
Viktória Zsók
John Hughes (Eds.)

LN
CS

 1
28

34

Trends in
Functional Programming
22nd International Symposium, TFP 2021
Virtual Event, February 17–19, 2021
Revised Selected Papers

Lecture Notes in Computer Science 12834

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0001-8816-2693

More information about this subseries at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Viktória Zsók · John Hughes (Eds.)

Trends in
Functional Programming
22nd International Symposium, TFP 2021
Virtual Event, February 17–19, 2021
Revised Selected Papers

Editors
Viktória Zsók
Eötvös Loránd University
Budapest, Hungary

John Hughes
Chalmers University of Technology
Göteborg, Sweden

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-83977-2 ISBN 978-3-030-83978-9 (eBook)
https://doi.org/10.1007/978-3-030-83978-9

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer Nature Switzerland AG 2021
Chapters “Dataset Sensitive Autotuning ofMulti-versioned Code Based onMonotonic Properties: Autotuning
in Futhark” and “High-Level Modelling for Typed Functional Programming” are licensed under the terms of
the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).
For further details see license information in the chapters.
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0003-4414-6813
https://orcid.org/0000-0001-8042-0969
https://doi.org/10.1007/978-3-030-83978-9
http://creativecommons.org/licenses/by/4.0/

Preface

This volume contains selected papers presented at the 22nd International Symposium
on Trends in Functional Programming (TFP 2021), held online during February 17–19,
2021. The conference was collocated with 10th International Workshop on Trends in
Functional Programming in Education (TFPIE 2021) and Lambda Days 2021.

TFP is an international forum for researcherswith interests in all aspects of functional
programming, taking a broad view of current and future trends in this area. It aspires to
be a lively environment for presenting the latest research results and other contributions,
with an unconventional reviewing process that allows for full single blind peer review
either before or after the symposium (or both, if the pre-symposium reviews ask for
changes that need a second review before inclusion in the proceedings).

Each paper received three reviews in each round. This year 18 papers were submit-
ted in total (10 reviewed before the symposium and 8 afterwards), and 15 of them were
presented, together with the keynote by Prof. Zhenjiang Hu (Peking University, China)
on “Constructive Bidirectional Programming”. After the final reviewing round, revised
versions of 6 papers were selected for inclusion in this proceedings. The final selec-
tion spans across nested parallelism, semantics, task-oriented programming, modeling,
translating, and proving functional programs.

TFP offers two prizes: the John McCarthy award for the best paper and the David
Turner award for the best student paper. The paper “Dataset Sensitive Autotuning of
Multi-versioned Code Based onMonotonic Properties: Autotuning in Futhark” by Philip
Munksgaard, Svend Lund Breddam, Troels Henriksen, Fabian Cristian Gieseke, and
Cosmin Oancea was awarded the best paper prize. The paper “A Generic Back-end
for Exploratory Programming” by Damian Frolich and L. Thomas van Binsbergen was
awarded the best student paper prize.

All of this was only possible thanks to the hard work of the authors and of the
Program Committee members. We are deeply grateful to both.

The event was sponsored by Facebook for which we are grateful.

June 2021 Viktória Zsók
John Hughes

Organization

Program Committee Chairs

Viktória Zsók Eötvös Loránd University, Budapest, Hungary
John Hughes Chalmers University of Technology, Gothenburg, Sweden

Program Committee

Peter Achten Radboud University, Nijmegen, The Netherlands
Jost Berthold Digital Asset, Sydney, Australia
Stephen Chang University of Massachusetts Boston, Bostan, USA
Olaf Chitil University of Kent, Canterbury, UK
João Paulo Fernandes University of Coimbra, Coimbra, Portugal
Jeremy Gibbons University of Oxford, Oxford, UK
Andrew Gill University of Kansas, Lawrence, USA
Clemens Grelck University of Amsterdam, Amsterdam, The Netherlands
Jurriaan Hage Utrecht University, Utrecht, The Netherlands
Pieter Koopman Radboud University, Nijmegen, The Netherlands
Hans-Wolfgang Loidl Heriot-Watt University, Edinburgh, UK
Marco T. Morazán Seton Hall University, New Jersey, USA
João Saraiva University of Minho, Braga, Portugal

Additional Reviewers

Jianhao Li
Ábel Sinkovics

Contents

Nested Parallelism, Semantics, Task-Oriented Programming

Dataset Sensitive Autotuning of Multi-versioned Code Based
on Monotonic Properties: Autotuning in Futhark . 3

Philip Munksgaard, Svend Lund Breddam, Troels Henriksen,
Fabian Cristian Gieseke, and Cosmin Oancea

A Generic Back-End for Exploratory Programming . 24
Damian Frolich and L. Thomas van Binsbergen

Dynamic Editors for Well-Typed Expressions . 44
Pieter Koopman, Steffen Michels, and Rinus Plasmeijer

Modelling, Translating, Proving Functional Programs

High-Level Modelling for Typed Functional Programming 69
Yusuf Moosa Motara

Translating Lambda Calculus into C++ Templates . 95
Vít Šefl

ProofViz: An Interactive Visual Proof Explorer . 116
Daniel Melcer and Stephen Chang

Author Index . 137

Nested Parallelism, Semantics,
Task-Oriented Programming

Dataset Sensitive Autotuning
of Multi-versioned Code Based

on Monotonic Properties
Autotuning in Futhark

Philip Munksgaard(B) , Svend Lund Breddam, Troels Henriksen ,
Fabian Cristian Gieseke , and Cosmin Oancea

DIKU, University of Copenhagen, Copenhagen, Denmark
philip@munksgaard.me, athas@sigkill.dk, fabian.gieseke@di.ku.dk,

cosmin.oancea@diku.dk

Abstract. Functional languages allow rewrite-rule systems that aggres-
sively generate a multitude of semantically-equivalent but differently-
optimized code versions. In the context of GPGPU execution, this paper
addresses the important question of how to compose these code versions
into a single program that (near-)optimally discriminates them across
different datasets. Rather than aiming at a general autotuning frame-
work reliant on stochastic search, we argue that in some cases, a more
effective solution can be obtained by customizing the tuning strategy for
the compiler transformation producing the code versions.

We present a simple and highly-composable strategy which requires
that the (dynamic) program property used to discriminate between code
versions conforms with a certain monotonicity assumption. Assuming
the monotonicity assumption holds, our strategy guarantees that if an
optimal solution exists it will be found. If an optimal solution doesn’t
exist, our strategy produces human tractable and deterministic results
that provide insights into what went wrong and how it can be fixed.

We apply our tuning strategy to the incremental-flattening transfor-
mation supported by the publicly-available Futhark compiler and com-
pare with a previous black-box tuning solution that uses the popular
OpenTuner library. We demonstrate the feasibility of our solution on a
set of standard datasets of real-world applications and public benchmark
suites, such as Rodinia and FinPar. We show that our approach shortens
the tuning time by a factor of 6× on average, and more importantly, in
five out of eleven cases, it produces programs that are (as high as 10×)
faster than the ones produced by the OpenTuner-based technique.

Keywords: Autotuning · GPGPU · Compilers · Nested parallelism ·
Flattening · Performance

This research has been partially supported by the Independent Research Fund Den-
mark grant under the research project FUTHARK: Functional Technology for High-
performance Architectures.

c© The Author(s) 2021
V. Zsók and J. Hughes (Eds.): TFP 2021, LNCS 12834, pp. 3–23, 2021.
https://doi.org/10.1007/978-3-030-83978-9_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-83978-9_1&domain=pdf
http://orcid.org/0000-0001-9499-199X
http://orcid.org/0000-0002-1195-9722
http://orcid.org/0000-0001-7093-5803
http://orcid.org/0000-0001-5421-6876
https://doi.org/10.1007/978-3-030-83978-9_1

4 P. Munksgaard et al.

1 Introduction

Adapting the compilation technique to the dataset and hardware characteristics
is an important research direction [8], especially in the functional context where
rewrite-rule systems can, in principle, be used to aggressively generate a multi-
tude of semantically-equivalent but differently-optimized versions of code [27].

The main target of this work is highly-parallel hardware, such as GPGPUs,
which have been successfully used to accelerate a number of big-compute/data
applications from various fields. Such systems are however notoriously difficult
to program when the application exhibits nested parallelism—think imperfectly-
nested parallel loops whose sizes are statically unknown/unpredictable.

Common parallel-programming wisdom says that, in principle, one should
exploit enough levels of parallelism to fully utilize the hardware1 and to efficiently
sequentialize the parallelism in excess. However, even this simple strategy is
difficult to implement when the parallel sizes vary significantly across (classes
of) datasets: for example, one dataset may offer enough parallelism in the top
parallel loop, while others require exploiting several levels of inner parallelism.

To make matters even more difficult, the common wisdom does not always
hold: in several important cases [3,14] it has been shown that even when the
outer parallelism is large enough, exploiting inner levels of parallelism is more
efficient, e.g., when the additional parallelism can be mapped to the threads of a
Cuda block, and when the intermediate results fit in shared memory.2 Finally, the
best optimization strategy may not even be portable across different generations
of the same type of hardware (GPU) from the same vendor [19].3

In essence, for many important applications, there is no silver-bullet opti-
mization recipe producing one (statically-generated) code version resulting in
optimal performance for all datasets and hardware of interest. A rich body of
work has been aimed at solving this pervasive problem, for example by applying:

1. supervised offline training techniques to infer the best configuration of com-
piler flags that results in best-average performance across datasets [5,8,13];

2. various compile-time code-generation recipes for stencil applications, from
which the best one is selected offline by stochastic methods and used online
to compute same-shape stencils on larger arrays [12,15,24];

3. dynamic granularity-control analysis [2,28] aimed at multicore execution, but
which require runtime-system extensions that are infeasible on GPUs.

Such solutions (1–2) however, do not aim to cluster classes of datasets to
the code version best suited for them, and thus to construct a single program

1 Current GPU hardware require about a hundred thousands of concurrent threads to
reach peak performance, and the number is still growing according to Moore’s law.

2 In Cuda, shared memory refers to a small and fast memory that is used as a user-
managed cache, and enables inter-thread communication within a block of threads.

3 The LocVolCalib benchmark of FinPar suite [3], run on the large dataset, favors
the common-wisdom approach on a Kepler GPU, but prefers exploiting inner levels
of parallelism on a Turing GPU. Matters can only worsen across hardware vendors.

Dataset Sensitive Autotuning of Multi-versioned Code 5

Fig. 1. The tuning tree of the paper’s running examples. V1...3 are code versions
and B1...2 are the predicates discriminating them. P1...2 are the degree of parallelism
exploited by V1...2 and T1...2 are the thresholds subject to autotuning.

that offers optimal performance for all datasets. Instead, a promising tech-
nique, dubbed incremental flattening [19], has been studied in the context of
Futhark language [11,18]: semantically-equivalent code versions are statically
generated—by incrementally mapping increasing levels of application parallelism
to hardware parallelism—and are combined into one program by guarding each
of them with a predicate that compares the amount of exploited parallelism of
that version with a externally defined threshold variable (integer), see Fig. 1.

The amount of exploited parallelism is a dynamic program property (known
at runtime), while the threshold values are found by offline tuning on a set of
representative datasets. The proposed autotuner [19] uses a black-box approach
that relies heavily on the stochastic heuristics of OpenTuner [4], but is impracti-
cal for application development and mainstream use, as demonstrated in Sect. 4
on a number of standard datasets of real-world applications [14,16] and public
benchmarks from Rodinia [7] and FinPar [3] suites:

– even relatively “simple” programs, i.e., exhibiting a small number of thresh-
olds, may result in unpredictable and suboptimal tuning times;

– the approach does not scale well, because the search space grows exponentially
with the number of thresholds,4 and thus an optimal result that perfectly
discriminates between code versions may not be found, even if it exists.

1.1 Scope and Contributions of This Paper

Instead of aiming to implement a general flavor of autotuning (e.g., relying on
stochastic search), this paper argues in favor of promoting a tighter compiler-
autotuner codesign, by customizing the tuning technique to the code transforma-
tion producing the multi-versioned code. Our framework assumes that the multi-
versioned program has the structure of a forest5 of tuning trees, such as the one
depicted in Fig. 1, namely that code versions V1...3 are placed inside branches
B1...2, whose conditions compare a dynamic program property (value) P1...2

4 A program may consist of several computational kernels, and each such kernel may
produce multi-versioned code, hence the number of thresholds can grow large.

5 Each tuning tree corresponds to a computational kernel of the original program.

6 P. Munksgaard et al.

against one freshly introduced unknown/threshold variable T1...2. Our frame-
work finds an optimal integral value for each threshold as long as the dynamic
properties (Pi) conform with a monotonic assumption, namely:

If for a certain dynamic program value Pi, the corresponding code version
Vi is found to be faster/slower than any/a combination of versions belonging to
the subtree at the right of Bi, then it will remain faster/slower for any dynamic
program value greater/less than Pi.

If the dynamic program value refers to the utilized parallelism, the trivial
intuition for monotonicity is that if a code version parallelizes only the outer-
most loop, and has been found optimal for some loop count, then increasing
the count of that parallel loop should not require exploiting the parallelism of
inner loops. One can similarly reason for (combined) properties referring to load
balancing, thread divergence, or locality of reference. Conversely, our technique
is not suitable for tuning tile sizes, for example.

These limitations enable the design of a simple, but highly-composable and
practically-effective tuning strategy. We present the intuition by using the tuning
tree of Fig. 1 and the simplifying assumption that the dynamic property values Pi

do not change during the execution of a dataset. Then autotuning should select
(exactly) one code version per (training) dataset. The rationale is as follows:

For a fixed dataset d, we can always find an instantiation of threshold values
that exercises V3 and then V2, and we can measure their runtime. We can now
combine V2 and V3 into an optimal subprogram on d, named V ′

2 , by assigning
T2 the maximal interval that selects the fastest of the two, i.e., [0, P2] if V2 is
faster and [P2 + 1,∞] otherwise—please notice that maximizing the interval is
sound under the monotonic assumption. We continue in a recursive fashion to
compute the interval of T1 that discriminates between V1 and subprogram V ′

2 .
Once we have (independently) computed partial solutions for each training

dataset, we compute a global solution for each threshold by intersecting the
maximal intervals across datasets. It is easy to see, by definition of intersection
and maximal intervals, that (i) the resulted intervals are maximal, (ii) if non-
empty, then any instantiation of the resulting intervals optimally satisfies each
dataset, and (iii) conversely, if empty, then no solution exists that optimally
satisfies all datasets—we use the term “near-optimal” to accommodate the empty
case. Furthermore, this rationale naturally extends to the general case in which
the values of Pi might vary during the execution of a dataset (see Sect. 3.5).

In this case, the maximal interval of Ti that perfectly discriminates versions
Vi and Vi+1 is found by binary searching the set of mi distinct values taken by
Pi. This requires O(log2 mi) program runs, instead of O(1) in the simple case.

In comparison with solutions reliant on stochastic search, our technique:

– processes each dataset independently and composably between code versions,
thus requiring a predictable and small number of program runs;

– produces a guaranteed optimal solution that perfectly discriminates the train-
ing datasets if the resulting intervals are non-empty;6

6 Of course, the accuracy of classifying new (test) datasets depends on whether the
training datasets capture the sweet points—this is the user’s responsibility.

Dataset Sensitive Autotuning of Multi-versioned Code 7

– produces human tractable, deterministic7 results, which, if sub-optimal, pro-
vide insight into what went wrong (empty intervals) and how it can be fixed.
For example, one can consider only the maximal set of datasets that produces
non-empty intervals, or one can possibly instruct the compiler to generate the
code versions in a different order or even redundantly, see Sect. 3.4.

The information used by our autotuner requires minimal and trivial com-
piler modifications that add profiling printouts to the resulting code (details in
Sect. 3.1), hence our framework can be easily ported to other compilers employ-
ing similar multi-versioned analysis.

We demonstrate the benefits of our approach by applying it to Futhark’s
incremental flattening analysis and evaluating a number of (i) real-world applica-
tions [14,16] from the remote-sensing and financial domains and (ii) benchmarks
from standard suites, such as Rodinia [7] and Finpar [3,20]. In comparison with
the OpenTuner-based implementation, our method reduces the tuning time by
a factor as high as 22.6× and on average 6.4×, and in 5 out of the 11 cases it
finds better thresholds that speed-up program execution by as high as 10×.

2 Background

This section provides a brief overview of the Cuda and Futhark features necessary
to understand this paper.

2.1 Brief Overview of Cuda

Cuda [1] is a programming model for Nvidia GPGPUs. Writing a Cuda program
requires the user to explicitly (de-)allocate space on the GPU device, and to copy
the computation input and result between the host (CPU) and device (GPU)
memory spaces. The GPU-executed code is written as a Cuda kernel and exe-
cuted by all threads. The parallel iteration space is divided into a grid of blocks of
threads, where the grid and block can have up to three dimensions. The threads
in a block can be synchronized by means of barriers, and they can communicate
by using a small amount of fast/scratchpad memory, called shared memory. The
shared memory is intended as a user-managed cache, since it has much smaller
latency—one-to-two orders of magnitude—than the global memory. The global
memory is accessible to all threads, but in principle no synchronization is possi-
ble across threads in different blocks—other than terminating the kernel, which
has full-barrier semantics.

2.2 Incremental Flattening

Futhark [11,18] uses a conventional functional syntax. Futhark programs are
written as a potentially-nested composition of second-order array combinators
(SOACs) that have inherently-parallel semantics—such as map, reduce, scan,
7 It produces the same result modulo variances in execution time.

8 P. Munksgaard et al.

Fig. 2. Futhark program with size-invariant parallelism.

scatter, generalized histograms [17]—and loops that are always executed sequen-
tially. Loops have the semantics of a tail recursive function, and they explicitly
declare the variables that are variant throughout the execution of the loop.

Figure 2 shows the contrived but illustrative mapscan1 function that is used
as a running example in this paper. The function takes as input a m×n matrix
and produces a m×n matrix as result (line 1). The function body maps each row
of the input matrix and each row number i with a lambda function (line 2) that
consists of a loop that iterates 64 times (line 3). The loop-variant variable row
is initialized with the row i of the xss matrix, and the result of the loop-body
expression will provide the input for the next iteration. The loop body adds i to
each element of row (line 4), and computes all prefix sums of the result (line 5).

One can observe that mapscan1 has two levels of imperfectly-nested paral-
lelism: the outer map at line 2 and the inner map-scan composition at lines 4-5,
but the Cuda model essentially supports only flat parallelism. The application
parallelism is mapped to the hardware by the incremental-flattening analysis [19],
which builds on Blelloch’s transformation [6]8 but is applied incrementally:

V1: a first code version is produced by utilizing only the parallelism of the outer
map of size m, and sequentializing the inner map-scan composition.

V2: a second code version (that uses m × n parallelism) is produced that maps
the outer map parallelism on the Cuda grid, sets the Cuda block size to the
size n of inner parallelism, and performs the inner map-scan composition
in parallel by each Cuda block of threads. The intermediate arrays row and
row’ are maintained and reused from Cudas fast shared memory.

V3: the flattening procedure is (recursively) applied, for example by interchang-
ing the outer map inside the loop, and by distributing it across the inner map
and scan expressions. The arrays will be maintained in global memory. In
principle, if the nested-parallel depth is greater than 2, then the recursive
application will produce many more code versions.

Unfortunately, when flattening mapscan1, we don’t statically know what the
different degrees of parallelism will be, because they depend on the input data.
If the input matrix is very tall, we might prefer to use the outer parallelism and
sequentialize the inner, and vice versa if the matrix is wide. Essentially, each

8 Blelloch’s flattening also work in the presence of divide-and-conquer recursion, but
Futhark does not support recursive functions.

Dataset Sensitive Autotuning of Multi-versioned Code 9

of the three generated code versions V1..3 might be the best one for a class of
datasets. As mentioned earlier, Futhark will generate all three code versions and
arrange them in a tuning tree as shown in Fig. 1, where the dynamic program
property refers to the degree of parallelism utilized by a certain code version,
e.g., P1 = m and P2 = n (or P2 = m · n).

3 Autotuning Framework

3.1 Tuning Forests, Program Instrumentation

While the introduction has presented the intuition in terms of the tuning tree
of Fig. 1, the structure used by the tuner is essentially a tuning forest, because:

1. a program may consist of multiple computational kernels, each of them poten-
tially generating multi-version code, and

2. the recursive step of incremental flattening may split the original computation
by means of (outer)-map fission into multiple kernels, each of them potentially
generating multiple code versions.

Other than the high-level structure that discriminates between code
versions—i.e., the branches B1..2—the tuning-forest representation is completely
oblivious to the control flow in which various code versions are (arbitrarily)
nested in. The only manner in which this control flow is (indirectly) observable
by and relevant to the tuning framework is by the fact that a dynamic property
Pi may take multiple values during the execution of one dataset, e.g., if a code
version is executed inside a loop then its degree of parallelism may also be loop
variant. Our approach requires (minimal) compiler instrumentation, added to
determine:

1. the structure of the tuning forest: this is static information documenting the
control dependencies between thresholds: in Fig. 1, T2 depends on T1 because
the code versions V2 and V3, are only executed when P1 ≥ T1 fails.

2. dynamic information corresponding to the dynamic property (degree of par-
allelism) of each executed kernel instance, and the overall running time of the
application. Importantly, we do not require the ability to perform fine-grained
profiling of program fragments.

3.2 Autotuning Overview

The key insight of the tuning algorithm is that one can perform the tuning
independently for each dataset, and that the result of tuning each threshold is
a maximal interval. Furthermore, the threshold interval can be found by per-
forming a bottom-up traversal of the tuning forest, where each step tunes one
threshold (also individually). Finally, a globally-optimal solution can be found
by intersecting the locally-optimal intervals across all datasets and then selecting
any value in the resulting interval (as long as the training datasets are repre-
sentative). This is sound and guarantees that a near-optimal solution will be

10 P. Munksgaard et al.

Fig. 3. Algorithm for tuning a program across a set of training datasets. For a given
dataset, the near-optimal interval for each threshold is (individually) determined during
a bottom-up traversal of the tuning tree (forest), where the previously determined
thresholds values are used for subsequent runs. The partial results are aggregated
across all datasets by taking the intersection of the corresponding intervals.

found (if one exists) as long as the dynamic program property used as driver for
autotuning conforms with the following monotonic assumption:

If for a certain dynamic program value Pi, a code version Vi is found to be
faster/slower than any/a combination of versions belonging to the subtree at the
right of Bi, then it will remain faster/slower for any dynamic program value
greater/less than Pi.

The driver of the tuning algorithm is implemented by the function Tune-

Program, presented in Fig. 3, which takes as arguments a program p and a
set of training datasets ds and produces a globally-optimal interval rti for each
threshold ti, 1 ≤ i ≤ n. The outer loop starting on line 6 iterates over the avail-
able datasets. For each dataset, all thresholds are first set to infinity (line 7),
forcing the bottom-most code version to run, e.g. V3 in Fig. 1. Running that
code version and timing it (line 8) provides a baseline for further tuning. The
loop on lines 9–13 tunes each threshold in bottom-up order. After finding the
optimal threshold interval for each threshold (line 10), the threshold is set to an
arbitrary value in the locally optimal interval (line 11) and finally the interval
is intersected with the globally optimal interval found so far (line 12).

3.3 Tuning Size-Invariant Thresholds on a Single Dataset

When tuning a single threshold, we need to distinguish between size-variant
and size-invariant branches. If during the execution of the given program on
a single dataset, we call a particular branch Bi size-invariant if, whenever it
is encountered in the tuning-graph, the corresponding dynamic program value,

Dataset Sensitive Autotuning of Multi-versioned Code 11

Fig. 4. Tuning algorithm for a size-invariant threshold. exploitedPar(p, d, t) is the
constant amount of parallelism of the code version guarded by threshold t on dataset d.

B 1 :
10 ≥ ∞

B 2:
50 ≥ ∞

F

V 1

 T

V 2

 T

V 3
F

(a) Running the program on
V3 by setting all thresholds to
∞.

B 1 :
10 ≥ ∞

B 2:
50 ≥ 50

F

V 1

 T

V 2

 T

V 3
F

(b) Targetting V2 by setting
T2 = 50.

B 1 :
10 ≥ 10

V 1

 T

V 2'
F

(c) Targetting V1

in the collapsed
tree.

Fig. 5. Tuning the bottom-most threshold of the tuning-graph on a single dataset.

Pi, is constant. If Pi can change during a single execution, we call the branch
size-variant. As an example, it is clearly the case that mapscan1 of Fig. 2 is
size-invariant, because the parallel sizes do not change during execution, hence
neither does the degree of parallelism of each code version.

Because the degree of parallelism never changes, it stands to reason that for a
given branch we should always perform the same choice: Either use the guarded
code version or progress further down the tree. Therefore, in order to find the
optimal threshold value for the given input, we have to time the guarded code
version, compare it to the best run time found further down the tree, and pick
a threshold value that chooses the fastest of the two.

Figure 4 shows the pseudocode of a version of TuneThreshold for tuning
a single size-invariant threshold on a given dataset by doing exactly that. The
arguments correspond to the arguments given to TuneThreshold in Fig. 3. The
idea is simple: Whenever TuneThresholdInvar is called on a threshold Ti, all
the thresholds further down the tree (Tj where j > i) have already been tuned,
and the best run time that has been encountered so far is bestRun. Therefore,
we need to run the program once using the code version guarded by Ti (done
on line 4 of Fig. 4) to determine if it is faster than any of the previously tested
code versions. If it is, the optimal threshold interval for Ti is the one that always

12 P. Munksgaard et al.

Fig. 6. Alternative versions of the tuning graph, enabling different constraints.

chooses Vi, namely the interval from 0 to Pi (lines 6–7). Otherwise the interval
from Pi + 1 to ∞ is optimal (line 8). As stated in the introduction, taking the
maximal interval is sound under the monotonic assumption.

Figure 5 shows an example of how the size-invariant tuning works. In Fig. 5a
all thresholds are set to ∞, forcing V3 to run. That allows us to find the baseline
performance and get the dynamic program values P1 = 10 and P2 = 50. Then,
in Fig. 5b, We use the knowledge of P2 to force V2 to run. The change in overall
run time of the program represents the difference between running code versions
V3 and V2. After choosing an optimal threshold, we can think of the bottom part
of the tree as one collapsed node, and continue our tuning by moving up the tree
to run V1, as seen in figure Fig. 5c

3.4 Monotonicity Assumption

The monotonicity assumption, outlined in Sect. 1.1, is what ultimately makes
our tuning method work, and it is therefore also the primary restriction for our
method. In essence, we assume that for any branch Bi, the performance of the
guarded code version as a function of Pi, is monotonically increasing compared
with any of the code versions further down the tree. In terms of Fig. 5, if V1 is
found to outperform any of the other versions when P1 = 10, then V1 will keep
outperforming the other code versions for larger values of P1.

The implication of the monotonicity assumption is that there is at most one
cross-over point for each branch. The interval found using the method described
above precisely models this behavior.

This simplifying assumption relies on the compiler choosing meaningful mea-
sures to distinguish between code versions. In other words, for a given branch Bi

guarding Vi, the dynamic program value Pi should be a measure of how “good”
Vi is, compared to the code versions further down the tuning tree. That, in turn,
puts restrictions on what Pi should measure. In the context of incremental flat-
tening, each Pi measures the degree of parallelism of the guarded code version,
and thus the monotonicity assumption should hold according to the common
wisdom of optimizing the amount of parallelism.

The monotonicity assumption is closely related to the structure of the tun-
ing forest. The tuning forest built by incremental flattening, and tuned by our

Dataset Sensitive Autotuning of Multi-versioned Code 13

Fig. 7. Futhark program with size-variant parallelism.

technique, does not allow for more complex ways to discriminate between code
versions. For instance, in Fig. 5, it is not possible to specify that V1 should be
preferred when P1 ≤ 10 or P1 ≥ 100, or that V1 should be preferred when
P1 ≥ 10 unless P2 ≥ 100. However, in principle, one can still model such casses
by instructing the compiler to generate the code versions in a different order, or
even to duplicate some code versions in the tuning forest. For instance Fig. 6a
shows a reordered version of Fig. 1, which enables us to model the first restriction
while still conforming with the monotonicity assumption. Similarly, the second
restriction can be modeled by adding duplicate code versions, as in Fig. 6b,
where V ′

1 and V ′′
1 are obtained from handicapping V1 in the case when P1 < 10

and P1 > 100, respectively. Such transformations hint that the monotonicity
restriction can be relaxed to a piece-wise monotonic one.

While our tuning technique is primarily aimed at incremental-flattening anal-
ysis, it should work in other contexts, as long as the modeled (dynamic) program
property conforms with the monotonicity assumption.

3.5 Tuning Size-Variant Thresholds

In Sect. 3.3, we assumed that the degrees of parallelism exhibited by the different
branches were constant during a single execution of the program. However, that
is not always the case.

For instance, the mapscan2 function shown in Fig. 7 is size-variant. Again,
we’re not interested in the specific computation, but rather in the structure
which serves to illustrate the difference between size-invariant and size-variant
programs. The core algorithm is similar to mapscan1, but with a loop added
around it. In each iteration of the outer loop, the input is transformed into a
differently shaped matrix,9 which is then mapped over. If Fig. 1 is the tuning
tree for this function, P1 and P2 would take on different values during the course

9 The unflatten function transforms an array into a matrix of the given dimensions.
flatten transforms a matrix into an array.

14 P. Munksgaard et al.

Fig. 8. Tuning algorithm for a size-variant threshold. ePar′ is a sorted sequence of
unique values denoting the amount of parallelism of the code version guarded by thresh-
old ti, encountered during the execution of dataset d.

of a single execution, because the degrees of outer and inner parallelism (as
determined by the size of the matrix) change.

It follows that when tuning a single threshold on a single dataset, it is no
longer the case that the guard predicate should always be either true or false.
For instance, if a given dynamic program value Pi takes on the values 10, 50,
and 100 during a single execution, it might be optimal to run Vi when Pi is
100, but otherwise choose the best code version further down the tree. However,
according to the monotonicity assumption, there will still be a single cross-over
point for size-variant thresholds, so it is still possible to find an optimal interval
for a single dataset. The question is, how do we do that efficiently.

The answer relies on the insight that only the exhibited dynamic program
values and ∞ are relevant to try as threshold values, as these are the only values

Dataset Sensitive Autotuning of Multi-versioned Code 15

that accurately discriminate between different distributions of code versions. In
the example from above, there are four possible ways to distribute the loop
iterations: Setting Ti to 10 will always choose Vi, setting Ti to 50 will choose
Vi except when Pi is 10, and so on. Any other value, like 45, will not result
in changes in what code versions are being run. Therefore, we only have to try
those particular values.

Furthermore, the monotonicity assumption implies that there is a gradient in
the direction of the optimal solution, so we can actually perform a binary search
in the space of possible threshold values, by trying two neighboring threshold
candidates and determining the gradient in order to reduce the search space.

Figure 8 shows an alternate version of TuneThreshold which is used to
tune size-variant thresholds using this binary tuning technique. Using this func-
tion, we can tune one size-variant thresholds on a single dataset in O(log n) runs,
where n is the number of different degrees of parallelism exhibited.

We conclude with a formal argument of why the use of gradient is sound under
the monotonic assumption. We denote by Vi a code version that corresponds to
a size-variant threshold Ti whose dynamic program property takes n distinct
increasingly-sorted values P 1...n

i during the execution on a fixed dataset d. We
denote by V ′

i+1 the near-optimal subprogram to the right of the branch. Assume
we have run the program with Ti ← P j

i and with Ti ← P j+1
i and that the first

run is faster. The only difference between the two runs is that the first run uses
Vi for dynamic property value P j

i while the second run uses V ′
i+1 for P j

i ; the
other uses of code versions Vi and V ′

i+1 are the same between the two runs.
The first run being faster thus means that Vi is faster than V ′

i+1 for the
dynamic value P j

i , and by the monotonic assumption, it follows that it will
remain faster for any value higher than P j

i , which means that we should continue
the binary search to the left of P j

i (lines 19–20 in Fig. 8). Conversely, following
a similar logic, if the second run is faster, then we should continue the binary
search to the right of P j

i (lines 22–23 in Fig. 8).

4 Experimental Validation

This section evaluates the tuning time of our technique as well as the performance
of the tuned programs (i.e., the accuracy of tuning), by comparing with results
obtained using the old OpenTuner-based black-box tuner. All benchmarks are
tuned and run on a GeForce RTX 2080Ti GPU, though we have observed similar
results on an older GTX780Ti.

We use a set of publicly available, non-trivial benchmarks and datasets. For
each benchmark, we base our analysis on two datasets, chosen to exhibit dif-
ferent degrees of parallelism and to prefer different code versions. The bench-
marks, datasets and the number of thresholds are shown in Table 1. Heston
and BFAST are real-world applications: Heston is a calibration program for
the Hybrid Stochastic Local Volatility/Hull-White model [16], for which we use
datasets from the futhark-benchmarks repository10. BFAST [14] is used to
10 https://github.com/diku-dk/futhark-benchmarks.

https://github.com/diku-dk/futhark-benchmarks

16 P. Munksgaard et al.

Table 1. Tuning-time speedup between the OpenTuner implementation and our auto-
tuner on a number of benchmarks on GeForce RTX 2080 Ti. There are two datasets
for each benchmark, D1 and D2, with dataset sizes given in their respective columns.
The LUD benchmark is size-variant, the rest are size-invariant.

Benchmark D1 D2 # Thrs. Opent. Our Speedup

Heston 1062 quotes 10000 quotes 9 3798 s 168 s 22.59x

BFAST peru Africa 16 1127 s 206 s 5.47x

LocVolCalib Medium Large 2 101 s 21 s 4.83x

OptionPricing Small Large 1 31 s 6 s 5.40x

LUD M256×256 M2048×2048 9 611 s 430 s 1.42x

Backprop 214 220 1 30 s 8 s 3.65x

LavaMD M103×50 M33×50 4 104 s 28 s 3.67x

NW M2048×2048 M1024×1024 6 222 s 29 s 7.62x

NN 1 × 855280 4096 × 128 3 125 s 36 s 3.48x

SRAD 1 ×M502×458 1024 ×M16×16 4 148 s 28 s 5.31x

Pathfinder 1 ×M100×105 391 ×M100×256 1 66 s 10 s 6.81x

detect landscape changes, such as deforestation, in satellite time series data and
is widely used by the remote sensing community. We use the peru and africa
datasets from the futhark-kdd19 repository11.

LocVolCalib (local volatilty calibration) and OptionPricing are implementa-
tions of real-world financial computations from FinPar [3,20], for which we use
datasets from the finpar repository12.

LUD, Backprop, LavaMD, NW, NN, SRAD and Pathfinder are Futhark
implementations of benchmarks from the Rodinia benchmark suite [7]. Some
Rodinia benchmarks, like Backprop, only has one default dataset (layer length
equal to 216). In those cases we’ve created datasets that span the Rodinia
inputs—e.g., layer length 214 and 220 for Backprop—otherwise we have used the
Rodinia datasets directly. The NW, SRAD and Pathfinder benchmarks imple-
ment batched versions of their respective algorithms, so the outer number is the
number of matrix inputs (M denotes matrix). For instance, SRAD solves one
instance of an image of size 502 × 458 for D1, and 1024 different images of sizes
16×16 for D2, while NN solves one nearest-neighbor problem for one query and
855280 reference points for D1, and 4096 problems each having 128 reference
points.

We wish to investigate the impact of our tuning method on tuning time and
run time using the tuned thresholds. Because the OpenTuner based tuner is
inherently random, and benchmarking GPU programs is suspectible to run-time
fluctuations, we base our analysis on three separate autotuning and benchmark-
ing passes. For each pass, we first benchmark all programs untuned by run-
11 https://github.com/diku-dk/futhark-kdd19.
12 https://github.com/HIPERFIT/finpar.

https://github.com/diku-dk/futhark-kdd19
https://github.com/HIPERFIT/finpar

Dataset Sensitive Autotuning of Multi-versioned Code 17

ning them 500 times with each dataset, then we tune the programs using the
OpenTuner-tool and benchmark all programs using the found thresholds (500
runs), and finally we tune using our autotuner and benchmark again (500 runs).
We’ll pick the best tuning times for both OpenTuner and our autotuner, but it
should be noted that the OpenTuner-tool has a significantly larger variance in
tuning time on some benchmarks, like LUD (between 366s and 881s). To mea-
sure run time performance we first find the fastest out of the 500 runs in each
pass. Then, for OpenTuner, we will show both the best and worst of those three
passes, while for our autotuner we will only show the worst, because the vari-
ance is significantly smaller (and our tuning strategy is deterministic otherwise).
For OpenTuner, it is also important to point out that, because it was the only
tool available to tune thresholds before creating the new autotuner, it has been
highly optimized, and will, among other things, use memoization techniques to
minimize the number of runs, i.e., it avoids running the same combination of
code versions twice.

