
Ibrahim Habli
Mark Sujan
Friedemann Bitsch (Eds.)

LN
CS

 1
28

52

Computer Safety,
Reliability, and Security
40th International Conference, SAFECOMP 2021
York, UK, September 8–10, 2021
Proceedings

Lecture Notes in Computer Science 12852

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0001-8816-2693

More information about this subseries at http://www.springer.com/series/7408

http://www.springer.com/series/7408

Ibrahim Habli • Mark Sujan •

Friedemann Bitsch (Eds.)

Computer Safety,
Reliability, and Security
40th International Conference, SAFECOMP 2021
York, UK, September 8–10, 2021
Proceedings

123

Editors
Ibrahim Habli
University of York
York, UK

Mark Sujan
Human Factors Everywhere Ltd.
Woking, UK

Friedemann Bitsch
Thales Deutschland GmbH
Ditzingen, Germany

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-83902-4 ISBN 978-3-030-83903-1 (eBook)
https://doi.org/10.1007/978-3-030-83903-1

LNCS Sublibrary: SL2 – Programming and Software Engineering

© Springer Nature Switzerland AG 2021
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0003-2736-8238
https://orcid.org/0000-0001-6895-946X
https://orcid.org/0000-0001-6152-4121
https://doi.org/10.1007/978-3-030-83903-1

Preface

This volume (LNCS 12852) contains the proceedings of the 40th International Con-
ference on Computer Safety, Reliability and Security (SAFECOMP 2021) held during
September 8–10, 2021. Due to the continued COVID-19 pandemic, SAFECOMP 2021
took place as a hybrid event, offering both in-person presentations and limited atten-
dance at the University of York, UK, in accordance with suggested precautions, as well
as the opportunity to present and attend online. The conference series was established
in 1979 by the European Workshop on Industrial Computer Systems, Technical
Committee 7 on Reliability, Safety and Security (EWICS TC7). Since then, SAFE-
COMP has contributed to progressing the state of the art of dependable computer
systems and their application in safety-critical and security-critical systems. SAFE-
COMP covers all areas of dependable systems, including embedded systems,
cyber-physical systems, Internet of Things, systems-of-systems, cybersecurity, digital
society, and many more. In recent years, autonomous systems, particularly those that
incorporate machine learning models, have become increasingly important topics, and,
in line with this development, the assurance of the safety and security of such systems
in real-world applications is one of the highest and most challenging priorities. This is
reflected in the keynote presentations as well as in the key theme of SAFECOMP 2021,
which was “Safe Human – Robotic & Autonomous Systems Interaction”.

The International Program Committee consisted of 51 members from 18 countries.
The review process was thorough, single-blind (i.e., authors did not know the
reviewers’ identity), and each manuscript was reviewed by at least three independent
reviewers. The merits of each paper were evaluated by the Program Committee
members during a virtual meeting in April 2021. In total, after desk-rejecting papers
that were beyond the scope of the conference or did not meet the essential formatting
requitements, 76 submissions were peer-reviewed, and 17 manuscripts were selected
for presentation and inclusion in the proceedings (an acceptance rate of 22%). We
would like to thank all the reviewers and sub-reviewers for their contributions to
ensuring an interesting and high-quality conference program.

We were pleased to host three stimulating keynote presentations. Prof. Adnan
Darwiche (UCLA, USA) talked about “Empowering data with knowledge and
reasoning”. Prof. Neville Stanton (Southampton University, UK) gave a provocative
presentation about “Driver reactions to autonomous vehicles”. Prof. Sadie Creese
(University of Oxford, UK) shared with the audience “Thoughts for a cybersecurity
framework for protecting machine learning/AI systems”.

As in previous years, SAFECOMP was organized as a single-track event to enable
participants to attend all sessions, and to allow for networking during breaks and social
events, both in person as well as via the electronic conference platform. The main
conference was preceded by a day of topical workshops. This year, there were five
workshops: 16th International Workshop on Dependable Smart Embedded
Cyber-Physical Systems and Systems-of-Systems (DECSoS 2021); 2nd International

Workshop on Dependable Development-Operation Continuum Methods for Depend-
able Cyber-Physical Systems (DepDevOps 2021); 1st International Workshop on
Multi-concern Assurance Practices in Software Design (MAPSOD 2021); 2nd Inter-
national Workshop on Underpinnings for Safe Distributed AI (USDAI 2021); and 4th
International Workshop on Artificial Intelligence Safety Engineering (WAISE 2021).
The papers presented at these workshops are published in a separate LNCS volume
(12853).

We would like to express our sincere gratitude to the many people whose contri-
butions made SAFECOMP 2021 possible: the authors who submitted manuscripts; the
invited keynote speakers; Prof. John McDermid as conference chair; the Program
Committee members and external reviewers; EWICS TC7 and chair person Prof.
Francesca Saglietti; the conference sponsors and supporting organisations; Friedemann
Bitsch as the publications chair; Erwin Schoitsch and Simos Gerasimu as workshop
co-chairs; Simon Burton as the industry chair; and the local Organization Committee
members Sarah Heathwood, Dawn Forrester, and Alex King, who managed all of
the practical arrangements and who ensured that the conference was an interesting
experience for all.

We hope that readers will find these conference proceedings interesting and thought
provoking.

September 2021 Ibrahim Habli
Mark Sujan

vi Preface

Organization

EWICS TC7 Chair

Francesca Saglietti University of Erlangen-Nuremberg, Germany

General Chair

John McDermid University of York, UK

Program Co-chairs

Ibrahim Habli University of York, UK
Mark Sujan Human Factors Everywhere, UK

General Workshop Co-chairs

Simos Gerasimou University of York, UK
Erwin Schoitsch AIT Austrian Institute of Technology, Austria

Publication Chair

Friedemann Bitsch Thales Deutschland GmbH, Germany

Local Organizing Committee

Dawn Forrester University of York, UK
Sarah Heathwood University of York, UK
Alex King University of York, UK

Industry Chair

Simon Burton Fraunhofer IKS, Germany

International Program Committee

Uwe Becker Draeger Medical GmbH, Germany
Peter G. Bishop Adelard, UK
Friedemann Bitsch Thales Deutschland GmbH, Germany
Sandro Bologna Associazione Italiana Esperti Infrastrutture Critiche,

Italy
Andrea Bondavalli University of Florence, Italy
Jens Braband Siemens AG, Germany

Simon Burton Robert Bosch GmbH, Germany
António Casimiro University of Lisbon, Portugal
Peter Daniel EWICS TC7, UK
Ewen Denney SGT/NASA Ames Research Center, USA
Felicita Di Giandomenico ISTI-CNR, Italy
Wolfgang Ehrenberger University of Applied Science Fulda, Germany
John Favaro Intecs, Italy
Massimo Felici Deloitte Consulting & Advisory, Belgium
Francesco Flammini Linnaeus University, Sweden
Simon Fuerst BMW Group, Germany
Barbara Gallina Mälardalen University, Sweden
Bruno Gonçalves GMVIS Skysoft SA, Portugal
Janusz Górski Gdańsk University of Technology, Poland
Jérémie Guiochet LAAS-CNRS, France
Maritta Heisel University of Duisburg-Essen, Germany
Joost-Pieter Katoen RWTH Aachen University, Germany
Gulsum Kubra Kaya Istanbul Medeniyet University, Turkey
Phil Koopman Carnegie Mellon University, USA
Mark Lawford McMaster University, Canada
Farah Magrabi Macquarie University, Australia
Frank Ortmeier Otto-von-Guericke University, Germany
Ganesh Pai KBR/NASA Ames Research Center, USA
Philippe Palanque ICS-IRIT, University Toulouse, France
Michael Paulitsch Intel, Austria
Holger Pfeifer Technical University of Munich, Germany
Peter Popov City University London, UK
Andrew Rae Griffith University, Australia
Alexander Romanovsky Newcastle University, UK
Matteo Rossi Politecnico di Milano, Italy
Francesca Saglietti University of Erlangen-Nuremberg, Germany
Behrooz Sangchoolie RISE Research Institutes of Sweden
Christoph Schmitz Zühlke Engineering AG, Switzerland
Daniel Schneider Fraunhofer Institute for Experimental Software

Engineering IESE, Germany
Erwin Schoitsch AIT Austrian Institute of Technology, Austria
Christel Seguin Office National d’Etudes et Recherches Aérospatiales,

France
Oleg Sokolsky University of Pennsylvania, USA
Wilfried Steiner TTTech Computertechnik AG, Austria
Kenji Taguchi CAV Technologies Co., Ltd., Japan
Stefano Tonetta Fondazione Bruno Kessler, Italy
Martin Törngren KTH Royal Institute of Technology, Sweden
Mario Trapp Fraunhofer Institute for Cognitive Systems IKS,

Germany

viii Organization

Elena Troubitsyna KTH Royal Institute of Technology, Sweden
Marcel Verhoef European Space Agency, The Netherlands
Marcus Völp University of Luxembourg, Luxembourg
Hélène Waeselynck LAAS-CNRS, France

Sub-reviewers

Victor Bandur McMaster University, Canada
Jana Berger RWTH Aachen University, Germany
Andrea Ceccarelli University of Florence, Italy
Lorenzo De Donato University of Naples Federico II, Italy
José M. Gaspar Sánchez KTH Royal Institute of Technology, Sweden
Magnus Gyllenhammar Zenseact, Sweden
Richard Hawkins University of York, UK
Yassir Idmessaoud LAAS-CNRS, France
Shahid Khan RWTH Aachen University, Germany
Ryo Kurachi Nagoya University, Japan
Stefano Marrone University of Naples Federico II, Italy
Yutaka Matsuno Nihon University, Japan
Roberto Nardone Università Mediterranea Di Reggio Calabria, Italy
Mark Nicholson University of York, UK
Thomas Noll RWTH Aachen University, Germany
Vera Pantelic McMaster University, Canada
Michael Parsons University of York, UK
Colin Paterson University of York, UK
Chiara Picardi University of York, UK
Muhammad Rusyadi Ramli KTH Royal Institute of Technology, Sweden
Jan Reich Fraunhofer Institute for Experimental Software

Engineering, Germany
Toru Sakon CAV Technologies Co., Ltd., Japan
Mehdi Saman Azari Linnaeus University, Sweden
Thomas Santen TU Berlin, Germany
Andreas Schmidt Fraunhofer Institute for Experimental Software

Engineering IESE, Germany
Kaustubh Sridhar University of Pennsylvania, USA
Lifei Tang KTH Royal Institute of Technology, Sweden
Maryam Zahid Mälardalen University, Sweden

Organization ix

Gold Sponsor

Intel

Supporting Institutions

European Workshop on
Industrial Computer Systems –
Reliability, Safety and Security

University of York

Assuring Autonomy International
Programme

Human Factors Everywhere Ltd

Austrian Institute of Technology

Thales Deutschland GmbH

Lecture Notes in Computer Science
(LNCS), Springer Nature

x Organization

Chartered Institute of
Ergonomics & Human Factors

European Training Network for
Safer Autonomous Systems

Safety-Critical Systems Club

European Network of Clubs for
Reliability and Safety of
Software-Intensive Systems

German Computer Society

Informationstechnische
Gesellschaft

Organization xi

Electronic Components
and Systems for European
Leadership - Austria

ARTEMIS Industry Association

Verband Österreichischer
Software Industrie

Austrian Computer Society

European Research Consortium for
Informatics and Mathematics

xii Organization

Contents

Machine Learning Safety Assurance

DeepCert: Verification of Contextually Relevant Robustness for Neural
Network Image Classifiers . 3

Colin Paterson, Haoze Wu, John Grese, Radu Calinescu,
Corina S. Păsăreanu, and Clark Barrett

Could We Relieve AI/ML Models of the Responsibility of Providing
Dependable Uncertainty Estimates? A Study on Outside-Model
Uncertainty Estimates . 18

Lisa Jöckel and Michael Kläs

Towards Certification of a Reduced Footprint ACAS-Xu System: A Hybrid
ML-Based Solution . 34

Mathieu Damour, Florence De Grancey, Christophe Gabreau,
Adrien Gauffriau, Jean-Brice Ginestet, Alexandre Hervieu,
Thomas Huraux, Claire Pagetti, Ludovic Ponsolle, and Arthur Clavière

Security Engineering

IT Design for Resiliency Using Extreme Value Analysis 51
Szilárd Bozóki and András Pataricza

Evaluation Framework for Performance Limitation of Autonomous
Systems Under Sensor Attack . 67

Koichi Shimizu, Daisuke Suzuki, Ryo Muramatsu, Hisashi Mori,
Tomoyuki Nagatsuka, and Tsutomu Matsumoto

ISO/SAE 21434-Based Risk Assessment of Security Incidents
in Automated Road Vehicles . 82

Dominik Püllen, Jonas Liske, and Stefan Katzenbeisser

Safety and Assurance Cases

Automating the Assembly of Security Assurance Case Fragments 101
Baoluo Meng, Saswata Paul, Abha Moitra, Kit Siu, and Michael Durling

Safety Case Maintenance: A Systematic Literature Review. 115
Carmen Cârlan, Barbara Gallina, and Liana Soima

Towards Certified Analysis of Software Product Line Safety Cases 130
Ramy Shahin, Sahar Kokaly, and Marsha Chechik

Machine Learning Applications

Safety Assurance of Machine Learning for Chassis Control Functions 149
Simon Burton, Iwo Kurzidem, Adrian Schwaiger, Philipp Schleiss,
Michael Unterreiner, Torben Graeber, and Philipp Becker

Safe Interaction of Automated Forklifts and Humans at Blind Corners
in a Warehouse with Infrastructure Sensors . 163

Christian Drabek, Anna Kosmalska, Gereon Weiss, Tasuku Ishigooka,
Satoshi Otsuka, and Mariko Mizuochi

Machine Learning-Based Fault Injection for Hazard Analysis
and Risk Assessment . 178

Bentley James Oakes, Mehrdad Moradi, Simon Van Mierlo,
Hans Vangheluwe, and Joachim Denil

Safety Validation and Simulation

SASSI: Safety Analysis Using Simulation-Based Situation Coverage
for Cobot Systems. 195

Benjamin Lesage and Rob Alexander

Attack and Fault Injection in Self-driving Agents on the Carla
Simulator – Experience Report . 210

Niccolò Piazzesi, Massimo Hong, and Andrea Ceccarelli

A Framework for Automated Quality Assurance and Documentation
for Pharma 4.0 . 226

Andreas Schmidt, Joshua Frey, Daniel Hillen, Jessica Horbelt,
Markus Schandar, Daniel Schneider, and Ioannis Sorokos

Fault Tolerance

A Modular Approach to Non-deterministic Dynamic Fault Trees. 243
Sascha Müller, Adeline Jordon, Andreas Gerndt, and Thomas Noll

Composition of Fault Forests . 258
Danielle Stewart, Michael Whalen, Mats Heimdahl, Jing (Janet) Liu,
and Darren Cofer

Author Index . 277

xiv Contents

Machine Learning Safety Assurance

DeepCert: Verification of Contextually
Relevant Robustness for Neural Network

Image Classifiers

Colin Paterson1(B), Haoze Wu2, John Grese3, Radu Calinescu1,
Corina S. Păsăreanu3, and Clark Barrett2

1 University of York, York, UK
colin.paterson@york.ac.uk

2 Stanford University, Stanford, USA
3 Carnegie Mellon University, Silicon Valley, Pittsburgh, USA

Abstract. We introduce DeepCert, a tool-supported method for verify-
ing the robustness of deep neural network (DNN) image classifiers to con-
textually relevant perturbations such as blur, haze, and changes in image
contrast. While the robustness of DNN classifiers has been the subject of
intense research in recent years, the solutions delivered by this research
focus on verifying DNN robustness to small perturbations in the images
being classified, with perturbation magnitude measured using established
Lp norms. This is useful for identifying potential adversarial attacks on
DNN image classifiers, but cannot verify DNN robustness to contextu-
ally relevant image perturbations, which are typically not small when
expressed with Lp norms. DeepCert addresses this underexplored verifi-
cation problem by supporting: (1) the encoding of real-world image per-
turbations; (2) the systematic evaluation of contextually relevant DNN
robustness, using both testing and formal verification; (3) the genera-
tion of contextually relevant counterexamples; and, through these, (4)
the selection of DNN image classifiers suitable for the operational con-
text (i) envisaged when a potentially safety-critical system is designed, or
(ii) observed by a deployed system. We demonstrate the effectiveness of
DeepCert by showing how it can be used to verify the robustness of DNN
image classifiers build for two benchmark datasets (‘German Traffic Sign’
and ‘CIFAR-10’) to multiple contextually relevant perturbations.

Keywords: Deep neural network robustness · Deep neural network
verification · Contextually relevant image perturbations

1 Introduction

Deep neural network (DNN) image classifiers are increasingly being proposed for
use in safety critical applications [6,15,19,24], where their accuracy is quoted as
close to, or exceeding, that of human operators [3]. It has been shown, however,
that when the inputs to the classifier are subjected to small perturbations, even
c© Springer Nature Switzerland AG 2021
I. Habli et al. (Eds.): SAFECOMP 2021, LNCS 12852, pp. 3–17, 2021.
https://doi.org/10.1007/978-3-030-83903-1_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-83903-1_1&domain=pdf
https://doi.org/10.1007/978-3-030-83903-1_1

4 C. Paterson et al.

highly accurate DNNs can produce erroneous results [8,9,30]. This has lead to
intense research into verification techniques that check whether a DNN is robust
to perturbations within a small distance from a given input, where this distance
is measured using an Lp norm (e.g., the Euclidean norm for p = 2) [4,12,13,
20]. These techniques are particularly useful for identifying potential adversarial
attacks on DNNs [8,14,17,18]. They are also useful when small changes in the
DNN inputs correspond to meaningful changes in the real world, e.g., to changes
in the speed and course of an aircraft for the ACAS Xu DNN verified in [12].

For DNN image classifiers, small Lp-norm image changes are not always
meaningful. Changes that may be more meaningful for such DNNs (e.g., image
blurring, hazing, variations in lighting conditions, and other natural phenomena)
can also cause misclassifications, but are difficult to map to small pixel variations
[10,16], and thus cannot be examined using traditional DNN verification tech-
niques. What is needed for the comparison and selection of DNN image classifiers
used in safety-critical systems is a contextually relevant robustness verification
method capable of assessing the robustness of DNNs to these real-world phe-
nomena [1,2,25,31]. Moreover, this verification needs to be performed at DNN
level (i.e., across large datasets with image samples from all relevant classes)
rather than for a single sample image.

The tool-supported DeepCert1 method introduced in our paper addresses
these needs by enabling:

1. The formal encoding of contextually relevant image perturbations at quanti-
fied perturbation levels ε ∈ [0, 1].

2. The verification of contextually relevant DNN robustness, to establish how the
accuracy of a DNN degrades as the perturbation level ε increases. DeepCert
can perform this verification using either test-based (fast but approximate)
or formal verification (slow but providing formal guarantees).

3. The generation of contextually relevant counterexamples. These counterex-
amples provide engineers with visually meaningful information about the level
of blur, haze, etc. at which DNN classifiers stop working correctly.

4. The selection of DNNs appropriate for the operational context (i) envisaged
when a safety-critical system is designed, or (ii) observed by the deployed
system during operation.

We organised the rest of the paper as follows. Section 2 describes our Deep-
Cert verification method, explaining its encoding of contextual perturbations,
and detailing how it can be instantiated to use test-based and formal verifica-
tion. Section 3 presents the DeepCert implementation, and Sect. 4 describes the
experiments we performed to evaluate it. Finally, Sect. 5 discusses related work,
and Sect. 6 provides a summary and outlines future research directions.

1 Deep neural network Contextual robustness.

Contextually Relevant Robustness 5

Fig. 1. DeepCert process for verifying contextually meaningful DNN robustness.

2 DeepCert Verification Method

2.1 Overview

Figure 1 shows our DeepCert method for the systematic verification of contex-
tually relevant DNN robustness. DeepCert accepts as input a set of m ≥ 1 DNN
models, M̄, and a dataset of n ≥ 1 labelled image samples, Ω. Each element
u ∈ Ω is a tuple u = (X, y) where X ∈ X is the input sample, X is the DNN
input space, and y is a label indicating the class into which the models should
place the sample. During model evaluation, each model Mi ∈ M̄ is evaluated
against each labelled data sample (Xj , yj) ∈ Ω, to find a robustness measure
for that sample. The results are then presented to the engineer as visualisations
that enable model-level contextual robustness evaluation and comparison.

The sample evaluation (top of Fig. 1) is a three-stage iterative process. The
first stage (A) encodes the contextual perturbation using a function g : X ×
[0, 1] → 2X that maps the data sample Xj ∈ X and a perturbation level ε ∈ [0, 1]
to a set of DNN inputs Z = g(Xj , ε) ∈ 2X corresponding to images obtained
by applying the contextual perturbation being verified (e.g., haze or blur) to
the original image sample Xj . As we explain later in this section, g applies the
perturbation at level ε when DeepCert employs test-based verification, and at
all levels in the range [0, ε] when DeepCert employs formal verification.

The second stage (B) verifies whether the model Mi is robust to the contex-
tual perturbation (Z, yj), i.e., whether it classifies all images from Z as belonging
to class yj . The output of this stage is a Boolean value, true (T) or false (F).

The final state (C) is a search heuristic that supplies the ε value used for
the contextul perturbation encoding from stage A, and employs binary search
to identify perturbation level bounds ε, ε̄ ∈ [0, 1] such that:

6 C. Paterson et al.

– either ε < ε̄, the correct class yj is predicted for ε = ε, and a misclassification
occurs for ε = ε̄;

– or ε = ε̄ = 0, and the DNN misclassifies Xj (with no perturbation applied).

After checking whether Xj is classified correctly by model Mi, the search
heuristic starts with ε = 0 and ε̄ = 1, halves the width of the interval [ε, ε̄] in
each iteration, and terminates when the width ε̄ − ε of this interval drops below
a predefined value ω. The final interval ri,j = [ε, ε̄] is then returned.

Applying sample evaluation to each model Mi∈M and every sample Xj ∈Ω
provides a result set R = {r1,1, r1,2, · · · rm,n}, where ri,j is the interval for the
i-th model and j-th image sample. For each result, a counterexample X ′

j can
be generated, if one exists (i.e., if ε < 1), by perturbing the sample Xj at level
ε = ε̄. Evaluating X ′

j using model Mi produces a misclassification label ŷj .
Visualisations of model and class robustness are then produced in which the

accuracy of the models is presented as a function of the perturbation parameter ε.
By examining the accuracy of models across the range of expected perturbations,
we can identify the conditions under which model switch should occur, e.g. one
model may perform well at low levels of haze whilst a second may be superior
as the level of haze present increases. Where the visualisations indicate that a
particular class accuracy is highly sensitive to changes in ε this may indicate the
need to choose a less sensitive model, or to gather additional training data.

2.2 DeepCert Instantiation for Test-Based Verification

For test-based verification, the contextual perturbation encoding function g maps
an image X to a set Z comprising a single modified image X ′ obtained by
applying a perturbation function:

x′
i,j = perturbation(Xi,j , ε), (1)

where x′
i,j is the pixel at position (i, j) in the modified image X ′ and Xi,j is a

subset of pixels from the original image X. For colour images, a sample X is
encoded as an array of pixels each of which is a 3-tuple of values representing the
red, green and blue components of the colour in that pixel. DeepCert may utilize
any perturbation which can be coded using (1) and three typical contextual
perturbations are shown in (Fig. 2).

Haze Encoding. Haze represents a phenomenon where particles in the
atmosphere scatter the light reaching the observer. The effect is to drain colour
from the image and create a veil of white, or coloured, mist over the image.
While realistic approaches to the modelling of haze require complex models [32],
simplifying assumptions can be made. Assuming the haze is uniform, a haze
colour may be defined as Cf = (r, g, b) and applied to the image as:

x′
i,j = (1 − ε)xi,j + ε Cf (2)

where ε ∈ [0, 1] is a proxy for the density of the haze. When ε = 0 the image is
unaltered and when ε = 1 the image is a single solid colour Cf . Multiplication
and addition are applied to the pixel in an element-wise manner.

Contextually Relevant Robustness 7

Fig. 2. Context perturbations applied to image sample

Contrast Variation Encoding. When fixed aperture lenses are employed, or
when the dynamic range of the scene is extreme, the contrast in the image may
become compressed. This effect may be modelled as:

x′
i,j = Max

(
0,Min

(
1,

xi,j − (0.5 ∗ ε)
1 − ε

))
(3)

The effect of applying this function is to make bright parts of the image lighter
and dark parts of the image darker.

Blur Encoding. Blurring in an image occurs when parts of the image are out
of focus due to the limited capabilities of the optics employed in the system or
when grease or water droplets are present on the lens. Blur can be synthesised
using a convolutional kernel of size 2kd + 1 where the value of a pixel in the
output image is calculated as a weighted sum of neighbouring pixels:

x′
i,j =

kd∑
k=−kd

kd∑
l=−kd

αk,l · xi+k,j+l (4)

The weights αk,l ∈ (0, 1) are calculated by discretising a two-dimensional
Gaussian curve, where the sum of weights is equal to one,

∑kd

k=−kd

∑kd

l=−kd
αk,l = 1.

In our work, we define ε to be proportional to the standard deviation of the
Gaussian distribution across the kernel and calculate the weights accordingly.

2.3 DeepCert Instantiation for Formal Verification

While test-based verification is computationally efficient, this efficiency is
obtained by sacrificing completeness, i.e. if the perturbed image correspond-
ing to an ε value of p is not an adversarial example, we cannot guarantee that
the network is robust against all perturbations with ε smaller than p. Formal
verification tools, by contrast, can provide such guarantees, but typically impose
constraints on the types of models and perturbations which can be analysed.

8 C. Paterson et al.

To demonstrate the use of formal verification within DeepCert, we inte-
grated it with Marabou [13], a complete verification toolbox for analyzing
DNNs. Marabou handles common piecewise linear activation functions (e.g.,
ReLU, Max-Pool, Sign), integrates multiple state-of-the-art bound tightening
techniques [21,26,28], and supports parallel processing [29]. Given a neural net-
work and a verification query, Marabou constructs a set of linear and piecewise
linear constraints. The satisfiability of the conjunction of those constraints is
evaluated using either an MILP-solver or the Reluplex procedure [12]. Given
sufficient time, Marabou will either conclude that the query is unsatisfiable or
return a satisfying assignment to the query. For this work we extended Marbou
to allow for the encoding of contextual perturbations using an input perturbation
function, as detailed below for haze.
Haze Encoding. Given a DNN model M, an image X, a fog colour Cf , and a
maximum perturbation bound p, we introduce variables X,Y and ε, denoting
the DNN inputs, the DNN outputs and the perturbation bound, respectively. X
has the same shape as X. We then construct the following set of constraints:

Y = M(X) (5a)
0 ≤ ε ≤ p (5b)∧

i≤|X |

(
xi = (1 − ε)xi + ε Cf

)
(5c)

∨
i<=|Y |
yi �=yr e a l

yi ≥ yreal (5d)

Checking the satisfiability of the constraints allows us to state if the network is
robust against the haze perturbation for ε ≤ p. Constraint (5a) denotes the rela-
tionship between X and Y . It is a piecewise linear constraint if M only contains
piecewise linear activation functions. Constraint (5b) represents the perturba-
tion bounds. Constraint (5c) defines the input variables as results of the hazing
perturbation. Finally, let yreal be the correct label, constraint (5d) denotes that
the output variable corresponding to the correct label is not greater than that
of some other label. The network is locally adversarially robust against haze
perturbation with ε ≤ p if, and only if, the conjunction of the constraints above
is unsatisfiable. If the constraints above is satisfiable, there exists a perturbation
within ε such that some output other than yreal is maximal.

3 Implementation

We implemented our method using a Python framework which we have made
available on our tool website https://deepcert.github.io. The repository includes
all models used in the paper, the code for the DeepCert tool with the encoded
perturbations presented in the paper, the supporting scripts required to generate
the performance visualisations and instructions on how to use the framework.
In addition, a version of Marabou is provided with a Python interface in which
the haze perturbation from the previous section is encoded.

Contextually Relevant Robustness 9

Table 1. German Speed Sign Classification: Data and Models

(a) Data Sets

Class Description # Train # Test

0 30 km/h 1980 720

1 50 km/h 2010 750

2 60 km/h 1260 450

3 70 km/h 1770 660

4 80 km/h 1650 630

5 100 km/h 1290 450

6 120 km/h 1260 450

(b) Models

Model Description Accuracy

1A Small ReLu only model 0.816

1B 0.847

2A Large ReLu only model 0.868

2B 0.866

3A CNN Model 0.988

3B 0.984

4 Experimental Results

4.1 Case Study 1: Road Traffic Speed Sign Classification

Our first case study uses a subset of the German Traffic Sign benchmark [22]
where each sample is a 32 × 32 RGB image. From this set we selected the seven
classes which represented speed signs, the number of samples in each class are
shown in Table 1a. We then built classification models at three levels of com-
plexity with two models per level. The accuracy for all six models is reported in
Table 1b which shows accuracy increasing with model complexity.
DeepCert with Test-Based Verification. For each model we applied our
method using test-based verification, an initial value of ε = 0.5 and a binary
search heuristic with a maximum permissible interval of 0.002. Figure 3 shows
the impact of haze on model accuracy as ε is increased. While Table 1b shows
model 3A to be the most accurate (0.988) without perturbation, we note that
for ε � 0.7, model 3B achieves superior accuracy. This behaviour is more clearly
seen if we consider the ReLu-only models. Here model 2A has the best initial
performance, but this rapidly deteriorates as ε increases such that other models
are superior for even small amounts of haze.

These results demonstrate the dangers of selecting a model on the basis of
the accuracy reported for unperturbed samples, and show how DeepCert enables
a more meaningful model selection for the operational context. Indeed, were the
system to be equipped with additional sensing, to assess the level of haze present,
the engineer may choose to switch between models as the level of haze increased.

Our method also allows for the identification of those classes particularly
susceptible to contextual perturbations. Figure 4 shows the performance of the
convolutional neural network (CNN) models at different levels of perturbation.
We note that class 1 is largely insensitive to haze, this is because an image
perturbed with ε = 1 results in a solid colour image which is classified as class
1 by both models. For all other classes the accuracy reduces as haze increases.
The amount of degradation is seen to be dependent on the sample class and the
model used. For example, class 0 is more robust to haze in model 3B than in 3A
with class 3 more robust in model 3A.

10 C. Paterson et al.

Fig. 3. Model robustness to haze.

0.00 0.25 0.50 0.75 1.00
Epsilon

0.0

0.2

0.4

0.6

0.8

1.0

A
cc
ur
ac
y class 0

class 1
class 2
class 3
class 4
class 5
class 6

(a) Model 3A

0.00 0.25 0.50 0.75 1.00
Epsilon

0.0

0.2

0.4

0.6

0.8

1.0
A
cc
ur
ac
y class 0

class 1
class 2
class 3
class 4
class 5
class 6

(b) Model 3B

0 1 2 3 4 5 6
0.00

0.25

0.50

0.75

1.00

ep
si
lo
n

(c) Model 3A

0 1 2 3 4 5 6
0.00

0.25

0.50

0.75

1.00

ep
si
lo
n

(d) Model 3B

Fig. 4. Model Robustness with respect to haze

Figures 4c and 4d show the distribution of ε values required to cause misclas-
sification where circles indicates samples identified as outliers. For class 3 we see
that a number of samples are misclassified for small perturbations using model
3B but not 3A. An engineer wishing to deploy model 3B may examine these
outliers to determine any correlation in image features. This may then allows for
mitigation strategies at run-time or retraining with additional data samples.

Contextually Relevant Robustness 11

Fig. 5. Counterexamples for model 3A. Upper row is the original image, lower row has
perturbation applied at the average level required for misclassification.

0.00 0.25 0.50 0.75 1.00
Epsilon

0.4

0.6

0.8

1.0

A
cc
ur
ac
y

Model 1a
Model 1b
Model 2a
Model 2b
Model 3a
Model 3b

(a) Contrast

0.00 0.25 0.50 0.75 1.00
Epsilon

0.2

0.4

0.6

0.8

1.0

A
cc
ur
ac
y

Model 1a
Model 1b
Model 2a
Model 2b
Model 3a
Model 3b

(b) Blur

Fig. 6. Model accuracy with respect to increased contrast and blur effects.

Our method also allows for the generation of meaningful counter examples for
image based classifiers. Figure 5 shows counterexamples for model 3A and illus-
trates the average level of haze which each class can withstand before misclassi-
fication occurs. This visual representation of perturbation levels allows domain
experts to consider the robustness of the model with respect to normal operating
conditions.

Having demonstrated our approach using the haze perturbation we now show
results for the contrast and blur effects. Model accuracy in the presence of these
perturbations is shown in Fig. 6. We see that whilst the accuracy of models
degrades as the amount of perturbation increases, the shape of the curves and
the effect on individual models is different.

Model 3A was the most accurate model for much of the perturbation range
under the effects of haze, while model 3B is superior with respect to contrast
effects. We also see that while model 2B was relatively robust to haze, its robust-
ness to contrast is poor. This shows that selecting a single model for all envi-
ronmental conditions is unlikely to provide optimal performance. Our method
allows for a greater understanding of models weaknesses when in the presence
of natural phenomena and may allow for more intelligent choices to be made.

12 C. Paterson et al.

Table 2. Minimum ε values for l∞ and hazing perturbation on test images.

Sample Model 1A Model 1B

Verification Test Verification Test

l∞ Haze Haze l∞ Haze Haze

4 0.002 0.623 0.623 0.006 0.525 0.525

114 0.002 0.451 0.451 0.002 0.225 0.225

47 0.006 0.592 0.592 0.006 0.752 0.752

52 0.006 0.830 0.830 0.010 0.654 0.654

3 0.010 0.764 0.764 0.010 0.713 0.713

15 0.010 0.760 0.760 0.010 0.810 0.810

DeepCert with Formal Verification. For model 1A and 1B, we ran our
method on the first 30 images correctly classified as class 3 in the test sets to
compute the minimum ε values for hazing using contextual perturbations and
for traditional l∞ norm perturbations. For all 30 samples the value of ε found
through formal verification was the same as that for the test based verification,
although we can not guarantee this to be true for all samples in the testing set.

Table 2 shows selected results from the formal verification compared with the
test-based verification Sample #4 has an l∞ norm for model 1A that is lower than
that of model 1B. This would indicate that model 1B is more robust. Examining
contextual robustness, however, we see that model 1A is able to withstand more
haze before misclassification occurs. A similar result is shown for sample #52.
This time however model 1A would be judged more robust by the l∞ measure
whilst model 1B is more robust according to the contextual measure. Other
samples report identical l∞ measures between models (samples 114, 47, 3 and
15) yet their response to haze is different e.g. sample #114 using model 1A is
able to withstand almost twice as much haze as model 1B.

These results demonstrate that our methods are able to use formal verifica-
tion techniques, where the model form allows for such analysis. We also note
that non-contextual point robustness is insufficient to assess the robustness of
models in the presence of contextual perturbations.

4.2 Case Study 2: CIFAR-10

In order to demonstrate that our approach is applicable to a range of problems
we applied our method to a second well known classification problem, CIFAR-
10. The data set consists of 60,000 32×32 colour images in 10 classes with 5000
training images and 1000 test images per class. Table 3 shows the names of the
classes in this benchmark. The complexity and diversity of the images in this set
is a more challenging classification task than the traffic sign problem. We again
constructed models of increasing complexity with two models at each level. The
accuracy of these models for the unperturbed test set is given in Table 4.

Contextually Relevant Robustness 13

Table 3. CIFAR-10 class descriptions

class 0 1 2 3 4 5 6 7 8 9

name airplane automobile bird cat deer dog frog horse ship truck

Table 4. CIFAR-10 model accuracy

Model Accuracy Model Accuracy Model Accuracy

4A Small Relu 49.11 5A Large Relu 53.20 6A CNN 84.07

4B 47.45 5B 53.04 6B 85.17

0.00 0.25 0.50 0.75 1.00
Epsilon

0.0

0.2

0.4

0.6

0.8

A
cc
ur
ac
y

Model 4a
Model 4b
Model 5a
Model 5b
Model 6a
Model 6b

(a) Haze

0.00 0.25 0.50 0.75 1.00
Epsilon

0.4

0.6

0.8

A
cc
ur
ac
y

Model 4a
Model 4b
Model 5a
Model 5b
Model 6a
Model 6b

(b) Contrast

0.00 0.25 0.50 0.75 1.00
Epsilon

0.2

0.4

0.6

0.8

A
cc
ur
ac
y

Model 4a
Model 4b
Model 5a
Model 5b
Model 6a
Model 6b

(c) Blur

Fig. 7. CIFAR-10 model robustness

DeepCert with Test-Based Verification. Model accuracy in the presence of
the three forms of contextual perturbation are shown in Fig. 7. We once more
note the accuracy degrades as ε is increased for all perturbation types. For haze
we observe a point at which the best model changes. This indicates that a sys-
tem which is able to switch between models as the level of haze increases may
demonstrate improved robustness. We also note that the CNN models outper-
form the simpler models by a significant margin under most conditions. For blur,
however, when ε > 0.7 the CNN models under perform the simpler models.

Figure 8 shows the class accuracy for the CNN models subjected to the blur
perturbation. We observe that the performance of classes between the models
varies as shown in the traffic sign sign study. The accuracy of class 3 in model 6A,
for example, is lower than that seen in Model 6B until ε > 0.7.
DeepCert with Formal Verification. Formal verification was applied to mod-
els 4A and 4B by again choosing 30 samples which we perturbed with haze. The
results were in line with those found for the traffic sign model, but in addition
we found a sample (#14) for model 4A which returned a lower robustness bound
than when using test-based verification. Table 5 shows the predicted class ŷ for this
sample as ε is increased. We note that the sample is misclassified at ε = 0.0723
which was found using Marabou, it then returns to classifying the sample cor-
rectly before misclassifying again at ε = 0.365, the value found through testing.
This confirms that, whilst testing may correctly identify the robustness bound for
the majority of cases, formal verification is required for guarantees of robustness.

14 C. Paterson et al.

0.00 0.25 0.50 0.75 1.00
Epsilon

0.0

0.2

0.4

0.6

0.8

A
cc
ur
ac
y

class 0
class 1
class 2
class 3
class 4
class 5
class 6
class 7
class 8
class 9

(a) Model 6A

0.00 0.25 0.50 0.75 1.00
Epsilon

0.0

0.2

0.4

0.6

0.8

A
cc
ur
ac
y

class 0
class 1
class 2
class 3
class 4
class 5
class 6
class 7
class 8
class 9

(b) Model 6B

0 1 2 3 4 5 6 7 8 9
0.00

0.25

0.50

0.75

1.00

ep
si
lo
n

(c) Model 6A

0 1 2 3 4 5 6 7 8 9
0.00

0.25

0.50

0.75

1.00

ep
si
lo
n

(d) Model 6B

Fig. 8. CIFAR-10 class robustness with respect to blur

Table 5. Formal versus test-based verification, correct label y = 9

ε ŷ ε ŷ

0.002 9 0.15 1

0.035 9 0.18 9

0.050 9 0.2 9

0.0723 1 0.03 9

0.1 1 0.365 2

5 Related Work

It is well known [23] that neural networks, including highly trained and smooth
networks, are vulnerable to adversarial perturbations; these are small changes
to an input (which are imperceptible to the human eye) that lead to mis-
classifications. The vast majority of the work in this area focuses on formulating
adversarial examples with respect to perturbations defined with Lp norms. The
problem is typically formulated as follows: for a given network F and an input
x, find an input x′ for which F (x′) �= F (x) while minimising ‖x − x′‖.

The metric used to compute the distance between points is typically the
Euclidean distance (L2 norm), the Manhattan distance (L1 norm), or the

Contextually Relevant Robustness 15

Chebyshev distance (L∞ norm). Methods for finding adversarial examples and
for checking robustness of neural networks to adversarial perturbations range
from heuristic and optimisation-based techniques [2,8,14,17,18] to formal analy-
sis techniques which are based on constraint solving, interval analysis or abstract
interpretation [4,5,7,11,12,27,28]. In contrast to these works, which focus on
local robustness, we take a more global view, as we aim to evaluate models on
many input points and use the results to assess and compare models and inform
developers’ choices. Furthermore, we aim to study more natural (contextual)
perturbations, as we do not limit ourselves to Lp norms.

Other researchers have started to look into robustness verification beyond the
Lp-norm threat model. For instance, Semantify-NN [16] addresses robustness
verification against semantic adversarial attacks, such as colour shifting and
lighting adjustment. It works by inserting semantic perturbation layers to the
input layer of a given model, and leverages existing Lp-norm based verification
tools to verify the model robustness against semantic perturbations. In our work,
we also leverage an off-the-shelf verification tool (namely Marabou) to enable
verification with respect to semantically meaningful perturbations. We do not
modify the models, but instead encode the checks as Marabou queries.

6 Conclusions and Future Work

In this paper we have introduced DeepCert, a tool-supported method for the
systematic verification of contextually relevant robustness for neural network
classifiers. We have shown that the accuracy of a DNN image classifier is a
function of the perturbation type to which sample images are exposed, and
that through a systematic verification of the robustness with respect to these
perturbations a more informed decision may be made to select a DNN model.

In future work we plan to investigate the use of alternative formal verifica-
tion techniques with DeepCert, and the use of more complex models of natu-
ral phenomena, parameterised for use within the framework. We also intend to
investigate methods to allow for the systematic assessment of robustness within
regions of the input space e.g. rain drops on a lens affecting part of an image.

Acknowledgements. This research has received funding from the Assuring Auton-
omy International Programme project ‘Assurance of Deep-Learning AI Techniques’
and the UKRI project EP/V026747/1 ‘Trustworthy Autonomous Systems Node in
Resilience’.

References

1. Ashmore, R., Calinescu, R., Paterson, C.: Assuring the machine learning lifecycle:
desiderata, methods, and challenges (2019). arXiv preprint arXiv:1905.04223

2. Carlini, N., Wagner, D.: Towards evaluating the robustness of neural networks. In:
2017 IEEE Symposium on Security and Privacy, pp. 39–57. IEEE (2017)

3. De Fauw, J., et al.: Clinically applicable deep learning for diagnosis and referral in
retinal disease. Nat. Med. 24(9), 1342–1350 (2018)

https://doi.org/10.1007/978-3-642-40349-1_4
https://doi.org/10.1007/978-3-642-40349-1_4
https://digitalcommons.usu.edu/etd/3964
https://digitalcommons.usu.edu/etd/3964

16 C. Paterson et al.

4. Dutta, S., Jha, S., Sankaranarayanan, S., Tiwari, A.: Output range analysis for
deep feedforward neural networks. In: NASA Formal Methods Symposium, pp.
121–138. Springer (2018)

5. Fischetti, M., Jo, J.: Deep Neural Networks as 0–1 mixed integer linear programs:
a feasibility study (2017). arXiv preprint arXiv:1712.06174

6. Gauerhof, L., Hawkins, R., Picardi, C., Paterson, C., Hagiwara, Y., Habli, I.:
Assuring the safety of machine learning for pedestrian detection at crossings. In:
Casimiro, A., Ortmeier, F., Bitsch, F., Ferreira, P. (eds.) SAFECOMP 2020. LNCS,
vol. 12234, pp. 197–212. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-54549-9 13

7. Gehr, T., Mirman, M., Drachsler-Cohen, D., Tsankov, P., Chaudhuri, S., Vechev,
M.T.: AI2: safety and robustness certification of neural networks with abstract
interpretation. In: 2018 IEEE Symposium on Security and Privacy, pp. 3–18 (2018)

8. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial
examples (2014). arXiv preprint arXiv:1412.6572

9. Grosse, K., Manoharan, P., Papernot, N., Backes, M., McDaniel, P.: On the (sta-
tistical) detection of adversarial examples (2017). arXiv preprint arXiv:1503.02531

10. Hamdi, A., Ghanem, B.: Towards analyzing semantic robustness of deep neural
networks. In: European Conference on Computer Vision, pp. 22–38. Springer (2020)

11. Huang, X., Kwiatkowska, M., Wang, S., Wu, M.: Safety verification of deep neural
networks. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10426, pp.
3–29. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63387-9 1

12. Katz, G., Barrett, C., Dill, D.L., Julian, K., Kochenderfer, M.J.: Reluplex: An effi-
cient SMT solver for verifying deep neural networks. In: International Conference
on Computer Aided Verification, pp. 97–117. Springer (2017)

13. Katz, G., et al.: The marabou framework for verification and analysis of deep
neural networks. In: Dillig, I., Tasiran, S. (eds.) CAV 2019. LNCS, vol. 11561, pp.
443–452. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25540-4 26

14. Kurakin, A., Goodfellow, I., Bengio, S.: Adversarial machine learning at scale
(2016). arXiv preprint arXiv:1611.01236

15. Mitani, A., et al.: Detection of anaemia from retinal fundus images via deep learn-
ing. Nat. Biomed. Eng. 4(1), 18–27 (2020)

16. Mohapatra, J., Weng, T.W., Chen, P.Y., Liu, S., Daniel, L.: Towards verifying
robustness of neural networks against a family of semantic perturbations. In: Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion, pp. 244–252 (2020)

17. Moosavi-Dezfooli, S.M., Fawzi, A., Frossard, P.: Deepfool: a simple and accurate
method to fool deep neural networks. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 2574–2582 (2016)

18. Papernot, N., McDaniel, P., Jha, S., Fredrikson, M., Celik, Z.B., Swami, A.: The
limitations of deep learning in adversarial settings. In: 2016 IEEE European Sym-
posium on Security and Privacy, pp. 372–387. IEEE (2016)

19. Picardi, C., Paterson, C., Hawkins, R.D., Calinescu, R., Habli, I.: Assurance argu-
ment patterns and processes for machine learning in safety-related systems. In:
Workshop on Artificial Intelligence Safety, pp. 23–30 (2020)

20. Pulina, L., Tacchella, A.: An abstraction-refinement approach to verification of
artificial neural networks. In: CAV, pp. 243–257 (2010)

21. Singh, G., Gehr, T., Püschel, M., Vechev, M.: An abstract domain for certifying
neural networks. Proc. ACM Program. Lang. 3, 1–30 (2019)

https://doi.org/10.1007/978-3-319-66787-4_22
https://doi.org/10.1007/978-3-319-66787-4_22
https://www.blackhat.com/docs/eu-15/materials/eu-15-Petit-Self-Driving-And-Connected-Cars-Fooling-Sensors-And-Tracking-Drivers-wp1.pdf
https://www.blackhat.com/docs/eu-15/materials/eu-15-Petit-Self-Driving-And-Connected-Cars-Fooling-Sensors-And-Tracking-Drivers-wp1.pdf
https://doi.org/10.5446/36252
https://doi.org/10.5446/36252
http://psas.scripts.mit.edu/home/get_file.php?name=STPA_handbook.pdf
http://psas.scripts.mit.edu/home/get_file.php?name=STPA_handbook.pdf
https://calhoun.nps.edu/handle/10945/37597
https://calhoun.nps.edu/handle/10945/37597
https://www.computer.org/csdl/proceedings/cvprw/2019/1iTvczdcyc0
https://jp.mathworks.com/products/matlab.html
https://jp.mathworks.com/products/simulink.html
https://www.unrealengine.com/
https://jp.mathworks.com/help/mpc/ug/highway-lane-following.html
https://jp.mathworks.com/help/mpc/ug/highway-lane-following.html
https://jp.mathworks.com/help/driving/ug/autonomous-emergency-braking-with-sensor-fusion.html
https://jp.mathworks.com/help/driving/ug/autonomous-emergency-braking-with-sensor-fusion.html
https://jp.mathworks.com/help/driving/ug/autonomous-emergency-braking-with-sensor-fusion.html
https://jp.mathworks.com/help/vision/ug/track-vehicles-using-lidar.html
https://jp.mathworks.com/help/vision/ug/track-vehicles-using-lidar.html

Contextually Relevant Robustness 17

22. Stallkamp, J., Schlipsing, M., Salmen, J., Igel, C.: The german traffic sign recogni-
tion benchmark: a multi-class classification competition. In: The 2011 International
Joint Conference on Neural Networks, pp. 1453–1460. IEEE (2011)

23. Szegedy, C., et al.: Intriguing properties of neural networks (2013). arXiv:1312.6199
24. Tabernik, D., Skočaj, D.: Deep learning for large-scale traffic-sign detection and

recognition. IEEE Trans. Intell. Transp. Syst. 21(4), 1427–1440 (2019)
25. Tian, Y., Pei, K., Jana, S., Ray, B.: Deeptest: automated testing of deep-neural-

network-driven autonomous cars. In: Proceedings of the 40th International Con-
ference on Software Engineering, pp. 303–314 (2018)

26. Tjeng, V., Xiao, K., Tedrake, R.: Evaluating robustness of neural networks with
mixed integer programming (2017). arXiv preprint arXiv:1711.07356

27. Wang, S., Pei, K., Whitehouse, J., Yang, J., Jana, S.: Efficient formal safety analysis
of neural networks. In: Advances in Neural Information Processing Systems 31:
Annual Conference on Neural Information Processing Systems (2018)

28. Wang, S., Pei, K., Whitehouse, J., Yang, J., Jana, S.: Formal security analysis of
neural networks using symbolic intervals. In: 27th USENIX Security Symposium
(2018)

29. Wu, H., et al.: Parallelization techniques for verifying neural networks. In: 2020
Formal Methods in Computer Aided Design, pp. 128–137 (2020)

30. Yuan, X., He, P., Zhu, Q., Li, X.: Adversarial examples: attacks and defenses for
deep learning. IEEE Trans. Neural Netw. Learn. Syst. 30(9), 2805–2824 (2019)

31. Zhang, M., Zhang, Y., Zhang, L., Liu, C., Khurshid, S.: DeepRoad: GAN-based
metamorphic testing and input validation framework for autonomous driving sys-
tems. In: 2018 33rd IEEE/ACM International Conference on Automated Software
Engineering, pp. 132–142. IEEE (2018)

32. Zhang, N., Zhang, L., Cheng, Z.: Towards simulating foggy and hazy images and
evaluating their authenticity. In: Liu, D., Xie, S., Li, Y., Zhao, D., El-Alfy, E.S.,
et al. (eds.) Neural Information Processing, pp. 405–415. Springer, Cham, USA
(2017). https://doi.org/10.1007/978-3-319-70090-8 42

https://jp.mathworks.com/help/gpucoder/gpucoder-deep-learning.html
https://jp.mathworks.com/help/gpucoder/gpucoder-deep-learning.html
https://jp.mathworks.com/help/driving/ug/radar-signal-simulation-and-processing-for-automated-driving.html
https://jp.mathworks.com/help/driving/ug/radar-signal-simulation-and-processing-for-automated-driving.html
https://jp.mathworks.com/products/simulink-test.html
https://jp.mathworks.com/products/simulink-test.html
https://www.nasva.go.jp/mamoru/en/
https://www.euroncap.com/en
http://arxiv.org/abs/1912.03618

Could We Relieve AI/ML Models
of the Responsibility of Providing Dependable

Uncertainty Estimates? A Study
on Outside-Model Uncertainty Estimates

Lisa Jöckel(B) and Michael Kläs

Fraunhofer Institute for Experimental Software Engineering IESE, Fraunhofer Platz 1,
67663 Kaiserslautern, Germany

{lisa.joeckel,michael.klaes}@iese.fraunhofer.de

Abstract. Improvements in Artificial Intelligence (AI), especially in the area of
neural networks, have led to calls to use them also in the context of safety-critical
systems. However, current AI-based models are data-driven, so we cannot assure
that they will provide the intended outcome for any input. To obtain information
about the uncertainty remaining in their outcome, uncertainty estimation capabil-
ities can be integrated during model building. However, the approach of providing
accurate outcomes and dependable uncertainty estimates using the same model
has limitations. Among others, estimates of such ‘in-model’ approaches are pro-
vided without statistical confidence, tend to be overconfident if not calibrated, and
are hard to interpret and review by domain experts. An alternative ‘outside-model’
approach is the use of model-agnostic uncertainty wrappers (UWs). To investigate
how well they perform in comparison to in-model approaches, we benchmarked
them against deep ensembles, which can be considered the gold standard for in-
model uncertainty estimation, as well as to the softmax outputs of a deep neural
network as a baseline. Despite a slightly higher Brier score, the UWprovides other
benefits that are important in a safety-critical context, like considering a statisti-
cal confidence level and providing explainable uncertainty estimates through a
decision tree considering human-interpretable semantic factors. Furthermore, in-
model uncertainty estimates can be forwarded into an UW, combining advantages
of both approaches.

Keywords: Uncertainty wrapper · Data-driven model ·Machine learning ·
Benchmarking study · Traffic sign recognition · Automated driving · Deep
ensemble · Uncertainty calibration · Uncertainty quantification

1 Introduction

The use of Machine Learning (ML) and other Artificial Intelligence (AI) approaches
can provide solutions for tasks that are difficult to tackle with traditional software devel-
opment approaches. In recent years, in particular, deep neural networks have massively
improved the performance of various tasks related to perception and understanding [1,2].

© Springer Nature Switzerland AG 2021
I. Habli et al. (Eds.): SAFECOMP 2021, LNCS 12852, pp. 18–33, 2021.
https://doi.org/10.1007/978-3-030-83903-1_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-83903-1_2&domain=pdf
https://doi.org/10.1007/978-3-030-83903-1_2

We Relieve AI/ML Models of the Responsibility 19

Thus, it is not surprising that there is an intention to use modern ML approaches also
in the context of systems with safety requirements as they promise new or massively
improved functionalities. However, it is still open how best to deal with components that
rely on data-driven models (DDMs) such as deep neural networks, in a safety context
considering their hard-to-predict behavior.

One major issue is that we can neither assume nor demonstrate that such data-driven
components will provide the “correct” outcome for any input. Contrary to traditional
components, the behavior of data-driven components is specified by example data and
thus we need to live with a certain degree of uncertainty when using them.

Although uncertainty estimation is an active research area in AI, many DDMs do
not provide dependable uncertainty estimates. Research in this area is dominated by
benchmarks and proposals for ML methods that lead to DDMs that provide uncertainty
estimates together with their main outcome. Yet, we see – especially from a safety
perspective – limitations with these kinds of ‘in-model’ uncertainty estimates [3]. In
particular, they violate the ‘separation of concerns’ principle [4] since they make the
DDM itself responsible for providing dependable assessments of its performance.

In the best case, this leads to black-box uncertainty estimates that cannot be checked
for plausibility by experts. Commonly, however, such estimates also ignore features that
would help to provide better uncertainty estimates because these features do not improve
the accuracy of the primary model outcome. For example, knowledge about the amount
of precipitation does not help to decide whether a camera picture shows a traffic sign
of type A or B, but it helps to assess the uncertainty in the provided result. In the worst
case, the bad practice of providing uncertainty estimates that are either not calibrated or
calibrated on the data used to train the model can make these estimates systematically
overconfident.

To provide an alternative to existing ‘in-model’ uncertainty estimation approaches,
Kläs and Sembach proposed the ‘uncertainty wrapper’ (UW) concept as an ‘outside-
model’ approach [5]. The concept of model-agnostic UWs does not only avoid the
above issues, but also allows addressing all three types of uncertainty sources considered
in the onion shell model [6], namely model fit, data quality, and scope compliance.
Furthermore, a confidence level can be set for the provided uncertainty estimates, which
we consider essential for the use in a safety-critical application.

In previous work, Kläs and Jöckel illustrated how UWs can be applied in the context
of pedestrian detection [7]. Compared to a naïve baseline approach, the UW provided
more dependable uncertainty estimates improving all three components of the Brier
score, a common measure for the quality of probabilistic predictions [8, 9].

Although the ‘outside-model’ uncertainty estimates of UWs have advantages from a
conceptual perspective, it is still open how well UWs perform with respect to estimation
quality in comparison to state-of-the-art ‘in-model’ approaches. Moreover, it is open
how well UWs deal with limitations commonly observed in practices and whether it is
possible to leverage synergies between ‘in-model’ and ‘outside-model’ approaches. To
address these questions, this paper presents an experimental study in which DDMs with
and without an UW were benchmarked under different settings.

The remainder of this paper is structured as follows: Sect. 2 gives an overview of
related work on uncertainty estimation including some background on the concept of

20 L. Jöckel and M. Kläs

UWs. Section 3 elaborates the addressed research questions and introduces the study
design and the benchmarking metrics we used. Section 4 presents and discusses the
study results, and Sect. 5 concludes the paper.

2 Related Work on Uncertainty Predictions

Uncertainty is a topic of increasing relevance in the field ofML. The objective is to better
understand the sources of uncertainty and provide dependable information on howmuch
we can rely on an outcome given by a specific DDM.

How the concept of uncertainty as discussed in ML is related to safety standards,
such as IEC 61508, and the application rule VDE-AR-E 2842-61 is detailed by Kläs
et al. in their recent work [10], in which they also illustrate how the UW pattern can help
to handle uncertainty in compliance with safety constraints.

Sources of Uncertainty. A number of classifications have been proposed for potential
sources of uncertainty. The best-known is probably the distinction between aleatoric and
epistemic uncertainty. In general, aleatoric uncertainty means uncertainty due to ran-
domness, which is not systematic but rather unavoidable “noise”. Epistemic uncertainty,
on the other hand, means uncertainty that is systemic in the way it refers to phenomena
that could be known in principle but are not considered [11]. The idea is that we need
to accept aleatoric uncertainty but should try to reduce epistemic uncertainty, e.g., by
collecting more and better data. In a concrete setting, however, the distinction which part
of the uncertainty is aleatoric and which is epistemic depends on the viewpoint [11].
Moreover, quantifications are usually not comparable betweenmodeling approaches due
to different interpretations and hypothesis spaces.

A classification that is orthogonal to aleatoric and epistemic is proposed by the
onion shell model [6], which distinguishes between model fit, input quality, and scope
compliance uncertainty. It allows mathematically separating uncertainty attributed to (a)
limitations in the DDM, (b) differences in the quality of the model input, and (c) the
possibility that the model is applied outside its application scope [5]. Type (a) can be
reduced by improving the DDM and can be measured by traditional model testing and
performance metrics (e.g., mean absolute error or true positive rate). Type (b) can be
tackled by modeling the influence of input quality on the quality of the DDM outcomes
(e.g., how the performance changes given a certain input quality). Type (c) relies on
defining the application scope and monitoring compliance (e.g., how similar the current
situation is to the situations considered during model training and testing).

Outside-Model Estimations. Building upon this classification, an ‘uncertainty wrap-
per’ (UW) framework has been proposed [7]. UWs provide ‘outside-model’ estimations
for uncertainty following the separation of concerns principle. They are model-agnostic
and consider the DDM they encapsulate as a black box (cf. Fig. 1). Factors that may
influence input quality and scope compliance uncertainty are modeled in a quality and
a scope model, respectively. In the context of traffic sign recognition (TSR), e.g., the
obstruction of vision by rain or fog would represent quality factors and the GPS coor-
dinates could indicate as a scope factor whether the model is being applied outside its
target application scope (e.g., a specific country). Using a decision-tree-based approach,

We Relieve AI/ML Models of the Responsibility 21

the quality impact model decomposes the target application scope into areas with similar
uncertainties based on the quality factors and safeguarded with a statistical confidence
level that can be freely chosen. The scope compliance model uses the data provided by
the scope factors to calculate the probability that the DDM is applied outside its target
application scope. This can include checking some fixed boundaries as well as calcu-
lations on similarity between the current input and the inputs considered during model
development.

Dependable Data-Driven Component :
Traffic Sign Recognition (TSR) Component

Uncertainty Wrapper: Uncertainty Wrapper for TSR

Data-Driven Model :
Convolutional Neural
Network based TSR

Confidence

e.g., 0.9999

G
PS

Im
ag

e
R

ai
n

Se
no

r

Outcome

(a,b,c)
Speed limit
50 detected

Dependable
Uncertainty

(a) <100.0 %
(b) < 0.3 %
(c) < 2.1 %C

om
bi

na
tio

n

Quality
Model

Scope
Model

Scope Compliance
Model

Quality-Impact
Model

Data-Driven Component Input

(a)
∉TAS

0 mm/h

40.71272
-74.00604

(b)
∈TAS

0 mm/h

49.48958
8.46725

(c)
∈TAS

~7 mm/h

49.48958
8.46725

TAS: Target
Application
Scope

Fig. 1. Uncertainty wrapper architecture together with sample inputs and outputs [12].

In-Model Estimations. To date, the more established way to realize uncertainty esti-
mation is to design the DDM itself such that it returns not only its categorical or binary
outcome, but also the probability p that the provided outcome is correct. In the following,
we will refer to approaches following this pattern as ‘in-model’ approach.

Understanding uncertainty as the likelihood that the DDM outcome is not correct,
the most naïve approach to estimate uncertainty is to determine the overall error rate on
a sample as the global uncertainty estimate for all outcomes. Obviously, this estimation
approach considers only model fit uncertainty.

There are classes of DDMs (e.g., logistic regression, Naïve Bayes, support vector
machines) that provide by default a preference value between zero and one in addition to
their outcome. Although these values are commonly interpreted as uncertainty estimates,
there are limitations: Preference values do commonly nor represent real probabilities and
are determined on training data, which favors overconfidence [3].

To address these limitations, calibration methods such as isotonic regression and
Platt scaling [13] are applied as a kind of post-processing on the preference values. This,
however, cannot solve the limitation that information sources are ignored that are only
relevant for the uncertainty but not for the outcome.

Out-of-distribution and novelty detection methods [14] such as SafeML [15] provide
means to detect whether a DDM is applied outside its intended application context.

22 L. Jöckel and M. Kläs

However, they are also limited to scope-compliance-related uncertainty, which on the
other hand is largely ignored by the ‘in-model’ approaches discussed above.

In the context of deep neural networks, which are our focus, Bayesian neural net-
works [16] and deep ensembles [17,16] are commonly proposed to provide uncertainty
estimates. Since both approaches are computationally expensive, they are often approx-
imated by using Monte Carlo Dropout [16]. Benchmarks and comparisons of state-of-
the-art approaches for ‘in-model’ uncertainty estimation indicate that deep ensembles
are currently the gold standard for neural networks considering estimation performance
[18,19]. However, their computational demands increase linearly with the number of
ensemble members during training and operation, which commonly challenges current
hardware [16,18].

3 Study Planning and Execution

This chapter introduces and concretizes the addressed research questions, presents the
derived study design, and explains the study execution.

3.1 Research Questions

A key question regarding the use of outside-model uncertainty estimation approaches is
whether suchmodel-agnostic approaches, whichmake no assumption about the internals
of the encapsulated DDM, can achieve an estimation performance comparable to in-
model uncertainty estimation approaches. In particular, we want to compare UW-based
estimates with estimates based on existing in-model uncertainty estimation approaches
that are either state-of-the-practice or state-of-the-art:

RQ1: How does the uncertainty estimation performance of UWs and DDMs differ when
trained and calibrated on data with sufficient examples of quality deficits?

Instead of considering in-model and outside-model approaches as competitors, we
can also think about means to leverage synergies between the two kinds of approaches:

RQ2: Can the uncertainty estimation performance of an UW be improved by also con-
sidering the uncertainty estimates of the DDM as a factor, besides other factors?

In practice, we commonly need to deal with imperfections. Thus, we investigate how
the UW approach performs under conditions that can occur in real-world applications:

What are the implications if…
RQ3.1: no uncertainty factors with semantic meaning can be defined?
RQ3.2: the DDM is not calibrated?
RQ3.3: the DDM is trained on data that insufficiently covers relevant quality deficits?
RQ3.4: a state-of-the-art DDM is not used due to limited computational resources?

Answering these questions can provide important insights for practical applications.
RQ3.1 is linked to the question of whether it may be reasonable to build an UW even

We Relieve AI/ML Models of the Responsibility 23

if no information sources on uncertainty other than the DDM are available. Answering
RQ3.2 can help to decide whether a DDM has to be calibrated if we want to consider
its uncertainty estimates as a factor in an UW. RQ3.3 investigates possible benefits
of encapsulating a DDM that has blind spots on the quality issues it will face during
its usage. Finally, RQ3.4 may help to identify cases where we can substitute a deep
ensemble, i.e., the gold standard, with a more resource-efficient DDM.

3.2 Study Design and Variation Points

This section describes the context, design, and decisions in our study execution plan as
summarized in Fig. 2 and detailed in Sect. 3.3. First, we will introduce the task of the
DDM and the target application scope to which we refer in our evaluation. Next, we will
describe the datasets used in the study and the augmentation used to enrich available
datasets with quality deficits.

z

Basic GTSRB
Training Data

(39,209 Images)

Augmented
with Deficits

(983,470 Images)

Tr

Tr
(2) Calibra on

DDM

DDM

Single CNN

Uncalibrated

Calibra on Dataset
with Deficits

(176,820 Images)
Ca

(1) Training
of DDM
for TSR

Deep Ensemble
of 7 CNNs

Isotonic

DDM Outcome
Uncertainty

In-model
Uncertainty Es ma on

DDM Uncertainty

Outside-model
Uncertainty Es ma on

(3b) Create and Use Uncertainty Wrapper

(3a) Use In-Model Uncertainty Es ma on

with
Confidence

0.9999

Computed

Seman c

Quality Factors

Combined

Uncertainty

Outcome

(4) Evaluate
Uncertainty
Es mates

TAS-based
Test Dataset
with Deficits

(176,820 Images)

Te

Eval

Test Metrics
Brier Score
Variance

Unspecificity
Unreliability

Overconfidence

Rain
Sensor,

…

Decision (Path) Data (Path)x) Execu on Step

DDMs

Image

Image

Fig. 2. Summary on study execution plan with execution steps, design decisions, and data flow.

Motivated by our research questions Table 1, summarizes relevant variation points
in the study design, including the respective decisions and planned comparisons.

Task and Target Application Scope (TAS). We investigated our research questions
using the example of traffic sign recognition, where the main task of the DDM is to
correctly classify traffic signs on given images. The assumed target application scope
was a roadworthy passenger car traveling in Germany at different points in time and
faced with different weather conditions and related operation conditions, such as dirt
on the camera lens. Note that our interest in the study is not on the performance of the
DDM with respect to its primary outcome but the provided uncertainty estimate.

Datasets. To address our research questions, we need different kinds of data: training
data to build the DDM and to identify situations that differ in their degree of uncer-
tainty; calibration data to derive unbiased uncertainty estimators on unseen data; and

24 L. Jöckel and M. Kläs

Table 1. Overview on the decisions and planned comparisons for each research question.

Research
question

Training data DDM Calibration
approach

UW quality
factors

Comparison

RQ1 Augmented Single +
Ensemble

Isotonic Semantic In-model vs.
UW

RQ2 Augmented Single +
Ensemble

Isotonic Combined vs. RQ1

RQ3.1 Augmented Single +
Ensemble

Isotonic Computed vs. RQ1 &
RQ2

RQ3.2 Augmented Single +
Ensemble

Uncalibrated Combined +
Computed

vs. RQ2 &
RQ3.1

RQ3.3 Basic Single +
Ensemble

Isotonic +
Uncalibrated

All vs. RQ1 to
RQ3.2

RQ3.4 Augmented Single +
Ensemble

Isotonic +
Uncalibrated

Semantic Single vs.
Ensemble

representative test data to evaluate the quality of the uncertainty estimates provided by
the investigated in-model and outside-model uncertainty approaches.

The foundation of the datasets is the German Traffic Sign Recognition Benchmark
(GTSRB) dataset [20], an established dataset with 51,839 images of German traffic signs
annotated with sign type labels as ground truth (i.e., the intended outcome). Because
the GTSRB data does not provide any further information that can be used to define
semantic factors with a potential influence on uncertainty, e.g., location, time of day, or
weather conditions, we had to augment the available data with a selection of realistic
quality deficits and annotate them respectively.

To accomplish this, we applied the data augmentation framework proposed by Jöckel
and Kläs [21], which allows augmenting an image with a selection of photorealistic
quality deficits based on a given situation setting. About 2.7 million realistic situation
settings were generated based on historical weather data from Deutscher Wetterdienst
[22] and street locations within the TAS from OpenStreetMap [23].

In our study, we considered 9 types of quality deficits that could affect an image
[24]: rain, darkness, haze, natural backlight, artificial backlight, dirt on the traffic sign,
dirt on the sensor lens, steamed-up sensor lens, and motion blur. The intensity of each
deficit was normalized to a scale between 0 (no effect) and 1 (maximum effect).

Each image of the original training dataset of GTSRB with 39,209 samples, which
we refer to as the basic training dataset, was augmented for each quality deficit with
low, medium, and high intensity by sampling from all appropriate situation settings and
applying respective augmentations. This means each original image was augmented 9×
3= 27 times, provided sufficient situation settings where available. Besides the resulting
944,261 augmented and annotated images, the augmented training dataset additionally
included the original 39,209 images of the basic training dataset.

The 12,630 images available in the GTSRB test dataset were randomly split into
two equally sized, disjoint partitions for calibration and evaluation. To keep the original

We Relieve AI/ML Models of the Responsibility 25

ratio between training and test data consistent, we augmented each original image 28
times based on settings randomly sampled from the 2.7million realistic situation settings
available. This resulted in 176,820 augmented samples each for the calibration dataset
and the evaluation dataset. As the settings were generated based on the emulated target
application scope, we assume that the random samples in this TAS-based test dataset
has a distribution representative for the target application scope.

3.3 Study Execution

This section provides details on the four study execution steps illustrated in Fig. 2.

(1) Training of DDMs. To investigate our research questions, we considered two types
of architectures for the DDMs: a single state-of-the-art convolution neural network
(CNN) architecturewith a softmax output layer, and a deep ensemble architecture includ-
ing multiple CNNs running in parallel to represent what can be considered the current
gold standard for in-model uncertainty estimations.

For the single CNN, we chose a model architecture roughly based on the model that
currently performs best in the GTSRB [1] in a variant without spatial transformers and
using batch normalization in combination with spatial dropout instead of local contrast
normalization after each convolution layer. These modifications were mainly motivated
by reducing the computation resources that are required to build and evaluate deep
ensembles based on several of these CNNs.

For the deep ensemble, we chose an architecture that combines multiple CNNs of
the same architecture and with the same hyper-parameter settings as the single CNN but
with different weight initializations during model training. Following the conclusions
of Henne et al. [19], who examined the effect of the number of ensemble members on
the quality of uncertainty estimates, we decided to use seven ensemble members, which
were identified as an adequate number in their study.

Motivated by our research questions, each DDM was trained either with the basic
or the augmented training dataset. For the basic training dataset, prediction accuracy
stabilized on holdout validation data for the trained CNNs around 0.995 after 30 epochs.
Due to the much larger number of samples in our augmented training dataset, accuracy
stabilized there after only 10 epochs at around 0.891.

(2) Calibration of DDMs. In uncertainty estimation research, calibration is seen as an
important post-processing technique for in-model approaches to make their uncertainty
estimates more reliable. In our study, we decided to apply the scikit-learn implementa-
tions of Isotonic Regression and Platt’s logistic model, which are both model-agnostic,
well-established calibration approaches, using the calibration dataset we had prepared
for this purpose. When we subsequently talk about calibrated DDMs, we report the
result based on IsotonicRegression, since IsotonicRegression consistently outperformed
Platt’s logistic model on our datasets. DDMs using a deep ensemble architecture are cal-
ibrated by calibration of the final outputs after combining the preference values of all
ensemble members as proposed by [23].

26 L. Jöckel and M. Kläs

(3a) In-model uncertainty estimation. In cases where we used in-model uncertainty
estimates, the (calibrated) CNN or deep ensemble does not only report the predicted
traffic sign type but also the uncertainty. In these cases, the uncertainty estimate is one
minus the ultimately calibrated (and aggregated) preference value(s) as calculated by
the softmax-layer(s) of the CNN(s).

(3b) Outside-model uncertainty estimation. Motivated by our research questions,
we built UWs with three different sets of quality factors as input.

The default variant includes only semantic quality factors, meaning we consider
as input the bounding box size around the detected traffic sign (assuming that images
with fewer pixels make the task more difficult), the category of the predicted traffic sign
(assuming that traffic signs of certain categories are more difficult to distinguish), and
all nine types of augmented deficits (including rain, darkness, etc.).

The combined variant uses as an additional quality factor the ‘in-model’ uncertainty
estimates computed by the encapsulated black-boxDDM.Depending on theDDM, these
uncertainty estimates can be raw softmax values or can be calibrated.

The third variant, the computed one, only considers quality factors as input that can
be derived directly – without any additional information source–from the DDM input or
output. In our setting, this comprises the size of the bounding box around the detected
traffic sign, the DDM predicted traffic sign category and uncertainty.

The quality impactmodels of all UWswere trained as a decision tree built withCART
algorithm optimized based on entropy with no pruning while training. After training, the
quality impactmodelswere calibrated on the calibration dataset considering a confidence
level of 0.9999 and pruning all leaves containing less than 200 data samples in the case
of UWs considering only semantic factors, and 700 otherwise (based on the results of a
grid search).

Since our investigation focused on uncertainty related to input quality, which can be
considered as the key strength of in-model uncertainty estimation approaches, a scope
compliance model was not included and data points are considered inside TAS.

(4) Evaluation of uncertainty estimates. All uncertainty estimation approaches were
evaluated on the TAS-based test dataset. To measure the uncertainty estimation perfor-
mance, we computed the Brier score (bs), which measures the mean squared difference
between the predicted probability of an outcome and the actual outcome [8]. The Brier
score can be decomposed into variance (var), resolution (res), and unreliability (unr)
[9] with bs = var − res + unr. A high variance corresponds to a high error rate of the
DDM, i.e., more overall uncertainty. Resolution describes how much the case-specific
uncertainty estimates differ from the overall uncertainty. As the res is bounded by the
var and higher res values are better, we report instead var − res as unspecificity. Finally,
unreliability measures how well the estimated uncertainty is calibrated to the observed
error rate of the DDM, i.e. smaller unreliability means better calibration. Additionally,
we report as a metric of overconfidence the part of the unreliability attributed to uncer-
tainty estimates that underestimate the observed error rate, which is the more serious
case in a safety-critical setting.

We Relieve AI/ML Models of the Responsibility 27

4 Study Results and Discussion

We organized this section along the identified research questions RQ1 to RQ3, for which
we will first present and then discuss the obtained evaluation results.

4.1 RQ1: Comparing UW Performance with In-Model Approaches

This section addresses the question of how uncertainty estimation performance between
UWs and DDMs differs when they were trained and calibrated on appropriate data with
good coverage of potential quality deficits. Accordingly, Table 2 presents the evaluation
metrics for both DDM architectures – a single CNN and deep ensemble of CNNs – in
comparison to the performance of UWs encapsulating these DDMs and relying in their
estimates instead on semantic factors.

