. Given a focal point x̂ in Xn, minimally appropriate
transformations represent the minimal changes necessary to the features of x̂ to
bring about a change in the value predicted by f̂ .

Let f̂ : Xn → Y and consider now a counterfactual language Lf̂ with a set
of formulas Π that describe the predictions in Y of f̂ .

Definition 3. A counterfactual model CXn,f̂ for Lf̂ with f̂ : Xn → Y is a triple
〈W,≤, [[.]]〉 with W a set of worlds W = Xn, ≤ defined by a norm ||.|| on Xn

and [[.]] : P ∪{Π} → W → {0, 1} such that for A ∈ P , [[A]]w = 1 iff w has feature
A and for π ∈ Π, [[π]]w = 1 iff f̂(w) = π.
5 In fact, we only assume a finite set of finitely valued features, since an n-valued

feature is definable with n Boolean valued features. By complicating the language
and logic [7], we can have probability estimates on literals and so encode continuous
feature spaces.
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Given a counterfactual model CXn,f̂ for Lf̂ with norm ||.|| on Xn, we say that
||.|| is Lf̂ definable just in case for worlds w,w1 ∈ Xn, there is a formula φ of Lf̂

that separates w1 from all w2 ∈ Xn such that ‖w2 − w‖ < ‖w1 − w‖—i.e. for all
w2, ‖w2 − w‖ < ‖w1 − w‖, CXn,f̂ , w1 |= φ and CXn,f̂ , w2 �|= φ.

Proposition 1. Let f̂ : Xn → Y and let CXn,f̂ be a counterfactual model for
Lf̂ with an Lf̂ definable norm. Suppose also that f̂(w) = η. Then:
CXn,f̂ , w |= φ �→ π, where π ∈ Π and φ is a separating formula iff there is
a minimally appropriate transformation, Δi : Xn → Xn, where f̂(Δi(w)) = π,
and CXn,f̂ ,Δi(w) |= A.

Proposition 1 follows easily from Definitions 1, 2 and 3.
Proposition 1 is general and can apply to many different norms and languages.

We will mostly be concerned here with a special and simple case:

Corollary 1. Let Lf̂ be a propositional language with a set P of propositional
letters, where P is the set of Boolean valued features of Xn, and let CXn,f̂ be a
counterfactual model for Lf̂ with an L1 norm. Then:
CXn,f̂ , w |= A �→ π, where π ∈ Π and A is a conjunction of literals in P iff
there is a minimally appropriate transformation over the dimensions i fixed by
A, Δi : Xn → Xn, where f̂(Δi(w)) = π, and CXn,f̂ ,Δi(w) |= A.

We can generate minimally appropriate transformations via efficient (poly-
time) techniques like optimal transport or diffeomorphic deformations [4,9,23,
33,40] for computing adversarial perturbations [24]. In effect all of these diverse
methods yield counterfactuals or sets of counterfactuals given Proposition 1. A
typical definition of an adversarial perturbation of an instance x, given a clas-
sifier, is that it is a smallest change to x such that the classification changes.
Essentially, this is a counterfactual by a different name. Finding a closest pos-
sible world to x such that the classification changes is, under the right choice
of distance function, the same as finding the smallest change to x to get the
classifier to make a different prediction.6

The great advantage of Proposition 1 is that marries efficient techniques to
generate counterfactual explanations with the logical semantics of counterfac-
tuals that provides logically valid (LV) explanations from counterfactual expla-
nations, unlike heuristic methods [27,35,35]. Thus, counterfactual explanations
build a bridge between logical rigour and computational feasibility.

Proposition 2. A counterfactual explanation given by a minimally appropriate
Δi(x̂) in CXn,f̂ , with an L1 norm and Xn with Boolean valued features, yields a
minimal, LV explanation in at worst a linear number of calls to an NP oracle.

6 Such minimal perturbations may not reflect the ground truth, the causal facts that
our machine learning algorithm is supposed to capture with its predictions, as noted
by [25]. We deal with this in Sect. 4.
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Proof Sketch. The atomic diagram [6] of CXn,f̂ in which each world is encoded
as a conjunction of literals (Boolean values of the features P of Xn together with
predictions from Y ), encodes M(f̂). Further, given Corollary 1 and Definition 3,
each minimally appropriate Δi defines a set of literals LΔi

describing Δi(x̂)
such that Δi(x̂),M(f̂) |= π. [18,19] provide an algorithm for finding a subset
minimal set of literals E ⊆ LΔi

with E ,M(f̂) |= π in a linear number relative
to |LΔi

| of calls to an NP oracle [21]. ��

3 From Partial to More Complete Explanations

We have observed that counterfactual explanations are intuitively simpler than
deductive ones, as they typically offer only a partial explanation. In fact there
are three sorts of partiality in a counterfactual explanation. First, a counterfac-
tual explanation is deductively incomplete; it doesn’t specify the ceteris paribus
conditions and so doesn’t specify what is necessary for a proof of the prediction π
for a particular focal point. Second, counterfactual explanations are also partial
in the sense that they don’t specify all the sufficient conditions that lead to π;
they are hence globally incomplete. Finally, counterfactuals are partial in a third
sense; they are also locally incomplete. To explain this sense, we need a notion
of overdetermination.

Definition 4. A prediction π ∈ Y by f̂ : X → Y is overdetermined for a focal
point x̂ ∈ X if the set of minimally sufficiently appropriate transformations of x̂

O(x̂, π, f̂) = {Δi : Δi(x̂) is minimally sufficiently appropriate}

contains at least two elements.

Locally incomplete explanations via counterfactuals can occur whenever f̂ ’s
counterfactual decisions are over-determined for a given focal point. Many real
world applications like our bank loan example will have this feature.

Locally incomplete explanations can, given a particular ML model Mf̂ , hide
implicitly defined properties that show f̂ to be unacceptably biased in some way
and so pose a problem for fair and adequate explanations. Local incompleteness
allows for several explanatory counterfactuals with very different explanans to
be simultaneously true. This means that even with an explanation, f̂ may act
in ways unknown to the agent E or the public that is biased or unfair. Worse,
the constructor or owner of f̂ will be able to conceal this fact if the decision for
E is overdetermined, by offering counterfactual explanations using maps Δ that
don’t mention the biased feature.

Definition 5. A prejudicial factor P is a map, P : Xn → Xn and f̂ exhibits a
biased dependency on prejudicial factor P just in case for some i �= 0, Δi, and
for some incompatible predictions η and π,

f̂(x̂) = f̂(Δi(x̂)) = η and f̂(P (x̂)) = f̂(P (Δi(x̂))) = π
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Dimensions of the feature space that are atomic formulas in Lf̂ can provide
examples of a prejudicial factor P . But prejudical factors P may be also implic-
itly definable in Mf̂ . Assume that .̂ is a map from real individuals x to their
representation as data points x̂ ∈ X̂. Then: P is Mf̂ implicitly definable just in
case: for all x such that x̂ ∈ X̂, x ∈ ‖P‖ iff for some boolean combination E of
atoms of Lf̂ , Mf̂ |= E(x̂).

We’ve just described some pitfalls of locally incomplete counterfactual expla-
nations. We now show how to move from a partial picture of the behavior of f̂
to a more complete one using counterfactuals. Imagine that at a focal point x̂,
f̂(x̂) = η and we want to know why not π.

Definition 6. In a counterfactual model CXn,f̂ with a set of Boolean valued
features P , the collection of counterfactuals SC,x̂,π = {φ �→ π : CXn,f̂ , x̂ |=
φ �→ π with φ a Boolean combination of values for atoms in P} true at x̂ gives
the complete explanation for why π would have occurred at x̂.

Appropriate transformations Δi on Xn in a counterfactual model CXn,f̂ to
produce π associated with counterfactuals via Proposition 1 can capture SC,x̂,π

and permit us to plot the local complete explanation of f̂ around a focal point
x̂ with regard to prediction π.

Definition 7. BC,x̂,π = {Δi(x̂) : Δi is a minimal appropriate transformation
for some i ⊂ n}
Proposition 3. In a counterfactual model CXn,f̂ , BC,x̂,π = {y ∈ Xn : ∃ (φ �→
ψ) ∈ SC,x̂,π such that y is a closest φ world to x̂ where CXn,f̂ , y |= ψ}.

For the remainder of this section we will fix a counterfactual model CXn,f̂ to
simplify notation.

We are interested in the space Nf̂ ,x̂,π around x̂ with boundary Bx̂,π.

Definition 8. 1. Nf̂ ,x̂,π is the subspace of Xn such that (i) x̂ ∈ Nf̂ ,x̂,π and (ii)
Nf̂ ,π,x̂ includes in its interior all those points z for which f̂(z) = f̂(x̂) and
(iii) the boundary of Nf̂ ,x̂,π is given by Bx̂,π.

2. N d
f̂,π,x̂

is a subspace of Nf̂ ,x̂,π with boundary Bd
x̂,π, where Bd

x̂,π = Bx̂,π∩Bd(x̂),
where Bd(x̂) = {y ∈ Xn : ‖y − x̂‖ ≤ d}.

3. Sd
x̂,π = {y : ∃(φ �→ ψ) ∈ Sx̂,π ∧ CXn,f̂ , y |= ψ ∧ ‖y − x̂‖ ≤ d}.

The set Sx̂,π can have a complex structure in virtue of the presence of ceteris
paribus assumptions. Because strengthening of the antecedent fails in semantics
for counterfactuals, the counterfactuals in (4) relevant to our example of Sect. 2
are all satisfiable at a world without forcing the antecedents of (4)b or (4)c to
be inconsistent:

(4) a. If I were making e100K euro, I would have gotten the loan.
b. If I were making e100K or more but were convicted of a serious

financial fraud, I would not get the loan.
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c. If I were making e100K or more and were convicted of a serious
financial fraud but then the conviction was overturned and I was
awarded a medal, I would get the loan.

The closest worlds in which I make e100k do not include a world w in which I
make e100k but am also convicted of fraud. Counterfactuals share this property
with other conditionals that have been studied in nonmonotonic reasoning [13,
32]. However, if the actual world turns out to be like w, then by weak centering
(4)a turns out to be false, because the ceteris paribus assumption in (4)a is that
the actual world is one in which I’m not convicted of fraud.

In Sx̂,π we can count how many times the value of the consequent changes
as we move from one antecedent to a logically more specific one (e.g., does the
prediction flip from A to A ∧ C or from A ∧ C to A ∧ C ∧ D). For generality, we
will also include in the number of flips, the flips that happen when we change
the Boolean value of a feature—going from A to ¬A for example. We will call
the number of flips the flip degree of Sx̂,π.

There is an important connection between the flip degree of Sx̂,π and the
geometry of Nf̂ ,x̂,π. In a counterfactual model, the move from one antecedent
φ1 of a counterfactual c1 a to logically more specific antecedent φ2 of c2, with
c1, c2 ∈ Sx̂,π will, given certain assumptions about the underlying norm yield
x̂ < y < z, with y being a closest to x̂ point verifying φ1 and z a closest point
verifying φ2. In fact we generalize this property of norms.

Definition 9. A norm ||.|| in a counterfactual model CXn,f̂ respects the logical

consequence relation (|=) of the model iff for any z ∈ Xn such that CXn,f̂ , z |= ψ

and for φ1 |= φ2 |= ... |= φn |= ¬ψ, there are collinear x1, ...xn ∈ Xn such that
for each i, xi is a closest point to z such that CXn,f̂ , xi |= φi and ||xi+1 − z|| ≤
||xi − z||.
Remark 1. An L1 norm for a counterfactual model is a logical consequence
respecting norm.

In addition, a flip (move from a point verifying φ1 to a point verifying φ2

corresponds to a move from a transformation Δi to a transformation Δj with i ⊂
j. Thus, flips determine a partial ordering under ⊆ over the shifted dimensions
i: thus Δi ≤ Δj , if i ⊆ j. We are interested in the behavior of f̂ with respect to
the partial ordering on Δi.

Definition 10. f̂ is nearly constant around x̂, if for every sufficiently minimally
appropriate Δi for all Δj ⊃ Δi, f̂(Δj(x̂)) = f̂(Δi(x̂)).

A nearly constant f̂ changes values only once for each combination of fea-
tures/dimensions di moving out from a focal point x̂. So at some distance d,
nearly constant f̂ becomes constant f̂ . For a nearly constant f̂ around x̂, Sx̂,π,
has flip degree 1. A complete local explanation for f̂ ’s prediction of π within d,
Sd

x̂,π, is a global explanation f̂ ’s behavior with respect to π.
We can generalize this notion to define an n-shifting f̂ . If f̂ flips values n

times moving out from x̂, Sx̂,π has flip degree n.
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Proposition 4. Suppose A counterfactual model has a logical consequence
respecting norm, then: Sx̂,π, has a flip degree ≤ 2 iff Nf̂ ,x̂,π forms a convex
subspace of f̂ [X].

Proof Sketch. Assume Sx̂,π has flip degree ≥ 3. Then Sx̂,π will contain coun-
terfactuals with antecedents φ, χ, δ such that φ |= χ |= δ but, say, φ and δ
counterfactually support π but not χ. As the underlying norm respects |=, there
are collinear points x, y, and z, where x is a closest point to x̂ where φ is true,
y is a closest χ world, and z is a closest δ world such that x̂ < z < y < x.
But x̂, yχ ∈ Nf̂ ,x̂,π, while xφ, zδ ∈ Bx̂,π and �∈ Nf̂ ,x̂,π, which makes Nf̂ ,x̂,π
non convex. Conversely, suppose Nf̂ ,x̂,π is non convex. Using the construction
of counterfactuals from the boundary Bx̂,π of Nf̂ ,x̂,π will yield a set with flip
degree 3 or higher. ��

The flip degree of Sx̂,π gives a measure of the degree of non-convexity of
Nf̂ ,x̂,π, and a measure of the complexity of an explanation of f̂ ’s behavior. A
low flip degree for Sd

x̂,π with minimal overdeterminations provides a more general
and comprehensive explanation. With Proposition 4, a low flip degree converts
a local complete explanation into a global explanation, which is a priori prefer-
able. It is also arguably closer to our prior beliefs about basic causal processes.
The size of Sd

x̂,π gives us a measure to evaluate f̂ itself; a large Sd
x̂,π doesn’t

approximate very well a good scientific theory or the causal structures postu-
lated by science. Such a f̂ lacks generality; it has neither captured the sufficient
nor the necessary conditions for its predictions in a clear way. This could be
due to a bad choice of features determining f̂ ’s input Xn [9]; too low level or
unintuitive features could lead to lack of generality with high flip degrees and
numerous overdeterminations. Thus, we can use Sd

x̂,π to evaluate f̂ and its input
representation Xn.

The flip degree of Sx̂,π and the topology of Nf̂ ,x̂,π can also tell us about the
relation between counterfactual explanations based on some element in X and
ground truth instances provided during training. Our learning algorithm f̂ is
trying to approximate or learn some phenomenon, which we can represent as a
function f : X → Y ; the observed pairs (z, f(z)) are ground truth points for f̂ .
Ideally, f̂ should fit and converge to f—i.e., with the number of data points N
f̂ is trained on limN→∞f̂N → f ; in the limit explanations of the behavior of f̂
will explain f , the phenomenon we want to understand. Given that we generate
counterfactual situations using techniques used to find adversarial examples,
however, counterfactual explanations may also be based on adversarial examples
that have little to no intuitive connection with the ground truth instances f̂ was
trained on. While these can serve to explain the behavior of f̂ and as such
can be valuable, they typically aren’t good explanations of the phenomenon
f that f̂ is trying to model. [25] seek to isolate good explanations of f from
the behavior of f̂ and propose a criterion of topological connectedness for good
counterfactual explanations. This idea readily be implemented as a constraint
on Nf̂ ,x̂,π: roughly, f̂ as an approximation of f will yield good counterfactual
explanations relative to a focal point x only if for any point y outside of Nf̂ ,x̂,π,
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there is a path of points y1, ...yn wholly within C between y and a ground truth
data point p such that f(p) = f̂(p) = f̂(yi) = f̂(y).7

4 Pragmatic Constraints on Explanations

While we have clarified the partiality of counterfactual explanations, AI applica-
tions can encode data via hundreds even thousands of features. Even for our sim-
ple running example of a bank loan program, the number of parameters might
provide a substantial set of counterfactuals in the complete local explanation
given by Sx̂,π. This complete local explanation might very well involve too many
counterfactuals for humans to grasp. We still to understand what counterfactual
explanations are pragmatically relevant in a given case.

Pragmatic relevance relies on two observations. First, once we move out a
certain distance from the focal point, then the counterfactual shifts intuitively
cease to be about the focal point; they cease to be counterparts of x̂ and become
a different case. Exactly what that distance is, however, will depend on a variety
of factors about the explainee E and what the explainer believes about E . Second,
appropriate explanations must respond to the particular conundrum or cognitive
problem that led E to ask for the explanation [1,5,28]. On our view, the explainee
E requires an explanation when her beliefs do not lead her to expect the observed
prediction π. When E ’s beliefs suffice to predict f̂(x̂) = π, she has a priori an
answer to the question Why did f̂(x) = π? In our bank example from Sect. 2,
had E ’s beliefs been such that she did not expect a loan from the bank, she
wouldn’t have needed to ask, why did the bank not give me a loan?8

The conundrum comes from a mismatch between E ’s understanding of what
f̂ was supposed to model (our function f) and f̂ ’s actual predictions. So E , in
requesting an explanation of f̂ ’s behavior, might also want an explanation of f
itself (see the previous section for a discussion). Either E is mistaken about the
nature of f̂ , or her grasp of f̂ is incomplete..9 More often than not, E will have
certain preconceptions about f̂ , and then many if not most of the counterfactuals
in Sx̂,π may be irrelevant to E . A relevant or fair and adequate explanation for E
should provide a set Cd

E of appropriate Δi with ‖Δi(x̂) − x̂‖ ≤ d showing which
of E ’s assumptions were faulty or incomplete, thus solving her conundrum.

Suppose that the explainee E requests an explanation why f̂(x̂) = η, and
that x̂ is decomposed into 〈xd1 , xd2〉.
CI Suppose E ’s conundrum based on incompleteness; i.e., the conundrum arises

from the fact that for E f̂ only pays attention to the values of dimensions

7 We note that our discussion and constraint make clear the distinction between f
and f̂ which is implicit in [15,25].

8 Of course E might want to know whether her beliefs matched the bank’s reasons for
denying her a loan, but that’s a different question—and in particular it’s not a why
question.

9 Perhaps E is also mistaken about or has an incomplete grasph of f or if not, she is
mistaken about how f̂ differs from f). But we will not pursue this here.
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d1 in the sense that for her f̂(〈xd1 , xd2〉) = f̂(〈xd1 , x′
d2

〉), for any values
x′
d2

. Then there is a Δ ∈ Cd
E such that Δ(〈xd1 , xd2〉) = 〈xd1 , yd2〉 and

f̂(Δ(x̂)) = f̂(〈xd1 , yd2〉) = π while f̂(x̂) = f̂(〈xd1 , xd2〉) = η.
CM Suppose E ’s conundrum is based on a mistake. Then there is a Δ ∈ Cd

E such
that Δ(〈xd1 , xd2〉) = 〈yd1 , xd2〉 such that f̂(〈yd1 , xd2〉) = f̂(Δ(x̂)) = π. I.e.,
Δ must resolve E ’s conundrum by providing the values for the dimensions
d2 of x̂ on which E is mistaken.

A fair and adequate explanation must not only contain counterfactuals that
resolve the explainee’s conundrum. It must make clear the biases of the system
which may account for 0’s incomplete understanding of f̂ ; it must lay bare any
prejudicial factors P that affect the explainee and thus in effect all overdeter-
mining factors as in Definition 4. An explainee might reasonably want to know
whether such biases resulted in a prediction concerning her. E.g., the explanation
in (3) might satisfy CM or CI, but still be misleading. Thus:

CB ∀ prejudicial factors P , there is a Δ ∈ Cd
E such that f̂(Δ(x̂)) = π and

P (Δ(x̂)) = Δ(x̂).

In our bank loan example, if the bank is constrained to provide an explanation
obeying CB, then it must provide an explanation according to which being white
and having E ’s salary would have sufficed to get the loan.

Definition 11. A set of counterfactuals provides a fair and adequate explana-
tion of f̂ for E at x̂ just in case they together satisfy CM, CI and CB within a
certain distance d of x̂.

The counterfactuals in Cd
E jointly provide a fair and adequate explanation of f̂ for

E , though individually they may not satisfy all of the constraints. We investigate
how hard it is to find an adequate local explanation in the next section.

5 The Algorithmic Complexity of Finding Fair
and Adequate Explanations

In this section, we examine the computational complexity of finding a fair and
adequate explanation. To find an appropriate explanation, we imagine a game
played, say, between the bank and the would-be loan taker E in our example
from Sect. 2, in which E can ask questions of the bank (or owner/ developer of
the algorithm) about the algorithm’s decisions. We propose to use a two player
game, an explanation game to get appropriate explanations for the explainee.

The pragmatic nature of explanations already motivates the use of a game
theoretic framework. We have argued fair and adequate explanations must obey
pragmatic constraints; and in order to satisfy these in a cooperative game the
explainer must understand explainee E ’s conundrum and respond so as to resolve
it. Providing an explanation is a pragmatic act that takes into account an
explainee’s cognitive state and the conundrum it engenders for the particular
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fact that needs explaining. A cooperative explainer will provide an explanation
in terms of the type he assigns to E , as the type will encode the relevant portions
of E ’s cognitive state. On the other hand the explainee will need to interpret the
putative explanation in light of her model of the explainer’s view of his type.
Thus, both explainer and explainee naturally have strategies that exploit infor-
mation about the other. Signaling games [37] are a well-understood and natural
formal framework in which to explore the interactions between explainer and
explainee; the game theoretic machinery we develop below can be easily adapted
into a signaling game between explainer and explainee where explanations suc-
ceed when their strategies coordinate on the same outcome.

Rather than develop signaling games however for coordinating on successful
explanations, we look at non-cooperative scenarios where the explainer f̂ may
attempt to hide a good explanation. For instance, the bank in our running exam-
ple might have encoded directly or indirectly biases into its loan program that
are prejudicial to E , and it might not want to expose these biases. The games
below provide a formal account of the difficulty our explainee has in finding a
winning strategy in such a setting.

To define an explanation game, we first fix a set of two players {E ,A}.
The moves or actions VE for explainee E are: playing an ACCEPT move—in

which E accepts a proposed Δi if it partially solves her conundrum; playing an
N-REQUEST move—i.e. requesting a Δj where j differs from all i such that
Δi has been proposed by A in prior play; playing a P-REQUEST move—i.e.
for some particular i, requesting Δi. E may also play a CHALLENGE move, in
which E claims that a set of features A1, . . . An of the focal point that entails
π in the counterfactual model associated with f̂ . We distinguish three types of
ME explanation games for E based on the types of moves she is allowed: the
Forcing ME explanation games, in which E may play ACCEPT, N-REQUEST,
P-REQUEST; the more restrictive Restriction ME explanation games, in which
E may only play ACCEPT, N-REQUEST; and finally Challenge ME explanation
games in which CHALLENGE moves are allowed.

Adversary A’s moves VA consists of the following: producing Δi and com-
puting f̂(Δi(x̂)) in response to N-REQUEST or P-REQUEST by E ; if G is a
forcing game, A must play Δi at move m in ρ, if E has played P-REQUEST
Δi at m − 1. In reacting to a N-REQUEST, player A may offer any new Δi; if
he is noncooperative, he will offer a new Δi that is not relevant to E ’s conun-
drum, unless he has no other choice. On the other hand, A must react to a
CHALLENGE move by E by playing a Δi that either completes or corrects the
Challenge assumption. A CHALLENGE demands a cooperative response; and
since it can involve any implicitly definable prejudicial factor as in Definition 5,
it can also establish CB, as well as remedy CI or CM.

We now specify a win-lose, generic explanation game.

Definition 12. An Explanation game, G, concerning a polynomially computable
function f̂ : Xn → Y , where Xn is a space of boolean valued features for the
data and Y a set of predictions, is a tuple ((VE ∪VA)∗, E ,A, f̂ : Xn → Y, x̂, d,Cd

E)
where:
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i. Cd
E ⊆ Bd

x̂,π resolves E’s conundrum and obeys CB.
ii. x̂ ∈ Xn is the starting position, d is the antecedently fixed distance param-

eter.
iii. A, but not E has access to the behavior of f̂ and a fortiori Cd

E .
iv. E opens G with a REQUEST or CHALLENGE move
v. A responds to E’s requests by playing some Δi, i ≤ d.
vi. E may either play ACCEPT, in which case the game ends or again play a

REQUEST or CHALLENGE move.

E wins G just in case in G she can determine Cd
E . The game terminates when (a)

0 has determined Cd
E (resolved her conundra) or gives up.

E always has a winning strategy in an explanation game. The real question
is how quickly E can compute her winning condition. An answer depends on
what moves we allow for E in the Explanation game; we can restrict E to play-
ing a Restriction explanation game, a Forcing game or a Forcing game with
CHALLENGE moves.

Proposition 5. Suppose G is a forcing explanation game. Then the computation
of E’s winning strategy in G is Polynomial Local Search complete (PLS) [20,31].
On the other hand if G is only a Restriction game, then the worst case complexity
for finding her strategy is exponential.

Proof Sketch. Finding Cd
E is a search problem using f̂ . Cd

E is finite with, say, m
elements. These elements need not be unique; they just need jointly to solve the
conundrum. This search problem is PLS just in case every solution element is
polynomially bounded in the size of the input instance, f̂ is poly-time, the cost
of the solution is poly-time and it is possible to find the neighbors of any solution
in poly-time. Let x̂ be the input instance. By assumption, f̂ is polynomial; and
given the bound d, the solutions y for f̂(y) = π and y ∈ Cd

E are polynomially
bounded in the size of the description of x̂. Now, finding a point y ∈ Cd

E that
solves at least part of E ’s conundrum, as well as finding neighbors of y is poly-
time, since E can use P-REQUEST moves to direct the search. To determine the
cost c of finding Cd

E for |Cd
E | = m in poly-time: we set for y ∈ Cd

E the jth element
of C computed as c(y) = m − j; if y �∈ C, c(y) = m. Finding Cd

E thus involves
determining m local minima and is PLS. In addition, determining Cd

E encodes
the PLS complete problem FLIP [20]: the solutions y in G have the same edit
distance as the solutions in FLIP, f̂ encodes a starting position, and our cost
function can be recoded over the values of the Boolean features defining y to
encode the cost function of FLIP and the function that compares solutions in
FLIP is also needed and constructible in G. So finding Cd

E is PLS complete in G
as it encodes FLIP.

The fact that forcing explanation games are PLS complete makes getting an
appropriate explanation computationally difficult. Worse, if G is a Restriction
Explanation game, then A can force E to enumerate all possible Δi within radius
d of x̂ to find Cd

E . ��
Proposition 6. Suppose G is a Challenge explanation game. Then E has a win-
ning strategy in G that is linear time computable.
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Proof Sketch. A must respond to E ’s CHALLENGE moves by correcting or com-
pleting E ’s proposed list of features. E can determine Cd

E in a number of moves
that is linear in the size of Cd

E . ��
A Challenge explanation game mimics a coordination game where A has

perfect information about Cd
E , because it forces cooperativity and coordination

on the part of A. Suppose E in our bank example claims that her salary should
be sufficient for a loan. In response to the challenge, the bank could claim the
salary is not sufficient; but that’s not true—the salary is sufficient provided other
conditions hold. That is, E ’s conundrum is an instance of CI. Because of the
constraint on CHALLENGE answers by the opponent, the bank must complete
the missing element: if you were white with a salary of e50K,... Proposition 6
shows that when investigating an f̂ in a challenge game, exploiting a conundrum
is a highly efficient strategy.

The flip degree of Sd
x̂,π and the number of overdetermining factors O(x, π)

(Definition 4) typically affect the size of C and thus the complexity of the conun-
drum and search for fair and adequate explanations and their logical valid asso-
ciates. More particularly, when |O(π, x̂)| = n and the cost of the prediction is as
in the proof of Proposition 5, E ’s conundrum and the explanations resolving it
may require n local minima. When the flip degree of Sd

x̂,π is m, E may need to
compute m local minima.

To develop practical algorithms for fair and adequate explanations for AI
systems, we need to isolate E ’s conundrum. This will enable us to exploit the
efficiencies of Challenge explanation games. Extending the framework to discover
E ’s conundrum behind her request for an explanation is something we plan to do
using epistemic games from [3] with more developed linguistic moves. In a more
restricted setting where Challenge games are not available, our game framework
shows that clever search algorithms and heuristics for PLS problems will be
essential to providing users with relevant, and provably fair and adequate coun-
terfactual explanations. This is something current techniques like enumeration
or finding closest counterparts, which may not be relevant [18,19,22]—do not
do.

6 Conclusion

We have shown that counterfactual explanations can deliver partial, but epis-
temically accessible and adequate explanations. We have also shown that any
counterfactual explanation can be extended to a valid deductive one. We have
shown that pragmatic factors dramatically affect the complexity of finding ade-
quate explanations, and we introduced Explanation Games, which provided to
represent finding fair and adequate counterfactual explanations as a PLS com-
plete search problem. In addition, we explored how the complexity of the set
of counterfactuals describing a local neighborhood around the focal point can
affect both the complexity of fair and adequate explanations and our evaluation
of the learning algorithm as a model.



Fair and Adequate Explanations 95

Our paper fills in part of the gap for finding fair and adequate explanations
in a computationally reasonable way. Nevertheless moving from an explanation
provided by an explanation game to a proof from a minimal set of sufficient
premises as in Proposition 2 is still computationally difficult. In future work we
will look at efficient heuristics for this step. In future work, we will alo look at how
explanation games help us to formally explore interactive machine learning, in
particular “human in the loop” or interactive explainability for machine learning
function behavior [2,17]. Such game theoretic investigations may have special
relevance in medical domains [16].
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Abstract. Machine errors can propagate in a production field and reduce the
efficiency of smart manufacturing execution systems. Since every highly auto-
mated machine can have many possible status reports, their causalities can only
be detected by means of statistical analyses. We present a highly automatable
methodology for iteratively analysing machine state time series and for detecting
machine error causality hypotheses. First, the categorical status time series of all
machines are analysed for binary correlations in two iteration steps using pair-
wise cross-correlation. Out of all correlations, significantly high correlations are
then combined and can be validated for causalities by means of plausibility and
semantic criteria. Our experimental results are presented on anonymised real pro-
duction state time series and a simple representational concept for further causal
interpretation is introduced.

Keywords: Time series analysis · Correlation functions · Smart manufacturing
execution systems · Production process optimisation · Production analytics ·
Causal analysis · Failure propagation analysis

1 Introduction

It has broadly been recognised that smart manufacturing increases the efficiency and
productivity through data-driven decision making. For that purpose, the actual produc-
tion state of every machine is optimised on continuously obtained feedback information
from the machine via its sensory system. Hence, sensor statuses constitute the basic data
for statistical analysis and information extraction in Smart Manufacturing Execution
Systems SMES [13]. Therefore, timestamped sensor status messages are collected in
production state time series (PSTS) for all machines that produce in a specific produc-
tion plan. A PSTS is serialised for each machine on timestamps. Although PSTS emerge
in real-time while machines operate, batch processing tools are more widely adopted
than real-time stream processing framework in SMES [11]. Unlike big data processing
in other areas, in SMES all data processing is well structured, hierarchically organised,
standardised and data lifecycles well studied [24]. Therefore, time series data acquired
through legacyMESmachine states are collected by continuously pollingmachines [14].
In an ideal production world, all production states, production process states or material
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states would be digitally recorded in a relevant and complete manner via modular con-
cepts and multiple sensors in order to gain knowledge (digital twin). This claim is part
of Industry 4.0. In particular, the multivariate resolution of the complex states of a sin-
gle production machine, for example through continuous measurement of temperature,
pressure or vibration, even at several points and at comparable times, is an important
milestone there. On the other hand, in the real world of many small and medium-sized
companies, this is often still a long way off. In many cases on the part of the production
companies, the states of each productionmachine – even if the machinemight havemore
sensor and status data available - are only registered univariately, that is, by only one
categorical value at any instant of time, whereby the assumed values, such as “standard
operation”, “maintenance”, “mechanical malfunction”, “electrical malfunction”, “jam”
or “lack of material”, have a more complex semantic meaning. The specification of
these categorical values is usually company-specific. In any case, polling the univariate
or multivariate statuses of all machines synchronously with respect to an elementary
time step allows collecting continuously snapshots of the whole production process,
containing more or less information about the dynamical production system. In produc-
tion processes with low rate of status changes relatively to the number of measurement
time instants, too many redundant data would be collected by polling this way. The more
frequent snapshots are then taken, the more difficult real-time processing data analysis
will be feasible. Under such circumstances batch processing the data analysis constitutes
an alternative. However, real-time processing SMES is inevitable for controlling Inter-
net of Things (IoT)-based sensory systems. For instance, monitoring sensor statuses for
predicting faults based on abnormal events, such as outliers [22].

In our approach, we focus our attention on event-based univariate time series, where
the PSTS provide all those instants of time, when the categorical complex status of the
machine changes its value. The analysis of event-based big data has become increasingly
popular. For instance, for detecting clusters in sensor data streams, modelling state
transitions between the clusters as a Markov chain and discovering anomalies [1]. In
contrast to time series, the timestamps of a data stream may not monotonously increase,
i.e. some older data may occur in the stream after some younger data. Another issue
is the quality of sensor data, which may be restricted due to limited sensor precision,
failures or malfunctioning. In order to avoid faulty decisions derived from incorrect or
misleading sensor data streams and provide some quality level of machine operation,
the lifetime of the sensors may continuously be projected, based on their data streams
[12].

Within our approach, we apply cross-correlation analysis to pairs of binary coded
(univariate) time series, recovered from event-based raw data, in order to extract cor-
relation features. The methodology is validated in providing significant results on real
production data and, additionally, equips the correlation-results with algebraic properties
of pairwise cross-correlated machines [18]. This additional information is one source of
associating causal hypotheses to the correlation results.

The normalized cross-correlation provides a value for any time shift between the two
time series, which can be regarded as a probability measure for statistical similarities.
Hence, by computing the normalized cross-correlation over a range of time shifts, a
sharp maximum of the values indicates a high probability of correlation (with respect to
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status changes) togetherwith a value for the time shift that corresponds to this correlation.
Usually, the algorithm searcheswithin a given timewindowof the series, that is supposed
to contain statistically significant information for a correlation, where the width of the
window is determined based on initial evidence for a possible correlation. In case of time
series, correlation analysis is the preferred choice for feature extraction and classification.
Standard algorithms for the correlation analysis of two time series perform best for noise-
free data. However, in most cases real data does come noisy and overlaid with data from
multiple logical sources. For such cases the literature is rich on various specialised
filters, often for the elimination of both, noise and undesired data from uninterested
logical sources. In some cases, filters are designed parametric, such that the focus on
interested data may be adjusted, such as filtering outlier data [22], to allow filtering just
the relevant data for a specific experiment out of the initial logical sources.

Cross-correlation is frequently employed in the literature for correlation analysis and
measurement of univariate linear time series. It has been used for detecting time lags in
two series of information in various domains. For instance, in economics, for detecting
correlations between advertising and sales [10]. Or in the analysis of neural information,
for detecting spatio-temporal correlations betweenneural discharges. Thefilter discussed
here, allows detecting transitive signal delays within a specific frequency range [20].
Cross-correlation is a popular similarity measure for pixels. It has been reported to be
more effectively, when applied on specific features of pixels, such as on brightness values
[6]. Cross-correlation itselfmay be used as a linear filter that separates noise in functional
magnetic resonance imaging, by detecting signals that correlate with neural regions of
similar activations [7], or for filtering slow components, in order to improve detecting
faster components out of binary or continuous time series [16]. However, in the last two
approaches noise was already filtered out of the time series, so cross-correlation can
more effectively be adapted for filtering undesired correlations.

In case of autocorrelation, a specific pattern of the series is used to detect similar pat-
ters inside the same series. Since such individually autocorrelated series do not comprise
independent values, cross-correlation may be non-significant and therefore misleading.
For avoiding such cases, detecting, revising and verifying them, the reader is referred to
related work [5].

The analysis of series with a time warped window allows detecting correlations
between the series by means of a distance measure. Dynamic time warp (DTW) was ini-
tially introduced in conjunction with dynamic programming for the detection of similar
acoustic signals in speech [16]. Since than it has been improved in speed and accuracy
[19] and was popular in speech recognition and more recently in data mining.

It has been demonstrated that the success of DTW depends on the warping distance
for the given time series and suggested to learn the warping window from the data, for
instance with a k-nearest neighbour classifier via cross-validation [9]. Fast learning the
warping distance has also been proposed [23]. The warping distance was further used
for clustering time-delayed user activities in social media accounts and compared with
cross-correlation-based random projection [2].

In manufacturing execution systems (MES) the sensory infrastructure has predomi-
nantly real-time constraints and therefore status data is timestamped at machine level in
real-time, as soon as a status is read from a sensor.
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Common to all correlationmeasures is the calculation of distance between dependent
regressive models found in the data. Although numerous binary distance and correlation
measures were introduced in the history of statistical analysis, every application focuses
mostly on just one measure, by tuning it to a specific algorithm, in order to optimise
the training data. However, knowing the similarities and differences between alternative
measures can help in choosing the most appropriate one for the training data [3].

For the verification of the statistical significance of causality of a cross-correlation, a
t-test or Granger causality is well discussed in the literature [4, 5, 8, 10, 15]. For causality
analysis of cyclic correlations Granger causality estimates simultaneous autoregressive
models of two time series, which represent jointly significant lags, ie a highly probable
causality. However, causality analysis of time-varying lead-lag structures for detecting
structural breaks or regime patterns, requires additional concepts, like the causal path,
and large-scaled time series for the verification of a correlation as a causality [21].

The paper is organized as follows. In Sect. 2, the main contribution of this work,
namely the extended methodology with respect to [18] is developed. Important issues
are (i) the binary classifications with respect to specific, non-standard operating status
values and (ii) the net graphs for simply representing the results of the correlation anal-
ysis for further causal interpretation. In Sect. 3, some boundary conditions, such as the
complexity of the algorithms or the experimental setting is shortly reflected. In Sect. 2.6
we provide shortly the results and give an outlook on further steps.

2 Methodology

The raw data for our methodology consists of exactly one event-based (univariate) time
series of possible categorical status changes per machine (for a given time window, such
as a day or week).

In [18] it is shown, how to apply cross-correlation to two such event-based time
series, namely by (i) interpolating the event-based time series by holding the status
value until the next status change event occurs, (ii) fixing the time window, hence,
getting the same length of time-status-pairs, and (iii) classifying and converting the
multi-categorical status values into binary categorical values “0” for “normal operation”
and “1” for “not normal operation”. The last step is necessary in order to make the
algorithm for cross-correlation applicable to the (non-metrical) categorical status data
via the binarized PSTS.

The main contribution of this work is the extension of the methodology in order
to recover the multi-categorical information which was lost in classifying by “0” for
“standard operation” and “1” for “non-standard operation”.

The idea is, to classify “1” for “a single status value out of the set of all status
of type non-standard operation” and “0” for all other status. Cross-correlation is then
applied iteratively. First, we compute cross-correlation to the original classification in
order to get a first correlation picture of all machines with respect to the (simplified) on-
off-analysis. We therefore say the computation of cross-correlations with the original
classification to be iteration 1. In the following, we simply say iteration 1 to be the
“on-off-classification”.
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Fig. 1. Correlation cr between single status values m1,1 and m2,1, (m1,1, cr, m2,1).

Then, again,we compute the cross-correlation for all significantly correlatedmachine
pairs of iteration 1 after converting with respect to all other binary classifications, said
to be iteration 2.

Fig. 2. Sample single correlations between different status values (m1,10, c1, m2,4), (m1,3, c2,
m2,7), (m1,5, c3, m2,4) and composed correlations (m1,6 ∧ m1,3, c2, m2,7), (m2,4 ∧ c3, c4, m2,2)
of machine M1, M2.

Wewant to stress, that themethodology in both iteration steps can easily be automated
for the raw data for different companies by fixing a few configuration parameters.

In order to get an impression of what is the meaning of our computation from
two PSTS by applying our methodology, we look at some simulated univariate status
time series with noise-free statistical correlation. Figure 1 illustrates a single correlation
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between only one specific status value of each machine. Figure 2 illustrates several
pairwise correlations between specific pairs of status values.

Figure 3 gives an impression of the preprocessing steps of the raw data towards an
application of cross-correlation.

Fig. 3. Preprocessing of status time series for the causality analysis. The number of possible
combinations is here considered only in orders of pi, without considering coefficients. See Sect. 2.4
for more details.

Hence, this work extends the correlation and causality analysis, that we have intro-
duced earlier [18], by an exhaustive search for all possible correlations between all status
combinations of machines of a production field and by a selection schema for causality
hypotheses.

2.1 Program

Following the description above, the program of our methodology consists of the
following two iteration steps:

I. First iteration:

A. Input: Raw status data in form of PSTSs of all machines that are used in the
execution of a specific production plan in the same time window and with same
adapted data length.

B. Binarisation: Transformation of categorical status values into distinguished
binary classification by “0” for “standard operation” and “1” for “non-standard
operation”.

C. Correlation analysis: Calculation of all possible correlations between all status
time series of allmachineswith respect to the distinguished binary classification.
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1. Causality analysis: Search for significant correlations among all previously
calculated correlations and out of them for transitive correlations [18],

2. Output: Highly probable causalities in iteration 1

II. Second iteration:

A. Input: Raw status data in form of PSTSs of selected machines with significant
correlations in iteration 1

B. Binarisation: Transformation of categorical sensor values into all binary clas-
sification by “1” for “a single status value out of the set of all status of type
not-standard operation” and “0” for all other status.

C. Correlation analysis: Calculation of all possible correlations between all status
time series of selected machines and with respect to all binary classifications.

1. Causality analysis: Search for significant correlations among all previously
calculated correlations and out of them for transitive correlations [18].
Validate the semantic meaning of the correlated status values for causal
probabilities.

2. Output: Highly probable causalities in iteration 2

We now describe themethodology, that wewill apply to our real data below, stepwise
by describing the data source, the data model and the application of cross-correlation
for the binary converted data.

2.2 Data Sources

The data sources of our methodology lie in production fields that consist of production
machines. The raw status data of themachines first need to be normalised for allmachines
of the production plan.

Every machine Mi may produce a different number pi of possible status values mi,pi
(Fig. 3(a)) in an arbitrary sequence in time T. For any production plan, we know that
some inputs of some machines Mj will depend on some outputs of some machines
Mi. However, we do not know such relationships exactly a priory. Moreover, we know
that multiple such machine relationships may occur in complex transitive dependencies,
making the efficiency of the production plan principally dependent on any state mi of
any machine Mi. Such relationships may develop too complex to be detected manually.

As described above, production machines are complex systems each might having
sensory sub-systems. However, due to the situation in small and medium enterprises, we
refer to the following terms interchangeably: status/error type, status value, sensor mes-
sage. Hence, for the sake of simplicity, we assume that there is a correspondence between
the (multivariate) sensor messages of a machine at any instant of time and the univariate
categorical status values of the machine. We could still avoid the notion of sensor in this
work, since we still treat machines as black boxes with complex status values. However,
even if this is a quite strong simplification, it is helpful for future investigations to keep in
mind the working postulates. In a future work, we want to drop this postulate and extend
our correlation analysis from univariate categorical (overall) machine status values to
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multivariate sensor values. We therefore assume that any machine Mi has exactly pi
different categorical status values {mi,1, …, mi,pi}, where at least one categorical status
value has the semantic meaning of “standard operating”.

That is our raw data item. Status messages that indicate lower efficiency, may propa-
gate in the production field and thus reduce the overall efficiency of the production plan.
Hence the objective here is to detect such sensor status causalities, in order to optimise
the overall efficiency of the plan. The status changes of the machine Mi are serialised
to a single time series Si′ over the course of a production plan. For n machines {M1,
…, Mn}, n time series { S1′, …, Sn′} of raw sensor data are collected, all having equal
number T of discrete values (Fig. 3(b)).

2.3 Data Model

From the above discussed data sources that were collected for a specific production plan,
we construct stepwise a suitable data model for our cross-correlation analysis.

For the duration of a production plan, we assume following properties for all n
raw/binary time series of iteration 1 and 2, S′

i/Si1 /Si2h, respectively, of all machines
Mi, i ∈ {1, n}.

• Every time series S′
i = (mi,j1, …, mi,jT) consists of T arbitrary status values mi,jk ∈

{mi,1, …, mi,pi}, k ∈ {1, …, T}
• The execution time T of the production plan determines the total number of elements
of a sequence

• Timestamps increase continuously [1..T] in a sequence S′
i/Si1/Si2h respectively

• In iteration 1, Categorical values mi,jk ∈ {mi,1, …, mi,pi} are uniquely converted into
the binary values bi,jk ∈ {0,1}, where 0 = standard operation; 1 = else1

• In iteration 2, Categorical values mi,jk ∈ {mi,1, …, mi,pi} are converted in all pi −
1 possible ways into binary values bi,jk ∈ {0, 1 }, where 1 specific non-standard
operation, 0 = else (see footnote 1)

Hence, a in a test setting of machines {M1, …, Mn}, each machine Mi is associated
with a unique categorical sequence Si′ of raw data, a unique induced binary sequence
Si1 in iteration 1 and pi − 1 induced binary sequences, Si2h in iteration 2.

2.4 Correlation Analysis

The objective of our correlation analysis is, to detect correlations between the machines
and its status values of any pair of time series in Si1 and Sj1 (iteration 1) or Si2h and
Sj2l (iteration 2) out of all n machines {M1, …, Mn}. Consequently, we will find the
correlations of the on-off-classification and – for those machine pairs with significant
on-off-correlations – the relevant status-specific correlations. Let us assume, for the sake
of simplicity, that the number of status values pi of two machines Mi and Mj is equal,
that is pi = pj.

1 Any other status value of the machine.



Mining Causal Hypotheses in Categorical Time Series 107

Then, there are pi2-pi possible binary cross-correlations Si2h and Sj2l to be computed
between two Machines Mi and Mj (Fig. 3(c), (d)).

It is known from real executions of production plans in production fields, that some
error states of machines may cause other error states on the same machine or on other
machines. This can be observed in cyclically reoccurring patterns of the time series.
By means of our iterations, at the same time we calculate cross-correlations between
the status values of different machines and between different status values of the same
machine. In this sense, we already take into account auto-correlations.

We use the xcorr function of the Python library matplotlib for discrete series.
The cross-correlation series for xn = Si and yn = Sj of length n = T is given by:

Rxy(m) = E
{
xn+my

∗
n

} = E
{
xny

∗
n−m

}

where 0 < n < 86400 s; E: expected value operator.
The above correlation is calculated for each step m ∈ {−W, W} for a given time

window size W < T, in order to find a significant maximum. Recalling the number of
possible binary classifications and related binary time series in iteration 2, we get the
following three types of computations and their respective complexities, where we have
again set p = pi = pj for all n, for simplicity (Fig. 3(c), (d)).

[1] Intra-machine computations for p status types: (p−1)(p−2)
2

[2] Intra-machine computations for n machines: n(p−1)(p−2)
2

[3] Inter-machine with intra-machine iterations: n(n−1)(p−1)(p−1)
2

Out of all above computed correlations, we finally investigate further the most
significant ones in our causality analysis.

2.5 Causality Analysis

Passing from correlation to causality requires context knowledge. So far, we have con-
sidered, as the only Data Source, the PSTS of all machines in the considered production
field. In fact, as we have seen before that we can recover from those in iteration 2.

(1) the cross-correlation distribution functions for any machine pair and any status-pair
(with respect to the time shift),

(2) the respective time lags (for a sufficiently peaked distribution) and
(3) the respective categorical values of the respective status, which provides semantic

information

For a causality analysis, first, we filter out from the previously calculated correlations
themost significant ones and, secondly, try to find for them further evidence for causality.

In (Fig. 4 and 5) some significant results in iteration 1 and 2 for real production data
of two different production lines L1 and L2 are shown. They have following common
properties of the cross-correlation data plots: (i) Peak y-value > 0.25 value, (ii) Peak
score > 0.25 (iii) Smooth curve: smoothly increasing/decreasing curve before/after the
vault.
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L2M1: all statuses

L2M6: all statuses (a)

Lag: 55 sec

L2M1-107

L2M6-105 (b)

Lag: 50 sec

L2M1-107

L2M6-104 (c)

Lag: 55 sec

L2M1-105

L2M6-104 (d)

Lag: -140 sec

Fig. 4. Significant On-off-correlation (iteration 1) and individual status correlations (iteration 2)
with 104: feed shortage, 105: sink jam, 107: side stream jam of machines L2M1, L2M6 on date
15.5.18.

Concerning the automation of detection of such characteristic peaks, we have devel-
oped software and involved functions from open libraries. We introduce trigger param-
eters in order to define and extract significant cross-correlation-results and to aggregate
them into characteristic numbers associated with the output data (such as “peak score”
of the cross-correlation-function or “frequency” and “balance” of the binary sequences.

After the step of preselection/filtering the cross-correlation results, we can take
advantage of further results and semantical information within our methodology.

In a previous paper [18], we have seen, that our methodology makes algebraic prop-
erties for more than 2 cross-correlated machines visible, i.e. an addition rule for time
lags. Those addition rules can be applied as a kind of plausibility check and provides
indications for the topological order of the machines in the production plan.

On the other hand, the results of this paper provide the analyst in iteration 2 with
another relevant information concerning correlated machines, namely, the specific status
forwhich themachines yield the correlation and the time lag. The categorical status value,
such as “technical failure” or “no material”, encodes semantic information and might
enable the expert to validate a correlation as to be logically causal or not.
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L1M3: all statuses 

Lag: 42 sec 

L1M3-107 

L1M1-10

Lag: 39 sec 

L1M3-107 

L1M1-111

Lag: 52 sec 

L1M3-107 

L1M1: all statuses (a)

5 (b)

(c)

L1M1-107 (d)

Lag: 53 sec 

Fig. 5. Significant On-off-correlation (iteration 1) and individual status correlations (iteration 2)
with 104: feed shortage, 105: sink jam, 107: side stream jam 111: intrinsic disturbance ofmachines
L1M1, L1M3 on date Dec. 16th 2013.

Hence, the pairwise correlations can be used as starting points for targeted investi-
gations on failure status, as the removal of every such error promises potential increase
of the efficiency of the production plan.

2.6 Result Representation

Aswe have alreadymentioned, an important aspect of themethodology is that it is highly
automatable.

In other words, in our laboratory we start with normalized raw data from a MES
System, hence the relevant PSTS are given in a unique data format for any production
company (which uses the same MES).

The processing steps, which are described in Subsect. 2.1, are highly supported by
prototype software apart from a few manual customizing steps concerning time win-
dows and trigger parameters. In order to provide the expert, that is, the person who
has knowledge about the production plan and further relevant semantic knowledge, the
analysis results with the possible causal hypotheses in a simple way, we have developed
a net-graph-representation.
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Fig. 6. Net graphs for On-off-correlations (iteration 1, Fig. above) and individual status corre-
lations (iteration 2, Fig. below) with triggered filter (i.e. peak score >0.3) for all machines of
production line L2 on Dec. 16th 2013 with restriction of time lag/sec. to [−150, 150]

Each bubble of the net graph is either a machine (iteration 1) or a machine with a
non-standard status value (iteration 2). The arrow direction takes care of the sign of the
time lag (in the sense of reaction time) and the numbers at the arrows indicate the time
lag value. The colours of the bubbles indicate the position of the bubble in the net graphs.



Mining Causal Hypotheses in Categorical Time Series 111

Red and green bubbles indicate machines or machine status, where arrows only begin
or end, respectively.

Figure 6 gives an example of such net-graphs of a production line L2 for iteration 1
(Fig. 6 above) and for iteration 2 (Fig. 6 below). It is not necessary to list all status values
here, as we intend a more detailed discussion only for a part of this graph in (Fig. 7).
Mit diesem Teil greifen wir das Beispiel aus (Fig. 4) wieder auf. (Fig. 7(a)) illustrates
the correlation between machine M1 andM3 in line L2 with the corresponding time lag.
At the same time, only two of the iteration 2 status correlations pass through our trigger
(Fig. 7(b) and (c)), namely the status correlations M1-107 cr M6-105 and M1-107 cr
M6-104. In a sense, this result is plausible, since we find two equal directions of the
time lag. In both cases, machine M6 changes its status after M1, in one case, after 50 s.,
in the other case after 55 s. The third case with an opposite time direction of 140 s.
did not pass our filter. On the other hand, one of the remaining cases in iteration 2 is
probably dominating (that is, much more frequent than the other) since the overall time
lag in iteration 1 corresponds to that time lag in iteration 2. We suppose that the overall
time lag in iteration 1 is usually a kind of weighted mean of the time lags in iteration
2. However, such hypotheses need to be validated by experts aware of the production
context.

Fig. 7. Net graphs for On-off-correlation (iteration 1, (a)) and individual status correlations (iter-
ation 2, (b)) with triggered filter (i.e. peak score > 0.3) for machines M1 and M6 of production
line L2 on Dec. 16th 2013 with restriction of time lag/sec. to [−150, 150].

Another interesting example is related with the machines of line L1 in (Fig. 5). The
net-graphs are illustrated in (Fig. 8). Both iterations are plausible in the sense, that they
reflect the results of (Fig. 5). As in the example above, we observe in iteration 2 that one
failure status of M3 induces different failure statuses at M1 after different time lags. Our
methodology automatically verifies, that these effects are not due to auto-correlations of
M3, that is, that the status 105, 107 and 111 of M1 are not correlated to each other. If this
would be the case, our computation of iteration 2 (i.e. type [1] of Sect. 2.4) would have
delivered significant correlations for the autocorrelation, which we have verified to fail.
As above, we suppose that the 3 different cases “overlap” statistically as possible failure
correlations with different time lags., such that the resulting overall time lap is 42 s. The
weights of this weighted sum are supposed to depend on the relative frequencies of the
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Fig. 8. Net graphs for On-off-correlation (iteration 1, (a)) and individual status correlations (iter-
ation 2, (b)) with triggered filter (i.e. peak score >0.3) for machines M1 and M3 of production
line L1 on May 18th 2015.

respective status-correlations. Again, these causal hypotheses need to be validated by
experts aware of the production context.

3 Conclusion

In this paper we have developed an extended methodology for computing causality
hypotheses in production fields from production status time series, based on cross-
correlation analysis and binary classifications of status values. We have also introduced
a highly automatable representation method for causal hypotheses based on production
net graphs with respect to status values, correlation size parameters and time lags. The
results of this work, in particular the results of iteration 2, associate the correlation results
with further information that indicates on causality of the status changes of correlated
machines. Apart from the algebraic properties concerning the time lags, we can now
provide the expert with specific information about the semantic type of correlation, i.e.
failure status correlation. Last but not least, the representation method of net graphs
provides the expert with a simple information representation for further validation of
causal hypotheses. The methodology might be considered as a bridge technology for
small and medium production enterprises towards Industry 4.0.

In future work we will improve the efficiency of the iterative algorithm using meta-
heuristic algorithms, analyse possible transitive causalities between the machines, anal-
yse statistical algebraic properties of cross-correlation and causality analysis as well as
further extending our approach to multivariate time series for each machine, i.e. time
series that involve different contemporary status values coming from several sensors
each production machine.



Mining Causal Hypotheses in Categorical Time Series 113

Acknowledgement. Thanks are due to the former studentsMartin Stöcker andTabea vonVulte for
useful ideas and implementing supporting software applications. Thanks also to MPDVMicrolab
GmbH for providing real world production data and domain knowledge.

References

1. Akram, N., et al.: Grand challenge: anomaly detection of manufacturing equipment via high
performance RDF data stream processing. In: ACM International Conference on Distributed
and Event-based Systems (2017). https://doi.org/10.1145/3093742.3095100

2. Chavoshi, N., Hamooni, H., Mueen, A.: DeBot: Twitter bot detection via warped correlation.
In: IEEE International Conference on Data Mining (ICDM) (2016). https://doi.org/10.1109/
ICDM.2016.0096

3. Choi, S.S., Cha, S.H., Tappert, C.C.: A survey of binary similarity and distance measures. J.
Syst. Cybermat. Inf. (JSCI) 8, 43–48 (2010)

4. Cryer, J.D., Chan, K.S.: Time Series Analysis. Springer, Heidelberg (2008). https://doi.org/
10.1007/978-0-387-75959-3

5. Dean, R.T., Dunsmuir,W.T.M.: Dangers and uses of cross-correlation in analyzing time series
in perception, performance, movement, and neuroscience: the importance of constructing
transfer function autoregressive models. Behav. Res. Methods 48(2), 783–802 (2015). https://
doi.org/10.3758/s13428-015-0611-2

6. Dietrich, P., Heist, S., Landmann, M., Kühmstedt, P., Notni, G.: BICOS - an algorithm for fast
real-time correspondence search for statistical pattern projection-based active stereo sensors.
Appl. Sci. 9, 3330 (2019). https://doi.org/10.3390/app9163330

7. Goutte, C., Toft, P., Rostrup, E., Nielsen, F.Å., Hansen, L.K.: On clustering fMRI time series.
Neuroimage 9, 298–310 (1999). https://doi.org/10.1006/nimg.1998.0391

8. Granger, C.W.J.: Investigating causal relations by econometric models and cross-spectral
methods. Econometrica 37(3) (1969). https://doi.org/10.2307/1912791

9. Gudmundsson, S., Runarsson, T.P.: Sigurdsson, S.: Support vector machines and dynamic
time warping for time series. IEEE Xplore (2008). https://doi.org/10.1109/IJCNN.2008.463
4188

10. Hanssens, D.: Bivariate time series analysis of the relationship between advertising and sales.
Appl. Econ. 12(3), 329–339 (1982). https://doi.org/10.1080/00036848000000034

11. Ismail, A., Truong, H.-L., Kastner, W.: Manufacturing process data analysis pipelines: a
requirements analysis and survey. J. Big Data 6(1), 1–26 (2019). https://doi.org/10.1186/s40
537-018-0162-3

12. Klein, A., Lehner, W.: Representing data quality for streaming and static data. IEEE J. Data
Inf. Qual. (2007). https://doi.org/10.1109/ICDEW.2007.4400967

13. Kletti, J. (ed.): MES – Manufacturing Execution System - Moderne Informationstechnologie
unterstützt die Wertschöpfung. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-
662-46902-6

14. Lu, Y., Morris, K.C., Frechette, S.: Current standards landscape for smart manufacturing
systems. US National Institute of Standards and Technology (2016). https://doi.org/10.6028/
NIST.IR.8107

15. Malekpour, S., Sethares, W.A.: Conditional granger causality and partitioned Granger causal-
ity: differences and similarities. Biol. Cybern. 109(6), 627–637 (2015). https://doi.org/10.
1007/s00422-015-0665-3
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Abstract. Despite the fact that deep reinforcement learning (RL) has
surpassed human-level performances in various tasks, it still has several
fundamental challenges. First, most RL methods require intensive data
from the exploration of the environment to achieve satisfactory perfor-
mance. Second, the use of neural networks in RL renders it hard to inter-
pret the internals of the system in a way that humans can understand.
To address these two challenges, we propose a framework that enables
an RL agent to reason over its exploration process and distill high-level
knowledge for effectively guiding its future explorations. Specifically, we
propose a novel RL algorithm that learns high-level knowledge in the
form of a finite reward automaton by using the L* learning algorithm.
We prove that in episodic RL, a finite reward automaton can express any
non-Markovian bounded reward functions with finitely many reward val-
ues and approximate any non-Markovian bounded reward function (with
infinitely many reward values) with arbitrary precision. We also provide
a lower bound for the episode length such that the proposed RL approach
almost surely converges to an optimal policy in the limit. We test this
approach on two RL environments with non-Markovian reward functions,
choosing a variety of tasks with increasing complexity for each environ-
ment. We compare our algorithm with the state-of-the-art RL algorithms
for non-Markovian reward functions, such as Joint Inference of Reward
machines and Policies for RL (JIRP), Learning Reward Machine (LRM),
and Proximal Policy Optimization (PPO2). Our results show that our
algorithm converges to an optimal policy faster than other baseline
methods.

