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Abstract. Dynamic Fault Trees (DFTs) are powerful tools for deriv-
ing fault-tolerant system designs. However, deterministic approaches to
DFTs suffer from semantic struggles with problems such as spare races.
In this paper, we discuss the added complexity in the state-space repre-
sentation of a non-deterministic DFT model and propose a modularized
approach for synthesizing recovery automata. Finally, we give an imple-
mentation and evaluate it on the Fault tree FOResT (FFORT) bench-
mark. The results show that non-deterministic semantics with modular-
ization can scale for literature case studies.

Keywords: FDIR · Reliability engineering · Fault Tree Analysis ·
Synthesis · Formal methods

1 Introduction

Radiation, limited room for human intervention under only partial knowledge,
lacking the ability to replace broken hardware – space systems confront reliabil-
ity engineers with many challenges. They have to ensure that spacecraft can, to
a certain degree, continue operation even in the presence of faults. The ability of
a system to do so is often measured by Reliability, Availability, Maintainability,
and Safety (RAMS) metrics. Fault Detection, Isolation, and Recovery (FDIR)
concepts aim to increase these RAMS metrics. In order to derive these concepts
and evaluate them, reliability engineers employ Fault Tree Analysis (FTA) [8].
A Fault Tree (FT) is a graphical failure model describing how low-level faults
propagate through a system and eventually become a system-wide failure. To
strengthen the expressive power of FTs, they were later extended to Dynamic
Fault Trees (DFTs), which introduce various features such as temporal dependen-
cies and spare management. However, these DFTs give rise to non-deterministic
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behavior such as spare races. In these spare races, multiple resources compete
simultaneously for a spare, but have no unique semantic resolution.

A methodology presented in [14] aims to overcome this shortcoming. It intro-
duces Non-Deterministic Dynamic Fault Trees (NdDFTs), a non-deterministic
extension of DFTs, that drops the inherently rigid rules on how spares should
be employed. The methodology foresees transforming NdDFTs to Markov
Automata (MA), computing an optimized scheduler for a given objective metric,
and then extracting the recovery strategy from said scheduler. This process is
referred to as recovery automaton synthesis.

However, as the technique constructs a monolithic state-space representation
of the NdDFT, containing an encoding of all possible recovery actions, it suf-
fers severely from classical state-space explosion problems. When employing the
technique for industrial benchmarks, we experienced that its naive usage makes
it unsuitable for real life applications.

The main contribution of this paper lies in tackling this weakness. For that
purpose, we adapt established modularization techniques from the DFT realm.
These techniques were originally designed to compute reliability metrics in a com-
positional way. We transfer them to establish a modular workflow for performing
recovery automaton synthesis.

The remainder of the paper is structured as follows. Section 2 gives an
overview of other approaches that address non-deterministic semantics in the
context of DFTs. Technical background knowledge on the relevant fault tree
models is given in Sect. 3. Section 4 extends the synthesis workflow to integrate
modularization. Section 5 investigates the scalability of the approach. Finally,
the paper concludes in Sect. 6, and gives further directions to future work.

2 Related Work

The problem cases induced by the rigid standard fault tree semantics have been
considered in other works. The authors of [9] tackle the issue of spare races by
employing non-determinism in the propagation semantics of functional depen-
dency gates, while allowing only functional dependencies to cause spare races.
The study of the interaction of this approach with spare gates reveals that there
are various different, yet sensible, ways in which the resulting semantics can be
interpreted. They conclude that there is no “correct” one-fits-all interpretation,
and that the fitting variant has to be chosen on a case-by-case basis. This is a
concern regarding the applicability of fault trees, as experts in system design are
not necessarily experts in fault tree semantics.

The work by the authors of [2] is worthy of particular mention. They apply an
approach for converting static, non-deterministic fault tree models, extendible
with so-called repair boxes, into Markov decision processes. Resolving the non-
determinism gives them an optimal repair strategy. However, the approach does
not extend to dynamic gates, which the authors mention as foreseeable future
work.