Table 1 shows the datasets used for each benchmark, the number of tuning
thresholds13 and the average tuning times using OpenTuner and our autotuner,
as well as the speedup in tuning time. Overall, we see a significant reduction in
tuning time, from 1.4x for LUD to 22.6x for Heston. Without those two outliers,
the average speedup is 5.1x. In general, we see that more tuning parameters result
in longer tuning times, but other factors also play in, such as the time it takes
to run the benchmark on a single dataset and the number of different degrees
of parallelism for each particular threshold. The LUD benchmark has the least
improvement in tuning time: It has size-variant parallelism, so our autotuner has
to perform more test runs to find the right thresholds. We’ll see that OpenTuner
sometimes finds bad threshold values for LUD, so the relatively small difference
in tuning time should not necessarily be seen as a boon for OpenTuner.

Fig. 9. Application run time speedup. The baseline is untuned performance. Higher is
better.

Figure 9 shows the performance of five of the benchmarks described above:
LavaMD, LUD, SRAD, BFAST and LocVolCalib. The rest of the benchmarks
have similar performance characteristics when tuned using OpenTuner and our

13 The number of code-versions is equal to the number of tuning thresholds plus one.

18 P. Munksgaard et al.

autotuner, primarily because of recent improvements in the default thresholds
and heuristics used in the Futhark compiler. The benchmarks shown in Fig. 9
are interesting because the different tuning methods result in programs whose
performance differ significantly.

LUD is an implementation of LU matrix diagonalization with size-variant
parallelism, as mentioned above. Running this program efficiently is a matter of
using intra-group parallelism as long as the inner parallelism fits inside a Cuda
block, which is also what the untuned version does. Our autotuner correctly finds
tuning parameters that encode this behavior while OpenTuner fails to do so. In
fact, it sometimes produces extremely degenerate results, due to the randomness
inherent in the technique.

In the SRAD benchmark, OpenTuner will sometimes find the correct thresh-
old values the datasets, but not always, as shown in the second dataset. A sim-
ilar story can be told for LocVolCalib and LavaMD, where the OpenTuner tool
sometimes find bad threshold values.

BFAST, which also relies on intra-group parallelism and is highly sensitive
to tuning parameter variations, receives a significant performance boost from
accurate tuning. However, the OpenTuner tool cannot even handle the largest
dataset for BFAST (africa) because it causes our GPU to run out of memory, with
no suitable fallback strategy, which is why we see no improvement in the second
dataset at all compared to the untuned version. Our autotuner can correctly
identify which threshold is causing the device to run out of memory and correctly
tune to avoid it.

Interestingly, one can observe that benchmarks which have many thresholds,
but not a big difference in tuning time, such as LUD and BFAST, are also
the ones on which OpenTuner results in the worst program execution time.
OpenTuner is not able to accurately discriminate between the different code
versions, and seems to get stuck in local minimas because it terminates before
the time-out is reached.

Finally, we should emphasize that, in contrast to the OpenTuner-based tool,
the tuning time of our autotuner is deterministic. This means that you can reason
about how many datasets you want to tune on, without having to fear tuning for
unexpectedly long time. For instance, one might use the savings in tuning time
to increase the set of training datasets, so as to improve the likelihood of hitting
the threshold sweet spots, thus improving the prediction for new datasets.

5 Related Work

The study of autotuning solutions has been motivated by two observations: The
first is that, in general, there might not exist one optimization recipe that results
in best performance across all datasets, i.e., “one size does not fit all”. The second
is that not all performance optimizations are portable across different hardware
combinations. Related work is aligned along three directions:

Dataset Sensitive Autotuning of Multi-versioned Code 19

The first direction is to infer the best configuration of compilation flags that
results in the best average performance across a set of training datasets on a
given hardware setup. Solutions typically apply machine learning techniques, for
example by relying on supervised off-line training [13], and promising results have
been reported for both multi-core [8] and many-core [5] systems. For example,
such techniques have successfully inferred (i) the compilation flags of the -O3
GCC option, and improved on it when the set of programs is restricted, and (ii)
near-optimal tile sizes used in GPU code generation of linear algebra operations
that outperformed finely-tuned libraries, such as cuBLAS.

The second direction has been to promote a compiler design reliant on auto-
tuning that separates concerns: The compiler maintains a thesaurus of legal code
transformations that might improve performance, and the autotuner is responsi-
ble for selecting the combination of transformations that maximize performance
for a given dataset run on some given hardware. For example, Lift [15,27] and
SPIRAL [12], exploit the rich rewrite-rule systems of functional languages in
this way. Similarly, Halide [24] applies stochastic methods to find the best fusion
schedule of image-processing pipelines, corresponding to various combinations
of tiling, sliding window and work replication transformations. The per-dataset
tuning is feasible in cases such as stencil computations, because the important
tuning parameter is the stencil’s shape, and the performance is likely portable
on larger arrays.

The third research direction is to provide a general black-box autotuning
framework such as OpenTuner [4], which uses a repertoire of stochastic search
strategies, such as hill-climbing and simulated annealing, and also provides the
means for the user to define custom search strategies. ATF [25] similarly fol-
lows this research direction and provides a generic framework that supports
annotation-driven autotuning of programs written in any language. ATF simpli-
fies the programming interface, allows the specification of constraints between
tuning parameters and optimizes the process of search-space generation, but
it only supports tuning a single dataset at a time. However, like OpenTuner,
ATF does not use any knowledge of the program structure or of the compilation
technique that is being used.

Such strategies can work well when every point in the space provides new
information to guide the tuning. Unfortunately, our results indicate that the
threshold parameter space of compilation schemes such as incremental flatten-
ing [19] is too sparse for such black-box startegies to be effective in practice: (i)
in several cases, near-optimal configurations are not (reliably) found even when
enough time is given for the search to finish naturally, and (ii) typically the
tuning times are too large (and unpredictable), which makes it infeasible to use
it during application development stages.

The main high-level difference of our approach, compared to these other
approaches, is that it integrates the multi-versioned compilation with a rela-
tively cheap and one-time autotuning process that results in one executable
that automatically selects the most efficient combination of code versions for

20 P. Munksgaard et al.

any dataset.14 In comparison, the first direction selects the compilation strategy
that is best on average for the training datasets, and the second direction needs
to repeat the autotuned compilation whenever the stencil shape changes.

At a very high level, our method has some relation to software product lines
(SPLs), where techniques have been explored to, for instance, generate a multi-
tude of code versions and statically determine the energy usage of each [9].

Finally, another related research direction has been the study of various run-
time systems aimed at dynamically optimizing program execution on the target
dataset, for example by dynamically adjusting the granularity at which paral-
lelism is exploited for multicore execution [2,28] and by speculatively executing
in parallel loops with statically unknown dependencies [10,21,23].

6 Conclusion

We have presented a general technique for tuning thresholds in multi-versioned
programs. By taking advantage of the knowledge of the tuning-forest, we can
efficiently target each code version in turn, thereby finding the (near-)optimal
threshold parameters using only the necessary number of runs. For size-invariant
branches, we only require a single test-run, whereas we perform a binary search
across the set of unique threshold values for size-variant branches. Having tuned
thresholds for each dataset individually, we combine the partial-tuning results at
the end, in order to find threshold parameters that optimally distinguish between
the code versions in question. We have shown substantial improvement in tuning
time and tuned-execution run-time compared to the previous OpenTuner-based
tuning technique. Furthermore, we remark that a significant amount of effort
has been devoted to downgrade the incremental-flattening analysis by pruning
at compile time the number of generated code versions, precisely because the
OpenTuner-based autotuning was unreliable and slow.

In comparison with more complex stochastic-search strategies, our framework
proposes a custom solution that trades off generality—each predicate introduces
one unknown threshold, and thus there might not exist a set of threshold values
that optimally implements a top-level strategy of combining code versions—
for an efficient solution that significantly reduces the number of program runs.
Finally, our strategy promotes human reasoning and understanding of results,
by providing sanity-assumptions, limitations and guarantees:

– The central assumption is that the dynamic values that appear in the tuning
predicates satisfy a notion of monotonic behavior, namely if version Vi is
optimal for a certain Pi then it remains optimal for any dynamic value greater
than Pi.

14 This way of combining static and dynamic analysis by means of lightweight pred-
icates is reminiscent of techniques used for automatic parallelization of sequential
loops [22,26].

Dataset Sensitive Autotuning of Multi-versioned Code 21

– The principal guarantee is that if a (near-)optimal set of threshold values
exists then it will be found. If it does not exists then necessarily the intersec-
tion of threshold intervals across datasets is empty, and a reasonable approx-
imation is derived by considering the maximal number of datasets that result
in a non-empty intersection. Alternatively, user-defined attributes may in
principle change the order in which code-versions are generated, which may
enable the existence of an optimal configuration.

References

1. https://docs.nvidia.com/cuda/
2. Acar, U.A., Aksenov, V., Charguéraud, A., Rainey, M.: Provably and practically

efficient granularity control. In: PPoPP 2019, pp. 214–228 (2019). https://doi.org/
10.1145/3293883.3295725

3. Andreetta, C., et al.: FinPar: a parallel financial benchmark 13(2) (2016). https://
doi.org/10.1145/2898354

4. Ansel, J., et al.: OpenTuner: an extensible framework for program auto-
tuning. In: International Conference on Parallel Architectures and Compila-
tion Techniques (2014). http://groups.csail.mit.edu/commit/papers/2014/ansel-
pact14-opentuner.pdf

5. Baghdadi, R., et al.: PENCIL: a platform-neutral compute intermediate language
for accelerator programming. In: 2015 PACT, pp. 138–149 (2015)

6. Blelloch, G.E., Hardwick, J.C., Sipelstein, J., Zagha, M., Chatterjee, S.: Imple-
mentation of a portable nested data-parallel language. J. Parallel Distrib. Comput.
21(1), 4–14 (1994)

7. Che, S., et al.: Rodinia: a benchmark suite for heterogeneous computing. In: IEEE
International Symposium on Workload Characterization, 2009. IISWC 2009, pp.
44–54 (10 2009). https://doi.org/10.1109/IISWC.2009.5306797

8. Chen, Y., et al.: Evaluating iterative optimization across 1000 datasets. In: PLDI
2010, pp. 448–459. https://doi.org/10.1145/1806596.1806647

9. Couto, M., Borba, P., Cunha, J., Fernandes, J.P., Pereira, R., Saraiva, J.: Products
go green: worst-case energy consumption in software product lines. In: Proceedings
of the 21st International Systems and Software Product Line Conference, SPLC
2017, Volume A, Sevilla, Spain, 25–29 September 2017, pp. 84–93. https://doi.org/
10.1145/3106195.3106214

10. Dang, F., Yu, H., Rauchwerger, L.: The R-LRPD test: speculative parallelization of
partially parallel loops. In: Proceedings 16th International Parallel and Distributed
Processing Symposium, pp. 20–29 (2002). https://doi.org/10.1109/IPDPS.2002.
1015493

11. Elsman, M., Henriksen, T., Annenkov, D., Oancea, C.E.: Static interpretation of
higher-order modules in Futhark: functional GPU programming in the large. Proc.
ACM Program. Lang. 2(ICFP), 97:1–97:30 (2018)

12. Franchetti, F., et al.: SPIRAL: extreme performance portability. Proc. IEEE 106,
1935–1968 (2018)

13. Fursin, G., et al.: Milepost GCC: machine learning enabled self-tuning compiler.
Int. J. Parallel Program. 39, 296–327 (2011)

14. Gieseke, F., Rosca, S., Henriksen, T., Verbesselt, J., Oancea, C.E.: Massively-
parallel change detection for satellite time series data with missing values. In: 2020
IEEE 36th International Conference on Data Engineering (ICDE), pp. 385–396
(2020). https://doi.org/10.1109/ICDE48307.2020.00040

https://docs.nvidia.com/cuda/
https://doi.org/10.1145/3293883.3295725
https://doi.org/10.1145/3293883.3295725
https://doi.org/10.1145/2898354
https://doi.org/10.1145/2898354
http://groups.csail.mit.edu/commit/papers/2014/ansel-pact14-opentuner.pdf
http://groups.csail.mit.edu/commit/papers/2014/ansel-pact14-opentuner.pdf
https://doi.org/10.1109/IISWC.2009.5306797
https://doi.org/10.1145/1806596.1806647
https://doi.org/10.1145/3106195.3106214
https://doi.org/10.1145/3106195.3106214
https://doi.org/10.1109/IPDPS.2002.1015493
https://doi.org/10.1109/IPDPS.2002.1015493
https://doi.org/10.1109/ICDE48307.2020.00040

22 P. Munksgaard et al.

15. Hagedorn, B., Stoltzfus, L., Steuwer, M., Gorlatch, S., Dubach, C.: High perfor-
mance stencil code generation with lift. In: ACM, pp. 100–112 (2018). https://doi.
org/10.1145/3168824

16. Henriksen, T., Elsman, M., Oancea, C.E.: Modular acceleration: tricky cases of
functional high-performance computing. In: Proceedings of the 7th ACM SIG-
PLAN International Workshop on Functional High-Performance Computing, pp.
10–21. FHPC 2018 (2018). https://doi.org/10.1145/3264738.3264740

17. Henriksen, T., Hellfritzsch, S., Sadayappan, P., Oancea, C.: Compiling generalized
histograms for GPU. In: Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis. SC 2020. IEEE Press
(2020)

18. Henriksen, T., Serup, N.G.W., Elsman, M., Henglein, F., Oancea, C.E.: Futhark:
purely functional GPU-programming with nested parallelism and in-place array
updates. In: PLDI 2017, pp. 556–571 (2017). https://doi.org/10.1145/3062341.
3062354

19. Henriksen, T., Thorøe, F., Elsman, M., Oancea, C.: Incremental flattening for
nested data parallelism. In: PPoPP 2019, pp. 53–67. https://doi.org/10.1145/
3293883.3295707

20. Oancea, C.E., Andreetta, C., Berthold, J., Frisch, A., Henglein, F.: Financial soft-
ware on GPUs: between Haskell and Fortran. In: Proceedings of the 1st ACM
SIGPLAN Workshop on Functional High-Performance Computing, FHPC 2012,
pp. 61–72 (2012). https://doi.org/10.1145/2364474.2364484

21. Oancea, C.E., Mycroft, A.: Set-congruence dynamic analysis for thread-level spec-
ulation (TLS). In: Amaral, J.N. (ed.) LCPC 2008. LNCS, vol. 5335, pp. 156–171.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89740-8 11

22. Oancea, C.E., Rauchwerger, L.: A hybrid approach to proving memory reference
monotonicity. In: Rajopadhye, S., Mills Strout, M. (eds.) LCPC 2011. LNCS, vol.
7146, pp. 61–75. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-
36036-7 5

23. Oancea, C.E., Selby, J.W.A., Giesbrecht, M., Watt, S.M.: Distributed models of
thread-level speculation. In: Proceedings of International Conference on Parallel
and Distributed Processing Techniques and Applications (PDPTA 2005), pp. 920–
927 (2005)

24. Ragan-Kelley, J., Barnes, C., Adams, A., Paris, S., Durand, F., Amarasinghe, S.:
Halide: a language and compiler for optimizing parallelism, locality, and recom-
putation in image processing pipelines. In: PLDI 2013, pp. 519–530. ACM (2013).
https://doi.org/10.1145/2491956.2462176

25. Rasch, A., Gorlatch, S.: ATF: a generic directive-based auto-tuning framework.
Concurrency Comput. Pract. Exp. 31(5), e4423 (2019)

26. Rus, S., Hoeflinger, J., Rauchwerger, L.: Hybrid analysis: static & dynamic memory
reference analysis. Int. J. Parallel Program. 31(3), 251–283 (2003). https://doi.org/
10.1023/A:1024597010150

27. Steuwer, M., Fensch, C., Lindley, S., Dubach, C.: Generating performance portable
code using rewrite rules: from high-level functional expressions to high-performance
OpenCL code. In: ICFP 2015, pp. 205–217. https://doi.org/10.1145/2784731.
2784754

28. Thoman, P., Jordan, H., Fahringer, T.: Compiler multiversioning for automatic
task granularity control. Concurrency Comput. Pract. Exp. 26(14), 2367–2385
(2014). https://doi.org/10.1002/cpe.3302

https://doi.org/10.1145/3168824
https://doi.org/10.1145/3168824
https://doi.org/10.1145/3264738.3264740
https://doi.org/10.1145/3062341.3062354
https://doi.org/10.1145/3062341.3062354
https://doi.org/10.1145/3293883.3295707
https://doi.org/10.1145/3293883.3295707
https://doi.org/10.1145/2364474.2364484
https://doi.org/10.1007/978-3-540-89740-8_11
https://doi.org/10.1007/978-3-642-36036-7_5
https://doi.org/10.1007/978-3-642-36036-7_5
https://doi.org/10.1145/2491956.2462176
https://doi.org/10.1023/A:1024597010150
https://doi.org/10.1023/A:1024597010150
https://doi.org/10.1145/2784731.2784754
https://doi.org/10.1145/2784731.2784754
https://doi.org/10.1002/cpe.3302

Dataset Sensitive Autotuning of Multi-versioned Code 23

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

A Generic Back-End for Exploratory
Programming

Damian Frolich1,2(B) and L. Thomas van Binsbergen2

1 Department of Computer Science, Vrije Universiteit, Amsterdam, The Netherlands
2 Informatics Institute, University of Amsterdam, Amsterdam, The Netherlands

{dfrolich,ltvanbinsbergen}@acm.org

Abstract. Exploratory programming is a form of incremental program
development in which the programmer can try and compare definitions,
receives immediate feedback and can simultaneously experiment with
the language, the program and input data. Read-Eval-Print-Loop inter-
preters (REPLs) and computational notebooks are popular tools for
exploratory programming. However, their usability, capabilities and user-
friendliness are strongly dependent on the underlying interpreter and,
in particular, on the ad hoc engineering required to ready the under-
lying interpreter for incremental program development. To break this
dependency, this paper adopts a principled approach and implements a
so-called exploring interpreter as a back-end to support various develop-
ment environments for exploratory programming.

This paper contributes by presenting a generic Haskell implementa-
tion of the exploring interpreter – applicable to a large class of software
languages – and demonstrates its usage to develop a variety of interfaces
with a shared back-end, including command-line REPLs, computational
notebooks and servers with reactive APIs. The design of the back-end
is evaluated by defining a variety of interfaces for existing languages,
including eFLINT, a domain-specific language for normative reasoning,
and Funcons-beta, the language developed by the PLanCompS project
to enable component-based operational semantics.

Keywords: Interpreters · Development environments · Operational
semantics · Read-Eval-Print · Definitional interpreters

1 Introduction

Read-Eval-Print-Loop interpreters (REPLs) provide an alternative form of pro-
gramming to the traditional compile-edit-run cycle. Popular examples of REPLs
include JShell for Java, IPython for Python, PsySH for PHP and GHCi for
Haskell, which are either part of the language’s distribution (JShell and GHCi)
or provide additional features on top of the REPL of the distribution (IPython
and PsySH). REPLs enable an incremental form of programming in which a pro-
gram is developed as a sequence of smaller programs executed one-by-one with
immediate feedback after every (intermediate) program. This feedback typically
c© Springer Nature Switzerland AG 2021
V. Zsók and J. Hughes (Eds.): TFP 2021, LNCS 12834, pp. 24–43, 2021.
https://doi.org/10.1007/978-3-030-83978-9_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-83978-9_2&domain=pdf
http://orcid.org/0000-0001-8113-2221
https://doi.org/10.1007/978-3-030-83978-9_2

A Generic Back-End for Exploratory Programming 25

includes the value computed by the program (in case of an expression) and a sum-
mary on the (side-)effects of the program, enabling the programmer to update
their mental model of the REPLs underlying state. An example interaction with
JShell is shown in Fig. 1a.

Fig. 1. Example interactions in JShell and IJava.

This quicker form of interaction, compared to the compile-edit-run cycle,
makes REPLs more suitable for quickly testing library functions, retrieving
(type) information on available bindings, experimenting with definitions, debug-
ging, and analysing data. However, data analysts and other domain-experts, not
necessarily skilled in software engineering, prefer to use computational notebooks
for these tasks [32,41]. Computational notebooks are documents consisting of a
sequence of three types of cells: code cells, output cells and prose (or documen-
tation) cells. Popular examples are Mathematica [13] and the notebooks built
using the Jupyter platform [18]. Code cells are executed one-by-one, with out-
put displayed in output cells, thereby supporting the same kind of incremental
program development as REPLs. This is reflected in the design of the Jupyter
platform, wherein Python notebooks use the IPython REPL internally [18]. An
example of a Jupyter IJava notebook (based on JShell) is given in Fig. 1b.

REPLs and (Jupyter) notebooks require significant engineering, especially
for languages, such as Java and to a lesser extent Haskell, that do not naturally
support incremental program development. For example, the code fragments
in Fig. 1 can be recognised as Java code but they do not form a valid Java
program individually nor as a sequence. JShell can be seen as implementing an
extension of Java rather than Java itself. However, the precise details of this
extension – its syntax and semantics – are not clearly specified and are not part
of the Java documentation. Moreover, as Fig. 1 demonstrates, JShell and IJava
are not consistent in how they present output. In the example, JShell produces
detailed information about the effects of most code fragments whereas IJava
only produces output for the last code fragment, revealing a difference between

26 D. Frolich and L. T. van Binsbergen

both tools in how they treat computed values and (side-)effects which, one could
argue, are matters of language semantics rather than tool implementation.

In previous work [8], a principled approach is proposed for implementing
REPLs, and other interfaces for incremental programming, using language engi-
neering techniques to explicitly define language extensions, thereby clarifying
the difference between the base language and the language implemented by the
REPL. The approach makes it possible to develop generic interfaces which under
the hood use a definitional interpreter1 to execute programs. The approach fur-
ther suggest the use of a so-called exploring interpreter on top of a definitional
interpreter for exploratory programming. Exploratory programming is an open-
ended form of incremental programming in which both the goal and the path
towards the goal are discovered as part of the process [3,36,45]. The program-
mer discovers these through interactions with the underlying interpreter by test-
ing definitions, evaluating expressions, analysing intermediate results and using
backtracking to undo work and explore alternative directions.

1.1 Contributions

This paper contributes by presenting and discussing a generic implementation
of the exploring interpreter algorithm of [8] in Haskell. The implementation is
generic in the sense that it can be applied to large class of languages, including
all languages that can have their semantics expressed by a transition function,
for example in a transition system in the style of Plotkin [34].

Potential applications of the implemented algorithm are manifold. The gener-
icity of the algorithm makes it possible to implement and experiment with fea-
tures that benefit exploratory programming in a language-independent fashion.
These features can then be used in a variety of interfaces and can be reused
across languages. In other words, the exploring interpreter adds a level of indi-
rection that makes it possible to deliver multiple programming interfaces for
the same language by reusing the back-end and to deliver generic programming
interfaces that can be reused across languages. Concretely, this paper:

– Presents a generic implementation of the exploring interpreter algorithm of [8]
in Haskell and discusses the key design choices of the implementation

– Demonstrates the ability to reuse the algorithm as a back-end for various pro-
gramming interfaces for exploratory programming and performs a qualitative
evaluation on the implementation

– Applies the generic back-end to Funcons-beta [7] and eFLINT [6]. This effort
made a significant, positive impact on the usability and applicability of these
languages, demonstrating the practicality of the principled approach of [8]

This paper is organised as follows. Section 2 and 3 describe background
and related work. Section 4 presents an initial implementation of the explor-
ing interpreter algorithm. Section 5 applies the algorithm to the Funcons-beta
1 A definitional interpreter for a language is an interpreter that simultaneously imple-

ments and defines the language’s operational semantics, often defined in a meta-
language or language workbench in the context of domain-specific languages.

A Generic Back-End for Exploratory Programming 27

and eFLINT languages, demonstrating several types of front-ends for exploratory
programming. To support these various types of front-ends, the initial implemen-
tation is extended in several ways in Sect. 5 as part of a qualitative evaluation.
Section 6 concludes.

2 Background

This section introduces the methodology and related concepts put forward in [8].
In the proposed methodology, the first step towards developing a REPL for a
language is to extend that language to a variant which is in the class of sequential
languages – the class of languages that naturally support incremental program
development. The class of sequential languages is defined in [8] as follows:

Definition 1. A language L is a structure 〈P, Γ, γ0, I〉 with P a set of programs,
Γ a set of configurations, γ0 ∈ Γ an initial configuration and I a definitional
interpreter assigning to each program p ∈ P a function Ip : Γ → Γ .

Definition 2. A language L = 〈P, Γ, γ0, I〉 is sequential if there is an operator
⊗ such that for every p1, p2 ∈ P and γ ∈ Γ it holds that p1 ⊗ p2 ∈ P and that
Ip1⊗p2(γ) = (Ip2 ◦ Ip1)(γ).

The chosen definition of languages captures all software language that can have
their semantics expressed as a deterministic transition function and includes
real-world, large-scale, deterministic programming languages – as demon-
strated by the body of literature on big-step, small-step and natural semantics
[1,15,24,26,34] – and does not exclude languages with non-deterministic aspects
when these aspects can be captured algebraically [48]. Configurations capture all
information necessary to determine the behaviour of a program. A definitional
interpreter is described as assigning to each program an effect – a function
over configurations. A sequential language is a language in which every sequence
of programs is a valid program that has the same effect as the composition of
the effects of the individual programs in the sequence.

As an example, consider a simple imperative language such as While [1,5].
In [5], a transition system is defined to capture the semantics of While com-
mands. A configuration in this system contains a sequence of output values and
a store to keep track of variable assignments. The system can be used to give
a definitional interpreter for While, as required by Definition 1, for which it is
possible to prove that IC1; C2(γ) = (IC2 ; IC1)(γ), i.e. to prove that While is a
sequential language according to Definition 2 by choosing ; for ⊗.

The central idea of the approach is that an interpreter for a sequential lan-
guage can be used, without (further) modification, by the back-end of a REPL,
as well as by other interfaces for incremental programming. In other words, a
REPL is considered to be just one type of interface for programming in the style
that is characteristic of REPLs. The precise behaviour of a programming inter-
face is clarified by separating the task of building the interface into language

28 D. Frolich and L. T. van Binsbergen

engineering – producing a sequential variant of the base language and an inter-
preter – and the engineering required to link interface actions to the interpreter
and to visualise the effects of programs.

The methodology further proposes the use of a so-called exploring interpreter
to support exploratory programming. An exploring interpreter is a bookkeeping
device on top of a definitional interpreter keeping track of executed programs
and visited configurations. The execute action of an exploring interpreter for
a language executes a program by applying the definitional interpreter for the
language while keeping track of the encountered configurations and executed pro-
grams in an execution graph, reflecting the entire history of the current interac-
tive session. The execution graph has configurations as nodes and edges between
nodes are labelled with programs such that an edge between s and t labelled p
indicates that executing p in the context of s yields t, i.e. Ip(s) = t. The revert
action makes it possible to choose any (previously visited) configuration as pro-
viding the execution context for the next program, thereby enabling exploratory
programming. If the language to which the generic algorithm is applied is a
sequential language, then the execution graph of the resulting exploring inter-
preter is closed under transitivity. This property guarantees the soundness of a
variety of operations on the graph.

3 Related Work

Definitional interpreters of the kind captured by Definition 1 can be produced
in a language workbench [11] such as Spoofax [16] or the K framework [19], a
meta-language such as Rascal [17], a suitable general-purpose language such as
Haskell [14,23,30], or can be generated from a formal definition of the opera-
tional semantics of the language [2,7,42,47]. These tools and techniques have
in common that the semantics of the object language are formulated in an
existing (formal) language with well-understood, executable semantics. The first
use of definitional interpreters is by Reynolds, employing them as a vehicle for
analysing languages [37,38]. His analysis took advantage of the formal similarity
between denotational and interpretative semantics [39]. Various approaches to
formal semantics can be explained in terms of Initial Algebra Semantics [12] in
which algebraic signatures denote the constructs of a language and semantics are
expressed as algebras over signatures. Modular approaches have been developed
that make it possible to extend languages with little or no overhead [44], such
as monad transformers [21,25], algebraic effect handlers [33,49], entity propa-
gation in Modular Structural Operational Semantics [2,26], and copy-rules and
forwarding in Attribute Grammars [43,46]. These approaches greatly enhance
the practice of defining and maintaining definitional interpreters. In modern
general-purpose languages, we see advanced use of monads in Haskell [23,31],
Object Algebras [29] in Java, C# and Scala and intrinsically-typed definitional
interpreters in Agda [40].

The usage of an execution graph that contains all configurations produced
through program execution is related to back-in-time debugging [9,20,22,35],

A Generic Back-End for Exploratory Programming 29

in which programmers can go ‘back in execution history’. The execution graph,
however, captures all components required to reconstruct the full interactive
session as it also records the executed programs.

Jupyter is an open-source project for bringing web-based computational note-
books to a wide audience [18]. The Jupyter platform provides a protocol for
connecting notebooks to the language kernels, such as IPython and IJava, that
take care of program execution. Jupyter is popular and the community supports
a large number and wide variety of languages. Within the Jupyter platform, the
exploring interpreter algorithm can serve as a layer on top of language kernels
to improve support for exploratory programming within Jupyter notebooks.

4 Implementation

This section presents and discusses a generic implementation of the exploring
interpreter algorithm of [8] in Haskell using a While language as an example.

data Command = Seq Command Command
| Assign String Expr
| Print Expr
| While Expr Command
| Skip

data Expr = Leq Expr Expr | Plus Expr Expr | LitExpr Literal | Id String
data Literal = LitBool Bool | LitInt Integer
whileInterpreter :: Command → Config → Config
data Config = Config {cfgStore :: Store, cfgOutput ::Output }
type Store = Map String Literal
type Output = [String]
initialConfig = Config {cfgStore = empty, cfgOutput = []}

The definitions of Command , Config , initialConfig and whileInterpreter form a
language according to Definition 1. The definitional interpreter (not shown) uses
configurations with lists of strings as output and stores to record assignments.

An exploring interpreter is implemented as a parameterized data type, where
the type parameters denote the programs and configurations of a given language:

data Explorer p c = Explorer {defInterp :: p → c → c
, config :: c
, execEnv ::Gr Ref p
, currRef :: Ref
, genRef :: Ref
, cmap :: IntMap c
, sharing :: Bool
, backTracking :: Bool }

The defInterp field holds the interpreter responsible for executing programs. The
config field stores the current configuration, i.e. the configuration to be used for
the execution context of the next program. The execEnv field holds the current
execution graph and is implemented as an edge-labelled graph using the fgl

30 D. Frolich and L. T. van Binsbergen

library2. Edges are labelled by programs. The nodes of the execution graph are
references (of type Ref) to configurations rather than actual configurations. Ref-
erences are implemented as integers and every new configuration gets a unique
reference from an increasing counter (using currRef and genRef). The field cmap
records the configuration to which each existing reference refers. The field shar-
ing determines whether to detect that a configuration has been reached that has
already been encountered in which case no fresh reference is generated. With
sharing, a configuration is referred to by at most one reference and a node in the
execution graph may have multiple incoming edges. Without sharing, multiple
references may refer to the same configuration and each node of the execution
graph has at most one incoming edge, i.e. the execution graph forms a tree. The
backTracking field indicates whether a revert action is destructive and deletes
nodes and edges.

A smart constructor is defined that, given a definitional interpreter and an
initial configuration, produces an Explorer .

mkExplorer :: Bool → Bool → (p → c → c) → c → Explorer p c
mkExplorer share backtrack interpreter conf = Explorer

{sharing = share
, backTracking = backtrack
, defInterp = interpreter
, config = conf
, genRef = 1
, currRef = 1
, cmap = IntMap.fromList [(1, conf)]
, execEnv = mkGraph [(1, 1)] []}

mkExplorerStack = mkExplorer False True
mkExplorerTree = mkExplorer False False
mkExplorerGraph = mkExplorer True False

The smart constructor has additional parameters to determine whether the con-
structed Explorer should apply sharing and (destructive) backtracking. Addi-
tional smart constructors are defined that construct Explorer variants based on
different choices for the share and backtrack parameters. Without sharing and
with destructive reverts, the execution graph forms a linked list with stack-like
operations. Without sharing and without destructive revert, the execution graph
forms a tree. Section 5 discusses these properties further.

An Explorer for the While language can then be obtained as follows:

type WhileExplorer = Explorer Command Config

whileTree = mkExplorerTree whileInterpreter initialConfig

The exploring interpreter algorithm of [8] describes three actions that can be
performed on exploring interpreters: execute, revert and display for execut-
ing programs, reverting to previous configurations and displaying the execution
graph.

The execute action applies the underlying interpreter on a given program
to transition from the current configuration to a (possibly new) configuration.
2 https://hackage.haskell.org/package/fgl.

https://hackage.haskell.org/package/fgl

A Generic Back-End for Exploratory Programming 31

execute :: (Eq c,Eq p) ⇒ p → Explorer p c → Explorer p c
execute p e = updateConf e (p, defInterp e p (config e))

updateConf :: (Eq c,Eq p) ⇒ Explorer p c → (p, c) → Explorer p c
updateConf e (p,newconf) =

if sharing e
then case findRef e newconf of

Just (r ,) →
if hasLEdge (execEnv e) (currRef e, r , p)

then e {config = newconf , currRef = r }
else e {config = newconf , currRef = r

, execEnv = insEdge (currRef e, r , p) (execEnv e)}
Nothing → addNewPath e p newconf

else addNewPath e p newconf

The resulting configuration becomes the current configuration and the Explorer
components are updated. If sharing is disabled, a configuration is always seen
as unique and a new reference is created, the configuration is added to the
execution graph, an edge from the original configuration to the new configuration
is created, and the association between the new reference and configuration is
stored. However, if sharing is enabled and the resulting configuration has already
been encountered, then the previously assigned reference is used as the target of
the new edge.

The revert operation takes a reference and changes the current configuration
to the configuration matching the reference:

revert :: Explorer p c → Ref → Maybe (Explorer p c)
revert e r = case IntMap.lookup r (cmap e) of

Just c | backTracking e → Just e {execEnv = execEnv ′, config = c
, cmap = cmap′, currRef = r }

| otherwise → Just e {currRef = r , config = c}
Nothing → Nothing

where
nodesToDel = reachable r (execEnv e) \\ [r]
edgesToDel = filter toDel (edges (execEnv e))

where toDel (s, t) = s ∈ nodesToDel ∨ t ∈ nodesToDel
execEnv ′ = (delEdges edgesToDel ◦ delNodes nodesToDel) (execEnv e)
cmap′ = deleteMap nodesToDel (cmap e)

If a reference is given without a corresponding configuration, Nothing is returned.
If there is a corresponding configuration, then the current reference is changed to
the given reference and the current configuration is updated accordingly. Further
behaviour of revert is determined by the backTracking field, indicating whether
the action is destructive. If it is destructive, then all nodes and edges reachable
from the given reference are removed from the execution graph.

Operation display produces a structured representation of the execution
graph, with the current configuration highlighted. The goal of the display func-
tion is to allow interfaces to display and export (parts of) the graph, e.g. to
provide an overview, selecting nodes to revert to and saving sessions for later
reproduction. To accommodate a wide variety of interfaces, we export several

32 D. Frolich and L. T. van Binsbergen

Fig. 2. Execution graphs after executing the While commands x = 1 + 2, print x,
and skip without and with sharing, and as a single command respectively. The current
node is dashed. The notation r : γ denotes a node labelled with reference r referring
to configuration γ.

functions for accessing (parts of) the execution graph. For example, to access
the entire execution graph, we export the following function:

executionGraph :: Explorer p c → (Ref , [Ref], [((Ref , c), p, (Ref , c))])

The result contains the current node, a list of all nodes and a list of all edges
in the execution graph. The edges contain both the reference and the referenced
configuration of a node.

To obtain only part of the execution graph we export the following functions:

getTrace :: Explorer p c → [((Ref , c), p, (Ref , c))]
getTraces :: Explorer p c → [[((Ref , c), p, (Ref , c))]]

These functions provide one or multiple paths – referred to as traces – from the
root node to the current node. As discussed in more detail in the next section,
a node might have more than one trace (only) when sharing is enabled.

As an example of using exploring interpreters, consider the following sequence
of While commands: x = 1 + 2; print x; skip. Figure 2 shows the execu-
tion graph (with and without sharing) produced when each command in this
sequence is executed individually by the exploring interpreter. The first com-
mands adds the assignment of literal 3 to identifier x to the store and gives rise
to the node with reference r1. The second extends the output in the configuration
with the literal 3, resulting in the node with reference r2. The skip command
has no effect on the configuration. Without sharing a new reference is created
nonetheless (reference r3 on the left of Fig. 2). With sharing a self-edge labelled
with skip is created at the node with reference r2 (middle of Fig. 2).

Folding and Unfolding Sequences. The sequence x = 1 + 2; print x; skip
can also be executed as a single command, resulting in a single edge from r0 to
r1 (right of Fig. 2). Because While is a sequential language, both interpretations
are equivalent in that they yield the same final configuration (γ2). However, as
shown by Fig. 2, the resulting execution graphs differ significantly, and, depend-
ing on the situation, one execution graph might be preferred over the other.