As Table 2 shows, the UWs based on semantic factors performed worse than the
corresponding in-model approaches if we consider the Brier score as a global measure
of performance. The main reason can be seen in their higher unspecificity, which is
not completely compensated by their improved reliability. Please note that unreliability
for the UWs was calculated considering a confidence level of .9999, which results in
an intended unreliability increase as overconfident estimates are penalized. Had we not
demanded this confidence level, the unreliability of the UWs would be two magnitudes
lower (single= 0.00043, ensemble= 0.00039). Overconfidence was strongly decreased
by UWs compared to in-model approaches.

Interpretation: In settings where appropriate training data is available, using UWs
seems to be a trade-off between (a) reducing the resolution of uncertainty estimates and
(b) obtaining higher interpretability, low overconfidence based on defined confidence
levels, and separation of concerns through an outside-model approach.

Table 2. Study results on the performance of in-model approaches and UWs.

Research
question

DDM
archit

U. Estimation
approach

Brier
score

Variance Unspecificity Unreliability Over-confidence

Baseline Single In-model .09048 .19553 .00033 .09016 4.5e-02

RQ1 UW/semantic .14931 .19553 .14630 .00301 2.4e-07

RQ2 UW/combined .09065 .19553 .09018 .00048 8.9e-08

RQ3.1 UW/computed .09076 .19553 .09048 .00028 1.6e-08

Baseline Ensemble In-model .08584 .18696 .00034 .08550 3.8e-02

RQ1 UW/semantic .14501 .18696 .14236 .00264 9.6e-07

RQ2 UW/combined .08585 .18696 .08549 .00037 1.0e-06

RQ3.1 UW/computed .08594 .18696 .08563 .00031 1.0e-06

Figure 3 provides an impression of the human interpretability of UW due to the use
of semantic factors and their decision tree structure. For instance, the decision paths can
be checked for plausibility (e.g., whether it is reasonable to assume that traffic signs are
harder to classify if they are covered by dirt).

28 L. Jöckel and M. Kläs

uncertainty = 0.25

dirt on sign > 0.595
→ uncertainty = 0.37

dirt on sign > 0.595 &
ar ficial backlight > 0.179
→ uncertainty = 0.61

incorrect, correct cases
total number of cases

split criterium

Fig. 3. Calibrated decision tree as part of an UW considering semantic factors.

4.2 RQ2: Synergies Between In-Model and Outside-model Approaches

This section addresses the question whether the uncertainty estimation performance
of UWs can be improved if the in-model uncertainty estimates of the DDM are also
considered as a quality factor, in addition to semantic factors such as precipitation.

The results in Table 2 show that if semantic factors are combined with in-model
uncertainty estimates as an additional quality factor, the Brier score of the UWs almost
reaches the level of the in-model approaches. The combination of in-model uncertainty
estimates to the semantic factors not only strongly decreases the unspecificity but also
further improves the reliability of the UW estimates.

Interpretation: Considering in-model uncertainty estimates as a factor can improve
the uncertainty estimation performance of a UW up to the level of current gold standard
in-model predictions. However, this performance improvement comes at the cost of
decreased interpretability because a non-semantic “black-box” factor is introduced. Yet,
other advantages are preserved, including confidence and separation of concerns.

4.3 RQ3: Performance Under Common, Less Than Optimal Conditions

This section investigates questions regarding the performance of UWs when applied
under less than optimal conditions as they commonly occur in real-world settings.

RQ3.1. The results in Table 2 show that the uncertainty estimation performance if
no semantic, but only computed factors are available in the UW reaches nearly the
performance of considering the combined factors.

Interpretation: From a performance perspective, UWs with only computed quality
factors work surprisingly well. However, we have to remember that neglecting semantic
factors reduces interpretability, which is an important advantage of UWs. Thus, we
conclude that UWs can also be applied when no semantic factors are available. However,
developers should do as much as reasonably practical to assure interpretability, which
includes considering as many semantic factors as possible.

We Relieve AI/ML Models of the Responsibility 29

RQ3.2. Table 3 shows how estimation performance is affected when the uncertainty
estimates of the DDM, which were also used as a quality factor in the combined and
computed UW, were not calibrated.

In the case where uncertainty was estimated by the single CNN, the Brier score
became worse if the DDM was not calibrated. However, if the uncertainty estimates of
the uncalibrated DDM were used instead as a quality factor of an UW, we observed no
comparable negative impact on the performance of the encapsulating UW. The Brier
score of the encapsulating UW (with combined and computed factors) was even better
than the score of the encapsulated uncalibrated as well as calibrated single CNN. The
last statement does also hold for the case that the DDM is the considered deep ensemble,
which appears to have performed quite well even if not calibrated, but to a smaller
magnitude.

Interpretation: Encapsulating an uncalibrated DDM within an UW seems to influ-
ence the components of the Brier score in a similar way as the calibration of the DDM.
When DDMs are used encapsulated by an UW, the calibration of the DDM may thus
not be required since its calibration has minor relevance for the performance of the UW.

RQ3.3. Table 4 summarizes the study results addressing the question of how the uncer-
tainty estimation performance of (un-)calibrated DDMs and encapsulating UWs was
affected when the DDMs were trained on data that did not sufficiently cover relevant
quality deficits.

If the training dataset insufficiently covers relevant quality deficits, as the basic
training dataset did in our setting, the uncertainty estimation performance as measured
by the Brier score gets worse. This applies in particular when the DDM is additionally
not calibrated on representative data. The worse Brier score results we obtained were
caused by higher variance, higher unspecificity (except calibrated in-model approaches)
and higher unreliably. If the in-model uncertainty estimates are calibrated, using an
ensemble instead of a single CNN, does not improve the estimation results. The observed
performance decrease was less noticeable for UWs compared to in-model uncertainty
estimation approaches.

Interpretation: The training dataset is an important ingredient for obtaining reliable
uncertainty estimates, especially for in-model approaches. In opposite to the case of
uncalibrated DDMs, for which using an ensemble may compensate a missing calibra-
tion, in the case of calibrated DDMs that are trained on data insufficiently covering
relevant quality deficits using an ensemble seems not to be an effective countermea-
sure. The observed negative effect of training data can however be partially mitigated
by encapsulating the DDM within an UW or at least calibrating it.

RQ3.4. The results in Tables 2, 3 and 4 also compare the uncertainty estimation perfor-
mance obtained when a single CNN or a deep ensemble of CNNs is used. The numbers
show an improved Brier score in almost all cases when a deep ensemble was considered.
The magnitude of improvement was especially high if the DDM was not calibrated. If
the DDM was encapsulated, the performance gap between single and deep ensembles
was smaller.

30 L. Jöckel and M. Kläs

Ta
bl
e
3.

St
ud
y
re
su
lts

on
us
in
g
un
ca
lib

ra
te
d
in
st
ea
d
of

ca
lib

ra
te
d
D
D
M
s.

D
D
M

ar
ch
it

D
D
M

ca
lib

ra
tio

n
U
.
E
st
im

at
io
n
ap
pr
oa
ch

B
ri
er

sc
or
e

V
ar
ia
nc
e

U
ns
pe
ci
fic
ity

U
nr
el
ia
bi
lit
y

O
ve
r-
co
nfi

de
nc
e

Si
ng

le
Is
ot
on

ic
In
-m

od
el

.0
90
48

.1
95
53

.0
00
33

.0
90
16

4.
5e
-0
2

-
In
-m

od
el

.0
94
81

.1
99
46

.0
01
55

.0
93
26

6.
1e
-0
2

Is
ot
on

ic
U
W
/s

em
an

ti
c

.1
49
31

.1
95
53

.1
46
30

.0
03
01

2.
4e
-0
7

-
U
W
/s

em
an

ti
c

.1
50
71

.1
99
46

.1
47
55

.0
03
16

1.
6e
-0
7

Is
ot
on

ic
U
W
/c

om
bi

ne
d

.0
90
65

.1
95
53

.0
90
18

.0
00
48

8.
9e
-0
8

-
U
W
/c

om
bi

ne
d

.0
90
13

.1
99
46

.0
89
67

.0
00
46

0.
0

Is
ot
on

ic
U
W
/c

om
pu

te
d

.0
90
76

.1
95
53

.0
90
48

.0
00
28

1.
6e
-0
8

-
U
W
/c

om
pu

te
d

.0
90
20

.1
99
46

.0
89
87

.0
00
33

0.
0

E
ns
em

bl
e

Is
ot
on

ic
In
-m

od
el

.0
85
84

.1
86
96

.0
00
34

.0
85
50

3.
8e
-0
2

-
In
-m

od
el

.0
85
47

.1
89
41

.0
00
50

.0
84
97

3.
6e
-0
2

Is
ot
on

ic
U
W
/s

em
an

ti
c

.1
45
01

.1
86
96

.1
42
36

.0
02
64

9.
6e
-0
7

-
U
W
/s

em
an

ti
c

.1
44
92

.1
89
41

.1
42
02

.0
02
89

2.
8e
-0
7

Is
ot
on

ic
U
W
/c

om
bi

ne
d

.0
85
85

.1
86
96

.0
85
49

.0
00
37

1.
0e
-0
6

-
U
W
/c

om
bi

ne
d

.0
85
36

.1
89
41

.0
84
98

.0
00
38

0.
0

Is
ot
on

ic
U
W
/c

om
pu

te
d

.0
85
94

.1
86
96

.0
85
63

.0
00
31

1.
0e
-0
6

-
U
W
/c

om
pu

te
d

.0
85
40

.1
89
41

.0
85
03

.0
00
38

0.
0

We Relieve AI/ML Models of the Responsibility 31

Table 4. Results for DDMs trained on a basic dataset insufficiently covering quality deficits.

DDM
archit

Training
data

U. Estimation
approach

Brier
score

Variance Unspecificity Unreliability Overconf

Single Augmented In-model/cal .09048 .19553 .00033 .09016 4.5e-02

basic In-model/cal .12116 .24025 .00001 .12116 4.3e-02

Augmented In-model/uncal .09481 .19946 .00155 .09326 6.1e-02

basic In-model/uncal .45116 .23491 .03360 .41756 4.1e-01

Augmented UW/semantic .14931 .19553 .14630 .00301 2.4e-07

basic UW/semantic .16438 .24025 .16127 .00311 1.6e-07

Augmented UW/combined .09065 .19553 .09018 .00048 8.9e-08

basic UW/combined .11620 .24025 .11545 .00075 0.0

Augmented UW/computed .09076 .19553 .09048 .00028 1.6e-08

basic UW/computed .12116 .24025 .12041 .00075 0.0

Ensemble Augmented In-model/cal .08584 .18696 .00034 .08550 3.8e-02

basic In-model/cal .12152 .24885 .00000 .12152 3.8e-02

Augmented In-model/uncal .08547 .18941 .00050 .08497 3.6e-02

basic In-model/uncal .14389 .24668 .00100 .14290 1.0e-01

Augmented UW/semantic .14501 .18696 .14236 .00264 9.6e-07

basic UW/semantic .17356 .24885 .17058 .00298 3.0e-06

Augmented UW/combined .08585 .18696 .08549 .00037 1.0e-06

basic UW/combined .11498 .24885 .11443 .00055 7.2e-08

Augmented UW/computed .08594 .18696 .08563 .00031 1.0e-06

basic UW/computed .11887 .24885 .11826 .00061 0.0

Interpretation: The better performance of deep ensembles in comparison to single
CNNs comes at the cost of higher resource consumption during development and opera-
tion, which in our setting was seven times higher. The degree to which a deep ensemble
exceeds the performance of a single model, and hence its cost-benefit ratio, has to be
assessed on the specific application setting.

5 Conclusion

We compared UWs as an outside-model approach with existing in-model uncertainty
estimation approaches. Our study focused on uncertainty estimation performance and
related overconfidence considering the example task of traffic sign recognition.

Summarizing our conclusions on the posed research questions, we offer the fol-
lowing preliminary advices. (A1) If general uncertainty estimation performance is the
only criterion, we recommend using a state-of-the-art in-model approach such as deep
ensembles. (A2) If, additionally, computational resources are a limiting factor, a simpler
DDM can be an alternative if its uncertainty estimates are calibrated appropriately. (A3)
If at least one of the following criteria is relevant in our setting, the use of an UW, as an
outside-model approach, should be considered:

32 L. Jöckel and M. Kläs

• separating the concerns of providing good outcome and uncertainty estimates
• assuring interpretability, e.g., to check the plausibility of uncertainty estimates
• providing statistical guaranties based on a given confidence level
• facing a DDM trained on data insufficiently covering relevant quality deficits
• scope compliance is not guaranteed (e.g., causing out-of-distribution issues)

If encapsulating a DDM within a UW, (A4) calibrating the DDM does not appear to
be necessarily required, (A5) the kinds of factors that are used in a UW – semantic, com-
puted, or both – is a trade-off decision that should consider the specific needs regarding
interpretability, available data, and estimation performance. In a safety-driven setting,
we would recommend using semantic factors to the extent that is reasonably practical
to keep the uncertainty estimates as transparent as possible.

In summary, we see good reasons to release AI models from the responsibility of
providing dependable uncertainty estimates, and, considering the presented results, an
uncertainty wrapper can be an option for realizing the required separation of concerns.

For the future, we plan to conduct additional studies to investigate the usefulness of
the UW pattern in different settings and integrate it in a structured safety argument.

Acknowledgments. Parts of this work have been funded by the Observatory for Artificial Intel-
ligence in Work and Society (KIO) of the Denkfabrik Digitale Arbeitsgesellschaft in the project
“KI Testing & Auditing”.

References

1. Arcos-García, A., Alvarez-Garcia, J., Soria Morillo, L.: Deep neural network for traffic sign
recognition systems: an analysis of spatial transformers and stochastic optimisation methods.
Neural Netw. 99, 158–165 (2018)

2. Garcia-Garcia, A., Orts, S., Oprea, S., Villena Martinez, V., Rodríguez, J.: A review on deep
learning techniques applied to semantic segmentation. arXiv:170406857 (2017)

3. Kläs,M.:Towards identifying andmanaging sources of uncertainty inAI andmachine learning
models - an overview. arXiv:1811.11669 (2018)

4. Dijkstra, E.W.: On the role of scientific thought. In: Selected writings on Computing: A
Personal Perspective, pp. 60–66. Springer, New York, USA (1982). https://doi.org/10.1007/
978-1-4612-5695-3_12

5. Kläs, M., L. Sembach, L.: Uncertainty wrappers for data-driven models–increase the
transparency of AI/ML-based models through enrichment with dependable situation-aware
uncertainty estimates. In: WAISE (2019)

6. Kläs, M., Vollmer, A.M.: Uncertainty in machine learning applications – a practice-driven
classification of uncertainty. In: WAISE (2018)

7. Kläs, M., Jöckel, L.: A framework for building uncertainty wrappers for AI/ML-based data-
driven components. In: WAISE (2020)

8. Brier, G.W.: Verification of forecasts expressed in terms of probability. Mon. Weather Rev.
78(1), 1–3 (1950)

9. Murphy, A.H.: A new vector partition of the probability score. J. Appl. Meteorol. 12(4),
595–600 (1973)

http://arxiv.org/abs/170406857
http://arxiv.org/abs/1811.11669
https://doi.org/10.1007/978-1-4612-5695-3_12

We Relieve AI/ML Models of the Responsibility 33

10. Kläs, M., Adler, R., Sorokos, I., Joeckel, L., Reich, J.: Handling uncertainties of data-
driven models in compliance with safety constraints for autonomous behavior. In: European
Dependable Computing Conference (EDCC), (2021, accepted for publication)

11. Der Kiureghian, A., Ditlevsen, O.: Aleatory or epistemic? Does it matter? Struct. Saf. 31(2),
105–112 (2009)

12. Bandyszak, T., Jöckel, L., Kläs, M., Törsleff, S., Weyer, T., Wirtz, B. Handling uncertainty
in collaborative embedded systems engineering. In: Böhm, W., Broy, M., Klein, C., Pohl, K.,
Rumpe,B., Schröck, S. (eds.)Model-BasedEngineering ofCollaborativeEmbeddedSystems,
pp. 147–170. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-62136-0_7

13. Guo, C., Pleiss, G., Sun, Y., Weinberger, K.: On calibration of modern neural networks. In
ICML (2017)

14. Pimentel, M., Clifton, D., Clifton, L., Tarassenko, L.: A review of novelty detection. Sig.
Process 99, 215–249 (2014)

15. Aslansefat, K., Sorokos, I., Whiting, D., Tavakoli Kolagari, R., Papadopoulos, Y.: SafeML:
safety monitoring of machine learning classifiers through statistical difference measures. In:
IMBSA (2020)

16. Arnez, F., Espinoza, H., Radermacher, A., Terrier, F.: A comparison of uncertainty estimation
approaches in deep learning components for autonomous vehicle applications. In: AISafety
(2020)

17. Lakshminarayanan, B., Pritzel, A., Blundell, C.: Simple and scalable predictive uncertainty
estimation using deep ensembles. In: NIPS (2017)

18. Gustafsson, F., Danelljan,M., Schön, T.: Evaluating scalable Bayesian deep learningmethods
for robust computer vision. In: CVPR (2020)

19. Henne, M., Schwaiger, A., Roscher, K., Weiss, G.: Benchmarking uncertainty estimation
methods for deep learning with safety-related metrics. In: SafeAI (2020)

20. German Traffic Sign Benchmarks (2021). http://benchmark.ini.rub.de/?section=gtsrb
21. Jöckel, L., Kläs, M.: Increasing trust in data-driven model validation. In: SafeComp (2019)
22. Climate Data Center. https://cdc.dwd.de/portal/. Accessed 13 Nov 2020
23. OpenStreetMap. https://www.openstreetmap.de/. Accessed 13 Nov 2020
24. Jöckel, L., Kläs, M., Martínez-Fernández, S.: Safe traffic sign recognition through data

augmentation for autonomous vehicles software. In: QRS (2019)
25. Rahaman, R., Thiery, A.: Uncertainty quantification and deep ensembles. arXiv:2007.08792

(2020)

https://doi.org/10.1007/978-3-030-62136-0_7
http://benchmark.ini.rub.de/%3Fsection%3Dgtsrb
https://cdc.dwd.de/portal/
https://www.openstreetmap.de/
http://arxiv.org/abs/2007.08792

Towards Certification of a Reduced
Footprint ACAS-Xu System: A Hybrid

ML-Based Solution

Mathieu Damour1,2, Florence De Grancey2,3, Christophe Gabreau2,4,
Adrien Gauffriau2,4, Jean-Brice Ginestet5, Alexandre Hervieu5,

Thomas Huraux1,2, Claire Pagetti6(B), Ludovic Ponsolle2,7,
and Arthur Clavière8

1 Scalian, Toulouse, France
2 IRT Saint Exupéry, Toulouse, France

3 THALES, Paris, France
4 Airbus, Toulouse, France

5 DGA, Balma, France
6 ONERA, Toulouse, France
claire.pagetti@onera.fr
7 Apsys, Blagnac, France

8 Collins Aerospace, Toulouse, France

Abstract. Approximating while compressing lookup tables (LUT) with
a set of neural networks (NN) is an emerging trend in safety critical sys-
tems, such as control/command or navigation systems. Recently, as an
example, many research papers have focused on the ACAS Xu LUT com-
pression. In this work, we explore how to make such a compression while
preserving the system safety and offering adequate means of certification.

1 Introduction

Due to the intensive flights traffic, the risk of collision is increasing. During the
last decade, a standardization group has defined a new competitive and effective
anti-collision system named ACAS X (for Next-Generation Airborne Collision
Avoidance System) [16]. The purpose is to keep any intruder outside of the
desired envelope of the ownship.

1.1 ACAS Xu Overview

Among the family of ACAS X, we will focus on the ACAS Xu [10] dedicated to
drone, Urban Air Mobility and Air Taxi with horizontal automatic resolution.
The system is based on a set of lookup tables (LUT) that are used in real-time
to resolve conflicts. Those LUT have been computed off-line and their size has
been chosen in order to fulfil real-time (decisions must be taken every second)
and safety level (there should not be any collision) requirements. The ownship
computes six parameters (listed below) that enable to access the tables which
c© Springer Nature Switzerland AG 2021
I. Habli et al. (Eds.): SAFECOMP 2021, LNCS 12852, pp. 34–48, 2021.
https://doi.org/10.1007/978-3-030-83903-1_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-83903-1_3&domain=pdf
https://doi.org/10.1007/978-3-030-83903-1_3

Towards Certification of a Reduced Footprint ACAS-Xu System 35

Fig. 1. ACAS Xu geometry [14]

NNCoC

NNWL

NNSL

NNWR

NNSR

NN-based controller

input
- pa
- ρ
- θ
- ψ
- vown

- vint

advi-
sory

Fig. 2. NN-based architecture [14]

give an estimation of the probability to have a collision for the each possible
advisory and the chosen advisory is the one that minimizes this probability. The
geometry of the system is given in Fig. 1, and the definition of the parameters
stands as:

– ρ (ft): Distance from ownship to intruder
– θ (rad): Angle to intruder relative to ownship heading
– ψ (rad): Heading angle of intruder relative to ownship heading direction
– vown (ft/s): Speed of ownship
– vint (ft/s): Speed of intruder
– τ (s): Time until loss of vertical separation.

The 23 LUT provide the transitions costs between the previous advisory (pa)
and the next advisory. There are five advisories: COC (Clear Of Conflict); SR
(Strong Right); SL (Strong Left); WR (Weak Right) and WL (Weak Left). In
particular, when the ownship is in the COC state, it can continue its mission.
When the ownship is in one of the other states, it has to initiate a turn with a
rate that depends of the computed state. In practice, a single table is composed
of 2 sub-tables: the first contains definition of parameters values and the second
contains the costs that are half-integer (16 bits). More information on the ACAS
Xu system can be found in [19].

1.2 Purpose of the Work

Several universities have worked on replacing the LUT by neural networks (NN),
the objective being to reduce the size of the embedded code and improve the
anti-collision performance. The authors of [14] have replaced the LUT by 45
neural networks leading to an impressive reduction of the memory footprint
(4 GB to 150 MB), see the Fig. 2 for horizontal advisory (i.e. when τ = 0). In
this work, we want to explore how to compress the LUT with neural networks
while preserving the system safety and offering adequate means of certification.
We only focus in the sequel on the horizontal resolution of conflict.

36 M. Damour et al.

Certification Problem Statement. For any safety-critical system embedded
in an aircraft, airframers (applicants) have to demonstrate to regulation authori-
ties that their product is compliant with certification specifications. To this pur-
pose, applicants use a set of standards that are recognized as acceptable means
of compliance. Existing development assurance standards are not adapted to
the data-driven paradigm of the ML technique, though such development may
introduce errors that could jeopardize a safe operational use of the system (e.g.
such probabilistic approach may introduce unforeseen errors). Currently a joint
working group, the EUROCAE WG-114/SAE G-34 [9] (WG-114 for short in the
sequel) is preparing the next standard to fill this gap.
Contributions. The use of NNs to approximate the LUT may lead to unex-
pected behaviors that should be mitigated to guarantee that the ML-based item
will not alter the safety of the system. For this purpose, the ACAS Xu subsystem
is designed as an hybrid controller: a non ML item is introduced to guarantee
the safety in all the operational domain (safety net).

Fig. 3. ACAS Xu subsystem development workflow using ML

In addition, a new certification strategy is investigated to provide sufficient
guaranties to authorities. The Fig. 3 instantiates the WG-114 development pro-
cess workflow to the ACAS Xu use case. There are three levels of engineering: the
System and Subsystem Level as proposed by ARP4754A [25] standard which pro-
vides guidance for the system development process and are complementary to the
product requirements (WG 75-1 [10] for the ACAS Xu technical requirements);
the item Level where ML activities are not covered by any known standard while

Towards Certification of a Reduced Footprint ACAS-Xu System 37

the non-ML parts are supported by classical guidance for the implementation
process of the software items (DO-178C [8]) and hardware items (DO-254 [23]).

To tackle the objectives of the system development guidance, three aspects
were developed. The first concerns the learning assurance activity of the ML
element (or MLM-Machine Learning Models), which aims at ensuring that the
MLM requirements (covering functional, performance and robustness aspects)
have been captured and correctly designed. The elements supporting this activ-
ity are detailed in Sect. 2. The second aspect (dashed green arrow) targets the
item validation activity in order to check that captured requirements fit the
system needs. The third aspect (solid green arrow) targets the subsystem verifi-
cation to check that the ACAS-Xu Hybrid controller safely performs its intended
use. Activities and relationships covering the two first aspects are part of a con-
structed argumentation (see Sect. 3).

2 ACAS Xu Hybrid Architecture

We propose to replace the LUT with a hybrid architecture (shown in Fig. 4) com-
posed of a neural networks based controller part (as proposed by [14]) together
with a safety net to ensure a correct behavior. The idea, that will be detailed
hereafter, is to 1) apply the best practices of learning assurance to well approxi-
mate the tables; 2) identify off-line the zones where the NN-based system differs
from the LUT advisories and where it may jeopardize the safe behavior of the
system; 3) compute on-line in which zone the system is, call the NN-based system
if it behaves similarly to the LUT or switch to the safety net if not in order to
always be safe (this step is performed by check module). The safety net consists
of the extract of the LUT for these zones.

NNCoC

NNWL

NNSL

NNWR

NNSR

NN-based controller

check module
pre-defined
safe box

input
- pa
- ρ
- θ
- ψ
- vown

- vint

safety net
pieces of LUT

advisory

Fig. 4. Architecture of the neural network based ACAS Xu

2.1 Learning Process

The objective of the learning process is to build a model for advisory compu-
tation which performs a trade-off between reducing the memory footprint and

38 M. Damour et al.

preserving fidelity to LUT. Ideally, this model should reconstruct the original
(but unknown) cost function. NNs are quite good universal approximators as
long as the cost function has similar bounded derivative on the whole domain
which is unfortunately not the case here. The cost function shows two local offsets
where derivative reaches high value: one (Fig. 5) is observed for each cost func-
tion when the range is below 5000 ft, where the cost functions switches quickly
from 0 to 15000, and the second (Fig. 6) concerns the case of COC advisory
cost value when previous advisory is not COC, where a local offset of +4000 is
added. This issue could be resolved by either augmenting the size of the NNs
(not explored here) or finding the most suitable NN architecture.

Fig. 5. Cost function CoC → CoC Fig. 6. Cost function WL → CoC

We explored several architectures (with ReLu activation only) with the same
learning process where 1) input and output data are normalized between -1 and
1 (as suggested in [17]), 2) batches size is set to 8912, 3) Adam optimizer [5] was
used, 3) initial learning rate is set to 0.002:

1. regression (cost inference) versus classification (decision inference);
2. regular hidden layer size versus decreasing layer size. We have tested regular50

with 8 layers and 5-50-50-50-50-50-50-5 neurons per layer; decreasing128 as
5-128-64-32-16-5 and decreasing256 as 5-256-128-64-32-16-5.

The criteria for evaluation, that we called accuracy, is the agreement rate
between advisory computed by the NN and the ground truth LUT value. Both
training and evaluation were performed in the whole data-set which is not clas-
sical but the point is to be as close as possible to the LUT. Thus, for once
overfitting is encouraged to improve accuracy.

We completed the evaluation with accuracy measurement on range restricted
subsets which represent the most critical situations. At long-range, as there is no
risk of collision and the advisory is most of the CoC (95% of advisory for ranges
above 10000 ft). For ranges below 5000 ft, the advisory is spread with 15% CoC,
38% SL and 36% SR. We set empirically two subsets: a mid-range subset with
range below 20000 ft, and a short range subset with ranges below 500ft. The
table above shows the measured accuracy.

Towards Certification of a Reduced Footprint ACAS-Xu System 39

Training type Network shape Accuracy Accuracy mid range Accuracy short range Nparam

Regression [14] 93,22 82,424 68,25 13305

Regression regular50 95,42 87,44 71,52 15855

Regression decreasing128 95,81 89,18 75,62 28229

Regression decreasing256 96,33 90,82 79,74 111173

Classification decreasing256 76,06 76,08 86,43 111173

Overall, as expected we observe that accuracy decreases when the range is
reduced. Furthermore, at very short ranges, we observe in LUT that the cost dif-
ference between decision is very low, then it is more difficult for neural network
to infer the exact cost. We observe that the regression approach is more effective
than classification. This result could be explained by the fact that the decision
boundary have “square” shape, not suitable for shallow neural networks. We
also observe that the decreasing architecture performs better than the regular
architecture. We can suppose that this decreasing architecture favours represen-
tation of more complex functions in the first layers. Such complex representation
is more suitable to represent offset effects. After this study we have selected reg-
ular50 and decreasing128 since they reaches high accuracy with limited memory
(parameters) footprint.

2.2 Design of the Hybrid Architecture

The objective of the safety net is to take over when the NN does not take similar
advisory as the LUT in the same situation. To determine the zones where the
NN differ from the LUT, we use formal verification techniques. More precisely,
we decompose the space as a set of p-dimensional boxes (short as p-box).

Definition 1 (p-box). Let p ∈ N, a p-dimensional box [b]p is a set of Rp defined
as the cartesian product of p intervals:

[b]p = ×
1≤i≤p

[li, ui]

wherein li ∈ R (resp ui ∈ R) is the lower bound (resp the upper bound) of the
ith interval composing the box [b]p.

The boundaries of the p-boxes come from the parameters values of the LUT. In
practice, the input state space is split in 36, 784.106 5-boxes. For each box, we
compute the possible decisions obtained either from the LUT and the NN, and
we check that they are similar, which is formalized in the property below.

Property 1 (NN-based architecture compliant with specification). We define by
decisions f(l) ⊆ {CoC,WL,SL,WR,SR} the set of reachable advisories by f
from any point of l where f ∈ {NN,LUT} and l is a p-box. We consider that a
NN behaves similarly to the LUT on an p-box l if

decisions NN(l) ⊆ decisions LUT (l)

40 M. Damour et al.

To determine which p-box satisfies the Property 1, we use the verification tools
Deeppoly [28], Reluplex [14] and planet [7]. First the Property 1 is checked
on the p-boxes with Deeppoly. As Deeppoly computes an over-approximation,
thus either Deeppoly provides a positive answer (i.e. property holds) or an
unknown answer. Then Reluplex/planet is called on the remaining boxes
(those for which Deeppoly provided unknown).

In this work, the safety net is designed with the ownship and intruder having
a constant speed of 438 ft/s and 414 ft/s respectively. This corresponds most of
the time to the worst case situation, i.e. if an aircraft flights slower, decisions are
similar. This improves the compression of the hybrid architecture and speeds up
the safety net design. In effect, we would need to design the safety so that it
covers all situations. Because of our hypotheses (τ = 0 for horizontal resolution
and constant speed), the space is split in 304 000 3-boxes and thus one 3-box is
defined by (ρ, θ, ψ). The results are given in the table below.

Method Deeppoly Reluplex/planet time Number of failed boxes

Time Success

Regression [14] 14 min 77.2% 63 h 24057

regular50 15 min 78.7% 48 h 6912

decreasing128 16 min 78.2% 56 h 1664

We plot (in Fig. 7) for each 3-box (ρ, θ, ψ) the lower bound li with on the left
a color indicating the solver used (Reluplex/planet or Deeppoly) and on
the right a color indicating the advisory. More precisely, right plot of the figure
shows advisory for an intruder aircraft located at each point on the plot, whose
coordinates indicate the slant range (ρ) and angle to intruder (θ) and with the
own-ship located at the center of the plot. Since 87% of LUT(l) decisions are
unique, it entails that the NNs take exactly the same decision as the LUT most
of the time.

Fig. 7. Solver used for proving properties over 3-box - Polar coordinates (ρ, θ)

Towards Certification of a Reduced Footprint ACAS-Xu System 41

We can see that Deeppoly is able to quickly prove properties in area where
the cost functions are very different, whereas it does not reach a proof in
areas where cost functions are very close. Difficult verification needing Relu-
plex/planet are the areas where ACAS Xu system gives avoidance orders.

2.3 Why a New Hybrid Architecture

Current implementation of ACAS Xu should embed 4 Gbytes LUT and executes
1 Hz. Such implementation with avionic constraints is rather challenging, see for
instance [21]. In particular, there is not much such large memory available on the
market that is compatible with avionics constraints. Compression is therefore a
strategic approach but not at the cost of reduced safety. This is the reason why we
approximate them as NN together with a safety net. Using an approved fallback
to mitigate safety risks is regularly used in the avionic system architectures. This
is also a strong recommendation of the AVSI report [2] to bound the behavior
of ML algorithms and prevent any unintended behaviour that may challenge the
system safety.

In the table below, we have computed the size needed by the neural networks
as well as the one for managing the switch and the safety net.

Network shape Nb of parameters in NN NNs size (MB) Failed boxes (kB) Full memory footprint (MB)

[14] 598,725 102.6 564.0 103.2

regular50 713,475 122.4 162.0 122.7

decreasing128 1,270,305 217.8 39.0 217.8

For the safety net and check module, we need to store p-boxes and exactly
the same since check module identifies when to switch in the safety net. Each
unsafe box will be stored in the memory using the lower and upper points. Using
float32, the size needed by a 3-boxes is 24 bytes. This leads to a size of 974 kB
for [14], 4.1 kB for regular50 and 4.0 kB for decreasing128. Footprint of unsafe
boxes is one order of magnitude below the networks footprint and is decreasing
with the size of the network. The compression of NN could also be improved
using pruning and quantization techniques [11].

3 Certification Methodology

Assurance cases (AC) are gaining more and more consideration as valuable
methodologies for development and certification. John Rushby [24] defines them
as: Assurance cases are a method for providing assurance for a system by giving
an argument to justify a claim about the system, based on evidence about its
design, development, and tested behavior.

3.1 Notations

The idea is to detail the argumentation leading to a certain conclusion or claim.
In the context of certification, a claim is an objective to be fulfilled by the

42 M. Damour et al.

applicant. In practice, the demonstration is based on the elicitation of require-
ments that correspond to the justifications that the objective is achieved. There
exist several notations, either textual or graphical, to support the design of an
assurance case, such as GSN (Goal Structuring Notation) [15]. All of them are
relying on the Toulmin work [29].

Among the existing notations, we will use subsequently in the paper a graph-
ical adaptation of Toulmin notation proposed by the RESSAC [22] project.
RESSAC was a European project that coordinated European industry efforts
to contribute to the FAA initiative called “Overarching Properties”, which pro-
motes an alternative certification approach to ease the introduction of next gen-
eration systems. This notation relies on (see Fig. 8): the Claim C is either the
upper conclusion or intermediate conclusions (or sub-claims), the Evidence E
is a leaf that consists of a V&V documentation that supports some claim, the
Reasoning R explicitly describes the argument and the Backing B supports the
reasoning. The Backing is a kind of endorsement of the reasoning, a guarantee
that the reasoning is reliable. The defeater D allows for expressing that in some
circumstances the conclusion may not be true. Such a notation is very helpful
as it offers simplicity and the possibility to challenge the reasoning steps. The
context contains additional information needed to provide definitions or descrip-
tions of terms constraining the applicability of the assurance case to a particular
environment or set of conditions.

(C) Claim contributing to
the argument

(R) reasoning = inference
between a claim and its
subclaim(s)

(E1) Evidence (E2) Evidence contributing to R

Context = contextual arte-
fact or a statement

backing = justification
that strategy is adapted

defeater = conditions invalidat-
ing the strategy

Fig. 8. Graphical RESSAC notation

3.2 Assurance Case for the Hybrid Controller

The objective of the certification approach is two-fold: first demonstrate the
completeness and the correctness of the ML-based item implementation with
respect to the system and safety requirements; and second reinforce the confi-
dence that the ML-based item has been developed in a sufficiently disciplined
manner to limit the likelihood of development errors that could impact system
safety. This approach covers the “Learning Assurance” and “AI safety risk miti-
gation” building blocks, pillars of the trustworthiness concept introduced by the
EASA AI Roadmap 1.0 [6].

Towards Certification of a Reduced Footprint ACAS-Xu System 43

The overall assurance case for the hybrid architecture is quite large as it cov-
ers the full ACAS system development and contains 120 elements (claims, reason-
ing, context, backing and evidences) addressing the objectives of the ARP4754A
[25]. Due to space limit, we cannot detail everything and we chose to focus on
some objectives.

ACAS-Xu Subsystem Requirement Capture. The Fig. 9 shows the reason-
ing to demonstrate that the ACAS Xu specification process meets the ARP4754A
[25] guidance concerning the definition of system requirements and interfaces.
The argument is based on 2 sub-claims: the capture of the functional and per-
formance requirements. The performance requirements are not further detailed.

(C) ACAS Xu req are captured

(R1) Requirements capture as per ARP4754A guidance

(C1) functional requirements captured
per element of the hybrid architecture
Context: Description of the ACAS Xu
architecture

(R2) ACAS Xu functional requirements
based on the architecture elements prop-
erties and impl. logic

(E1) MLM Property
1 (whatever the in-
put, MLM takes same
decisions as LUT)

(E2) safety net property
(LUT decisions and
worst case situation
with chosen speeds)

(E3) check property
(switch to LUT when
MLM property is not
hold)

(C2) performance requirements
captured e.g. agnostic performance
criteria (15 SESAR criteria) such
as false alarm threshold

(B) LUT are standardized
requirements through DO-
385/ED-256

Fig. 9. Assurance case - ML subsystem requirements

The functional requirements must be refined for each item of the hybrid archi-
tecture (NNs and safety net). The reasoning is that the LUT decisions are the
behaviour reference of the controller. Thus each item of the hybrid architecture
should have equivalent properties and the switch logic should be appropriate.
Specifically, property 1 is defined to guarantee the correct operation of the MLM.
ACAS-Xu Item Verification (for the ML Element Robustness Part). As
per [3], one of the main premises of the robustness demonstration is “real-world
situations to which the subsystem is not robust should be identified and mitigated”
(refer to claim C in Fig. 10). All the situations where the MLM provides incorrect
predictions (i.e. where Property 1 is not preserved by the MLM), are identified.
The mitigation is realized by the architecture design (switch to the safety net
which embeds the subset of LUT needed for mitigation). The preservation of the
Property 1 is formally verified within the robustness analysis: the input space is
divided into boxes defined by points of the LUT. When decisions associated to
the top-points of a box are different from one another (frontiers of decisions),

44 M. Damour et al.

then the estimated prediction of each point of the box is considered as correct
when identical to one of the box top points. Property 1 is verified using formal
methods: when Property 1 does not hold, this means that the situation may be
unsafe and that the hybrid controller should switch to the LUT computation to
take the appropriate decision.

(C) Real world situations where the MLM is not robust
are identified and mitigated

(R) Ensure that all unsafe situations are
correctly mitigated

(C1) All unsafe situations are
identified

(R) The Property 1 is formally
verified in the whole input space
to identify unsafe situations

(E2) The Property 1 is
correctly defined

(E3) The input space is
correctly decomposed into
p-boxes

(E4) The Property 1 is
formally checked in each p-
box (abstract interpretation
and solver)

(E1) Architecture
mitigation (switch to
the safety net when
appropriate)

Fig. 10. Assurance case - ML item robustness

ACAS-Xu Subsystem Validation. Considering that LUT standardization
has been recognized by the Authorities, one can think that the proper verification
of the MLMs (to correctly approximate LUT predictions) would be sufficient
to consider them as validated. Actually, the lack of transparency of the ML
technique (no traceability capability, black box effect) may require a need for
additional assurance that MLMs properties are correct and complete. For this
purpose, specific tests have been developed in a simulation environment enabling
the comparison between operational behaviors of ML-based design and real LUT
design whatever the geometric situation. The Fig. 11 develops the argumentation
and illustrates the use of defeater (D) to challenge the confidence that the use
of standardized data may not be sufficient for demonstration of conformity.

4 Related Work

Proved ACAS Xu. Up to now, the ACAS Xu compression works only pro-
posed to replace the LUT with a set of neural networks. Even if there have
been several papers on formal verification of NN, none of them has tackled the
certification itself. Most of the time, papers prove some local properties on the
neural network which is not sufficient to cover certification expectation. Authors

Towards Certification of a Reduced Footprint ACAS-Xu System 45

(C) ACAS Xu sub-system req are validated

(R1) Argument over data representative-
ness and completeness (R2) Validation
activities in a simulated environment

(E1) Training data are complete
and representative of the input
domain

(E2) ACAS Xu subsystem req
are validated using ML inference
testing activities in a simulated
environment

(B) LUT are standardized
requirements through DO-
385/ED-256

(D) Correct LUT implementa-
tion using NN not sufficient to
validate the requirements

Fig. 11. Assurance case - ML subsystem validation

of [14] proposed to prove 10 avoidance meta-properties without any explicit link
with avoidance standard [10]. We believe that these properties are not enough
for enabling the certification of an ACAS-Xu system. Our approach is different,
because we consider LUT as the requirements (part of the standard) and we
formally guarantee that outputs of our system will be exactly the same as LUT.

Certification Methodology. There are several works offering assurance case to
summarize confidence for ML components. [3] proposed a pattern to ensure the
robustness of ML subsystems. We have completed and adapted this approach to
integrate the specific properties (safe behaviour reference given by the LUT) and
the safety net. [26] proposed a template to structure the safety argumentation
part specific to DNNs. Their work is illustrated with an example use case based
on pedestrian detection.

To the best of our knowledge, no assurance case approach has been proposed
to tackle the respect of functional and performance objectives at system level
(when ML sub-components are involved) for aircraft certification. The literature
in the automotive is richer. In particular, [20] argued that assurance cases can be
used for DNNs based systems. [30] goes further as it proposes GSN patterns to
reason on the safety requirements of ML-based components and their integration
within a system-level reasoning to show the compliance with ISO 26262. Thus,
our work is complementary as we address the aeronautical sector and tackle the
ARP4754A.

[1] proposed a novel concept of Dynamic Assurances Cases (DAC) that is
applied to an aviation system that integrates ML-based perception function for
autonomous taxiing. This concept is based on a framework of assurance meth-
ods /tools addressing safety concerns during development and extending this
level of assurance to an in-flight operational use. They use both Assurance Case
(with GSN notation) and architecture mitigation to develop assurance compo-
nents for the DAC framework. Though we share the ARP4754A objectives and
the assurance case methodology, our main objective is more to bridge the gaps
of conformity of a ML-based system to the ARP4754A safety, functional and

46 M. Damour et al.

operational objectives and guarantee an acceptable means of compliance with
certification requirements.

Learning a Surrogate NN of a LUT. Neural networks are a new trend
for approximating complex functions as a replacement of LUT, for example for
control command systems [27]. Significant work has been performed in the frame-
work of deep Q-learning, where the Q table is approximated by neural network.
There have been some experiments in the context of Calibration Look-up table
for the tuning of voltage-controlled circuits [18]. It was also explored for ACAS-
Xu use case in [12,13]. In [13], authors compares table compression using the
origami algorithm which exploits data’s redundancies and symmetries, and a
method and using a neural network with a regular architecture. In [12], further
exploration of the neural network approach is performed, introducing several
tricks to enhance performance.

5 Conclusion

We have designed a safe NN-based ACAS Xu architecture and shown with an
assurance case that such a way of doing could be well argued for certification
to the regulation authorities. The certification evidences will be completed with
sub-system level analyses (with simulation and reachability analysis [4]).

In the future, we also plan to implement the hybrid architecture on an embed-
ded board to complete the certification proof. We will also apply our methodol-
ogy for other LUT-based safety critical systems.

Acknowledgments. This project received funding from the French “Investing for the
Future – PIA3” program within the Artificial and Natural Intelligence Toulouse Insti-
tute (ANITI). The authors gratefully acknowledge the support of the DEEL project
(https://www.deel.ai/).

References

1. Asaadi, E., et al.: Assured integration of machine learning-based autonomy on
aviation platforms. In: 39th Digital Avionics Systems Conference (DASC 2020)
(2020)

2. AVSI: Final Report AFE 87 - Machine Learning (2020)
3. Hawkins, R., Calinescu, R., Picardi, C., Paterson, C., Habli, I.: Argument patterns

and processes for machine learning in safety-related systems. University of York,
York, U.K. (2020)

4. Clavière, A., Asselin, E., Garion, C., Pagetti, C.: Safety verification of neural net-
work controlled systems. In: 7th International Workshop on Safety and Security of
Intelligent Vehicles (SSIV 2021) (2021)

5. Diederik, J.B., Kingma, P.: Adam: a method for stochastic optimization. In: 3rd
International Conference for Learning Representations (2015)

6. EASA: Artificial Intelligence Roadmap: A human-centric approach to AI in avia-
tion (2020)

https://www.deel.ai/

Towards Certification of a Reduced Footprint ACAS-Xu System 47

7. Ehlers, R.: Formal verification of piece-wise linear feed-forward neural networks.
CoRR, abs/1705.01320 (2017)

8. EUROCAE/RTCA: DO-178C/ED-12C - Software Considerations in Airborne Sys-
tems and Equipment Certification (2011)

9. EUROCAE WG-114/SAE Joint Group: Certification/approval of aeronautical sys-
tems based on AI (2021). On going standardization

10. EUROCAE WG 75.1 /RTCA SC-147: Minimum Operational Performance Stan-
dards For Airborne Collision Avoidance System Xu (ACAS Xu) (2020)

11. Han, S., Mao, H., Dally, W.J.: Deep compression: compressing deep neural net-
works with pruning, trained quantization and Huffman coding (2016)

12. Julian, K.D., Kochenderfer, M.J., Owen, M.P.: Deep neural network compression
for aircraft collision avoidance systems. arXiv:1810.04240 (2018)

13. Julian, K.D., Lopezy, J., Brushy, J.S., Owenz, M.P., Kochenderfer, M.J.: Deep
neural network compression for aircraft collision avoidance systems. In: 35th Digital
Avionics Systems Conference (DASC) (2016)

14. Katz, G., Barrett, C.W., Dill, D.L., Julian, K., Kochenderfer, M.J.: Reluplex: An
efficient SMT solver for verifying deep neural networks. CoRR, abs/1702.01135
(2017)

15. Kelly, T., Weaver, R.: The goal structuring notation /- a safety argument notation.
In: Workshop on Assurance Cases (2004)

16. Kochenderfer, M., Holland, J., Chryssanthacopoulos, J.: Next generation airborne
collision avoidance system. Lincoln Lab. J. 19, 17–33 (2012)

17. LeCun, Y., Bottou, L., Orr, G., Müller, K.: Efficient backprop. In: Neural Networks:
Tricks of the Trade, chap. 2, p. 546 (1998)

18. Leoni, A., Marinković, Z., Pantoli, L.: On the introduction of neural network-based
optimization algorithm in an automated calibration system. In: 14th International
Conference on Advanced Technologies, Systems and Services in Telecommunica-
tions (TELSIKS), pp. 323–326 (2019)

19. Manfredi, G., Jestin, Y.: An introduction to ACAS Xu and the challenges ahead.
In: 35th Digital Avionics Systems Conference (DASC 2016), pp. 1–9 (2016)

20. Kaur, R., Ivanov, R., Cleaveland, M., Sokolsky, O., Lee, I.: Assurance case patterns
for cyber-physical systems with deep neural networks. In: Casimiro, A., Ortmeier,
F., Schoitsch, E., Bitsch, F., Ferreira, P. (eds.) SAFECOMP 2020. LNCS, vol. 12235,
pp. 82–97. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-55583-2 6

21. Ren, L., et al.: Integration and flight test of small UAS detect and avoid on a
miniaturized avionics platform (2019)

22. RESSAC: Recommendations for the use of assurance cases for demonstrating and
assessing overarching properties. Technical report, LIV-S026-D4-199 (2019)

23. RTCA, Inc.: DO-254 - Design Assurance Guidance For Airborne Electronic Hard-
ware (2005)

24. Rushby, J.: The interpretation and evaluation of assurance cases. Technical report
(2015). Technical Report SRI-CSL-15-01

25. E. SAE: Aerospace Recommended Practices ARP4754a/ed-79a- development of
civil aircraft and systems (2010)

26. Schwalbe, G., et al.: Safety argumentation for deep neural network based percep-
tion in automotive applications. In: SAFECOMP 2020 Workshops (2020)

27. Seren, C., Ezerzere, P., Hardier, G.: Model-based techniques for virtual sensing of
longitudinal flight parameters. Int. J. Appl. Math. Comput. Sci. 25, 03 (2015)

28. Singh, G., Gehr, T., Püschel, M., Vechev, M.: An abstract domain for certifying
neural networks. Proc. ACM Program. Lang. 3(POPL) (2019)

http://arxiv.org/abs/1810.04240
https://doi.org/10.1007/978-3-030-55583-2_6

48 M. Damour et al.

29. Toulmin, S.E.: The Uses of Argument. Cambridge University Press, Cambridge
(2003). Updated Edition, first published in 1958

30. Wozniak, E., Cârlan, C., Acar-Celik, E., Putzer, H.J.: a safety case pattern for sys-
tems with machine learning components. In: Casimiro, A., Ortmeier, F., Schoitsch,
E., Bitsch, F., Ferreira, P. (eds.) SAFECOMP 2020. LNCS, vol. 12235, pp. 370–382.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-55583-2 28

https://doi.org/10.1007/978-3-030-55583-2_28

Security Engineering

IT Design for Resiliency Using Extreme
Value Analysis

Szilárd Bozóki(B) and András Pataricza

Department of Measurement and Information Systems, Budapest University of
Technology and Economics, Magyar Tudósok Krt. 2, Budapest 1117, Hungary

bozoki@mit.bme.hu, pataricza.andras@vik.bme.hu

Abstract. Safety-critical systems are designed to operate millions of
hours without losing or harming life. Millions of hours enable events
with small occurrence probability to materialise. Owing to this, rare
events have to be factored when designing for millions of safe operating
hours. In this paper, we apply a statistical paradigm named Extreme
Value analysis for the modeling of the rare events and probabilistic risk
assessment. Without loss of generality, our motivation is cyber-physical-
systems where the IT infrastructure is frequently shared between func-
tionally independent tasks and the run-time platform, such as Industry
4.0 based on 5G and edge cloud computing.

As a practical example, we present our method on a case study on
a typical micro-service-based edge computing setup by measuring and
analysing the container restart times in Kubernetes. The results can be
used to asses and compare resilience mechanism design alternatives.

Keywords: Design for resiliency · Extreme value analysis · Edge
computing · Statistical modeling · Dimensioning · Kubernetes

1 Introduction

Safety-critical systems appear in many forms and shapes, but they are all
designed to minimise and prevent harming life. In this paper, we focus on IT
systems where failure could lead to serious financial consequences.

Our textbook example is an edge cloud computing IT infrastructure. Edge
computing promises to reduce end-to-end-latency by leveraging low-latency 5G
radio networking and bringing computing power closer to the consumer via geo-
graphically distributed edge computing sites. This low-latency environment sup-
ports soft/hard -real-time cyber-physical-systems (CPS), such as Industry 4.0.

This paper partially relies on a previous joint project with Ericsson. Additionally, the
research reported in this paper and carried out at the BME has been supported by
the NRDI Fund based on the charter of bolster issued by the NRDI Office under the
auspices of the Ministry for Innovation and Technology and a funding from the EU
ECSEL JU under the H2020 Framework Programme, JU grant nr. 826452 (Arrowhead
Tools project) and from the partners’ national funding authorities.

c© Springer Nature Switzerland AG 2021
I. Habli et al. (Eds.): SAFECOMP 2021, LNCS 12852, pp. 51–66, 2021.
https://doi.org/10.1007/978-3-030-83903-1_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-83903-1_4&domain=pdf
http://orcid.org/0000-0003-0052-6304
http://orcid.org/0000-0002-6516-129X
https://doi.org/10.1007/978-3-030-83903-1_4

52 S. Bozóki and A. Pataricza

Dimensioning (resource planning) will be critical to edge computing sites
because their remote nature increases operational and resource costs. Addition-
ally, compared to regular web services hosted on regular clouds, the applications
edge computing intends to serve (e.g. Industry 4.0) can have stricter timeliness
and throughput requirements. Moreover, compared to regular cloud computing
sites, edge sites are significantly smaller, which can result in increased workload
volatility, as the balancing effect of the central limit theorem is related to size.

Containerization technologies enable resource sharing between applications
via logical isolation. As a comparison, containers are similar to virtual machines,
but generally, they are more resource efficient, because a larger part of the system
is shared. However, despite of the nearly perfect logic isolation between different
functions, performance related interferences can occur like the noisy neighbor
phenomenon endangering temporal requirements.

For instance, Kubernetes (K8s) is an open-source framework for deploying,
scaling and managing containerized applications on clusters of machines. The
smallest unit in K8s is a container that encapsulates the run-able artifacts and
their configurations. Containers are bundled into pods. Pods serve as the deploy-
ment units that are deployed on machines, called nodes. In K8s, machines can
be both virtual and physical, allowing flexible hybrid setups. Supervisory control
in K8s provides various data center styled services to improve extra functional
properties, such as: load balancing, self-healing, automated scaling etc.

We focus on K8s in our examples, because technologies that can improve
efficiency are essential to the edge and K8s is a prime candidate for that.

Motivated by an edge computing site where a large variety of failure modes
must be anticipated with related resilience mechanisms, our motivating general
question is: how to select between the system-design alternatives to cover both
functional and resource sharing originating faults?

A failure is when the system cannot meet its requirements and deviates from
its specification. The duration in the failed system state is downtime, while the
duration in proper system state is uptime. We focus on three main aspects of
the failure-mitigation process: availability, downtime, and risk.

Availability is the readiness for correct service measured as:

Availability =
MTTF

MTTF + MTTR
, where (1)

MTTF = mean time to failure = the expected uptime
MTTR = mean time to repair = the expected downtime

In Kubernetes, a repair typically involves a failover with reconfiguration time.
Meanwhile, restarting a pod invalidates software state, thus might involve a time
consuming re-initialisation process.

Downtime is the timeliness aspect of restoring a system state (restoration
time): the time between fault activation and the completion of its mitigation.
For example, when a Kubernetes node fails and the related pods are migrated to

IT Design for Resiliency Using Extreme Value Analysis 53

another node, then restoration finishes with the successful re-initialisation and
restarting of the applications migrated within the pods.

Risk is defined in ISO 31000 as the “effect of uncertainty on objectives”.
Aligned with risk management, our analysis focuses on per-failure-risks (uncer-
tainty of the failure-mitigation process) over a mission duration, because real life
systems usually have availability and maximum downtime-per-failure require-
ments. This is especially true for critical CPSs with soft/hard real-time require-
ments and long mission/life times. For example, based on IEC 61508 the follow-
ing severity classes can be inferred:

1. Negligible: minor injuries or less, loss less than $10K
2. Marginal: major injuries, loss exceeding $10K but less than $200K
3. Critical: single loss of life, loss exceeding $200K but less than $1M
4. Catastrophic: multiple loss of life, loss exceeding $1M

Fig. 1. Example: severity over downtime (restoration time) for a single fault

The severity of a fault depends in many systems on the downtime, as short
interruptions are less dangerous than a longer loss of control. For our pilot appli-
cation, we assume that the severity increases with downtime for a single fault
(Fig. 1). Consequently, we focus on the maximum downtime with the most severe
consequences, and to this end we employ Extreme Value Analysis (EVA) to han-
dle rare, unusually large values manifesting in long-tailed distributions.

This paper is organized as follows: Sect. 2 presents EVA, Sect. 3 presents
risk modeling, Sect. 4 presents a case study, Sect. 5 presents an extension of the
method and the case study, and Sect. 6: conclusions.

2 Extreme Value Analysis

Critical applications need a special care of extreme values (long execution times,
peak resource utilisation etc.) as they may lead to violations of extra-functional
requirements, potentially resulting in critical operational situations.

Worst Case Execution Time (WCET) estimation is an established engineer-
ing field important in many areas, especially, soft/hard -real-time applications
with timeliness constraints. WCET has two major paradigms [9]:

1. Static Timing Analysis (STA) is essentially a white box technique calculating
execution times from component characteristics along a data-flow model of
the system. Generally, complexity makes STA difficult [12].

54 S. Bozóki and A. Pataricza

2. Measurement-Based-Timing-Analysis (MBTA) is a black box empirical
evidence-based approach, which can better handle complexity. Measurement-
Based Probabilistic Timing Analysis (MBPTA) is a variant of MBTA which
uses statistics to extract and fit a pWCET distribution as model over rep-
resentative execution time data [3,11]. EVA is dominant for pWCET esti-
mation, because its fundamentals make it suited for estimating the extreme
domain, but using pWCET in a risk context is less elaborated [8]. Given a
random variable X representing the execution time with its cumulative dis-
tribution function (cdf) FX(x) and probability density function (pdf) fX(x),
the probability of a restoration time that remains below a threshold value x:

P (X ≤ x) = FX(x) =
∫ x

−∞
fX(x)dx (2)

Meanwhile, the expected value of restoration time E(X) = MTTR.
pWCET is very effective in modeling simple systems of a sufficiently homo-

geneous behavior. However, many complex systems are multi-modal, frequently
with a highly unbalanced occurrence of the different operation modes, like “nor-
mal” operation and “extreme” operation during recovery.

Proper statistical approximation is a common issue of modeling. In case of
extreme values, the usually limited amount of “extreme data” owing to the rarity
of the extreme values is overly dominated by “normal data”. The pdfs of classical
mono-modal distributions with typically bounded standard deviations, used in
traditional pWCET, converge to zero too fast and thus suppress extremities.

The resulting high uncertainty in the domain of extreme values can lead to
underestimation, and consequently in under-dimensioned systems. For instance,
resiliency mechanisms with timeliness guarantees on downtime need faithful esti-
mates of the extremely long repair times and associated risks as well.

Extreme value analysis is a branch of statistics dealing with extremely devi-
ating values. This EVA introductory section is based on the following references:
[10,17,19]. The classic case of EVA is in hydrology targeting both analysis:
“What is the probability of an embankment surviving the floods of the next time
period (e.g. 100 years)?” and dimensioning : “How tall embankment is needed to
survive the floods of the next time-period with a given probability?”. Analo-
gously, a typical problem in an IT system is the sufficiency of slack resources for
surviving rare peak workloads.

The starting point of EVA is a series of observations, which contains a (typ-
ically unbalanced) mixture of the “usual” values from the “normal” operation
domain, and some “extreme” values from the “extreme” operating domain. EVA
aims to fit a distribution which properly describes the extreme values as well.

The core of EVA is the separation of extreme values from the normal ones.
The two main EVA algorithms are: Annual Maxima Series (AMS), a.k.a the
block maxima; and Peak Over Threshold (POT), a.k.a threshold exceedance.

POT looks for a cutting threshold between the “normal” and “extreme”
domains, and fits a Generalized Pareto Distribution (GPD) to the extremes.

IT Design for Resiliency Using Extreme Value Analysis 55

AMS searches an ordered series of data (like a time-series) for large repre-
sentative values by slicing the data set into equal length blocks, selecting only
the maximum value from each block and discarding all the other values.

AMS uses standard extreme value distributions (EVDs) to fit these selected
maxima. The three separate EVD classes are the Gumbel, Frechet, and Weibull
distributions. These standard EVDs differ by the convergence rate (speed) of
their density function’s respective tail distributions.

1. The reference rate of convergence is the exponential tailed Gumbel family
with example members: normal, gamma, log-normal, exponential.

2. The slowest is the Fréchet family with heavy-fat tails decreasing as a power
function. Example class members: Pareto, Student, Cauchy, Burr.

3. The Weibull family has the fastest tail convergencewith a finite right endpoint
(thin tail). Example class members: uniform, beta and reverse Burr.

Block-size selection for AMS and threshold selection for POT are challenging,
but there are several alternative methods available for these selections [7,20].

EVA modeling means selecting a candidate distribution function from the
set of EVDs or GPD and parametrizing it for a best fit. The notion of the max-
imum domain of attraction (MDA) helps distribution fitting. Inside an MDA it
is possible to setup convergence between a target distribution model and the dis-
tribution of observations of the maximum values of independent and identically
distributed (iid) random variables using only normalising constants.

Essentially, MDA binds the EVD class members: the EVD class members
can be different while retaining the same asymptotic tail behavior, thus giving
an additional degree of freedom for fitting the normal and extreme domains.

POT estimates the distribution of the extreme values above a threshold u.
The conditional excess distribution Fu over threshold u can be expressed as:

Fu(x) := P (X − u <= x|X > u) =
F (u + x) − F (u)

1 − F (u)
(3)

0 <= x <= xf − u

F: unknown cdf of random variable X
xf : the finite or infinite right endpoint of the underlying distribution

The conditional excess has different names in different fields: residual-life in
reliability and medical statistics, or excess-of-loss in insurance analytics.

This paper focuses on POT, because (1) it uses data more efficiently by select-
ing all the extreme value observations, (2) in engineering terms, it is comparable
to the probability of slack resources exhaustion and timing threshold violation.

POT uses the family of GPD for distribution fitting and has several tuning
parameters. The location parameter (μ) shifts the pdf along the X axis. The
scale parameter (β) controls how spread out the pdf is along the X axis. The
shape parameter (ξ) controls the behaviour of the distribution.

56 S. Bozóki and A. Pataricza

Based on the shape values (ξ), the distribution behaves the following way:

ξ

⎧⎪⎨
⎪⎩

> 0 Pareto type I distribution with tail index α = 1
ξ

= 0 exponential distribution
< 0 Pareto type II distribution on a bounded interval [0,−β

ξ]
(4)

The shape parameter has an important role in reliability engineering when
GPD describes instantaneous failure rate.

ξ

⎧⎪⎨
⎪⎩

> 0 decreasing failure rate
= 0 constant failure rate, memory-less, evergreen
< 0 increasing failure rate

(5)

Note, that by characterizing the system behavior at the extremes, the type
and shape of EVA distributions carry an important message regarding the under-
lying technology mechanisms. Owing to this, among other things, EVA could be
used for statistical failure hypothesis analysis and anomaly detection.

For the sake of completeness, the GPD has the following cdf :

G(ξ,β)(x)

⎧⎪⎨
⎪⎩

1 − (1 + ξ(x−μ)
β)

−1
ξ ξ > 0, β > 0, x >= 0

1 − exp(−(x−μ)
β) ξ = 0, β > 0, x >= 0

1 − (1 + ξ(x−μ)
β)

−1
ξ ξ < 0 < β, 0 < x <= −β

ξ

, x εR (6)

To summarize, if the maximum value of a metric is important for any reason
(e.g. catastrophic consequences for underestimation), then EVA offers a fixed set
of distributions to be fitted. If no EVD or GPD fits, then the extremity of the
system under observation is out of the modelling power of EVA.

2.1 Detecting Extremity

Traditional statistics use dispersion or deviation as a measure of the amount of
variation of a value. However, when rare values occur, they are hardly observ-
able by these metrics, as they are suppressed by the majority of normal values.
This necessitates the introduction of other statistical metrics specific to extreme
values. Here we present two metrics that can be used as indicators for extremity.
While a high indicator value implies extremity, a low indicator value provides
only a statistical hint on their absence, but not an absolute guarantee.

Kurtosis is a measure of extremity expressing the long/heavy tailedness of
a distribution. It is calculated based on the the fourth standardized moment. A
higher kurtosis means more deviations, longer and heavier tails. As a reference,
the kurtosis of a univariate normal distribution is 3, thus a kurtosis higher than 3
implies that the underlying process produces more frequent and/or more extreme
values than the normal distribution.

IT Design for Resiliency Using Extreme Value Analysis 57

Skewdness is a measure of “asymmetricity”, expressing how weight is dis-
tributed compared to the center of mass (mean). A positive skew means that
the left tail of the distribution has more mass compared to the right, resulting
in a longer/thinner right tail towards high values. As a reference, the normal
distribution has a skewdness of 0, because it is symmetric. Owing to this, a posi-
tive high skewdness implies that the underlying process produces more frequent
and/or more extreme values than the normal distribution.

3 Modeling Risk

The previous section presented how EVA can extract a statistical distribution
model based on observation data from systems manifesting occasional extremity.

The current section aims at downtime-related risk estimation. A method
that can accurately capture the characteristics of extreme values is essential
for downtime-related risk estimation, because in our focus domain of soft/hard
real-time CPSs, the failure-related costs are significantly affected by downtime.
Owing to this, the ability of EVA to properly estimate pWCET (extreme long
restoration times related to the most severe consequences) is essential.

We assume a target system with a long designated mission time during which
failures occur, and the built-in supervisory system initiates an automatic mitiga-
tion with an associated cost. The system has a total budget of restoration costs
for the mission time, and budget exhaustion means a complete system failure.

With our focus on critical systems, the cost function has to represent sev-
eral severity classes. We define the cost as a function of the restoration time
(downtime), expressing the time-dependent impacts of a failure.

Based on IT systems literature, where linear utility functions are used [1,
21], we assume for simplicity of the analysis that the cost function CF (t) is a
continuous, monotonic, non-decreasing, invertible, differentiable and integrable
function of the restoration time t. The inverse cost of failure CF−1(c) maps a
given cost to the corresponding downtime.

The probability of a failure-related cost being under a value (c) is defined, as
usual, by a cdf : PCF (C ≤ c) = FX(CF−1(c)). EVA contributes to calculating
the cost cdf through the estimation of FX(x) representing the restoration time.

3.1 Probabilistic Modeling for a Mission Duration

We assume the failures over a mission to be independent because (1) rigorous
checking of critical applications prior deployment eliminates (the majority of)
systematic failures, making random failures dominant; (2) the MTTR in such IT
systems is orders of magnitude smaller than MTTF due to automated recovery.

Note, that this last restriction is not very strict. EVA is still viable if the
number of failures is a sum of correlated failures due to a generalization of the
central limit theorem to non-independent random variables using extreme value
statistics [4]. Thus EVA tolerates some correlation when estimating the sums.

58 S. Bozóki and A. Pataricza

We define a random variable Y representing the number of failures during a
mission with cdf Fy(y) and pdf fy(y). Similar to WCET estimation, EVA can
be used for a worst case like estimation of Fy(y).

3.2 Mission Risk: The Cumulative Cost of Failures

The expected number of failures E(Y) and the related expected cumulative cost
of failures ECFT (t) for a mission time t can be estimated as:

E(Y) =
∫ ∞

−∞
yfy(y)dy = t *Failure rate = t

1
MTTF

=
t

MTTF
(7)

ECFT (t) =
t

MTTF

∫ ∞

−∞
CF (x)fX(x)dx, (8)

However, expected values alone are insufficient characteristics of a critical sys-
tem, thus the current section addresses the worst case scenario of mission failures.

A mission failure occurs if the cumulative cost of failures (CCF) exceeds
the pre-allocated mission budget (b). Mission risk is the probability of bud-
get exceedance: P (CCF > b) given (1) the distribution of failures during a
mission Fy(y), (2) the cost function CF, and (3) the distribution of the restora-
tion time FX(x) (the fitted pWCET curve from EVA). The probability of bud-
get exceedance is analogous to the aggregate claim amount in a risk-insurance
context.

Calculating the probability of budget exceedance is far from trivial. As a
consequence, we will briefly highlight some alternative methods for calculation.

(1) Pricing the Observations: If the complete series of downtime logs is available,
their cost can be calculated on an occurrence-by-occurrence basis. EVA or
any other estimator could be used to estimate the probabilistic properties
of the mission risk by analyzing the individual and cumulative costs.

(2) Simulation: if data is not directly available, but the essential components of
a system are available, such as a fitted pWCET curve output of EVA, then
the known components can be used to simulate data. After that, techniques
based on data can be used, similar to the previous point.

(3) Analytical Methods [16]: if the properties of related random variables are
known, such as a fitted pWCET curve output of EVA, then mathematical
methods can be used to calculate the probability of budget exceedance. For
discrete random variables, with known probability mass functions (pmf),
the exact pmf of the sum can be calculated using discrete convolutions. If
the pmf takes only non-negative integer values, then a power series rep-
resentation of the pmf , known as probability-generating function, could be
used, where the sum becomes a product of the generating functions. For con-
tinuous random variables, with known pdfs, the exact pdf of the sum can
be calculated using continuous convolutions. However, calculating continu-
ous convolutions is difficult, because often there is not always a clean closed

IT Design for Resiliency Using Extreme Value Analysis 59

form. For GPD, a complex formula exists for the continuous convolution
[18].

(4) Approximation: the Feller convolution theorem is applicable for the estima-
tion of the convolution of heavy/long tailed distributions [13], where the
sum of the random variables can be approximated by the value of a single
large value. This is especially applicable for CPSs, where one severe failure
can dominate multiple less severe ones.

3.3 Workflow

Our workflow has two main blocks: (1) Measurement-based EVA, and (2) risk
model and availability evaluation (Fig. 2). The Measurement-based EVA block
contains the measurements and the data analytics. Data analytics involves fitting
cdf -s, where EVA is a component that can be used for long/heavy tailed distri-
butions, but other cdf estimators can be used as well. This block is equivalent to
WCET estimation using MBPTA in case of execution time measurements, such
as restoration time. The risk model and availability evaluation block contains
Design Space Exploration (DSE) over the risk model components and the risk
calculator. The risk calculator calculates the mission risk (the cumulative cost of
failures) using any method from the previously presented ones or other methods.

Fig. 2. Workflow: measurements, analytics, risk calculation, design space exploration

Our workflow has the following phases:

1. Measurement-based EVA
(a) Acquiring representative measurement data using different measurement

configuration parameter setups (e.g. measuring restoration time).
(b) Data analytics for the extraction of statistical models, like cdfs, and the

execution of EVA (e.g. fitting the pWCET curve).
2. Risk model and availability evaluation

(a) Statistical model selection and parametrization for the risk model compo-
nents using domain knowledge. This step involves a DSE like parameter
sweep (e.g. failure distribution, MTTF, mission time).

60 S. Bozóki and A. Pataricza

(b) Risk calculation using the risk model components (e.g. MTTT, mission
time) and the cdfs from the measurements (e.g. fitted pWCET curve).

(c) Computation of other output metrics (e.g. availability)

We implemented the simulator for a single mission the following way:

1. Parametrisation of Fy(y)(the failure distribution for number of failures) with
MTTF and mission time based on Eq. (7).

2. Determination of the number of failures (NF) during the mission by drawing
a rounded random number from the parametrised Fy(y) for the mission.

3. Determination of the downtime of each failure by drawing a random number
from the empirical FX(x)(downtime, restoration time) for each failure.

4. Replacement of the downtime of each failure that was above the EVA thresh-
old with a new random number drawn from the previously fitted GPD (EVA
fitted FX(x)). This step is needed because GPD models the conditional excess
distribution: Fu(x) := P (X −u <= x|X > u). Thus, this is the key to proper
long tail modeling, because by replacing the over the threshold values with
EVA values, we essentially eliminate the potential under estimation of the
empirical distribution. The empirical distribution is only needed to ensure
the ratio of over the threshold and under the threshold values.

5. Calculation of the cost of downtime for each failure using the cost functions.
6. Calculation of the mission cost by summing the cost of each failure.

Note that WCET only serves as an example in the presented workflow,
because any other metric could be used, for example the peak (worst case)
workload from a dimensioning (resource planning)/capacity design context [6].

4 Case Study

The subject of the case study was a typical element of the edge: Kubernetes.
We selected model input parameters for the DSE like parameter sweep to be
reasonable within the context of soft/hard-real-time CPSs running on the edge.

For calculating the mission risk we used simulations, as described before,
because other methods were difficult to implement or computationally complex.

We used R for data analytics and simulation. For EVA POT threshold selec-
tion we used the parameter stability plot function “gpd.fitrange” [14], and mean
residual life plot function “mrlplot” [15]. For fitting the GPD, we used maxi-
mum likelihood estimation implemented in “fevd” [15]. For validating the fitted
model, we used QQ plot, empirical and modeled density plot, and goodness of
fit tests (GOF) with significance level 0.05 implemented in “gpdSeqTests” [2].

4.1 Measurement-Based Extreme Value Analysis

We used official Kubernetes over a Dell PowerEdge R510 as experimental plat-
form. The configuration under evaluation contained two machines: (1) an appli-
cation emulator running a synthetic benchmark of parametrizable utilization

IT Design for Resiliency Using Extreme Value Analysis 61

for its different resources (2) the orchestrator performing supervisory control,
instrumentation and logging of the measurement campaigns, and controlling
fault mitigation. The later one incorporated a simple script executing software
implemented fault injection (SWIFI) via the ‘‘docker kill’’ command.

We defined downtime as the time between fault injection and container restart
completion. Due to our focus on the fundamental mitigation services of the infras-
tructure, our definition excludes application dependent initialisation.

In a previous experiment we focused on executing an MBPTA based WCET
estimation using EVA on the same K8s setup without any significant workload
[5]. Surprisingly, we found in this simplest case the presence of container restart
time extremity in a nearly idle system. Moreover, EVA proved to be a more
robust estimator to the extreme values than a näıve non-EVA estimator.

In the current series of fault injection campaigns, we conducted measure-
ments with different levels of resource utilization to investigate their effects. A
total of 12 different (CPU [%], Disk IO [%]) background utilisation pairs were
used in the different measurement campaigns: (0,0), (50,0), (80,0), (95,0), (0,5),
(50,5), (80,5), (95,5), (0,40), (50,40), (80,40), (95,40); the pairs are expressed in
percentage. Each measurement campaign had 1000 measurements. Based on the
data, we created 12 separate system characteristics and pWCET curves.

Table 1. Workload based container restart time statistics with GPD goodness of fit

Configuration Container restart time POT GOF

CPU[%] DiskIO[%] Min[s] Mean[s] Max[s] Skew. Kurt. Threshold Pvalue

0 0 1.9 2.9 3.9 −0.5 4.7 3.08 0.93

0 5 2.7 4.0 5.9 0.3 3.0 5.38 0.64

0 40 3.8 13.6 30.4 1.2 4.5 20.80 0.93

50 0 2.2 3.1 4.0 −0.3 3.8 3.48 0.07

50 5 2.9 4.3 6.1 0.2 2.9 5.15 0.79

50 40 4.3 14.0 32.1 1.1 5.1 12.30 0.43

80 0 2.3 3.3 4.3 0.0 2.5 3.75 0.57

80 5 3.3 4.8 6.0 −0.2 2.8 5.18 0.93

80 40 4.6 14.2 34.2 1.3 6.1 15.55 0.21

95 0 2.7 3.9 5.1 0.3 2.8 4.10 0.64

95 5 3.4 5.1 6.8 0.1 2.8 5.55 0.93

95 40 4.6 15.0 35.4 1.5 6.8 18.90 0.29

Based on measurements (Table 1), the container restart process is signifi-
cantly affected by background load, both in the normal (mean) and the extreme
domains (maximum). The restart time is more sensitive to DiskIO than CPU
load. Regarding restart time Max, Kurtosis and Skewdness, it can be concluded
that extremity is present in the system and it increases with the workload.

62 S. Bozóki and A. Pataricza

A practical finding: for a fast container restart, the DiskIO has to be kept low,
e.g. under 5%, implying a DiskIO overhead factor of 19×. However, avoiding the
critical impact of extreme values by such a pure dimensioning may kill a main
advantage of edge computing: a good utilization via resource sharing.

4.2 Risk Model and Availability Evaluation

We selected 107 s (115.74 days) as MTTF to represent thoroughly tested compo-
nents producing only a few failures per year on average. Additionally, we chose
a smaller MTTF value of 105 s (1.1574 days) to represent a serial system of 100
components, which is realistic for a microservice architecture based edge cloud-
native services with dozens of containers. Note that selecting a particular system
architecture does not confine the generality of the approach.