The authors of [18] introduce the concept of fault maintenance trees,
which are based on non-deterministic Input-Output Interactive Markov Chains
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(I/O-IMCs). The semantics are defined compositionally by starting with ele-
mentary I/O-IMCs for every gate and by proceeding in bottom-up direction by
combining these elementary I/O-IMCs. Recovery strategies for resolving spare
races can also be given on the Markovian level. The strategies have to be chosen
manually and are then compared to each other using a testing-based approach
based on model simulation. In contrast, the NdDFT model employed in this
work defines recovery strategies on a higher level and allows them to be com-
puted by resolving the non-determinism on the Markovian level with respect to
an optimality criterion.

Also with regard to modularization techniques, a number of techniques to
support compositional analysis of DFTs has been developed. For identifying
minimal cut sets, [5] provides an algorithm for finding independent sub-modules
of FTs, which can be converted separately to Binary Decision Diagrams (BDDs)
and then be analyzed, reducing the computational requirements for handling the
entire tree. Our approach to modularization as described in Sect. 4.2 is based on
this work.

For efficiently calculating the reliability of a DFT, [3] provides a composi-
tional semantics for DFT in terms of IMCs, which reduces the combinatorial
explosion in many common cases. Moreover, [16] develops an approach to divide
a DFT into independent sub-modules for computing reliability. Sub-modules
containing only static gates can then be solved using a traditional BDD method,
while sub-modules containing dynamic gates can be solved using Markov Chain
analysis. The method presented in [7] also modularizes a DFT and uses BDDs
for the static sub-modules, but employs the approximation from [1] to solve the
dynamic sub-modules. This avoids the state-space explosion problem incurred
by conversion to Markov Chains, while retaining a reasonable degree of accuracy.
Based on this work, [11] proposes a method to modularize DFTs further, by also
collapsing static sub-trees of a dynamic gate, but keeping additional information
about the probability distribution of these sub-trees. Finally, [20] provides addi-
tional modularization techniques, which can convert static sub-trees and some
dynamic sub-trees into equivalent basic events, thus reducing the complexity of
further analysis.

3 Background

3.1 Fault Trees

Fault trees are failure propagation models that express how faults start out on
low-level components, propagate through the system by combinatorial means,
and eventually turn into a high-level, system wide failure. Syntactically, fault
trees are directed acyclic graphs with two types of nodes: events and gates. The
leaves of a fault tree are called basic events, and the root node is referred to
as top-level event. Usually, a basic event is also equipped with a failure rate.
In this work, we allow for one additional extension: A basic event (BE) can
be equipped either with a failure rate, for describing exponentially distributed
behavior, or with a failure probability for instantaneous, uniformly distributed
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Fig. 1. Relevant gates and events of a fault tree

behavior. When a basic event with a uniform distribution is activated, it can fire
with its assigned probability. Such an activation occurs at system start and may
be triggered again by a gate. We limit ourselves here to the case of permanent
failure, i.e., once a BE has failed, it remains in a failed state for all future points
in time.

The gates model logical re-combinations of faults, as they propagate through
the system. The simplest type of fault tree model, called static fault tree, consid-
ers basic logical gate types such as AND and OR. Dynamic Fault Trees (DFT)
go further and introduce new gate types enabling various features such as spare
management and temporal constraints.

We give a short overview of gates relevant to this paper. Their fault tree
notation, together with the notation of events, is depicted in Fig. 1. The OR and
AND gates behave as classical, logical gates. If at least one input fails, the OR
gate propagates. If all inputs fail, the AND gate propagates.

The SPARE gate has a primary event and a set of spare events, also called the
spare pool. Spare events can be shared, and are initially deactivated. However,
sub-trees of spare events cannot have any shared nodes. When an input fails, the
SPARE gate claims a spare in left-to-right order, and activates it. If the primary
input has failed, and all available spares have failed, the SPARE gate fails.

The POR (priority OR) gate propagates if and only if the left-most input
occurs before any other input.

The FDEP (functional dependency) gate has a triggering event and any num-
ber of dependent basic events. When the triggering event occurs, the dependent
basic events are also set to failed. Syntactically, the triggering event and the
dependent events are defined to be inputs to the FDEP gate. To prevent semantic
confusion, however, the graphical representation uses outgoing edges to connect
dependent events.