1 Introduction

Despite the fact that deep reinforcement learning (RL) has surpassed human-
level performances in various tasks, it still has several fundamental challenges.
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First, most RL methods require intensive data from the exploration of the envi-
ronment to achieve satisfactory performance. Second, the use of neural networks
in RL renders it hard to interpret the internals of the system in a way that
humans can understand [13].

To address these two challenges, we propose a framework that enables an
RL agent to reason over its exploration process and distill high-level knowledge
for effectively guiding its future explorations. Specifically, we learn high-level
knowledge in the form of finite reward automata, a type of Mealy machine that
encodes non-Markovian reward functions. The finite reward automata can be
converted to a deterministic finite state machine, allowing a practitioner to more
easily reason about what the agent is learning [14]. Thus, this representation is
more interpretable than frameworks that use neural networks.

In comparison with other methods that also learn high-level knowledge dur-
ing RL, the one proposed in this paper actively infers a finite reward automaton
from the RL episodes. We prove that in episodic RL, a finite reward automaton
can express any non-Markovian bounded reward functions with finitely many
reward values and approximate any non-Markovian bounded reward function
(with infinitely many reward values) with arbitrary precision. As the learning
agent infers this finite reward automaton during RL, it also performs RL (specif-
ically, q-learning) to maximize its obtained rewards based on the inferred finite
reward automaton. The inference method is inspired by the L* learning algo-
rithm [4], and modified to the framework of RL. We maintain two q-functions,
one for incentivizing the learning agent to answer the membership queries during
the explorations and the other one for obtaining optimal policies for the inferred
finite reward automaton (in order to answer the equivalence queries). Further-
more, we prove that the proposed RL approach almost surely converges to an
optimal policy in the limit, if the episode length is longer than a theoretical lower
bound value.

We implement the proposed approach and three baseline methods (JIRP-
SAT [33], LRM-QRM [24], and PPO2 [22]) in the Office world [33] and Minecraft
world [3] scenarios. The results show that, at worst the approach converges to an
optimal policy 88.8% faster than any of the baselines, and at best the approach
converges while the other baselines do not.

1.1 Related Works

Our work is closely related to the use of formal methods in RL, such as RL for
finite reward automata [17] and RL with temporal logic specifications [1,2,9,19,
24,27]. The current methods assume that high-level knowledge, in the form of
reward machines or temporal logic specifications, is known a priori. However, in
real-life use cases, such knowledge is implicit and must be inferred from data.

Towards the end of inferring high-level knowledge, several approaches have
been proposed [16,20,33,37]. In these methods, the agent jointly learns the
high-level knowledge and RL-policies concurrently. In [37], the inferred high-
level knowledge is represented by temporal logic formulas and used for RL-based
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transfer learning. The methods for inferring temporal logic formulas from data
can be found in [5,7,8,10,11,15,18,21,23,25,31,32,34–36].

In comparison with temporal logic formulas, the finite reward automata used
in this paper are more expressive in representing the high-level structural rela-
tionships. Moreover, even if the inferred finite reward automaton is incorrect
during the first training loop, the agent is still able to self-correct and learn
more complex tasks. In order to learn finite reward automata, the authors in
[33] proposed using passive inference of finite reward automata and utilizing the
inferred finite reward automata to expedite RL. In [16], the authors proposed a
method to infer reward machines to represent the memories of Partially observ-
able Markov decision processes (POMDP) and perform RL for the POMDP with
the inferred reward machines.

In contrast, our method actively infers the finite reward automaton in envi-
ronments with non-Markovian reward functions. The active inference is facili-
tated by L* learning. This algorithm assumes the existence of a teacher who can
answer the membership and equivalence queries [4,28–30]. In our approach, an
RL engine fulfills the role of the teacher, and the queries are answered through
interaction with the environment through the RL engine.

During the submission of this paper, an interesting method was proposed
by the authors of [12] which also used L* learning for non-Markovian Rewards.
While superficially similar to our work, the two approaches differ in three ways:

(1) The proposed approach in this paper uses finite reward automata, while [12]
works with deterministic finite automata (DFAs) and general automata.
This is a notable distinction because we prove that finite reward automata
can express any non-Markovian bounded reward function with finitely many
reward values in episodic RL.

(2) The authors of [12] use only maintain one type of DFA for answering the
equivalence queries. The proposed approach in this paper maintains two
types of finite reward automata, using one to answer equivalence queries,
and the other to answer membership queries. This additional finite reward
automaton can incentivize the agent to answer membership queries during
the exploration.

(3) We provide a lower bound for the episode length such that the proposed RL
approach almost surely converges to an optimal policy in the limit.

2 Finite Reward Automata

In this section we introduce necessary background on reinforcement learning and
finite reward automata.

2.1 Markov Decision Processes and Finite Reward Automata

Let M = (X,xinit, A, p,P, R, L) be a labeled Markov decision process (labeled
MDP), where the state space X and action set A are finite, xinit ∈ X is a set of
initial states, p : X × A × X → [0, 1] is a probabilistic transition relation, P is a
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set of propositional variables (i.e., labels), R : (X × A)+ × X → R is a reward
function, and L : X × A × X → 2P is a labeling function.

We define the size of M, denoted as |M|, to be |X| (i.e., the cardinality
of the set X). A policy π : X × A → [0, 1] specifies the probability of taking
each action for each state. The action-value function, denoted as qπ(x, a), is
the expected discounted reward if an agent applies policy π after taking action
a from state x. A finite sequence x0a0 . . . xkakxk+1 generated by M under
certain policy π is called a trajectory, starting from x1 = xinit and satisfies∑

a∈A π(xk, a)P (xk, a, xk+1) > 0 for all k ≥ 1. Its corresponding label sequence
is �0�1 . . . �k where L(xi, ai, xi+1) = �i for each i ≤ k. Similarly, the correspond-
ing reward sequence is r1 . . . rk, where ri = R(x0a0 . . . xiaixi+1), for each i ≤ k.
We call the pair (λ, ρ) := (�1 . . . �k, r1 . . . rk) a trace.

Definition 1. Let M = (X,xinit, A, p,P, R, L) be a labeled Markov decision
process. We define a sequence (�1, r1), . . . , (�k, rk) to be attainable if k ≤ eplength
and p(xi, ai, xi+1) > 0 for each i ∈ {0, . . . , k}.

Definition 2. A finite reward automaton A = (W,winit, 2P ,R, δ, η) consists of
a finite, nonempty set W of states, an initial state winit ∈ W , an input alphabet
2P , an output alphabet R, a (deterministic) transition function δ : W ×2P → W ,
and an output function η : W ×2P → R, where R is a finite set of reward values
(R ⊂ R). We define the size of A, denoted as |A|, to be |W | (i.e., the cardinality
of the set W ).

Remark 1. A finite reward automaton is actually a Mealy machine (Shallit 2008)
where the output alphabet is a finite set of values. When the output alphabet is
an infinite set of values, it is called a reward machine in [17,33].

The run of a finite reward automaton A on a sequence of labels �1 . . . �k ∈
(2P)∗ is a sequence w0(�1, r1)w1(�2, r2) . . . wk−1(�k, rk)wk of states and label-
reward pairs such that w0 = winit and for all i ∈ {0, . . . , k}, we have δ(wi, �i) =
wi+1 and η(wi, �i) = ri. We write A[�1 . . . �k] = r1 . . . rk to connect the input
label sequence to the sequence of rewards produced by the machine A [33].

Definition 3. We define that a finite reward automaton A encodes the reward
function R of a labeled MDP M if for every trajectory x0a0 . . . xkakxk+1 of finite
length and the corresponding label sequence �1 . . . �k, the reward sequence equals
A[�1 . . . �k].

Definition 4 (Reward Product MDP). Let M = (X,xinit, A, p,P, R, L) be
a labeled MDP and A = (W,winit, 2P ,R, δ, η) a finite reward automaton encoding
its reward function. We define the product MDP MA = (X ′, x′

I , A
′, p′,P ′, R′, L′)

by

– X ′ = X × W ;
– x′

I = (xinit, winit);
– A′ = A;
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– p′((x,w), a, (x′, w′)
)

=

{
p(x, a, x′) if w′ = δ(w,L(x, a, x′));
0 otherwise;

– P ′ = P;
– R′((x,w), a, (x′, w′)

)
= η

(
w,L(x, a, x′)

)
; and

– L′ = L.

2.2 Reinforcement Learning with Finite Reward Automata

Q-learning [26] is a form of model-free reinforcement learning (RL). Starting from
state x, the system selects an action a, which takes it to state x′ and obtains a
reward R. The Q-function values will be updated by the following rule:

q(x, a) ← (1 − α)q(x, a) + α(R + γ max
a

q(x′, a)). (1)

The q-learning algorithm can be modified to learn an optimal policy when the
general reward function is encoded by a finite reward automaton [17]. Starting
from state (x,w) in the product space, the system selects an action a, which
takes it to state (x′, w′) and obtains a reward R. The Q-function values will be
updated by the following rule.

q(x,w, a) ← (1 − α)q(x,w, a) + α(R + γ max
a

q(x′, w′, a)). (2)

We consider episodic Q-learning in this paper, and we use eplength to denote
the episode length.

3 Expressivity of Finite Reward Automata

In this section, we show that any non-Markovian reward function in episodic
RL which has finitely many reward values can be encoded by finite reward
automata, while any non-Markovian bounded reward function in episodic RL
can be approximated by finite reward automata with arbitrary precision.

Theorem 1. For a labeled MDP M = (X,xinit, A, p,P, R, L) with a non-
Markovian reward function R : (2P)+ → Rf in episodic RL, where Rf is
a finite set of values in R, there exists at least one finite reward automaton
A = (W,winit, 2P ,R, δ, η) that can encode the reward function R.

Proof. We use I to denote the set of trajectories of length at most eplength and
Ti to denote the maximal time index for trajectory i ∈ I. We construct a finite
reward automaton A = (W,winit, 2P ,R, δ, η),

– W = winit ∪ {wi,t}i∈I,1<t≤Ti
, wi,1 = winit, ∀i ∈ I;

– R = Rf ;
– ∀t ≤ Ti, δ

(
wi,t, L(xi,t, ai,t, xi,t+1)

)
= wi,t+1; and

– η
(
wi,t, �i

)
= R(�i,1, . . . , �i,t), where �i,t = L(xi,t, ai,t, xi,t+1).
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Then, it can be easily shown that for every trajectory x0a0 . . . xi,kai,kxi,k+1 and
corresponding label sequence �1 . . . �k (k ≤ eplength), the reward sequence equals
A[�1 . . . �k], i.e., A encodes the reward function R.

Remark 2. For a labeled MDP M = (X,xinit, A, p,P, R, L) with a finite horizon,
there can only be finitely many reward values, each corresponding to finitely
many possible trajectories for the reward functions.

Theorem 2. For a labeled MDP M = (X,xinit, A, p,P, R, L) with a non-
Markovian bounded reward function R : (2P)+ → R in episodic RL, there exists
at least one finite reward automaton A = (W,winit, 2P ,R, δ, η) that can approx-
imate the non-Markovian reward function R with arbitrary precision.

Proof. For a bounded reward function taking values in [rmin, rmax], where
rmin, rmax ∈ R, rmin ≤ rmax, we construct a finite set Rε = {rmin, rmin+ε, rmin+
2ε, . . . , rmin+nmaxε], where ε ∈ R, ε > 0, nmax = max{n | rmin+nε ≤ rmax}. We
use I to denote the set of trajectories of length at most eplength generated from
the labeled MDP M and Ti to denote the maximal time index for trajectory
i ∈ I. We construct a finite reward automaton A = (W,winit, 2P ,R, δ, η), where

– W = winit ∪ {wi,t}i∈I,1<t≤Ti
, wi,1 = winit, ∀i ∈ I;

– R = Rε;
– ∀t ≤ Ti, δ

(
wi,t, L(xi,t, ai,t, xi,t+1)

)
= wi,t+1; and

– η
(
wi,t, �i,t

)
= arg min

r∈Rε

|r − R(�i,1, . . . , �i,t)|, where �i,t = L(xi,t, ai,t, xi,t+1).

Then, it can be easily shown that for any ε > 0 and every trajectory
x0a0 . . . xi,kai,kxi,k+1 (k ≤ eplength), we have |A[�i,1, . . . , �i,t)] − R[�i,1, . . . , �i,t]
| < ε, i.e., A approximates the reward function R with arbitrary precision.

4 Active Finite Reward Automaton Inference and
Reinforcement Learning (AFRAI-RL)

In this section, we introduce the Active Finite Reward Automaton Inference
and Reinforcement Learning (AFRAI-RL) algorithm. Figure 1 shows the block
diagram of the AFRAI-RL approach, and Algorithm 1 shows the procedures
of the AFRAI-RL approach. The AFRAI-RL approach consists of an active
finite reward automaton inference engine and an RL engine. In the following
two subsections, we will introduce the two engines and their interactions for
obtaining the optimal RL policy for tasks with non-Markovian rewards.

4.1 Active Finite Reward Automaton Inference Engine

In this subsection, we introduce the active finite reward automaton inference
engine which is based on L* learning [4], which is an algorithm that learns a
minimal deterministic finite automaton (DFA) that accepts an unknown regular
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RL engine

Nocounterexample hypothesis 
FRA inferred?

membership 
queries

Yes

hypothesis 
FRA correct?

No

equivalence 
query

Yes

until RL convergence

Active RL engine

inference engine

RL engine
(random policy)

rewards
Is abc getting 
reward 0 or 1?

Fig. 1. Block diagram of the AFRAI-RL approach. Initially, a random RL engine is
used generate counterexample traces for the inference engine. The inference engine
alternately performs two tasks: (a) it creates membership queries for the RL engine
if there are counterexamples that are inconsistent with the inferred Finite Reward
Automaton (FRA); (b) it generates and sends equivalence queries to the RL-Engine.
The active RL Agent will obtain rewards from the environment to answer the mem-
bership queries and the equivalence queries.

language L by interacting with a teacher. In the setting of this paper, the role
of teacher is fulfilled by the RL engine. For simplicity, we only consider RL
tasks with non-Markovian reward functions with finitely many reward values
(hence there exists at least one finite reward automaton that can encode the
non-Markovian reward function).

We first show that a finite reward automaton can be converted to a DFA.

Definition 5. A deterministic finite automaton (DFA) is a five-tuple A =
(V, vI , Σ, δ, F ) consisting of a nonempty, finite set v of states, an initial state
vI ∈ V , an input alphabet Σ,a transition function δ : V × Σ → V , and a set
F ⊆ V of final states. The size of an DFA, denoted by |A|, is the number |V | of
its states.

A run of an DFA A = (V, vI , Σ, δ, F ) on an input word τ = τ1 . . . τn is
a sequence v0 . . . vn of states such that v0 = vI and vi = δ(vix, ai) for each
i ∈ {1, . . . , n}. A run v0 . . . vn of A on a word u is accepting if vn ∈ F , and a
word u is accepted if there exists an accepting run. The language of an DFA A
is the set L(A) = {u ∈ Σ∗ | A accepts u}. As usual, we call two DFAs A1 and
A2 equivalent if L(A1) = L(A2).

We show that every finite reward automaton over the input alphabet 2P

and output alphabet R can be translated into an “equivalent” DFA as defined
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below. This DFA operates over the combined alphabet 2P × R and accepts a
word (�0, r0) . . . (�k, rk) if and only if A outputs the reward sequence r0 . . . rk on
reading the label sequence �0 . . . �k.

Lemma 1. Given a finite reward automaton A = (W,winit, 2P ,R, δ, η), one can
construct a DFA AA with |A| + 1 states such that

L(AA) =
{
(�0, r0) . . . (�k, rk) ∈ (2P × R)∗ | A[�0 . . . �k] = r0 . . . rk

}
.

Proof. Let A = (WA, winit
A, 2P ,R, δA, ηA) be a finite reward automaton. Then,

we define a DFA AA = (V, vI , Σ, δ, F ) over the combined alphabet 2P × R by

– V = WA ∪ {⊥} with ⊥ /∈ WA;
– vI = winit

A;
– Σ = 2P × R;

– δ
(
w, (�, r)

)
=

{
w′ if δA(w, �) = w′ and ηA(w, �) = r;
⊥ otherwise;

– F = WA.

In this definition, ⊥ is a new sink state to which AA moves if its input does
not correspond to a valid input-output pair produced by A. A straightforward
induction over the length of inputs to AA shows that it indeed accepts the desired
language. In total, AA has |A| + 1 states.

During the learning process, the inference engine maintains an observation
table O = (S,E, T ) where S ⊆ Σ∗ is a set of prefixes (Σ = 2P), E ⊆ Σ∗ is a set
of suffixes and T : (S ∪ S ·Σ)×E → {0, 1}. Σ∗ denotes finite traces from alphabet
set Σ. For s ∈ S ∪ S ·Σ, e ∈ E, if s · e ∈ L, then T (s, e) = 1 and if s · e /∈ L then
T (s, e) = 0. Membership queries assign the correct value (0 or 1) to T (s, e). For
simplicity, we denote row(s) = (T (s, e1), ..., T (s, en)) ∈ {0, 1}n, |E| = n. The
inference engine will always keep the observation table closed and consistent as
defined below.

Definition 6. An observation table O = (S,E, T ) is closed if for each t ∈ S ·Σ,
we can find some s ∈ S such that row(s) = row(t).

Definition 7. O is consistent if whenever for s1, s2 ∈ S, row(s1) = row(s2),
then for any σ ∈ Σ, we have row(s1σ) = row(s2σ).

Remark 3. If an observation table O = (S,E, T ) is closed and consistent, it is
possible to construct a DFA M(O) = (Q,Σ, δ,Q0, F ) as the acceptor, where

– Q = {row(s)|s ∈ S};
– q0 = row(ε);
– δ(row(s), σ) = row(sσ),∀σ ∈ Σ;
– F = {row(s)|s ∈ S, T (s) = 1}.

Definition 8. For a closed and consistent observation table O = (S,E, T ),
we define a corresponding hypothesis finite reward automaton Ah(O) =
(W h, wh

init, 2
P ,R, δh, ηh) as follows:
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– W h = {row(s) : s ∈ S},
– wh

init = row(ε),
– δh(row(s), σ) = row(sσ),
– ηh(w, λ) = 1, if T (λ) = 1; and ηh(w, λ) = 0, otherwise.

Algorithm 1. AFRAI-RL
1: Initialize O = (S, E, T ), sample, Nsample, C, qm, qh
2: while there exists counterexample (λ, ρ) do
3: Add (λ, ρ) and its prefixes to S
4: ChangeT ← 0
5: while O is neither closed nor consistent ∧ (ChangeT = 0) do
6: χ ← CheckObsTable(O)
7: T, sample, Nsample, qm ← MQuery(T, χ, sample, Nsample, C, qm)
8: end while
9: (λ, ρ), O, sample, Nsample, qh ← EQuery(O, sample, Nsample, qh)

10: end while

Algorithm 1 shows the AFRAI-RL algorithm. Algorithm 1 starts by check-
ing whether there are any counterexample traces that need to be added to the
observation table. These traces and their suffixes are added to the observation
table (Algorithm 1, Line 3), and the subroutine CheckObsTable (see Algorithm
4) is used to find membership query traces (noted as χ in all algorithms).

Then, Algorithm 1 proceeds to answer two types of queries, namely the mem-
bership query (Algorithm 1, Line 7) and the equivalence query (Algorithm 1,
Line 9).
Answering Membership Queries: The detailed procedures to answer mem-
bership queries are shown in Algorithm 2. The subroutine sets T (ζ) to 1 if the
trace ζ can be accepted by the DFA converted from a finite reward automaton
(that can encode an unknown non-Markovian reward function), and sets T (ζ)
to 0 otherwise. We maintain a set sample of accepted traces and use the sub-
routine CheckSample (see Algorithm 5) to check whether a membership query
can already be answered by the set sample (Algorithm 2, Lines 6 to 8). If it can,
we provide the answer to T (ζ) in the observation table O (Algorithm 2, Line 8);
otherwise, we perform RL to answer the membership query (see Algorithm 7 for
details). If the membership query trace ζ is inconsistent with a trace in RL from
the environment (e.g., the membership query trace ζ = (�1, 0), (�2, 1), (�3, 1),
while a trace (�1, 0), (�2, 0) is observed from the environment), then a flag is set
(Algorithm 2, Line 14) to stop the loop, T (ζ) is set to zero immediately (Algo-
rithm 2, Line 25), and move on to the next trace. Otherwise we add the trace to
sample (Algorithm 2, Line 16). To boost efficiency, we set a limit on how many
episodes we perform to answer a membership query. This limit is C ∈ Z>0. We
answer the membership query as 0 if after C episodes the membership query still
cannot be answered (Algorithm 2, Lines 24-25). Such traces are recorded in the
set Nsample (Algorithm 2, Line 26). Afterwards, if the trace for the membership
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Algorithm 2. MQuery
1: Input: T, χ, sample, Nsample, C, qm
2: Query ← membership
3: for each ζ ∈ χ do
4: Construct a query finite reward automaton Am(ζ)
5: counter ← 0
6: PrevAnswer ← check(ζ, sample)
7: if PrevAnswer �= Null then
8: T (ζ) = PrevAnswer
9: else

10: Inconsistent ← 0
11: while check(ζ, sample) = Null ∧ (counter < C) ∧ Inconsistent = 0 do
12: λ, ρ, qm ← RL-Engine(Query, Am(ζ), qm)
13: if ζ is inconsistent with (λ, ρ) then
14: Inconsistent ← 1
15: else
16: Add (λ, ρ) to sample
17: ChangeT, T ←CheckNSample((λ, ρ),Nsample,T )
18: if ChangeT = 1 then
19: return T, sample, Nsample, qm
20: end if
21: counter ← counter + 1
22: end if
23: end while
24: if (counter > C) ∨ (Inconsistent = 1) then
25: T (ζ) ← 0
26: Add ζ to Nsample
27: else
28: T (ζ) ← 1
29: end if
30: end if
31: end for
32: return T, sample, Nsample, qm

query is encountered in the environment, we use the subroutine CheckNSample
(see Algorithm 6) to change the original answers in the observation table O
accordingly. This is performed during both membership (Algorithm 2, Line 17)
and equivalence queries (Algorithm 3, Line 7). If the answer was changed dur-
ing a membership query(i.e., ChangeT = 1), we exit the Algorithm 2 (Line 19)
to generate the additional membership query traces created from changing the
table (Algorithm 1, Line 5).
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Algorithm 3. EQuery
1: Input O, sample, Nsample, qh
2: Construct a hypothesis finite reward automaton Ah(O)
3: Query ← equivalence
4: Do
5: λ, ρ, qh ← RL-Engine(Query,Ah, qh)
6: Add (λ, ρ) to sample
7: ChangeT, T ←CheckNSample((λ, ρ),Nsample,T )
8: Until Find counterexample (λ, ρ)
9: Return (λ, ρ), O, sample, Nsample, qh

Answering Equivalence Queries: The detailed procedures to answer equiv-
alence queries are shown in Algorithm 3. We perform RL with the hypothesis
finite reward automaton, updating sample along the way (Algorithm 3, Line 6),
until a counterexample is found (Algorithm 3, Line 8). A counterexample is a
trace where the rewards given by environment are different from the rewards
given by hypothesis finite reward automaton. Specifically, there are two types
of counterexamples. A positive counterexample is a trace that is accepted by
the DFA converted from the current hypothesis finite reward automaton, but is
not accepted by the DFA converted from any finite reward automaton that can
encode the unknown non-Markovian reward function. A negative counterexample
is a trace that is not accepted by the DFA converted from the current hypothesis
finite reward automaton, but is accepted by the DFA converted from any finite
reward automaton that can encode the unknown non-Markovian reward func-
tion. The RL-engine returns counterexamples to the inference engine for another
round of inference (Algorithm 3, Line 5 and 9).

Algorithm 4. CheckObsTable
1: Input: O
2: if O is not consistent then
3: Find s1, s2 ∈ S, σ ∈ Σ and e ∈ E such that row(s1) = row(s2) and T (s1σe) �=

T (s2σe)
4: add σe to E
5: χ ← (S ∪ SΣ)σe
6: else if O is not closed then
7: Find s ∈ S and σ ∈ Σ such that ∀s ∈ S, row(sσ) �= row(s)
8: add sσ to S
9: χ ← (sσ ∪ sσΣ)E

10: end if
11: Return χ

Algorithm 4 generates membership query traces based on whether or not the
observation table O is closed or consistent. If the table is not consistent, then
we add σe to E and each ζ ∈ (S ∪SΣ)σe forms a membership query trace. If the
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Algorithm 5. CheckSample
1: Input: ζ, sample
2: for each trace (λ, ρ) in sample do
3: if ζ is prefix of (λ, ρ) then
4: Return 1
5: end if
6: if ζ is inconsistent with (λ, ρ) then
7: Return 0
8: end if
9: end for

10: Return Null

table is not closed, then we add add sσ to S and each ζ ∈ (sσ ∪ sσΣ)E forms a
membership query trace.

Algorithm 5 shows the subroutine CheckSample. It returns 1 or 0 if the
membership query for ζ has already been answered, and Null otherwise. For
each trace (λ, ρ) in sample, if a membership query trace ζ is prefix of (λ, ρ),
then ζ must be accepted by the DFA converted from the finite reward automaton
that encodes the unknown non-Markovian reward function; hence CheckSample
returns 1. If ζ is inconsistent with a trace in sample, then ζ cannot be accepted
by the DFA mentioned above and CheckSample returns 0.

Algorithm 6 shows the subroutine CheckNSample. Each trace ζ ′ in Nsample
is checked to see if it is a prefix of (λ, ρ) (the recent answer from the RL-Engine).
If the trace is a prefix, then its answer in the observation table is changed (Line
4). A flag, ChangeT , is set so that the observation table is rechecked for being
closed and consistent in Algorithm 1.

By answering the membership and equivalence queries, L∗ algorithm is guar-
anteed to converge to the minimum DFA accepting the unknown regular lan-
guage L using O(|Σ|n2 + n log c) membership queries and at most n − 1 equiv-
alence queries, where n denotes the number of states in the final DFA and c is
the length of the longest counterexample from the RL engine when answering
equivalence queries [4].

Algorithm 6. CheckNSample
1: Input: (λ, ρ), Nsample, T
2: for each ζ′ ∈ Nsample do
3: if ζ′ is a prefix of (λ, ρ) then
4: ChangeT = 1, T (ζ′) = 1
5: end if
6: end for
7: Return ChangeT , T
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4.2 Active Reinforcement Learning Engine

In this subsection, we introduce the active reinforcement learning engine. We
first define a query finite reward automaton corresponding to a membership
query trace ζ = (�1, r1), . . . , (�k, rk) as follows.

Definition 9. For a membership query trace ζ = (�1, r1), . . . , (�k, rk),
we define a corresponding query finite reward automaton Am(ζ) =
(Wm, wm

init, 2
P ,R, δm, ηm) as follows:

– Wm = {wm
0 , wm

1 , . . . , wm
k },

– wm
init = wm

0 ,
– for any i ∈ [0, k − 1], δm(wm

i , �i+1) = wm
i+1, δm(wm

i , �) = wm
i for any � �= �i,

and
– for any wm ∈ Wm and any � ∈ 2P , ηm(wm, �) = 1, if δm(wm, �) �=

wm; and ηm(wm, �) = 0, otherwise.

Intuitively, the query finite reward automaton corresponding to a member-
ship query trace ζ = (�1, r1), . . . , (�k, rk) is a finite reward automaton that out-
puts a reward of one every time a new label �i (i ∈ [1, k]) is achieved (and the
state of the finite reward automaton moves from wm

i to wm
i+1). Therefore, in

performing RL with the query finite reward automaton, the rewards obtained
from the query finite reward automaton serve as incentives to encounter the label
sequence in the membership query trace and hence to answer the membership
query.

In the RL engine, we maintain two different types of q-functions: query q-
functions for answering membership queries, denoted as qm; and hypothesis q-
functions for maximizing the cumulative rewards from the environment (also
answering equivalence queries), denoted as qh.

We update the query q-functions as follows:

qm(x,wm, a) ←(1 − α)qm(x,wm, a)
+ α(rm + γ max

a
qm(x′, w′m, a)), (3)

Similarly, we update the hypothesis q-functions as follows:

qh(x,wh, a) ←(1 − α)qh(x,wh, a)

+ α(rh + γ max
a

qh(x′, w′h, a)),
(4)

Algorithm 7 shows the procedure to run each RL episode to answer an mem-
bership query or equivalence query. Algorithm 7 first initializes the initial state x
of the MDP, the initial state of the (query or hypothesis) finite state automaton
w and the trace (as the empty trace). Specifically, w is initialized as wm

init if it is
in the membership query phase (A = Am), and initialized as wh

init if it is in the
equivalence query phase (A = Ah) (Line 6). Algorithm 8 is used to run one step
through the environment (see next paragraph for details). We feed the query
q-function and finite reward automaton into Algorithm 8 if a membership query
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Algorithm 7. RL-Engine
1: Hyperparameters: learning rate α, discount factor γ, episode length eplength
2: Input: Variable Query, a reward automaton A, q-function q
3: x ← InitialState(); (λ, ρ) ← []
4: w ← winit

5: for 0 ≤ t < eplength do
6: x′,w′,q ← Step(Query, A, q, x, w)
7: append (L(x, a, x′), r) to (λ, ρ)
8: x ← x′, w ← w′, t ← t + 1
9: end for

10: return (λ, ρ, q)

Algorithm 8. Step
1: Input: Variable Query, a finite reward automaton A, a q-function q, an MDP

state x,and an FRA state w
2: a = GetEpsilonGreedyAction(q, w, x)
3: x′ = ExecuteAction(x, a)
4: if Query = membership then
5: r ← η(w, L(x, a, x′));
6: else
7: Observe r from the environment;
8: end if
9: w′ = δ(w, L(x, a, x′))

10: q(x, w, a) ← (1 − α)q(x, w, a) + α(r + γ max
a

q(x′, w′, a))

11: for ŵ ∈ W \ {w} do
12: ŵ′ = δ(ŵ, L(x, a, x′))
13: r̂ = η(ŵ, L(x, a, x′))
14: q(x, ŵ, a) ← (1 − α)q(x, ŵ, a) + α(r̂ + γ max

a
q(x′, ŵ′, a))

15: end for
16: return x′, w′, q

is being asked, and the hypothesis q-function and automaton otherwise. Algo-
rithm 7 returns the trace, the query q-function and the hypothesis q-function
(Line 10).

Algorithm 8 runs one step through the environment, updating the q-function
for either a membership or equivalence query. First, at state x an action a is
selected according to the q-function using the epsilon-greedy approach and exe-
cuted to reach a new state x′ (Line 2). Then rewards are collected based on
the type of query being asked. If a membership query is being asked, then the
automaton’s reward function is used; otherwise the reward is observed from the
environment. The next mealy state for the automaton is calculated (Line 9) and
the q-function supplied is updated (Line 10).

Lemma 2. Let M be a labeled MDP and A the finite reward automaton encod-
ing the reward function of M. Then, AFRAI with eplength ≥ 2|M|+1(|A|+1)−1
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almost surely learns a finite reward automaton in the limit that is equivalent to
A on all attainable label sequences.

Proof. Given a eplength = 2|M|+1(|A| + 1) − 1, we are almost sure to experi-
ence every possible attainable trace from the environment. The proof of this is
similar to the proof provided for Lemma 2 in [33] (Proof is located in Appendix
C of [33]). Given every attainable trace, AFRAI-RL will answer all member-
ship and equivalence queries correctly with probability 1 in the limit, because
the observation table O can be changed as the Algorithm 1 runs (Algorithm 1,
Lines 7 and 9). Furthermore, the author in [4] shows that if all membership and
equivalence queries can be answered, a DFA can be formed from the observation
table (as in Remark 3). This DFA will be the smallest DFA that can accept the
language defined in Lemma 1. In this RL context, this language will match the
language of the DFA converted from the finite reward automaton; i.e., the lan-
guage will encode the finite reward automaton that is equivalent to A. Therefore,
the observation table encodes the finite reward automaton that is equivalent to
A.

With Lemma 2, we can proceed to prove Theorem 3.

Theorem 3. Let M be a labeled MDP and A the reward machine encoding of
the reward function of M. Then, AFRAI-RL with eplength ≥ 2|M|+1 ·(|A|+1)−1
almost surely converges to an optimal policy in the limit.

Proof. Lemma 2 shows that, eventually, the reward machine learned by AFRAI-
RL, will be equivalent to A on all attainable label sequences. Let H be the
reward machine learned by AFRAI-RL and MH be the product MDP.

Thus an optimal policy for MH will also be optimal for M. When running
episodes of QRM (Algorithm 7) under the reward machine H, an update of a
q-function connected to a state of H corresponds to updating the q function for
MH . Since eplength ≥ |M |, the fact that QRM uses the epsilon-greedy strategy
and that updates are done in parallel for all states of H implies that every state-
action pair of the MH will be seen infinitely often. Hence, the convergence of
q-learning for MH to an optimal policy is guaranteed by [26]. Therefore, as
the number of episodes goes to infinity, with eplength ≥ 2|M|+1 · (|A| + 1) − 1,
AFRAI-RL converges towards an optimal policy.

5 Case Studies

In this section, we apply the proposed approach to the office world scenario
adapted from [17] and the craft world scenario from [3]. We perform the following
four different methods:

– AFRAI-RL: We use the libalf [6] implementation of active automata learning
as the algorithm to infer finite reward automata.
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Fig. 2. The map in the office world scenario.

– JIRP-SAT: We use the libalf [6] implementation of SAT-solving (see Sect. 3.2
of [33]) as the algorithm to infer finite reward automata.

– LRM-QRM: We use the QRM implementation from [17], adapted to test the
agent at the end of each episode.

– PPO2: We use the Stable Baselines implementation of PPO2 [22]. The state
space is a history of the past states the agent has been in. This was added
because PPO2 doesn’t have any way of remembering it’s previous states.

In [33], the authors have shown that JIRP-SAT and JIRP-RPNI outperform
q-learning in augmented state space (QAS), hierarchical reinforcement learning
(HRL), and deep reinforcement learning with double q-learning (DDQN) in three
case studies. Therefore, if we can show that AFRAI-RL outperforms JIRP-SAT
and JIRP-RPNI, then we can deduce that AFRAI-RL outperforms QAS, HRL
and DDQN as well.

5.1 Office World Scenario

We consider the office world scenario in the 9 × 12 grid-world. Figure 2 shows
the map in the office world scenario. We use the triangle to denote the initial
position of the agent. The agent has four possible actions at each time step:
move north, move south, move east and move west. After each action, the robot
may slip to each of the two adjacent cells with probability of 0.05. In Algorithm
1, we set C = 500.

We consider the following three tasks:

Task 1: first go to a, then go to b and a in this order, and finally return to c.
Episode Length was set to 200, and total training time was set to 1,000,000.
Task 2: first go to b, then go to c and a in this order, then repeat the
sequence. Episode length was set to 800, and total training time was set to
2,000,000.
Task 3: first go to c, then go to b and a in this order, then go to b and c in
this order and return to a. Episode length was set to 800, and total training
time was set to 6,000,000.
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Figure 3 shows the attained rewards of 10 independent simulation runs for
each task, averaged every 10 training steps. For task 1, it can be seen that, on
average, the proposed AFRAI-RL approach converges to an optimal policy in
about 0.2 million training steps, while JIRP-SAT, LRM-QRM, and PPO2 do not
converge to an optimal policy. For task 2, on average the proposed AFRAI-RL
approach converges to an optimal policy in about 1.8 million training steps, while
JIRP-SAT, LRM-QRM, and PPO2 do not converge to an optimal policy. For task
3, on average the proposed AFRAI-RL approach converges to an optimal policy
in about 4.0 million training steps, while JIRP-SAT converges to an optimal
policy in about 4.5 million training steps and LRM-QRM, and PPO2 do not
converge to an optimal policy.

Fig. 3. Attained rewards of 10 independent simulation runs of the office world scenario,
averaged for every 10 training steps in AFRAI-RL (First row), JIRP-SAT (Second
Row), LRM-QRM (Third Row), and PPO2 (Fourth Row): (a) Task 1; (b) Task 2; (c)
Task 3.
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5.2 Minecraft world scenario

We consider the Minecraft world scenario in the 21× 21 grid-world [3]. The four
actions and the slip rates are the same as in the office world scenario. We train
on two tasks: making a hammer and spear. In Algorithm 1, we set C = 500.

We consider the following two tasks, noting the symbol used for each object
in parenthesis:

Task 1: Build a Hammer. Agent must collect string (b), stone (e), iron (f),
stone (e) (in this order) and travel to the workbench (c) to make the hammer.
Episode length was set to 400, and total training time was set to 400,000.

Fig. 4. Attained rewards of 10 independent simulation runs of the Minecraft world
scenario, averaged for every 10 training steps in AFRAI-RL (First row), JIRP-SAT
(Second Row), LRM-QRM (Third Row) and PPO2 (Fourth Row): (a) Task 1; (b)
Task 2.
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Task 2: Build a Spear. The agent must collect string, stone, wood (a), string
and travel to the workbench to make the spear. Episode length was set to
400, and total training time was set to 250,000. Figure 4 shows the attained
rewards of 10 independent simulation runs for each task, averaged every 10
training steps. For task 1, it can be seen that, on average, the proposed
AFRAI-RL approach converges to an optimal policy in about 190,000 training
steps, while JIRP-SAT, LRM-QRM, and PPO2 do not converge to an optimal
policy. For task 2, on average the proposed AFRAI-RL approach converges to
an optimal policy in about 170,000 million training steps, while JIRP-SAT,
LRM-QRM, and PPO2 do not converge to an optimal policy.

6 Conclusions

We propose an active reinforcement learning approach that infers finite reward
automata during the RL process through interaction with the environment. The
algorithm can actively guide the RL towards finding answers to the queries
needed for inferring the finite reward automata, thus making the finite reward
automaton learning process more efficient. The case studies show that this algo-
rithm is more efficient than recent baseline algorithms for the environments used.

This work has potential in multiple future directions. First, we assume that
the same state-action sequences lead to the same reward values in this paper
(i.e., the method depends on the correct labeling of the trajectories). We will
investigate the scenarios where incorrect labels can occur and the same state-
action sequences may lead to different reward values. Second, current active RL
work usually adopts a model-based framework and search for states that are
less visited, thus improving the sample efficiency of RL. Our proposed approach
adopts a model-free framework and actively recovers the reward structure, which
turns out to be effective in the non-Markov RL scenarios. To make connections
with the other work in active RL, we will investigate model-based RL with active
finite reward automaton inference. Finally, as we consider RL for a single agent
in this paper, we will extend the work to multi-agent settings for collaborative
or non-collaborative games.
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Abstract. Rice is a staple food for more than half of the world’s pop-
ulation. Furthermore, rice is the main export crop of Thailand which
produces 21% world’s market share. However, weedy rice is a major
counterproductive plant that reduces rice productivity by more than 80%
in Thailand. Previous research attempted to develop image classification
models to recognize types of rice using images captured in closed environ-
ments, which is not practical for farmers with typical mobile phone cam-
eras. This research develops a specific Generative Adversarial Network
(GAN) architecture to translate an input image from a typical mobile
phone cameras into the closed environment setting. Our GAN architec-
ture can translate mobile phone images and achieves 90.06% weedy rice
recognition accuracy, as compared to 58.10% without the translation.

Keywords: Image-to-image translation · Computer vision ·
Generative Adversarial Networks

1 Introduction

Rice is a daily life food supplies consumed by more than half of the world’s
population [19], especially in Thailand. In 2019, Thailand’s rice fields reached
27,147,673 acres, accounting for 46% of the total agricultural land in the coun-
try [16], and exported 7,583,662 tons of rice, worth more than 130 billion Baht
[23]. Thailand is the world’s second largest exporter of rice, with a 21% market
share; hence, rice is considered as an important economic crop for Thailand [21].

Since 2001, farmers in Thailand have faced severe weedy or wild rice spread.
The first outbreak occurred around the Kanchanaburi area and expanded
throughout the central and northern regions of the country. There are vari-
ous species of weedy rice but they have similar undesirable characteristics, that
is, they are defective and tend to fall before the harvest. This characteristic
of weedy rice damages productivity and reduces the price of cultivated rice by
more than 80%. Traditionally, Thailand’s Rice Department has suggested 4 steps
to prevent the growth of weedy rice. First, select cultivated rice seeds without
c© IFIP International Federation for Information Processing 2021
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contaminated weedy rice. Second, always clean agricultural machinery before
planting. Third, select compost, organic fertilizers, and bio-fertilizers produced
without any contaminated weedy rice. Finally, use a net to fish out any weedy
rice that may be floating with water [6]. Thus, distinguishing weedy rice from
cultivated rice seeds is a crucial step.

Over the past few years, several studies have attempted to develop models
to help farmers classify rice grains by applying image processing and computer
vision [1,2].

Because cultivated and weedy rice seeds are very similar in details and char-
acteristics that are difficult to distinguish even by humans, as shown in Fig. 1 to
construct an efficient rice image classification model, the training images must
contain as much details as possible. They are therefore typically captured with
a high resolution camera in a closed environment.

Since most previous research has developed classification models using rice
seed images captured in closed environments. This research aims to generalize
the classification model by using image-to-image translation in a GAN architec-
ture model drawing on rice seed images in various environments captured using
different settings, in order to make the application more practical. In other words,
the proposed GAN architecture is used to translate rice seed images captured
under any settings into the same settings as used in the classification model.

2 Related Work

2.1 Rice Classifications

Many researchers have carried out rice classification using computer vision tech-
niques. Zhao-yan et al. [12] and Chathurika et al. [20] used color thresholding
to segment rice seeds then feature extraction and neural networks to classify
them. Kuo et al. [22] used Multifocus image fusion and feature extraction to
generate the images and classify them. Kittinun et al. [1] used Mask R-CNN [9]
to segment and classify rice seeds in images. However, although there is much
work on rice classification, none focuses on weedy rice classification with mobile
cameras.

2.2 Generative Adversarial Networks

Generative adversarial networks (GANs) [8] have succeeded in various kind
of applications in the image field, such as image generation (FCGAN [8],
DCGAN [17]) or image super-resolution (SRGAN [11]). What makes various
kinds of GANs successful is the idea of adversarial loss, which builds a game
where a generator and discriminator race each other; the generator tries to fool
the discriminator by generating fake images that looks as much as possible like
real ones, while the discriminator tries to distinguish between real images and
the fake ones created by the generator. This loss serves to make the generated
images indistinguishable from the real ones.
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2.3 Conditional Adversarial Networks

In general, GANs are unconditional: however, they can be extended and become
a conditional model by adding some information y, such as class labels or images,
into the generator and discriminator [14]. Conditional GANs (CGAN) [14] make
use of conditional adversarial networks by adding class numbers as labels for a
CGAN trained on the MNIST dataset, creating a model that can generate digit
images with the same number (class) as specified. Another interesting work is
the Auxiliary Classifier GAN (ACGAN) [15], which extends GANs by adding a
class to the generator and a discriminator head to classify the generated images.

2.4 Image-to-Image Translation

Image-to-image translation is a problem of transforming input images from one
domain into output images in the style of another domain using several tech-
niques, including GANs such as pix2pix [10], which uses a conditional adver-
sarial network, or BicycleGAN [25], which combines cVAE-GAN [3] and cLR-
GAN [7]. Although pix2pix and BicycleGAN are excellent for solving image-to-
image translation problems, they are limited to paired image-to-image transla-
tion.

2.5 Unpaired Image-to-Image Translation

Unpaired image-to-image translation is an image-to-image translation problem
in which the training data are unpaired. The goal is slightly different from map-
ping input images x from domain X to output images y in the style of domain Y
into relating two domains X and Y . Several techniques have been developed to
tackle this kind of problem, such as Rosales et al.’s Unsupervised Image Trans-
lation [18], which proposed a Bayesian framework with a patch-based Markov
random field, or the GAN-based, state-of-the-art unpaired image-to-image trans-
lation method CycleGAN [24] which uses the idea of cycle consistency to con-
strain the networks.

3 Dataset

In this work, a mobile image dataset is constructed from 10 species of paddy
rice seed captured by 6 models of camera. The 10 species are divided into 2
categories, cultivated and weedy rice. Cultivated rice consists of 6 species: Chai
Nat 2, Khao Dawk Mali 105, Leuang Pratew 123, Pathum Thani 1, Phitsanulok
2 and RD43. Weedy rice consists of 4 species: Short (Ded Tia), Striped (Lai),
Tail (Hang) and Tall (Ded Sung). The 6 models of camera are the Canon 77D,
iPhone 6s, iPhone 7, iPhone 7 Plus, iPhone 11, and Redmi Note 5. The camera
models are divided into two groups: the Canon 77D camera, which is a digital
single-lens reflex camera, is DSLR and the others are Mobile. The images cap-
tured by the DSLR camera were taken in a closed environment that controls the



140 A. Petchsod and T. Sucontphunt

background, lighting, and distance between rice and lens. After that, the images
were masked and segmented using traditional image processing techniques. The
images captured by Mobile cameras were taken in less controlled settings by
various models of mobile cameras, with different lighting, and varying distances
between rice and lens. The images were then masked and segmented manually.
The number of images for each species and camera model are shown in Table 1
and sample images are shown in Fig. 1.

Table 1. Number of images for each species and camera models in the full dataset

Canon 77D iPhone 6s iPhone 7 iPhone 7 Plus iPhone 11 Redmi Note 5 Total

Cultivated Rice

Chai nat 2 45,318 1,729 1,808 2,349 1,465 1,583 54,252

Khao dawk mali 105 46,750 1,479 1,829 1,758 1,718 1,688 55,222

Leuang pratew 123 38,419 1,257 1,859 2,453 1,633 1,586 47,207

Pathum thani 1 38,809 1,289 1,954 1,885 1,571 1,300 46,808

Phitsanulok 2 37,873 1,888 2,111 2,064 1,587 1,334 46,857

RD43 30,115 1,314 1,665 1,739 1,658 1,749 38,240

Weedy rice

Short 11,453 1,325 1,564 1,799 1,364 1,246 18,751

Striped 28,109 1,517 2,002 1,720 1,214 1,483 36,045

Tail 11,656 1,017 961 1,294 961 996 16,885

Tall 42,312 1,261 1,651 1,683 1,514 1,497 49,918

Total 330,814 14,076 17,404 18,744 14,685 14,462 410,185

The entire dataset is divided into 3 subsets: training, validation and test set.
Rice seed images captured by the iPhone 7 Plus camera are assigned to the test
set. The others are split into training and validation sets with a ratio of 80:20.

4 Approach

4.1 Main Components

Generator. For all generators in this research, the architecture was adopted
from CycleGAN [24]. The network consists of a convolutional layer, two strided
convolutional layers, six residual blocks, and two fractionally strided convolu-
tional layers, as shown in Fig. 2.
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Fig. 1. Samples image of paddy rice for each species and camera model
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Fig. 2. Architecture of generators used in this research.

Fig. 3. Architecture of discriminators used in this research.

Discriminator. For the discriminator, the architecture was also adopted from
CycleGAN [24]. The discriminator network consists of a convolutional layer and
five strided convolutional layers, as shown in Fig. 3.
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Classifier. The classifier architecture is nearly identical to the discriminator
but a convolutional layer without padding was added to form the output layer
for the classification task, as shown in Fig. 4.

Fig. 4. Architecture of classifiers used in this research.

4.2 Objective Formulation

Let k ∈ K = {iPhone 6s camera, iPhone 7 camera, iPhone 11 camera, Redmi
Note 5 camera}, Our goal is to learn a many-to-one mapping function, from rice
seed images captured by mobile cameras (X) to rice seed images captured by a
DSLR camera (Y ) given samples {xki}Ni=1, where xki ∈ Xk ⊂ X, and {yj}Nj=1,
where yi ∈ Y . Let the data distribution be denoted as xk ∼ pdata(xk) and
y ∼ pdata(y). Our model consists of 5 mappings of the forms Fk : Y → Xk, and
a sixth mapping, G : Xk → Y , an adversarial discriminator DY , whose objective
is to distinguish between y and G(xk), and a classifier C, whose objective is to
classify the species of Y .

The objective consists of four loss types: adversarial loss to match the dis-
tribution of the generated images into the target domain, cycle consistency loss
to make the translation invertible given a specific camera model k, identity loss
to constrain the translation to only perform on x ∈ X, and classification loss to
make the generated images the correct seed class.

Adversarial Loss. Adversarial loss is applied to the mapping function G :
X → Y and its corresponding discriminator DY . This loss leads the generator
G to translate images from x ∈ X into G(x), which is distributed identically to
Y . The objective is shown in Eq. 1.

LGAN (G,DY ) =Ey∼pdata(y)[log(DY (y))]
+ Ex∼pdata(x)[log(1 − DY (G(x)))]

(1)
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Cycle Consistency Loss. Adversarial loss performs well on the leading gener-
ator to translate images from X to Y . However, given a sufficiently large amount
of training data, the generator G can map the set of input images x onto an image
y ∈ Y and the generator will successfully generate an image distributed identi-
cally to Y but fail to translate the image. Hence, we include cycle consistency
loss in our objective. This adds an additional constraint to reduce the plausible
mapping set from X to Y . Cycle consistency means that for each image x ∈ X,
the image translation cycle should be able to recall x, i.e., F (G(x)) ≈ x. Since
the model is not trained directly with X, but rather with five mappings of the
form Xk ⊂ X, our objective is expressed as Eq. 2.

Lcycle(G,Fk) = Exk∼pdata(xk)[‖Fk(G(xk)) − xk‖1] (2)

Identity Loss. Since the main objective is to train a generator that can trans-
late image x ∈ X into G(x) ∈ Y , therefore, putting y ∈ Y into G should returned
y, since y /∈ X. Thus, the objective can be expressed as Eq. 3.

Lidentity(G) = Ex∼pdata(x)[‖G(y) − y‖1] (3)

Classification Loss. The idea of classification loss is adapted from InfoGAN[4],
which adds a classifier to the traditional GAN’s architecture, and ACGAN[15],
which adds a classifier head to the traditional GAN discriminator. The classifi-
cation loss is shown in Eq. 4.

Lclassification(G,C) = Ex∼pdata(x)[log(C(G(x)))] (4)

Full Objective. The full objective is a weighted sum of adversarial loss, cycle
consistency loss, identity loss and classification loss, as shown in Eq. 5.

L(G,Fk,DY ) = LGAN (G,DY ) + λ1

∑

k∈K

Lcycle(G,Fk) + λ2Lidentity(G)

+λ3Lclassification(G,C)
(5)

4.3 Model Architecture

This work proposes four model architectures with minor variations, as shown in
Fig. 5. The models will be called M.1, M.2, M.3, and M.4, as abbreviations of
Model 1, Model 2, Model 3, and Model 4, respectively.

Model 1. The first model is the base for the other three. It consists of 5 inputs,
denoted as y ∈ Y and four xk ∈ X. y passes through the generator G and takes
the identity y′, and each xk also passes through G to generate a fake image
G(xk). Next, each G(xk) is passed into a generator Fk for each k to forms a
cycle for xk, i.e., x′

k = Fk(G(xk)). Losses are calculated by passing G(xk) into
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Fig. 5. Architecture of all models used in this research.

the discriminator DY as an adversarial loss, y′ is compared to y as an identity
loss, and each x′

k is compared with xk as a cycle loss. The losses are combined
to form the objective of this model, as expressed in Eq. 6.

L(G,Fk,DY ) = LGAN (G,DY ) + λ1

∑

k∈K

Lcycle(G,Fk) + λ2Lidentity(G) (6)

Model 2. The second model extends the first by adding a classifier head that
classifies a rice image according to whether it is weedy rice. The idea of adding a
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classifier head to a discriminator is inspired by [15]. Thus, there is a classification
loss added to the objective, in addition to the Model 1 loss, as expressed in Eq. 5.

Model 3. The third model adds an additional classifier, which determines
whether the rice image is weedy rice, into the GAN loop. Adding an additional
classifier into GAN has been done before in InfoGAN [4]. Therefore, the objective
is the same as for Model 2.

Model 4. The last model has the same architecture as Model 3, except the
additional classifier is pretrained with DSLR images. A pretrained model has
been used to help calculate loss before, by SRGAN[11], which uses a pretrained
VGG16 network to calculate loss. Thus, the pretrained classifier has helped cal-
culate the loss instead of training a classifier within the GAN loop. The objective
is also as expressed in Eq. 5.

4.4 Training Details

For all experiments, the model is trained using epoch = 20, and batch size =
1, on an Adam optimizer with learning rate = 0.0001 for the first 10 epochs
and then linearly decreasing by 0.00001 for the next 10. The linearly decay
learning rate is the same as for CycleGAN [24]. For the objectives’ λ, λ1 is
set the same way as in CycleGAN [24] i.e. λ1 = 10; however, λ2 is also set to
10 because it is the main objective, while λ3 is set to 0.01. The least-squares
loss technique [13] is also applied to the models, hence the LGAN objective
while training G is Ex∼pdata(x)[(DY (G(x)) − 1)2], and while training DY , it is
Ey∼pdata(y)[(DY (y) − 1)2] + Ex∼pdata(x)[DY (G(x))2].

5 Evaluations

To evaluate the results, a benchmark model is trained with the same architec-
ture as the proposed classifier. Moreover, this benchmark model is used as a
pretrained classifier that provides loss for Model 4. The evaluation is carried
out by passing x and y into the generator G and then comparing the translated
images created using this model to the benchmark score.

The validation process is done in two parts according to the validation
dataset, DSLR or Mobile. The validation of the DSLR dataset measures how
much Generator G decreases weedy rice classification performance. For Mobile
dataset, the validation measures how much Generator G increases weeedy rice
classification performance. The final decision on which model is better is achieved
by picking the model that performs best on test dataset, which is the unseen
mobile camera model.
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5.1 Benchmarks

The quantitative results of the benchmark model on the validation sets (both
DSLR and Mobile subset) and test set are shown in Table 2. The benchmark
model performs very well on the DSLR validation set as it should, since it was
trained on that set. However, the performance on the Mobile validation set and
test set are poor, for the same reasons as described.

Table 2. Weedy rice classifier model benchmarks

Dataset Subset Rice Weed Accuracy

Precision Recall F1-Score Precision Recall F1-Score

Validation DSLR 99.57% 99.52% 99.54% 98.77% 98.91% 98.84% 99.34%

Mobile 89.78% 32.06% 47.25% 43.16% 93.39% 59.03% 53.88%

Test 88.49% 41.25% 56.27% 44.79% 89.89% 59.79% 58.10%

5.2 Validation Set

The quantitative results for all models on the DSLR and Mobile validation sets
are shown in Table 3. All model performances on the Mobile validation set are
greatly increased, especially for models with a classifier in the architecture, which
increase to more than 90% accuracy. However, the performance on the DSLR
validation set slightly decreases from the benchmark in all cases except model
2, the accuracy of which decreases by more than 10%.

For the qualitative results, the translated images are shown in Fig. 6. The
first 3 models translate and generate images that look like rice images captured
by the DSLR camera. But for the fourth model, the results look like rice seeds
with a more crimson color and red borders around them.

Table 3. Weedy rice classifier model validation results

Model Subset Rice Weed Accuracy Macro F1

Precision Recall F1 Precision Recall F1

M.1 DSLR 94.19% 99.35% 96.70% 98.08% 84.46% 90.76% 95.14% 93.73%

Mobile 81.30% 95.74% 87.93% 88.62% 60.13% 71.65% 83.07% 79.79%

M.2 DSLR 88.04% 99.82% 93.56% 99.30% 65.59% 79.00% 90.14% 86.28%

Mobile 95.98% 97.57% 96.77% 95.46% 92.61% 94.01% 95.80% 95.39%

M.3 DSLR 95.61% 99.71% 97.62% 99.17% 88.39% 93.47% 96.51% 95.54%

Mobile 92.18% 99.58% 95.74% 99.10% 84.70% 91.34% 94.28% 93.54%

M.4 DSLR 99.49% 99.5% 99.50% 98.74% 98.70% 98.72% 99.28% 99.11%

Mobile 98.02% 96.85% 97.43% 94.42% 96.45% 95.42% 96.71% 96.43%
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Original M.1 M.2 M.3 M.4

Canon 77D

iPhone
6s

iPhone
7

iPhone
11

Redmi
Note 5

Fig. 6. Samples of validation image translated by each model’s G

5.3 Test Set

The results on the test set in this section are the most important part. The
quantitative results are shown in Table 4. The table indicates that the second
model performs best on the test set, with the highest values for both accuracy
and macro-f1 score. Moreover, the qualitative results shown in Fig. 7 also reveal
that the realistic images generated by the second model from all rice species
in the dataset, as compared to the first and third models, also perform well on
most species. The rice seed images translated by the fourth model are again
more crimson with red borders around them, as with the validation set.

Table 4. Weedy rice classifier model test results

Model Rice Weed Accuracy Macro F1

Precision Recall F1 Precision Recall F1

M.1 83.18% 89.18% 86.08% 76.39% 66.01% 70.82% 81.15% 78.45%

M.2 96.14% 88.33% 92.07% 80.92% 93.32% 86.68% 90.06% 89.38%

M.3 85.71% 97.71% 91.32% 94.12% 69.29% 79.82% 87.86% 85.57%

M.4 95.51% 85.33% 90.13% 76.97% 92.44% 84.00% 87.79% 87.07%
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Original M.1 M.2 M.3 M.4

Cultivated Rice

Chai Nat 2

Khao Dawk Mali 105

Leuang Pratew 123

Pathum Thani 1

Phitsanulok 2

RD43

Weedy Rice

Short

Striped

Tail

Tall

Fig. 7. Samples of test image translated by each model’s G
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6 Conclusions

In this work, four architectures adapted from CycleGAN [24], with additional
components mainly inspired by ACGAN [15], InfoGAN [4], and SRGAN [11],
are proposed to tackle the problem of translating rice seed images captured by
various models of mobile camera into images similar to those captured by a
specific DSLR camera. The quantitative results for all models, with any kind of
rice species classifier components, on all validation and test sets are above 80%.
However, qualitative results indicate that the fourth model cannot translate rice
seed images into DSLR-like images since all results are more crimson than usual
and have red borders around them, which is not characteristic of rice seed images
captured by the DSLR camera. For the two reasons discussed above, the first
and the fourth models are not ideal to tackle the problem. Both the other models
have good qualitative results on the validation and test sets. The second model
performs worse than the third on the DSLR validation set; this means it is
necessary to sacrifice more on DSLR to archieve this level of performance on the
mobile validation set. However, the quantitative results of the second model on
the test set outperform those for the third model by 2.20% in terms of accuracy
and 3.81% in terms of macro-f1 score. Therefore, the second model is the best
since it performs best on the objective.