A Generic Back-End for Exploratory Programming 33

Some interfaces might let the programmer determine which execution is chosen.
The following function is introduced to offer the flexibility of choice:

executeAll :: (Eq c,Eq p) ⇒ [p] → Explorer p c → Explorer p c
executeAll = flip (foldl $ flip execute)

If a program is a sequence of multiple programs to be executed individually, then
the program can be unfolded to produce a list of programs. Conversely, if a list
of programs is to be executed as a single program, the list can be folded.

5 Evaluation

In this section, we apply our implementation to two languages – eFLINT and
Funcons-beta – and use the resulting specialised exploring interpreters to per-
form a qualitative evaluation on the generic implementation. The evaluation
investigates the impact of destructive backtracking and sharing on the interac-
tions with the execution graph. The result is a discussion on various aspects
of exploratory programming, including exploratory programming styles, han-
dling input/output and reproducibility. As part of the evaluation, several exten-
sions to the implementation of the previous section are discussed. The basic and
extended implementations are available on Hackage3. The specialised exploring
interpreters for eFLINT4 and Funcons-beta5 are also available online.

Fig. 3. A session in the command-line REPL for eFLINT.

The eFLINT language is a domain-specific language (DSL) for formalising
norms from a variety of sources such as contracts, regulations and business poli-
cies [6]. The language currently has three main uses: exploring a policy specifi-
cation in order to extend it or improve its internal consistency, statically assess-
ing concrete scenarios for compliance, and dynamically enforcing norms in, and
3 https://hackage.haskell.org/package/exploring-interpreters.
4 https://gitlab.com/eflint/haskell-implementation.
5 https://github.com/plancomps/funcons-tools.

https://hackage.haskell.org/package/exploring-interpreters
https://gitlab.com/eflint/haskell-implementation
https://github.com/plancomps/funcons-tools

34 D. Frolich and L. T. van Binsbergen

assessing the compliance of, (distributed) software systems. The eFLINT lan-
guage comes with three interfaces to support these tasks, each built on top of the
exploring interpreter for the language: a command-line REPL, a web-interface
and a TCP server. The language has been extended to a sequential variant by
applying the methodology of [8] and the resulting definitional interpreter is used
to specialize the generic exploring interpreter developed in this paper. Figure 3
shows a simple interaction with the command-line REPL in which a fact-type
admin is introduced to record admin rights of users. The command-line REPL
uses non-destructive reverts and sharing. A configuration contains a knowledge
base of facts and after every execute and revert action the effects on the
knowledge base are shown. The :session command shows all the traces in the
execution graph in the form of a tree.

Figure 4 shows a part of the eFLINT web-interface in which a single trace is
displayed (obtained via getTrace). The web-interface uses destructive backtrack-
ing and does not use sharing. The current node therefore has exactly one trace.
The back-end is provided by a HTTP server built on top of the TCP server.
The web-interface is used by first loading a specification file and then submit-
ting a scenario – a sequence of statements and queries – for execution (using
the ‘Send phrase’ button). The effects of statements and queries are shown in
green and orange in the displayed trace. Violations are shown in red. A state
can be expanded (state 8 in the example) to show the contents of the knowledge
base and the last statement in the scenario that produced this state. The but-
tons below state 8 allow the trace to be updated in various ways by translating
button-clicks to combinations of execute and revert actions.

The TCP server is also used to integrate the specialised exploring interpreter
as a reasoning engine in multi-agent and service-oriented systems. Components of
such systems can interact with one or more instances of the exploring interpreter
to learn dynamically about permissions, obligations and violations. As such,
eFLINT can be used for dynamic policy enforcement and compliance checking.

The PLanCompS project6 has identified an open-ended library of so-called
fundamental constructs (funcons) that can be used to give a component-based
semantics to languages across language paradigms [10,27]. The funcons have
their semantics formally defined in I-MSOS [28] and their I-MSOS specifica-
tions are translated to micro-interpreters [5,7]. These micro-interpreters can
be composed arbitrarily to form (definitional) interpreters for different funcon
libraries. Funcons-beta is the language defined by the definitional interpreter
formed by composing the micro-interpreters of the funcons in the published fun-
cons library7. Figure 5 shows the command-line REPL for Funcons-beta built
on top of the specialised exploring interpreter for the language. This exploring
interpreter is the result of a small language extension in which Funcons-beta is
defined as a sequential language using the accumulate funcon as the composition
operator ⊗. As a result, bindings produced by executing one funcon term prop-

6 http://plancomps.org.
7 https://plancomps.github.io/CBS-beta/Funcons-beta/Funcons-Index/.

http://plancomps.org
https://plancomps.github.io/CBS-beta/Funcons-beta/Funcons-Index/

A Generic Back-End for Exploratory Programming 35

Fig. 4. A web-interface for eFLINT showing (part of) a trace. State 8 is expanded.

agate to the next. The first funcon term executed in Fig. 5 produces a binding
for the identifier "input".

Fig. 5. A session in the command-line REPL for Funcons-beta.

Applying the generic exploring interpreter of this paper to these languages
required in the order of 50 to 100 lines of Haskell code. In both cases the main
effort was defining the definitional interpreter as an extension of the existing
interpreter of the language, which involved carefully choosing the contents of
the propagated configuration and the method of handling output.

Handling Input/Output, Side-Effects and Errors. Following the definition of lan-
guages (Definition 1), the implementation of the previous section considers a
definitional interpreter as a pure function expressing the effects of a program
on an input configuration. This approach requires the simulation of input and
output. For example, output can be considered an ever-growing list of (string)
values stored in the configurations, as shown by the definitional interpreter for

36 D. Frolich and L. T. van Binsbergen

While in Sect. 4. This choice reduces the potential for sharing since sharing
can only take place in between two print statements (discussed further below).
Similarly, input can be considered an ever-shrinking list of (string) values with
the original input set in the initial configuration.

In Funcons-beta, the read reads a value from standard-in as shown in
Fig. 5. In this example, the program print(bound("input")) creates a self-edge
because output is not part of the configuration and the program has no other
effect. The Funcons-beta command-line REPL takes advantage of an implemen-
tation of the exploring interpreter algorithm in which the definitional interpreter
can perform effectful computations in a monad, i.e. it has the type:

defInterp ::Monad m ⇒ programs → configs → m configs

The command-line REPL for Funcons-beta instantiates m to the IO monad
for interacting with standard-in and standard-out.

The introduction of the monad component has additional advantages. In par-
ticular, the monad enables distinguishing between effects and side-effects, with
side-effects not being recorded in the execution graph. However, side-effects influ-
ence the soundness of the wider approach as the implementation can no longer
guarantee that executing a program p in the context of configuration γ yields
the same result every time. This has a negative impact on the reproducibility of
a session and on the soundness of certain graph operations and optimisations.

The execution trace of Fig. 4 shows output messages indicating the success of
queries and the occurrence of violations. When an eFLINT code fragment is exe-
cuted (via the ‘Send phrase’ button at the top), the trace can either be updated
using DOM manipulation or the page can be refreshed in its entirety. Although
not efficient, refreshing is a convenient way to ensure consistency between the
front-end and the back-end, as the front-end is redrawn based on the state of the
back-end. This then requires the back-end to record output in order to inform
the front-end of the output of programs (such as the results of queries) without
re-executing programs. To support the reproducibility of output, we have chosen
to add an output component to the definitional interpreters:

defInterp :: (Monad m,Monoid out) ⇒ programs → configs → m (configs, out)

In accordance with Modular Structural Operational Semantics (MSOS) [26,28],
we generalise output to the class of monoidal types, allowing output to concate-
nate in between executions. Any output produced by the definitional interpreter
is stored on the edges of the execution graph, alongside the program producing
that output. The updated definitions of Explorer and execute are as follows:

data Explorer p m c o where -- using GADT extension
Explorer :: (Eq p,Eq c,Monad m,Monoid o) ⇒

{defInterp :: p → c → m (Maybe c, o), ...} → Explorer p m c o

execute :: (Eq c,Eq p,Monad m,Monoid o) ⇒
p → Explorer p m c o → m (Explorer p m c o, o)

A Generic Back-End for Exploratory Programming 37

execute p e = do (mcfg, o) ← defInterp e p (config e)
case mcfg of Just cfg → return (updateConf e (p, cfg, o), o)

Nothing → return (e, o)

As before, the updateConf function is responsible for the extension of the exe-
cution graph, now also storing the output on edges. The Maybe component of
the definitional interpreter is added to support interpreters that may fail. If
the definitional interpreter returns Nothing , then no changes are made to the
execution graph. The interpreter for Funcons-beta fails due to runtime errors,
e.g. caused by unbound identifiers. The interpreter for eFLINT performs type-
checking to find typing errors and perform coercions. Both types of errors cause
the interpreter to fail and yield error messages as part of the output.

Fig. 6. Execution graph after execution p1, p2, p3, reverting to r1 and executing p4, p5.
The gray nodes and edges are removed if the revert action is destructive.

Discussions on Backtracking. The decision to revert destructively by removing
nodes and edges from the execution graph has practical and usability-related con-
sequences. Non-destructive reverts enable a more powerful form of exploratory
programming. Consider the two execution graphs in Fig. 6, created with and
without destructive backtracking. The figure shows how destructive backtrack-
ing ensures that there is always exactly one node in the graph without outgoing
edges. In other words, exploration always proceeds along a single path and a
revert action always undoes the last n changes along that path (for some n).
Conversely, when revert is not destructive, multiple paths are explored simulta-
neously and strategies like depth-first or breadth-first exploration are possible.

Destructive reverts save space by reducing the size of the execution graph.
Applications in which multi-path exploration is not required should therefore be
able to use destructive reverts. An example of such an application is the execution
of a large test-suite in which all tests share a common prefix containing, for
example, a number of declarations and initialisation statements. In this case, a
programmer can execute all tests by executing the prefix once and subsequently
executing all tests of the test-suite with backtracking in between tests to undo
the changes of the previous test. Executing a test-suite this way can potentially
save large amounts of time while the use of space is reduced with destructive

38 D. Frolich and L. T. van Binsbergen

reverts. Owing to the implementation presented in this paper, the eFLINT TCP
server interface can be used to execute test-suites in the way described.

We conclude that both destructive and non-destructive reverts should be
made available to the interface developer on a per application basis. In fact, we
also make a version of revert available in which a parameter determines whether
the revert is destructive as part of the function call. After all, even when multi-
path exploration is desired, a programmer might still wish to undo programs.

Discussions on Sharing. The decision to apply sharing – i.e. ensuring that every
configuration is referred to by at most one node – has significant impact on
the practicality and usability of the exploring interpreter. The execution graph
is more space-efficient with sharing rather than without, benefiting especially
those applications in which output is not stored in configurations (see Fig. 5 and
the discussion on output above). However, detecting opportunities for sharing
is costly as it requires comparing (possibly many) configurations for equality.
Our implementation determines that the type of configurations used by a lan-
guage must be an instance of the Eq type-class. The Eq-instances derived by
Haskell compilers use structural equality, a costly operation on large datastruc-
tures. Moreover, structural equality cannot be used when configurations store
functions (such as continuations), in which case a custom equality instance is
necessary. This is the case for Funcons-beta, in which a function for reading input
(using either real or simulated input) is propagated throughout the definitional
interpreter. As this function does not change in between calls to execute, it is
safe to ignore the function when attempting sharing.

Besides space-efficiency, two further advantages of sharing can be observed.
Firstly, through sharing, the exploring interpreter automatically detects the con-
vergence of two exploration paths. In certain applications it will be insightful to
the programmer to become aware of convergence. Similarly, sharing will detect
cycles. The (abstract) execution graphs of Fig. 7 give examples of convergence
(left) and a cycle (right). The session in Fig. 3 is a concrete instance of the graph
showing convergence in Fig. 7. Note that by performing effects in a monad, the
insights gained from convergence are reduced because convergence only concerns
the effects represented by modifications to configurations.

Fig. 7. Execution graphs showing convergence (left) and a cycle (right).

A Generic Back-End for Exploratory Programming 39

For the second example of a possible advantage of sharing, consider the sit-
uation in the graph on the right-hand side of Fig. 7 in which r1 is the current
node. If a program p5 is to be executed next, and if p5 is equivalent to p2, then
the exploring interpreter can recognise this and jump to r2 without executing
p5 (but with adding the edge labelled p5). If p5 is a costly program to execute,
considerable running time might be saved. This optimisation does not depend
on sharing; the same situation could arise if the programmer reverted from r3
to r1 (without executing p4 and without destructive backtracking). However,
with sharing, opportunities to apply this optimisation are likely to increase in
frequency. To further increase the potential of this optimisation it is beneficial to
apply normalisation techniques to programs. The implementation and analysis
of this optimisation is left as future work.

A disadvantages of sharing is that the revert action becomes ambiguous
because, with sharing, a node can have more than one incoming edge and more
than one trace. Selecting a node in the execution graph is not sufficient to revert
to a particular moment in time with a unique history of prior actions. A possible
solution is to retain a history of actions in the exploring interpreter. Similarly, it
is unclear what the effect of a destructive revert should be in the context of shar-
ing. In the current implementation, all outgoing paths of the new current node
are removed from the execution graph8. Sharing also allows cycles that generate
infinitely many paths with a repeated infix. These disadvantages demonstrate
that sharing significantly complicates the execution graph in a way that makes it
harder for the programmer to align their own mental model with the execution
graph.

Although our implementation continues to support sharing, we expect that an
exploring interpreter without sharing is sufficient for exploratory programming
in many applications. This especially because even without sharing, convergent
and cyclic exploration can still be detected by monitoring whether there are
configurations referred to by more than one reference. Our implementation does
not export a variant of execute with a parameter to determine whether to apply-
ing sharing. This is to preserve the aforementioned properties of the execution
graph, e.g. that the execution graph forms a tree without sharing.

Saving and Loading Sessions. The execution graph of a pure exploring inter-
preter provides enough information to support the storing and reproduction of
sessions generically. One possibility is to export the current configuration, giving
the programmer the option to start a new session with the exported configura-
tion as the initial configuration. To also record history, the path from the initial
configuration to the current configuration can be exported (i.e. using getTrace).
When sharing is enabled, all paths from the root node to the current node can
be exported (using getTraces).

8 With the exception of the node itself, in case of a cycle.

40 D. Frolich and L. T. van Binsbergen

Exporting paths can be done in two ways, affecting in particular the size
of the export and the costs of loading a session. The export can contain all
components of the path – configurations, references, edges, programs and output
– making it possible to load a session without executing programs. However, the
soundness of this operation relies on the exploring interpreter being pure; if
the programs of the saved session were executed in a monad, then there is no
guarantee that the context provided by the monad is the same when the session
is loaded (e.g. changes in database or file-system). Alternatively, space can be
saved by exporting just the sequence of programs labelling the edges on the
path. The session can then be loaded by executing this sequence of programs.
Assuming the object-language is sequential, this sequence can be folded into
a single program as part of the export or as part of loading the session (see
the discussion on folding and unfolding in Sect. 4). Note that in this case, the
export is a syntactically valid program that can also be executed with other
implementations of the language (e.g. compilers and interpreters).

Finally, the execution graph can be exported in its entirety so that the entire
session can be restored.

Discussion. In this section we have discussed several extensions to the imple-
mentation described in Sect. 4 and demonstrated the application of the generic
back-end to develop several types of interfaces and applications. Based on this,
we argue that the generic implementation can be applied widely. For example,
we have made no assumptions about the style of (exploratory) programming
provided by interfaces. This is demonstrated best by the various types of appli-
cations in which the same exploring interpreter for eFLINT is used. The back-end
is also applicable to a large class of languages, including at least all languages
that can have their semantics expressed as a (pure) transition function. This is
best demonstrated by Funcons-beta, which captures the semantics of language
constructs across paradigms such as functional programming, imperative pro-
gramming, procedural programming, object-oriented programming and meta-
programming [4]. Our implementation also ensures reproducibility, an impor-
tant feature in notebooks [18,32]. In future work we wish to experiment with
optimisations in the back-end and generic front-end components.

6 Conclusion

This paper presents a generic back-end for exploratory programming. The back-
end is formed by the application of a generic exploring interpreter to a defi-
nitional interpreter for the chosen object language. The exploring interpreter
adds a level of indirection that makes it possible to deliver multiple program-
ming interfaces for the same language by reusing the back-end and to deliver
generic programming interfaces that can be reused across languages. We have
performed a qualitative evaluation on the implementation and demonstrated
that the back-end can support various styles of exploratory programming, types
of interfaces and types of applications such as command-line REPLs, compu-
tational notebooks and servers (e.g. to develop web-applications or multi-agent

A Generic Back-End for Exploratory Programming 41

systems). The presented work marks just one step in a bigger research effort
aimed at developing tooling and an infrastructure for the independent, modular
and reusable design and implementation of programming interfaces for incre-
mental programming and exploratory programming.

Acknowledgements. The work in this paper has been partially supported by the
Kansen Voor West EFRO project (KVW00309) AMdEX Fieldlab, the NWO project
(628.009.014) Secure Scalable Policy-enforced Distributed Data Processing (SSPDDP)
and has been executed in a collaboration with the Agile Language Engineering (ALE)
team (http://gemoc.org/ale/).

References

1. Astesiano, E.: Inductive and operational semantics. In: Neuhold, E., Paul, M. (eds.)
IFIP State-of-the-Art Reports, Formal Descriptions of Programming Concepts, pp.
51–136. Springer (1991). ISBN: 978-3-540-53961-2

2. Bach Poulsen, C., Mosses, P.D.: Generating specialized interpreters for modular
structural operational semantics. In: Gupta, G., Peña, R. (eds.) LOPSTR 2013.
LNCS, vol. 8901, pp. 220–236. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-14125-1 13

3. Beth Kery, M., Myers, B.A.: Exploring exploratory programming. In: 2017 IEEE
Symposium on Visual Languages and Human-Centric Computing (VL/HCC), pp.
25–29 (2017). https://doi.org/10.1109/VLHCC.2017.8103446

4. van Binsbergen, L.T.: Funcons for HGMP: the fundamental constructs of homo-
geneous generative meta-programming (short paper). In: Proceedings of the 17th
ACM SIGPLAN International Conference on Generative Programming: Concepts
and Experience. GPCE 2018 (2018). https://doi.org/10.1145/3278122.3278132

5. van Binsbergen, L.T.: Executable Formal Specification of Programming Languages
with Reusable Components. Ph.D. thesis, Royal Holloway, University of London
(2019)

6. van Binsbergen, L.T., Liu, L., van Doesburg, R., van Engers, T.: eFLINT: a
domain-specific language for executable norm specifications. In: Proceedings of
the 19th ACM SIGPLAN International Conference on Generative Programming:
Concepts and Experiences. GPCE 2020. ACM (2020)

7. van Binsbergen, L.T., Mosses, P.D., Sculthorpe, N.: Executable component-based
semantics. J. Logical Algebraic Methods Program. 103, 184–212 (2019). https://
doi.org/10.1016/j.jlamp.2018.12.004

8. van Binsbergen, L.T., Verano Merino, M., Jeanjean, P., van der Storm, T., Combe-
male, B., Barais, O.: A Principled Approach to REPL Interpreters, pp. 84–100.
ACM (2020). https://doi.org/10.1145/3426428.3426917

9. Bousse, E., Leroy, D., Combemale, B., Wimmer, M., Baudry, B.: Omniscient debug-
ging for executable DSLs. J. Syst. Softw. 137, 261–288 (2018)

10. Churchill, M., Mosses, P.D., Sculthorpe, N., Torrini, P.: Reusable components of
semantic specifications. In: Transactions on Aspect-Oriented Software Develop-
ment XII. TAOSD 2015, pp. 132–179 (2015)

11. Erdweg, S., et al.: Evaluating and comparing language workbenches: existing
results and benchmarks for the future. Comput. Lang. Syst. Struct. 44, 24–47
(2015)

http://gemoc.org/ale/
https://doi.org/10.1007/978-3-319-14125-1_13
https://doi.org/10.1007/978-3-319-14125-1_13
https://doi.org/10.1109/VLHCC.2017.8103446
https://doi.org/10.1145/3278122.3278132
https://doi.org/10.1016/j.jlamp.2018.12.004
https://doi.org/10.1016/j.jlamp.2018.12.004
https://doi.org/10.1145/3426428.3426917

42 D. Frolich and L. T. van Binsbergen

12. Goguen, J.A., Thatcher, J.W., Wagner, E.G., Wright, J.B.: Initial algebra seman-
tics and continuous algebras. J. ACM 24(1), 68–95 (1977)

13. Hayes, B.: Thoughts on Mathematica. Pixel 1(January/February), pp. 28–34
(1990)

14. Hudak, P., Hughes, J., Peyton Jones, S., Wadler, P.: A history of haskell: being
lazy with class. In: Proceedings of the Third ACM SIGPLAN Conference on His-
tory of Programming Languages. HOPL III. ACM (2007). https://doi.org/10.1145/
1238844.1238856

15. Kahn, G.: Natural semantics. In: Proceedings of the 4th Annual Symposium on
Theoretical Aspects of Computer Science. pp. 22–39. Springer-Verlag (1987)

16. Kats, L.C.L., Visser, E.: The Spoofax language workbench: Rules for declarative
specification of languages and IDEs. In: International Conference on Object Ori-
ented Programming Systems Languages and Applications. OOPSLA 2010, pp. 444–
463. ACM (2010). https://doi.org/10.1145/1869459.1869497

17. Klint, P., Storm, T.v.d., Vinju, J.: Rascal: A domain specific language for source
code analysis and manipulation. In: Proceedings of the 2009 Ninth IEEE Interna-
tional Working Conference on Source Code Analysis and Manipulation, pp. 168–
177. IEEE Computer Society (2009). https://doi.org/10.1109/SCAM.2009.28

18. Kluyver, T., et al.: J development team: Jupyter notebooks - a publishing for-
mat for reproducible computational workflows. In: Loizides, F., Scmidt, B. (eds.)
Positioning and Power in Academic Publishing: Players, Agents and Agendas, pp.
87–90. IOS Press, Netherlands (2016). https://doi.org/10.3233/978-1-61499-649-
1-87

19. Lazar, D., et al.: Executing formal semantics with the K tool. In: Giannakopoulou,
D., Méry, D. (eds.) FM 2012. LNCS, vol. 7436, pp. 267–271. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-32759-9 23

20. Lewis, B.: Debugging backwards in time. Computing Research Repository
cs.SE/0310016 (2003). http://arxiv.org/abs/cs/0310016

21. Liang, S., Hudak, P., Jones, M.: Monad transformers and modular interpreters.
In: 22nd Symposium on Principles of Programming Languages, pp. 333–343. ACM
(1995)

22. Lienhard, A., Gı̂rba, T., Nierstrasz, O.: Practical object-oriented back-in-time
debugging. In: Vitek, J. (ed.) ECOOP 2008. LNCS, vol. 5142, pp. 592–615.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-70592-5 25

23. Marlow, S.: Haskell 2010 Language Report (2010)
24. Milner, R., Tofte, M., MacQueen, D.: The Definition of Standard ML. MIT Press,

Cambridge (1997)
25. Moggi, E.: Notions of computation and monads. Inf. Comput. 93(1), 55–92 (1991).

https://doi.org/10.1016/0890-5401(91)90052-4
26. Mosses, P.D.: Modular structural operational semantics. J. Logic Algebraic Pro-

gram. 60–61, 195–228 (2004)
27. Mosses, P.D.: Software meta-language engineering and CBS. J. Comput. Lang. 50,

39–48 (2019). https://doi.org/10.1016/j.jvlc.2018.11.003
28. Mosses, P.D., New, M.J.: Implicit propagation in structural operational semantics.

Electron. Notes Theoretical Comput. Sci. 229(4), 49–66 (2009)
29. Oliveira, B.C.S., Cook, W.R.: Extensibility for the masses. In: Noble, J. (ed.)

ECOOP 2012. LNCS, vol. 7313, pp. 2–27. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-31057-7 2

30. Peyton Jones, S. (ed.): Haskell 98, Language and Libraries. The Revised Report.
Cambridge University Press (2003)

https://doi.org/10.1145/1238844.1238856
https://doi.org/10.1145/1238844.1238856
https://doi.org/10.1145/1869459.1869497
https://doi.org/10.1109/SCAM.2009.28
https://doi.org/10.3233/978-1-61499-649-1-87
https://doi.org/10.3233/978-1-61499-649-1-87
https://doi.org/10.1007/978-3-642-32759-9_23
http://arxiv.org/abs/cs/0310016
https://doi.org/10.1007/978-3-540-70592-5_25
https://doi.org/10.1016/0890-5401(91)90052-4
https://doi.org/10.1016/j.jvlc.2018.11.003
https://doi.org/10.1007/978-3-642-31057-7_2
https://doi.org/10.1007/978-3-642-31057-7_2

A Generic Back-End for Exploratory Programming 43

31. Pickering, M., Wu, N., Kiss, C.: Multi-stage programs in context. In: Eisenberg,
R.A. (ed.) Proceedings of the 12th ACM SIGPLAN International Symposium on
Haskell, Haskell@ICFP 2019, Berlin, Germany, pp. 71–84. ACM (2019). https://
doi.org/10.1145/3331545.3342597

32. Pimentel, J.F., Murta, L., Braganholo, V., Freire, J.: A large-scale study about
quality and reproducibility of Jupyter notebooks. In: 2019 IEEE/ACM 16th Inter-
national Conference on Mining Software Repositories (MSR), pp. 507–517 (2019)

33. Plotkin, G., Pretnar, M.: Handlers of algebraic effects. In: Castagna, G. (ed.) ESOP
2009. LNCS, vol. 5502, pp. 80–94. Springer, Heidelberg (2009). https://doi.org/10.
1007/978-3-642-00590-9 7

34. Plotkin, G.D.: A structural approach to operational semantics. J. Logic Algebraic
Program. 60–61, 17–139 (2004)

35. Pothier, G., Tanter, É., Piquer, J.: Scalable omniscient debugging. ACM SIGPLAN
Notices 42(10), 535–552 (2007). https://doi.org/10.1145/1297105.1297067

36. Rein, P., Ramson, S., Lincke, J., Hirschfeld, R., Pape, T.: Exploratory and live,
programming and coding. Art Sci. Eng. Program. 3(1), 1–32 (2018). https://doi.
org/10.22152/programming-journal.org/2019/3/1

37. Reynolds, J.C.: Definitional interpreters for higher-order programming languages.
In: Proceedings of the ACM Annual Conference, vol. 2, pp. 717–740 (1972)

38. Reynolds, J.C.: Definitional interpreters for higher-order programming languages.
High. Order Symbol. Comput. 11(4), 363–397 (1998)

39. Reynolds, J.C.: Definitional interpreters revisited. High. Order and Symbol. Com-
put. 11(4), 355–361 (1998)

40. Rouvoet, A., Bach Poulsen, C., Krebbers, R., Visser, E.: Intrinsically-typed defi-
nitional interpreters for linear, session-typed languages. In: Proceedings of the 9th
ACM SIGPLAN International Conference on Certified Programs and Proofs (CPP
2020), pp. 284–298 (2020). https://doi.org/10.1145/3372885.3373818

41. Rule, A., Tabard, A., Hollan, J.D.: Exploration and explanation in computational
notebooks. In: Proceedings of the 2018 CHI Conference on Human Factors in
Computing Systems. CHI 2018, pp. 1–12. ACM (2018)

42. Sewell, P., et al.: Ott: effective tool support for the working semanticist. J. Func.
Program. 20(1), 71–122 (2010). https://doi.org/10.1017/S0956796809990293

43. Swierstra, S.D., Azero Alcocer, P.R., Saraiva, J.: Designing and implementing com-
binator languages. In: Swierstra, S.D., Oliveira, J.N., Henriques, P.R. (eds.) AFP
1998. LNCS, vol. 1608, pp. 150–206. Springer, Heidelberg (1999). https://doi.org/
10.1007/10704973 4

44. Swierstra, W.: Data types à la carte. J. Func. Program. 18(4), 423–436 (2008).
https://doi.org/10.1017/S0956796808006758

45. Trenouth, J.: A survey of exploratory software development. Comput. J. 34(2),
153–163 (1991). https://doi.org/10.1093/comjnl/34.2.153

46. Van Wyk, E., de Moor, O., Backhouse, K., Kwiatkowski, P.: Forwarding in
attribute grammars for modular language design. In: Horspool, R.N. (ed.) CC
2002. LNCS, vol. 2304, pp. 128–142. Springer, Heidelberg (2002). https://doi.org/
10.1007/3-540-45937-5 11

47. Vergu, V.A., Neron, P., Visser, E.: DynSem: a DSL for dynamic semantics specifica-
tion. In: 26th International Conference on Rewriting Techniques and Applications,
RTA 2015. Leibniz International Proceedings in Informatics, vol. 36, pp. 365–378.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2015)

48. Walicki, M., Meldal, S.: Algebraic approaches to nondeterminism - an overview.
ACM Comput. Surv. 29(1), 30–81 (1997)

49. Wu, N., Schrijvers, T., Hinze, R.: Effect handlers in scope. In: Proceedings of the
2014 ACM SIGPLAN Symposium on Haskell. Haskell 2014, pp. 1–12. ACM (2014)

https://doi.org/10.1145/3331545.3342597
https://doi.org/10.1145/3331545.3342597
https://doi.org/10.1007/978-3-642-00590-9_7
https://doi.org/10.1007/978-3-642-00590-9_7
https://doi.org/10.1145/1297105.1297067
https://doi.org/10.22152/programming-journal.org/2019/3/1
https://doi.org/10.22152/programming-journal.org/2019/3/1
https://doi.org/10.1145/3372885.3373818
https://doi.org/10.1017/S0956796809990293
https://doi.org/10.1007/10704973_4
https://doi.org/10.1007/10704973_4
https://doi.org/10.1017/S0956796808006758
https://doi.org/10.1093/comjnl/34.2.153
https://doi.org/10.1007/3-540-45937-5_11
https://doi.org/10.1007/3-540-45937-5_11

Dynamic Editors for Well-Typed
Expressions

Pieter Koopman1(B), Steffen Michels2, and Rinus Plasmeijer1,2

1 Radboud University, Nijmegen, The Netherlands
{pieter,rinus}@cs.ru.nl

2 TOP Software Solutions, Nijmegen, The Netherlands
steffen@top-software.nl
http://www.ru.nl/icis

http://www.top-software.com

Abstract. Interactive systems may require complex inputs. Domain
experts prefer guidance in the construction of these inputs. An ideal
system prevents errors and is flexible in the construction and changes
of its input. The iTask system generates web-editors given any first-
order algebraic data types. The generated web-editors are useful but
have their limitations. It is not possible to combine type safety with
overloaded operators and preventing unbounded or ill-typed identifiers
is impossible. Using phantom types, generalized algebraic datatypes or
functions solves the language problems, but they cannot be handled by
the datatype generic system. Moreover, changing expressions can require
re-entering large parts of the input. We present dynamic editors that can
solve all those problems. The programmer specifies the elements of such
an editor by functions. The system shows the applicable edit elements
in a drop-down menu to the user. The dynamic editor is used recur-
sively to create the arguments for the selected function. Dynamic editors
are seamlessly integrated with the ordinary web-editors of the iTask sys-
tem. The obtained editors guide the users to make correct and type-safe
inputs. These editors can be very flexible as well without making strange
abstract syntax trees.

Keywords: Dynamics · Web-editor · DSL · Type-safe · Low-code ·
Task-oriented programming

1 Introduction

Many programs require quite complex inputs from their users. Examples are
medical professionals selecting patients, traders inventorying their stock or cus-
tomers, the coastguard monitoring ships with their distance to each other as
well as to ports and wind-parks, teachers selecting students that need additional

Research Paper.
c© Springer Nature Switzerland AG 2021
V. Zsók and J. Hughes (Eds.): TFP 2021, LNCS 12834, pp. 44–66, 2021.
https://doi.org/10.1007/978-3-030-83978-9_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-83978-9_3&domain=pdf
https://doi.org/10.1007/978-3-030-83978-9_3

Dynamic Editors For Well-Typed Expressions 45

attention and so on. We use a query language about ships as a running example
in this paper, but the approach is in no way limited to this application.

Many of these problems are commonly handled in a spreadsheet that contains
the data as well as the manipulations of these data. The newest versions of Excel
allow user-defined functions to make this easier [6]. This approach is limited to
data that are at least stable during processing since the information is stored in a
table. For reoccurring types of inputs it is worthwhile to define a Domain Specific
Language, DSL, to structure the input. Such a DSL contains the primitives and
structures to model the inputs of such a program. This can also work for rapidly
changing data.

Programmers often prefer a text-based editor to construct inputs in the DSL,
perhaps with some tool support. Many domain experts prefer structure editors
that guides them in entering correct expressions in the input DSL. Such a system
shows the appropriate constructs at each point of the expression during editing
and tries to prevent errors. In this paper we discuss general tooling to implement
these structured editors and show how it can be used effectively.

Our DSL editors are part of the iTask system for Task-Oriented Program-
ming, TOP [2,14]. As the name suggests TOP is centred around tasks. Tasks
are the units of work in a TOP program. They are created from small basic
tasks, like web-editors, and combinators to compose tasks. These tasks can be
completely machine-based, but many task mimic interaction with humans. The
declarative iTask system generates web-based graphical user-interfaces guiding
the interaction. Such a GUI can provide information to the user and can get
input from the user to continue the rest of the task. User input varies from
pressing a simple button to entering web-forms or the guided constructing of
some datastructure. In contrast to ordinary functions, task combinators can be
used to observe intermediate states of tasks and act upon the observed state.
The iTask system is embedded in the pure functional programming language
Clean [15]. Achten wrote a quick introduction for Haskell programmers [3].

In this paper we focus on the design of web-editors to enter inputs that are
part of some DSL. Other parts of the iTask system are hardly used and only dis-
cussed as far as needed to understand this paper. Our first approach is to define
algebraic datatypes to represent the syntax of the input language. Section 2
reviews the possibilities of the existing web-editors to make correct expressions
in the input language. This approach is based on generic programming; the web-
editors for the datatypes are derived by the compiler. This automatic generation
of web-editors is wonderful but comes at a price. The type system ensures type
correctness at the level of the host language but not necessarily at the DSL level.
Moreover, there is no check on the type nor on the proper definition of identifiers
in the DSL.

Section 3 introduces dynamic editors. The drop-down menu is defined by a list
of tagged functions. Function types are more expressive than the algebraic data
types and can ensure type correctness in the DSL. Only the function producing
elements of the desired type are displayed to the user to ensures type correctness
of the result. The editor is used recursively to create the arguments of the chosen

46 P. Koopman et al.

function. Well-typed identifiers in the DSL are obtained by selecting them from
a list of typed identifiers. This is discussed in Sect. 4.

Section 2 introduces the running example of this paper and the limitations
of the generic derivation of web-editors. In Sect. 5 we show how one can make
a type safe editor for the datatypes used in Sect. 2 using dynamic editors and
type tags. Using GADTs of shallow embedding ensures the type correctness
during the entire lifespan of the editor results. This is shown in Sects. 6 and 7
for our running example. Finally, we discuss related work and draw conclusions
in Sect. 9.

The main contributions of this paper are:

– the introduction of dynamic editors. These structured web-editors are used to
create DSL-expressions interactively while enforcing type-constraints on the
fly. This can be used for types where the generic algorithm cannot be used to
derive such editors;

– we demonstrate how to ensure that all variables are well-typed by selecting
them from a identifier store;

– we show how the dynamic editors can be prepared for flexible changes of the
input.

– we demonstrate how dynamic editors can generate type-safe ADTs;
– we show that dynamic web-editors can handle GADTs;
– we show how to create type-safe editors for shallow embedded DSLs.

The dynamic editor library used in this paper is part of the standard iTask
system available at clean.cs.ru.nl/iTasks. The examples in this paper can be
found at gitlab.science.ru.nl/pieter/tfp-2021-dynamic-editors.

2 Algebraic Data Types for Queries

The running example of this paper is based on a real-world application of the
iTask system. The users of this system write queries over ships, ports and wind-
parks as well as their distance in some part of the sea. The real application also
includes owners of these ships, their history and destinations. We omit these
aspects since they would make our example over complicated.

The current position and data of all ships are provided by the Automatic
Identification System, AIS. All ships are broadcast their name, size, position,
voyage date and other relevant information frequently. The required frequency
is mainly dependent on the speed of the vessel. Everyone can receive this
data and use it. Based on the received data websites like vesselfinder.com and
marinetraffic.com show world wide real-time vessel positions. There are several
sources of AIS data available that includes data of vessels that our outside broad-
cast range. We use simplified and static data in this paper to mimic this data
stream as simple as possible.