To illustrate the DFT notation, we consider the example shown in Fig. 2.
The depicted DFT consists of four memory components; two primaries and two
spares. The two spares are part of a spare pool shared among the two SPARE
gates. According to standard DFT semantics, priority is given to claiming Mem-
ory3 before Memory4 in case of a failure of Memory1 or Memory2. Moreover,
the system is equipped with two hot redundant, always active power sources,
Power1 and Power2. Power1 powers both primary components, Memory1 and
Memory2 and Power2 powers the spares. Finally, FDEP gates are used to model
the functional dependencies between power supplies and memory components.
The FDEPs propagate the failure of a power source to the respective memory
components.
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Fig. 2. Example DFT

3.2 Non-deterministic Dynamic Fault Trees

DFTs impose a fixed and rigid order in which spares are activated. They do not
allow to adapt the order depending on the history of occurred faults. This may
lead to semantically undesirable consequences:

– A SPARE gate might claim a spare from a spare pool, despite having an
already failed parent. This might deny a necessary resource to other SPARE
gates that urgently require the spare to recover.

– In the event of spare races, it is not semantically clear which SPARE gate
may claim a spare.

– The optimal order for spares has to be known at design time of the fault tree.

Figure 3 visualizes possible DFT configurations exhibiting the above
described semantic complications. Red indicates an incoming failure propaga-
tion. Spare claims are marked with thick, black lines.

In order to overcome these issues, [14] introduces an inherently non-
deterministic DFT model (NdDFT, following the naming in [2]), which relaxes
the semantic restriction of DFT models. Syntactically, the notation of the
NdDFT is adopted from the DFT. Semantically, the NdDFT introduces nat-
ural non-determinism for spare activations, by allowing a SPARE gate to choose
freely which spare to pick. A SPARE gate may also decide to not claim any
spares and leave them available for other SPARE gates. In other words, the
following recovery actions can be taken:
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Fig. 3. Example configurations of problematic DFTs

Definition 1 (Recovery Action). A recovery action r in an NdDFT T is an
action of the form

– [] (empty action) or
– CLAIM(G,S) (spare gate G claims spare S, where S is a spare of G).

The non-determinism in NdDFT models is then resolved via an object called
Recovery Automaton (RA). The RA defines which recovery actions should be
taken whenever a set of basic events occur. The reason why sets of events as
opposed to single events are used, is due to the ability of FDEPs to cause several
basic events to fail simultaneously. Likewise, in order to react to the simultaneous
occurrence of basic events, the RA may need to perform not just a single recovery
action, but a sequence of recovery actions.

To introduce the formal notion of the RA we formalize the above auxiliary
concepts as follows: For that, we denote the set of all recovery actions possible
in an NdDFT T by R(T ). Moreover, this definition is extended to the set of
recovery action sequences through RS (T ) := (R(T )\{[]})∗. For recovery action
sequences, the empty action is ignored and considered as the empty word ε. The
∗ here denotes the usual Kleene closure. Similarly, we denote the set of all non-
empty subsets of basic events of an NdDFT T by BES (T ). We now introduce
the RA on a formal level.

Definition 2 (Recovery Automaton). A Recovery Automaton (RA) RT =
(Q, δ, q0) of an NdDFT T is an automaton where

– Q is a finite set of states,
– q0 ∈ Q is the initial state, and
– δ : Q×BES (T ) → Q×RS (T ) is a deterministic transition function that maps

the current state and an observed set of faults to the successor state and a
recovery action sequence.

To illustrate the interaction between RA and NdDFT, we give a simple exam-
ple in Fig. 4. The system has a cold redundant spare and according to the RA,
the redundancy is activated upon failure of the primary unit.
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Fig. 4. Example of (a) NdDFT and (b) RA

3.3 Synthesizing Recovery Strategies

We sketch the key steps for recovery automaton synthesis. Further details are
available in [14]. Initially, the algorithm converts an NdDFT model into a
so-called Markov Automaton (MA) [6]. An MA is a transition system with
continuous-time, non-deterministic, and probabilistic transitions. The MA con-
tains all possible decisions on spare activations.