For modeling the failure distribution over a mission, we used the exponential
distribution to represent a memory-less system with a constant failure rate.

For domain-wise modeling of the restart times, we used the empirical distri-
bution for the “normal” domain, while using EVA-GPD for the “extreme”.

We ran 100000 simulations per configuration for the mission cost calculation.
For the cost of a single restoration, we defined hypothetical time intervals

with increasing associated fix costs to represent 3 different levels of severity.
Meanwhile, we considered restart times under 3 s free.

For mission times, we used years as units, to represent longer infrastructure
investment lifetimes, typical for an industrial context.

We also defined seven hypothetical mission budget values.
To summarize, for each of the 12 measurement configurations, we explored

2 * 3 * 7 * 3 model variants, resulting in a total of 12 * 2 * 3 * 7 * 3 =1512 evalua-
tions:

– 12 measurement configurations regarding (CPU[%] & DiskIO[%]) pairs
– 2 MTTFs [seconds]: 100000.0 (1.1574 days), 10000000.0 (115.74 days)
– 3 mission times [years]: 1, 2, 4
– 7 mission budgets [USD]: 10000, 20000, 30000, 40000, 80000, 160000, 320000
– 3 cost functions:

• soft (0–3 s: 0 USD), (3–6 s: 100 USD), (6–12 s: 1000 USD), (12–24 s:
10000 USD), (24- s: 100000 USD)

• hard (0–3 s: 0 USD), (3–6 s: 1000 USD), (6–12 s: 10000 USD), (12–24 s:
100000 USD), (24- s: 1000000 USD)

• extra hard (0–3 s: 0 USD), (3–6 s: 10000 USD), (6–12 s: 100000 USD),
(12–24 s: 1000000 USD), (24- s: 10000000 USD)

Looking at the availability and the maximum simulated mission costs (Fig. 3),
it can be concluded that as availability decreases, the maximum mission cost
increases in a superlinear way due to increasing cost penalty on long downtimes.
This effect is further amplified if severe cost functions harshly penalize the longer
restart times, which are common in critical CPS-s.

IT Design for Resiliency Using Extreme Value Analysis 63

Fig. 3. Max. mission cost over availability and long tailedness of restoration time mea-
sured by kurtosis for different cost functions and MTTFs

However, the mission risk can be significantly different for the same level of
availability, especially for lower availability or longer mission times. This implies
that as the “normal” domain dominates availability through the MTTR, the
“extreme” domain dominates the mission risk through the cost of very large
restoration times. This emphasises the necessity to asses the “extreme” domain.

Looking at the kurtosis of restoration times and the maximum simulated mis-
sion costs (Fig. 3), a similar conclusion can be drawn: extremity in the restoration
time radically increases risk, indicated by very large maximum simulated mission
costs; making restart time kurtosis a viable indicator for mission risk.

5 Extension to Cold-Backup

This section presents how a cold backup redundancy scheme can be assessed
using the the proposed workflow. When a restart is initiated a spare container is
also started and the faster to restart would become the active container. In K8s,
it can be implemented as a spare Docker container laying dormant on a node.

We modified the simulator accordingly: we calculate two simulated downtime
values for each failure and select the smaller value (step 3 and 4 executed twice).

Looking at the maximum mission costs of the cold backup results (Fig. 4),
it can be concluded that the maximum simulated mission costs for cold backup
were visibly smaller. By comparing the distributions of max. mission cost (Fig. 5),
they appear similar. For MTTF 105 a p-value of 0.064 for Kolmogorov-Smirnov
(KS) test indicates they are the same. Meanwhile for MTTF 107 a KS p-value of
0.009 indicates otherwise. This means that the cold backup had a larger impact

64 S. Bozóki and A. Pataricza

Fig. 4. Cold backup: maximum mission over other parameters

Fig. 5. QQ plots: comparing distributions of Max. mission costs

when the number of failures was small. This is expected, as the probability of
extreme long restoration changes from P (X ≥ x) to P (X ≥ x)2 for cold backup.

Based on the results, it can be concluded that a cold backup redundancy
is a viable risk mitigation strategy with effectiveness depending on the ratio of
normal restoration costs versus extremes within the mission cost.

6 Conclusion

We devised a method that augments WCET with risk and uses DSE. In the
current evaluation, we compared dimensioning and cold backup alternatives. The
evaluation methodology is universal and adaptable, because it can accommodate
a variety of cost functions and random variables.

IT Design for Resiliency Using Extreme Value Analysis 65

Based on the results, we found that in K8s (1) container restart times extrem-
ity increases risk, (2) workload increases container restart extremity, (3) harsher
cost functions increase risk, (4) dimensioning is costly for risk mitigation, and
(5) cold backup redundancy is viable for risk mitigation.

References

1. Ardagna, D., Trubian, M., Zhang, L.: SLA based resource allocation policies in
autonomic environments. J. Parallel Distrib. Comput. 67(3), 259–270 (2007)

2. Bader, B., Yan, J.: eva: Extreme Value Analysis with Goodness-of-Fit Testing
(2020)

3. Bernat, G., Colin, A., Petters, S.M.: WCET analysis of probabilistic hard real-time
systems. In: 23rd IEEE Real-Time Systems Symposium, RTSS 2002, pp. 279–288
(2002)

4. Bertin, E., Clusel, M.: Generalized extreme value statistics and sum of correlated
variables. J. Phys. A Math. Gen. 39(24), 7607–7619 (2006)

5. Bozóki, S., et al.: Application of extreme value analysis for characterizing the
execution time of resilience supporting mechanisms in kubernetes. In: Bernardi,
S., et al. (eds.) EDCC 2020. CCIS, vol. 1279, pp. 185–199. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-58462-7 15

6. Bozoki, S., Pataricza, A.: Extreme value analysis for capacity design. Int. J. Cloud
Comput. 7(3–4), 204–225 (2018)

7. Caeiro, F., Gomes, M.: Threshold Selection in Extreme Value Analysis: Methods
and Applications, pp. 69–86. Taylor & Francis (2015)

8. Castillo, E., Hadi, A., Balakrishnan, N., Sarabia, J.: Extreme Value and Related
Models with Applications in Engineering and Science. Wiley, New York, USA
(2004)

9. Cazorla, F.J., Kosmidis, L., Mezzetti, E., Hernandez, C., Abella, J., Vardanega,
T.: Probabilistic worst-case timing analysis: taxonomy and comprehensive survey.
ACM Comput. Surv. 52(1), 1–35 (2019)

10. Cizek, P., Härdle, W.K., Weron, R.: Statistical Tools for Finance and Insurance.
Springer, Berlin, Heidelberg (2011)

11. Cucu-Grosjean, L., et al.: Measurement-based probabilistic timing analysis for
multi-path programs. In: 2012 24th Euromicro Conference on Real-Time Systems,
pp. 91–101 (2012)

12. Cullmann, C., et al.: Predictability considerations in the design of multi-core
embedded systems. In: Proceedings of Embedded Real Time Software and Sys-
tems, pp. 36–42 (2010)

13. Feller, W.: An introduction to probability theory and its applications. John Wiley
& Sons, New York, USA (2008)

14. Gilleland, E., Heffernan, J.E., Stephenson, A.G.: ismev: An Introduction to Sta-
tistical Modeling of Extreme Values (2018)

15. Gilleland, E., Katz, R.W.: extRemes 2.0: an extreme value analysis package in R.
J. Stat. Softw 72(8), 1–39 (2016)

16. Grinstead, C.M., Snell, J.L.: Introduction to probability. Am. Math. Soc. (2012)
17. McNeil, A.J., Frey, R., Embrechts, P.: Quantitative Risk Management: Concepts

Techniques and Tools - Revised Edition, Revised edn. Princeton University Press,
New Jersey, USA (2015)

https://doi.org/10.1007/978-3-030-58462-7_15

66 S. Bozóki and A. Pataricza

18. Nadarajah, S., Zhang, Y., Pogány, T.K.: On sums of independent generalized
pareto random variables with applications to insurance and cat bonds. Probab.
Eng. Inf. Sci. 32(2), 296–305 (2018)

19. Rakoncai, P.: On Modeling and Prediction of Multivariate Extremes. Ph.D. Thesis,
Mathematical Statistics Centre for Mathematical Sciences, Lund University (2009)

20. Scarrott, C., MacDonald, A.: A review of extreme value threshold estimation and
uncertainty quantification. Revstat Stat. J. 10, 33–60 (2012)

21. Zhang, L., Ardagna, D.: SLA based profit optimization in autonomic computing
systems. In: Proceedings of the 2nd International Conference on Service Oriented
Computing, pp. 173–182 (2004)

Evaluation Framework for Performance
Limitation of Autonomous Systems

Under Sensor Attack

Koichi Shimizu1(B), Daisuke Suzuki1,4, Ryo Muramatsu1, Hisashi Mori1,
Tomoyuki Nagatsuka2, and Tsutomu Matsumoto3,4

1 Mitsubishi Electric, Kanagawa, Japan
shimizu.koichi@ea.mitsubishielectric.co.jp

2 Mitsubishi Electric Engineering, Kanagawa, Japan
3 Yokohama National University, Kanagawa, Japan

4 National Institute of Advanced Industrial Science and Technology, Tokyo, Japan

Abstract. Autonomous systems such as self-driving cars rely on sen-
sors to perceive the surrounding world. Measures must be taken against
attacks on sensors, which have been a hot topic in the last few years. For
that goal one must first evaluate how sensor attacks affect the system,
i.e. which part or whole of the system will fail if some of the built-in sen-
sors are compromised, or will keep safe, etc. Among the relevant safety
standards, ISO/PAS 21448 addresses the safety of road vehicles taking
into account the performance limitations of sensors, but leaves security
aspects out of scope. On the other hand, ISO/SAE 21434 addresses the
security perspective during the development process of vehicular sys-
tems, but not specific threats such as sensor attacks. As a result the
safety of autonomous systems under sensor attack is yet to be addressed.
In this paper we propose a framework that combines safety analysis for
scenario identification, and scenario-based simulation with sensor attack
models embedded. Given an autonomous system model, we identify haz-
ard scenarios caused by sensor attacks, and evaluate the performance
limitations in the scenarios. We report on a prototype simulator for
autonomous vehicles with radar, cameras and LiDAR along with attack
models against the sensors. Our experiments show that our framework
can evaluate how the system safety changes as parameters of the attacks
and the sensors vary.

Keywords: Autonomous systems · Safety · Security · Sensor attack ·
SOTIF · Performance limitation · STAMP/STPA

1 Introduction

Autonomous systems such as autonomous vehicles rely on various sensors to
perceive the surrounding world and decide what to do next. There have been a
lot of reports on attacks against sensors, e.g. magnetic wheel speed sensors [1],

c© Springer Nature Switzerland AG 2021
I. Habli et al. (Eds.): SAFECOMP 2021, LNCS 12852, pp. 67–81, 2021.
https://doi.org/10.1007/978-3-030-83903-1_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-83903-1_5&domain=pdf
https://doi.org/10.1007/978-3-030-83903-1_5

68 K. Shimizu et al.

gyro sensors [2], FMCW radar [3,4], and LiDAR [5,6], and against sensor-
based autonomous systems [7]. The safety of autonomous systems against sen-
sor attacks must therefore be assured. As an illustrative example, we use an
AEB-equipped car with a radar, a camera and a LiDAR (Fig. 1) throughout
the paper. AEB (Autonomous Emergency Braking) uses the sensors to detect
objects around the car, and measure the distance to and relative speed of the
nearest one in front. If it detects an impending crash, it will dispatch a warning
or apply the brakes. There is high risk of serious accidents if the sensors are
compromised.

Fig. 1. AEB equipped-car with a radar, a camera and a LiDAR

To assure the safety of autonomous systems, scenario-based simulation [8,9] is
widely accepted as a key tool because real-world testing for hundreds of millions
of miles [10] is unrealistic. One of the issues of scenario-based simulations is how
to select a set of relevant scenarios from the vast space of scenarios consisting of
many parameters. In addition, there has been few autonomous system simulator
that embeds sensor attack models as far as we know.

In this paper we propose a framework to evaluate performance limitations of
autonomous systems in the light of SOTIF. It combines STAMP/STPA-based
safety analysis to identify sensor attack scenarios to be evaluated, and sensor
attack simulation to evaluate the effect of sensor attacks in the scenarios. We
elaborate on safety analysis steps and results for AEB-equipped cars, and provide
a prototype of a sensor attack simulator and examples of evaluation using it.

Contributions. The main contributions of this paper are threefold:

– Evaluation framework of performance limitations that combines safety anal-
ysis and sensor attack simulation (Sect. 2).

– Method of attack scenario identification based on STAMP/STPA safety anal-
ysis together with concrete results for AEB (Sect. 3).

– Autonomous system simulator with sensor attack models embedded, and a
prototype for AEB together with evaluation examples (Sect. 4).

Evaluation Framework for Performance Limitation under Sensor Attack 69

2 Evaluation Framework Based on SOTIF Process

2.1 Relevant Standards and SOTIF

We mention two safety standards and one security standard in relation to our
problem. ISO 26262 [11] and ISO/PAS 21448 [12] are safety standards for road
vehicles. The former addresses functional safety as the absence of unreason-
able risks caused by failures; The latter complements functional safety, address-
ing SOTIF (Safety Of The Intended Functionality) as the absence of unrea-
sonable risks due to intended functionality or performance limitation. SOTIF
takes into account sensors that advanced functionalities these days rely on.
ISO/SAE 21434 [13] addresses the security aspects of road vehicles. It focuses on
security risk management during the development process, and specific attacks
are out of scope.

The notion of performance limitation in SOTIF with sensors in mind matches
the purpose of evaluating how sensor attacks affect the system, e.g. which part or
whole of the system will fail, or will keep safe, if some of the built-in sensors are
compromised. Figure 2 gives an overview of the improvement process of SOTIF.
Figure 2 depicts a cycle process in which Functional and System Specification
is the starting point, hazard scenarios are identified for it, and functions are
modified to mitigate the hazard factors. Performance requirements for sensors
are thereby defined at the design stage. On the other hand, model-based design
is widely accepted for autonomous systems such as vehicles and robots. It helps
evaluate and improve the specification in a continuous manner from the early
stages of development by means of a simulatable specification (called a model)
throughout development. That suits the cycle process in Fig. 2. We therefore
adopt a model-based design framework.

Fig. 2. SOTIF improvement process

2.2 Evaluation Framework

We present an evaluation framework for performance limitation under sensor
attacks (Fig. 3). Aside from the framework itself, it is novel in two respects.

70 K. Shimizu et al.

Fig. 3. Evaluation framework for performance limitation under sensor attacks

Firstly it identifies sensor attack scenarios by combining STAMP/STPA-based
safety analysis with the knowledge of sensor attacks (Sect. 3). Secondly it embeds
sensor attack models in a target autonomous system model to realize sensor
attack simulation at system level. It is thereby able to evaluate the performance
limitations of the target autonomous system in the attack scenarios (Sect. 4).

3 Identifying Attack Scenarios Using STAMP/STPA

3.1 STAMP/STPA Safety Analysis

Safety analysis is a tool to identify scenarios that can lead to hazards. Exam-
ples of safety analysis methods include FTA (Fault Tree Analysis) [14], FMEA
(Failure Mode and Effect Analysis) [15], and STAMP/STPA [16]. While FTA
and FMEA focus on hazards caused by component failures, STAMP/STPA1

takes the view that hazards can also occur as a result of unintended interactions
between components even if none of them has any failure. The view is compatible
with SOTIF, and we therefore use STAMP/STPA.

3.2 Analysis Steps and Results

For the input Autonomous System Model in Fig. 3, we use the prototype of
an AEB-equipped car (Sect. 4), from which we extract a control and feedback
structure to be analyzed. Figure 4 shows the extracted structure that consists of
the fewest components possible for brevity, e.g. sensors are not separated from
AEB ECU. The labels at the bottom indicate the correspondence to Fig. 5.
1 STAMP (Systems Theoretic Accident Model and Processes) is an accident causality

model based on system theory, which underpins the analysis method STPA (System-
Theoretic Process Analysis).

Evaluation Framework for Performance Limitation under Sensor Attack 71

Fig. 4. Control and feedback structure of the target AEB-equipped vehicle

Safety Constraints. We first define safety constraints as the inverse of hazards
that can lead to losses (e.g. injury, a loss of life, etc.). For the current example,
we define five safety constraints shown in Table 1. We input them as evaluation
criteria for performance limitation (see Fig. 5).

Table 1. Safety constraints

Unsafe Control Actions. The next step is to identify UCAs (Unsafe Control
Actions) that can break the safety constraints. This is done in a systematic man-
ner according to how control actions are applied: 1) providing, 2) not providing,
3) too early, too late, and 4) stopped too soon, applied too long. For the current
example, we identify 21 UCAs, 14 of which are relevant to safety. For lack of
space, we show only four UCAs in Table 2.

Table 2. Examples of identified UCAs

72 K. Shimizu et al.

Hazard Scenarios. The final step of STAMP/STPA is to identify hazard sce-
narios for each of the UCAs. We identify 15 scenarios for the current example.
Due to lack of space, we show only one of the scenarios together with example
attack scenarios derived from it in Table 3.

Attack Scenarios. By linking sensor attacks to the causes of the hazard sce-
narios identified by STAMP/STPA, we create 102 attack scenarios in total for
the current example. Table. 3 shows example scenarios that causes the “Not
providing” UCA in Table 2, which can then break SC1.

Table 3. Examples of identified attack scenarios

As to sensor attack types, we gather a list from existing works to cover the
attack goals: interference that prevents object detection, and deception that
modifies detection results. We then arrange them into 11 types according to the
detailed methods or effects (Table 4). As of now, eight out of 11 (indicated by
bullets in Table 4) are modelled for simulation while all of them are supported
in scenario creation.

Table 4. List of sensor attack types

Target Interference Deception

Radar •Denial Jamming [7,17] •Range deception [3,7,17–19],
•Velocity deception [17], False target
jamming

Camera •Adversarial patch against single/all
object detection [20], Road marking
modification

•Projection of false pedestrian or
vehicle

LiDAR •Light absorption [5],
•Light injection [6],

•Spoofing by light injection [5]

https://contextualrobustness.github.io

Evaluation Framework for Performance Limitation under Sensor Attack 73

4 Evaluating Performance Limitations Under Sensor
Attacks

Fig. 5. Top-level structure of our sensor attack simulator

We present a sensor attack simulator to realize the right side of the framework
in Fig. 3. The top-level structure is shown in Fig. 5. Given the attack scenarios
and safety constraints, it evaluates the performance limitations of the target
autonomous system by testing if the system satisfies the safety constraints in the
attack scenarios. We choose MATLAB [21]/Simulink [22] as a platform widely
used in model-based design together with Unreal Engine [23] to implement the
external environment and its boundaries with sensors and attacks.

We build a prototype of an AEB-equipped car with a radar, a camera and a
LiDAR based on a mix of two example models supplied by MathWorks, one for
lane keeping assistance [24] and the other for AEB [25], together with necessary
additions and modifications such as a LiDAR [26], object detection by YOLOv2
(You Only Look Once) [27], and fine-grained simulation of radar [28]. Sensor
attack models are our own.

4.1 Test Model for Verification of Safety Constraints

The simulator must check if the target system satisfies the safety constraints,
and if not, stop running. There are largely two methods for such evaluation:
conventional testing and formal verification. They have their merits and demer-
its, and do not exclude but complement each other [29,30]. For example, formal
verification can give a proof for the verification result by checking all possible
states, while it can also lead to state explosion as the complexity of a system

74 K. Shimizu et al.

increases. One usage is therefore to formally verify the safety-critical part of the
system and to test the system as a whole in a conventional way. In this paper
we use a conventional testing method with the focus on evaluating the safety of
the autonomous system as a whole.

For the current example of AEB, the safety constraint SC1 states that the
AEB control is correct, which can be evaluated as follows: The target model
maintains the positions and velocities of objects measured by sensors, and the
AEB control calculated from them. It also maintains the true values of positions
and velocities, and we can use them to calculate the true AEB control. By
comparing the two AEB controls, we can evaluate if SC1 is met.

When we add a model for the evaluation to the simulator, it is desirable
to keep the target system model as unchanged as possible. Simulink Test [31]
has a mechanism called a test harness to separate the model for testing from
the model under test. Figure 6 shows the resultant test model for SC1 in our
prototype. Implemented as a test harness, the test model refers to and copies
from the target model, but never changes it.

Fig. 6. Prototype model for testing the safety constraint SC1

4.2 Sensor Attack Simulator

The main body of the sensor attack simulator consists of seven models described
below. All but the Attack model are assumed to be created through the devel-
opment of the target system.

Plant, Controller, State Estimation. Those are the core of a control sys-
tem. Our prototype is built around the vehicle dynamics (Plant), AEB con-
troller (Controller and State Estimation) and other peripheral models provided
by MathWorks.

Sensor, Perception & Decision, Attack. Those are to be designed con-
sidering what types of sensor attacks we want to evaluate. This paper aims to

Evaluation Framework for Performance Limitation under Sensor Attack 75

evaluate attacks on sensors on their own, on sensor fusion, and on signal pro-
cessing. Therefore, the Sensor model is designed to include sensor fusion as well
as separate sensors. Sensor fusion is further divided into two stages: detection
concatenation and multi-object tracking. The Perception & Decision model is
designed to include object detection algorithms CFAR (Constant False Alarm
Rate) for the radar and YOLOv2 [32] for the camera. The Attack model consid-
ers those algorithms as well as the sensors on their own. The resulting models
of Sensor, Perception & Decision and Attack are shown in Fig. 7.

Fig. 7. Prototype models of sensor, perception & decision and attack

Our collection of attack models are as summarized in Table 4. We show exam-
ples of sensor attack simulation supported by the prototype in Fig. 8.

Fig. 8. Examples of sensor attack simulation supported by the prototype

External Environment. It models the external environment surrounding the
target system, e.g. nearby objects, how they are perceived by the sensors, and
the positional relationship between the target system and the other objects. It
also defines the temporal development of the target system and the environment
as operational scenarios.

76 K. Shimizu et al.

Our prototype models the external environment that complies with the eval-
uation criteria of AEB in JNCAP [33] and Euro NCAP [34], and supports the
complete set of operational scenarios: largely, five scenarios of car detection and
11 scenarios of pedestrian and cyclist detection, and a total of 278 scenarios with
parameter variations. As an example, Fig. 9 shows the CPNO (Car-to-Pedestrian
Nearside Obstructed) scenario in JNCAP, where the ego vehicle travels forward
towards a pedestrian crossing its path from the nearside who is out of sight at
first due to stationary vehicles in between.

Fig. 9. CPNO scenario and an example of denial jamming in it

Figure 9 also shows an example attack scenario of denial jamming, which is
taken from Table. 3 and embedded in CPNO by specifying the attack settings
as follows: denial jamming is applied from a fixed point in front of the vehicle
with the attacker’s initial position and signal strength being variable.

4.3 Evaluation Examples Using the Prototype

We show three examples of evaluation using the prototype: one about attack
parameters, and two about sensor design parameters. We use the attack scenario
of denial jamming in CPNO (Fig. 9). For the sake of brevity, the simulation stops
when the car crashes into the pedestrian instead of when the safety constraints
such as SC1 are not met.

Jamming Attack on the Radar. We evaluate the effect of jamming attack
on the radar with respect to two parameters: the attacker’s position and signal
strength. The other parameters are fixed: the velocity of the ego vehicle is 25
[km/h], and the signal strength of the ego vehicle, 10 [dBm]. The camera and
the LiDAR are turned off in this evaluation.

Figure 10 shows the results. Each element of the matrix denotes whether the
car crashes into the pedestrian (Crash) or not (Safe). The result is as expected:
the stronger the attacker’s signal is, or the nearer the attacker’s position is, the
more likely the attack is to succeed. That proves the validity of the simulation.

Evaluation Framework for Performance Limitation under Sensor Attack 77

Fig. 10. Evaluation result with respect to radar jamming parameters. The camera and
the LiDAR are turned off.

Detection Concatenation. As an example of sensor fusion, we evaluate the
effect of concatenation of the radar and camera. The attacker’s position and
signal strength are set to 30 [m] and 10 [dBm], and all the other conditions are
the same. The LiDAR is turned off.

Figure 11 shows the results. The leftmost part shows object detection by the
radar, and the central part, footage of the front camera of the ego vehicle, in
which the upper half is in the case of the radar alone, and the lower half, the
concatenation of the radar and camera. Due to the jamming, it is only when the
distance is close to 0 [m] that the radar detects the person in front; It is too late
to avoid a crash with the radar alone, while the car is safely stopped with the
concatenation thanks to detection by the camera. The comparison proves the
effectiveness of the concatenation.

Fig. 11. Evaluation result for detection concatenation. The LiDAR is turned off.

78 K. Shimizu et al.

Multi-Object Tracking. As a second example of sensor fusion, we evaluate
the multi-object tracking algorithm. Simply put, the algorithm tracks objects
by maintaining a list of object detections by multiple sensors. To exclude the
effect of misdetections, the algorithm confirms the detection if the same object
is detected at least M times out of N sensing periods. Therefore, the greater the
ratio M/N is, the more accurate the detection becomes. If we increase N with a
fixed ratio M/N, we expect to eliminate the effect of variance and further improve
the accuracy, while the algorithm can become more susceptible to attacks due
to the increased processing time.

We evaluate the effect of the design parameters M and N in the same attack
settings as in Fig. 10. Figure 12 shows the evaluation results for (M, N) = (2,
2) and (9, 12). Overall, (M, N) = (2, 2) is safer than (M, N) = (9, 12) because
there are fewer crashes in the former case. However, there are also cases where the
brake is applied too soon, which can lead to an uncomfortable driving experience.
We can evaluate this kind of trade-off with our simulator.

Fig. 12. Evaluation results for multi-object tracking with different sets of parameters

5 Related Work

In terms of sensor attack simulation at system level, the most similar work to
our own is Cao et al. [35], which evaluates the impact of sensor attack on LiDAR
at the driving decision level. However, the simulator used in their work does not
simulate a vehicle dynamics in a physical world unlike the model-based design
environment in our work.

Coverage by scenario-based simulation for autonomous systems has been
extensively studied [8,9,36–39]. Coverage maximizing techniques include auto-
mated generation of test scenarios by random numbers [36,37] and by search
algorithms [38]. Abdessalem et al. [38] consider critical test scenarios leading
to failures, which looks suitable for performance limitation evaluation. We can
also use some prior knowledge about specific systems like AEB to narrow the

Evaluation Framework for Performance Limitation under Sensor Attack 79

space of scenarios. Weber et al. [8] define scenarios in a systematic manner with
six layers such as road, moving objects and environmental conditions. Our work
focuses on the assessment scenarios of AEB in JNCAP and Euro NCAP.

There have been works on safety analysis of autonomous systems using
STAMP/STPA [40–42]. While we use conventional testing in this paper, for-
mal methods are also promising for verifying the safety constraints [40,41].

6 Conclusion

We present a framework to evaluate performance limitations of autonomous
systems under sensor attacks. Using a prototype simulator of an AEB-equipped
car with a radar, a camera and a LiDAR, we show that the framework can
identify sensor attack scenarios to be assessed, and evaluate how attacks on the
sensors affect the system safety.

Interface between different models and simulators is a key issue in evaluation
of autonomous systems, especially when it comes to highly autonomous vehicles
becoming more and more complex. We therefore leave it as future work to mod-
ularize the sensor attack models, e.g. as FMU (Functional Mock-up Unit), to
be used in combination with other simulators. In addition to self-driving cars,
there are a diverse range of critical devices and systems that depend on measure-
ment, such as robotic systems, medical devices and control systems. We therefore
want to extend our framework to address attacks and countermeasures about
measurement interfaces in general: what is called instrumentation security .

Acknowledgment. This work is partially based on results obtained from the project
(JPNP16007) commissioned by the New Energy and Industrial Technology Develop-
ment Organization (NEDO).

References

1. Shoukry, Y., Martin, P., Tabuada, P., Srivastava, M.: Non-invasive spoofing attacks
for anti-lock braking systems. In: Bertoni, G., Coron, J.-S. (eds.) CHES 2013.
LNCS, vol. 8086, pp. 55–72. Springer, Heidelberg (2013). https://doi.org/10.1007/
978-3-642-40349-1 4

2. Son, Y., et al.: Rocking drones with intentional sound noise on gyroscopic sensors.
In: 24th USENIX Security Symposium (USENIX Security 2015), pp. 881–896.
USENIX Association (2015)

3. Chauhan, R.: A platform for false data injection in frequency modulated con-
tinuous wave radar all graduate theses and dissertations, 3964 (2014). https://
digitalcommons.usu.edu/etd/3964

4. Miura, N., Machida, T., Matsuda, K., Nagata, M., Nashimoto, S., Suzuki, D.: A
low-cost replica-based distance-spoofing attack on mmwave FMCW radar. In: Pro-
ceedings of the 3rd ACM Workshop on Attacks and Solutions in Hardware Secu-
rity Workshop (ASHES 2019), pp. 95–100. Association for Computing Machinery
(2019)

http://arxiv.org/abs/1905.04223

80 K. Shimizu et al.

5. Shin, H., Kim, D., Kwon, Y., Kim, Y.: Illusion and dazzle: adversarial optical chan-
nel exploits against lidars for automotive applications. In: Fischer, W., Homma, N.
(eds.) CHES 2017. LNCS, vol. 10529, pp. 445–467. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-66787-4 22

6. Petit, J., Stottelaar, B., Feiri, M., Kargl, F.: Remote attacks on automated
vehicles sensors: experiments on camera and lidar. In: Black Hat Europe (2015).
https://www.blackhat.com/docs/eu-15/materials/eu-15-Petit-Self-Driving-And-
Connected-Cars-Fooling-Sensors-And-Tracking-Drivers-wp1.pdf

7. Liu, J., Yan, C., Wenyuan, X.: Can you trust autonomous vehicles: contactless
attacks against sensors of self-driving vehicles. DEF CON (2016). https://doi.org/
10.5446/36252

8. Weber, H., et al.: A framework for definition of logical scenarios for safety
assurance of automated driving. Traff. Injury Prev. 20(sup1), S65–S70 (2019).
PMID:31381437

9. Levermore, T., Peters, A.: Test framework and key challenges for virtual verifica-
tion of automated vehicles: the VeriCAV project. In: 39th International Conference
on Computer Safety, Reliability and Security (SAFECOMP), Position Paper, Lis-
bon, Portugal, September 2020

10. Kalra, N., Paddock, S.M.: Driving to Safety: How Many Miles of Driving Would It
Take to Demonstrate Autonomous Vehicle Reliability? RAND Corporation (2016)

11. ISO: Road vehicles - functional safety. Standard ISO 26262:2018 (2018)
12. ISO: Road vehicles - safety of the intended functionality. Standard ISO/PAS

21448:2019(E) (2019)
13. ISO: Road vehicles - cybersecurity engineering. Standard ISO/SAE DIS

21434:2020(E) (2020)
14. IEC: Fault tree analysis (FTA). Standard IEC 61025:2006 (2006)
15. IEC: Failure modes and effects analysis (FMEA and FMECA). Standard IEC

60812:2018 (2018)
16. Leveson, N., Thomas, J.: STPA handbook. http://psas.scripts.mit.edu/home/get

file.php?name=STPA handbook.pdf (2018)
17. Tanis, S.: Automotive radar sensors and congested radio spectrum: an urban elec-

tronic battlefield? In: Analog Dialogue, vol. 52–57 (2018)
18. Nashimoto, S., Suzuki, D., Miura, N., Machida, T., Matsuda, K., Nagata, M.:

Low-cost distance-spoofing attack on FMCW radar and its feasibility study on
countermeasure. J. Cryptogr. Eng. (2021)

19. Chen, H.-R.: FMCW radar jamming techniques and analysis (2013). https://
calhoun.nps.edu/handle/10945/37597

20. Thys, S., Ranst, W.V., Goedemé. T.: Fooling automated surveillance cameras:
adversarial patches to attack person detection. In: 2019 IEEE/CVF Conference
on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 49–55
(2019). https://www.computer.org/csdl/proceedings/cvprw/2019/1iTvczdcyc0

21. MathWorks: MATLAB. https://jp.mathworks.com/products/matlab.html
22. MathWorks: Simulink. https://jp.mathworks.com/products/simulink.html
23. Epic Games: Unreal Engine. https://www.unrealengine.com/
24. MathWorks: Highway Lane Following. https://jp.mathworks.com/help/mpc/ug/

highway-lane-following.html
25. MathWorks: Autonomous Emergency Braking with Sensor Fusion. https://jp.

mathworks.com/help/driving/ug/autonomous-emergency-braking-with-sensor-
fusion.html

26. MathWorks: Detect and Track Vehicles Using Lidar Data. https://jp.mathworks.
com/help/vision/ug/track-vehicles-using-lidar.html

http://arxiv.org/abs/1712.06174
https://doi.org/10.1007/978-3-030-54549-9_13
https://doi.org/10.1007/978-3-030-54549-9_13
http://arxiv.org/abs/1412.6572
http://arxiv.org/abs/1503.02531
https://doi.org/10.1007/978-3-319-63387-9_1
https://doi.org/10.1007/978-3-030-25540-4_26
http://arxiv.org/abs/1611.01236

Evaluation Framework for Performance Limitation under Sensor Attack 81

27. MathWorks: Deep Learning with GPU Coder. https://jp.mathworks.com/help/
gpucoder/gpucoder-deep-learning.html

28. MathWorks: Radar Signal Simulation and Processing for Automated Driv-
ing. https://jp.mathworks.com/help/driving/ug/radar-signal-simulation-and-
processing-for-automated-driving.html

29. Bennion, M., Habli, I.: A candid industrial evaluation of formal software verifica-
tion using model checking. In: Jalote, P., Briand, L.C., van der Hoek, A. (eds.)
36th International Conference on Software Engineering (ICSE 2014), Companion
Proceedings, Hyderabad, India, May 31–June 7, 2014, pp. 175–184. ACM (2014)

30. Jeppu, N.Y., Jeppu, Y., Murthy, N.: Arguing formally about flight control laws. In:
2015 International Conference on Industrial Instrumentation and Control (ICIC),
pp. 378–383 (2015)

31. MathWorks: Simulink Test. https://jp.mathworks.com/products/simulink-test.
html

32. Redmon, J., Farhadi. A.: Yolo9000: better, faster, stronger. In: 2017 IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR), pp. 6517–6525 (2017)

33. JNCAP. https://www.nasva.go.jp/mamoru/en/
34. Euro NCAP. https://www.euroncap.com/en
35. Cao, Y.: Adversarial sensor attack on lidar-based perception in autonomous driv-

ing. In: Proceedings of the 2019 ACM SIGSAC Conference on Computer and
Communications Security (CCS 2019), pp. 2267–2281. Association for Comput-
ing Machinery (2019)

36. Saigol, Z., Peters, A.: Verifying automated driving systems in simulation: frame-
work and challenges. In: 25th ITS World Congress (2018)

37. Norden, J., O’Kelly, M., Sinha. A.: Efficient black-box assessment of autonomous
vehicle safety. CoRR, abs/1912.03618 (2019). http://arxiv.org/abs/1912.03618

38. Abdessalem, R.B., Nejati, S., Briand, L.C., Stifter, T.: Testing vision-based con-
trol systems using learnable evolutionary algorithms. In: 2018 IEEE/ACM 40th
International Conference on Software Engineering (ICSE), pp. 1016–1026 (2018)

39. Tahir, Z., Alexander, R.: Coverage based testing for v & v and safety assurance of
self-driving autonomous vehicles: a systematic literature review. In: 2020 IEEE
International Conference on Artificial Intelligence Testing (AITest), pp. 23–30
(2020)

40. Abdulkhaleq, A., Wagner, S., Leveson, N.: A comprehensive safety engineering
approach for software-intensive systems based on STPA. In: Proceedings of the 3rd
European STAMP Workshop 5–6 October 2015, Amsterdam Procedia Engineering,
vol. 128, pp. 2–11 (2015)

41. Dakwat, A.L., Villani, E.: System safety assessment based on STPA and model
checking. Saf. Sci. 109, 130–143 (2018)

42. Ishimatsu, T., Leveson, N.G., Thomas, J., Katahira, M., Miyamoto, Y., Nakao, H,:
Modeling and hazard analysis using STPA. In: International Association for the
Advancement of Space Safety (IAASS) (2010)

http://arxiv.org/abs/1312.6199
http://arxiv.org/abs/1711.07356
https://doi.org/10.1007/978-3-319-70090-8_42

ISO/SAE 21434-Based Risk Assessment
of Security Incidents in Automated

Road Vehicles

Dominik Püllen(B), Jonas Liske, and Stefan Katzenbeisser

University of Passau, Passau, Germany
dominik.puellen@uni-passau.de

Abstract. Although numerous automotive security solutions have been
presented in the last years, the question of how to properly react to
security incidents during vehicle operation has not yet received much
attention. In this work, we describe a context-aware scheme for auto-
mated road vehicles that assesses the risk of security incidents intend-
ing to automatically identify adequate countermeasures. We specifically
focus on attack propagation, as related works proved how seemingly
uncritical, but compromised vehicle components can cause dangerous
situations. Our scheme is inspired by the risk assessment process of the
novel ISO/SAE 21434 cybersecurity standard, which uses attack paths
to model static threat scenarios. In contrast, our scheme dynamically
queries an asset dependency graph once a security incident is reported,
in order to identify attack paths leading to pre-assessed damage scenar-
ios. Since the expected damage of a security incident also depends on the
vehicle context, we include information such as speed, time, and traffic
density into the risk computation. Based on the resulting risk value, the
vehicle selects and realizes a compensating (safety) action. Finally, we
discuss our scheme and conduct a case study on an automated prototype
vehicle.

Keywords: ISO/SAE 21434 · Risk assessment · Context awareness

1 Introduction

The rapidly advancing automation and the increasing number of interfaces have
enabled attackers to compromise road vehicles and to take over control. Since
then, many tailored defense techniques [4,6,12] have been developed to protect
both the passengers and the vehicle. In addition, the automotive industry has
begun considering security as an integral component of vehicle engineering [1,10].
Nevertheless, such progress does not imply the absence of security incidents in
vehicles, such as an unauthorized access request to safety-critical components or
an alarm by an intrusion detection system. Due to a steadily growing attack sur-
face, security incidents will occur, either intentionally or accidentally. For that
reason, road vehicles require means to assess and handle them, since not every
c© Springer Nature Switzerland AG 2021
I. Habli et al. (Eds.): SAFECOMP 2021, LNCS 12852, pp. 82–97, 2021.
https://doi.org/10.1007/978-3-030-83903-1_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-83903-1_6&domain=pdf
https://doi.org/10.1007/978-3-030-83903-1_6

Risk Assessment of Security Incidents 83

incident can be ascribed to an attack. For instance, how shall the vehicle behave
in case it detects unauthenticated traffic while being in motion? Is an emergency
halt necessary if the integrity of the infotainment system cannot be proven? The
answer to those questions depends on various factors, such as the vehicle topol-
ogy, the deployed security concept, and also the vehicle context (e.g., its current
speed). A missing answer, however, can lead to unexpected behavior, such as
a compromised CD player accelerating the vehicle [19]. Typically, road vehicles
consist of many Electronic Control Units (ECUs), whose strong interconnection
facilitates the propagation of manipulated data through the vehicle and thus,
the propagation of an attack. The most prominent example was given in 2015 by
Miller and Valsek [14], who first broke into a poorly secured infotainment sys-
tem, then manipulated the firmware of a gateway, and eventually gained control
of the vehicle by injecting driving commands to the bus. Hence, we argue that
the assessment of security incidents has to consider propagating effects, which
leads to our main contribution:

We propose a scheme to determine the risk of security incidents during vehicle
operation by means of an asset dependency graph. The latter allows identify-
ing attack paths and thus, predict the expected damage through propagation.
Our scheme is compliant with the novel ISO/SAE DIS 21434 [10] cybersecurity
standard, whose offline risk assessment identifies attack paths to model propa-
gating effects as threat scenarios. While a threat scenario typically describes a
static chain of negative actions, we apply the concept of attack path identifica-
tion to vehicle operation time to assess the risk of security incidents. For a more
accurate assessment, we additionally weight the expected damage with vehicle
context information. In the end, the computed risk of a security incident leads
to a compensating safety action (e.g., driving at reduced speed).

2 Related Work

The automatic analysis of security incidents in computer networks is a well-
studied field. Typically, propagation effects are modeled with attack graphs that
originate from fault trees, a deductive method to identify the cause of a failure.
However, automotive networks have not been the pivot of research, especially
when it comes to attack propagation. In the early 2000s, Nikoletseas et al. [15]
showed how an intruder with limited power can infiltrate large parts of a com-
puter network through propagation. Noel et al. [16] presented a quantitative
analysis of network security risks using attack graphs. They model how vari-
ous vulnerabilities can be combined for an attack by propagating exploit likeli-
hoods through the attack graph. Roschke et al. [20] deploy attack graphs for an
intrusion detection system. They map alerts to graph nodes and detect suspi-
cious graph subsets with a correlation algorithm. Salfer et al. [21] assess the risk
of exploits in automotive on-board networks using an automatically generated
attack graph. For this purpose, they present a stochastic model that consid-
ers both attack vectors and attacker resources more efficiently than Bayesian
networks. Krisper et al. [13] align attack events in a graph and compute the

84 D. Püllen et al.

cumulative risk with a propagation algorithm. In contrast, we focus on the auto-
motive domain and are compliant with the standardized risk assessment process
presented in ISO/SAE 21434.

3 Introduction to ISO/SAE 21434

The upcoming ISO/SAE 21434 is a novel cybersecurity standard for road vehi-
cles that considers the entire vehicle ecosystem. It focuses on cybersecurity rel-
evant items and components inside or on the vehicle perimeter. As the publish-
ing process is still ongoing, we use the approved Draft International Standard
(DIS) [10] of ISO/SAE 21434 in the further course of this work, which we refer
to as ISO/SAE 21434 for simplicity. ISO/SAE 21434 consists of fifteen clauses
that provide common terminology, guidelines for managing security risks, and
both cybersecurity policies and processes. A key activity is the risk assessment
process of the eighth clause, that typically takes place in the development phase.
It enables organizations to identify threat scenarios and to assess their risks, in
order to eventually find adequate defense techniques. It is defined as follows: At
first, damage scenarios, caused by compromised critical assets, are identified and
rated with regard to the expected outcome. The manipulation of such an asset is
described by a threat scenario, which in turn consists of at least one attack path,
i.e., a chain of dependent actions leading to asset corruption. The combination
of the attack path feasibility and the expected damage yields the risk value for
the corresponding threat scenario, followed by a risk treatment decision. The
latter can involve risk avoidance or reduction, as well as accepting or retaining
the risk. The relationship between asset, damage scenario, threat scenario, and
attack path is shown in Fig. 1. Eventually, a cybersecurity concept is phrased in
the ninth clause by using the methods of clause 8 to assess the risks of items.

Fig. 1. ISO/SAE 21434 computes the risk of threat scenarios by combining the attack
path feasibility with the severity of the expected damage scenarios.

Risk Assessment of Security Incidents 85

4 Context-Aware Risk Assessments of Security Incidents

In this section, we present our context-aware assessment scheme to handle secu-
rity incidents in automated vehicles. As mentioned, we follow the risk analysis
process of the ISO/SAE 21434 to calculate the risk of security incidents. We
consider a security incident as a dynamic threat scenario and use an asset depen-
dency graph to identify and rate possible attack paths. As shown in Fig. 2, our
scheme consists of an offline and an online phase. In the offline phase, damage
scenarios, the vehicle topology, and the asset dependency graph are identified
and rated. They serve as input for the online phase, which then assesses the risk
of a reported security incident and takes a compensating action.

Fig. 2. Structure of our context-aware risk assessment scheme for security incidents in
automated road vehicles. White fields are not part of ISO/SAE 21434.

In the remaining sections, we explain each step of our scheme in detail, refer to
the corresponding ISO/SAE 21434 requirements, and use the following notation:
We denote ECUm to be the monitoring control unit that executes the online
phase of our scheme. πk(x) returns the entry k of an ordered collection x (e.g.,
a tuple).

System Model: Researchers have presented a large number of defense tech-
niques for both legacy and cutting-edge systems [4]. In this work, we expect
vehicles to be equipped with state-of-the-art protection techniques that meet the
most important automotive security requirements, such as traffic and firmware
integrity, timely responses, and access control [18]. We expect all benign ECUs
to verify the authenticity of incoming data and discard unverifiable content [6].
On vehicle startup, firmware integrity checks are performed [12] to prevent the
unauthorized alteration of ECU firmware [23]. Moreover, we assume that com-
munication delays can be detected by each ECU [22].

Accordingly, we expect that any infringement upon the aforementioned
requirements is reported to ECUm as a security incident. Currently, our work

86 D. Püllen et al.

does not cover the case of a manipulated or even dropped security incident. In
other words, we assume ECUm to be always informed about any suspicious and
potentially malicious in-vehicle activity. ECUm is considered a security trust
anchor and hence, cannot be corrupted by an attacker. Such anchors typically
allow for the isolated execution of code and provide hardware support to main-
tain the integrity of applications.

Security Incidents: ISO 27005 [9] calls a security incident a negative event
that can lead to damage. According to ISO/SAE 21434, we consider a security
incident to be a threat scenario initiated by a negative event at vehicle runtime.
More precisely, a security incident describes the violation of a protected asset
property on an ECU. Such property refers to a threat category, which in turn
originates from the deployed threat model. Similar to ISO/SAE 21434, we use
the CIA triad, leading to T = {Confidentiality, Integrity,Availability} with T

denoting the set of all threat categories. Upon perception of a negative event,
we map it onto a threat category as illustrated in Table 1. Let E be the set of
ECUs and A be the set of assets. We then formally express a security incident
sii as an element of E × A × T. That is, sii consists of the affected ECU, the
compromised asset, and the threat category. For instance, the security incident
sii = (Infotainment, volume command, Integrity) states that the infotainment
system recognized a volume command whose integrity cannot be verified.

Table 1. Negative events are mapped onto a threat category.

Negative event Threat category (CIA)

Unknown data origin Integrity

Unverifiable firmware Integrity

Unauthorized data access Confidentiality

Delayed traffic Availability

... ...

4.1 Offline Phase

The offline phase is conducted once by a group of experts, preferably in the
vehicle design phase. It provides the necessary input for the online assessment
phase, i.e., the rated damage scenarios and the asset dependency graph.

Step Ioff : Damage Identification and Assessment
At first, we specify the set of all damage scenarios D, which typically hap-

pens in an expert panel. A damage scenario describes the expected outcome of
a security incident, such as uncontrolled driving behavior. In compliance with

Risk Assessment of Security Incidents 87

ISO/SAE 21434, each di ∈ D is ranked in terms of the four SFOP categories
Safety, Financial, Operational, and Privacy. More precisely, we use a simple
multi-criteria decision-making process that assigns numerical values to each cat-
egory as explained in [18]. Since we do not find each category equally relevant,
we additionally compute distinct weights by implementing a Fuzzy Analytical
Hierarchy Process (FAHP) [17]. In that way, a worst-case privacy violation will
always be considered less severe than a worst-case safety impact. In the end,
the weighted scores are added up, resulting in the four possible values negligible,
moderate, major, or severe. ISO/SAE 21434 precisely describes the interpretation
of each value. For instance, a moderate impact on safety means light injuries,
whereas a major impact indicates severe, but non-fatal injuries. At this point,
we identify the worst-case damage, which is then later weighted with the vehicle
context. In Sect. 5.2 we give examples for this step.

Step IIoff : ECU Identification and Assessment
Next, we specify E by enumerating all in-vehicle control units. ECUs play a
crucial role in our assessment scheme since they do not only trigger damage
scenarios but also enable attacks to propagate through the vehicle due to their
continuous communication. Therefore, we determine the Attack Potential AP
for each ECUi ∈ E, which gives us a notion of how likely ECUi can be manip-
ulated by an attacker. We argue that attacks often require the manipulation of
ECUs (e.g., to circumvent security checks), in order to be successfully carried
out along a given attack path. AP gives us the possibility for a more realistic
computation of the attack path feasibility in Step IIon. For the determination of
AP , we adhere to the Common Methodology for Information Security Evalua-
tion [2], which corresponds to ISO/IEC 18045 [8]. That is, we rank the minimum
required attack resources in terms of Elapsed Time, Expertise, Knowledge, Win-
dow of Opportunity, and Equipment. Each parameter is associated with a distinct
numerical value as shown in Table 2.

Table 2. CC Methodology to determine the attack potential of an ECU

Elapsed time Expertise Knowledge Windows of opportuniy Equipment

Option Value Option Value Option Value Option Value Option Value

<1 week 0 Layman 0 Public 0 Unlimited 0 Standard 0

<1 month 1 Proficient 3 Restricted 3 Easy 1 Specialized 4

<6 months 4 Expert 6 Confidential 7 Moderate 4 Bespoke 7

≤3 years 10 Multiple

experts

8 Strictly

confidential

11 Difficult 10 Multiple

bespoke

9

>3 years 19

As required by ISO/SAE 18045, we add up those values and obtain an attack
score for ECUi, which is subsequently uniformly mapped onto AP as shown in
Table 3. In Sect. 5, we conduct this step for ECUs of a prototype vehicle. We
suggest doing this step as part of the post-development phase’s activities when
the ECU’s attack potential can be considered fixed.

88 D. Püllen et al.

Table 3. The attack score is transferred to AP , which is used for the computation of
attack path feasibility.

Attack score 0–9 10–13 14–19 20–24 >25

Attack feasability High High Medium Low Very low

Attack potential AP 0.9 0.7 0.5 0.3 0.1

Step IIIoff: Asset Identification
In this step, we specify the set of assets A as required by ISO/SAE 21434. The
term asset describes a self-contained unit whose compromise can lead to a dam-
age scenario, either directly or through propagation effects. Thus, assets have
to be protected against manipulation, usually by cryptographic and/or anomaly
detection systems. The evaluation of popular automotive attacks reveals that
attackers typically manipulate in-vehicle traffic, delay communication, and/or
intrude ECUs [4,18]. For that reason, we distinguish between flowing and rigid
assets. The former typically concerns logically related traffic between ECUs, such
as a service or messages on a specific topic. A rigid asset, in contrast, resides
on an ECU, but still can impact out-flowing assets. Most notably, that is the
firmware, but cryptographic keys and configuration files may also be considered
rigid assets. Furthermore, we distinguish between the two subgroups At and Ap,
with A = At ∪Ap and At ∩Ap = ∅. At contains those assets, whose compromise
directly triggers a damage scenario without any detour, i.e., without attack prop-
agation. For instance, the undetected corruption of the steering angle is likely to
cause immediate harm. In contrast, Ap describes assets, whose compromise leads
to damage only through attack propagation. For example, a vulnerability in the
infotainment firmware may allow an attacker to infiltrate forged commands, but
it does not necessarily cause immediate harm. We suggest to iteratively derive
At from the previously defined damage scenarios and specify Ap in an inductive
bottom-up approach.

Step IVoff: Asset Dependency Graph
Assets are interdependent because ECUs continuously communicate and perform
computations on incoming assets. We write ay ← ax to indicate that any change
of ax also influences ay. The objective of this step is to arrange the previously
identified assets into an Asset Dependency Graph (ADG), which enables us to
automatically check whether the corruption of a specific asset can transitively
lead to damage. Formally, we describe ADG as a directed multigraph ADG =
(V,E). The set of vertices V is made up of physical (Vp) and virtual (Vv) vertices,
i.e., V = Vp ∩Vv. ECUs are considered physical vertices with in-flowing and out-
flowing assets. In contrast, we use a virtual vertex to indicate a dependency on a
rigid asset residing on an ECU (e.g., the firmware). An edge ei ∈ E exists between
a source ECUx ∈ E and a target ECUy ∈ E if there is an asset a ∈ A flowing
from ECUx to ECUy. Each edge ei is associated with a probabilistic weight w,
indicating to what extent it contributes to a path in ADG. We express an edge
ei ∈ E as a quintuplet according to Formula 1.

Risk Assessment of Security Incidents 89

E ⊆ {(vx, vy, a, w,D) | (vx, vy) ∈ V 2 ∧ a ∈ A ∧ w ∈ [0, 1] ∧ D ⊆ A \ {a}}
(1)

An ei also maintains a reference D containing those assets on which ei directly
depends on, i.e., D = {aj ∈ Ap | ai ← aj ∧ ∃ej ∈ E | (πa(ej) = aj ∧ πvy

(ej) =
πvx

(ei))}. This is necessary because an out-flowing asset does not necessarily
depend on all in-flowing assets. For instance, not every output of an ECU may
be secured by a cryptographic key that is stored on that ECU. The specifi-
cation of ADG requires profound knowledge of the network topology and the
in-vehicle data flows, typically known only to the manufacturer. As the creation
of such graphs is generally quite labor-intensive, system designers may consider
automated approaches [21].

4.2 Online Phase

The online phase is executed by ECUm every time a security incident is reported.
At first, ECUm identifies attack paths between the corrupted asset and any
ai ∈ At in ADG. Then, it determines their attack path feasibility and weights
the severity of the expected damage with context information, resulting in a risk
value of the security incident. Based on this risk, countermeasures are taken.

Step Ion: Attack Path Identification
A security incident sii ∈ E × A × T reports the corrupted asset ax = πa(sii)

on ECUx = πECU (sii). It requires further attention if it can lead to a damage
scenario di ∈ D, either directly or through propagation. This is the case if there
is a path from ECUx to an ECUy ∈ E, whereas the latter triggers di through the
corruption of ay ∈ At, which depends on ax. We call such a path pth

ay←ax

ECUx−ECUy

and formally describe it as a series of edges in ADG as shown in Eq. 2. For
readability reasons we later use pthi to refer to a valid attack path in ADG.

pth
ay←ax

ECUx−ECUy
∈ {(e1, ..., en) | ei ∈ E} (2)

The boundary conditions of Eq. 2 are given by

πvx
(e1) = ECUx ∧ πvy

(en) = ECUy ∧ ay = πa(en) (2a)
∃e ∈ E | πa(e) = ax ∧ πvy

(e) = ECUx (2b)
∀ej, 2≤j≤n | πvy

(ej−1) = πvx
(ej) (2c)

∀ej, 2≤j≤n | πa(ej−1) ∈ πD(ej) (2d)

That is, the path starts at ECUx and ends at ECUy, where ay may be corrupted
through attack propagation (2a). Furthermore, there is an edge that leads into
ECUx and contains the corrupted ax (2b). All edges form a continuous path
(2c) between ECUs. Besides, two adjoining edges have to carry dependent assets
(2d), since otherwise attack propagation from ax to ay would not be possible.
Note that ECUm may find multiple attack paths for a security incident leading
to the same damage. In the end, we only consider the most feasible one.

90 D. Püllen et al.

Step IIon: Attack Path Feasibility
The ISO/SAE 21434 standard subsequently requires to express the feasibility of
each identified attach path as high, medium, low, very low. The feasibility gives
a notion of the likelihood by which an attack is successfully carried out along a
given path. As shown in Eq. 3, we propose to calculate the feasibility Fpthi

of a
path pthi = (e1, ..., en) as the product of the corresponding edge weights w.

Fpthi
= Fmap

(n∏
j=1

πw(ej)
)
, with Fmap(p) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

high p ∈ [0.9, 1]
medium p ∈ [0.5, 0.9[
low p ∈ [0.2, 0.5[
very low p ∈ [0, 0.2[

(3)

The edge weight is only determined in the online phase, since it depends in
particular on the security incident and the vehicle state. For instance, a DoS
attack is likely to immediately propagate through large parts of the vehicle, as
the overall communication slows down. In contrast, illegally injected traffic only
becomes harmful if ECUs process it instead of rejecting it. However, according
to our system model, the latter only happens if the ECU is compromised. Thus,
whenever a path along a specific edge requires the manipulation of an ECU, we
take the previously determined attack potential AP from Step IIoff as w. Besides,
edges may be temporarily inactive, especially in a service-oriented environment
(e.g., SOME/IP or ASOA [11]). For instance, some services may only run when
the vehicle is driving fully automated, while others are put into action for manual
maneuvering. Inactive edges are assigned a weight of zero, which makes the
attack path infeasible. Altogether, we distinguish between three cases for w:

1. w = 0: An edge has a weight of zero, if it is unavailable in the current vehicle
state. For instance, a specific service is not running.

2. w = 1: An edge weight of one indicates a definite propagation between two
vertices in ADG. This happens, for instance, if Availability is the threat cat-
egory of an incident since delayed/dropped messages typically affect all sub-
sequent assets. This also concerns rigid assets, represented by virtual nodes.
For example, the output of an ECU always depends on its firmware.

3. w = πAP (πvx
(ei)): We use the attack potential AP of the edge’s source ECUx

as edge weight if the manipulation of ECUx is required for attack propagation,
e.g., to circumvent security checks. This, for instance, may be necessary to
transport forged traffic through the vehicle, as benign ECUs would discard it.

Step IIIon: Context-Aware Risk Determination
Eventually, the risk of the security incident is determined by combining the

attack path feasibilities with the expected severity of the associated damage sce-
narios. Recall that by definition (cf. Step Ion) an attack path always leads to
exactly one damage scenario. Since we have identified the worst-case damage
in Step Ioff , we inevitably would now obtain a worst-case risk of the security

Risk Assessment of Security Incidents 91

incident, which does not necessarily help in identifying an adequate counter-
measure. For instance, the worst-case damage of a corrupted headlight control
command is likely to indicate fatalities. This is certainly a good assumption
for a night ride and therefore, an emergency stop is plausible. During the day,
however, an emergency stop may be excessive, making driving at reduced speed
still acceptable (e.g., to head for the next repair shop). To get a realistic notion
of the expected damage, we suggest weighting the damage with vehicle context
parameters. Note that we are not the first to use such parameters for modeling
the vehicle context, although related works typically do this in different fields.
For instance, Helmholz et al. [5] consider the daytime and the route frequency
for the prediction of trajectories. Since the latter is extraneous for the instant
assessment of expected damage, we use the current speed and the traffic density
instead. Thus, we express the vehicle context as a vector C = (S TD T RQ)ᵀ,
consisting of the four parameters Speed (S), Traffic Density (TD), Time (T), and
Route Quality (RQ). For the sake of simplicity, we only allow two values for each
parameter, as shown in Table 4. For example, we distinguish between low speed
(<30 km/h) and high speed (≥30 km/h), day and night drive, etc. Since those
criteria do not all have the same relevance to the severity of a damage scenario,
we weight C with the normalized vector WC = (0.5 0.3 0.1 0.1)ᵀ. Thus, the
vehicle speed contributes five times more to the context than the route quality
does. We obtain C = C ·WC, C ∈ [0.5, 1], a scalar representation of the vehicle
context, which we multiply with the numerical damage assessment of StepIoff .
In that way, we claim to get a more realistic, context-aware assessment of the
expected damage. Finally, we obtain the context-aware risk rsii for the security
incident sii using the risk matrix in Table 5, proposed by ISO/SAE 21434.

Table 4. Four weighted criteria specify the vehicle context.

Speed (V) Traffic Density (TD) Time (T) Route Quality (RQ)

Weight 0.5 0.3 0.1 0.1

Value Low (0.5) Low (0.5) Day (0.5) Easy (0.5)

High (1) High (1) Night (1) Difficult (1)

Step IVon: Vehicle Reaction
Finally, we map the risk value rsii to a suitable compensating vehicle action. As
previously described, we weight the expected safety implications most compared
to financial, operational, privacy consequences. Thus, a safety-related perspective
is needed for the reasonable analysis of a security incident. The safety standard
ISO 26262, Second Edition, [7] has incorporated considerations of cybersecurity
to interact with the ongoing cybersecurity life cycle. Therefore, we claim that
there are mechanisms to properly treat safety aspects in a security context. In
total, we identified four compensating actions (cf., Table 6) in brainstorming ses-
sions, trying to be consistent with the damage description of ISO/SAE 21434.

92 D. Püllen et al.

Table 5. Risk matrix of ISO/SAE 21434 to determine the risk of a security incident.

rsii Attack path feasibility Fpthi

Very low Low Medium High

Impact of damage scenario Negligible 1 1 1 1

Moderate 1 2 2 2

Major 1 2 3 4

Severe 1 3 4 5

That means an emergency stop is required if fatalities, severe injuries, and/or
large financial losses are expected. We consider driving at reduced speed to
be an appropriate measure if operational limitations (e.g., traffic jams) or slight
injuries may be the consequence of a security incident. We argue that this option
is similar to the run-flat system of contemporary vehicles, which are activated in
case of moderate damage. The vehicle displays a dashboard control message if
damage to the vehicle and the passenger is only possible with comparably great
effort. Additionally, this option is chosen in case of a potential privacy viola-
tion. In case of negligible damage, the incident is only logged without additional
actions.

Table 6. The risk of the security incidents determines the compensating action.

Risk value Compensating action

1 Log incident + continue driving without restrictions

2 Log incident + display a dashboard control message

3 Log incident + driving at low speed

4,5 Log incident + emergency stop

5 Case Study and Discussion

In the following, we conduct the offline phase for an automated prototype vehicle
and discuss the selection of compensating actions by the online phase.

5.1 Reference Vehicle

Since 2018, a consortium of seven German universities and selected industry
partners have been constructing a fully automated and electric road vehicle with
a modularized hardware and software architecture [24]. The objective is to create
an evaluation platform for a variety of disruptive automotive concepts from dif-
ferent fields, such as automation, modularization, verification, validation, safety,

Risk Assessment of Security Incidents 93

and security. Since the vehicle is built from scratch, the entire lifecycle can be
considered without relying on a legacy system. First and foremost, the vehicle is
based on a layered architecture inspired by the human nervous system. That is,
the cerebrum is responsible for trajectory and behavioral planning. It receives
pre-processed radar, lidar, and camera data from four sensor modules. Moreover,
external servers provide traffic information for the route planning algorithm. The
trajectory is then converted to low-level driving commands by the main control
system, called brainstem. It provides the necessary torques, the rotational fre-
quency, and the steering angle to the spinal cord which is comprised of four
dynamic modules that drive the wheels. Most of the in-vehicle communication
relies on the specially developed Automotive Service-Oriented software Architec-
ture (ASOA) [11] which enables flexible communication in Ethernet networks,
fast firmware updates, and an easy replacement of hardware components.

5.2 Application of the Offline Phase

We were granted access to a detailed description of the previously described
vehicular architecture and the current in-vehicle communication graph. By using
the data flows and dependencies between ECUs from this description, we were
able to conduct the full offline phase of our scheme. Be aware that we can only
present a small subset of our results at this point. All assessments were performed
in brainstorming sessions by a group of experts.

As shown in Table 7, we identified 10 damage scenarios and assessed their
worst-case impact on the four SFOP categories according to Step Ioff . Recall
that we weight the normalized category scores according to their relevance. The
damage scenario d1 = Uncontrolled Driving describes the illegal takeover of con-
trol by a malicious party, probably the most dreaded consequence of an attack.
In the worst case, not only fatalities are likely to occur, but also severe finan-
cial and operational consequences. In contrast, d3 =Passenger Inconvenience
describes bothering limitations that mainly originate from the vehicle interior,
e.g., a manipulated heating system or blocking doors. Instead of severe physical
harm, we rather expect financial damage due to patching and a loss of rep-
utation. According to Step IIoff , we identified 21 ECUs and determined their
probabilistic attack potential AP . For instance, the well protected brainstem
yields an absolute attack score of 29, which corresponds to the low attack poten-
tial AP = 0.1 (cf. Table 3). In contrast, the internal HMI unit has a high attack
potential of AP = 0.9, mainly due to external interfaces and a steady Internet
connection. When it comes to the asset dependency graph, we first specified 50
assets whose corruption can directly cause at least one of the previously identi-
fied damage scenarios, i.e., |At| = 50. For instance, d1 = Uncontrolled Driving
can result from the corruption of the assets a1 = Steering Angle, a2 = Torque,
a3 = Rotational Frequency, and/or a4 = Firmware Dynamic Module. After that,
we identified 60 assets from Ap in a bottom-up approach, i.e., those assets that
can cause damage through propagation. All in all, our asset dependency graph
consists of 173 edges and 59 nodes. Both the fan-in and fan-out of each node

94 D. Püllen et al.

Table 7. In total, 10 damage scenarios have been identified and rated with regard to
their worst-case impact on Safety, Financial, Operational, and Privacy.

ID Damage scenario S F O P Weighted score Result

d1 Uncontrolled driving 0.5 0.5 0.5 0 0.438 Severe

d2 Manipulated vehicle routing 0.167 0.167 0.5 0 0.087 Major

d3 Passenger inconvenience 0.167 0 0.333 0 0.134 Moderate

...

d10 Battery degradation 0 0.5 0.333 0 0.078 Major

indicate that most dependencies exist between the main ECUs, i.e., the brain-
stem, the cerebrum, and the sensor modules. For instance, the brainstem has
a fan-out of 26, while smaller ECUs have an average fan-out of only 3. Hence,
decent defense techniques are specifically necessary for those ECUs to prevent
attack propagation.

5.3 Discussion of the Online Phase

Attack Detection. The online phase assesses the risk of security incidents, which
raises the question of which attacks can be unveiled in general. Since a security
incident follows a negative event, our scheme can only detect and handle those
attacks that can be perceived by the deployed security mechanisms. Thus, a
thorough security analysis is already crucial in the vehicle design phase, because
only then necessary defense techniques can be identified and later realized. We
assign each negative event to a threat category, as this eases the determination
and assessment of attack paths. The downside is a reduced attack resolution, as
different attacks are mapped on the same threat category. Currently, we deploy
the CIA triad and therefore, transfer all security incidents to one of these three
categories. The resulting loss of information can be compensated with a more
fine-grained threat model, such as STRIDE or the Foundational Requirements
of IEC 62443 [3]. However, this inevitability leads to higher model complexity.
Moreover, some negative events may not be uniquely related to one threat cat-
egory. For instance, “unauthorized data access” can affect both Integrity and
Confidentiality. In that case, multiple security incidents could be reported for a
single negative event and then be processed by ECUm according to their risk. In
the end, automotive engineers have to decide about the desired trade-off between
attack resolution and model complexity.

Time Consumption. Since our scheme assesses security incidents during vehicle
runtime, the required time is a crucial parameter, because a delayed compensat-
ing action may fail to keep away damage from the passenger. The path identifi-
cation phase in Step Ioff traverses the asset dependency graph ADG and stores
each valid path to an asset ai ∈ At. As the number of active edges depends
on the security incident and the vehicle mode, the graph shape slightly differs
for each incident. In practice, either a Breadth First Search or a Depth First

Risk Assessment of Security Incidents 95

Search allows identifying paths in ADG. Assuming ADG is internally stored as
an adjacency list (i.e., each node keeps a list of adjacent edges), then we need
to iterate over the entire list to visit each edge, resulting in a linear complexity
of O(|V | + |E|). While the number of nodes remains constant, the number of
active edges can change due to the service-oriented communication architecture.
Therefore, the runtime of our scheme can be positively affected by keeping the
number of edges low, which we will further investigate in future work.

Compensating Actions. Our scheme selects a compensating action based on the
computed risk of the security incident. The severity of a security incident depends
on the attack path feasibility and the expected damage, whereas the latter addi-
tionally takes the vehicle context into account. We simulated security incidents
by assuming a corruption of the assets in At. Then, we explored how often each
compensating action is taken for a fixed worst-case damage (i.e., we assume
the most unfavorable vehicle context) but for varying attack path feasibilities.
Figure 3 illustrates that smaller feasibility typically leads to a weaker compensat-
ing action because more attacker capabilities are required to successfully prop-
agate an attack.

Fig. 3. Assuming a constant worst-case damage, a smaller attack path feasibility usu-
ally leads to a weaker compensating action.

More precisely, an emergency stop is necessary for 30% of those security inci-
dents with expected high feasibility. In contrast, no emergency stop is triggered
once the feasibility is only low, but instead, weaker actions like dashboard mes-
sages are selected (up to 70%). We note that this distribution does not fully
reflect reality, as not all assets in At are usually equally often compromised.
However, it confirms our intention for an adequate compensating action, i.e.,
to treat non-critical security incidents less severe than those endangering the
passenger’s well-being.

Parameter Calibration. A meaningful response to a security incident is only
possible with a reasonable calibration of the scheme parameters. For instance,

96 D. Püllen et al.

the weights of the SFOP categories or the boundaries between the discrete path
feasibility values can be used to tweak the model. We assume that different
types of systems and vehicle architectures require different parameter sets. Since
we have not yet validated our scheme during vehicle operation time, we justify
our parameter selection with a best-practice approach. While the risk matrix is
taken from the ISO/SAE 21434 standard, we uniformly map qualitative data to
quantitative ones. Moreover, we use FAHP in Step Ioff to receive weights for the
SFOP categories according to their relevance. In that way, we obtain a parameter
set that serves as a reasonable starting point and that should be further adjusted
during validation.

6 Conclusion

In this work, we presented a context-aware scheme for the risk assessment of
security incidents during vehicle operation. The risk is used to automatically
select a compensating action to prevent damage while keeping the road vehi-
cle operable as long as possible. We specifically focus on attack propagation, as
related works demonstrated how the manipulation of even minor control units
may allow an attacker to infiltrate large parts of the vehicle. Our scheme is based
on the novel cybersecurity standard ISO/SAE 21434 that uses attack paths to
model in-vehicle dependencies for the risk assessment of threat scenarios. This
concept is applied to vehicle operation time by treating a security incident as
a dynamic threat scenario. Our idea is to identify attack paths within an asset
dependency graph and determine their feasibility with respect to the security
incident. We applied the offline phase of our scheme to an automated proto-
type vehicle and manually created an asset dependency graph consisting of 59
nodes and 173 edges. In our case study, we demonstrated that high-risk incidents
typically lead to an emergency stop, while less severe incidents trigger weaker
actions. We also point out the necessity of effective defense techniques, since they
make attack propagation more unlikely and thus, reduce the risk for damage.
As a next step, we aim to implement our scheme, validate the parameters, and
measure the timing overhead when assessing synthetic incidents.

Acknowledgement. This work has been accomplished within the project
“UNICARagil” (FKZ16EMO0392). We acknowledge the financial support for the
project by the Federal Ministry of Education and Research of Germany (BMBF).

References

1. SAE J3061 - Cybersecurity Guidebook for Cyber-Physical Vehicle Systems. Stan-
dard, Society of Automotive Engineers (2016)

2. Common criteria and common evaluation methodology version 3.1 (2017)
3. ISA-62443 Security for Industrial Automation and Control Systems. Standard,

International Society of Automaton (2017)
4. Dibaei, M., et al.: An overview of attacks and defences on intelligent connected

vehicles. arXiv preprint arXiv:1907.07455 (2019)

http://arxiv.org/abs/1907.07455

Risk Assessment of Security Incidents 97

5. Helmholz, P., Ziesmann, E., Robra-Bissantz, S.: Context-awareness in the car: pre-
diction, evaluation and usage of route trajectories. In: vom Brocke, J., Hekkala, R.,
Ram, S., Rossi, M. (eds.) DESRIST 2013. LNCS, vol. 7939, pp. 412–419. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-38827-9 30

6. Iorio, M., et al.: Securing SOME/IP for in-vehicle service protection. IEEE Trans.
Veh. Technol. 69(11), 13450–13466 (2020)

7. ISO 26262-2:2018: Road vehicles - Functional Safety (2018)
8. ISO/IEC 18045: Methodology for IT security evaluation (2020)
9. ISO/IEC 27005:2018 Information technology-Security techniques - Information

security risk management (2018)
10. ISO/SAE DIS 21434:2022(E): Draft international standard ISO/SAE 21434: Road

vehicles - cybersecurity engineering (2020)
11. Kampmann, A., et al.: A dynamic service-oriented software architecture for highly

automated vehicles. In: 2019 IEEE ITSC, pp. 2101–2108 (2019). https://doi.org/
10.1109/ITSC.2019.8916841

12. Kohnhäuser, F., et al.: Ensuring the safe and secure operation of electronic control
units in road vehicles. In: IEEE Security and Privacy Workshops, pp. 126–131.
IEEE (2019)

13. Krisper, M., Dobaj, J., Macher, G., Schmittner, C.: RISKEE: a risk-tree based
method for assessing risk in cyber security. In: Walker, A., O’Connor, R.V.,
Messnarz, R. (eds.) EuroSPI 2019. CCIS, vol. 1060, pp. 45–56. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-28005-5 4

14. Miller, C., Valasek, C.: Remote exploitation of an unaltered passenger vehicle.
Black Hat USA 2015, 91 (2015)

15. Nikoletseas, S., et al.: Attack propagation in networks. Theory Comput. Syst.
36(5), 553–574 (2003)

16. Noel, S., et al.: Measuring security risk of networks using attack graphs. Int. J.
Next-Gener. Comput. 1(1), 135–147 (2010)

17. Özdağoğlu, A., Özdağoğlu, G.: Comparison of AHP and fuzzy AHP for the multi-
criteria decision making processes with linguistic evaluations (2007)

18. Püllen, D., Anagnostopoulos, N., Arul, T., Katzenbeisser, S.: Safety meets security:
using IEC 62443 for a highly automated road vehicle. In: Casimiro, A., Ortmeier,
F., Bitsch, F., Ferreira, P. (eds.) SAFECOMP 2020. LNCS, vol. 12234, pp. 325–340.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-54549-9 22

19. Radu, A.-I., Garcia, F.D.: LeiA: a lightweight authentication protocol for CAN.
In: Askoxylakis, I., Ioannidis, S., Katsikas, S., Meadows, C. (eds.) ESORICS 2016.
LNCS, vol. 9879, pp. 283–300. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-45741-3 15

20. Roschke, S., Cheng, F., Meinel, C.: High-quality attack graph-based ids correlation.
Log. J. IGPL 21(4), 571–591 (2013)

21. Salfer, M., Eckert, C.: Attack graph-based assessment of exploitability risks in
automotive on-board networks. In: ARES 2018, pp. 1–10 (2018)

22. Song, H.M., et al.: Intrusion detection system based on the analysis of time intervals
of can messages for in-vehicle network. In: 2016 ICOIN, pp. 63–68. IEEE (2016)

23. Ueda, H., Kurachi, R., Takada, H., Mizutani, T., Inoue, M., Horihata, S.: Security
authentication system for in-vehicle network. SEI Tech. Rev. 81, 5–9 (2015)

24. Woopen, T., et al.: UNICARagil-disruptive modular architectures for agile, auto-
mated vehicle concepts (2021). https://www.unicaragil.de/en/

https://doi.org/10.1007/978-3-642-38827-9_30
https://doi.org/10.1109/ITSC.2019.8916841
https://doi.org/10.1109/ITSC.2019.8916841
https://doi.org/10.1007/978-3-030-28005-5_4
https://doi.org/10.1007/978-3-030-54549-9_22
https://doi.org/10.1007/978-3-319-45741-3_15
https://doi.org/10.1007/978-3-319-45741-3_15
https://www.unicaragil.de/en/

Safety and Assurance Cases

Automating the Assembly of Security
Assurance Case Fragments

Baoluo Meng(B) , Saswata Paul , Abha Moitra, Kit Siu,
and Michael Durling

General Electric Research, Niskayuna, NY, USA
{baoluo.meng,saswata.paul,moitra,siu,durling}@ge.com

Abstract. This paper presents an approach and tools for automatic
generation of security assurance case fragments using patterns for argu-
ing the security of cyber physical systems. The fragments are gener-
ated using augmented Goal Structuring Notation (GSN) and can suc-
cinctly convey a system’s resilience to cyber-threats specified in MITRE’s
Common Attack Pattern Enumeration and Classification (CAPEC). The
GSN schema has been augmented with additional metadata that can be
used for visually tracing back to component-level CAPEC threats from
higher-level cyber security claims, enabling designers to easily locate
flaws in a model when one or more claims cannot be substantiated. An
implementation of the approach as a part of the Verification Evidence
and Resilient Design in Anticipation of Cybersecurity Threats (VER-
DICT) toolchain has also been demonstrated along with a case study of
a package delivery drone.