The data of ships, ports and wind-parks are each stored in a tailor-made
record. We use a list of these records as the test data in our programs.
Our example DSL is a query language over ships, ports and wind-parks. The

http://clean.cs.ru.nl/iTasks
http://gitlab.science.ru.nl/pieter/tfp-2021-dynamic-editors
http://vesselfinder.com
http://marinetraffic.com

Dynamic Editors For Well-Typed Expressions 47

language contains the type Gen to mimic generation. It introduces ship, port or
wind-park identifier, conditions to select objects and there is a single return
expression determining the result. The nature of expressions is similar to list-
comprehensions. The datastructure correspond one to one with the grammar
of our DSL. Boolean expressions have their own datatype Cond. This ensures the
condition always represents a Boolean result. A less pleasant consequence is that
the overloaded equality Eq cannot be applied to Boolean arguments.

A complete DSL will contain more comparison and arithmetic operations.
We have reduced it to the bare minimum needed to illustrate the architecture
of the example.

:: Gen
=Ship Name Gen | Park Name Gen | Port Name Gen
| Cond Cond Gen | Ret Expr

:: Cond
=LE Expr Expr | Eq Expr Expr | Not Cond | And Cond Cond
| Flag Expr [Country] | Name Expr [String] | Kind Expr [Kind]

:: Expr
=Var Name | Num Real | Name Expr | Add Expr Expr
| Distance Expr Expr | Gen Gen

:: Kind =Navy | Fisher | Tanker | Cargo | Tugboat
:: Country=NL | UK | DE | FR | BE | BR | VE | PH | DK | LR | MT
:: Name :==String

A simple example is a query that yields the name of all ships with a flag from
the Netherlands or the United Kingdom.

e :: Gen
e=Ship s (Cond (Flag (Var s) [NL,UK]) (Ret (Name (Var s))))

s :: Name
s= "s"

The reason we have chosen the iTask system as host for our web-editors for DSLs
is that it can derive those editors for algebraic datatypes. This is done by type
generic programming [1,4,8]. The idea is that Clean knows how to transform
between a datatype and its generic representation. This type generic represen-
tation is built with a small number of primitives like the choice, EITHER, and
the sum, PAIR, of elements. The iTask system knows how to make editors for
the generic primitives and hence the generic representation of our tailor-made
datatypes for the DSL. All we need to do is deriving the generic instances by:

derive class iTask Gen, Cond, Expr, Country, Status, Res

2.1 Editors for ADT-Based Queries

Now we can use editors for these types in the iTask system. The user gets a
drop-down menu to select a constructor of the desired type. After this selection,
there appear editors for the arguments of the constructor. Edit boxes are used
for integers and strings. Figure 1 shows two snapshots of the generated editors.
The left-hand side is an editor for queries and the associated result. Such a result

48 P. Koopman et al.

is automatically computed by the iTask system as soon as the editor represents
a well-typed value. The right-hand side shows the drop-down menu for type Gen.
Using tuning combinators, like <<@, and cascading style sheets the layout of the
editor can be improved.

Fig. 1. Screenshots of the DSL editor.

The entire code needed to generate the task-based web interface for the edi-
tor and evaluator display on the left in Fig. 1 requires a start rule to evaluate the
genTask. The programmer can use cascading style sheets to improve the appear-
ance of the program.

Start world=doTasks genTask world

genTask :: Task Gen
genTask=
withShared e λsds.
(Title "Editor" @>> updateSharedInformation [] sds) -||-
(Title "Result" @>> viewSharedInformation [ViewAs run] sds) <<@ ArrangeHorizontal

The function withSharedmakes a shared data source sds for of typeGenwith initial
value e as defined above. TheupdateSharedInformationtasks is a generated editor for
this sds. The second task displays the value of this sds after applying the function
run that evaluates the expression. The task combinator -||- composes these tasks
in parallel. The nature of shared data stores updates the value displayed as soon
as the editor contains a new valid expression.

The expression Expr represents values of type Ship, Port, Park, Real and String.
Defining a separate type for each of these types makes the language much larger

Dynamic Editors For Well-Typed Expressions 49

and enforces us to have many variants of overloaded operations like Eq and
Distance.

A single type representing these different evaluation results is needed in our
strongly typed host language. The type Resdoes just that, it adds an appropriate
constructor to distinguish the various types.

:: Res=ShipResult Ship | PortResult Port | ParkResult Park
| RealResult Real | BoolResult Bool | StringResult String

For the evaluation of expressions we define an environment Env that ties names to
Res values. The implementation of this environment is unimportant and omitted.
Thetieadds a new binding andreadyields the value associated with that name or
an error message. In Haskell the type will be written as Name → Res → Env → Env.

:: Eval a=Eval (Env → MaybeError String [a])
:: Env

new :: Env
tie :: Name Res Env → Env
read :: Name → Eval Res

We define the class eval for the evaluation of the types in our DSL and instances
of the monadic classes for Eval. The instances of this class are straightforward.
We only list the instance for Expr to show that we still need quite some runtime
type checking and error handling despite the strong typing of the host language.

class eval a :: a → Eval Res

instance eval Expr where
eval expr=case expr of
Var name=read name
Num real=pure (RealResult real)
Distance x y=eval x>>=λa. eval y>>=λb.pure (RealResult (distance a b))
Add x y=eval x>>=λa. eval y>>=λb.case (a, b) of

(RealResult v, RealResult w)=pure (RealResult (v + w))
_=fail "Add needs two real arguments"

Name e=eval e>>=λa.case a of
ShipResult s=pure (StringResult s.Ship.name)
PortResult s=pure (StringResult s.Port.name)
ParkResult s=pure (StringResult s.Park.name)
_=fail "Name: this has no name"

Gen g=eval g

2.2 Evaluation of the ADT Approach

This Section shows that the iTask system is very suited to make editors for an
ADT based input language. We just have to define the appropriate datatypes
and the generic machinery for the iTask system derives the required machinery.
However, the ADT has approach also has several significant drawbacks.

– The type expression allows instances that are correct in the host language but
must be considered as a type error in our DSL. For instance, we can check if

50 P. Koopman et al.

42.0 is less than some ship s, compute the distance between a number and a
name, and so one.

– We can introduce specific types for types of sub-expressions, like Cond for
Boolean expressions. Our simple example shows that this limits overloading,
there is no equality for Boolean expressions. When we would introduce special
types for all type in the DSL we would need N equalities for a language with
N types and even O(N2) variants of the distance operator. This does not
scale to serious examples.

– There is no check on the identifiers in the DSL. Any string represents an
identifier of an arbitrary type. The host language cannot check if the identifier
is properly defined nor if it as the correct type. Here the allowed types for
identifiers are Ship, Port and Park.

We can define a type checker for DSL expression but that will only run at the
same time as the evaluator. After the user has defined a complete DSL expres-
sion the system can indicate that it contains an error. We highly prefer a system
that prevents errors while an expression is constructed over a version that indi-
cates the mistakes afterwards. Fortunately, several approaches are well known
in the functional DSL community. For instance, we can add type information,
use GADTs or use function types in a shallow embedding. All of these tech-
niques have in common that it requires features that cannot be handled by
the generic system. Hence, we cannot derive iTask based web-editors for these
approaches. Typical examples of constructs that prevent generic derivation are
phantom types, extensionally quantified variables, class constraints and func-
tions [10]. We introduce dynamic editors as a solution. They can be used to
make type-safe editors for all listed methods to create type-safe DSLs.

3 Dynamic Editors

The generic generation of web-editors for datatypes is quite nice. However, it
cannot yield the amount of control we need in our DSL representing a some-
what complex input language. The expressions are well-typed instances of the
ADT, but the DSL is often more strict. In this section, we introduce a concise
declarative way to specify editors that do yield the amount of control required.
The dynamic editor will display a drop-down menu. The items in this menu are
specified by labelled functions. The label specifies the name displayed as well
as the tag used in the internal representation. The function specifies the pro-
duction rule for this edit clause. The editor is used recursively to generate the
arguments for the function in the chosen edit element. Although all edit options
are specified in a single list, the dynamic editor will display only those options
that produce a type that fits the required type in the given context.

We will explain this in more detail using a simple example. It contains integer
values and Peano numbers defined as :: Num=Zero | Succ Num. The operations
for Num are implemented in the well-known way. Our editors have addition and
equality of both types of numbers as edit clauses.

Dynamic Editors For Well-Typed Expressions 51

A dynamic editor is a list of groups. The name of the group is displayed as
a separator in the drop-down menu show dynamically. Each group consists of
dynamic editor elements de, or constant editor elements ce1

exprEditor :: DynamicEditor a | TC a
exprEditor=DynamicEditor
[DynamicConsGroup "Functions"
[de "+ Int" (dynamic (+) :: Int Int → Int)
, de "- Int" (dynamic (-) :: Int Int → Int)
, de "== Int" (dynamic (==) :: Int Int → Bool)
]

, DynamicConsGroup "Peano"
[de "Succ" (dynamic Succ)
, de "Zero" (dynamic Zero)
, de "+ Num" (dynamic (+) :: Num Num → Num)
, de "== Num" (dynamic (==) :: Num Num → Bool)
, de "mixed" (dynamic\n i→toInt n == i :: Num Int → Bool)
]

, DynamicConsGroup "Basic Editors"
[ce "Int value" intEditor
, ce "Bool value" boolEditor
]

]

To make such an editor definition well-typed we have to pack the functions
specifying the edit clauses in adynamic [13]. These dynamics are all of typeDynamic.
A program can check the type stored in a dynamic by a pattern match. If the
actual value of the Dynamic matches the specified type, we can extract its value.
This ensures that a program using dynamics is statically still well-typed.

This is illustrated by the function match. It checks whether the given dynamic
has a type that matches the type a of the given argument. The class constraint
TC a guarantees that elements of type a can be stored and retrieved from a
dynamic. Alternative one checks if the type is equal to the given type. The
caret symbol ^ is used as the suffix of a type pattern variable a in a dynamic
pattern match to indicate that an overloaded type variable is used, instead of a
type pattern variable of the dynamic. The next line matches any function in the
dynamic. If there is such a function f, we give it an argument undef and call match
recursively. In this way, we can handle functions with an arbitrary number of
arguments. The dynamic does not match in all other situations. Dynamic editors
use such an algorithm to determine which alternatives should be displayed.

1 Actually these elements are abbreviations of slightly more general items in the
library. The items in the library allow different tags and names displayed. This can
be convenient, but it is more verbose and we do not need this additional flexibility
here.

de name dyn=functionConsDyn name name dyn
ce name edt=customEditorCons name name edt

52 P. Koopman et al.

match :: a Dynamic → Bool | TC a
match _ (x::â)=True
match a (f::b→c)=match a (dynamic f undef)
match _ _=False

The type of exprEditor shows that this editor can yield values of any type a. The
context determines the resulting type. We assume that the context requires Bool
in our example. This implies that only the alternatives labelled == Int, == Num,
mixed and Bool valuematch the required type. Only those alternatives will be dis-
played to the user. Suppose that our user selects the alternativemixed. This needs
two arguments; the first has type Num and the second type Int. These arguments
can be constructed in an arbitrary order. Our editor is used recursively for those
arguments and again displays only the alternatives matching the required type.
Figure 2 shows some screenshots of this editor in action2. The pictures show
that the editor displays only the applicable alternatives in each situation. This
keeps the drop-down menu as short as possible and ensures that the user cannot
construct ill-typed values.

Fig. 2. Screenshots of our first dynamic editor. The appearance can be improved by
style sheets.

The basic editors defined in the last group of this example are the generic
editors for integers and Booleans. They use the basic generic editor gEditor.
2 We used some CCS annotations to obtain horizontal layout and grey boxes to group

elements. Since we focus on correctness we do not discuss this fine-tuning of editors
in this paper. We show the default layout offered by the system and do not spent
any effort in beautifying its appearance. For real-world application polishing the
interface is important.

Dynamic Editors For Well-Typed Expressions 53

intEditor :: Editor Int (?Int)
intEditor=gEditor{|�|} EditValue

boolEditor :: Editor Bool (?Bool)
boolEditor=gEditor{|�|} EditValue
When we derive the class iTask for Num we can also make such an editor for this
type. This can replace the dynamic editor alternatives labelled Succ and Zero in
the editor above or they can be used in combination.

3.1 Using Dynamic Editors

Dynamic editors can be used like other editors in the iTask system. In the edit
options of the editor we just have to indicate that we want our newly defined
dynamic editor instead of the generic version. The function editor show how our
last dynamic editor is used in an edit task.

editor :: Task (DynamicEditorValue (Expr a)) | iTask a
editor=enterInformation [EnterUsing id (dynamicEditorexprEditor)]

In the same way, we can define tasks to update a given value and to update
information stored in a shared data source.

The example above shows that dynamic editors can handle datatypes, likeNum,
as well as operators, like + and ==, and other functions, likemixed. These functions
and operators are not immediately reduced but handled like constructors in a
datatype. This allows the user to observe and change the expression before it is
evaluated. The dynamic editor produces aDynamicEditorValue a. This is a Rose tree
like structure where the tags of the dynamic edit elements are stored. Ordinary
iTask editors are JSON encoded in this tree, this encoding is also used in the
ordinary iTask editors.

The implementation of dynamic editors creates a drop-down menu with the
matching edit alternatives using the low-level iTask web-primitives. This ensures
that the dynamic editor has the same look and feel as the rest of the iTask
system. Just like the rest of the iTask system its appearance can be tuned by
custom made cascading style sheets, see www.w3.org/Style/CSS/Overview.en.
html.

3.2 Using the Value of a Dynamic Editor

The function valueOf transforms a DynamicEditorValue a to a maybe value a given
the editor and the tree. This is done by applying the functions indicated by the
tags of the dynamic editor. It will only return nothing if the current editor value
is Undefined.

valueOf :: (DynamicEditor a) (DynamicEditorValue a) → ?a | TC a

The selection of functions based on the tags in the DynamicEditorValue explains
why these tags must be unique. The editor checks the uniqueness of the tags in
the editor.

www.w3.org/Style/CSS/Overview.en.html
www.w3.org/Style/CSS/Overview.en.html

54 P. Koopman et al.

3.3 Overloading in Dynamic Editors

In the editor above we use two instances of the equality operator == in similar
dynamic edit clauses. One for type Int and one for Num.

, de "== Int" (dynamic (==) :: Int Int → Bool)
, de "== Num" (dynamic (==) :: Num Num → Bool)

It might look attractive to replace those clauses with a single overloaded version.

, de "== dyn" (dynamic (==) :: ∀ t: t t → Bool | == t)

This formulation is accepted by the compiler, but it is not as pleasant as it
looks. The overloading of the equality operator cannot be solved in this situa-
tion. This implies that the compiler adds an additional runtime argument to this
equality function. This dictionary will contain at runtime the correct equality
for the actual type. The dynamic system will see this dictionary as an addi-
tional argument of the == dyn editor and generate an edit field for it. Since these
dictionaries are not first-class language elements, it is not possible to make the
required dynamic editor alternatives.

A workaround is to define the required equality manually and apply it explic-
itly. We store the comparison operators in a datatype:: Comp t=Comp (t t→Bool)3.
Appropriate dynamic edit alternatives are:

, de "== cmp" (dynamicλ (Comp f).f :: ∀ t: (Comp t) t t → Bool)
, de "Eq Int" (dynamic Comp (==) :: Comp Int)
, de "LE Int" (dynamic Comp (<) :: Comp Int)
, de "Eq Num" (dynamic Comp (==) :: Comp Num)

Note that we do not need a class constraint here.
This works correctly but has unpleasant behaviour. Argument two and three

of the == cmp have type t. This implies that any alternative of the editor will
be available, for serious editors this will be a long list of options. Only when
values are supplied for at least two of the arguments the dynamic editor can
do the unification to check that the types t are equal. The dynamic editor will
indicate a unification error, but this can only be done after the error has been
made. We want to prevent the possibility to make type errors and show only the
appropriate edit options to the user. Hence, we highly prefer the monomorphic
edit options == Int and == Num.

The higher-order compare function can be very useful to make the editor
more flexible. Assume that we have also a less than operator for integers in our
system. We can define this in the same style as the == Int. when the user-created
large arguments for the equality operator and changes her mind she will replace
the == Int with < Int and has to create the arguments again.

We can allow the change of comparator by defining an editor alternative
Comp Int.

, de "Comp Int" (dynamicλ (Comp f).f :: (Comp Int) Int Int → Bool)

3 Without such a datatype the dynamic editor will go into the recursion to make editors
for the arguments of the comparison function.

Dynamic Editors For Well-Typed Expressions 55

All arguments have monomorphic types. Hence, no class constraints are needed
and the dynamic editor shows only the correct options to the user. However,
when the user wants to change the operator, this can be done without touching
the arguments. We have gained flexibility in the use of the editor. It is easy
to see that a similar approach can be used for binary operators like addition,
subtraction and multiplication.

3.4 Extendable Expressions

The inputs provided by the domain experts will vary over time. Typically there
is some trial and error in the creation of these inputs. The operator of our
ships query program formulates a query and looks at the result. Based on these
observations the query is fine-tuned by the user to improve the results. It is
convenient when the user can reuse as much as possible of the existing query to
update it to the new one. By storing the input in a shared data source the user
can simultaneously edit the input and observe the result like we did in our first
edit task in Sect. 2.

The selectable comparison operators introduced above make expressions more
flexible. The design of operations like Flag also contribute to the flexibility of
inputs. It is always easy to add or remove a few elements to the list of countries
used in these conditions. Nevertheless, users of DSL-editors created with our
dynamic editors report that they have to recreate sub-expressions too often
because they have forgotten some detail. Examples are adding a small constant,
multiplying a number by 2, or adding a condition like the kind of vessel. This is
just a new instance a well-known problem in structured editors; these editors help
users to create correct expressions. The price to be paid is that it is not possible
to update nodes in the tree while preserving the existing sub-expressions.

With the addition of a datatype, we can make editors that can handle these
kinds of changes while the sub-expressions constructed so far are untouched. To
illustrate this approach we make a very simple expression type4.

:: Expr a= ∃ b: Binop (b→b→a) (Expr b) (Expr b) | Lit a

We use the type BinOp in the editor to hold the operations in this language. It is a
small generalisation of the type Comp used above. The constructor is needed again
to prevent that the dynamic editor starts creating arguments for this function.

:: BinOp a b=BinOp (a→a→b)

For the extensions, we define a datatype Ext. It contains the operator to apply
and its right-hand argument as parameters. The type synonym BinOpExt is a
convenient abbreviation for the type that needs an operator, two arguments
and a list of extensions. The function binOp folds such a BinOpExt to a regular
expression.

4 For pretty-printing of the expressions it might be necessary to add the name of the
operation. We omit it to keep the example as small as possible.

56 P. Koopman et al.

:: Ext b=Ext (BinOp b b) (Expr b)
:: BinOpExt a b :==(BinOp a b) (Expr a) (Expr a) [Ext b] → Expr b

binOp :: (BinOp a b) (Expr a) (Expr a) [Ext b] → Expr b
binOp (BinOp f) a b l=foldr (λ (Ext (BinOp g) c) d.Oper g d c) (Oper f a b) l

Note that the expression type is not changed to incorporate these extensions.
We can of course add them to the type Expr, but there is no need. We prefer to
keep the expressions simple and just add these feature to the dynamic editor.

Using these tools we can define an extendable dynamic editor. The group
Functions contains generators for the various binary operations in our expres-
sions. Like above we have made separate clauses for the various types. The group
Operations contains the operations in our language. They are used in binary oper-
ations as well as in their extensions. The group Lists contains the editors for
the various expressions. Finally, there are editors specified for the literals in our
expressions.

exprEditor2 :: DynamicEditor (Expr t) | TC t
exprEditor2=DynamicEditor
[DynamicConsGroup "Functions"
[de "Logic" (dynamic binOp :: BinOpExt Bool Bool)
, de "Arith" (dynamic binOp :: BinOpExt Real Real)
, de "Comparison" (dynamic binOp :: BinOpExt Real Bool)
, de "Ext" (dynamic Ext :: ∀ b: (BinOp b b) (Expr b) → Ext b)
]

, DynamicConsGroup "Operations" // Add other operations by need
[de "add" (dynamic BinOp (+) :: BinOp Real Real) <<@ UseAsDefault
, de "multiply" (dynamic BinOp (*) :: BinOp Real Real)
, de "smaller" (dynamic BinOp (<) :: BinOp Real Bool) <<@ UseAsDefault
, de "equal real" (dynamic BinOp (==) :: BinOp Real Bool)
, de "equal bool" (dynamic BinOp (==) :: BinOp Bool Bool)
, de "and" (dynamic BinOp (&&) :: BinOp Bool Bool) <<@ UseAsDefault
, de "or" (dynamic BinOp (||) :: BinOp Bool Bool)
]

, DynamicConsGroup "Lists" // to make lists of extensions
[lc "Ext bool" idExtBool <<@ HideIfOnlyChoice
, lc "Ext real" idExtReal <<@ HideIfOnlyChoice
]

, DynamicConsGroup "Basic Editors"
[ce "Real value" realLitEditor
, ce "Bool value" boolLitEditor
]

]

Figure 3 shows snapshots of this editor is use. The topmost editor contains the
expressions 7 + 14 == 42 without any extensions. The circles labelled + are the
placeholders for the list of extensions. At the bottom an extension is added
to become (7 + 14) * 2 == 42. It is of course possible to make the expression
7 + (14 * 2) == 42. This does not require extensions, just replace the real value 14
with the appropriate multiplication. Here we do not add extensions to literals,
but this can be done similarly.

Dynamic Editors For Well-Typed Expressions 57

Fig. 3. The extendable dynamic editor in use. At the bottom we have added * 2

4 Properly Defined DSL Identifiers

In the previous section, we showed how to make web-editors in iTask that cannot
be derived by the generic system. The remaining problem to make only correct
DSL expressions identified in Sect. 2 is properly defined identifiers. When we
define variables by a construct like Var String, they can have any type and every
string serves as an identifier name. We can solve both problems by selecting
typed identifiers from a given collection instead of using arbitrary strings as a
name.

Such a collection can be defined by a State. This is a list of bindings. Each
binding is a record with a name idnt and a value. To represent identifiers of
different types in the state we have to store these values as a Dynamic.

:: Bind a= {idnt :: String, val :: a}
:: State:==[Bind Dynamic]

58 P. Koopman et al.

All we have to do next is parametrizing the dynamic editor with the current
state and generate an edit element for each binding in the state. The type E is a
very simple GADT with explicit type conversions as introduced by Hinze [5]5

:: E a
=Add (BM a Real) (E Real) (E Real)
| And (BM a Bool) (E Bool) (E Bool)
| Eq (BM a Bool) (E Real) (E Real)
| Lit a
| Var String

:: BM a b= {ab :: a → b, ba :: b → a}

Since the bimap recordBM contains functions we cannot derive generic web-editors
for it. The function exprEditor defines a dynamic editor for it.
exprEditor :: DynamicEditor (E t)
exprEditor=DynamicEditor
[DynamicConsGroup "Operators"
[de "Add" (dynamic Add bm :: (E Real) (E Real) → E Real)
, de "And" (dynamic And bm :: (E Bool) (E Bool) → E Bool)
, de "Eq" (dynamic Eq bm :: (E Real) (E Real) → E Bool)
]

, DynamicConsGroup "Identifiers"
[de idnt (dynamic (Var idnt) :: E t) \\ {idnt,val=x::t}←state]

, DynamicConsGroup "Basic Editors"
[ce "Real value" realLitEditor
, ce "Bool value" boolLitEditor
]

]

The important point here is that we do not add a clause that turns variable names
into identifiers in our expression of type E a. The group Identifiers generates the
identifiers from the state. We can use this editor just like the previous dynamic
editors. Here this state is fixed, but using a parametrisedDynamicEditorwe can also
take this function from a dynamically changing shared data source. Our dynamic
editor should have type State → DynamicEditor (E t).

Note that we have to specify types for Add, And and Eq. The Clean compiler is
not able to derive those types.

The previous section shows how to define web-editors that cannot be derived
by the generic system. This section reveals how we can guarantee that only prop-
erly typed and existing identifiers are used. The combination of these techniques
can create type-safe editors for our DSLs. In the next sections, we show how we
can use dynamic editors to make type-safe web-editors for ship queries in various
representations of the DSL.
5 If Clean would have a GADT extension like Haskell this type could be specified as:

:: E a
=Add :: (E Real) (E Real) → E Real
| And :: (E Bool) (E Bool) → E Bool
| Eq :: (E Real) (E Real) → E Bool
| Lit :: a → E a
| Var :: String → E a

Dynamic Editors For Well-Typed Expressions 59

5 Ensuring Type Safety by Phantom Types

The simplest approach to make a type-safe version of our DSL is to reuse the
same simple DSL form Sect. 2. Only during editing, we use additional type tags
to indicate the type we think that the expression should represent. For this
purpose, we define a general type Tagged a b. Here a is the actual type, in our
application Expr, and b is the type that should be stored in that expression. Since
the phantom type b distinguishes Boolean expressions from other expressions
there is no need for separate types Cond and Expr. By unifying those types the
problem that we cannot represent equality for Boolean expressions disappears6.
:: Tagged a b=: Tagged a

:: Gen
=Ship Name Gen | WindPark Name Gen | Port Name Gen
| Cond Expr Gen | Ret Expr

:: Expr
=Eq Expr Expr | And Expr Expr | Add Expr Expr
| Flag Expr [Country] | Var Name | Real Real
| Distance Expr Expr | Position Expr

The make the definition of the dynamic editor more concise we introduce some
helper functions to handle the tags and a type abbreviation.
T f (Tagged x) =Tagged (f x)
Tx f (Tagged x) y =Tagged (f x y)
TT f (Tagged x) (Tagged y)=Tagged (f x y)

:: TExpr a :==Tagged Expr a

With these tools, the dynamic editor for tagged expressions is quite concise7. We
typically need a single line for each alternative. Just as in Sect. 4 we obtain the
names of objects from a state. The group Names generate these names as tagged
strings. The group Identifiers make the tagged expressions with names for the
state. The generators themselves obtain no tags since we allow any type there.
The group Know Ports generates the position of all ports known as a convenient
shortcut for the user. Without this shortcut, the user needs to introduce a port
variable and adds a condition that limits the name of the port to the desired
port. The group Expressions contains some interesting expression elements, the
full list is too long to include here.
exprEditor :: State → DynamicEditor Gen
exprEditor state=DynamicEditor
[DynamicConsGroup "Generators"
[de "Ship" (dynamicλ (Tagged name).Ship name :: (Tagged String Ship) Gen→sGen)
,de "Cond" (dynamicλ (Tagged expr).Cond expr :: (TExpr Bool) Gen → Gen)
,de "Return" (dynamicλ (Tagged e).Ret e :: ∀ a:(TExpr a) → Gen)
]

6 We have dropped operators with similar types to the listed constructors to safe
space.

7 Due to space limitations we list only the interesting clauses here. Alternatives that
are very similar to the one listed here are omitted.

60 P. Koopman et al.

,DynamicConsGroup "Identifiers"
[de ("Var " + idnt) (dynamic (Tagged (Var idnt)) :: TExpr t)
\\ {idnt,val=x::t}←state]

,DynamicConsGroup "Names"
[de ("Name " + idnt) (dynamic (Tagged idnt) :: Tagged String t)
\\ {idnt,val=x::t}←state]

,DynamicConsGroup "Known Ports"
[de ("Port "+p.Port.name) (dynamic Tagged (Position (Lit p)) :: TExpr Position)
\\ p←ports]

,DynamicConsGroup "Expressions"
[de "Less" (dynamic TT LE :: (TExpr Real) (TExpr Real) → TExpr Bool)
,de "Eq" (dynamic TT Eq :: ∀ a: (TExpr a) (TExpr a) → TExpr Bool)
,de "And" (dynamic TT And :: (TExpr Bool) (TExpr Bool) → TExpr Bool)
,de "Not" (dynamic T Not :: (TExpr Bool) → TExpr Bool)
,de "Has flag" (dynamic Tx Flag :: (TExpr Ship) [Country] → TExpr Bool)
,de "Number" (dynamicλx.Tagged (Real x) :: Real → TExpr Real)
,de "Distance" (dynamic TT Distance::(TExpr Position)(TExpr Position)→TExpr Real)
,de "Ship pos" (dynamic T Position :: (TExpr Ship) → TExpr Position)
,de "Port pos" (dynamic T Position :: (TExpr Port) → TExpr Position)
,de "Name ship" (dynamic T Name :: (TExpr Ship) → TExpr String)
,de "Name park" (dynamic T Name :: (TExpr Park) → TExpr String)
]

// Editors for basic types are equal to the other editor examples.

Note that the alternative for Eq is completely overloaded. Since we have only a
fixed number of types in our DSL there is no need for a class constraint. The
types of both arguments are unified at runtime. The user can make a type error
which will be indicated as soon as it is present. The editor does not yield a result
until this error is corrected.

The case for Distance uses the new type Position to avoid a long list of cases
that enumerate all possible combinations here. With positions of ships, parks
and ports and fixed positions we would need 16 editor alternatives otherwise.

These datatypes in our DSL are very similar to the DSL used in Sect. 2. The
evaluator has an identical structure. Based on the datatype alone it has to cope
with possible type errors. When we construct instances of the DSL with the
editor above, type errors should not occur. The tags ensure that only well-typed
instances are created.

The only remaining problem is that the user can select a properly typed
identifier that is not introduced by the associated generator in the query. If we
assume that using this variable is intentional we can easily fix the problem. We
just scan the current expression for variables that occur in the state and do
not have the associated generator. It is a simple transformation of the input
expression to add the missing generators. The user will soon discover that it is
not necessary to write the generators and rely on this automatic introduction of
variables from the state.

6 Generalized Algebraic Data Types

Generalized Algebraic Data Types are a way to exploit the provided type-
information such that we do not have to pack all results into a single result

Dynamic Editors For Well-Typed Expressions 61

type [9,18]. We base our GADT representation on the extendable expressions
from Sect. 3.4. The only thing we have to add are the types for our ship expres-
sions and special operations like Distance, FlagIn and Kind. The following Expr

implements such a GADT. Note that we use a position argument PosArg to limit
the number of cases we have to write in de dynamic editor. It can be used for
position editors, as well as any object that has a position, e.g. Ship, Port or Park.

:: Expr a
=Not (BM a Bool) (Expr Bool)
| ∃ b: OneOf (BM a Bool) (b b→Bool) (Expr b) [b]
| ∃ b: Oper (b b→a) (Expr b) (Expr b)
| Flag (BM a Country) (Expr Ship)
| ∃ b: Name (BM a Name) (Expr b) & type, name b
| Var Name & TC a
| Lit a & type a
| Distance (BM a Real) PosArg PosArg

:: PosArg= ∃ a: PosArg (Expr a) & toPosition a

We define the interesting cases of the corresponding dynamic editor in the same
style. We define a special manipulation function for the single argument operator
Not. The same holds for the OneOf expressions to check the flag or kind of a ship.

, DynamicConsGroup "Expressions"
[de "Not" (dynamic expOp o Not bm)
, de "Comp Real" (dynamic binOp :: BinOpExt Real Bool)
, de "Comp String" (dynamic binOp :: BinOpExt String Bool)
, de "Logic" (dynamic binOp :: BinOpExt Bool Bool)
, de "Arith" (dynamic binOp :: BinOpExt Real Real)
, de "Flag in" (dynamicλx y.expOp (OneOf bm (==) x y)

:: (Expr Country) [Country] [Ext Bool] → Expr Bool)
, de "Distance" (dynamic Distance bm)
, de "Ship pos" (dynamic PosArg :: (Expr Ship) → PosArg)
, de "Port pos" (dynamic PosArg :: (Expr Port) → PosArg)
, de "Flag" (dynamic Flag bm)
, de "Ext" (dynamic Ext :: ∀ b: (BinOp b b) (Expr b) → Ext b)
]

Due to the nature of GADTs, the evaluator knows what the type of all expressions
is and does not need a result type to pack all possible results. The type system
guarantees that runtime type errors cannot occur. This makes the evaluator
much simpler.

However, there are also some small drawbacks to this approach. Since expres-
sions can now take any type a as an argument we need some additional code to
ensure that things will be evaluated properly. This is reflected for instance in
the fact that we now need a separate compare for reals and one for Booleans.
The type PosArg needs a type constraint in order to ensure that we can apply the
function toPosition to the arguments. In most situations, these small things are
outweighed by the advantages of the GADT.

Since this produces a data type we can apply a similar DSL transformation
to add missing generators for ships, ports and wind-parks.

62 P. Koopman et al.

7 Shallow Embedding

A shallow embedded DSL represents the language constructs by functions in
the host language. This is efficient since there is no construction of intermediate
datatypes. These functions are limited to a single interpretation of the DSL.
Language transformations, like the introduction of generators for used variables,
are impossible. This makes this representation less suited for our running exam-
ple. Nevertheless, we show the main part of the implementation to illustrate the
possibilities of our dynamic editors.

The DSL directly calls the implementation clauses from the evaluator of the
GADT representation in Sect. 6. In its turn, this is a stronger typed version of
the evaluator in Sect. 2. Like always, we need some constructors to prevent the
dynamic editor from making editors for the arguments of higher-order functions
and to distinguish types. The constructor Eval used for the Monadic types in
the evaluator prevents the dynamic editing system from generating too much
argument editors. We define a type synonym and some convenience functions to
make the edit cases one-liners. The interesting part of the dynamic editor for
our shallow embedded DSL for ships becomes:

:: Gen:==Eval Res
:: VarName a=VarName String

binOp o x y=fmap o x<*>y
newId list (VarName name) e=gen name list e
rturn tag g= g>>=λs.pure $ tag s
cond c gen= c>>=λb. guard b>> | gen
oneOf f e l= e>>=λs.pure (isMember (f s) l)

exprEditor :: State → DynamicEditor Gen
exprEditor state=DynamicEditor
[DynamicConsGroup "Generators"
[de "Ship" (dynamic newId ships :: (VarName Ship) Gen → Gen)
, de "Port" (dynamic newId ports :: (VarName Port) Gen → Gen)
, de "Return Ship" (dynamic rturn ShipResult :: (Eval Ship) → Gen)
, de "Return name" (dynamic rturn StringResult :: (Eval String) → Gen)
, de "Condition" (dynamic cond :: (Eval Bool) Gen → Gen)
]

, DynamicConsGroup "Expressions"
[de "Less" (dynamic binOp (<) :: (Eval Real) (Eval Real) → Eval Bool)
, de "Eq real" (dynamic binOp (==) :: (Eval Real) (Eval Real) → Eval Bool)
, de "Eq position" (dynamic binOp (==) :: (Eval Pos) (Eval Pos) → Eval Bool)
, de "And" (dynamic binOp (&&) :: (Eval Bool) (Eval Bool) → Eval Bool)
, de "Not" (dynamic fmap not :: (Eval Bool) → Eval Bool)
, de "Has flag" (dynamic oneOf (λs.s.flag) :: (Eval Ship) [Flag] → Eval Bool)
, de "Has kind" (dynamic oneOf (λs.s.kind) :: (Eval Ship) [Kind] → Eval Bool)
, de "Distance" (dynamic binOp distance :: (Eval Pos) (Eval Pos) → Eval Real)
, de "Position ship" (dynamic fmap toPosition :: (Eval Ship) → Eval Pos)
, de "Position port" (dynamic fmap toPosition :: (Eval Port) → Eval Pos)
]

// Basic editors and lists similar to previous examples

Dynamic Editors For Well-Typed Expressions 63

This dynamic editor works just as fine as the previous editors. Whenever desired
we can build additional flexibility in the editor like we did before. Since the
domain expert has to introduce each quantifier explicitly this version is less
convenient for this user. Of course, we can implicitly introduce quantification
over every variable in the state, but this has a runtime penalty. If there are S
ships in the system and we introduce N unused ship identifiers the execution
time will increase by a factor O(SN).

8 Related Work

There is a plethora of ways to create web-pages is various programming languages
these days. See [7] for an up-to-date overview of Haskell based systems. Yesod
[19], Happstack [20] and Servant [11] aim to make type-safe web-pages. In those
tools one defines web-pages by their elements and associated handlers. With
dynamic editors the programmer specifies DSL constructs and the corresponding
web-pages are generated. In our opinion this yields a higher level of abstraction
and a more declarative and convenient approach for programmers.

The low-code approach aims to develop complete applications interactively
[22]. This name was coined by Richardson [16]. Gartner calls this the Magic
Square [21]. Although the aims and techniques of these approaches have simi-
larities with our goals, there is also an important difference. We want to provide
structured input for a running program instead of creating entire programs by
a low-code editor. In the low-code approach, the input is typically composed
by drag and drop while we use drop-down menus. The drag and drop approach
seems more flexible, but Sect. 3.4 shows how one can insert new subexpressions
in the existing input is such a way that all the input remains well-typed. With
drag and drop it is much easier to make incorrect inputs.

The Hazel system tries to achieve a similar goal for text-based editors [12].
The typed holes of Hazel correspond with the typed recursive calls of our
dynamic editor. The problem of unsolved overloading in the editor is handled
similarly; the user of the system indicates the type required. The Hazel system
has a very limited number of example languages, while the dynamic editors offer
a frame work that is easy to use for new DSLs.