One problem of all the architectures proposed is that some of the translated
images have different orientations or sometimes different appearances than the
original images, i.e., the results looks like different seeds than the originals. A
suggestion to solve this problem would be to add more constraints on image
masks using the idea proposed by SemGAN [5], to force a similarity between the
original image masks and the translated image masks.
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Abstract. The proposed paper addresses how Support Vector Data
Description (SVDD) can be used to detect safety regions with zero sta-
tistical error. It provides a detailed methodology for the applicability of
SVDD in real-life applications, such as Vehicle Platooning, by addressing
common machine learning problems such as parameter tuning and han-
dling large data sets. Also, intelligible analytics for knowledge extraction
with rules is presented: it is targeted to understand safety regions of sys-
tem parameters. Results are shown by feeding data through simulation
to the train of different rule extraction mechanisms.

Keywords: SVDD · Safety regions · Explainable AI

1 Introduction

The study proposed in the paper follows the recent trend dedicated to identi-
fying and handling assurance under uncertainties in AI systems [23]. It falls in
the category of improving reliability of prediction confidence. The topic remains
a significant challenge in machine learning, as learning algorithms proliferate
into difficult real-world pattern recognition applications. The intrinsic statistical
error introduced by any machine learning algorithm may lead to criticism by
safety engineers. The topic has recieved a great interest from industry [25], in
particular in the automotive [27] and avionics [7] sectors. In this perspective, the
conformal predictions framework [5] studies methodologies to associate reliable
measures of confidence with pattern recognition settings including classification,
regression, and clustering. The proposed approach follows this direction, by iden-
tifying methods to circumvent data-driven safety envelopes with statistical zero
errors. We show how this assurance may limit considerably the size of the safety
envelope (e.g., providing collision avoidance by drastically reducing speed of
vehicles) and focus on how to find a good balance between the assurance and
the safety space.
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We concentrated our work on specific machine learning methods, the Support
Vector Data Description, which by (its) definition is particularly suitable to
define safety envelops (see Sect. 2). To it we have added intelligible models for
knowledge extraction with rules: intelligibility means that the model is easily
understandable, e.g. when it is expressed by Boolean rules. Decision trees (DTs)
are typically used towards this aim. The comprehension of neural network models
(and of the largest part of the other ML techniques) reveals to be a hard task
(see, e.g. Sect. 4 of [14]). Together with DT, we use logic learning machine (LLM),
which may show more versatility in rule generation and classification precision.

Our work takes a step forward in these areas due to

– safety regions are tuned on the basis of the radius of the SVDD hypersphere
– simple rule extraction method from SVDD compared with LLM and DT

The article is organized as follows: first, a detailed introduction of SVDD and
Negative SVDD is introduced, also focusing on how to choose the best model
parameters (Sect. 2.2) and how to handle large datasets (Sect. 2.3). Then Sect. 3
is devoted to rule extraction: LLM and DT are presented and how to extract
intelligible rules from SVDD is explained. Finally, an application example is
proposed in Sect. 4.

2 Support Vector Data Description

Characterizing a data set in a complete and exhaustive way is an essential prelim-
inary step for any action you want to perform on it. Having a good description
of a data set means being able to easily understand if a new observation can
contribute to the information brought by the rest of the data or be totally irrel-
evant. The task of the data domain description is precisely to identify a region,
a border, in which to enclose a certain type of information in the most precise
possible way, i.e. not adding misinformation or empty spaces. This idea is real-
ized mathematically by a circumference (a sphere, a hypersphere depending on
the size of the data space) that encloses as many points with as little area (vol-
ume) as possible. Indeed, SVDD can be used also to perform a classification of
a specific class of target objects, i.e. it is possible to identify a region (a closed
boundary) in which objects which should be rejected are not allowed.

This section is organized as follows: SVDD is introduced as in [28], focus-
ing first on the normal description and then on the description with negative
examples [29]. Then we will focus on two proposed algorithms for solving two
problems involving SVDD: fast training of large data sets [6] and autonomous
detection of SVDD parameters [31]. Finally, the last subsection is devoted to
two original methods for finding zero False Negative Rate (FNR) regions with
SVDD.

2.1 Theory

Let {xi}, i = 1, . . . , N with xi ∈ R
d, d >= 1, be a training set for which we want

to obtain a description. We want to find a sphere (a hypersphere) of radius R
and center a with minimum volume, containing all (or most of) the data objects.
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Normal Data Description. For finding the decision boundary which captures
the normal instances and at the same time keeps the hypersphere’s volume at
minimum, it is necessary to solve the following optimization problem [29]:

min
R,a

F (R,a) = R2 s.t. ||xi − a||2 ≤ R2 ∀i (1)

But to allow the possibility of outliers in the training set, analogously to what
happens for the soft-margin SVMs [1], slack variables ξi ≥ 0 are introduced and
the minimization problem changes into [29]:

min
R,a,ξi

F (R,a, ξi) = R2 + C
∑

i

ξi (2)

s.t.

{
||xi − a||2 ≤ R2 + ξi,

ξi ≥ 0
i = 1, . . . , N (3)

where the parameter C controls the influence of the slack variables and thereby
the trade-off between the volume and the errors.

The optimisation problem is solved by incorporating the constraints (3) into
Eq. (2) using the method of Lagrange for positive inequality constraints [12]:

L(R,a, αi, γi, ξi) = R2 + C
∑

i

ξi

−
∑

i

αi

[
R2 + ξi − (||xi||2 − 2a · xi + ||a||2)] −

∑

i

γiξi

(4)
with the Lagrange multipliers αi ≤ 0 and γi ≤ 0. According to [28], L should be
minimized with respect to R,a, ξi and maximized with respect to αi and γi.

Setting partial derivatives of R,a and ξi to zero gives the constraints [10]:

∂L

∂R
= 0 :

∑

i

αi = 1,
∂L

∂a
= 0 : a =

∑

i

αixi (5)

∂L

∂ξi
= 0 : C − αi − γi = 0 ⇒ 0 ≤ αi ≤ C (6)

and then, substituting (5) into (4) gives the dual problem of (2) and (3):

max
αi

L =
∑

i

αi(xi · xi) −
∑

i,j

αiαj(xi · xj) (7)

s.t

{∑
i αi = 1,

0 ≤ αi ≤ C, i = 1, . . . , N
(8)

Maximimizing (7) under (8) allows to determine all αi and then the param-
eters a and ξi can be deduced.
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Fig. 1. SVDD with (a) linear kernel K(xi,xj) = xi · xj , (b) polynomial kernel

K(xi,xj) = (1 + xi · xj)
d, (c) gaussian kernel K(xi,xj) = exp(− ||xi−xj ||

2σ2 ) and the
respective parameters. In red are plotted the SV (with αi < C) of the description.
(Color figure online)

A training object xi and its corresponding αi satisfy one of the following
conditions [28,29]:

||xi − a||2 < R2 ⇒ αi = 0 (9)

||xi − a||2 = R2 ⇒ 0 < αi < C (10)

||xi − a||2 > R2 ⇒ αi = C (11)

Since a is a linear combination of the objects with αi as coefficients, only αi > 0
are needed in the description: this object will therefore be called the support
vectors of the description (SV). So by definition, R2 is the distance from the
center of the sphere to (any of the support vectors on) the boundary, i.e. objects
with 0 < αi < C. Therefore

R2 = ||xk − a||2

= (xk · xk) − 2
∑

i

αi(xk · xi) +
∑

i,j

αiαj(xixj)

︸ ︷︷ ︸
Ta(xk)

(12)

for any xk ∈ SV<C , the set of the support vectors which have αk < C.
To test a new object z it is necessary to calculate its distance Ta(z) from the

center of the sphere and compare it with R2

sgn(R2 − Ta(z)) =

{
+1 if z is inside the sphere
−1 if z is outside the sphere

(13)

As it is common in machine learning theory [32], the method can be made
more flexible [28,29] by replacing all the inner products (xi · xj) with a kernel
function K(xi,xj) satisfying Mercer’s theorem. The data are mapped into a
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higher dimensional space via a feature map and there the previous spherically
classification is computed. The polynomial kernel and the gaussian kernel are
discussed in [28,29].

An example description by SVDD with different kernel functions for a 2
dimensional gaussian data set is shown in Fig. 1. The 1000 data are generated
by a gaussian distribution with mean [0, 0] and variance 1. Figures are handmade
drawn using Matlab and the description bound is shown by a 2D contour plot.

Negative Examples Data Description. When two (or more) classes of data
are available and it is necessary to identify a specific one among the others, SVDD
can be trained to recognize objects that should be included in the description
from those that should be rejected. This task of SVDD can be very useful in
real-world applications where, for example, a safety region must be determined
(see Sect. 4).

In the following the target objects are enumerated by indices i, j and the
negative examples by l,m. We assume that target objects are labeled yi = 1 and
outlier objects are labeled yl = −1.

In the same way as before, we want to solve this optimization problem:

min
R,a,ξi,ξl

F (R,a, ξi, ξl) = R2 + C1

∑

i

ξi + C2

∑

l

ξl (14)

s.t

⎧
⎪⎨

⎪⎩

||xi − a||2 ≤ R2 + ξi,

||xl − a||2 ≥ R2 − ξl,

ξi ≥ 0, ξl ≥ 0 ∀i, l

(15)

The constraints are again incorporated in Eq. (14) and the Lagrange multi-
pliers αi, αl, γi, γl are introduced [29]:

L(R,a, ξi, ξl, αi, αl, γi, γl) = R2 + C1

∑

i

ξi + C2

∑

l

ξl −
∑

i

γiξi −
∑

l

γlξl

−
∑

i

αi[R2 + ξi − (xi − a)2] −
∑

l

αl[(xl − a)2 − R2 + ξl]

(16)
with αi ≥ 0, αl ≥ 0, γi ≥ 0, γl ≥ 0.

Setting the partial derivatives of L with respect to R,a, ξi and ξl to zero
gives new constraints [29]:

∑

i

αi −
∑

l

αl = 1, a =
∑

i

αixi −
∑

l

αlxl (17)

0 ≤ αi ≤ C1, 0 ≤ αl ≤ C2 ∀i, l (18)

and substituting (17) in equation (16) we obtain similarly to before the dual
problem of (14) and (15):
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Fig. 2. Negative SVDD applied to a two-spirals shaped data set [20]. It is interesting
to note that for changing the target objects it is only necessary to flip the labels. The
asterisked points are the SV on the edge, depending on the respective class.

max
αi,αl

L =
∑

i

αi(xi · xi) −
∑

l

αl(xl · xl) −
∑

i,j

αiαj(xi · xj)

+2
∑

l,j

αlαj(xl · xj) −
∑

l,m

αlαm(xl · xm)
(19)

s.t

⎧
⎪⎨

⎪⎩

∑
i αi − ∑

l αl = 1
0 ≤ αi ≤ C1 ∀i

0 ≤ αl ≤ C2 ∀l

(20)

Again, solving the previous optimization problem allows to determine αi and
αl and then we can classify all the data set objects according to the respective
Lagrange coefficient:

||xi − a||2 < R2 ⇒ αi = 0 ; ||xl − a||2 < R2 ⇒ αl = C2 (21)

||xi − a||2 = R2 ⇒ 0 < αi < C1 ; ||xl − a||2 = R2 ⇒ 0 < αl < C2 (22)

||xi − a||2 > R2 ⇒ αi = C1 ; ||xl − a||2 > R2 ⇒ αl = 0 (23)

Similarly, we test a new point z based on its distance from the center

||z − a||2 = (z · z) − 2
(∑

i

αi(z · xi) −
∑

l

αl(z · xl)
)

+
∑

i,j

αiαj(xi · xj) − 2
∑

l,j

αlαj(xl · xj) +
∑

l,m

αlαm(xl · xm) := Ta(z)

(24)
and we evaluate it compared to the radius squared

sgn(R2 − Ta(z)) =

{
+1 if z is inside the sphere
−1 if z is outside the sphere

(25)
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where the radius is calculated as the distance of any SV on the edge (0 < αi <
C1, 0 < αl < C2) from the center a

R2 = Ta(xk) for any xk ∈ SV<C1,<C2 (26)

Similarly to before, it is possible to replace all the inner products (xi · xj)
with a kernel function K(xi,xj) [28,29,32] to obtain a more flexible description.

An example of Negative-SVDD is performed in Fig. 2: gaussian kernel with
σ = 3 is used and the parameters C1 and C2 are both set to 0.25.

2.2 Autonomous Detection of SVDD Parameters with RBF Kernel

Like most machine learning models, SVDD is massively influenced by the choice
of model parameters. It is necessary to find the best trade-off between error and
covering by choosing suitable C1 and C2 and the best kernel parameter σ that
avoids overfitting or underfitting issues.

For this work we will focus on the RBF kernel since it is well known that it
is the kernel function that performs well in application methods [28].

The method used to find the best model parameters is inspired by the work
presented in [31] in which it is proposed an autonomous detection of the normal
SVDD parameters based only in the training set, since in normal SVDD it is not
possible to use cross-validation because only true positives and false negatives
can occur during the training. In our work instead we joined some techniques in
[31] with cross-validation method for finding the best C1, C2 and σ parameters
for negative SVDD.

The regularisation parameters C1, C2 are lower bounded by 1/N1 and 1/N2

respectively, where N1 is the number of target objects and N2 the number of
negative examples (N1 + N2 = N) [28,29,31]. When in one class of training
objects set no errors are expected we can set Ci = 1 (i = 1, 2), indicating that
all objects of the target class of training set should be accepted (C1 = 1) and all
outliers should be rejected (C2 = 1). So the value range for C1 and C2 is

1
N1

≤ C1 ≤ 1,
1

N2
≤ C2 ≤ 1, (27)

The second parameter to be optimised is the kernel width σ. For high values
of σ the shape of SVDD becomes spherical with the risk of underfitting, while
for small values of σ too much objects become support vectors and the model is
prone to overfitting.

The search for the best parameters is performed by constructing a grid with
C1, C2 and σ, on which holdout cross-validation is performed. The optimization
criterion is chosen according to [31], selecting the parameters such that the
respective misclassification error e and radius R minimize

λ =
√

e2 + |1 − R|2 (28)

for each triple C1, C2 and σ in the grid. The idea behind (28) is that minimizing
the misclassification error means reducing the number of support vectors [28,29]
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(and so reducing overfitting) while constraining the radius to be close to 1 means
choosing small σ [31] (and so reducing underfitting). Then the balance between
these two terms seems the best criterion for finding the best parameters (see
Fig. 3).
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Fig. 3. For too small or too high values of σ the optimization criterion λ (our metric
for the ’best error’) is high. Also keep in mind the behavior of the SV, which is very
similar to the one described in [28,29].

2.3 Fast Training SVDD

The curse of dimensionality is a problem that affects many optimization and
machine learning problems, and SVDD is not saved. To overcome this problem,
a method based on iterative training of only SV is proposed by [6].

The method iteratively samples from the training data set with the objective
of updating a set of support vectors called as the master set of support vec-
tors (SV ∗). During each iteration, the method updates SV ∗ and corresponding
threshold R2 value and center a. As the threshold value R2 increases, the volume
enclosed by the SV ∗ increases. The method stops iterating and provides a solu-
tion when the threshold value R2 and the center a converge. At convergence, the
members of the master set of support vectors SV ∗ characterize the description
of the training data set.

2.4 Zero FNR Regions with SVDD

Safety regions research is a well-known task for machine learning [13–15] and
the main focus is to avoid false negatives, i.e., including in the safe region unsafe
points. In this section, two methods for the research of zero FNR regions are
proposed: the first one is based simply on the reduction of the SVDD radius
until only safe points are enclosed in the SVDD shape, the second one instead
performs successive iterations of the SVDD on the safe region until there are no
more negative points.
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Fig. 4. Application of Algorithm 1 on a data set of 400 points sampled from a gaussian
with mean [1, 1] and variance 1, 200 target objects and 200 negative examples. The
algorithm converged in 12 iterations.

Radius Reduction. Since also in the transformed space via feature mapping
the shape of SVDD is a sphere, it is reasonable to think that reducing the
volume of the sphere the number of negative points misclassifed should reduce.
We implemented this simple procedure in Matlab and we tested it on several
datasets (see Fig. 4):

Algorithm 1 RadiusReduction
Data set X × Y is divided in training set
Xtr × Ytr and test set Xts × Yts

SVDD-cross-validation on Xtr × Ytr

[a, R2] = SVDD(Xtr,Ytr, C1, C2, param)
maxiter = 1000;
i = 1;
while(i¡maxiter)

R2 = R2−10e-5*R2;
Test SVDD on Xts × Yts

if(FNR< ε)
return [a, R2];
end

i = i + 1;
end

SVDD Zero FNR Iterative Procedure. Here we present another algorithm
for finding zero FNR regions with SVDD. The idea is simply to perform succes-
sive SVDDs on the safe regions found with a preliminary SVDD to avoid the
presence of unsafe points. Again, we achieve convergence when we reach a fixed
number of iterations or when the condition on FNR is satisfied.
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Fig. 5. Application of Algorithm 2 on a data set of 2000 target objects sampled from
a gaussian with mean [1, 1] and variance 4 and 100 negative examples sampled from a
gaussian with mean [1, 1] and variance 5. (a) is the first iteration of the algorithm and
(b) is the convergence at the 97th iteration.

Algorithm 2 ZeroFNRSVDD
Data set X × Y is divided in training set
Xtr × Ytr and test set Xts × Yts

SVDD-cross-validation on Xtr × Ytr

[a, R2] = SVDD(Xtr,Ytr, C1, C2, param)
Test SVDD on Xts × Yts

maxiter = 1000;
i = 1;
while(i < maxiter)

Xtri
= “safety”(Xts);

SVDD-cross-validation on Xtri
×

Ytri

[ai, R2
i ]=SVDD(Xtri

,Ytri
, C1, C2,

param) Test SVDD on Xts × Yts

if(FNR< ε)
return [ai, R

2
i ];

end
i = i + 1;

end
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We performed this algorithm in Matlab and tested using data from [19]. In
Fig. 5 is reported an example with a 2 dimensional gaussian data set.

3 Rules Extraction

We now consider how to make the SVDD explainable in order to explicit the
inherent logic and use the extracted rules for further safety envelope tuning as
in [14].

Let us suppose to have an information vector I and to have to solve a clas-
sification problem depending on two classes ω = 0 or 1. Let ℵ = {(Ik, ωk), k =
1, . . . , �} be a data set corresponding to the collection of events representing a
dynamical system evolution (ω) under different system settings (I(·)).

The classification problem consists of finding the best boundary function
f(I(·), ·) separating the Ik points in ℵ according to the two classes ω = 0 or
ω = 1. For the case of SVDD the best boundary f is simply the shape of the
hypersphere. Although the shape of the hypersphere is well intelligible (it is
enough to have a center and a radius to describe it), it is still interesting to have
a rule-based shape to describe it.

3.1 Logic Learning Machine

The derivation of f(I(·), ·) )in a rule-based shape is made by DT and LLM (the
analysis was performed through the Rulex software suite, developed and dis-
tributed by Rulex Inc. (http://www.rulex.ai/)). They are both based on a set of
intelligible rules of the type if (premise) then (consequence), where (premise)
is a logical product (AND, ∧) of conditions and (consequence) provides a class
assignment for the output. In the present study, the two classes correspond to the
presence or the absence of anomalous patterns. LLM rules are obtained through
a three-step process. In the first phase (discretisation and latticisation) each
variable is transformed into a string of binary data in a proper Boolean lattice,
using the inverse only-one code binarisation. All strings are eventually concate-
nated in one unique large string per each sample. In the second phase (shadow
clustering) a set of binary values, called implicants, are generated, which allow
the identification of groups of points associated with a specific class. (An impli-
cant is defined as a binary string in a Boolean lattice that uniquely determines a
group of points associated with a given class. It is straightforward to derive from
an implicant an intelligible rule having in its premise a logical product of thresh-
old conditions based on cut-offs obtained during the discretisation step. The
optimal placement of these cut-offs is, therefore, an important phase to extract
the highest information gain before clustering [2].) During the third phase (rule
generation) all implicants are transformed into a collection of simple conditions
and eventually combined in a set of intelligible rules. The interested reader on
shadow clustering and algorithms for efficient rule generation is referred to [16]
and references therein.

http://www.rulex.ai/
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3.2 Rules Extraction from SVDD

As far as SVDD is concerned, the derivation of intelligible rules is made in this
way: after that a SVDD is computed and tested, a new data set of observations
is provided and the classification via SVDD is made. The new dynamical system
obtained is then exported in Rulex and a LLM algorithm with zero error or a
DT algorithm is executed over the data, obtaining then the set of intelligible
rules. Algorithm 3 summarizes the procedure:
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Fig. 6. Using intelligible rules (LLM) the proportion of safe points increases but FNR
increases too. (Color figure online)

Algorithm 3 IRulesSVDD
Apply Algorithm 1 or Algorithm 2 on
X × Y data set

generate randomly a new data set Xnew

as a copy of X
Classify Xnew in Ynew with [a, R2] from
Algorithm1/Algorithm2
apply LLM/DT algorithm
find an explained safety region R
return R
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For example, for the case of vehicle platooning (see Sect. 4) the first three
rules for covering (i.e. how many points are covered by rule r) of SVDD (Algo-
rithm 2) using LLM are

if ((N < 7) ∧ (F0 > −8 ∧ F0 <= −3) ∧ (v(0) > 12 ∧ v(0) <= 29)) then safe

if (d(0) > 4.102334 ∧ d(0) <= 8.993453) ∧ (v(0) > 12 ∧ v(0) <= 23)) then safe

if ((N < 6) ∧ (PER > 0.000827 ∧ PER <= 0.465396) then safe

As in [14] we applied these rules with the goal of maximizing the number
of safe points while keeping FNR at zero. This is possible by performing rule
tuning as in [14] but SVDD allows for much more flexibility.

Figure 6 shows the relationship between the prediction of safety regions of
the two proposed algorithms with LLM-based rules (green and yellow) and with
only the shape of hypersphere (orange and blue). The vehicle platooning data set
is used and 11×103 have been done (see Sect. 4). We can say that the behaviour
of the prediction is quite similar for both the methodology but when intelligible
rules are used there is an increase of FNR (not too high, just up to 1%-5% more).

Fig. 7. Rule viewer

Furthemore, Fig. 7 shows, as an example, a summary of the rules extracted
with LLM from SVDD, Algorithm 2, in the case of vehicle platooning (see
Sect. 4.1). Each circle represents a rule and the larger this is the more the respec-
tive rule covers a larger number of points. In this example the classification is
done in two classes, green and red, and in the outer crown the input features
are shown. The high number of rules is an indication of the complexity of the
system: with a two-dimensional example we could say that a large number of
rectangles (rules) is needed to best approximate the complicated shape of the
SVDD. We will discuss these concepts in more detail in Sect. 4, dedicated to
applications.
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4 Applications: The Vehicle Platooning Example

Finally in this section we investigate how the SVDD works in a real safety
classification problem. We focus on an automotive example of cyber-physical
system [21]: the vehicle platooning [22].

4.1 Vehicle Platooning

Vehicle Platooning (VP) is taken as a reference here as being representative of
one of the most challenging CPS (Cyber Physical Systems) of the automotive
sector [21]. The main goal in VP is finding the best trade-off between perfor-
mance (i.e. maximising speed and minimising vehicles reciprocal distance) and
safety (i.e. avoiding collision) [11]. Most of the literature on this topic focuses on
advanced control schemes while abstracting the communication medium. Delay
of communication is typically considered as fixed or described through proba-
bilistic models. This allows the analytical derivation of stability models under
some hypotheses of the dynamical system [18], but it may be unreliable under
realistic conditions. Two branches are evident from the literature in this respect:
the derivation of simple models of the delay bound that guarantees safety (see,
e.g. Section IV.C of [34]) and extensive simulation with visualisation of safety
regions under subsets of parameters when addressing realistic communication
[9,26], and realistic vehicles [24].

The following scenario is considered. Given the platoon at a steady state of
speed and reciprocal distance of the vehicles, a braking is applied by the leader
of the platoon [24,34]. The behaviour of the dynamical system is investigated
with respect to the following metrics. Safety is referred to a collision between
adjacent vehicles (in the study, it is actually registered when the reciprocal dis-
tance between vehicles achieves a lower bound (e.g. 2 m)). For both safety and
driving comfort, string stability (SS) is also important. It means that speed and
acceleration fluctuations should be attenuated downstream the string of vehicles.

The dynamic of the system is generated by the following differential equations
[34]:

{
v̇ = 1

mi
(Fi − (ai + bi · v2

i ));
ḋi = vi−1 − vi

(29)

where vi is the speed of vehicle i, mi the mass of the vehicle i, di the distance
of vehicle i from the previous one i − 1, ai is the tyre/road rolling distance, bi

the aerodynamic drag and the control law Fi.
The behaviour of the dynamical system is synthesised by the following vector

of features:
I = [N, ι(0), F0,m,q,p] (30)

N +1 being the number of vehicles in the platoon (subscript i = 0 defines the
index of the leader), ι = [d,v,a] are the vectors of reciprocal distance, speed,
and acceleration of the vehicles, respectively (ι(0) denotes that the quantities
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Fig. 8. Scatter plots of the quantities of the platooning dynamical system as in [13–15].
In blue non-collision points are plotted, in red collision ones. (Color figure online)

sampled at time t = 0, after which a braking force is applied by the leader [24].
Simulations are set in order to manage possible transient periods and achieve
a steady state of ι before applying the braking.), m are the vectors of weights
of the vehicles, F0 is the braking force applied by the leader, q is the vector of
quality measures of the communication medium, fixed delay and packet error
rate (PER) are considered in the study, p is the vector of tuning parameters of
the control scheme.

The Plexe simulator [24,34] is used to register � = 15×103 observations and
then we reduced them under the following ranges:

N ∈ [3, 8], F0 ∈ [−8,−1] × 103N (from now on, the notation (×103) is
omitted when referring to thresholds applied to F0), PER ∈ [0, 0.5], d(0) ∈
[4, 9] m, v(0) ∈ [10, 90] Km/h. With these choice the size of the sample has been
reduced to 7567 samples (see Fig. 8).

Our goal is to determine the largest region of parameters with no false neg-
atives (i.e. prediction of no collision, but a collision in reality). To do this, we
applied the two algorithms proposed in Sect. 2.4 to the 7567 size sample above (a
Fast-SVDD is used, see Sect. 2.3) using RBF kernel with C1 = 1, C2 = 1 (indi-
cating that all objects of the specific class of training set should be accepted,
C1 = 1, and all the objects of the negative class should be rejected, C2 = 1)
and σ determined with cross-validation. The results are shown in Table 1, where
FNR is the usual False Negative Rate, % safe is the percentage of safe points,
#iter the number of algorithm iterations, #time (s) the time in second for the
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convergence, R2 the squared hypersphere’s radius, #SV the number of deter-
mined support vectors. The last column holds the precision on the negative
class TN

TN+FN .

Table 1. Results on VP data set.

FNR % safe # iter # time (s) R2 #SV precω−1

Alg 1 0.0993 79.34 15 192.12 0.9220 139 0.9935

Alg 2 0.0556 70.06 42 310.31 0.8158 61 0.9938

Then we tested the performances of the algorithms in different extractions of
103 subsets with different sizes from 8% to 50% of the total points available for
test (12 × 103); 11 × 103 trials in total. We compared them with other method-
ologies as in [14] (see Fig. 9) and so a rules extraction has been requested (see
Sect. 3). The other methodologies used for the comparison are briefly discussed
below, for more details see [14].

– manual calibration: rules set by hand. For example, by inspecting Fig. 8, it
is intuitive to identify the following safety region: (N ≤ 5) ∧ (PER < 0.23).
More accurate inspection can bring to more accurate rules.

– LLM and DT are tuned according to [14] (Sect. 4.4). The procedure can
be briefly summarize in this way: (1) manually inspect of the most relevant
regions for safety. (2) LLM/DT is trained with zero error when developing
the rules. (3) Progressively extraction of unsafe points from the original data
set until only safe points are obtained.

– LLM violation rules are generated analogously to the previous LLM rules
but a slack coefficient δ(·) is inserted depending on a sensitive analysis per-
formed over the features (see [14], Sect. 4.4.1). For example if ((PER ≤ 0.325·
δPER) ∧ (N ≤ 7 · δN ) ∧ (d(0) > 4.2385)) then safe, where δPER = 0.325 ∗ 0.1
and δN = 6/7 (i.e. one car is eliminated from the platoon to be safe).

The analysis shows that SVDD performs the best safety region in the chosen
ranges of parameters: up to 70% of safe points with almost zero FNR for Algo-
rithm 1 and up to 80% for Algorithm 2. The comparison with the other methods
shows as the rules extracted from SVDD are the better ones, but due to the com-
plex form of SVDD boundary function an higher number of them is required: 674
rules for Algorithm 1 and 771 for Algorithm 2. The rules are applied all together
in logical OR (∨). To deepen the analysis we used also DT for the SVDD rules
(150 in logical OR) extraction (Algorithm 2) and we obtained a lower number
of safe points (only up to 60%) obtaining however a number of FNR very close
to zero (0.003%).
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Fig. 9. Performance of safe points with and without rules.

5 Conclusions and Future Works

The study shows how SVDD can be a very useful method for identifying safety
regions, even in complex applications such as VP.

This paper also provides a detailed methodology on how to deal with appli-
cation problems in machine learning, such as parameter tuning and handling
large data sets. In addition, a more thorough explanation on negative SVDD
has been performed. Thus, the proposed approach could be applied for a wide
range of applications.

Its novelty, when compared for example with [15], is that it is possible to
manage the shape of the safety region by varying the radius of SVDD or by
removing unsafe points using multiple iterations of SVDD in the region. Then,
we have shown that rule extraction works better after identifying the safety
region through SVDD.

Furthermore, the notion of “safety region” discussed in our paper is an impor-
tant topic that has been widely studied in machine learning and learning theory
in various forms. It seems that research topics such as conformal prediction,
selective prediction [33] and three-way decision making [4] are widely related to
the notion of safety region. Our goal for the future is to investigate how SVDD
can be a useful tool to apply to other types of safety research methodology, such
as those previously mentioned. Also, there is a large body of work related to rule
extraction from SVM [3,17,35] (which are strongly related with SVDD) which
could be interesting to investigate for performing a method for direct rule extrac-
tion from SVDD. Our rule extraction method differs from the others in that it
is not based directly on the SVDD machine learning model but relies on other
rule extraction methods (LLM and DT), after classifying the points through the
SVDD. It is our intention to try to define a totally autonomous method of rule
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extraction from the SVDD (based on those already mentioned for the SVM),
and then verify whether the results will actually be better than those obtained
now.
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Abstract. Pricing a property and evaluating the proposed price for
a property are challenges that, respectively, owners and customers of
Airbnb rentals face on a daily basis. This paper aims to create a model
for predicting the price of an Airbnb listing using property specifications,
owner information, and customer reviews for the listing. Owners and cus-
tomers can use the resulting model to estimate the expected value of an
Airbnb listing. Linear regression, tree-based models, K-means Cluster-
ing, Support Vector Regression (SVR), and neural networks are trained
and tuned on a dataset of Airbnb listings from New York city, and the
resulting models are compared in terms of Mean Squared Error, Mean
Absolute Error, and R2 score. Sentiment analysis is used to extract fea-
tures from the customer reviews which help enhance the performance
of the selected predictive models. Feature importance analysis is also
used to select the most representative features for predicting the price
of the listings. Experimentation shows that SVR model can achieve an
R2 score of 69% and a MSE of 0.147 (defined on ln(price)) on the test
set, outperforming the other models considered in the paper. [Link to
the repository: github.com/PouyaREZ/AirBnbPricePrediction].

Keywords: AirBNB · Rental property pricing · Machine learning ·
Sentiment analysis

1 Introduction

Pricing a rental property on Airbnb is a challenging task for the owner as it
determines the number of customers for the place. On the other hand, customers
have to evaluate an offered price with minimal knowledge of an optimal value for
the property. This paper aims to develop a reliable price prediction model using
machine learning, deep learning, and natural language processing techniques
to aid both the property owners and the customers with price evaluation given
minimal available information about the property. Features of the rentals, owner
characteristics, and the customer reviews will comprise the predictors, and a
range of methods from linear regression to tree-based models, support-vector
regression (SVR), K-means Clustering (KMC), and neural networks (NNs) will
be used for creating the prediction model.
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2 Related Work

Parts of the existing literature on property pricing focus on non-shared property
purchase or rental price predictions. Previously, Yu and Wu [28] tried to imple-
ment a real estate price prediction using feature importance analysis along with
linear regression, SVR, and Random Forest regression. They also attempted to
classify the prices into 7 classes using Naive Bayes, Logistic Regression, SVC
and Random Forest. They declared a best RMSE of 0.53 for their SVR model
and a classification accuracy of 69% for their SVC model with PCA. In another
paper, Ma et al. [18] have applied Linear Regression, Regression Tree, Random
Forest Regression and Gradient Boosting Regression Trees to analyzing ware-
house rental prices in Beijing. They concluded that the tree regression model
was the best-performing model with an RMSE of 1.05 CNY/m2-day.

Another class of studies, which are more related to this paper, inspect the
rental prices in hotels and sharing economy. Wang and Nicolau [25] have studied
price determinants of sharing economy by analyzing Airbnb listings using ordi-
nary least squares and quantile regression analysis. In a similar study, Masiero
et al. [19] use quantile regression model to analyze the relation between travel
traits and holiday homes as well as hotel prices. In a simpler work, Yang et al.
[27] applied linear regression to study the relationship between market accessi-
bility and hotel prices in Caribbean. They also included the user ratings and
hotel classes as contributing factors in their study. Li et al. [15] also studied
a clustering method called Multi-Scale Affinity Propagation and applied Linear
Regression to the obtained clusters in an effort to create a price prediction model
for Airbnb in different cities. They took the distance of the property to the city
landmarks as the clustering feature. Papers by Chiny et al. [5], Zhou and Tong
[29], Trang et al. [24], Kokasih and Paramita [14], and Ma et al. [17] are also
noteworthy recent publications around rental prices in lodging industry.

This research has tried to improve and add to the experimented methods
from the literature by focusing on a variety of feature selection techniques,
implementing Neural Networks, and leveraging the customer reviews through
sentiment analysis. The last two contributions are novel undertakings in rental
price prediction as they were not observed in the existing body of literature prior
to the date the preprint of this paper [12] was written (i.e. 2019).

3 Dataset

The public Airbnb dataset for New York City [1] was used as the main data
source for this study. The dataset included 50,221 entries, each with 96 features.
Figure 1 shows the geographic distribution of the listing prices in this dataset.

For the initial prepossessing, the authors inspected each feature of the dataset
to (i) remove features with frequent and irreparable missing fields or set the
missing values to zero where appropriate, (ii) convert some features into floats
(e.g. by removing the dollar sign in prices), (iii) change boolean features to
binaries, (iv) remove irrelevant or uninformative features, e.g. host picture url,
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Fig. 1. Geographic spread of price labels (with filtered outliers) across New York City
in USD per day

constant-valued fields or duplicate features, and (v) convert the 10 categorical
features in the final set, e.g. ‘neighborhood name’ and ‘cancellation policy,’ into
“one-hot vectors.” In addition, the features were normalized and the labels were
converted into logarithm of the prices to mitigate the impact of the outliers in
the dataset. The data was split into three sets; namely, train set (comprising
90% of the original data), validation set, and test set (both comprising 5% of
original data). Since the dataset was relatively large, 10% of the data was deemed
sufficient for the accumulated testing and validation sets. The following explains
the sentiment analysis conducted on the reviews and the steps taken for selecting
the most important features among the available set of features.

3.1 Sentiment Analysis on the Reviews

Given the importance of customer reviews on the pricing of an Airbnb listing,
and in order to increase the accuracy of the predictive model, the reviews for
each listing were analyzed using TextBlob [16] sentiment analysis library and the
results were added to the set of features. This method assigns a score between
−1 (very negative sentiment) and 1 (very positive sentiment) to each analyzed
text. For every listed property, each review was analyzed using this method and
the scores were averaged across all the reviews of that listing. The final score for
each listing was included as a new feature in the model. Future work can delve
more into other approaches for mining the opinions of the customers [23].
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3.2 Feature Selection

After data preprocessing, the feature vector contained 764 elements. Feeding
this excessive set of features to the models resulted in a high variance of error.
Consequently, using the training set, several feature selection techniques were
used to find the features with the most predictive values to both reduce the
model variances and reduce the computation time. Based on prior experience of
the authors with housing price estimation, the first tried method was manual
selection of features to create a baseline for evaluating the other feature selection
processes.

The second selection method was tuning the coefficient of linear regression
model with Lasso Regularization trained on the train split. Based on this analy-
sis, the model with the best performance over validation split was selected. The
resulting set consisted of 78 features with non-zero values, i.e. 90% less than the
number of original features.

Finally, lowest p-values of regular linear regression model trained on train
split were used to choose the third set of features. An upper limit of 100 fea-
tures was imposed on the selection procedure. The final set was comprised of 22
features for which linear regression model performed the best on the validation
split. As an example to demonstrate the results of the feature selection tech-
niques, AppendixA lists the set of features resulting from this p-value analysis.

The performance of manually selected features as well as p-value and Lasso
feature selection schemes were compared using the R2 score of the linear regres-
sion models trained on the validation set. All models outperformed the baseline
model, which used the whole feature set, and the second method, Lasso regular-
ization, yielded the highest R2 score. Figure 2 shows the best R2 scores obtained
using the set of features identified with each feature selection method.

4 Methods

Linear Regression using the entire set of features as model inputs was taken
as the baseline model for evaluating the performance of the other methods.
After selecting a set of features using Lasso feature selection, several machine
learning models were considered in order to find the optimal one. All of the
models except neural networks were implemented using Scikit-learn library [9].
The neural network model was implemented with the help of Keras library [8].
The implemented models are introduced in what follows.

4.1 Ridge Regression

Linear Regression with L2 regularization adds a penalizing term to the squared
error cost function in order to help the algorithm converge for linearly separa-
ble data and reduce overfitting. Therefore, Ridge Regression minimizes J(θ) =
||y − Xθ||22 + α||θ||22 with respect to θ, where X is a design matrix and α is a
hyperparameter. Since the baseline models were observed to have high variance,
Ridge Regression seemed to be an appropriate choice to solve the issue.
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Fig. 2. Best feasible R2 scores with each selection methods

4.2 K-means Clustering with Ridge Regression

In order to capture the non-linearity of the data, the training examples were
split into different clusters using k-means clustering on the features and the
Ridge Regression was run on each of the individual clusters. The data clusters
were identified using Algorithm 1 given m points and k clusters. The algorithm
would converge when the Frobenius norm of the difference between the cluster
centers from two consecutive iterations became lower than 10(−4) [22].

4.3 Support Vector Regression

In order to model the non-linear relationship between the covariates, the authors
employed support vector regression with RBF kernel to identify a linear bound-
ary in a high-dimensional feature space. Using the implementation based on
Chang and Lin [3], the algorithm provides a solution for the following optimiza-
tion problem:

min
w,b,ξ,ξ∗

1
2
||w||2 + C

m∑

i=1

ξi + C
m∑

i=1

ξ∗
i , subject to (1)

wT φ(x(i)) + b − y(i) ≤ ε + ξi, (2)

y(i) − wT φ(x(i)) − b ≤ ε + ξ∗
i , (3)

ξi, ξ
∗
i ≥ 0, i = 1, ...,m (4)
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Algorithm 1. K-means Clustering
Initialize cluster centroids μi, ..., μk randomly
repeat

Assgin each point, x(i), to a cluster, c(i), such that:
c(i) = arg minj ||x(i) − μj ||22

Update each centroid such that:

μj =
∑m

i=1 1{c(i)=j}x(i)
∑m

i=1 1{c(i)=j}

Calculate the loss function for the assignments:
J(c, μ) =

∑m
i=1 ||x(i) − μc(i) ||22

until convergence

where C > 0, ε > 0 are given parameters. This problem can be converted into
a dual problem that does not involve φ(x), but involves K(x, z) = φ(x)φ(z)
instead. Since we are using RBF kernel, K(x, z) was taken as

K(x, z) = exp
( ||x − z||2

2σ2

)
(5)

4.4 Neural Network

Neural network was used to build a model that combined the input features into
high level predictors. The architecture of the optimized network had 3 fully-
connected layers: 20 neurons in the first hidden layer with relu activation func-
tion, 5 neurons in the second hidden layer with relu activation function, and 1
output neuron with a linear activation function.

4.5 Gradient Boosting Tree Ensemble

Since the relationship between the feature vector and price is non-linear, regres-
sion tree seemed like a proper model for this problem. Regression trees split the
data points into regions according to the following formula

max
j,t

L(Rp) − (L(R1) − L(R2)) (6)

where j is the feature the dataset is split on, t is the threshold of the split, Rp

is the parent region and R1 and R2 are the child regions. Squared error is used
as the loss function.

Since standalone regression trees have low predictive accuracies individually,
gradient boost tree ensemble was used to increase the models’ performance. The
idea behind a gradient boost is to improve on a previous iteration of the model
by correcting its predictions using another model based on the negative gradient
of the loss. The algorithm for the gradient boosting is the following [10]:
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Algorithm 2. Gradient Boosting
Initialize F0 to be a constant model
for m = 1,..., number of iterations do

for all training examples (x(i), y(i)) do
Squared error R(y(i), Fm−1(x

(i))) = − ∂Loss

∂Fm−1(x
(i))

= y(i) − Fm−1(x
(i))

end for
Train regression model hm on (x(i), R(y(i), Fm−1(x

(i)))), for all training examples
Fm(x) = Fm−1(x) + αhm(x), where α is the learning rate

end for
return Fm

5 Experiments and Discussion

Mean absolute error (MAE), mean squared error (MSE) and R2 score were used
to evaluate the trained models. Training (39,980 examples) and validation (4,998
examples) splits were used to choose the best-performing models within each cat-
egory. The test set, containing 4,998 examples, was used to provide an unbiased
estimate of error, with the final models trained on both train and validation
splits. Table 1 contains the performance metrics for the final models1; namely,
linear regression, Ridge regression, Gradient Boosting, K-Means Clustering with
Ridge Regression, SVR, and Neural Network.

Table 1. Performance metrics of the trained models

Model name Train split Test split

MAE MSE R2 Score MAE MSE R2 Score

Linear reg. (baseline) 0.2744 0.1480 0.690 96895.82 2.4E13 −5.1E13

Ridge reg. 0.2813 0.15461 0.6765 0.2936 0.1613 0.6601

Gradient boost 0.2492 0.1376 0.7121 0.3282 0.1963 0.5864

K-means + Ridge reg. 0.2717 0.1438 0.6992 0.2850 0.1543 0.6748

SVR 0.2132 0.1067 0.7768 0.2761 0.1471 0.6901

Neural net 0.2602 0.1316 0.7246 0.2881 0.1570 0.6692

Table 1 shows that the models had relatively similar R2 scores. This indi-
cates that the Lasso feature importance analysis has majorly contributed to the
performance of the models by reducing the variance, such that all the different
models using the selected features have led to close R2 scores. Even after the
feature selection, the resulting input vector was relatively large, and this caused
the models to overfit. This explains why Gradient Boost - a tree-based model

1 Optimized models can be found at github.com/PouyaREZ/AirBnbPricePrediction.

https://github.com/PouyaREZ/AirBnbPricePrediction
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Fig. 3. Comparative histograms of predicted and actual prices for the top 3 models:
SVR, KMC, and NN
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Fig. 4. Comparative histograms of predicted and actual prices for the top 3 models:
SVR, KMC, and NN (cont’d)

prone to high variance - has performed worse than the rest of the models while
it did not perform the worst on the training set.

Figures 3 and 4 show the comparative histograms of the ln of the test labels
against the ln of the predicted labels for the top three models in terms of R2 score
on the test set, i.e., SVR (denoted as “svm” in the figure), K-Means + Ridge
Regression (denoted as “KMC” in the figure), and Neural Network (denoted
as “NN” in the figure), respectively. These figures show that, compared to the
other two models, SVR has produced a more similar data distribution to the
test set. Further, despite considering a larger number of features in the feature
vector, SVR with RBF kernel yielded the best performing model with the least
MAE and MSE and the highest R2 score on both the train and the test set
(Table 1). RBF feature mapping has been able to better model the prices of the
apartments which have a non-linear relationship with the apartment features.
Since regularization is considered in the SVR optimization problem, parameter
tuning has ensured that the model would not overfit (Table 1 and Figs. 3 and 4).

Finally, Table 1 shows that the top three models, i.e., Ridge regression, neural
network, and K-means + Ridge regression, had similar R2 scores even though
the last two models were more complex than Ridge regression. The large number
of unknown parameters in the neural network model compared to the small size
of the training set has probably caused the neural network to overfit the data
and to underperform. K-means + Ridge regression model has probably faced
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a similar issue: too few training examples in some of the clusters has resulted
in high variance in the Ridge models trained on those clusters, and this has
damaged the performance of the overall model.

6 Conclusions and Future Work

This paper tries to design the best-performing model for predicting the Airbnb
prices based on a limited set of features including property specifications, owner
information, and customer reviews on the listings. Machine learning techniques
including linear regression, tree-based models, SVR, and neural networks along
with feature importance analyses are used to achieve the best results in terms of
Mean Squared Error, Mean Absolute Error, and R2 score. The initial experimen-
tation with the baseline model proved that the abundance of features leads to
high variance and weak performance of the model on the validation set compared
to the train set. Lasso-based feature importance analysis reduced the variance
and using advanced models such as SVR and neural networks resulted in higher
R2 score for both the validation and test sets. Among the models tested, Support
Vector Regression (SVR) performed the best and produced an R2 score of 69%
and a MSE of 0.147 (defined on ln(price)) on the test set. This level of accuracy
is a promising outcome given the heterogeneity of the dataset and the involved
hidden factors and interactive terms, including the personal characteristics of
the owners, which were impossible to consider.

Future work can (i) study other feature selection schemes such as Random
Forest feature importance and correlation-based feature selection [7], (ii) further
experiment with neural network architectures and use different machine learning
models (e.g., [2,4,6,11,20]) (iii) use specialized hardware to boost the machine
learning and deep learning models already used (e.g., [13,21,26]), and (iv) get
more training examples from other hospitality services such as VRBO to boost
the performance of K-means clustering with Ridge Regression model, in par-
ticular. Also, the sentiment analysis can be improved in future studies by, e.g.,
weighing the more recent reviews more than the dated ones, and including in
the training features other metrics in addition to the average sentiment score for
each listing.

A Appendix

List of features selected using p-value importance method (the last 6 feature
names are those of one-hot vectors):

‘longitude’, ‘accommodates’, ‘bathrooms’, ‘bedrooms’, ‘beds’, ‘security
deposit’, ‘cleaning fee’, ‘guests included’, ‘Cable TV’, ‘Dryer’, ‘Washer’, ‘Fam-
ily/kid friendly’, ‘Gym’, ‘Elevator’, ‘Entire home/apt’, ‘Private room’, ‘Brook-
lyn’, ‘Manhattan’, ‘Brooklyn.1’, ‘New York’, ‘Chelsea’, ‘Midtown’.
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Abstract. Sentiment analysis as a sub-field of natural language pro-
cessing has received increased attention in the past decade enabling
organisations to more effectively manage their reputation through online
media monitoring. Many drivers impact reputation, however, this thesis
focuses only the aspect of financial performance and explores the gap
with regards to financial sentiment analysis in a South African context.
Results showed that pre-trained sentiment analysers are least effective
for this task and that traditional lexicon-based and machine learning
approaches are best suited to predict financial sentiment of news arti-
cles. The evaluated methods produced accuracies of 84%–94%. The pre-
dicted sentiments correlated quite well with share price and highlighted
the potential use of sentiment as an indicator of financial performance.
A main contribution of the study was updating an existing sentiment
dictionary for financial sentiment analysis. Model generalisation was less
acceptable due to the limited amount of training data used. Future work
includes expanding the data set to improve general usability and con-
tribute to an open-source financial sentiment analyser for South African
data.

Keywords: Financial sentiment analysis · Natural language
processing · Corporate reputation · Share price

1 Introduction

Big corporate organisations produce vast amounts of textual information in the
form of official financial and non-financial reports, media releases and trading
statements. The communication strategy, and hence perception, of an organisa-
tion directly impacts it’s reputation. One of the industry accepted measures of
reputation, the RepTrak Score1, takes into account seven drivers of reputation:
products and services, innovation, workplace, citizenship, governance, leadership
and performance. The latter is a measure of the financial health of an organisa-
tion.

1 https://www.reptrak.com/reputation-intelligence/what-is-it/.
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In the past, historic accounting information formed the basis for financial
performance prediction, evolving from statistical models to more sophisticated
machine learning models [3]. Subsequent research ventured into the field of quali-
tative measures such as textual analysis to predict performance [13]. More recent
research shows that there is promise in correlating sentiment with financial per-
formance in order to make future predictions [3,7,13,18].

The justification for this study is rooted firstly in the evidence that there is a
financial value linked to the reputation of an organisation [12,23]. An improve-
ment in reputation can have in the order of a 6% improvement in the company
bottom-line [12]. As a result, reputation risk should form a key component of
overall corporate strategy [23].

A further motivation for this study stems from identifying a gap in the South
African context with regards to financial sentiment analysis using natural lan-
guage processing (NLP) techniques. Even though many sentiment analysers are
freely available, these models were developed within a given context and relevant
to a specific domain and geographical region.

Based on the identified problem and motivation, the following research ques-
tions were identified: What NLP techniques are required to successfully determine
the sentiment of financial communication in a South African context? ; Is there
a correlation between the sentiment of financial news and company performance
as indicated by share price? ; How effectively can a narrower sentiment predic-
tion model be applied to a broader scope of finance-related information? The
study only focuses on formal communication channels in the form of online news
articles, specifically excluding social media.

2 Sentiment Analysis and Opinion Mining

The terms sentiment analysis and opinion mining are often used interchangeably.
The first mention of public opinion analysis dates back to post-World War II and
has been one of the fastest developing areas in the last decade. It involves using
natural language processing (NLP) techniques to extract and classify subjective
information expressed through opinions or through detecting the intended atti-
tude [15,21]. It has been one of the fastest developing areas in the last decade,
growing from simple online product reviews to analysing the sentiment from
various online platforms such as social media and extending the application
to predicting stock markets, tracking polls during elections and disaster man-
agement [15]. Research highlighted the following three categories of sentiment
analysis:

Open-Source Pre-trained Sentiment Analysers. The TextBlob library
in Python is a simple rule-based sentiment analyser that provides the average
sentiment (excluding neutral words) of a text string2. VADER3 is another rule-
based sentiment analyser specifically trained on social media texts and gener-

2 https://textblob.readthedocs.io/en/dev/.
3 Valence Aware Dictionary for sEntiment Reasoning.

https://textblob.readthedocs.io/en/dev/
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alises quite well across contexts/domains compared with other sentiment anal-
ysers [5]. This analyser outperforms TextBlob when predicting sentiment on
social media texts [9]. Some of the main reasons are that it takes into account
emoticons, capitalization, slang and exclamation marks.

A Simple Dictionary-Based Approach. This method typically uses a dic-
tionary of words/phrases either manually created or automatically generated.

Custom-Built Predictive Models Using Machine Learning. The main
techniques generally used involve either 1) traditional models or 2) deep learning
models [2]. These are supervised machine learning models and required data
sets to be labeled. The traditional models are typically Naive Bayes, logistic
regression and support vector machines.

Some of the main challenges in sentiment analysis are language dependency,
domain specificity, nature of the topic, negation and the availability of labeled
training data [4,21]. A further challenge in opinion mining from user generated
content is to acknowledge the importance of text pre-processing to improve the
quality and usability thereof [20].

3 Financial Sentiment Analysis

3.1 Exploiting Typical Financial Headline Structure

A potential way to determine the sentiment of a financial title was explored by
introducing the concept that ±30% of such titles follow a hinge structure [24].
The investigation suggested that the hinge, which is typically a word such as
as, amid, after , splits the sentence into two parts, both parts carrying the
same sentiment. If one therefore determines the sentiment of the first part of
the sentence, the overall sentiment is inferred. In Fig. 1, the top sentence aims
to explain this notion. However, the second sentence shows an example where
the part of the sentence following the hinge does not carry the same sentiment
as the first part.

Furthermore, it was argued that the verbs hold the key as sentiment carrying
words. It was identified, however, that using existing, labeled word lists may still
fall short since these lists were created using very domain-specific pieces of text.
For e.g. a word such as rise may be listed as positive based on prior usage,
however, its use in a new application may indicate it to be negative.

3.2 Existing Approaches for Financial Sentiment Analysis

Existing Popular Financial Sentiment Word Lists. For a lexicon-based
approach, a very popular domain-specific (i.e. financial) dictionary is the
Loughran-McDonald sentiment word lists first created in 2009 [13]. The drive for
developing these lists stemmed from the authors showing that a more general
dictionary, in this case the H4N negative wordlist from the Harvard Psychologi-
cal Dictionary, misclassified the sentiment of financial words quite substantially.
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Fig. 1. Hinge concept of financial headlines.

They found that ∼75% of negative words in the aforementioned list are gener-
ally not negative in the financial domain. The sentiment categories are negative,
positive, uncertainty, weak modal, strong modal, litigious and constraining.

Predictive Models Using Machine Learning. As part of the 11th workshop
on Semantic Evaluation (SemEval-2017)4, one of the tasks was “Fine-Grained
Sentiment Analysis on Financial Microblogs and News”5 of which a sub-task
was sentiment analysis on news statements and headlines. It was a regression
problem and participants had to predict the sentiment in the range −1 to 1
(representing Negative to Positive). The training data provided was annotated
in this same range. Table 1 gives a summary of the results and methods for four
of the submissions.

Table 1. Summary of the performance of the various annotation methods.

Ranking Score1 Modelling approach

1 0.745 1D convolutional neural network
(using word embeddings from GloVe) [14]

4 0.732 Bidirectional Long Short-Term Memory
(with early stopping) [17]
∗Also looked at support vector regression

5 0.711 Ensemble using support vector regression
(and gradient boosting regression) [6]

8 0.695 Support vector regression
(with word embeddings and lexicon
features) [8]

1 Weighted cosine similarity score

The models used to address the sentiment analysis task range from traditional
machine learning to deep learning models with only a ±5% improvement from
the latter (Table 1). These results indicate that traditional machine learning
models can be used quite successfully for this task to set a baseline for further
evaluation. The prediction is still far better than random chance of 50%. An

4 https://alt.qcri.org/semeval2017/.
5 https://alt.qcri.org/semeval2017/task5/.

https://alt.qcri.org/semeval2017/
https://alt.qcri.org/semeval2017/task5/
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important observation was the need for domain-specific sentiment lexicons. The
challenge provided teams with labeled training data. However, a large number of
supervised learning activities start with unlabeled data and a substantial amount
of time and effort is required to properly annotate data sets

3.3 Related Work on Financial Sentiment Analysis in the South
African Context

Research produced a limited amount of South Africa-related scientific papers
on sentiment analysis as a sub-field of natural language processing. Even fewer
published results were available on specifically financial sentiment analysis in a
South African context.

In 2018, a study on using sentiment analysis to determine alternative indices
for tracking consumer confidence (as opposed to making use of surveys) showed
high correlation with the traditional consumer confidence indices [19]. These
indices are used to better understand current economic conditions as well as to
predict future economic activity.

Another study, although not necessarily financial sentiment analysis per se,
was on measuring the online sentiment of the major banks in South Africa [11].
The data source for this analysis was social media only. Machine learning models
were used for both detecting topics and analysing the sentiment of user-generated
comments relating to those topics. The main contribution the authors made was
to highlight the importance of human validation as part of the process to increase
accuracy and precision [11].

Based on the available research, it is deducted that a gap exists for researchers
and academics to expand and improve sentiment analysis of online media through
natural language processing, especially in the financial domain, in order to
increase the knowledge base and pool of technical solutions in the context of
South Africa.

4 Sentiment Correlation with Financial Performance

A statistical approach to understanding whether stock market prices follow
a trend with the sentiment from news articles relating to the stock/company
showed promising results [1]. The method was tested on ∼15 different compa-
nies. The study only considered a dictionary-based approach to calculate degrees
of positivity, negativity and neutrality. The results showed at 67% correlation
between sentiment and share price [1].

A second paper on predicting market trends using sentiment analysis included
a broader context through more diverse data [18]. The authors evaluated a pre-
dictive model using sentiment attitudes (i.e. Positive and Negative), sentiment
emotions (such as joy, anger) as well as common technical drivers of share price.
Granger-causality found that only sentiment emotions could potentially be useful
indicators [18].
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The findings highlight the complexity of share price prediction and the fact
that it is determined by a number of factors, of which sentiment could potentially
add value. The authors highlighted the need to better understand which stocks
are impacted by sentiment to determine to applicability of this proposed method
[18].

5 Method

A model development pipeline was designed to answer the research questions
and achieve the set objectives. This process flow is given in Fig. 2.

Fig. 2. Process flow for addressing the research questions and objectives.

The following sections give a brief overview of the steps in the model devel-
opment pipeline.

During the first phase, Data , various sources of publicly available textual
information was identified and collected. Relevant data from these sources were
extracted, cleaned and consolidated. The data sources used for model develop-
ment are listed in Sect. 6.

5.1 Topic Modelling for Data Filtering

Topic modelling was used to filter the data to specifically extract financial-related
documents. Term frequency–inverse document frequency (TF-IDF) was used to
determine the word vectors (based on full article content) as input to the topic
model. Non-Negative Matrix Factorization (NMF) was used.
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5.2 Annotation of Data

Labeling of the data set, comprising only of the financial documents (extracted
using topic modelling), was done on document headlines only using four inde-
pendent annotators. Due to the small size of the data set, the full set of financial
documents were labeled. Label options were Positive, Negative and Neutral.
The majority label was used as the ground truth sentiment for the relevant
documents.

The inter-annotator agreement was calculated using the AnnotationTask
class6 from NLTK in Python. Fleiss’ Kappa was used as the statistical measure
of inter-rater reliability [10].