Keywords: Security assurance cases · Assurance case patterns ·
GSN · Security analysis of system architecture · Attack-defense tree ·
MITRE’s CAPEC threats and NIST-800-53 controls

1 Introduction

The failure of safety-critical cyber physical systems can be catastrophic to life,
property, or the environment [33]. Therefore, it is imperative that both software
and hardware components are subjected to rigorous testing and certification pro-
cedures before being approved for use in safety-critical domains such as aviation,
medicine, and automotive. However, with increasing complexity of systems, it
becomes difficult to accurately and efficiently argue about system guarantees
with respect to critical properties. One widely used approach for conveying sys-
tem guarantees is the construction of assurance cases [5]. An assurance case is a
structured argument that a system satisfies some desired safety, security, or reli-
ability properties [4]. It is used to convey a compelling and comprehensive case
for system guarantees to stakeholders, developers, engineers, and certifiers [20].

There are two main approaches for developing assurance cases – process based,
which argues that a system has been developed adhering to certain process objec-
tives such as RTCA-DO:178C [30], and product based, which argues that a sys-
tem satisfies certain properties [21]. Several standards such as Claim, Argument
c© Springer Nature Switzerland AG 2021
I. Habli et al. (Eds.): SAFECOMP 2021, LNCS 12852, pp. 101–114, 2021.
https://doi.org/10.1007/978-3-030-83903-1_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-83903-1_7&domain=pdf
http://orcid.org/0000-0002-3284-1969
http://orcid.org/0000-0002-1792-9858
https://doi.org/10.1007/978-3-030-83903-1_7

102 B. Meng et al.

and Evidence (CAE) [7], Goal Structuring Notation (GSN) [23], and Structured
Assurance Case Metamodel (SACM) [35] exist for representing assurance cases.
Traditionally, assurance cases have been used for arguing about the safety of sys-
tems. However, there has been recent interest in using them to argue about the
security aspects of complex systems [9,29]. Although the fundamental concept
of safety and security cases is similar, i.e., using evidences to argue the validity
of some claims, according to [4], there are some differences between the two.
Security deals with the presence of an intelligent adversary, whereas safety anal-
ysis involves assigning probabilities to basic events (e.g., sensor failure), but the
same is not possible for adversarial actions; and security-critical systems have
to dynamically adapt to adversarial actions.

Model-based development uses tools and techniques to design and analyze
domain-specific models of systems [6]. The Verification Evidence and Resilient
Design in Anticipation of Cybersecurity Threats (VERDICT)1 is a toolchain
for incorporating cyber security resiliency analysis and recommendations in the
system design process that are automated, scalable, provide rich feedback, spec-
ify trade-offs, and are easy to use by system architects [26,32]. It is available
as a plugin for the Open Source AADL Tool Environment (OSATE) [16–18].
The Model-Based Architectural Analysis (MBAA) functionality of VERDICT
analyzes the security of a system at the architectural level and mainly con-
sists of two tools: STEM (Security Threat Evaluation and Mitigation) [28] and
Soteria++ [31]. STEM identifies threats from the MITRE Corporation’s Com-
mon Attack Pattern Enumeration and Classification (CAPEC) [1] and selects
defenses from the National Institute of Standards and Technology’s (NIST-800-
53) Security and Privacy Controls [2]. Soteria++ constructs attack scenarios
and highlights areas of the architecture where control measures are either miss-
ing or inappropriate, or insufficient rigor has been applied compared to the level
of severity of the outcome. It generates attack-defense trees and analyzes them
to determine cutsets and the likelihood of successful attacks of top-level events.

The conventional approach for constructing assurance case fragments is infor-
mal and manual, making them prone to errors, expensive and time consuming
to design, and difficult to manage and evaluate for non-trivial systems [13].
Moreover, the informal nature of arguments is susceptible to logical flaws [5],
making them unsuitable for certifying critical applications. This calls for the
need of an approach that can holistically combine tools and techniques from for-
mal model-based analysis to automatically generate assurance case fragments,
for both safety and security, to aid in system certification. Contributions of this
paper towards this end are:

– It augments the traditional GSN schema with metadata to present additional
information that can be beneficial for system designers and certifiers.

– It presents security assurance case patterns for automatic instantiation of
structured arguments using the augmented GSN schema. The patterns are
designed to use domain-specific claims supported by VERDICT and domain-

1 For more details, visit https://github.com/ge-high-assurance/VERDICT.

https://github.com/ge-high-assurance/VERDICT

Security Case Automation 103

specific evidences generated by Soteria++ for arguing about both security
and safety.

– It presents an approach for using the evidences generated by MBAA to
construct security case fragments by considering component-level CAPEC
threats and NIST-800-53 defenses.

– It demonstrates the effectiveness of the approach by presenting a case study
using the model of an unmanned package delivery drone.

The rest of the paper is structured as follows: Sect. 2 describes the augmented
GSN schema, security assurance case patterns, and the construction of security
case fragments, by using evidences generated by MBAA; Sect. 3 presents a case
study using the model of a package delivery drone; Sect. 4 discusses the key
findings; Sect. 5 presents related work on assurance cases; and Sect. 6 ends the
paper with a conclusion and future directions of work.

2 Contribution

2.1 Augmented Goal Structuring Notation (GSN)

The GSN schema has been widely used in safety case development. It pro-
vides a graphical representation of assurance case arguments by using principal
elements—goals, strategies, contexts, assumptions, justifications, and solutions,
which are arranged as nodes in a dependency graph. This work augments the
traditional GSN to convey additional information to designers and certifiers. We
incorporate additional node metadata to provide enhanced visual aid for flaw
detection and for generating interactive assurance case fragments with tooltips
and clickable links. The metadata also connects the assurance case fragments to
the artifacts and evidences generated by VERDICT’s MBAA functionality, cre-
ating a coherent connection between formal analysis and structured assurance
arguments. This augmented GSN schema may also be useful in incorporating
defeaters [8] where defeaters capture doubts and objections. The identification
of defeaters can surface gaps in an assurance case; and assessment/evaluation of
defeaters can strengthen an assurance case.

Traditionally, assurance cases have been designed to substantiate claims using
evidences. However, in VERDICT, sometimes the evidences generated may show
that a claim cannot be substantiated. Under such circumstances, a traditional
GSN fragment cannot be created, but the information about the failure of a
claim can still be useful to designers. This information can be used to generate
“incomplete” GSN fragments which do not argue about the correctness of claims,
but provide enhanced visual aid for easily detecting flaws in a model. To this
end, we augment the GSN schema by specifying colors for the goal and strategy
nodes. Below are the rules determining the color of nodes:

– If a solution fails to substantiate its parent node, then it will be colored red.
Otherwise, it is colored green.

– If a goal or strategy node has at least one supporting red node, then it will
be colored red. Otherwise, it is colored green.

104 B. Meng et al.

2.2 Security Assurance Case Patterns

Table 1. A part of the assurance case pattern library for VERDICT.

GSN class Predefined patterns

Goal {} “is secure”

{} “has been mitigated”

Strategy “Argument: By validity of sub-goals”

“Argument: By Soteria++ analysis of attack-defense trees”

“Argument: All threats mitigated”

Context {} “Properties”

“All applicable threats are identified”

“Acceptable likelihood =”{}, “Computed likelihood =” {}
“Acceptable probability =” {}, “Computed probability =” {}
“A condition and a target probability”

“A condition and a target likelihood”

Solution “Soteria++ minimum cutset for” {}
“Evidence that” {} “is secure”

Assurance case patterns [22] are predefined templates that can be instantiated
for constructing assurance cases. Patterns restrict the verbiage that can be used
for the construction of assurance cases while being flexible enough for express-
ing structured arguments for a variety of systems. The use of patterns allows
the development of consistent assurance case fragments and provides a formal
structure for assurance case construction. They are composed of domain-specific
constructs that depend on factors such as domain safety and security concerns,
type of claims and evidences that can be used, and type of arguments [12].

In order to automatically generate assurance case fragments from the VER-
DICT toolchain, a library of patterns has been created. These patterns can
be used to express structured arguments for claiming cyber-resilience by using
evidences generated by Soteria++. The patterns allow the implementation
to automatically collect information from an annex, which is a domain-specific
language extension to AADL, and instantiate structured assurance case frag-
ments in the augmented GSN schema. Table 1 shows a part of our assurance
case pattern library for the different classes of GSN nodes. The strings inside
“” are predefined and the patterns can be used to instantiate the arguments by
automatically assigning parameters in place of the curly brackets {}. Using the
patterns, it is possible to create claims like “actuation is secure” or “CAPEC-390
has been mitigated” to declare that the actuation component has been secured
and that the threat of CAPEC-390 has been mitigated by the implemented
defenses respectively. The patterns are specific to the VERDICT toolchain as
they can only be used to express statements that make sense in the context

Security Case Automation 105

of the constructs that are used in VERDICT. E.g., the verdict annex supports
only two classes of requirements related to security –mission requirements and
cyber requirements–so the patterns can only be used to instantiate requirements
belonging to any of these two classes and not arbitrary ones.

2.3 Model-Based Architecture Analysis in VERDICT

One of the fundamental aspects of security, as discussed in Sect. 1, is that it is
concerned with external adversarial actions that need to be mitigated. In this
section, we will describe the model-based architecture analysis (MBAA) func-
tionality of VERDICT, which can be leveraged to identify cyber vulnerabilities
and mitigations, to calculate the likelihood of successful attacks, and ultimately
to construct security cases.

Input to Model-Based Architecture Analysis. The input to MBAA is an
AADL architecture model annotated with meta-level properties, defense prop-
erties, cyber relations and requirements, and mission requirements. Examples of
meta-level properties are componentType and connectionType. Defense proper-
ties describe the rigor to implement a defense, which are enumerated type [0;
3; 5; 7; 9]. The implementation rigor is also known as design assurance level
(DAL), with 0 being the lowest and 9 being the highest rigor. Relations and
requirements are written in the verdict annex. A mission requirement describes
a mission scenario for the system to fulfill, such as delivering a package to an
intended location, which is supported by a combination of cyber and safety
requirements. The success of mission requirements depends on the success of
all supporting cyber and safety requirements. This paper will focus on cyber
relations and requirements for security assurance cases. An example of a cyber
relation and requirement is illustrated in Fig. 1.

Each cyber requirement is associated with a level of severity (Catastrophic,
Hazardous, Major, Minor, and No Effect) corresponding to a quantitative accept-
able level of risk (1e−9, 1e−7, 1e−5, 1e−3, and 1e−0, respectively) guided by
the standard on Airworthiness Security Methods and Considerations DO-356A.

Fig. 1. A cyber relation and requirement specified in the verdict annex.

106 B. Meng et al.

Note that each exponent of quantitative acceptable level of risk corresponds
to a negative DAL value. Each cyber requirement is also tied to a security
aspect of the overall system: Confidentiality (C), Integrity (I) and Availabil-
ity (A) listed in the “cia” field the cyber requirement. The success or failure
of the cyber requirement relies on the logical “condition”, which describes rel-
evant CIAs of outputs of the system, and will be used in attack-defense tree
analysis in Soteria++. Cyber relations describe how various possible threats
associated with confidentiality, integrity, or availability propagate through com-
ponents. The cyber relation in Fig. 1 tells that any threats affecting the integrity
of the input delivery cmd of the component will also affect integrity of the output
delivery status.

Analyzing the Security of System Architectures. The analysis of the
security of system architectures replies on two components of VERDICT: Secu-
rity Threat Evaluation and Mitigation (STEM) and Soteria++, which are
described below.

Security Threat Evaluation and Mitigation (STEM). Security Threat
Evaluation and Mitigation (STEM) [28] is a SADL-based semantic model with
a set of rules to identify vulnerabilities and suggest defenses. SADL (Seman-
tic Application Design Language) [10] is an English-like language based on
Web Ontology Language (OWL) for building semantic models and authoring
rules. STEM takes system architectural information annotated with properties
as input, identifies possible threats from MITRE’s CAPEC, and suggests mit-
igations from NIST-800-53 Security and Privacy Controls. There are a total of
61 Meta Attack Pattern CAPECs, but not all of them are relevant to embed-
ded systems of interest to STEM. STEM incorporates 37 Meta Attack Pattern
CAPECs that are relevant to an embedded system. Mitigations are linked to
CAPECs so that controls are only suggested if they are useful in mitigating
attacks that have a defined effect on the system under consideration. STEM
encompasses three types of rules to identify CAPEC vulnerabilities, suggest
NIST mitigations, and associate NIST mitigations with defense properties for
attack scenarios. An example of a STEM rule to identify CAPEC-131 is shown
in Fig. 2.

Fig. 2. An example of a STEM rule to identify CAPEC-131 Resource Leak Exposure.

Security Case Automation 107

The SOTERIA++ Tool. Once STEM identifies all applicable CAPEC attacks
and implemented NIST controls for components or connections of an architec-
ture model, the information is fed into Soteria++ [31] for further analysis.
The severity field of a cyber requirement defines the top-level cyber security
goal of a system, which corresponds to a quantitative acceptable level of risk.
The acceptable level of risk indicates that the likelihood of successful attack
should be less than or equal to one failure for every 10d hours of system oper-
ation, where d is a DAL value. Soteria++ analyses the system to determine
whether it satisfies the top-level goal or not. Starting with the condition field of
a cyber requirement, it back-traces each atomic output:CIA expression via cyber
relations and connections to construct an attack-defense tree. The non-leaf node
of an attack-defense tree is a logical (AND, OR, or NOT) operator; the leaf
node is either an attack or a mitigated attack. Note that the NOT operator can
only be applied to defenses, and is used for convenience to convert the DAL of
defense to a likelihood (10−DAL). An attack-defense tree is used to compute the
likelihood of a successful attack against a system. It represents possible ways to
violate a cyber requirement for a system in which an adversary is attempting
attacks given the implementation rigors of defenses. This is the reason we com-
pute likelihoods and not probabilities. Worse case is assumed for attacks. As a
result, the likelihood of attack is always 1. This then leads the designer to focus
on applying rigor to the defense implementation in order to lower the likelihood
of an attack. The implementation is a defense profile, which is a conjunction or
disjunction set of defenses. The likelihood of a conjunction set of defenses (i.e.,
all defenses are required to mitigate an attack) is the maximum of the defense
DALs; the likelihood of a disjunction set (i.e., any defense in the profile by itself
can mitigate an attack) is the minimum. The intuition behind the min/max cal-
culation is to encourage the designer to focus on the most rigorous defense. The
likelihood of an attack is calculated by doing a minimum of the attack (which
is always 1) and the likelihood of the set of defenses. An attack-defense tree is
said to be mitigated if the calculated likelihood of defenses is less than or equal
to the severity level assigned for the top-level goal for a system; thus the cyber
requirement corresponding to the attack-defense tree is satisfied.

2.4 Security Assurance Case Construction

To construct meaningful and accurate security assurance case fragments, it is
important to ensure that there is a succinct argument that shows how a cyber
requirement is supported by the mitigations suggested by STEM. However, a
cyber requirement can be dependent upon several components and each compo-
nent can be vulnerable to multiple CAPEC threats. Embedding all the assur-
ance information for a cyber requirement into a single security case fragment
may involve a GSN with hundred of nodes, making the fragment difficult to
comprehend and visualize in physical or even digital form. Therefore, a security
case fragment for every cyber requirement is decomposed into two classes of
fragments:

108 B. Meng et al.

(a) A requirement-level fragment (b) A component-level fragment

Fig. 3. Sample structures of a requirement-level and a component-level security case
fragment.

– Requirement-level fragments (Fig. 3a) - There is a single requirement-level
fragment for a cyber requirement whose root goal claims that the requirement
has been satisfied. The solution nodes provide evidences for the security of
every component that affects the requirement. Clicking on a solution node
causes associated component-level fragments to be displayed. The root goal
is supported by a strategy that argues that all sub-components are secure.

– Component-level fragments (Fig. 3b) - Each solution node for a requirement-
level fragment is a separate component-level fragment whose root goal claims
that the component is secure. The root goal has a sub-goal for every CAPEC
threat that the component is vulnerable to, each of which claims that the
threat has been mitigated. The sub-goals are directly supported by solution
nodes which are evidences generated by Soteria++. The root goal uses a
strategy which argues that all threats have been mitigated. The solution node
for a CAPEC threat shows the computed and acceptable likelihoods for the
threat, and the implemented NIST defenses when hovered upon.

3 Case Study: A Delivery Drone

To demonstrate the effectiveness of our approach, we use the AADL model of
an unmanned package delivery drone. The architecture of the delivery drone
is provided in Fig. 4 and its AADL model is publicly available on Github (see
footnote 1). The drone has been designed to perform tasks that have certain
associated mission and cyber requirements. In VERDICT, cyber requirements
are independent of each other while mission requirements are dependent on a
combination of cyber requirements. The requirements for the delivery drone have
been provided by security domain experts and have been specified in the verdict
annex of the AADL model of the drone.

Security Case Automation 109

Fig. 4. The delivery drone system architecture.

Consider cyber security requirement CyberReq01 in Fig. 1, which states that
the “The drone shall be resilient to the loss of ability to deliver a package to the
appropriate consumer location.” To fulfill this requirement, it has been deter-
mined by a security expert that the integrity and availability of actuation out
of actuation and delivery status of delivery item mechanism component shall
not be compromised. Moreover, the consequence of failure is hazardous, which
corresponds to an acceptable likelihood of failure 1e−07. To declare a system
to be secure in the context of VERDICT, we need to show that all applicable
CAPECs to its subcomponents have been sufficiently mitigated by the imple-
mented defenses in the system. Specifically, all the subcomponents propagating
threats that could affect the integrity and availability of those outputs have been
secured. The AADL model annotated with properties is then fed into the VER-
DICT tool for analysis. A requirement-level security case fragment for Cyber-
Req01 is returned as shown in Fig. 5.

It is evident from the figure that CAPEC threats to the actuation component
are not all mitigated. When clicking on the solution node for the actuation com-
ponent, a component-level fragment is displayed as Fig. 6, which shows all appli-
cable CAPEC threats to the component and that the specific CAPECs have not
been mitigated. In this case, actuation is susceptible to CAPEC-390 (Bypassing
Physical Security), which has not been sufficiently mitigated, as the computed
likelihood for a successful CAPEC-390 attack is 1e−05, which is greater than
the acceptable likelihood 1e−07. In other words, the defense (NIST-SE-3 Sys-
tem Access Control) has only been implemented to the design assurance level
of 5, which is not sufficient to mitigate CAPEC-390 to avoid hazardous conse-
quences. The minimal custset evidence computed by Soteria++ can be viewed
by hovering over or clicking on the solution node. In practice, what happens at
this point is that the security expert works with the system design team to
upgrade the defense. Upgrading the defense means revisiting the list of required
design activities and performing additional activities to gain credit for a higher

110 B. Meng et al.

Fig. 5. The requirement-level security fragment for CyberReq01.

assurance level. Activities include traditional software assurance items such as
configuration management, requirements management, requirements verifica-
tion, and testing. The list also includes specific security assurance activities such
as penetration testing and vulnerability assessment. These activities are incor-
porated into the System Engineering design process of the drone. The system
designer can then update the defenses from design assurance level 5 to 7, and
then run the new model again with VERDICT to show that the system is secure.

4 Discussion

Security cases allow developers to easily detect security flaws in the design of
security-critical systems, thereby enabling them to go back to the design phase
and include security features that were initially missed. They also allow captur-
ing the rationale behind adding more stringent security features that give a clear
benefit and those for which the benefit is not very obvious [4]. While developing
the capability to generate security cases from the VERDICT toolchain, we con-
sidered the best ways to enable end-users to easily detect and isolate security
issues in the design of a system. One of the unique aspects of the security case
generation feature of the VERDICT toolchain is the ability to trace back to the
source of potential security issues by visual inspection of the colored branches
of the GSN fragments. This not only saves time but also makes it easy for users
who are not experienced with the intricacies of the toolchain to understand the
cause of a problem and provide specific feedback to address the same.

Developing security cases is fairly complicated as they have to consider the
high uncertainties involved with how an intelligent adversary may attack a sys-
tem. Therefore, they should be designed in a way so as to indicate the cause
of possible security flaws with as much specificity as possible. This is because
sometimes, adding a feature to avoid one security flaw may lead to the creation
of another flaw that was originally absent. Therefore, an accurate error-tracing

Security Case Automation 111

Fig. 6. The component-level security fragment for the actuation component.

capability is an important factor in security cases. Automated security case pat-
terns should be designed in such a way so that they can provide enough informa-
tion to capture the essence of an issue. Modularity is important as it allows the
security case fragments to be inspected and reviewed independently, reducing
the cognitive workload on the users. This also allows the cases to be aggregated
into larger fragments as necessary when trying to analyze a system from varying
levels of granularity. Another important aspect to keep in mind while designing
automatic security cases is to limit the amount of additional information that
developers have to include in the specification. This helps to keep the specifica-
tions concise and free from additional content that is not critical to the design.

5 Related Work

Denney et al. [12–15] present AdvoCATE, a toolset for automatic creation and
management of safety cases. Resolute [19] is an assurance case language and tool
where users manually formulate claims and the rules for justifying them. Meng
et al. [25] formalize queryable safety assurance case in SADL language and use
evidence from fault tree analysis to substantiate claims. Assurance cases have tra-
ditionally been used for arguing about system safety. Existing work on security
cases has primarily investigated the efficacy of using assurance cases for arguing
about security. Alexander et al. [4] provide a detailed analysis of the benefits of
using assurance cases for arguing about system security concerns. They point
out the fundamental differences between safety and security concerns that make
it necessary to consider external adversarial threats in security cases. Agudo
et al. [3] investigate the development of security cases by mapping different
stages of the system development life-cycle to the structure of the security cases.

112 B. Meng et al.

Vivas et al. [34] present a similar approach for integrating security cases with
the security engineering phase of development in which the argument structure
of a security claim represents the structure of the system development phase.
Poreddy and Corns [29] argue the security of a generic avionics mission con-
trols system by analyzing the potential threats to the mission control computer
and constructing arguments for tangible claims in the GSN form. The AMASS
Tool Platform [11] provides a novel holistic approach to support assurance and
certification for Cyber Physical Systems. Yamamoto and Kobayashi [24] pro-
pose the creation of security assurance cases for arguing the security of mobile
architecture models.

We improve upon existing work by creating domain-specific patterns to auto-
matically generate security case fragments using MITRE’s CAPEC threats and
NIST’s cyber defenses. The toolchain implementation also provides advantages
such as automatic pattern instantiation, automatic generation of assurance case
fragments, user-defined argument instantiation, integration and management of
formal method tools based evidences, modularity of fragments, and easy man-
agement of fragments. XML artifacts are generated for the fragments that can
be consumed by other tools for assimilation of lower-level fragments to create
higher-level fragments, archiving, and further ontological and formal analysis.

6 Conclusion and Future Work

This paper presented an approach for constructing security case fragments using
an augmented GSN schema that can present useful information to designers even
if one or more claims cannot be substantiated. The fragments can be automati-
cally generated using assurance case patterns without requiring any manual for-
mulation or specification from the users. The security case fragments consider
the component-level CAPEC vulnerabilities of a system to argue about the cyber
requirement level claims. An implementation of the approach was presented as a
functionality of the VERDICT toolchain and a case study was presented to show
the effectiveness of the approach. A potential application of the tool would be to
assemble security cases to certify systems towards cyber-security standards such
as ASTM-F3286 Standard Guide for Cybersecurity and Cyberattack Mitigation.

One potential future direction would be to extend STEM to include more
threats and defenses that target at other areas such as network communications,
or integrate with tools like CyVAF [27] that can cover a broader range of threats
and defenses. Also, we would like to investigate how the evidence generated
by other formal methods tools can be used for constructing security assurance
case fragments. This would involve expanding the current assurance case pattern
library to accommodate the verbiage of other tools.

Acknowledgement. Distribution Statement “A” (Approved for Public Release, Dis-
tribution Unlimited). This research was funded by the Defense Advanced Research
Projects Agency (DARPA). The views, opinions and/or findings expressed are those of
the authors and should not be interpreted as representing the official views or policies
of the Department of Defense or the U.S. Government.

Security Case Automation 113

References

1. Common Attack Pattern Enumeration and Classification (CAPEC) (2017).
https://capec.mitre.org

2. Security and Privacy Controls for Information Systems and Organizations (2017)
3. Agudo, I., Vivas, J.L., López, J.: Security assurance during the software develop-

ment cycle. In: Proceedings of the International Conference on Computer Systems
and Technologies and Workshop for PhD Students in Computing, pp. 1–6 (2009)

4. Alexander, R., Hawkins, R., Kelly, T.: Security Assurance Cases: Motivation and
the State of the Art. The University of York, York (2011)

5. Bagheri, H., Kang, E., Mansoor, N.: Synthesis of assurance cases for software cer-
tification. In: Proceedings of the International Conference on Software Engineering
(2020)

6. Basir, N., Denney, E., Fischer, B.: Deriving safety cases for hierarchical structure
in model-based development. In: Schoitsch, E. (ed.) SAFECOMP 2010. LNCS, vol.
6351, pp. 68–81. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-
15651-9 6

7. Bloomfield, R., Netkachova, K.: Building blocks for assurance cases. In: 2014 IEEE
International Symposium on Software Reliability Engineering Workshops, pp. 186–
191. IEEE (2014)

8. Bloomfield, R., Rushby, J.: Assurance 2.0: A manifesto (2020)
9. Cheah, M., Shaikh, S.A., Bryans, J., Wooderson, P.: Building an automotive secu-

rity assurance case using systematic security evaluations. Comput. Secur. 77, 360–
379 (2018)

10. Crapo, A., Moitra, A.: Toward a unified English-like representation of semantic
models, data, and graph patterns for subject matter experts. Int. J. Semant. Com-
put. 7(03), 215–236 (2013)

11. De La Vara, J., Parra, E., Ruiz, A., Gallina, B.: The amass tool platform: an
innovative solution for assurance and certification of cyber-physical systems. In:
Joint 26th International Conference on Requirements Engineering: Foundation for
Software Quality Workshops, Pisa, Italy, vol. 2584. CEUR-WS (2020)

12. Denney, E., Pai, G.: A methodology for the development of assurance arguments
for unmanned aircraft systems. In: 33rd International System Safety Conference
(ISSC 2015) (2015)

13. Denney, E., Pai, G.: Automating the assembly of aviation safety cases. IEEE Trans.
Reliab. 63(4), 830–849 (2014)

14. Denney, E., Pai, G.: Tool support for assurance case development. Autom. Softw.
Eng. 25(3), 435–499 (2017). https://doi.org/10.1007/s10515-017-0230-5

15. Denney, E., Pai, G., Pohl, J.: AdvoCATE: an assurance case automation toolset.
In: Ortmeier, F., Daniel, P. (eds.) SAFECOMP 2012. LNCS, vol. 7613, pp. 8–21.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33675-1 2

16. Feiler, P.: The Open Source AADL Tool Environment (OSATE). Technical report,
Carnegie Mellon University (2019)

17. Feiler, P.H., Gluch, D.P.: Model-Based Engineering with AADL: An Introduction
to the SAE Architecture Analysis & Design Language. Addison-Wesley, Boston
(2012)

18. Feiler, P.H., Gluch, D.P., Hudak, J.J.: The architecture analysis & design language
(AADL): An introduction. Technical report, Carnegie Mellon University (2006)

19. Gacek, A., Backes, J., Cofer, D., Slind, K., Whalen, M.: Resolute: an assurance case
language for architecture models. ACM SIGAda Ada Lett. 34(3), 19–28 (2014)

https://capec.mitre.org
https://doi.org/10.1007/978-3-642-15651-9_6
https://doi.org/10.1007/978-3-642-15651-9_6
https://doi.org/10.1007/s10515-017-0230-5
https://doi.org/10.1007/978-3-642-33675-1_2

114 B. Meng et al.

20. Graydon, P.J.: Formal assurance arguments: a solution in search of a problem? In:
2015 45th Annual IEEE/IFIP International Conference on Dependable Systems
and Networks, pp. 517–528. IEEE (2015)

21. Guerra, S., Sheridan, D.: Compliance with standards or claim-based justification?
The interplay and complementarity of the approaches for nuclear software-based
systems. In: Proceedings of the Twenty-Second Safety-Critical Systems Sympo-
sium, Brighton, UK (2014)

22. Hawkins, R., Clegg, K., Alexander, R., Kelly, T.: Using a software safety argu-
ment pattern catalogue: two case studies. In: Flammini, F., Bologna, S., Vittorini,
V. (eds.) SAFECOMP 2011. LNCS, vol. 6894, pp. 185–198. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-24270-0 14

23. Kelly, T., Weaver, R.: The goal structuring notation-a safety argument notation.
In: Proceedings of the Dependable Systems and Networks 2004 Workshop on Assur-
ance Cases, p. 6. Citeseer (2004)

24. Kobayashi, N., Morisaki, S., Yamamoto, S.: Mobile security assurance for automo-
tive software through ArchiMate. In: You, I., Leu, F.-Y., Chen, H.-C., Kotenko,
I. (eds.) MobiSec 2016. CCIS, vol. 797, pp. 10–20. Springer, Singapore (2018).
https://doi.org/10.1007/978-981-10-7850-7 2

25. Meng, B., et al.: Towards developing formalized assurance cases. In: 2020
AIAA/IEEE 39th Digital Avionics Systems Conference (DASC), pp. 1–9 (2020).
https://doi.org/10.1109/DASC50938.2020.9256740

26. Meng, B., et al.: VERDICT: a language and framework for engineering
cyber resilient and safe system. Syst. 9(1) (2021). https://doi.org/10.3390/
systems9010018. https://www.mdpi.com/2079-8954/9/1/18

27. Meng, B., Smith, W., Durling, M.: Security threat modeling and automated anal-
ysis for system design. SAE Int. J. Transp. Cyber Privacy 4 (2021). https://doi.
org/10.4271/11-04-01-0001

28. Moitra, A., Prince, D., Siu, K., Durling, M., Herencia-Zapana, H.: Threat identi-
fication and defense control selection for embedded systems. SAE Int. J. Transp.
Cyber. Privacy 3 (2020)

29. Poreddy, B.R., Corns, S.: Arguing security of generic avionic mission control com-
puter system (MCC) using assurance cases. Proc. Comput. Sci. 6, 499–504 (2011)

30. RTCA-DO: 178c: Software considerations in airborne systems and equipment cer-
tification (2011)

31. Siu, K., Herencia-Zapana, H., Prince, D., Moitra, A.: A model-based framework
for analyzing the security of system architectures. In: 2020 Annual Reliability and
Maintainability Symposium (RAMS), pp. 1–6. IEEE (2020)

32. Siu, K., et al.: Architectural and behavioral analysis for cyber security. In: 2019
IEEE/AIAA 38th Digital Avionics Systems Conference (DASC), pp. 1–10. IEEE
(2019)

33. Sommerville, I.: Software Engineering (2011). ISBN-10 137035152, 18
34. Vivas, J.L., Agudo, I., López, J.: A methodology for security assurance-driven

system development. Requir. Eng. 16(1), 55–73 (2011)
35. Wei, R., Kelly, T.P., Dai, X., Zhao, S., Hawkins, R.: Model based system assurance

using the structured assurance case metamodel. J. Syst. Softw. 154, 211–233 (2019)

https://doi.org/10.1007/978-3-642-24270-0_14
https://doi.org/10.1007/978-981-10-7850-7_2
https://doi.org/10.1109/DASC50938.2020.9256740
https://doi.org/10.3390/systems9010018
https://doi.org/10.3390/systems9010018
https://www.mdpi.com/2079-8954/9/1/18
https://doi.org/10.4271/11-04-01-0001
https://doi.org/10.4271/11-04-01-0001

Safety Case Maintenance: A Systematic
Literature Review

Carmen Cârlan1(B), Barbara Gallina2, and Liana Soima1

1 fortiss GmbH, Munich, Germany
{carlan,soima}@fortiss.org

2 Mälardalen University, Västeras, Sweden
barbara.gallina@mdh.se

Abstract. Safety standards from different domains recommend the exe-
cution of a process for keeping the system safety case up to date, when-
ever the system undergoes a change, however, without providing any more
specific guidelines on how to do this. Even if several (semi)automated
safety case maintenance approaches have been proposed in the literature,
currently, in the industry, the execution of this process is still manual,
being error prone and expensive. To this end, we present in this paper the
results of what is, to the best of our knowledge, the first Systematic Litera-
ture Review (SLR) conducted with the goal to provide a holistic overview
of state-of-the-art safety case maintenance approaches. For each identi-
fied approach, we analyze its strengths and weaknesses. We observe that
existing approaches are pessimistic, identifying a larger number of safety
case elements as impacted by a change than the number of the actually
impacted elements. Also, there is limited quantitative impact assessment.
Further, existing approaches only address a few system change scenarios
when providing guidelines for updating the safety case.

Keywords: Safety case maintenance · Systematic literature review

1 Introduction

Motivation: The system safety case can be used as a medium for assessing the
impact system changes have on the system safety assurance [40]. Safety cases
are explicitly required or recommended by standards from different safety crit-
ical domains, such as ISO 26262 voluntary standard [39] and UL 4600 [41] for
automotive systems, the CENELEC EN 50129 standard for railway systems, the
IAEA’s safety standards for systems based on nuclear energy, the FAA Order
8900.1 FSIMS, Vol. 16, in the avionics or the JSP 318B standard for military air-
craft systems. A safety case is a specialization of an assurance case, which is an
argumentation that, based on certain evidence, a system satisfies certain system
requirements, in a defined operational environment [6]. As a small change to any
related safety work product may affect a large part of the safety case [25,41],
the same standards also require that the system safety case reflects the current

c© Springer Nature Switzerland AG 2021
I. Habli et al. (Eds.): SAFECOMP 2021, LNCS 12852, pp. 115–129, 2021.
https://doi.org/10.1007/978-3-030-83903-1_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-83903-1_8&domain=pdf
https://doi.org/10.1007/978-3-030-83903-1_8

116 C. Cârlan et al.

status of the system. For example, ISO 26262 states that the safety case is a
work product (e.g., hazards list, requirements specification, system design) gen-
erated by the execution of the system safety lifecycle and that the evidence in
the safety case is a compilation of the other safety work products. The same
standard, in Part 10, recommends maintaining the system safety case consistent
with the other safety work products. According to ISO 26262 and to UL 4600,
safety case maintenance is a two-phased process. First, given a change in a safety
work product, a change impact analysis (CIA) shall be conducted. Second, based
on identified impact, the safety case shall be updated correspondingly. However,
even if the maintenance of safety cases is a complex process, neither ISO 26262,
nor any standard in other domains provide guidelines on concrete techniques for
executing safety case maintenance. Currently, in practice, safety case mainte-
nance is manually executed by safety engineers, being an error-prone and time
and resource consuming process. Consequently, the inadequate management of
changes in the specification of the system or its operational context has led in
the past to accidents [4] or NHTSA recalls1. Automated change impact analysis
for the system safety case and the existence of guidelines for how to update it
given certain types of system changes would be beneficial. As such, safety case
maintenance approaches have gained much attention in research.

Objectives and Method: The scope of this work is (1) to synthesize a com-
prehensive list of all automated safety case maintenance approaches proposed in
the literature in the time interval 2000–2020, based on the results of a conducted
systematic literature review (SLR) [26]; and (2) to report on the results of an
in-depth analysis of these approaches. We are especially interested in assessing
the following capabilities: 1) the degree of automation for CIA, 2) the accuracy
of CIA, 3) the provision of support for quantitative CIA, 4) the provision of guid-
ance for updating the safety case, 5) the availability of tool support. Further, we
also analyze the addressed change scenarios.

Results: The SLR resulted in the selection of 65 papers, presenting 26 approaches
for safety case maintenance. The results of our conducted SLR highlight three
important limitations of existing approaches for safety case maintenance. First,
we conclude that existing approaches are pessimistic, as their identified impact
area of impact may be larger than the actual impact area. Second, we observe
that, in current literature, guidelines for updating the safety case only address
a few change scenarios. Another outcome of our analysis is that there is limited
support for assessing the impact of a change in a quantitative manner.

The remainder of this paper is organized as follows. In Sect. 2, we provide
essential background on safety case maintenance and an overview of related SLRs
and mapping studies. In Sect. 3, we describe the protocol we used for this SLR.
Then, in Sect. 4, we synthesize and analyze existing work regarding maintain-
ing the system safety case consistent with other system and safety engineering
artifacts in the literature. Towards the end, in Sect. 5, we summarize the results
of our SLR, while highlighting the limitations of current approaches, and, in
Sect. 6, we conclude by proposing possible research directions.

1 https://betterembsw.blogspot.com/p/potentially-deadly-automotive-software.html.

https://betterembsw.blogspot.com/p/potentially-deadly-automotive-software.html

Safety Case Maintenance SLR 117

2 Background and Related Work

Safety Case Maintenance - Basic Concepts. Kelly and McDermid [25]
elaborate on the two–phased safety case maintenance process recommended by
ISO 26262. They classify impacted elements in two categories: elements directly
impacted by a system change (also called challenged safety case elements) and
indirectly impacted elements, which are only impacted due to the “ripple effect”
of the impact propagation. Kelly and McDermid also differentiate between CIAs
that only identify potentially impacted elements, which still need to be manu-
ally checked by the safety engineer, and accurate CIA that only identify actu-
ally impacted elements, which are surely invalidated by the change. Potentially
impacted elements may be either actually impacted elements or false positives,
meaning that they might not actually be invalidated by the change.

Related Literature Studies. While there are two works reporting on the state
of the art in safety case tools [29], and in safety case languages [21], to the best of
our knowledge, there is no review of current safety case maintenance approaches.
Maksimov et al. [29] report the results of a survey concerning tool support for
the creation and management of safety cases, while also analyzing certain tool
functionalities, among which the support provided for maintaining safety case
models consistent with other work products. Govardhanrao [21], in her mas-
ter thesis, presents the results of a comparative analysis scoping a selection of
argumentation languages. Among others, she assesses the support for consis-
tency checks between system design and developing safety cases and the support
offered to automatically update the safety argumentation, given system changes.
The two related reviews have certain important limitations. On the one hand,
the list of tools identified by Maksimov et al. is outdated – five relevant tools
have been reported in the literature after the publication of this survey, namely
in 2019 and 2020. On the other hand, the analysis performed by Govardhan-
rao does not cover all the existing approaches, but a selection of those. Further,
none of the two works differentiates between the capability of identifying directly
impacted elements, and the capability of automatically computing impact prop-
agation, nor between accurate and inaccurate change impact analyses. Finally,
Maksimov et al. and Govardhanrao do not provide details regarding the system
change scenarios that are regarded by the maintenance approach.

3 Review Protocol

3.1 Establishing the Quasi-Gold Standards by Manual Search

We first selected several publications as our quasi-gold standards (QGSs) [45].
We base our SLR on the results of the SLR conducted by Maksimov et al. [29].
As such, to establish our QGSs, we first started by manually selecting publica-
tions, which, according to Maksimov et al., present tools that have medium or
strong support for safety case maintenance [29]. While Maksimov et al. identify
17 publications describing 17 different tools implementing approaches for safety

118 C. Cârlan et al.

case maintenance, after applying our filtering criteria (see Subsect. 3.3), we only
selected 13 from these publications. Based on our expert knowledge, to these 13
selected publications we also added 3 publications, each discussing another app-
roach different to the ones identified by Maksimov et al. [29] and 2 deliverables
presenting different capabilities of the AMASS platform [14].

We complemented the aforementioned QGSs with publications we manu-
ally selected. To this end, we conducted a manual search through the proceed-
ings published in the time frame 2000–2020 of a selection of venues that we
identified as highly relevant for the safety engineering research: International
Conference on Dependable Systems and Networks (DSN), International Con-
ference on Reliable Software Technologies (Ada-Europe), European Dependable
Computing Conference (EDCC), International Conference on Computer Safety,
Reliability and Security (SAFECOMP), Pacific Rim International Symposium
on Dependable Computing (PRDC), The International Conference/Workshop
on High-Assurance Systems Engineering (HASE), International Symposium on
Software Reliability Engineering (ISSRE), International Symposium on Model-
Based Safety and Assessment (IMBSA), International Conference on Software
Engineering (ICSE), International Conference on Model Driven Engineering
Languages and Systems (MODELS) and their satellite workshops. After filtering
out based on the criteria presented in Subsect. 3.3, we identified 19 publications
presenting additional capabilities of already identified approaches, but also intro-
ducing 6 new approaches.

3.2 Automated Search and Snowballing

Next, while using a search string, we automatically search through the following
databases: ACM Digital library, IEEE, Springer, Elsevier, Google Scholar and
dblp. Based on the most frequent words found in the publications we included
in our QGS, we specified the following search string: (“safety case” AND “main-
tenance”) OR (“assurance case” AND “maintenance”) OR (“safety case” AND
“change”) OR (“assurance case” AND “change”) OR (“safety case” AND “evo-
lution”) OR (“assurance cases” AND “evolution”). The search resulted in 3
selected publications. To mitigate the potential limitations due to blurry termi-
nology, we then applied snowballing [44], which resulted in the selection of 10
more relevant publications describing approaches already identified during the
other search phases.

3.3 Exclusion and Inclusion Criteria

During our search, we only selected publications whose title and abstract made
it explicit that the publication was presenting the results of primary research
on approaches for safety case maintenance, or at least for safety case change
impact analysis. Further, we also used some other inclusion criteria. First, we
only regarded the publications that appeared in 2000 or after. We chose 2000
to be the earliest date for our search, since this was the earliest publication
year of one paper which we identified as QGS. We searched all publications that

Safety Case Maintenance SLR 119

appeared until December 2020 - as the automatic and manual searches were
finished in January 2021. Second, given a number of different papers presenting
the same approach, we considered all the papers, in order to ensure that we
do not miss any information regarding safety case maintenance support. We
excluded publications matching any of the following criteria: 1) publications
presenting approaches for assurance case modeling, but not having at least a
minimum support for assurance case maintenance; 2) publications describing
maintenance approaches for other types of assurance cases (e.g., security or trust
cases), 3) publications presenting support for safety case maintenance only as
future work; 4) books, tutorials or poster publications; 5) publications that have
not been peer-reviewed; 6) publications that are only available in the form of
abstracts/posters and presentations, 7) publications not written in English.

3.4 Evaluation Criteria

After identifying all existing approaches for safety case maintenance, we carried
out an in-depth analysis of these approaches, while using a set of evaluation cri-
teria (see Table 1-a). In conformance with the work of Kelly and McDermid [25],
we differentiate between approaches that support the automated identification
of challenges, i.e., of the safety case elements directly impacted by a system
change (EC1) and the automated identification of indirectly impacted elements
due to impact propagation (EC2). EC3 addresses the accuracy of CIA (i.e.,
freedom of false positives). Inspired by one work from our QGS, namely the one
of Jaradat and Bate [24], who propose a quantitative assessment of the change
impact, we defined evaluation criterion EC4. In accordance to the requirements
of ISO 26262 and UL4600, evaluation criterion EC5 assesses the capability of
approaches to provide guidance for updating the safety case in accordance to
the CIA results. Further, as UL4600 highly recommends the usage of tools to
execute impact analysis, we are also interested whether the identified approaches
have tool support (EC6).

According to ISO 26262 and UL 4600, given a change in the system specifica-
tion, the safety case needs to be re-evaluated. Different system change scenarios
have a different impact on the system safety case [1]. As such, we analyze the
change scenarios addressed by the identified safety case maintenance approaches,
especially considering the scenarios in Table 1-b. CS1-CS3 are general change
scenarios. However, since addressing more concrete change scenarios increases
the accuracy of CIA [27], we also address more concrete scenarios. A report on
an industrial survey conducted by de la Vara et al. [13] presents the state of
the practice with respect to safety evidence change impact analysis. The sur-
vey reports that requirement specifications are the artifacts most exposed to
changes during the entire system lifecycle (CS4). UL4600 requires that safety
case maintenance is executed given any change in the system design (CS5). ISO
26262 mandates the demonstration that all the safety critical requirements spec-
ified for the system under consideration have been designed, implemented and
tested. This is usually established by traceability links. The report of de la Vara
et al. emphasizes the fact that traceability links are bound to frequently undergo

120 C. Cârlan et al.

changes during the entire system lifecycle. This is because changes in different
engineering artifacts also trigger changes in the traceability links (CS6). The
results of the industrial survey conducted by de la Vara et al. also indicate that
safety analysis is frequently re-executed during the system lifecycle, outputing
new analysis results (CS7). Another type of engineering artifacts reported by
the survey conducted by de la Vara et al. as undergoing frequent changes are
verification and validation results (CS8). Whenever the system requirements,
design or source code change, re-verification shall be executed, in order to detect
early specification violations. Further, UL4600 requires the execution of safety
case maintenance given changes to the intended operational environment (i.e.,
contextual assumptions) (CS9). UL4600 also recommends that the impact a
system reconfiguration has on the system safety case needs to analyzed (CS10).

Table 1. Overview of the used evaluation criteria and the addressed change scenarios.

4 Review Results

Our SLR resulted in 65 selected publications, presenting 26 different approaches
for safety case maintenance. We present the identified approaches in Table 2,
together with an overview of their capabilities for keeping the system safety case
consistent with other safety artifacts. While for the analysis of each approach we
used all the publications we found during our literature search, in the table we
only reference one or two most relevant publications, due to space restrictions.

Commercial Approaches. Our SLR revealed the existence of two safety case
maintenance approaches implemented in commercial tools. Both approaches
support the traceability between safety cases and other safety artifacts. NOR-
STA [43] addresses change scenario CS1, by identifying missing traceability
links. Further, NOR-STA recommends, given the addition of system model ele-
ments, the addition of argumentation legs concerning the newly added model

Safety Case Maintenance SLR 121

Table 2. Overview of the identified safety case maintenance approaches.

Approach Automated challenge

detection

Automated

impact

propagation

False

positives

Quantitative

CIA

Update

guidance

Tool

support

AC-ROS [10] Yes [CS3] No No No Yes Yes

AdvoCATE [15] No (safety case

regeneration) [CS2]

– No No No Yes

AF3 [8] Yes [CS1, CS3] Yes Yes No No Yes

AMASS Platform

[14,20,22]

Yes [CS1, CS2, CS3,

CS4]

No Yes No No Yes

ASCE [17,32] Yes [CS1, CS3] No Yes No No Yes

Checkable Safety

Cases [9]

Yes [CS1, CS2, CS5,

CS6, CS7]

Yes No No Yes Yes

D-CASE [18,31] Yes [CS3, CS4, CS10] No Yes No Yes Yes

DMILS [11] No (safety case

regeneration) [CS2]

– No No No Yes

Dynamic Safety

Cases [2]

Yes [CS3] Yes No Yes Yes No

ENTRUST [7] Yes [CS3, CS4, CS5] No Yes No No Yes

ETB [12] Yes [CS4, CS5] No Yes No Yes Yes

Event-B Extension

[35]

Yes [CS4, CS5] No Yes No Yes Yes

GAGE [5] Yes [CS5] No Yes No Yes Yes

HIP-HOPS

extension [36]

Yes [CS4, CS5] No Yes No Yes Yes

Interlocking Safety

Cases [42]

Yes [CS3] No No No Yes Yes

Isabelle/SACM [33] Yes [CS1, CS2, CS3,

CS4, CS5]

No Yes No Yes Yes

MMINT-A [27,37] Yes [CS1, CS3, CS7] Yes Yes No No Yes

NOR-STA [43] Yes [CS1, CS2, CS3] No No No Yes Yes

Resolute [19] Yes [CS5] No Yes No Yes Yes

SAFA [1] Yes [CS1, CS2, CS3,

CS6]

No Yes No Yes Yes

Safety Cases for

IMS [34]

Yes [CS2, CS3] Yes Yes No Yes No

Safety Case

Synthesis [3]

Yes [CS4, CS5] No Yes No Yes Yes

SAM [25] Yes [CS1, CS2, CS3] Yes Yes No Yes Yes

SANESAM [24] Yes [CS5] Yes No Yes No Yes

SPIRIT [28] Yes [CS1, CS2 CS3,

CS6]

Yes Yes No No Yes

Weaving Safety

Cases [23]

No (safety case

regeneration) [CS2, CS6]

– No No No Yes

element (CS2). The Assurance and Safety Case Environment (ASCE) [17,32]
reflects the impact of modifications in referenced files on the safety case model.
Further, ASCE supports the comparison between two structured safety cases,
by specifying each version of a safety case as a Kripke structure.

Change Impact Propagation in Safety Cases. There are several approaches
supporting change impact propagation, i.e., which identify the safety case ele-
ments indirectly impacted by a change. The approach of Nicholson et al. [34] is

122 C. Cârlan et al.

only presented in an abstract manner, and is only adequate for Integrated Mod-
ular Systems (IMS). The Sensitivity ANalysis for Enabling Safety Argument
Maintenance (SANESAM) [24] is an accurate safety case maintenance approach
specifying any system change as the modification of the failure rates of hard-
ware components. SANESAM is a quantitative CIA and also provides support
for impact propagation. AutoFOCUS3 (AF3) [8], SAM [25], SPIRIT [28] and
Model Management INTeractive for Assurance cases (MMINT-A) [27] offer sup-
port for automated identification of challenged safety case elements and auto-
mated change impact propagation given the deletion (CS1) or modification of
any referenced artifact (CS3). However, all four approaches are prone to output
false positives. Additionally, MMINT-A checks for correct Automotive Safety
Integrity Level (ASIL) decomposition, given changes in the ASIL attribute of
safety case goals (CS7). Checkable Safety Cases [9] is a novel approach for accu-
rately checking the consistency between safety case and other system models,
supporting different change scenarios (CS1-CS5).

Automated (Re)generation of Safety Cases via Formal Methods. Sev-
eral works, such as ETB [12], GAGE [5], the extension of Event-B for safety
case modeling [35], SACM/Isabelle [33], Resolute [19], the safety case synthe-
sis approach proposed by Bagheri et al. [3], and the HIP-HOPS extension for
modeling safety cases [36] propose the usage of formal verification methods for
the specification of entire safety cases, and/or the formal specification of system
safety properties referenced in the safety case. Some of these approaches even
support the automated generation of the system safety case, by instantiating
patterns with information from formal verification engines. The satisfaction of
formally specified safety claims can be verified against a certain system specifica-
tion (model or code) and the obtained verification results can be automatically
integrated as evidence in the system safety case. Given a change in a formally
specified safety requirement (CS4), it is checked if the system architecture or
the code (still) implements the respective requirement. However, the impact of
that change on the rest of the artifacts (e.g., hazards lists) is not assessed. Fur-
ther, given a change in the system architecture (CS5), some of these approaches
identify the impacted safety case claims and suggest for reverification. However,
given counter-evidence or additional evidence (CS8), which has not been refer-
enced in the safety case before, there is no support for change impact propagation
throughout the rest of the argumentation. All existing approaches may output
false positives, as not every system change invalidates the verification evidence.

(Re)generation of Safety Cases via Automated Pattern Instantia-
tion. Approaches such as the weaving safety case models approach proposed
by Hawkins [23], DMILS [11], and AdvoCATE [15] remove the need for change
impact analysis altogether by instead regenerating the impacted part of the
assurance case model, based on automated pattern instantiation (see Table 2).
The automated pattern instantiation is done by the usage of a third model (i.e.,
an instantiation model) containing the mappings between pattern parameters
to be instantiated and the values with which they shall be instantiated. On the
one hand, in the approach proposed by Hawkins [23], the parameters may be

Safety Case Maintenance SLR 123

instantiated with direct traceability links to other safety engineering models.
Therefore, given the deletion (CS1) or the modification (CS3) of a referenced
system model, the impact of the change on the safety case model is automati-
cally reflected and the patterns are automatically re-instantiated. However, the
approach is too pessimistic, triggering the need for re-instantiation whenever a
system change occurs, even when the change does not impact the validity of the
safety argumentation. On the other hand, in DMILS and AdvoCATE the instan-
tiation models only contain an ID or name of the referenced model elements,
instead of having a direct traceability link. Therefore, the user of AdvoCATE
needs to manually assess the impact of a system change on the safety case and
decide if the patterns shall be re-instantiated. However, AdvoCATE supports
the automated identification of outdated verification evidence and automated
integration of regenerated verification results as evidence in the system safety
case. None of these two approaches provides guidance for how to update the
assurance case given invalidated claims or evidence.

Safety Cases Updated at Runtime. Some approaches such dynamic
safety cases proposed by Denney et al. [16], interlocking safety cases [42],
ENTRUST [7], AC-ROS [10] and D-CASE [30] support the automated update of
assurance cases at runtime, based on the feedback received from online monitors.
However, these frameworks only address changes of certain system configuration
parameters at runtime (specialization of CS3) and do not provide any solution
for handling changes of other assurance artifacts such as hazards, or require-
ments. Only the dynamic safety cases approach supports to some extent change
impact propagation, either by computing how the confidence level is affected
by a parameter change or by propagation based on the relations between GSN
elements.

Change Impact Analysis for Safety Cases. The Architecture-driven, Multi-
concern and Seamless Assurance and Certification of Cyber-Physical Systems
(AMASS) platform [14] and the Safety Artifact Forest Analysis (SAFA) [1] app-
roach are unique approaches, which cannot be fit only into one of the categories
above. AMASS supports the identification of invalidated verification evidence
due to changes in system specification [22] (change scenarios CS4, CS5) and
change impact analysis given changes in the features of the systems [20]. AMASS
provides some support for updating the safety case by updating the contracts of
a system component, given changes in the contextual assumptions [38]. SAFA
automatically generates GSN structures based on a model specifying the trace-
ability links among different safety artifacts. Further, SAFA can compare two
different GSN structures in order to support the assessment of the evolution of a
safety case by identifying the elements added (CS2), deleted (CS1) or modified
(CS3) in a new version of the same GSN structure. SAFA also provide guidance
for updating the safety case, given certain change scenarios, namely CS1, CS2,
CS3, CS4. The two approaches are bound to output false positives, and do not
support automated computation of impact propagation.

124 C. Cârlan et al.

Threats to Validity. One of the main threats to validity is that our results may
be incomplete. To address this threat, we used a hybrid search strategy, combin-
ing manual and automated searches with snowballing. However, our results may
be unreliable due to our lacunary interpretation of the capabilities of some of
the approaches, especially of the ones for which little information was available.
Internal validity. We conducted our SLR based on a defined review protocol, as
recommended by Kitchenham and Charters [26]. Further, the selection of rele-
vant publications was peer reviewed. While the third author of this paper exe-
cuted all the search phases presented before, after the execution of each search
phase, the first author of this paper reviewed all the exclusions and the final
set of included papers. Towards the end of the SLR, the second author of this
paper checked, agreed upon, and refined the whole set of extracted data. Exter-
nal validity. Threats to validity such as bias in data selection, extraction, and
classification may impair the generalizability of the results. While we aimed at
providing complete and valid results, the SLR protocol presented in Sect. 3 could
be used for further updates and/or replication reviews to reinforce its results.
For example, the review could be complemented by searching for approaches for
the maintenance of assurance cases addressing other types of requirements, such
as security, dependability, or trustworthiness.

5 Discussion

Inaccurate Automated CIA. The results of our analysis show that all iden-
tified approaches have some support for automated detection of change impact,
by exploiting traceability links between safety case elements and other engineer-
ing artifacts. Only the approaches for (re)generating safety cases via automated
pattern instantiation remove the need for change impact analysis altogether.
However, 15 out of 26 identified approaches only support the identification of
challenged safety case elements, namely the ones directly impacted by a system
change, without also computing the impact propagation throughout the entire
safety argumentation. Further, with few exceptions, most of the approaches are
inaccurate, namely they are prone to output false positives (see Fig. 1-a). The
approaches that do not provide false negatives only focus on very specific types
of changes or are only adequate to be used for specific types of systems.

Lack of Support for Quantitative CIA. Only 2 out of 26 approaches provide
support for the quantitative assessment of change impact (see Fig. 1-b). The
dynamic safety cases approach proposes the assessment of the impact a system
change has on the confidence in the safety argumentation. However, there are no
details provided on the implementation of this assessment. SANESAM computes
the impact of system changes on the results of a failure probability analysis.
However, such analysis can only be done for hardware components.

Safety Case Maintenance SLR 125

Limited Support for Updating the Safety Case. In Fig. 1-c, we see
that only for certain system change scenarios some guidance for updating the
impacted safety case is provided, whereas 9 approaches do not offer any guid-
ance. 7 out of 26 approaches propose re-verification given changes in either the
system requirements or in the implementing system specification (i.e., system
architecture, system configuration, or source code). However, these approaches
do not give any guidelines on what to do if the newly generated verification
results are negative or if additional evidence (i.e., evidence that has not been
referenced in the safety case) is generated. Further, these approaches are bound
to output false positives, meaning that they cannot determine if the verifica-
tion evidence actually needs to be re-generated, given a certain change. Another
type of safety case update recommendation is provided by SAFE, MMINT-A
and NOR-STA. Given the addition of a new element in a referenced set of ele-
ments, these approaches can identify that the argumentation is incomplete, and
suggest the addition of new claims in the argumentation regarding the newly
added elements. Further, all the approaches for maintaining safety cases consis-
tent with the system configuration at runtime propose to switch from one safety
case to another, in correspondence to the system re-configuration.

Few Addressed Change Scenarios. Each of the state-of-the-art approaches
for safety case maintenance addresses one or more change scenarios (see Fig. 1-f).
However, not every change scenario we identified as relevant for current practice
in Table 1 is addressed by current approaches. Some change scenarios are poorly
addressed in the literature. While approaches such as ETB, GAGE, Event-B
Extension, Resolute, HIP-HOPS extension, ENTRUST and SAFA can detect

Fig. 1. Statistics on existing safety case maintenance approaches.

126 C. Cârlan et al.

the addition of new verification evidence, which they integrate in the safety case
(CS8), they do not assess the extent of the impact the new evidence has on
the safety argumentation. Moreover, to our knowledge, there is no approach
addressing the modification of contextual assumptions (CS9). Currently, given
the modification of a contextual assumption, the entire argumentations depend-
ing on that assumption needs to be manually checked by the safety engineer.

Tool Support. Most of the identified approaches have some tool support (see
Fig. 1-d). The approach proposed by Nicholson et al. [34] and the dynamic safety
cases proposed by Denney et al. do not provide tool support, and also their usage
is not exemplified, leaving certain open questions regarding how to actually apply
them. Used safety case languages. 19 of the identified approaches can be
applied for safety case models compliant with the GSN (see Fig. 1-e).

6 Summary and Future Lines of Work

In the recent years, due to the stringent practical needs for automating safety
assurance, we have witnessed a boom in state-of-the-art approaches for auto-
mated safety case maintenance. In this paper, we reported on the results of
a systematic literature review, which we conducted to identify all the exist-
ing approaches for safety case maintenance. These results may be extended by
also searching for maintenance approaches for any type of assurance cases. Fur-
ther, another possible extension of the SLR is to also consider product-line ori-
ented approaches, which integrate maintenance of safety cases with variability
approaches. The SRL resulted in the selection of 65 papers, presenting 26 dif-
ferent approaches for safety case maintenance, within the interval 2000–2020.
While analyzing the strengths and weaknesses of the identified approaches, we
identified a set of literature gaps, from which we drew some future lines of work.
More Accurate CIAs. With few exceptions, the existing safety case mainte-
nance approaches are inaccurate. More accurate CIA, requiring less involvement
of safety engineers, would be beneficial as it would decrease the time and effort
needed for the execution of the whole safety case maintenance process. Quite
recently, it was estimated that, the change of one line of code in an avionics
system costs around 1 million dollars, and that it takes approximately one year
to be implemented2. Increased support for safety case update. Our SLR
results showed that guidance for how to update the safety case is only available
for few change scenarios, which may have serious consequences3. Quantitative
CIAs. There are few approaches assessing the impact of a change in a quanti-
tative manner. Quantitative analyses could provide the safety engineers with a
better understanding of the implications of a certain change on the system safety,
especially in the context of systems dominated by uncertainty [2]. Addressing
more change scenarios. According to our analysis results, there is a lack of
support in handling change scenarios CS5-CS10 specified in Table 1. Similar

2 https://insights.securecodewarrior.com/one-line-of-code-1-million/.
3 https://libertyvillepersonalinjurylawyer.com/software-fault-liability/.

https://insights.securecodewarrior.com/one-line-of-code-1-million/
https://libertyvillepersonalinjurylawyer.com/software-fault-liability/

Safety Case Maintenance SLR 127

to Kokaly et al. [27], we believe that these gaps could be covered if safety case
maintenance approaches would focus on more concrete change scenarios, and
by enhancing safety case models with metadata specifying the sensitivity of the
safety case to specific system changes.

References

1. Agrawal, A., Khoshmanesh, S., Vierhauser, M., Rahimi, M., Cleland-Huang, J.,
Lutz, R.R.: Leveraging artifact trees to evolve and reuse safety cases. In: Proceed-
ings of the 41st International Conference on Software Engineering, pp. 1222–1233.
IEEE/ACM (2019)

2. Asaadi, E., Denney, E., Menzies, J., Pai, G.J., Petroff, D.: Dynamic assurance
cases: a pathway to trusted autonomy. Computer 53(12), 35–46 (2020)

3. Bagheri, H., Kang, E., Mansoor, N.: Synthesis of assurance cases for software cer-
tification. In: Proceedings of the 42nd International Conference on Software Engi-
neering, New Ideas and Emerging Results, pp. 61–64. ACM (2020)

4. Betz, J., Heilmeier, A., Wischnewski, A., Stahl, T., Lienkamp, M.: Autonomous
driving-a crash explained in detail. Appl. Sci. 9(23), 13–20 (2019)

5. Björnander, S., Land, R., Graydon, P., Lundqvist, K., Conmy, P.: A method to
formally evaluate safety case arguments against a system architecture model. In:
Proceedings of the 2nd Edition of the Workshop on Software Certification. IEEE
Computer Society (2012)

6. Bloomfield, R.E., Bishop, P.G.: Safety and assurance cases: past, present and pos-
sible future - an adelard perspective. In: Dale, C., Anderson, T. (eds.) Making
Systems Safer - Proceedings of the 18th Safety-Critical Systems Symposium, pp.
51–67. Springer, London (2010). https://doi.org/10.1007/978-1-84996-086-1 4

7. Calinescu, R., Weyns, D., Gerasimou, S., Iftikhar, M.U., Habli, I., Kelly, T.: Engi-
neering trustworthy self-adaptive software with dynamic assurance cases. IEEE
Trans. Softw. Eng. 44(11), 1039–1069 (2018)

8. Cârlan, C., Nigam, V., Voss, S., Tsalidis, A.: Explicitcase: tool-support for cre-
ating and maintaining assurance arguments integrated with system models. In:
Proceedings of the 38th International Symposium on Software Reliability Engi-
neering Workshops, pp. 330–337. IEEE (2019)

9. Cârlan, C., Petrisor, D., Gallina, B., Schoenhaar, H.: Checkable safety cases:
Enabling automated consistency checks between safety work products. In: Pro-
ceedings of the 31st International Symposium on Software Reliability Engineering
- ISSRE Workshops, pp. 295–302. IEEE (2020)

10. Cheng, B.H.C., Clark, R.J., Fleck, J.E., Langford, M.A., McKinley, P.K.: AC-ROS:
assurance case driven adaptation for the robot operating system. In: Proceedings
of the 23rd International Conference on Model Driven Engineering Languages and
Systems, pp. 102–113. ACM (2020)

11. Cimatti, A., DeLong, R., Marcantonio, D., Tonetta, S.: Combining MILS with
contract-based design for safety and security requirements. In: Koornneef, F., van
Gulijk, C. (eds.) Combining MILS with contract-based design for safety and secu-
rity requirements. LNCS, vol. 9338, pp. 264–276. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-24249-1 23

12. Cruanes, S., Hamon, G., Owre, S., Shankar, N.: Tool integration with the evidential
tool bus. In: Giacobazzi, R., Berdine, J., Mastroeni, I. (eds.) VMCAI 2013. LNCS,
vol. 7737, pp. 275–294. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-35873-9 18

https://doi.org/10.1007/978-1-84996-086-1_4
https://doi.org/10.1007/978-3-319-24249-1_23
https://doi.org/10.1007/978-3-319-24249-1_23
https://doi.org/10.1007/978-3-642-35873-9_18
https://doi.org/10.1007/978-3-642-35873-9_18

128 C. Cârlan et al.

13. de la Vara, J.L., Borg, M., Wnuk, K., Moonen, L.: An industrial survey of safety
evidence change impact analysis practice. IEEE Trans. Software Eng. 42(12), 1095–
1117 (2016)

14. De La Vara, J.L., Parra, E., Ruiz, A., Gallina, B.: The AMASS tool platform: an
innovative solution for assurance and certification of cyber-physical systems. In:
CEUR Workshop Proceedings, vol. 2584. CEUR-WS (2020)

15. Denney, E., Pai, G.: Tool support for assurance case development. Autom. Softw.
Eng. 25(3), 435–499 (2018)

16. Denney, E., Pai, G.J., Habli, I.: Dynamic safety cases for through-life safety assur-
ance. In: Proceedings of the 37th International Conference on Software Engineer-
ing, pp. 587–590. IEEE Computer Society (2015)

17. Felici, M.: Modeling safety case evolution – examples from the air traffic manage-
ment domain. In: Guelfi, N., Savidis, A. (eds.) RISE 2005. LNCS, vol. 3943, pp.
81–96. Springer, Heidelberg (2006). https://doi.org/10.1007/11751113 7

18. Fujita, H., Matsuno, Y., Hanawa, T., Sato, M., Kato, S., Ishikawa, Y.: DS-bench
toolset: tools for dependability benchmarking with simulation and assurance. In:
Proceedings of the 42nd International Conference on Dependable Systems and
Networks, pp. 1–8. IEEE Computer Society (2012)

19. Gacek, A., Backes, J., Cofer, D.D., Slind, K., Whalen, M.: Resolute: an assurance
case language for architecture models. Computing Research Repository (CoRR),
abs/1409.4629 (2014)

20. Gallina, B.: AMASS Deliverable: design of the AMASS tools and methods for
cross/intra-domain reuse. Technical report D6.3, AMASS Consortium (2018)

21. Govardhanrao, S.B.: A comparative analysis of argumentation languages in the
context of safety case development. Master’s thesis, Mälardalen University, School
of Innovation, Design and Engineering (2019)

22. Grüber, T.: AMASS Deliverable: Prototype for multi-concern assurance. Technical
Report D4.6, AMASS Consortium (2018)

23. Hawkins, R., Habli, I., Kolovos, D., Paige, R., Kelly, T.: Weaving an assurance case
from design: a model-based approach. In: Proceedings of the 16th International
Symposium on High Assurance Systems Engineering, pp. 110–117. IEEE (2015)

24. Jaradat, O.T.S., Bate, I.: Using safety contracts to guide the maintenance of sys-
tems and safety cases. In: Proceedings of the 13th European Dependable Comput-
ing Conference, pp. 95–102. IEEE Computer Society (2017)

25. Kelly, T.P., McDermid, J.A.: A systematic approach to safety case maintenance.
Reliab. Eng. Syst. Safety 71(3), 271–284 (2001)

26. Kitchenham, B., Charters, S.: Guidelines for performing systematic literature
reviews in software engineering (EBSE 2007-001) (2007)

27. Kokaly, S., Salay, R., Chechik, M., Lawford, M., Maibaum, T.: Safety case impact
assessment in automotive software systems: an improved model-based approach. In:
Tonetta, S., Schoitsch, E., Bitsch, F. (eds.) SAFECOMP 2017. LNCS, vol. 10488,
pp. 69–85. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66266-4 5

28. Lin, C.-L., Shen, W., Yue, T., Li, G.: Automatic support of the generation and
maintenance of assurance cases. In: Feng, X., Müller-Olm, M., Yang, Z. (eds.)
SETTA 2018. LNCS, vol. 10998, pp. 11–28. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-99933-3 2

29. Maksimov, M., Fung, N.L.S., Kokaly, S., Chechik, M.: Two decades of assurance
case tools: a survey. In: Gallina, B., Skavhaug, A., Schoitsch, E., Bitsch, F. (eds.)
SAFECOMP 2018. LNCS, vol. 11094, pp. 49–59. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-99229-7 6

https://doi.org/10.1007/11751113_7
https://doi.org/10.1007/978-3-319-66266-4_5
https://doi.org/10.1007/978-3-319-99933-3_2
https://doi.org/10.1007/978-3-319-99933-3_2
https://doi.org/10.1007/978-3-319-99229-7_6
https://doi.org/10.1007/978-3-319-99229-7_6

Safety Case Maintenance SLR 129

30. Matsuno, Y.: A design and implementation of an assurance case language. In:
Proceedings of the 44th Annual International Conference on Dependable Systems
and Networks, pp. 630–641. IEEE Computer Society (2014)

31. Matsuno, Y., Yamamoto, S.: A framework for dependability consensus building
and in-operation assurance. J. Wirel. Mobile Netw. Ubiquit. Comput. Depend.
Appl. 4(1), 118–134 (2013)

32. Mistry, M., Felici, M.: Implementation of change management in safety cases. For-
mal Aspects of Safety-Critical Systems (2008)

33. Nemouchi, Y., Foster, S., Gleirscher, M., Kelly, T.: Mechanised assurance cases
with integrated formal methods in Isabelle. Computing Research Repository
(CoRR), abs/1905.06192 (2019)

34. Nicholson, M., Conmy, P., Bate, I., McDermid, J.: Generating and maintaining a
safety argument for integrated modular systems. In: Proceedings of the 5th Aus-
tralian Workshop on Industrial Experience with Safety Critical Systems and Soft-
ware, pp. 31–41 (2000)

35. Prokhorova, Y., Laibinis, L., Troubitsyna, E.: Facilitating construction of safety
cases from formal models in Event-B. Inf. Soft. Technol. 60, 51–76 (2015)

36. Retouniotis, A., Papadopoulos, Y., Sorokos, I., Parker, D., Matragkas, N., Sharvia,
S.: Model-connected safety cases. In: Bozzano, M., Papadopoulos, Y. (eds.) IMBSA
2017. LNCS, vol. 10437, pp. 50–63. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-64119-5 4

37. Sandro, A.D., Selim, G.M.K., Salay, R., Viger, T., Chechik, M., Kokaly, S.:
MMINT-A 2.0: tool support for the lifecycle of model-based safety artifacts. In:
Proceedings of the 23rd International Conference on Model Driven Engineering
Languages and Systems, pp. 15:1–15:5. ACM (2020)

38. Sljivo, I., Gallina, B., Carlson, J., Hansson, H.: Using safety contracts to guide the
integration of reusable safety elements within ISO 26262. In: Proceedings of the
21st Pacific Rim International Symposium on Dependable Computing - PRDC,
pp. 129–138. IEEE Computer Society (2015)

39. I. Standard. 26262: Road vehicles - functional safety. ISO (2018)
40. Törner, F., Öhman, P.: Automotive safety case a qualitative case study of drivers,

usages, and issues. In: Proceedings of the 11th High Assurance Systems Engineering
Symposium, pp. 313–322. IEEE Computer Society (2008)

41. UNDERWRITERS LABORATORIES INC.: ANSI/UL-4600 Standard for Evalu-
ation of Autonomous Products (2020)

42. Vierhauser, M., et al.: Interlocking safety cases for unmanned autonomous systems
in shared airspaces. Trans. Softw. Eng. 47, 899–918 (2019)

43. Wardziński, A., Jones, P.: Uniform model interface for assurance case integration
with system models. In: Tonetta, S., Schoitsch, E., Bitsch, F. (eds.) SAFECOMP
2017. LNCS, vol. 10489, pp. 39–51. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-66284-8 4

44. Wohlin, C.: Guidelines for snowballing in systematic literature studies and a repli-
cation in software engineering. In: Proceedings of the 18th International Conference
on Evaluation and Assessment in Software Engineering, pp. 1–10. ACM (2014)

45. Zhang, H., Babar, M.A., Tell, P.: Identifying relevant studies in software engineer-
ing. Inf. Softw. Technol. 53(6), 625–637 (2011)

https://doi.org/10.1007/978-3-319-64119-5_4
https://doi.org/10.1007/978-3-319-64119-5_4
https://doi.org/10.1007/978-3-319-66284-8_4
https://doi.org/10.1007/978-3-319-66284-8_4

Towards Certified Analysis of Software
Product Line Safety Cases

Ramy Shahin1(B), Sahar Kokaly2, and Marsha Chechik1

1 University of Toronto, Toronto, Canada
{rshahin,chechik}@cs.toronto.edu
2 General Motors, Markham, Canada

sahar.kokaly@gm.com

Abstract. Safety-critical software systems are in many cases designed
and implemented as families of products, usually referred to as Software
Product Lines (SPLs). Products within an SPL vary from each other in
terms of which features they include. Applying existing analysis tech-
niques to SPLs and their safety cases is usually challenging because of
the potentially exponential number of products with respect to the num-
ber of supported features. In this paper, we present a methodology and
infrastructure for certified lifting of existing single-product safety analy-
ses to product lines. To ensure certified safety of our infrastructure, we
implement it in an interactive theorem prover, including formal defini-
tions, lemmas, correctness criteria theorems, and proofs.

We apply this infrastructure to formalize and lift a Change Impact
Assessment (CIA) algorithm. We present a formal definition of the lifted
algorithm, outline its correctness proof (with the full machine-checked
proof available online), and discuss its implementation within a model
management framework.

Keywords: Safety cases · Product lines · Lean · Certified analysis

1 Introduction

The development of safety-critical systems usually involves a rigorous safety
engineering process. A primary artifact resulting from that is a safety case, iden-
tifying potential safety hazards, their mitigation goals, and pieces of evidence
required to show that goals have been achieved. Safety cases, together with other
system artifacts, are usually inspected and analyzed by tools as a part of the
safety engineering process. In safety-critical domains, correctness of those tools
is essential to the integrity of the whole process. Correctness certification of tools
w.r.t. their specifications becomes of extremely high value in this context.