The LRC system was could create spreadsheet like editors based on attribute
grammars [17]. The generated editors were more basic since it was in the early
days of the web development.

9 Conclusion

Domain experts need the guidance of an editor to create complex well-typed
inputs for their programs. In this paper, we investigate how we can create web-
editors for this situation in an easy way. For plain first-order datatypes the
generic mechanism of the iTask system can derive those editors automatically
using datatype-generic programming. This is a very powerful technique since

64 P. Koopman et al.

the programmer only has to define appropriate datatypes. The associated web-
editors guarantee that only proper instances of those type can be made by the
end-user and are obtained for free. The generic mechanism is limited to datatypes
without functions, phantom types, existentially quantified variables.

For more advanced input languages the datatypes that can be handled by
the generic system do not offer enough control. For instance, there is either no
overloading in the input DSL or it is not type-safe. Also, the proper binding and
type of user-defined identifiers in the DSL cannot be guaranteed. It is well-known
how to handle such DSLs safely in functional programs. Common solutions are
adding additional type information in phantom types, GADTs or in the func-
tions of a shallow embedding. Unfortunately, the datatype generic system is not
capable to handle any of those features.

For context sensitive restrictions like the selection of well-typed identifiers
of given type even the known type systems are insufficient. The same holds for
selecting known objects, like a ship or port from the current context. The static
type systems of strongly typed languages like Clean has no knowledge about the
existing objects at runtime.

The only option is to define the web-editors by hand. In this paper, we
introduce dynamic editors that can handle all of the required features to make
the input DSL type-safe. In such a dynamic editor the programmer specifies the
drop-down menu of the editor by a list of dynamic edit elements. Each element
contains a label shown to the user and a function controlling its behaviour. In
any situation, the system only reveals the options that will produce a value of
the required type to the end-user. A new instance of the dynamic web-editor is
used to create the arguments of this function. The functions in those web-editor
elements are perfectly suited to model the types needed in a type-safe editor for
input DSLs.

We demonstrated how dynamic editors can be used to handle overloading,
identifiers and extendable expressions in very convenient ways. Throughout the
paper, we use a query language over ships, ports and wind-parks as a non-trivial
example. This shows the limitations of deriving editors as well as how this DSL
can be edited safely in dynamic editors with phantom types, GADTs and in a
shallow embedding. This confirms that the dynamic editor system can solve all
of the mentioned problems of standard web-editors and is a very useful extension
of the iTask system. The dynamic editors are implemented as a special form of
the default web-editors in iTask. This ensures that they can be incorporated in
any desired way with the existing system. However, the architecture of dynamic
editors is not limited to the iTask system. The implementation technique can
potentially be used to specify editors in any system.

Dynamic editors scale very well, they are used in real world applications such
as VIIA. VIIA helps guarding coasts, ports, windmill area’s on sea, offshore
platforms and the like. VIIA uses a large number of different Vessel Informa-
tion tracking streams. Its end-users can be automatically warned when certain
situations occur, for instance when a vessel is at risk (e.g. collision) or poses a

Dynamic Editors For Well-Typed Expressions 65

risk (e.g. piracy, smuggling). These risks can be formulated by dynamic queries
using the editors outlined here, see top-software.com.

Acknowledgements. Many thanks to the anonymous referees of this paper and our
colleagues from the Radboud university and TOP-software for their feedback and sup-
port during this research. The techniques described here are first applied in VIIA that
is developed in close collaboration with the Dutch Coastguard.

References

1. Achten, P., Alimarine, A., Plasmeijer, R.: When generic functions use dynamic
values. In: Peña, R., Arts, T. (eds.) IFL 2002. LNCS, vol. 2670, pp. 17–33. Springer,
Heidelberg (2001). https://doi.org/10.1007/3-540-44854-3_2

2. Achten, P., Koopman, P., Plasmeijer, R.: An introduction to task oriented program-
ming. In: Zsók, V., Horváth, Z., Csató, L. (eds.) CEFP 2013. LNCS, vol. 8606, pp.
187–245. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-15940-9_5

3. Achten, P.: Clean for Haskell98 programmers - a quick reference guide,
July 13 2007. http://www.mbsd.cs.ru.nl/publications/papers/2007/achp2007-
CleanHaskellQuickGuide.pdf

4. Alimarine, A., Plasmeijer, R.: A generic programming extension for clean. In: Arts,
T., Mohnen, M. (eds.) IFL 2001. LNCS, vol. 2312, pp. 168–185. Springer, Heidel-
berg (2002). https://doi.org/10.1007/3-540-46028-4_11

5. Cheney, J., Hinze, R.: A lightweight implementation of generics and dynamics. In:
Proceedings of the 2002 ACM SIGPLAN Haskell Workshop, June 2004

6. Gordon, A., Peyton Johnes, S.: LAMBDA: the ultimate excel worksheet function
(2021). https://www.microsoft.com/en-us/research/blog/lambda-the-ultimatae-
excel-worksheet-function/

7. HaskellWiki: Applications and libraries/GUI libraries – HaskellWiki (2019).
https://wiki.haskell.org/index.php?title=Applications_and_libraries/GUI_
libraries&oldid=63014. Accessed 6 Apr 2020

8. Hinze, R.: Memo functions, polytypically! In: Proceedings of the 2nd Workshop on
Generic Programming, Ponte de, pp. 17–32 (2000)

9. Hughes, J.: Restricted data types in Haskell. In: Proceedings of the 1999 Haskell
Workshop (1999)

10. Jones, W., Field, T., Allwood, T.: Deconstraining dsls (2012). https://doi.org/10.
1145/2364527.2364571

11. Mestanogullari, A., Hahn, S., Arni, J.K., Löh, A.: Type-level web APIs with ser-
vant: an exercise in domain-specific generic programming. In: Proceedings of the
11th ACM SIGPLAN Workshop on Generic Programming, pp. 1–12. ACM (2015)

12. Omar, C., Voysey, I., Hilton, M., Aldrich, J., Hammer, M.A.: Hazelnut: a bidi-
rectionally typed structure editor calculus. SIGPLAN Not. 52(1), 86–99 (2017).
https://doi.org/10.1145/3093333.3009900

13. Pil, M.: Dynamic types and type dependent functions. In: Hammond, K., Davie,
T., Clack, C. (eds.) IFL 1998. LNCS, vol. 1595, pp. 169–185. Springer, Heidelberg
(1999). https://doi.org/10.1007/3-540-48515-5_11

14. Plasmeijer, R., Lijnse, B., Michels, S., Achten, P., Koopman, P.: Task-oriented
programming in a pure functional language. In: Proceedings of the 14th PPDP
Symposium, pp. 195–206. ACM (2012). https://doi.org/10.1145/2370776.2370801

http://top-software.com
https://doi.org/10.1007/3-540-44854-3_2
https://doi.org/10.1007/978-3-319-15940-9_5
http://www.mbsd.cs.ru.nl/publications/papers/2007/achp2007-CleanHaskellQuickGuide.pdf
http://www.mbsd.cs.ru.nl/publications/papers/2007/achp2007-CleanHaskellQuickGuide.pdf
https://doi.org/10.1007/3-540-46028-4_11
https://www.microsoft.com/en-us/research/blog/lambda-the-ultimatae-excel-worksheet-function/
https://www.microsoft.com/en-us/research/blog/lambda-the-ultimatae-excel-worksheet-function/
https://wiki.haskell.org/index.php?title=Applications_and_libraries/GUI_libraries&oldid=63014
https://wiki.haskell.org/index.php?title=Applications_and_libraries/GUI_libraries&oldid=63014
https://doi.org/10.1145/2364527.2364571
https://doi.org/10.1145/2364527.2364571
https://doi.org/10.1145/3093333.3009900
https://doi.org/10.1007/3-540-48515-5_11
https://doi.org/10.1145/2370776.2370801

66 P. Koopman et al.

15. Plasmeijer, R., van Eekelen, M.: Clean language report (2012). https://clean.cs.ru.
nl/Documentation

16. Richardson, C., Rymer, J.R.: New development platforms emerge for customer-
facing applications (2014). www.forrester.com

17. Saraiva, J., Swierstra, D.: Generating spreadsheet-like tools from strong attribute
grammars. In: Pfenning, F., Smaragdakis, Y. (eds.) Generative Programming and
Component Engineering, pp. 307–323 (2003)

18. Schrijvers, T., Peyton Jones, S., Sulzmann, M., Vytiniotis, D.: Complete and decid-
able type inference for GADTs. In: Proceedings of the 14th ACM SIGPLAN ICFP,
ICFP 2009, pp. 341–352. ACM (2009). https://doi.org/10.1145/1596550.1596599

19. Snoyman, M.: Developing Web Apps with Haskell and Yesod. O’Reilly Media,
Sebastopol (2015)

20. team, H.: Happstack. happstack.com. Accessed 6 Apr 2020
21. Vincent, P., Lijjima, K., Driver, M., Wong, J., Natis, Y.: Magic quadrant for enter-

prise low-code application platforms (2019). www.gartner.com
22. Wikipedia contributors: Low-code development platform – Wikipedia (2020).

https://en.wikipedia.org/w/index.php?title=Low-code_development_platform&
oldid=944262991. Accessed 14 Mar 2020

https://clean.cs.ru.nl/Documentation
https://clean.cs.ru.nl/Documentation
www.forrester.com
https://doi.org/10.1145/1596550.1596599
http://happstack.com
www.gartner.com
https://en.wikipedia.org/w/index.php?title=Low-code_development_platform&oldid=944262991
https://en.wikipedia.org/w/index.php?title=Low-code_development_platform&oldid=944262991

Modelling, Translating, Proving
Functional Programs

High-Level Modelling for Typed
Functional Programming

Yusuf Moosa Motara(B)

Department of Computer Science, Rhodes University, Makhanda 6140, South Africa
y.motara@ru.ac.za

Abstract. There is currently no way to model the high-level structural
design of a functional system. Given the strong links between functional
programming and mathematics, it is hypothesised that the language of
mathematics can provide insight into how a functional system might
be modelled. The approach is successful and both philosophy and the
language of mathematics are used to identify the necessary modelling
concepts and briefly outline some modelling notation alongside a small
case study.

Keywords: Modelling · Structural modelling · Functional
programming · Type model

1 Introduction

The structural design of functional systems—i.e., those written in a func-
tional programming language, and/or obeying the conventions of the functional
paradigm—cannot be modelled: neither modelling notation nor tools exist for
this purpose. This paper contributes to addressing that research gap.

At the outset, the breadth of the research gap should be understood: there
is no standard notation to model either typed or untyped functional systems at
a high level, behaviorally or structurally. This is not to claim that no notation
whatsoever exists: on the contrary, many ad-hoc notations exist (see, for exam-
ple, the pages of [22,44], and many other such works), and different kinds of
diagrams such as UML’s Process Diagram or BPMN have been repurposed to
fit the needs of the moment. None of these notations claim to be able to model
functional systems in general, because they cannot. There remains, therefore, no
standard way to model the structure of a functional system.

This work is part of a broader effort to allow functional programs to be
modelled in an intuitive way. It focuses specifically on the structural modelling
of typed functional programs at a high level and proposes a general, standard
notation that should be applicable to all functional languages.

Computation in an object-oriented language is based on the idea that
progress is made through communication between objects, each of which col-
laborates to achieve the goal of the system. By contrast, computation in a typed

c© The Author(s) 2021
V. Zsók and J. Hughes (Eds.): TFP 2021, LNCS 12834, pp. 69–94, 2021.
https://doi.org/10.1007/978-3-030-83978-9_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-83978-9_4&domain=pdf
http://orcid.org/0000-0003-1340-260X
https://doi.org/10.1007/978-3-030-83978-9_4

70 Y. M. Motara

functional language is based on the idea that values are transformed through
pure functions, potentially resulting in a final value that is the end goal of the
system1.

There are several important features of a typed functional system which are
either difficult or impossible to model using structural UML diagrams. These
features are present in most typed functional languages. UML’s enumerations
are insufficiently powerful to represent sum types since the cases of such types are
often linked to other data; the Composite design pattern has to be used instead.
There is no good notation for modelling the functional semantics at the heart of
functional programming, including lambda functions, nested functions, higher-
order functions, partially-applied functions, composed functions, and closures.
Most importantly, every structural UML diagram implicitly or explicitly requires
some mapping of the domain to the idea of class- or object-like containers which
are not necessarily present in functional languages. This means that while UML
can be used to represent a wide range of systems, including real-world systems
that do not involve computers, it must model them primarily as entities with
relationships rather than as operations that involve entities. The underlying
problem may be that the philosophy underlying such diagrams is fundamentally
object-based [41].

The relationship between functional programming and modelling is a fun-
damentally mathematical one. This is in contrast to the relationship between
object-oriented programming and modelling, which may be described as thor-
oughly pragmatic. The dominant object-oriented modelling language, UML, was
created through a process of consensus and refinement [bezivin uml 1999] and
links to mathematics [11] or an underlying philosophy [12] have involved a great
deal of retroactive patching. By contrast, the roots of functional programming
are found in the lambda calculus [3], a mathematical description of what it means
to compute. The combination of typing (via the Hindley-Milner type system [25])
led to the development of typed functional programming based on rigorous type
theory [2].

The contributions of this work are as follows:

– A strong philosophical grounding is sought, found, and mapped between the
language of mathematics and typed functional programming;

– A set of concepts common to all typed functional programming and not tied
to any specific language are identified;

– A high-level structural modelling notation is briefly described, along with a
small case study to demonstrate applicability.

The remainder of this paper is structured as follows. Section 2 justifies the
approach used to search for a modelling solution. Section 3 discusses modelling,
and explicitly situates and scopes the work within a particular modelling context.
Section 4 looks at related work. A philosophical basis is laid out in Sect. 5 and
an exploration of mathematical language is found in Sect. 6. The philosophy and
language are combined in Sect. 7 to identify a set of concepts for modelling.

1 Event-based functional languages, such as Elm, omit the idea of a final value.

High-Level Modelling for Typed Functional Programming 71

A notation for modelling these concepts is first theoretically justified and then
proposed (Sect. 8). A short case study is presented in Sect. 9 and conclusions are
drawn in Sect. 10.

2 Approach

The majority of this paper traverses the ground of philosophy, language, math-
ematical discourse, and design—with a case study at the end. It takes time to
build bridges between these areas and explain them in sufficient detail for our
purposes. Why should such a long and winding path be taken, rather than sim-
ply finding some notation that looks usable and causes practitioners to nod their
heads?

The design of systems is ultimately a purposeful activity: every system has
some reason for existing, even if that reason is a purely exploratory one. This
design will typically follow the ways of thought that have been developed by the
designer [33], and will often be restricted by those ways of thought as well [4].
It is therefore of primary importance to ensure that system stakeholders are
encouraged to think in a way that facilitates a design which can easily be encoded
as a computer system, and which discourages ways of thinking which are difficult
to encode. Three categories of common design-related thinking are categorized
here:

1. Thinking in a problem domain. A person may think of a problem in terms
of their field of specialization, such as accounting or botany, or in terms of
some other influence, such as fishing or family discussions. The ease of trans-
lation into a computer system is dependent on the degree to which system
language(s) are able to encode the original thinking.

2. Thinking in a programming language. A developer may think of a problem
in terms that a language makes available to them. Ease of translation into
a computer system is assured, but the degree to which that system reflects
the actual problem domain will be relative to how accurately the problem
domain can be expressed in the language. A further issue is that a design of
this type may be inaccessible to stakeholders without the requisite technical
knowledge.

3. Thinking in a notation. A stakeholder—whether developer, business analyst,
or other person—may think of a problem in terms that a notation supports.
Ease of translation is into a computer system is related to the ease with which
notational semantics are translatable into computational semantics, and the
degree to which the system reflects the actual problem domain is relative to
how accurately the problem domain can be expressed in the notation [35].

Domain-specific languages may successfully be used to bridge (1) and (2) [18],
but introduce problems of their own and should therefore not be used without
due consideration [24, p. 320]. It is category (3) that is most accessible to the
widest audience, and which this paper is concerned with. However, the acces-
sibility of this category introduces problems of its own since stakeholders must

72 Y. M. Motara

use the same underlying philosophy to be able to participate in any modelling
process that uses the notation. That philosophy is, in the object-oriented world,
provided by an underlying theory of objects [40]—although the details of what
an “object” itself is have been contested [1]. Without a shared underlying phi-
losophy, it is argued that stakeholders will have difficulty conceptualizing their
ideas notationally and will become frustrated with a notation rather than using
it effectively.

An appropriate philosophical backing for modelling is important [12], and
deep concern for philosophy when proposing a high-level model is not simply
theoretical: it is rooted in our field’s history [10, p. 73]:

Most of our current ‘modelling languages’ (MLs) date back to the 1990s
and therefore claim to be ‘general purpose’—a prime example being the
Unified Modeling Language (UML) from the Object Management Group
(OMG) [9]. Although claiming to support a wide range of modelling
abstraction levels (i.e. analysis and design) in the one package, its history of
development clearly indicates that it is highly focussed towards (low-level
or detailed) design and even implementation (e.g. Java and C++-style con-
cepts are evident). Some Domain-Specific Modelling Languages (DSMLs)
show the same bias, when presented as a ‘UML Profile’.

(references in original). The core issue here is that languages currently popu-
lar should not have an outsize impact on notation that may outlive them; without
the stabilizing influence of an explicit underlying philosophy, the link between
notation and language becomes contaminated by specific language constructs.
What looks “usable” or “familiar” today is often a function of the programmer’s
experience and should not be discounted, but should not be considered as a
sufficient reason for particular notation to exist.

The link between problem domain and notation is also an area of concern.
If the notation makes it easy to model the problem domain in a way that is
unsuitable for implementation, conflict ensues [35, p. 238]:

[I]t was not just that UML contained semantic ambiguities and incon-
sistencies, but rather that the increased prominence given to particular
modelling notations had in turn placed a premium on carrying out certain
kinds of analysis and design activity. Analysts were enthusiastically adopt-
ing new approaches to conceptualising their system, eventually becoming
trapped in unproductive arguments over the objects populating the sys-
tem and the proper representation of the control structure of the system.
Designers were then refusing to implement the models produced by the
analysts, since it was often impossible to map from use case models and
sequence diagrams onto anything that a conventional software engineer
would recognise.

Once again, such issues could be mitigated with reference to some shared
underlying philosophy that guides analysis, design, and implementation.

High-Level Modelling for Typed Functional Programming 73

Finding a suitable underlying philosophy and creating a conceptual bridge to
link problem domain, language, and notation is seen as a way of avoiding some
of the difficulties that attended the birth, development, and use of UML. The
specific notation itself, as an artifact of this search, is relatively unimportant
as long as some viable notation can be demonstrated. This is not stated to
dismiss the importance of a concrete notation, but to elevate the importance
of its foundation. By analogy, one can say that any specific software system is
relatively unimportant when compared to the importance of the principles of
software design which guided its creation and the creation of thousands of other
software systems.

Furthermore, researchers with access to the underlying foundation of a nota-
tion are free to propose other notation that is based upon it, and that notation
is likely to be coherent with—or superior to—what is proposed in this paper.
Researchers are also free to critique, supplement, and revise the foundation, thus
making for a firmer foundation for future notation. However, researchers without
access to the foundation of a notation must simply guess at the philosophical
underpinnings and linkages by working backwards from the notation, leading
to unnecessary misunderstandings and unproductive competing proposals on
implicit grounds of language-preference, problem-domain utility, and so on.

3 Modelling Context

Models obtain their power through their ability to “be used in place of what they
model” [28]. This is most often a system which is part of a larger domain of inter-
est which, itself, is part of the totality of reality [11]. A useful general modelling
language should be able to model many domains of interest and, ideally, much of
reality. This aligns well with the idea of a general programming language, while
not detracting from the importance and utility of specialist modelling languages
and programming languages.

Models may be either structural or behavioural. A structural model expresses
the elements of a model that exist and the way in which elements of the model
relate to each other. A behavioural model expresses the way in which a system
accomplishes a task. This work is concerned with structural modelling only.
With that said, the term “structural” may also encompass behavioral aspects of
a functional system. This is because functional programming is declarative, and
describing the relationships between declarations also goes some way towards
expressing how a task is accomplished. Nevertheless, the distinction between
behavioural and structural is a useful one since it excludes models which focus
primarily on behaviour rather than structure.

A model may be used as either a description or a specification [28]. The
distinction is in where the truth of the system lies: in the former case, it is
with the system, and in the latter case, it is with the model. Many excellent
specification languages already exist for the functional paradigm (e.g. [15,29]),
and this work attempts to be complementary to these. It proposes, therefore,
a descriptive modelling language. This does not preclude a role similar to that

74 Y. M. Motara

of a specification since a descriptive model which is developed earlier in the
development process may be used as a prescriptive model—a loose specification,
if so desired—and can be regarded as having a more descriptive role during and
after development [28].

Following on from Stachowiak [37] as reported by Kühne [19], a model must
have the qualities of mapping, reduction, and pragmatism: it must be based
on some system (“mapping”), reflect only the relevant parts of that system
(“reduction”), and be usable in place of the original system with respect to
some purpose (“pragmatism”). Kühne simplifies both mapping and reduction
under the term “projection”, and sets out the view that abstraction may be
described through function composition [19, p. 371]:

α = τ ◦ α′ ◦ π

Model abstraction (α) consists of projection (π), some further abstraction
(α′) on elements (including relationships), and a translation τ to another
representation, i.e., the modelling language. With projection π we asso-
ciate any filtering of elements both reducing their number and individual
information content.

Given some actual system S and some notation N , with an abstract model M ,
one can think of these as having the types α : S → N , π : S → M , α′ : M → M ,
and τ : M → N .

The “further abstraction (α′)” aspect requires additional explanation: why
is it required? Kühne explains the necessity by differentiating between two kinds
of model:

– Token models are those where there is “a one-to-one correspondence
between relationships and elements in the model M and a subset of these in
system S” [19, p. 373]. Token models can therefore be used as direct represen-
tations for the actual system, and this remains true even when token models
refer to other token models, or when the “mapping” part of projection elides
or combines some of the finer details of the actual system. Token models cap-
ture the system-specific aspects of a system. A blueprint, for example, is a
token model.

– Type models are those which operate by trait-classification rather than by
replication and/or combination of a system’s elements. A trait may be iden-
tified, from an object-oriented point-of-view, with a UML interface in a class
diagram: it specifies which behaviours should be present without specifying
which specific class or properties must be used to provide those behaviours.
It therefore captures “universal aspects of a system’s elements by means of
classification” [19, p. 374] (emphasis in original).

In a token model, the α′ function is unnecessary since projection is sufficient;
there is no further abstraction and one can regard α′ as being the identity
function. In a type model, however, the α′ function serves to classify elements

High-Level Modelling for Typed Functional Programming 75

and relationships prior to translation. The proposed modelling language in this
work aims to show a high-level design-oriented view, and is therefore closer to a
type model than a token model.

Lastly, a model must have a particular intention: a reason for existing or a
purpose that it must be fit for. The intention of a model is “a mixture of require-
ments, behavior, properties, and constraints, either satisfied or maintained by
the [model]” [28, p. 350]. The intention of the proposed notation is to allow a
modeller to express the underlying design of a system in a way that is compre-
hensible to others.

In summary, a model created using the notation described in this work would
be structural; applicable to many domains of interest; descriptive; type-model
focused; and aimed at exposing a comprehensible system design.

4 Related Work

This section has been split into two subsections. The first of these considers the
applicability of mainstream modelling languages which were developed without
considering either functional programming or its mathematical basis. The second
broadens the related work to consider mathematically-oriented notations and
notations which have been specifically designed with functional languages in
mind.

4.1 Mainstream Modelling Languages

UML’s behavioural diagrams are more useful for representing the semantic struc-
ture of a functional program. The Interaction and State diagrams, in particular,
are easy to adapt for the structural modelling of simple functional systems. Inter-
action diagrams could be used to represent functions as blocks, with labeled data
going between them; conversely, State diagrams could be used to represent data
as blocks, with labeled functions joining them. These diagrams do not scale:
more complicated systems involving sum types with four or more cases quickly
become a nightmare of lines, diamonds, and boxes.

There are other diagrams which are meant to represent processes, albeit in
more limited contexts. Two of the most popular of these notations are Process
Diagrams [30] from Business Process Modeling Notation (BPMN) and Data
Flow Diagrams (DFDs). Both DFDs and Process Diagrams are behavioural
models rather than structural models: they specify the way in which data flows
between entities, rather than the relationships between entities themselves. As
behavioural diagrams for functional programming, they have some merit; for
example, the restrictions on how processes may be used at the sentence level
map admirably to the way in which functions operate [21, p. 86]:

Processes cannot consume or create data. That means the process must
have at least 1 input data flow (to avoid miracles), at least 1 output data
flow (to avoid black holes) and should have sufficient inputs to create
outputs (to avoid gray holes).

76 Y. M. Motara

Nevertheless, both DFDs and Process Diagrams make function-type inputs
or outputs difficult to represent naturally. The former is better at this than the
latter since a DFD is to be viewed in conjunction with a Data Dictionary wherein
the relevant function-type can be given a suitable name. Although this may be
adequate, it is not necessarily a good fit since function inputs and outputs are
very important and, ideally, should not be relegated to a separate document.

Fig. 1. Example of Tonic graphical notation (reproduced from [38, p. 36])

Tonic visualisations [38], inspired by BPMN and developed as the comple-
ment of GiN [13], are a specific adaptation that targets task-oriented program-
ming (see Fig. 1) and are suitable for expressing aspects of functional program-
ming.

4.2 Functional Programming and Modelling

Due to its mathematical roots, functional programmers have tended to use
mathematics as the most intuitive and general modelling tool at their disposal.
Category theory [23] provides a visual way to represent and reason about arrows
and objects which are analogous to functions and types in a typed functional
programming language. However, this visualisation is suitable only for consider-
ing functions and types, and there is no obvious way to extend its scope. Figure 2
demonstrates this by reproducing a representative figure from [23, p. 16]. It suc-
cinctly defines what a natural transformation τ : S

.−→ T looks like by relating
the categories S and T , but its ability to describe the domain itself has not been
tested. The most promising works in this direction are likely [6] and [36] which
try to make category theory accessible to others, enabling them to “think in cat-
egories” in the same way that budding programmers are encouraged to “think
in objects”. While this is certainly a worthwhile goal, it nevertheless keeps func-
tional programming opaque to those who have not been taught to think in such a
way. Modelling is a complementary way to improve the accessibility of functional
programming.

Motara [27] suggests a novel way to use string diagrams [34] to represent
lower-level function manipulation. Their work focuses on behavioral modelling
and the syntax and semantics are not applicable to structural modelling. Other

High-Level Modelling for Typed Functional Programming 77

Fig. 2. Modelling in category theory

works which use string diagrams are [14] and [34] where they are used to increase
the accessibility of category-theoretical manipulations in a novel way. An alter-
native graphical approach is taken by Eklund [5] in a paper which is focused
on understanding monadic composition. Once again, however, all these cannot
readily be extended to the modelling that is desired in this work.

Type-driven development and domain-driven design, as exemplified by [8,44]
for functional languages, model within a programming language. They prag-
matically take advantage of type systems to explicate a domain, creating small
domain-specific languages that map naturally to the domain that is being mod-
eled. While this style of modelling is successful, there is no common notation
for it and it is sometimes only accessible to developers rather than a broader
audience (see, for example, Chapter 4 of [8]).

5 Philosophical Underpinnings

A late-Wittgensteinian [43] language-centric approach will be taken as a philo-
sophical basis. This approach was selected based on Wittgenstein’s language-
centric and context-dependent view of problems and philosophy. This view, it
could be argued, is a good fit for the functional paradigm since functional designs
often strongly emphasise language use: see, for example, [9,16,32]. Furthermore,
Wittgenstein’s later philosophy is well-regarded in philosophical circles [20] and
has the benefit of having been examined and analysed for over half a century.
Such a philosophical foundation is more likely to be stable than one which is
created ad-hoc for a particular goal.

Wittgenstein’s philosophy can be broken up into “early” and “late” eras,
with the early Wittgenstein approach finding its zenith in the Tractatus Logico-
Philosophicus [42]. Later Wittgenstein turned away from significant aspects of
the earlier work and can be most clearly seen in Philosophical Investigations [43],
which forms the basis of this summary. That work is written as a series of
numbered paragraphs and, for the purposes of this work, it is only necessary to
consider paragraphs up to ≈140.

Philosophical Investigations is written as a response to both the attempted
formalization of language into strict logical propositions and to the broader con-
sideration of what constitutes philosophy itself. Wittgenstein therefore writes
about language itself, how it is constructed, and how it is meant. To assist a
reader who wishes to consider the source material, the original numbered para-
graphs from [43] which form the basis of each part of this summary are included
in parentheses for the remainder of this section.

78 Y. M. Motara

In Wittgenstein’s estimation the fundamental starting-point is to consider
language not as words strung together within a grammatical framework, but as
moves within a language-game. A language-game is the “game” of communica-
tion that sets up a context within which language is used and within which one
party or another may make “moves”, and within which there are many varieties
of expression (23). For example, the word “fire” has a very different meaning
depending on whether one is in a crowded movie theatre or at a shooting range
or in a Human Resources meeting. Similarly, a word may be a command or a
question or something else entirely, with its meaning hinging on expression or
tone or something else (21); and how we categorise words depends upon both the
aim of the classification and upon our own subjectivity (17). Within a language-
game, the meaning of a sentence is more important than the way in which the
sentence is constructed and, indeed, two sentences or words which mean the
same thing but are otherwise different should be considered to be the same
(20, 24, 138). All language-games depend on implicit presuppositions (31) which
may naturally be assumed given strong enough evidence (33) for them. A word
by itself, depending on the situation in which it is used, may be a sentence on
its own (49).

Language-games may include names. A name signifies a thing, but is not that
thing, much as the name-tag which is attached to a thing is not the thing itself
(15, 40). A name continues to exist because the meaning of a name continues
to exist, even if the bearer of the name no longer exists (41, 55). This aspect of
language allows us to talk about bearers which have been destroyed. A name
has no meaning whatsoever outside of a particular language-game, and the mere
naming of something is not—until the name is used—a move in a language-game
(49). Since all names have a meaning which must necessarily exist for them to
be used within their language-game, it makes no sense to talk about whether a
name “exists” or not (50, 57, 58). The meaning behind a name, and how to use
it, must necessarily be known before a name is defined (31). Similarly to names,
all words in a language game are ways to represent other things (50).

Demonstratives (such as “that” and “here”) are a special case of words which
require a bearer; however, this fact alone does not make a demonstrative into
a name (9, 45). Each language-game may contain words that have specific uses
within that game (10, 11, 43), and very little is gained by considering them to be
more similar than they are (14).

There is nothing that is natively composite, outside of a particular language-
game (47). Even within a particular language-game, what is “composite” may
defined variously as the game progresses (48). What is important is not the
“simplified” or “composite” forms of things, howsoever they may be defined,
but the avoidance of misunderstandings (48) since there may be times when a
“simplified” form (e.g. “brush and stick”) is neither more fundamental nor more
simple than the “composite” form (e.g. “broom”) (60–63); but this depends,
ultimately, on the language-game that is in use (64).

An inexact meaning is still eminently usable, and the drawing of boundaries
around it does not necessarily make it more useful, except in the more specialized

High-Level Modelling for Typed Functional Programming 79

case where a word has a niche meaning that is amenable to such boundaries being
drawn (69, 81, 139). It is often context or examples—the manner in which it is
used—which make the meaning most clear (29, 71). Meanings should therefore be
separated only to the extent that, within the language-game, they are needed to
avoid misunderstanding (87, 88, 98, 99). A word may have many meanings, each
of which independently support the word, and no fixed meaning (77, 79, 87); and
the same word, used in a different way, may result in a different meaning (140).

All philosophical problems are, in fact, problems of language (109). These
arise because philosophers insist on trying to understand concepts and words—
such as “truth”, “world”, and “self”—in isolation and divorced from any
language-game, which is precisely where they are most meaningless (105–108).
Instead, philosophers should restrict themselves to describing (and never explain-
ing) things within the context of their language-game (109, 125); this is the only
way in which problems may be solved. Any such solution is one way in which a
problem may be solved, but not necessarily the only way (131, 132), and is not
generalisable to largely-unrelated cases (133).

6 The Language of Mathematics

The Language of Mathematics [7] demonstrates a way in which arbitrary sym-
bolic and textual mathematics, as written in standard works and textbooks, can
be parsed, understood, and represented with full semantics using Discourse Rep-
resentation Theory [17]. Critically, the work uses linguistic theory to understand
mathematics as a language and then encode it within a modified Discourse Rep-
resentation Structure (DRS). Such a DRS is capable of translating and encoding
the lambda calculus [3], the basis of all functional programming, as well as type-
theoretic logic [2]. The Language of Mathematics identifies as many features of
natural-language mathematics as possible, and strives to find an encoded form of
those features without loss of semantics. This work takes precisely the opposite
approach and asks: if we consider a functional representation to be the encoded
form of a system, is it possible to obtain a more natural language form without
loss of semantics?

6.1 Natural Language Structure

For the convenience of the reader, certain terms will be written in boldface.
These terms are those which will be particularly important in later discussion.

One apparent difference between mathematical language and a program is
that mathematics is typically written either in the form of an argument, with
various statements bolstering some conclusions or results, or in the form of an
exploration where background knowledge is described. These two forms map
neatly to the ideas of a functional program and a functional library respectively:
the former makes at least one argument about inputs and transformations and
outputs, and the latter describes tools that may be used in the course of such
an argument.

80 Y. M. Motara

Mathematical language is written in one of two modes: formal and informal.
Formal statements are possible to evaluate objectively. Informal statements, such
as “It is interesting that the Fibonacci sequence appears in many natural con-
texts”, give opinions but are not subject to computational evaluation.

Mathematical language may be textual—expressed in English2—and/or sym-
bolic, with symbols being used “to abbreviate material that would be too cum-
bersome to state with text alone” [7, p. 17]. Symbols are often embedded within
textual material and their abbreviative use makes it much easier to convey
complex ideas in a small amount of space; indeed, the argument is made that
“modern mathematics would quickly become unreadable” [7, p. 18] without such
use of symbols. Symbols which represent terms can be embedded in contexts that
accept a noun, and symbolic formulae can be embedded in contexts that accept
a clause or sentence. Symbolic terms often carry presuppositions; for example,
“‘

√
x’ presupposes that x has a square root, i.e. that x is nonnegative” [7, p. 31],

assuming that a real-valued solution is desired.
An important feature of mathematical language is adaptivity: the way in

which the textual and/or symbolic lexicons are updated with more nuanced
meanings as additional mathematical definitions are encountered. For example,
3
4 may initially be understood as “three parts out of a four-part whole”, but
may later be understood to also mean “three divided among four entities” when
the appropriate mathematical definitions are encountered. This also brings into
focus the critical importance of definitions in mathematical language.

Mathematical prose is commonly organized into blocks. The most important
blocks used in mathematical language appear to be:

– Lemma, denoting a minor result that is useful on the path to a greater goal;
– Definition, which updates textual and/or symbolic lexicons;
– Theorem, denoting a major and important result;
– Proposition, denoting a result that is more important than a Lemma, but

less important than a Theorem;
– Corollary, denoting a consequence that naturally follows from the truth of

a Lemma, Theorem, or Proposition.

Blocks are often numbered so that they can be referred to unambiguously
from other parts of an argument. “Proof” blocks, denoting the means by which
a “lemma”, “theorem”, or “proposition” are shown to be true, exist only as part
of these other blocks. “Proof” blocks are only used to separate the result from
reasoning and are not numbered. Such a block is therefore more usefully regarded
as a part of one of the other named blocks than as having an independent
existence. Most blocks represent the behavioral component of mathematical text
and make an argument that links the entities from “Definition” blocks together.

Mathematical blocks often involve the use of variables. These are used as
a form of anaphor3 and are often scoped to the block itself. It is asserted that
2 Or other natural language.
3 The use of words to refer to other entities without naming them, e.g. “The lady ate

food that she enjoyed”. Pronouns are a form of anaphor.

High-Level Modelling for Typed Functional Programming 81

“[t]hey cannot be eliminated precisely because anaphor is not powerful enough
to replace them” [7, p. 31] and this observation is likely to be true in the case
of a functional system as well.

A careful reading of [7] reveals several intra-block formal-mode mathematical
rhetorical constructs beyond (and including) those obviously classed as rhetorical
(see [7, p. 77–82]). The identified rhetorical constructs are:

– Variable definition. Variables are often defined intensionally (i.e. by pred-
icate). Examples: “Let x ∈ N”; “Let K be a ring”.

– Naming. This names a particularly important result, often a Theorem, so
that it can be referred to by name. Example: “Theorem 2.4 ‘Sigmund’s Para-
dox”’.

– Presupposition. This is used to attach a restriction to the use of a construct.
Example: “

√
n is defined for all n ≥ 0”.