5.3 Sentiment Prediction Model

Three sentiment prediction methods were evaluated, compared and the most
robust prediction model implemented as the final annotation model.

Existing Rule-Based Approaches: TextBlob and Vader Both TextBlob
and VADER were used to calculate the sentiment of document headlines to
understand the usability of pre-trained sentiment analysers on text from South
African finance-related articles. Both models predict sentiment as value between
−1 and 1 and it was assumed that predicted values between −0.05 and 0.05 are
Neutral .

A Simple Lexicon-Based Approach. For this analysis, the existing Loughran
and McDonald Sentiment Word Lists were used as basis [13]. These lists were
developed to overcome the fact that more general dictionaries often misclassify
financial texts, especially words perceived as negative in a day-to-day context.
The following three iterations were performed:

1. Experiment 1
Base dictionary as updated in 20187.

2. Experiment 2
Base dictionary (Loughran and McDonald Sentiment Word Lists) with added
synonyms (using NLTK’s Wordnet Interface8). These synonyms are given the
same sentiment.

3. Experiment 3
– Base dictionary (as for experiment 2) but without the addition of syn-

onyms for words in the “modal” lists.
– Manual addition and deletion of words based on the evaluation of a sample

of sentiment predictions from this update.

6 https://www.nltk.org/ modules/nltk/metrics/agreement.html.
7 https://sraf.nd.edu/textual-analysis/resources/.
8 https://www.nltk.org/howto/wordnet.html.

https://www.nltk.org/_modules/nltk/metrics/agreement.html
https://sraf.nd.edu/textual-analysis/resources/
https://www.nltk.org/howto/wordnet.html
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The concept of a hinge structure (Sect. 3.1) using the words as, but, amid,
after, ahead, while and despite was used. Where hinge words were not present
in headings, a “comma” was used as a hinge or alternatively the full title
was used. Individual words in article headings were lemmatized using multiple
lemmas i.e. adjectives, verbs and nouns to ensure maximum chance of matching
words in the developed dictionary.

Sentiment was assigned based on the first part of the title (where a hinge
was present) alternatively the full sentence was used. This method assumes the
sentiment is dictated by the first part, which could be slightly contradictory to
the initial hinge structure proposal (Sect. 3.1).

In the case where multiple sentiment-carrying words are present, the first
occurring Positive or Negative word was used as the sentiment of the head-
line (other sentiments were excluded in this round of the evaluation). Where
no sentiment-carrying words were present, the headline was labeled as ‘Not
detected’. This approach does not take into account context, however, this sim-
ple bag-of-words implementation to detect word sentiments was used for the
baseline model development.

Feature-Based Approach: XGBoost. A binary classifier was developed,
using a traditional machine learning approach, with Python’s implementation
of XGBoost (Extreme Gradient Boosting)9. It is a boosting algorithm based
on an ensemble of decision trees10.

The following typical cleaning and pre-processing steps were performed: tok-
enized text into words, converted words to lower case, expanded contractions
(e.g. replace can’t with can not), removed English stopwords, removed punc-
tuation and lemmatized the words using NLTK’s WordNetLemmatizer. Input
vectors to the model were then created for the processed document headlines
using term frequency inverse document frequency (TF-IDF).

Even though more advanced machine learning models have been used for
sentiment classification (Sect. 3.2), it was decided to only evaluate a more tra-
ditional machine learning model. The main reason being that the focus of the
study was to develop an annotation method in order to set a baseline after which
improvements can be investigated.

5.4 Correlation with Financial Performance

The predicted sentiments (from document headlines) and company financial per-
formance (as indicated by share price), over the same time period, were analysed
to observe whether patterns can be recognised. Multiple sentiments on a given
date were resolved by using the majority sentiment.

Since share price prediction is a complex task and impacted by various fac-
tors, it was decided to only illustrate whether a directional correlation can be

9 https://xgboost.readthedocs.io/en/latest/python/index.html.
10 https://www.datacamp.com/community/tutorials/xgboost-in-python.

https://xgboost.readthedocs.io/en/latest/python/index.html
https://www.datacamp.com/community/tutorials/xgboost-in-python
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observed. For future work, a statistical correlation can be investigated and poten-
tially include additional drivers known to impact a given stock price.

6 Data

The company identified for developing the financial sentiment prediction model
is Sasol11.

A variety of data sources were considered for model development and the
most relevant were non-official communication in the form of online news arti-
cles and Stock Exchange News Service reports, which are company announce-
ments that can have an affect on market movement. These are provided by the
Johannesburg Stock Exchange (JSE)12 and are publicly available13.

The above-mentioned data was collected for the period April/May 2015 -
April/May 2020. The final data set were made up of 7666 online news articles
and 168 SENS reports.

7 Model Development Results

7.1 Annotation of Data

Table 2 gives the sentiment distribution for the financial data set based on the
majority label from the annotators. The ‘None’ category was removed.

Table 2. Summary of the sentiment categories of the annotated data.

Sentiment Count Percentage

Positive 249 31%

Negative 419 52%

Neutral 141 17%

The financial document data set, after using topic modelling for filtering and
removing ‘None’ labeled documents, consisted of 808 articles (only 33 i.e. 4%
were SENS reports).

7.2 Sentiment Prediction Model

Rule-Based Approaches: TextBlob and Vader. The Loughran and McDon-
ald Sentiment Word Lists only consider sentiment-carrying words, therefore to
compare the various approaches only documents with Positive and Negative
ground truth sentiments were considered (a total of 668 articles). Table 3 shows

11 www.sasol.com.
12 https://www.jse.co.za/services/market-data/market-announcements.
13 https://www.sharedata.co.za.

www.sasol.com
https://www.jse.co.za/services/market-data/market-announcements
https://www.sharedata.co.za
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the confusion matrices for using TextBlob and Vader to predict sentiment on
document headlines. The overall accuracies were 19% and 51% respectively. The
high inaccuracies stem from the majority of headlines being predicted as Neu-
tral (i.e. in the range −0.05 to 0.05).

Table 3. Summary of the results using TextBlob and VADER on article headlines.

TextBlob VADER

Predicted Predicted

Negative Positive Negative Positive

Actual Negative 68 47 Negative 243 86

Positive 19 60 Positive 53 99

The superior performance of VADER as compared with TextBlob is con-
sistent with a previous study on their comparison (Sect. 2) [5]. Furthermore,
since VADER was trained on social media, the subpar performance on finan-
cial headlines is therefore not unexpected.

Lexicon-Based Approach. In Experiment 1, the original word lists (contain-
ing 4140 words) were used as is to determine a sentiment based on key words
according to hinge structure approach discussed in Sect. 3.1 to observe the base-
line accuracy. The method for assigning the sentiment to the headline is as
outlined in Sect. 5.3.

The goal of Experiment 2 was to update the word lists with synonyms (of
the words in the existing lists) and determine whether it improves prediction
accuracy. As part of this experiment, a short list of bi-grams were added based
on manual observation where one word was ambiguous (Table 4). The list is not
exhaustive and is to indicate the impact of expanding the sentiment dictionary.

Table 4. Bi-grams added to the sentiment dictionary.

Negative Positive

Record low New record

Record lows Record high

Back foot Record highs

Price halves Record production

On track

Thereafter in Experiment 3, random samples were evaluated to update the
dictionary from Experiment 2. It was noticed that some of the synonyms added
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resulted in incorrect predictions and had to be removed again. Also, the syn-
onyms added in this experiment excluded those for the “modal” word lists. Only
4 words were removed from the original dictionary: break, closed, closing and
despite. The final dictionary contains 9743 words.

It is recommended, however, that a more robust method be developed to
update the dictionary in future since this manual method does not necessarily
capture all the required words and may also have redundant words. Furthermore,
due to the small size of the data set, manual updates could be performed but
will not feasible for large data sets.

Table 5 gives the results for the 3 experiments and highlights the improve-
ment based on the manual dictionary update. After updating the dictionary,
the sentiment prediction accuracy improved by 47% compared with the original
word lists.

Table 5. Summary of the results of the simple dictionary-based approaches.

Sentiment Actual count Experiment 1 Experiment 2 Experiment 3

Count % Count % Count %

Positive 249 69 28% 123 49% 184 74%

Negative 419 180 43% 323 77% 379 90%

Overall 668 249 37% 446 67% 563 84%

The results from the various experiments highlight the need for not only
domain-specific sentiment prediction tools but also region-specific corpora.

The data set is named LM-SA-2020 representing Loughran and McDonald
Sentiment Word Lists for South Africa.

A future improvement is to assess the sentiment for sentences where multi-
ple sentiment-carrying words are present to evaluate the impact on sentiment
prediction accuracy.

From the above results it appears that a simple dictionary based method to
annotate the document headlines prove more accurate than pre-trained senti-
ment analysers.

Feature-Based Approach: XGBoost. For model training, 80% of the data
set (of the 668 documents) were used. The accuracy of prediction was 81%
±4.4%. The accuracy on the 20% unseen data was also 81%. Table 6 gives the
recall and F1-score on the full data set and includes the results for the other
approaches for comparison. The overall accuracy for the XGBoost model was
94% using all headlines.

Figure 3 shows the top 20 most important features of the XGBoost classifier.
The words flagged are interpretable and useful.

The results given in this section lead to the conclusion that an XGBoost
classifier as a simple traditional model performs very well for the given task and
is recommended to be used as the sentiment prediction model.
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Table 6. Summary of the performance of the various annotation methods.

Accuracy Recall F1-score

Pos Neg Pos Neg

Lexicon 84% 74% 90% 80% 89%

TextBlob 19% 24% 16% 34% 27%

Vader 51% 40% 58% 48% 68%

XGBoost 94% 86% 98% 91% 95%

Fig. 3. TF-IDF values as a function of occurrence.

For a potential future improvement, an approach that takes into account the
sequence of words in a sentence should be evaluated for e.g. a recurrent neural
network (RNN) such as a Long Short Term Memory (LSTM) with attention.

7.3 Sentiment Correlation with Financial Performance

In order to observe whether there is a noticeable trend between sentiment and
share price, a time frame of the most recent six months was used. Figure 4 shows
this trend. Periods A and B are periods where sentiment improved and was
reflected by share price. Similarly Period C stands out through a significant
amount of negative sentiments and a severe drop in share price.

The above results show promise that there are indeed periods where senti-
ment (from financial articles/documents) and share price correlate well.

An additional factor for consideration is the impact of lag when using share
price movement and it is recommended to be evaluated in future work.

It is also recommended to expand the sentiment prediction to include addi-
tional topics and observe the correlation with share price. An alternative is to
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Fig. 4. Sentiment prediction vs. share price for September 2019 – May 2020 using the
XGBoost binary classifier.

extract topics according to the seven key drivers that impact reputation (Sect. 1)
and apply weightings to an overall reputation score. Lastly, it is recommended
to explore using either more fine-grained categories or a continuous scale for
sentiment.

8 Model Generalisation

In order to understand how well the models generalise, it was required to use
the developed model pipeline on unseen data from a different organisation. For
this phase, data for the corporate organisation, Anglo American , was used.
The aim was to determine whether language use in financial articles (mostly
online news) follow the same pattern for different organisations. This will inform
whether such models can be implemented on a larger scale or whether it is
company-specific.

As per the pipeline (Sect. 5.3), the following steps to predict sentiment (on
headline or the first portion of a document) as well as to understand whether
sentiment correlates with financial performance, were performed:

1. Data collection and cleanup/pre-processing (a total of 1758 articles for the
period June 2018 – May 2020)

2. Filtering of data for financial documents with topic modelling (a total of 151
articles)

3. Sentiment prediction using document titles:
– Using the updated dictionary to identify sentiment-carrying keywords

(Sect. 7.2)
– Using the previously developed binary XGBoost classifier based on Sasol

data (without retraining) (Sect. 7.2)
4. Graphically represent daily aggregated sentiments and share price

Table 7 gives the predicted sentiments using the dictionary-based and the
XGBoost models.
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Table 7. Comparison of sentiment predictions.

Lexicon-based XGBoost

Count % Count %

Positive 49 32% 43 28%

Negative 74 49% 108 72%

Neutral 20 13% – –

Other 8 5% – –

Table 8. Comparison of sentiment predictions on Anglo American data.

Sentence XGBoost
classifier

Lexicon-
based

Aveng execs get R17.7m in bonuses - Moneyweb Negative Negative

Sharp (partial) recovery in share prices - Moneyweb Positive Positive

JSE tumbles as global growth fears spread | Fin24 Negative Negative

Anglo American replaces Deloitte with PwC as external
auditor after 20 years

Negative Litigious

Anglo says S. Africa’s Eskom a major risk as it mulls
Growth - Bloomberg

Negative Negative

Another major investor leaves the pebble mine | NRDC Negative Positive

Mining lobbies and the modern world: new issue of Mine
Magazine out now

Positive Positive

BHP approach to Anglo CEO signals end of Mackenzie
era is nearing

Negative Positive

JSE tracks global markets higher on improved wall
street data | Fin24

Positive Positive

Rand firms as dollar, stocks fall Negative Positive

Anglo American delivers 3.5-billion USD profit, declares
final dividend

Negative Neutral

Best mining stocks to buy in 2020 | The Motley fool Positive Positive

Rand firmer as dollar falls on rate cut bets Negative Positive

The new ministers in charge of the Amazon Positive Negative

Anglo American’s Cutifani not thinking of retirement
as plots coup de grâce - Miningmx

Negative Negative

Pressure persists for resources stocks | Fin24 Positive Negative

Markets WRAP: rand closes at R14.73/$ | Fin24 Negative Neutral

See the top performers on the JSE in 2018 so far Positive Litigious

Anglo American seeks to avert revolt over chief’s £14.6m
pay | Business News | Sky News

Negative Negative

Rand, stocks slip as investors await big Trump speech Negative Negative

From Table 7 it seems that the XGBoost classifier is more biased towards
negative sentiments whereas the dictionary-based approach appears more bal-
anced. There is only a 52% agreement between the two models. Since there is no
ground truth sentiment labels for the data, it was decided to manually evaluate
the predicted sentiments to provide a more informed view. Table 8 is an extract
of the headline sentiment predictions using a binary XGBoost classifier as well
as a dictionary-based approach.
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Fig. 5. Sentiment prediction using a dictionary-based approach compared with Anglo
American share price movement.

For a better understanding, TF-IDF vectors were determined for the Anglo
American document headlines and the vocabulary compared with the pre-
trained vocabulary. Only 29% of the words in this data set exists in the pre-
trained vocabulary.

From the manual inspection it is concluded that the dictionary-based app-
roach predict sentiments more accurately than the XGBoost classifier that was
developed using Sasol data.

Figure 5 shows the sentiment prediction and share price using a simple
dictionary-based approach to identify sentiment-carrying words. It can be seen
that there is an upward movement in share price corresponding to more positive
sentiments (post April 2020).

Based on the above findings it is surmised that a XGBoost classifier trained
on company-specific document titles may be too specific to extend to other
industries. However, this can be improved by increasing the size of the data set
to improve generalisation.

9 Conclusions and Future Work

Based on the findings it is concluded that natural language processing techniques
can be used to predict the sentiment of financial articles in the South African
context. Existing off-the-shelf sentiment analysers were evaluated and were found
to underperform in predicting sentiment of South African finance-related articles
with accuracies just above 50%. Custom models using a simple lexicon-based
approach or traditional machine learning such as a binary XGBoost classifier are
well suited to the task and produced accuracies of 84% and 94% respectively.
These models use document titles only.

Furthermore, an analysis showed there is a good correlation between pre-
dicted sentiments and financial performance (as represented by share price).
The approach therefore shows promise, and with refinement, can be used to
identify at risk periods for an organisation.

Lastly, the sentiment prediction model was evaluated using data from a dif-
ferent company to test how well it generalises. Since there were no ground truth



200 M. Terblanche and V. Marivate

data labels for this, a manual evaluation on a sample of the results was done.
The dictionary-based approach the XGBoost classifier were compared and it was
concluded that the former was better suited in this case. Sentiment predictions
can be improved by increasing the size of the data set used in model devel-
opment. Despite these shortcomings, a correlation between predicted sentiment
and share price was still observed for certain periods. This substantiates the fact
that the method has promise.

The main contributions made by this study are as follows: Developed an
updated sentiment dictionary suitable for financial articles (the LM-SA-2020
data set and the accompanying data statement are publicly available) [22].; Set-
ting the foundation for expanding the work to include a broader sentiment pre-
diction model that takes into account various topics and their contribution to
overall sentiment as an indication of company reputation.; Progress towards an
open-source library for financial sentiment analysis developed on South African
data.

The following are some of the main recommendations for future work: A
more sophisticated, streamlined process to update/expand the new data set -
LM-SA-2020 .; Improve the model generalisation capability by increasing the
size of the data set.; Investigate the impact of share price movement lag on the
correlation with sentiment and enhance the understanding on whether there is
a causal relationship between sentiment and financial performance.; Expand the
sentiment prediction model to include additional topics (over and above financial
documents).; Publish an open-source financial sentiment analysis tool that can
be used on South African data.; Evaluate the performance of deep learning
models - a very recent study indicated that transformers outperformed other
sentiment analysis approaches and models in the domain of finance. It therefore
warrants further investigation for possible application to this paper [16].
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Abstract. In this article we discuss a novel utility metrics for the evalu-
ation of AI-based decision support systems, which is based on the users’
perceptions of the relevance of, and risks associated with, the validation
cases. We discuss the relationship between the proposed metric and other
previous proposals in the specialist literature; in particular, we show that
our metric generalizes the well-known Net Benefit. More in general, we
make the point for having utility as the prime dimension to optimize
machine learning models in critical domains, like the medical one, and
to evaluate their potential impact on real-world practices.

Keywords: Utility · Validation · Medical machine learning · Decision
support

1 Introduction

Interest in medical AI has grown markedly in the last few years, with a grow-
ing number of studies showing how Machine Learning models can achieve per-
formance on par with our clinicians [11,13] in some diagnostic tasks. However,
most of these studies were performed in controlled settings, while still few studies
have shown significant effects in real practice. In this context, the use of reliable
metrics is of paramount importance, as these could be used by both vendors
and certification bodies to attest the validity of the performance of applications
based on ML [3].

Traditional error-based metrics, such as accuracy or AUC, are affected
by different types of bias [5,6], mainly due to their susceptibility to label
imbalance [16], and are thus not adequate for the above mentioned purpose.
Although utility-based [1,10,17] or balanced error-based metrics [2,4,5] address
some of these biases, also these metrics ignore other significant and contex-
tual aspects [12]. In this article, we attempt to address these shortcomings by
proposing a new utility-based metric, which we call weighted utility. This metric
generalizes existing efforts by taking into account variations in the impact and
relevance of the individual cases on which the ML-based system is trained and
evaluated. Finally, we will illustrate the application of our metric in a real-life
user study in the field of diagnostic radiology.
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2 Methods

2.1 Weighted Utility Metrics

In this Section, we describe the proposed utility metric and we derive its rela-
tionship with other existing utility metrics.

Let S = 〈(x1, y1), ..., (xm, ym)〉 be a dataset where xi ∈ X is an instance and
yi ∈ {0, 1} is the associated target label (thus, we consider only binary classifica-
tion problems): generally, we associate normality with class 0, and abnormality
(that is presence of disease or treatment required) with class 1.

We assume that the evaluated ML model h provides, for each xi a proba-
bilistic score; in particular, with h(xi) we denote the probability score that h
assigns, for instance xi, to the positive class (that is h(xi) = P (yi = 1|xi, h)).

Let r : X �→ [0, 1] be a relevance function: this function defines, for each
instance xi, “how important it is that the model h correctly classifies xi”. We
note that relevance could represent multiple properties of instance xi, for exam-
ple its complexity or its rarity: we will discuss this aspect further in Sect. 3.

Let τ : X �→ [0, 1] be a probability threshold, which, for instance x, defines the
threshold τ(x) at which one should be maximally undecided between assigning
any of the 2 target labels to x. Thus, a probability score h(x) such that h(x) ≥
τ(x) should be interpreted as evidence towards the positive class, while the
opposite case (i.e. h(x) < τ(x)) as evidence towards the negative class.

Then the weighted utility metrics for dataset S and model h is defined as:

wU(τ, r, S, h) =
1

r(Pos)

∑

xi:yi=1

r(xi) · 1h(xi)≥τ(xi) (1)

− 1
r(Pos)

∑

xi:yi=0

r(xi) · τ(xi)
1 − τ(xi)

1h(xi)≥τ(xi). (2)

In what follows, we give an informal explanation of the above expression.
We propose to see utility as the difference between the weighted true positive
rate and the weighted false positive rate. That is, intuitively a decision sup-
port is useful if the number of times it is right in detecting a problem is higher
than the number of times it is wrong so. The value of our proposal lies in the
concept of weight : true positive cases are weighted for their (case-wise) rele-
vance (r(xi)), e.g., complexity and difficulty to detect, as this aspect is perceived
by the ground-truth raters. The same logic applies also to the ‘false positive’
part of the equation; however, to that respect we also consider the risk (i.e.,
impact, negative importance) associated with giving a wrong advice for posi-
tivity (that is in regard to actually negative cases), like e.g., over-diagnosis and
over-treatment (τ). The wU metric allows to make all these considerations at
the level of single instances: this obviously encompasses the more general case,
when the same weights (relevance and positivity risk) are constantly assigned to
all of the instances.
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Next, we show that our the wU metric represents a natural generalization of
the (standardized) Net Benefit. This is defined as [17]:

NB(τ) = TPRτ ∗ π − (1 − π) ∗ τ

1 − τ
FPRτ sNB(τ) =

NB(τ)
π

(3)

where NB(τ) is the Net Benefit and π is the proportion of positive cases in S. In
the following derivations, we assume that in the definition of wU we have γ = 1.

Theorem 1. Let, for each x, τ(x) = τ̃ (where τ̃ is a constant) and r1(x) = 1.
Then wU(τ̃ , r1) = sNB(τ̃) = NB(τ)

π

Proof. Under the assumptions in the statement it holds that:

wU(τ̃ , r1) =
|{xi ∈ S : yi = 1 ∧ s(x) ≥ τ̃}|

|{xi ∈ S : yi = 1}| −
τ̃

1−τ̃ |{xi ∈ S : yi = 0 ∧ s(x) ≥ τ̃}|
|{xi ∈ S : yi = 1}|

(4)

= TPRτ̃ − 1
π

τ̃

1 − τ̃
FPτ̃ = TPRτ̃ − 1 − π

π

τ̃

1 − τ̃
FPRτ̃ = sNB(τ̃)

(5)

2.2 Experimental Evaluation

In this Section, we report on a user-based study that we conducted in order to
evaluate the viability of the proposed metrics. To this purpose, we involved 13
board-certified radiologists from several Italian hospitals, asking them to anno-
tate a sample of 417 cases randomly extracted from the MRNet dataset1. This
dataset encompasses 1,370 knee MRI exams performed at the Stanford Univer-
sity Medical Center (with 81% abnormal exams, and in particular 319 Anterior
Cruciate Ligament (ACL) tears and 508 meniscal tears).

In the study we used an online questionnaire platform (LimeSurvey, version
3.182) and invited the participants by personal email. As anticipated above, we
involved 13 radiologists in a diagnostic task where they were called to discrim-
inate the MRNet cases that were positive, and indicate whether these regarded
either ACL or meniscal tears: in particular they had to say whether the presented
imaging presented a case of ACL tear (yes/no), and/or a meniscal tear (yes/no).
The radiologists were also requested to assess each case in terms of complexity
on a 5-level ordinal scale, and the confidence with which they classified the case,
on a 6-level ordinal scale. These subjective ratings were then used to define the
case-wise relevance function r and the case-wise probability threshold τ .

In order to illustrate the application of the wU metric, we developed a Deep
Learning classification model, trained to perform a binary classification task:
more precisely, we trained an InceptionV3 Convolutional Neural Network model

1 https://stanfordmlgroup.github.io/competitions/mrnet/.
2 https://www.limesurvey.org/.

https://stanfordmlgroup.github.io/competitions/mrnet/
https://www.limesurvey.org/
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to discriminate between abnormal cases (that is, cases affected by either a menis-
cal or ACL tear) and normal cases. The training set encompassed a subset of
the MRI exams taken from the MRNet dataset that were not given to the radi-
ologists. To this purpose, we randomly selected a subset of 600 individual exams
so to obtain a class balanced training set. Each of the images in the training was
composed of a variable number of images, depending on the number of slices
in the MRI examination. The ML model was then evaluated on the set of 417
images that were given to the radiologists, which was completely disjoint from
the training set (to avoid overfitting). Model evaluation was performed using
different metrics, namely accuracy, balanced accuracy, AUROC, (standardized)
net benefit (at different threshold values), and the wU.

As regards the relevance function, we simply used the average reported com-
plexity rating, for each case, maximum normalized so to obtain numbers in [0, 1].
As regards the case-wise τ values, we considered three different definitions (we
will discuss the semantics behind these three definitions in Sect. 3):

– τconfidence(xi) = 1
n◦ raters

(∑
r rater:r(xi)=1

cr(xi)+1
2

+
∑

r rater:r(xi)=0
1−cr(xi)

2

)
;

– τpersuasion(xi) = 1
n◦ raters

(∑
r rater:r(xi)=0

cr(xi)+1
2

+
∑

r rater:r(xi)=1
1−cr(xi)

2

)
;

– τauto−bias(xi) =

{
d(xi)

2
|{r rater : r(xi) = 1}| ≥ |{r rater : r(xi) = 0}|

2−d(xi)
2

otherwise

where r(xi) ∈ {0, 1} is the label annotation reported by rater r for case xi,
cr(xi) ∈ [0, 1] is the (normalized) confidence reported by rater r for their anno-
tation of case xi, and d(xi) is the disagreement rate. In short, τconfidence, for
an instance to be classified as positive, requires the model’s probability score to
be at least as high as the average of the probabilities expressed by the raters;
τpersuasion requires the model’s probability score to be higher than the probabil-
ity that the raters assigned to the negative class; while for τauto−bias the required
probability score is defined based on the disagreement among the raters.

3 Results and Discussion

The performance of the raters and of the AI model, in the ROC space, is reported
in Fig. 1. The average perceived case complexity was 0.70 (95% C.I [0.69, 0.71],
IQR [0.63, 0.77]), the average τconfidence was 0.72 (95% C.I. [0.71, 0.74], IQR
[0.61, 0.87]), the average τpersuasion was 0.55 (95% C.I. [0.52, 0.58], IQR [0.17,
0.85]), and the average τauto−bias was 0.54 (95% C.I [0.51, 0.58], IQR [0.14,
0.86]). The performance of the AI model, in terms of wU (with three different
settings of the τ function), and other metrics, is reported in Fig. 2.

Commenting the results, the first observation regards the large differences
observed among the different values of the proposed wU metrics, computed
according to the three definitions of τ reported in Sect. 2: indeed, we can
see that wU(τconfidence) was largely smaller than both wU(τauto−bias) and
wU(τpersuasion), while these latter two were more similar. These numerical dif-
ferences reflect different semantics underlying the three definitions of τ :
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Fig. 1. Performance of the raters and of the AI model, in the ROC space

– τconfidence acts as a threshold for the probability score of the model: for the
classification provided by the ML model to be considered useful, the model’s
confidence should be at least as high the rater’s one.

– On the other hand, the definition of τpersuasion reflects the fact that to per-
suade a human rater in changing its opinion, the ML model should be very
confident in the advice it provides;

– Finally, τauto−bias is more directly related to risk and to the notion of automa-
tion bias [8].

Obviously, the proposed approaches to convert the qualitative perceptions of
the readers into probability thresholds are only one of the possible approaches to
define the τ function in the formulation of the wU . Further research should be
devoted at comparing alternative approaches, compared with the ordinal scales
adopted in this paper.

As a second observation, we compare the (standardized) Net Benefit and the
wU . In Sect. 2, we proved that wU provides a generalization of the Net Benefit
by allowing the probability threshold τ to vary with the individual cases, and by
attaching a degree of relevance to each individual case. The first factor allows to
evaluate the costs and benefits of treatment vs non-treatment on an individual,
case-wise basis. This provides the wU with an increased level of flexibility, as it
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Fig. 2. The performance of the AI model, in terms of the three different versions of
wU , and a collection of other pertinent metrics.

allows to differentiate between two cases that, although identical in terms of con-
dition (e.g. same disease and/or stadiation), still differ with respect to the risks
of undergoing treatment. The second term, on the other hand, allows to capture
case-wise differences in the perceived importance of correctly identifying a case
with respect to others. In this paper we focused on complexity as a dimension
to define relevance; however, other dimensions could be of interest as well: some
examples include rarity, severity, impact (if the condition gets undetected), or
any combination thereof [15]. In any case, in regard to the mathematical formu-
lation of wU , the relevance factor is an agnostic factor that we introduced with
the simple aim of capturing the central notion of relative importance.

As a consequence of this increased flexibility, we can easily notice in our
exemplificatory study that in no case (i.e. for no risk threshold in the definition
of the standardized Net Benefit, and for no definition of the τ in the wU) the
wU and the Net Benefit were exactly the same. However, the Net Benefit at
τ = 0.5, and the wU based on either τpersuasion or τauto−bias were quite similar
(i.e. 0.85 vs 0.90 and 0.89, respectively): this can be explained by noting that
both τpersuasion and τauto−bias had an average value close to 0.5 (albeit with a
relatively large IQR), and the case complexity was stable across the dataset.

Similar comments can be made with respect to the comparison between wU
and the considered error rate-based metrics: since the distribution of relevance
was significantly skewed towards the positive class (0.75 ± 0.01 vs 0.66 ± 0.01),
both τpersuasion and τauto−bias were slightly skewed toward Sensitivity rather
than Specificity. In this latter respect, we believe that the relationship between
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the wU and other error-rate based metrics, including the Matthews Correlation
Coefficient [6] and the deep ROC analysis approach [4], should be further inves-
tigated, together with the theoretical properties of wU as an evaluation metrics,
e.g. with respect to the mathematical framework proposed in [14].

The investigation of such empirical and theoretical properties, in turn, can be
important for the development of regulatory standards and tools to evaluate and
validate ML model for use in the real world. Indeed, despite the abundance of
metrics, reaching consensus on what measure should be used, even in a specific
application domain like medicine, has been so far an oft-neglected objective,
even within recent recommendations developed for the reporting of prediction
models, like TRIPOD [7] or MINIMAR [9]. With this respect, further research
should also be devoted at establishing appropriate threshold values for claiming
validity (so-called minimum acceptable accuracy [15]).

Finally, let us consider other possible uses of our proposed metric. Perfor-
mance metrics can be used for either model training or model selection (equiva-
lently, hyper-parameter optimization). In regard to the latter use case, one could
envision the application of utility-based metrics as target metrics for hyper-
parameter optimization, so as to represent more clearly the costs and benefits
involved in the application of the ML model to be trained: with this respect,
the use of wU would allow to more naturally capture the characteristics of the
considered cases and the perceptions of the involved actors. By contrast, in
the case of model training, it is noteworthy that neither error rate-based nor
utility-based metrics are typically used as an optimization target. In their place,
so-called surrogate metrics are typically used. Therefore, we believe that further
research should be aimed at the development of appropriate surrogates for wU .

4 Conclusions

In this paper, we introduced a novel utility metrics, called weighted Utility (wU)
and discussed its relationships with other existing metrics. The potentiality of
the metric was demonstrated proving that it generalizes state-of-the-art metrics
like the Net Benefit and Standardized Net Benefit. The wU metrics allows the
description of the same information provided by the above metrics, but it is
also informed by additional information of the whole clinical process, including
information about the individual cases and the perceptions of raters involved in
the annotation and decision making process, when compared with other exist-
ing metrics. We believe this makes wU measures more indicative of the real
usefulness of a classification model when it comes to considering the skills and
expectations of the intended users and the kind of decisions these are called to
make. Further research is needed to validate this claim.
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Abstract. The coronavirus disease 2019 (COVID-19) caused by a novel coron-
avirus, turned into a pandemic and raised a serious concern to the global health-
care system. The reverse transcription polymerase chain reaction (RT-PCR) is
the most widely used diagnostic tool to detect COVID-19. However, this test is
time consuming and subject to availability of the test kits during a crisis. An auto-
matedmethod of screening chest x-ray images using convolutional neural network
(CNN) Transfer Learning approach has been proposed as a relatively fast and cost-
effective, decision support tool to detect pulmonary pathology due to COVID-19.
In this study we have used Kaggle dataset with chest x-ray images of normal
and pneumonia cases. We have added COVID-19 x-ray images from 5 different
open-source datasets. The images were pre-processed based on the position of
radiography images and greyscale was applied and subsequently the images were
used for training. After consolidation, COVID-19 images comprised only 5% of
the dataset. To address the class imbalance, we have used dynamic image aug-
mentation technique to reduce the bias. We have then explored custom CNN and
VGG-16, InceptionNet-V3, MobileNet-V2, ResNet-50, and DarkNet-53 transfer
learning approaches to classify COVID-19, other pneumonia and normal x-ray
images and compared their performances. So far, we have achieved the best score
of F1 score 0.95, sensitivity 95% and specificity 95% for COVID-19 class with
Darknet-53 feature extractor. Darknet-53 classifier is part of the state-of-the-art
object detection algorithmnamedYolo-v3.Wehave also done aMcNemar-Bowker
post-hoc test to compare Darknet-53 performance with the next best ResNet-50.
This test suggests that Darknet-53 is significantly better skilled than ResNet-50 in
differentiating COVID-19 from other pneumonia in chest x-ray images.
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1 Introduction

More than 1 million adults are hospitalized with pneumonia and around 50,000 die from
the disease every year in the US alone. Chest X-rays are currently the best available
method for diagnosing pneumonia, playing a crucial role in clinical care [8] and epi-
demiological studies [7]. However, detecting pneumonia in chest X-rays is a challenging
task that relies on the availability of expert radiologists. X-rays produced worldwide are
analyzed visually on scan-by-scan basis. It requires a relatively high degree of accuracy.
It is time-consuming, expensive and is prone to manual bias or wrong interpretation.
Errors and delays in these diagnostic methods still contribute to a large number of
patient deaths in hospitals, making these errors one of the largest causes of death along
with heart disease and cancer. Detecting pneumonia in chest radiography [21] can be
difficult for radiologists. The appearance of pneumonia in X-ray images is often vague,
can overlap with other diagnoses [28], and can mimic many other benign abnormalities.
These discrepancies cause considerable variability among radiologists in the diagnosis of
pneumonia. Deep learning is a machine learning technique that teaches computers to do
what comes naturally to humans: learn by example. In deep learning, a computer model
learns to perform classification tasks directly from images, text, or sound. Deep learning
models can achieve state-of-the-art accuracy, sometimes exceeding human-level perfor-
mance [26]. Models are trained by using a large set of labeled data and neural network
architectures that contain many layers. Convolutional Neural Network (ConvNet/CNN)
[3, 27] is a Deep Learning Algorithm which could absorb an entire image, and assign
importance (learnable weights and biases) to numerous features inside the image and
have the ability to distinguish one from the other. CNN is capable of correctly catching
the Spatial and Temporal dependencies in an image through the use of learnable filters.
Due to the reduced number of parameters involved and the reusability of weights, this
architecture provides superior fitting to the image dataset. In other words, the network
may be trained to better recognise the image’s sophistication. When compared to other
classification algorithms, the amount of pre-processing required by a CNN is signifi-
cantly less. Prior to the CNN the traditional methods for image classification had to do
a lot of hand engineered feature engineering and also based on the problem, the feature
engineering should be varied and it proved to be a time consuming and expensive app-
roach and also heavily dependent on the expert’s domain knowledge. While filters are
hand-engineered in basic approaches, CNN can learn these filters/characteristics with
adequate training. The convolutional layers in this case act as feature extractors and then
the pooling layer reduces the dimensions [9]. The main advantage of the CNN especially
while processing the images are the reduced need for the feature Engineering.

COVID-19 is caused by a new type of coronavirus. The symptoms of the infection
include fever, cough, shortness of breath, and diarrhea. In more severe cases, COVID-
19 can cause pneumonia and even death. The COVID-19 pandemic continues to have
a devastating effect on the health and well-being of the global population. A critical
step in the fight against COVID-19 is effective screening of infected patients. The main
screeningmethod used for detecting COVID-19 cases is polymerase chain [1, 2] reaction
(PCR) testing, which can detect SARSCoV-2 RNA from respiratory specimens. While
PCR testing is the gold standard as it is highly sensitive, it is a very time-consuming,
laborious, and complicated manual process that is in short supply. This is also a very
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risky procedure since the health care fraternity could come in direct contact with infected
people and get infected themselves. It was found in early studies that patients present
abnormalities in chest radiography images that are characteristic of those infected with
COVID-19. Motivated by this, a number of artificial intelligence (AI) systems based on
deep learning have been proposed and results have been shown to be quite promising in
terms of accuracy in detecting patients infected with COVID-19 using chest radiography
images [3]. These developed AI systems have been closed source and unavailable to the
research community for deeper understanding and extension, and unavailable for public
access and use. AI based diagnostic systems that can aid radiologists to more rapidly and
accurately interpret radiography images to detect COVID-19 cases is highly desired [12].
This method is also cost effective and contactless. Hence reduces the risk of infection
of health care fraternity.

1.1 Initial Goals

• To develop a solution based on CNN, which will classify the X-Ray images into:
Normal, Pneumonia or COVID-19

• Develop a model with: COVID-19 sensitivity ≥ 80% and specificity ≥ 80%.

As afirst step in this study after the pre-processing of images, the teamdesigned a cus-
tom CNN algorithm to do multi-class classification of pathology using Tensorflow 2.0.
The result obtained was sub-optimal with around 35% accuracy, which did not improve
even after tuning of network and hyperparameters. Hence team shifted towards CNN
based Transfer Learning methods and explored the following algorithms in sequence for
rest of the project namely: VGG-16 [20], InceptionNet-V3 [22], MobileNet-V2 [31],
ResNet-50 [23], and DarkNet-53 [10] based training on the consolidated data set. Also
added trainable fully connected layer (between 1–3 layers) to the respective Transfer
learning network and performed hyperparameter tuning for each algorithm.

2 Data Sources

Based on the above goal, open source datasets comprising of the Chest X-Ray images
and the respective metadata for Normal, Pneumonia and COVID-19 were acquired from
Kaggle, Cohen [5, 14] and other sources listed below:

The Normal and Pneumonia X-Rays have relatively equal distribution. However the
number of COVID-19 images are less leading a Data Imbalance problem. The X-Ray
data is restricted to very few geographies Ex – North America & Europe. All the input
images were of good quality 1024 pixels. The radiography images were taken in AP
(Anterior Posterior), PA(Posterior Anterior) and AP Supine positions which is ideal for
analyzing and training the chest pathology.

Refer Kaggle dataset [14] for Normal and Pneumonia [14]. The origin of the Kaggle
dataset is [15] COVID-19 dataset reference: [12, 16–18].
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3 Data Integration and Preprocessing

The below data pre-processing steps were followed on the X-Ray images before it was
consumed for modelling [6].

A) As a first step, using the metadata file from the respective source, only the following
conditions were selected for analysis. COVID-19, Normal, SARS, MERS, Strepto-
coccus, Klebsiella, Chlamydophila, Legionella, E.Coli, Lung Opacity. Other cases
are rejected.

B) Further to simplify the analysis, [SARS through Lung Opacity] conditions were
grouped as Pneumonia based on the advice of medical domain experts.

C) While studying X-Ray images with the help of Radiologists or machines, the posi-
tion of the X-Ray images becomes an important factor for learning. The quality
of information in the X-Ray varies based on the positions PA vs AP. PA is most
preferred in terms of Quality over AP, Lateral & Decubitus. The present algorithms
accept both PA and AP. However Lateral images and Decubitus are avoided for
analysis.

• AP – Anterior – Posterior (Back facing X-Ray film)
• PA – Posterior – Anterior (Chest facing X-Ray film)
• AP Supine – AP Sleeping with face upwards
• Decubitus - Decubitus means lying down; thus, this projection is made with the

patient lying on their side and the x-ray beam horizontal (parallel) to the floor.

D) Accordingly, only “PA”, “AP”, “AP Supine”, “AP semi erect”, “AP erect” type of
images are selected for analysis. Decubitus & Lateral images are not useful for
training and hence filtered out.

E) The images were converted to Gray scale in case they are in RGB or BGR format.
The image resolution and the channels are preserved as is.

F) The data was split into Train and Test data sets using the metadata file.

In this use case, the data is highly imbalanced for COVID-19 class due to lack of
certified X-Ray data. The other two classes namely : Pneumonia and Normal X-Rays are
relatively balanced. Hence, Data Augmentation methods need to be applied to ensure
that we obtain a generalized model.

3.1 Applying Transfer Learning for Classifying X-Ray Images

The following Transfer learning methods were applied on the processed data to classify
X-Ray images into Normal, Pneumonia and COVID-19.

1. VGGNet-16 using pre-trained ImageNet weights
2. ResNet-50 using pre-trained ImageNet weights
3. InceptionNet-V3 using pre-trained ImageNet weights
4. MobileNet-V2 using pre-trained ImageNet weights
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For each of these Transfer Learning networks, a trainable fully connected layer
(between 1–3 layers) to the respective Transfer learning network and performed hyper-
parameter tuning for each algorithm. The maximum overall accuracy reached was 91%.
The COVID-19 F1 score obtained was 0.82 (Table 1) ( Fig. 1).

Fig. 1. Comparison of test accuracy and F1-score for the x-ray dataset

Table 1. Performance comparison of transfer learning algorithms.

Input Image size = 448 pixels 

In the above experiments it is evident that ResNet-50 delivered the best score for
COVID-19 class. The ResNet-50 Residual block with ReLU activation provided the best
results.

The authors in the work [4] used DarkNet-19 Transfer Learning using Binary and
Multi-class classification for COVID-19 classification. The dataset used was limited –
500 Normal, 500 Pneumonia and 125 COVID-19 images for training and does not use
any type of image augmentation.

In our study we are using DarkNet-53 Transfer Learning network comprising of 53
Convolutional layers. The improvements upon its predecessor Darknet-19 include the
use of residual connections, as well as more layers. Our approach was to propose a
model which is reliable and robust compared to the studies done so far on COVID-19
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detection. Hence, In the proposed method, our training data set was relatively large,
comprising of 7966 normal, 5475 Pneumonia and 517 COVID-19 images. We took
advantage of the high resolution input images (with 448 pixels) for training. We con-
solidated COVID-19 datasets from 3 continents (North America, Europe & Asia) based
on the available sources. Even with this data consolidation, since the COVID-19 images
were relatively less compared to other 2 data sets, we used dynamic data augmentation
techniques before training. Some examples of the augmentation techniques included
rotation, applying zoom, width shift and height shift of existing images. The image aug-
mentation was applied dynamically at the time of training using the above mentioned
aspects. Deliberately, image brightness was avoided as this could manipulate the pathol-
ogy of the x-ray images. Also, image flip was avoided as the lung physiology would be
manipulated.

The test data comprised of 885 Normal, 594 Pneumonia and 100 COVID-19 images.

3.2 Improving Model Performance Using Darknet-53(Yolo-V3)

In order to improve the Classification metrics further, the team researched and explored
other classification and detection algorithms like YOLO-v3 [10]. Yolo-v3 uses DarkNet-
53[10] as the classification algorithm before detection of subjects. From the literature it
was evident that DarkNet-53 uses LeakyRelu for activations and provided much better
metrics on ImageNet [10].

Based on the intuition mentioned above, the team researched the open source for
Yolo-v3/DarkNet-53 TensorFlow implementations. Separating out the DarkNet-53 from
Yolo-v3 was an initial challenge. This was resolved by experimenting with a few open
source implementations of DarkNet-53 from GitHub [11]. The architecture was re-used
from the open source implementation. In the Yolo-v3 author’s website [32] DarkNet-
53 pre-trained ImageNet weights were available in CUDA format [19]. In addition
to extracting the architecture the second challenge was to convert the DarkNet-53
CUDA weights into TensorFlow compatible format. After converting the weights from
CUDA to TensorFlow compatible format, the weights were loaded into the DarkNet-53
architecture.

Team used the above two resources and performed tuning & tweaking of the source
code, to arrive at a reliable baseline of DarkNet-53 Transfer Learning architecture imple-
mentation loaded with ImageNet weights. Refer the architecture image derived from the
open source implementation using TensorFlow 2.0 (Fig. 2).

The team used the baseline DarkNet-53 architecture, added trainable fully connected
layers (between 1–3), appliedDynamic ImageAugmentation& performed hyper param-
eter tuning to do a series of ~25 tests using the raw image data. Eventually selected the
fully connected network and hyper parameters based on the best F1-score of COVID-19
class and best overall accuracy on test data.

The best model had approximately 42 million non-trainable parameters and 38K
trainable parameters with 2 fully connected dense layers and SGD optimizer with
learning rate of 1e-3 (Fig. 3).
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Fig. 2. DarkNet-53 architecture

DarkNet-53 feature extractor

Yolo-v3 detector

Fig. 3. DarkNet-53 feature extractor and Yolo-v3 detector

4 Results

Among all the Transfer Learning methods, DarkNet-53 which was so far only used for
Image Object Detection along with Yolo-v3 by the AI community, is now proven to
be very useful and accurate in the Medical X-Ray pattern classification. This model is
robust and reliable since it is trained on large data set using image augmentation. Using
DarkNet-53, the accuracy can vary for other tests (unseen data) between 94.5% to 96.2%
at 95% confidence interval.

This model is quite robust to different position of X-Rays as it is trained with AP,
PA, AP Supine type of radiography images. Lateral, Decubitus or CT images are not
supported by this model.

These results were obtained by changing the images to grey scale. Due to limitations
of the computing resources, the image resolution was changed from 1024 × 1024 pixels
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Fig. 4. DarkNet-53 feature extractor and Yolo-v3 detector

to 448× 448 pixels. If the limitations of computing resource is addressed, then we could
train/test with higher resolution. This can lead to better accuracy and COVID F1-score.
Among various experiments we conducted, we observed that use of high resolution
images yields better results.

The model is trained with well distributed dataset of Pneumonia and Normal radio-
graphy images comprise 95% of training images. COVID-19 images comprises of 5%
of training images. Overall this dataset is highly imbalanced to classify COVID-19 class
reliably. This class imbalance is compensated using Dynamic Image Augmentation in
TensorFlow 2.0. With Image Augmentation the COVID-19 Precision & Recall achieved
is 95%. As and when more certified COVID-19 data set with the prescribed standards
is available, the accuracy, Precision and Recall can be further improved by training the
model with more COVID-19 Radiography images.

After achieving a jump in the accuracy from ResNet-50 to DarkNet-53, a number of
Hyperparameter Tuning experiments were conducted to find the best local optima for the
training loss. These experiments ranged from using fully connected layers (between 1–3
layers), applying BatchNormalization or Dropout in the Fully connected layers, using
different optimizers with different learning rate (Adam and SGD), applying different
dynamic image augmentation techniques and training with higher number of epochs.
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Table 2. Multi-class classification using DarkNet-53 model & Hyperparameter tuning.

As described in Table 2, Test ID #21 gave best results with fully connected network
comprising of 2 dense layers with SGD optimizer and learning rate of 1e-3. Along with
this Dynamic Image Augmentation was applied using TensorFlow 2.0 and the network
was trained with 20 epochs. The training was done on 13,958 radiology images (7966
normal, 5475 Pneumonia and 517 COVID-19) and testing was done on an out-of-sample
data set of 1579 radiology images (885 Normal, 594 Pneumonia and 100 COVID-19).

4.1 Model Performance Evaluation Using Statistical Methods

Classification of images using ImageNet transfer learning algorithms namely ResNet-50
and DarkNet-53 have yielded the best results in this scenario. Overall accuracy is much
better in Darknet-53 over Resnet-50 by ~4%. The COVID-19 F1-score is marginally
improved by 0.1 in Darknet-53 over Resnet-50. However It is difficult to exactly pinpoint
which classes are contributing significantly to these improvements. Hence we conducted
McNemar’s [29] paired test to verify if any class (Es) are contributing significantly to the
results. Since there is less control on the distribution of the test data, a non-parametric
test should be used in this scenario.

We are using statistical methods like McNemar-Bowker test statistic to compare the
model results specifically to determine themodel performance.McNemar’s test is paired
& non-parametric. The McNemar’s test is checking if the disagreements between two
cases match. McNemar’s test is a type of homogeneity test for contingency tables. In
terms of comparing two binary classification algorithms, the test is commenting whether
the two models disagree in the same way (or not). It does not commenting on whether
one model is more or less accurate or error prone than another. Further, Bowker’s test is
used to paired test with 3 or more categories.
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H0: Null Hypothesis – There is no difference in the error count between the 2 models.
Both models are performing in the same way.

H1: Alternate Hypothesis – There is significant difference in the errors between the 2
models (Table 3).

Table 3. Confusion matrix based on results from 2 models

Model 2 correct Model 2 incorrect

Model 1 correct Yes/Yes Yes/No

Model 1 incorrect No/Yes No/No

The McNemar’s test statistic is calculated as:
Statistic = (Yes/No – No/Yes)2/ (Yes/No + No/Yes)
The Table 4 confusion matrix/cross tab is arrived prior to the McNemar-Bowker test

based on the results of ResNet-50 and Darknet-53.

Table 4. Confusion matrix based on ResNet-50 and Darknet-53 results

Darknet-53

COVID-19 Normal Pneumonia All

ResNet-50 COVID-19 69 1 1 71

Normal 5 876 47 928

Pneumonia 17 46 517 580

All 91 923 565 1579

Table 5. McNemar-Bowker statistic based on Table 4

Category 1 Category 2 chi2
value

p-unadj. p-adj.

Normal Pneumonia 0.0108 0.9174 1

Normal COVID-19 2.6667 0.1025 0.3075

Pneumonia COVID-19 14.2222 0.0002 0.0006

Inference: p-value for ‘COVID-19’ versus ‘Pneumonia’ comparison is less than the
cut-off value of 0.05. Hence we will reject the null hypothesis. This signifies that errors
are dissimilar between Resnet-50 and Darknet-53.

Based on the results from Tables 4 and 5, it can be concluded that Darknet-53
is significantly contributing in differentiating between ‘Pneumonia’ and ‘COVID-19’
images. Hence, Darknet-53 model is better skilled and efficient than ResNet-50 model
in detecting COVID-19 cases which is our area of interest in this study.
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5 Discussion and Conclusion

AI based diagnostic systems that can aid radiologists to more rapidly and accurately
interpret radiography images to detect COVID-19 cases is highly desired. This method
is also cost effective and contactless. Hence reduces the risk of infection among health
care fraternity. Since COVID-19 virus infects the lungs as the primary organ, this method
can help in detection of certain asymptomatic cases and early treatment can be started
to arrest the infection.

The Transfer Learning methods provide very accurate results in identifying the
pathology inX-Rays. This can be very good aid toRadiologists in confirming theCOVID
lung infection. This model can be used a Remote diagnostic tool (Ex: in places where
there are lack of expert Radiologists).

When we analysed the results of the experiments closely with different Transfer
Learning methods, we can infer that inclusion of residual blocks in ResNet-50 signifi-
cantly improves both accuracy (~3%) and F1-score weighted (~0.03) compared to our
experiments with InceptionNet-v3. With DarkNet-53, the overall accuracy (~4%) and
F1-Score weighted (~0.04) is further improved compared to ResNet-50. The important
aspect of this improvement can be attributed to Residual network block usage and usage
of Leaky Relu activation in the entire DarkNet-53 design. LeakyReLU is a variant of
the ReLU operation that is used to avoid neurons from dying. Unlike ReLU and sig-
moid activation functions, which have zero value in the negative part of their derivatives,
LeakyReLU features a tiny epsilon value to avoid the problem of dying neurons. This
is demonstrated in the loss graph in Fig. 4. We can infer that the vanishing gradients is
addressed effectively by use of LeakyReLU activations.

Hence, we can conclude that even with very less samples of COVID-19 X-Ray set
DarkNet-53 is able to detect the pathology accurately up to 95%. DarkNet-53 is very
robust and can be used for trials in the real-world pathology detection in X-Rays.

5.1 Future Directions

In order to reduce the bias, improve accuracy and also improve the robustness of the
model for use in real world scenarios and also in production, we need to include more
number of COVID Radiography images spread across multiple days of the infection.
Also, we need to include additional COVID data from more variety of data sources. At
present, only a small set of sample is used from SIRM [18] for Train and Test.

Including COVID images from variety of Geographies Ex: Africa, South America,
Australia etc. will help in reducing model bias and improve model generalization across
world’s prominent populations which are presently affected.

The present data set used in this paper do not have annotated bounding boxes or
segmentation to detect the affected areas in COVID-19 X-Rays. The data source [13]
contains the COVID-19 lung x-ray data with bounding boxes and segmentation infor-
mation. After detection of COVID-19 pathology, U-Net [25] can be used to do plot the
affected areas using bounding boxes or with segmentation areas. This will be of great
use to the medical fraternity to analyze the affected areas in lungs and provide targeted
treatment to affected patients.
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5.2 Limitations

This model is trained with only AP, PA, AP Supine type of radiography images. Lateral,
Decubitus X-Ray images are not supported. These images have to be filtered out as these
kind of images provide only Right or Left lung image which is not suitable for Machine
Learning. Further CT images are not supported by this model. A separate DarkNet-53
model needs to be built to detect COVID-19 using CT training samples.

Due to the nature of the COVID-19 virus, the infection spreads in lungs quite rapidly
across multiple days [24]. Unlike Pneumonia, the COVID infection in lungs across
multiple days, specifically from day-1 through day-10 is very significant among patients.
Hence the samples taken across multiple days will eventually prove to be very robust
in detecting the lung infection. In this study, the COVID-19 radiography images fed
during training is a mixture of lung images taken during early onset of COVID or late
onset of COVID. The distribution of these COVID X-Ray images is not annotated based
on patient’s day of infection (Ex: COVID day-1, day-2….day-10) when the X-Ray was
taken. Hence the model may fail to accurately detect COVID in early stages as there
may be very weak clues or low lung infection for the disease. In order to make the model
even more robust, COVID-19 lung x-ray data of patients spread across multiple days
will need to be fed during the training. This will provide the much needed data variety
to COVID images during training. This will also ensure during out-of-sample testing,
that the detection will be accurate.
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Abstract. This paper presents an investigation on the task of anomaly
detection for images of skin lesions. The goal is to provide a decision
support system with an extra filtering layer to inform users if a classi-
fier should not be used for a given sample. We tested anomaly detectors
based on autoencoders and three discrimination methods: feature vector
distance, replicator neural networks, and support vector data description
fine-tuning. Results show that neural-based detectors can perfectly dis-
criminate between skin lesions and open world images, but class discrim-
ination cannot easily be accomplished and requires further investigation.

Keywords: Skin cancer · Anomaly detection · Autoencoders ·
Replicator neural networks · SVDD

1 Introduction

Clinical decision support systems (CDSS) for skin cancer detection, based on
deep neural networks, have proven to be effective and in some cases surpass
human performances [1,2,9,14].

To foster research in this direction, from 2016 on, the International Society
for Digital Imaging of the Skin1 organizes the ISIC2 challenge for the devel-
opment of computer vision systems supporting clinical decision in the field of
skin lesions. The tasks considered in the past editions include classification [6,7],
lesion segmentation, and feature extraction [5].

The 2019 edition3 contained, as an implicit task, anomaly detection. The
training dataset provided for the ISIC 2019 challenge included images pertaining
to 8 classes of skin lesions. However, the test dataset contained also images
pertaining to none of those categories, named the unknown (UNK) class. In
other words, as the training set was providing material for 8 known classes, the
test phase asked for a classification into 9 classes (see Fig. 1).
1 https://isdis.org/.
2 https://www.isic-archive.com/.
3 https://challenge.isic-archive.com/landing/2019.
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Fig. 1. A sample for each of the nine classes in the ISIC 2019 dataset. From left to
right: Melanoma, Melanocytic nevus, Basal cell carcinoma, Actinic keratosis, Benign
keratosis, Dermatofibroma, Vascular lesion, and Squamous cell carcinoma, followed by
a sample of the test set clearly belonging to the UNK class.

Fig. 2. The classification chain based on the concatenation of an anomaly detector and
a standard classifier.

One approach to solve this problem would be to inject random pictures of
other known skin pathologies into the training, or random pictures from the
real world, and mark them as UNK. However, the choice of such extra training
images would be arbitrary and possibly not reflect the selection criteria used for
the preparation of the test set.

An alternative approach would be to chain two models: the first dedicated
to performing anomaly detection, followed by a classification model (see Fig. 2).
Hence, a new sample would be first filtered by the anomaly detector. If detected
as not-pertaining to any of the 8 classes, it would be marked as UNK, or continue
through the classification model otherwise.

In general, anomaly detection, in our approach also known as 1-class clas-
sification, is the task of discriminating if a given sample pertains to the same
distribution of a reference set. Such a pre-filtering strategy would help circum-
venting the critical limitation of classifiers, which are unable to output choices
beyond the closed-list of classes provided at training time.

Here, the purpose would be to enhance clinical decision support systems to
provide answers like “I cannot take a decision: this system was not prepared for
this kind of input image”. Another possible application would be of an automatic
filtering during the automated collection of images, for example, from the web.

Despite the potential advantages of anomaly detection in the field of skin
lesions, from the results of the ISIC 2019 challenge, it emerges that none of the
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participants was able to reach satisfactory specificity for the UNK class, with
some of the participants ignoring the problem as a whole.

Hence, in this paper, we report on a post-challenge investigation that we
conducted to measure the effectiveness of deep-learning-based anomaly detection
on skin lesion images.

From a survey on the ISIC 2019 reports, it looks like all of the participants
addressed the problem of anomaly detection through a statistical analysis of the
softmax output of their classifiers. The work we present here seems to be the
first one to tackle the problem of anomaly detection using deep neural networks
configured as autoencoders. Our results do not show major gains in classifica-
tion performance, i.e., discrimination methods based on feature vector distance,
Replicator Neural Networks, and Support Vector Data Description do not per-
form as good as they do on other domains. Nevertheless, we contribute with
several hints when dealing with anomaly detection for (skin lesion) images and
an investigation methodology that could be used as starting point for future
work in this field or related imaging task.

2 Related Work

Anomaly detection (aka 1-class classification, outlier detection, novelty detec-
tion) refers to the task of discriminating between samples pertaining to a refer-
ence target distribution and samples coming from whatever kind of other distri-
bution, and identify them as anomalies, or outliers. See Chandola et al. [3] for a
comprehensive review.

Anomaly detection presents distinct problem complexities compared to the
majority of analytical and learning problems. Pang et al. [20] discuss some unique
problem complexities like unknowness, heterogeneous anomaly classes, rarity and
class imbalance and the diverseness in the types of anomaly that results in largely
unsolved challenges.

The One-Class SVM [22] is a popular solution for anomaly detection based
on the SVM method. The drawback is that it doesn’t scale with the number of
features, and is thus not applicable to CNN-driven image classification, where
the number of features describing a sample before the softmax stage is above
1000.