The transformation of an NdDFT into an MA is obtained by adapting tradi-
tional state-space generation algorithms for transforming DFTs to Continuous-
Time Markov Chains (CTMCs). The base algorithm adapted here is given in [4].
The adapted algorithm operates in the following manner:

– Each state tracks a history of occurred basic event sets (B1, B2, . . . , Bn) and
a mapping from spare gates to the currently claimed spares.

– The algorithm starts with the initial state denoted by ().
– BEs which are activated or have a dormant failure rate > 0 are considered as

enabled events. Enabled events are used to compute the Markovian successors
of a state. The history of the successor state is extended accordingly.

– The basic event set is obtained by taking a failing enabled event and comput-
ing the transitive closure according to FDEPs.

– Markovian transitions are labeled by the failure rate of the failing BE.
– All transitions that would lead to a state implying the top-level event are

instead redirected to a special FAIL state.
– For each Markovian successor, non-deterministic successors are then com-

puted, each of them corresponding to an enabled recovery action sequence.

The optimal recovery strategy, represented by an RA, can then be obtained
by optimizing the scheduling of the generated MA with respect to an objective
metric. The RA is then further reduced using both common state-space reduc-
tion methods based on trace equivalence and techniques exploiting the domain
knowledge about the occurrence of faults [15]. Finally, by performing model
checking queries on the Markov Chain (MC) obtained from the RA, enriched
with the corresponding failure rates of the NdDFT, the desired RAMS met-
rics can be computed. A summary of the workflow and simple examples of all
involved semantic objects can be found in Fig. 5.

The metrics computed from the MC may be the optimization objective, but
might also be any other metric of interest. The RA ensures that a consistent
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Fig. 5. Transformation road map

recovery strategy is applied for all possible queries. Relevant metrics of interest
are for example:

– Reliability After Time t, which describes the probability that a system is
still functional after a time span t.

– Mean Time To Failure (MTTF), which describes the expected time span
that will pass until the system-level failure occurs.

The concrete metric itself is interchangeable. However, in this work, we focus
on optimizing with regard to MTTF. This gives the advantage of dropping the
time parameter t. For the MA, maximizing the MTTF corresponds to maximiz-
ing the expected long-term reachability property of the FAIL state.

4 Modular Synthesis of Recovery Automata

The Markovian state space generated from a fault tree can be massive. In
general, its size can grow exponentially with the number of nodes in a fault
tree. The problem of an exponentially increasing state space is commonly
known as the state-space explosion problem. In conventional dynamic fault trees,
the blow-up can be attributed mostly to the interleaving occurrence of basic
events. In the case of non-deterministic DFTs, the state-space explosion prob-
lem gains an additional dimension: The non-determinism caused by the selection
of an appropriate recovery action generates an additional source of exponential
blow-up.

Ensuring scalability while synthesizing recovery strategies for large fault trees
with hundreds of basic events is nearly impossible using the previous, naive
workflow. In the following, we consider how existing modular approaches for
deterministic DFTs can be leveraged to solve the synthesis problem.

4.1 Modular Workflow

To tackle the state-space explosion problem for calculating RAMS metrics on
deterministic DFTs, previous works have considered employing modularization
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techniques. These primarily involve detecting independent sub-trees in a fault
tree – referred to as modules –, evaluating the metrics on the individual modules,
and then composing them into the total metric for the original fault tree. For
example, the total reliability after a certain time span for two modules connected
via an AND gate can be obtained by means of multiplication.

Commonly, this approach faces a significant issue: Not all metrics can be
computed in a compositional manner, but instead require the full state space
for computation. In particular, highly interesting metrics such as the MTTF are
not compositional [19]. However, in the context of the recovery strategy synthesis
problem, the problem of compositionality changes. Even though the metric to
be optimized may not be compositional, to determine the recovery automaton it
is fortunately not necessary to compute the actual metric for the complete tree.
Instead, the objects that require composition are the already optimized recovery
automata. Automata composition in turn is a common problem that can be
solved using standard techniques. We therefore exploit a two-stage approach
by first synthesizing recovery automata, and then employing them during the
computation of the actual metrics. In this manner, the non-determinism can be
resolved modularly during the synthesis step. In greater detail, we apply the
following approach:

1. Modularization: determine the modules in the fault tree.
2. Trimming: discard modules without non-determinism.
3. Synthesis: compute the optimal RA for each module, and reduce it.
4. Composition: assemble the overall recovery automaton from the modular RA.