– Consequence. This qualifies the condition(s) under which a definition is
true. Example: “If I × A = A and A × I = A, then I is the identity matrix”.

– Cross-reference. This is used to refer unambiguously to a result demon-
strated elsewhere. Example: “By Sigmund’s Paradox (Theorem 2.4), ...”.

– Conclusion. This is the final result of a Lemma, Proposition, or Theorem.
– Product type. This creates a named grouping. Example: “A polite sentence

P consists of a subject, a predicate, and a politeness modifier”.
– Sum type. This creates a discrete, named set of elements. Example: “We

say that 2, 3, 5, 7, and 11 are members of the set of initial primes Q”.

Note that common sentences such as “Given a set of sets S, the powerset
P (S) is the set of all subsets of S” may contain more than one of the identified
constructs.

7 The Bridge over the River Wittgenstein

A bridge between The Language of Mathematics (LoM) and typed functional
programming (TFP) will be created in this section, using Philosophical Inves-
tigations (PI) to go between the two. The intermediary philosophical link is
crucial for being able to take ideas from one side to the other in a principled
and theoretically justifiable way. LoM presents a coherent and clear account of
mathematical language; PI provides a coherent and clear account of natural lan-
guage. To the best of the author’s knowledge, there is no comparable account
for TFP, and attempting to establish one a priori risks creating a biased design
based on the author’s subjective experiences with functional languages.

Whenever possible, the link should not be made directly between TFP and
LoM because this risks conflating the former with the latter. While the two may
be similar, they are not the same, and pretending that they are serves no purpose.
PI serves as a guard against this tendency and forces the modelling to be done on
the level of a human-focused language-game. Conversely, attempting to estab-
lish a typed functional programming language-game with only the philosophy
of language-games makes misclassification errors more likely and unnecessarily

82 Y. M. Motara

discards the touchstone of mathematics. Anaphora, for example, may be sought
and “found” in typed functional programming when variables [7, p. 31] are likely
to be a more appropriate abstraction.

Mathematics cannot be fully understood out of its context or in an isolated
way; the same is true of words in a language-game, and functions and types
and their relationships in typed functional programming. PI describes many
varieties of expression, and mathematics restricts itself to either the formal or
informal. The closest analogue to an informal mode in TFP may be programming
comments.

Wittgenstein’s discussion of ambiguity can be broken down into (at least)
the following distinct points:

1. A word may have many meanings, each of which support the word indepen-
dently, or no fixed meaning.

2. A word may have an inexact meaning, as long as it can be distinguished from
other words.

3. A word’s meaning may change as the game progresses.

All of these are traits hold true in mathematics: for example, “prime” has
many meanings, “interesting” has no fixed meaning, “abstract” may have an
inexact meaning, and examples of adaptivity have already been given. In typed
functional programming, the fold operation (and other parametrically polymor-
phic operations) can have many meanings, shadowing makes it possible for a
name to have localized and global meanings, and the meaning of words such as
“authorised” or “valid” may change as more moves are made. Yet, just as in the
case of a language-game, essential meaning is preserved despite—and sometimes
because of—ambiguity.

Mathematical blocks do not appear to have any explicitly described counter-
part in the philosophy of language-games. However, Philosophical Investigations
consists of numbered paragraphs which are set up such that they may reference
each other, thus implicitly taking on a structure of blocks and cross-references.
It can therefore be said that a paragraph is analogous to a block, and the struc-
ture of the text forms a presupposition [43, par. 31] that is important for the
semantics of the text. On the mathematical side, the importance of blocks in
structuring mathematical language is overwhelmingly clear: there are few math-
ematical texts that do not follow this convention, and cross-referencing between
blocks is critical. Similarly, the importance of numbered paragraphs in Wittgen-
stein’s own implicit language game is critical for cross-referencing purposes.

On the typed functional programming side, a plausible analogue is ostensibly
the abstraction of packages/modules/namespaces which most languages have.
This analogue is not without its problems, however: such containers may be used
to package a wide variety of functionality from GUI components to algorithms
to service interfaces. It seems unreasonable to insist that each of these forms is
either the same as all the others, or to create distinctions—with no principled
basis—between “kinds” of containers. There therefore appears to be no direct
analogue for mathematical blocks.

High-Level Modelling for Typed Functional Programming 83

Mathematical rhetoric is used to form sentences through which “moves” are
made within the language-game of mathematical language. Rhetoric links blocks,
which delineate an overall structure, and argumentation together, building on
already-demonstrated results to develop a richer mathematical narrative. Types
and functions perform a similar role in typed functional programming; see, for
example, [44] where functions are used to transform types (and hence mean-
ing) from more basic forms to more sophisticated ones. Types naturally encode
rhetorical “sum type” and “product type” constructs, and functions naturally
encode the rhetorical constructs of “presupposition” (as logic) and “conclusion”
(as return values). However, simple functions and types do not allow one to
express general narratives such as “Any valid calculation must remain within
particular bounds”. Parametrically polymorphic types, combined with functions
that obey certain “laws” by convention, give rise to applicative functors, monads,
and other such constructs. These constructs can be used to express richer narra-
tives. Ironically, these constructs can also be formidable barriers to understand-
ing. The fundamental issue, covered well in [31], is subtle but pervasive through-
out typed functional programming: abstract knowledge of parametrically poly-
morphic functions and the transformations that they potentially enable is not
sufficient to combine them sensibly or construct a cohesive narrative from them.
The typed functional programming domain has many ways to describe functions
and transformations (lambda, higher-order, functor, applicative, arrow, ...) but
no way to describe how to link these into a cohesive narrative. The “moves”
made by sophisticated typed functional narratives are difficult to discern because
a design-relevant rhetoric to describe those moves is almost entirely missing.

Mathematical language uses variables instead of “demonstratives” and simi-
lar anaphora, but the typed functional paradigm lacks a similar exclusive way to
identify other entities. Instead, features such as arguments, closed-over values,
types, and namespacing are used to refer to particular kinds of entities in differ-
ent contexts. A similar situation occurs when considering the idea of language-
game names, which can be neatly mapped to textual/symbolic definitions in
mathematical language. Typed functional programming defines multiple named
entities such as named functions, types, and modules/packages, all of which may
be used as names in different contexts.

7.1 Proposed Basis

The following principles were applied to arrive at a suitable TFP modelling
language:

1. If similar language exists in LoM, PI, and TFP, then it is clearly important
in all three and should be represented in modelling language for TFP.

2. If similar language exists in LoM and PI, but not in TFP, then it is likely
to be part of a modelling vocabulary that must be developed for TFP and
should be represented in a TFP modelling language.

3. If certain language exists only in LoM, then it is likely to have a use only in
LoM and should not be included in a TFP modelling language.

84 Y. M. Motara

4. If multiple expressions of a language construct exist in LoM, and fewer analo-
gous expressions exist in PI and/or TFP, then it is possible that the expanded
set of language constructs is only necessary in LoM because of the specific
requirements of mathematics. On the basis that meanings should only be sep-
arated to the extent that this is necessary (see [43, par. 88, 89, 98, 99]), a
reduced set of language constructs—ideally, only those which are necessitated
by PI—should be represented in a TFP modelling context.

5. If multiple expressions of a language construct exist in TFP, and fewer analo-
gous expressions exist in PI and/or LoM, then it is possible that the expanded
set of language constructs is only necessary in TFP because of the specific
requirements of TFP. This does not necessarily mean that such constructs are
necessary in a modelling or design context. On the basis that meanings should
only be separated to the extent that this is necessary, a reduced set of lan-
guage constructs—ideally, only those which are necessitated by PI—should
be represented in a TFP modelling context.

Principles (4) and (5) are the most controversial since the case could be made
for an expanded TFP modelling language rather than a reduced one. Such a case
has not been made because it is thought to be better to create a smaller initial
language that can be expanded rather than a larger language that may later
have constructs removed from it.

Recall that Kühne’s model of abstraction [19] involves projection (π, consist-
ing of both mapping and reduction), then further abstraction (α′), and lastly
translation (τ) to the modelling language. This section jointly considers both π
and α′, with the goal of outlining a standardised design language and vocabu-
lary which can later be translated into a modelling language. That translation
must take into account additional design factors around notation—the “Physics
of Notation” [26,39]—and will be presented in Sect. 8.

A majority of concepts and ideas can pass seamlessly, with a one-to-one
correspondence, over the philosophical bridge that links LoM and TFP. A π
function thus encompasses modes, symbols, definitions, and variables.

The following points sketch the outlines of a principled α′:

1. High-level design rhetoric is almost entirely missing from TFP, but exists as
sentences in both LoM and PI. Such rhetoric must be created, but much of it
is used in LoM in a behavioural context and is not necessary for a structural
model. Two rhetorical constructs, “sum” and “product” distinction, exist
already in TFP.

2. The concept of structured blocks exists in LoM, but has an implicit existence
as paragraphs in PI. The primary purpose of blocks in both is to separate and
allow for easy cross-referencing. Relevant block structures must be created,
and must be amenable to cross-referencing.

3. LoM variables and definitions both have multiple representations in TFP.
They will be coalesced into the simpler representations from LoM.

A case has already been made for including definitions in the modelling
basis. Natural analogues for other blocks were not found in typed functional

High-Level Modelling for Typed Functional Programming 85

programming, but some commonalities clearly exist between natural and math-
ematical language. The remaining blocks were therefore classified as follows:

– “Lemma”, “proposition”, and “theorem” blocks differ in the importance
accorded to them and are also relatively hierarchical. While some natural
language texts do contain such divisions, many others do not, and PI has
little to say about them. It is plausible that they could be coalesced into a
single construct.

– “Corollary” blocks exist in LoM, but have no explicit existence in PI. They
should therefore be ignored.

8 Notation

The notation is guided by best-practice principles from the literature, which will
be detailed first. The actual notation follows as a separate subsection.

8.1 Design Process

This work will use the Physics of Notation Systematized (PoN-S) design pro-
cess [39], which aims to create workable artifacts that follow the principles of
good notation suggested by Moody [26], and which is very briefly summarized
below. Such principles aim to improve “the speed, ease, and accuracy with which
a representation can be processed by the human mind” [26, p. 757].

The PoN-S process begins by looking at cognitive fit: whether the notation
will fit the task and the audience.

Given a task and audience, the second step of PoN-S is to determine the
symbols to be used in the notation. This involves three principles: semiotic clar-
ity, semantic transparency, and perceptual discriminability. A symbol has semi-
otic clarity when it maps to one (or zero) concepts, and when each concept is
mapped to a maximum of one symbol. Each symbol, by the principle of seman-
tic transparency, should suggest its semantics; and each must be perceptually
discriminable (i.e. visually distinguishable) from other symbols.

The symbols should ideally be enhanced to improve the speed, ease, and
accuracy of their processing. This involves improving their visual expressiveness
through the use of different visual characteristics (position, shape, size, colour,
hue, orientation, and texture), limiting the number of symbols (graphic econ-
omy), and using text to improve the clarity and expressiveness of symbols (dual
coding).

Lastly, PoN-S calls for identification of legitimate ways in which symbols
may be combined. This specifically requires forethought about the complexity
management of a notation: what looks reasonable for a few symbols may turn
into a chaotic mess when hundreds or thousands of symbols are involved. A
validation step then ends the PoN-S process.

86 Y. M. Motara

8.2 Proposed Notation

Section 7.1 expands on both projection (π) and further abstraction (α′), leaving
only translation (τ) to a notation to be considered. This section deals with that
translation. The audience for the notation is inter alia students, developers, and
business analysts; in other words, a broad and general audience which has some
technical background and may be interested in software, software features, and
software design, but may not necessarily be au fait with the details of software
development. The task is to allow a typed functional system’s structure to be
expressed, modified, and understood by this audience.

For ease of reference in other works, this preliminary high-level notation can
be called HL0 (pronounced “hello”).

As discussed in Sect. 3, a structural model expresses the elements of a model
that exist and the way in which elements of the model relate to each other. A
model, in addition, must have the quality of pragmatism. This leads naturally
to the question of which relationships one should express in order for the model
to be useful. While there are many competing answers to this, a reasonable start
might be to consider some common questions that people have about language
in general, and attempt to model those relationships:

1. “What words exist, and what do they mean?” is answered by a dictionary.
2. “Which words are similar?” is answered by a thesaurus.
3. “What is the ancestry of this word?” is answered by a book of etymology.

Fig. 3. Notation for definition (left) and thesaurus (right)

The most significant notation is for definitions (see Fig. 3). The leftmost part
of a definition is a rub-’al-h. izb4 shape which contains symbolic notation. The
rub-’al-h. izb is chosen not only for its distinctive visual appearance, but also
because it is found at Unicode codepoint 06DE. This makes it easy to integrate
into text when one wishes to use parametric polymorphism.

On the right of a definition, expandable space exists for textual definition.
If an alphabetic name in the symbolic definition may be substitutable with
something else, then it will appear in boldface in the textual definition. Textual
definitions often contain the “�” symbol which indicates different cases which
are patterned on the definition, and which lead (via “→”) to some mapped

4 Pronounced “roob-El-Hizb”, with emphasis on the capitalized letters. IPA: [ru:b Ql
èizb].

High-Level Modelling for Typed Functional Programming 87

entity5. The � is also used to indicate different cases in a sum type; if a product
type exists, • would be used to describe the components of the group. A “ ”
symbol indicates a fall-through case.

Thesaurus notation (see Fig. 3) begins with a boldface title that describes
the basis of the similarity. Each similar item is then listed in turn, with a short
colon-prefixed description that expresses why it should be a member of the group.

Definitions should only make reference to definitions already defined above
them, assuming a reading order of top-to-bottom and then left-to-right, and
thesaurus elements should follow after all definitions. This causes symbols and
their meanings to be (partially) ordered such that more basic definitions always
precede more advanced ones: a dictionary. When one definition is a structural
subset of another, effectively aliasing a particular part of the larger definition,
then the subsidiary definition should be joined to its source by a diamond-
terminated line: . A suggested name for this is the “alias” relationship.
When one definition is built upon another, the subsidiary definition should be
joined to its basis by a circle-terminated line: . A suggested name for
this is the “relies” relationship6. In both cases, the black side indicates the
origin. Together, these lines show etymology relationships. When a definition has
relationships to many other definitions, it is given a thick black border instead
of lines to avoid clutter. This indicates that it is fundamental to the problem
domain.

In terms of notational clarity, perceptual discriminability is ensured through
distinctive shapes, position, colour, and graphic economy. Semiotic clarity is
good, given that this is a type model and thus classifies by traits at a high level;
the use of and the shape of a symbolic definition enclosure relate intuitively
to “some definition”.

Some symbols will have to be reserved by convention. The following subset
of symbols covers all of the cases encountered thus far during the research:

– “(” and “)” for grouping;
– “ ” for indicating “some type or value”;
– subscripts for the cases of sum types;
– “→” for mapping cases;
– “�” and “•” for discrete cases and grouping respectively.

9 Case Study

Figure 4 refers. The case study chosen was FParsec7, an open-source library
written in F#. This is a type model, not a token model, so only the structural

5 Although numeric subscripts were considered to distinguish between different para-
metrically polymorphic elements whenever necessary, this was found to be a more
readable alternative.

6 A case could be made for “extension/specialization”, but this was thought to be too
specific; in addition, those terms have particular and established OO meanings.

7 https://www.quanttec.com/fparsec/.

https://www.quanttec.com/fparsec/

88 Y. M. Motara

Fig. 4. Case study: FParsec

parts that were considered most important are shown. One consequence of this
is that some lesser-documented parts of FParsec, such as its ability to parse
expression trees with precedence, do not appear. The model is therefore not a
1-to-1 correspondence with a set of functions and types, but is an abstraction of
the problem domain that can be mapped more easily to functional constructs.

High-Level Modelling for Typed Functional Programming 89

The possibility of multiple implementations, all of which follow the same high-
level design, is a strength of type modelling as compared to token modelling.

– We begin at the top-left with the definition of a parser, which is followed
by symbolic aliases for each of the cases. These ancillary definitions help us
greatly later on. The � definition is foundational for almost all of the other
definitions on the page, and is therefore given a thick black border.

– The definition of �f. is the first in which we see the , which means “some
type or value”. The text of definition also indicates that the definition is
implemented as an operator in FParsec. The name “f” is repeated in boldface
in the definition as a way of showing that it is treated as a substitutable name.
All non-alphabetic characters, such as the “.”, are considered to be fixed parts
of the symbolic definition.

– �! is the first appearance of � and . The � indicates the start of each new
case. In text, one can read the definition as:

• “If the � is a parser which has successfully recognized text (i.e. ⊕), then
the result is the type that is specified after the ‘!’ mark.”

• “Anything else results in a failed parser (i.e. ⊗).”
Notice how the ⊕ alias of � is used to make the mapping simpler to read.

– Skipping ahead, the �[�]� parser is the first one in which we see the text
“Equivalent to:”. Such textual definitions are quite common in functional
programming, which is to be expected since functional programming naturally
lends itself to composition of functions. The implementation code does not
necessarily involve composition, though the “relies” relationships do indicate
that core functionality is (plausibly) delegated to �# and �+�. “Equivalent
to:” should therefore be regarded as referring to semantics.

– opt shows a case where the alphabetic text is not freely substitutable. The
textual definition makes it clear that the only two values that are possible
are “0” and “1”.

In most cases, some attempt is made to express the human-relevant mean-
ing of the operation apart from its formal semantics. For example, the textual
definition of �opt begins with “Turn a failure into a qualified success”.

The first six definitions thus show most of the features of the “definition”
element of the notation. Due to the way in which definitions are ordered, a reader
will never have to do more than scan up to find the meaning of a definition. At
the bottom-right, one can see two etymology sections which should be easy to
distinguish visually. Each of these begins with a title describing the group, and
a list of definitions follows. It is envisaged that the etymology elements will be
most useful for stakeholders who want to understand subtle differences and those
who are interested in the different ways to achieve a particular task.

10 Conclusion

This work identified a significant research gap and set out to discover whether
the underlying mathematical background of functional programming could be

90 Y. M. Motara

used to inform the high-level structural modelling of a functional system. The
answer is an affirmative: the mathematical and functional sides, both grounded
in a strong philosophical foundation, lead to a relatively simple diagrammatic
notation that should be easy to build upon. Perhaps more importantly, the sep-
aration of conceptual semantics from the actual modelling notation, and the
grounding within a stable philosophy, should make it possible to build further
diagrams or a better notation using the same underlying concepts. Three rela-
tionships, inspired by etymology, thesauri and dictionaries, have been proposed.

As stated in the introduction, this work is part of a broader effort to allow
functional programs to be modelled in an intuitive way. The modelling itself has
been built up as carefully as possible, avoiding the pitfalls of starting with a
model that is focused on a particular problem domain or choosing a particular
language to be paradigmatic of the functional paradigm. If these precautions
were not taken, the history of our field shows that it would be very easy to
end up with either a domain-specific modelling language (DSML) or language
peculiarities creeping into a modelling notation.

Programming languages are clear to programmers. A Haskell programmer
reading the following Haskell code might have a good idea of what it does, even
without any further program context:

However, is it clear to non-programming stakeholders? It can be made clear,
certainly, but non-programmers have to do the work. Modelling works from
the other way around. It can be a shared notation for collaboration by making
the otherwise-opaque (but programmer-friendly) parts more accessible. If the
proposed notation or a successor achieves this outcome, then it is successful.

In a sense, structural modelling of a functional system is the easier kind of
modelling since analogues from mathematical discourse are readily available. It
is behavioural modelling and the extraction of a design-relevant rhetoric for func-
tional programming that may be much more difficult. Many questions remain,
and much future work remains to be done. Some of the most interesting imme-
diate questions are:

– How “natural” is the notation for non-functional programmers, or for those
who are learning functional programming? What changes should be made to
evolve the notation?

• How does one handle symbols and namespacing, so that the same symbols
can be used in another context?

• What is considered to be an overwhelming accumulation of symbols?
What do rich, sparse, and poor symbolic vocabularies look like? What
design guidelines should exist?

• What is modelled in a type model depends on what needs to be modelled.
Which needs are specific to functional programming?

– What might a notation based explicitly on categories, but rooted in the same
philosophy, look like? Can previous work in this area [6,14,36] be used to
imagine such a notation or improve the proposed notation?

High-Level Modelling for Typed Functional Programming 91

– More of the underlying philosophy and linkages has been summarized than
is strictly necessary for a purely structural notation. This is intentional and
opens the door to the creation of behavioural models, task- or process-oriented
models, and so forth. What might these look like?

– Real dictionaries include parts of speech (e.g. “v.”, “adj.”, “n.”, “informal”,
etc.) and other annotations which tell the reader about the grammatical and
contextual use of the word. Which equivalent notations might the field of
functional programmers agree upon? Is it useful—and if so, why?—to anno-
tate entries with “mon.”, “arr.”, “lazy”, “async”, or “app.”?

– It is plausible that the proposed relationships are not the only or most suitable
types of relationships to represent. Are there complementary or more suitable
relationships that deserve recognition?

– Is a similar notation possible for untyped functional programming? What
changes would need to be made?

– How amenable are pure functional programs to model-driven engineering?

Acknowledgments. The author would like to thank the anonymous reviewers of
both MODELSWARD’21 and TFP’21 for their constructive and helpful comments on
an earlier version of this paper. Insightful and constructive pre-presentation reviewer
comments also made this work much better than it would otherwise have been, as did
questions and discussions at Lambda Days 2021. This work is based on the research
supported partly by the National Research Foundation of South Africa (Grant Number:
116794). This work was undertaken in the Distributed Multimedia CoE at Rhodes Uni-
versity, with financial support from Telkom SA and CORIANT. The author acknowl-
edges that opinions, findings and conclusions or recommendations expressed here are
those of the author and that none of the above mentioned sponsors accept liability
whatsoever in this regard.

References

1. Armstrong, D.J.: The quarks of object-oriented development. Commun. ACM
(2006). https://doi.org/10.1145/1113034.1113040

2. Cardelli, L.: Type Systems. The Computer Science and Engineering Handbook
(2004). https://doi.org/10.1145/234313.234418

3. Church, A.: The Calculi of Lambda Conversion (AM-6). Princeton University
Press, Princeton (1941). https://doi.org/10.1515/9781400881932

4. Denning, P.J.: The profession of IT: beyond computational thinking. Commun.
ACM 52(6), 28–30 (2009). https://doi.org/10.1145/1516046.1516054

5. Eklund, P., Galán, M.A., Medina, J., Ojeda-Aciego, M., Valverde, A.: A graphical
approach to monad compositions. Electr. Notes Theoret. Comput. Sci. (2001).
https://doi.org/10.1016/S1571-0661(05)80041-6

6. Fong, B., Spivak, D.I.: An Invitation to Applied Category Theory. Cambridge
University Press (2019). https://doi.org/10.1017/9781108668804

7. Ganesalingam, M.: The Language of Mathematics. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-37012-0

8. Ghosh, D.: Functional and Reactive Domain Modeling. Manning Publications Co.,
Shelter Island (2016)

https://doi.org/10.1145/1113034.1113040
https://doi.org/10.1145/234313.234418
https://doi.org/10.1515/9781400881932
https://doi.org/10.1145/1516046.1516054
https://doi.org/10.1016/S1571-0661(05)80041-6
https://doi.org/10.1017/9781108668804
https://doi.org/10.1007/978-3-642-37012-0

92 Y. M. Motara

9. Gibbons, J.: Functional programming for domain-specific languages. In: Zsók, V.,
Horváth, Z., Csató, L. (eds.) CEFP 2013. LNCS, vol. 8606, pp. 1–28. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-15940-9 1

10. Henderson-Sellers, B., Gonzalez-Perez, C., Eriksson, O., Agerfalk, P.J., Walkerden,
G.: Software modelling languages: a wish list. In: 2015 IEEE/ACM 7th Interna-
tional Workshop on Modeling in Software Engineering, pp. 72–77. IEEE (2015).
https://doi.org/10.1109/MiSE.2015.20

11. Henderson-Sellers, B.: On the Mathematics of Modelling, Metamodelling, Ontolo-
gies and Modelling Languages. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-29825-7

12. Henderson-Sellers, B.: Why philosophize; why not just model? In: Johannesson,
P., Lee, M.L., Liddle, S.W., Opdahl, A.L., López, Ó.P. (eds.) ER 2015. LNCS, vol.
9381, pp. 3–17. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25264-
3 1

13. Henrix, J., Plasmeijer, R., Achten, P.: GiN: a graphical language and tool for
defining iTask workflows. In: Peña, R., Page, R. (eds.) TFP 2011. LNCS, vol.
7193, pp. 163–178. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-32037-8 11

14. Hinze, R., Marsden, D.: Equational reasoning with lollipops, forks, cups, caps,
snakes, and speedometers. J. Log. Algebraic Methods Program. (2016). https://
doi.org/10.1016/j.jlamp.2015.12.004

15. Huet, G.: Axiomatisations, proofs, and formal specifications of algorithms: com-
mented case studies in the Coq proof assistant. In: Schwichtenberg, H. (ed.) Logic
of Computation. NATO ASI Series, pp. 157–199. Springer, Heidelberg (1997).
https://doi.org/10.1007/978-3-642-59048-1 5

16. Jeuring, J., Magalhães, J.P., Heeren, B.: Generic programming for domain reason-
ers. In: Trends in Functional Programming, vol. 10, pp. 1–16 (2014)

17. Kamp, H., Van Genabith, J., Reyle, U.: Discourse representation theory. In: Gab-
bay, D., Guenthner, F. (eds.) Handbook of Philosophical Logic, pp. 125–394.
Springer, Dordrecht (2011). https://doi.org/10.1007/978-94-007-0485-5 3

18. Kosar, T., Mernik, M., Carver, J.C.: Program comprehension of domain-specific
and general-purpose languages: comparison using a family of experiments. Empir.
Software Eng. 17(3), 276–304 (2012). https://doi.org/10.1007/s10664-011-9172-x

19. Kühne, T.: Matters of (meta-)modeling. Softw. Syst. Model. 5(4), 369–385 (2006).
https://doi.org/10.1007/s10270-006-0017-9

20. Lackey, D.P.: What are the modern classics? The Baruch poll of great philosophy
in the twentieth century. Philos. Forum 30(4), 329–346 (1999). https://doi.org/10.
1111/0031-806X.00022

21. Li, Q., Chen, Y.-L.: Data flow diagram. In: Modeling and Analysis of Enterprise
and Information Systems: From Requirements to Realization, pp. 85–97. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-540-89556-5 4

22. Lonsdorf, B.: Professor Frisby’s Mostly Adequate Guide to Functional Program-
ming (2020)

23. Mac Lane, S.: Categories for the Working Mathematician. Springer, New York
(1978). https://doi.org/10.1007/978-1-4757-4721-8

24. Mernik, M., Heering, J., Sloane, A.M.: When and how to develop domain-specific
languages. ACM Comput. Surv. 37(4), 316–344 (2005). https://doi.org/10.1145/
1118890.1118892

25. Milner, R.: A theory of type polymorphism in programming. J. Comput. Syst. Sci.
17(3), 348–375 (1978). https://doi.org/10.1016/0022-0000(78)90014-4

https://doi.org/10.1007/978-3-319-15940-9_1
https://doi.org/10.1109/MiSE.2015.20
https://doi.org/10.1007/978-3-642-29825-7
https://doi.org/10.1007/978-3-642-29825-7
https://doi.org/10.1007/978-3-319-25264-3_1
https://doi.org/10.1007/978-3-319-25264-3_1
https://doi.org/10.1007/978-3-642-32037-8_11
https://doi.org/10.1007/978-3-642-32037-8_11
https://doi.org/10.1016/j.jlamp.2015.12.004
https://doi.org/10.1016/j.jlamp.2015.12.004
https://doi.org/10.1007/978-3-642-59048-1_5
https://doi.org/10.1007/978-94-007-0485-5_3
https://doi.org/10.1007/s10664-011-9172-x
https://doi.org/10.1007/s10270-006-0017-9
https://doi.org/10.1111/0031-806X.00022
https://doi.org/10.1111/0031-806X.00022
https://doi.org/10.1007/978-3-540-89556-5_4
https://doi.org/10.1007/978-1-4757-4721-8
https://doi.org/10.1145/1118890.1118892
https://doi.org/10.1145/1118890.1118892
https://doi.org/10.1016/0022-0000(78)90014-4

High-Level Modelling for Typed Functional Programming 93

26. Moody, D.: The “physics” of notations: toward a scientific basis for constructing
visual notations in software engineering. IEEE Trans. Softw. Eng. (2009). https://
doi.org/10.1109/TSE.2009.67

27. Motara, Y.M.: String diagrams for modelling functional programming. In: 2020
2nd International Multidisciplinary Information Technology and Engineering Con-
ference (IMITEC), pp. 1–7. IEEE, Kimberley (2020). https://doi.org/10.1109/
IMITEC50163.2020.9334072

28. Muller, P.-A., Fondement, F., Baudry, B., Combemale, B.: Modeling modeling
modeling. Softw. Syst. Model. 11(3), 347–359 (2012). https://doi.org/10.1007/
s10270-010-0172-x

29. O’Regan, G. (ed.): Mathematical Approaches to Software Quality, pp. 1–32.
Springer, London (2006). https://doi.org/10.1007/1-84628-435-9 1

30. Object Management Group: Business Process Model and Notation (BPMN), Pub-
lication Title: Object Management Group specification (2013)

31. Petricek, T.: What we talk about when we talk about monads. The Art, Science,
and Engineering of Programming (2018). https://doi.org/10.22152/programming-
journal.org/2018/2/12

32. van der Ploeg, A.: Monadic functional reactive programming. In: Proceedings of
the 2013 ACM SIGPLAN Symposium on Haskell - Haskell 2013 (2013). https://
doi.org/10.1145/2503778.2503783

33. Schulte, C., Magenheim, J., Niere, J., Schäfer, W.: Thinking in objects and their
collaboration: introducing object-oriented technology. Comput. Sci. Educ. 13(4),
269–288 (2003). https://doi.org/10.1076/csed.13.4.269.17492

34. Selinger, P.: A survey of graphical languages for monoidal categories. In: Coecke,
B. (ed.) New Structures for Physics. Lecture Notes in Physics, vol. 813. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-12821-9 4

35. Simons, A.J.H., Graham, I.: 30 things that go wrong in object modelling with
UML 1.3. In: Kilov, H., Rumpe, B., Simmonds, I. (eds.) Behavioral Specifications
of Businesses and Systems, pp. 237–257. Springer, Boston (1999) . https://doi.org/
10.1007/978-1-4615-5229-1 17

36. Spivak, D.I.: Category Theory for the Sciences. The MIT Press, Cambridge (2014)
37. Stachowiak, H.: Allgemeine Modelltheorie. Springer, Vienna (1973). https://doi.

org/10.1007/978-3-7091-8327-4
38. Stutterheim, J.: A Cocktail of Tools: Domain-Specific Languages for Task-Oriented

Software Development. Radboud University (2017)
39. da Silva Teixeira, M.D.G.: An Ontology-Based Process for Domain-Specific Visual

Language Design. Universidade Federal do Esṕırito Santo (2017)
40. Wand, Y., Weber, R.: On the ontological expressiveness of information systems

analysis and design grammars. Inf. Syst. J. 3(4), 217–237 (1993)
41. Weber, R.: Evaluating and Developing Theories in the Information Systems Disci-

pline. J. Assoc. Inf. Syst. 13(1), 1–30 (2012)
42. Wittgenstein, L.: Tractatus Logico-Philosophicus. Kegan Paul, London (1922)
43. Wittgenstein, L., Anscombe, G.E.M., Hacker, P.M.S., Schulte, J.: Philosophical

investigations. Chichester, Wiley-Blackwell (2009)
44. Wlaschin, S.: Domain Modeling Made Functional. The Pragmatic Bookshelf (2018)

https://doi.org/10.1109/TSE.2009.67
https://doi.org/10.1109/TSE.2009.67
https://doi.org/10.1109/IMITEC50163.2020.9334072
https://doi.org/10.1109/IMITEC50163.2020.9334072
https://doi.org/10.1007/s10270-010-0172-x
https://doi.org/10.1007/s10270-010-0172-x
https://doi.org/10.1007/1-84628-435-9_1
https://doi.org/10.22152/programming-journal.org/2018/2/12
https://doi.org/10.22152/programming-journal.org/2018/2/12
https://doi.org/10.1145/2503778.2503783
https://doi.org/10.1145/2503778.2503783
https://doi.org/10.1076/csed.13.4.269.17492
https://doi.org/10.1007/978-3-642-12821-9_4
https://doi.org/10.1007/978-1-4615-5229-1_17
https://doi.org/10.1007/978-1-4615-5229-1_17
https://doi.org/10.1007/978-3-7091-8327-4
https://doi.org/10.1007/978-3-7091-8327-4

94 Y. M. Motara

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Translating Lambda Calculus into C++
Templates

Vı́t Šefl(B)

Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic
sefl@ksvi.mff.cuni.cz

Abstract. The C++ template system is capable of performing arbi-
trary compile-time computations, which is typically exploited in generic
programming libraries. However, the template language itself is syntac-
tically cumbersome. A variety of tools, ranging from libraries to dedi-
cated compilers, was created to alleviate this issue. One such approach
is translating a functional program into a template metaprogram. In
this work, we present a new way of translating functional programs
based on lambda calculus into template metaprograms. The transla-
tion produces metaprograms with clearly defined lazy semantics and
supports common functional features such as recursion and algebraic
data types. We demonstrate its viability by providing a proof-of-concept
implementation.

1 Introduction

In C++, templates facilitate parametric polymorphism. The system itself is
based on type abstraction, substitution, and specialization, which can be used to
express arbitrary computations. Moreover, since templates are evaluated during
compilation, they can be used to compute arbitrary values before the program is
run. We refer to such computations as metaprograms [11]. In addition to compile-
time computations, metaprograms are frequently used in generic programming.

The template system forms a language within a language. This sublanguage
does not have a mutable state nor any of the typical control flow statements,
allowing us to treat it as a simple, purely functional language. However, since
metaprogramming is outside of its intended use case, it usually requires a large
amount of boilerplate code and other similar syntactic annoyances. Language
features such as the constexpr keyword seek to provide an alternative but are
currently not powerful enough to fully replace template metaprogramming.

Consequently, a variety of tools was created to simplify writing template
metaprograms. The approaches vary from libraries that hide some of the boiler-
plate code [1,2,9] to external tools that allow the programmer to write the code
in a different language and then translate it back into a metaprogram [3,6].

Since the language of templates is functional, some tools [3,10] choose a func-
tional language as the source language for the translation. Functional languages

This work was supported by the Charles University grant SVV-260588.

c© Springer Nature Switzerland AG 2021
V. Zsók and J. Hughes (Eds.): TFP 2021, LNCS 12834, pp. 95–115, 2021.
https://doi.org/10.1007/978-3-030-83978-9_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-83978-9_5&domain=pdf
https://doi.org/10.1007/978-3-030-83978-9_5

96 V. Šefl

are often based on lambda calculus, whose core concepts match the template
mechanisms very closely. However, while higher-order functions can be expressed
in terms of template-template parameters, these parameters are not flexible and
need to be handled separately from the standard type parameters.

In this work, we detail a new direct way of translating lambda calculus into
template metaprograms that avoids these pitfalls and is compatible with any
standard compliant compiler. We then provide the translation of various fea-
tures commonly found in functional languages: local bindings, recursion, pat-
tern matching, and algebraic data types, as well as a novel formal treatment of
the semantics of the resulting metaprograms. In particular, we show that these
metaprograms have well-defined, non-strict semantics.

In order to demonstrate the viability of this translation method, we also pro-
vide a proof-of-concept compiler for a simple functional language based on this
work. The language uses Hindley-Milner type system and its syntax is inspired
by Haskell.1

This work is organized as follows. In the next section, we discuss other
approaches to this problem. The third section gives a brief overview of template
metaprogramming in C++. The core translation is laid out in the fourth section
and the translation of the additional features in the fifth section. The sixth
section details the semantics of the resulting metaprograms. The final section
provides examples of integration with regular C++ code.

2 Related Work

The most prominent examples of C++ libraries that facilitate metaprogramming
are Boost Hana [2] and Boost Metaparse [9]. These libraries aim to provide an
easier and more convenient way of writing template metaprograms. Boost Hana
provides a general framework for writing metaprograms, while Boost Metaparse
functions specifically as a parser generator. However, since these libraries still
operate within C++ itself, they cannot be used to eliminate all boilerplate code.

The other approach is the use of external tools. The main advantage is that
these tools hide most of the complexities of template metaprogramming from
the programmer.

MetaFun [3] is an example of a tool that translates a simple functional lan-
guage into metaprograms. The translation is straightforward, making use of
template-template parameters to express higher-order functions. To our knowl-
edge, this tool is not capable of expressing currying or lambda abstraction.

This approach to metaprogramming is the closest to the approach chosen
by this work. A major advantage is that the resulting metaprograms remain
legible to C++ programmers and can, if necessary, be adjusted manually. This
flexibility is invaluable when the generated metaprograms need to interact with
existing metaprograms, which are generally not immediately compatible.