When using CNN-based classificators, an approach that reaches state-of-
the-art performance comes from Lee et al. [17], who proposed a method for
detecting out of distribution (OOD) samples where class conditional Gaussian
distributions with respect to the features of the deep models are obtained under
Gaussian discriminant analysis. Then, the confidence score are obtained by using
the Mahalanobis distance metric. Their method considers both the final softmax
scores and the intermediate features of internal hidden layers.

In the context of dermatoscopy, Li et al. [18] proposed a non-parametric deep
isolation forest (DeepIF) as a modification of the method from Lee et al. [17] in
order to take into account the huge intra-class diversity of skin disease images.
With this approach they reach an average 0.71 ROC on intra-class discrimination
on the HAM10000 dataset [24].
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As a new approach, the tests reported in this paper use Replicator Neural
Networks [12], which are based on the training of an autoencoder on the target
set and a measurement of the reconstruction error between an input image and
the encoded-decoded output image. The hypothesis is that an autoencoder “spe-
cialized” in compressing and decompressing a certain type of images will show a
higher reconstruction error if applied to images never used during the training
phase.

Additionally, we test the effectiveness of the deep support vector data descrip-
tion (SVDD) technique proposed by Ruff et al. [21], who used neural-based
anomaly detectors on images of digits as well as on open space images. The
SVDD optimization technique is a post-training, fine-tuning technique increas-
ing the accuracy of the detection through an analysis of the internal feature
vector of the autoencoder.

A closer look at the results of the ISIC2019 challenge4 (see Table 1) denotes
that the classification for the UNK class was poor, and in some cases the problem
was ignored as a whole. For the UNK class, only four teams reached a sensitivity
above 0.1.

Table 1. Results of the top 10 performers of the ISIC2019 challenge. The Acc. column
refers to the Balanced Multiclass Accuracy (i.e. average sensitivity among all classes)
which is the main ranking metric of the challenge.

Team Acc. Ext.
data

UNK
acc.

UNK
sens.

UNK
spec.

UNK
AUC

DAISY lab 0.636 Yes 0.808 0.002 0.999 0.808

DysionAI 0.606 No 0.798 0.179 0.946 0.562

AImage lab 0.592 No 0.808 0.004 0.999 0.502

DermaCode 0.578 No 0.807 0.012 0.997 0.642

Nurithm labs 0.569 Yes 0.806 0.002 0.997 0.551

Torus actions 0.563 No 0.808 0.000 1.000 0.500

BIT deeper 0.558 No 0.729 0.390 0.810 0.705

SYSU-MIA-Group 0.557 No 0.801 0.272 0.920 0.600

MelanoNorm IITRopar 0.546 No 0.802 0.004 0.992 0.496

MH team 0.544 No 0.799 0.118 0.961 0.556

For example, the first in the rank (DAISYLab) [10], who reached a balanced
multiclass accuracy of 0.636, achieved only 0.002 sensitivity for the UNK class.
Their strategy was to train directly a classifier on 9 classes, injecting in the
training set a collection of 2334 images from other datasets, including healthy
skin.

Among the best performers MH.team (ranked 10th with accuracy 0.544)
performed a post-prediction analysis using the minimum, maximum and stan-
dard deviation of the softmax output of each sample. By cross-validating on 7
4 https://challenge.isic-archive.com/leaderboards/2019.

https://challenge.isic-archive.com/leaderboards/2019


Anomaly Detection for Skin Lesion Images 229

classes against the others (eight times), they manually selected the discrimation
thresholds. With this approach they reached 0.118 sensitivity for UNK.

DysionAI (ranked 2nd with 0.607 accuracy) achieved an UNK sensitivity of
0.179 by training as 9-class classification with 0 images for UNK class. During
prediction, they assign the input sample to UNK if its softmax probability is
greater than a threshold set to 0.35.

The SYSU-MIA-Group (8th with 0.557 accuracy) computed the entropy of
a softmax prediction on 8 classes. They interpret entropy as the inverse of con-
fidence when the classification network makes a prediction. If the confidence is
below a certain threshold, the sample is marked as UNK. The threshold was
manually set during internal tests by using two under-represented classes (AK
and VASC) as UNK class. With this approach they reached 0.272 sensitivity for
UNK.

Finally, the highest sensitivity for the UNK class (0.390) was achieved by the
BITDeeper team (7th with 0.557 accuracy). They trained a multi-class classi-
fier in parallel with a multi-label classifier (actually implemented via 8 binary
classifiers) on the 8 known classes. The output for the UNK class is computed
as a class-wise combination of the 8 softmax (multi-class) and the 8 sigmoid
(multi-label) outputs. However, the choice of the combination formula and its
parameter values is not explicitly motivated.

3 Method

The goal is to build an anomaly detection system that, given the image of a skin
lesion as input, outputs a binary decision stating whether the input pertains to
the target distribution, i.e., the same class of images on which the model was
trained (negative case), or it is an outlier (positive case).

Fig. 3. The autoencoder architecture used to train the anomaly detection model.
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As already introduced, we build an anomaly detection system based on a
deep convolutional neural network autoencoder. The configuration, training, and
testing procedures work as follows:

1. Configure. Figure 3 shows the general structure of an autoencoder. Our goal
is to configure an autoencoder based on a convolutional architecture composed
by a sequence Conv : [Dc :] F [: Dd] : Deconv, where F is a central dense
layer with the code or features of input images, while the (optional) Dc and
Dd are dense layers connecting the last convolution stage to F and the same
to the first deconvolution stage;

2. Train the autoencoder f using a target set Strain of m images, where f(x;w)
takes as input an image x and the encoder weights w and outputs another
image after encoding and decoding steps. The objective function for training
the autoencoder is:

min
W

1
m

m∑

i=1

‖f(xi;W ) − xi‖2 (1)

where xi ∈ Strain is an input image and W are the initial pre-trained parame-
ters (weights) of the deep autoencoder. In other words, the goal is to minimize
the l2-norm computed on the pixel-wise difference between the original and
the reconstructed image. After training, W ∗ are parameters of the trained
model;

3. Test method l2-norm. Given φ(x;w) the function that computes the feature
vector of an image x for the weights w, find the center c of the hypersphere
for the training set in the feature space:

c =
∑

φ(x,W ∗)
m

,x ∈ Strain (2)

and dstd as the standard deviation of the l2-norm between the feature vector
of every sample and the center:

dstd =

√∑ ‖φ(x;W ∗) − c‖2
m

,x ∈ Strain (3)

Test using the discrimination formula that marks a sample x as anomaly if

‖φ(x;W ∗) − c‖2 > dstd ∗ T (4)

where T > 0 is a multiplier which sets the “threshold” for the discrimination.
4. Test method Err. Define the reconstruction error E of an image x as:

E(x) = ‖x − f(x;W ∗)‖2 (5)

Mean and standard deviation of the reconstruction error E of train set images
are used to determine the binary classification:



Anomaly Detection for Skin Lesion Images 231

Em =
∑

E(x)
m

,x ∈ Strain (6)

Estd =

√∑
(x − Em)2

m
,x ∈ Strain (7)

Test using the discrimination formula:

‖E(x) − Em‖2 > Estd ∗ T (8)

5. Test method SVDD. Fine-tune the Conv stage using the Deep Support Vector
Data Description (SVDD) method [21], which consists of training further the
Conv : [Dc :] F part of the model with the following objective:

min
W

1
m

m∑

i=1

‖φ(xi;W ) − c‖2 +
λ

2

L∑

l=1

‖Wl‖2F (9)

where c is the center of the learned hypersphere that represents the training
set in the feature space, L ∈ N is total number of hidden layers and λ > 0 is
the weight decay regularization parameter.
Then, test using the same formulas of method l2-norm (Eqs. 2, 3, and 4).

Architecture Configuration. We used two backbone CNN architectures for our
tests, where the plain convolution stage was used as encoder and its transpose
for the decoding part. The first backbone CNN architecture is VGG16 [23],
which has proven to be sufficiently accurate in the classification skin lesions
during previous ISIC challenges as well as still relatively fast to train. The second
architecture is LeNet [15], which was successfully used by Ruff et al. [21] in the
anomaly detection applied to the MINST [16] and CIFAR-105 datasets.

We tried both networks together with several configurations for the internal
dense layers (hence, the number of features describing an image) and optionally
the optimization method SVDD. As an additional hyper-parameter, we option-
ally frozen the parameters of both the Conv and Deconv stages instead of training
the whole autoencoder. We also tried a combination of freezing the encoder and
training the decoder together with the dense layers, but we did not observe any
significant improvement, hence, results on this combination will not be reported

Dataset. Training stages were performed on the ISIC2019 dataset (S), which
consists of 25331 images pertaining to 8 classes. Table 2 shows the class frequen-
cies. To conduct our studies, we selected the nevus (SNV ) as target class, as it
contains the highest number of samples. The dataset SNV was further split into
SNV
train, SNV

val , and SNV
test , where the two last subsets included 2500 images each.

5 https://www.cs.toronto.edu/∼kriz/cifar.html.

https://www.cs.toronto.edu/~kriz/cifar.html
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Table 2. Class frequency for the ISIC2019 dataset.

Lesion MEL NV BCC AK BKL DF VASC SCC Tot

Pct. 17.8% 50.8% 13.1% 3.4% 10.4% 1.0% 1.0% 2.5% 100%

Count 4522 12875 3323 867 2624 239 253 628 25331

Training. It has to be noted that while training for the ISIC2019, using ran-
domly initialized weights couldn’t converge. We had to use a double transfer
approach. First, a classifier based on the VGG16 architecture was initialized
with the weights computed for the ImageNet dataset [8]. Second, the dense lay-
ers were substituted with a 2X 2048 nodes dense layers, followed by a final 8-level
softmax output and the model trained on an Strain set. This model scored 0.91
accuracy and 0.53 sensitivity in the ISIC 2019 challenge. The resulting weights
were then used to initialize both the Conv and Deconv stages of the VGG16-based
autoencoder.

After initialization, we also distinguished between training the full autoen-
coder or only the internal dense layers (All vs. Dense-only).

The structure of SVDD is identical to the encoder part of the autoencoder
along with the final representation layer and the initial weights of SVDD archite-
cure are transferred from the trained autoencoder part and further optimization
is done using the objective function 9.

Testing. We tested our architectures using three test sets. The first T7cls is
composed by the union of SNV

test with the remaining seven classes of the ISIC
2019 set (S - SNV ), for a total of 4154 samples. As the nevus class is already
contained in the SNV

train set, the goal was to discriminate from nevus as target and
melanoma as anomaly. The second test set TMedNode is the MedNode dataset
[11], which contains 100 images for nevi and 70 melanomas. Finally, the third
test set Tcoco is composed by the union of SNV

test with a selection of 4989 random
images from the COCO dataset [19]. The goal here is to set a baseline for the
discrimination between skin lesion images and random “outside-world” ones.

4 Results

Table 3 show the test results for several combination of hyperparameters and test
sets. The positive case (i.e., high sensitivity) is associated with the capability of
detecting an anomaly.

In addition to the reference CNN architecture (base arch.) and the configu-
ration of the dense layers (dense layers), we test the difference between training
the whole autoencoder vs. training only the internal dense layers (trained lay-
ers) and use different norm and three discrimination methods: feature vector
distance, (Err, l2, and SVDD). The AUC is computed considering all of the
samples of the test set, and gives an indication on the capability of the method
into discriminating between the target and the anomaly classes. However, the
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Table 3. A selection of the tests of different architectures against other 7 classes and
COCO datasets.

Test Base Dense Train Test Test AUC T = 1 T = 3

# arch. nodes layers method set acc. spec. sens. acc. spec. sens.

1 LeNet 128 All Err 7cls 0.49 0.39 0.15 0.86 0.35 0.03 0.98

2 LeNet 128 All Err Coco 1 0.96 1 0.86 0.99 1 0.98

3 LeNet 128 All SVDD 7cls 0.49 0.38 0.12 0.88 0.35 0.3 0.97

4 LeNet 128 All SVDD coco 1 0.7 1 0 0.99 1 0.97

5 VGG16 1960:1960:1960 Dense Err 7cls 0.51 0.45 0.34 0.66 0.34 0 1

6 VGG16 1960:1960:1960 Dense Err Coco 1 0.9 1 0.66 1 1 1

7 VGG16 1960:1960:1960 Dense SVDD 7cls 0.49 0.39 0.15 0.85 0.37 0.07 0.94

8 VGG16 1960:1960:1960 Dense SVDD Coco 0.99 0.96 1 0.85 0.98 1 0.94

9 VGG16 1960:1960:1960 All Err 7cls 0.49 0.4 0.17 0.82 0.36 0.04 0.96

10 VGG16 1960:1960:1960 All Err Coco 1 0.95 1 0.82 0.99 1 0.96

11 VGG16 1960:1960:1960 All SVDD 7cls 0.5 0.66 1 0 0.34 0 1

12 VGG16 1960:1960:1960 All SVDD Coco 1 0.7 1 0 1 1 1

13 VGG16 1960X2:980:1960X2 All Err Coco 0.95 0.91 0.97 0.77 0.39 0.1 0.99

14 VGG16 3920 All Err Coco 0.93 0.88 0.91 0.83 0.63 0.47 0.96

15 VGG16 490 All SVDD Coco 0.92 0.87 0.89 0.84 0.59 0.41 0.96

16 VGG16 980 All SVDD Coco 0.92 0.87 0.89 0.84 0.58 0.4 0.96

17 VGG16 147 All Err Coco 0.92 0.87 0.88 0.83 0.58 0.4 0.96

18 VGG16 1960:980:1960 All Err Coco 0.9 0.86 0.87 0.82 0.5 0.29 0.95

19 VGG16 1960:do(0.5):980:1960 All Err Coco 0.9 0.86 0.87 0.82 0.5 0.29 0.95

20 VGG16 1960:1960:1960 All l2-norm 7cls 0.5 0.41 0.22 0.77 0.34 0 0.99

21 VGG16 1960:1960:1960 All l2-norm Coco 0.73 0.34 0.16 0.77 0.30 0 0.99

AUC does not suggest what would be a proper distance (or error) threshold
value T for deploying the system in real settings.

Hence, with reference to Eq. 8, we tested the performances of the anomaly
detector using two threshold T values: 1 and 3. With T = 1, our hypothesis is
that the hypersphere including the target samples would be very narrow, thus
including only some of the target samples, but no anomaly samples. Differently,
with T = 3, which for normal distributions would include 99.7% of the samples,
our hypothesis is to have a discriminator which retain most of the target samples
at a risk of missing many anomalies.

The top section of Table 3 reports results for the LeNet architecture. From
the AUC measurement, we can see that the network is perfectly able to detect
COCO classes, but the discrimination with 7cls fails (AUC � 0.5). This is
reflected in the high sensitivity couple with a very low specificity.

Therefore, we configured a more powerful autoencoder, based on the VGG16
architecture, experimenting with several configurations for the internal dense
layers. In Table 3, lines from 13 to 19 show the test results for several combina-
tions of dense layers. Such configurations where not able to reach AUC 1.0 even
on the COCO dataset. Lines 20–21 show the results for the l2-norm method,
which was, too, unable to reach AUC 1.0 on the Scoco test set.

The perfect detection of COCO images is achieved by the dense nodes con-
figuration Ldc

= 1960 : Lf = 1960 : Ldd
= 1960 (Table 3, lines 5–12). However,

in spite of the similarity with the original classifier (Conv : 2048 : 2048 :
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Fig. 4. Performance metrics as function of the threshold for tests 5 and 6 (training all
layers), and the same architecture tested on the TMedNode test set.

softmax), the test on the 7cls dataset lead to an AUC � 0.5. It can be seen that
tests on thresholds 1 and 3 lead (in some cases) to opposite results in terms of
sensitivity and specificity.

To better understand the behaviour of the discriminator as function of the
threshold T , we computed the quality metrics for different values of T , ranging
from 0 to 8 with increments of 0.1. This last procedure is also essential for
fixing the T parameter to a value that should include most (or better all) of
the samples of the target distribution, and be ready to intercept anomalies in
a real application scenario, such as an online web service, where input samples
can come from unpredictable distributions.

Figures 4 and 5 show the results for tests number 5–6 and 9–10, respectively
(The other configurations show a similar behaviour). The top-left plots show the
variation when testing NV against the other 7 classes. As the threshold increases,
the sensitivity (i.e., the capability to detect an anomaly reaches 1.0). However,
the specificity drops to 0.0, meaning that the system is not able to discriminate
at all. The accuracy reflects this behaviour and converges to the class proportions
ratio. The top-right plots show the same behaviour when trying to discriminate
against the melanoma class in the MedNode dataset. Finally, the bottom plots
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Fig. 5. Performance metrics as function of the threshold for tests 9 and 10 (training
only dense layers), and the same architecture tested on the TMedNode test set.

show positive results when testing against the COCO dataset. By setting T = 6
for full training, and T = 3 for only-dense layers training, we reach accuracy
1.0. When comparing the two configurations, it means that by training only
the dense layers, the target samples are closer to the center of the hypershpere,
potentially meaning that the discrimination among classes can be more difficult.

To better inspect the behaviour when applying the SVDD technique, we
plotted the metrics variation for tests 11–12 (which correspond to the non-SVDD
test 5–6 of Fig. 4). Figure 6 shows that when testing against 7-classes and against
melanoma, around T = 1.5 there is a sudden inversion between specificity and
sensitivity. It suggests that, as is the purpose of SVDD, the sample features space
is contracted towards the center of the target hypersphere, reducing the range of
the distribution. However, this leads to poor results also when testing against the
COCO images, meaning that also the feature vectors of fairly different images
are collapsing together with the target lesion images. The coherence of this last
results with other configurations, led us to mark the SVDD method as ineffective
for the skin lesion domain.

The discrimination between targets and anomalies is based on the measure-
ment of the error E between the original and the reconstructed image. Here, the
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Fig. 6. Performance metrics as function of the threshold for tests 11 and 12 (training
all layers, plus SVDD), and the same architecture tested on the TMedNode test set.

Fig. 7. Distribution of the MSEs for the CNN configuration used in tests 5 and 6.
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Fig. 8. Distribution of reconstruction errors for nevus and all of the other classes
separately.
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idea is that during the training the autoencoder specializes in encoding images
of the target set (low MSE), but is not able to encode images from other distri-
butions (high MSE).

So far, these results suggests that the reconstruction error E, measured
between the original and the reconstructed image, is similar for nevus as well as
for the other 7 classes, but differs for the COCO classes. To visually verify this
hypothesis, we plotted the distribution of the errors for the samples for SNV

test ,
T7cls, and Tcoco (see Fig. 7). The histogram shows (with some approximation)
that there is indeed an overlap between the error scores between the nevus class
and the other 7 classes, while samples of the COCO dataset are well distanced.
Finally, to understand if there would be the possibility to discriminate between
the nevus class and any other the 7 other classes, we plotted the error distribu-
tion for the 7 classes separately. Figure 8 shows that the error distribution of all
classes overlaps with the error distribution for NV class, hindering the capability
to perform a discrimination based on error analysis.

5 Conclusions

The results of our tests show that anomaly detectors based on replicator neural
networks, initially trained as autoencoders, can distinguish skin lesions from
random images of the outside world very well when the discrimination is based
on the encoding/decoding reconstruction error. This discrimination technique
should be preferred over l2-norm or SVDD methods.

However, the discrimination among classes of skin lesions still leads to ran-
dom selection. We suspect that this is the case because the VGG16 architecture
is learning features that are common to all lesions. Hence, while the same archi-
tecture, trained on all classes, can be effective as classifier, it doesn’t allow for
setting a discrimination threshold when trained on a single class. More tests
should be conducted to check whether the same applies when changing the tar-
get class, from nevus to any of the other seven.

Future work can be done in several directions: i) explore more hyperparam-
eters, ii) try with more powerful networks, iii) solve the limitations recently
addressed on SVDD [4]. We also aim to investigate in the direction of informa-
tion fusion and explainable AI by incorporating multi-modal embeddings with
Graph Neural Networks [13].
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Abstract. Dermatologists recognize melanomas by inspecting images
in which they identify human-comprehensible visual features. In this
paper, we investigate to what extent such features correspond to the
saliency areas identified on CNNs trained for classification. Our experi-
ments, conducted on two neural architectures characterized by different
depth and different resolution of the last convolutional layer, quantify
to what extent thresholded Grad-CAM saliency maps can be used to
identify visual features of skin cancer. We found that the best threshold
value, i.e., the threshold at which we can measure the highest Jaccard
index, varies significantly among features; ranging from 0.3 to 0.7. In
addition, we measured Jaccard indices as high as 0.143, which is almost
50% of the performance of state-of-the-art architectures specialized in
feature mask prediction at pixel-level, such as U-Net. Finally, a break-
down test between malignancy and classification correctness shows that
higher resolution saliency maps could help doctors in spotting wrong
classifications.

Keywords: Skin cancer · Visual features · Explainable AI · Saliency
maps

1 Introduction

The recognition of skin cancer from digital pictures is a task that has received
much attention in the last years [3,22,23]. Many evaluations show that convolu-
tional neural networks (CNNs) are capable of distinguishing between malignant
skin cancer and benign lesions with higher accuracy than experienced practi-
tioners [2,11].

When neural networks are employed as classification models, decisions come
by default without a human-comprehensible explanation—an issue affecting the
adoption of neural networks in medical applications both for legal reasons as
well as for the lack of trust in such systems. On the contrary, dermatologists
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Fig. 1. The picture of a melanoma (ISIC 0000013, from the picture archive of the Inter-
national Skin Imaging Collaboration) and its segmentation, followed by annotations for
globules, pigment network, streaks, and the union of the three.

Fig. 2. The picture of a correctly classified melanoma (ISIC 0000013) (left), the
saliency map and its colored heatmap computed on a VGG16 (middle) and on a
RESNET50 model (right). (Color figure online)

diagnose skin cancer in the basis of widely recognized visual features, i.e., areas
of the skin, or regions of interest (ROIs), characterized by well-defined visual
patterns associated with medical concepts [21]. Figure 1 shows some examples.
Such visual features can be present in both benign as well as malignant lesions.
When their visual presence is significant, clinical guidelines suggest to assume
malignancy.

New algorithms in the field of eXplainable Artificial Intelligence (XAI) allow
for the extraction of saliency maps from classification models; Grad-CAM [27]
is one of the most popular algorithms. Saliency maps are images that indicate
the pixels areas contributing to a certain classification decision. Saliency maps
are normally encoded as greyscale images or converted to heatmaps for visual
inspection. Figure 2 provides an example.

Intuitively, it can be expected and observed an overlap between regions with
high saliency and regions of interest (that practitioners would identify as signs
of malignancy) occurs. However, this relationship has never been investigated in
detail.

In this paper, we present a study measuring to what extent saliency maps can
be used to identify visual features of skin lesions. In particular, we investigate
the behavior of the involved deep learning architectures on actual data, in order
to extract reference measurement values, reference thresholds, and to identify
the limits of this approach.

The remainder of this paper first describes in Sect. 2 related work in the field
of feature extraction and XAI. In Sect. 3, we describe the two classification mod-
els used for our experiments, able to discriminate (among others) between nevus
and melanoma. Section 4 describes the skin lesion images and masking data used
for the experiments. Then, Sect. 5 describes the first experiment, aiming to find
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the best threshold value maximizing the overlap between saliency maps and
ground truth regions of interest, which is not granted to be the usual 0.5. The
second experiment (Sect. 6), investigates the difference in overlpping when dis-
tinguishing between correctly vs. wrongly classified lesions, showing significant
differences. Finally, Sect. 7 discusses the results of the experiments and Sect. 8
describes future work.

2 Related Work

The experiments presented in this paper are conducted on the dataset pre-
sented for the Task 2 (feature extraction) of the ISIC 2018 challenge (https://
challenge2018.isic-archive.com) [5]. The dataset contains 2386 dermoscopy
images, all of them annotated with binary masks highlighting the presence of five
“features” at pixel-level, i.e., patterns on skin lesions unanimously recognized as
indicators of potential malignancy [21]. Namely, the are: globules, streaks, pig-
ment network, negative network, and milia-like cysts.

The performances on the feature extraction task are measured using the Jac-
card index. Given two 2-color (black-white) image masks of the same resolution,
the index J returns the ratio between the count of the common white pixels
(correctly classified) and the union of all the white pixels. This is also known as
the “intersection over union” ratio. To give a reference on the performances of
the best feature extraction models, the first three ranks of the ISIC 2018 chal-
lenge were taken by the NMN-Team, with three approaches reaching J = 0.307,
0.305, and 0.304 respectively [18]. One of the goals of the analysis presented in
this paper is to assess to what extent thresholded saliency maps can identify
skin lesion features, to compare performances with the best ISIC 2018 systems,
and to provide a reference performance baseline of a XAI-based system.

The recent experiments [8] on skin cancer detection focus on image classifi-
cation only: they cannot produce explanations. Esteva et al. [11] also show that
Inception v3 works very well in skin lesion detection and outperforms doctors.
Even though the algorithm outperforms doctors, it cannot explain its decision
accurately. Han et al. [13] fine-tuned the ResNet-152 model for cutaneous tumor
detection. The classification performance of the network was comparable with
that of 16 dermatologists, and they also exploit Grad-CAM to explain the clas-
sifications. There is a lot of success in explaining algorithmic output, but to
increase the performance of an explainable model, we need a way to evaluate
the quality of an explanation [16].

Concerning visual explanation techniques, GradCAM [27] is an analytical
technique that, applied to convolutional neural classifiers, is able to highlight the
areas of a picture contributing to the classification choice. The method is fast, as
it needs just one forward and one backward propagation step, and then builds
the saliency map from an analysis of the activation values of an intermediate
chosen convolutional layer. Best XAI results are obtained by analyzing the last
convolutional layer of a network [10,28]; however, the results are often low-
resolution images.

https://challenge2018.isic-archive.com
https://challenge2018.isic-archive.com
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A method that provides higher-resolution images is RISE [25], which is based
on a stochastic approach. Input images are iteratively altered via random noise,
and the final saliency map is composed by accumulating the partial estimations.
However, its application requires much more computational power, as it needs
to run hundreds of thousands of prediction cycles. Additionally, from a set of
initial tests, it seems that RISE is not able to highlight regions of interest of
skin lesion images with the same reliability as on pictures of real-world objects.
The experimentation using RISE (together with other visual XAI variants like
Grad-CAM++ [4] and SmoothGrad [30]) is deferred to future work.

Arun et al. [1] measured the overlapping between saliency maps and human-
traced ground truth, but in the domain of chest X-rays, and used only very deep
networks (InceptionV3 and DenseNet121), which provide very low resolution
maps. Interestingly, they found the best XAI method being XRAI [19], which we
plan to include in future work using also the evaluation methodology suggested
by Sun et al. [31].

Several works focus on the use of saliency map to perform lesion segmenta-
tion (i.e., distinguish the lessioned from the healthy skin area) before passing
it to a classifier. Among them, Gonzalez-Diaz proposes DermaKNet [12], which
follows several pre-processing steps before the classification of skin lesion. In
the first step, it creates a segmentation mask and applies it to the dermoscopic
image. Secondly, it creates a structure segmentation mask to identify the struc-
ture of the dermoscopic image. After masking, the original segmented image and
some nonvisual metadata are fed into a convolutional neural network for clas-
sification. Khan et al. [20] propose a channel enhancing technique to increase
the contrast of lesion area. As a result, there is an improvement in the quality
of the segmentation mask. Jahanifar et al. [17] also propose a modified DRFI
(Discriminative Regional Feature Integration) technique for a similar task for
multi-level segmentation task. By combining multiple segmentation masks, they
produce a more accurate mask. During the generation of the mask, they use a
threshold value of 0.5, but they did not provide a reason for which they choose
this value.

In our work, we rather focus on the specific degree of overlap between the
saliency maps and the visual features that dermatologists search for a diagnosis.

3 Classification Architectures and Models

In this section, we describe the two classification models used for our exper-
iments. The two models are based on two different architectures: VGG16 [29]
and RESNET50 [14]. We selected these two architectures to monitor the saliency
map generation process according to two important model differences: the classi-
fication performances and the resolution of the last convolutional layer. Interest-
ingly, while the RESNET50 architecture definitely results in the better classifier,
the resolution of its last convolution layer (res5c branch2c) is limited to 8 × 8
pixels, which is much less than the 28 × 28 pixels resolution of the last convo-
lution layer (block5 conv3) in the VGG16 architecture. Our first hypothesis is
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that although more prone to classification errors, the VGG16 could still deliver
better “visual explanations” because of its higher resolution.

Following a transfer learning approach, both the VGG16 and the RESNET50
models are pre-trained on the Imagenet dataset [9], and their final layers are
substituted with randomly initialized fully connected layers of 2048 nodes and
a final 8-level softmax. Then, both models are trained using 20k images of the
ISIC2019 challenge (https://challenge2019.isic-archive.com) [6,7,33], which con-
tains 8 classes (MEL, NV, BCC, AK, BLK, DF, VASC, SCC). VGG16 was
configured with an input resolution of 450 × 450 pixels, while RESNET50 at
227 × 227 pixels.

The models are tested on 2529 held-out images, and we report the following
class specific metrics.

For VGG16, accuracies are MEL: 0.845, NV: 0.827, BCC: 0.934, AK: 0.964,
BLK: 0.912, DF: 0.991, VASC: 0.995, SCC: 0.977, and the class sensitivities are
MEL: 0.659, NV: 0.755, BCC: 0.783, AK: 0.593, BLK: 0.626, DF: 0.826, VASC:
0.880, and SCC: 0.661. Overall accuracy is 0.722 and average balanced accuracy
(mean sensitivity, the metric for the ISIC challenge) is 0.723.

For RESNET 50, accuracies are MEL: 0.873, NV: 0.857, BCC: 0.947, AK:
0.972, BLK: 0.920, DF: 0.992, VASC: 0.995, SCC: 0.977, and the class sensi-
tivities are MEL: 0.675, NV: 0.812, BCC: 0.834, AK: 0.628, BLK: 0.672, DF:
0.739, VASC: 0.800, and SCC: 0.726. Overall accuracy is 0.767 and the average
balanced accuracy is 0.736

As a reference, the 2nd placed at the ISIC challenge, which is the best app-
roach not using external data (therefore comparable to our approach), measured
an average balanced accuracy of 0.753 [34].

All of the model training and testing was performed using our Toolkit for
Interactive Machine Learning (TIML) [24], which operates on top of the Keras
and Tensorflow frameworks.

4 Data Preparation

To generate the saliency maps for our experiments, we run the two classification
models (VGG16 and RESNET50) on the images of the ISIC Challenge 2018
Task 2 (see related work). The dataset contains 2386 RGB skin lesion images
(519 melanomas, 1867 nevi), each associated to five ground truth black-white
feature maps: globules, streaks, pigment network, negative network, and milia-
like cysts. As an additional feature, we compute the pixels-wise union of all
the features (see Fig. 1). The resolution of the ground truth feature maps is
consistent with their corresponding colored picture.

Table 1. Counts of non-black masks for each feature class on the 2386 total samples.

Globules Mil. Neg. net. Pig. net. Streaks Union

601 574 188 1502 98 1963

https://challenge2019.isic-archive.com
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Fig. 3. Distribution of the measured Jaccard indices (horizontal axis), computed on
S0.5
V .

Fig. 4. VGG16: the saliency map for sample ISIC 0000013 thresholded for 0.0 = all-
white, 0.1, 0.2, ..., 1.0 = all-black. Corresponding Jaccard indices between ground truth
and union feature are 0.064, 0.150, 0.171, 0.189, 0.221, 0.242, 0.243, 0.216, 0.137, 0.059,
and 0.000.

Some of the ground truth feature maps are completely black, as the dermatol-
ogists did not find any region of the corresponding class during the annotation.
As can be seen in Table 1, only 1963 pictures have at least one non-black feature
map. In our experiments, we ignore the skin lesion samples with no features.

The generation of the saliency maps consists of running the Grad-CAM algo-
rithm [27] on each skin lesion picture with non-black union mask. The saliency is
generated for the predicted class. We repeat the procedure for both the VGG16
and the RESNET50 models, generating the SV and SR greyscale picture sets,
where ‖SV ‖ = ‖SR‖ = 1963. Saliency maps have a resolution of 24 × 24 pixels
for SV and 8 × 8 for SR, and their pixels are normalized in the range [0, 1].

To compare the saliency maps with ground truth maps, we scaled up SV

and SR to the resolution of the original images using a nearest neighbour filter.
Figure 3 shows the histogram distribution of the Jaccard indices J computed
between the features class (plus union) and SV at threshold 0.5 (S0.5

V ). We can
observe that all distributions are strongly right skewed, and all Js are mostly
below 0.2, with the exception of a peak in performance for the pigment network
class. A similar profile could be observed for S0.5

R . The next step is to investigate
whether 0.5 is the best value to use for thresholding saliency maps.
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5 First Experiment

With the first experiment we aim at identifying the threshold value that leads
to a maximization of the overlap between saliency maps and ground truth. To
do so, we converted each saliency map into 11 binary maps using thresholds
from 0.0 to 1.0 with steps of 0.1. For example, for VGG16, we define 11 sets
St
V , t ∈ 0.0, 0.1, ..., 0.9, 1.0. Figures 4 and 5 show examples of this threshold pro-

cess. Then, we proceed by computing the Jaccard indices J between the ground
truth and all of the processed saliencies Sx

V and Sx
R.

Tables 2 and 3 report the summary of the threshold analysis for VGG16 and
RESNET50, respectively, on which we report the threshold leading to the highest
average Jaccard index.

Table 2. For VGG16, the best performing masking threshold together with corre-
sponding Jaccard index data.

Feature Best Thr. J-min J-mean (SD) J-max

Globules 0.600 0.000 0.067 (0.078) 0.428

Mil. 0.600 0.000 0.019 (0.032) 0.236

Neg. net. 0.400 0.000 0.044 (0.048) 0.201

Pig. net. 0.500 0.000 0.141 (0.146) 0.797

Streaks 0.700 0.000 0.062 (0.062) 0.271

Union 0.500 0.000 0.132 (0.137) 0.784

Fig. 5. RESNET50: the saliency map for sample ISIC 0000013 thresholded for 0.0 = all-
white, 0.1, 0.2, ..., 1.0 = all-black. Corresponding Jaccard indices between ground truth
and union feature are 0.064, 0.104, 0.156, 0.174, 0.174, 0.158, 0.127, 0.101, 0.072, 0.009,
and 0.000.

Table 3. For RESNET50, the best performing masking threshold together with cor-
responding Jaccard index data.

Feature Best Thr. J-min J-mean (SD) J-max

Globules 0.500 0.000 0.079 (0.090) 0.591

Mil. 0.700 0.000 0.032 (0.043) 0.288

Neg. net. 0.600 0.000 0.100 (0.102) 0.526

Pig. net. 0.300 0.000 0.133 (0.134) 0.720

Streaks 0.600 0.000 0.041 (0.050) 0.265

Union 0.300 0.000 0.136 (0.130) 0.720
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For VGG16, among the features classes, the best threshold ranges between
0.4 and 0.7. The minimum J index is 0.0 on all categories, meaning that among
all samples there is always at least one map with zero-overlap with the ground
truth. The highest average (J = 0.141) and maximum (J = 0.797) belong to the
pigmented network class. The union of all features lowers the scores to average
J = 0.132 and max J = 0.784 at threshold 0.5.

When switching to RESNET50, the best thresholds range between 0.3 and
0.7. With respect to VGG16, pigmented network and streaks present the worse
performance, while the average J increases for the other three classes. Overall,
the union class has slightly higher average performance (average J = 0.136) at
threshold 0.3.

Surprisingly, the Jaccard indices measured with the RESNET50 maps, which
have a resolution limited to 8 × 8 pixels, are comparable to the ones extracted
from the VGG16 models (24×24 pixels). The second hypothesis is that the lower
resolution of the RESNET50 maps is compensated by the higher accuracy of the
classification model, i.e., a better overall overlap.

6 Second Experiment

We proceed with a deeper analysis by further diving the samples into Melanoma
and Nevus, and into correctly vs. wrongly classified samples. The goal is to
observe the correlation between the measured J and the correctness of the clas-
sification. Here, the Jaccard indices are calculated using the union feature and
using the best threshold identified in the first experiment, hence on S0.5

V and
S0.3
R . Tables 4 and 5 report the results for VGG16 and RESNET50, respectively.

For VGG16, we can observe that the mean J for correctly classified
melanomas (0.135) is similar to the union class average (0.132). However, when
melanomas are wrongly classified, the Jaccard index drops to 0.086, meaning
that the saliency maps diverges from the ground truth. This could effectively
help doctors is spotting a wrong classification. The idea is that: if the classifier
tells the doctor that the sample is a melanoma, but then the reported saliency
areas diverge a lot from what would be manually marked, then doctors can be
more easily induced to think that the system is mis-classifying the image. For
correctly classified nevi, the average J (0.134) is also similar to the full class

Table 4. For VGG16, statistics for the union feature as measured by splitting the S0.5
V

dataset in MELanoma and NeVus, either correctly or wrongly classified.

Feature Count Best Thr. J-mean (SD) J-max

MEL-correct 279 0.500 0.135 (0.108) 0.553

MEL-wrong 158 0.500 0.086 (0.089) 0.495

NV-correct 1165 0.500 0.134 (0.147) 0.784

NV-wrong 361 0.500 0.143 (0.145) 0.666
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Table 5. For RESNET50, statistics for the union feature as measured by splitting the
S0.3
R dataset MELanoma and NeVus, either correctly or wrongly classified.

Feature Count Best Thr. J-mean (SD) J-max

MEL-correct 314 0.200 0.114 (0.109) 0.564

MEL-wrong 123 0.400 0.132 (0.120) 0.554

NV-correct 1259 0.400 0.144 (0.135) 0.706

NV-wrong 267 0.300 0.127 (0.120) 0.517

Table 6. Results of a Mann-Whitney U-test on the Jaccard indices between correctly
and wrongly classified classes.

Model Vs. U p-value

VGG16 MEL-cor vs MEL-wr 28747.5 1.2E−7

VGG16 NV-cor vs NV-wr 172027.0 0.038

RESNET50 MEL-cor vs MEL-wr 49693.5 0.8620

RESNET50 NV-cor vs NV-wr 151981.5 0.393

average (0.132), and for wrongly classified nevi the average J increases to 0.143.
This suggests that, for nevi, doctors can better rely of the suggested saliency
areas, which helps them in identifying the true area of interest.

To verify if these differences between correct vs. wrong classification are sta-
tistically significant, we ran a set of tests on the J indices measured on all items.
As the distributions are not normal, we used the Mann-Whitney U-test. Table 6,
top, shows that for the VGG16 maps the difference between the two conditions
is statistically significant for α = 0.05. The same tests are inconclusive for the
RESNET50 model (Table 6, bottom), for which we couldn’t identify a statistical
significance.

7 Discussion

Our experiments show that the generation of features masks from threshold
saliency maps performs, on the union of the features, at maximum J = 0.136.
Among the five features, only Pigment Network reaches the same level of accu-
racy of the union class. This value is less that the half with respect to state-of-
the-art networks specialized for pixel-level classification such as U-Net [26] or
pyramid pooling [18]. Nevertheless, when considering the union of all the fea-
tures, threshold saliency maps could still be a valid alternative to ad-hoc pixel-
level feature extraction when dedicated features data sets are not available. In
fact, the creation of ground truth datasets for feature extraction requires a con-
siderable amount of work, involving experts in tracing the contour of regions of
interests, or labeling super-pixels [5]. This is a huge annotation overhead when
compared to labeling images with their diagnose class.
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The value of the threshold to reach the best J index varies among datasets
and features. Since it is not possible to analytically foresee the best threshold
of a given dataset, we suggest the development of interactive exploratory visual
interfaces, where dermatologists can autonomously control the saliency threshold
value in an interactive fashion for exploration.

Our second hypothesis, that higher resolution saliency maps would lead to a
higher Jaccard index than lower resolution ones, cannot be confirmed. However,
from a decomposition between classes and correctness of classification, it appears
that, for higher resolution maps (24×24 pixels on VGG16), saliency maps overlap
much better with ground truth features when the classifier is correctly classifying
a melanoma (J = 0.135) and performance drops when the prediction is incorrect
(J = 0.086).

In summary, it seems that for the VGG16 model, in case of misclassification
of melanoma, the saliency maps have the tendency to draw the attention of the
observer to areas that they would rather ignore, thus inducing doctors to question
the choice of the machine. This holds only for the VGG16 architecture, whereas
this is not true in case of a low the resolution maps produced by RESNET50
(8 × 8 pixels), thus supporting our first hypothesis (i.e., higher resolution layers
deliver better visual explanations).

8 Conclusions and Future Work

In this paper we presented an investigation on how saliency maps (an explainable
AI technique) could be used to identify regions of interest in the diagnosis of skin
cancer.

Our experiments show that thresholded saliency maps extracted from clas-
sifiers perform, in terms of Jaccard index, almost the half w.r.t. deep neural
networks specialized for mask prediction. This applies only when using archi-
tectures with high resolution saliency. On the contrary, very deep architectures,
usually characterized by very low resolution at the last convolution layer, would
lead to the generation of maps with less explanatory power.

The long term goal of this research is the development of an interactive rein-
forcement learning approach involving human practitioners and their feedback to
improve attribute detection. Due to the existence of uncertainty and incomplete-
ness in data, the traditional approach of data-driven algorithms fails. In such a
scenario, the “human-in-the-loop” approach can retrain a classification model to
increase performance based on the knowledge of domain experts [15]. Starting
from a base classifier, trained from a wide set of labeled images, whenever a
dermatologist recognizes a wrong classification, he or she provides the correct
class and marks the image with the regions of interests (features) that he or she
recognizes. The human feedback could then be used to improve the automatic
classification performance by comparing the human feedback with the saliency
map of the CNN. The measured discrepancy between the two maps could be
used to fine-tune the architecture towards higher accuracy [32].

Further, we would like to investigate on better options for thresholding. In
this paper, a global threshold, in the range of 0.0 to 1.0, was simultaneously
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searched and applied to all the saliency map. This allows for an “emersion” of
the most relevant region of interests of a global scale. However, there might be
regions of saliency below the global threshold which are relevant with respect
to the local surrounding area. To spot local maxima, we could split the maps
into tiles, or super-pixels, and iteratively identify multiple local threshold values
based on the range of saliency values of each region.

Finally, the current implementation of Grad-CAM returns saliency maps
whose range [0, 1] is filled by stretching the range of activation values of the
target convolution layer. Each saliency map is forced to use the full activation
range, independent of other samples. In so doing, regions of interests are “forced”
to emerge, even when the activation values of the inner layer are lower when com-
pared to other images. As future work, we could consider performing saliency
normalization according to global statistics (mean and variance) on the tested
set.
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Abstract. Artificial Intelligence systems are characterized by always
less interactions with humans today, leading to autonomous decision-
making processes. In this context, erroneous predictions can have severe
consequences. As a solution, we design and develop a set of methods
derived from eXplainable AI models. The aim is to define “safety regions”
in the feature space where false negatives (e.g., in a mobility scenario,
prediction of no collision, but collision in reality) tend to zero. We test
and compare the proposed algorithms on two different datasets (physical
fatigue and vehicle platooning) and achieve quite different conclusions in
terms of results that strongly depend on the level of noise in the dataset
rather than on the algorithms at hand.

Keywords: Reliable AI · Logic Learning Machine · Skope rules

1 Introduction

Artificial Intelligence is a very wide discipline which is undergoing an unprece-
dented development in recent years. Algorithmic decision-making is now ubiq-
uitous, with always less human intervention, even in critical contexts such as
automotive, finance or healthcare. For this reason, there is a need for an “Algo-
rithmic Audit” [21] facing the legal, ethical and safety issues derived from such a
growth: technology experts and policy makers should cooperate in order to make
AI trustworthy and responsible for users [23]. To this effort, regulation is being
developed, stating the requirements that AI systems should follow to achieve
such goals. Between that legislation, we must remark the European GDPR1,
introduced in 2018, which states the need of a “right to explanation” when deal-
ing with automated systems. This has paved the way to the development of a
subfield of AI, referred to as eXplainable AI (XAI), aiming to provide humans
with understanding and trust in models outcomes. Hence, XAI models often
come in the form of intelligible rules, being simpler and generally less accurate

1 https://gdpr.eu/tag/gdpr/.
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than more sophisticated models (such as those of deep learning) [35], but with
the enormous advantage of being interpretable.

Another point of view to trustworthy AI is identifying and handling assur-
ance under uncertainties in AI systems [11]. This means improving reliability of
prediction confidence. The topic remains a significant challenge in machine learn-
ing, as learning algorithms proliferate into difficult real-world pattern recognition
applications. The intrinsic statistical error introduced by any machine learning
algorithm may lead to criticism by safety engineers. This is corroborated even
more by the intrinsic instability of deep learning in the presence of malicious
noise [8,39]. The topic has received a great interest from industry [20], in partic-
ular in the automotive [38] and avionics [9] sectors. In this context, the conformal
predictions framework [3] studies methodologies to associate reliable measures of
confidence with pattern recognition settings including classification, regression,
and clustering.

Keeping in mind these emerging research directions, our work shows how
global rule-based XAI can be used as a warranty of reliability. In particular, we
give the following contributions:

– We define reliability from outside (Sect. 5.1) and reliability from inside
(Sect. 5.2) methodologies, through which Logic Learning Machine character-
istic value ranking becomes an instrument to achieve “safety regions” in the
feature space with zero statistical error.

– We show how intelligible rules (Logic Learning Machine and Skope-Rules),
when trained with zero error, can be joined and then perturbed on their most
important features to obtain more complex “safety regions” (Sect. 5.3).

– We apply the proposed approaches on two different datasets, concerning dif-
ferent kinds of problems, and demonstrate how our methods may perform
differently according to the data (Sect. 6).

2 Related Work

In the era of massive automation, a big effort must be put on developing ML/AI
algorithms that should never fail when producing their outcomes: erroneous pre-
dictions may lead to severe consequences in many safety-critical fields [2]. Many
different approaches have been carried out to this purpose, which will be sum-
marized in the following subsections.

2.1 Safety Engineering-Based Methods

In the context of autonomous driving, safety assessment has been studied in
recent years by considering typical safety engineering approaches (safety-by-
design, safe fail, safety margins) and extending them to ML paradigm [25,40],
with major focus on neural networks and the most advanced Deep Learning solu-
tions. These certification approaches include formal verification [37], transparent
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implementation [1], uncertainty estimation [22], error detection [16], domain gen-
eralization [43] and adversarial approaches based on data perturbation and cor-
ruption [13,17]. Furthermore, AI certification may rely on training data quality
as in [7], where authors introduced metrics such as scenario coverage for ensur-
ing that the data used in training has possibly covered all important scenarios.
Also, [15] proposed a Feature Space Partitioning Tree (FSPT) method which
splits the feature space into multiple parts with different training data densities,
in order to identify those where there is lack of training samples. Another work
[33] adopted the same safety engineering approach to identify safety hazards
related to each different phase of a typical ML pipeline and propose product-
oriented (i.e. technical requirements) and process-oriented (i.e. processes to be
followed) methodologies for the mitigation of such risks. In [36], authors focus on
autonomous driving and review the existing machine learning safety assurance
methods, categorizing them by following the system’s life-cycle. Here, DNNs are
massively recurrent in all the collected works, with no mention to XAI. Nowa-
days, most autonomous systems are based on Deep Neural Networks (DNNs),
since they guarantee very accurate performance on high-dimensional data. A lot
of literature exists on safety of deep models: in [13], a DNN analyzer based on
abstract interpretation is introduced to enhance reliability. Safety engineering
approaches are also adopted in healthcare [4] to assess Convolutional Neural
Networks safety for pattern recognition using a medical device, combining the
known approach of error correcting memory with the introduction of default
values to use in case of uncorrectable errors. Safety of DL models is also consid-
ered in [12] by using Bayesian neural networks to quantify uncertainty of CNN
models in image segmentation tasks.

Moreover, some methods integrate safety assurance into reinforcement learn-
ing (RL) framework, by making predictions to guide the agent towards safe
decisions [19].

2.2 Classification with Abstension

A different branch of methodologies to achieve reliability of AI consists in allow-
ing classifiers to abstain from making predictions when they are considered
uncertain according to a given loss function. Classification with abstension is
achieved in [41], where a pointwise-competitive selective classification method
was introduced to look for classifiers that minimize the true risk by using a
selection function with the property of abstaining from predictions if the empir-
ical risk minimizer does not agree with the true risk minimizer. Moreover, in
[10] authors developed an innovative approach for classification with absten-
sion, based on learning a predictor and the abstaining function simultaneously.
Another solution is to perform a three-way decision, where an “uncertain” cat-
egory is added to the task, being chosen if its cost is lower than providing a
clear decision: such an approach is showing promising results either when used
a posteriori either when embedded in the training of traditional ML [5]. How-
ever, the evaluation of such abstension-based methodologies needs to be based
on a trade-off between accuracy of prediction and the rate of abstension, which
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cannot be too high to have useful models. In contrast, our XAI-based methods
to handle uncertainty do not need such consideration.

2.3 Explainable AI-Based Methods

While AI systems certification is widely investigated for black-box deep learning
models, it’s not the same for explainable AI (XAI) models. Many XAI techniques
are now available [2] with application in critical systems, e.g. in medicine [18].
In [34], the role of XAI is recognized as a way to achieve the verification of
the system and the legislation compliance, but the proposed framework is based
on explanations of black-boxes. Only a few works exist on the usage of XAI
methods to address reliability in autonomous driving [26–29] or medicine [14].
Based on this, we investigate the role of global rule-based models and apply
them to vehicle platooning and physical fatigue detection cases.

3 Logic Learning Machine

Logic Learning Machine (LLM) is an innovative global explainable supervised
method; it is an efficient implementation of Switching Neural Networks [30]. LLM
has the aim of building a classifier g(x) described by a set of rules structured as
follows: if <premise> then <consequence>. The <premise> is a logical product
(∧) of conditions on the input features, whereas <consequence> corresponds to
the output class. The model is built by following a three-step process:

1. Discretization and Latticization: each variable is transformed into a string
of binary data in a proper Boolean lattice, using the inverse only-one code
binarization. All the strings are then concatenated in one unique large string
per each sample.

2. Shadow Clustering : a set of binary values, called implicants, are generated,
allowing the identification of groups of points associated with a specific class.

3. Rule Generation: all the implicants are transformed into a set of simple con-
ditions and eventually combined into a collection of intelligible rules.

An implicant is defined as a binary string in a Boolean lattice that uniquely
determines a group of points associated with a given class. It is straightforward
to derive from an implicant an intelligible rule having in its premise a logical
product of threshold conditions based on the cutoffs obtained during the dis-
cretization step. In LLM all the implicants are generated via Shadow Clustering
by looking at the whole training set: in this way, resulting rules can overlap and
represent different relevant aspects of the underlying problem [31,32].

3.1 Feature and Value Ranking

Being a rule-based method, it is possible to inspect LLM results through feature
and value ranking.
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Consider a set of m rules rk, k = 1, . . . , m, each including dk conditions
clk , lk = 1k, . . . , dk. Let X1, . . . , Xn be the input variables, s.t. Xj = xj ∈ X ⊆
R ∀j = 1, . . . , n. Let also ŷ be the class assigned by the rule and yj the real
output of the j − th instance.

A condition clk involving the variable Xj , can assume one of the following
forms [29]:

Xj > s, Xj ≤ t, s < Xj ≤ t, (1)

being s, t ∈ X .
For each rule generated by the algorithm, it is possible to define a confusion

matrix associated to the rule. It is made up of four indices: TP (rk) and FP (rk),
defined as the number of instances (xj , yj) that satisfy all the conditions in rule
rk with ŷ = yj and ŷ �= yj respectively; TN(rk) and FN(rk), defined as the
number of examples (xj , yj) which do not satisfy at least one condition in rule
rk, with ŷ �= yj and ŷ = yj , respectively.

Consequently, the following useful metrics can be derived [6]:

C(rk) =
TP (rk)

TP (rk) + FN(rk)
(2)

E(rk) =
FP (rk)

TN(rk) + FP (rk)
(3)

The covering C(rk) is adopted as a measure of relevance for a rule rk; as
a matter of fact, the greater is the covering, the higher is the generality of the
corresponding rule. The error E(rk) is a measure of how many data are wrongly
covered by the rule. Both covering and error are used to define feature ranking
and the subsequent value ranking.

Feature ranking (FR) provides a way to rank the features included into the
rules according to a measure of relevance. In order to obtain such measure of
relevance R(clk) for a condition, we consider the rule rk in which condition
clk occurs, and the same rule without condition clk , denoted as r′

k. Since the
premise part of r′

k is less stringent, we obtain that E(r′
k) ≥ E(rk), thus the

quantity R(clk) = (E(r′
k) − E(rk))C(rk) can be used as a measure of relevance

for the condition of interest clk . Each condition clk refers to a specific variable
Xj and is verified by some values νj ∈ X . In this way, a measure of relevance
Rŷ(νj) for every value assumed by Xj is derived by the following Eq. 4 [29]:

Rŷ(νj) = 1 −
∏

k

(1 − R (clk)) (4)

where the product is computed on the rules rk that include a condition clk

verified when Xj = νj . Since the measure of relevance Rŷ(νj) takes values in
[0, 1], it can be interpreted as the probability that value νj occurs to predict
ŷ. The same argument can be extended to intervals I ⊆ X , thus giving rise to
Value Ranking (VR). Relevance scores are then ordered, thus giving evidence of
the most sensitive interval of the feature with respect to each class.
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4 Skope-Rules

Another global explainable supervised method is Skope-Rules2, a Python
machine learning module built on top of scikit-learn. Like LLM, Skope-Rules
is an interpretable rule-based model consisting of a series of if <premise> then
<consequence> rules; the difference between the two models lies in the way these
rules are generated, selected and finally filtered. The three-step process for rules
generation in Skope-Rules is as follows:

1. Bagging estimator training : rules generation is done from a set of decision
trees and/or regressors. Each path or sub-path of a branch of a tree is trans-
formed into a decision rule. Trees are trained to predict the output class of
interest. This ensures that the splits are made in such a way as to guarantee
that they are meant for the prediction task.

2. Performance filtering : from this set of rules an initial screening is carried out
based on precision and recall thresholds.

3. Semantic deduplication: the last filter applied for the choice of rules is based
on a criterion of similarity between terms, whereby term is meant the feature
associated with the comparison operator with which it appears in the rule.
The measure of similarity of two rules is determined by how many terms they
have in common.

5 Reliability Assessment Methods

Considering a binary classification problem, we refer to the positive class (y = 1)
as the unsafe one. In contrast, class y = 0 is referred to as the safe class. Based
on this, we call “safety regions” those regions in the feature space where false
negatives tend to zero. In this work, we developed three different methods to
look for such regions.

5.1 Reliability from Outside

Let X be a D × N matrix of all the input vectors xi ∈ R
N , with the total

number of features N and i ∈ [1,D]. Let g(xi) = y be the function describing
the LLM classification. For binary classifications, we consider g(xi) = 1 for the
positive class, while g(xi) = 0 for the other. Let D1 be the number of instances
belonging to class y = 1 and D0 the number of instances in class y = 0, so that
D1 + D0 = D.

Let NFR be the number of the most significant features obtained through
the feature ranking for class y = 1. For each feature j ∈ [1, NFR], we can use the
LLM value ranking to define the most significant interval for y = 1 as [sj , tj ]. Our
method consists in expanding such intervals as follows: [sj − δsj

· sj , tj + δtj · tj ].
Being Δ = (δ1, , δNFR) a matrix, with δj = (δsj

, δtj ), the optimal Δ is
computed through the following optimization problem. Let P(Δ) be the hyper-
rectangle under the expanded intervals and let V(P(Δ)) be the inherent volume.
2 https://github.com/scikit-learn-contrib/skope-rules.

https://github.com/scikit-learn-contrib/skope-rules
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Then, the optimization problem identifies the best fit from the outside of
class y = 1, namely, it finds the most suitable shape, in terms of rule-based
intervals, of safe points around the unsafe ones. It is as follows:

Δ∗ = arg min
Δ:N1=D1

V(P(Δ)) (5)

being N1 the number of elements in X classified as y = 1 and included into
V(P(Δ)).

For instance, if we fix NFR=2, the hyper-rectangle P becomes a rectangle S.
The optimization process let us find out the matrix Δ∗ = (δ∗

1, δ
∗
2). The related

optimal intervals are I1 = (s1−δ∗
s1

·s1, t1+δ∗
t1 · t1), I2 = (s2−δ∗

s2
·s2, t2+δ∗

t2 · t2),
corresponding to the features j = 1 and j = 2 respectively: their logical union
(∨) defines a surface S.

Then, the “safety region” is defined as the complementary bi-dimensional
surface of S, which can be written as follows:

S1 = ((−∞, s1 − δ∗
s1

· s1) ∨ (t1 + δ∗
t1 · t1,∞))∧

((−∞, s2 − δ∗
s2

· s2) ∨ (t2 + δ∗
t2 · t2,∞))

(6)

5.2 Reliability from Inside

An alternative way to perform the same search for “safety regions” consists in
considering the NFR most important features for safe (y = 0) class instead and
reducing their most relevant intervals (again, provided by LLM value ranking)
until the obtained region only contains true negative instances.

In this case, with the same notation as for the previous definition (Sect. 5.1),
the reduced intervals are: [sj + δsj

· sj , tj − δtj · tj ]. Being Δ defined in the same
way as for Eq. 5 and P0 the hyper-rectangle under the reduced intervals, the
optimal Δ is found by enlarging as much as possible the hyper-rectangle from
inside the non-fatigue class, until a fatigued point is reached. It is as follows:

Δ∗ = arg max
Δ:N1=0

V(P0(Δ)) (7)

For NFR = 2, the “safety region” is the following rectangle S0:

S0 = (s1 + δ∗
s1

· s1, t1 − δ∗
t1 · t1) ∨ (s2 + δ∗

s2
· s2, t2 − δ∗

t2 · t2) (8)

5.3 Rules with Zero Error

As the sharp angularity of hyper-rectangles may be not fine enough to follow
the potential complex shapes of the boundaries between the classes, a more
refined approach would ask for more complex separators, still preserving the
zero statistical error constraint and by starting from the available rule baseline.

Given a rule-based model, it can be trained so to define a set of m rules
rk, k = 1, . . . , m denoted by E(rk) = 0 ∀k ∈ [1,m]. Suppose that this procedure
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provides a set of m0 rules r0k, k = 1, . . . , m0 for the safe class (y = 0). Also,
let c0lk , l0k = (1, . . . , d0k) be the set of d0k conditions inside of each rule r0k. We
can join all the obtained rules r0k in logical OR operation (∨), thus building a
new predictor r̂. Our goal is to assess its ability of classifying new test set data
with statistical zero error (FNR = 0). This implies to further tune r̂, by tuning
a subset of its conditions c0lk , chosen as those containing the first NFR features
obtained from the rules feature ranking for class y = 0. In mathematical terms,
for each feature j ∈ [1, NFR], we add the thresholds of the chosen conditions
by applying δ = (δs, δt), being δs and δt the perturbation applied to s and t
thresholds, respectively, as defined in Eq. 1. Let r̂(δ) be the resulting perturbed
predictor, our goal is then to find the optimal δ as follows:

δ∗ = arg max
δ :E(r̂(δ))=0

C(r̂(δ)) (9)

This procedure can be applied to any rule-based model, provided that it is
possible to train it with zero error.