As noted previously, basic events are a major driver for exponential blow-up.
Therefore, events that do not affect the resolution of the non-determinism are
taken out of the equation. Finally, as the non-determinism has already been
resolved before the evaluation step, this particular source of exponential blow-
up is absent during the computation of the metrics. Trimmed modules are only
discarded for the purpose of the RA synthesis. This ensures that unnecessary
information is safely removed, but properly considered during the metrics com-
putation. The new workflow incorporating modularization is visualized in Fig. 6.

4.2 Modularization

We base our modularization approach on the pre-existing algorithm given in [5].
It applies a depth-first search on the fault tree, traversing all nodes while keeping
track of the first and last visiting time of each node. These visiting times are
then used to identify the modules using the following criterion: Given a node
which is suspected of being the root of a module, if its descendants’ visit dates –
both first and last – all lie within the first and last visit dates of that node, then
the node and all of its descendants form a module. In addition to this basic rule,
further restrictions have to be applied to obtain the desired compositionality
property for the recovery automata.
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Fig. 6. Transformation road map with modularization

There are two special cases which have to be considered: SPARE gates and
all types of priority gates. Priority gates are road blockers to the desired com-
positionality property, as they may change the optimization direction. Consider
for example a POR gate. In the case of the first input being a SPARE gate,
the optimal strategy for maximizing the MTTF would also be to maximize the
MTTF of the SPARE gate. In other words, claiming its available spares is the
best course of action. On the other hand, were a SPARE gate the second input
to a POR gate, then suddenly this simple relationship changes: Now minimizing
the MTTF of the SPARE gate will lead to a scenario where the POR gate is
more inclined to become fail-safe. The two scenarios are visualized in Fig. 7.

Therefore, given recovery automata for two modules connected by a POR
node, we cannot obtain the overall recovery automaton by means of composition.
In addition to priority gates, SPARE gates also prohibit further modularization
of their sub-trees. Due to the semantic definition of a SPARE gate, any basic
event contained in a sub-tree may trigger a recovery action, and thus requires
a representation within the Markovian state space. Bundling these observations,
we obtain the following restrictions of the modularization rules:

– A SPARE gate that is a descendant of a priority gate cannot be the root of
a module.

– A node that has a SPARE gate as a descendant and that is a descendant of
a priority gate cannot be the root of a module.

– A descendant of a SPARE gate cannot be the root of a module.

Finally, an example application of the algorithm with the additional rules is
given in Fig. 8. The algorithm proceeds in a leftmost order. Each node is labeled
by the first and last visiting time, and the computed modules are indicated by
dotted boxes.
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Fig. 8. Example application of the modularization algorithm

5 Case Studies

The proposed non-deterministic semantics and the modular workflow have been
implemented within our application Virtual Satellite 4 FDIR (VirSat FDIR) [13].
Virtual Satellite 4 is an Eclipse-based modeling framework intended for Model-
Based Systems Engineering of spacecraft [10]. VirSat FDIR is an application
employing the framework to provide capabilities for modeling FDIR.

The FFORT benchmark set introduced in [17] was used as a source of fault
tree benchmarks to evaluate our proposed techniques. FFORT is an online fault
tree database with fault trees collected from scientific literature for the primary
purpose of benchmarking. From the FFORT benchmark set, we have selected
fault trees which contain at least one SPARE gate but do not employ the authors’
custom fault tree extension of inspection modules (IM). Therefore, we can guar-
antee that all experiments contain some non-determinism. The following fault
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Table 1. Summary of benchmark results

Modularization Solved Timeouts OOMs solveTime [s]

No 22/156 10 124 1429

Yes 142/156 0 14 292

tree families from the FFORT benchmark fulfilled the selection criteria. (The
graphic symbols refer to the evaluation charts shown in Fig. 9 and 10.)