EClean [10] uses a more complicated process of translation. The input lan-
guage is translated into an intermediate language, which is then interpreted by
1 https://github.com/vituscze/norri.

https://github.com/vituscze/norri

Translating Lambda Calculus into C++ Templates 97

a template metaprogram. This interpreter is a graph rewriting engine that eval-
uates expressions similarly to how compiled Haskell code is executed. A similar
approach is suggested by Porkoláb [5].

Note that the translation of the source language can also be performed by
a metaprogram. As an example, this hybrid approach is used to extend C++
with a self-contained domain specific language [7].

These methods typically sacrifice clarity and transparency of the translated
metaprograms in order to improve their efficiency or to reduce the dependency on
third party tools. As mentioned previously, this opaqueness might be undesirable
in some situations.

3 Template Metaprogramming

C++ templates facilitate parametric polymorphism. However, when combined
with other language constructs such as static const or using, templates
become expressive enough to describe arbitrary compile-time computations.
A brief overview of this concept is given in this section.

Listing 1 shows a standard use case of templates. The class definition is
parameterized over the element type. This template can then be instantiated
with a concrete type and used as a regular data type.

template <typename T>

class vector {

T& operator [](size_t index);

};

using int_vector = vector <int >;

Listing 1. Parametric polymorphism in C++

The strength of the template system lies in the ability to define compile-
time constants that depend on the template parameter. A template can thus be
treated as a function, where the input is the template parameter and the output
is the defined constant. The result of a metaprogram is obtained by instantiating
the template with the desired arguments.

Compile-time constants can be defined with a using statement (for type
constants) or as static const class members (for value constants). There are
other ways of defining compile-time constants (such as enumeration labels), but
they are interchangeable as far as template metaprogramming is concerned.

Some values can be promoted to the type level, which allows the metaprogram
to treat its inputs uniformly as type parameters. Listing 2 shows how to promote
int constants. The value is accessed by referring to the static const member.

template <int N>

struct Int { static const int value = N; };

using int_array = std::array <int , Int <5>::value >;

Listing 2. Type-level promotion

98 V. Šefl

A template may also be specialized, providing a more specific definition for
a subset of template parameters, which can be used by metaprograms to perform
case analysis. The template definition is chosen based on how well the arguments
fit the specialization, rather than trying the definitions in some predetermined
order. Listing 3 combines template specialization and recursion to implement
type-level factorial.

template <typename T>

struct factorial;

template <>

struct factorial <Int <0>> {

using type = Int <1>;

};

template <int N>

struct factorial <Int <N>> {

using type = Int <N * factorial <Int <N - 1>>::type::value >;

};

factorial <Int <3>>::type::value == 6

Listing 3. Factorial function

Similarly, variadic templates may be used to represent ordered sequences
and template-template parameters to represent higher-order functions. Listing 4
shows an example of such a function. The first parameter represents a template
function, which is then applied twice to the second parameter. To treat a qualified
name that depends on a template parameter as a type (template), the typename
(template) keyword must be used.

template <template <typename > class F, typename X>

struct twice {

using type = typename F<typename F<X>::type >:: type;

};

twice <factorial , Int <3>>::type::value == 720

Listing 4. Higher-order function

4 Translating Lambda Calculus

Lambda calculus is a simple functional language. Template metaprogramming
and lambda calculus share some core concepts but the correspondence is not
perfect. In this section, we show possible ways of representing lambda calculus
as template metaprograms and discuss their advantages and disadvantages. We
select one representation to be used as the basis of the translation.

A lambda calculus expression can be either a variable, an abstraction, or
an application. The basic idea is to use template parameters or type names as

Translating Lambda Calculus into C++ Templates 99

variables, template definition as an abstraction, and template instantiation as
an application.

Notice that the code in Listing 4 needs to know which parameters represent
a function. However, lambda calculus generally makes no distinction between
functional and non-functional parameters.

One option is to consider only the simply-typed lambda calculus. In this
variation of lambda calculus, each variable has a concrete type and can thus
be used to distinguish between functional and non-functional parameters. The
functional parameters can then be expressed as template-template parameters of
the appropriate nesting and every other parameter as a regular type parameter.

The main downside of this approach is that a single expression needs to
be translated into multiple template metaprograms, one for each combination of
parameter arities. Another issue is that template-template parameters cannot be
used directly with the using statement. Instead, the template structure needs
to be reconstructed whenever such a parameter is encountered.

The other option is to unify regular and templated types. Every template
parameter can then be treated uniformly as a type. Each template can be asso-
ciated with a simple type by wrapping the template in another class. The identity
function defined in Listing 5 shows an example of this unification. Note that this
self-application would not be possible with template-template parameters.

Another advantage of this approach is that the resulting translation is type-
agnostic, and may be used with both typed and untyped source languages.

struct id {

struct type {

template <typename T>

struct apply {

using type = typename T::type;

};

};

};

id::type::apply <id >:: type == id::type

Listing 5. Flexible identity function

The inner class type provides a layer of indirection, which is necessary to
handle self-referential expressions as well as to simplify the translation of addi-
tional features. A direct translation of self-referential expressions would lead to
an invalid C++ code due to the use of incomplete types.

The downside is that simple types cannot be used as metaprogram argu-
ments. Instead, these types need to be wrapped in another class. Listing 6 shows
a wrapping class and its use with the previously defined identity function.

template <typename T>

struct wrap { using type = T; };

id::type::apply <wrap <Int <2>>>::type == Int <2>

Listing 6. Argument wrapping

100 V. Šefl

The full translation of lambda expressions is given in Listing 7. The transla-
tion of variables and abstractions matches the earlier translation of the identity
function. The translation of applications requires the use of inner classes. The
names of these classes, S1 and S2, must be unique to prevent name collisions.
Similarly, since templates do not allow parameter name shadowing, variables
must be fresh.

Note that the class S1 is not strictly necessary and could be removed by
changing the name of the inner definition in the translation of the expression
E1. For simplicity, we do not present this optimization here.

translate(x)
def
=

using type = typename x::type;

translate(λx.E)
def
=

struct type {

template <typename x>
struct apply { translate(E) };

};

translate(E1 E2)
def
=

struct S1 { translate(E1) };

struct S2 { translate(E2) };

using type = typename S1::type:: template apply <S2 >::type;

Listing 7. Lambda expression translation

5 Translating Functional Languages

Pure lambda calculus lacks many features of modern functional languages that
make programming more convenient and better tractable. In particular, the pro-
gram cannot be structured into multiple named expressions and data needs to be
encoded as functions. In this section, we address this issue by providing a trans-
lation of bindings, recursive definitions, and data types.

5.1 Bindings

A binding is used to associate an expression with a name, which can be used to
break the program apart into small reusable definitions. Since metaprograms are
already associated with a type name, the translation simply wraps the definition
inside an appropriately named class. Local bindings, which are used to name
subexpressions, use identical translation. The translation is shown in Listing 8.

translate(x = E)
def
=

struct x { translate(E) };

Listing 8. Binding translation

Translating Lambda Calculus into C++ Templates 101

5.2 Recursion

While recursion can be accomplished with the use of a fixed-point combinator,
recursive bindings are more convenient to work with.

A template may recursively refer to itself, which can be used to directly
translate recursive bindings of the form x = λy.E(x). However, recursive bind-
ings of the form x = x or x = E1(x)E2(x) present a problem. The translation
of the recursive occurrences of x requires the definition of x::type which is not
available at that point.

One option is to restrict the recursion to functions only. The expression in
the problematic bindings may then be η-expanded to λy.x y or λy.E1(x)E2(x) y.

The other option is to translate the recursive bindings in two steps. In the first
step, the recursive bindings are replaced with regular bindings by adding fixed-
point combinators. Regular bindings are then translated using the techniques
described earlier. This process is described in Listing 9.

translate(x = E(x))
def
= translate(x = Y λr.E(r))

Listing 9. Recursive binding translation

The choice of the fixed-point combinator is not important. We have used the
Y combinator which is defined as λf.(λx.f (xx))(λx.f (xx)). It is sufficient to
translate the combinator just once and then refer to it from the rest of the code.

The same result can be accomplished with a handwritten, directly recursive
combinator, such as the one shown in Listing 10. This particular implementa-
tion is optimized to produce as few nested types and template instantiations as
possible.

The main advantage of this approach is its flexibility. There is a large variety
of fixed-point combinators that can be used to translate more complex recursion
schemes, such as mutual recursion. The direct translation cannot be used in this
case because C++ does not allow forward declarations of nested classes.

struct fix {

struct type {

template <typename F>

struct apply {

using type = typename

F::type:: template apply <apply <F>>::type;

};

};

};

Listing 10. Fixed-point combinator

5.3 Simple Data Types

C++ templates can use non-type parameters in their definition. One subset of
these non-type parameters are the values of integral and enumeration types.
Such values can be promoted to the type level and then used as regular type

102 V. Šefl

parameters. For example, if Int is the type promoted version of int, then an
integer constant can be translated as shown in Listing 11. The values of other
data types can be translated similarly.

translate(n)
def
=

using type = Int <n>;

Listing 11. Integer translation

However, standard operators cannot be applied to these type-promoted con-
stants. Instead of translating these operators directly, it might be preferable to
collect their implementation into a separate header file to reduce the amount of
generated code. The header can then be included with the rest of the translated
code. As an example, Listing 12 shows an implementation of boolean negation.

struct not_ {

struct type {

template <typename B>

struct apply {

using type = Bool <!B::type::value >;

};

};

};

Listing 12. Boolean negation

5.4 Complex Data Types

Simple data types use unary templates with a non-type parameter to store one
value of integral type. This approach can be extended to more complex data
types by using templates with more parameters. For example, any template
with two type parameters can be used to represent type-level pairs. However,
as with simple data types, the non-trivial task is implementing operations to
manipulate the values of such data types.

Instead of focusing on a particular data type, we describe the translation of
a class of data types known as algebraic data types. An algebraic data type is
a data type formed as a combination of products (tuples) and sums (variants).
These data types, therefore, include all records (tuples without any variants)
and enumerations (variants without any tuples).

For each data type, we need to specify how its values are represented, con-
structed (introduced), and deconstructed (eliminated). Let the data type D con-
sist of m variants. Let Di(f1, . . . , fni

) be a value of D, where Di is the variant
and f1 to fni

are the fields.

Representation. The values can be represented in two ways. Each variant Di

can be represented as a unique template with ni type parameters. If the variant
has no fields, a non-templated type is used instead.

Translating Lambda Calculus into C++ Templates 103

The other approach is to use one variadic template with one non-type param-
eter and a variable number of type parameters. The non-type parameter deter-
mines the variant and the other type parameters are the fields. Listing 13 shows
such a template.

template <int Variant , typename ... Fields >

struct data { };

Listing 13. Algebraic data type representation

These two representations behave identically in normal situations, but differ
slightly when misused.

Construction. A value of D is constructed by picking the desired variant Di

and providing a value for each field. The translation is shown in Listing 14. Like
before, the names Sj need to be unique.

translate(Di(E1, . . . , Eni))
def
=

∀j ∈ {1, . . . , ni}
struct Sj { translate(Ej) };

using type = data <i, . . ., typename Sj ::type , . . .>;

Listing 14. Constructor translation

Instead of constructing Di directly, it might be preferable to use λx1 . . . xni
.

Di(x1, . . . , xni
), which can be partially applied and used with higher-order func-

tions.

Deconstruction. The values of D are deconstructed by performing a case
analysis. The input of the case analysis is an expression E which represents
some value of the data type D. Each case is described by a clause which is
a pair consisting of a pattern pati and an expression Ei. A pattern can either
be a wildcard pattern (represented by an underscore) or a variant pattern Dj

followed by a sequence of distinct variables x1 to xnj
. The expression Ei may

refer to the variables that appear in pati.
We require the patterns to be distinct (up to variable renaming) and the

case analysis to be complete (if a variant does not have a corresponding variant
pattern, a wildcard pattern must be present).

Case analysis proceeds by evaluating E to a value Di(f1, . . . , fni
) for some

i. Next, the corresponding clause patj → Ej is selected and, if applicable, the
variables x1 to xni

are bound to the values of fields f1 to fni
. The result of the

case analysis is then the value of the expression Ej .
A wildcard pattern is selected only when no matching variant pattern is

found, which guarantees that the selection of a clause is unique thanks to the
distinctness and completeness conditions above.

Case analysis can be translated as a template with one type parameter. The
definition of this template consists of a template specialization for each of the
clauses. The full translation is shown in Listing 15.

104 V. Šefl

translate(caseE {pat1 → E1, . . . , patp → Ep}) def
=

template <typename >

struct _case;

∀i ∈ {1, . . . , p}
translate(pati → Ei)

struct S { translate(E) };

using type = typename _case <typename S::type >:: type;

translate(Di x1 . . . xni → E)
def
=

template <typename f1, . . ., typename fni >

struct _case <data <i, f1, . . ., fni >> {

∀j ∈ {1, . . . , ni}
struct xj { using type = fj; };

translate(E)
};

translate(→ E)
def
=

template <typename >

struct _case {

translate(E)
};

Listing 15. Deconstructor translation

If a variant contains no fields, the corresponding template specialization is
a full specialization. An example of full template specialization is shown in List-
ing 16.

template <>

struct _case <data <0>> { };

Listing 16. Full template specialization

Until C++17, a full specialization of a class could only occur at the names-
pace level. When working with older C++ compilers, only partial specialization
should be used, which can be accomplished by adding an extra type parameter
to the data template. The value of this parameter is irrelevant since it is never
used.

As presented, the case template cannot distinguish between two variants of
different data types. This is not a problem if the source language can guarantee
that case analysis is only performed on the correct values. If no such guarantee
exists, it is preferable to represent each variant with a unique template instead
of using the generic data template.

A more complex case analysis with overlapping cases or nested patterns can
be implemented in terms of the simple case analysis given here [4].

As an example, Listing 25 uses this encoding on a singly-linked list.

Translating Lambda Calculus into C++ Templates 105

6 Semantics

In order to show that the translated metaprograms behave in a consistent
way, we first only consider strongly normalizing expressions of the source lan-
guage (expressions whose reduction always terminates). We then show that these
metaprograms reduce in normal order. Note that this section only accounts for
the relevant portion of the underlying template model [8].

6.1 Preservation

Consider a well-behaved expression in the source language. We need to show
that the translation preserves reduction. In particular, we need to consider func-
tion application, local bindings, and case analysis. The reduction behavior of
operations on promoted data types, once fully applied, is simply given by the
underlying C++ computational model. A step-by-step explanation is also avail-
able.2

Function Application. Reduction of function application is given by the β-
rule (λx.M)N � M [x := N]. The translated metaprogram (Listing 17) unpacks
the inner type of the lambda abstraction and then instantiates the inner tem-
plate apply, which contains the translation of M . The instantiation replaces all
free occurrences of x with the class S2. Notice that these variables now refer
to S2::type which is the translation of N . Thus, the resulting metaprogram
matches the translation of M [x := N].

translate((λx.M)N) =
struct S1 {

struct type {

template <typename x>
struct apply { translate(M) };

};

};

struct S2 { translate(N) };

using type = typename S1::type:: template apply <S2 >::type;

Listing 17. Reduction of function application

Note that since we require variables to be fresh, the substitution does not
have to consider the capture of free variables or variable shadowing.

Local Bindings. The reduction of non-recursive local bindings is given by
let x = N in M � M [x := N]. We can see that the free occurrences of x in
the translation of M (Listing 18) directly refer to the translation of N and the
resulting metaprogram thus matches the translation of M [x := N].

2 https://github.com/vituscze/norri/blob/master/semantics.md.

https://github.com/vituscze/norri/blob/master/semantics.md

106 V. Šefl

translate(letx = N inM) =
struct x { translate(N) };

translate(M)

Listing 18. Reduction of local bindings

Case Analysis. The reduction of the case analysis (deconstruction) is given
by case (Di(N1, . . . , Nj)) {. . . , Di x1 . . . xj → M, . . . } � M [x1 := N1, . . . , xj :=
Nj]. If the constructor tag does not match any of the patterns, the wildcard
pattern, which must be present, is used. Without loss of generality, we only
consider the case of a unary constructor.

The translated metaprogram (Listing 19) constructs the encoded value of the
algebraic data type in the class S. S::type contains the constructor tag i and
its second parameter refers to the translation of N .

translate(case (Di(N)) {. . . , Di x → M, . . . }) =
template <typename >

struct _case;

template <typename f >
struct _case <data <i, f >> {

struct x { using type = f ; };

translate(M)
};

struct S {

struct S1 { translate(N) };

using type = data <i, typename S1::type >;

};

using type = typename _case <typename S::type >:: type;

Listing 19. Reduction of case analysis

S::type is then given to the template class case. Since the constructor
tags are unique across the template specializations, the encoded value matches
at least one specialization (case analysis is guaranteed to cover all cases) and at
most two specializations (one with a matching tag and one wildcard).

In case there is only a single match, C++ has no choice but to use that
match. When there are two matches, C++ prefers the more specific match,
which is the specialization with the matching constructor tag. In either case, the
correct template specialization is selected.

Once the correct specialization is instantiated, the value stored in the encoded
constructor is wrapped in the class x and the final result is the translation of M ,
which can refer to the translation of N via the variable x. This result matches
the translation of M [x := N].

Translating Lambda Calculus into C++ Templates 107

6.2 Evaluation Order

Two Phase Compilation. Template code is compiled in two phases. In the
first phase, the compiler only processes the parts of the code that do not depend
on the template parameters. No instantiation takes place at this time. This phase
ensures the template is well-formed, even if it is never used.

The second phase occurs when the template is used with concrete arguments.
This forces the instantiation of the template, substituting the template param-
eters with the given arguments. Code that depends on those parameters can be
processed at this time.

In some cases, first phase processing might be undesired. As an example,
static assert which unconditionally fails with a given message can be used to
give clearer error messages to partial functions. However, such assertion would
be triggered during the first phase processing, before the function is even used.

First phase processing can be avoided by tricking the compiler into assum-
ing the code depends on the parameter. The template always false in Listing
20 does not depend on the template parameter, but to see that, the compiler
needs to instantiate the template. As a result, the static assert in the template
succeeds does not see that its parameter is false during the first phase pro-
cessing and the assert is only triggered when the outer template is instantiated
during the second phase processing.

template <typename T>

struct always_false

{ static const bool value = false; };

template <typename T>

struct fails {

static_assert(false);

};

template <typename T>

struct succeeds {

static_assert(always_false <T>:: value);

};

Listing 20. Fake parameter dependency

Instantiation. C++ templates distinguish between implicit and explicit instan-
tiation. Implicit instantiation occurs when a code refers to the template in a con-
text that requires its definition. Explicit instantiation occurs as a result of a spe-
cial instantiation statement.

template <typename T>

struct s { using type = int; };

s<int >:: type x = 5; // implicit

template struct s<int >; // explicit

Listing 21. Implicit and explicit instantiation

108 V. Šefl

Explicit instantiation of a class template forces the instantiation of all its
members, whereas implicit instantiation only instantiates whatever is necessary.
In other words, implicit instantiation is lazy.

Laziness. The translation exploits the previous observation by using the inner
type name type. The classes are set up in such a way where referring to the class
itself does not force instantiation of any of its members. Referring to the inner
type name type forces their instantiation, which drives the evaluation. Another
benefit of this approach is that the translation does not need fake parameter
dependencies.

This difference is best exemplified on the encoding of algebraic data types.
Notice that the arguments passed to the data template are of the form x::type
for some x. This observation suggests that those data types are strict. And
indeed, a C++ compiler will quickly hit the template instantiation limit when
trying to compile an infinite data structure.

However, we are not forced to access the inner type member when creating
an encoded value. We can change the translation of the constructor from Listing
14 and the pattern from Listing 15 as follows.

translate(Di(E1, . . . , Eni))
def
=

∀j ∈ {1, . . . , ni}
struct Sj { translate(Ej) };

using type = data <i, . . ., Sj , . . .>;

translate(Di x1 . . . xni → E)
def
=

template <typename x1, . . ., typename xni >

struct _case <data <i, x1, . . ., xni >> {

translate(E)
};

Listing 22. Non-strict algebraic data types

And indeed, when a metaprogram is translated using this modification, it can
create and operate on infinite data structures. Value recursion also functions as
expected.

While the translated metaprograms are lazy, it is also possible to force strict
evaluation. For example, the seq operation from Haskell’s Prelude, which forces
the evaluation of its first argument and then returns the second one, can be
implemented by translating λxy.y and replacing the translation of y by the code
in Listing 23.

template <typename X, typename Y>

using _snd = Y;

using type = _snd <typename x::type , typename y::type >;

Listing 23. The seq operation

Translating Lambda Calculus into C++ Templates 109

Notice that when translating top-level bindings, the translated metaprograms
are not contained in any template. As a result, they will be evaluated during
compilation regardless of whether they are used. If necessary, we can simply
wrap these metaprograms inside a template class as shown in Listing 24.

template <typename _T>

struct tmp_impl {

translate(x1 = E1; . . . ;xn = En)
};

using tmp = tmp_impl <void >;

Listing 24. Top-level template wrapping

6.3 Compilation Errors

Translated metaprograms produce error messages during compilation if their
reduction gets stuck or does not terminate. As a result, well-behaved expressions
in the source language translate into metaprograms that do not produce error
messages. Thanks to lazy evaluation, this guarantee extends even to expressions
that are well-behaved only under a certain evaluation order.

However, C++ compilers impose a limit on the template instantiation depth,
which can result in compilation failure even for well-behaved metaprograms.
Compilers typically emit a specific error which makes this issue easy to diag-
nose. If necessary, compiler flags can be used to increase this limit (for example
-ftemplate-depth in GCC).

While the translation itself does not avoid compilation errors, most of these
errors can be removed by restricting which expressions are valid in the source
language. For example, simply-typed lambda calculus is strongly normalizing
and its reduction does not get stuck. All expressions are thus well-behaved and
if translated, the resulting metaprogram can only fail to compile due to the
template instantiation depth limit.

In essence, template compilation errors can be transformed into type errors
in the source language. Such errors are much easier to understand and correct.

7 Practical Examples

In this section, we provide two examples of combining the resulting metapro-
grams with existing metaprogramming code.

The translated metaprograms can often be used directly. Nevertheless, an
auxiliary metaprogram can simplify the code, such as when manipulating
encoded data types. Instead of a list, we might wish to use a pack of template
parameters. This representation is not only more succinct, but it also allows the
pack to be expanded into expressions.

Suppose that a strict list data type consists of a nullary variantNil and a binary
variant Cons, and the encoding uses explicit names instead of the generic data
template. Listing 25 shows a conversion between such lists and template parameter
packs. Note that template parameter packs are not first-class citizens of C++ and

110 V. Šefl

must, therefore, be wrapped in an auxiliary template pack. The add metaprogram
adds a new element to a template parameter pack. The list encoding is recursively
constructed by to list and deconstructed by from list.

template <typename ...> struct pack;

template <typename , typename > struct add;

template <typename ...> struct to_list;

template <typename > struct from_list;

template <typename T, typename ... U>

struct add <T, pack <U...>> {

using type = pack <T, U...>;

};

template <>

struct to_list <> {

using type = Nil;

};

template <typename T, typename ... U>

struct to_list <T, U...> {

using type = Cons <T, typename to_list <U...>::type >;

};

template <>

struct from_list <Nil > {

using type = pack <>;

};

template <typename T, typename U>

struct from_list <Cons <T, U>> {

using type =

typename add <T, typename from_list <U>::type >:: type;

};

Listing 25. List conversion

Similarly, existing metaprograms can be adapted for use in higher-order func-
tions. Unary predicates from the type traits header can be adapted as shown
in Listing 26. This process can be automated and extended for predicates and
functions of higher arity.

template <template <typename > class F>

struct predicate {

template <typename T>

struct apply {

using type = Bool <F<typename T::type >::value >;

};

};

Listing 26. Type function conversion

Translating Lambda Calculus into C++ Templates 111

7.1 Precomputation

Since metaprograms are evaluated during compilation, they can be used to pre-
compute constants. The main advantage of this approach is that the computation
can be parametrized, which is especially useful when multiple constants depend
on a small set of input parameters.

One example is the precomputation of small prime numbers, which is useful
when generating large prime numbers. This computation comes with a natural
tradeoff: the more time we spend precomputing primes during compilation, the
less time we spend finding primes during run time. The metaprogram gener-
ates prime numbers smaller than a given value, which gives us control over the
tradeoff.

diff = λstep start list . case list
{Nil → Nil
,Cons x xs → case compare x start

{LT → Cons x (diff step start xs)
,EQ → diff step (start + step) xs
,GT → diff step (start + step) (Cons x xs)
}

}

sieve = λlist . case list
{Nil → Nil
,Cons x xs → Cons x (sieve (diff x x2 xs))
}

between = λx y. casex ≤ y
{False → Nil
,True → Cons x (between (x + 1) y)
}

primes = λn. sieve (between 2n)

Listing 27. Sieve of Eratosthenes

The metaprogram is based on the sieve of Eratosthenes. The generated primes
are stored in a list, which is then used to initialize an array. The definitions can
be found in Listing 27. The compare x y expression answers whether x is less
than, equal to, or greater than y.

The list of prime numbers is obtained by applying the primes function to
the upper bound. The function generates a list of candidate numbers up to the
bound and then performs the sieve operation. At each step, the head of the list x
is marked as a prime number, and multiples of x (starting with x2) are removed
from the remainder of the list.

112 V. Šefl

Once these definitions are translated into a C++ metaprogram, the resulting
list can be accessed as primes::type::apply<wrap<Int<n>>>::type (for some
number n).

The list cannot be used to directly initialize an array. Instead, the list needs
to be converted into a template parameter pack, which can then be expanded
into the array initializer. A template parameter pack T, whose elements are types
that contain a value constant, can be expanded via {T::value...}. Listing 28
details how to automate this process.

template <typename >

struct to_array;

template <typename ... T>

struct to_array <pack <T...>> {

static const int size = sizeof ...(T);

static const int data [];

};

template <typename ... T>

const int to_array <pack <T...>>:: data[] = {T::value ...};

Listing 28. Array initialization using a template parameter pack

And finally, Listing 29 shows how to combine these operations to initialize
and use a precomputed array of prime numbers.

using list = primes ::type::apply <wrap <Int <50>>>::type;

using array = to_array <to_pack <list >::type >;

for (int i = 0; i < array ::size; ++i)

std::cout << array ::data[i] << "�";

Listing 29. Precomputed array usage

7.2 Generic Programming

Template metaprograms are commonly employed in generic programming. As
an example, metaprograms from the type traits header are frequently used
to check the prerequisites of the elements of standard library containers. These
operations range from checking whether the element type supports a given oper-
ation to manipulating types in an iterator definition.

Suppose we want to create a pool allocator for a set of types. A pool allocator
allocates a large chunk of memory at the start, which is then divided evenly into
blocks large enough to hold a value of any of the given types. Allocation proceeds
by finding an empty block and returning it. Empty blocks can be tracked using
a linked list, which allows the operations to function in O(1) time.

The allocator first ensures that all types meet the given criteria. The check
function is used for this task. Its input is a list of predicates and a list of types.
The check succeeds if all types satisfy all predicates. It is implemented in terms of
the all function, which checks whether all elements of a list satisfy one predicate.

Translating Lambda Calculus into C++ Templates 113

The block size is also calculated during compilation. The blockSize function
computes the size of the block as the maximum size among the input types,
which is then rounded to the nearest power of two by the nextPower function.
The expression max x y denotes the maximum of x and y. The size function
computes the size of its input.

The definitions can be found in Listing 30. Two auxiliary functions are used:
foldr and loop. The foldr function combines all elements of a list into a sin-
gle value, using a combining function and an initial value. The loop function
repeatedly applies a given function to a value while a condition holds.

foldr = λf z list . case list
{Nil → z
,Cons x xs → f x (foldr f z xs)
}

loop = λp f x. case p x
{False → x
,True → loop p f (f x)
}

all = λp. foldr (λx r. p x ∧ r)True
check = λps xs. all (λp. all p xs) ps
nextPower = λn. loop (λx. x < n) (λx. 2x) 1
blockSize = λts.nextPower (foldr (λx r.max (size x) r) 1 ts)

Listing 30. Type check and block size calculation

The size function is defined separately as an auxiliary metaprogram in order
to use the sizeof operator. The definition can be found in Listing 31.

struct size {

struct type {

template <typename T>

struct apply {

using type = Int <sizeof(typename T::type)>;

};

};

};

Listing 31. Type size metaprogram

Listing 32 shows a possible definition of such an allocator. For the sake of
brevity, the allocator only checks one predicate (std::is pod). The predicate list
predicates and the type list types are passed to the translated check metapro-
gram and its result is used in static assert, which halts the compilation and
reports the specified error message if the check fails.

114 V. Šefl

Similarly, the type list types is passed to the translated blockSize metapro-
gram and its result is used to initialize the block size constant, which can then
be used in the appropriate allocation operation.

template <typename ... T>

struct allocator {

using predicates = to_list <predicate <std::is_pod >>;

using types = to_list <T...>;

static_assert(check ::type::apply <predicates >

::type::apply <types >

::type::value);

static const int block_size =

blockSize ::type::apply <types >:: type:: value;

};

Listing 32. Allocator for a set of types

8 Conclusion

While recent C++ standards offer more options for performing compile-time
computations thanks to the constexpr keyword, the support of type-level pro-
gramming is still lacking. Template metaprogramming thus remains an impor-
tant tool for implementing generic data structures and functions. However, tem-
plate metaprograms are often hard to read and write. Some tools seek to alleviate
these problems by translating functional code into metaprograms.

We present a new way of translating functional code based on lambda cal-
culus into template metaprograms. The main advantages of our method are
its simplicity and well-defined, non-strict semantics. The translation uses direct
rules and the resulting metaprograms can be easily incorporated into existing
C++ code. The translation can be used with both typed and untyped languages,
and also includes bindings, recursion, and complex data structures.

Since the source language is based on an existing programming paradigm,
a wealth of existing programming techniques can be reused. Similarly, the source
language can be subject to existing optimizing transformations. We hope that
this work encourages programmers to write more complex metaprograms as well
as to simplify the existing ones.

References

1. Abrahams, D., Gurtovoy, A.: Boost.MPL library (2004). http://www.boost.org/
2. Dionne, L.: Boost.Hana library (2020). http://www.boost.org/
3. Érdi, G.: MetaFun: Compile Haskell-like code to C++ template metaprograms

(2011). https://gergo.erdi.hu/projects/metafun/
4. Maranget, L.: Two techniques for compiling lazy pattern matching. Technical

report, INRIA (1994)

http://www.boost.org/
http://www.boost.org/
https://gergo.erdi.hu/projects/metafun/

Translating Lambda Calculus into C++ Templates 115

5. Porkoláb, Z.: Functional programming with C++ template metaprograms. In:
Horváth, Z., Plasmeijer, R., Zsók, V. (eds.) CEFP 2009. LNCS, vol. 6299, pp.
306–353. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17685-
2 9

6. Porkoláb, Z., Sinkovics, Á.: Expressing C++ Template Metaprograms as Lambda
Expressions, pp. 97–111. Intellect (2009)

7. Porkoláb, Z., Sinkovics, Á., Siroki, I.: DSL in C++ template metaprogram. In:
Zsók, V., Horváth, Z., Csató, L. (eds.) CEFP 2013. LNCS, vol. 8606, pp. 76–114.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-15940-9 3

8. Siek, J., Taha, W.: A semantic analysis of C++ templates. In: Thomas, D. (ed.)
ECOOP 2006. LNCS, vol. 4067, pp. 304–327. Springer, Heidelberg (2006). https://
doi.org/10.1007/11785477 19

9. Sinkovics, A.: Boost.Metaparse library (2020). http://www.boost.org/
10. Sipos, Á., Zsók, V.: EClean - an embedded functional language. Electron. Notes

Theoret. Comput. Sci. 238(2), 47–58 (2009)
11. Veldhuizen, T.: Expression templates. C++ Report 7, 26–31 (1995)

https://doi.org/10.1007/978-3-642-17685-2_9
https://doi.org/10.1007/978-3-642-17685-2_9
https://doi.org/10.1007/978-3-319-15940-9_3
https://doi.org/10.1007/11785477_19
https://doi.org/10.1007/11785477_19
http://www.boost.org/

ProofViz: An Interactive Visual
Proof Explorer

Daniel Melcer1(B) and Stephen Chang2

1 Northeastern University, Boston, MA 02115, USA
melcer.d@northeastern.edu

2 University of Massachusetts Boston, Boston, MA 02125, USA
stephen.chang@umb.edu

Abstract. We introduce ProofViz, an extension to the Cur proof
assistant that enables interactive visualization and exploration of in-
progress proofs. The tool displays a representation of the underlying
proof tree, information about each node in the tree, and the partially-
completed proof term at each node. Users can interact with the proof by
executing tactics, changing the focus, or undoing previous actions. We
anticipate that ProofViz will be useful both to students new to tactic-
based theorem provers, and to advanced users developing new tactics.

Keywords: Proof assistants · IDEs · GUI tools

1 Introduction

The Curry-Howard correspondence [3,8] is a fundamental insight connecting
logic and programming. Specifically, a proposition in a logic corresponds to a
type in a programming language, and a proof of that proposition is a program
inhabiting that type. In such a language, type checking corresponds to proof
checking, and in this manner program properties may be directly verified in
the language without resorting to external specification languages or tools. This
influential insight has been applied to a wide variety of features such as polymor-
phism, concurrency, and resource consumption, and has inspired the creation of
numerous languages and proof assistants such as Coq, Agda, Idris, LF, NuPRL,
F*, HOL4, and Lean (Wadler [18] recently surveyed its history in detail). Collec-
tively, these tools are pushing the boundaries of software development and have
even been used to verify parts of some mainstream software [5,19].

These proof assistants still have a steep learning curve, however, and none
of the options for beginners are ideal. Some introductory books, such as The
Little Typer [7], teach theorem proving via straightforward construction of the
aforementioned “proofs as programs”. While this method is direct and does not
hide anything from the learner, it also does not scale well beyond small examples.
Other popular texts [14] rely entirely on a separate “tactic” language to generate
the proofs, despite the fact that such scripts are often “inscrutable” [15] because
they hide much of the proof information from users.
c© Springer Nature Switzerland AG 2021
V. Zsók and J. Hughes (Eds.): TFP 2021, LNCS 12834, pp. 116–135, 2021.
https://doi.org/10.1007/978-3-030-83978-9_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-83978-9_6&domain=pdf
http://orcid.org/0000-0003-0807-8163
http://orcid.org/0000-0002-4760-0658
https://doi.org/10.1007/978-3-030-83978-9_6

ProofViz: An Interactive Visual Proof Explorer 117

We present ProofViz, a new kind of graphical IDE for the Cur [1] proof
assistant, that bridges the gap between manual proof construction and tactic-
based proofs. We believe this tool will be especially beneficial for new users of
tactic-based proof assistants because they can more easily see, and thus under-
stand, the parts of an in-progress proof such as the partial proof term, remain-
ing subgoals, and the location of those subgoals in the proof tree. They can also
directly perform actions on the proof such as navigating to proof tree nodes, exe-
cuting or undoing additional tactics, and saving the actions in order to switch
back and forth between our tool and a traditional editor. Our tool can be valu-
able for advanced users as well, e.g., for tasks such as creating and debugging new
tactics, where the ability to see the underlying proof term is crucial. Finally, we
conjecture that having an extensible GUI will enable many more helpful actions
that are not possible in text-based IDEs, such as widescale refactoring of the
proof structure, displaying domain-specific proof information, advanced search-
ing of large proofs, and showing available tactics or hints for possible next steps.

The rest of the paper explains the details, and is organized as follows:

– Section 2 introduces relevant background about the Curry-Howard correspon-
dence and tactic scripts;

– Section 3 presents a larger case study that illustrates how ProofViz smooths
the transition to tactic-based proof assistants;

– Section 4 shows that ProofViz can be useful to advanced users as well; specif-
ically it shows, via two case studies, how ProofViz can aid the development
of new tactics and the maintenance of existing tactics;

– Section 5 discusses Cur, its tactic system, and ProofViz in more technical
detail;

– Section 6 compares the tool to related work; and finally,
– Section 7 evaluates ProofViz, discusses future work and concludes.

2 Background: Tactics vs Proof Terms

According to the Curry-Howard correspondence, a logical proposition corre-
sponds to a type P, and the proposition can be proved by constructing a program
p with type P. For example, implication corresponds to the function type, univer-
sal quantification corresponds to polymorphism, and logical conjunction corre-
sponds to a product type. Thus, a function with type (∀ (P Q) (→ (And P Q)
(And Q P)) in Fig. 1 (top) proves the commutativity of conjunction. Specifically,
if P and Q are any two types, i.e., propositions, then a proof of their conjunction
is a pair data structure that combines a value of type P (i.e. a proof of P) with a
value of type Q. If we have such a pair, then to “prove” the commuted proposition
(And Q P), we simply need to extract the first and second components of the
original proof and combine them in the reverse order.