As regards the LLM model, zero error classification (for the safe class) is read-
ily available by the shadow clustering adopted by LLM. The clustering process
is applied with the further constraint of building clusters without superposition
of points of more than one class [27] (LLM 0%, in the following).

In the case of Skope-Rules (Sect. 4), the same zero error for safe class rules
can be obtained by training the model with precision min parameter fixed to 1.

6 Applications and Results

The methods described in the previous Sect. 5 have been applied and tested on
two different classification problems: physical fatigue detection in working task
simulation (Sect. 6.1) and collision detection in vehicle platooning (Sect. 6.2).

6.1 Physical Fatigue

The data used in this test phase belong to an open-source dataset3. Data were
collected through wearable sensors, i.e. Inertial Movement Units (IMUs), from
15 participants who were asked to perform a simulation of an industrial task for
180 min and provide a fatigue level every 10 min using RPE [42]. According to
such scale, RPE≥13 corresponds to a fatigued state (class y = 1), otherwise to
non-fatigued (class y = 0). From sensors raw data, a list of features is derived (see
Table 2 in [24]). We removed heart-rate related features as well as gender, since
it is not numerical, and standardized data by applying z-score transformation.

We then trained LLM model with standard 5% maximum error allowed for
rules on a 67% training set. We evaluated it on a 33% test set using common
metrics, namely an accuracy of 82%, sensitivity of 71%, specificity of 95% and
F1-score of 0.81.

3 https://github.com/zahrame/FatigueManagement.github.io/tree/master/Data.

https://github.com/zahrame/FatigueManagement.github.io/tree/master/Data
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Reliability from Outside. In order to test this method, we considered the first
two most important intervals for fatigued class that we got from LLM value
ranking: back rotation position in sagittal plane > 0.03 and wrist jerk coefficient
of variation > 0.03. We applied the optimization algorithm (Eq. 5) on such
intervals and obtained δ∗

s1
= −13, δ∗

s2
= 28. For such values, we got FNR = 0 and

TNR = 0.20. Therefore, the “safety region”, which we call “non-fatigue region”
in this context, can be expressed as follows (for brevity, let f1 and f2 be the two
above mentioned features):

S1 = ((f1 ∈ (−∞, 0.42)) ∧ (f2 ∈ (−∞,−0.81))

The resulting region was then validated in order to take into account that the
involved feature values should vary in a limited range, so to reflect real human
movement capabilities and correspond to proper execution of the task. In general,
we cannot assume that a subject who stays still will not ever get fatigued, but
the nature of the task in which the subject is involved should provide indications
on the ranges of parameters assessing the required movements. Since the dataset
documentation does not drive in this direction and the inherent literature lacks
of standard ranges, we chose to consider maximum and minimum values for
the features based on two age groups (age ≤ 40 and age > 40). This helps to
highlight the further stratification readily available from the sensitivity analysis.

Doing so, we were able to redefine two “non-fatigue regions” by limiting the
previous one according to the ranges we found; such new regions are expressed
as follows:

S1 = ((f1 ∈ (−2.52, 0.42)) ∧ (f2 ∈ (−1.78,−0.81)) for age ≤ 40 y.o

S1 = ((f1 ∈ (−1.86, 0.42)) ∧ (f2 ∈ (−2.0,−0.81)) for age > 40 y.o

In Fig. 1 a visual representation of the obtained regions is provided.

Reliability from Inside. We considered the problem of identifying non-fatigue
regions starting from the non-fatigued class too, thus adopting the reliability
from inside approach. The value ranking shown back rotation position in sagittal
plane ≤ 0.03 and chest acceleration mean > −0.47 as the two most relevant
intervals for predicting non-fatigued class. On such conditions, we applied the
optimization problem (Eq. 7), which led us to individuate δ∗

t1 = 57, δ∗
s2

= 8.78.
For these values, we got FNR = 0 and TNR = 0.06. The “non-fatigued region”
S0 is then found (with f1 and f2 being back rotation position in sagittal plane
and chest acceleration mean respectively):

S0 = (f1 ∈ (−∞,−1.68) ∨ f2 ∈ (3.65,∞))

Just as for the outside approach, we limited such region in function of the two
group ages (up to and over 40 years old). This procedure redefines S0 for the
two age groups as follows (see Fig. 2 for the graphical representation):

S0 = (f1 ∈ (−2.52,−1.68) ∨ f2 ∈ (3.65, 3.99)) for age ≤ 40 y.o.

S0 = (f1 ∈ (−1.86,−1.68) ∨ f2 ∈ (3.65, 3.99)) for age > 40 y.o.
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Fig. 1. Scatter plot of the first two features (back rotation position in sagittal plane
and wrist jerk coefficient of variation) with representations of the “non-fatigue region”
(FNR = 0) individuated for age ≤ 40 group (pink) and age > 40 (violet). (Color figure
online)

Fig. 2. Scatter plot of the first two features (back rotation position in sagittal plane,
Chest Acceleration Mean) from value ranking of non-fatigued class, with representa-
tions of the “non-fatigue regions” (FNR = 0) based on the age group (violet for age
≤40, pink otherwise) (Color figure online)
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Zero Error LLM. Both the previous approaches have the limitation of individu-
ating optimal solutions to the identification of “non-fatigue regions” character-
ized by relatively low values of TNR, i.e. number of instances included in such
surfaces.

In order to assess if such values could be increased, we trained the LLM 0%
and built a new predictor by joining the first four highest coverage rules in logical
OR (see below).

if (0.51 < HipACCMean ≤ 1.98 and ChestACCcoefficientofvariation ≤ 1.11
and -1.73 < averagestepdistance ≤ 0.81 and backrotationpositioninsagplane ≤

0.52) ∨
(WristjerkMean > 0.55 and -1.35 < Back rotation position in sag plane ≤

0.04) ∨
(-1.73 < averagestepdistance ≤ -0.22 and backrotationpositioninsagplane ≤

-0.25 and -0.44 < numberofsteps ≤ 3.75 and -1.73 <
Wristjerkcoefficientofvariation ≤ 0.55) ∨

(ChestxpostureMean > -0.033 and HipzpostureMean > 0.43 and
WristACCMean > -0.83 and -0.88 < backrotationpositioninsagplane ≤ 0.29)

then non-fatigued

By evaluating the joining before any perturbation, we got FNR = 0.06 and
TNR = 0.75. To further decrease the FNR, we conducted the optimization pro-
cess described in Eq. 9 by tuning the thresholds for the first NFR = 2 features
from non-fatigued feature ranking, namely HipACCMean and WristjerkMean.
We obtained δ∗

s1
=1.848 and δ∗

t2 =0.027 for such features respectively: these
thresholds perturbations brought FNR = 0.02, with TNR = 0.42.

Skope-Rules. To ensure that we obtained rules with zero errors on the non-fatigue
classification task, we trained several models with a precision min = 1, where
precision min is the parameter that defines the minimum precision of a rule to
be selected in the performance filtering. Trained models differ in n estimators
and max depth duplication, where n estimators is the number of base estimators
to use for prediction and max depth duplication is the maximum depth of the
decision tree for semantic deduplication (Sect. 4). For each model thus obtained,
we calculated precision and recall by varying the number of rules applied (from
2 up to the maximum number of rules generated by the model) and then chose
the one that maximised precision and recall. This led us to use a model trained
with the following parameters:

1. n estimators = 200
2. precision min = 1
3. max depth duplication = 5

We then chose the first 3 rules generated by this model which correspond to the
following logical OR (∨):

if (backrotationpositioninsagplane ≤ 0.08 and HipjerkMean > -1.03 and
HipACCcoefficientofvariation ≤ 0.75 and HipypostureMean ≤ 1.12 and

HipzpostureMean > -1.78) ∨
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(backrotationpositioninsagplane ≤ 0.17 and Wristjerkcoefficientofvariation ≤
0.05 and HipACCMean > -0.47) ∨

(backrotationpositioninsagplane ≤ 0.22 and Wristjerkcoefficientofvariation ≤
0.06 and HipACCMean > -0.10 and ChestjerkMean > -1.36) then

non-fatigued

This new predictor, before applying any perturbation, leads to FNR = 0.11
and TNR = 0.69. As in the previous case, let’s see what happens in terms of FN
by perturbing two features. The features we are going to perturb are backrota-
tionpositioninsagplane and Wristjerkcoefficientofvariation and they are respec-
tively the first and second most present features in the rules derived from the
performance filtering (Sect. 4). To carry out the perturbation we used the proce-
dure as described in Sect. 5.3, applying the method of Eq. 9 and perturbing only
the most restrictive thresholds when the same features appeared in more than
one rule. This leads us to the following suboptimal solution, with an FNR = 0.07
and TNR = 0.67, corresponding to δt1 = 1.717 for backrotationpositioninsagplane
and δt2 = 15.845 for Wristjerkcoefficientofvariation.

6.2 Vehicle Platooning

Vehicle platooning is one of the most important challenges in autonomous driv-
ing, dealing with a trade-off between performance and safety. In our analysis we
considered a scenario of cooperative adaptive cruise control (CACC) as described
in [27], where the platoon is in a steady state of speed and reciprocal inter-
vehicular distance when a braking force is applied by the leader of the platoon.
For the application of our safety assessment methods we used simulation data
generated by Plexe simulator4. For each of the 4744 generated samples, 5 features
were computed within the following ranges: the number of vehicles, N ∈ [3, 8]
the braking force F0 ∈ [−8,−1] × 103 N the Packet Error Rate PER ∈ [0.2, 0.5]
the initial distance between vehicles d(0) ∈ [4, 9] m (supposed equal for all of
them); the initial speed v(0) ∈ [10; 90]km/h. The system registers a collision
when distance between two vehicles is lower than 2 m.

Applying the default LLM with maximum error of 5% on a 30% test set,
we obtained 85,9% of accuracy, 75.4% sensitivity, 86.8% specificity and 0.46 F1-
score. We then performed the safety analysis to find out regions were collisions
are avoided with no error.

Reliability from Outside. From the value ranking for the collision class (y = 1),
we obtained PER >0.43 and F0 ≤ −7.50×103N as the first two most important
intervals. We then applied the optimization approach as in Eq. 5 and found δ∗

s1
=

−0.034, δ∗
t2 = −0.416, which correspond to reach FNR = 0 with TNR = 0.34.

Thus, according to the definition in Eq. 6, the safety region we obtain is the
following:

S1 = ((PER ∈ (0.2, 0.4154)) ∧ (F0 ∈ (−4.37,−1) × 103)
4 https://github.com/mopamopa/Platooning.

https://github.com/mopamopa/Platooning


From Explainable to Reliable Artificial Intelligence 267

A visual representation of such region is in Fig. 3. Also, we performed a
search for safety regions by considering three features, including the third most
important interval from value ranking too, i.e. N > 6. We got δ∗

s1
= −0.184, δ∗

t2 =
−0.166 and δ∗

s3
= −0.1 with FNR = 0 and TNR = 0.19. In this case, the safety

region is tridimensional, corresponding to the following volume (Fig. 4):

V1 = ((PER ∈ (0.2, 0.3509)) ∧ (F0 ∈ (−6.255,−1) × 103) ∧ (N ∈ (3, 5.4)

Fig. 3. Scatter plot of the first two features (PER and F0) with representations of the
safety region

Reliability from Inside. Following the optimization approach in Eq. 7, we first
chose the first two intervals from the value ranking of the safe class (y = 0):
PER ≤ 0.33 and F0 > −3.50 × 103N. Then, we computed the optimal thresh-
old perturbations δ∗

t1 = 0.356, δ∗
s2

= 0.686, for which we got FNR = 0 with
TNR = 0.13. The safety region is then individuated by the following surface
(Fig. 5):

S0 = (PER ∈ (0.2, 0.2125) ∨ F0 ∈ (−1.1001,−1) × 103)

Zero Error LLM. By lowering the LLM maximum error allowed to 0% we were
able to look for more complex safety regions. After training the LLM model with
0% error, we joined the first 4 rules for safe class with the highest coverage. This
corresponded to the following logical OR (∨):
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Fig. 4. 3D scatter plot of the first three features (PER,F0,N): the safety region is
represented by the volume (in violet) (Color figure online)

Fig. 5. Scatter plot of the first two features (PER and F0) for safe class with repre-
sentations of the safety region
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if (N ≤ 5 and v(0) ≤ 54.50)∨
(PER ≤ 0.295 and N ≤ 7 and v(0) ≤ 86.50) ∨

(v(0) ≤ 28.50 and PER ≤ 0.445) ∨
(v(0) ≤ 28.50 and N ≤ 6 and d(0) ≤ 7.86) then safe

This new predictor, before applying any perturbation, leads to FNR = 0.05 and
TNR = 0.55. We then exploited the feature ranking to individuate which features
we should tune in order to lower FNR as much as possible. The two most influent
features resulted to be v(0) and PER in this case. Then, by applying the method
in Eq. 9 we perturbed such features: in this case, we were able to achieve only a
suboptimal solution, with FNR = 0.02 and TNR = 0.45, corresponding to δt1 =
0.000877 for v(0) and δt2 = 0.277 for PER. Where the same feature was present
in more than one joined rule, we perturbed only the most stringent threshold.

Skope-Rules. As explained above for the Physical Fatigue case, also for Platoon-
ing, we trained different models by varying the parameters n estimators and
max depth duplication. Again, we chose to set precision min = 1 to obtain rules
with zero errors on the non-collision classification task. Again, for each model
thus obtained, we calculated precision and recall by varying the number of rules
applied (from 2 up to the maximum number of rules generated by the model)
and then chose the one that maximised precision and recall. This led us to use
a model trained with the following parameters:

1. n estimators = 75
2. precision min = 1
3. max depth duplication = 2

We then chose the first 4 rules generated by this model which correspond to the
following logical OR (∨):

if (PER ≤ 0.41 and v(0) ≤ 45.5)∨
(N ≤ 7.5 andF0 > −7.5 andPER ≤ 0.32) ∨

(N ≤ 5.5 and v(0) ≤ 54.5) ∨
(F (0) > −4.5 and PER ≤ 0.41 and v(0) > 64.5) then safe

This new predictor, before applying any perturbation, leads to FNR = 0.04 and
TNR = 0.57. To compare the results obtained previously for the Zero Error LLM,
we decided again to perturb two features in the same way as described above
(applying the method of Eq. 9 and perturbing only the most restrictive thresh-
olds). In this case, the first and second most present features in the rules derived
from the performance filtering (Sect. 4) are v0 and PER, the same obtained
from the LLM ranking. This leads us to the following suboptimal solution, with
an FNR = 0.02 and TNR = 0.52, corresponding to δt1 = −0.649 for v(0) and
δt2 = −0.172 for PER.

6.3 Discussion

From a comparison between the obtained results on the two datasets, we can
notice that inferring reliability from the available rules is highly dependent on
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the structure of the data under analysis. The inside-outside (Sects. 5.2, 5.1)
methods show flexibility in looking at the feature space, alternating good results
(outside in platooning in two dimensions), surprising results (outside in pla-
tooning in three dimensions is outperformed by the same in two dimensions)
and bad results (inside in platooning in two dimensions). The outside approach
finds larger (higher TNR) safety regions than the inside one both in fatigue and
platooning. Inside-outside may be even joined together when the feature ranking
agrees on the most important features for the available classes. As this happens
in the platooning case, we may consider the safety regions involving PER and
F0 (Figs. 3 and 5), and, by visual analysis of the overlap of such regions (see
Fig. 6), we could join them to find a larger and more complex (in terms of rules)
safety region.

Fig. 6. Scatter plot of the two most important features in vehicle platooning LLM
classification (PER and F0), with representation of the safety regions found with Inside
(pink area) and Outside (blue area) methods: the overlap of such regions defines a new
safety region, where TNR reaches higher values (Color figure online)

On the other hand, due to the similarity of the adopted rules optimization
approach (Sect. 5.3), we can compare the results of LLM 0% and Skope-Rules.
Since we were dealing with more complex profiles than rectangles, results have
shown an increase of TNR for both the models on the two datasets. However,
in the physical fatigue test case, the LLM 0% starts by a much lower FNR
(0.06) than Skope (0.11) before perturbation, reaching a sub-optimal solution
after tuning; in contrast, Skope achieves a suboptimal solution too, with a FNR
(0.07) that is surprisingly higher than the corresponding value of LLM 0% before
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optimization (0.06). As regards the vehicle platooning problem, results are more
consistent in the two algorithms, showing the same FNR and a higher TNR with
Skope.

7 Conclusions and Future Works

In this work, we have studied how XAI models can represent a solution towards
safety assurance in predictive analytics. We first focused on a global rule-based
model, the LLM, and demonstrated how its characteric value ranking property
can be exploited for the design of “safety regions” in the features space with
zero statistical error. This was achieved by developing our innovative “reliability
from outside” and “reliability from inside” methodologies. Then, we used a third
method to optimize more complex rule profiles and applied it to LLM 0% and
Skope-Rules.

Data and code are available at the following Github repository: https://
github.com/saranrt95/safety-from-valueranking.

By testing and comparing our proposed methodologies on problem instances
of different nature (physical fatigue and vehicle platooning), we have also shown
how their performance varies between the datasets.

Future works may extend the testing through cross-validation in the presence
of a large amount of data, including the adoption of data augmentation tech-
niques and the experimentation on benchmark datasets. The characterization of
the placement of the points deserves further study to understand the optimal
covering of the safety regions. The translation of deep learning logic into rules
with further design of safety envelope is another topic we are going to pursue in
the near future.
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Abstract. The increasingly widespread application of AI models moti-
vates increased demand for explanations from a variety of stakeholders.
However, this demand is ambiguous because there are many types of
‘explanation’ with different evaluative criteria. In the spirit of pluralism,
I chart a taxonomy of types of explanation and the associated XAI meth-
ods that can address them. When we look to expose the inner mechanisms
of AI models, we develop Diagnostic-explanations. When we seek to ren-
der model output understandable, we produce Explication-explanations.
When we wish to form stable generalizations of our models, we produce
Expectation-explanations. Finally, when we want to justify the usage of
a model, we produce Role-explanations that situate models within their
social context. The motivation for such a pluralistic view stems from
a consideration of causes as manipulable relationships and the different
types of explanations as identifying the relevant points in AI systems we
can intervene upon to affect our desired changes. This paper reduces the
ambiguity in use of the word ‘explanation’ in the field of XAI, allowing
practitioners and stakeholders a useful template for avoiding equivoca-
tion and evaluating XAI methods and putative explanations.

Keywords: Explainable artificial intelligence · Philosophy ·
Causation · Explanations · Explainability · Interpretability

1 Introduction

There is no doubt that we should be exacting in our demand on explanations
for the outputs, functioning, and employment of AI models, given that they are
increasingly implicated in decision making that impact humans with potentially
undesirable outcomes [31]. However, just what we mean by ‘explanations’ in the
field of Explainable AI (XAI) is currently unclear [24,36]. What is clear is that
many different stakeholders have different constraints on the explanations they
want from the field [18]. There is a pressing danger that what explains appro-
priately and sufficiently is lost in translation from stakeholders to practitioners,
and vice versa. In other words, even if the General Data Protection Regulation
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(GDPR) strongly enforces1 that explanations be given when decisions are con-
tested, it is a pyrrhic victory if there are no clear evaluative criteria on the
explanations given or worse, that an inappropriate set of evaluative criteria is
used to determine which explanation stands as an admissible one.

Therefore, when explanations are requested from AI models, and when
explanatory demand is placed on the field of Explainable AI, we should first ask
some important questions. Why do we ask for ‘explanations’ rather than some-
thing else to fulfill the desired goal in posing such a request? What objective or
purpose is the explanation supposed to serve in a given context? How should we
judge whether a given ‘explanation’ satisfied those objectives or purposes?

Without such clarificatory questions, we run the danger of talking past each
other in developmental efforts in XAI and in stakeholder’s desiderata for the
explanatory products of the field. As astutely noted by Mittelstadt, Russell and
Wachter: “many different people ..., are all prepared to agree on the importance
of explainable AI. However, very few stop to check what they are agreeing to”
[24]. Langer et al. agree that more clarity is required: “Consistent terminology
and conceptual clarity for the desiderata are pivotal and there is a need to expli-
cate the various desiderata more precisely” [18]. Indeed, going forward, prac-
titioners would benefit from clarity on the requirements for explanations, and
stakeholders would benefit from clarity on the limits of explanatory methods
produced by the field which would improve their choice of methods to employ.

Much recent work in XAI investigates just what are the explanatory demands
placed onto XAI by way of analyzing social-psychological constraints [23,24,
27], how explanations function in the law [12,14], identifying stakeholders and
their desiderata [18], and philosophical treatments of explanatory methods [26,
27]. These reviews correctly identify that explanations have a distinct social
dimension as a process rather than purely as a product or text [19,23,26]; that
explanations should be contrastive, selective, and non-statistical in their content
[23,24]; and that within a social context, explanations of model output do not
suffice in isolation [26].

However, talk of explanations in XAI have remained monolithic. In contrast,
the stance I would like to present and defend in this paper is one of Explanatory
Pluralism in XAI: the notion that there are many different types of explanation
requested from the field for which have different effective treatment by means of
methods (what we should produce) and different explanatory powers by range
of application contexts (where we can use them). The primary contribution of
this paper is a taxonomy, as illustrated in Fig. 1, distinguishing the different
types of explanation along a Mechanistic-Social axis and a Particular-General
axis by identifying the different types of intervention they target. Furthermore,
the paper will organize present methods with more specific language introduced
using this taxonomy while avoiding the loaded term ‘explanation’.

1 Whether a ‘right to explain’ exists has been debated on the basis of just what
explanation is requested by the GDPR [33,37]. This debate in the literature further
highlights the urgency of the present discussion to prevent possible equivocation of
the different types of explanation.
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Fig. 1. Evaluative taxonomy proposed by this paper to categorize and distinguish the
different types of explanation asked for and produced by XAI.

The idea that there are different explanations requested from XAI is not new
[26,36]. However, organization of different explanatory methods have mostly
been done in descriptive terms [36]. In this paper, I present a taxonomy based
on evaluative terms. XAI methods find membership in the proposed taxonomy
by virtue of differences in evaluative criteria rather than differences in descriptive
characteristics (when they are assessed – ex-ante/post-hoc, generality of appli-
cation – agnostic/specific, output format, input data, or problem type [36]). By
aligning XAI methods with what interventions they target, the success of each
method can then be evaluated on the effectiveness of different interventions.
The explanatory pluralistic view is also non-reductive, meaning that each cate-
gory of explanation thus organized do not subsume other categories even though
dependency relations may exist between them. I justify my organization of the
taxonomy by appeal to recent work on the nature of scientific explanation in
the Philosophy of Science, specifically Woodward’s manipulationist account of
causation [41], Craver’s mechanistic account of scientific explanations [9], and
causal relevance [11]. This normative, philosophically grounded taxonomy serves
to specify more clearly what the word ‘explanation’ means in different contexts.

I begin by reviewing in Sect. 2 the diverse explanatory demands for explain-
ability in AI, emphasizing what we are supposed to explain and what we think
explanations will help us to achieve. Next in Sect. 3, I provide relevant contem-
porary philosophical background drawing from the rich literature in Philosophy
of Scientific Explanations to motivate the organization in my proposed taxon-
omy. In Sect. 4, I derive and define the Mechanistic-Social, Particular-General
taxonomy illustrated in Fig. 1. Furthermore, in Sect. 5, I take a pragmatic inter-
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ventionist stance and organize present methods in XAI into each of the four
categories identified by the proposed taxonomy, showing how methods in each
evaluative category fulfill different explanatory demands. Finally, I conclude with
two recommendations and highlight that XAI is not merely a way of looking back
and within our models but a way of looking forwards and outwards, a perspective
ineliminably involved in the development of truly intelligent systems.

2 Explanatory Demands

By ‘explanatory demand’ I mean here what is expected of explanations produced
by XAI and more broadly, what are the demands placed on the explanatory
products of the field (methods which produce explanations). I will anchor my
review in the papers by Tim Miller [23], Kieron O’Hara [26], and Langer et al.
[18], organized into three broad areas: social-psychological, social-contextual, and
functional (exemplified by stakeholder desiderata). Lastly, I will present what is
expected of explanations from the law as examined by Doshi-Velez et al. [12] and
highlight some regulatory requirements from the recently proposed Harmonized
Rules on AI by the EU [8].

Social-Psychological Demand. Drawing from Lombrozo’s work on the struc-
ture and function of explanations examined as a psychological phenomenon [19],
Miller elucidates some key considerations we expect from explanations when
they are given to humans [23]: 1) explanations as a social process aim to ren-
der something understandable by transferring knowledge between an explainer
and explainee; 2) presentation of causes in contrastive terms is preferred; 3)
causes cited within an explanation is selective and does not represent the full
and complete set of causes; 4) statistical generalizations alone are unsatisfying.
In treating explanations as not mere static products but a process that involves
social agents, we highlight one important feature of explanations: they elicit
understanding (in humans). It is crucial to note that fulfilling this goal sets eval-
uative criteria that are dependent not upon the content of explanations, whether
they do in fact relate to what is explained, but upon how the relevant informa-
tion is packaged and presented and whether its delivery improves understanding.
Put in another way, it is about what makes the light bulb go off in our head,
however we reach for the switch2. One way of noticing this point is by observing
the role of idealized models in science. We do not start teaching with relativity
and quantum mechanics but often start by introducing Newtonian physics and
constrain our approximate models within some limits such as slow speeds and
large sizes. Although such idealized models do not veridically reflect the struc-
ture of the world, they lend themselves to better understanding. Of course, we
can and should impose the additional constraint that the content of the expla-
nation accurately reflects the underlying causal structure [10,28]. However, the
important point is that we have both a factivity criterion and an understanding
criterion that can be evaluated independently of one another [27].
2 Craver, 2021, personal communications.
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Social-Contextual Demand. When we employ AI models to aid humans in
making decisions or to produce outputs that impact humans, we need to situate
the AI as part of a larger social context. O’Hara notes that AI models do not
have decision-making power in and of themselves. Administrators can choose
to intervene upon systems, and how the output is acted upon is distinct from
the mechanisms of the AI model that generated it [26]. As such, when we ask
for explanations regarding decisions ‘made’ by AI models, we ought to include
relevant details of where such a model is situated in the broader social context
surrounding its usage.

Functional Demand. Langer et al. compiles a comprehensive assessment of
the different stakeholders who are interested in seeking explanations from AI
models [18]: 1) Users seeking usability and trust ; 2) Developers seeking verifica-
tion and performance; 3) Affected parties seeking fairness and morality/ethics;
4) Deployers seeking acceptance and legal compliance; and 5) Regulators seeking
trustworthiness and accountability. The type of explanation that prove useful to
developers of AI models for the purpose of debugging or improving model accu-
racy would look very different than that which a non-expert user may request
for understanding how their personal data is used, precisely because they serve
such different purposes. Therefore, it would be insufficient to simply claim that
‘explanations’ help in all these diverse cases, we need to further specify what
type of explanation would help by clarifying the explanandum (what is to be
explained).

Legal Demand. Explanations are of value in legal settings for holding AI sys-
tems accountable by “exposing the logic behind a decision” and to “ascertain
whether certain criteria were used appropriately or inappropriately in case of a
dispute” [12]. In their review, Doshi-Velez et al. also note that explanations will
be requested only when they “can be acted on in some way” [12], highlighting the
cost-benefit trade-off in generating explanations. In addition, the authors note
that further explanations may be demanded “even if the inputs and outputs
appear proper because of the context in which the decision is made” [12]. Here,
three demands on explanations are emphasized. They must: 1) identify con-
tributing factors to the output; 2) identify actionable factors specifically; and 3)
attend to the context in which the AI system is deployed to make decisions and
take actions. In addition, the proposal for Harmonized Rules on AI in the EU
sets additional requirements on employing “high-risk” AI systems intended to
be used as “a safety component” [8]. The intent of the proposal echoes that of
Article 22 in the GDPR that placed restrictions on automated decisions “which
produces legal effects ... or similarly significant affects” on humans subjected
to such decisions [7]. In both cases, regulators are interested in identifying AI
systems that play a significant role in impacting humans and place additional
restrictions on their usage. Furthermore, the newly proposed Harmonized Rules
on AI additionally introduce a “Technical Documentation” requirement in Arti-
cle 11(1) for fielding such “high-risk” AI systems [8]. This document as described
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in Annex IV includes a comprehensive list of information such as “how the AI
system interacts or can be used to interact with hardware or software that is
not part of the AI system itself, where applicable” (Annex IV 1(b)), “what the
system is designed to optimize for and the relevance of the different parameters”
(Annex IV 2(b)), and “metrics used to measure accuracy, robustness, cyberse-
curity” (Annex IV 2(g)) [8].

2.1 Fulfilling Disparate Explanatory Demands

Explanations are sought for in a multitude of situations, with a diverse set of
goals and expectations as reviewed in this section. Considering the importance of
explanations in ensuring the responsible usage of AI systems, there is a pressing
need to evaluate the quality of explanations given. However, what constitutes as
a meaningful explanation differs to the different stakeholders involved. There-
fore, we should first acknowledge the plurality of explanations and distinguish
between the different types of explanation so we can develop the appropriate
evaluative criteria and methods to address the different requests for meaningful
explanations. In the next section, I will appeal to recent work in the Philosophy
of Science on the nature of scientific explanations to show how we can differenti-
ate between requests for explanations by identifying the relevant level of change
in the AI model we wish to affect using the notion of causal relevance.

3 Scientific Explanations

Much has already been said on the nature of explanations, especially what are
good explanations in the sciences [42]. One point of agreement between scientific
explanations and past work on the nature of explanations in XAI is that expla-
nations should unveil causes [10,23]. However, evaluating the quality of explana-
tions based on the amount of causes they identify or how many why-questions
they can answer is insufficient [11]. As previously acknowledged, explanations
should further be selective [23,24]. I appeal to recent developments in the Phi-
losophy of Science to state more clearly how we should be selective with our
explanations.

3.1 Manipulationist Account of Causation

Firstly, just what is this notion of a ‘cause’? The manipulationist account of
causation put roughly is that: X causes Y if manipulating X changes the value
of Y or its probability distribution. Put in another way, “causal relationships
are relationships that are potentially exploitable for purposes of manipulation
and control” [41]. Furthermore, Woodward introduces a stability constraint in
evaluating which cause is more suitable given some effect Y [40]. Under the
stability constraint, causal relationships which “continue to hold under a ‘large’
range of changes in background circumstances” [40] should be preferable. This
may be a driver for the social-psychological demand for explanations presented
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in contrastive terms. The larger the range of counterfactuals identified under
which the causal relationship holds, the more inclined we may be in accepting
the identified cause.

3.2 Mechanistic Account of Scientific Explanations

Craver builds upon this notion of causes as manipulable relationships, or points
of intervention3, to develop a mechanistic account of explanations for cogni-
tive neuroscience. In this account, explanations describe mechanisms which are
“entities and activities organized such that they exhibit the explanandum phe-
nomenon” [9], where entities are the components or parts in a mechanism and
activities are causes in the manipulationist sense. Three elements of the mech-
anistic account will be helpful for explicating different types of explanations in
XAI: 1) explanations reveal the relevant causal organization of the explanandum
at multiple levels; 2) different explanations given at different levels of realiza-
tion are non-reductive; and 3) relevant causes are those which make a difference
to the effect contrast asked for. In summary, the causal organization revealed
by different explanations identify different relevant relationships which can be
exploited for purposes of manipulation and control.

Levels of Explanation. Within a mechanism, activities and components in a
lower level are organized to realize higher level activities or components [9]. Fur-
thermore, such levels are “loci of stable generalizations” [9] in the sense that the
behavior of components within each level are regular and predictable [9]. When
we ask for explanations of a mechanism, we can attend to different levels to
identify different stable generalizations we are interested in. For example, when
we examine an AI model, we may be interested in the behavior of a range of
components located at different levels of realization such as the training hyper-
parameters, model architecture, and optimization function.

Non-reductive. Since there are stable generalizations of mechanisms that are
not true of the arrangement of components that realize them [9], there are differ-
ent causally relevant sets of components at different levels of realization. Expla-
nations of general AI model behavior such as identifying what rules they follow in
processing patterns of input features need not necessarily be better substituted
with explanations of particular AI model processes that led to an output. The
latter may add further details to the former but without situating such details
within a higher level, it would be difficult to ascertain similar generalizations
of model behavior. An analogy is that to explain the functioning of a program,
we need not reduce our explanations to the movement of electrons in the CPU
although such movement does realize the program under question at a lower
level.
3 In this paper, I sometimes use the term interventions in place of manipulable rela-

tionships. The difference between a manipulable relationship and an intervention
[41] is a subtle one that does not affect my arguments.
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Causal Relevance. The notion of causal relevance stems from the non-
reductive nature of levels of explanation as considered above. Causes which are
relevant to an explanation should identify “the ‘differences that make a differ-
ence.’ ” [11] When we seek explanations, inherent within our request is some
class of effect contrast we are attending to. For example, when asking why an AI
model classifies images in some way, we may attend to the particular relevance
of some subset of features versus others as our contrast class or the distribution
of labels over one dataset versus another. To effectively address the request for
explanations, we should provide causes relevant to bringing about changes in the
requested contrast class. The two ways we answer the question why an image is
classified the way it is identify different points of intervention at different levels,
so as to change the model behavior in different ways. By attending to particular
feature relevance, we target changes in the model’s output for a range of similar
inputs. By attending to label distribution, we target changes in the model’s clas-
sification behavior when given different datasets. It is therefore crucial to clarify
what is the desired effect contrast so we can provide an appropriate explanation.
The notion of an explanation revealing relevant causes at the appropriate level
affords us a way to demarcate different types of explanation by identifying dif-
ferent levels of realization, different effect contrasts, and different points in AI
systems where we can intervene.

4 Pluralistic Taxonomy

With the need to identify the desired effect contrast at different levels of real-
ization as discussed in Sect. 3.2, I derive my proposed pluralistic taxonomy by
augmenting David Marr’s famous Three-Levels of Analysis widely applied in
cognitive psychology and originally tailored for the biological visual system [20].
Furthermore, drawing inspiration from the taxonomy of Scientific Explanations
introduced by Hempel that distinguishes between Particular Facts or General
Regularities and Universal Laws or Statistical Laws [15], I arrive at a taxon-
omy similarly based on a Specific-General axis that additionally considers the
augmented levels of analysis along a Mechanistic-Social axis.

4.1 Three Levels of Analysis (Plus One)

Neuroscientist David Marr introduced three levels of analysis to aid with under-
standing information processing systems [20]: the Computational level (the goal
or problem solved); the Algorithmic level (processes and mechanisms used to
solve said problem); and the Implementational level (physical substrate used
to realize such mechanisms). Mapped onto AI terminology: 1) at the Compu-
tational level we can describe our models based on what task it attempts to
perform (image classification, text-based summary generation, function mini-
mization, etc.); 2) at the Algorithmic level we can describe what architecture is
employed to solve this task (LSTM, RNN, GMM, etc.); and 3) at the Implemen-
tational level we can specify what are the hyperparameters that instantiate this
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Fig. 2. David Marr’s three levels of analysis for information processing systems adapted
for AI model employment within social contexts.

particular model and the hardware we use to run it (TPU hours used, Bayesian
Optimization value/acquisition functions used, etc.).

However, limiting analysis to the aforementioned three levels of analysis
would be insufficient as XAI is specifically interested in types of computation and
AI models that are used in some way that influences human decision making, or
its outputs impact humans in some other way. For example, we are not typically
interested in an isolated NPC (non-playable character) AI within some computer
game which may similarly be decomposed into these levels of description and
analysis. As such, highlighted in Fig. 2, we need to acknowledge that: 1) the AI
models employed realize some Social Role, and 2) the AI model is embedded in
additional computation surrounding its usage. Rarely do we have an AI model
for which the input is statically specified, and its output directly used [26].

By Social Role, I mean to draw attention to the set of societal expectations
surrounding decisions made in the context of application [6]. One may question
the authority, ethics, and suitability of the AI model’s (or the system’s in gen-
eral) continued employment in such a position that impacts humans or human
decision-making. It is one question to ask whether an AI model is functioning
as designed and an entirely separate question to ask whether the AI model thus
designed could satisfactorily play the role we cast it in. The latter requires that
we look outwards to position the AI model within its broader social context
and identify whether it satisfies what is expected of such roles they may come
to occupy. Granted, part of the difficulty here is that social expectations are
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typically not explicit4 [12] and the systems we have for establishing suitable
membership in social roles are tailored for human agents5.

The addition of a Social level to Marr’s three levels of analysis emphasizes
the point that AI models do not operate in isolation, at least not the ones
interesting to XAI. No matter how brightly we illuminate the mechanistic details
within the AI model, no matter how transparent our algorithms are [3], we are
missing a big chunk of the picture if we restrict discussion to analysis of only
the Computational, Algorithmic, and Implementational levels.

4.2 Mechanistic-Social, Particular-General Taxonomy

In addition to the Mechanistic-Social levels of analysis distinction6, we may
also ask for explanations at different levels of specificity much like how Hempel
distinguished between explaining particular facts from general regularities [15].
Here, we distinguish between asking questions pertaining to why a particular
output was produced, and what types of output tend to be generated. We are
also distinguishing between whether a particular social agent can understand
outputs or explanations generated by XAI methods, and whether the usage of
the AI model under question fits within the broader social context of application.

To be precise in our usage of language and avoid the ambiguous and
loaded term ‘explanation’, each category in this taxonomy introduces a dis-
tinct term to disambiguate discourse. When we talk about explanations that
identify mechanisms within an AI model contributing to particular outputs,
we request for and produce Diagnostic-explanations on the matter (Mecha-
nistic/Particular). When we wish to discern the general regularities of an AI
model, we request for Expectation-explanations (Mechanistic/General). When
we talk about explanations given to humans, we are requesting for Explication-
explanations (Social/Particular). Finally, when we ask for justifications of
model usage and seek guidance on regulations and policy, we request for Role-
explanations which position an AI model within its context (Social/General).

The advantage of introducing this distinct terminology is two-fold. Firstly,
we can keep separate questions which require different XAI methods to address
appropriately and develop evaluative metrics and methods within each category
independently. Secondly, we can now talk clearly about the relationship between
each of these types of explanation and explanatory methods produced by XAI.
Furthermore, adopting the view of explanatory pluralism means that we do not
place primacy on any one type of explanation but acknowledge that there many
types, each suiting a different context or need. For example, it is not the case
that a Role-explanation should always be given, as it would do little to determine
whether a particular AI model is actually functioning the way it was designed to.

4 Interestingly, there has been research to determine the social norms surrounding
trolley-like decision problems in the context of an imminent car crash [4].

5 Non-human animals are not recognized as legal persons and cannot stand in courts
[35]. Can an AI system stand in court as a defendant?

6 That is not to deny that there may be social mechanisms.
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An analogy here is that it is insufficient to ascertain that the person who gave the
(incorrect) prescription was a doctor. Rather, we still need to ascertain particular
facts of the matter such as whether the doctor made errors in judgment, or
employed incorrect diagnostic tools, or whether such tools failed to function
correctly which factored into the decision to prescribe the wrong medication.
However, it is the case that if we were asking whether it was acceptable that
this particular person gave someone else a prescription, we determine whether
the person under question is a trained doctor or pharmacologist.

Fig. 3. Highlighting the dependency relations between the different evaluative cate-
gories.

This prescription analogy hints at the dependency relations, as highlighted in
Fig. 3, between different types of explanation in the proposed taxonomy. When
we give explanations that are explicable to human receivers fulfilling the set of
social-psychological constraints, we also need to ensure that what we explicate
match the mechanisms that produced the object of explication. In other words,
as noted by Rudin, there is a worry that explanations produced may not match
what the model computes [31]. Therefore, it is important to establish that what-
ever explanations that are explicable in terms of being contrastive, selective, and
non-statistical (criteria noted in Sect. 2) be nonetheless grounded with suitable
and accurate Diagnostic-explanations unveiling the relevant mechanisms in the
model under scrutiny. Similarly, even if we were to use an Interpretable model
with provable bounds which we can generate Expectation-explanations for, we
still need to make use of diagnostic methods to verify that the model is func-
tioning correctly. Moreover, simply putting a model for which we have certain
bounded expectations on the table does not make its output immediately expli-
cable, although having prior expectations might mean that model outputs lend
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themselves to easier explication. Expectation-explanations provided still need to
fulfill a set of explicability criteria to be understandable to the target audience.
Finally, to determine whether a model fits social expectations for the role that it
occupies in its social context, we may require that it both be understandable to
humans interacting with it and that we can draw generalizations around its func-
tion. But an explanation that is both explicable and based on an Interpretable
model architecture may, however, still fail to identify and position the model
within its social context and thus, fail to be a suitable Role-explanation.

5 Pragmatic Interventionist Stance

We can now position XAI methods within this pluralistic taxonomy by identify-
ing the knobs and levers that we should manipulate to affect our desired effects
(fulfillment of desiderata). In other words, the different categories differ in where
we intervene upon our system to exact the desired changes. Taken together with
the notion of causal relevance, the pragmatic interventionist stance, that expla-
nations help us uncover relevant causes which identify manipulable relationships,
affords us a unified way of categorizing XAI approaches.

5.1 Organizing Present XAI Methods

For a more comprehensive review of the methods in XAI, I refer the reader
to [36]. In this section, I have chosen some representative examples to illus-
trate the application of my proposed taxonomy in Fig. 4. Within the category of
Diagnostic-explanation are Saliency Maps [25], LIME [29], and Shapley Values
[13] which identify particular input features important to affecting the output of
models. The Explication-explanation category focuses on techniques to render
explanations or model output understandable to humans interacting with the
AI model. Such methods may include refining AI model interfaces with Human-
Computer-Interaction (HCI) research [34], Google’s AI Explanations “What-If”
tool [39] to present feature relevance in contrastive terms, or by using the Sys-
tem Causability Scale [17] to measure the extent to which explanations generated
were understandable. The Expectation-explanation category includes methods
that focus on identifying and building regularities into models [21,22], ensuring
robustness against adversarial attacks [5], and avoiding a pattern of output that
potentially biases towards inappropriate features [43]. Interpretable models by
virtue of their architectural attributes allow us to form certain expectations. For
instance, the Neural Additive Model architecture uses a linear combination of
neural networks to compute classification [2]. We can expect that a linear combi-
nation will combine each input feature in some weighted additive manner rather
than have potentially unexpected interactions between features in high dimen-
sions as deep neural networks typically do. Role-explanation emphasize the social
context and embedded nature of AI models. By explicitly including humans in
the process of decision-making and training, the consideration of Human-In-The-
Loop is three-fold: 1) humans may be required to review AI model decisions to
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Fig. 4. Selected examples organized under each category in the proposed taxonomy.

comply with regulatory constraints; 2) humans can augment AI models with
expertise and skills that AI models currently do not possess [16]; and 3) by
including humans within each stage of the AI model, we can better ensure that
AI objectives are aligned with human values since such systems open themselves
up to more flexible alignment with human preferences [38]. Furthermore, risk
mitigation protocols, as required for “high-risk” AI systems under the proposal
for Harmonized Rules on AI [8], may identify ways to recover control when the
AI system steps outside the boundaries of the role it plays, thereby increasing
our trust in the AI system to perform within suitable roles. Finally, the growing
body of regulations can help us to clarify what are the roles we envision AI
systems can act beneficially within and their associated expectations.

5.2 Descriptive vs Evaluative Taxonomy

XAI methods can be categorized as illustrated in this proposed taxonomy by how
we should evaluate them based on the sorts of intervention they identify instead
of descriptive characteristics. Since causes identified by explanations should be
relevant to the effect contrast we wish to affect [9,11,40], we should ask for XAI
methods from the appropriate category of interventions. If we wish to examine
changes in the model output, we should intervene at the level of a particular
trained model asking for Diagnostic-explanations. If we wish to determine the
broad guarantees of a model, then we should intervene at the level of the model
architecture and ask for Expectation-explanations. If what we ultimately wish
for is human understandability, then we should intervene upon the causes that
bring about increased understandability, such as the social-psychological con-
siderations outlined in Sect. 2, and ask for Explication-explanations. Finally, if
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we wish to better fit the usage of our AI model within its social role, perhaps
what we should intervene upon is not the model architecture nor how explicable
outputs are, but to involve human controllers and specify their operating proce-
dures or develop regulatory mechanisms surrounding usage of such models and
ask for Role-explanations.

Therefore, in addition to disambiguating discourse on different XAI methods,
the proposed taxonomy also allows stakeholders to identify a match between their
desiderata and the methods that should be employed. For example, if we want
to “restore accountability by making errors and causes for unfavorable outcomes
detectable and attributable to the involved parties” [18], what we are looking for
will be Diagnostic-explanations that identify particular mechanisms in the model
contributing to errors as well as Role-explanations that identify the context
within which the model was situated. If we wish for users to “calibrate their
trust in artificial systems” [18], then we request for Explication-explanations to
render model output understandable and Expectation-explanations to identify
robustness guarantees.

6 Conclusion

In conclusion, this paper presents an evaluative taxonomy that categorizes XAI
methods based on the levels of intervention available and acknowledges the plu-
rality of explanations produced. Furthermore, distinct terminology is introduced
for each category to disambiguate the types of explanation we mean: Diagnos-
tic, Expectation, Explication, and Role-explanation. This taxonomy is neither
complete nor the only such way we can organize different types of explana-
tion. Rather, this paper makes the point that it is useful for us to differentiate
between types of explanation and we should do so on the basis of evaluative
criteria rather than descriptive criteria. Additionally, future work is encouraged
to develop metrics for evaluating XAI methods in each category. In particular,
contributions from the social sciences will be crucial in identifying just what we
should look for in Explication-explanations and Role-explanations. Nevertheless,
we can now answer some of the clarificatory questions posed in the introduction.
Why do we ask for ‘explanations’? Because they allow us to identify relevant
points of intervention for the desired effect. Furthermore, with the more specific
language introduced, we can better distinguish between the evaluative conditions
we wish to impose upon explanations requested. This allows stakeholders to more
clearly present their objective, purpose and context under which explanations
are sought from XAI. I will end with two recommendations for XAI, reemphasiz-
ing the point that rather than looking back upon and within our present models,
methods developed in XAI can look forward as a way of advancing the field of
AI and should look outwards to situate models within their social context.

6.1 Limit of Diagnostics

The first pressing recommendation is to use the more specific term ‘AI Model
Diagnostics’ when we talk about explanatory methods that illuminate mecha-
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nisms within AI models. It would be prudent to treat present results from the
field of XAI that are mere diagnostic tools as such explicitly to avoid confusion
and granting such tools too much authority.

This difference between Diagnostics and full ‘explanations’ can be illustrated
with an analogy to Air Crash Investigations. In the unfortunate case of airplane
accidents, the recovery of the plane’s Flight Recorder (also known as a black box)
is but the first step in forming an investigative report into the accident. The data
recorded by flight recorders contain a slice of the plane’s flight history, preserving
the state of the plane moments before the accident. From this data, investigators
may be able to hypothesize what caused the accident by identifying anomalous
parameters recorded by the black box. However, in many cases, the causes for
airplane accidents do not lie entirely within the plane’s state prior to the accident.
Rather, the plane exists within the larger context of the flight industry which
contains its pilots, maintenance crews, and regulations regarding flight paths and
operating procedures. In addition, a key aspect of the final investigative report is
to not only identify causes for the accident but recommendations for preventing
future accidents from happening [1]. Furthermore, this investigative report also
serves to assuage the public of the flight industry’s reliability as well as address
bereaved families’ concerns. In this way, explanations for airplane accidents do
not merely contain the causal aspect (which may already exceed the bounds of
a plane’s black box) but a social aspect of fulfilling the responsibility the flight
industry has to its customers.

In a similar fashion, our investigations into AI models must not stop at
uncovering what’s within the black box (AI models), but look beyond and place
the model within its social context. But to do so, we do indeed still require
transparency into the inner workings of our AI models in order to render their
behavior expectable and explicable. Therefore, a more holistic approach to con-
structing XAI explanatory products may be necessary by incorporating methods
from multiple categories within the proposed taxonomy.

6.2 Ratiocinative AI

The second long-term recommendation is to identify an additional direction XAI
can take that is somewhat distinct from the any of the categories defined in the
proposed taxonomy: bake into AI models an awareness of its internal processes.
In Rosenberg’s critical take on connectionism, Connectionism and Cognition, he
argues that the “mere exercise of a discrimination capacity, however complex,
is not yet an example of cognition” [30] and identifies connectionist networks
(neural networks) as only capable of mere discrimination by following certain
rules. In addition to being rule-conforming (rational), Rosenberg argues in his
paper that for truly cognizant systems, they should be rule-aware (ratiocinative)
as well. Just so, I believe that for us to eventually develop tools that enable
fruitful dialogue between humans and our AI models, we would come to imbue
our AI models with an awareness of its internal processes.

What this awareness should be and how it can be implemented is currently
unclear. XAI can contribute by not only identifying points of intervention, but
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eventually allowing us to reflexively surface these interventions back to the AI to
develop truly intelligent, ratiocinative systems. Furthermore, present research in
Reinforcement Learning agents also paints a promising path for us to achieve this
goal. Building on top of its previous successes, DeepMind’s recent MuZero agent
is able to learn both the rules surrounding permissible actions within its environ-
ment as well as an optimal policy to act within this environment [32]. MuZero’s
awareness of internal rules and policies learned through interacting with the
environment is built upon similarly opaque deep neural networks. However, the
levels at which we can direct it questions and extract explanations appear to be
broader than most other current AI models.

6.3 On Firmer Grounds

In closing, the categorization of many present XAI methods as ‘Diagnostics’
and admitting a plurality of explanations, thus noting the insufficiency of any
single type of explanation, may be viewed as taking a step back. However, by
taking this step back to reign in and clarify some of the expectations we have for
present XAI methods, we stand on firmer grounds to take the next leap forward
in XAI to produce holistic explanations and ensure the responsible usage of AI
in society.

Acknowledgments. I thank Carl Craver for many fruitful discussions and helpful
comments on multiple drafts of this paper, Jin Huey Lee for feedback on an earlier
draft, and my anonymous reviewers for their many insightful comments.

References

1. AAIB: About us (2021). https://www.gov.uk/government/organisations/air-
accidents-investigation-branch/about

2. Agarwal, R., Frosst, N., Zhang, X., Caruana, R., Hinton, G.E.: Neural additive
models: interpretable machine learning with neural nets (2020)

3. Ananny, M., Crawford, K.: Seeing without knowing: limitations of the transparency
ideal and its application to algorithmic accountability. New Media Soc. 20(3), 973–
989 (2016). https://doi.org/10.1177/1461444816676645

4. Awad, E., et al.: The moral machine experiment. Nature 563, 59–64 (2018).
https://doi.org/10.1038/s41586-018-0637-6

5. Blaas, A., Patane, A., Laurenti, L., Cardelli, L., Kwiatkowska, M., Roberts,
S.: Adversarial robustness guarantees for classification with Gaussian processes.
In: Chiappa, S., Calandra, R. (eds.) Proceedings of the Twenty Third Interna-
tional Conference on Artificial Intelligence and Statistics. Proceedings of Machine
Learning Research, vol. 108, pp. 3372–3382. PMLR, 26–28 August 2020. http://
proceedings.mlr.press/v108/blaas20a.html

6. Bosak, J.: Social roles. In: Shackelford, T.K., Weekes-Shackelford, V.A. (eds.)
Encyclopedia of Evolutionary Psychological Science. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-16999-6 2469-1

7. Council of European Union: Council regulation (EU) no. 2016/679 (2016). https://
eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A02016R0679-
20160504

https://www.gov.uk/government/organisations/air-accidents-investigation-branch/about
https://www.gov.uk/government/organisations/air-accidents-investigation-branch/about
https://doi.org/10.1177/1461444816676645
https://doi.org/10.1038/s41586-018-0637-6
http://proceedings.mlr.press/v108/blaas20a.html
http://proceedings.mlr.press/v108/blaas20a.html
https://doi.org/10.1007/978-3-319-16999-6_2469-1
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A02016R0679-20160504
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A02016R0679-20160504
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A02016R0679-20160504


Explanatory Pluralism in Explainable AI 291

8. Council of European Union: Proposal for Council Regulation (EU) no.
2021/0106(cod) (2021). https://eur-lex.europa.eu/legal-content/EN/TXT/?
uri=CELEX%3A52021PC0206

9. Craver, C.: Explaining the brain: mechanisms and the mosaic unity of neuro-
science. Oxford Scholarship Online (2007/2009). https://doi.org/10.1093/acprof:
oso/9780199299317.001.0001

10. Craver, C.: The ontic account of scientific explanation. In: Kaiser, M.I., Scholz,
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Abstract. The recent increase in the deployment of machine learn-
ing models in critical domains such as healthcare, criminal justice,
and finance has highlighted the need for trustworthy methods that can
explain these models to stakeholders. Feature importance methods (e.g.
gain and SHAP) are among the most popular explainability methods
used to address this need. For any explainability technique to be trust-
worthy and meaningful, it has to provide an explanation that is accurate
and stable. Although the stability of local feature importance methods
(explaining individual predictions) has been studied before, there is yet
a knowledge gap about the stability of global features importance meth-
ods (explanations for the whole model). Additionally, there is no study
that evaluates and compares the accuracy of global feature importance
methods with respect to feature ordering. In this paper, we evaluate the
accuracy and stability of global feature importance methods through
comprehensive experiments done on simulations as well as four real-
world datasets. We focus on tree-based ensemble methods as they are
used widely in industry and measure the accuracy and stability of expla-
nations under two scenarios: 1. when inputs are perturbed 2. when mod-
els are perturbed. Our findings provide a comparison of these methods
under a variety of settings and shed light on the limitations of global fea-
ture importance methods by indicating their lack of accuracy with and
without noisy inputs, as well as their lack of stability with respect to:
1. increase in input dimension or noise in the data; 2. perturbations in
models initialized by different random seeds or hyperparameter settings.

Keywords: Explainability · Trustworthiness · Tree ensemble

1 Introduction

Owing to the success and promising results achieved in supervised machine learn-
ing (ML) paradigm, there has been a growing interest in leveraging ML models
in domains such as healthcare [3,30,33], criminal justice [26], and finance [12].
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As ML models become embedded into critical aspects of decision making,
their successful adoption depends heavily on how well different stakeholders
(e.g. user or developer of ML models) can understand and trust their predic-
tions [4,10,14,20,27]. As a result, there has been a recent surge in making ML
models worthy of human trust [31] and researchers have proposed a variety
of methods to explain ML models to stakeholders [6]. Among these methods,
feature importance methods in particular have received a lot of attention and
gained tremendous popularity in industry [6]. The explanations obtained by
these methods lie in two categories: 1. local explanations 2. global explanations
. Local explanations explain how a particular prediction is derived from the
given input data. Global explanations, in contrast, provide a holistic view of
what features are important across all predictions. Both explanation methods
can be used for the purposes of model debugging, transparency, monitoring and
auditing [6]. However, the trustworthiness and applicability of these explanations
relies heavily on their accuracy and stability [18].

Previously, Lundberg et al. [22] assess the accuracy of feature importances
by comparing them with human attributed importances. Ribeiro et al. [25] lim-
its models to only use ten features from the input. Assuming the models would
only pick the top ten important features, he then measures whether the selected
features by the model are also captured by feature importances. Although both
of these assessments capture whether important features are accurately identi-
fied, they do not measure the accuracy with respect to the relative ordering of
features. We examine this with and without the presence of noisy inputs and use
it to provide a comparison of different global feature importance methods.

In the explainability literature, various definitions are proposed for stability.
Alvarez et al. [2] define stability as being stable to local perturbations of the
input, or in other words, similar inputs should not lead to significantly different
explanations. Hancox-Li provides another definition for stability [18]. He claims
that stable explanations reflective of real patterns in the world are those that
remain consistent over a set of equally well-performing models. Inspired by these
definitions, we consider the following two scenarios to evaluate stability: 1. local
perturbations of the input 2. perturbations of the models. We argue that stability
with respect to these factors is essential to account for the inherent noisy nature
of real-world data and to provide trustworthy explanations.

The stability of local explainability methods under the first scenario has been
studied before. For example, Alvarez et al. [2] show LIME [25] and (Kernel)
SHAP [22] lack stability for complex black-box models through conducting the
following experiments. They slightly perturb the input values and find that the
surrogate models and original black box models produce stable output values
whereas the explanations provided by LIME and SHAP change drastically in
response to the perturbations. Despite these thorough investigations conducted
on the stability of local explainability methods, there is yet little understanding
about the stability of global explainability methods. With these methods getting
embedded into critical aspects of daily life (healthcare, criminal justice, and
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finance), addressing this knowledge gap becomes crucial to avoid moral and
ethical hazards [26].

In this paper, we compare and evaluate the accuracy and stability of global
feature explanation methods, gain and SHAP, through comprehensive experi-
ments conducted on synthetic data and four real-world datasets. For this pur-
pose, we use the following tree-based ensemble models as they are widely used
in academia and industry: (1) random forest (2) gradient boosting machines [23]
and (3) XGBoost [9]. Our findings shed light on the limitations of the global
explainability methods and show that they lack accuracy and become unstable
when inputs or models are perturbed. For the rest of this paper, we first review
the methodologies used in our experiments under Sect. 2. We then describe our
experimental setup in Sect. 3. Finally, we present and discuss our findings in
Sects. 4 and 5 respectively.

2 Background

Tree ensemble methods are employed widely in research and industry due to their
efficiency and effectiveness in modeling complex interactions in the data [7]. The
two most common tree ensemble methods are gradient boosting [17] and random
forest [8]. In gradient boosting, trees are trained sequentially with upweighting
the previously misclassified labels. In contrast, random forest trees are trained
in parallel with different subsampling across all trees. We use random forest and
gradient boosting machine implemented by sklearn [23], as well as XGBoost, a
faster version of gradient boosting that uses second-order gradients [9].

In this study, to compute global feature importances in tree ensemble meth-
ods we use gain [16] and SHAP [22], an implementation of the Shapley algorithm.
We focus on SHAP instead of LIME [25] as LIME explanations can be fragile due
to sampling variance [6] and less resilient against adversarial attacks as shown
by [29]. In the following sections, we briefly explain how gain [16] and SHAP [22]
are computed.

Gain. For both of the aforementioned tree ensemble methods, sklearn [23] and
xgboost [9] libraries provide the implementation to obtain the feature impor-
tances based on Hastie’s description in the Elements of Statistical Learning [16].
This is also referred to as gain. This metric represents the improvements in
accuracy or improvements in decreasing uncertainty (or variance) brought by a
feature to its branches. At the end, to get a summary of the whole tree ensemble,
this measure is averaged across all trees [1,16,19]. In this paper, for the sake of
simplicity and consistency we refer to this method as gain.