– Active Heat Rejection System (AHRS ). The AHRS is made up of
thermal rejection units of which only one is needed for the system to function.

– Cardiac Assist System (CAS ). The CAS models a hypothetical cardiac
assist system with redundant CPUs, motors, and pumps.

– Electro-Mechanical Actuator (EM ). The model focuses on common-
cause failures in an electro-mechanical actuator.

– Hypothetical Example Computer System (HECS ). The HECS fault
trees model computer systems including their processors, memory modules,
buses, consoles, operators, and software.

– Hypothetical Example Multi-Phase System (HEMPS ). The
HEMPS model is a demonstrator of a system designed for a multi-phase
mission.

– Mission Avionics System (MAS ). The MAS models represent mission-
and safety-critical systems with high redundancy. Components include hard-
ware, software and vehicle control subsystems, and system management.

– Multiprocessor Computing System (MCS ). The MCS model comput-
ers with power supplies, memory modules, hard disks, and connecting buses.
The benchmarks have been enriched with instances from [19].

– Nuclear Power Plant Water Pumping System (NPPW ). The model
represents a nuclear power plant system.

– Railway Crossing (RC ). The RC fault tree collection models level rail-
way crossings with sensors, motors, and controllers. The models come in two
variations (sc and hc), representing the controller being a single basic event
or hypothetical example computer system, respectively.

– Vehicle Guidance System (VGS ). The VGS models are industrial case
studies dealing with variants of safety concepts for vehicle guidance systems.

The benchmarks were carried out with a Intel i7-6600U CPU, 4 GB of RAM,
and a timeout of 600 s. The software, the experiment setup, all experiments, and
all results can be found at [12]. The number of solved instances, the number of
timeouts, the number of out-of-memories (OOMs), and the total solving time
were logged. A summary of the results is given in Table 1.

As hypothesized in the beginning of the paper, not applying modularization
leads to massive state-space explosion, causing many cases of OOMs. Applying
modularization, on the other hand, yields a major speed-up, enabling us to
synthesize RA for nearly all instances. An interesting observation is also that
the number of timeout events is rather small, compared to the large number of
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Fig. 9. Time measurements of modularization approach

OOMs. This suggests that there is room for investing more computation time
into further techniques for state-space reduction, and hence also reducing the
memory consumption.

The following charts give a closer look at the results of the experiments.
Figure 9a shows a detailed time comparison between the synthesizer with and
without a modularizer, respectively. How the algorithm scales overall as the total
number of fault-tree nodes increases, is shown in Fig. 9b. The dashed line marks
where both algorithms require the same time. Timeouts and out-of-memory
results have been placed on the outer lines and are labeled with TO and OOM,
respectively.

As described before, two major drivers for state-space explosion are basic
events and SPARE gates. Figure 10a gives a breakdown on how the number of
BEs impact the synthesis. Likewise, Fig. 10b gives the breakdown in reference
to the number of SPARE gates. Modularization is enabled in both cases. The
data shows that the speed-up gained from modularization is overall crucial to
obtain scalability, but also heavily depends on the fault tree family. The families
causing OOMs are primarily MAS and MCS. A closer look into Fig. 9b and
Fig. 10b reveals that these have a relatively small number of nodes, while at the
same time having a relatively large number of SPARE gates.
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6 Conclusions and Future Work

In this paper, we investigated a modular approach approach to recovery
automata synthesis for non-deterministic DFTs. In order to deal with the increas-
ing complexity due to the semantic extension, modularization approaches were
employed. Both their necessity and effectiveness were demonstrated on case stud-
ies coming from the FFORT benchmark set. However, it was also shown that
the semantics still yield a severe level of state-space explosion, causing many
out-of-memories but only few timeouts.

Further techniques for dealing with larger modules and modules with a high
degree of non-determinism are therefore desirable. In the past, symmetry reduc-
tion techniques have proved useful to combat the state-space explosion problem
in deterministic DFTs [19]. In the future, we hope to investigate how those
approaches can be leveraged to NdDFTs to further improve the efficiency of our
approach.
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