Such manual proof term construction, however, becomes infeasible as proofs
get larger. Thus, many proof assistant programmers use a separate “tactic” lan-
guage that generates the proof. Figure 1 (bot) shows the same proposition along
with a tactic script that proves it, where each line of the script generates one

118 D. Melcer and S. Chang

Fig. 1. (top) A program that proves the commutativity of conjunction; (bot) the same
program, generated with a tactic script

piece of the proof term in Fig. 1 (top). Specifically, (intros P Q pq) generates
the lambda parameters, (destruct pq #:as [p q]) extracts the components
of the pair and names them, constructor creates a new pair, and (by-apply
q) and (by-apply p) puts the components into the new pair in reverse order.

Such a tactic script is typically developed in an interactive editor that can
execute the script step-by-step and show a snapshot of the in-progress proof at
each step. Figure 2 shows a few such snapshots for Fig. 1’s proof script. Each
snapshot has two parts: the context above the dotted line shows known assump-
tions, and the goal below the line shows a part of the proposition that is left
to prove. The left snapshot, which shows the state immediately after running
the destruct tactic, has a context above the line containing propositions P and
Q, as well as proofs of those propositions. Below the line, the snapshot shows
that we still must prove the consequent of the implication, i.e., the commuted
conjunction. The right snapshot, which shows the proof state immediately after
running the constructor tactic step, shows (below the line) that we have two
subgoals left to prove, the first of which is q (the second, not shown yet, is p),
which can be proven easily by applying the facts that we know above the line.

But here we begin to see a problem, which is that the tactic script by itself
does not make much sense to a user who later looks at it, because it hides
what is happening: the generation of the proof term. Thus, students who rely
too much on tactics might not fundamentally understand how theorem provers
work. Instead, they might come away thinking that theorem proving is merely
the application of ad-hoc “pattern matching” rules (e.g., a popular textbook [14]
often gives advice like “where the goal to be proved is exactly the same as some
hypothesis in the context or some previously proved lemma ... use the apply
tactic”). Such superficial techniques could hinder learning since they may not
scale to larger proofs where the patterns are not as obvious.

ProofViz: An Interactive Visual Proof Explorer 119

Fig. 2. Intermediate views of the proof state while stepping through the tactic script
in Fig. 1: (left) the proof state after running the destruct tactic; (right) the proof state
after running the constructor tactic

Ideally, a novice could use an IDE that more naturally bridges the gap
between manual proof construction and tactic scripts. During an undergrad-
uate independent study, the first author was motivated to create and use such a
tool, in order to better understand the connection between logic and programs
that underpins the majority of modern proof assistants.

3 A Case Study: add1+=+add1

This section presents a more complex example that illustrates how ProofViz
smooths the learning curve for beginning proof assistant users. Specifically, we
show how to prove a basic arithmetic theorem:

(∀ (n j) (== (add1 (+ n j)) (+ n (add1 j)))) ; add1+=+add1

3.1 Inductive Proofs, Eliminators, and Equality

This seemingly basic theorem requires that students first learn many additional
features of the language. First, it uses Nat, an inductively defined family. Induc-
tive families [4], as found in languages like Coq, mostly resemble the algebraic
datatypes found in functional languages like Haskell or ML. For example, here is
the definition of Nat from Cur’s standard library, which generates the usual data
and type constructors (following The Little Typer, we use the more descriptive
“add1” name for the successor constructor in this example):

(define-datatype Nat : Type
[z : Nat]
[add1 : (→ Nat Nat)])

Inductive families go beyond plain functional datatypes, however, because they
allow parameterization over both types and terms, e.g., the type of an indexed list
parameterizes over both the type of the list element and includes an additional
Nat value that represents the length of the list.

120 D. Melcer and S. Chang

Every inductive family definition also generates an eliminator for that type,
which generalizes the pattern matching found in functional languages. Follow-
ing the terminology of Mcbride [11], the eliminator for natural numbers has
the form (elim-Nat n P mz ms) where n is the target to eliminate, P is the
motive that computes the return type of the elimination, and the remaining
arguments are methods corresponding to each case of the data type: the elimi-
nator returns mz when n is zero and calls ms when n is a successor. Method mz
must have type (P z), i.e., the motive applied to zero, while ms must have type
(∀ [k : Nat] (→ (P k) (P (add1 k)))), which mirrors a proof by induc-
tion: for any k, given a proof of (P k), i.e., the induction hypothesis that results
from recursively calling the eliminator with k, we must output a term with type
(P (add1 k)). For example, here is addition, implemented with elim-Nat:

(define +
(λ [n : Nat] [m : Nat]

(elim-Nat
n ; target to eliminate
(λ (n) Nat) ;motive
m ;method for zero case
(λ [n-1 : Nat] [ih : Nat] (add1 ih))))) ;method for successor

The first addend n is the target of elimination and, according to the motive, the
result is always a Nat. Specifically, when n is zero, the result is m; otherwise, the
result is one plus the result of the recursive call (+ n-1 m).

Finally, since propositions are types, inductive families can be used to define
new propositions, where the data constructors are proofs of that proposition.
One such proposition is the equality type ==, which comes with a constructor
(same x) (sometimes called refl or reflexivity) that represents a proof of
(== x x). In other words, we can only construct a proof of equality between
two things that are equal.

3.2 Matching Tactics with Proof Terms

Figure 3a shows a program proving our add1+=+add1 theorem. It calls elim-Nat
with four arguments: a target n, a motive function, and two methods correspond-
ing to the zero and successor cases. When n is zero, the result is (same (add1
j)), which has the equality type we want, i.e., the motive applied to zero:

(∀ (j) (== (add1 j) (add1 j))) ; zero case

When n is not zero, the result of the elim-Nat is the result of applying the
second method to two arguments: n - 1, and the result of recursively calling
the eliminator with n - 1, where the latter exactly corresponds to the inductive
hypothesis in a proof by induction. Using this, we must construct a proof of:

; successor case
(∀ (j) (== (add1 (+ (add1 n-1) j)) (+ (add1 n-1) (add1 j))))

ProofViz: An Interactive Visual Proof Explorer 121

Fig. 3. The correspondence between a manually constructed proof term and an equiv-
alent tactic script. While these two proofs are written in very different styles, every
part of the manual term corresponds to a tactic. ProofViz allows users to view which
tactic generated each part of a proof term.

which, when simplified, following the definition of the + function above, becomes:

; successor case, simplified
(∀ (j) (== (add1 (add1 (+ n-1 j))) (add1 (+ n-1 (add1 j)))))

We can see that this proposition is exactly the inductive hypothesis, with an
extra add1 around it. To go from the inductive hypothesis to what we need, we
can use cong, which is a theorem about a basic property of functions: (∀(A B)
[x : A] [y : A] [f : (→ A B)] (→ (== x y) (== (f x) (f y)))), i.e.,
applying the same function to equal values produces equal results.

Figure 3a shows the result of manually constructing a proof term following
step-by-step exercises from The Little Typer. The same theorem can also be
proved via a Cur tactic script, as shown in Fig. 3b. The execution of this sequence
constructs a proof term that is remarkably similar to the manually constructed
version. A student, however, cannot see this correspondence, nor can they see
any of the intermediate proof parts mentioned in this subsection.

3.3 Using PROOFVIZ to Understand Induction Tactics

The two sides of Fig. 3 and their colored components summarize the correspon-
dence between tactics and proof terms that we would like to see. Figure 4 presents
ProofViz, which shows this exact correspondence. Briefly, our tool’s user inter-
face contains three panes; the tree view, the node information panel, and the
interaction panel.

– In the tree view (Fig. 5b), the proof’s state is displayed as a tree. A proof
tree has a single node that is marked as its “focus”, which represents the

122 D. Melcer and S. Chang

current proof subgoal. Subsequently executed tactics will add nodes at this
focus point, and the tool includes controls to collapse all nodes of the tree that
are unrelated to the focus. We are working to further optimize ProofViz’s
interface to allow concise viewing of other information subsets. The various
node types and colors in the tree view are discussed in Sect. 5.2.

– A primary contribution of ProofViz is that each tactic in the proof script
is connected to the part of the proof term that this tactic generates. This
information is shown in the node information panel (Fig. 5c) when a single
node in the tree view is selected. In addition to the list of variables in the
context and the types of these variables, this panel also shows the expected
output type of the node. Some node types have node-specific information or
actions available. For example, “hole” nodes allow for the proof focus to be
set to that node (see Sect. 5.2) and “apply” nodes include a list of expected
types for its subtrees, as well as the output of the combined result.

– The rightmost interactions panel (also in Fig. 5c) allows the user to execute
additional tactics, and the tool allows undoing and redoing an arbitrary num-
ber of these interactions. If an error occurs during tactic evaluation, details
are printed to the console and the proof tree is not modified.

Fig. 4. A view of the interface with a completed proof of add1+=+add1. Note: instead
of elim-Nat, Cur uses a general new-elim for inductive datatypes. The cong and same
equality constructors are also have different names, f-equal and refl, respectively.
ProofViz also shows which tactic generated the selected node, in the middle panel;
the user can explore different nodes of the proof without changing the focus.

ProofViz: An Interactive Visual Proof Explorer 123

Fig. 5. ProofViz displays all nodes of the proof tree, making it clear to the user how
each tactic affects the generated proof term.

124 D. Melcer and S. Chang

Overall, our tool enables users, especially students, to gain more insight
into their proofs. For example, with only a conventional view of a proof, the
by-intros tactic appears to just “move” variables from the goal into the con-
text. With the highlighted correspondences shown in Fig. 3, it becomes clear
that by-intros really “wraps” the rest of the proof into a lambda. Instead of
our goal being a function type (i.e., an implication), we’ve now assumed a proof
of the input type (i.e., the antecedent) and now need only to generate a term
with the function’s return type (i.e., the consequent). The parameters of the
lambda are thus in the context as assumptions when generating the body of the
function. Similarly, by-assumption merely corresponds to finding an assump-
tion in the context whose type “fits” correctly, and then using its name directly.
By exploring the tree view and node information panel in ProofViz, a student
can directly see these correspondences and build up their intuition.

Also, our add1+=+add1 example in Fig. 3 involves inductively defined natural
numbers, and thus its proof requires induction. Conventionally, a student might
be told to just “use the by-induction tactic” as a way to deal with such proofs,
but they would not necessarily gain insight into what is actually happening, or
why this tactic works. With ProofViz, as seen in Fig. 5a, a student can see what
by-induction actually does—it creates a new-elim node (in Cur new-elim is
a general eliminator that dispatches to the type-specific ones like elim-Nat),
and sets up the next subgoals which must be proved. Once those subgoals have
proofs, ProofViz shows how they will be assembled into the completed proof
term, as highlighted in Fig. 5b.

Lastly, this example gives insight into why tactics are indeed useful, because
they can help manage the amount of boilerplate that must be written. For exam-
ple, with a manually constructed term, the induction motive, a necessary but
somewhat formulaic part of an inductive proof, must be written by hand. In
contrast, the by-induction tactic uses the goal type to automatically generate
this part of the term. This type of demonstration conveys the effectiveness of
tactics for reducing repetitive code, and may reduce a student’s skepticism about
whether tactics are even useful.

As seen in this example, we believe that ProofViz can mitigate the steep
learning curve associated with proof assistants by showing how each tactic affects
the generated proof tree. We envision a student could begin by merely interacting
with and exploring a pre-written library of such proofs, while a more advanced
student could use ProofViz while writing their own proofs to ensure that the
generated proof term matches their intuition of what each tactic does.

4 Tactic Development with PROOFVIZ

Though we have shown how ProofViz can be useful for beginners, it is not
limited to only such applications. In this section, we show how ProofViz can
help advanced users as well, specifically to develop and debug tactics themselves,
where it is often critical to be able to see how the tactics manipulate and generate
the underlying proof term.

ProofViz: An Interactive Visual Proof Explorer 125

4.1 Tactic Development: f-equal

While ProofViz does not replace traditional testing of new tactics, it can assist
with debugging in the course of tactic development. Similar to beginners, tactic
developers may find it useful to see exactly how each tactic affects the proof
tree. More specifically, in Fig. 3b, we used f-equal-tac in our proof script to
generate an application of The Little Typer ’s cong theorem but, until recently,
the tactic did not exist! We had to add the tactic ourselves and fortunately, we
had ProofViz available to help us do this more easily.

Figure 6 summarizes our iterative development process. As a first step,
instead of an f-equal-tac tactic, we started with an equivalent, but much more
complicated, call to a by-apply tactic that applies an f-equal (Cur’s name for
the cong theorem) function; this is shown in Fig. 6a. Then, we created a new
tactic that simply does the same thing as the aforementioned by-apply, as seen
in Fig. 6b, but this was very verbose and cumbersome to use. We then iteratively
improved the tactic so that it could infer all the arguments from the expected goal
type, eventually obtaining the simple tactic invocation shown in Fig. 6c. While
the implementation details of the tactic itself are not important for this paper,
what is important is that after each incremental change, we used ProofViz
to verify that the resulting tree structure, subterm types, and generated syntax
were what we expected, as shown in Fig. 6d.

4.2 Tactic Maintenance: by-induction

When developing ProofViz, we also noticed that the by-induction tactic
was behaving strangely, but only when used with certain other tactics. Using
ProofViz and the information it provides, we were able to quickly discover that
the tactic was producing subgoals with incorrect types, as seen in Fig. 7a. Specif-
ically, “Subterm 0” in the figure corresponds to the zero case in our add1+=+add1
proof from Sect. 3 and thus should have type (== (s j) (s j)) (Cur uses the
name s instead of add1 for the successor Nat constructor). Similarly, “Subterm
1” should have a type corresponding to the inductive step in the proof. After
deploying a fix for this, ProofViz then allowed us to quickly validate that the
revised tactic produces correct goal types, as seen in Fig. 7b. Without being able
to see the underlying proof information with ProofViz, debugging and fixing
this tactic would have been much more difficult.

5 Implementation Details

ProofViz works with Cur, a new proof assistant [1] that operates in the Racket
ecosystem [6], with an emphasis on easy extensibility [2]. This capability has
been used to extend Cur with features such as experimental type systems, e.g.,
sized types, and SMT solver integration. Further, these additional components
are modular, meaning that they may be added without changes to any existing
languages and do not break existing code, yet they are not isolated like third

126 D. Melcer and S. Chang

Fig. 6. The progression of f-equal forms. Initially, the function needed to be called
manually with by-apply. The first version of the tactic kept all arguments explicit,
but later versions of the tactic inferred all of the arguments from the goal. ProofViz
was used to check that each successive version had the correct behavior. Note that the
name f-equal-tac is used for the tactic to distinguish it from the function.

party tools in other systems. This is because the underlying mechanism—Racket
macros—enables easy communication with other components in the ecosystem.

ProofViz is implemented as a similar extension, and thus its implementa-
tion did not require any changes to the core language. It required only minimal
enhancement to ntac, the main tactic system used by Cur programmers, to allow
tagging proof nodes with arbitrary data (discussed further in Sect. 5.2).

5.1 Using PROOFVIZ

Figure 8a shows a basic proof script. A #lang cur on the first line declares the
start of a Cur program. The next require line imports the cur/ntac library,
which contains implementations of many basic tactics commonly used in other
proof assistants. The rest of the program binds id to the term produced by the
subsequent ntac proof script, which proves the identity function type.

To invoke our GUI tool, shown in Fig. 8b, a programmer can simply import
another library, cur/ntac-visual, and then invoke the ntac/visual proof envi-
ronment. This environment is implemented as an ordinary Racket macro. When
run, the program will launch ProofViz, initially displaying the partial proof

ProofViz: An Interactive Visual Proof Explorer 127

Fig. 7. While developing ProofViz, we found that some tactics produced incorrect
goal types at internal boundaries. We were able to use the tool to easily validate the
fixes.

generated by the listed tactics (Fig. 4 shows a screenshot). Note that our tool is
launched by running the program itself. It is independent of any specific IDE;
the proof script itself could have been edited with any editor.

5.2 Implementation

Internally, most tactic systems represent an in-progress proof as a tree. Each
tactic then transforms this tree, gradually filling in more information until the
proof is complete. There are several varieties of tree nodes in Cur.

A “hole” node represents a node on the tree that must be filled by a value
of a specific type. The ProofViz tree view displays this expected type, and
highlights the node in red. In an interactive tactic-based theorem prover, hole
nodes typically correspond to subgoals. For a proof to be considered complete,
the proof tree must not have any hole nodes.

Tactics may also generate “apply” nodes, which combine the values from
multiple subtrees into one value of an expected type. For example, an induction
tactic applied to the natural numbers will generate an “apply” node with two
subtrees. Initially, both of these subtrees will be hole nodes; one with a goal
type to prove the theorem for the base case, and one with a goal type for the
inductive case. The final piece of an “apply” node is a metafunction to combine
the subterms into a larger term that proves the theorem in general. For induction,

128 D. Melcer and S. Chang

Fig. 8. The addition of ProofViz to an existing proof script. The user must import
an extra library, and change the invocation of ntac to ntac/visual, a macro provided
by ProofViz.

this combining function takes as input a proof term that proves the base case and
a term that proves the inductive case. Its output is a term that eliminates the
inductive datatype value, with the two input subterms placed in their necessary
positions. The tree view displays the output of the combining function, even
when the apply’s subterms contain holes. The implementation of this is further
discussed in the Apply Outputs subsection below. In the tree view, the places
where subterms are substituted into the output of an apply node are highlighted
in light gray. An “apply” node can also bind variables that may be referenced in
any of its subtrees, by generating a lambda in the output. With induction, for
example, inductive cases will include extra variables in their context with the
induction hypothesis.

However, an apply node can only provide instructions to the tactic system
to assemble pieces of concrete syntax produced by subtrees; these nodes do not
provide bookkeeping information about any new names available in the context.
“Context” nodes serve this purpose, informing ntac that a name is available in
a given subtree. These are typically generated as direct descendants of “apply”
nodes. The tree view panel shows the names and types of all variables that such
context nodes introduce, and highlights such nodes in blue.

An “apply” may also be a leaf node, in which case the combining function
takes no arguments and produces a complete term whose type matches the goal.
Equivalently, an “exact” node contains a syntax literal to appear in the generated
proof term. Exact nodes are highlighted in green.

In summary, apply and exact nodes generate syntax that will become part of
the final proof term, while hole and context nodes solely perform bookkeeping
functions. There is also a fifth node type for bookkeeping, ntt-done, that only
appears at the top level of the proof tree. The tree view displays a short summary
of each of these nodes’ content, allowing the user to see the proof’s internal
structure at a glance.

ProofViz: An Interactive Visual Proof Explorer 129

Apply Outputs. An “apply” node works by declaring the expected types of a
number of subterms. When concrete terms of the correct type are available, the
apply node contains a combining function that accepts all of these subterms and
outputs a new term; this term is of the apply node’s output type. In order to
compactly visualize a proof, ProofViz must be able to show the local transfor-
mations of each apply node in isolation, without needing to provide a term of the
correct type. ProofViz must also show apply nodes in a partially completed
proof, where subterms with the expected type may be unavailable.

It is possible to do this because the combining function of an apply node
treats each subterm as an opaque value. Thus, to display a string representation
of an apply node, the tool creates several placeholder terms that typecheck as the
expected type, but show only as (Subterm n), where n is the index of this term
in the apply node. These placeholders are used as the input to the combining
function when generating the text representation of the apply node. Finally, the
output of the combining function is converted into a string and displayed.

Navigation. To allow for the “Focus Here” functionality, the tool generates a
sequence of navigation instructions from the top of the proof tree. These instruc-
tions are read by a new tactic, navigate, shown in Fig. 9. This tactic starts by
setting the focus at the root of the proof tree and then reads the sequence of
instructions, which has three possible cases:

– The proof tree’s root will always be a marker node, called ntt-done (rep-
resented as top-level in the tree view), with a single subtree. Then the
path-down-done instruction moves the focus to this subtree. This instruc-
tion should only appear in the beginning of the navigate sequence.

– The path-down-context instruction likewise moves the focus to the subtree
of the context node.

– The path-down-apply instruction is parameterized with a numeric index.
Since an apply node can have multiple subtrees, the index is used to determine
which subtree to focus on.

These three navigation instructions are sufficient to jump directly to any
location in the proof tree.

Fig. 9. An example navigation tactic generated by ProofViz. The tactic jumps to
the root of the proof tree, then descends to a specific node given by the instructions in
the navigation tactic.

130 D. Melcer and S. Chang

Scoping. Since Cur’s AST values include binding information that is computed
from its context in a program, our tool must be slightly careful about scoping. For
example, when display-focus-tree is used, since ntac has already executed
all previous tactics in the proof script outside the context of our tool, if any of
these tactics introduced variables into the context, they may not be referenced
by tactics executed with the tool.

To work around this, if ntac/visual is used, ProofViz executes the proof
script as if they were entered in the tool’s interactions panel, so all bindings
have the proper context. This associates the identifiers with a modified source
location, accounting for the reduced source location information that is available
when executing the tactic input box’s contents.

Fig. 10. The threading model for ProofViz, in display-focus-tree mode, resulting
from constraints on where GUI code and Cur tactics are each allowed to execute.

ProofViz: An Interactive Visual Proof Explorer 131

Threading. Additionally, to further ensure the proper context, ProofViz must
be careful when executing tactics in a multi-threaded environment. Specifically,
the GUI must run in a second thread because it may start before the main
(proof script) program finishes executing. But tactics, to have the same context
as the rest of the proof script, must be executed in the main thread. Addition-
ally, during GUI updates, ProofViz must call certain Cur library functions to
obtain textual representations of internal tree structures. Due to implementation
restrictions, these functions must be run on the main thread as well.

Thus, the tool uses a bidirectional channel to communicate between the main
thread and GUI thread. While the GUI is open, the main thread waits on a
message from this channel. One such message notifies the main thread that
the GUI window has closed, and includes the current state of the proof tree. If
display-focus-tree was used, the tactic that follows in the proof script receives
this proof state as input. The channel also allows the GUI to send arbitrary code
to execute on the main thread; this channel ensures that subsequent tactics
are evaluated in the correct context. Figure 10 shows the complete threading
behavior of ProofViz.

Tree Node Origin Tracking. Most of the features of ProofViz required no
changes to any other components of Cur or ntac, but the node origin track-
ing feature required the addition of substructures for each node type. These
substructures each add a generic “tag” field, and are interchangeable with the
original structures. ProofViz then uses this extra field to associate each node
of the proof tree with the node that generated it. However, when ntac changes
the focus of the tree proof, an implementation detail in ntac causes tree nodes
to be occasionally deconstructed and reconstructed in the process. The function
that does this was modified to detect whether it had destructed a tagged node,
and to add the tag back to the new node if it did so. We emphasize that no
modifications to Cur’s trusted core were necessary to achieve this.

5.3 Unresolved Challenges

Automatically Generated Names. Several tactics automatically generate
names for internal variables, often with no way to provide manually-written
identifiers. This is typically not an issue, as these names generally would not be
exposed to the user. However, when ProofViz encounters one of these identi-
fiers, it can only display the names that have been given to it. To fix this, indi-
vidual tactics would need to be rewritten to produce meaningful intermediate
names. A notable example of this are the names generated by the by-inversion
tactic, as shown in Fig. 11. In general, we are working to refactor some tactics
so they may be more ideally presented in ProofViz.

Ergonomics and Complexity. Relatedly, large proof trees and proof terms
can lead to a high information density, or to a GUI which requires excessive
scrolling. To combat this, the tree view includes the functionality to collapse

132 D. Melcer and S. Chang

Fig. 11. A sample proof term generated by by-inversion. Here, it is used instead of
by-apply or f-equal in the add1+=+add1 case study. ProofViz may not be as useful
when exploring tactics in which the generated term itself is difficult to interpret.

subtrees which are unrelated to the current focus, and the information about
an “apply” node only shows how its direct subterms are used locally. Further
work is needed to completely solve the problem, especially as proofs get larger.
Fortunately, our presented use cases—assisting beginning students, and creating
or debugging new tactics—typically involve smaller, more manageable proofs.

6 Related Work

Visualizing proofs as trees is not new. Even textual proof assistant IDEs, e.g.,
Proof General, typically support some tree-structured organization of proofs, via
the “bullet” system. Proof General also includes some tool-support for graphical
visualization [17], which itself is based on a visualization tool in PVS [13]. These
proof script visualization tools, however, seem to be exactly that: a visualization
of the tactic script that is currently entered in the buffer. While this visualization
can help users see the logical organization of a tactic-based proof, this style of
visualization doesn’t help the user relate the tactic script to the generated proof
term, and may be more useful for users who only deal with tactic-based scripts,
rather than the users coming from a no-tactics theorem prover. We believe, as
illustrated by the previous sections, that an explicit correspondence between the
proof term and tactic script is useful for some audiences.

ProofViz: An Interactive Visual Proof Explorer 133

Proof visualizers also exist for non-dependently-typed theorem provers, such
as the LΩUI [16] tool. The Sparkle [12] theorem prover also provides an IDE-
like editing environment for in-progress proofs of a non-dependent functional
language. It supports proving properties of many functional features such as
laziness, and it interactively shows the context and goals at each point of the
proof. It is not based on the Curry-Howard correspondence, however, and thus
the proofs generated by its tactics are quite different from the proofs one would
construct in a dependently-typed theorem prover based on Curry-Howard.

Several tools visualize the proof tree as a sequent calculus “stack” [9,10], but
these tools usually focus solely on the context and goals of each node in the
proof tree, rather than the proof term that is generated, and thus don’t provide
the same intuition to users transitioning from a manual-construction style.

The Show Proof command in Coq prints out the partial proof term in the
middle of a proof script, but this command lacks the interactivity found in
ProofViz. For example, Show Proof does not allow the user to view which
parts of the proof term are generated by which tactic, and it doesn’t display the
context and goals of each node in the tree. Furthermore, a call to Show Proof
must be manually inserted (and removed) at each location where the user is
interested in seeing the partial term, while ProofViz enables the user to view
and step through all intermediate proof states.

Alectryon [15] aims to allow proof script authors to annotate their proofs
and create interactive documentation, enabling readers of this documentation
to easily step through the proof state at the current focus. This tool doesn’t
directly address the generated proof term, which we believe is important for users
transitioning to tactic-based proof assistants. However, the tool’s motivation
highlights many of the same pitfalls of tactic-based programming that can be
difficult for such users, thus demonstrating the need for these kinds of tools.

Ultimately, other visualization tools do not aim to address the same issues
as ProofViz. Further, they are often tightly coupled with the IDE itself, i.e.,
the tool must be maintained in sync with the IDE. In contrast, ProofViz
is a modular component in the ntac tactic system and is independent of how
programmers edit their programs. Creating our tool required minimal changes to
existing code, and no changes to unrelated tactics. As such, not only is ProofViz
itself extensible and well-positioned for future enhancements, it will seamlessly
accommodate new tactics, and potentially even changes in the core Cur language.

7 Evaluation, Future Work and Conclusion

The full implementation of ProofViz required approximately 1,000 lines of
Racket code. With ProofViz installed, the existing Cur test library of approx-
imately 11,000 lines of code continues to pass. In the course of developing
ProofViz, the first author successfully used the tool for dozens of hours, and
stepped through thousands of proof script lines. It has greatly enhanced their
understanding of dependently typed languages, tactics, and the implementation
of theorem provers.

134 D. Melcer and S. Chang

ProofViz continues to be a work in progress. One potential enhancement
could be to display available tactics to the user; a related improvement would
be the autocompletion of variable bindings or types. A more involved but useful
addition could be to illustrate the effect of a given tactic on the proof tree by
providing a more direct comparison of the states before and after the tactic is
applied. This feature could utilize our existing functionality for relating proof tree
nodes to the tactics which generated them. ProofViz could also be modified to
automatically save the proof history to a file when closing, instead of printing this
to standard output. Finally, extending the undo functionality to full undo/redo-
trees would prevent items in the redo buffer from being lost when a tactic is
written in the interaction panel. With these and many more enhancements, we
hope we will be able to help many more proof assistant users to come.

References

1. Chang, S., Ballantyne, M., Turner, M., Bowman, W.J.: Dependent type systems as
macros. In: Proceedings ACM Programming Language 4(POPL), December 2019.
https://doi.org/10.1145/3371071

2. Chang, S., Knauth, A., Greenman, B.: Type systems as macros. In: Proceedings of
the 44th ACM SIGPLAN Symposium on Principles of Programming Languages.
POPL 2017, pp. 694–705. Association for Computing Machinery, New York, NY,
USA (2017). https://doi.org/10.1145/3009837.3009886

3. Curry, H.B.: Functionality in combinatory logic. Proc. Nat. Acad. Sci. 20(11),
584–590 (1934). https://doi.org/10.1073/pnas.20.11.584

4. Dybjer, P.: Inductive families. Formal Aspects Comput. 6(4), 440–465 (1994)
5. Erbsen, A., Philipoom, J., Gross, J., Sloan, R., Chlipala, A.: Simple high-level code

for cryptographic arithmetic - with proofs, without compromises. In: 2019 IEEE
Symposium on Security and Privacy (SP), pp. 1202–1219, May 2019. https://doi.
org/10.1109/SP.2019.00005

6. Felleisen, M., et al.: The racket manifesto. In: 1st Summit on Advances in Pro-
gramming Languages (SNAPL 2015), pp. 113–128 (2015)

7. Friedman, D.P., Christiansen, D.T., Bibby, D., Harper, R., McBride, C.: The Lit-
tle Typer. The Massachusetts Institute of Technology, Cambridge, Massuchesetts
(2018)

8. Howard, W.A.: The Formulae-as-Types Notion of Construction. To HB Curry:
essays on combinatory logic, lambda calculus and formalism 44, 479–490 (1980)

9. Kawabata, H., Tanaka, Y., Kimura, M., Hironaka, T.: Traf: a graphical proof tree
viewer cooperating with Coq through proof general. In: Ryu, S. (ed.) APLAS 2018.
LNCS, vol. 11275, pp. 157–165. Springer, Cham (2018). https://doi.org/10.1007/
978-3-030-02768-1_9

10. Libal, T., Riener, M., Rukhaia, M.: Advanced proof viewing in ProofTool. Elec-
tron. Proc. Theoretical Comput. Sci. 167, 35–47 (2014). https://doi.org/10.4204/
EPTCS.167.6

11. McBride, C.: Dependently Typed Functional Programs and Their Proofs. Ph.D.
thesis, University of Edinburgh (2000)

12. de Mol, M., van Eekelen, M., Plasmeijer, R.: Theorem proving for functional pro-
grammers. In: Arts, T., Mohnen, M. (eds.) IFL 2001. LNCS, vol. 2312, pp. 55–71.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-46028-4_4

https://doi.org/10.1145/3371071
https://doi.org/10.1145/3009837.3009886
https://doi.org/10.1073/pnas.20.11.584
https://doi.org/10.1109/SP.2019.00005
https://doi.org/10.1109/SP.2019.00005
https://doi.org/10.1007/978-3-030-02768-1_9
https://doi.org/10.1007/978-3-030-02768-1_9
https://doi.org/10.4204/EPTCS.167.6
https://doi.org/10.4204/EPTCS.167.6
https://doi.org/10.1007/3-540-46028-4_4

ProofViz: An Interactive Visual Proof Explorer 135

13. Owre, S., Rushby, J.M., Shankar, N.: PVS: a prototype verification system. In:
Kapur, D. (ed.) CADE 1992. LNCS, vol. 607, pp. 748–752. Springer, Heidelberg
(1992). https://doi.org/10.1007/3-540-55602-8_217

14. Pierce, B., et al.: Logical Foundations, Software Foundations, vol. 1, September
2020. https://softwarefoundations.cis.upenn.edu/lf-current/index.html

15. Pit-Claudel, C.: Untangling mechanized proofs. In: Proceedings of the 13th ACM
SIGPLAN International Conference on Software Language Engineering. SLE 2020,
pp. 155–174. Association for Computing Machinery, New York, NY, USA (2020).
https://doi.org/10.1145/3426425.3426940

16. Siekmann, J., et al.: LΩUI: lovely ΩMEGA user interface. Formal Aspects Comput.
11(3), 326–342 (1999). https://doi.org/10.1007/s001650050053

17. Tews, H.: Prooftree: Proof Tree Visualization for Proof General (2017). http://
askra.de/software/prooftree/. Accessed 05 Nov 2020

18. Wadler, P.: Propositions as types. Commun. ACM 58(12), 75–84 (2015). https://
doi.org/10.1145/2699407

19. Zinzindohoué, J.K., Bhargavan, K., Protzenko, J., Beurdouche, B.: Hacl*: a verified
modern cryptographic library. In: Conference on Computer and Communications
Security (CCS) (2017). https://doi.org/10.1145/3133956.3134043

https://doi.org/10.1007/3-540-55602-8_217
https://softwarefoundations.cis.upenn.edu/lf-current/index.html
https://doi.org/10.1145/3426425.3426940
https://doi.org/10.1007/s001650050053
http://askra.de/software/prooftree/
http://askra.de/software/prooftree/
https://doi.org/10.1145/2699407
https://doi.org/10.1145/2699407
https://doi.org/10.1145/3133956.3134043

Author Index

Breddam, Svend Lund 3

Chang, Stephen 116

Frolich, Damian 24

Gieseke, Fabian Cristian 3

Henriksen, Troels 3

Koopman, Pieter 44

Melcer, Daniel 116
Michels, Steffen 44
Motara, Yusuf Moosa 69
Munksgaard, Philip 3

Oancea, Cosmin 3

Plasmeijer, Rinus 44

Šefl, Vít 95

van Binsbergen, L. Thomas 24

	 Preface
	 Organization
	 Contents
	Nested Parallelism, Semantics, Task-Oriented Programming
	Dataset Sensitive Autotuning of Multi-versioned Code Based on Monotonic Properties
	1 Introduction
	1.1 Scope and Contributions of This Paper

	2 Background
	2.1 Brief Overview of Cuda
	2.2 Incremental Flattening

	3 Autotuning Framework
	3.1 Tuning Forests, Program Instrumentation
	3.2 Autotuning Overview
	3.3 Tuning Size-Invariant Thresholds on a Single Dataset
	3.4 Monotonicity Assumption
	3.5 Tuning Size-Variant Thresholds

	4 Experimental Validation
	5 Related Work
	6 Conclusion
	References

	A Generic Back-End for Exploratory Programming
	1 Introduction
	1.1 Contributions

	2 Background
	3 Related Work
	4 Implementation
	5 Evaluation
	6 Conclusion
	References

	Dynamic Editors for Well-Typed Expressions
	1 Introduction
	2 Algebraic Data Types for Queries
	2.1 Editors for ADT-Based Queries
	2.2 Evaluation of the ADT Approach

	3 Dynamic Editors
	3.1 Using Dynamic Editors
	3.2 Using the Value of a Dynamic Editor
	3.3 Overloading in Dynamic Editors
	3.4 Extendable Expressions

	4 Properly Defined DSL Identifiers
	5 Ensuring Type Safety by Phantom Types
	6 Generalized Algebraic Data Types
	7 Shallow Embedding
	8 Related Work
	9 Conclusion
	References

	Modelling, Translating, Proving Functional Programs
	High-Level Modelling for Typed Functional Programming
	1 Introduction
	2 Approach
	3 Modelling Context
	4 Related Work
	4.1 Mainstream Modelling Languages
	4.2 Functional Programming and Modelling

	5 Philosophical Underpinnings
	6 The Language of Mathematics
	6.1 Natural Language Structure

	7 The Bridge over the River Wittgenstein
	7.1 Proposed Basis

	8 Notation
	8.1 Design Process
	8.2 Proposed Notation

	9 Case Study
	10 Conclusion
	References

	Translating Lambda Calculus into C++ Templates
	1 Introduction
	2 Related Work
	3 Template Metaprogramming
	4 Translating Lambda Calculus
	5 Translating Functional Languages
	5.1 Bindings
	5.2 Recursion
	5.3 Simple Data Types
	5.4 Complex Data Types

	6 Semantics
	6.1 Preservation
	6.2 Evaluation Order
	6.3 Compilation Errors

	7 Practical Examples
	7.1 Precomputation
	7.2 Generic Programming

	8 Conclusion
	References

	ProofViz: An Interactive Visual Proof Explorer
	1 Introduction
	2 Background: Tactics vs Proof Terms
	3 A Case Study: add1+=+add1
	3.1 Inductive Proofs, Eliminators, and Equality
	3.2 Matching Tactics with Proof Terms
	3.3 Using ProofViz to Understand Induction Tactics

	4 Tactic Development with ProofViz
	4.1 Tactic Development: f-equal
	4.2 Tactic Maintenance: by-induction

	5 Implementation Details
	5.1 Using ProofViz
	5.2 Implementation
	5.3 Unresolved Challenges

	6 Related Work
	7 Evaluation, Future Work and Conclusion
	References

	Author Index