SHAP. SHapley Additive exPlanations (SHAP) [22] has gained a lot of attention
in industry as a way to measure feature importance [6]. SHAP is an implemen-
tation of Shapley formula that summarizes the contribution of a feature to the
overall prediction by approximating the Shapley value presented in the following:

φi =
∑

S⊆F\{i}

|S|!(|F | − |S| − 1)!
|F |! [fS∪{i}(XS∪{i}) − fS(XS)]
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where φi is the Shapley value for feature i, S is a subset of all features F that
does not include feature i, fS∪{i} is the model trained on features in S and
feature i, fS is the model trained on features in S, and X is the input data.

SHAP inherently calculates local importances, i.e. how each feature con-
tributes to the prediction of a specific input. By averaging the absolute value
of these local importances across the training set, one can obtain a global sum-
mary of how the feature as a whole contributes to the model. In this paper,
we investigate the accuracy and stability of Tree SHAP [21] (a recent exten-
sion to Kernel SHAP with faster computation runtime for trees) under various
settings. Unlike Kernel SHAP [22] which uses perturbation, Tree SHAP (with
tree path dependent setting) leverages trees’ cover statistics for fast approxima-
tion of Shapley values.

3 Experimental Setup

In this section we describe the setup we use to evaluate the accuracy and stability
of global feature importance methods.

Datasets. To thoroughly evaluate the accuracy and stability of global feature
importances, we conduct our experiments on synthetic data as well as four real-
world datasets from various domains.

For synthetic data, we generate 300 training samples with varying number
of features (5, 10, 25, 100, and 150 features). We randomly set the features to
be either continuous or categorical (each with equal probability). For continuous
features, we sample from a uniform distribution between [0, 1). For categorical
features, we first randomly sample values like continuous features and we then
binarize them based on an independently-sampled threshold selected from [0, 1).
Lastly, to obtain the target values, we sum the multiplication of each feature by
a randomized set of coefficients (sampled independently per feature between -10
to 10). Then, we categorize the summation values to 1 for values greater than
the median and 0 otherwise.

We use the following four real-world datasets in addition to the synthetic
data for our stability assessments:

1. Forest Fire: prediction of the amount of burned area resulted from forest fires
in the northeast region of Portugal, by using meteorological data, such as
coordinates, time, wind, rain, relative humidity, etc. [11].

2. Concrete: prediction of concrete compressive strength given material types,
composition, and age [34].

3. Auto MPG: prediction of fuel consumption in miles per gallon (MPG) of cars
in the city given its model, horsepower, etc. [24]

4. Company Finance: prediction of whether companies would make a good
investment based on their finances.

All datasets except the Company Finance dataset (our proprietary dataset)
come from the UCI ML data repository [15] and are parsed with the py uci
package [28]. A summary of these datasets is shown in Table 1.
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Table 1. Description of datasets used in this study.

Dataset Domain Task type # Samples # Features

Synthetic Data Classification 300 5–150

Forest Fire Meteorology Regression 517 12

Concrete Civil Regression 1030 8

Auto MPG Automotive Regression 406 7

Company Finance Finance Classification 2716 892

Experimental Settings. In our experiments, we use random forest and gradient
boosting machine implemented by sklearn package [23], as well as XGBoost, an
implementation of gradient boosting that uses second-order gradients and has a
faster runtime [9]. For each of these models, we run the following experiments:

1. Input perturbation: where the input data are perturbed by adding different
levels of noise. Noise is sampled randomly from a normal distribution with
mean 0 and standard deviation of: (a) half of the original feature’s stan-
dard deviation for low noise (b) the original feature’s standard deviation for
medium noise (c) double of the original feature’s standard deviation for high
noise.

2. Model perturbation: where the model is perturbed by (a) initializing with
a different random seed without hyperparameter tuning, or (b) optimizing
hyperparameters [5] (e.g., number of trees, depth of trees, etc.) with a different
random seed. In these experiments, we ensure that the predictions of the two
models (the original model and the perturbed model) have high correlations,
such that of discrepancies in predictions affect the analysis minimally.

We iterate all experiments 50 times with a different random seed, except
for the Company Finance dataset. For this dataset, we run the experiments 5
times due to long training time caused by the high number of features. In each
iteration of input perturbation experiment, we train two models, one with the
original setting (e.g., unperturbed input data) and another with the perturbed
setting (e.g., noised input data). In model perturbation experiments, we also
train two models in each iteration where we change the random seed of the
second model to be different than the first model. For each trained model, we
compute gain and SHAP feature importances as described in Sect. 2.

Accuracy Metrics. To evaluate the accuracy of global feature importances, we
use simulated data so that the true coefficients (importances) are known. The
features are ranked based on the magnitude of their corresponding coefficients
used during data generation. We examine the accuracy under the following sce-
narios: 1. when no noise is added to the input, and 2. when different level of
noise is added to the input. We do not consider the model perturbation scenario
for this analysis as we are mainly interested in measuring the accuracy of the
model’s feature importances to the true coefficients.
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We evaluate the accuracy of the top features’ ranking in the following way:

– First, we rank features based on their coefficients’ magnitude, largest magni-
tude being the most important. Since all features are uniformly sampled from
[0, 1), we assume the coefficients’ magnitude represent the importances.

– Second, we assess whether these top features are ranked correctly with gain
and SHAP feature importances.

– Finally, we count the number of times each top feature is ranked correctly by
gain or SHAP feature importances across multiple iterations. If it is ranked
incorrectly, there are 2 possible situations: 1. The feature is still considered
a top feature by gain or SHAP feature importances,2. The feature is not
considered a top feature by gain or SHAP feature importances. We present
this count proportionally across the 3 groups (correct, incorrect but top, and
incorrect) to compare the accuracy of these models on different levels.

Furthermore, to get a sense of feature importances’ accuracy across all features,
we evaluate the Spearman correlation of gain and SHAP feature importances
compared to the coefficients.

Stability Metrics. To evaluate the stability of global feature importances, we
consider the following two scenarios: 1. when different levels of noise is added to
the input. 2. when models are perturbed by initializing with different random
seeds and different hyperparameter settings. We use Spearman correlation to
compare feature importances calculated from the 2 models (one unperturbed
and the other perturbed), because it is distribution-free unlike parametric tests
(e.g., Pearson correlation) [35]. We also report both the Spearman and Pearson
correlations between the predicted outputs of the two models trained in each
iteration as a sanity check to ensure similar performance.

4 Results

Here, we present our findings from the experiments described in Sect. 3. We
first discuss the accuracy of gain and SHAP feature importances in Sect. 4.1.
We then dive into the stability of each feature importance method when inputs
are perturbed and when models are perturbed in Sect. 4.2. Finally, we present a
summary of our findings in Sect. 4.3.

4.1 Accuracy of Gain and SHAP Feature Importances

Table 2 demonstrate the accuracy of gain and SHAP for the top 3 features in
synthetic data with a total of 5 features trained with XGBoost. The difference
between SHAP and gain proportions are highlighted beneath them. Orange indi-
cates SHAP having a higher proportion and vice versa for blue. Models included
in this experiment are highly predictive, with an average area under receiver
operating curve (AUROC) of 92.6% with standard deviation of 0.8%.
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Surprisingly, we find that the number of features ranked correctly is quite low
for both methods even when there is no noise added to the input. For example,
the rank #1 feature is correctly ranked approximately 40% of the time by both
methods. Despite both SHAP and gain calculating feature importances from
the same model, SHAP shows a slightly higher accuracy in ranking top features
especially when noise is added into the input.

Table 2. Proportions of correct, incorrect but top, and incorrect ranking of the top 3
features on synthetic data (total features: 5) using XGBoost model across all experi-
ment iterations. Proportions in each column add up to 1. Highlighted values indicate
the difference between SHAP and gain proportions: orange when SHAP having higher
proportion and blue otherwise.

Experiment setting: No noise added to input Low noise added to input

Original feature rank: 1 2 3 1 2 3

Feature importance method: gain shap gain shap gain shap gain shap gain shap gain shap

correct
0.44 0.5 0.46 0.44 0.32 0.3 0.44 0.46 0.4 0.52 0.3 0.44

0.06 -0.02 -0.02 0.02 0.12 0.14

incorrect but top
0.26 0.28 0.22 0.26 0.32 0.28 0.24 0.16 0.26 0.2 0.46 0.38

0.02 0.04 -0.04 -0.08 -0.06 -0.08

incorrect
0.3 0.22 0.32 0.3 0.36 0.42 0.32 0.38 0.34 0.28 0.24 0.18

-0.08 -0.02 0.06 0.06 -0.06 -0.06

To explicitly look at whether the feature importances provides an accurate
ranking of all features, we further examine the Spearman correlation between the
feature importances and the true coefficients. Figure 1 shows the correlations in
a noise-free scenario with increasing number of features. As demonstrated in this
Figure, we find that gain and SHAP feature importances do not correlate well
with the true coefficients (correlations range from 30–40% and drops to around
20% as the number of features increases). We observe a similar pattern across all
other experimental settings (low-noised, medium-noised, or high-noised input).

Fig. 1. Spearman correlation of gain and SHAP feature importances (Blue: gain,
Orange: SHAP) with the true coefficients with no noise added in simulation. Cor-
relation is quite low across all settings. (Color figure online)
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4.2 Stability of Gain and SHAP Feature Importances

In this section we evaluate the stability of feature importances when inputs and
models are perturbed. In all of the following experiment settings, the predicted
outputs from the perturbed models and the original models are highly corre-
lated (an example for model perturbation is shown in Fig. 2 for synthetic data).
This ensures that our models have very similar performance and the results are
minimally affected by discrepancies between model predictions.

Fig. 2. Correlation of predicted outputs in models trained on synthetic data with model
perturbations across different number of features (Blue: Pearson, Orange: Spearman
correlation). The predicted output of perturbed models are still highly correlated to
those without perturbation. (Color figure online)

Stability of Feature Importances When Inputs are Perturbed. Figure 3
shows us a glimpse of this analysis for low level of noise on synthetic data. From
this figure, we see that SHAP is more stable than gain feature importances when
we add a small noise to the perturbed input, especially for XGBoost. This uplift
between gain and SHAP, however, decreases as noise increases across all models
as shown in Fig. 4. We can also see from Fig. 4 that unsurprisingly stability
decreases as the level of noise and the number of features increase.



On the Trustworthiness of Tree Ensemble Explainability Methods 301

Fig. 3. Correlation of feature importances (Blue: gain, Orange: SHAP) for models
trained with low input perturbation on synthetic data. SHAP is more stable across all
models although both SHAP and gain both suffer from lack of stability. (Color figure
online)

Fig. 4. Correlation of feature importances (Blue: gain, Orange: SHAP) for models
trained with input perturbation on synthetic data. SHAP is slightly more stable than
gain at low level of noise but are comparable as noise increases. (Color figure online)

As shown in Fig. 5, we see that in real-world datasets when a low noise is
injected to the input, the correlations of gain and SHAP feature importances
drop very low. For example, in Forest Fire dataset, feature importances corre-
lation averages to around 50% for SHAP while it averages to around 20% for
gain. In Company Finance dataset, both gain and SHAP has either 20% cor-
relation or lower. We discover that SHAP is slightly more stable than gain for
Forest Fire and Company Finance as can be seen on Fig. 5, although this is not
consistent across all datasets. We also observe low correlations with increasing
level of noise.
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Dataset: Forest Fire (# Features: 12)
XGBoost Gradient Boosting Random Forest

Dataset: Concrete (# Features: 8)
XGBoost Gradient Boosting Random Forest

Dataset: Auto MPG (# Features: 7)
XGBoost Gradient Boosting Random Forest

Dataset: Company Finance (# Features: 892)
XGBoost Gradient Boosting Random Forest

Fig. 5. Correlation of feature importances (Blue: gain, Orange: SHAP) for models
trained with input perturbations (low noise) on real-world datasets. SHAP and gain
both lack stability overall although SHAP is slightly more stable for certain datasets.
(Color figure online)

Stability of Feature Importances When Models are Perturbed. Figure 6
shows the correlation of feature importances when models are perturbed by ini-
tializing to a different random seed or by training with different hyperparameter
settings. From this figure, we see that the correlation of feature importances is
not greatly affected when models are perturbed for small number of features, but
it drops significantly (to 80% Spearman correlation for XGBoost and gradient
boosting models) as the number of features increases to 150. We find that the
correlation of SHAP feature importances is significantly higher compared to gain
feature importances, especially in XGBoost trained with different hyperparam-
eter. Although, for gradient boosting machine and random forest, we do not see
the same uplift on stability for SHAP. Both gain and SHAP are equally stable
for these models.
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Fig. 6. Correlation of feature importances (Blue: gain, Orange: SHAP) for models
trained on synthetic data with model perturbations across different number of features.
(Color figure online)

Moreover, we notice a strangely perfect correlation when training XGBoost
without hyperparameter optimization but with different random seeds (See
Fig. 6, top left). After further investigation, we discover that XGBoost is more
deterministic when choosing features even when initialized with different random
seeds. The results of our findings are expanded further in AppendixA.

In real world settings, we also notice a decrease in stability for gain and
SHAP when models’ hyperparameter settings are perturbed (Fig. 7). This is
especially bold for Forest Fire dataset. On average, gain feature importances have
around 60% Spearman correlation whereas SHAP have around 90% Spearman
correlations in this dataset. SHAP tends to be more stable across the different
real-world datasets, especially for XGBoost model as shown in Fig. 7, although
this uplift is not as apparent in Gradient Boosting Machine and random Forest
models.

4.3 Summary of Results

We observe that there is a lack of accuracy with gain and SHAP feature impor-
tances even when there is no perturbation involved. In synthetic data with 5
features, the top feature is only ranked correctly around 40% of the time. In
addition to lack of accuracy, we also evaluate the lack of stability of these fea-
ture importances in various settings. We find that when inputs are perturbed, the
correlations drop very low, both in synthetic and real-world datasets. When we
perturb the models, especially by using different hyperparameter settings, corre-
lation of feature importances can drop to 70–80%. We find SHAP to be slightly
more stable than gain in many cases, but both of their Spearman correlations
still reduces to 60% when low noise is added to the input.
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Dataset: Forest Fire (# Features: 12)
XGBoost Gradient Boosting Machine Random Forest

Dataset: Concrete (# Features: 8)
XGBoost Gradient Boosting Machine Random Forest

Dataset: Auto MPG (# Features: 7)
XGBoost Gradient Boosting Machine Random Forest

Dataset: Company Finance (# Features: 892)
XGBoost Gradient Boosting Machine Random Forest

Fig. 7. Correlation of feature importances (Blue: gain, Orange: SHAP) for XGBoost
models trained on four real-world datasets with perturbations to the model’s hyperpa-
rameter settings. SHAP is slightly more stable than gain for XGBoost. (Color figure
online)

5 Discussion

We set out to investigate the accuracy and stability of global feature impor-
tances for tree-based ensemble methods, such as random forest, gradient boost-
ing machine, and XGBoost. We mainly look at two feature importance methods
gain, and SHAP. For both of these methods, we evaluate the accuracy in a sim-
ulated environment where true coefficients are known with and without noisy
inputs. We also evaluate the stability of these methods in two directions, that is
1. when inputs are perturbed, and 2. when model settings are perturbed, either
by initializing with a different random seed or by optimizing their hyperparam-
eters with a different random seed.
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Accuracy Analysis. We find that SHAP tends to be better at accurately iden-
tifying top features compared to gain, although the overall accuracy of both is
quite low especially when considering the ordering of all the features.

Stability Analysis. In our experiments, we find that SHAP is either equally or
more stable when compared with gain. This is especially interesting as both gain
and (Tree) SHAP feature importances investigated here use the innate structure
of the trees. The difference lies on the fact that gain measures the feature’s
contribution to accuracy improvements or decreasing of uncertainty/variance
whereas SHAP measures the feature’s contribution to the predicted output.

Future Work. There has been recent work on extending Shapley values to other
cooperative game theory algorithms, such as the core [32]. We will investigate
this approach when a public implementation of this algorithm becomes avail-
able. In this study, we mostly focus on the stability of global features importance
across the same model trained with perturbed hyperparameters/random seeds
or inputs. Dong and Rudin recently suggest the idea of using a variable cloud
importance, capturing the many good (but not necessarily the same) explana-
tions coming from a group of models with almost equal performance [13]. In our
future work, we will investigate the stability and usability of this methodology.
We will also extend our analysis to new scenarios and datasets.

Conclusion. We investigate the accuracy and stability of global feature impor-
tances for tree ensemble methods. We find that even though SHAP in many
cases can be more stable than gain feature importance, both methods still have
limitations in terms of accuracy and stability and more work needs to be done
to make them trustworthy. We hope that our paper will continue propel the
discussion for trustworthy global feature importances and for the community to
investigate this more thoroughly.

Appendix

A Determinism of XGBoost Feature Importances

In this experiment, we simulate 1000 samples with 10 redundant features where
each feature is equally important in predicting the target. Figure 8 shows the
distribution of the default feature importance in random forests, gradient boost-
ing, and XGBoost across 30 iterations with different random seeds. As shown
on the bottom left, XGBoost always assigns all importance to the first feature
it saw no matter the random seed. When we shuffle the order of the features,
we are able to break down this pattern (shown on bottom right). This is why on
Fig. 6, there is a perfect correlation of importance for XGBoost initialized with
different random seeds. With shuffled features, we still find SHAP to be more
stable for XGBoost overall, although the correlation still decreases with higher
number of features (See Fig. 9).
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Fig. 8. These plots show the distribution of feature importances across 10 redundant
features for random forest (top left), gradient boosting (top right), XGBoost (bottom
left), and XGBoost with feature shuffling (bottom right). XGBoost by its implementa-
tion is more deterministic compared to other methods at assigning feature importance.
For the same hyperparameter with different seeds, when the features are redundant, it
will always pick the first feature in order. With feature shuffling though, we are able
to break this pattern a little bit.

Fig. 9. SHAP is more stable overall for XGBoost with shuffled features as can be seen
on the plots above across input perturbation (low noise) experiments, model pertur-
bations and both. Each row represents a different set of experiments with Spearman
correlations of the default feature importance (Blue) and SHAP feature importance
(Orange). (Color figure online)



On the Trustworthiness of Tree Ensemble Explainability Methods 307

References

1. Abu-Rmileh, A.: Be careful when interpreting your features importance
in xgboost!, February 2019. https://towardsdatascience.com/be-careful-when-
interpreting-your-features-importance-in-xgboost-6e16132588e7

2. Alvarez-Melis, D., Jaakkola, T.S.: On the robustness of interpretability methods.
arXiv preprint arXiv:1806.08049 (2018)

3. Asgarian, A., et al.: A hybrid instance-based transfer learning method. arXiv
preprint arXiv:1812.01063 (2018)

4. Asgarian, A., et al.: Limitations and biases in facial landmark detection D an
empirical study on older adults with dementia. In: CVPR Workshops, pp. 28–36
(2019)

5. Bergstra, J., Yamins, D., Cox, D.: Making a science of model search: hyperparam-
eter optimization in hundreds of dimensions for vision architectures. In: Interna-
tional Conference on Machine Learning, pp. 115–123 (2013)

6. Bhatt, U., et al.: Explainable machine learning in deployment. In: Proceedings of
the 2020 Conference on Fairness, Accountability, and Transparency, pp. 648–657
(2020)

7. Biau, G., Scornet, E.: A random forest guided tour. TEST 25(2), 197–227 (2016)
8. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)
9. Chen, T., Guestrin, C.: XGBoost: a scalable tree boosting system. In: Proceedings

of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining KDD 206, pp. 785–794. ACM, New York (2016)

10. Christodoulakis, C., Asgarian, A., Easterbrook, S.: Barriers to adoption of infor-
mation technology in healthcare. In: Proceedings of the 27th Annual International
Conference on Computer Science and Software Engineering, pp. 66–75 (2017)

11. Cortez, P., Morais, A.: A data mining approach to predict forest fires using mete-
orological data (2007)

12. Dixon, M.F., Halperin, I., Bilokon, P.: Machine Learning in Finance. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-41068-1

13. Dong, J., Rudin, C.: Variable importance clouds: a way to explore variable impor-
tance for the set of good models. arXiv preprint arXiv:1901.03209 (2019)

14. Doshi-Velez, F., Kim, B.: Towards a rigorous science of interpretable machine learn-
ing. arXiv preprint arXiv:1702.08608 (2017)

15. Dua, D., Graff, C.: UCI machine learning repository (2017). http://archive.ics.uci.
edu/ml

16. Friedman, J., Hastie, T., Tibshirani, R.: The Elements of Statistical Learning.
Springer Series in Statistics, vol. 1. Springer, New York (2001). https://doi.org/
10.1007/978-0-387-21606-5

17. Friedman, J.H.: Stochastic gradient boosting. Comput. Statist. Data Anal. 38(4),
367–378 (2002)

18. Hancox-Li, L.: Robustness in machine learning explanations: does it matter? In:
Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency,
pp. 640–647 (2020)

19. Lewinson, E.: Explaining feature importance by example of a random for-
est, April 2020. https://towardsdatascience.com/explaining-feature-importance-
by-example-of-a-random-forest-d9166011959e

20. Lipton, Z.C.: The mythos of model interpretability. Queue 16(3), 31–57 (2018)
21. Lundberg, S.M., et al.: From local explanations to global understanding with

explainable AI for trees. Nat. Mach. Intell. 2(1), 2522–5839 (2020)

https://towardsdatascience.com/be-careful-when-interpreting-your-features-importance-in-xgboost-6e16132588e7
https://towardsdatascience.com/be-careful-when-interpreting-your-features-importance-in-xgboost-6e16132588e7
http://arxiv.org/abs/1806.08049
http://arxiv.org/abs/1812.01063
https://doi.org/10.1007/978-3-030-41068-1
http://arxiv.org/abs/1901.03209
http://arxiv.org/abs/1702.08608
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
https://doi.org/10.1007/978-0-387-21606-5
https://doi.org/10.1007/978-0-387-21606-5
https://towardsdatascience.com/explaining-feature-importance-by-example-of-a-random-forest-d9166011959e
https://towardsdatascience.com/explaining-feature-importance-by-example-of-a-random-forest-d9166011959e


308 A. Yasodhara et al.

22. Lundberg, S.M., Lee, S.I.: A unified approach to interpreting model predictions.
In: Advances in Neural Information Processing Systems 30, pp. 4765–4774. Curran
Associates, Inc. (2017)

23. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn.
Res. 12, 2825–2830 (2011)

24. Quinlan, J.R.: Combining instance-based and model-based learning. In: Proceed-
ings of the 10th International Conference on Machine Learning, pp. 236–243 (1993)

25. Ribeiro, M.T., Singh, S., Guestrin, C.: “Why should I trust you?” explaining the
predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining, pp. 1135–1144 (2016)

26. Rudin, C.: Stop explaining black box machine learning models for high stakes
decisions and use interpretable models instead. Nat. Mach. Intell. 1(5), 206–215
(2019)

27. Selbst, A.D., Barocas, S.: The intuitive appeal of explainable machines. Fordham
L. Rev. 87, 1085 (2018)

28. Skafte, N.: py uci (2019). https://github.com/SkafteNicki/py uci
29. Slack, D., Hilgard, S., Jia, E., Singh, S., Lakkaraju, H.: Fooling lime and shap:

adversarial attacks on post hoc explanation methods. In: Proceedings of the
AAAI/ACM Conference on AI, Ethics, and Society, pp. 180–186 (2020)

30. Spann, A., Yasodhara, A., Kang, J., Watt, K., Wang, B., Goldenberg, A., Bhat, M.:
Applying machine learning in liver disease and transplantation: a comprehensive
review. Hepatology 71(3), 1093–1105 (2020)

31. Wiens, J., et al.: Do no harm: a roadmap for responsible machine learning for
health care. Nat. Med. 25(9), 1337–1340 (2019)

32. Yan, T., Procaccia, A.D.: If you like shapley then you’ll love the core (2020)
33. Yasodhara, A., Dong, V., Azhie, A., Goldenberg, A., Bhat, M.: Identifying modi-

fiable predictors of long-term survival in liver transplant recipients with diabetes
mellitus using machine learning. Liver Transpl. 27(4), 536–547 (2021)

34. Yeh, I.C.: Modeling of strength of high-performance concrete using artificial neural
networks. Cem. Concr. Res. 28(12), 1797–1808 (1998)

35. Zwillinger, D., Kokoska, S.: CRC Standard Probability and Statistics Tables and
Formulae. CRC Press, New York (1999)

https://github.com/SkafteNicki/py_uci


Human-in-the-Loop Model Explanation
via Verbatim Boundary Identification

in Generated Neighborhoods

Xianlong Zeng(B), Fanghao Song, Zhongen Li, Krerkkiat Chusap,
and Chang Liu(B)

School of Electrical Engineering and Computer Engineering, Ohio University,
Athens, OH 45701, USA

{xz926813,liuc}@ohio.edu

Abstract. The black-box nature of machine learning models limits their
use in case-critical applications, raising faithful and ethical concerns
that lead to trust crises. One possible way to mitigate this issue is to
understand how a (mispredicted) decision is carved out from the deci-
sion boundary. This paper presents a human-in-the-loop approach to
explain machine learning models using verbatim neighborhood manifes-
tation. Contrary to most of the current eXplainable Artificial Intelligence
(XAI) systems, which provide hit-or-miss approximate explanations, our
approach generates the local decision boundary of the given instance and
enables human intelligence to conclude the model behavior. Our method
can be divided into three stages: 1) a neighborhood generation stage,
which generates instances based on the given sample; 2) a classification
stage, which yields classifications on the generated instances to carve
out the local decision boundary and delineate the model behavior; and
3) a human-in-the-loop stage, which involves human to refine and explore
the neighborhood of interest. In the generation stage, a generative model
is used to generate the plausible synthetic neighbors around the given
instance. After the classification stage, the classified neighbor instances
provide a multifaceted understanding of the model behavior. Three inter-
vention points are provided in the human-in-the-loop stage, enabling
humans to leverage their own intelligence to interpret the model behav-
ior. Several experiments on two datasets are conducted, and the exper-
imental results demonstrate the potential of our proposed approach for
boosting human understanding of the complex machine learning model.

Keywords: Explainable artificial intelligence · Method classification ·
Human-in-the-loop · Deep learning

1 Introduction

Machine learning models are typically designed and fine-tuned for optimal accu-
racy, which often results in layers of weights that are difficult to explain or
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understand. In the meantime, recent successes of machine learning systems have
attracted adoption from more end-users, who need to better understand the
model in order to trust or properly use such machine learning systems. To make
these two ends meet, researchers and practitioners alike have adopted several
approaches, including 1) using approximate models just for explanation [2]; 2)
linear local explanation for complex global models (e.g. LIME [9]); 3) example-
based explanation by finding and showing most influential training data points
[5]. These approaches all have their own merits, but none of them deliver every-
thing needed by end-users [10].

The fundamental limitation of these approaches is that they assume that
1) certain aspects of machine learning systems, especially complex deep neural
networks, cannot be understood by human beings, and 2) typical human users
can only understand simple concepts such as linear systems.

We have an opportunity to improve on previous attempts with two assump-
tions. First, human users are intelligent, just not in the same way as machines.
Humans can identify patterns intelligently but may not be able to scale up to
thousands of data points easily. Second, machine learning systems are built
to reflect actual physical systems that follow logical and physical rules. What
worked well most likely can be explained, even though the explanation could be
complex. What cannot be explained most likely is not a good reflection of the
underlying physical properties.

We intend to make improvements in this area by 1) presenting various aspects
of the actual model through verbatim model manifestation (instead of trying
to approximate the models), and 2) identifying and generating a manageable
number of data points to present to users in the local context of the point-of-
interest, so that human users can use their own intelligence to understand what
the actual model is trying to do within a limited scope that is manageable by a
human being.

With this intuition, we aim to design an approach to facilitate human users’
understanding of machine learning models through 1) verbatim manifestation of
certain aspects of the underlying machine learning systems and 2) contextualized
visualization of carefully curated or generated data points that facilitates human
understanding. In other words, we try to build a bridge between machine and
human intelligence to address machine learning models’ explainability problems.
Furthermore, we observe that a typical human user does not need to understand
the complete machine learning model to gain confidence in the results from the
model. The user only needs to understand the rationale behind the decision
related to the current task.

In this paper, we present a three-stage human-in-the-loop XAI system, a
high-level illustration of which is depicted in Fig. 1. For a given (mispredicted)
point-of-interest, our framework tries to carve out its local decision boundary
and delineate the model behavior through a neighborhood manifestation. Our
framework leverages variational autoencoders (VAE) to generate neighborhood
examples that cross the decision boundary. Human users are involved in explor-
ing the neighborhood through three carefully designed intervention points. These



Human-in-the-Loop Model Explanation 311

intervention points help human users limit the neighborhood’s scope and enable
them to gain insights from the model behavior. The source code of our work is
public available on GitHub: https://github.com/drchangliu/xai.

The main contributions of our work are:

– We proposed a novel human-in-the-loop framework that could mitigate the
trust crisis between human users and machine learning models.

– Several case studies are presented to illustrate the potential of our approach
to facilitating human understanding of complex machine learning models.

– A general framework to depict the local decision boundary around the (mis-
predicted) instance-of-interest.

Fig. 1. A high-level illustration of our proposed framework. a) For a (mispredicted)
point-of-interest (red x) and a trained machine learning model, b) our framework tries
to carve out the local decision boundary and delineate the model behavior through a
manageable neighborhood manifestation. c) Images of sandals and ankle boot from the
fashionMNIST dataset that cause confusion to a classifier. Human users can under-
stand the classification errors by seeing the context that some sandals have boot-shape
heels. Another classification error is from the Caltech 101 dataset. Trust crisis can
be mitigated given the context that some chairs have fan-shaped bases. (Color figure
online)

2 Related Work

Machine learning researchers and practitioners have always used techniques and
tools to better understand machine learning models. In this section, we examine
a few state-of-the-art tools that are publicly accessible in an attempt to shed
some light on how they can help software engineers adopt machine learning
components.

https://github.com/drchangliu/xai


312 X. Zeng et al.

To understand the information flow of a deep network, Ancona et al. [1] has
studied the problem of assigning contributions to each input feature of a network.
Such methods are known as attribution methods, which can be divided into two
categories: perturbation-based and backpropagation-based. The perturbation-
based methods, such as Occlusion [18], LIME [9] and Shapely value [2], change
the input features and measure the difference between the new output and
the original output, while backpropagation-based methods compute the attribu-
tions for all input features through the network. Backpropagation-based meth-
ods include the feature-wise manner and the layer-wise manner. Feature-wise
approaches includes Gradient*Input [13] and Integrated Gradients [15]). Layer-
wise approaches includes Layer-wise Relevance Propagation [3], Class activation
maps [4,11,14,16] and DeepLIFT [12].

Among these related research efforts, LIME [9] and DEEPVID [17] are the
two most relevant methods as compared to our framework. LIME, proposed by
Ribeiro et al., was an approach that was able to explain the predictions of any
model [9]. LIME utilized a locally interpretable model to interpret the black-box
model’s prediction results and constructed the relationship between the local
sample features and the prediction results. Explanations from LIME do not
exactly reflect the underlying model. LIME describes the prediction outcomes
obtained even with different complex models, such as Random Forest, Support
Vector Machine, Bagged Trees, or Naive Bayes. LIME can handle different input
data types, including tabular data, image data, or text data.

DEEPVID, proposed by Wang et al., was a visual analytics system that
leverages knowledge distillation and generative modeling to generate a visual
interpretation for image classifiers [17]. Given an image of interest, DEEPVID
applied a generative model to generate samples near it. These generated samples
were used to train a local interpretable model to explain how the original model
makes the decision. The difference between our approach and DEEPVID is that,
instead of utilizing interpretable models such as linear regression to provide
interpretation, our approach visualizes boundary examples directly. End-users
can then leverage their human intelligence to interpret the model decision.

DeepDIG [6,7], developed by Karmi et al., was a framework that used to
characterize the decision boundary for deep neural networks. The main contri-
bution can be divided into two parts. The first part is to generating borderline
instances that are near the decision boundary. This part is completed in three
steps, the first and second steps are used to generate adversarial instances by
Autoencoder. The third step is used to generate the borderline instances based
on the binary search and adversarial instances produced after step one and step
two. The second contribution is related to the characterization that is used to
measure the decision boundary complexity in the input space and embedding
space. The input space complexity is calculated by the generated borderline
instances from the first contribution. The embedding space complexity is mea-
sured by developing a linear Support Vector Machine (SVM) model.
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3 The Proposed Human-in-the-Loop Framework

Given a trained machine learning model and a (mispredicted) point-of-interest,
we intend to generate a neighborhood that can enable a better human under-
standing of the model. The generated neighborhood needs to satisfy three critical
criteria:

– The instances in the neighborhood need to be semantically close to the point-
of-interest.

– The decision boundary is at least partially visible within the neighborhood.
– The neighborhood needs to maintain the number of instances in a manageable

size so that human users can gain insight from it.

To generate a neighborhood that can satisfy the above three criteria, we
propose the human-in-the-loop framework that contains three stages, as shown
in Fig. 2. In the first stage, a neighborhood is generated based on the given
sample through a trained generative model. In the second stage, the pre-trained
machine learning model is used to yield classification on the generated instances
to carve out the local decision boundary and delineate the model behavior. Next,
three intervention points are provided to enable human users for a throughout
exploration for gaining insights. In the following section, we explain each stage
in detail.

Fig. 2. The proposed human-in-the-loop framework. It contains three stages. In stage
(I), a neighborhood is generated based on the given sample through a trained varia-
tional autoencoder. In stage (II), the pre-trained machine learning model is used to yield
classification on the generated instances to carve out the local decision boundary and
delineate the model behavior. In stage (III), human users are enabled with three inter-
vention points to explore the neighborhood: a) refined multifacet path exploration, b)
“zoom-in” & “zoom-out” area exploration, and c) boundary-crossing morphing explo-
ration.
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3.1 Stage (I): Neighborhood Generation

Stage one can be described as a stochastic process that generates neighbors
from the given point-of-interest. There are two approaches to accomplish such a
procedure: Variational Auto-Encoders (VAEs) and Generative Adversarial Net-
works (GANs). Both of these two generative methods assume an underlying
latent space that is mapped to the original data space through a deterministic
parameterized function. The generative model often consists of an encoder that
can map the given data into the latent space, and a decoder that can decode
the latent space vector back to the original space. In this work, we adopt VAE
as the generative model because of its more straightforward model structure.

As shown in Fig. 3, we train an encoder-decoder CNN-VAE with ten latent
dimensions on the MNIST dataset to learn the underlying latent distribution. A
hyper-parameter step-length is applied to each latent space via linear interpola-
tion to generate the perturbed latent vectors. The perturbed latent vectors are
then fed through the decoder to generate neighbors around the point-of-interest.

More formally, a VAE model that consists of encoder qθ(z|x) and decoder
qφ(x|z) are trained on the dataset X, where X = {(x1, y1), (x2, y2), ..., (xn, yn)},
xi ∈ RD and yi ∈ [1, c]. The VAE is trained with the negative log-likelihood
with regularizer. The loss function li for data instance xi is:

− Ez−qθ(z|xi)[logpθ
(xi|z)] + KL(qθ(z|xi)||p(z)), (1)

where z ∈ Rd denotes the d-dimension embedding space learned by the VAE
encoder.

Utilized by the trained VAE, examples near the point-of-interest can be gen-
erated and form the neighborhood. A hyper-parameter step-length needs to be
chosen to determine the border of the neighborhood. In practice, we set step-
length equal to one as the default value.

Fig. 3. The architecture of our selected generative model, i.e., a Variational AutoEn-
coder (VAE)

3.2 Stage (II): Neighborhood Classification

To identify and visualize the local decision boundary, the given trained machine
learning model is applied to the generated instances. The classification results
are highlighted with different colors so that the model behavior can be delin-
eated. We call this classification results as classified neighborhood. A classified
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neighborhood is one where every data point within the neighborhood has been
classified by the model-under-investigation so that the decision boundary is iden-
tified and visualized verbatim. Because the actual model is used, this is a ver-
batim manifestation of the model decision boundary within the neighbourhood.
In practice, a larger value of step-length is recommended to ensure a decision
boundary with clear difference between the opposite sides. In our experiments,
we set the step-length to 1.

3.3 Stage (III): Human-in-the-Loop Exploration

Three intervention points are provided in our human-in-the-loop stage. Specifi-
cally,

– a refinement intervention point that provides a multifacet refined neighbor-
hood exploration.

– a “zoom-in” & “zoom-out” intervention point that enables human users to
take a closer look at the certain region of interest.

– a morphing intervention point that selects two examples from each side of the
decision boundary and creates a visualization path.

For the first intervention point, human users are enabled to identify the
dimensions of interest, i.e., specific dimensions from the d-dimensional latent
space. Next, we allow the human to adjust the hyper-parameter step-length along
the selected latent dimension for exploration. A larger value of the step-length
will enrich the semantic variation, while a smaller value can provide a more
concentrated result. The step-length serves as a “tuning knob” to adjust traver-
sal speed in the latent space, which helps human users to understand how a
prediction is carved out from specific changes.

Human users are allowed to identify two hidden dimensions of interest for the
second intervention point and construct a morphing matrix based on these two-
dimension spaces. Allowing the morphing of two dimensions simultaneously can
provide a richer context around the point-of-interest. The second intervention
point acts as a “zoom-in” & “zoom-out” effect to assist human users in gathering
insights from the generated examples.

For the third intervention point, a few instances that are semantically close
to the given point-of-interest at two sides of the decision boundary are provided.
Next, a morphing path between the two instances are created and the path
passes through the point-of-interest. The algorithm for identifying the nearest
neighbor and creating the morphing path is shown in Algorithm 1. Such mor-
phing traverses data manifold while crossing the decision boundary, which can
delineate the model behavior and explain how and why a particular image is
relevant to the prediction.
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Algorithm 1: Pseudocode for the proposed method
Given: Dataset (X,Y )
Given: Classifier F () to be interpreted
Given: Pretrained VAE: (VAE-enc, VAE-dec)
Given: Data instance of interest (xi, yi), where yi = c1, but mispredicted
F (xi) = c2

1: enc-xi = VAE-enc(xi)
2: for (xj , yj) ∈ (X,Y ), yj = c1 do
3: enc-xj = VAE-enc(xj)
4: update xj s.t. ‖enc-xj − enc-xi‖L1 is smallest
5: end for
6: for (xk, yk) ∈ (X,Y ), yk = c2 do
7: enc-xk = VAE-enc(xk)
8: update xk s.t. ‖enc-xk − enc-xi‖L1 is smallest
9: end for

10: interval=(enc-xk − enc-xi)/num-neighbors
11: neighbors=[]
12: labels=[]
13: for i=0, i≤num-neighbors; i++ do
14: neigh = enc-xi±interval
15: neighbors.append(neigh)
16: labels.append(F (neigh))
17: end for
18: Visualize(neighbors, labels)

4 Experiment Setup

To verify the effectiveness of our proposed framework, we conduct several experi-
ments on two datasets. Section 4.1 describes the datasets and the trained machine
learning model architectures. Section 4.2 presents the detailed experimental set-
tings for our framework.

4.1 Dataset and Trained Machine Learning Architecture

We investigate the proposed framework against two datasets, MNIST and Fash-
ionMNIST. The MNIST dataset is a large database of handwritten digits, while
FashionMNIST is a dataset of Zalando’s article images. The images in these
datasets are 28 × 28 grayscale images associated with a label of 10 classes. Both
MNIST and FasionMNIST are commonly used for training various image pro-
cessing machine learning models. The details of the datasets and the chosen
model performance are shown in Table 1.

4.2 Our Proposed Framework Settings

In this subsection, we describe the training detail of each stage. Stage (I) utilizes
an autoencoder that is pre-trained on the dataset to generate the neighborhood
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Table 1. Description of the investigated datasets.

MNIST FashionMNIST

# of training examples 60,000 60,000

# of testing examples 10,000 10,000

# of output classes 10 10

Original data space (i.e., # of dimension) 784 784

Test accuracy of the chosen model 94.1 92.5

based on the given point-of-interest. Table 2 demonstrates the hyper-parameters
of the pre-trained autoencoder for both datasets. Since MNIST contains sim-
pler data points than FashionMNIST, we use a 10-dimensional latent space to
represent the images in MNIST, while a 20-dimensional latent space for Fash-
ionMNIST.

Table 2. Description of variational autoencoder models used in Stage (I) and classifiers
that need to be explained. The model architecture, activation function, and the number
of hidden layers are shown accordingly.

VAE Classifier

MNIST CNV (32,64, 64), ReLU, 10 Linear(20,10), ReLU

FashionMNIST CNV (32,64, 64), ReLU, 20 Linear(20,10), ReLU

5 Result

This section will first apply our proposed framework to the MNIST dataset
and illustrate how our framework works by providing multiple examples. Then,
we apply our method to the FashionMNIST dataset. The examples we presented
here demonstrate our framework’s potential for improving human understanding
of the black-box machine learning models. Note that due to the page limits we
only present a handful case studies on two datasets. We also apply our framework
on other datasets such as 3-D point cloud data. More interesting examples can
be found in our GitHub Page.

5.1 MNIST

A CNN model trained on the MNIST dataset for digit classification is selected
and yields a 94.1% accuracy on the testing dataset. A mispredicted example is
chosen for the case study. Figure 4 and Fig. 5 show the selected mispredicted
point-of-interest and the stage (I) and stage (II) process. As shown in Fig. 4, the
neighborhood of the point-of-interest is generated in grey-scale. The examples in
the neighborhood satisfied the criteria in Sect. 3 as they are all semantically close
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to the original data point. The classified neighborhood is shown in Fig. 5. The
colors refer to the classification results. We observe that despite being classified
to the same label, images close to the decision boundary have higher fidelity.
This observation is consistent with our intuition that the model is more likely
mispredicting samples near the decision boundary. One can also draw a simi-
lar conclusion by visually examining the classified neighborhood: examples near
the decision boundary often have an ambiguous shape that sometimes confuses
machine learning models. Through stage (I) and stage (II), our framework gener-
ates examples that delineate the model behavior by depicting the local decision
boundary.

Fig. 4. Stage (I) of our framework. In Stage (I), the neighborhood of the point-of-
interest is generated. The examples in the neighborhood satisfied the criteria in Sect. 3
as they are all semantically close to the original data point.

After getting the classified neighborhood that carves the local decision bound-
ary around the point-of-interest, human users could be invited to explore the
neighborhood using their own intelligence. Figure 6, Fig. 7, Fig. 8 and Fig. 9 illus-
trate the three possible human-in-the-loop exploration strategies. From Fig. 6,
one can observe that at stage (III-a) there exist three interesting ways of mor-
phing between digit-4 and digit-9. Therefore, human users can gain insights by
investigating the relevant features that have been changed along the process of
digit-4 morphing to digit-9. In this example, the three identified morphing paths
revealed three related features: 1) the tartness of the circle, 2) the size of the
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Fig. 5. Stage (II) of our framework. In Stage (II), the generated neighborhood is clas-
sified with the given trained machine learning model. Purple color indicates the image
is classified as digit-4, orange color indicates the image is classified as digit-9 and all
other classification results are marked as color grey. We also observe that despite being
classified to the same label, images close to the decision boundary have higher fidelity.
(Color figure online)

circle and, 3) the straightness of the line. Next, human users can combine two
paths for a “zoom-in” & “zoom-out” investigation. Combining two paths allows
human users to gather richer information related to the decision boundary. As
shown in Fig. 8 and Fig. 7, two possible combinations are chosen and presented,
and the step-length are adjusted for the “zoom-in” effect and the “zoom-out”
effect. From the denser region manifestation, one might conclude that 1) an
“open-circle” at the top could help the given predictor correctly identify a digit-
4, and 2) lines with roundness instead of tartness could mislead the predictor to
mispredict a digit-4 to digit-9. Such conclusions could help human users better
understand how the model behaves in a certain region.

Figure 9 demonstrates the result generated by our third intervention point.
As shown in the Figure, a digit-4 is mispredicted as digit-9. By examining the
morphing from the nearest digit 4 (in purple) to the nearest digit 9 (in orange),
the circled area can be identified by human intelligence as one of the explanations
for the misprediction.
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Fig. 6. Stage (III-a) of the framework. In Stage (III-a), three paths are identified and
the morphing is highlighted with different colors. In this example, the three identified
morphing paths revealed three related features: 1) the tartness of the circle, 2) the size
of the circle and, 3) the straightness of the line.

Two other examples are shown in Fig. 10 and Fig. 11. The local decision
boundary of the model near the two selected instance-of-interest are displayed,
end-users can better understood the model behavior by visually examining these
samples. In these two cases, we could observe that the mispredictions are likely to
be caused by the circle areas in the image’s top-left region. Note that human users
can leverage their own intelligence to generate their own understanding with
respect to the model behavior. Our framework only provides the intervention
points that bridge the gaps between human minds and the black-box nature of
machine learning models.

5.2 FashionMNIST

We provide another experiment using FashionMNIST dataset. In Fig. 12, a san-
dal is mispredicted as an ankle boot (in green) by a pre-trained CNN. Without
the context that some sandals are boot-shaped, it would be difficult to under-
stand the cause of this error. We select this mispredicted image as an item-of-
interest and apply the trained VAE to extract its latent vector. Next, we explore
the latent space around the extracted latent vector and generate a manageable
number of neighbor images. The trained CNN is then applied to classify the
generated images. The decision boundary can be observed as the classified label
is morphing from sandal (in purple) to ankle boot (in orange). By visually dis-
playing the neighborhood and the decision boundary (the area that purple turns
into orange), the end-user can observe the smooth transition between sandal and
ankle boot. Human users can easily draw the conclusion that the circled areas
might cause the misprediction, i.e., if a boot-shaped image with blank space at
the circled areas, it is likely the image will be classified as ankle boot.

6 Workflow of Human Users of the Proposed Framework

This study aims to improve explainability of machine learning models in a
human-centric fashion. In this section, we present how a human user or a soft-
ware engineer can leverage our framework to understand why a given ML model
misclassifies a data point. There are three human intervention points.
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Fig. 7. Stage (III-b) of the framework. In Stage (III-b), the combination of two paths
is presented to achieve a “zoom-in” effect for better carving out the model behavior.
From this denser region manifestation, one might conclude that 1) an “open-circle” at
the top could help the given predicter correctly identify a digit-4, and 2) lines with
roundness instead of tartness could mislead the predictor to mispredict a digit-4 to
digit-9.

Fig. 8. Stage (III-b) of the framework. In Stage (III-b), the combination of two paths
is presented to achieve a “zoom-out” effect for better carving out the model behavior.

6.1 Identifying the Point-of-Interest

First, the human user identifies a mispredicted point-of-interest, which software
engineers routinely encounter as they debug software systems with ML compo-
nents.
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Fig. 9. Stage (III-c) of the framework. In this stage, two nearest data samples from
the original dataset are selected to bridge the gaps between the point-of-interest and
real samples on two sides of the decision boundary. (Color figure online)

6.2 Identifying Interesting Dimensions and Appropriate Step
Lengths

Second, the key question from a user’s perspective is: how and why a partic-
ular region of the point of interest is relevant to the prediction. That is where
human users can again contribute by identifying the most interesting dimensions
of semantic changes. Our framework leverages a powerful generative model, vari-
ational autoencoders, to generate a neighborhood of closely related data points.
The generated neighborhood displays a progressive set of plausible variations of
the point-of-interest and visualizes the semantic changes across all directions.
The human user can use his common sense judgement to identify more interest-
ing dimensions and more appropriate step lengths of changes on these dimensions
so that changes in neighboring data-points are perceivable but not too dramatic.
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Fig. 10. Stage (III-c) of the framework. In this stage, two nearest data samples from
the original dataset are selected to bridge the gaps between the point-of-interest and
real samples on two sides of the decision boundary.

6.3 Selecting Two Most Revealing Dimensions to Generate
a Matrix for Decision Boundary Visualization

Third, human users then select two most revealing dimensions so that a matrix of
data-points can be generated to visualize the efforts of gradual changes on both
dimensions. This matrix represents the neighborhood of interest. All generated
data-points in the neighborhood are passed through the actual model-under-
investigation so that the decision boundary is identified and visualized verbatim.
Human users can gain knowledge and insights by walking through the classified
instances and examining the decision boundary.

These three intervention points provide helpful exploration tools to help
human users see, select, and manipulate the neighborhood of the data-point-
of-interest and the decision boundary within it and therefore better understand
the behavior of the underlying model.
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Fig. 11. Stage (III-c) of the framework. In this stage, two nearest data samples from
the original dataset are selected to bridge the gaps between the point-of-interest and
real samples on two sides of the decision boundary.

7 Discussion, Limitations and Future Works

This paper proposes a human-in-the-loop framework to improve human under-
standing of the black-box machine learning models locally through verbatim
neighborhood manifestation.

However, the proposed method is limited in several ways. First, the neigh-
borhood is generated based on the reconstructed data point. We lack a quanti-
tative measure of the fidelity of the generated neighborhood to the original sam-
ples. Though the generated samples are derived from the VAE that was directly
trained on the original dataset, some details are lost. Second, we adopt a stan-
dard VAE to encode the data point into latent space. Moving in such a latent
space typically affects several factors of variation at once, and different direc-
tions interfere with each other [8]. This entanglement effect poses challenges for
interpreting these directions’ semantic meaning and, therefore, hinders human
users from understanding the machine learning models.
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Fig. 12. A sandal is mispredicted as Ankle boot in FashionMNIST dataset. Without
the context that some sandal have boot-shaped, it would be difficult to understand the
cause of this error. The neighborhood manifestation provided by our framework enable
human users to explore the context environment thus gain understanding of this type
of mistakes.

Each of the limitations mentioned above points to a potential direction for
future work. We want to quantify the fidelity of the generated data through met-
rics such as mean-absolute-error or binary-cross-entropy. For the second limita-
tion, we are considering leveraging disentangle-VAE to generate neighborhoods
along with semantic meaningful directions. We are also interested in learning a
set of latent space directions inducing orthogonal transformations that are easy
to distinguish from each other and offer robust semantic manipulations in the
neighborhood manifestation. These future works introduce exciting challenges
for bridging the gaps between the black-box nature of machine learning models
and human understanding.
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8 Conclusion

Machine learning models are mainly being developed and fine-tuned for optimal
accuracy, while understanding these models has not attracted much attention.
Existing XAI models focus on providing approximate hit-or-miss explanations,
which do not involve humans in explaining and neglect human intelligence. We
propose a human-in-the-loop explanation framework that reframes the explana-
tion problem as a human-interactive problem to tackle this limitation. Our app-
roach utilizes a generative model to enrich the (mispredicted) point-of-interest
neighborhood and crave out the local decision boundary by highlighting the
model prediction results. We provide three human-involved exploration inter-
vention points that assist human users to leverage their own understanding of
the model behavior. We conducted case studies on two datasets, and the experi-
mental results demonstrate the potential of our framework for building a bridge
between machine and human intelligence.
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Abstract. The paper introduces a novel framework for extracting
model-agnostic human interpretable rules to explain a classifier’s output.
The human interpretable rule is defined as an axis-aligned hyper-cuboid
containing the instance for which the classification decision has to be
explained. The proposed procedure finds the largest (high coverage) axis-
aligned hyper-cuboid such that a high percentage of the instances in the
hyper-cuboid have the same class label as the instance being explained
(high precision). Novel approximations to the coverage and precision
measures in terms of the parameters of the hyper-cuboid are defined.
They are maximized using gradient-based optimizers. The quality of the
approximations is rigorously analyzed theoretically and experimentally.
Heuristics for simplifying the generated explanations for achieving bet-
ter interpretability and a greedy selection algorithm that combines the
local explanations for creating global explanations for the model covering
a large part of the instance space are also proposed. The framework is
model agnostic, can be applied to any arbitrary classifier, and all types of
attributes (including continuous, ordered, and unordered discrete). The
wide-scale applicability of the framework is validated on a variety of syn-
thetic and real-world datasets from different domains (tabular, text, and
image).

Keywords: Interpretable machine learning · Explainable models ·
Rule based explanations

1 Introduction

The working of classic machine learning models such as simple decision trees,
linear regression can be easily interpreted by analyzing the parameters of the
model. But, for want of higher accuracy or better generalization performance,
complex classifiers such as deep neural networks, support vector machines, and
decision forests are being employed. However, improved performance comes at
the cost of reduced human interpretability. Recent research focuses on explaining
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the working of these complex black-box models, thereby bridging the accuracy-
interpretability trade-off and making them useful and trustworthy.

An explainable approach that can work irrespective of the underlying black-
box model is desirable. Such approaches are referred to as model agnostic
approaches in the literature [8,13,16,17]. Short and concise rules are highly
human interpretable [8,12]. Hence we would like to develop a model-agnostic
explainable approach that is capable of providing the human interpretable rules
for any black-box machine learning model. A major challenge in designing
such approaches lies in preserving faithfulness to the black-box. An explana-
tion method is said to be faithful to a black-box model if it identifies features
that are truly important for the working of the model.

A popular method of explaining the black-box model’s working is by assigning
ranks to the features relative to the importance the black-box model gives to
a feature. This feature rank is easy to understand but is not complete. The
ranking approach does not capture the class discriminative information based
on the range of values. In other words, if a specific range of values for a feature
results in classification to a class and outside the range corresponds to a different
class, such a mechanism would not be revealed by feature ranking approaches
[4,6]. For an explanation based on feature ranking approach to be complete, we
need a measure to say how relevant is the feature value to a particular prediction.
The sensitivity of the changes to the output of the model due to small changes in
the feature values must also be captured. In a nutshell, feature ranking by itself
is an incomplete explanation. Various factors like the importance of a feature,
tolerable range of values to get the same prediction, the influence of a feature
value towards a prediction, is to be additionally considered along with the feature
rank to provide a complete explanation to the working of the black-box model.

Another class of methods, called rule-based methods, provide intuitive expla-
nations. Decision trees, decision lists that provide rules in the form of if-then-else
statements in a hierarchical fashion, come under this category. These are global
explanation models that aim to explain the working of the model in the whole
instance space. Though the explanations are intuitive, it is not always simple to
comprehend. If the hierarchical structure of if-then-else statements grows into
longer chains, it is difficult to comprehend, and the interpretability suffers [12].
It is to be noted that these methods partition the instance space based on the
attribute values. Longer chains of if-then-else statements would mean small par-
titions created in the instance space. This further complicates the scenario as
the rules are less generalizable.

Anchors [17], a recent approach overcomes the limitations of feature ranking
and rule-based approaches. It builds on the observation that a complex tree of
rules encompasses many simple trees. Hence instead of attempting to build a
tree that spans the entire instance space and provides an explanation of the
black-box model globally, it is better to provide a local explanation spanning a
smaller partition of the whole instance space. The precision and coverage metrics
defined in [17] help to preserve the desired properties of posthoc explanations.
But a limitation of the Anchors approach is that it is applicable only for discrete
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attributed datasets. In the case of continuous-valued attributes, Anchors can be
applied after the continuous values are mapped onto a discrete values set only.

Binning is employed to discretize the continuous-valued attributes by identi-
fying a threshold to create bins. The binning threshold plays a crucial role and
it may not be always possible to obtain the tighter bounds on the range of tol-
erable values for a prediction. Thus, an unsuitable binning threshold may lead
to loss of subtle class discriminant information that may otherwise be present in
the original continuous-valued attributes.

The proposed framework MAIRE is a non-trivial extension of Anchors
that is applicable across any attribute type - continuous, discrete (ordered or
unordered). A sample explanation generated from our approach is shown in the
Table 1.

Table 1. Example MAIRE explanations obtained for the Adult, Abalone and German
credit datasets

If Predict Coverage Precision

Adult 17 < Age ≤ 43

Education = High School grad

0.00 <Capital-Loss ≤ 1291.44

≤ 50K 0.35 0.95

Abalone Sex = F

0.07 < Length ≤ 0.48

0.05 < Diameter ≤ 0.37

≤9 Rings 0.25 0.94

German credit Housing = own

20 < Duration ≤ 25

38 < Age ≤ 54

good 0.28 0.94

2 Related Work

The significant efforts towards improving the explainability aspect of machine
learning models can be broadly categorized into three directions.

Model agnostic methods are like ‘meta-learning’ approaches that are
capable of explaining the behavior of any black-box classifier. LIME[16] approx-
imates the working of the black box classifier in a local neighborhood by fitting
a linear model on the black box predictions for the neighbors. Anchors[17] finds
the decision rule for black-box model prediction such that the rule anchors the
prediction adequately as governed by the precision and coverage metrics. Both
LIME and Anchor generate global explanations but apply only to discrete-valued
datasets. MAIRE overcomes this constraint by its novel optimization framework.

Learning To Explain (L2X) [6] does instance wise feature selection by max-
imizing the mutual information between the subset of features and the target
variable. SHAP [15] uses Shapley values to predict the importance of features
towards a prediction. Both L2X and SHAP use feature ranking approach, which
is accurate in text classification. However, feature ranking may not always be
optimal as feature values may play an important role in distinguishing between
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two classes. MAIRE, on the other hand, explains in terms of a range of val-
ues of an attribute. LORE [8] explains the black-box model by extracting rules
using a decision tree applicable in a local neighborhood generated by a genetic
algorithm. This method is applicable for low dimensional datasets only as with
high dimensional datasets; the decision tree may grow complex, reducing inter-
pretability. LLORE [9] uses an autoencoder to perform dimensionality reduction
so that LORE [8] can be applied in the reduced dimensional space. Dimension-
ality reduction may lead to loss of information and should be avoided. Further,
LLORE [9] can be used only for images and an extension to handle text data
has only been mentioned as a future possibility. Our proposed approach MAIRE
can be applied to different domains (text, tabular, image) and does not require
any modification to the dimensionality of the feature space, thus preserving all
the information.

The proposed work is close to that of Lakkaraju et al. [13] in the broader sense
from the perspective of explanation generation in terms of rules as per attribute
ranges. But their explanation generation algorithm requires value ranges to be
provided, and explanation is in terms of the rules explaining how the black-box
model works in the subspace defined by the given attribute values. This flexibility
may be beneficial for the tabular datasets, where the value range for attributes
shall make sense to end-users. While the approach in [13] is model agnostic like
MAIRE, the extensive experimentation has been carried out only on tabular
datasets. This need to give attribute value ranges for explanation generation is
challenging in case of images or textual datasets where the attributes the black-
box model works on may be different from how humans perceive the data. Our
proposed approach MAIRE does not have this requirement and hence is readily
applied to explain black-box models working on data from different domains.

Model specific explainable methods are designed to explain the working
of a single or a class of models. Approaches like Guided Back Propagation [21],
CAM [23], and its extension [18] are applicable to architectures involving Con-
volutional Neural Networks only. Specifically for deep learning architectures, an
attribution based technique, DeepLIFT [19] provides a set of rules to assign con-
tribution scores to every unit of a deep neural network. In contrast, the MAIRE
framework explains the output of any black-box model.