In many cases, families of safety-critical software products are developed
together in the form of Software Product Lines (SPLs). Different product variants
of an SPL have different features, i.e., externally visible attributes such as a piece
of functionality, support for a particular peripheral device, or a performance
c© Springer Nature Switzerland AG 2021
I. Habli et al. (Eds.): SAFECOMP 2021, LNCS 12852, pp. 130–145, 2021.
https://doi.org/10.1007/978-3-030-83903-1_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-83903-1_9&domain=pdf
https://doi.org/10.1007/978-3-030-83903-1_9

Towards Certified Analysis of Software Product Line Safety Cases 131

Fig. 1. Lifted change impact assessment when the “Visual” class is modified. A dashed
ellipse around the Visual class denotes a modification, and dashed ellipses around safety
case elements indicate that they need to be rechecked as a result.

optimization. Each feature can be either present or absent in each of the product
variants of an SPL. Given this combinatorial nature of feature composition,
analyzing the safety of each product instance individually in a brute-force fashion
is usually intractable.

Several source-code and model-based analysis tools have been lifted to prod-
uct lines [2,5,9,12,20,22–24] in the sense that they can be applied efficiently to
the whole product line at once, leveraging the commonalities between individual
products, and thus generating aggregated results for the complete product set.
Those results have to be correct with respect to applying the analysis to each
product individually. However, to the best of our knowledge, lifting of safety
analyses has not been attempted before.

In this paper, we present a systematic methodology to correct-by-
construction lifting of safety case analysis algorithms to software product lines.
This includes infrastructure building blocks for implementing lifted algorithms,
and proving their correctness with respect to their single-product counterparts.
We use the Lean interactive theorem prover [18] to formalize the correctness
criteria of lifting, implement our lifting infrastructure, and prove the correctness
of lifted algorithms. A Lean proof is machine-checked, so it can be used as a
correctness certificate of the property being proven.

We demonstrate our approach on a Change Impact Assessment (CIA) algo-
rithm [15] that takes a system model, an assurance case, traceability links in
between, and a modification to the system model as inputs, and determines the
set of safety case elements that need to be revised or rechecked.

Motivating Example. Consider the Lane Management System (LMS) system
outlined in [4]. LMS can be thought of as a product line with several features,
including: Lane Departure Warning System (LDWS), Audio warning (Audio),
and Visual warning (Visual). For simplicity of presentation, we assume that all

132 R. Shahin et al.

feature combinations are allowed. Figure 1 shows a snippet of the class diagram
of the LMS product line, and the corresponding snippet of its GSN [13] assurance
case, with traceability links in between the two.

We use colored annotations to map class diagram and GSN elements to fea-
tures. For example, elements colored in green belong to the Audio feature, and
those in orange belong to the LDWS feature. Base system elements (existing in all
products) are in yellow. In general each element can be annotated by a proposi-
tional formula over features (usually referred to as a presence condition).

Consider a modification to the Visual class. The problem CIA algorithms
try to solve is figuring out how that modification of a system element would
impact the safety case. We distinguish between two ways in which a change to
the system can impact safety case elements [15]: (1) revise – the content of
the element (e.g., definition of a goal, or description of a solution) may have
to be revised because it referred to a system element that has changed and the
semantics of the content may have changed, and (2) recheck – the state of the
element (e.g., whether a goal is satisfied, or a solution is available) must be
rechecked because it may have changed.

In a product line setting, in addition to figuring out which elements are
impacted, we also need to identify the product variants in which they are. In
Fig. 1, goals G19 and G20 are directly impacted by modifications to class Visual
because of the direct traceability links. Both classes need to be rechecked as a
result, but only in products where the Visual feature is included. In the same set
of products, pieces of evidence linked to those goals (Sn4, Sn11, Sn18) need to be
rechecked as well. Note that although G20, Sn4, and Sn18 belong to all product
variants, we do not need to recheck them in product variants not including the
Visual feature.

A CIA tool lifted to product lines has to preserve the exact semantics of its
single-product counterpart. In other words, using the lifted tool should output
exactly the union of outputs of the single-product tool applied to each product
variant. A software bug in the lifted tool might result in false positives (elements
marked as impacted while they should not). Even worse, a bug might result in
overlooking an impacted element, potentially resulting in safety incidents.

Contributions. In this paper, we (1) outline a methodology for lifting safety
analyses to safety cases of software product lines, and present a generic infras-
tructure for certified lifting (data structures and correctness criteria) using the
Lean interactive theorem prover; and (2) demonstrate our methodology on a CIA
algorithm lifted to software product lines, i.e., supporting the input of feature-
specific modifications, and outputting feature-specific annotations of safety case
elements. In addition, (3) we formalize the single-configuration CIA algorithm
from [15] using Lean; (4) we outline a sketch of the correctness proof of the lifted
CIA algorithm with respect to the single-configuration one (full Lean proof avail-
able online); and (5) we discuss extending the MMINT-A [7] model management
framework with lifted safety algorithms, including lifted CIA.

Towards Certified Analysis of Software Product Line Safety Cases 133

Organization. The rest of this paper is organized as follows: In Sect. 2, we
provide background on safety cases and SPLs. We outline the correctness criteria,
methodology, and infrastructure needed to formally lift safety case algorithms in
Sect. 3. In Sect. 4 we formalize the original single-configuration CIA algorithm,
its lifted counterpart, and outline the lifting correctness proof. Section 5 explains
how lifted algorithms can be integrated into existing model management tools.
Section 6 compares our approach to related work, and Sect. 7 concludes.

2 Background

In this section, we provide background on safety cases, the GSN notation, Change
Impact Assessment (CIA), and Software Product Lines (SPLs).

2.1 Safety Cases, GSN, and Change Impact Assessment

A safety case is a structured argument, decomposing safety goals into sub-goals,
and linking pieces of safety evidence to the goals. Safety goals are usually iden-
tified using hazard assessment techniques. Each of the hazards needs to be mit-
igated by fulfilling one or more safety goal(s).

Goal Structured Notation (GSN) [13] is a graphical notation for defining
safety cases. The safety case portion of Fig. 1 is an example of a GSN safety
case model. A GSN model has elements of four different types. A goal is either
satisfied or not based on the states of its sub-goals, connected solution nodes,
and the semantics of decomposition strategy nodes involved. A solution is a piece
of evidence that needs to be validated for its connected goal(s) to be satisfied.
A strategy is a decomposition of a goal into sub-goals. A context connected to a
goal node adds contextual assumptions that are assumed to hold when evaluating
whether a goal is satisfied or not.

GSN-IA [15] is an algorithm for reflecting changes made in system models
onto the relevant GSN safety cases. The inputs to GSN-IA are the initial system
model S and a safety case A connected by a traceability mapping R, the changed
system S′ and the delta D recording the changes between S and S′. Specifically,
D is the triple 〈C0a,C0d,C0m〉 where C0a, C0d, and C0m are the sets of
elements added, deleted, and modified respectively. The output of GSN-IA is
the annotated model K of the safety case A, indicating which elements are
marked for revise, recheck, or reuse.

GSN-IA is parameterized by three slicers [21]: a system model slicer SliceSys,
and two safety case slicers SliceGSNV

and SliceGSNR
. SliceSys is used to

determine how the impact of modifications propagates within the system model.
Similarly, the safety case slicers trace through dependencies within the safety
case, with SliceGSNV

only tracing direct dependencies, while SliceGSNR
recur-

sively generates the transitive closure of dependencies.

2.2 Software Product Lines

We introduce Software Product Line (SPL) concepts following definitions
from [20]. An SPL L is a tuple (F,Φ,D, φ) where: (1) F is the set of features s.t.

134 R. Shahin et al.

an individual product can be derived from L via a feature configuration ρ ⊆ F .
(2) Φ ∈ Prop(F) is a propositional formula over F defining the valid set of
feature configurations. Φ is called a Feature Model (FM) of L. The set of valid
configurations defined by Φ is called Conf(L). (3) D is a set of program ele-
ments, called the domain model. The whole set of program elements is usually
referred to as the 150% representation of L. (4) φ : D → Prop(F) is a total
function mapping each program element to a proposition (feature expression)
defined over the set of features F . φ(e) is called the Presence Condition (PC) of
element e, i.e. the set of product configurations in which e is present.

Given a product line L and a feature configuration ρ, we define L|ρ to be
the subset of elements of L that belong to at least one of the features in ρ. We
loosely use the same indexing operator when referring to subsets of values in a
data structure subject to a feature configuration. For example, given a feature
configuration {LDWS, Visual}, a product with all the elements, except for the
ones annotated in green, is instantiated from the product line in Fig. 1.

3 Methodology and Infrastructure

In this section, we present a set of generic infrastructure building blocks that can
be used in designing and certifying the correctness of variability-aware algorithms
applied to safety cases. We then present the correctness criteria of variability-
aware algorithms with respect to their single-product counterparts. Finally, we
put the infrastructure together with the correctness criteria into a correct-by-
construction methodology for systematic lifting of safety case algorithms. Infras-
tructure definitions, theorems, and proofs are implemented in 53 Lean lines of
code.

We formalize algorithms, theorems, and proofs using the Lean [18] inter-
active theorem prover. We had two requirements for the proof assistant to be
used in this project: (1) to be based on constructive rather than classical logic, to
allow for explicit tracing of which sub-goals (and their proof evidence) contribute
to the overall proof; and (2) to allow for sound user-defined proof automation
procedures, which can reduce the human effort involved in the proof develop-
ment process. Lean meets those two requirements. It is based on the Calculus of
Inductive Constructions [1], so it supports constructive logic by default. It also
supports tactic-based meta-programming of theorems and proof objects.

Lifted Data Structures. The types of all input, output, and intermediate
data structures of an algorithm need to be lifted, i.e., elements of each of those
data structures need to be paired with presence conditions, indicating the set
of products this element belongs to. Listing 1 has definitions of some of the
data types used for lifted data structures. PC (line 1) is the type for presence
conditions, which is defined as native Lean propositions. Var (line 2) is a higher-
order lifted type, taking a type α as a parameter, and pairing values of type α
with presence conditions.

The lifted set data type set′ (line 3) is a higher-order type parameterized by
type α, and implemented as a function α → PC. This implementation happens to

Towards Certified Analysis of Software Product Line Safety Cases 135

1 def PC := Prop
2 structure Var (α) : Type) := (v : α) (pc : PC)
3 def set′ (α : Type) : Type := α → PC
4 def index (s : set′ α) (pc : PC) : set α := (and pc) ◦ s
5 def mem (x : Var α) (s : set′ α) : Prop := x.pc → (s x.v)
6 def subset (s1 s2 : set′ α) : Prop := ∀ a, mem a s1 → mem a s2
7 def union (s1 s2 : set′ α) : set′ α := λ x, (s1 x) ∨ (s2 x)
8 def image (f : α → β) (s : set′ α) : set′ β := λ x, (∀ y, f y = x ∧ s y)

Listing 1. Variability-aware building blocks.

Fig. 2. Lifting correctness criteria.

be the same as the implementation of Lean sets. However, the semantics of Lean
sets assume that a value of type α is either present or absent in a set over α. Lifted
sets on the other hand map an element of type α to an arbitrary propositional
formula which might evaluate to True (i.e., the element exists in the set in all
configurations), False (i.e., the element does not exist in any configuration of the
set), or a contingent formula indicating the set of configurations in which the
element exists in the set.

The primary operation on lifted data types in general is indexing. Given a
lifted set s and a presence condition pc, index s pc evaluates to a Lean set
(not lifted) of elements existing in the configurations satisfied by pc in s. This
is exactly how the index operator is defined on set′, conjoining pc with the
presence condition of each element in s (line 4).

Standard set operations also need to be overloaded for lifted sets. Lifted
set membership semantically checks if a lifted value (v,pc) exists in all con-
figurations of a lifted set s. It is defined (line 5) as a propositional implication
between pc (the set of configurations where the lifted value exists), and the set
of configurations where v exists in s.

Lifted subset is defined exactly the same as standard subset, using the lifted
definition of set membership (line 6). Similarly, lifted set union is implemented
as a disjunction of the propositional definitions of its two arguments (line 7).
The last lifted set operation is image (line 8), taking a function f : α → β and
a lifted set s of α, and applies f to each element s, returning a lifted set of β.

Correctness Criteria. Given a product line L, an analysis algorithm f , and
a product configuration ρ, we construct a lifted version of f (referred to as f ′),
such that instantiating a product P from L using configuration ρ, and then
applying f to P has the same result as applying f ′ to L and then instantiating a

136 R. Shahin et al.

1 variables (f : set α → set β) (g : set β → set γ)
2 variables (f′ : set′ α → set′ β) (g′ : set′ β → set′ γ)
3 theorem fun_comp_correct :
4 (∀ a ρ, (f (a | ρ) = (f′ a) | ρ)) → (∀ b ρ, (g (b | ρ) = (g′ b) | ρ)) →
5 (∀ a ρ, (g ◦ f) (a | ρ) = ((g′ ◦ f′) a) | ρ)

Listing 2. Lifted function composition theorem.

product-specific result using ρ. This is summarized by the commuting diagram
in Fig. 2a [22].

Lifting Methodology. We follow a divide-and-conquer methodology to design
lifted analyses from their single-product counterparts. If an analysis algorithm is
broken-down into smaller functions, and each of those functions is individually
lifted, composing the lifted functions together has to preserve the correctness
criteria. This is summarized in Fig. 2b.

We formulate the correctness criteria of lifted function composition as a
theorem (Listing 2). Assume we have two functions (f:set α → set β) and
(g:set β → set γ), and their two lifted functions (f′:set′ α → set′ β)
and (g′:set′ β → set′ γ) respectively (Line 2). The theorem states that if f′ is a
correct lifting of f, and g′ is a correct lifting of g, then g′ ◦ f′ is a correct lifting
of g ◦ f (Lines 3-5). The theorem is proven by term rewriting. Definitions of all
theorems, lemmas, and their full Lean proofs are available online1.

Correctness of the lifted function composition theorem is the foundation of
compositional lifting correctness proofs. Small helper functions can be manu-
ally lifted and proven correct relatively easily, and their correctness proofs can
be composed together with composing the functions themselves using the the-
orem. This way, lifted analyses can be compositionally implemented following
the same structure of their single-product counterparts, composing correctness
proofs together with function composition. We demonstrate this methodology
on lifting a Change Impact Assessment (CIA) algorithm in Sect. 4.

4 Change Impact Assessment

In this section, we formalize the GSN-IA [15] impact assessment algorithm, sys-
tematically design a lifted version of it, and prove its correctness based on the
methodology in Sect. 3. In total, the GSN-IA algorithm is formalized in 45 Lean
lines of code. The formalization of the lifted algorithm, together with correctness
lemmas and proofs takes 160 lines of Lean code.

4.1 Single-Product Algorithm
The data types and external dependencies of the GSN_IA algorithm are defined
in Listing 3. Annotation is the data type of annotations assigned to GSN model
elements, with the values Reuse, Recheck, and Revise (lines 1-2). SysEl and
GSNEl are opaque types of system model elements and GSN model elements
1 https://github.com/ramyshahin/variability.

https://github.com/ramyshahin/variability

Towards Certified Analysis of Software Product Line Safety Cases 137

1 inductive Annotation : Type
2 | Reuse | Recheck | Revise
3
4 constants SysEl GSNEl : Type
5 def Sys : Type := set SysEl
6 def GSN : Type := set GSNEl
7 def TraceRel : Type := set (SysEl × GSNEl)
8
9 variable sliceSys (s : Sys) (es : set SysEl) : Sys

10 variable sliceGSN_V (ac : GSN) (es : set GSNEl) : GSN
11 variable sliceGSN_R (ac : GSN) (es : set GSNEl) : GSN
12 structure Delta := (add: set SysEl) (delete: set SysEl) (modify: set SysEl)

Listing 3. Type definitions of the formalized GSN_IA algorithm.

respectively, where a system model Sys and a GSN model GSN are sets of each
of those elements types (lines 4-6). TraceRel is a traceability relation between
system model elements and GSN model elements, so it is a defined as a set
of ordered pairs of SysEl and GSNEl (line 7). GSN_IA is parameterized by
three model slicers: sliceSys is a system model slicer, while sliceGSN_V and
sliceGSN_R are GSN model slicers. Each of the slicers takes a model and a set of
elements used as the slicing criterion, returning a subset slice of the input model
(lines 9–11). Delta is composed of three sets of system elements, representing
the elements added, modified and deleted (lines 12). Listing 4 has the definitions
of the GSN_IA algorithm, together with three helper functions. restrict is a
function taking a traceability relation t and a delta es as inputs, and returns
a restricted subset of t only covering elements in es (lines 1–2). trace takes a
traceability relation t and a set of system elements es as inputs, and returns the
set of GSN elements mapped from es by t (lines 4–5). createAnnotation assigns
an Annotation value to each element in a GSN model, given sets of elements to
be rechecked and revised (lines 7–12).

The change impact assessment algorithm GSN_IA takes two system models
S and S′ and the delta D between them. It also takes a GSN model A and a trace-
ability relation R between system model elements and GSN model elements. It
returns a set of ordered pairs of GSN model elements and annotations. The algo-
rithm starts by restricting the traceability relation based on D, slices the original
system model S using the elements deleted and modified as a slicing criterion,
and slices the modified system model S′ using the added and modified elements
as the slicing criterion (lines 16–18). Using those two slices, the corresponding
GSN model elements are traced using the traceability relation (line 19). The
GSN elements traced from elements deleted from the original system model are
to be revised (line 20). The slice of the GSN model based on the traced elements
are to be rechecked (lines 21–22), and both revise and recheck sets are used to
annotate the GSN model elements (line 23).

138 R. Shahin et al.

1 def restrict (t : TraceRel) (d : Delta) : TraceRel :=
2 λ x, x.1 ∈ d.add ∪ d.delete ∪ d.modify
3
4 def trace (t : TraceRel) (es : set SysEl) : set GSNEl :=
5 image prod.snd {p | p ∈ t ∧ p.1 ∈ es}
6
7 def createAnnotation (g : GSN) (recheck : set GSNEl) (revise : set GSNEl)
8 : set (GSNEl × Annotation) :=
9 let ch := image (λ e, (e, Annotation.Recheck)) recheck,

10 rv := image (λ e, (e, Annotation.Revise)) revise,
11 ru := image (λ e, (e, Annotation.Reuse)) (g − (recheck ∪ revise))
12 in ch ∪ rv ∪ ru
13
14 def GSN_IA (S : Sys) (S′ : Sys) (A : GSN) (R : TraceRel) (D : Delta)
15 : set (GSNEl × Annotation) :=
16 let R′ := restrict R D,
17 C1dm := sliceSys S ((delete D) ∪ (modify D)),
18 C1am := sliceSys S′ ((add D) ∪ (modify D)),
19 C2Recheck := (trace R C1dm) ∪ (trace R′ C1am),
20 C2Revise := trace R (delete D),
21 C3Recheck1 := sliceGSN_V A C2Revise,
22 C3Recheck2 := sliceGSN_R A (C2Recheck ∪ C3Recheck1)
23 in createAnnotation A C3Recheck2 C2Revise

Listing 4. Helper functions and the formalized GSN_IA algorithm.

4.2 Lifted Algorithm

Listing 5 is the variability-aware version of the algorithm in Listing 4. Both
algorithms are compositions of function/operator calls, so each of those func-
tions/operators is replaced with its lifted counterpart. We assume that lifted
versions of the three slicers are provided, and that they meet the correctness
criteria of Fig. 2a.

All the set types used in GSN_IA need to be lifted. Definitions in lines 1–4
are lifted sets of system model elements, GSN model elements, and traceability
mappings. A lifted delta (line 4) is composed of three lifted sets (additions,
deletions and modifications).

The proof of the correctness theorem used auxiliary correctness lemmas for
each of the helper algorithms. Each of the proofs expands definitions and repeat-
edly applies the correctness of lifted function composition (Fig. 2b).

Lifted Helper Algorithms. Since the lifted CIA algorithm operates on lifted
data structures, all helper algorithms need to be modified to correctly oper-
ate on lifted data structures as well. In particular, we outline lifted versions of
restrict and trace (Listing 6).

The original implementation of restrict takes a traceability map and a delta
as inputs, and returns the minimal subset of the traceability map that covers
all the elements in the delta. We now have presence conditions associated to
system model elements, assurance case elements, and also the traceability links

Towards Certified Analysis of Software Product Line Safety Cases 139

1 def Sys′ : Type := set′ SysEl
2 def GSN′ : Type := set′ GSNEl
3 def TraceRel′ : Type := set′ (SysEl × GSNEl)
4 structure Delta′ :=(add: set′ SysEl)(delete: set′ SysEl)(modify: set′ SysEl)
5
6 def GSN_IA′ (S S′ : Sys′) (A : GSN′) (R : TraceRel′) (D : Delta′)
7 : set′ (GSNEl × Annotation) :=
8 let R′ := restrict′ R D,
9 C1dm := sliceSys′ S (D.delete ∪ D.modify),

10 C1am := sliceSys′ S′ (D.add ∪ D.modify),
11 C2Recheck := (trace′ R C1dm) ∪ (trace′ R′ C1am),
12 C2Revise := trace′ R D.delete,
13 C3Recheck1 := sliceGSN_V′ A C2Revise,
14 C3Recheck2 := sliceGSN_R′ A (C2Recheck ∪ C3Recheck1)
15 in createAnnotation′ A C3Recheck2 C2Revise

Listing 5. Lifted Change Impact Assessment algorithm.

1 def restrict′ (t : TraceRel′) (d : Delta′) : TraceRel′ :=
2 let relevant := d.add ∪ d.delete ∪ d.modify
3 in λ x, t x ∧ relevant x.1
4
5 def trace′ (t : TraceRel′) (es : set′ SysEl) : set′ GSNEl :=
6 λ (g:GSNEl), ∃ (s : SysEl) , es s ∧ t 〈s , g〉

Listing 6. Lifted implementation of restrict and trace.

in between. The lifted version of restrict (referred to as restrict′) needs to
correctly process all those presence conditions.

The lifted algorithm starts by calculating the set of relevant elements in the
system model, which is the union of added, deleted and modified elements in the
delta (line 2). The algorithm returns a lifted traceability mapping as a function
taking ((s,g),pc), where (s,g) is a system model element-GSN model element
pair, and pc is a presence condition. This function evaluates to the conjunction
of applying the input traceability map t to ((s,g),pc), and applying relevant
to (s,g). Recall that variability-aware sets (as well as Lean sets) are functions
mapping values of a given type to propositions.

Similarly, trace′ is the lifted version of trace. The returned lifted set is
a function mapping a GSN model element g to the set of configurations from
which there exists a system model element s in the input lifted set of system
elements, where (s,g) belongs to the input traceability map.

The lifted version of createAnnotation (named createAnnotation′) is of
exactly the same structure as the original because it strictly uses set operations
(union, set difference and image), which have been all lifted as a part of the
underlying variability-aware set implementation (Listing 1). The correctness
theorem of GSN_IA′ with respect to GSN_IA is in Listing 7. It is a direct
instantiation of the general correctness criteria in Fig. 2a, applied to inputs of
the GSN_IA algorithm.

140 R. Shahin et al.

1 theorem GSN_IA′_correct :
2 ∀ (S S′ : Sys′) (A : GSN′) (R : TraceRel′) (D : Delta′) (pc : PC),
3 (GSN_IA′ S S′ A R D) | pc = GSN_IA (S | pc) (S′ | pc) (A | pc) (R | pc) (D | pc)

Listing 7. Correctness theorem of GSN_IA′.

4.3 Examples

Fig. 3. Inputs to the GSN-IA′ algorithm used in Ex1 and Ex2.

In this section, we apply our lifted CIA algorithm to two examples of modi-
fications to the fragment of the LMS product line presented in Sect. 1 (Fig. 1).

Ex1: Feature-Specific Modification. Suppose that the Visual class is mod-
ified. This class is local to the Visual feature. If we only analyze the fragment
in Fig. 1, the inputs to GSN-IA′ are shown in Fig. 3a and Fig. 3b.

Tracing through the algorithm, the first step is using restrict′ to calcu-
late R’= {(Visual, G19, Visual), (Visual, G20, Visual)} (line 8). Because
C0a and C0d are both empty, and assuming a backward slicer (returning
the transitive closure of the elements that might affect the slicing criteria),

Towards Certified Analysis of Software Product Line Safety Cases 141

C1dm and C1am both become {(Alarm, True), (Visual, Visual), (LaneDepar-
tureWarningSystem, LDWS)} (lines 9–10). Now tracing from C1dm and C1am,
C2recheck becomes {(G19, Visual), (G20, Visual)} (line 11). Since C0d is
empty, C2revise and C3recheck1 are both empty as well (lines 12–13). Using
a backward GSN slicer, C3recheck2 becomes {(G19, Visual), (G20, Visual),
(Sn11, Visual), (Sn4, Visual), (Sn18, Visual)} (line 14). The algorithm returns
an empty set of GSN elements to be revised, and the set C3recheck2 to be
rechecked. Note that G20, Sn4, and Sn18 are all base model elements (having
True as a presence condition), so the algorithm output states that we need to
recheck those elements only in products where the feature Visual is present.

Ex2: Base System Modification. Suppose that the Alarm class is modified.
This is a base system class, i.e., it is present in all products. The inputs to
GSN-IA′ (restricted to the fragment in Fig. 1) are shown in Fig. 3a and Fig. 3c.

Since the Alarm class does not have any direct traceability links, R′ is empty
(line 8). Using a backward slicer (like in Ex1), C1dm and C1am both become
{(Alarm, True), (Visual, Visual), (Audio, Audio), (LaneDepartureWarningSys-
tem, LDWS)} (lines 9–10). From C1dm and C1am using the traceability links,
C2recheck becomes {(G18, Audio), (G19, Visual), (G20, Visual)} (line 11).
Again, since C0d is empty, C2revise and C3recheck1 are both empty as well
(lines 12–13). With a backward GSN slicer, C3recheck2 becomes {(G18, Audio),
(G19, Visual), (G20, Visual ∨ Audio), (Sn11, Visual), (Sn12, Audio), (Sn4,
Visual ∨ Audio), (Sn18, Visual ∨ Audio)} (line 14). The algorithm returns
an empty set of GSN elements to be revised, and the set C3recheck2 to be
rechecked. Note that in this example, G20, Sn4, and Sn18 are annotated with
recheck with presence condition Visual ∨ Audio, which means that they need
to be rechecked only if either Audio or Visual are present.

5 Towards Implementation

The GSN-IA algorithm is implemented, together with slicers and model opera-
tors, as an extension of the MMINT [6] model management framework (Fig. 4),
called MMINT-A [7]. In order to extend MMINT-A to support annotative prod-
uct line models, and subsequently the lifted change impact assessment algorithm,
the following modifications are required: (1) Model elements need to be extended
with presence conditions, with True as a default value. This way single prod-
uct models (where all elements have the default True presence condition) are
directly supported as well. (2) Operators on models need to be modified to take
presence conditions into consideration, and compute the presence conditions of
their outputs. Those modifications are mostly systematic along the lines of those
of restrict′ and trace′ (Listing 6). (3) Higher-level algorithms (e.g., GSN-IA)
need to be modified accordingly to use the lifted versions of the operators. (4)
The user interface of MMINT-A needs to support annotating different model
elements with presence conditions. (5) Optionally, MMINT-A can check the
well-formedness of presence condition annotations. For example, the presence

142 R. Shahin et al.

condition of an association between two UML classes has to be subsumed by the
presence conditions of its two end points.

Fig. 4. Architecture of the MMINT model management framework [7].

6 Related Work

Model-Based Approaches to Safety Case Management. Many methods
for modeling safety cases have been proposed, including goal models and require-
ments models [3,10] and GSN [13]. The latter is arguably the most widely used
model-based approach to improving the structure of safety arguments. Building
on GSN, Habli et al. [11] examine how model-driven development can provide a
basis for the systematic generation of functional safety requirements and demon-
strates how an automotive safety case can be developed. Gallina [8] proposes a
model-driven safety certification method to derive arguments as goal structures
given in GSN from process models. The process is illustrated by generating argu-
ments in the context of ISO 26262. We consider this category of work compli-
mentary to ours; we do not focus on safety case construction but instead assume
presence of a safety case and focus on assessing the impact of system changes.

Lifting to Software Product Lines. Different kinds of software analyses have
been re-implemented to support product lines [24]. For example, the TypeChef
project implements variability aware parsers and type checkers for Java and
C [12]. The SuperC project [9] is another C language variability-aware parser. A
graph transformation engine was lifted to product lines of graphs [20]. Datalog-
based analyses (e.g., pointer analysis) have been lifted by modifying the Datalog
engine being used [23]. SPLLift [2] lifts data flow analyses to annotative product
lines. Model checkers based on Featured Transition Systems [5] check temporal
properties of transition systems where transitions can be labeled by presence
conditions. Syntactic transformation techniques have been suggested for lifting
abstract interpretation analyses [17] and functional analyses [22] to SPLs.

In this paper, our methodology tailors the lifting approach from related work
to safety cases of product lines, and we demonstrate it on change impact assess-
ment. We tackle a new class of product line artifacts, particularly safety cases.

Towards Certified Analysis of Software Product Line Safety Cases 143

To the best of our knowledge, this is the first attempt to lift a safety case analysis
to product lines.

Formalized Systems and Interactive Theorem Proving. Correctness and
behavioral properties of several software systems have been formalized and
verified using interactive theorem provers. The CompCert compiler [16] is an
example of a C-language compiler fully certified using the Coq theorem prover.
The seL4 microkernel [14] was verified using the Isabelle\HOL theorem prover.
Isabelle was also used to formalize the Structured Assurance Case Metamodel
(SACM) notation for certified definition of assurance cases [19].

7 Conclusion and Future Work
In this paper, we presented a methodology for lifting safety case analysis algo-
rithms to software product lines. We also outlined a certification infrastructure
(data structures and correctness criteria) for our lifting approach using the Lean
interactive theorem prover. We demonstrated both the approach and correct-
ness certification on formalizing and lifting a Change Impact Assessment (CIA)
algorithm [15]. We discussed the implementation of the lifted CIA algorithm
as part of the safety model management system MMINT-A [7]. A lifted CIA
algorithm allows for reusing impact assessment conclusions across a potentially
exponential (in number of features) different product variants, as opposed to
using a product-level CIA algorithm in individual product instances, which is
intractable in most cases.

For future work, we are working together with an industrial partner on apply-
ing our lifted algorithm to their assurance case models. We also plan to lift
other safety case algorithms (including slicers), and add their implementations
to MMINT-A. Visualization of the analysis results and improved user interaction
is another area of future improvements.

Acknowledgments. We thank Rick Salay and members of the Software Modeling
Group at University of Toronto for discussions and suggestions throughout this project.
We also thank the anonymous reviewers for their insightful feedback. This work was
supported by General Motors and NSERC.

References

1. Bertot, Y., Castran, P.: Interactive Theorem Proving and Program Development:
Coq’Art The Calculus of Inductive Constructions, 1st edn. Springer Publishing
Company, Incorporated, Berlin (2010)

2. Bodden, E., Tolêdo, T., Ribeiro, M., Brabrand, C., Borba, P., Mezini, M.:
SPLLIFT: statically analyzing software product lines in minutes instead of years.
In: Proceedings of 2013 ACM Conference on Programming Language Design and
Implementation (PLDI 2013), pp. 355–364. ACM (2013)

3. Brunel, J., Cazin, J.: Formal verification of a safety argumentation and application
to a complex UAV system. In: Proceedings of 31st International Conference on
Computer Safety, Reliability, and Security (SAFECOMP 2012) (2012)

144 R. Shahin et al.

4. Chechik, M., Kokaly, S., Rahimi, M., Salay, R., Viger, T.: Uncertainty, modeling
and safety assurance: towards a unified framework. In: Chakraborty, S., Navas,
J.A. (eds.) VSTTE 2019. LNCS, vol. 12031, pp. 19–29. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-41600-3_2

5. Classen, A., Cordy, M., Schobbens, P.Y., Heymans, P., Legay, A., Raskin, J.F.:
Featured transition systems: foundations for verifying variability-intensive systems
and their application to LTL Model checking. IEEE Trans. Softw. Eng. 39(8),
1069–1089 (2013)

6. Di Sandro, A., Salay, R., Famelis, M., Kokaly, S., Chechik, M.: MMINT: a graph-
ical tool for interactive model management. In: Proceedings of MODELS (Demo)
(2015)

7. Fung, N.L.S., Kokaly, S., Di Sandro, A., Salay, R., Chechik, M.: MMINT-A: A
Tool for Automated Change Impact Assessment on Assurance Cases. In: Proceed-
ings 37th International Conference on Computer Safety, Reliability, and Security
(SafeComp 2018), pp. 60–70 (2018)

8. Gallina, B.: A model-driven safety certification method for process compliance.
In: Proceedings of EEE 25th International Symposium on Software Reliability
Engineering (ISSRE 2014), pp. 204–209. IEEE (2014)

9. Gazzillo, P., Grimm, R.: SuperC: parsing all of C by taming the preprocessor. In:
Proceedings of the 33rd ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI 2012), pp. 323–334. ACM (2012)

10. Ghanavati, S., Amyot, D., Peyton, L.: A Systematic review of goal-oriented require-
ments management frameworks for business process compliance. In: Proceedings
of EEE International Workshop on Requirements Engineering and Law (RELAW
2011), pp. 25–34. IEEE (2011)

11. Habli, I., Ibarra, I., Rivett, R.S., Kelly, T.: Model-Based Assurance for Justifying
Automotive Functional Safety. Tech. Report, SAE (2010)

12. Kästner, C., Apel, S., Thüm, T., Saake, G.: Type checking annotation-based prod-
uct lines. ACM Trans. Softw. Eng. Methodol. 21(3), 14:1–14:39 (2012)

13. Kelly, T., Weaver, R.: The goal structuring notation - a safety argument notation.
In: International Conference on Dependable Systems and Networks (DSN 2004)
(2004)

14. Klein, G., et al.: SeL4: formal verification of an OS kernel. In: Proceedings of the
ACM SIGOPS 22nd Symposium on Operating Systems Principles, pp. 207–220
(2009)

15. Kokaly, S., Salay, R., Chechik, M., Lawford, M., Maibaum, T.: Safety case impact
assessment in automotive software systems: an improved model-based approach. In:
Tonetta, S., Schoitsch, E., Bitsch, F. (eds.) SAFECOMP 2017. LNCS, vol. 10488,
pp. 69–85. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66266-4_5

16. Leroy, X.: A formally verified compiler back-end. J. Autom. Reason. 43(4), 363–446
(2009). http://xavierleroy.org/publi/compcert-backend.pdf

17. Midtgaard, J., Dimovski, A.S., Brabrand, C., Wąsowski, A.: Systematic derivation
of correct variability-aware program analyses. Sci. Comput. Program. 105(C), 145–
170 (2015)

18. de Moura, L., Kong, S., Avigad, J., van Doorn, F., von Raumer, J.: The lean
theorem prover (system description). In: Felty, A.P., Middeldorp, A. (eds.) CADE
2015. LNCS (LNAI), vol. 9195, pp. 378–388. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-21401-6_26

https://doi.org/10.1007/978-3-030-41600-3_2
https://doi.org/10.1007/978-3-319-66266-4_5
http://xavierleroy.org/publi/compcert-backend.pdf
https://doi.org/10.1007/978-3-319-21401-6_26
https://doi.org/10.1007/978-3-319-21401-6_26

Towards Certified Analysis of Software Product Line Safety Cases 145

19. Nemouchi, Y., Foster, S., Gleirscher, M., Kelly, T.: Isabelle/SACM: computer-
assisted assurance cases with integrated formal methods. In: Ahrendt, W., Tapia
Tarifa, S.L. (eds.) IFM 2019. LNCS, vol. 11918, pp. 379–398. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-34968-4_21

20. Salay, R., Famelis, M., Rubin, J., Di Sandro, A., Chechik, M.: Lifting model trans-
formations to product lines. In: Proceedings of 34th International Conference on
Software Engineering ... Publication (ICSE2014). ACM, NY, USA (2014)

21. Salay, R., Kokaly, S., Chechik, M., Maibaum, T.: Heterogeneous Megamodel Slicing
for Model Evolution. In: Proceedings of International Conference on Model Driven
Engineering Languages and Systems, 2016 (ME@MoDELS 2016), pp. 50–59 (2016)

22. Shahin, R., Chechik, M.: Automatic and efficient variability-aware lifting of func-
tional programs. Proc. ACM Program. Lang. 4(OOPSLA) (2020)

23. Shahin, R., Chechik, M., Salay, R.: Lifting datalog-based analyses to software prod-
uct lines. In: Proc. of ACM Joint Meeting on European Software Engineering Con-
ference and Symposium (ESEC/FSE 2019). ACM, New York, NY, USA (2019)

24. Thüm, T., Apel, S., Kästner, C., Schaefer, I., Saake, G.: A classification and survey
of analysis strategies for software product lines. ACM Comput. Surv. 47(1), 6:1–
6:45 (2014)

https://doi.org/10.1007/978-3-030-34968-4_21

Machine Learning Applications

Safety Assurance of Machine Learning
for Chassis Control Functions

Simon Burton1, Iwo Kurzidem1(B), Adrian Schwaiger1, Philipp Schleiss1,
Michael Unterreiner2, Torben Graeber2, and Philipp Becker2

1 Fraunhofer IKS, 80686 Munich, Germany
{simon.burton,iwo.kurzidem,adrian.schwaiger,

philipp.schleiss}@iks.fraunhofer.de
2 Porsche AG, 71287 Weissach, Germany

{michael.unterreiner,torben.graeber,philipp.becker}@porsche.de

Abstract. This paper describes the application of machine learning
techniques and an associated assurance case for a safety-relevant chas-
sis control system. The method applied during the assurance process is
described including the sources of evidence and deviations from previ-
ous ISO 26262 based approaches. The paper highlights how the choice
of machine learning approach supports the assurance case, especially
regarding the inherent explainability of the algorithm and its robustness
to minor input changes. In addition, the challenges that arise if applying
more complex machine learning technique, for example in the domain
of automated driving, are also discussed. The main contribution of the
paper is the demonstration of an assurance approach for machine learning
for a comparatively simple function. This allowed the authors to develop
a convincing assurance case, whilst identifying pragmatic considerations
in the application of machine learning for safety-relevant functions.

Keywords: Assurance case · Safety engineering · Machine learning ·
Automotive software

1 Introduction

Recent advances in Machine Learning (ML) have demonstrated the potential for
efficient and sophisticated classifications based on data-driven models [16]. This
is especially visible in domains where conventional programming is difficult and
computationally expensive. However with the increased application of ML tech-
niques to safety-related tasks, concerns related to the probability of incorrect
or inaccurate predictions have also increased. Current safety-related challenges
in ML include, but are not limited to: explainability of decision-making, unre-
liable confidence information, inadequate approximations via limited data-sets,
insufficient or incomplete definitions, and meaningful safety metrics [15]. These
functional insufficiencies and safety concerns are especially important for ML
in automated driving applications, as they may potentially impact the over-
all vehicle’s safety goals [3]. As such, industry safety standards, such as, ISO
c© Springer Nature Switzerland AG 2021
I. Habli et al. (Eds.): SAFECOMP 2021, LNCS 12852, pp. 149–162, 2021.
https://doi.org/10.1007/978-3-030-83903-1_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-83903-1_10&domain=pdf
https://doi.org/10.1007/978-3-030-83903-1_10

150 S. Burton et al.

26262 (Road vehicles – Functional safety) [6] and ISO/PAS 21448 (Safety of the
Intended Functionality - SOTIF) [7] apply. However, while these ISO standards
tackle operational safety and offer guidance for safety analyses, neither standard
offers a complete and coherent safety assurance approach suited for ML [1].
These shortcomings are not just limited to automated driving functions alone,
guidance in the standards is also lacking when applying ML to other classes
of vehicle functions, such as powertrain and chassis control. Such functions can
directly impact the stability of the vehicle and therefore contribute to vehicle-
level safety goals. Hence, a comprehensive and tailored safety assurance is vital,
before deployment of ML-based systems, to guarantee safety.

This paper demonstrates such an assurance approach for a road surface
estimation based on sound patterns. Within the application, acoustic sensors
are used to categorise road conditions between the classes of dry (dry) and
not dry (!dry). This information is then used to adapt chassis control functions
to the road surface traction. A misclassification of the surface condition could
therefore lead to a hazardous control action.

The paper is organised as follows: first, an overview of related publications
and ideas is given in Sect. 2, followed by a description of the case study in Sect. 3
and an outline of the proposed approach in Sect. 4. In Sect. 5 properties of the
chosen ML technique are analysed with respect to their strengths and weaknesses
for assuring safety. The insights of the analysis are discussed and summarised as
lessons learned in Sect. 6, leading to a conclusion in Sect. 7.

2 Related Work

Safety standards already exist for automotive functionality. ISO 26262 focuses
on functional safety and provides comprehensive guidelines for the analysis of
conventional software and hardware failures and ISO/PAS 21448 addresses insuf-
ficiencies and potential exploits for (conventional) software and ML, such as
performance limitations, impact from the environment and foreseeable misuse
by third parties. However, both standards do not offer a general strategy or
approach for validating safety of non-conventional SW, such as ML algorithms.

In [12] both ISO standards are combined to create a product development
process for ML. The authors incorporate ISO/PAS 21448 into ISO 26262 work
products and development phases. The proposed approach is heavily based on
ISO 26262 definitions, such as the chapter enumeration, and workflow, e.g. V-
model. The ML specific work products are handled as additional documentation
within each development phase. However, open questions regarding applicability
for complex systems, semantic gaps (cf. Sect. 4) and meaningful evidence acqui-
sition still remain. Additionally, no examples or methods are given on how to
generate these additional documents, as no case study is presented.

A different take on this matter is introduced by Picardi et al. in [11], with
argument patterns to demonstrate the safety of ML. The presented safety assur-
ance patterns are tailored for ML components and highlight how the collected
evidence, assumptions, strategies and claims relate to overall system safety goals.

Safety Assurance of Machine Learning for Chassis Control Functions 151

The patterns are graphically represented using GSN [14] and show how perfor-
mance evidence is (indirectly) connected to specific ML safety requirements. The
result is to coherently and unambiguously represent a compelling safety argu-
mentation. Additionally, the authors show how the argumentation patterns can
be applied within different stages and activities of a complete ML assurance pro-
cess. In a further work, Picardi et al. utilises the argument patterns to develop an
assurance case specifically for a ML component within medical diagnostics [10].

Outside the automotive domain, audio interpretation via ML, for instance
in form of speech recognition, achieves impressive performance. However, most
considerations, analyses and evaluations of ML actually exclude safety as a major
desideratum [2].

In this paper, we apply similar argument patterns to [11] for an assurance
case of a chassis control function based on ML. We point out similarities to
and extensions of the ISO standards within our assurance case. Furthermore, we
highlight how a suitable selection of a ML paradigm can support the assurance
case claims.

3 Case Study

This paper describes the development of an assurance case for a Tyre Noise
Recognition (TNR) component that is used to improve multiple vehicle-level
functions. The TNR makes use of microphones positioned within the wheel hous-
ing to measure road surface noise in order to determine, in real time, whether
or not the road is dry. Here, dryness is defined as a road surface without any
materials between tyre and road surface. This classification is, in turn, used as
an additional source of information by chassis control and powertrain systems to
determine the current surface traction and thereupon adapt control parameters
accordingly, i.e. a !dry surface requires adaptations for a consistent traction. An
overview of the architecture is depicted in Fig. 1.

Fig. 1. TNR within system context and its sources of uncertainty.

In order to provide accurate information to the chassis control system, the
TNR must process the audio signal with strict real-time requirements and be
able to filter sampling anomalies caused by conditions such as the impact of
loose gravel. Due to the runtime properties as well as the ability to process

152 S. Burton et al.

a wide range of signal patterns based on available data, a ML technique was
chosen to implement the classification function of the TNR (cf. Sect. 5). Previous
versions of the TNR were used to optimise chassis control performance. Through
limits imposed within the vehicle-level function, the remaining safety concerns
regarding the ML-based classification were low enough to assign only Quality
Management (QM) requirements to the TNR after completing the hazard and
risk analysis according to ISO 26262. However, in order to increase the functional
benefits of the vehicle-level function through usage of TNR information, it was
decided to evaluate the impact of reducing the limits imposed within the vehicle-
level function. This in turn placed an increased safety load onto the TNR and
hence led to the following functional safety requirement (FSR) allocated to the
TNR:

– FSR x: The TNR shall not provide the result dry in case of a non-dry road
surface (ASIL B).

The objective of the project was to develop an assurance case to argue that
this level of integrity can be achieved for the TNR even though its output
depends on a ML-based classification function. This includes ensuring that the
hardware and software components were developed and verified according the
ASIL B relevant guidelines of ISO 26262 to ensure the integrity of the execution
with respect to hardware failures and software errors. In addition, SOTIF-like
safety concerns regarding uncertainty in the domain understanding as well as
accuracy of perception functions must also be considered when developing such
novel ML-based perception systems. This work describes the underlying app-
roach for ensuring a sufficient level of accuracy of the ML-based road surface
classification across all target operational scenarios, providing a crucial building
block for assuring the safety of ML-based systems for vehicle control systems.

4 Assurance Approach

ML as an implementation paradigm is increasingly used in automotive use cases
where the characteristics of the environment can not be adequately specified for
the purposes of an algorithmic implementation or where such an implementation
may be too computationally intensive, as was the case in the TNR. This, however
can come at the price of introducing uncertainty into the system, which in turn
can manifest itself in the form of functional insufficiencies as defined by ISO/PAS
21448. These uncertainties manifest themselves in various components within
the logical architecture of the system. Of particular interest for this work were
the aleatoric uncertainty inherent in the environment in terms of the manifold
factors that can impact the acoustic signal as well as the epistemic uncertainty
introduced by the ML models themselves. Safety assurance must demonstrate
that the system performance is able to satisfy the safety goals, despite these
potential sources of inadequacies. Therefore, principles from the ISO/PAS 21448
were adapted to extend the safety lifecycle based on ISO 26262.

Safety Assurance of Machine Learning for Chassis Control Functions 153

An additional factor increasing the difficulty of assuring safety is the issue of
the semantic gap [4] by which the lack of a precise definition of the functional
and performance requirements leads to an inadequate definition of safety require-
ments in relation to the intended or expected behaviour of the system. These
considerations led to the identification of the following additional requirements
on the safety lifecycle:

– A domain analysis as an extension of the item definition phase is required
in order to include a thorough investigation of the operational domain and
understanding of aspects of the environment that can lead to misclassifica-
tions. This phase led to an improved understanding of the system’s safety
requirements and the identification of a domain model, which in turn was
used when reasoning about the completeness of training data and tests.

– The design phase refined these system-level requirements into technical safety
requirements allocated to either primary functions or diagnostic and moni-
toring mechanisms. An analysis of potential failure modes, in terms of insuf-
ficiencies of the ML technique and model was required in order to identify
performance improvements and diagnostic methods.

– Measures to validate the completeness of the specification and to determine
whether a sufficient coverage of environmental conditions that lead to known
insufficiencies has been reached and to minimise the residual risk of unknown
triggering events.

– Due to the lack of specific guidance from the relevant safety standards, an
assurance case approach [8] is required in order to reason about the adequacy
of the safety approach. GSN [14] was applied in order to document, evaluate
and argue the sufficiency of the safety measures within the project.

The phases of the assurance process (cf. Fig. 2) were implemented as an iter-
ative process. For example, technical system design choices, such as the selection
of sensor types, impact properties of the environment that must be analysed as
part of the domain analysis. The discovery of unsupported assumptions in the
assurance case may require a restriction of the functionality in order to ensure
that the system safety requirements are fulfilled.

Fig. 2. Summary of the assurance process.

154 S. Burton et al.

4.1 Domain Analysis

During the domain analysis phase, the open context environment was system-
atically investigated in order to understand factors influencing the sound profile
and hence lead to unintended classifications. In order to focus on factors affecting
safety, the following relationship between classified and actual prevailing road
surface condition was established:

– True-Positive (TP) Predicted dry while actually dry ,
– True-Negative (TN) Predicted !dry while actually !dry ,
– False-Negative (FN) Predicted !dry while actually dry ,
– False-Positive (FP) Predicted dry while actually !dry .

The misclassification FN only results in an overly conservative control strat-
egy as higher traction is not actually needed but still activated, thereby not
violating any safety goals. Hence, only the misclassification FP, which corre-
sponds to FSR x (cf. Sect. 3), is safety-relevant.

Next, the concept of identifying triggering events as described in ISO/PAS
21448 was applied in order to develop an understanding of environmental con-
ditions that could lead to a FP classification. This analysis was based on a
thorough technical understanding of the sensing and signal processing principles
involved as well as experience gained during the development and test of the pre-
vious QM-rated version of the TNR. The three main influences on the acoustic
sensing that were identified from the environment are: tyres, road surface and
the transmission medium of sound. These factors were then decomposed into
their fundamental properties, e.g. tyres into rubber mixture, tyre pressure, tyre
dimensions and others. The granularity and definition of each property has been
selected according to physical realisability, for instance, tyre sizes only within
actual produced dimensions. The resulting domain model consists of all feasible
combinations of these properties and can be used to identify known triggering
events describing known performance limitations of the systems [9]. The domain
model can also be used to determine coverage criteria for test cases. However,
even for this relatively simple application, the procedure created an unmanage-
ably large amount of combinations. Too many, in fact, to be practically feasible.
To reduce the amount of test cases, while still arguing coverage of the opera-
tional domain, each property and their individual impact was evaluated using
expert knowledge. This assessment included considerations about safety with
special attention to the physical sensing principle in detail, possible dependence
between properties, as well as their overall significance for the classification. For
instance, test cases regarding tyre dimensions only included min and max sizes
and other combinations of parameters were considered irrelevant as no correla-
tion between the parameters could be determined that would have an impact on
the performance beyond the individual impact of the parameters themselves.

Nevertheless, uncertainty in the completeness of the domain model and ade-
quacy of the abstractions required to reduce combinatorial explosion leads to
the possibility of unknown triggering events and must still be accounted for in
the assurance process. Therefore additional measures were defined in the V&V
phase in order to validate the domain model.

Safety Assurance of Machine Learning for Chassis Control Functions 155

4.2 System Design

To analyse the design of systems based on the TNR, the architecture presented
in Fig. 1 was decomposed into the logical component groups: Sense, Understand,
Decide and Act. This allowed for a clear separation of the concerns identified
in the Domain Analysis and an analysis of each component’s contribution to
overall performance insufficiencies in the system.

The sensing part of the system includes the microphones inside the wheel
arches and their task of measuring the sound waves. The sound waves are recoded
within certain frequency boundaries and compressed for data transmission
(cf. Fig. 1). Potential sources of aleatoric uncertainty are the lack of information,
meaning the recorded frequency range does not cover the complete frequency
spectrum sufficiently, measurement uncertainty, defining an imperfect measure-
ment process by technical devices, and numerical approximations within the
data compression algorithm. As all of these uncertainties can potentially lead
to insufficient performance of the TNR, they have been addressed within the
assurance case along with supporting evidence, e.g., mathematical analysis of
data compression losses. The understanding portion of the logical architecture
is accomplished by signal pre-processing and an ML-based classifier within the
TNR (cf. Fig. 1). The classification exploits the fact that different road conditions
are differentiable through acoustic properties. Potential causes of uncertainties
are ambiguous sound patterns or epistemic uncertainty arising from the selected
ML technique and model. A pessimistic decision strategy was used. In particular,
the TNR will select the safer option !dry in case of conflicting predictions. Sam-
ples from multiple sensors are combined and aggregated over multiple sampling
steps before providing a dry classification. The components corresponding to the
decide and act function groups contain the chassis control logic and actuator
components, respectively. According to the prediction the driving performance
is optimised, for instance by adapting the suspension or spoiler.

4.3 Verification and Validation

Within the verification and validation (V&V) phase, performance requirements
allocated to the system and its components were confirmed. In addition, assump-
tions regarding the performance potential of the design, as well as the environ-
ment operating conditions were confirmed in order to argue the safety of the
system for its chosen context. This led to the identification of the following
additional objectives within the V&V strategy, with respect to the QM version
of the TNR function:

– Confirmation of assumptions made during system design and safety
assurance: This included, for example, evaluating field data to assess
whether the operating conditions matched the assumptions in the domain
model (cf. Sect. 4.1) and confirming that pre-processing of the audio signal
did not reduce the dimensionality of the input data in such a way that dry and
!dry signals could be mapped to similar feature vectors. Other assumptions

156 S. Burton et al.

include the influence of signal noise (aleatoric uncertainty) on the performance
of the classifier.

– Evaluation of the function with regard to known triggering events:
These include combinations of environmental conditions discovered during
the domain analysis as well as specific corner cases discovered during field
testing.

– Evaluation of the potential for unknown triggering events: This
objective includes confirms that the domain model covers a sufficient range
of conditions that can impact the performance of the function and that all
relevant usage scenarios have been considered.

– Evaluation of the resilience of the function with regard to residual
unknown triggering events: This objective relates to the ability of the
system to respond to signal patterns not considered in the domain model and
for which either a valid response must nevertheless be given, or no value at
all, resulting in a conservative action from the chassis control system.

A number of analyses, simulations and tests had previously been performed
for the QM-rated version of the TNR. However, these measures were not nec-
essarily aligned to the objectives described above, resulting in some gaps in
the argumentation structure. Therefore, the following methods were identified
in order to provide explicit evidence corresponding to the V&V objectives. In
some cases, existing evidence could be aligned with the V&V objectives, in other
cases, additional tests and associated documentation were required.

– Analysis: An understanding of the strengths and weaknesses of the cho-
sen ML technique and model provided evidence for the inherent properties
regarding robustness and generalisation. In addition, the prototypes gener-
ated by the algorithm (cf. Sect. 5) were amenable to examination by subject
matter experts to confirm that they corresponded to known properties of the
dry and !dry signals.

– Simulation: A simulation environment based on synthetic and recorded data
was used for a focused verification of ML properties. Here, signal noise can
also be simulated in order to verify the robustness of the classifier.

– Structured testing: The domain model was used to determine a set of test
cases which cover all known properties which could influence the performance
of the function. In addition, the test cases also included specific corner cases
discovered during field tests and added to the regression test set.

– Field tests: Field tests, where the function was tested on real roads (both
test track and public roads) were performed according to selected properties
of the domain model (cf. Sect. 4.1). This allowed the coverage of conditions
to be evaluated. Anomalies which could not be explained by the parameters
of the domain model were used to iteratively refine the domain model.

4.4 Assurance Case

The objective of the assurance case was to develop a structured and convincing
argument that the classifier fulfilled its technical requirements, in particular

Safety Assurance of Machine Learning for Chassis Control Functions 157

with respect to functional insufficiencies that could lead to FP identifications of
dry road surface conditions. The assurance case was described using GSN and
applied the principles from [8]. During the project it was primarily used as a
means of communicating and evaluating the safety assurance approach within
the team but was also developed with future external safety assessors in mind.

The top level structure of the assurance case is shown in Fig. 3. The assur-
ance case focused on claims regarding a sufficient understanding of the domain
and subsequent completeness of the technical safety requirements, the intrinsic
performance potential of the chosen ML technique, the sufficiency of the train-
ing data to cover critical conditions of the domain, and the performance of the
trained function itself. In addition, arguments were developed that the ML-based
classifier was robust against changes in the operating environment as well as dif-
ferences between the development and test environment and future deployment
scenarios (e.g. different vehicle configurations).

Fig. 3. Top-level assurance case structure.

5 Detailed Analysis of the Machine Learning Function

A detailed analysis of the applied ML-based classifier with respect to the tech-
nical safety requirements allocated to it and its general suitability regarding the
target task was performed.

In the case of the TNR, Adaptive Generalised Learning Vector Quantisation
(AGLVQ), an extension to GLVQ [13], was used. Figure 4 shows the operating
principle of this algorithm.

158 S. Burton et al.

Fig. 4. Overview of the employed AGLVQ algorithm. In the training phase, mean-
ingful features are extracted from the audio signal (1) that are subsequently used to
generate prototypes (2) for both classes, dry (circles) and !dry (triangles), maximis-
ing the distance between them. A threshold for the dry prototype is defined, forming
the decision space for this class. Additionally, a polynomial is fitted (3) that, using
additional context information, adapts the dry prototype to the current situation. At
runtime, features are again extracted from the audio signal (4), mapping the current
sample (rectangle) to the feature space. After that, the learned polynomial is used to
adapt (5) the dry prototype to the current situation. Finally, the current sample is
matched to the prototypes (6) based on the Euclidean distance in the feature space. If
the current sample is within the decision space of the dry prototype it is classified as
such else a !dry road surface is assumed.

The use of AGLVQ had several advantages over other ML approaches from
the perspective of safety assurance. The learned prototypes have been repre-
sented in the same form as the feature engineered audio signals and allowed
the engineers to verify their plausibility. Additionally, in combination with the
straightforward prototype matching used for runtime predictions and the inter-
pretable adaption polynomial, it allowed for a detailed analysis of the decision
space and uncovered potential error patterns. This also outlined another strength
of this approach, the robustness to small input perturbations. Compared to, e.g.,
neural networks, there has been no feature subspace in which small changes of
individual features could be amplified in a way that causes drastic and unex-
pected changes in the output. While not explicitly investigated, this may also
significantly reduce the susceptibility to adversarial attacks. Due to this absence
of discontinuities, the sensitivity to individual factors, e.g., tread depth, the bur-
den of proof on the empirical tests was significantly lower compared to other
discontinuous functions. Figure 5 shows an extract of the GSN regarding the
choice of the ML technique. Here, the strengths of AGLVQ have been reflected
in G4 1.

Safety Assurance of Machine Learning for Chassis Control Functions 159

Several limitations of AGLVQ were also identified and used to derive addi-
tional Technical Safety Requirements (TSR). One such limitation was a low level
of generalisation. As only a single prototype for the relevant class was gener-
ated there was a noticeable trade-off between safety and execution performance.
A prototype adaption function mitigated this to some extent by incorporating
additional knowledge about the context of the present situation. However, this
was not sufficient for complex generalisations such as completely new types of
road surfaces. Another limitation was that the prototype adaption in certain
situations transformed the dry prototype slightly towards the decision space for
non-dry road conditions, increasing the risk of incorrect classifications. Further-
more, the approach did not have an explicit way to quantify the uncertainty
for the learning of, adapting, and matching to the prototype apart from the
Euclidean distance, which does not fully account for the relation between the
features. The known weaknesses and the evidence associated with the effective-
ness of the counter-measures to these have been reflected in the GSN under G4 2.
The analyses of these inherent weaknesses in the approach led to the proposal to
develop self-assessment methods, specifically uncertainty quantification [5] and
out-of-distribution detection to be applied at runtime.

Fig. 5. Assurance case structure for choice of ML technique.

In order to demonstrate the performance of the trained function itself (sub-
goal G5 of Fig. 5) performance metrics were defined and related to the TSRs.
Since the TNR is a classification task, appropriate metrics were, among others,
accuracy, precision/recall and confusion matrices. These helped to measure the
overall performance and aided the investigation of error patterns. For instance,
class-wise precision and recall allowed appropriate distance thresholds for the
prototype matching to be identified and validated using the available test data.
Additionally, the metrics helped with finding variances in the test data. The
causes of these variances were iteratively analysed in more depth, either by
gathering additional data or by qualitatively assessing the function with respect
to the properties of the variance causing data. Lastly, the metrics were used to

160 S. Burton et al.

define acceptance criteria for the TSRs, e.g. that a certain class-wise accuracy
on all validation datasets shall be achieved.

Based on a combination of the measures described above, the fundamental
capability of the classifier for the target task was argued. Regarding the TNR,
AGLVQ was found to be generally suitable, especially as the high degree of
explainability allowed for a thorough analysis of the function and its behaviour.
However, the known limitations and their consequences still left a burden of proof
on the training data and the validation results, which were argued in sub-goals
G3 and G5 of the assurance case.

6 Lessons Learned

The evaluation of the TNR with respect to its application for a safety-critical sys-
tem (ASIL B) led to a number of lessons learned that could be applied in future
projects as well as open questions that still remain to be resolved. The nature
of the system level safety goals associated with the chassis control functions
allowed for a safe state to be achieved if the road surface could be considered as
!dry, thereby leading to a conservative traction control strategy. This allowed the
function to be designed to indicate an invalid output in the case of ambiguous
inputs as well as a skewing of the audio signals towards the !dry prototype if
required.

The robustness and explainability of the approach helped with the in-depth
analysis of the machine learning component. The ability to analyse the gen-
erated prototypes, their adaption to the current situation at runtime, and the
respective decision space allowed the incorporation of expert knowledge in the
quality assessment. In addition, the robustness due to the continuity of the func-
tion substantially facilitated the investigation of the influence of factors such as
tread depth. This allowed for a significant reduction in the amount of in-field
tests due to a reduction in the dimensions considered during coverage analysis.

Open questions nevertheless remain on the required level of granularity in
the domain model used to evaluate the completeness of selected training data
as well as quantitative test stopping criteria related to statistical performance
metrics. Inevitably, an iterative approach to system development and assurance
will be required (cf. Fig. 2) where field-based validation is required to confirm
that sufficient detail in the domain model was achieved and that assumptions
made during analysis, simulation and test were valid. These questions, however,
are currently not addressed by existing safety standards such as ISO 26262,
which assumes behaviour of software that can be evaluated through qualita-
tive measures or ISO/PAS 21448 which requires a function-specific allocation
of quantitative performance targets. The approach used within the project was
to use qualitative arguments to argue the robustness of the ML function with
respect to a broad range of operating conditions as defined by the domain model,
whilst applying a range of measures (including extensive structured field tests)
to confirm the assumptions behind the domain model. In addition, the TNR is
embedded within a vehicle chassis control system, which in turn is developed

Safety Assurance of Machine Learning for Chassis Control Functions 161

and released according to a set of established development and homologation
guidelines. Nevertheless, an external evaluation of the assurance approach by a
qualified third party is recommended to examine the strength of the provided
arguments.

7 Conclusion

The work described within this paper has demonstrated the feasibility of an
assurance case for the application of ML for chassis control systems. The assur-
ance approach made use of a systematic domain analysis to define properties
of the environment relevant to the performance, dedicated measures in the sys-
tem architecture to reduce the safety requirements on the ML function itself, the
choice of an ML technique that enhanced robustness and explainability combined
with a systematic validation plan to argue the absence of unknown triggering
events. However, questions remain relating to the statistical level of performance
that should be demonstrated by the ML algorithm. This type of evidence, would
go above and beyond the forms of V&V proposed by the ISO 26262 standard
for software but is required due to the inherent uncertainties when applying ML
compared to conventional non data-driven algorithms.

The project highlighted the need for better industry-specific standards
regarding the use of ML for safety-relevant functions, including outside of the
domain of automated driving. These standards should include specific guidelines
for determining coverage and selection criteria for training data, as well as for
determining quantitative performance targets and testing criteria. These aspects
would become even more relevant by alternative choices of ML technique, such
as Deep Neural Networks, where qualitative arguments relating to the robustness
and generalisation properties of the trained functions are more difficult to gen-
erate based on the complexity and opaqueness of the calculations involved. As
such, any future standardisation should also include a differentiation of measures
based on the intrinsic characteristics of the ML algorithms.

Acknowledgment. On side of Fraunhofer IKS, the research for developing the the-
oretical safety foundations utilisied in this work was partially funded by the Bavarian
Ministry for Economic Affairs, Regional Development and Energy as part of a project
to support the thematic development of the Institute for Cognitive Systems.

References

1. Bagschik, G., Reschka, A., Stolte, T., Maurer, M.: Identification of potential haz-
ardous events for an unmanned protective vehicle. In: Proceedings of the IEEE
Intelligent Vehicles Symposium (IV), Gothenburg, pp. 691–697 (2016)

2. Belinkov, Y.: On internal language representations in deep learning: an analysis of
machine translation and speech recognition. Ph.D. thesis, Massachusetts Institute
of Technology (MIT) (2018)

162 S. Burton et al.

3. Burton, S., Gauerhof, L., Heinzemann, C.: Making the case for safety of machine
learning in highly automated driving. In: Tonetta, S., Schoitsch, E., Bitsch, F.
(eds.) SAFECOMP 2017. LNCS, vol. 10489, pp. 5–16. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-66284-8 1

4. Burton, S., Habli, I., Lawton, T., McDermid, J., Morgan, P., Porter, Z.: Mind the
gaps: assuring the safety of autonomous systems from an engineering, ethical, and
legal perspective. Artif. Intell. 279, 103201 (2020)

5. Fischer, L., Hammer, B., Wersing, H.: Efficient rejection strategies for prototype-
based classification. Neurocomputing 169, 334–342 (2015)

6. International Organization for Standardization: Road Vehicles: Functional Safety
(ISO 26262) (2018)

7. International Organization for Standardization: Safety of the Intended Function-
ality - SOTIF (ISO/PAS 21448) (2019)

8. International Organization for Standardization: Systems and Software Engineering
- ISO/IEC/IEEE 15026-1:2019 (2019)

9. Kurzidem, I., Saad, A., Schleiss, P.: A systematic approach to analyzing perception
architectures in autonomous vehicles. In: Zeller, M., Höfig, K. (eds.) IMBSA 2020.
LNCS, vol. 12297, pp. 149–162. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-58920-2 10

10. Picardi, C., Hawkins, R., Paterson, C., Habli, I.: A pattern for arguing the
assurance of machine learning in medical diagnosis systems. In: Romanovsky, A.,
Troubitsyna, E., Bitsch, F. (eds.) SAFECOMP 2019. LNCS, vol. 11698, pp. 165–
179. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26601-1 12

11. Picardi, C., Paterson, C., Hawkins, R.D., Calinescu, R., Habli, I.: Assurance argu-
ment patterns and processes for machine learning in safety-related systems. In:
Proceedings of the Workshop on Artificial Intelligence Safety (SafeAI), New York
(2020)

12. Radlak, K., Szczepankiewicz, M., Jones, T., Serwa, P.: Organization of machine
learning based product development as per ISO 26262 and ISO/PAS 21448. In:
Proceedings of the 25th IEEE Pacific Rim International Symposium on Dependable
Computing (PRDC), Perth, pp. 110–119 (2020)

13. Sato, A., Yamada, K.: Generalized learning vector quantization. In: Proceedings
of the 8th International Conference on Neural Information Processing Systems
(NIPS), pp. 423–429 (1995)

14. The Assurance Case Working Group (ACWG): Goal Structuring Notation - Com-
munity Standard. No. 2, Safety Critical Systems Club (SCSC) (2018)

15. Willers, O., Sudholt, S., Raafatnia, S., Abrecht, S.: Safety concerns and mitigation
approaches regarding the use of deep learning in safety-critical perception tasks.
In: Casimiro, A., Ortmeier, F., Schoitsch, E., Bitsch, F., Ferreira, P. (eds.) SAFE-
COMP 2020. LNCS, vol. 12235, pp. 336–350. Springer, Cham (2020). https://doi.
org/10.1007/978-3-030-55583-2 25

16. Ye, H., Liang, L., Li, G.Y., Kim, J., Lu, L., Wu, M.: Machine learning for vehicular
networks: recent advances and application examples. IEEE Veh. Technol. Mag.
13(2), 94–101 (2018)

https://doi.org/10.1007/978-3-319-66284-8_1
https://doi.org/10.1007/978-3-030-58920-2_10
https://doi.org/10.1007/978-3-030-58920-2_10
https://doi.org/10.1007/978-3-030-26601-1_12
https://doi.org/10.1007/978-3-030-55583-2_25
https://doi.org/10.1007/978-3-030-55583-2_25

Safe Interaction of Automated Forklifts
and Humans at Blind Corners in a

Warehouse with Infrastructure Sensors

Christian Drabek1(B), Anna Kosmalska1, Gereon Weiss1, Tasuku Ishigooka2,
Satoshi Otsuka2, and Mariko Mizuochi3

1 Fraunhofer IKS, Munich, Germany
{christian.drabek,anna.kosmalska,gereon.weiss}@iks.fraunhofer.de

2 Research and Development Group, Hitachi Ltd., Ibaraki, Japan
{tasuku.ishigoka.kc,satoshi.otsuka.hk}@hitachi.com

3 Hitachi Europe GmbH, Schwaig, Germany
mariko.mizuochi@hitachi-eu.com

Abstract. Co-working and interaction of automated systems and
humans in a warehouse is a significant challenge of progressing industrial
systems’ autonomy. Especially, blind corners pose a critical scenario, in
which infrastructure-based sensors can provide more safety. The automa-
tion of vehicles is usually tied to an argument on improved safety. How-
ever, current standards still rely on the awareness of humans to avoid
collisions, which is limited at corners with occlusion. Based on the exam-
ination of blind corner scenarios in a warehouse, we derive the relevant
critical situations. We propose an architecture that uses infrastructure
sensors to prevent human-robot collisions at blind corners with respect to
automated forklifts. This includes a safety critical function using wireless
communication, which sporadically might be unavailable or disturbed.
Therefore, the proposed architecture is able to mitigate these faults and
gracefully degrades performance if required. Within our extensive eval-
uation, we use a warehouse simulation to verify our approach and to
estimate the impact on an automated forklift’s performance.

Keywords: Driverless industrial trucks · Blind corners ·
Infrastructure sensors · Warehouse

1 Introduction

The progress of industrial automation leads to more and more integration of
automated systems into today’s industrial environments. Whereas previously
the ideal procedure to follow was segregating automated machines from human
workers, e.g., placing robots in dedicated safety cages, the co-working of humans
and machines is an important factor for future competitiveness [23]. For instance,
enabling personnel to be in the same area at the same time as automated guided
vehicles (AGVs), provides ways to efficiently use the flexibility of humans and
carrying power of machines [25].
c© Springer Nature Switzerland AG 2021
I. Habli et al. (Eds.): SAFECOMP 2021, LNCS 12852, pp. 163–177, 2021.
https://doi.org/10.1007/978-3-030-83903-1_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-83903-1_11&domain=pdf
https://doi.org/10.1007/978-3-030-83903-1_11

164 C. Drabek et al.

One example is a warehouse in which AGVs operate alongside workers. Indus-
trial trucks are a major source of accidents within in-house transportation [6].
Additional guidelines for driverless industrial trucks [11], such as AGVs, reduce
the inherent risk of human-machine-collisions. In order to not loose advantages
of the automation by restricting operation to single areas, the pure local sepa-
ration of human workers and AGVs cannot be maintained. In these scenarios,
AGVs are equipped with safe perception capabilities, e.g., lidars or radars, and
have to slow down or come to a complete stop, when obstacles in the surround-
ing are detected [26]. Additionally, guidelines for human workers should enforce
compliance with the given safety rules. One major challenge in a modern ware-
house, however, is the limited line of sight, for instance due to walls, shelves, or
storage. In this case, corners become a potential point of risk. As AGVs cannot
detect occluded objects at such intersecting paths, their application in this area
is constrained, i.e. no operation or strongly reduced speed [1]. Human workers
also cannot see around the corners and thus, are also in risk of provoking colli-
sions [21]. Specific safety rules, like the rule of waiting at corners before stepping
forward, could alleviate such risks, but are at risk of being ignored or overlooked
during work. In general, safety mechanisms are more likely to be bypassed, if they
are perceived to reduce efficiency [9]. In our work, we target to improve the safe
interaction of humans and automated forklifts, which can be seen as a specific
kind of AGV, by utilizing sensors of the infrastructure. Specifically, our app-
roach addresses such corner situations, so-called ‘blind corners’, in warehouses
operating automated forklifts. As main contributions, we analyze the problem
of blind corners in detail and derive how present solutions manage the safety in
such situations. Moreover, we present an architecture and new safety concepts
exploiting infrastructure sensors for achieving a safe and efficient interaction
of humans and automated forklifts at such critical situations. Our approach is
evaluated by thorough simulations of blind corner warehouse situations and ana-
lyzing the adherence to safety goals and operation performance. With the results
of this paper, we aim for showing how safety can be achieved, even in the pres-
ence of potentially unreliable wireless connections, by dynamically adjusting the
forklift’s performance with respect to the available perception information.

The remainder of this paper is structured as follows. Section 2 presents and
formalizes the safety challenges of blind corners in common warehouses and
introduces related work. In Sect. 3, we introduce our approach for infrastructure-
based safe interaction of humans and automated forklifts at blind corners. Our
extensive evaluation and results of our approach in varying warehouse scenarios
are outlined in Sect. 4, before we conclude the paper in Sect. 5.

2 Blind Corners in Warehouses

2.1 Definition of Blind Corners

Walls or obstacles near the apex of a corner prevent any direct line of sight to
crossing vehicles or humans. This situation is illustrated in Fig. 1. We define a
blind corner as an intersection or turn that requires an ego vehicle to change its

Safe Interaction at Blind Corners in a Warehouse with Infrastructure Sensors 165

speed to avoid potential collisions, while line of sight is occluded by an obstacle.
When approaching a blind corner, the required braking distance determines a
safe speed limit until conflicting crossing objects can be excluded [35]. For road
intersections, this can lead to a behavior similar to expert drivers [19]. However,
compared to a road scenario, the safe deceleration of a forklift [24,30] is lower and
walls are often closer. To prevent the slowdown, information about the presence
of a human (or other crossing vehicle) must be available much earlier [1].

For example, at a speed of 5 m
s , braking of a forklift needs to start at a

distance dbrake of 3.5–6.5 m [30]. Additionally, the automated forklift travels
dprocess while processing inputs. During processing, it needs to detect the inter-
section and if there is someone in the conflict area. Latter is defined by the time
the forklift would take to pass the intersection and the passing human’s speed:

dconflict = vother(dprocess + dbrake + dinter + dfl)/vfl. (1)

If the conflict area and a margin for detection (ddetect) cannot be cleared, the
forklift must decelerate to avoid a potential collision. The point for a decision
based on line-of-sight [35] is close to the intersection, where the forklift already
almost stops, as there is also less space to the occluding wall separating forklift
and human. Further, this does not account yet for the whole length of the vehicle
to pass. When using infrastructure sensors to avoid unnecessary slow downs of
an approaching forklift, the sensors need at least a detection range with radius

R > dinter + dconflict + ddetect. (2)

Fig. 1. An automated forklift approaching a blind corner.

166 C. Drabek et al.

2.2 Safety Standards for Driverless Industrial Trucks

As the autonomy of mobile machinery increases, also specific safety standards are
being established. However, often there is a gap between requirements of these
standards and state-of-the-art, which complicates more gradual paths to develop
a system [34]. Within the European Union, laws such as the Machine Directive
and national laws for protection of human safety are complemented by ISO and
IEC standards that describe general design principles, cover aspects for a wide
range of machinery or deal with particular machines [17]. The requirements for
unmanned forklifts, AGVs and associated systems are defined by ISO 3691-4 [11].