Models explainable by design consist of methods that propose new
explainable classifiers that are trained from scratch. Interpretable CNN [22] uses
mutual information to learn interpretable parts that are filtered through pre-
defined templates. A self-explaining architecture involving an autoencoder that
determines representative prototypes clustered around inputs in a latent space
was proposed by Li et al. [14]. In another approach, the convolutional layer fea-
ture maps are used as latent representations that helps to localize regions of the
image that are similar to the prototypes [5,10]. Models that explain the output
in terms of human interpretable rules have also been proposed [2,12]. However,
these models cannot be applied to an already deployed model.
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3 Methodology

3.1 Problem Statement

Let {xn, yn}N
n=1 be a set of N training examples, where xn ∈ R

D is a data point
and yn ∈ Y is the associated label. For simplicity, let us assume that all the
attributes are continuous and are normalized to the range [0, 1] and that the
classification task is binary. The MAIRE framework can be easily extended for
discrete attributes and multi-class classification. Given a query data point x′

q and
a classifier f : RD → Y, our objective is to explain the decision of the classifier
at x′

q i.e. f(x′
q). Prior literature suggests that explanations in the form of rules

defined on the values of the attributes are human interpretable [12,17]. A simple
way to define these rules for continuous attributes is in terms of range on the
values. Thus, we define an explanation as E = {l, u}, where l, u ∈ R

D represent
the lower and upper bounds of intervals such that li ≤ x′

qi ≤ ui, ∀i ∈ {1, . . . , d}.
The Cartesian product of these intervals represents a hyper-cuboid denoted

by S(l,u). This is illustrated as a rectangle for the 2D dataset presented in
Fig. 1(a). Our objective is to find an explanation that has high coverage and sat-
isfying a certain threshold on precision. Coverage of an explanation E, Cov(l,u),
is defined as the fraction of data points that lie within the hyper-cuboid,

Cov(l,u) =
1
N

N∑

i=1

1(xi ∈ S(l,u)) (1)

where 1(A) is the indicator function that takes the value 1 if the argument A
is true. High coverage means that more data points are explained using the
hyper-cuboid.

Precision, Pre(l,u), is defined as the fraction of training instances that lie
within the hyper-cuboid representing the explanation E and whose classifier
predictions match with the classifier prediction of the query point,

Pre(l,u) =
∑N

i=1 1(f(xi) = f(x′
q) and xi ∈ S(l,u))

∑N
i=1 1(xi ∈ S(l,u))

(2)

The MAIRE framework allows for a user to define a minimum value P for the
precision of an explanation Pre(l,u). Thus the overall objective of the framework
is to find an explanation (or the hyper-cuboid) that maximizes the coverage,
while ensuring that the precision of the estimated explanation does not fall
below the threshold P i.e.,

argmax
{l,u}

Cov(l,u) s.t. Pre(l,u) ≥ P. (3)

The above optimization problem is challenging to solve due to the involvement
of the indicator function. For a binary classification setting, with P = 1, this
problem becomes the bichromatic rectangle problem, a widely studied combi-
natorial problem in computational geometry. Bichromatic rectangle problem
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involves computing a rectangle containing maximum number of red points and
no blue points amongst the set containing n red points and m blue points in
d−dimensional space. Most of the results in this area hold for 2D [1,3]. Further,
the problem is NP-hard for arbitrary dimension [7]. Solving the above problem
even approximately is therefore important for many applications.

We propose a novel method to transform the coverage and precision functions
into differentiable approximations (with non-zero gradients), thereby making it
easier to optimize using gradient-based methods.

Fig. 1. [Best viewed in color] Illustration of the explanation and the approximation to
the indicator function

3.2 Approximations to Coverage and Precision

We first define the function Γ , which is an approximation to the indicator func-
tion, as Γ (z) = c1σ(c2z)+c3(sgn(z)c4+c5 where c1, c2, c3, c4, and c5 are constants
that determine the quality of the approximation, σ is the Sigmoid function, and
sgn(z) is the Signum function. The constant c1 is chosen to scale down the sig-
moid function so that, c1σ(c2z) takes values in a small range (effectively modeling
the horizontal lines of the indicator function, but still retaining non-zero gradi-
ents). The constant c2 has a high value to model the steep increase at z = 0
while making σ(c2z) flatter for z < 0 and z > 0. The constants c4 and c5 are
chosen so that (sgn(z)c4 + c5) is 1 when z > 0, 0.5 when x = 0 and 0 otherwise.
c3 is chosen to provide a step at z = 0 such that Γ (z) ∈ (0, 1). This makes
Γ (z) piece-wise differentiable with non-zero gradients. The behavior of Γ (z) is
illustrated in Fig. 1(b). Note that, Γ (z) = c1σ(c2z) if z < 0, Γ (z) = c1σ(c2z)+c3
if z > 0, and Γ (z) = 0.5 if z = 0.

We can now approximate 1(x1 > x2) as G(x1, x2) = Γ (x1 − x2) and 1(x1 ≥
x2) as GE(x1, x2) = Γ (x1 − x2 + cl), where cl is a constant that has a low value
(close to 0). The approximation to the function 1(x1 and x2 . . . and xm) for the
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logical operator ‘and’ is defined as A(x1, x2, . . . , xm) = Γ ( 1
m

∑m
i=1 xi−ch), where

ch is a constant that has a high value (close to 1).
Let us define the functions a2j−1(l,u,x) = G(xj , lj) and a2j(l,u,x) =

GE(uj , xj) with j ∈ {1, . . . , D}. Then the approximation to the
indicator function 1(x ∈ S(l,u)) can be defined as h(l,u,x) =
A(a1(l,u,x), a2(l,u,x), . . . , a2D(l,u,x)) Note that h(l,u,x) should take a value
close to 1 if the point x lies inside the hyper-cuboid S(l,u), else should take
a value close to 0. We can now define approximate coverage and approximate
precision as:

ˆCov(l,u) =
1
N

N∑

i=1

h(l,u,xi)

ˆPre(l,u) =

∑N
i=1 h(l,u,xi)(1 − (f(xi) − f(x′

q))
2)

∑N
i=1 h(l,u,xi)

3.3 Accuracy of the Approximation

In this section, we theoretically bound the accuracy of our approximation func-
tions ˆCov and ˆPre. The accuracy of the approximation depends on the values
of the constants in the definition of Γ . Note that, by definition c4 = c5 = 0.5
and c3 = 1 − c1. Thus we need to tune the parameters c1, ch, cl, and c2. Before
we bound ˆCov and ˆPre, we would like to make the following observation for the
function Γ (x) which is defined as Γ (x) = c1σ(c2x) + c3(sgn(x)c4 + c5).

Observation 1. When c4 = c5 = 0.5 and c3 = 1 − c1, we have:

– If x > 0, Γ (x) = c1σ(c2x) + c3
– If x < 0, Γ (x) = c1σ(c2x)
– If x = 0, Γ (x) = 0.5

We first begin with bounding the term h(l, u, x). The following Lemma shows
h(l, u, x) is a good enough approximation for the indicator function for any poing
x ∈ R

d.

Lemma 1. Let c = c1
2 and ch > 1 − c. If c < 1

4D , we have ∀xi:

– If lj < xij ≤ uj ∀j = {1, 2, . . . ,D}, we have:

h(l, u, x) ≤ 1 and
h(l, u, x) ≥ 1 − c

i.e. for all points lying inside the hypercuboid, function h(·) is very close to 1.
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– If ∃k,m with k + m ≥ 1, such that xij ≤ lj for k attributes or xij > uj for
m attributes then:

h(l, u, x) ≤ c and
h(l, u, x) ≥ 0

i.e. for all points lying outside the hypercuboid, function h(·) is very close to
0.

Proof. The proof considers four cases depending on the number of attributes of
a data point that lie between the lower bound and upper bound of the hyper-
rectangle.

Case 1: ∀j ∈ {1, 2, . . . ,D}, lj < xij ≤ uj .

h(l, u, xi) = Γ

(∑D
j=1 Γ (xij − lj) +

∑D
j=1 Γ (uj − xij + cl)

2D
− ch

)

= Γ

(∑D
j=1(c1σ (c2 (xij − lj)) + c3)

2D
+

∑D
j=1(c1σ (c2 (uj − xij + cl)) + c3)

2D
− ch

)

(From Observation 1)

Let, t = c1

∑D
j=1 σ(c2(xij−lj))+

∑D
j=1 σ(c2(uj−xij+cl))

2D + c3 − ch, then using the fact
that σ(x) ≥ 0.5 if x > 0, we have:

t ≥ c1
2

+ c3 − ch

≥ 1 − c1
2

− ch

> 0 (if ch + c1
2 < 1)

Thus, if ch+ c1
2 < 1, we have t > 0. Thus, we get, h(l, u, xi) = Γ (t) = c1σ(c2t)+c3

from Observation 1. Since, t > 0, c2t > 0 for any c2 > 0, we have, h(l, u, xi) ≥
c1
2 + c3 ≥ 1 − c1

2 . Also, h(l, u, xi) = c1σ(c2t) + c3 ≤ c1 + c3 ≤ 1.

Case 2: Let us assume that ∃k such that xij ≤ lj for k attributes i.e. point lie
outside or on the lower bound of hypercuboid for k ≥ 1 attributes and ∃m such
that xij > uj for m ≥ 1 attributes. Out of k attributes, let k1 attributes have
xij = lj and k − k1 attributes xij < lj . Then, we have:

– For all k1 attributes: Γ (xij − lj) = 0.5
– For k − k1 attributes:Γ (xij − lj) = c1σ(c2(xij − lj)) ≤ c1
– For D − k attributes: Γ (xij − lj) = c1σ(c2(xij − lj)) + c3 ≤ 1
– For all m attributes: Γ (uj − xij + cl) = c1σ(c2(uj − xij + cl)) ≤ c1
– For D − m attributes: Γ (uj − xij + cl) = c1σ(c2(uj − xij + cl)) + c3 ≤ 1
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We get,

h(l, u, xi)

= Γ

(
0.5k1 +

∑k−k1
j=1 c1σ(c2(xij − lj))

2D
+

∑D
j=k+1((c1σ(c2(xij − lj)) + c3)

2D

+

∑m
j=1 c1σ(c2(uj − xij + cl)

2D
+

∑D
j=m+1 c1σ(c2(uj − xij + cl) + c3

2D
− ch

)

Let, h(l, u, xi) = Γ (t) i.e. consider the entire term in Γ expression to be t then:

t ≤0.5k1 + (k − k1)0.5c1 + (D − k)(c1 + c3)
2D

+
0.5mc1 + (D − m)(c1 + c3)

2D
− ch

t ≤0.5k1(1 − c1) + 0.5kc1 + 0.5mc1 + 2D − k − m

2D
− ch

(1 ≤ k + m ≤ 2D, k1 ≤ D, and 0 < c1 < 1)

≤0.5D(1 − c1) + 0.5c1D

2D
+

2D − 1
2D

− ch

≤ 1
4D

+
2D − 1

2D
− ch ≤ 4D − 1

4D
− ch

Thus, when ch > 4D−1
4D , then we get t < 0. In this case, we have: h(l, u, xi) =

Γ (t) = c1σ(c2t) ≤ c1
2 . From Case 1, we have c1

2 < 1−ch. Substituting ch > 4D−1
4D ,

we get, c1
2 < 1

4D . Thus, if any of the attribute of the example lies outside the
boundary, we get h(l, u, xi) ≤ 1

4D and if all the attributes lie inside the boundary,
we get h(l, u, xi) ≥ 4D−1

4D .

Thus, choosing c1 and ch according to the lemma ensures that h is a good
approximation to the indicator function 1(x ∈ S(l,u)). Further, we can arrive
at the following important result that bounds the difference between Cov and
the corresponding approximation ˆCov.

Theorem 1. If c1 < 1
2D and ch > 4D−1

4D , then
(
4D−1
4D

)
Cov ≤ ˆCov ≤ 1

4D +(
4D−1
4D

)
Cov

Proof. Let the actual coverage from the hypercuboid (l, u) be k
N i.e.

∑N
i=1 I(xi ∈

S(l, u)) = k. Then:

ˆCov =
1
N

N∑

i=1

h(l, u, xi)

=
1
N

∑

xi∈S(l,u)

h(l, u, xi) +
1
N

∑

xi /∈S(l,u)

h(l, u, xi)

≥ 1
N

k(1 − c) ≥ Cov

(
4D − 1

4D

)
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ˆCov =
1
N

∑

xi∈S(l,u)

h(l, u, xi) +
1
N

∑

xi /∈S(l,u)

h(l, u, xi)

≤ k

N
+

N − k

N
c ≤ c + Cov (1 − c) ≤ 1

4D
+ Cov

(
4D − 1

4D

)

The above result is interesting not only because it bounds the approximate
coverage in terms of true coverage but it also suggests that as the features
(dimension) increases, approximate coverage becomes closer to the true coverage.
We also verify this from our experiments in Table 2.

We also have additional result for the bounds on the approximate precision.

Theorem 2. ˆPre ≤ Pre
(
1 + 1

Cov

(
4D

4D−1

))
. Thus, when algorithm returns a

hypercuboid with ˆPre ≥ P then Pre ≥ 1

(1+ 1
Cov ( 4D

4D−1 ))
P

Proof. Let, k points be inside the hyper-cuboid, out of k points, q points satisfy
f(xi) = f(xq) and m points satisfy f(xi) = f(xq) in total.

ˆPre =

∑
xi=xq

xi∈S(l,u)
h(l, u, xi) +

∑
xi=xq

xi /∈S(l,u)
h(l, u, xi)

∑
xi∈S(l,u) h(l, u, xi) +

∑
xi /∈S(l,u) h(l, u, xi)

≤ q + (m − q)c
(1 − c)k

≤ Pre +
Pre

Cov

(
4D

4D − 1

)

In summary, when the dimension of the dataset increases, c1 ≈ 0 and ch ≈ 1, and
the difference between analytical coverage and the corresponding approximation
tends to 0. Even though the theoretical bounds depend on the dimensionality
of the data, we conclude from the experiments that the values c1 = 0.4, c2 =
15, c3 = 0.6, c4 = 0.5, c5 = 0.5, cl = 0.02, and ch = 0.8 work well for a wide
variety of datasets and do not have to be tuned for a new dataset. We use these
values for all the experiments performed in the paper.

4 Optimization to Estimate the Explanation

Our next objective is to formulate the optimization problem in the MAIRE
framework for estimating the explanation. In the simplest case, we want to find
the optimal values for the parameters l and u that maximize coverage while
maintaining a minimum precision P . The user sets this lower bound on precision.
It is assumed that any value of Pre(l,u) above P is acceptable. If the current
value of precision is greater than the threshold, we would only like to maximize
the coverage. If the analytical precision becomes less than the specified threshold,
then in addition to maximizing coverage, the MAIRE framework also maximizes
the precision ˆPre. This component is weighted by a constant factor λ1 to signify
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the importance of increasing the precision at the cost of reducing the coverage.
If λ1 is high, ˆPre will increase whenever the precision is less than the threshold.
Thus the overall objective function L(l,u) is defined as:

L(l,u) = ˆCov(l,u) + λ1
ˆPre(l,u)(1 + sgn(P − Pre(l,u)))

Note that the analytical precision value Pre(l,u) is only required to activate
the approximation term. The objective function L(l,u) is maximized subject
to two constraints. First, the lower and upper bound vectors l and u need to
be in [0, 1]D. As Γ (z), the approximator to the indicator function, never truly
achieves a zero gradient, if the explanation is unbounded, then the optimization
procedure might never converge as the explanation could keep expanding in all
directions indefinitely. This constraint is implemented by clipping the values of l
and u at 0 and 1 respectively after every iteration. The second constraint is that
the explanation finally generated must contain the query instance: lj ≤ x′

qj ≤
uj ,∀j = 1, . . . , D. The optimizer focuses on these constraints, only when they are
not satisfied. When the constraints are satisfied, the optimizer only maximizes
the coverage. This is achieved by using the ReLU function on the difference
lj − x′

qj and x′
qj − uj . These constraints are added to the final optimization

function with a weighting constant λ2 (can be viewed as the Lagrange multiplier
used for constrained optimization) that signifies the penalty on the objective
when the constraint is not satisfied. Thus, the final objective function that is
maximized with respect to the parameters l and u is defined as

arg max
l,u

L(l,u) − λ2

⎛

⎝
D∑

j=1

ReLU(lj − x′
qj) +

D∑

j=1

ReLU(x′
qj − uj)

⎞

⎠ (4)

Adam optimizer [11] with default parameter values is used for this non-linear
and non-convex optimization.

4.1 Greedy Attribute Elimination for Human Interpretability

The explanations created might still be too large (containing non-trivial bounds
for many dimensions) for a human to understand. We reduce the size of the
generated explanations using a greedy elimination procedure to improve human
interpretability. An attribute whose removal results in a maximum increase in the
coverage while retaining precision above the user-defined threshold is eliminated.
If no such attribute exists, then the attribute whose removal reduces the precision
by the minimum extent is excluded from the explanation. Attributes are removed
greedily at least for D−K times, where K is the maximum number of attributes
that can be part of an explanation as set by the user. Note that once we get
the hypercuboid S(l, u), the greedy selection of a single feature will take O(D)
time because computing coverage and precision for a given hypercuboid with
one feature removal will take constant time to compute.
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4.2 Local to Global Explanations

To gain a broader understanding of how the classification model works on the
entire dataset, we would need to generate multiple explanations for a compre-
hensive set of instances. This is an infeasible task due to the significant compu-
tational complexity. Instead of creating a global explanation by combining local
explanations of randomly selected instances, we identify an optimal set of local
explanations that can approximate the global behavior of the classifier.

The process of creating a global explanation is started by considering a mod-
erately sized subset of the training set (chosen randomly). Local explanations are
generated using the MAIRE framework for all the instances in this set. A subset
of these explanations is selected greedily, such that every new local explanation
added to the global explanation leads to the maximum increase in the overall
coverage of the global explanation. We call this procedure Maximum Symmetric
Difference (MSD Select) as the local explanation that results in the maximum
symmetric difference with the current estimate of the global explanation is added
to the global explanation.

The global explanation can be viewed as a new rule-based classifier f ′(x).
Given a test data point, several local explanations that are part of f ′(x) can
be applied to predict the class label. We propose to use the majority class label
among the applicable explanations for generating the class label.

4.3 Extension to Discrete Attributes

The MAIRE framework is directly applicable on ordered discrete attributes. The
final explanation is a set of consecutive discrete values. The generated explana-
tion is slightly modified for ordered discrete attributes by changing li to the
smallest discrete value that is greater than or equal to li and changing ui to the
largest discrete value that is lesser than or equal to ui. This modification does not
affect coverage or precision and improves readability. In the case of a categorical
attribute (unordered), finding intervals is not meaningful. We instead convert
all categorical attributes to their equivalent one-hot encoding. The transformed
boolean representation is treated as ordered discrete attributes. If an explanation
contains both the values of a boolean attribute, the corresponding attribute is
dropped from the explanation. If only the value one is selected, then the value of
the unordered attribute in x′

q is included in the explanation. Due to the enforce-
ment of the second constraint, selection of only 0 is not possible as x′

q has the
value 1 for the corresponding boolean attribute.

5 Experiments and Results

The source code for the method is publicly accessible1. The MAIRE framework
is tested on a wide variety of real-world datasets.

1 https://github.com/maire-code/code-submission.

https://github.com/maire-code/code-submission
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5.1 Tabular Datasets

We conducted experiments to study the quality of the approximations to cov-
erage and precision using the tabular datasets. Explanations for 100 randomly
sampled data points for each of the datasets were computed. The true coverage
and precision were determined for each explanation as well as the values for the
corresponding approximations. The mean squared error between the true and
approximate values averaged over 100 data points for the three datasets is pre-
sented in Table 2. It can be noticed that difference in the true values and the
corresponding approximations is not significant. Further this difference reduces
as the number of attributes increases supporting our theoretical analysis. The
German credit dataset has the highest number of attributes (20), followed by
Adult (14), and Abalone (8) data sets.

The MAIRE framework is evaluated on three tabular datasets - Adult,
Abalone, and German credit datasets. A three-layer neural network (contain-
ing 150, 100, and 50 nodes in each layer with ReLU activation) serves as the
black-box model (though any classifier can serve the purpose). The datasets are
divided into train and test splits according to the ratio of 3:1. The neural net-
work is trained for 100 epochs. The test accuracy of the black box model for the
Adult, Abalone, and German credit datasets is 81.52%, 87.76%, and 79.28%,
respectively. A sample of the explanations generated by MAIRE for the three
datasets is presented in Table 1.

We compare the quality of the global explanations extracted from MAIRE
against other model-agnostic rule-based explanation methods capable of com-
posing global explanations, namely; LIME and Anchors. LIME and Anchor are
applicable only on discrete datasets. Hence, for a fair comparison, we have used
the same discretized version of the dataset across all the models, including
MAIRE. The precision threshold is set at 0.95 for all the datasets. We com-
pare the sub-modular pick (SP) versions of LIME and Anchor against the MSD
Select of MAIRE. Coverage over unseen test instances in the global explanation
is used as the metric for comparison. Figure 3a–c presents the results averaged
over five trials on the three tabular datasets. MSD-MAIRE consistently performs
better than SP-LIME and SP-Anchor, achieving the maximum coverage using
a lesser number of explanations. Thus MSD-MAIRE has higher coverage at the
same precision threshold. It is also observed that SP-LIME performs better than
SP-Anchors on the German-credit dataset.

We further conduct experiments on the original non-discretized version of the
tabular datasets only using MAIRE. We compare the global explanation created
by MSD-MAIRE against randomly selected local explanations - RP-MAIRE.
The results on the adult dataset are presented in Fig. 3d. Similar trends were
observed for the Abalone and German-credits datasets.
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Table 2. Mean Square difference between Cov and ˆCov, Pre and ˆPre for adult, abalone
and German credit datasets averaged over 100 data points.

Adult Abalone German credit

MSD coverage 0.0015 0.0004 8.552e−05

MSD precision 0.3217 0.1265 0.0985

Figures 2(a–c) compare the change in precision as the local explanations are
incrementally added to the global explanation for the three tabular datasets. It is
observed that the proposed framework results in a minimal reduction in precision
consistently across the three datasets. The observation is consistent with the
mechanism to create a global explanation ensuring a minimum reduction in
precision. LIME shows the maximum decrease in precision.

Fig. 2. [Best viewed in color] Change in test precision as a function of number of
local explanations included in the global explanation Test Coverage for (a) Adult (b)
Abalone (c) German-Credit datasets for SP-LIME, SP-Anchors and MSD-MAIRE.

Figures 3(a–c) compares the performance of the MAIRE framework for both
the discretized and non-discretized versions of the tabular datasets. We observe
that the coverage of the global explanation for MSD-MAIRE for both versions of
the datasets is comparable for Adult and Abalone datasets. However, we notice a
significant improvement in the performance of MAIRE on the discretized version
of the German-Credit dataset that requires further investigation.

5.2 Text Datasets

The MAIRE framework is evaluated on two text datasets- IMDB movie reviews
and a reduced 20-Newsgroups dataset (containing the data belonging to the four
classes - medicine, graphics, Christian, and atheism). We illustrate the model-
agnostic capability of the MAIRE framework by training a decision forest clas-
sifier for the IMDB dataset and a deep learning classifier for the Newsgroup
dataset. The datasets are divided into train and test splits in the ratio of 4:1. A
bag of words representation was used to characterize the reviews and documents.
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Fig. 3. [Best viewed in color] Change in test coverage as a function of number of
local explanations included in the global explanation Test Coverage for (a) Adult (b)
Abalone (c) German-Credit Data sets (d) Comparison of discretized vs non-discretized
version of the datasets for RP-MAIRE and MSD-MAIRE

In the case of IMDB movie reviews, we considered a random forest with
500 trees as our black-box model to be explained. In the case of 20-Newsgroup
dataset, we have only considered output labels ‘medicine’, ‘graphics’, ‘Christian’,
and ‘atheism’ as it is not feasible to present 20 labels to a human subject. We
use a four-layer network consisting of two hidden layers with 512 nodes each,
having ReLU activation, and dropout probability set to 0.3 among layers, and
softmax activation at the output layer as the base classifier. The model is trained
for 30 epochs using Adam optimizer. The test classification accuracy on the two
datasets is 87.3% and 81.2%, respectively.

We use ten data points (three medicine, three atheism, two graphics,
two Christian) and generated explanations for each review using 5 different
approaches mentioned in the paper. For generating the MAIRE explanation,
the review was converted into a bag of words vector, and the sample points
for computing Cov, ˆCov, Pre, and ˆPre were taken by randomly flipping bits in
the bag of words. The words are ranked based on the effect they have on the
classification using Greedy Attribute Elimination.

We conduct human subject experiments on the explanations for ten ran-
dom test instances for each of the datasets to compare MAIRE against other
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Table 3. Human accuracy of various model agnostic approaches on IMDB and News-
group datasets.

Method LIME SHAP Anchor L2X MAIRE

IMDB 0.66 0.56 0.62 0.70 0.67

Newsgroup 0.66 0.64 0.70 0.69 0.75

model-agnostic approaches, namely; LIME and Anchors and feature ranking
approaches, namely; L2X, and SHAP. We employ the experimental protocol of
Chen et al., [6] for computing human accuracy. We assume that the explanations,
in terms of the keywords (maximum of 10), convey sufficient information about
the sentiment or class label of the document. We ask human subjects to infer
the sentiment or the class label of the text when provided with only the expla-
nations. The explanations from the different models and the various instances
of a dataset are randomized. The final label for each document is averaged over
the results of 25 human annotators. We measure the accuracy of the label pre-
dicted by the human annotator against the output of the model. The subjects
are also allowed to label an explanation “can not infer” if the explanation is
not sufficiently informative. We use the Human Accuracy metric for comparing
the different approaches and treat the instances labeled as “can not infer” as
misclassified instances.

The results are reported in Table 3. The human judgment given only ten
words aligns best with the model prediction when the words are chosen from L2X
and MAIRE for the IMDB and Newsgroup datasets, respectively. While on the
binary classification dataset (IMDB), L2X is better than MAIRE by around 3%,
on the more challenging 4-way classification dataset (Newsgroup) MAIRE leads
over L2X by 6%. Overall the result indicates the competitiveness of MAIRE
against other feature ranking approaches. It is also evident that MAIRE has
significantly higher human accuracy over the other model-agnostic approaches
LIME and Anchors. Table 4 shows exemplars for various models.

5.3 Image Datasets

We use the MAIRE framework to explain the classification results of the VGG16
model [20]. For explaining the model output, the image is segmented into super-
pixels and each superpixel is treated as a Boolean attribute. x′

q is taken to be a
vector of 1 indicating the presence of all superpixels in the image. Sample points
for calculating Cov, ˆCov, Pre and ˆPre are computed by flipping the bits of
x′

q randomly (i.e. randomly removing some superpixels). In the final explana-
tion, the superpixels that covered both the values {0, 1} of the corresponding
Boolean attributes are removed as these superpixels do not affect the decision
of the classifier. Figures 4(a–c) show the explanation generated by MAIRE and
the heat map of the explanation (generated by ordering the superpixels chosen
in the local explanation using Greedy Attribute Elimination) for a sample image
(beagle). The VGG model has high confidence in its prediction for this image.
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Table 4. Sample explanations for documents in the IMDB and Newsgroup dataset.

Review: I have to say that this miniseries was the best interpretation of the beloved
novel “Jane Eyre”. Both Dalton and Clarke are very believable as Rochester and Jane.
I’ve seen other versions, but none compare to this one. The best one for me. I could
never imagine anyone else playing these characters ever again. The last time I saw this
one was in 1984 when I was only 13. At that time, I was a bookworm and I had just
read Charlotte Bronte’s novel. I was completely enchanted by this miniseries and I
remember not missing any of the episodes. I’d like to see it because it’s so good. :-)

LIME: best, completely, believable, 13, say, just, imagine, good, read, remember

SHAP: beloved, none, interpretation, good, novel, missing, remember, best, read,
imagine

Anchors: believable remember, best, novel

L2X: imagine, interpretation, best good, novel, just, remember, read, characters,
believable

MAIRE: enchanted, best, interpretation, remember, good, believable, novel, imagine,
beloved, completely

Document: In article 47974@sdcc12.ucsd.edu— wsun@jeeves.ucsd.edu (Fiberman)
writes: Is erythromycin effective in treating pneumonia? It depends on the cause of the
pneumonia. For treating bacterial pneumonia in young otherwise-healthy non-smokers,
erythromycin is usually considered the antibiotic of choice, since it covers the two
most-common pathogens: strep pneumoniae and mycoplasma pneumoniae.

LIME: cause, treating, edu, common, effective, healthy, usually, antibiotic, bacterial,
non

SHAP: healthy, writes, common, cause, effective, young, pneumoniae, choice, treating,
cover

Anchors: pneumonia, healthy, antibiotic

L2X: cause, treating, antibiotic, edu, young, covers, bacterial, pathogens, choice, con-
sidered

MAIRE: common, bacterial, covers, young, pathogens, healthy, usually, smokers, cause,
pneumoniae

We first validate the performance of the MAIRE framework by measuring the
classifier confidence when random superpixels are removed (RSR) and when the
superpixels picked by the MAIRE framework for the explanation are removed
(MSR) from the original image. The results of this experiment are presented
in Fig. 4(d). It is observed that the decrease in the classifier confidence on the
removal of superpixels picked by the MAIRE framework is significantly larger
than randomly selecting a superpixel. This illustrates that the MAIRE frame-
work does indeed select the superpixels that have a big impact on the classifier.

In the second experiment, we only pick the superpixels selected by the greedy
algorithm in the MAIRE framework. We iteratively remove the selected super-
pixels in the decreasing order of importance as estimated by the greedy algo-
rithm, while also computing the classifier confidence. Our hypothesis is that
if the greedy algorithm does indeed pick only important superpixels, then we
would expect a sharp drop in the classifier confidence when the initial set of



346 R. Sharma et al.

(a) (b) (c)

(d) (e)

Fig. 4. [Best viewed in color] Results on the beagle image (a) Original Image (b) Expla-
nation Generated (c) Heat Map (d) Confidence Score as more number of Superpixels
are Removed (RSR = Random Superpixels Removed, MSR = MAIRE Superpixels
Removed) (e) Confidence Score as more number of Superpixels are Removed (the
removal order is from most important to least as given by Greedy Attribute Elimi-
nation)

superpixels are removed from the image. Figure 4(e) presents the results for the
beagle image. We observe that by removing the top 4 superpixels selected by the
MAIRE framework, the classifier confidence drops to less than 0.5. The Fig. 5
shows the explanation generated by the MAIRE framework and heat map of the
explanation (generated by ordering the superpixels chosen in the local expla-
nation using Greedy Attribute Elimination) for the bluetick image. The VGG
model has high confidence in its prediction for this image as well. The decrease
in the classifier confidence (Fig. 5(d)) with the removal of superpixels picked
by the MAIRE framework is more significant than randomly selecting a super-
pixel. This also illustrates that the MAIRE framework does indeed select the
superpixels having a significant impact on the classifier. We also observe that
by removing the top 2 superpixels selected by the MAIRE framework, the clas-
sifier confidence drops to less than 0.5 for the bluetick image. It is interesting
to note that the images in Figs. 5(b) and 5(c) show that the MAIRE frame-
work selected superpixels mostly from the background in the bluetick image.
Surprisingly, the VGG16 model classified the image, containing only the super-
pixels selected by the MAIRE framework for the bluetick image, correctly with
the confidence of 0.953. Further, when we remove the superpixel containing the
background snow, the VGG16 classifier confidence drops to 0.007. This indicates
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(a) (b) (c)

(d) (e)

Fig. 5. [Best viewed in color] Results on the bluetick image (a) Original Image (b)
Explanation Generated (c)Heat Map (d) Confidence Score as more number of Super-
pixels are Removed (RSR = Random Superpixels Removed, MSR = MAIRE Superpix-
els Removed) (e) Confidence Score as more number of Superpixels are Removed (the
removal order is from most important to least as given by Greedy Attribute Elimina-
tion)

that the VGG16 network is focusing on perhaps incorrect regions of the image.
The MAIRE framework is effective at detecting such wrong correlations learned
by the machine learning model.

6 Summary

In this paper, we propose a novel model-agnostic interpretable rule extraction
(MAIRE) framework for explaining the decisions of black-box classifiers. The
framework quantifies the goodness of the explanations using coverage and preci-
sion. We propose novel differentiable approximations to these measures that are
then optimized using the gradient-based optimizer. The flexible framework can
be applied to any classifier for a wide variety of datasets. We test the framework
on multiple datasets (tabular, text, and image) and show that the generated
explanations are competitive to state-of-the-art approaches.
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Abstract. A natural method aiming at explaining the answers of
a black-box model is by means of propositional rules. Nevertheless,
rule extraction from ensembles of Machine Learning models was rarely
achieved. Moreover, experiments in this context have rarely been eval-
uated by cross-validation trials. Based on stratified tenfold cross-
validation, we performed experiments with several ensemble models on
Covid-19 prognostic data. Specifically, we compared the characteristics
of the propositional rules generated from: Random Forests; Shallow
Trees trained by Gradient Boosting; Decision Stumps trained by sev-
eral variants of Boosting; and ensembles of transparent neural networks
trained by Bagging. The Discretized Interpretable Multi Layer Percep-
tron (DIMLP) allowed us to generate rules from all the used ensembles
by transforming Decision Trees into DIMLPs. Our rule extraction tech-
nique simply determines whether an axis-parallel hyperplane is discrim-
inative or not, with a greedy algorithm that progressively removes rule
antecedents. Rules extracted from Decision Stumps trained by modest
Adaboost were the simplest with the highest fidelity. Our best average
predictive accuracy result was equal to 96.5%. Finally, we described a
particular ruleset extracted from an ensemble of Decision Stumps and it
turned out that the rule antecedents seem to be plausible with respect
to several recent works related to the Covid-19 virus.

Keywords: Ensembles · Model transparency · Rule extraction ·
Covid-19.

1 Introduction

Numerous projects aiming at making black-box models transparent are now
emerging, especially in deep learning. In medicine, it is difficult to accept a suc-
cessful model without being able to explain its answers. A natural method close
to human thinking consists in explaining the answers of a model by means of
propositional rules [13]. For black-box models such as neural networks, many
techniques have been introduced. Specifically, all rule extraction algorithms
applied to Multi Layer Perceptrons (MLP) have been categorized by the taxon-
omy introduced by Andrews et al. [1].
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Among the few transparent Machine Learning models, Decision Trees (DTs)
represent a valuable alternative to connectionist models, mainly when deep mod-
els are unnecessary. For structured data, Random Forests (RF ) [6] are very often
among the best classification models. Nevertheless, since RFs represent a combi-
nation of a large number of trees, rule extraction becomes difficult [23]. Another
successful strategy is the boosting of weak learners, such as ensembles of shal-
low decision trees [12]. But again, with these ensembles, we encounter the same
problem of transparency as with RFs. A number of representative techniques in
this context are reported in [18].

In this work, we propose to generate rules from ensembles of DTs, such as
RFs and Boosted shallow trees. We accomplish this task by inserting into trans-
parent MLPs all the rules generated from each DT of an ensemble. In practice,
any propositional rule can be transformed into a (small) MLP with weight values
depending on rule antecedents. In this work, the transparent MLPs are DIMLP
networks (Discretized Interpretable Multi Layer Perceptron). From them, we are
able to generate rules from both single DIMLPs and DIMLP ensembles [4].
Hence, a ruleset representing a DT ensemble is generated from a DIMLP ensem-
ble. The main novelty of this work is the application of our rule extraction
technique proposed in [2] to RFs and Gradient Boosting GB of shallow trees.

Only a few authors proposed rule extraction algorithms from neural network
ensembles. Zhou et al. introduced the REFNE technique (Rule Extraction from
Neural Network Ensemble) [27], which utilizes the trained ensembles to generate
samples and then extracted symbolic rules from those samples. For Johansson,
rule extraction from ensembles is an optimization problem to solve with genetic
algorithms in which a trade-off between accuracy and comprehensibility is taken
into account [17]. Hara and Hayashi proposed the two-MLP ensembles [11] by
using the “Recursive-Rule eXtraction” (Re-RX ) algorithm [22]. Re-RX utilizes
C4.5 decision trees and back-propagation to train MLPs recursively.

A novel classification problem on the prognosis of Covid-19 was recently pre-
sented in [26]. Based on stratified ten-fold cross-validation, we perform exper-
iments with the Covid-19 related dataset. Here, we are specially interested to
characterize the complexity of the rules produced by the applied models. It is
worth noting that the proposed rule extraction technique can be applied to any
classification problem. Therefore, our contribution is much more oriented toward
a general algorithm, rather than the application itself. In this latter case, the
involvement of some subject-matter expert would be necessary to fully under-
stand the perceived usefulness of the resulting propositional rules. In the follow-
ing sections we present the models, the experiments, followed by the conclusion.

2 Models

In this section we present Decision Trees (DTs) and their transformation into
transparent MLPs. By transparency, we mean the production of propositional
rules from the models. Specifically, the format of a rule is given as: “if tests on
antecedents are true then class K”; where “tests on antecedents” are in the form
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xi ≤ ti or xi ≥ ti; with xi as an input attribute and ti as a real number. Class
K designates a class among several possible classes.

Ensemble training is based on meta-learning algorithms, such as Bagging
[5] and Boosting [9]. Bagging and Boosting use resampling techniques. For the
former, assuming a training set of size N , bagging selects for each classifier
included in an ensemble N samples drawn with replacement from the original
training set. In such a manner, some diversity in each individual classifier proves
beneficial for the combined set of classifiers. With Boosting, the samples of each
classifier are chosen according to the probabilities defined for each sample in the
original training set. After the first classifier has been trained, the probability of
sample selection in a new training set is increased for all unlearned samples and
decreased for the others.

2.1 Ensembles of Binary Decision Trees

A binary DT possesses nodes and branches. Each node represents a predicate
with respect to an attribute and a threshold. Specifically, a node corresponds to
a rule antecedent. A node without successors is denoted as a leaf. Any path from
the root to a leaf represents a propositional rule. Thus, a binary tree is considered
transparent by construction. Several examples of tree induction algorithms are
reported in [8,20].

In this work, we use among others, small trees with a unique node also
denoted as Decision Stumps (DS ). These particular trees represent “weak” learn-
ers, because their power of expression is very limited. With the use of Boosting
techniques [9], ensembles of weak learners become strong classifiers [21]. We use
four Boosting algorithms to train shallow trees:

– Adaboost [9];
– Gentle Adaboost [10];
– Modest Adaboost [24];
– Gradient Boosting [12].

Random Forests (RF ) are also ensembles of DTs [6]. They are trained by
Bagging; moreover, each tree can be constrained to select a small proportion of
the available attributes. As a consequence, the training phase is very fast for two
reasons:

– each tree of an ensemble has to determine a new split from a limited number
of attributes;

– each tree is independent from the others; hence, the induction of the trees is
usually performed with parallel hardware.

2.2 Transformation of Trees into Transparent MLPs

The key idea behind rule extraction from ensembles of DTs being their trans-
formation into ensembles of transparent MLPs, we first describe how to trans-
form a rule antecedent into an MLP. Then, we generalize to rules with many
antecedents.
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Figure 1 illustrates an MLP that represents a symbolic rule with a unique
antecedent. Any neuron in the middle or output layer receives a signal, which is
the result of a weighted sum of inputs and weights. Then, an activation function
is applied; in the middle layer it is a step function given as:

1

1 0

-90 -90

100

1

-t1

x1INPUT LAYER

HIDDEN LAYER

OUTPUT LAYER

Fig. 1. A transparent MLP coding a propositional rule with a unique antecedent (x1 >
t1).

t(x) =
{

1 if x > 0;
0 otherwise. (1)

In the output layer we have a sigmoid function given as:

σ(x) =
1

1 + exp(−x)
. (2)

Therefore, the MLP represented in Fig. 1 represents the following propositional
rule:

– (x1 > t1) → C2; with C2 designating the second class coded by vector (0, 1).

It is worth noting that if x1 ≤ t1 then the output will be a vector of two
components with their values very close to zero.

Figure 2 shows an MLP that represents a propositional rule with two
antecedents:

– (x1 > t1) AND (x2 ≤ t2) → C1; with C1 designating the first class coded by
vector (1, 0).

Generally, the number of rule antecedents in a rule is unconstrained. To cor-
rectly code an arbitrary number of antecedents we must ensure that the weight
of the bias neuron between the middle layer and the output layer is adequate rel-
ative to the number of antecedents. Specifically, for a unique antecedent if a con-
stant K of high value (K = 100) allows to transmit the fact that an antecedent is
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Fig. 2. A transparent MLP coding a propositional rule with two antecedents (x1 > t1)
AND (x2 ≤ t2).

true, then the bias weight is equal to −9K/10. With p antecedents, K is replaced
by pK. In this way, any rule generated from the root to a leaf of a DT is inserted
into a transparent MLP.

Figure 3 represents the same transparent MLP as Fig. 1, but with an addi-
tional layer having an Identity activation function that is useful to encode the
weighting of a rule (coefficient w at the top right). Indeed, with boosted DTs we
have to take into account the weighting of each tree.

2.3 DIMLP Networks

The transparent MLPs presented in the previous paragraphs represent special
cases of Discretized Interpretable Multi Layer Perceptrons (DIMLPs) [4]. DIMLP
differs from standard Multi Layer Perceptrons in the connectivity between the
input layer and the first hidden layer. Specifically, any hidden neuron receives
only a connection from an input neuron and the bias neuron, as shown in Fig. 3.
Furthermore, the activation function for the first hidden layer is a staircase
function that approximates the sigmoid function. Note also that the staircase
function generalizes the step function. Above the first hidden layer, neurons are
fully connected.

Since rule antecedents correspond to axis-parallel hyperplanes, the rule
extraction technique simply determines whether a hyperplane is discriminative
or not, depending on the weight values of the neurons above the first hidden
layer. A greedy algorithm that generates unordered rules progressively removes
antecedents and rules. The fidelity of the generated ruleset, which is the degree
of matching between network classifications and rules’ classifications is equal to
100%, with respect to the training set. More details on the rule extraction tech-
nique can be found in [3]. Finally, Rule extraction from DIMLP ensembles can
also be performed, since an ensemble of DIMLP networks can be viewed as a
single DIMLP with one more hidden layer [4].
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Fig. 3. A transparent MLP coding a propositional rule with a unique antecedent (x1 >
t1). The activation function of the output layer is the Identity, with coefficient w coding
the rule weight.

3 Experiments

The used dataset is related to blood samples from 375 infected patients by
the Covid-19 virus in the region of Wuhan, China [26]. The medical data of
all patients were collected between January and February 2020. The number of
attributes for each patient is 76, among which for 74 attributes we calculated the
average/min/max values during the patient’s hospital stay (74 ∗ 3 = 222). Thus,
the input vectors have a size of 224 components. The whole dataset describes
201 patients who recovered from COVID-19, while the remaining 174 died. A
description of the attributes is reported in [26].

3.1 Models and Learning Parameters

Our experiments are based on 10 repetitions of stratified tenfold cross validation
trials. The Covid-19 dataset was normalized by Gaussian normalization. We
trained the following models:

– Random Forests (RF);
– Shallow trees trained by Gradient Boosting (GB);
– DIMLP ensembles trained by Bagging;
– Boosted Decision Stumps (DS) trained by Adaboost.
– Boosted Decision Stumps trained by gentle Adaboost;
– Boosted Decision Stumps trained by modest Adaboost;

In all the ensembles, the number of trained classifiers was fixed to: 25; 50;
100; and 150. For RF we used default learning parameters defined in the Scikit
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Learn library [19]. Note that the depth of a single tree is unconstrained. By
contrary, with GB the default maximal depth is three. Finally, Decision Stumps
are DTs with a unique node.

For DIMLP ensembles we used default learning parameters (see [4]). The
default number of neurons in the first hidden layer is equal to the number of input
neurons and the number of neurons in the second hidden layer is empirically
defined in order to obtain a number of weight connections that is less than the
number of training samples. Here, we used ten neurons.

3.2 Random Forest Results

In the next tables, columns from left to right designate the average values of:

– Train accuracy;
– Accuracy on the testing set (predictive accuracy);
– Fidelity, which is the degree of matching between the rules and the model (on

the testing set); specifically, with P samples in the testing set and Q samples
for which the classification of the rules correspond to the classification of an
ensemble, fidelity is Q/P .

– Accuracy of the rules on the testing set;
– Accuracy of the rules when rules and model agree on the testing set;
– Number of extracted rules and number of rule antecedents.

For RFs, Table 1 shows in the last column that the average complexity of the
generated rulesets increases with the number of trees in an ensemble. Moreover,
the average predictive accuracy and the average predictive accuracy of the rules
when rules and ensembles agree are relatively stable. Finally, as we will see in
the results provided by the other models, the average complexity of the rulesets
generated by RF is the highest (last column of the Tables).

Table 1. Average results obtained by Random Forests. The last column depicts the
average number of rules and the average number of rule antecedents.

#Trees Train
acc.

Test
acc.

Fidelity Test acc.
(r1)

Test acc.
(r2)

#Rules/#Ant

25 100.0 95.8 96.8 94.3 96.5 30.5/3.7

50 100.0 96.0 96.4 93.8 96.6 36.3/3.9

100 100.0 95.8 95.6 93.0 96.5 43.2/4.1

150 100.0 95.9 96.0 93.2 96.4 44.6/4.2

3.3 Gradient Boosting Results

Table 2 illustrates the results obtained by GB of shallow trees. The average
complexities of the obtained rulesets is lower than that given by RFs. This is
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probably due to the complexity of a shallow tree, which is lower than that of a
typical RF tree without depth constraints. We also observe that average fidelity
decreases with the increasing average complexity of extracted rulesets. Finally,
the average predictive accuracy of the models (third column) decreases slowly
after using 50 trees in an ensemble.

Table 2. Average results obtained by Gradient Boosting.

#Trees Train
acc.

Test
acc.

Fidelity Test acc.
(r1)

Test acc.
(r2)

#Rules/#Ant

25 99.5 95.0 97.7 94.6 95.9 14.0/3.0

50 99.5 95.9 97.3 94.3 96.3 16.5/3.1

100 100.0 95.8 97.0 94.9 96.7 26.5/3.4

150 100.0 95.7 96.8 94.8 96.8 27.6/3.4

3.4 Results Obtained by DIMLPs Trained by Bagging

The average fidelity of the rulesets is the lowest among all the used models
(see Table 3). Furthermore, it is worth noting that the difference between the
average testing accuracy and the average testing accuracy of the rules is the
highest. Finally, the average predictive accuracy of the rules is also the lowest,
although the average predictive accuracy of the rules when models and rules
agree is acceptable (sixth column).

Table 3. Average results obtained by DIMLPs trained by Bagging.

#DIMLP Train
acc.

Test
acc.

Fidelity Test acc.
(r1)

Test acc.
(r2)

#Rules/#Ant

25 98.2 95.3 95.3 92.1 95.9 26.4/3.6

50 98.6 95.5 95.2 92.3 96.1 28.6/3.7

100 98.7 95.5 95.7 92.8 96.2 28.1/3.7

150 98.7 95.5 95.6 92.6 96.1 27.3/3.7

3.5 Results of Boosted Decision Stumps

Tables 4, 5, and 6 depict the results obtained by Boosted DSs trained with
Adaboost, gentle Adaboost and modest Adaboost, respectively. With respect
to average complexity, Adaboost and gentle Adaboost provide similar results,
while modest Adaboost involves lower values. Furthermore, all boosted DSs tend
to generate rulesets of higher average complexity, as the number of trees in an
ensemble increases.



Transparent Ensembles for Covid-19 Prognosis 359

Table 4. Average results obtained by Decision Stumps trained by Adaboost.

#Trees Train
acc.

Test
acc.

Fidelity Test acc.
(r1)

Test acc.
(r2)

#Rules/#Ant

25 99.7 96.0 97.7 94.9 96.5 14.3/3.0

50 100.0 95.9 97.5 95.2 96.7 18.8/3.1

100 100.0 96.0 97.8 95.1 96.5 21.5/3.3

100 100.0 95.7 97.4 95.3 96.7 22.7/3.4

The highest average predictive accuracy was obtained by gentle Adaboost
with 96.5% (±0.6). Moreover, the highest average predictive accuracy provided
by the rulesets was equal to 95.5% (±0.4). Finally, the best average predictive
accuracy when the rulesets agree with their corresponding models (sixth column
of all Tables) was equal to 96.9% (±0.5).

Table 5. Average results obtained by Decision Stumps trained by gentle Adaboost.

#Trees Train
acc.

Test
acc.

Fidelity Test acc.
(r1)

Test acc.
(r2)

#Rules/#Ant

25 99.5 96.5 97.7 95.1 96.9 14.1/3.1

50 100.0 96.4 97.7 95.3 96.9 18.8/3.2

100 100.0 95.9 97.7 95.5 96.8 21.5/3.3

150 100.0 95.7 96.8 94.8 96.8 27.6/3.4

Compared to the other ensembles, DSs tend to provide rulesets with the best
average fidelities. For instance, with modest Adaboost (see Table 6) the best
average fidelity reached 98.0% (±0.7).

Table 6. Average results obtained by Decision Stumps trained by modest Adaboost.

#Trees Train
acc.

Test
acc.

Fidelity Test acc.
(r1)

Test acc.
(r2)

#Rules/#Ant

25 97.0 94.3 97.9 93.3 94.8 9.4/2.5

50 98.2 95.3 97.3 93.9 95.9 10.5/2.7

100 99.1 96.2 97.6 95.0 96.8 12.2/2.9

150 99.2 96.4 98.0 95.2 96.7 12.2/2.9
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3.6 An Example of Generated Ruleset

Table 7 presents a summary of the results obtained by taking into account for
each model the highest average accuracy on the test set. Figure 4 illustrates a
ruleset generated from an ensemble of DSs trained by modest Adaboost during
cross-validation trials. Its accuracy on the training set is 99.1% and 100% on
the testing set. By mere chance the accuracy on the testing set is higher than
that obtained on the training set. The class NEG designates patients who have
recovered from the Covid-19 virus, while the class POS indicates patients who
did not recover. In addition, the number of samples covered by the rules for the
training and testing sets is shown in parentheses. Note also that any sample can
be covered by several rules.

Table 7. Summary of the results obtained when the highest average predictive accu-
racy is obtained for each different model. First row indicates Gradient Boosting, then
Random Forests, DIMLPs, shallow trees trained by Adaboost (AB), Gentle Adaboost
(GAB) and modest Adaboost (MAB). Standard deviations are given between brackets.

Model (#Trees) Train acc. Test acc. Fidelity Test acc. (r1) Test acc. (r2) #Rules/#Ant

GB (50) 100.0 (0.0) 96.0 (0.3) 96.4 (0.8) 93.8 (0.5) 96.6 (0.4) 36.3 (1.1)/3.9 (0.1)

RF (50) 99.5 (0.0) 95.9 (0.7) 97.3 (0.8) 94.3 (0.9) 96.3 (0.5) 16.5 (2.1) /3.1 (0.1)

DIMLP (50) 98.6 (0.1) 95.5 (0.5) 95.2 (1.1) 92.3 (1.2) 96.1 (0.6) 28.6 (2.1) /3.7 (0.1)

AB (25) 99.7 (0.0) 96.0 (0.8) 97.7 (0.6) 94.9 (0.8) 96.5 (0.6) 14.3 (0.6)/3.0 (0.1)

GAB (25) 99.5 (0.0) 96.5 (0.6) 97.7 (0.7) 95.1 (0.8) 96.9 (0.5) 14.1 (0.5)/3.1 (0.1)

MAB (150) 99.2 (0.0) 96.4 (0.5) 98.0 (0.7) 95.2 (0.6) 96.7 (0.6) 12.2 (0.3)/2.9 (0.0)

In general, the higher the number of trees and their depth, the higher the
risk of overfitting. Here, with decision stumps the depth parameter is equal to
one, which is the minimal value. Moreover, cross-validation results obtained by
modest Adaboost show that the average predictive accuracy increases progres-
sively as the number of trees in an ensemble increases from 25 trees (94.3%
predictive accuracy ±0.8) to 150 trees (96.4% ±0.4). In case of overfitting, we
would observe that the average predictive accuracy would start to decrease at
some point, which is not the case here.

The thresholds of the antecedents shown in Fig. 4 are related to normalised
values. For instance, the first rule means that if the average measure of monocytes
during the patient stay at the hospital are greater than a given threshold and if
the average measure of Lactic Dehydrogenase (LDH) is below a given threshold
and finally if the minimal value of Hypersensitive C reactive Protein (HcRP) is
less than a given threshold then a patient recovers from the virus. High levels of
LDH could indicate severe disease or multiple organ failure, while a high level
of HcRP in the blood is a marker of inflammation. Hence, the first rule requires
low levels of LDH/HcRP and a sufficient number of monocytes to be able to
fight against an aggressor.

The sixth rule says that if the average LDH is above a given threshold and
if the average prothrombin activity is below another threshold then a patient is
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R1:  (avg_monocytes > -0.507) 
       (avg_LDH < -0.356) 
       (min_HcRP < -0.393) --> NEG (146/23)

R2:  (avg_lymphocyte > -0.360) 
       (avg_LDH < -0.356) 
       (min_glucose < -0.519) --> NEG (121/24)

R3:  (avg_LDH > -0.356) 
       (min_glucose > -0.724) 
       (max_PlateletCount < 0.655) --> POS (111/12)

R4:  (age > -0.749) 
       (avg_ProthrAct < -0.210) 
       (avg_lymphocyte < -0.360) --> POS (111/11)

R5:  (avg_ProthrAct > -0.210) 
       (min_procalcitonin < -0.245) 
       (min_glucose < -0.519) --> NEG (110/22)

R6:  (avg_ProthrAct < -0.210) 
       (avg_LDH > -0.356) --> POS (106/10)

R7:  (age < 0.223) 
       (avg_ProthrAct > -0.210) 
       (min_procalcitonin < -0.245) 
       (min_HcRP < -0.393) --> NEG (97/19)

R8:  (avg_monocytes < -0.323) 
       (min_HcRP > -0.393) --> POS (94/8)

R9:  (min_glucose > -0.519) 
       (min_HcRP > -0.393) --> POS (82/10)

R10: (age < -0.749) 
       (avg_LDH < -0.356) --> NEG (73/12)

R11: (avg_HCT1 > -0.178) 
       (avg_monocytes > -0.323) 
       (avg_lymphocyte < -0.294) 
       (max_PlateletCount < 0.655) --> POS (14/4)

Fig. 4. An example of ruleset extracted from an ensemble of Decision Stumps trained
by modest Adabost. In brackets after the class is the number of samples covered in the
training set and the testing set, respectively.

unable to recover. Prothrombin helps blood to clot. Since prothrombin activity
is measured in seconds, if the activity time is too low, one could be at risk for a
blood clot. The other rules involve other attributes, such as:

– Average measure of lymphocytes (avg lymphocyte);
– Minimal level of glucose (min glucose);
– Maximal platelet count (max PlateletCount);
– Minimal level of procalcitonin (min procalcitonin);
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– Age;
– Average measure of Highly sensitive troponin I (avg HCT1).

We may wonder about the plausibility of these attributes from the extracted
ruleset (Fig. 4). For instance, lymphocytes exceeding a certain threshold tend to
fight the virus (second rule) and are not sufficient to recover below this same
threshold (fourth rule). This is conceivable, since lymphocytes are white blood
cells that combat the virus.

The value of the minimal glucose attribute is present in two negative rules
(second rule and fifth rule). It favours healing, when it is below a certain thresh-
old, but tends to be fatal above another threshold (third and ninth rule). Inter-
estingly, a recent meta-analysis provides evidence that severe COVID-19 is asso-
ciated with increased blood glucose [7]; hence, our rules are credible.

In the third and the last rule we have the maximal platelet count attribute.
Here, values below a given threshold do not allow patients to recover. This fact is
corroborated with a meta-analysis in an article [16] stating that the non-survivors
had a much lower platelet count than the survivors.

The minimal procalcitonin attribute is present in the fifth and seventh rule. In
a recent work, it was stated that procalcitonin levels were over eight times higher
in critical patients than in moderate patients [15]. Therefore in our rules, low
levels of minimal procalcitonin supporting the recovery of patients is plausible.

The highly sensitive cardiac troponinI (HCT1) is in the eleventh rule. A
recent study demonstrated that the risk of in-hospital death among COVID-19
patients with cardiac injury can be predicted by the peak levels of HCT1 [25].
We are not sure of the plausibility of the eleventh rule, since we do not know
whether the patients had cardiac injury. Finally, patient age is well known to be
an important factor of prognosis and it is a rule antecedent in three rules.

3.7 Related Work

In [26] the authors determined a small number of informative features with
a prognostic predictive value. The following three attributes were chosen: lac-
tic dehydrogenase (LDH); lymphocytes; and high-sensitivity C-reactive protein
(HcRP). Note also that these three attributes are present in the ruleset described
above.

At this point, a question arising was whether these three attributes would
allow us to obtain equivalent performance by cross-validation. Hence, we selected
these small set of attributes and performed tenfold cross-validation experiments.
In Table 8, we illustrate the predictive accuracy results obtained by ensembles
of DTs. The average predictive accuracy of these ensembles was higher with the
use of all attributes, rather than a small subset.
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Table 8. Average predictive accuracy obtained by ensemble of DTs with the use three
attributes out of 76 (average predictive accuracy with the 76 attributes is given between
brackets).

#Trees Adaboost Gentle Adaboost Modest Adaboost Random Forests Grad. Boost

25 94.2 (96.0) 92.4 (96.5) 93.4 (94.3) 94.2 (95.8) 93.6 (95.0)

50 93.7 (95.9) 93.1 (96.4) 93.4 (95.3) 94.4 (96.0) 94.0 (95.9)

100 93.8 (96.0) 92.9 (95.9) 93.4 (96.2) 94.5 (95.8) 94.1 (95.8)

150 93.2 (95.7) 93.1 (95.7) 93.4 (96.4) 94.4 (95.9) 94.2 (95.7)

4 Conclusion

In this work, we extracted unordered rules from ensembles of Random Forests,
Boosted Shallow Trees and DIMLPs. On a classification problem related to
Covid-19 prognosis, Decision Stumps trained by modest Adaboost produced
the less complex rulesets with good predictive accuracy. Generally, rule extrac-
tion from ensembles of Machine Learning models was rarely tackled. Our best
result on average predictive accuracy was equal to 96.5% (±0.6) and the aver-
age predictive accuracy of the rules was equal to 95.5% (±0.4). Moreover, the
average predictive accuracy of the rules when rules and models agree was 96.9%
(±0.5). Afterward, we described a particular ruleset extracted from an ensemble
of Decision Stumps and it turned out that the rule antecedents seem to be plau-
sible. We would like to encourage researchers to work with transparent models,
since they potentially help to discover new knowledge. Random forests, decision
trees and transparent neural networks are of considerable interest for the future,
because of their interpretability. Another important approach based on these
models would be to insert a human into the loop who can provide conceptual
knowledge, experience and contextual understanding, which no AI algorithm can
provide today [14].
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