Four kinds of access zones are defined by this standard. In the operating
zone, a minimum clearance (i.e. 0.5 m wide) must be provided on both sides
of the path and in the direction of travel. An operating hazard zone, where
a person can be exposed to a hazard, requires audible or visual warnings and
a low speed of 0.3 m

s . Higher speeds like 1.2 m
s are only allowed under specific

conditions. A restricted zone is a physically separated space, like a very nar-
row aisle, that may be entered only by authorized persons. Without personnel
detection means, speed is limited to 0.3 m

s . Access to enclosed space of a con-
fined zone must be restricted to authorized personnel and is only allowed after
the movement of trucks was stopped.

In this research, we examine the operation of automated forklifts within an
operating zone. Therefore, they can go up to their rated speed and we assume
a gap between forklift and the next wall of at least 0.5 m. Operation at rated
speeds requires personnel detection mechanisms to be active. However, the stan-
dard requests a detection of persons in the direction of travel only, which is
verified by testing if the forklift detects static cylinders representing legs of a
standing worker or the body of a lying worker [11,13]. The result is that the
forklift will not check for workers to its side and everywhere there is a blind cor-
ner. Safe interaction between an automated forklift and humans is only provided
by the requirement of sufficient space around a forklift, which mitigates some of
the more severe outcomes of a collision. Nevertheless, the main burden for avoid-
ing collisions remains with the human. In future however, safety of a technical
system is also envisioned to encompass freedom from danger [10]. Therefore,
the responsibility of avoiding a collision should be moved from humans to the
automated forklift.

2.3 Intersection Cooperation and Coordination

Blind corners are not a new hazard in warehouses. Human drivers of forklifts
need to be instructed how to behave safely in such cases, e.g., slowing down,
sounding the horn and looking around [4]. A simple flashing light, even when
mounted in a highly visible location, might not be sufficient to prevent (near)
collisions with a robot at a blind corner, as for example a reported case in October
1994 indicates [8]. Still, light spots or symbols projected into the direction of
travel or around the forklift can improve awareness similar to beeper alarms for
reversing [3].

Safe Interaction at Blind Corners in a Warehouse with Infrastructure Sensors 167

Different technologies are currently researched that might enable drivers or
autonomous machines in warehouses or on the road to see non-line-of-sight
(NLOS) objects, e.g., around a blind corner. Selected examples are: the signal
from surveillance cameras can be transformed to create virtual mirrors [12], mov-
ing shadows can be observed [20], radars can be used to detect moving objects
around the corner [31,33] – possibly with the help of passive reflectors [29], and
NLOS imaging can help to reconstruct hidden objects from multiply scattered
light of laser sources [22]. Nevertheless, the computational power required to
reach a sufficient performance and reliability level, so that safety-relevant deci-
sions can rely on their measures, is just one reason why these technologies are
still more a topic of the future.

By including support from infrastructure and infrastructure-based sensors,
these problems can be avoided. For example, humans could be located in a
warehouse using camera-data [14] or ultra wide band (UWB) technology [25,32]
with a precision of at least 15 cm. Further, such a real-time locating system
(RTLS) can also be used to predict the paths of workers [15]. Still, the safety
integrity of such locating systems needs to be assessed. While at a higher cost,
sensors similar to the safety equipment in automated forklifts could be installed
at blind corners, to guarantee reliable detection of human workers. In addition,
movement data can be collected and help in the creation of spaghetti charts to
further analyze and improve safety [2].

Even if infrastructure can reliably identify workers, this information needs to
be transferred to the automated forklift. Various methods to centrally coordi-
nate vehicles and avoid collisions exist, e.g., [1,16,26,28]. However, the methods
default to denying access to the intersection without connection or require a
working connection. While reliability of connections can be improved by using
multiple links [27], this also requires more resources. In the remainder of the
paper, we detail how monitors for the infrastructure cooperation performance
allow to dynamically adjust the forklift’s actions to its available information.

3 Infrastructure-Cooperative Autonomous Control

In this section, we propose a novel architecture and compare multiple correspond-
ing safety concepts as solutions for safe and efficient automated forklift operation
in a warehouse, where human workers might be present. The description focuses
on interactions at blind corner. Safe and efficient operation of autonomous sys-
tems in cooperation with humans is usually handled by reducing the machine’s
speed when humans approach [23]. Blind corners require support from infras-
tructure to detect human workers efficiently [1]. This includes a safety critical
function using wireless communication, which sporadically might be unavail-
able or disturbed. The architecture which we propose is able to mitigate these
faults and automatically adjusts the performance if required. In the next section,
we provide a quantitative evaluation of the concept’s influences on safety and
efficiency, which is intended to help selecting the appropriate safety concept
according to different conditions and requirements of warehouse operation.

168 C. Drabek et al.

3.1 Infrastructure-Cooperative Autonomous Control Architecture

This subsection presents our architecture to achieve safe and efficient operation
of automated forklifts in a warehouse where human workers can be in proxim-
ity. The architecture includes the core AGV tasks [5] and utilizes infrastructure
sensors and systems to monitor, predict and estimate the risk of hazardous sit-
uations in the warehouse. Additionally, the cooperation of infrastructure and
forklift is continuously monitored on both sides to adjust the performance, e.g.,
the speed of the forklift, if required for safe operation. Figure 2 shows an overview
of the proposed infrastructure-cooperative architecture for automated forklifts.

Task
allocation

Global path
planning

Localization Local path
planning

Path
following

Safety judgment
(arbitration)

Infra-cooperation
performance

monitor

Collision
detection

Emergency
stop Actuator control

Safety action
instruction

Hazardous
situation
detection

Data
fusion

Object
detection

Block access
control

Infra-cooperation
performance

monitor

Automated forklift (machine)

Warehouse control system Traffic control system

Infrastructure
sensor

Area monitor system

Wireless communication

Fig. 2. Infrastructure-cooperative autonomous control architecture

The warehouse control system aims to maximize overall operational effi-
ciency. Task allocation assigns tasks to each forklift (and worker) considering
overall efficiency, where global path planning determines an optimal route for
each forklift and task.

The traffic control system coordinates the (automated) movement in the
warehouse. For example, no collision of machines will occur if only one machine
may enter a certain area at the same time. Therefore, block access control man-
ages the permissions of machines to enter blocks along their planned paths based
on available information, e.g., positions and paths.

The aim of the area monitor system is to avoid the collision risk that
cannot be prevented by the traffic control system. The system monitors the
existence and movement of machines and workers in the warehouse using avail-
able infrastructure sensors for object detection and data fusion. Hazardous
situation detection recognizes defined safety risks or deviations from rules.
The system determines and issues safety action instructions. It can request a

Safe Interaction at Blind Corners in a Warehouse with Infrastructure Sensors 169

connected forklift to follow them immediately if a safety risk is observed or
prepare the case of a missing connection.

The automated forklift is provided with various functions to ensure safe
operation of the machine. Based on the position of the forklift identified by
localization, its trajectory is determined by local path planning and path following
based on the designated route provided by the warehouse control system. Safety
judgment (arbitration) validates the trajectory and determines a suitable speed
that ensures safe operation based on received permissions from traffic control,
safety action instructions from area monitor and the reported status of infra-
cooperation performance monitor. The collision detection and emergency stop
functions implement the personnel detection mechanisms required by current
standards, e.g., the ISO 3691-4 [11], using the machine’s own sensors.

In brief, the proposed architecture ensures safety in three ways: block permis-
sion, area monitor and emergency stop. This structure enables collision avoidance
in advance and reduces unnecessary deceleration and stoppage of the automated
forklift. The operational efficiency can, thus, be expected to be improved. How-
ever, new potential hazards or failures are introduced when the safety critical
function uses information from infrastructure systems.

3.2 Infrastructure-Cooperative Autonomous Control Hazards

This subsection examines the potential hazards of including infrastructure infor-
mation in a safety critical function, like collision avoidance at blind corners from
a functional architecture perspective. Therefore, the fault-tree shown in Fig. 3
analyzes the functional interactions of the subsystems and does not consider any
hardware or implementation faults.

forklift-human collision at blind corner

forklift too fast / invalid safety judgment

invalid infra-coop
performance

missing detection
or connection

manipulation (for
performance)

invalid safe-
ty action

not noticed
blind corner

imprecise local
localization

invalid
path / map

human too fast

Fig. 3. Fault-tree of forklift-human collision for the functional architecture.

The forklift could be too fast, e.g. by failing to slow down at a blind corner
due to making an invalid safety judgment. This can happen if the forklift does not
notice the blind corner situation because of an incorrect position; either, because
of insufficient localization, or by using an invalid map, which might be outdated
or incompatible with the path received from warehouse management. Further, it
could be too fast by an invalid safety action or by an invalid monitoring of infra-
coop performance. The architecture is designed to handle missing detections and

170 C. Drabek et al.

connections gracefully by monitoring. However, manipulation poses an inherent
potential safety risk. Manipulation of safety mechanisms is often motivated by
improved performance [9]. For example, a human working near an intersection
could be spoofing the sensor to prevent forklifts from slowing down. Such cases
can be handled safer, if the safety concept allows integrating performance con-
cerns. Besides the forklift, also a faster than anticipated human worker could
reach the intersection early, even though he was not in the designated conflict
area when the automated forklift had to make its decision.

Besides these functional faults, we identified the dependability of detec-
tion using infrastructure sensors and the dependability of wireless com-
munication between systems as main sources of this hazard.

Sensors and algorithms used for detection in the infrastructure system need
to comply with necessary safety levels, e.g., they must be either able to reliably
detect the presence of humans in the required range or recognize their inability
to do so. The former can be achieved, for example, by using sensors similar to
those used on the vehicle to detect humans.

Wireless communication, in the fault-tree contained within invalid infra-coop
performance, cannot be as easily guaranteed to always work. A loss of connection
cannot be avoided perfectly, even with efforts to improve the reliability of wireless
communication. Since the proposed architecture requires continual exchange of
information between the automated forklifts and the infrastructure systems, a
mechanism to continue safe and efficient operation even with a failure in the
communication is indispensable.

As a mitigation for this weakness, we introduce a monitoring and recov-
ery mechanism. The infrastructure cooperative performance monitor in Fig. 2
monitors the condition of communication between automated forklift and area
monitor. If communication fails longer than a predetermined interval, the forklift
can switch to a mitigation mode using its own sensors only [7]. Safety judgment
ensures safety for this conditional selection of personnel detection means pro-
tected zones [11]. However, this might interfere with decisions made by traffic
control. As a mitigation measure on the infrastructure side, for example, it is
conceivable to regard the loss of communication as a safety risk and notify each
function of the situation. The block access control and hazardous situation detec-
tion can adapt instructions to other forklifts if necessary. Details of the forklift’s
local mode will be described together with safety concept in the next subsection.

3.3 Safety Concepts for Safe Interaction of Automated Forklifts
and Human Workers at Blind Corners

This subsection presents three safety concepts for safe interaction of the auto-
mated forklifts and human workers at blind corners, based on the proposed
architecture. Movement of human workers can only be controlled by signals
and operational rules. However, they can be ignored or violated for various
reasons [3,4,8,10], intentionally or unintentionally. On the other hand, a safety
concept suitable for individual warehouses is not always the same.

Safe Interaction at Blind Corners in a Warehouse with Infrastructure Sensors 171

This research considers the following alternatives as safety concept (SC) for
safe interaction at blind corners:

– SC0: Stop only for humans detected in direction of travel
– SCA: Decelerate at blind corners and prioritize forklift
– SCB: Utilize infrastructure and prioritize forklift
– SCC: Utilize infrastructure and prioritize person

SC0 uses only the minimum personnel detection mechanism required by
ISO 3691-4 [11] outside of confined zones. All other responsibility to avoid col-
lisions at blind corners remains with the worker.

SCA is similar to a conventional operation with human-driven forklifts [4,30]
without using infrastructure systems. As operational rule, persons should pause
at intersections, check if a forklift is approaching, and wait for the forklift to
pass; and the forklift is allowed to continue slowly. Even though priority is given
to forklifts, they must pass intersections while paying attention to the presence
of human workers that could violate the safety rule. As it is difficult for the
forklift to detect persons due to blind corners, intersection areas are treated
like operating hazard zones and the forklift’s speed is limited accordingly. The
deceleration helps to avoid collisions, but may unnecessarily hinder efficiency.

SCB utilizes the proposed infrastructure cooperative architecture and pri-
oritizes passage of forklifts. The operational rule for the worker is identical to
SCA, but an automated forklift may continue at normal speed, if there is no
worker in the conflict area. Presence of workers in the conflict area is monitored
by infrastructure sensors and causes a safety action instruction to slow down
for the automated forklift. In addition, operation of the forklift is switched to a
local mode similar to SCA if a missing safety action instruction or a failed com-
munication is detected, e.g. by using a heartbeat with a rolling counter for the
instructions. This safety concept is expected to improve operational efficiency
by limiting the situations that require significant deceleration of the forklift. On
the other hand, the risk remains that persons violating the rule and stepping
into intersections may cause collisions with the slow forklift.

SCC utilizes the proposed infrastructure cooperative architecture and prior-
itizes passage of human workers. The operational rule is set as follows: Forklifts
check the existence of workers in conflict areas and wait for them to pass; and
human workers do not have to stop and can pass freely. Like in SCB, infras-
tructure sensors monitor the presence of workers and the forklift can pass at
a normal speed in their absence. Also, a local mode similar to SCA is used if
a missing safety action instruction or a failed communication is detected. The
difference between SCC and SCB is the triggered safety action, if a worker is
present. In SCC, the forklift is instructed to decelerate, stop and wait for the
worker to pass. The forklift can resume passing only after all humans left the
conflict area. As priority is given to humans, they cannot violate a rule preferring
forklifts. However, unnecessary waiting times for forklifts may occur, especially
if a human worker stays near an intersection.

172 C. Drabek et al.

Fig. 4. Overview of the blind corner scenarios used in the simulation: (1) infrastructure
camera, (2) human worker, (3) forklift, (4) forklift cameras field of view, (5) blind
corner, (6) infrastructure camera field of view.

4 Evaluation

The safety concepts are evaluated in a robotics simulation using Webots [18]. For
this, the architecture shown in Fig. 2 was implemented and several scenarios in
the warehouse setting have been examined at the intersection shown in Fig. 4. In
the simulation, cameras with correct object recognition are used as assumed
dependable sensors. A fixed infrastructure sensor covers the conflict area of
the intersection. It recognizes forklifts, human workers and their positions. If
a human is detected in the conflict area, the selected safety action is forwarded
to the approaching forklift. Block control and warehouse control system have
been replaced with stubs that instruct the forklift to pass the intersection.

The automated forklift is equipped with two sensors, covering the area in
front of the forklift and partially on the sides, simulating the personnel detection
mechanism required by ISO 3691-4 [11]. In each simulation run, the forklift has
to travel 35 m starting 25 m before the intersection. The simulation assumes a
rated speed of 5 m

s and a value of 3 m
s2 for brake and acceleration. For simplicity,

the simulated human worker follows a straight path across the intersection and
will either pass it, wait before the intersection (but already in conflict area) or
not enter the conflict area. To cover all cases where a human and a slow or fast
moving forklift would arrive at the intersection at the same time and collide
without any further action, 45 different initial distances of the human to the
intersection were selected. The resulting scenarios range from the human worker
crossing the intersection before the automated forklift to a slow forklift passing
before the human can reach the blind corner.

The safety concepts SC0, SCA, SCB and SCC have been implemented in the
Webots simulation, allowing the comparison of their performance and safety.
A shorter average completion time indicates a better performance of the
system. We only take successfully completed runs into account, i.e., runs with
collisions or timeouts (30 s) are excluded. The number of collisions indicates
the safety of a system – ideally there should be no collisions. Front and side
collisions are considered as simplified indication of an accident’s severity. Side
collisions are less severe and result from humans walking into a visible forklift.

Safe Interaction at Blind Corners in a Warehouse with Infrastructure Sensors 173

Table 1. Simulation results: average time of successful completion of task (tavg[s]) and
number of simulations that finished successfully (F), ended due to timeout (T), ended
in front collision (fC) or side collision (sC). Zero values have been omitted for clarity.

Human Metric Communication status

Off On On→Off Off→On

SC0 SCA/B/C SCB SCC SCB SCC SCB SCC

Human Metric 0 1 2 3 4 5 6 7

Passes intersection tavg 7.3 12.6 8.7 9.1 12.2 12.2 8.8 9.2

F 29 37 45 45 37 37 45 45

fC 13 3 3 3

sC 3 5 5 5

Waits in conict area tavg 7.3 11.7 9.9 7.3 11.4 11.4 10 7.4

F 45 45 45 18 45 45 45 17

T 27 28

Not present tavg 7.3 11.7 7.3 7.3 10.9 10.9 7.3 7.3

F 45 45 45 45 45 45 45 45

For each safety concept, all possible combinations of communication with
infrastructure status and human behavior were taken into account. Table 1 sum-
marizes the average completion times and the different results for each combi-
nation. While there is only a collision risk, if the human crosses the intersection,
good performance in the other cases is expected to improve acceptance of a
selected safety concept. If communication is off, forklifts ignore all messages
from infrastructure. Switching of communication status was timed to impact
right before the forklift has to make its decision whether to brake or not. Since
the scenarios cover all possible encounters that can be achieved by changing the
start positions, we assume that the following observations apply in general to
the interaction of an automated forklift and a human worker at a blind corner:

SC0 provides very good performance when there is no risk of collision. The
average time of performing a task is 7.3 s, which is the best achievable result.
However, if the human does not prioritize the forklift and walks into the inter-
section, more than every third simulation run ended in a collision. This result
underlines the motivation that intersections with blind corners require special
attention to ensure safety for human-machine cooperation.

SCA results in less front collisions than SC0, by slowing down near the blind
corner. This concept increases safety by giving the forklift more time to detect
a person and stop – only 7 out of 45 runs ended in collisions, including 3 severe
accidents. However, it increases the average completion time to almost 12 s, as
deceleration is performed regardless of a nearby human.

SCB provides very good performance when there is no human in the conflict
area and the forklift receives permission to pass the blind corner at maximum
rated speed. In these scenarios, this also avoided collisions that could only have

174 C. Drabek et al.

4 5 6 7 8 9 10 11 12 13 14 15

7
10
13

initial distance of human to blind corner [m]

co
m

pl
et

io
n

ti
m

e
[s

] SC0 SCA
SCB SCC

Fig. 5. Forklift completion times for passing humans based on the human’s initial
position. Circles and crosses mark runs resulting in front or side collisions respectively.

−6−4−2 0 2 4 6
1
3
5

v
[m s

]

−6−4−2 0 2 4 6
1
3
5

forklift offset to blind corner [m]

−6−4−2 0 2 4 6
1
3
5

Fig. 6. Speed curves of the forklift for human starting at 6,9 and 12 m distance.

happened, if the forklift had slowed down. When needed, slowing down provided
sufficient delay for the forklift to detect the human and stop.

In the observed cases, SCC provides no significant improvement over SCB.
However, SCC can improve safety in more complex scenarios, e.g., if the human
is not moving with constant speed or if multiple humans are present. On the
other hand, if a human remains in the conflict area, the forklift will also wait
indefinitely, unless an additional override mechanism is implemented. For both,
SCB and SCC, the forklift gracefully degrades to SCA’s safety and performance
level, if it receives no information from infrastructure.

The impact of the human’s initial position on completion times is shown in
Fig. 5. Two areas of potential collisions can be identified in the diagram. If the
human is already close to the intersection, he could collide with a quick moving
forklift (SC0). A slow moving forklift (SCA) could collide with a human further
away. The dynamic decision being made in SCB and SCC allows the forklift
to avoid these situations by either slowing down for the human to cross (left)
or passing the intersection quickly and safely before the worker can reach it
(right). For the human starting at distances of 6, 9 and 12 m to the intersection,
speed curves of the forklift are shown in Fig. 6 from left to right. In the left
diagram, forklifts decelerate at dbrake except for SC0, for which the emergency
brake could not prevent a collision. In the other diagrams, the forklift decelerates
only for SCA: In the middle, the forklift avoids a collision by stopping, while an
inattentive human runs into the forklift’s side on the right.

Safe Interaction at Blind Corners in a Warehouse with Infrastructure Sensors 175

5 Conclusion and Outlook

This paper examines the interactions of automated forklifts and humans at blind
corners in a warehouse. We introduce an architecture that includes infrastructure
sensors to increase the safety in these situations while having minimal impact on
efficiency. We present and compare safety concepts related to this architecture
that each address different needs. Clearly, relying only on the forklift’s own sen-
sors either poses a high risk for human workers, if the forklift does not slow down
at intersections (SC0) or suffers a severe performance penalty (SCA). Using
information from infrastructure sensors (SCB), the decision to slow down can
be made dynamically, which reduces the impact on performance, even if the con-
nection is not always available. Still, a small risk remains if a slowly approaching
automated forklift is ignored. However, instructing forklifts to unconditionally
stop for humans (SCC) will lead to unnecessary waiting times.

In the future, a human worker’s behavior might be inferred automatically,
when it is possible to have more and reliable information, e.g. by an improved
prediction that can recognize the human’s intention and awareness. In the mean-
time, such systems could include means for workers to actively yield to forklifts.

Acknowledgment. The research leading to these results has partially received fund-
ing from the Bavarian Ministry of Economic Affairs, Regional Development and Energy
as Fraunhofer High Performance Center Secure Intelligent Systems.

References

1. Boehning, M.: Improving safety and efficiency of AGVs at warehouse black spots.
In: IEEE ICCP, pp. 245–249, September 2014. https://doi.org/10.1109/ICCP.2014.
6937004

2. Cantini, A., De Carlo, F., Tucci, M.: Towards forklift safety in a warehouse: an
approach based on the automatic analysis of resource flows. Sustainability 12(21),
8949 (2020). https://doi.org/10.3390/su12218949

3. Cao, L., Depner, T., Borstell, H., Richter, K.: Discussions on sensor-based assis-
tance systems for forklifts. In: Smart SysTech, pp. 1–8, June 2019

4. Cohen, H.H., Jensen, R.C.: Measuring the effectiveness of an industrial lift truck
safety training program. J. Saf. Res. 15(3), 125–135 (1984). https://doi.org/10.
1016/0022-4375(84)90023-9

5. De Ryck, M., Versteyhe, M., Debrouwere, F.: Automated guided vehicle systems,
state-of-the-art control algorithms and techniques. J. Manuf. Syst. 54, 152–173
(2020). https://doi.org/10.1016/j.jmsy.2019.12.002

6. Arbeitsunfallgeschehen 2019: Statistik 21537, DGUV, September 2020. https://
publikationen.dguv.de/widgets/pdf/download/article/3893

7. Drabek, C., et al.: Dependable and efficient cloud-based safety-critical applications
by example of automated valet parking. In: Martins, A.L., Ferreira, J.C., Kocian,
A., Costa, V. (eds.) INTSYS 2020. LNICST, vol. 364, pp. 90–109. Springer, Cham
(2021). https://doi.org/10.1007/978-3-030-71454-3 6

8. Everett, H.R., Gage, D.W., Gilbreath, G.A., Laird, R.T., Smurlo, R.P.: Real-world
issues in warehouse navigation. In: Mobile Robots IX, vol. 2352, pp. 249–259. SPIE,
Boston, January 1995. https://doi.org/10.1117/12.198975

https://doi.org/10.1109/ICCP.2014.6937004
https://doi.org/10.1109/ICCP.2014.6937004
https://doi.org/10.3390/su12218949
https://doi.org/10.1016/0022-4375(84)90023-9
https://doi.org/10.1016/0022-4375(84)90023-9
https://doi.org/10.1016/j.jmsy.2019.12.002
https://publikationen.dguv.de/widgets/pdf/download/article/3893
https://publikationen.dguv.de/widgets/pdf/download/article/3893
https://doi.org/10.1007/978-3-030-71454-3_6
https://doi.org/10.1117/12.198975

176 C. Drabek et al.

9. Manipulation von Schutzeinrichtungen - Verhindern, Erschweren, Erkennen. Fach-
bereich AKTUELL FB HM-022, FB HM DGUV, July 2016

10. Safety in the future: Whitepaper, IEC, Geneva, Switzerland, November 2020.
https://go.iec.ch/wpsif

11. Industrial trucks: Safety requirements and verification: Part 4: Driverless industrial
trucks and their systems. International Standard ISO 3691-4:2020(E) (2020)

12. Kojima, K., Sato, A., Taya, F., Kameda, Y., Ohta, Y.: NaviView: visual assistance
by virtual mirrors at blind intersection. In: ITSC, pp. 592–597, September 2005.
https://doi.org/10.1109/ITSC.2005.1520120

13. Korte, D.: Sicherheitsbezogenes Sensorsystem für fahrerlose Trans-
portfahrzeuge. Logist. J. 2020(12) (2020). https://doi.org/10.2195/
LJ PROC KORTE DE 202012 01

14. Košnar, K., Ecorchard, G., Přeučil, L.: Localization of humans in warehouse based
on rack detection. In: ECMR, pp. 1–6, September 2019. https://doi.org/10.1109/
ECMR.2019.8870913

15. Löcklin, A., Ruppert, T., Jakab, L., Libert, R., Jazdi, N., Weyrich, M.: Trajec-
tory prediction of humans in factories and warehouses with real-time locating
systems. In: IEEE ETFA, vol. 1, pp. 1317–1320 (2020). https://doi.org/10.1109/
ETFA46521.2020.9211913

16. Lombard, A., Perronnet, F., Abbas-Turki, A., El Moudni, A.: Decentralized
management of intersections of automated guided vehicles. IFAC-PapersOnLine
49(12), 497–502 (2016). https://doi.org/10.1016/j.ifacol.2016.07.669

17. Markis, A., Papa, M., Kaselautzke, D., Rathmair, M., Sattinger, V., Brandstotter,
M.: Safety of mobile robot systems in industrial applications. In: Proceedings of
the ARW & OAGM Workshop, Steyr, Austria, pp. 26–31 (2019). https://doi.org/
10.3217/978-3-85125-663-5-04

18. Michel, O.: Cyberbotics Ltd. WebotsTM: professional mobile robot simulation. J.
Adv. Robot. Syst. 1(1), 39–42 (2004). https://doi.org/10.5772/5618

19. Morales, Y., Yoshihara, Y., Akai, N., Takeuchi, E., Ninomiya, Y.: Proactive driving
modeling in blind intersections based on expert driver data. In: IEEE IV, Los
Angeles, CA, USA, pp. 901–907, June 2017. https://doi.org/10.1109/IVS.2017.
7995830

20. Naser, F., et al.: ShadowCam: real-time detection of moving obstacles behind a
corner for autonomous vehicles. In: ITSC, Maui, HI, USA, pp. 560–567 (2018).
https://doi.org/10.1109/ITSC.2018.8569569

21. Okamoto, T., Yamada, Y.: Study of conditions for safe and efficient traffic in
an indoor blind corner-based decision model with consideration for tactics and
information uncertainty. In: 2012 IEEE RO-MAN, pp. 682–688, September 2012.
https://doi.org/10.1109/ROMAN.2012.6343830

22. O’Toole, M., Lindell, D.B., Wetzstein, G.: Confocal non-line-of-sight imaging based
on the light-cone transform. Nature 555(7696), 338–341 (2018). https://doi.org/
10.1038/nature25489

23. Platbrood, F., Görnemann, O.: Safe Robotics – die Sicherheit in kollaborativen
Robotersystemen. Whitepaper 8020620, SICK AG, June 2018

24. Railsback, B.T., Ziernicki, R.M.: Stand-up forklift acceleration. In: ASME IMECE,
pp. 421–424. ASMEDC, Vancouver, November 2010. https://doi.org/10.1115/
IMECE2010-38940

25. Rey, R., Corzetto, M., Cobano, J.A., Merino, L., Caballero, F.: Human-robot co-
working system for warehouse automation. In: IEEE ETFA, pp. 578–585 (2019).
https://doi.org/10.1109/ETFA.2019.8869178

https://go.iec.ch/wpsif
https://doi.org/10.1109/ITSC.2005.1520120
https://doi.org/10.2195/LJ_PROC_KORTE_DE_202012_01
https://doi.org/10.2195/LJ_PROC_KORTE_DE_202012_01
https://doi.org/10.1109/ECMR.2019.8870913
https://doi.org/10.1109/ECMR.2019.8870913
https://doi.org/10.1109/ETFA46521.2020.9211913
https://doi.org/10.1109/ETFA46521.2020.9211913
https://doi.org/10.1016/j.ifacol.2016.07.669
https://doi.org/10.3217/978-3-85125-663-5-04
https://doi.org/10.3217/978-3-85125-663-5-04
https://doi.org/10.5772/5618
https://doi.org/10.1109/IVS.2017.7995830
https://doi.org/10.1109/IVS.2017.7995830
https://doi.org/10.1109/ITSC.2018.8569569
https://doi.org/10.1109/ROMAN.2012.6343830
https://doi.org/10.1038/nature25489
https://doi.org/10.1038/nature25489
https://doi.org/10.1115/IMECE2010-38940
https://doi.org/10.1115/IMECE2010-38940
https://doi.org/10.1109/ETFA.2019.8869178

Safe Interaction at Blind Corners in a Warehouse with Infrastructure Sensors 177

26. Sabattini, L., et al.: The PAN-robots project: advanced automated guided vehicle
systems for industrial logistics. IEEE Robot. Autom. Mag. 25(1), 55–64 (2018).
https://doi.org/10.1109/MRA.2017.2700325

27. Scheuvens, L., Hößler, T., Barreto, A.N., Fettweis, G.P.: Wireless control commu-
nications co-design via application-adaptive resource management. In: 2019 IEEE
2nd 5G World Forum (5GWF), pp. 298–303, September 2019

28. Shirazi, M.S., Morris, B.T.: Looking at intersections: a survey of intersection mon-
itoring, behavior and safety analysis of recent studies. IEEE Trans. Intell. Transp.
Syst. 18(1), 4–24 (2017). https://doi.org/10.1109/TITS.2016.2568920

29. Solomitckii, D., Barneto, C.B., Turunen, M., Allén, M., Koucheryavy, Y., Valkama,
M.: Millimeter-wave automotive radar scheme with passive reflector for blind corner
conditions. In: EuCAP, Copenhagen, Denmark, pp. 1–5, March 2020. https://doi.
org/10.23919/EuCAP48036.2020.9135926

30. Forklift safety - reducing the risks. Technical report, State of Queensland (2019).
https://www.worksafe.qld.gov.au/ data/assets/pdf file/0021/21459/forklift-
safety-reducing-risks-guide.pdf

31. Sume, A., et al.: Radar detection of moving targets behind corners. IEEE Trans.
Geosci. Remote Sens. 49(6), 2259–2267 (2011). https://doi.org/10.1109/TGRS.
2010.2096471

32. Sun, E., Ma, R.: The UWB based forklift trucks indoor positioning and safety
management system. In: IEEE IAEAC, pp. 86–90, March 2017. https://doi.org/
10.1109/IAEAC.2017.8053982

33. Thai, K., et al.: Around-the-corner radar: detection and localization of a target
in non-line of sight. In: IEEE RadarConf, Seattle, WA, USA, pp. 0842–0847, May
2017. https://doi.org/10.1109/RADAR.2017.7944320

34. Tiusanen, R., Malm, T., Ronkainen, A.: An overview of current safety requirements
for autonomous machines – review of standards. Open Eng. 10(1) (2020). https://
doi.org/10.1515/eng-2020-0074

35. Yoshihara, Y., Morales, Y., Akai, N., Takeuchi, E., Ninomiya, Y.: Autonomous
predictive driving for blind intersections. In: IEEE/RSJ IROS (2017). https://doi.
org/10.1109/IROS.2017.8206185

https://doi.org/10.1109/MRA.2017.2700325
https://doi.org/10.1109/TITS.2016.2568920
https://doi.org/10.23919/EuCAP48036.2020.9135926
https://doi.org/10.23919/EuCAP48036.2020.9135926
https://www.worksafe.qld.gov.au/__data/assets/pdf_file/0021/21459/forklift-safety-reducing-risks-guide.pdf
https://www.worksafe.qld.gov.au/__data/assets/pdf_file/0021/21459/forklift-safety-reducing-risks-guide.pdf
https://doi.org/10.1109/TGRS.2010.2096471
https://doi.org/10.1109/TGRS.2010.2096471
https://doi.org/10.1109/IAEAC.2017.8053982
https://doi.org/10.1109/IAEAC.2017.8053982
https://doi.org/10.1109/RADAR.2017.7944320
https://doi.org/10.1515/eng-2020-0074
https://doi.org/10.1515/eng-2020-0074
https://doi.org/10.1109/IROS.2017.8206185
https://doi.org/10.1109/IROS.2017.8206185

Machine Learning-Based Fault Injection
for Hazard Analysis and Risk Assessment

Bentley James Oakes1,2 , Mehrdad Moradi1,2(B) , Simon Van Mierlo1,2 ,
Hans Vangheluwe1,2 , and Joachim Denil1,2

1 University of Antwerp, Antwerp, Belgium
2 Flanders Make vzw, Lommel, Belgium

{bentley.oakes,mehrdad.moradi,simon.vanmierlo,hans.vangheluwe,
joachim.denil}@uantwerpen.be

Abstract. Current automotive standards such as ISO 26262 require
Hazard Analysis and Risk Assessment (HARA) on possible hazards and
consequences of safety-critical components. This work attempts to ease
this labour-intensive process by using machine learning-based fault injec-
tion to discover representative hazardous situations. Using a Simulation-
Aided Hazard Analysis and Risk Assessment (SAHARA) methodology,
a visualisation and suggested hazard classification is then presented for
the safety engineer. We demonstrate this SAHARA methodology using
machine learning-based fault injection on a safety-critical use case of an
adaptive cruise control system, to show that our approach can discover,
visualise, and classify hazardous situations in a (semi-)automated man-
ner in around twenty minutes.

Keywords: Hazard analysis · Risk assessment · Verification · Fault
injection · Reinforcement learning · Signal temporal logic

1 Introduction

Automotive systems are complex cyber-physical systems with ever-tightening
safety and production efficiency requirements. These qualities must be ensured
even as automotive software contains lines of code numbering in the tens of
millions [6] to support many modern features, including autonomous operation.

The well-known ISO 26262 standard mandates manufacturers to perform
safety and hazard analysis of their vehicles [11]. In particular, hazards and faults
must be shown to be adequately considered and handled by the manufacturer
in the form of supporting evidence cases. ISO 26262 defines one outcome of
this analysis as the Automotive Safety Integrity Level (ASIL), which denotes
the risk of a hazard and, therefore, the level of risk reduction required to be

This work was partly funded by Flanders Make vzw, the strategic research centre for the
Flemish manufacturing industry; and by the aSET project (grant no. HBC.2017.0389)
of the Flanders Innovation and Entrepreneurship agency (VLAIO).
c© Springer Nature Switzerland AG 2021
I. Habli et al. (Eds.): SAFECOMP 2021, LNCS 12852, pp. 178–192, 2021.
https://doi.org/10.1007/978-3-030-83903-1_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-83903-1_12&domain=pdf
http://orcid.org/0000-0001-7558-1434
http://orcid.org/0000-0001-8748-069X
http://orcid.org/0000-0002-4043-6883
http://orcid.org/0000-0003-2079-6643
http://orcid.org/0000-0002-4926-6737
https://doi.org/10.1007/978-3-030-83903-1_12

ML-Based Fault Injection for HARA 179

implemented by automotive components. Performing this Hazard Analysis and
Risk Assessment (HARA) is manual work that requires hours of discussions
between safety engineers [16]. Automating aspects of this analysis, therefore,
greatly reduces the time taken to understand hazardous situations.

A Simulation-Aided Hazard Analysis and Risk Assessment (SAHARA) app-
roach can utilise intelligent Fault Injection (FI) on vehicle components, which
are then simulated for the visualisation and classification of hazardous situa-
tions [21]. Further described in Sect. 3, this SAHARA methodology1 involves
models of the components under study, information on how to inject faults, the
safety-critical scenarios of interest, and a process to suggest a hazard classifi-
cation for the simulation result. This (semi-) automated methodology provides
safety engineers with representative visualisations and safety classifications of a
system’s faulty behaviour in various hazardous situations.

However, the SAHARA methodology defined in [21] presents few details on
the FI procedure and implementation. For example, selecting the injection site
and optimising the fault parameters is not discussed, and no indication of the
performance of the FI procedure is given.

Our research focuses on intelligent FI, which employs a Reinforcement Learn-
ing (RL) algorithm to discover fault parameters [18]. RL is a large category of
Machine Learning (ML) algorithms learning from the environment by interacting
dynamically with it [20]. RL is used to automatically identify the parameters for
critical faults that should be injected into the component under test to provoke
increasingly more hazardous behaviour. In this work, we place our FI approach
within the SAHARA methodology and inject hazardous faults. The CARLA
open-source simulator for automotive research [8] then produces a visualisation
of the resulting system behaviour, and an ASIL is suggested using temporal logic
on the simulation traces.

This paper’s contributions are therefore: (i) detailing how the ML-based FI
process uses the available data within the SAHARA methodology to automat-
ically produce hazardous situations, (ii) providing an example of the FI and
SAHARA processes on a use case, including an indication of the approach perfor-
mance, and (iii) a discussion of the benefits and drawbacks of placing ML-based
FI within the SAHARA process.

Section 2 introduces the adaptive cruise control example. Section 3 describes
FI within the SAHARA methodology, while Sect. 4 an indication of performance.
Section 5 discusses the approach, while related literature is presented in Sect. 6
and Sect. 7 concludes the paper and describes future work.

2 Adaptive Cruise Control

This section introduces the Adaptive Cruise Control (ACC) system under study
and the potential hazards that may arise from faults in the component.

1 Other approaches such as [13,14] refer to a SAHARA approach. This paper uses
SAHARA solely to refer to the methodology of [21].

180 B. J. Oakes et al.

Fig. 1. ACC speed and spacing modes. Fig. 2. ACC model in Simulink R©.

The purpose of the ACC is to regulate the speed of the ego vehicle (the vehicle
of concern) to ensure that it does not approach the rear of any lead vehicles too
closely. The user of the ACC defines a preferred speed and safe distance, which
is compared to the relative distance between the ego and lead vehicles. Figure 1
presents the two modes of the ACC. The first mode of the ACC is the speed
control mode; the ACC directs the ego vehicle to increase the vehicle’s speed
to the preferred speed, potentially decreasing the relative distance. The second
spacing control mode occurs when the ego vehicle is within safe distance to the
lead vehicle. Here, the ACC directs the ego vehicle to reduce its speed such that
the safe distance is maintained.

The Simulink R© model used for this work is shown in Fig. 2, where the ACC
is modelled in the left-hand block and the ego vehicle dynamics and environment
are modelled in the right-hand block2. In this work, the automotive simulator
CARLA [8] will replace the vehicle dynamics and environment block.

As the ACC component can control the vehicle’s acceleration and the result-
ing distance from other vehicles, the ACC is a safety-critical component. Even
a minor fault could violate the safety requirement that the relative distances
between vehicles is greater than a set safe distance. In a more hazardous situa-
tion, a major fault in the ACC could lead to an unintended acceleration into the
rear of the lead vehicle, potentially resulting in severe injuries or death. There-
fore, this ACC component must be intensively examined in a structured manner
to determine possible hazards and their consequences.

In Sect. 3.3, we inject a fault in the longitudinal velocity of the ego vehicle,
which is transferred to the ACC such that the ACC does not accurately know
the vehicle’s speed. This hazardous situation can lead to unintended acceleration
as visualised and classified with the SAHARA methodology.

3 ML-Based FI Within the SAHARA Methodology

The Simulation-Aided Hazard Analysis and Risk Assessment (SAHARA)
methodology focuses on assisting with (semi-) automated reasoning about the
hazards and risks present in a safety-critical system [21]. In summary, this

2 The model is an adapted version of https://www.mathworks.com/help/mpc/ug/
adaptive-cruise-control-using-model-predictive-controller.html.

https://www.mathworks.com/help/mpc/ug/adaptive-cruise-control-using-model-predictive-controller.html
https://www.mathworks.com/help/mpc/ug/adaptive-cruise-control-using-model-predictive-controller.html

ML-Based Fault Injection for HARA 181

Fig. 3. The overall SAHARA architecture and workflow (adapted from [21]). Yellow
blocks are automatic actions, and gray blocks are manual actions. (Color figure online)

methodology utilises specifications of scenarios, faults, and vehicle dynamics,
which are combined and fed as input into simulations, which in turn provide
data for visualisations and classification of the (potentially) hazardous situa-
tion.

The following sections will address applying the five prominent components of
the approach as indicated in Fig. 3: required information, scenario selection, fault
injection and reinforcement learning algorithm, simulation and visualisation, and
classification of hazard level.

3.1 Required Information

Scenario Database. This scenario information combines the map and path infor-
mation for vehicles, along with different influence factors, such as relevant
characteristics of the vehicle, road conditions, and vehicle/pedestrian interac-
tions [13,21].

Vehicle and Item Models. The SAHARA methodology requires detailed vehicle
models, including the dynamics and the component(s) under study. Faults are
injected into these component models, and the dynamics models are then used
to simulate a scenario and assess the safety of the faulty component. In this
work, we utilise the simple vehicle dynamics model built into CARLA, and the
ACC model available within the Simulink documentation (see Sect. 2).

Functionality and Fault Database. Information on which component is under
study and how it may fail is also necessary for utilising the SAHARA methodol-
ogy, such that faults can be appropriately applied to the item models as discussed
in Sect. 3.3. The functionality under study in this work is the reporting of the
ego vehicle’s longitudinal velocity to the ACC (see Sect. 2), with sensor noise
and stuck-to faults available [21].

Severity and Controllability Contracts. The SAHARA methodology requires
contracts to suggest levels of severity and controllability as defined by the ISO
26262 standard. These contracts are discussed in detail in Sect. 3.5.

182 B. J. Oakes et al.

Fig. 4. Base scenario, and visualized as DryRoad, RainyRoad, and NightRoad. (Color
figure online)

3.2 Scenario Selection

An analysis of automotive hazards involves reasoning about the safety of a com-
ponent in various scenarios. These scenarios involve the layout of the roads, the
road surface, as well as effects like the weather. These factors may all impact
the dynamics or controllability of the vehicle and thus must be considered in a
safety assessment process.

As envisaged in the SAHARA methodology [21], the safety engineer would
select representative scenarios of interest through a tabular scenario description
file. This work selects three scenarios: a straight road in clear weather, rainy
weather, and night-time rainy weather, as shown in Fig. 4. The rainy weather
affects both the visuals of the situation and the friction parameters of the road3.
The night-time scenario does not affect the vehicle dynamics, but would make
the situation more hazardous for a human driver.

Each scenario represents the same driving manoeuvre as shown on the left-
hand side of Fig. 4. The red vehicle at the bottom is the ego vehicle, which must
detect the blue middle vehicle moving into the left lane to overtake the furthest
green vehicle. As explained in Sect. 2, the ACC must function appropriately on
the ego vehicle to detect this movement into its lane, decrease the ego vehicle’s
speed if necessary, and avoid an accidental rear-end collision.

3.3 Fault Injection and Reinforcement Learning Algorithm

Fault injection (FI) is a well-known technique that exposes the system to a
fault to allow the test engineer to understand if the system can adequately
respond or whether further design changes are required. Our approach focuses
on the most common stuck-to-value fault type in the sensors (input values) of
components [25].

For example, a stuck-to-value fault may force a signal’s value to be intermit-
tently ‘stuck’ to a certain value at some simulation time, as modelled in Fig. 5.
The middle block is a ‘switch’ block, which changes the output from the regular
input I to the faulty value V at all timesteps after time T. However, this fault
must still be parameterised to answer a) where to inject this fault, b) when the
switch should occur, and c) what the faulty value should be [3].

3 Friction values sourced from Fig. 24 of Singh and Taheri [28].

ML-Based Fault Injection for HARA 183

Fig. 5. Stuck-to-value fault at time T . Fig. 6. Model transformation FI [19].

Fault Injection in the Adaptive Cruise Control. The ACC controls the ego vehi-
cle’s acceleration based on the information from incoming radar combined with
the ACC’s information on the longitudinal velocity of the ego vehicle (Sect. 2).
As in [18], this work studies the presence of a stuck-to-value fault in the ego lon-
gitudinal velocity sensor of the ACC as seen in the top-left of Fig. 2. That is the
sensor which reports the current velocity of the ego vehicle to the ACC. With
this fault, the ACC will have incorrect knowledge of the ego vehicle’s velocity,
potentially resulting in a hazardous situation or collision.

In the SAHARA methodology, the safety engineer would select the longitu-
dinal velocity signal as the fault location and the stuck-to-value fault from the
ACC functionality and fault database. This FI is then performed using a frame-
work to perform rule-based transformations on Simulink models [7,19]. Patterns
utilising Simulink blocks can be matched in a model, and a rewrite pattern can
then add, remove, or modify blocks. In Fig. 6 the left-hand side of the rule is the
block pattern to match and the right-hand side is the replacement pattern.

Use of Machine Learning for Fault Injection. As a contribution to the SAHARA
methodology, this work integrates the machine learning-based FI approach from
previous work [18]. In this approach, a Reinforcement Learning (RL) framework
searches the parameter space of the injected faults (when and what value to
inject) over several simulations to force hazardous situations.

The framework utilises domain knowledge to set the boundaries and steer
the direction of the parameter search for the RL agent. For example, the reward
function in RL includes three parameters: the time of the simulation, the velocity
of the ego vehicle, and the relative distance of the ego and lead vehicles. This
reward function steers the search for fault values towards those that increase
the velocity while decreasing the time until the collision occurs and the relative
distance. This thus provokes as serious a crash as possible.

The FI framework runs multiple iterations of simulations with the fault
parameters tuned each time to reach increasing reward function values corre-
sponding to more hazardous situations. This results in a set of fault parameters
to inject into the scenario to provoke the most hazardous behaviour found (as
defined by reward value), and explore the most relevant safety consequences of
faults.

Note that the RL framework must simulate the vehicle’s behaviour in the
scenario to determine the outcome. Currently, this simulation is performed
‘headless’ (without visualisation) within Simulink to avoid any overhead. These

184 B. J. Oakes et al.

optimisation simulations are separate from the simulation required for visuali-
sation as discussed in the next section.

3.4 Simulation and Visualisation

At this step in the SAHARA methodology, the appropriate scenario and fault
(parameterised using RL) have been selected, and the fault has been injected
into the component model. The next stage is the simulation of the scenario to
produce a) a visualisation for use by experts in a safety assessment process, and
b) traces for a preliminary safety classification.

As in [30], we select the open source CARLA simulator [8] for its high-quality
visualisations, easy integration with other tools such as Simulink and Python,
and default vehicle dynamics model. The scenarios are loaded into CARLA by
modifying the weather and time of day on a built-in map.

The scenario is a co-simulation between CARLA and Simulink using a Python
bridge to synchronise each time step. This simulation runs for a predetermined
time as set in the scenario parameters. Simulink simulates the ACC, while
CARLA simulates the vehicle dynamics and environment. Simulation traces are
also produced for the assessment of hazardous situation. These signals include
the acceleration, velocity, and a measure of the collision impulse of the ego vehicle
(with any kind of object), the relative velocity and distance to the lead vehicle,
and a measure of the time gap before a collision would occur [26].

From the simulation, CARLA also produces a visualisation for the safety
engineer to utilise to reason about the consequences of the studied fault. These
visualisations thus show to the safety engineer a sense of the driver’s experience
as well as possible outcomes of the failure of the component. This provides insight
into how faulty behaviour could be hazardous.

3.5 Hazard Classification

The last step of the SAHARA methodology is to examine the resulting simulation
traces to suggest a preliminary classification of the scenario hazard level.

The ISO 26262 standard specifies that an Automotive Safety Integrity Level
(ASIL) be produced for a particular scenario by classifying the exposure (E),
severity (S), and controllability (C) level of the hazardous scenario [11]. The
ASIL is then provided by lookup in a table taking the E, C, and S into account
to give ASIL QM (lowest) or A to D (highest). The ASIL, therefore, provides a
guide to the safety-critical nature of a component’s faults.

Exposure - The exposure (E) level of the scenario estimates the likelihood
of the scenario from a scale from E1 (low exposure) to E4 (high exposure).
The literature presents an automated approach to this calculation based on the
probability of each influence factor in the scenario [13].

Severity - The severity (S) level concerns the potential injuries or death
caused in the scenario, ranging from S1 (no injuries) to S4 (multiple severe
injuries or deaths).

ML-Based Fault Injection for HARA 185

Fig. 7. S2 Severity contract. Fig. 8. C2 Controllability contract.

Table 1. Severity and Controllability contracts for hazard classification.

S. Level Conditions C. Level Conditions
S0 collImpulse = 0 G C0 accel in ±1.47 m/s2

S1 collImpulse >= 0.01 G timeGap > 2.6 s
S2 collImpulse >= 40 G for 0.1 s C1 accel in ±3.07 m/s2

collImpulse >= 25 G for 0.2 s timeGap in 1.3 to 2.6 s
collImpulse >= 15 G for 0.6 s C2 accel > ±3.07 m/s2

S3 collImpulse >= 100 G for 0.01 s timeGap in 0.5 to 1.3 s
collImpulse >= 50 G for 0.04 s C3 timeGap < 0.5 s
collImpulse >= 45 G for 0.1 s
collImpulse >= 30 G for 0.3 s
collImpulse >= 25 G for 0.8 s

Controllability - The controllability (C) level of a situation also ranges from
C1 to C4. This level represents the difficulty in controlling or avoiding the situ-
ation. This includes the driver of the vehicle as well as other participants in the
scenario, such as pedestrians.

Controllability and Severity Contracts. The SAHARA methodology proposes
assigning severity and controllability levels by developing temporal logic con-
tracts that operate over the traces output from a simulation [21]. In this work,
we further develop the provided contracts in Signal Temporal Logic (STL) [15]
and apply them to the simulation traces produced by CARLA. Temporal logic
is utilised due to the requirement to reason about both the value of signals as
well as the temporal duration of conditions, such as ‘at least 0.4 s’.

Severity Contracts - The ego vehicle collision impulse experienced in a colli-
sion can be used as a proxy for the severity level experienced [21]. Table 1 includes
the assignment of collision impulse ranges to severity levels specified by [21] util-
ising data from [27]. For example, if the collision impulse is experienced at over
40 Gs of force for at least 0.1 s, then S2 is assigned by Fig. 7.

Controllability Contracts - Two factors are included as proxies for controlla-
bility in Table 1: a) the longitudinal acceleration of the ego vehicle, where extreme

186 B. J. Oakes et al.

values indicate a more aggressive driver [2], and b) a measure of reaction time
for a driver in case of a lead vehicle emergency brake. That is, how many seconds
the driver has to respond before a collision [26]. For example, Fig. 8 assigns C2
(moderately uncontrollable) if the time gap between the vehicles is less than a
standard reaction time of 1.3 s [5].

Contract Evaluation. For verification, each contract in Table 1 is mapped to an
equivalent STL representation [4]. This mapping process increases the usability
of the contract verification approach, as STL can be difficult to reason about
and write by hand. Instead, this domain-specific contract language allows for
the specification of contracts using familiar operators and units.

For example, Eq. (1) shows the STL generated for the Severity contract
seen in Fig. 7. This STL converts the collision impulse into the correct unit and
implements the Existence pattern with duration present in Fig. 7. The resulting
STL is then verified against the vehicle dynamics traces produced by CARLA.

eventually(always[0 : 0.1]((collImpulse/14.0) >= 392.0)) (1)

These traces and the contract STL are fed as input into the Python-based
RTAMT verification library4. Each contract’s STL is checked in turn in an offline
manner on the simulation traces. If the specification succeeds, then the trace (and
therefore the situation) is assigned at least that severity or controllability level.

Outcome. As discussed in the SAHARA methodology and Sect. 3.2, the exposure
(E) level can be determined by examining the influence factors of the scenario.
The severity (S) and controllability (C) levels are then calculated by verifying
temporal logic contracts on the resulting simulation trace. The resulting ASIL
is then determined through a lookup table of the E, S, and C levels.

This ASIL suggestion is presented to the safety engineer along with a visual-
isation of the fault scenario to assist in assessing the hazardous situation. Even
though these artifacts are only a suggestion of possible outcomes, they may
provide insight into the hazardous nature of the situation.

4 Results

Table 2 displays the results of our application of the SAHARA methodology with
ML-based FI to the ACC use case. For each scenario, the calculated Severity and
Controllability levels and a suggested ASIL are presented. As each of these sce-
narios is quite likely, an exposure level of E4 is statically assigned. Visualisations
are also available online for all regular and faulty scenarios5.

For the non-faulty scenarios, the simulation traces indicate that no collision
occurred. Therefore the severity level is the lowest, and the ASIL remains as

4 https://github.com/nickovic/rtamt.
5 https://www.youtube.com/playlist?list=PLNyNvnuIvPKvsmUT1I-hwEYDMyZ7

YGZkA.

https://github.com/nickovic/rtamt
https://www.youtube.com/playlist?list=PLNyNvnuIvPKvsmUT1I-hwEYDMyZ7YGZkA
https://www.youtube.com/playlist?list=PLNyNvnuIvPKvsmUT1I-hwEYDMyZ7YGZkA

ML-Based Fault Injection for HARA 187

Quality Management (QM). In the RainyRoad scenario, the stopping distance
and the timeGap between the vehicles are modified due to the lowered road
friction. The contracts from Table 1 thus assign a higher Controllability level
(less controlled).

Table 2. Suggested hazard classifications and visualisations for all scenarios.

Scenario Without fault With fault
DryRoad RainyRoad NightRoad DryRoad RainyRoad NightRoad

S Level 0 0 0 3 3 3
C Level 1 2 2 3 3 3
ASIL QM QM QM D D D

For the scenarios with faults, a collision is provoked by the machine learning
approach in Sect. 3.3. There is a significant collision impulse as the velocity
sensor of the ego vehicle becomes faulty as the lead vehicle is overtaking. The
rapid acceleration then causes an impact between the vehicles that could cause
grave injury. Thus, a severity level of S3 is assigned, leading to a suggested
hazard classification of ASIL D (the highest level).

The simulation time in our approach is divided into three parts: a) injecting
faults into the ACC Simulink model takes around 2.7 min, b) The RL process
then operates on this faulty model and finds multiple parameter sets (fault ampli-
tude and injection time) causing hazardous situations in about 13.5 min, and c)
For each one of these critical parameter sets found, simulation and visualisation
takes around 2.5 min with three seconds for assigning an ASIL. Therefore, an
end-to-end run of this methodology takes about 20 min.

The FI process and the CARLA simulation took place on a 32-core processor
running at 2.99 GHz with 24 GB of memory and a graphics card with 11 GB of
memory. Only the RL part is multi-threaded. The contract verification process
took place on a 12-core Intel i7-8850H CPU at 4.3 GHz with 16 GB of memory.

5 Discussion

Approach Benefits. The approach of the SAHARA methodology (Sect. 3) is to
ease the effort required by the safety engineer in performing a safety assessment
of the component. This process can (semi-)automatically produce simulations
and visualisations of component faults.

Thus our addition of ML-based FI is a natural step, as it attempts to optimise
the parameters of injected faults such that a more hazardous situation devel-
ops (Sect. 3.3). As in previous work [17], this approach is superior to random-
based FI in exploring the fault space in terms of fault coverage and number
of simulation to find the first critical fault. The addition of this step may thus
allow the safety engineer to discover previously unknown situations where unsafe

188 B. J. Oakes et al.

behaviour occurs and increase fault coverage. Therefore, the simulations and
visualisations increase the safety engineer’s comprehension of the possible com-
ponent faults and offer concrete discussion points and insights.

A substantial value of this automatic SAHARA methodology with ML-based
FI is the (semi-)automation, leading to new visualisations and classification
results produced in a matter of minutes (Sect. 4), although a computationally
powerful machine is required. We envision an assessment workflow where visu-
alisations could be interactively produced during a safety assessment discussion
about various scenarios or faults.

Human-in-the-Loop Necessary. At first glance, not having a fully automated
framework and keeping a human-in-the-loop is a limitation for SAHARA. How-
ever, this is not possible in safety assessment, requiring a tremendous amount of
experience and in-depth domain knowledge that is unlikely to be adequately cap-
tured by an automaton. The safety engineer’s role cannot be replaced entirely,
despite the cost of safety assessment discussions. This is due to barriers, includ-
ing legal responsibilities or insufficient simulation fidelity.

Approach Limitations. Our approach inherits the weakness of ML. For exam-
ple, the time taken to search for a hazardous situation depends on the proper
modelling of the vehicle, environment, and the reward function to steer the
search [10,18]. If the representation of the problem or the reward function is
insufficient, then a hazardous situation may not be found. The probabilistic
nature of ML also means that it cannot be predicted at what time a hazardous
situation will be found. Another issue is that this searching process is compu-
tationally expensive and can take a significant amount even on a powerful com-
puter. As the vehicle and component models become more realistic and even
more complex, this could limit the applicability of this technique.

Here we suggest two challenges not addressed in this work:

a) For any particular scenario, the situation found by the SAHARA methodology
may not be the absolute worst-case due to the infinite and granular space of
situations possible. For example, a steering fault may or not cause a head-
on crash based on a margin of centimetres or less. Instead, this SAHARA
methodology aims to present a representative simulation, such that a safety
engineer can recognise the inherent danger in this situation.

b) An extended assessment of controllability and severity levels involves more
than just vehicle dynamics models [13,21]. For example, controllability relies
on the driver’s reaction (and others), which requires modelling of driver’s
behaviour [23]. Likewise, severity depends on the dynamics of the driver inside
the vehicle, such as possible whiplash injuries or interactions with airbags.

Due to these challenges, we restrict our application of the SAHARA method-
ology to only providing representative hazardous scenario visualisations and haz-
ard classification suggestions to assist safety assessments for a safety engineer.

ML-Based Fault Injection for HARA 189

6 Related Work

Assessing safety in the automotive domain is an active field of research, especially
in assessing autonomous vehicles [22]. For example, the open-source MOBATSim
framework combines a sub-microscopic vehicle simulator with reasoning about
faults [24]. Faults are injected into the front distance sensor for vehicles in a
platooning scenario, with a Monte Carlo approach to find more hazardous situa-
tions. Results are presented by the framework to relate the fault parameters with
an indication of safety specifications violations. This approach also addressed the
design of safety-critical systems, where faults and scenarios are evaluated for two
design variants to choose the safer design [26].

Juez et al. examine the role of FI in the context of the ISO 26262 standard and
its safety assessment process [12]. The SABOTAGE framework is defined, which
performs FI on a lateral control vehicle component, simulates the faulty scenario
versus a non-faulty (golden) scenario, and then determines the maximum time
that a fault can be present in the system.

In this work, we utilise RL to adjust the fault parameters to provoke a more
serious situation [18]. Alternatively, the work of Althoff and Lutz [1] adjusts the
scenario parameters themselves, such as doubling the initial speed of the ego
vehicle in a scenario or arranging the movement of vehicles to block off lanes or
increase the danger of overtaking.

Duracz et al. explore the use of rigorous simulations to assign severity levels
in an ISO 26262 safety assessment context [9]. Rigorous simulations operate on
explicit dynamics models and produce provably correct bounds for the behaviour.
As in our work, Duracz et al. base the severity level on the change in the velocity
signal upon collision.

Tuncali et al. define STL specifications for both system- and component-
level to be proved on a simulation [29]. An example is that when an object is
visible to sensors, the object must be detected by the sensors within a specific
time frame. An optimisation framework is then employed to find scenarios that
falsify the specifications. In contrast, our work performs the optimisation on the
FI to search towards the most hazardous situation, and the specifications are
only for hazard classification.

Zapridou et al. mirror our work by presenting STL verification of properties
on an ACC use case using the CARLA simulator [30]. However, our work focuses
on the FI portion of determining safety, and also places the intelligent FI within
the SAHARA safety assessment process.

7 Conclusion and Future Work

This work has presented the addition of machine learning-based Fault Injection
(FI) to the Simulation-Aided Hazard Analysis and Risk Assessment (SAHARA)
methodology, as demonstrated on a safety-critical use case of an Adaptive Cruise
Control (ACC). Specifically, Reinforcement Learning (RL) explores the param-
eters of faults injected into the ACC such that a hazardous situation is pro-
voked. This situation is then simulated in the open-source automotive simulator

190 B. J. Oakes et al.

CARLA [8] to produce a visualisation as well as simulation traces for use in
indicating the hazard classification level of the situation. Example situations are
shown to demonstrate the applicability of our approach, and timing results indi-
cate that this approach is relatively interactive as it takes only around twenty
minutes to complete end-to-end, and less than three minutes to produce a new
visualisation.

The natural extension of this work is to validate it within an industrial safety
assessment process. In particular, performing a study following the safety engi-
neers as they perform the standard hazard analysis and risk assessment proce-
dure, and then comparing this with our proposed SAHARA with RL-based FI.
Metrics and user surveys would then indicate the time saved and satisfaction
with the (semi-)automated approach.

References

1. Althoff, M., Lutz, S.: Automatic generation of safety-critical test scenarios for
collision avoidance of road vehicles. In: 2018 IEEE Intelligent Vehicles Symposium
(IV), pp. 1326–1333. IEEE (2018)

2. Bae, I., Moon, J., Seo, J.: Toward a comfortable driving experience for a self-driving
shuttle bus. Electronics 8(9), 943 (2019)

3. Benso, A., Prinetto, P.: Fault Injection Techniques and Tools for Embedded Sys-
tems Reliability Evaluation, vol. 23. Springer, Boston (2003). https://doi.org/10.
1007/b105828

4. Bernaerts, M., Oakes, B., Vanherpen, K., Aelvoet, B., Vangheluwe, H., Denil,
J.: Validating industrial requirements with a contract-based approach. In: 2019
ACM/IEEE 22nd International Conference on Model Driven Engineering Lan-
guages and Systems Companion (MODELS-C), pp. 18–27. IEEE (2019)

5. Coley, G., Wesley, A., Reed, N., Parry, I.: Driver reaction times to familiar, but
unexpected events. TRL published project report (2009)

6. Coppola, R., Morisio, M.: Connected car: technologies, issues, future trends. ACM
Comput. Surv. 49(3), 1–36 (2016)

7. Denil, J., Mosterman, P.J., Vangheluwe, H.: Rule-based model transformation for,
and in Simulink. In: Proceedings of the Symposium on Theory of Modeling &
Simulation-DEVS Integrative, pp. 1–8 (2014)

8. Dosovitskiy, A., Ros, G., Codevilla, F., Lopez, A., Koltun, V.: CARLA: an open
urban driving simulator. In: Proceedings of the 1st Annual Conference on Robot
Learning, pp. 1–16 (2017)

9. Duracz, A., et al.: Advanced hazard analysis and risk assessment in the ISO 26262
functional safety standard using rigorous simulation. In: Chamberlain, R., Edin
Grimheden, M., Taha, W. (eds.) CyPhy/WESE -2019. LNCS, vol. 11971, pp. 108–
126. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-41131-2 6

10. Hauer, F., Pretschner, A., Holzmüller, B.: Fitness functions for testing automated
and autonomous driving systems. In: Romanovsky, A., Troubitsyna, E., Bitsch, F.
(eds.) SAFECOMP 2019. LNCS, vol. 11698, pp. 69–84. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-26601-1 5

11. International Organization for Standardization: ISO 26262: Road vehicles-
functional safety (2011)

https://doi.org/10.1007/b105828
https://doi.org/10.1007/b105828
https://doi.org/10.1007/978-3-030-41131-2_6
https://doi.org/10.1007/978-3-030-26601-1_5

ML-Based Fault Injection for HARA 191

12. Juez, G., Amparan, E., Lattarulo, R., Rastelli, J.P., Ruiz, A., Espinoza, H.: Safety
assessment of automated vehicle functions by simulation-based fault injection. In:
2017 IEEE International Conference on Vehicular Electronics and Safety (ICVES),
pp. 214–219. IEEE (2017)

13. Kemmann, S.: SAHARA-a structured approach for hazard analysis and risk assess-
ments. Ph.D. thesis, Fraunhofer-Institut für Experimentelles Software Engineering
(2015)

14. Macher, G., Sporer, H., Berlach, R., Armengaud, E., Kreiner, C.: SAHARA: a
security-aware hazard and risk analysis method. In: 2015 Design, Automation &
Test in Europe Conference & Exhibition (DATE), pp. 621–624. IEEE (2015)

15. Maler, O., Nickovic, D.: Monitoring temporal properties of continuous signals. In:
Lakhnech, Y., Yovine, S. (eds.) FORMATS/FTRTFT -2004. LNCS, vol. 3253, pp.
152–166. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30206-
3 12

16. Meyers, B., Gadeyne, K., Oakes, B.J., Bernaerts, M., Vangheluwe, H., Denil, J.:
A model-driven engineering framework to support the functional safety process.
In: 2019 ACM/IEEE 22nd International Conference on Model Driven Engineering
Languages and Systems Companion (MODELS-C), pp. 619–623, September 2019

17. Moradi, M., Oakes, B., Denil, J.: Machine learning-assisted fault injection. In: 39th
International Conference on Computer Safety, Reliability and Security (SAFE-
COMP), Position Paper, Lisbon, Portugal (2020)

18. Moradi, M., Oakes, B.J., Saraoglu, M., Morozov, A., Janschek, K., Denil, J.:
Exploring fault parameter space using reinforcement learning-based fault injec-
tion. In: 2020 50th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks Workshops (DSN-W), pp. 102–109. IEEE (2020)

19. Moradi, M., Van Acker, B., Vanherpen, K., Denil, J.: Model-implemented hybrid
fault injection for Simulink (tool demonstrations). In: Chamberlain, R., Taha, W.,
Törngren, M. (eds.) CyPhy/WESE -2018. LNCS, vol. 11615, pp. 71–90. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-23703-5 4

20. Polydoros, A.S., Nalpantidis, L.: Survey of model-based reinforcement learning:
applications on robotics. J. Intell. Robot. Syst. 86(2), 153–173 (2017). https://doi.
org/10.1007/s10846-017-0468-y

21. Rafael, A.B.J., Bachir, Z.: SAHARA: Simulation aided hazard analysis and risk
assessment methodology. In: Risk Analysis XII, vol. 129, p. 41 (2020)

22. Riedmaier, S., Ponn, T., Ludwig, D., Schick, B., Diermeyer, F.: Survey on scenario-
based safety assessment of automated vehicles. IEEE Access 8, 87456–87477 (2020)

23. Salvucci, D.D.: Modeling driver behavior in a cognitive architecture. Hum. Factors
48(2), 362–380 (2006)

24. Saraoglu, M., Morozov, A., Janschek, K.: MOBATSim: Model-based autonomous
traffic simulation framework for fault-error-failure chain analysis. IFAC-
PapersOnLine 52(8), 239–244 (2019)

25. Saraoğlu, M., Morozov, A., Söylemez, M.T., Janschek, K.: ErrorSim: a tool for error
propagation analysis of Simulink models. In: Tonetta, S., Schoitsch, E., Bitsch, F.
(eds.) SAFECOMP 2017. LNCS, vol. 10488, pp. 245–254. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-66266-4 16

26. Saraoğlu, M., Shi, Q., Morozov, A., Janschek, K.: Virtual validation of autonomous
vehicle safety through simulation-based testing. In: 20. Internationales Stuttgarter
Symposium. P, pp. 419–434. Springer, Wiesbaden (2020). https://doi.org/10.1007/
978-3-658-29943-9 33

27. Shanahan, D.F.: Human tolerance and crash survivability. In: Pathological Aspects
and Associate Biodynamics in Aircraft Accident Investigation (2004)

https://doi.org/10.1007/978-3-540-30206-3_12
https://doi.org/10.1007/978-3-540-30206-3_12
https://doi.org/10.1007/978-3-030-23703-5_4
https://doi.org/10.1007/s10846-017-0468-y
https://doi.org/10.1007/s10846-017-0468-y
https://doi.org/10.1007/978-3-319-66266-4_16
https://doi.org/10.1007/978-3-658-29943-9_33
https://doi.org/10.1007/978-3-658-29943-9_33

192 B. J. Oakes et al.

28. Singh, K.B., Taheri, S.: Estimation of tire-road friction coefficient and its applica-
tion in chassis control systems. Syst. Sci. Control Eng. 3(1), 39–61 (2015)

29. Tuncali, C.E., Fainekos, G., Prokhorov, D., Ito, H., Kapinski, J.: Requirements-
driven test generation for autonomous vehicles with machine learning components.
IEEE Trans. Intell. Veh. 5(2), 265–280 (2019)

30. Zapridou, E., Bartocci, E., Katsaros, P.: Runtime verification of autonomous driv-
ing systems in CARLA. In: Deshmukh, J., Ničković, D. (eds.) RV 2020. LNCS,
vol. 12399, pp. 172–183. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-60508-7 9

https://doi.org/10.1007/978-3-030-60508-7_9
https://doi.org/10.1007/978-3-030-60508-7_9

Safety Validation and Simulation

SASSI: Safety Analysis
Using Simulation-Based Situation

Coverage for Cobot Systems

Benjamin Lesage and Rob Alexander(B)

Department of Computer Science, University of York, York, UK
{benjamin.lesage,rob.alexander}@york.ac.uk

Abstract. Assessing the safety of collaborative robot (cobot) systems is
a difficult task due to the myriad of possible interactions between robots
and operators, and the potential for injury to the operators. Using a
situation coverage approach we can define the individual components
of such interactions, and thereby describe the problem space and the
coverage achieved when testing it. In this paper, we propose a situa-
tion coverage approach for testing the safety of a cobot system. Our
approach suggests using a combination of safety analysis techniques and
simulation-based testing to define situations of interest and explore haz-
ardous situations while only endangering virtual operators. We challenge
our assumptions by applying our method to an example based on a real-
world use-case. The proposed metrics, if they provide no advantage to
guided test generation techniques over random ones, helped us trim the
generated configuration landscape to identify safety gaps.

Keywords: Cobot · Situation coverage · Simulation-based testing ·
Safety analysis

1 Introduction

Cooperative robots (cobots) [4] aim to allow human operators and robot work-
ers to share the same work-space, and work jointly to achieve a common goal.
Because of safety concerns, however, users tend to build physical barriers to iso-
late robots from the operators [19,26]. These barriers tend to limit the level of
cooperation between human and robot, and reduce the advantages of deploying
cobots in the industrial space.

The CSI: Cobot project [7] aims to reduce the need for barriers in cobot
systems. The project proposes novel sensing and control techniques to improve
cobots’ awareness of their environment, especially regarding interactions with
human operators. A crucial requirement for the adoption of new techniques
is achieving confidence in the overall safety of the system. We consider safety
aspects in the context of the CSI: Cobot project, in particular investigating the
impact of changes in the system setup.

c© Springer Nature Switzerland AG 2021
I. Habli et al. (Eds.): SAFECOMP 2021, LNCS 12852, pp. 195–209, 2021.
https://doi.org/10.1007/978-3-030-83903-1_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-83903-1_13&domain=pdf
https://doi.org/10.1007/978-3-030-83903-1_13

196 B. Lesage and R. Alexander

Simulation-based techniques, e.g. the CARLA simulator [8], are a common
approach to evaluate autonomous systems [5,21,29]. Simulations allow fast iter-
ations over varied configurations, including hazardous ones, without endanger-
ing the system itself, or its environment. However, the use of simulations for
testing safety constraints raises important issues. First, the safety case must
ensure the simulated environment is representative of the system under consid-
eration [2,16]. Second, the tools must decide on a set of configurations (from the
effective-infinite configuration space) to drive testing and evaluate confidence in
the system safety [18].

Our approach relies on simulation-based, situation-driven testing to evaluate
the safety of a cobot system. It builds on the safety analysis of the cobot system
under consideration, which identifies accidents and losses that arise from unsafe
operation. The safety artefacts, generated as part of this analysis, capture unde-
sirable situations which though not hazardous by themselves may lead to a loss.
In the context of situation coverage [3], safety situations inform our exploration
of the system configurations and provide for an evaluation of the confidence in
the system safety.

We first introduce a manufacturing cobot use case to highlight our approach
in Sect. 2. We then outline the general principles of our approach in Sect. 3.
Section 4 discusses the identification of safety analysis artefacts, then monitored
to identify hazards and guide the generation of simulation configuration, respec-
tively in Sect. 5 and 6. Section 7 introduces our setup to assess the validity of
our approach. We compare our approach to existing work (Sect. 8) before sum-
marising our results in Sect. 9.

2 Case Study: Industrial Manufacturing Cobot

We consider an industrial use case, defined in the context of the CSI: Cobot
project [7], involving the cooperation of a human operator and a robotic arm to
assemble small metal components (“assemblies”). Note that the general princi-
ples of our approach are not tied to the specific use case or tools we discuss in the
following. The operator provides a non welded assembly at a designated work
bench. The arm then retrieves the assembly and transports it to a spot welder
for processing, before returning to the same work bench for a handover. The
operator should keep out of the cell while the arm is active less he puts himself
at risk of injury. All the processing currently occurs within a walled cage, with
sensors to ensure no operator is present while the welder is active or the arm is
moving. The cell is depicted in Fig. 1a.

Our default setup is an abstraction of the industrial use-case, depicted in
Fig. 1b. All major components are in place, the welder, the cobot arm, and
the shared bench. The highlighted space in the middle defines the cell region.
The safety cage has been omitted. In lieu of a cage, a presence sensor stops
the arm when the operator enters the cell. Due to constraints of our simulation
environment, control of the arm and operator is limited with no exchange of
assembly between them. The arm is programmed to loop between two waypoints
from the bench at the bottom, to the welder at the top.

The SASSI Cobot Method 197

(a) Cell configuration with an operator
(bottom), and an arm (centre) with a
clear path to a welder (top).

(b) Setup under evaluation, with the
cell region outlined (center) and the
safety walls removed.

Fig. 1. Considered industrial use case configuration and evaluated setup.

3 Overview of the SASSI Method

The SASSI method relies on the artefacts produced by the safety analysis. A
key principle of our approach is to derive sufficient knowledge from the safety
artefacts to guide the testing of the system. The objective is to understand
if and how safety issues might arise in the system. Safety artefacts provide a
safety-centric view of the entities involved in the system, their interactions, their
relevant properties, and how those may lead to hazards; the safety analysis thus
informs multiple aspects of the toolchain.

The system design is at the root of the process and it guides all further steps,
defining the environment, its operating conditions, and safety requirements. Our
method is building confidence into the system by testing it, searching for safety-
relevant configurations, to provide feedback regarding safety aspects into the
design. Figure 2 presents the overall workflow of the analysis method.

Fig. 2. Overview of the analysis method

198 B. Lesage and R. Alexander

The first step is to perform a safety analysis of the system (1) to understand
the occurrences of hazards in the system, and the conditions leading to such
events (Sect. 4). The system design further informs the development of a simu-
lation environment, the Digital Twin (2) which constitutes the baseline for our
simulation-based approach. The Digital Twin also allows for the evaluation of
system setups before their deployment in the actual cell. The artefacts of the
safety analysis provide information on safety-relevant situations in the system
(3) and the conditions for their detection (Sect. 5). The system design further
constrains acceptable configurations of the system. It defines elements open to
variations and their degree of freedom, thus outlining the domain of our search
(4). Safety artefact components observed running the simulation, from a gen-
erated configuration, provide feedback on situations of interest (5) during the
search (Sect. 6). Finally, the coverage of generated and observed situations during
analysis (6) provides some confidence in the safety of the system, or highlights
shortcomings that need to be addressed.

4 Analysing the System Safety

The Safety Analysis aims to understand the safety of the system, by identifying
potential hazards, and the situations or causes leading to these events so they
can be managed. The analysis needs to be aware of the components and entities
interacting in the system as well as its operating environment. Without loss of
generality, we present the Systems Theoretic Process Analysis (STPA) technique
as the underlying safety analysis. The results of the application of STPA to our
use case and our experience have been documented in [1].

STPA [20] originates from systems approaches to safety engineering. Acci-
dents are assumed to arise from insufficient feedback or inadequate control in
the system, as modelled by a control structure. The STPA analysis process is as
follows:

1. Identify accident and loss scenarios: these encompass a range of undesired
events such as damage to property, injury to humans, or environmental
pollution.

2. Construct the system control structure: the control structure captures the
entities in the system and the flow of control and feedback between them.

3. Identify unsafe control actions (UCAs): UCAs correspond to the execution
of actions in undesirable configurations of the environment and the system.

4. Identify causal factors and control flaws: this step considers how unsafe
actions arise as a result of inadequate control.

Our method relies on the artefacts produced by the STPA technique, notably
hazards and unsafe control actions. Hazards identify events which by definition
challenge the safety of the system. Unsafe control actions (UCAs), while not
hazardous themselves, are undesirable. A UCA is an action the execution of
which or lack thereof, in a given a configuration of the system, may give rise

The SASSI Cobot Method 199

to a hazard. Each safety artefact thus captures a situation, a combination of
components relevant to the safety of the system.

Our intuition is that monitoring for UCAs during testing can help iden-
tify hot spots for safety in the explored space of configurations, and focus the
analysis effort on those regions more likely to result in hazards. The identifica-
tion and monitoring of individual situation components can further guide the
search towards UCA occurrences. Situation components finally outline a cover-
age target for the search. Focus should be given to strategies which cover varied
combinations of situations, as they provide more confidence in the safety of the
system.

Example 1 We consider the cell in Fig. 1a
and two situations captured by the safety anal-
ysis. Should the arm move while its path is
obstructed (UCA MUCA-1), it may lead to
a situation where a hazardous collision occurs
involving the arm (Hazard mH-3). Configura-
tions where there is an Obstruction in cell
and the Arm is moving are more likely to
trigger these safety-relevant situations.

Configuration Space

Obstruction in Cell

Arm Moving

MUCA-1
MH-3

5 Monitoring Safety Artefacts

Monitoring aims to identify the set of safety-relevant situations that occurred
during simulation. The simulation environment tracks the state of relevant com-
ponents over time, producing a trace of events in the system. Runtime Verifi-
cation methods [10] provide a vast array of tools and techniques to identify the
violation of specific properties in a system from such a trace.

We use Fuzzy Linear Temporal Logical (LTL) [9,12] to model safety artefacts.
Our intuition is to measure how close an artefact is to occurring over time in
a given configuration. An LTL formula captures a condition on the future of a
path, combining predicates using logic, e.g. a or b, and temporal operators, e.g.
d eventually occurs. The truth value of a predicate under fuzzy valuation [12]
ranges between 0 (false) and 1 (true). As opposed to a crisp true or false
valuation, fuzziness should provide search heuristics with a finer-grain metric to
compare different configurations. We further extend value comparison operators
with a tolerance. Once the compared values are in the tolerance range, the
comparison valuation linearly tends towards 1 as they draw closer to each other.

Example 2 Hazard MH-2 captures the situation where the arm exceeds its velocity
restrictions in proximity of another entity. It is divided in two components.

1. the arm exceeds its velocity restriction: comps(t) = arm.velocity(t) ≥V PROXV

2. the arm is in proximity of an entity: compd(t) = arm.distance(t) ≤D PROXD

200 B. Lesage and R. Alexander

arm.velocity(t) and arm.distance(t) respectively capture the velocity of the arm
and its distance to the closest entity at instant t. Constant PROXV constrains the arm
velocity in proximity of another entity, and PROXD defines the proximity distance
threshold for the arm.

If the arm is in close proximity of an entity, arm.distance(t) ≤ PROXD, then
the constraint is satisfied: compd(t) = 1. Conversely as per our fuzzy valuation rules,
if the arm is far enough from the closest object, D+PROXD < arm.distance(t), then
constraint is not satisfied: compd(t) = 0. The valuation of compd linearly increases as
the difference between arm.distance and PROXD decreases.

MH-2 is satisfied for a given configuration if both conditions, comps and compd,
eventually occur at the same time. Under fuzzy logic, the conjunction and always
temporal operator (respectively disjunction and eventually) are defined as the maxi-
mum (respectively minimum) of the combined predicates. The valuation of MH-2 under
configuration c can thus be computed as:

Occurs(MH-2, c) = max
t

(
min

(
compd(t), comps(t)

))

The situations we monitor for are formalised from STPA artefacts, namely
Hazards, UCAs, and their components. The textual description of each artefact
needs to be translated into a formal monitor specification, as per Example 2,
which might introduce errors in the process. We rely on a validation step to
assess the suitability of our formal artefact specification. Each formalised arte-
fact is tested against a number of crafted event traces, e.g. setting the value of
arm.velocity and arm.distance at different instants t, and compared to expected
truth values.

The simulation needs to expose the required information for monitoring. The
safety analysis thus informs the design of the simulation not only in terms of
the components and actions that should be modelled, but also regarding some
of the events that need to be tracked. The safety monitors can be incorporated
in the simulation tool itself, or applied to the output of the tool. We rely on
a separate, offline monitoring approach. This allows the parallel development
of the simulation environment, and the definition and validation of monitors.
Artefacts are formalised into expressions in the Python language using the MTL
library [25] for monitoring.

The safety monitors might rely on ground truth information that is unavail-
able or incorrect in the physical system due respectively to sensing gaps or faults.
Conversely, some artefacts may need to be simplified for evaluation and moni-
toring, preferably subsuming the target condition to prevent false negatives at
the cost of false positives.

Example 3 In the absence of a physics model, a collision between the arm, the oper-
ator, or the assembly can be registered as soon as they connect, irrespective of their
relative speed and mass.

6 Generating and Evaluating Configurations

Automated testing techniques for autonomous robots need to address a num-
ber of challenges. The tools need to evaluate the confidence in the safety of

The SASSI Cobot Method 201

the system to assess whether or not sufficient testing has been performed.
They should also guide the testing strategy to produce situations that are inter-
esting but also plausible and realistic.

Situation coverage [3] is a coverage criterion adapted to the testing of
autonomous robots. The underlying principle is to identify components of the
environment the system might encounter, identify how they can vary, and ensure
that they, and combinations thereof, are evaluated during testing. High coverage
speaks for the quality of the testing strategy and provides an indicator that the
system has been considered in a variety of contexts. Testing of an autonomous
vehicle would be required to navigate different types of road intersection with
various shapes, combined with the type of vehicles it might encounter at the
intersection, their direction of travel, and any other reasonable factor.

Macro-level components define a requirement on the inputs and their com-
binations exercised during testing. Their identification is obviously informed by
the system design which outlines reasonable operating configurations for the sys-
tem. Micro situation components define the set of situations that should always,
or never, be observed during the test campaign. The safety analysis provides
such information, capturing the set of events the system should cope with, e.g.
a human enters the cell during a welding operation.

We propose using the safety artefacts to guide testing. The occurrence of a
safety artefact reflects negatively on the confidence in the safety of the system.
We define a fitness metric to use as an objective function with state-of-the-art
search heuristics. A configuration with a higher fitness triggers the occurrences
of more artefacts and will be favoured by the search:

Fitness(c) =
∑

h∈Hazards

WH × Occurs(h, c) +
∑

u∈UCAs

WU × Occurs(u, c) (1)

where Hazards and UCAs are the set of hazards and UCAs identified by the
safety analysis, Occurs(s, c) is the fuzzy truth value capturing the occurrence of
artefact s under configuration c (see Sect. 5), WH and WU weigh the occurrences
of hazards and UCAs. We consider WH = 10 and WU = 1 in the following
although weights can be adjusted per artefact, based on their severity.

To assess the coverage achieved by test campaign t, we consider the portion
of safety artefacts triggered by the configurations encountered during testing:

ArtefactCoverage(t) =
|{s|s ∈ Artefacts ∧ ∃c ∈ t, Occurs(s, c) = 1}|

|Artefacts| (2)

Where Artefacts = Hazards∪UCAs is the set of safety artefacts identified
by the safety analysis.

As the absence of observed safety artefacts is not a guarantee of safety, we
further split artefacts into their individual components to compute coverage
metrics. The components coverage is a measurement of the completeness of the
testing with regards to safety components. A component or a combination thereof
must be observed in all possible states to be considered as fully covered:

202 B. Lesage and R. Alexander

ComponentCoverageN (t) =

∣∣∣
⋃

s∈(N
SC)

⋃
c∈t OccursN (s, c)

∣∣∣

2N × |(N
SC

)|
(3)

Where OccursN (s, c) captures the joint occurrences of components in
s in configuration c. As an example consider components A and B.
Occurs2({A,B}, c) can contains at most 4 values, A ∧ B, A ∧ ¬B, ¬A ∧ ¬B,
¬A ∧ B. SC is the set of safety components derived from Artefacts, and

(
N
SC

)

the set of N -length combinations of safety components. SC is built from the
safety artefacts by automatically collecting the predicates and comparisons in
their formulation, e.g. compd and comps in Example 2.

7 Evaluation

The SASSI method outlines general principles for testing a cobot system for
safety. We rely in particular on safety artefacts to capture safety-relevant situa-
tion components. Those components guide the search through the configuration
space for interesting scenarios, and provide an evaluation of the relevant coverage
of the situation space. This section challenges our intuitions:

– Research Question 1. Are UCA necessary for hazards to occur?
– Research Question 2. Are situation-based heuristics a good guide for testing?

7.1 Problem Space

We identified in Table 1a the artefacts monitored by the simulation. We simplified
some conditions w.r.t. to the original artefacts to cope with limitations of the
simulation environment, as suggested in Sect. 3. The configuration variables in
Table 1b outline the configuration domain and search space.

7.2 Simulation Setup

We discuss the integration for our evaluation with the Digital Twin developed in
the CSI: Cobot project [7]. The simulation captures a model of the system and
its behaviour. It is considered as a black box in our approach, used to evaluate
the system’s response to varied situations without any risk to its actors. The
simulation needs to satisfy the safety monitoring and configuration requirements.

The simulation scene is setup as described in Sect. 2. The position of the
operator is fixed during each run, and the safety stop will be prevent the arm
from moving if the operator is inside the cell. Collisions are recorded as soon as
the arm and operator connects. Virtual sensors, with no pendent in the physical
system, provide for ground truth information regarding the velocity of the arm
and its proximity to other entities, namely the operator. The cell region is defined
as a volume which monitors entities entering or leaving.

The SASSI Cobot Method 203

Table 1. Configuration of the simulation for evaluation

(a) Safety artefacts monitored by the simulation.

Id Event

MH-1 The arm exceeds its velocity restriction in either region.

MH-2 The arm exceeds its velocity restriction in proximity of another entity.

MH-3 The arm, assembly, or operator is compromised because of a collision.

MUCA-1 The arm moves while the cell is obstructed.

MUCA-2 The arm stops moving before it reaches its target position.

(b) Definition of the problem search space

Variable Type Semantic

Arm position (i, j, k) ∈ R
3 Where the arm is in the cell, outlined in Figure 1b

Operator position (x, y, z) ∈ R
3 Where the operator is in the cell or outside

Restrict Velocity (b ∈ B) Likely velocity threshold violations if unset

The processing framework for our analysis focuses on interactions with the
Digital Twin (illustrated by Step 5 in Fig. 2), ensuring valid configuration files
are generated and observations can be processed to identify situations of inter-
est. The Digital Twin provides hooks to configure pre-existing entities in the
simulated environment. All entity properties can be controlled through a unified
configuration file. Communication between independent actors within the twin
occurs through message passing, similarly to the real platform. Listeners capture
all cross-entity messages, functional or safety-related, issued during a run into
in a unified record.

Example 4 The cell region is defined as a safety region volume which monitors enti-
ties entering or leaving the volume. The arm safety stop discussed in Sect. 2 reacts
to unexpected entrances upon receiving the corresponding message. The same message
provides for the computation of the “obstruction in cell” component during safety
monitoring.

Our toolchain supports the generation of configuration files for the Digital
Twin, exposes primitives to process the messages recorded during a run, and
allows for the evaluation of properties on the resulting observations. We configure
the process by defining the domain for the search, the set of safety artefacts
under evaluation, and the conversion from messages to variables required for
artefact evaluation such as arm.distance in Example 2. The tools automatically
extract the required safety components, and the corresponding coverage and
fitness metrics for a run. Combined with a search heuristic, they provide the
automated evaluation of the system.

7.3 Search Heuristics

We consider a number of heuristics to explore the configuration space. All heuris-
tics were provided with the same budget of 1000 runs and the same input domain.

204 B. Lesage and R. Alexander

Ran randomly explores the configuration space, generating solutions within
the provided constraints. It is used as a baseline for comparison against guided
approaches.

GA-max (resp. GA-min) uses an elitist genetic algorithm [24,27] to max-
imise (resp. minimise) the fitness metric introduced in Sect. 6. Genetic algorithms
operate on a population of configurations by selecting, and mutating the best
individuals. The two configurations respectively aim to maximise and minimise
the concurrent occurrences of safety artefacts in the system.

Quality diversity algorithms (QD) [6,22] use a similar evolutionary approach.
An archive of solutions is maintained and the search aims for both diversity, i.e.
illuminating the archive, and individual performance, i.e. best in each niche. We
consider two variations of the QD configuration. QD-NS, removing the safety
stop if an operator is in the cell, increases the likelihood of collisions. QD-NF
does not rely on fuzzy valuation for safety artefacts, only 1 for true and 0 for
false, disrupting the search by reducing the granularity of the fitness metric.

We extract two features to define the niche covered by a configuration: the
highest-ranked observed hazard, and the highest-ranked observed UCA. Hazards
and UCAs are ranked by their identifier in the STPA analysis. This is a com-
promise over more accurate features, e.g. capturing the set of observed hazards,
to keep the size of the QD archive reasonable. The heuristic is set to minimise
the fitness metric in each niche. This configuration aims to observe a variety of
safety artefacts and conditions leading to hazards in isolation of each other.

7.4 Results

We challenge our intuition on the feasibility of our approach and its underlying
assumptions. Our work focused on building the Digital Twin, and the required
tooling to allow for testing for safety using the proposed approach. The results
in this section thus focus on state of the art heuristics for test generation1.

Are UCAs Necessary for Hazards to Occur? We first evaluate our hypoth-
esis of a relation between the occurrences of UCAs and Hazards outlined in
Example 1, that is the occurrence of a UCA, as captured by the safety analysis,
is necessary for the occurrence of a hazard. Focus of testing effort on configura-
tions where UCAs (or components thereof) occur would increase the likelihood
of discovering latent hazards.

We consider all 6000 configurations generated during our test campaigns,
with the operator, arm and assembly in random states, irrespective of the heuris-
tic. Each configuration is run through the simulation for a full cycle, the arm
traversing all its way points. Processing the simulation output classifies runs into
ones where no safety situation occurred, either solely UCAs or Hazards occurs,
or both artefact types occur. The distribution of runs across these categories is
presented in Fig. 3.

1 Each batch of 1000 runs took on average 5 h to complete on a 1.8 GHz i5 laptop.

The SASSI Cobot Method 205

Fig. 3. Classification of situations detected across 6000 generated configurations.

We observed multiple cases where a hazard occurred without a UCA being
observed as well. Such observations occurred under all heuristics. These results
highlight gaps in our monitoring and safety analysis. None of the monitored
UCAs in the current setup relates to the velocity of the arm, and there is no
indicator that the related hazards might occur. Our initial safety analysis, at a
larger scale, does capture velocity-related UCAs. However those are confined to
specific, un-modelled actions of the arm, e.g. during a handover, and they still
do not cover all occurrences of a hazard.

Under the “Collision only” row in Fig. 3, we focus on monitored MH-3 (a
collision with the arm), and MUCA-1 (a moving arm in an obstructed cell). Our
heuristics discovered solutions where the operator collided with an immobile arm
(MH-3 and ¬ MUCA-1). The operator moving was not identified as a control
action in our STPA analysis, given the lack of a controller on the operator in
our model. As such, no related unsafe control action was identified.

We identified reasonable hazard occurrences without a related UCA. Regions
where UCAs occur do result in a high likelihood of safety hazards. However, a
good heuristic should consider the hazard situation components on their own to
guide its result. Automated testing and classification of such occurrences helped
us identify gaps in our safety analysis and monitoring, despite the explored scene
and configuration space abstracting our use case.

Are Situation-Based Heuristics a Good Guide for Testing? We now
consider the benefits of safety testing guided by situation-based metrics, in par-
ticular the occurrence of safety artefacts. All heuristics, except for Ran, use
some form of feedback to identify the best configurations, and direct the search
to maximise or minimise such occurrences. We compare in Table 2 the config-
urations generated by each heuristic, their artefacts and components coverage,
and the combinations of such components they encountered.

206 B. Lesage and R. Alexander

Table 2. Coverage and fitness achieved under the different search heuristics

Heuristic Artefact Component (1) Component (2) (Min, Max) fitness # Niches

Ran 100% 75% 54.82% (1, 32) 6

GA-min 100% 75% 54.10% (1, 31) 6

GA-max 100% 75% 54.69% (1, 32) 6

QD 100% 75% 54.82% (1, 32) 6

QD-NS 100% 75% 54.96% (14.64, 32) 6

QD-NF 100% 75% 54.82% (0, 31) 6

The results across heuristics are very similar. All heuristics managed to trig-
ger all monitored artefacts in our evaluation (Artefact), cover similar combina-
tions of them (# Niches), and the same configurations of situation components
considered on their own (Comp. (1)). Considering concurrent occurrences of
the safety components (Comp. (2)), the differences between heuristics remain
marginal with a slight benefit for QD-based ones, Ran, then GA. Our simple
setup has a high rate of safety occurrences, and a better comparison would be
provided by a less hazard-prone setup.

No heuristic achieved a 100% coverage of the component-based coverage met-
rics. This is the result of gaps in the coverage, and infeasible combinations of
components. As an example, three distinct components consider the position of
the operator namely, in the cell, at the bench, and at the welder. Full coverage of
the Comp. (2) metric would require observing the operator as being at the bench
and the welder at the same time. This is infeasible under the current configura-
tion space: the operator cannot lay down across the cell to reach both regions.
Unless he climbs onto the welder, the operator will also always be considered in
the cell when at the welder, (at welder, in cell) = (True, False) is infeasible.

Comparing the best and worst fitness encountered by each method provides
a similar insight. All methods managed to trigger all artefacts in a single config-
uration (a fitness of 32), although across different configurations. Evidence sug-
gests the use of a presence sensor did reduce the likelihood of collisions between
the operator and the arm, as exemplified with the high minimum fitness under
QD-NS. Only the QD-NF managed to observe a safe configuration, with all
configurations coming close with only a single UCA triggered.

All heuristics exploring our cage-less use-case have shown evidence of haz-
ardous configurations. Some occurrences may be attributed to limitations of the
simulated environment and setup, but they still highlight safety issues in the
system. As identified in the previous section, there are few mechanisms to pre-
vent or identify velocity constraint violations, except assessing the configuration
of the arm controller, as outlined by the lack of related UCA. These could be
mitigated by external control or sensing.

The proposed metrics provide little benefit to guided search heuristics, but
they can help trim the configurations that need to be reviewed following an
initial assessment. As an example focusing on the individuals in each of the

The SASSI Cobot Method 207

niches discovered by QD, we identified a safety issue in our setup where the arm
could reach outside of the cell and collide with the operator. Similarly, the arm
in the confines of the cell could still collide with an operator at the bench.

8 Related Work

Combinatorial or Design of Experiments (DoE) methods [15] scope the config-
uration space to generate a set of complete or partial covering experiments.
Gleirscher [14] suggests the use of model-based techniques to generate tests
ensuring hazardous states of the system cannot be reached. Yu et al. [28] auto-
matically derive such a model from the safety analysis results. Our approach does
not rely on a model or a-priori knowledge on which situations a specific configura-
tion triggers. We use state-of-the-art search heuristics, guided by safety-relevant
metrics, to identify hazardous states.

Fontaine et al. [11] successfully propose the use of quality diversity algo-
rithms [22] to discover failure scenarios in a human-robot shared autonomy
problem. Other simulation-based approaches for testing automated vehicles show
similar promising results [23]. These approaches tend to rely on metrics tailored
to the modelled interaction. Our metrics instead derive from safety analyses,
and fuzzy evaluation provides for a gradual progression between an unlikely and
guaranteed occurrence. Neither property requires domain knowledge outside of
the safety analysis.

Metrics such as MCDC [13] focus on code coverage, ensuring as an example
the absence of dead code. However structural metrics are not adapted to evalu-
ating functional requirements even more so the emergent behaviours that may
arise from autonomous robots [17]. We propose instead the use of safety-centric
coverage metrics, based on the observed situations, with a similar division of the
decision/situation into its condition/components.

9 Conclusion

We proposed a method to assess the safety of a cobot system, relying on the
artefacts captured during safety analysis to (1) inform the design of a simulation-
based environment, (2) guide search heuristics towards unsafe configurations,
and (3) assess confidence in the observed configurations. Our initial evaluation
highlighted genuine safety issues in our setup. It shows a high hazard likelihood,
and gaps in our safety analysis lead to hazards without early warning signs.

A strong safety baseline, increasing the challenge of triggering hazardous
behaviours, would be required to better assess the benefits of search heuristics
guided by safety components. This would also provide a fair evaluation of the
proposed coverage metrics. Further refinements of said coverage metrics to trim
infeasible combinations of safety components would provide improved coverage
and confidence.

208 B. Lesage and R. Alexander

Acknowledgements. This project is supported by the Assuring Autonomy Interna-
tional Programme, a partnership between Lloyd’s Register Foundation and the Uni-
versity of York.

We would like to thank the project partners at the University of Sheffield the
University of York for numerous insightful discussions. In particular, we would like to
thank James Douthwaite for his expertise with the Digital Twin.

References

1. AAIP Body of Knowledge: 1.2.1 Considering human/machine interactions. https://
www.york.ac.uk/assuring-autonomy/body-of-knowledge/required-behaviour/1-2/
1-2-1/cobots/. Accessed Feb 2021

2. Afzal, A., Le Goues, C., Hilton, M., Timperley, C.S.: A study on challenges of
testing robotic systems. In: 2020 IEEE 13th International Conference on Software
Testing, Validation and Verification (ICST), pp. 96–107. IEEE (2020)

3. Alexander, R., Hawkins, H.R., Rae, A.J.: Situation coverage-a coverage criterion
for testing autonomous robots. Technical report, University of York (2015)

4. Bauer, A., Wollherr, D., Buss, M.: Human-robot collaboration: a survey. Int. J.
Humanoid Robot. 5(01), 47–66 (2008)

5. Bobka, P., Germann, T., Heyn, J.K., Gerbers, R., Dietrich, F., Dröder, K.: Simula-
tion platform to investigate safe operation of human-robot collaboration systems.
Procedia CIRP 44, 187–192 (2016). 6th CIRP Conference on Assembly Technolo-
gies and Systems (CATS)

6. Cazenille, L.: QDpy: A python framework for quality-diversity (2018). https://
gitlab.com/leo.cazenille/qdpy

7. CSI: Cobot. https://www.sheffield.ac.uk/sheffieldrobotics/about/csi-cobots
8. Dosovitskiy, A., Ros, G., Codevilla, F., López, A.M., Koltun, V.: CARLA: an open

urban driving simulator. CoRR abs/1711.03938 (2017). http://arxiv.org/abs/1711.
03938

9. Emerson, E.A.: Temporal and modal logic. In: Formal Models and Semantics, pp.
995–1072. Elsevier (1990)

10. Falcone, Y., Krstić, S., Reger, G., Traytel, D.: A taxonomy for classifying runtime
verification tools. In: International Conference on Runtime Verification (2018)

11. Fontaine, M., Nikolaidis, S.: A quality diversity approach to automatically gener-
ating human-robot interaction scenarios in shared autonomy (2021)

12. Frigeri, A., Pasquale, L., Spoletini, P.: Fuzzy time in LTL. CoRR abs/1203.6278
(2012). http://arxiv.org/abs/1203.6278

13. Ghani, K., Clark, J.A.: Automatic test data generation for multiple condition and
MCDC coverage. In: 2009 Fourth International Conference on Software Engineer-
ing Advances, pp. 152–157. IEEE (2009)

14. Gleirscher, M.: Hazard-based selection of test cases. In: Proceedings of the 6th
International Workshop on Automation of Software Test, pp. 64–70 (2011)

15. Grindal, M., Offutt, J., Andler, S.F.: Combination testing strategies: a survey.
Softw. Test. Verifi. Reliab. 15(3), 167–199 (2005)

16. Guiochet, J., Machin, M., Waeselynck, H.: Safety-critical advanced robots: a sur-
vey. Robot. Auton. Syst. 94, 43–52 (2017)

17. Helle, P., Schamai, W., Strobel, C.: Testing of autonomous systems-challenges and
current state-of-the-art. In: INCOSE International Symposium, vol. 26, pp. 571–
584. Wiley Online Library (2016)

https://www.york.ac.uk/assuring-autonomy/body-of-knowledge/required-behaviour/1-2/1-2-1/cobots/
https://www.york.ac.uk/assuring-autonomy/body-of-knowledge/required-behaviour/1-2/1-2-1/cobots/
https://www.york.ac.uk/assuring-autonomy/body-of-knowledge/required-behaviour/1-2/1-2-1/cobots/
https://gitlab.com/leo.cazenille/qdpy
https://gitlab.com/leo.cazenille/qdpy
https://www.sheffield.ac.uk/sheffieldrobotics/about/csi-cobots
http://arxiv.org/abs/1711.03938
http://arxiv.org/abs/1711.03938
http://arxiv.org/abs/1203.6278

The SASSI Cobot Method 209

18. Huck, T.P., Ledermann, C., Kröger, T.: Simulation-based testing for early safety-
validation of robot systems. In: 2020 IEEE Symposium on Product Compliance
Engineering-(SPCE Portland), pp. 1–6. IEEE (2020)

19. Robotics – Safety requirements for robot systems in an industrial environment –
Part 1: Robots. Standard, International Organization for Standardization (2011)

20. Leveson, N.G., Thomas, J.P.: STPA Handbook, Cambridge (2018)
21. Norden, J., O’Kelly, M., Sinha, A.: Efficient black-box assessment of autonomous

vehicle safety. arXiv preprint arXiv:1912.03618 (2019)
22. Pugh, J.K., Soros, L.B., Stanley, K.O.: An extended study of quality diversity

algorithms. In: Proceedings of the 2016 on Genetic and Evolutionary Computation
Conference Companion, GECCO 2016 Companion, pp. 19–20. ACM (2016)

23. Riedmaier, S., Ponn, T., Ludwig, D., Schick, B., Diermeyer, F.: Survey on scenario-
based safety assessment of automated vehicles. IEEE Access 8, 87456–87477 (2020)

24. Solgi, M.: geneticalgorithm: a python library for elitist genetic algorithm (2020).
https://github.com/rmsolgi/geneticalgorithm

25. Vazquez-Chanlatte, M.: mvcisback/py-metric-temporal-logic: v0.1.1, January
2019. https://doi.org/10.5281/zenodo.2548862

26. Villani, V., Pini, F., Leali, F., Secchi, C.: Survey on human-robot collaboration in
industrial settings: safety, intuitive interfaces and applications. Mechatronics 55,
248–266 (2018)

27. Whitley, D.: A genetic algorithm tutorial. Stat. Comput. 4(2), 65–85 (1994).
https://doi.org/10.1007/BF00175354

28. Yu, G., Wei Xu, Z., Wei Du, J.: An approach for automated safety testing of safety-
critical software system based on safety requirements. In: 2009 International Forum
on Information Technology and Applications, vol. 3, pp. 166–169. IEEE (2009)

29. Zou, X., Alexander, R., McDermid, J.: Testing method for multi-UAV conflict
resolution using agent-based simulation and multi-objective search. J. Aerosp. Inf.
Syst. 13(5), 191–203 (2016)

http://arxiv.org/abs/1912.03618
https://github.com/rmsolgi/geneticalgorithm
https://doi.org/10.5281/zenodo.2548862
https://doi.org/10.1007/BF00175354

Attack and Fault Injection in Self-driving Agents
on the Carla Simulator – Experience Report

Niccolò Piazzesi, Massimo Hong, and Andrea Ceccarelli(B)

Department of Mathematics and Informatics, Università Degli Studi Di Firenze,
Florence, Italy

andrea.ceccarelli@unifi.it

Abstract. Machine Learning applications are acknowledged at the foundation of
autonomous driving, because they are the enabling technology for most driving
tasks. However, the inclusion of trained agents in automotive systems exposes
the vehicle to novel attacks and faults, that can result in safety threats to the
driving tasks. In this paper we report our experimental campaign on the injection
of adversarial attacks and software faults in a self-driving agent running in a driving
simulator. We show that adversarial attacks and faults injected in the trained agent
can lead to erroneous decisions and severely jeopardize safety. The paper shows
a feasible and easily-reproducible approach based on open source simulator and
tools, and the results clearly motivate the need of both protective measures and
extensive testing campaigns.

Keywords: Self-driving ·Machine Learning · Trained agent · Adversarial
attacks · Faults · Injection · Simulation

1 Introduction

Machine Learning (ML) is at the foundation of the most relevant autonomous driving
applications, with more and more usage in safety critical functionalities as for example
obstacle detection, lane detection, traffic sign recognition, and ultimately self-driving.
This requires that the ML-based applications (and the supporting hardware) are both
safe and secure i.e., faults and attacks must not jeopardize system safety [27, 28, 32].
However, the introduction of ML exposes novel attack surfaces as well as new possible
fault modes.

Several works in the most recent years have investigated the effects of attacks and
faults on ML-applications and have provided evidence that even small perturbations
caused by hardware or software faults can deceive theML-based application, to the extent
that an incorrect output is produced [24, 25, 29].While it is possible that a single transient
fault does not lead towrongdecisions or it ismasked through the activationof the different
layers of the neural network [24], there is still the risk that residual software faults (when
not hardware faults) manifest into an observable output corruption [26, 27, 29].

Additionally, recent works on adversarial machine learning [12] have shown that
ML applications can be confused by malicious perturbations of the input i.e., by crafting

© Springer Nature Switzerland AG 2021
I. Habli et al. (Eds.): SAFECOMP 2021, LNCS 12852, pp. 210–225, 2021.
https://doi.org/10.1007/978-3-030-83903-1_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-83903-1_14&domain=pdf
https://doi.org/10.1007/978-3-030-83903-1_14

Attack and Fault Injection in Self-driving Agents 211

inputs that are syntactically correct, but artificiallymodified such that theML application
is mistaken. Adversarial attacks could be applied as well to the inputs of a driving task
[7], as we are also considering in this paper, despite they are typically though for object
classification.

Consequently, solutions are required to evaluate the safety ofMLapplications against
software and hardware faults, and to secure the system with respect to the new attack
surfaces introduced by the ML applications themselves. It is not surprising that a pro-
liferation of tools and supports to test ML-applications, including security and robust-
ness testing, has been witnessed in recent years, altough with a general preference for
classification and detection tasks [29].

Without aiming to develop new tools, but reusing existing ones, we experiment
and discuss on the risk of adversarial attacks and software faults for an end2end self-
driving agent, which directly maps sensory information to driving commands without
organizing the self-driving pipeline in separate tasks (for example, it does not distinguish
tasks in obstacle detection, localization, trajectory planning, etc.) [20]. To the best of
our knowledge, no works experimented with end2end self-driving agents including both
faults and attacks perspectives. Consequently, this experience report provides a guide as
well as practical evidence of a method easy-to-implement that allows to rapidly deploy
tests for self-driving agents under various adversarial attacks and faulty conditions,
in an entirely simulated (and reproducible) environment. More in details, the paper
explains how to configure, inject and ultimately collect evidences of the effects of attacks
and faults injected. We show how to manipulate a driving simulator to perform the
experiments and to execute the experimental campaign. Results give evidence of the
effects of attacks and faults injection, especially measured in terms of wrong decisions
of the trained agent that lead to collisions or traffic offences; we show that the trained
agent fails under multiple injection conditions. The settings and source code we used
are available at [6].

The rest of the paper is organized as follows. Section 2 reviews background notions
on techniques and supporting tools that will be used in the paper. Section 3 and Sect. 4
describe respectively how we performed adversarial attacks and fault injection in the
self-driving agent. Section 5 presents the experimental campaign and results. Section 6
discusses limitations of the approach and it contextualizes our work with respect to the
current scenarios of testing self-driving agents against faults and attacks. Finally, Sect. 7
concludes the paper.

2 Background

2.1 Adversarial Attacks Using the ART Toolbox

Machine Learning models are vulnerable to adversarial examples, which are inputs
(images, texts, tabular data, etc.) deliberately modified, while being perceptually indis-
tinguishable, to produce a desired response by the model [17]. By adding small pertur-
bations to original images, adversarial attacks can deceive a target model to produce
completely wrong predictions [7]. In general, adversarial attacks are organized in three
categories: evasion, poisoning, and extraction attacks, that we review below.

212 N. Piazzesi et al.

Evasion attacks modify the input to a model, typically a classifier, such that its
prediction is erroneous, while keeping the modification as small as possible. Evasion
attacks can be black-box or white-box: in the white-box case, the attacker has full
access to the architecture and parameters of the model, and exploits this information to
construct the adversarial image. In case of black-box attacks, the attacker does not have
knowledge on the internals of the model; the attacker usually needs many more tries
(and computational time or resources) to construct an effective adversarial image.

In poisoning attacks, attackers have the opportunity of manipulating the training data
to significantly decrease the overall performance, cause targeted misclassification or bad
behavior, and insert backdoors and neural trojans.

Last, extraction attacks aim to develop a new model, starting from a proprietary
black-box model, that emulate the behavior of the original model.

In this work, we are relying only on evasion attacks, which have the likelihood to
be carried out on a self-driving agent while it is executing, thus compromising safety.
We consider both white-box and black-box attacks. White box attacks need internal
details of the target model: when these details are available, they certainly pose a bigger
threat. However, often the model layout can not be easily obtained. In these situations,
black box attacks prove to be much more flexible, requiring only the final output of the
decision process. A different approach can be to use an extraction attack to approximate
the unknown target model and base a white box attack on this model instead of the
original.

We do not consider poisoning attacks because they operate during the training phase
of an agent: this type of attacks was not relevant to our objectives, because we are
interested in investigating a trained model that runs on a vehicle. Extraction attacks are
instead discarded as we are interested in safe operations rather than secrecy theft, and
for the purpose of our work it is sufficient to consider the evasion attacks as explained
above.

The Adversarial Robustness Toolbox (ART, [8]) is a Python library originally devel-
oped by IBM, and recently donated to the Linux Foundation. It provides the tools to craft
adversarial attacks (as well as to build defenses against them). A large set of attacks from
the state of the art are implemented in ART, and they can be invoked just providing as
input the trained model and other parameters as the loss and optimization functions and
the size of the input images. ART supports the most known Machine Learning libraries
as PyTorch and TensorFlow, and it is released with the MIT open source license.

2.2 Fault Injection in Trained Agents with PytorchFI

As software fault model, we consider any software fault whose effect is modifying the
value of weights or neurons in convolutional operations of the neural network during its
execution. In this paper we use the tool PyTorchFi developed by Mahmoud et al. [24,
31] to modify the neuron or weights of the neural network, such that we can observe the
consequences that the perturbations bring to the vehicle behaviour.

PyTorchFi is a runtime perturbation tool for deep neural networks, implemented for
the PyTorch deep learning platform. It enables users to perform perturbation onweight or
neurons of DNNs at runtime. PyTorchFi provides an easy-to-use API and an extensible

Attack and Fault Injection in Self-driving Agents 213

interface, enabling users to choose from various perturbation models (or design their
own custom models) [24].

PyTorchFi offers different default perturbation models that a user can select. In
general, the steps to use its API are as follows: i) choose the error model, ii) specify the
injection location; there can be either a single or multiple locations to perform multiple
perturbations across the neural network (injection locations are specified by the layer,
feature map, and neuron’s coordinate position in the tensor); iii) specify whether to have
the same perturbation across all elements in a batch (a batch is the number of sample
utilized in one iteration: it is set to 1 in the self-driving application we use, because it
processes one image at the time), or a different perturbation per element; iv) perform
the injection [24].

2.3 Carla Simulator and Learning by Cheating (LbC)

The Open Urban Driving Simulator Carla (Car Learning to Act, [1]) is a simulator
for autonomous driving that has been implemented as an open-source layer over the
Unreal Engine 4 (UE4, [2]). Its aim is to support training, prototyping, and validation of
autonomous drivingmodels, including both perception and control. Carla includes urban
layouts, several vehicle models, buildings, pedestrians, street signs, etc. The simulation
platform supports flexible setup of sensor suites, and in particular we will exploit the
camera sensor, that allows acquiring images from the frontal camera of a specific vehicle
at a specifiedFramePerSecond (FPS) rate.Carla provides detailed information, collected
at sampling intervals, on such vehicle while it is roving in a city. Information that can be
collected is for example position, orientation, speed, acceleration, collisions and traffic
violations. Further, weather conditions and time of day can be specified.

Amongst the various ML-based applications that exist for Carla, in our work we
prefer a self-driving agent over other agents e.g., object recognition agents. In fact, a self-
driving agent allows showing the effect of persistent faults or continuous attacks applied
on consequential images, rather than on individual images without a continuous context
[4]. Amongst self-driving agents, we select the trained agent Learning by Cheating
(LbC) developed by Chen et al. [3]. LbC is an end2end learning [20] approach for
self-driving, which directly map sensory information to steering commands. The LbC
model is organized in a ResNet-34 backbone pretrained on ImageNet and three up-
convolutional (upsampling) layers. LbC has demonstrated very good performance, with
a minimal number of collisions under most of the environmental and traffic conditions
[3].

The main control loop of LbC is explained in Listing 1 [30]. Using the camera as its
unique input sensor, at each simulation step it is acquired (through env.get_observations
in Listing 1): i) one RGB (Red Green Blue) image from the frontal camera of the vehicle
at a resolution of 384 × 160 pixels, and ii) the current speed from the speed sensor.

214 N. Piazzesi et al.

These values are processed by the trained agent (agent.run_step in Listing 1), together
with a high-level command (“follow lane”, “turn left”, “turn right”, “go straight”) that
describes the planned route. In this way, the trained agent predicts waypoints in the
camera coordinates, and then, these waypoints are projected into the vehicle’s coordinate
image (essentially, a trajectory is designed). From this, a low-level controller is executed
(env.apply_control in Listing 1), that decides the steering angle, the throttle level, and the
braking force. Finally, throttle, speed and braking are applied on the vehicle 3. Additional
details on the LbC trained agent are outside the scope of this paper and are in [3, 30].

3 Injection of Attacks in a Self-driving Agent

We describe how we inject adversarial attacks in the self-driving agent LbC.

3.1 Selection of Suitable Attacks

We select 4 evasion attacks that we think are interesting to inject: Spatial Transformation
[10], HopSkipJump [11], Basic Iterative Method [12] and NewtonFool [13]. The four
attacks are chosen because they represent different approaches to the same problem,
being two two black-box (Spatial Transformation, HopSkipJump) and two white-box
(Basic IterativeMethod, NewtonFool) approaches. The configurations we use are shown
inTable 1; noteworthy, each individual attack hasmodifiable parameters to tweak in order
to be more effective against the target model or have a more efficient computation of the
adversarial example. Different combinations of parameters where tried. We ultimately
decided for the values in Table 1, because in our simulation they had the better tradeoff
between the effectiveness of the attack and the computational cost to generate the adver-
sarial examples. The complete description of the attacks parameters is accessible in the
official documentation [14].

Table 1. Configurations used for each attack. A detailed description of the meaning of each
parameter is available in [14].

Attack Configuration

Spatial transformation max shift = 80%, number of shifts = 1, max rotation = 160°, number
of rotations = 1

HopSkipJump max iterations = 10, max_eval = 1000, init_eval = 100, init_size =
100, norm = 2

NewtonFool max iterations = 10, η = 0.01

Basic Iterative Method ε = 0.2, ε _step = 0.1, max_iter = 20

Spatial Transformation: The objective is to find the minimum spatial transformation
that causes misclassification of an RGB image. The image is rotated by a θ angle and
shifted of (δu, δv) pxels. The shift is calculated as a percentage of the image size. It is a
black-box attack, needing only the class prediction for the input image.

Attack and Fault Injection in Self-driving Agents 215

HopSkipJump: It starts from a big image perturbation and aims to reduce it to a
minimum that still causes misclassification. Such image perturbation is reduced by iter-
ations of binary searches. Each iteration produces a new perturbation, smaller than the
previous one, and it stops when the boundary between the target class and the original
class is reached. The distance from the original input is computed by using a norm. It is
a black-box attack, needing only the class prediction for the image.

NewtonFool: It is a gradient-descent based algorithm that aims tofind the perturbation
that minimizes the probability of the original class. It is built under the assumption that,
“nearby” the original data point, there is another point where the confidence probability
in the “correct class” is significantly lower [13]. The tuning parameter η determines how
aggressively the gradient descent attempts to minimize the probability of the original
class. It is a white-box attack, because the attacker requires the output of the softmax
function which assigns decimal probabilities to each class in a multi-class problem.

Basic Iterative Method. It is an iterative version of the Fast Gradient Method (FGM,
[15]), which produces an adversarial example by calculating the perturbation that max-
imizes the loss (with respect to the loss of the input image). The Basic Iterative Method
extends the FGM attack by applying it multiple times with small step sizes. Each inter-
mediate result is cropped to ensure that it stays within the limits established by a hyper
parameter ε, that sets the amount of perturbation allowed in the target image. It is a
white-box attack because it accesses the model to compute the loss at each step.

Other relevant evasion attacks, that we left out for this work, are based on introducing
modifications on the environment, rather than on the acquired images. An example is
the Adversarial Patch [16] attack, which is based on crafting patches that can be applied
on (or next to) objects, such that the trained agent is confused. This category of attacks
was ultimately discarded, because they required a completely different approach that
includes modifying assets of the simulations with the help of the Unreal Engine 4 editor.

3.2 Integration of ART in Learning by Cheating

To effectively use ARTwith LbC, we first define an attackmodule. This module contains
two main functions: load_model and load_attack. The approach is the same for the four
attacks.

Function load_mode l(model_path) loads the weights of the pretrained agent. It
takes a file path as input. This path must point to two files: a config.json and the PyTorch
model.pth containing the model weights. Clearly, the PyTorch model is the trained agent
LbC, and the config.json is created with the model parameters. The load_model function
returns an ART PyTorchClassifier, a wrapper class that contains model weights. This
wrapper class allows the interaction between the attacks and the trained agent developed
in PyTorch; in other words, it allows executing the successive load_attack on the target
model.

Function load_attack (classifier, attack) selects one of the attacks. It requires two
parameters: an instance of an ART PyTorchClassifier (generated at the previous step)
and a string which identifies the attack. The function returns an instance of the class
associated with the attack.

216 N. Piazzesi et al.

The injection of the attacks is done by directly modifying the source code of LbC.
The trained agent is implemented in the ImageAgent class of LbC [3, 30]. This class
is modified by adding two extra fields: self.adv and self.attack. These fields contain the
targeted model and the chosen attack, loaded by calling the two functions described
before.

To execute the attacks, we have also to modify the main decision loop of LbC,
that is used to generate the waypoints on the basis of the collected observations. More
specifically, wemodify the run_stepmethod fromListing 1 that generates the waypoints.
In fact, the run_step takes as input observations the RGB image, the speed of the vehicle
and the supervisor command, and feed them to the neural network to generate the next
waypoints. In our version, theRGB image ismodified before being passed to the network.
This is done by introducing two instructions inside the run_step:

_rgb = self .attack.generate(rgb.cpu())

_rgb = torch.FloatTensor(_rgb)

The first function creates the adversarial example; the implementation is different
for each attack. The second instruction is necessary because the network processes float
tensors while the generate function returns an array.

To better integrate ART with LbC, we need to slightly change the network decision
function. In LbC this functionality is defined in the forward propagation function (the
forward function defines how the model is going to be run, from input to output [18])
that is implemented in the ImagePolicyModelSS class. It creates the waypoints and it
is also used by the self.attack.generate function to make the adversarial image. The
self.attack.generate function only takes one parameter (the image) and it does not have
access to speed and command values. This was preventing a proper invocation of the
forward function, crashing the entire execution. The issue is solved changing how the
forward function behaves: in the modified agent it takes only the image as a parameter,
while speed and command are acquired through global variables.

4 Injection of Faults in a Self-driving Agent

We describe how we inject in the convolutional operations of the LbC trained agent.

4.1 Perturbation Models

We describe our neuron and weight injections with PyTorchFI below. We used both
neuron and weight injections in our experiments with different perturbation models:
some of those are default models, others are customized.

Neuron Injection. This perturbation changes the value of neurons insides the neural
network with a value specified by the user. It can be on a single location or spread across
the network. To perform neuron injections, the following parameters are required by
PyTorchFI [24, 31]:

Attack and Fault Injection in Self-driving Agents 217

1. conv_num: the target convolutional layer.
2. batch: the batch in which the fault injector should run. This is set to 1 in our case, as

the trained agent uses batches of a single input image.
3. c: the channel number.
4. h: the height of the input image, 160 pixels in our case.
5. w: the width of the input image, 384 pixels in our case.
6. value: the value(s) that the injector should set within the tensor.

PyTorchFi provides multiple perturbation models to simplify the injection process
for the user. We use the random_neuron_inj and random_inj_per_layer. Function ran-
dom_neuron_inj selects a single, random neuron in the network and changes its value
to a random value between a range specified by the user (the default range is [−1, 1]).
Instead, random_inj_per_layer selects a single, random neuron in each convolutional
layer of the network, and changes its value to a random value between a range specified
by the user (the default range is again [−1, 1]).

Weight Injection. Weight injection has the same functionality of neuron injection, but
on weights. The parameters required are the same as for neuron injection, aside the
replacement of batch number with the kernel number.

Because of compatibility problems we couldn’t use the utility function ran-
dom_weight_location, which returns a tuple that represents the target location of the
perturbation. Instead, we implemented a custom method that calculates the injection
location. We created an alternative function random_weight that returns a tuple contain-
ing the values that represent the location inside the network. The output of the function
is a tuple including the following elements:

1. Convolutional layer number conv_num.
2. kernel number k: this is a random value between [0,60]. We found this interval

experimentally, through multiple simulations.
3. Channel number c, height h and weight w of the input image.

Finally, we defined a custom function for weight injection that is essentially a copy
of the default PyTorchFI weight perturbation model, with the difference that it calls our
random weight locator.

4.2 Application of PyTorchFi in LbC

We need to slightly modify the ImagePolicyModelSS class [30] from LbC, which is exe-
cuted during the run_step of Listing 1, by adding the following: i) import fault_injection
and the desired perturbation models from PyTorchFi; ii) create the PyTorchFi model
pfi_model, which is essentially a copy of the Resnet34 backbone of LbC, where injec-
tions shall be performed; iii) perform the injection on pfi_model, for example simply
invoking the PyTorchFI API instructions:

inj = random_inj_per_layer(pfi_model,min_val = −10, max_val = 10)

h = inj(image) #image is acquired from frontal camera

218 N. Piazzesi et al.

5 Experiments and Results

5.1 Description of the Experimental Campaign

The experimental campaign is based on the NoCrash benchmark from [19], designed to
test the ability of vehicles to handle complex events caused by changing traffic conditions
(e.g., traffic lights) and dynamic agents in the scene. In multiple runs, a target vehicle
must reach a destination position B from a starting position A before a timeout expires,
and under different weather conditions. The timeout value is the time required to cover
the distance from A to B at an average speed of 10 km/h as in [1, 3]. For each individual
run, the success criteria is that the destination B is reached before expiration of the
timeout. The failure criteria is whenever the vehicle collides or the timeout expires. We
include a modification of theNoCrash benchmark that halts the run whenever a collision
occurs [4], because in our work we prioritize safety over travelled distance.

The benchmark implementation available at [30] records and saves videos of each
run (for example, two screenshots are reported in Fig. 1), together with detailed logs.
These videos were analyzed to visually confirm the results reported in the log and the
effectiveness of the attacks and faults injected. To measure their effects, we measure the
number of runs completed (the success criteria), the number of ignored red lights, and
the number of collisions.

The target townwe select are theCarla townsTown01andTown02, that are basic town
layouts with all “T” junctions. Town01 is the town used for training of the learned agent
LbC [3], while Town02 is only used for testing. Scenarios Town01v1 and Town02v1
includes a single right turn, while scenarios Town01v2 and Town02v2 include multiple
turns and crossings (Table 2). We select different values for pedestrians and vehicles,
and different weather conditions as reported in Table 2. Finally, we always use the
same randomization seed so that spawning positions of vehicles and pedestrians are
the same in the repeated runs. Results are bound to the settings we tested, and cannot
be generalized; different traffic conditions, weathers or towns could lead to different
results. For the self-driving agent under consideration, the higher number of collisions is
in Town02 (Town01 was also used for training the self-driving agent); this is compatible
with the results in [3].

Fig. 1. Sample frame from the videos recorded. Left: the car is driving correctly on the intended
lane. Right: an accident caused by the injection of HopSkip Jump. The vehicle does not steer as
much as it should, and it goes out of the road, colliding with a building.

Attack and Fault Injection in Self-driving Agents 219

Table 2. Configuration details on the planned runs, and the results obtained for the clean runs,
with 30 repetition of each configuration. The same configurations will be used for the attacks and
faults injection campaigns.

Run name Town Vehicles Pedestrians Weather Clean runs

Completed Collisions

Town01-v1 Town01 20 50 Clear Noon, Wet
Noon, Hard
Rain, Clear
Sunset

27 2

Town02-v1 Town02 15 50 26 2

Town01-v2 Town01 20 50 Wet Sunset,
Soft-Rain Sunset

28 2

Town02-v2 Town02 15 50 15 13

Sum of runs 96 19

Runs in
timeouts

5

Red lights fail 28 (on a total of 417)

The experiments are organized in two phases. In the first phase, we perform clean
runs to produce clean data i.e., we execute the simulation runs without introducing any
attack or fault. Results of the clean runs are in Table 2: in this case, most of the runs are
successfully completed with a limited number of collisions, and only a few red lights
are ignored. Visually, we can confirm that the driving is stable: typically, the vehicle is
well-placed in themiddle of its lane. The vehicle only struggled in Town02-v2, where the
adverse weather may have played a part in the increase of instability. In this case, most of
the failures are caused by collisions, with a limited number of timeouts. The amount of
collisions is clearly not appropriate for a realistic deployment of an autonomous driving
system, but we clarify that they resulted from the execution of a self-driving agent which
uses a single frontal camera: this is a very penalizing condition for autonomous driving
applications, which usually rely on stereo cameras or lidars. Also, we remark that the
scope of our work is showing the application of a campaign which includes fault and
attack injections, which can be also repeated on other driving agent.

The second phase repeats the same runs of the previous phase, but with the injection
of attack as described in Sect. 3, and of faults as described in Sect. 4. Attacks and faults
are injected at each simulation step during the run. Results of the second phase are
described in Sect. 5.2 and Sect. 5.3.

In general, a run lasted between few seconds to a few minutes of physical time,
depending mainly on the point in which collisions occur.

The simulations were executed on an Intel i9-9920X@3.50 GHz CPU, 128 GB
RAM, and Nvidia Quadro RTX 5000 GPU.

Concerning temporal intrusiveness of the injection, the injection of the black-box
attack HopSkipJump is the most intrusive, because of the several computations required
to generate the adversarial images. It should be observed that the simulation in Carla

220 N. Piazzesi et al.

is organized in successive simulative steps: even if the physical time between two suc-
cessive steps is increased (because of the computational time of HopSkipJump attack),
this has small effect on the Carla simulation and its simulated time. Temporal intru-
siveness of the injection of the other attacks and the faults is very small with respect to
HopSkipJump.

Finally, spatial intrusiveness (amount of memory occupied) was not a concern,
because of the available resources of the hardware platform we used.

5.2 Adversarial Attacks Injection: Results

An overview of the results for the injection of adversarial attacks is in Table 3, and
discussed below.

HopSkipJump (HSJ). Thedesignated route is generally followedproperly by thevehicle.
However, visually checking the videos, we can observe that the trajectory becomesmuch
more unstable. The waypoints generated constantly change direction and this causes
major issues, especially in curves. As for example in Fig. 1, it may happen that the
vehicle does not steer as much as it should, going off-road and leading to collisions.
Most of the crashes happened with the bad weather. The instability of the waypoints
also leads to an increase of ignored red lights, with the vehicle entering crossroads
occupied by other vehicles. Only two runs ended by timeout.

Table 3. Overview of results for the 4 injected attacks; each configuration was repeated 30 times
for each attack.

HSJ STA BIM NF

Run name Completed Collisions Completed Collisions Completed Collisions Completed Collisions

Town01-v1 27 3 28 1 0 30 13 17

Town02-v1 15 14 26 2 0 30 7 22

Town01-v2 16 13 26 4 0 30 0 30

Town02-v2 4 26 17 11 0 30 0 30

Runs sum 62 56 97 18 0 120 20 99

Timeouts 2 5 0 1

Red lights fail 162/339 26/420 0 156/227

Spatial Transformation (STA). The results are comparable to the clean runs. Few red
lights were ignored, and the collisions happened in similar spots. In some runs the
waypoint were slightly different but the trajectory was very stable. Five runs were not
completed because of a timeout. STA applies a random single shift and a random rotation
to each image acquired, and this may not be as much of a disruptive change as we
would expect, at least with the selected parameters. We could infer that LBC is not
overly sensitive to these transformations, especially since the amount of transformation
is different for each image. The other three attacks use a much more refined technique,

Attack and Fault Injection in Self-driving Agents 221

by reasoning on the decision function itself, and probably for this reason they are more
effective than STA.

Basic Iterative Method (BIM). The driving is seriously compromised. In each run, it
immediately starts turning right, going off-road and colliding with the surroundings. No
semaphore was even reached, and no run was completed. BIM seems to be extremely
effective, causing collisions right from the start of each run.

NewtonFool (NF). The agent’s driving is unreliable. A very low stability in the trajectory
causes serious problems in staying inside the lane. This caused a significant increase in
collisions and in red lights ignored. Only one run ended with a timeout.

The results show a general decrease in reliability of the car when it is injected with
the attacks. We can see the two extreme cases in the injection of STA and BIM. While
the first seems to not cause any problem to the agent, the latter is very detrimental.
During the other two attacks, instead, the car still functions on a basic level, but becomes
much more unstable with respect to the clean runs, especially in turns and with bad
weather. This indicates that these kinds of attacks can pose a real threat to the safety of
autonomous vehicles and needs to be considered during development.

5.3 Faults Injection: Results

An overview of the results for the injection of faults using PyTorchFI is in Tables 4, 5
and 6, and discussed below.

Random Neuron Injection. The more we increase the range of values, the more the
vehicle becomes unstable. This can be easily observed comparing the left and right side
of Table 4. On the right side of Table 4, with a range of [−10000, 10000] we can see that
not only the self-driving agent fails to reach the goal, but all the simulations terminate
almost immediately. This can be also verified by looking at the number of traffic lights
encountered.

Random Neuron Injection Per Layer. It’s expected that this injection causes more prob-
lems, because it injects a fault on each layer of the neural network. This is true even if
the numerical value injected is much lower than in the previous case. In Table 5 (right
side), within the range of [−100, 100] we already obtained similar results as the single
location injection with range of [−10000, 10000] (Table 4, right side).

Random Single Weight Injection. The effects of weight injection are less visible than
neuron injection. This can be observed in Table 6, where we have tried to increase the
range of the injected erroneous value from [−1000, 1000] to [−10000, 10000], but
without observing a significant change in the vehicle behavior: in fact, even though we
can visually verify that the trajectory is unstable, the success rate is close to the clean
runs in both cases.

In our results, the neuron injection per layer has the highest impact, followed by the
single random location neuron injection, while the most “ineffective” model is the single

222 N. Piazzesi et al.

Table 4. (Left) Single random location neuron injection with values between [−1000, 1000].
(Right) Single random location neuron injection with values between [−10000, 10000].

Town Success
rate

Collision Ignored
lights

Town Success
rate

Collision Ignored
lights

Town01-v3 4/5 1/5 5/11 Town01-v3 0/5 5/5 0/0

Town01-v4 0/5 5/5 1/6 Town01-v4 0/5 5/5 0/0

Town02-v3 0/5 5/5 3/11 Town02-v3 0/5 5/5 4/6

Town02-v4 0/5 5/5 1/9 Town02-v4 0/5 5/5 2/4

Table 5. (Left) Random neuron injection per layer with values between [−50, 50]. (Right)
Random neuron injection per layer with values between [−100, 100].

Town Success
rate

Collision Ignored
lights

Town Success
rate

Collision Ignored
lights

Town01-v3 4/5 1/5 7/11 Town01-v3 0/5 5/5 2/6

Town01-v4 1/5 4/5 4/7 Town01-v4 0/5 5/5 6/6

Town02-v3 0/5 4/5 6/13 Town02-v3 0/5 5/5 4/5

Town02-v4 0/5 5/5 4/5 Town02-v4 0/5 5/5 3/5

Table 6. (Left) Random weight injection with values between [−1000, 1000]. (Right) Random
weight injection with values between [−10 000, 10 000].

Town Success
rate

Collision Ignored
lights

Town Success
rate

Collision Ignored
lights

Town01-v3 5/5 0/5 0/11 Town01-v3 5/5 0/5 0/11

Town01-v4 5/5 0/5 0/11 Town01-v4 4/5 1/5 1/11

Town02-v3 4/5 0/5 3/28 Town02-v3 4/5 1/5 2/27

Town02-v4 2/5 3/5 0/23 Town02-v4 3/5 2/5 1/23

random weight injection. This is most likely because the number of weights in a neural
network is immensely big, and not all of them are used to process inputs.

Last, the number of runs is significantly lower than the size of the error space.
However, this number is sufficient to observe that the system is indeed affected by the
injected faults, as its behavior clearly differs from when faults aren’t introduced.

6 Limitations and Considerations for Real-World Scenarios

We discuss two potential limitations of our study, also at the light of related works and
of the possible impact for real-world scenarios.

Attack and Fault Injection in Self-driving Agents 223

The first limitation concerns the amount of simulations and the selected configu-
rations. Input parameters to the faults and attacks injector are essential, and different
configurations would clearly lead to significantly different results. This is true for both
attacks and faults injection. The parameters of the attacks in Table 1, and the configura-
tion for the generation of faults in Sect. 5, can be significantly varied and consequently
can lead to i) different alterations to the input image and ii) different decisions of the
trained agent. Our experimental campaign is clearly not inclusive of all the possible
configurations for faults and attacks. Nonetheless, the validity of the initial objectives of
our study are still valid, which are i) give evidence that a self-driving agent can fail due
to software faults affecting the trained agent and due to (classifier-oriented) adversarial
attacks, and ii) show an approach to quickly study these faults and attacks in a simulated
environment.

The second limitation is on the feasibility of adversarial attacks and the fault modes
in the considered scenarios. Concerning adversarial attacks, while other authors have
very recently hypothesized their criticalities for autonomous driving [5, 7, 9], it is evident
that implementing these attacks requires a high level of control on the attacked system.
Performing an adversarial attack on a vehicle would require at least to capture the
images provided by a camera and alter them before they are further processed by the
trained agent. As communication between sensors and processing units for safety-critical
components in vehicle is typically cabled, this would require a severe physical hacking
on the vehicle, and consequently adversarial attacks are presently very difficult to apply
(a different aspects is for Adversarial Patches [16], which instead can be located along
the road as demonstrated in). However, as in the recent history we have witnessed also
remote hacking of vehicles [21], such attack surface should not be neglected a-priori,
and we believe our work can contribute as a warning on this.

Failures instead may be the consequence of bugs in neural network software [26,
27] or accelerators faults (GPUs) [23, 25]. Several recent works have raised a warning
about their dangerousness [29], overall describing the possible occurrence of software
and hardware faults in a similar fashion as for other safety-critical hardware and soft-
ware parts of the system. Consequently, we do not need to further motivate about the
possible occurrence of faults. However, the exploration of fault modes and the relative
consequences on trained agents, and in particular self-driving agents, still requires inves-
tigation, as demonstrated by the many recent works on the subject e.g., [27, 28]. Again,
our work can act as i) a warning on the effect in safety-critical systems, as we show
that even one persistent fault injected in just one of the network layers can jeopardize
functional safety, and ii) an approach to study the impact of such faults in trained agent,
relying on simulated environments.

7 Conclusions

This paper describes our experience with the injection of attacks and software faults in a
self-driving agent running on the Carla simulator, entirely relying on open source tools.
With respect to “traditional” software, self-driving agents have peculiarities such that
they exposes new attack surfaces and fault modes. The objective of this experience report
is to show how these attack surfaces and new fault modes can be exploited, making it
explicit that this can violate vehicle safety.

224 N. Piazzesi et al.

While results are clearly restricted to the set of configurations used and to the self-
driving agent in use, they show the possible detrimental effects of adversarial attacks
and faults, as well as the need to protect and test autonomous systems against them.

Finally, the paper aims to show how self-driving agent can be tested, relying on
existing tools and a controlled environment, through a carefully described experimental
campaign. Overall, our injection activities required just few modifications to the trained
agent (mostly related to the forward function), andminimal knowledge on the underlying
simulator.

Acknowledgment. This work has been partially supported by the project POR-CREO SPACE
“Smart PAssenger CEnter” funded by the Tuscany Region.

References

1. Dosovitskiy, A.: et al.: CARLA: an open urban driving simulator. In: Conference on Robot
Learning, pp. 1–16 (2017)

2. Unreal Engine. www.unrealengine.com [online]
3. Chen, D., et al.: Learning by Cheating. In: Conference on Robot Learning (CoRL) (2019)
4. Secci, F., Ceccarelli, A.: On failures of RGB cameras and their effects in autonomous driving

applications. In: ISSRE, pp. 13–24 (2020)
5. Kumar, K.N., et al.: Black-box adversarial attacks in autonomous vehicle technology. arXiv

e-prints 2101.06092 (2021).
6. Integration of ART and LbC. https://github.com/piazzesiNiccolo/myLbc [online]
7. Deng,Y., et al.:An analysis of adversarial attacks and defenses on autonomous drivingmodels.

In: IEEE International Conference on Pervasive Computing and Communications (PerCom)
(2020)

8. Nicolae, M.I., et al.: Adversarial Robustness Toolbox v1.0.0. arXiv preprint arXiv:1807.010
69v4 (2019)

9. Zablocki, É., et al.: Explainability of vision-based autonomous driving systems: review and
challenges. arXiv preprint arXiv:2101.05307 (2021)

10. Engstrom, L., Tran, B., Tsipras, D., Schmidt, L., Madry, A.: Exploring the Landscape of
Spatial Robustness. In: PMLR 2019 (2019)

11. Chen, J., Jordan,M.I.,Wainwright,M.J.:Hopskipjumpattack: a query-efficient decision-based
attack. In: IEEE Symposium on Security and Privacy (SP) (2020)

12. Kurakin, A., Goodfellow, I., Bengio, S.: Adversarial examples in the physical world. arXiv:
1607.02533 (2016)

13. Jang, U., Wu, X., Jha, S.: Objective metrics and gradient descent algorithms for adversarial
examples in machine learning. In: ACSAC 2017 (2017)

14. ART documentation v1.5.1. https://adversarial-robustness-toolbox.readthedocs.io/en/latest/
15. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial exam-

ples. arXiv preprint arXiv:1412.6572 (2014)
16. Brown, T.B., et al.: Adversarial patch." arXiv preprint arXiv:1712.09665 (2017)
17. Kurakin, A., Goodfellow, I., Bengio, S.: Adversarial examples in the physical world. arXiv

preprint. https://arxiv.org/abs/1607.02533 (2016)
18. Stevens, E., Antiga, L., Viehmann, T.: Deep Learning with PyTorch. Manning Publications

Company, Shelter Island (2020)
19. Codevilla, F., et al.: Exploring the limitations of behavior cloning for autonomous driving.

In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2019)

http://www.unrealengine.com
https://github.com/piazzesiNiccolo/myLbc
http://arxiv.org/abs/1807.01069v4
http://arxiv.org/abs/2101.05307
http://arxiv.org/abs/1607.02533
https://adversarial-robustness-toolbox.readthedocs.io/en/latest/
http://arxiv.org/abs/1412.6572
http://arxiv.org/abs/1712.09665
https://arxiv.org/abs/1607.02533

Attack and Fault Injection in Self-driving Agents 225

20. Grigorescu, S., et al.: A survey of deep learning techniques for autonomous driving. J. Field
Robot. 37(3), 362–386 (2020)

21. Miller, C.: Lessons learned from hacking a car. IEEE Des. Test 36, 6 (2019)
22. Ackerman, E.: Three small stickers in intersection can cause tesla autopilot to swerve into

wrong lane. IEEE Spectrum (2019)
23. Condia, J., et al.: FlexGripPlus: an improved GPGPU model to support reliability analy-

sis. Microelect. Reliab. 109, 1–14 (2020)
24. Mahmoud, A., et al.: Pytorchfi: a runtime perturbation tool for DNNS. In: IEEE/IFIP

International Conference onDependable Systems andNetworksWorkshops (DSN-W) (2020)
25. Li, G., et al.: Understanding error propagation in deep learning neural network (DNN) accel-

erators and applications. In: International Conference for High Performance Computing,
Networking, Storage and Analysis (SC) (2017)

26. Du, X., Xiaoting, G., Sui, Y.: Fault triggers in the tensorflow framework: an experience report.
In: IEEE International Symposium on Software Reliability Engineering (ISSRE) (2020)

27. Jha, S., Banerjee, S., Cyriac, J., Kalbarczyk, Z.T., Iyer, R. K.: AVFI: fault Injection for
autonomous vehicles. In: IEEE/IFIP International Conference on Dependable Systems and
Networks Workshops (DSN-W), pp. 55–56 (2018)

28. Jha, S., et al.: Kayotee: A fault injection-based system to assess the safety and reliability of
autonomous vehicles to faults and errors. arXiv preprint arXiv:1907.01024 (2019)

29. Zhang, J.M., et al.: Machine learning testing: Survey, landscapes and horizons. In: IEEE
Transactions on Software Engineering (2020)

30. Chen, D.: Learning by cheating code. https://github.com/dotchen/LearningByCheating
31. Pytorchfi documentation. https://pytorchfi.github.io/core/declare-fi
32. Zoppi, T., et al.: Unsupervised anomaly detectors to detect intrusions in the current threat

landscape. ACM/IMS Trans. Data Sci. 2(2), 7 (2021)

http://arxiv.org/abs/1907.01024
https://github.com/dotchen/LearningByCheating
https://pytorchfi.github.io/core/declare-fi

A Framework for Automated Quality
Assurance and Documentation

for Pharma 4.0

Andreas Schmidt1 , Joshua Frey1, Daniel Hillen1 , Jessica Horbelt2 ,
Markus Schandar2, Daniel Schneider1(B) , and Ioannis Sorokos1

1 Fraunhofer Institute for Experimental Software Engineering (IESE),
Kaiserslautern, Germany

{andreas.schmidt,joshua.frey,daniel.hillen,daniel.schneider,
ioannis.sorokos}@iese.fraunhofer.de

2 Fraunhofer Institute for Manufacturing Engineering and Automation (IPA),
Stuttgart, Germany

{jessica.horbelt,markus.schandar}@ipa.fraunhofer.de

Abstract. The production sector is experiencing significant transforma-
tions driven by comprehensive digitalization, interconnection, and fur-
ther automation advances. One sub-sector that can benefit significantly
from these trends is the production of Advanced Therapy Medicinal
Products (ATMPs). ATMPs show promise for treating different serious
conditions, but they are very expensive—being patient tailored products
whose production is a highly manual, minimally automated process. In a
recent research project with an ATMP producer, we investigated how the
degree of automation can be increased. It became apparent that in par-
allel to increasing automation across the actual production steps, quality
assurance needs to be addressed in a similar way. This paper introduces
a framework for automating (parts of) the quality assurance of ATMPs
using two concepts: (a) digital shadows or twins and (b) assurance cases.
We demonstrate its conceptual implementation along a case study for
Car-T cell products used to treat certain forms of cancer.

Keywords: Industry 4.0 · Pharma 4.0 · Advanced Therapy Medicinal
Products · Assurance cases · Digital twins · Digital dependability
identity · Quality assurance

1 Introduction

Industry 4.0 (I4.0) is a new paradigm in the production sector that received huge
attention over the last years. The term already suggests that the adoption of I4.0
implies a fourth industrial revolution, and indeed, there is significant promise in
the visions that are being pursued. A key trait of the new paradigm is the
comprehensive utilization of self-aware and connected technology in production
facilities to enable and facilitate seamless integration into the internet of things

c© Springer Nature Switzerland AG 2021
I. Habli et al. (Eds.): SAFECOMP 2021, LNCS 12852, pp. 226–239, 2021.
https://doi.org/10.1007/978-3-030-83903-1_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-83903-1_15&domain=pdf
http://orcid.org/0000-0002-7113-7376
http://orcid.org/0000-0003-2118-6097
http://orcid.org/0000-0003-1807-7420
http://orcid.org/0000-0003-3465-9738
http://orcid.org/0000-0003-2704-8381
https://doi.org/10.1007/978-3-030-83903-1_15

A Framework for Automated QA and Documentation in Pharma 4.0 227

and people. Further, this increases automation up to the point of autonomy
and enables frequent re-configurations for the production of specifically tailored
low-volume products (lot size 1).

One specific domain that can benefit significantly from the adoption of the
I4.0 paradigm is the pharmaceutical production and more specifically the produc-
tion of Advanced Therapy Medicinal Products (ATMPs). ATMPs are based on
genes, tissues, or cells and offer groundbreaking new opportunities in the treat-
ment of diseases such as cancer. In many cases, however, these products need
to be produced in an autologous fashion, specifically for one patient. Combining
this with the circumstance that the production (including quality assurance and
documentation) itself is often very labour intensive, this leads to high treatment
costs of, for instance, approximately a quarter million US dollars for a CAR-T
cell treatment against cancer. I4.0 (in this domain also known as Pharma 4.0)
can address this issue by providing higher technical integration between the pro-
duction devices—thereby enabling higher levels of automation. Apart from the
production process itself, quality assurance and documentation are mandatory
key concerns in the production of ATMPs. In the current state of practice, these
are typically based on manual acquisition and interpretation of production data
across different steps of the production chain (followed by manual documenta-
tion) which, in turn, implies high cost of labour and a significant probability for
errors. Here, too, the utilization of I4.0 means could be an excellent remedy in
providing higher levels of automation for the aspects of quality assurance and
documentation as well, thus increasing efficiency and decreasing the probability
of human errors.

In this paper, we introduce a risk-based quality assurance and documentation
approach based on comprehensive model-based traceability—enabling highly
automated Pharma 4.0. End-to-end traceability is enabled by an assurance-
case-based argumentation structure to trace from top-level quality risks down to
concrete evidences provided by the devices/machines in the production chain.
Benefits are higher efficiency as well as decreased potential of human error in evi-
dence collection, checking and interpretation (manual operations become auto-
mated). In addition, pharmacovigilance (post-market surveillance) is supported
by a more formal and more understandable quality documentation. Note, how-
ever, that we do not go for full automation but rather keep the human in the loop
where it is most important. Thus, we automate data acquisition and reporting,
but not the actual decision making. Setting the checking bounds and reviewing
the reported results is still up to a domain expert (i.e. the qualified person).

The remaining paper is structured as follows: Sect. 2 gives some insight into
the domain of pharmaceutical production, particularly introduces the state-of-
art in quality assurance and also highlights corresponding challenges. Section 3
introduces several digital tools and means that can be of help to overcome these
challenges. In Sect. 4 we introduce our quality assurance and documentation
framework that has been developed in a recent project together with experts
from the production domain and a producer of Car-T cell ATMPs. Section 5
concludes the paper and gives and outlook on future research activities.

228 A. Schmidt et al.

2 State-of-the-Art of Quality Assurance and
Documentation in the Pharmaceutical Industry

2.1 Lifecycle of Pharmaceutical Products and Good-X-Practice

The production of pharmaceutical products is governed by various guidelines, typ-
ically referred to as GxP (Good-X-Practice), e.g. Manufacturing (GMP), Auto-
mated Manufacturing (GAMP), or Pharmacovigilance (GPvP). For Advanced
Therapy Medicinal Products (ATMPs), the specific European GMP guidelines [3]
apply and must be followed by Quality Assurance (QA). As most of these products
are produced largely manually, little guidance can be found on aspects of automa-
tion (apart from digital signature processes). Furthermore, ATMPs are produced
at small-scale, as these products are in fact personal, lot-size-1 products. The life-
cycle of a pharmaceutical product is coarsely divided into two phases:

– Pre-Market Authorization, Research and Development
– Production of Products with Market Authorization including Post-Market

Surveillance/Pharmacovigilance

In both phases, we see different QA activities that are executed either fully
manually or using independent, non-integrated digital tools—hence providing
potential for gains in both product safety and production efficiency for the man-
ufacturers. Even in use cases where a hospital exemption for a single product is
given, the framework we present in this paper can help to improve the quality
and safety assurance process using model-based approaches.

Overall, the digitalization of pharmaceutical manufacturing is considered to
be key to efficient and sustainable manufacturing, and it becomes even more
important, where smaller manufacturing batch sizes require a greater need for
flexibility in manufacturing plants—leading to personalized medicine. In line,
digital maturity of a manufacturing plant advances through the different levels of
maturity from a predominately manual and paper-based facility to a fully auto-
mated, adaptive, collaborative, self-optimizing, autonomous plant that is also
fully integrated to the end-to-end, internal and external value chain (cf. Digital
Maturity Model [2]). With this, Batch records develop from semi-electronic or
“paper on glass” to full Electronic Batch records with review by exception. More
mature status, however, includes proactive analytics across plant and internal
value chain as well as integrated real-time process analytics.

2.2 The Patient Batch Record

Irrespective of the lifecycle phase, an important QA artefact is the patient batch
record (also called production protocol), where the execution of steps as well
as associated quality tests are acknowledged and detailed (e.g. applied process
parameters). A batch record demonstrates that an organization or manufacturer
properly handles and records all critical steps and actions to produce a single
batch of a product, whether entered automatically or manually [15]. An elec-
tronic batch record (EBR) thereby ensures compliance and improves efficiency
by automating paper-based systems.

A Framework for Automated QA and Documentation in Pharma 4.0 229

As of today, this record is—in the best of cases—a digital free-form docu-
ment (e.g. a Word document) that is filled by a production staff member, and
afterwards processed by up to five other roles (lead of production, quality control
lead and staff, as well as QA staff member and qualified person) for checking
completeness and validity. The current form and practice of filling a batch record
poses several hazards: (a) The traceability between risks (insufficient product
safety) and actual countermeasures (quality tests) is provided only manually and
implicitly (for definition of these terms, see [8]). (b) Entering and checking of
data is not or insufficiently supported by digital tools, e.g. the transfer of data
between machines is done manually as is the checking of test results as pass/fail.
In summary, the batch record contains expert knowledge, but the knowledge
is only implicit, e.g. the link from a certain quality test result to a potential
product-induced hazard cannot be assessed in an automated way.

2.3 Pre-Market Authorization, Research and Development

Starting from a mechanism of action (MoA), an ATMP manufacturer develops
the product as well as an associated production process, including QA. The prod-
uct must be safe and efficient, while the process must be efficient and reliable.

At this experimental stage, many process steps and their parameters are
not yet fixed and undergo continuous review and adaptation. As of today, a
risk-based approach that starts with the hazards associated with the potential
product faults and their effects on patients is not yet state-of-the-practice or
not yet possible due to a lack of suitable pharmacological models. However,
model-informed drug discovery and development (MID3) is a promising area
of research [10,11] and it is expected that future regulations put a stronger
focus on digital twins [21]. The associated quality assurance is also conducted
in a conservative way, i.e. as much data as possible is gathered from both the
production process itself as well as the therapy. In practice, this means that
beside quantitative biological parameters, such as cell count and viability, also
other interesting biological features are analyzed, without knowing whether a
certain test result is characteristic for a safe or unsafe product.

While this might sound careless at first sight, the circumstances of patients
that require treatment with ATMPs deem such an approach necessary—under
certain circumstances the risks associated with non-treatment outweigh the risk
associated with treating the patient with out-of-specification (OOS) product
batches. At this stage, the manufacturer is in close contact with the regula-
tion authorities to ensure rules are followed. However, these authorities cannot
prescribe specific tests or QA activities as the the expertise lies with the man-
ufacturer, as it is a novel MoA and product. Nevertheless, many manufacturers
follow the ICH guidelines that describe several methods that have been vali-
dated and approved by the authorities. When making progress towards mar-
ket authorization, process details settle as do the implemented test procedures.
The argumentation, describing whether this is compliant with the regulations,
is maintained in the form of submission documents and production protocols

230 A. Schmidt et al.

written in natural language—explicit, automated tracing between agreed-upon
procedures and the practice is lacking.

In summary, the R&D phase requires a significant portion of expert knowl-
edge and empirical experience gathering. Hence, an adoptable automation solu-
tion for both production as well as quality assurance steps must account for this
high degree of flexibility.

2.4 Production of Products with Market Authorization

As soon as market authorization is acquired and a product specification is fixed,
the employed batch record stays the same and is the central document for QA. At
this stage, the major risks can be attributed to two distinct categories: (a) errors
in execution, e.g. due to fatigue or human error, and (b) faults in the specifi-
cation, e.g. due to an unexpected interaction between a product feature and
a patient. On the business side, as the process is fixed, a non-automated app-
roach to QA is expensive as skilled personnel, working under exceptional condi-
tions (i.e. a cleanroom) execute tedious, automatable tasks.

When a product is used in the market, regulation demands that sufficient
post-market surveillance (pharmacovigilance) is implemented. As ATMP thera-
pies are individual and rarely applied, it is likely that the product, and in turn the
manufacturer, is blamed in case of an unfavourable outcome—in contrast to other
therapy products where such a causation assumption is not straightforward. In
this case, the ATMP manufacturer must prove that the individual product in
question has been produced in accordance with the specification co-developed
with the regulation authorities. If such proof is not sufficient on the basis of pro-
cess compliance (e.g. because the administration of the therapy was also correct),
a root-cause analysis should be executed to remove the fault in the specification
and avoid the production or usage of more unsafe products. Depending on the
product, it could be that at the time of fault-detection, more products in circu-
lation share the identified defects and must be withdrawn immediately–however
with personalized products this might not often be of practical relevance.

In today’s practice of manufacturing, fulfilling this task is hard as the batch
records (a) are usually not accessible in digital form to, e.g., search for similar
produced batches; (b) have been created in a manual fashion, leaving the residual
risk of human error; and (c) lack explicit, model-based traceability (cf. [8]) to
hazards associated with mechanisms of action and product design. The latter
is due to the fact that, as of today, this knowledge is hidden in submission
documents filed with the authorities and written in natural language. Hence, a
specification fault is hard to detect as safety argumentation gaps, e.g. missing test
procedures or unattributed physiological effects, cannot be found automatically.

A Framework for Automated QA and Documentation in Pharma 4.0 231

3 Tools for Model-Based Quality Assurance and
Dependability

3.1 Assurance Cases and the Digital Dependability Identity

As established in the previous section, the production of ATMPs is a safety-
critical process. However, an ATMP must not only be safe but also effective,
and therefore it is required to prove that several quality claims are fulfilled.
An assurance case can be employed to structure a clear, comprehensive and
convincing argument that the ATMP acceptably meets the level of quality for
its given application by complying with relevant regulations, such as the GMP
guidelines mentioned previously. Such an assurance case consists of hierarchi-
cally structured claims which are supported by evidence. One way to visualize
an assurance case is by using the Goal Structuring Notation (GSN) [14], where
it is structured in the form of a tree. The top goal is the root of the assurance
case, typically representing fundamental claims e.g. overall safety and quality of
the ATMP. Several layers of intermediate goals eventually lead to the leaf-level
evidence, representing concrete facts or documentation that support their associ-
ated claims e.g. records of equipment inspection supporting claims of equipment
qualification. The explicit structure of assurance cases renders them convenient
for systematic review and improvement; lapses in documentation can thus be
found more easily and addressed. As an example of how such a systematic review
can be performed, see [6].

Today, assurance cases are usually non-digital and non-machine-readable
artifacts, managed manually. For instance, evidence is documented and linked
manually and changes of the system or process require a manual change of the
corresponding parts of the assurance case. This approach is error-prone and
scales poorly as production processes change and grow in scale and complex-
ity. In case of an ATMP production facility, the production process can change
frequently, e.g. by tailoring towards a specific patient or integrating new pro-
duction pipelines. Instead of manually changing the assurance case, a digital
assurance case pattern can be created. A pattern abstracts details of the case,
such that it can be re-used across different applications and/or production pro-
cess configurations, even throughout several stages of the same production pro-
cess. We advocate the use of digital assurance case patterns that can be more
easily managed and instantiated, i.e. replace their abstract parts with concrete
ones, based on the specific ATMP production process at the time of instanti-
ation. By using such patterns, assurance can be orchestrated via tool support
to automatically validate supplied evidence and thus guarantee the quality of
the product. Other researchers proposed an approach, where assurance cases are
used to guarantee safety for the cooperation of medical devices [20]. Different
devices, also from different vendors, can be integrated to operate cooperatively
through defined interfaces. The safety of the cooperation is then guaranteed
through the assurance case. In our advocated approach, a digital assurance case
is used to systematically argue the quality in an ATMP production facility. This
assurance case combines evidence and automatically evaluates the quality of the

232 A. Schmidt et al.

produced ATMP product. This approach also aligns with Digital Dependability
Identities (DDI).

DDIs [12,13] enable seamless integration of cyber-physical systems through-
out their life-cycle i.e. both during development, as well as during deployment
and operation. DDIs encapsulate dependability properties (i.e. safety, security,
etc.) of their subject system while offering modularity, composability, and exe-
cutability. DDIs can embed assurance cases of their subject system within them,
as well as the evidence relationships between the system assurance evidence,
the assurance case structure, and the overall system properties that are being
assured. By encapsulating all of the above information in a structured form,
the DDI can be seamlessly consumed by heterogeneous tools and systems, and
allows dynamic adaptation to a production system’s dependability profile.

In this paper, our proposed approach exploits DDIs to create and manage
digital batch records. This is achieved by deriving Digital Twins (Asset Admin-
istration Shells, see Sect. 3.2) of the batch record within an Industry 4.0 ATMP
production facility. Customization needed by the ATMP pipeline can be conve-
niently reflected in the assurance case. Changes in the production pipeline are
then captured by the DDI and the corresponding assurance case is updated.

3.2 Asset Administration Shells and Submodels

The industrial manufacturing domain is facing the digital transformation—the
end-result often called Industry 4.0. While the usage of digital models (mathe-
matical or semantic representations used for engineering) is commonplace today,
the next step is to make the integration between physical world and the digital
representation tighter [7,16]. Bridging this gap is done by implementing digital
shadows (digital representations that “follow” the physical world) or even digi-
tal twins (digital representations that can be interacted with and behave as or
interact with the physical world).

A promising approach to implementing all three forms of digital represen-
tation are the Asset Administration Shells (AAS) [1,19]. The AAS comes with
one or more Submodels—well-defined collections of data as well as interactions.
A Submodel is used to capture a specific aspect, use case, or in general data and
operations that are relevant in a certain domain and often used together. For
instance, in the discrete manufacturing sector, one Submodel can be concerned
with the parameters of a drilling machine, while another carries QA data (e.g.
the date and validity of the last calibration). The recent standardisation of the
Nameplate [4] Submodel is testament to the importance of universally accessible
and human- and machine-comprehensible information structures.

A major goal of the AAS and Submodels is to establish common, technology-
agnostic interfaces that can be used by different vendors involved in designing,
implementing, and operating automated production facilities. These interfaces
carry semantic information (i.e. by referencing existing ontologies or other con-
cept descriptions) but do not share internal implementation details. So the Sub-
models help to preserve intellectual property, but expose it in an interoperable
way that is not a differentiating aspect of devices between vendors.

A Framework for Automated QA and Documentation in Pharma 4.0 233

Fig. 1. A concept for an autologous CAR-T production process defines processing
modules after which samples are taken and tested for their quality. Process steps,
intermediate, and release test results must be documented in the batch record.

4 Framework for End-to-End Automated Quality
Assurance and Documentation

4.1 A Car-T Production Process

In order to showcase this conceptual approach, we take a closer look at a con-
crete ATMP, namely Car-T Cells [9], a therapy product used to treat cancer.
The production process is depicted in Fig. 1 and is composed of several distinct
process steps. Autologous T cells are obtained from patient’s apheresis material,
which is cryopreserved for transport to the manufacturer. The transport of these
products can only take place under strict security conditions. Subsequently, the
T cells are purified after thawing and washing steps to remove the toxic freezing
medium. Depending on the process, purification is performed in combination
with activation of the cells using antibody-coupled beads, some of which must
be removed at the end of the process. Genetic manipulation is achieved via
viral approaches (lentiviral, retroviral). After expansion, cells are harvested, for-
mulated and cryopreserved. Return transport and storage until release of the
product completes the production process [17,18]. As of today, most steps are
performed manually and for distinct process steps, manufacturing is enabled by
the use of semi-automated and automated benchtop devices, covering one or
more process steps. Still, individual devices form separated islands, that are not
embedded in a centralized control software or manufacturing execution system.
Additionally, the batch record has to be completed in parallel, to document all
production and quality assurance activities.

Now independent of whether the production itself is automated or semi-
automated, we assume that we have (at least) the following assets and associ-
ated AAS for our production system: (a) Patient Batch Record, (b) Production
Devices (e.g. freezers or incubators), and (c) Quality Testing Devices (e.g. cell
count or sterility tests). In the long term, there could be more assets modelled,
for instance the staff members and their qualifications, but for this paper we
focus on those previously mentioned.

234 A. Schmidt et al.

Fig. 2. High-level fragment of the ATMP assurance case, arguing for the quality of the
product.

4.2 A Car-T Cell Assurance Case

The assurance case is established by claiming adherence to relevant regulations
for the manufacture and administration of ATMPs. For demonstration purposes,
the assurance case has been structured to claim compliance with EU guidelines
for GMP of ATMPs [3], assuming an ATMP which has already received market
authorization. Note that the framework can be applied—adjusting accordingly—
for ATMPs without such authorization as well. In Fig. 2, the high-level argument
of compliance with the guidelines is established, and then decomposed over dif-
ferent aspects of the latter.

In practice, the approach can adjust the assurance case structure to accom-
modate alternative rationales arguing compliance with different guidelines as
well. The scope of the assurance case can encompass the ATMP quality start-
ing from the manufacturing process, up to the ATMP’s administration to the
patient. However, for demonstrating the benefits of the approach, the upcoming
discussion focuses on the process and device qualification of the overall process.
Other aspects, e.g. premises qualification, can be addressed similarly.

In Fig. 3, the TopGoal claims that Quality is controlled across the ATMP pro-
duction; the individual stages are conveniently referenced in Context_65 nearby.
Production stages are performed in sequence, as explained in Context_66,
whereas quality is controlled in parallel via sampling (Context_67).

To support the above claim, a pattern over each production stage is repeated;
quality for each stage is claimed based on the effectiveness of the applied controls,
as confirmed by the results of the sampling. For instance, the specific argument
for the quality of the cell collection stage can be seen in Fig. 4. In the figure,

A Framework for Automated QA and Documentation in Pharma 4.0 235

Fig. 3. Quality Control fragment of ATMP Assurance Case, arguing over the different
production process stages.

the results of testing indicate acceptable quality (Goal_76), based on the cell
count and composition results (Goal_83 and Goal_87). Each test result validates
the actual results from the testing (Solution_77), by comparing them with the
acceptable lower and upper bounds (Solution_86). Supporting claims (Goal_74
and Goal_194) argue that the chosen testing is adequate for controlling quality,
and that the control devices have been appropriately qualified.

As indicated by the figures above, prior to manufacturing, the assurance case
can provide placeholders for input intended to be collected during manufacturing
e.g. the results of the quality tests for specific production stages. Such placeholder
elements can be automatically extracted and transformed into AAS Submodels,
which can then be used for collecting the corresponding information from quality
control devices. Additional directives can be even specified e.g. to abort the
production process if control ranges are violated, or to repeat sampling if needed
etc. Upon successful completion of production, the AAS models can be referenced
by the assurance case to review whether the produced batch record supports
certification.

4.3 An Auto-Generated Batch Record Submodel

From the assurance case designed in Sect. 4.2 we now derive a Batch Record
Submodel. Afterwards, this batch record can be instantiated in an I4.0 ATMP
production facility to document relevant factors during the production and QA
process—assuring the safety as well as other qualities of a specific lot-size-1
ATMP. To maintain traceability, the batch record Submodel should be struc-
turally equivalent to the assurance case. This equivalence is achieved by convert-
ing the hierarchy of the assurance case into nested SubmodelsElementCollections
and SubmodelElements. Maintaining the assurance case hierarchy simplifies the
batch record reviewing process during the V&V process and during the inves-
tigation if a production fault is suspected after an unsuccessful treatment. To
document the conformity of the production to relevant guidelines and laws, it

236 A. Schmidt et al.

Fig. 4. Cell collection quality control fragment of the ATMP assurance case, arguing
over leaf-level evidence that is provided at production time.

must be ensured that the batch record conversion is complete and correct. There-
fore, a V&V process should be executed either manually or via an automated
tool. In either case, the structural equivalence to the assurance case is beneficial.

Technically, the conversion from assurance case elements to a Submodel works
as follows: An assurance case consists of tree-like nested Goals and Solutions
which must be converted into corresponding SubmodelCollections and Submod-
elElements. Some intermediate Goals are used mainly for structuring purpose
and therefore they must not be documented explicitly and no further Submod-
elElements are created within the batch record. Other Goals represent evidence
and thus require to be documented within the batch record to approve that the
safety requirements are met. In this case a Property SubmodelElement is created
to document if a specific Goal is fulfilled. Another type of assurance case ele-
ments are AwayGoals that are converted to a SubmodelElement of type Property
or Reference. These SubmodelElements are Parameters which are set prior to the
production and refer to other authorization documents.

Further, Goals are specified, which correlate with the production process
and must be observed and checked during runtime. As the assurance of these
leaf-level Goals can require multiple pieces of information (e.g. a valid mea-
surement range and a measured value placeholder), each leaf-level Goal is asso-
ciated with an appropriate SubmodelElementCollection. As SubmodelElements
can be linked to concepts from ontologies, it can be assured that, for instance,
development-time safety engineering’s notion of cell-counts is the same that is
measured by the testing device (cf. Sect. 4.4). Additionally, the fulfillment of the
Goal, i.e. all evidences are properly acquired, can explicitly be documented with a

A Framework for Automated QA and Documentation in Pharma 4.0 237

Property SubmodelElement. Potentially, the batch record must check the fulfill-
ment explicitly and thus it requires a SubmodelElement of type Operation to
be specified. Effectively, the batch record Submodel links parts of an assurance
case, as well as a specific process artifact, both of which can be derived from
within a DDI. Based on the assurance case, it gathers and connects all of the
required evidence during run-time by documenting relevant production and QA
parameters as well as external safety evidence (e.g. certificates of a production
machine).

The next step is to auto-generate the batch record Submodel from the assur-
ance case. An ATMP facility can then adapt the production processes and
include new processes faster and with less effort. Auto-generation can be achieved
following the aforementioned process. The general structure of an assurance case
for different ATMPs is going to be the identical, because all Goals which refer
to pharmaceutical guidelines and standards are the same. Different assurance
cases will then only differ in Goals related to the specific production and QA
process activities. For auto-generation, especially these Goals must comply with
predefined patterns and semantics to enable reliable parsing. As of today, the
assurance case elements are specified in natural language. While natural language
is hard to parse reliably and unambiguously, defined patterns and semantics can
support a correct auto-generation of a batch record Submodel.

4.4 Submodels for Collaborating Assets

Our QA framework requires interaction of laboratory assets, e.g. production and
quality testing devices as well as different containers and media. While the rel-
evant data differs from process to process and machine to machine, the overall
architecture stays the same: Physical assets provide information that is fed into
the batch record and used to assure the product quality by comparing it to a
specification, which was derived from the assurance case. In our opinion, sup-
porting an automated QA process should be a non-differentiating factor across
manufacturers and we envision that in the future this interoperability is a must
and enforced by all relevant stakeholders (e.g. by industry-wide standardiza-
tion). This means that apart from the batch record submodel, there are going
to be submodels provided by the vendor that (a) are used to integrate it into
the production line and (b) are used to integrate it into the quality assurance
framework. By adopting this, the pharmaceutical production would use the same
approaches as described for discrete manufacturing in [5].

An example would be a device for sterility tests—one of the final release
tests in Fig. 1. This test involves adding product samples to different incuba-
tion media and then inserting them into the device. Such media are an asset
whose associated Submodels contain information, such as (a) which organism
types can be cultivated with it (aerobic/anaerobic bacteria, or funghi) (b) sup-
ported incubation temperature range, and (c) supported ratio between sample
and medium (in weight or volume). The testing device’s Submodel describes slots
into which product samples with cultivation media are inserted. After testing,
the device can automatically report or be queried for the binary sterility results
which are directly linked to the patient batch from which the sample was taken.

238 A. Schmidt et al.

5 Conclusion

In this paper, we presented a framework for significantly increasing automation of
quality assurance and documentation in the pharmaceutical production domain.
Applying this to the use case of Car-T cell production, we have showcased
how digital tools for model-based dependability engineering (Digital Dependabil-
ity Identities and embedded assurance cases) and industrial automation (Asset
Administration Shells) could be used together to decrease effort and cost and at
the same time maintain product quality and safety. In fact, quality and safety
could even be improved, given that complex data acquisition and interpretation
processes presently pose a significant challenge and are certainly error prone—a
problem that is mitigated by extensive and costly manual checking practises.
With this framework, safety and quality requirements as well as their fulfillment
can be explicitly traced from the assurance case down to automatic checks on
evidence provided by Asset Administration Shells. Process reconfiguration can
also be immediately reflected by automatically updating its digital counterparts,
which can then be used to generate new requirements for process validation evi-
dence. Effectively, much of the existing effort can be alleviated, allowing ATMP
development to focus resources on more critical tasks and, most importantly, to
reduce product costs and thus improve accessibility to promising ATMP ther-
apies. In future work, we want to focus on the tool-driven implementation of
our approach, in particular the automatic conversion of assurance cases to Asset
Shell Submodels. Furthermore, we want to investigate how model-informed drug
discovery and development (MID3) can strengthen the assurance case and sup-
port the product designers in coming up with safe production parameters. In
this context, we also see potential in using MID3 to support root-cause analysis.

References

1. Details of the asset administration shell - part 1. https://www.plattform-
i40.de/PI40/Redaktion/DE/Downloads/Publikation/Details_of_the_Asset_
Administration_Shell_Part1_V3.html

2. The development of a digital plant maturity model to aid transformation in
biopharmaceutical manufacturing. https://pharmaceutical.report/whitepapers/
the-development-of-a-digital-plant-maturity-model-to-aid-transformation-in-
biopharmaceutical-manufacturing/1848

3. EudraLex The Rules Governing Medicinal Products in the European Union Volume
4 - Part 4 - Guidelines on Good Manufacturing Practice specific to Advanced
Therapy Medicinal Products. https://ec.europa.eu/health/sites/health/files/files/
eudralex/vol-4/2017_11_22_guidelines_gmp_for_atmps.pdf

4. Submodel templates of the asset administration shell - zvei digital name-
plate for industrial equipment (version 1.0). https://www.plattform-i40.de/
PI40/Redaktion/DE/Downloads/Publikation/Submodel_Templates-Asset_
Administration_Shell-digital_nameplate.html

5. Bedenbender, H., et al.: Examples of the Asset Administration Shell for I4.0 Com-
ponents. ZVEI White Paper (2017)

https://www.plattform-i40.de/PI40/Redaktion/DE/Downloads/Publikation/Details_of_the_Asset_Administration_Shell_Part1_V3.html
https://www.plattform-i40.de/PI40/Redaktion/DE/Downloads/Publikation/Details_of_the_Asset_Administration_Shell_Part1_V3.html
https://www.plattform-i40.de/PI40/Redaktion/DE/Downloads/Publikation/Details_of_the_Asset_Administration_Shell_Part1_V3.html
https://pharmaceutical.report/whitepapers/the-development-of-a-digital-plant-maturity-model-to-aid-transformation-in-biopharmaceutical-manufacturing/1848
https://pharmaceutical.report/whitepapers/the-development-of-a-digital-plant-maturity-model-to-aid-transformation-in-biopharmaceutical-manufacturing/1848
https://pharmaceutical.report/whitepapers/the-development-of-a-digital-plant-maturity-model-to-aid-transformation-in-biopharmaceutical-manufacturing/1848
https://ec.europa.eu/health/sites/health/files/files/eudralex/vol-4/2017_11_22_guidelines_gmp_for_atmps.pdf
https://ec.europa.eu/health/sites/health/files/files/eudralex/vol-4/2017_11_22_guidelines_gmp_for_atmps.pdf
https://www.plattform-i40.de/PI40/Redaktion/DE/Downloads/Publikation/Submodel_Templates-Asset_Administration_Shell-digital_nameplate.html
https://www.plattform-i40.de/PI40/Redaktion/DE/Downloads/Publikation/Submodel_Templates-Asset_Administration_Shell-digital_nameplate.html
https://www.plattform-i40.de/PI40/Redaktion/DE/Downloads/Publikation/Submodel_Templates-Asset_Administration_Shell-digital_nameplate.html

A Framework for Automated QA and Documentation in Pharma 4.0 239

6. Chowdhury, T., Wassyng, A., Paige, R.F., Lawford, M.: Systematic evaluation of
(safety) assurance cases. In: Casimiro, A., Ortmeier, F., Bitsch, F., Ferreira, P.
(eds.) SAFECOMP 2020. LNCS, vol. 12234, pp. 18–33. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-54549-9_2

7. Grangel-González, I., Halilaj, L., Coskun, G., Auer, S., Collarana, D., Hoffmeister,
M.: Towards a semantic administrative shell for industry 4.0 components. In: IEEE
10th Intlernation Conference on Semantic Computing (ICSC), pp. 230–237 (2016)

8. Holtmann, J., Steghöfer, J.P., Rath, M., Schmelter, D.: Cutting through the jungle:
disambiguating model-based traceability terminology. In: IEEE 28th International
Requirements Engineering Conference (RE), pp. 8–19 (2020)

9. Li, Y., Huo, Y., Yu, L., Wang, J.: Quality control and nonclinical research on car-t
cell products: general principles and key issues. Engineering 5(1), 122–131 (2019)

10. Marshall, S., et al.: Model-informed drug discovery and development: current
industry good practice and regulatory expectations and future perspectives. CPT
Pharma. Syst. Pharmacol. 8(2), 87–96 (2019)

11. Mould, D.R., Upton, R.: Basic concepts in population modeling, simulation, and
model-based drug development. CPT Pharma. Syst. Pharmacol. 1(9), 1–14 (2012)

12. Reich, J., Zeller, M., Schneider, D.: Automated evidence analysis of safety argu-
ments using digital dependability identities. In: Romanovsky, A., Troubitsyna, E.,
Bitsch, F. (eds.) SAFECOMP 2019. LNCS, vol. 11698, pp. 254–268. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-26601-1_18

13. Schneider, D., Trapp, M., Papadopoulos, Y., Armengaud, E., Zeller, M., Höfig, K.:
Wap: digital dependability identities. In: 2015 IEEE 26th International Symposium
on Software Reliability Engineering (ISSRE), pp. 324–329. IEEE (2015)

14. Spriggs, J.: GSN-the Goal Structuring Notation: A Structured Approach to Pre-
senting Arguments. Springer Science & Business Media, London (2012)

15. Stembridge, K., Adkins, M.: Making the move to electronic batch records. Pharma.
Technol. 42(4), 52–55 (2018)

16. Terzimehic, T., et al.: Towards an industry 4.0 compliant control software archi-
tecture using IEC 61499 & opc ua. In: 22nd IEEE Intl. Conference on Emerging
Technologies and Factory Automation (ETFA), pp. 1–4 (2017)

17. Tyagarajan, S., Spencer, T., Smith, J.: Optimizing car-t cell manufacturing pro-
cesses during pivotal clinical trials. Mol. Therapy Methods Clin. Dev. 16, 136–144
(2020)

18. Vormittag, P., Gunn, R., Ghorashian, S., Veraitch, F.S.: A guide to manufacturing
car t cell therapies. Curr. Opin. Biotechnol. 53, 164–181 (2018)

19. Wagner, C., et al.: The role of the industry 4.0 asset administration shell and the
digital twin during the life cycle of a plant. In: 22nd IEEE International Conference
on Emerging Technologies and Factory Automation (ETFA), pp. 1–8 (2017)

20. Zhang, Y., Larson, B., Hatcliff, J.: Assurance case considerations for interoperable
medical systems. In: Gallina, B., Skavhaug, A., Schoitsch, E., Bitsch, F. (eds.)
SAFECOMP 2018. LNCS, vol. 11094, pp. 42–48. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-99229-7_5

21. Zobel-Roos, S., et al.: Accelerating biologics manufacturing by modeling or: is
approval under the GBD and pat approaches demanded by authorities acceptable
without a digital-twin? Processes 7(2), 94 (2019)

https://doi.org/10.1007/978-3-030-54549-9_2
https://doi.org/10.1007/978-3-030-26601-1_18
https://doi.org/10.1007/978-3-319-99229-7_5
https://doi.org/10.1007/978-3-319-99229-7_5

Fault Tolerance

A Modular Approach to
Non-deterministic Dynamic Fault Trees

Sascha Müller1(B) , Adeline Jordon1 , Andreas Gerndt1,2 ,
and Thomas Noll3

1 Institute for Software Technology, DLR (German Aerospace Center),
38108 Braunschweig, Germany

{Sa.Mueller,Adeline.Jordon,Andreas.Gerndt}@dlr.de
2 University of Bremen, 8334 Bremen, Germany

3 Software Modeling and Verification Group, RWTH Aachen University,
52056 Aachen, Germany
Noll@cs.rwth-aachen.de

Abstract. Dynamic Fault Trees (DFTs) are powerful tools for deriv-
ing fault-tolerant system designs. However, deterministic approaches to
DFTs suffer from semantic struggles with problems such as spare races.
In this paper, we discuss the added complexity in the state-space repre-
sentation of a non-deterministic DFT model and propose a modularized
approach for synthesizing recovery automata. Finally, we give an imple-
mentation and evaluate it on the Fault tree FOResT (FFORT) bench-
mark. The results show that non-deterministic semantics with modular-
ization can scale for literature case studies.

Keywords: FDIR · Reliability engineering · Fault Tree Analysis ·
Synthesis · Formal methods

1 Introduction

Radiation, limited room for human intervention under only partial knowledge,
lacking the ability to replace broken hardware – space systems confront reliabil-
ity engineers with many challenges. They have to ensure that spacecraft can, to
a certain degree, continue operation even in the presence of faults. The ability of
a system to do so is often measured by Reliability, Availability, Maintainability,
and Safety (RAMS) metrics. Fault Detection, Isolation, and Recovery (FDIR)
concepts aim to increase these RAMS metrics. In order to derive these concepts
and evaluate them, reliability engineers employ Fault Tree Analysis (FTA) [8].
A Fault Tree (FT) is a graphical failure model describing how low-level faults
propagate through a system and eventually become a system-wide failure. To
strengthen the expressive power of FTs, they were later extended to Dynamic
Fault Trees (DFTs), which introduce various features such as temporal dependen-
cies and spare management. However, these DFTs give rise to non-deterministic

c© Springer Nature Switzerland AG 2021
I. Habli et al. (Eds.): SAFECOMP 2021, LNCS 12852, pp. 243–257, 2021.
https://doi.org/10.1007/978-3-030-83903-1_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-83903-1_16&domain=pdf
http://orcid.org/0000-0002-1913-1719
http://orcid.org/0000-0003-0796-6775
http://orcid.org/0000-0002-0409-8573
http://orcid.org/0000-0002-1865-1798
https://doi.org/10.1007/978-3-030-83903-1_16

244 S. Müller et al.

behavior such as spare races. In these spare races, multiple resources compete
simultaneously for a spare, but have no unique semantic resolution.

A methodology presented in [14] aims to overcome this shortcoming. It intro-
duces Non-Deterministic Dynamic Fault Trees (NdDFTs), a non-deterministic
extension of DFTs, that drops the inherently rigid rules on how spares should
be employed. The methodology foresees transforming NdDFTs to Markov
Automata (MA), computing an optimized scheduler for a given objective metric,
and then extracting the recovery strategy from said scheduler. This process is
referred to as recovery automaton synthesis.

However, as the technique constructs a monolithic state-space representation
of the NdDFT, containing an encoding of all possible recovery actions, it suf-
fers severely from classical state-space explosion problems. When employing the
technique for industrial benchmarks, we experienced that its naive usage makes
it unsuitable for real life applications.

The main contribution of this paper lies in tackling this weakness. For that
purpose, we adapt established modularization techniques from the DFT realm.
These techniques were originally designed to compute reliability metrics in a com-
positional way. We transfer them to establish a modular workflow for performing
recovery automaton synthesis.

The remainder of the paper is structured as follows. Section 2 gives an
overview of other approaches that address non-deterministic semantics in the
context of DFTs. Technical background knowledge on the relevant fault tree
models is given in Sect. 3. Section 4 extends the synthesis workflow to integrate
modularization. Section 5 investigates the scalability of the approach. Finally,
the paper concludes in Sect. 6, and gives further directions to future work.

2 Related Work

The problem cases induced by the rigid standard fault tree semantics have been
considered in other works. The authors of [9] tackle the issue of spare races by
employing non-determinism in the propagation semantics of functional depen-
dency gates, while allowing only functional dependencies to cause spare races.
The study of the interaction of this approach with spare gates reveals that there
are various different, yet sensible, ways in which the resulting semantics can be
interpreted. They conclude that there is no “correct” one-fits-all interpretation,
and that the fitting variant has to be chosen on a case-by-case basis. This is a
concern regarding the applicability of fault trees, as experts in system design are
not necessarily experts in fault tree semantics.

The work by the authors of [2] is worthy of particular mention. They apply an
approach for converting static, non-deterministic fault tree models, extendible
with so-called repair boxes, into Markov decision processes. Resolving the non-
determinism gives them an optimal repair strategy. However, the approach does
not extend to dynamic gates, which the authors mention as foreseeable future
work.

The authors of [18] introduce the concept of fault maintenance trees,
which are based on non-deterministic Input-Output Interactive Markov Chains

A Modular Approach to Non-deterministic Dynamic Fault Trees 245

(I/O-IMCs). The semantics are defined compositionally by starting with ele-
mentary I/O-IMCs for every gate and by proceeding in bottom-up direction by
combining these elementary I/O-IMCs. Recovery strategies for resolving spare
races can also be given on the Markovian level. The strategies have to be chosen
manually and are then compared to each other using a testing-based approach
based on model simulation. In contrast, the NdDFT model employed in this
work defines recovery strategies on a higher level and allows them to be com-
puted by resolving the non-determinism on the Markovian level with respect to
an optimality criterion.

Also with regard to modularization techniques, a number of techniques to
support compositional analysis of DFTs has been developed. For identifying
minimal cut sets, [5] provides an algorithm for finding independent sub-modules
of FTs, which can be converted separately to Binary Decision Diagrams (BDDs)
and then be analyzed, reducing the computational requirements for handling the
entire tree. Our approach to modularization as described in Sect. 4.2 is based on
this work.

For efficiently calculating the reliability of a DFT, [3] provides a composi-
tional semantics for DFT in terms of IMCs, which reduces the combinatorial
explosion in many common cases. Moreover, [16] develops an approach to divide
a DFT into independent sub-modules for computing reliability. Sub-modules
containing only static gates can then be solved using a traditional BDD method,
while sub-modules containing dynamic gates can be solved using Markov Chain
analysis. The method presented in [7] also modularizes a DFT and uses BDDs
for the static sub-modules, but employs the approximation from [1] to solve the
dynamic sub-modules. This avoids the state-space explosion problem incurred
by conversion to Markov Chains, while retaining a reasonable degree of accuracy.
Based on this work, [11] proposes a method to modularize DFTs further, by also
collapsing static sub-trees of a dynamic gate, but keeping additional information
about the probability distribution of these sub-trees. Finally, [20] provides addi-
tional modularization techniques, which can convert static sub-trees and some
dynamic sub-trees into equivalent basic events, thus reducing the complexity of
further analysis.

3 Background

3.1 Fault Trees

Fault trees are failure propagation models that express how faults start out on
low-level components, propagate through the system by combinatorial means,
and eventually turn into a high-level, system wide failure. Syntactically, fault
trees are directed acyclic graphs with two types of nodes: events and gates. The
leaves of a fault tree are called basic events, and the root node is referred to
as top-level event. Usually, a basic event is also equipped with a failure rate.
In this work, we allow for one additional extension: A basic event (BE) can
be equipped either with a failure rate, for describing exponentially distributed
behavior, or with a failure probability for instantaneous, uniformly distributed

246 S. Müller et al.

(a) BE

Non-Basic
Fault

(b) Non-basic
event

(c) OR (d) AND (e) SPARE (f) POR (g) FDEP

Fig. 1. Relevant gates and events of a fault tree

behavior. When a basic event with a uniform distribution is activated, it can fire
with its assigned probability. Such an activation occurs at system start and may
be triggered again by a gate. We limit ourselves here to the case of permanent
failure, i.e., once a BE has failed, it remains in a failed state for all future points
in time.

The gates model logical re-combinations of faults, as they propagate through
the system. The simplest type of fault tree model, called static fault tree, consid-
ers basic logical gate types such as AND and OR. Dynamic Fault Trees (DFT)
go further and introduce new gate types enabling various features such as spare
management and temporal constraints.

We give a short overview of gates relevant to this paper. Their fault tree
notation, together with the notation of events, is depicted in Fig. 1. The OR and
AND gates behave as classical, logical gates. If at least one input fails, the OR
gate propagates. If all inputs fail, the AND gate propagates.

The SPARE gate has a primary event and a set of spare events, also called the
spare pool. Spare events can be shared, and are initially deactivated. However,
sub-trees of spare events cannot have any shared nodes. When an input fails, the
SPARE gate claims a spare in left-to-right order, and activates it. If the primary
input has failed, and all available spares have failed, the SPARE gate fails.

The POR (priority OR) gate propagates if and only if the left-most input
occurs before any other input.

The FDEP (functional dependency) gate has a triggering event and any num-
ber of dependent basic events. When the triggering event occurs, the dependent
basic events are also set to failed. Syntactically, the triggering event and the
dependent events are defined to be inputs to the FDEP gate. To prevent semantic
confusion, however, the graphical representation uses outgoing edges to connect
dependent events.

To illustrate the DFT notation, we consider the example shown in Fig. 2.
The depicted DFT consists of four memory components; two primaries and two
spares. The two spares are part of a spare pool shared among the two SPARE
gates. According to standard DFT semantics, priority is given to claiming Mem-
ory3 before Memory4 in case of a failure of Memory1 or Memory2. Moreover,
the system is equipped with two hot redundant, always active power sources,
Power1 and Power2. Power1 powers both primary components, Memory1 and
Memory2 and Power2 powers the spares. Finally, FDEP gates are used to model
the functional dependencies between power supplies and memory components.
The FDEPs propagate the failure of a power source to the respective memory
components.

A Modular Approach to Non-deterministic Dynamic Fault Trees 247

System

SPARE2

Memory2

SPARE1

Memory1

b1 b2

Memory3

b3

Memory4

b4

Power1

b5

FDEP1

Power2

b6

FDEP2

Fig. 2. Example DFT

3.2 Non-deterministic Dynamic Fault Trees

DFTs impose a fixed and rigid order in which spares are activated. They do not
allow to adapt the order depending on the history of occurred faults. This may
lead to semantically undesirable consequences:

– A SPARE gate might claim a spare from a spare pool, despite having an
already failed parent. This might deny a necessary resource to other SPARE
gates that urgently require the spare to recover.

– In the event of spare races, it is not semantically clear which SPARE gate
may claim a spare.

– The optimal order for spares has to be known at design time of the fault tree.

Figure 3 visualizes possible DFT configurations exhibiting the above
described semantic complications. Red indicates an incoming failure propaga-
tion. Spare claims are marked with thick, black lines.

In order to overcome these issues, [14] introduces an inherently non-
deterministic DFT model (NdDFT, following the naming in [2]), which relaxes
the semantic restriction of DFT models. Syntactically, the notation of the
NdDFT is adopted from the DFT. Semantically, the NdDFT introduces nat-
ural non-determinism for spare activations, by allowing a SPARE gate to choose
freely which spare to pick. A SPARE gate may also decide to not claim any
spares and leave them available for other SPARE gates. In other words, the
following recovery actions can be taken:

248 S. Müller et al.

......

...... ...

(a) Rigid semantics

......

... ...

(b) Spare races

...

...

(c) Spare ordering

Fig. 3. Example configurations of problematic DFTs

Definition 1 (Recovery Action). A recovery action r in an NdDFT T is an
action of the form

– [] (empty action) or
– CLAIM(G,S) (spare gate G claims spare S, where S is a spare of G).

The non-determinism in NdDFT models is then resolved via an object called
Recovery Automaton (RA). The RA defines which recovery actions should be
taken whenever a set of basic events occur. The reason why sets of events as
opposed to single events are used, is due to the ability of FDEPs to cause several
basic events to fail simultaneously. Likewise, in order to react to the simultaneous
occurrence of basic events, the RA may need to perform not just a single recovery
action, but a sequence of recovery actions.

To introduce the formal notion of the RA we formalize the above auxiliary
concepts as follows: For that, we denote the set of all recovery actions possible
in an NdDFT T by R(T). Moreover, this definition is extended to the set of
recovery action sequences through RS (T) := (R(T)\{[]})∗. For recovery action
sequences, the empty action is ignored and considered as the empty word ε. The
∗ here denotes the usual Kleene closure. Similarly, we denote the set of all non-
empty subsets of basic events of an NdDFT T by BES (T). We now introduce
the RA on a formal level.

Definition 2 (Recovery Automaton). A Recovery Automaton (RA) RT =
(Q, δ, q0) of an NdDFT T is an automaton where

– Q is a finite set of states,
– q0 ∈ Q is the initial state, and
– δ : Q×BES (T) → Q×RS (T) is a deterministic transition function that maps

the current state and an observed set of faults to the successor state and a
recovery action sequence.

To illustrate the interaction between RA and NdDFT, we give a simple exam-
ple in Fig. 4. The system has a cold redundant spare and according to the RA,
the redundancy is activated upon failure of the primary unit.

A Modular Approach to Non-deterministic Dynamic Fault Trees 249

SPARE

RedundancyPrimary

b1 b2

(a) NdDFT

q0start q1 q2
{b1} : CLAIM(SPARE,Redundancy) {b2} :

(b) Recovery automaton

Fig. 4. Example of (a) NdDFT and (b) RA

3.3 Synthesizing Recovery Strategies

We sketch the key steps for recovery automaton synthesis. Further details are
available in [14]. Initially, the algorithm converts an NdDFT model into a
so-called Markov Automaton (MA) [6]. An MA is a transition system with
continuous-time, non-deterministic, and probabilistic transitions. The MA con-
tains all possible decisions on spare activations.

The transformation of an NdDFT into an MA is obtained by adapting tradi-
tional state-space generation algorithms for transforming DFTs to Continuous-
Time Markov Chains (CTMCs). The base algorithm adapted here is given in [4].
The adapted algorithm operates in the following manner:

– Each state tracks a history of occurred basic event sets (B1, B2, . . . , Bn) and
a mapping from spare gates to the currently claimed spares.

– The algorithm starts with the initial state denoted by ().
– BEs which are activated or have a dormant failure rate > 0 are considered as

enabled events. Enabled events are used to compute the Markovian successors
of a state. The history of the successor state is extended accordingly.

– The basic event set is obtained by taking a failing enabled event and comput-
ing the transitive closure according to FDEPs.

– Markovian transitions are labeled by the failure rate of the failing BE.
– All transitions that would lead to a state implying the top-level event are

instead redirected to a special FAIL state.
– For each Markovian successor, non-deterministic successors are then com-

puted, each of them corresponding to an enabled recovery action sequence.

The optimal recovery strategy, represented by an RA, can then be obtained
by optimizing the scheduling of the generated MA with respect to an objective
metric. The RA is then further reduced using both common state-space reduc-
tion methods based on trace equivalence and techniques exploiting the domain
knowledge about the occurrence of faults [15]. Finally, by performing model
checking queries on the Markov Chain (MC) obtained from the RA, enriched
with the corresponding failure rates of the NdDFT, the desired RAMS met-
rics can be computed. A summary of the workflow and simple examples of all
involved semantic objects can be found in Fig. 5.

The metrics computed from the MC may be the optimization objective, but
might also be any other metric of interest. The RA ensures that a consistent

250 S. Müller et al.

NdDFT
System

SparePrimary

b1 b2

Markov automaton

FAIL
{b1} : λ []

CLAIM(System, Spare)

{b2} : μ

Recovery automaton

q0start q1

{b1} : CLAIM(System,Spare)

Reduced Recovery automaton
q0start {b1} : CLAIM(System,Spare)

Markov chain

FAIL
λ μ

RAMS metrics

Fig. 5. Transformation road map

recovery strategy is applied for all possible queries. Relevant metrics of interest
are for example:

– Reliability After Time t, which describes the probability that a system is
still functional after a time span t.

– Mean Time To Failure (MTTF), which describes the expected time span
that will pass until the system-level failure occurs.

The concrete metric itself is interchangeable. However, in this work, we focus
on optimizing with regard to MTTF. This gives the advantage of dropping the
time parameter t. For the MA, maximizing the MTTF corresponds to maximiz-
ing the expected long-term reachability property of the FAIL state.

4 Modular Synthesis of Recovery Automata

The Markovian state space generated from a fault tree can be massive. In
general, its size can grow exponentially with the number of nodes in a fault
tree. The problem of an exponentially increasing state space is commonly
known as the state-space explosion problem. In conventional dynamic fault trees,
the blow-up can be attributed mostly to the interleaving occurrence of basic
events. In the case of non-deterministic DFTs, the state-space explosion prob-
lem gains an additional dimension: The non-determinism caused by the selection
of an appropriate recovery action generates an additional source of exponential
blow-up.

Ensuring scalability while synthesizing recovery strategies for large fault trees
with hundreds of basic events is nearly impossible using the previous, naive
workflow. In the following, we consider how existing modular approaches for
deterministic DFTs can be leveraged to solve the synthesis problem.

4.1 Modular Workflow

To tackle the state-space explosion problem for calculating RAMS metrics on
deterministic DFTs, previous works have considered employing modularization

A Modular Approach to Non-deterministic Dynamic Fault Trees 251

techniques. These primarily involve detecting independent sub-trees in a fault
tree – referred to as modules –, evaluating the metrics on the individual modules,
and then composing them into the total metric for the original fault tree. For
example, the total reliability after a certain time span for two modules connected
via an AND gate can be obtained by means of multiplication.

Commonly, this approach faces a significant issue: Not all metrics can be
computed in a compositional manner, but instead require the full state space
for computation. In particular, highly interesting metrics such as the MTTF are
not compositional [19]. However, in the context of the recovery strategy synthesis
problem, the problem of compositionality changes. Even though the metric to
be optimized may not be compositional, to determine the recovery automaton it
is fortunately not necessary to compute the actual metric for the complete tree.
Instead, the objects that require composition are the already optimized recovery
automata. Automata composition in turn is a common problem that can be
solved using standard techniques. We therefore exploit a two-stage approach
by first synthesizing recovery automata, and then employing them during the
computation of the actual metrics. In this manner, the non-determinism can be
resolved modularly during the synthesis step. In greater detail, we apply the
following approach:

1. Modularization: determine the modules in the fault tree.
2. Trimming: discard modules without non-determinism.
3. Synthesis: compute the optimal RA for each module, and reduce it.
4. Composition: assemble the overall recovery automaton from the modular RA.

As noted previously, basic events are a major driver for exponential blow-up.
Therefore, events that do not affect the resolution of the non-determinism are
taken out of the equation. Finally, as the non-determinism has already been
resolved before the evaluation step, this particular source of exponential blow-
up is absent during the computation of the metrics. Trimmed modules are only
discarded for the purpose of the RA synthesis. This ensures that unnecessary
information is safely removed, but properly considered during the metrics com-
putation. The new workflow incorporating modularization is visualized in Fig. 6.

4.2 Modularization

We base our modularization approach on the pre-existing algorithm given in [5].
It applies a depth-first search on the fault tree, traversing all nodes while keeping
track of the first and last visiting time of each node. These visiting times are
then used to identify the modules using the following criterion: Given a node
which is suspected of being the root of a module, if its descendants’ visit dates –
both first and last – all lie within the first and last visit dates of that node, then
the node and all of its descendants form a module. In addition to this basic rule,
further restrictions have to be applied to obtain the desired compositionality
property for the recovery automata.

252 S. Müller et al.

NdDFT

Module1

Modulei

Modulen

Discarded

MA1

MAn

RA1

RAn

Reduced RA1

Reduced RAn

RA

MC Reliability Measures

Fig. 6. Transformation road map with modularization

There are two special cases which have to be considered: SPARE gates and
all types of priority gates. Priority gates are road blockers to the desired com-
positionality property, as they may change the optimization direction. Consider
for example a POR gate. In the case of the first input being a SPARE gate,
the optimal strategy for maximizing the MTTF would also be to maximize the
MTTF of the SPARE gate. In other words, claiming its available spares is the
best course of action. On the other hand, were a SPARE gate the second input
to a POR gate, then suddenly this simple relationship changes: Now minimizing
the MTTF of the SPARE gate will lead to a scenario where the POR gate is
more inclined to become fail-safe. The two scenarios are visualized in Fig. 7.

Therefore, given recovery automata for two modules connected by a POR
node, we cannot obtain the overall recovery automaton by means of composition.
In addition to priority gates, SPARE gates also prohibit further modularization
of their sub-trees. Due to the semantic definition of a SPARE gate, any basic
event contained in a sub-tree may trigger a recovery action, and thus requires
a representation within the Markovian state space. Bundling these observations,
we obtain the following restrictions of the modularization rules:

– A SPARE gate that is a descendant of a priority gate cannot be the root of
a module.

– A node that has a SPARE gate as a descendant and that is a descendant of
a priority gate cannot be the root of a module.

– A descendant of a SPARE gate cannot be the root of a module.

Finally, an example application of the algorithm with the additional rules is
given in Fig. 8. The algorithm proceeds in a leftmost order. Each node is labeled
by the first and last visiting time, and the computed modules are indicated by
dotted boxes.

A Modular Approach to Non-deterministic Dynamic Fault Trees 253

POR

CSPARE

BA

(a) SPARE gate first

POR

SPARE

BA

C

(b) SPARE gate second

Fig. 7. Non-compositionality of priority gates as they change optimization direction.

System

POR

SPARE

FE

D

OR

AND2

C

AND1

BA

first visit: 0
last visit: 44

first visit: 1
last visit: 43

first visit: 2
last visit: 25

first visit: 3
last visit: 24

first visit: 4
last visit: 13

first visit: 5
last visit: 12

first visit: 6
last visit: 8

first visit: 7
last visit: 7

first visit: 9
last visit: 18

first visit: 10
last visit: 17

first visit: 14
last visit: 23

first visit: 15
last visit: 22

first visit: 19
last visit: 21

first visit: 20
last visit: 20

first visit: 26
last visit: 42

first visit: 27
last visit: 41

first visit: 28
last visit: 30

first visit: 29
last visit: 29

first visit: 31
last visit: 40

first visit: 32
last visit: 39

first visit: 33
last visit: 35

first visit: 34
last visit: 34

first visit: 36
last visit: 38

first visit: 37
last visit: 37

Fig. 8. Example application of the modularization algorithm

5 Case Studies

The proposed non-deterministic semantics and the modular workflow have been
implemented within our application Virtual Satellite 4 FDIR (VirSat FDIR) [13].
Virtual Satellite 4 is an Eclipse-based modeling framework intended for Model-
Based Systems Engineering of spacecraft [10]. VirSat FDIR is an application
employing the framework to provide capabilities for modeling FDIR.

The FFORT benchmark set introduced in [17] was used as a source of fault
tree benchmarks to evaluate our proposed techniques. FFORT is an online fault
tree database with fault trees collected from scientific literature for the primary
purpose of benchmarking. From the FFORT benchmark set, we have selected
fault trees which contain at least one SPARE gate but do not employ the authors’
custom fault tree extension of inspection modules (IM). Therefore, we can guar-
antee that all experiments contain some non-determinism. The following fault

254 S. Müller et al.

Table 1. Summary of benchmark results

Modularization Solved Timeouts OOMs solveTime [s]

No 22/156 10 124 1429

Yes 142/156 0 14 292

tree families from the FFORT benchmark fulfilled the selection criteria. (The
graphic symbols refer to the evaluation charts shown in Fig. 9 and 10.)

– Active Heat Rejection System (AHRS). The AHRS is made up of
thermal rejection units of which only one is needed for the system to function.

– Cardiac Assist System (CAS). The CAS models a hypothetical cardiac
assist system with redundant CPUs, motors, and pumps.

– Electro-Mechanical Actuator (EM). The model focuses on common-
cause failures in an electro-mechanical actuator.

– Hypothetical Example Computer System (HECS). The HECS fault
trees model computer systems including their processors, memory modules,
buses, consoles, operators, and software.

– Hypothetical Example Multi-Phase System (HEMPS). The
HEMPS model is a demonstrator of a system designed for a multi-phase
mission.

– Mission Avionics System (MAS). The MAS models represent mission-
and safety-critical systems with high redundancy. Components include hard-
ware, software and vehicle control subsystems, and system management.

– Multiprocessor Computing System (MCS). The MCS model comput-
ers with power supplies, memory modules, hard disks, and connecting buses.
The benchmarks have been enriched with instances from [19].

– Nuclear Power Plant Water Pumping System (NPPW). The model
represents a nuclear power plant system.

– Railway Crossing (RC). The RC fault tree collection models level rail-
way crossings with sensors, motors, and controllers. The models come in two
variations (sc and hc), representing the controller being a single basic event
or hypothetical example computer system, respectively.

– Vehicle Guidance System (VGS). The VGS models are industrial case
studies dealing with variants of safety concepts for vehicle guidance systems.

The benchmarks were carried out with a Intel i7-6600U CPU, 4 GB of RAM,
and a timeout of 600 s. The software, the experiment setup, all experiments, and
all results can be found at [12]. The number of solved instances, the number of
timeouts, the number of out-of-memories (OOMs), and the total solving time
were logged. A summary of the results is given in Table 1.

As hypothesized in the beginning of the paper, not applying modularization
leads to massive state-space explosion, causing many cases of OOMs. Applying
modularization, on the other hand, yields a major speed-up, enabling us to
synthesize RA for nearly all instances. An interesting observation is also that
the number of timeout events is rather small, compared to the large number of

A Modular Approach to Non-deterministic Dynamic Fault Trees 255

10 0
10 1

10 2
10 3

10 4
10 5

100

101

102

103

104

105

T
O
O
O
M

TO
OOM

With modularization [ms]

W
it
ho

ut
m
od

ul
ar
iz
at
io
n
[m

s]

(a) Modularization vs no modularization

0 100
200

300
400

500
600

700
100

101

102

103

104

105

TO
OOM

#Nodes

ti
m
e
[m

s]

(b) Runtimes with #Nodes

Fig. 9. Time measurements of modularization approach

OOMs. This suggests that there is room for investing more computation time
into further techniques for state-space reduction, and hence also reducing the
memory consumption.

The following charts give a closer look at the results of the experiments.
Figure 9a shows a detailed time comparison between the synthesizer with and
without a modularizer, respectively. How the algorithm scales overall as the total
number of fault-tree nodes increases, is shown in Fig. 9b. The dashed line marks
where both algorithms require the same time. Timeouts and out-of-memory
results have been placed on the outer lines and are labeled with TO and OOM,
respectively.

As described before, two major drivers for state-space explosion are basic
events and SPARE gates. Figure 10a gives a breakdown on how the number of
BEs impact the synthesis. Likewise, Fig. 10b gives the breakdown in reference
to the number of SPARE gates. Modularization is enabled in both cases. The
data shows that the speed-up gained from modularization is overall crucial to
obtain scalability, but also heavily depends on the fault tree family. The families
causing OOMs are primarily MAS and MCS. A closer look into Fig. 9b and
Fig. 10b reveals that these have a relatively small number of nodes, while at the
same time having a relatively large number of SPARE gates.

256 S. Müller et al.

0 50 100
150

200
250

100

101

102

103

104

105

TO
OOM

#Basic Events

ti
m
e
[m

s]

(a) Basic Events

0 5 10 15 20 25 30 35
100

101

102

103

104

105

TO
OOM

#SPARE gates

ti
m
e
[m

s]

(b) Spares

Fig. 10. Time measurement break-down for basic events and SPARE gates

6 Conclusions and Future Work

In this paper, we investigated a modular approach approach to recovery
automata synthesis for non-deterministic DFTs. In order to deal with the increas-
ing complexity due to the semantic extension, modularization approaches were
employed. Both their necessity and effectiveness were demonstrated on case stud-
ies coming from the FFORT benchmark set. However, it was also shown that
the semantics still yield a severe level of state-space explosion, causing many
out-of-memories but only few timeouts.

Further techniques for dealing with larger modules and modules with a high
degree of non-determinism are therefore desirable. In the past, symmetry reduc-
tion techniques have proved useful to combat the state-space explosion problem
in deterministic DFTs [19]. In the future, we hope to investigate how those
approaches can be leveraged to NdDFTs to further improve the efficiency of our
approach.

References

1. Amari, S., Dill, G., Howald, E.: A new approach to solve dynamic fault trees.
In: Annual Reliability and Maintainability Symposium, pp. 374–379. IEEE (2003).
https://doi.org/10.1109/RAMS.2003.1182018

2. Beccuti, M., Franceschinis, G., Codetta-Raiteri, D., Haddad, S.: Computing opti-
mal repair strategies by means of NdRFT modeling and analysis. Comput. J.
57(12), 1870–1892 (2014). https://doi.org/10.1093/comjnl/bxt134

3. Boudali, H., Crouzen, P., Stoelinga, M.: A compositional semantics for dynamic
fault trees in terms of interactive Markov chains. In: Namjoshi, K.S., Yoneda, T.,
Higashino, T., Okamura, Y. (eds.) ATVA 2007. LNCS, vol. 4762, pp. 441–456.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75596-8 31

4. Dugan, J.B., Bavuso, S.J., Boyd, M.A.: Dynamic fault-tree models for fault-
tolerant computer systems. IEEE Trans. Reliab. 41(3), 363–377 (1992). https://
doi.org/10.1109/24.159800

https://doi.org/10.1109/RAMS.2003.1182018
https://doi.org/10.1093/comjnl/bxt134
https://doi.org/10.1007/978-3-540-75596-8_31
https://doi.org/10.1109/24.159800
https://doi.org/10.1109/24.159800

A Modular Approach to Non-deterministic Dynamic Fault Trees 257

5. Dutuit, Y., Rauzy, A.: A linear-time algorithm to find modules of fault trees. IEEE
Trans. Reliab. 45(3), 422–425 (1996). https://doi.org/10.1109/24.537011

6. Guck, D., Hatefi, H., Hermanns, H., Katoen, J.-P., Timmer, M.: Modelling, reduc-
tion and analysis of Markov automata. In: Joshi, K., Siegle, M., Stoelinga, M.,
D’Argenio, P.R. (eds.) QEST 2013. LNCS, vol. 8054, pp. 55–71. Springer, Heidel-
berg (2013). https://doi.org/10.1007/978-3-642-40196-1 5

7. Han, W., Guo, W., Hou, Z.: Research on the method of dynamic fault tree analysis.
In: International Conference on Reliability, Maintainability and Safety, pp. 950–953.
IEEE (2011). https://doi.org/10.1109/ICRMS.2011.5979422

8. International Electrotechnical Commission, Geneva, Switzerland: Fault Tree Anal-
ysis (FTA) (2006)

9. Junges, S., Guck, D., Katoen, J.P., Stoelinga, M.: Uncovering dynamic fault trees.
In: 2016 46th Annual IEEE/IFIP International Conference on Dependable Systems
and Networks (DSN), pp. 299–310. IEEE (2016)

10. Lange, C., Grundmann, J.T., Kretzenbacher, M., Fischer, P.M.: Systematic reuse
and platforming: application examples for enhancing reuse with model-based sys-
tems engineering methods in space systems development. Concurrent Eng. 26(1),
77–92 (2018). https://doi.org/10.1177/1063293X17736358

11. Liu, D., Xiong, I., Li, Z., Iang, P., Zhang, H.: The simplificafion of CUF sequence
SEF analysis for dynamic systems. In: International Conference on Computer
and Automation Engineering, pp. 140–144. IEEE (2010). https://doi.org/10.1109/
ICCAE.2010.5451831

12. Müller, S.: virtualsatellite/VirtualSatellite4-FDIR: Release 4.12.1, October 2020.
https://doi.org/10.5281/zenodo.4075576

13. Müller, S., Gerndt, A.: Towards a conceptual data model for fault detection, isola-
tion and recovery in Virtual Satellite. In: SECESA 2018. European Space Agency
(2018). https://elib.dlr.de/122061/

14. Müller, S., Gerndt, A., Noll, T.: Synthesizing FDIR recovery strategies from non-
deterministic dynamic fault trees. In: 2017 AIAA SPACE Forum, vol. AIAA 2017–
5163. American Institute of Aeronautics and Astronautics (2017). https://doi.org/
10.2514/6.2017-5163

15. Müller, S., Mikaelyan, L., Gerndt, A., Noll, T.: Synthesizing and optimizing FDIR
recovery strategies from fault trees. Sci. Comput. Program. 196, 102478 (2020).
https://doi.org/10.1016/j.scico.2020.102478

16. Pullum, L., Dugan, J.: Fault tree models for the analysis of complex computer-
based systems. In: Annual Reliability and Maintainability Symposium, pp. 200–207.
IEEE (1996). https://doi.org/10.1109/RAMS.1996.500663

17. Ruijters, E., et al.: FFORT: a benchmark suite for fault tree analysis. In: 29th
European Safety and Reliability Conference, pp. 878–885. Singapore Research Pub-
lishing (2019). https://doi.org/10.3850/978-981-11-2724-3 0641-cd

18. Ruijters, E., Guck, D., Drolenga, P., Stoelinga, M.: Fault maintenance trees: reli-
ability centered maintenance via statistical model checking. In: 2016 Annual Reli-
ability and Maintainability Symposium (RAMS), pp. 1–6. IEEE (2016). https://
doi.org/10.1109/RAMS.2016.7447986

19. Volk, M., Junges, S., Katoen, J.-P.: Advancing dynamic fault tree analysis - get suc-
cinct state spaces fast and synthesise failure rates. In: Skavhaug, A., Guiochet, J.,
Bitsch, F. (eds.) SAFECOMP 2016. LNCS, vol. 9922, pp. 253–265. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-45477-1 20

20. Yevkin, O.: An improved modular approach for dynamic fault tree analysis. In:
Annual Reliability and Maintainability Symposium, pp. 1–5. IEEE (2011). https://
doi.org/10.1109/RAMS.2011.5754437

https://doi.org/10.1109/24.537011
https://doi.org/10.1007/978-3-642-40196-1_5
https://doi.org/10.1109/ICRMS.2011.5979422
https://doi.org/10.1177/1063293X17736358
https://doi.org/10.1109/ICCAE.2010.5451831
https://doi.org/10.1109/ICCAE.2010.5451831
https://doi.org/10.5281/zenodo.4075576
https://elib.dlr.de/122061/
https://doi.org/10.2514/6.2017-5163
https://doi.org/10.2514/6.2017-5163
https://doi.org/10.1016/j.scico.2020.102478
https://doi.org/10.1109/RAMS.1996.500663
https://doi.org/10.3850/978-981-11-2724-3_0641-cd
https://doi.org/10.1109/RAMS.2016.7447986
https://doi.org/10.1109/RAMS.2016.7447986
https://doi.org/10.1007/978-3-319-45477-1_20
https://doi.org/10.1109/RAMS.2011.5754437
https://doi.org/10.1109/RAMS.2011.5754437

Composition of Fault Forests

Danielle Stewart1(B), Michael Whalen1, Mats Heimdahl1, Jing (Janet) Liu2,
and Darren Cofer2

1 University of Minnesota, Minneapolis, MN, USA
{dkstewar,mwwhalen,heimdahl}@umn.edu

2 Collins Aerospace – Applied Research & Technology, Cedar Rapids, IA, USA
{jing.liu,darren.cofer}@collins.com

Abstract. Safety analysis is used to ensure that critical systems oper-
ate within some level of safety when failures are present. As critical sys-
tems become more dependent on software components, it becomes more
challenging for safety analysts to comprehensively enumerate all possi-
ble failure causation paths. Any automated analyses should be sound to
sufficiently prove that the system operates within the designated level
of safety. This paper presents a compositional approach to the genera-
tion of fault forests (sets of fault trees) and minimal cut sets. We use a
behavioral fault model to explore how errors may lead to a failure con-
dition. The analysis is performed per layer of the architecture and the
results are automatically composed. A complete formalization is given.
We implement this by leveraging minimal inductive validity cores pro-
duced by an infinite state model checker. This research provides a sound
alternative to a monolithic framework. This enables safety analysts to
get a comprehensive enumeration of all applicable fault combinations
using a compositional approach while generating artifacts required for
certification.

1 Introduction

Risk and safety analyses are important activities used to ensure that critical
systems operate in an expected way. From nuclear power plants and airplanes to
heart monitors and automobiles, critical systems are ubiquitous in our society.
These systems are required to operate safely under nominal and faulty condi-
tions. Proving that the system operates within some level of safety when failures
are present is an important aspect of critical systems development and falls
under the discipline of safety analysis. Safety analysis produces various safety
related artifacts that are used during development and certification of critical
systems [30]. Examples include minimal cut sets – each set represents the min-
imal set of faults that must all occur in order to violate a safety property and
fault trees – the evaluation that determines all credible failure combinations
which could cause an undesired top level hazard event. The fault tree can be
transformed to an equivalent Boolean formula whose literals appear in the min-
imal cut sets. Since the introduction of minimal cut sets in the field of safety
c© Springer Nature Switzerland AG 2021
I. Habli et al. (Eds.): SAFECOMP 2021, LNCS 12852, pp. 258–275, 2021.
https://doi.org/10.1007/978-3-030-83903-1_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-83903-1_17&domain=pdf
https://doi.org/10.1007/978-3-030-83903-1_17

Composition of Fault Forests 259

analysis, much research has been performed to address the generation of these
sets and associated formulae [15,29,35]. As critical systems get larger, more min-
imal cut sets are possible with increasing cardinality. In recent years, symbolic
model checking has been used to address scaling the analysis of systems with
millions of minimal cut sets [4,10,31].

The state space explosion is a challenge when performing formal verifica-
tion on industrial sized systems. This problem can arise from combining parallel
processes together and attempting to reason monolithically over them. Compo-
sitional reasoning takes advantage of the hierarchical organizaton of a system
model. A compositional approach verifies each component of the system in iso-
lation and allows global properties to be inferred about the entire system [3].
The assume-guarantee paradigm is commonly used in compositional reasoning
where the assumed behavior of the environment implies the guaranteed behavior
of the component [13].

Using an assume-guarantee reasoning framework, we extend the definition of
the nomimal transition system to allow for unconstrained guarantees. We use
this idea to reason about all possible violations of a safety property per layer of
analysis and then compose the results.

After we provide the formalization, we describe the implementation in the
OSATE tool for the Architecture Analysis and Design Lanugage (AADL) [16].
AADL has two annexes that are of interest to us: the Assume-Guarantee Reason-
ing Environment (AGREE) [13] and the safety annex [32]. AGREE provides the
assume-guarantee reasoning required for the transition system extension, and
the safety annex allows us to define faults on component outputs. To implement
the formalization, we look to recent work in formal verification. Ghassabani et al.
developed an algorithm that traces a safety property to a minimal set of model
elements necessary for proof; this is called the all minimal inductive validity core
algorithm (All MIVCs) [19,20]. Inductive validity cores produce the minimal sets
of model elements necessary to prove a property. Each set contains the behav-
ioral contracts – the requirement specifications of components – used in a proof.
We collect all MIVCs per layer to generate the minimal cut sets and thus the
fault trees to be composed.

This paper presents a compositional approach to generating fault forests (sets
of fault trees) and associated minimal cut sets, allowing us to reason uniformly
about faults in various types of system components and their impact on system
properties. The main contributions of this research include the formalization of
the composition of fault forests and its implementation, enabling safety ana-
lysts to get a comprehensive enumeration of all applicable fault combinations.
The resulting fault trees correspond with the system architecture and reflect the
interface specifications developed in the system under consideration. Our objec-
tive is to provide safety engineers with verification tools so that they do not lose
sight of the fault forest for the trees.

The organization of the paper is as follows. Section 2 describes a running
example, Sect. 3 outlines the formalization of this approach. The implementation
is discussed in Sect. 4 and related work follows in Sect. 5. The paper ends with
a conclusion and discussion of future work.

260 D. Stewart et al.

2 Running Example

In a typical Pressurized Water Reactor (PWR), the core inside of the reactor
vessel produces heat. Pressurized water in the primary coolant loop carries the
heat to the steam generator. Within the steam generator, heat from the primary
coolant loop vaporizes the water in a secondary loop, producing steam. The
steamline directs the steam to the main turbine causing it to turn the turbine
generator, which in turn produces electricity. There are a few important factors
that must be considered during safety assessment and system design. An unsafe
climb in temperature can cause high pressure and hence pipe rupture, and high
levels of radiation could indicate a leak of primary coolant. The following sensor
system can be thought of as a simplified version of a subsystem within a PWR
that monitors these factors. Each subsystem contain three sensors that monitor
pressure, temperature, and radiation. If any of these conditions are too high, a
shut down command is sent from the sensors to the parent components. The
temperature, pressure, and radiation sensor subsystems each contain three asso-
ciated sensors for redundancy. Each sensor reports the associated environmental
condition to a majority voter component. If the majority of the sensors reports
high, a shut down command is sent to the subsystem. If any subsystem reports
a shut down command, the top level system will shut down. Pressure, radiation,
and temperature all have associated thresholds for high values which we refer to
as Tp, Tr, and Tt respectively. The safety properties Pi of interest in this system
is: if an environmental threshold is surpassed, then we shut down the system.
The specifications of these properties are shown at the top of Fig. 1.

For reference throughout this paper, we provide Fig. 1 which shows the guar-
antees and faults of interest for this running example. We do not show all guar-
antees and assumptions that are in the model, but only the ones of interest for
the illustration.

Fig. 1. Sensor system nominal and fault model details

Composition of Fault Forests 261

3 Formalization

Given a state space U , a transition system (I, T) consists of an initial state
predicate I : U → bool and a transition step predicate T : U × U → bool . We
define the notion of reachability for (I, T) as the smallest predicate R : U → bool
which satisfies the following formulas:

∀u ∈ U. I(u) ⇒ R(u)
∀u, u′ ∈ U. R(u) ∧ T (u, u′) ⇒ R(u′)

A safety property P : U → bool is a state predicate. A safety property P holds on
a transition system (I, T) if it holds on all reachable states, i.e., ∀u. R(u) ⇒ P (u),
written as R ⇒ P for short. When this is the case, we write (I, T) � P . We
assume the transition relation has the structure of a top level conjunction. Given
T (u, u′) = T1(u, u′) ∧ · · · ∧ Tn(u, u′) we will write T = ∧i=1..nTi for short. By
further abuse of notation, T is identified with the set of its top-level conjuncts
∧i=1..nTi. Thus, Ti ∈ T means that Ti is a top-level conjunct of T , and S ⊆ T
means all top level conjuncts of S are top-level conjuncts of T .

The set of all nominal guarantees of the system G consists of conjunctive
constraints g ∈ G. Given no faults (i.e., nominal system) and a transition rela-
tion T consisting of conjunctive constraints Ti, each g is one of the transition
constraints Ti where:

T = g1 ∧ g2 ∧ · · · ∧ gn (1)

We consider an arbitrary layer of analysis of the architecture and assume
the property holds of the nominal relation (I, T) � P . Let the set of all faults
in the system be denoted as F . A fault f ∈ F is a modification of the nominal
constraint imposed by a guarantee. Without loss of generality, we associate a
single fault and an associated fault probability with a guarantee. Each fault fi
is associated with an activation literal, afi , that determines whether the fault
is active or inactive. We extend the transition system so that we can view the
system behavior in the presence of faults—or equivalently the absence of nominal
constraints. To consider the system under the presence of faults, consider a set
GF of modified guarantees in the presence of faults and let a mapping be defined
from activation literals afi ∈ AF to these modified guarantees gfi ∈ GF .

gfi = if afi then fielse gi

The transition system is composed of the set of modified guarantees GF and
a set of conjunctions assigning each of the activation literals afi ∈ AF to false:

T ′ = gf1 ∧ gf2 ∧ · · · ∧ gfn ∧ ¬af1 ∧ ¬af2 ∧ · · · ∧ ¬afn (2)

Theorem 1. If (I, T) � P for T defined in Eq. 1, then (I, T ′) � P for T ′ defined
in Eq. 2.

262 D. Stewart et al.

Proof. By the mapping of each constrained activation literal ¬afi to the asso-
ciated guarantee gi and the constraint of the activation literals to be false, the
result is immediate. 	

Consider the elements of T ′ as a set GF ∪ AF , where GF are the poten-
tially faulty guarantees and AF consists of the activation literals that determine
whether a guarantee is faulty. This is a set that is considered by an SMT solver
for satisfiability during the model checking engine procedures.

If the afi ∈ AF defined in T ′ are unconstrained, this allows more behaviors
to the transition system and could cause a violation of P . If so, a counterexample
may be produced. For each counterexample, we can partition AF into two sets
that we call non-faulty variables (NFV) and faulty variables (FV). The set NFV
consists of a set of activation literals that are constrained to be false throughout
the counterexample, and FV contains those that can be non-deterministically
assigned any valuation at some point in the trace. By mapping some of the
variables in AF to false, we know that their associated guarantees in GF are
non-faulty for all considered executions. We define T ′(NFV) as a relaxation of
T ′ (2):

T ′(NFV) = gf1 ∧ gf2 ∧ · · · ∧ gfn ∧
∧

{¬afi |afi ∈ NFV }

The activation literals constrained to be false in T ′(NFV) indicate that their
associated guarantees to be valid. In the remainder of this section, we assume
that all afi ∈ AF are unconstrained and when given a true valuation will lead
to a violation of the associated guarantee. This violation causes the output that
the guarantee constrains to become non-deterministic. The Boolean variables in
FV correspond to Boolean variables in the fault tree.

Definition 1. A fault tree FT is a pair (r,L) where:

r: the root r is a negated desirable property,
L: a Boolean equation whose literals are faulty variables.

All literals af of the Boolean equation L are elements of the set FV . A fault
tree may correspond to a single layer of the system architecture where the root
r is a violated guarantee or a violated safety property depending on the parent
component under analysis. The tree may also describe the relationship between
faults and multiple layers of the system architecture. The root r still corresponds
to a violated guarantee or property, but the structure of the Boolean formula L
will reflect the layers of the system architecture. If r is a violated safety property,
then r ∈ P . If r is a violated guarantee for some lower level parent component,
then r ∈ π, where π is the set of parent component guarantees.

Definition 2. A fault tree FT = (r,L) is valid if and only if a true valuation
for r and for all af ∈ L is satisfiable given the respective transition system
constraints.

Composition of Fault Forests 263

The hierarchy of the fault tree is dependent on the associated Boolean for-
mula. A more intuitive structure is that of disjunctive normal form (DNF) as
seen in both fault trees depicted in Fig. 2, but DNF is not required under our
definition of a fault tree.

Traditionally, a safety property is a property of the system and in the assume-
guarantee reasoning environment is a top level guarantee. In the following for-
malism, each layer of analysis is viewed as distinct from the system hierarchy as
the proof is being constructed, and the properties we wish to prove are guarantees
of a component. We use the notation P to refer to the set of all parent properties
at a given layer of analysis. If the analysis is being performed at the top level,
these are all safety properties of the system. If the analysis is being performed
at an intermediate level, these are all guarantees of the parent component.

A goal of compositional safety analysis is to reflect failures of leaf and inter-
mediate components at the top level. Not all guarantees must be valid to prove
a parent level guarantee. To this end, we wish to make a distinction between all
guarantees of a component and those that are required to prove parent guar-
antees. The subset π of P are the guarantees that must be valid to prove the
guarantees of a parent component. These are the critical guarantees of a compo-
nent. Given that there may be multiple safety properties and multiple interme-
diate level guarantees, we do not compose single fault trees per layer, but rather
forests of trees.

Definition 3. A fault forest FF is a set of fault trees.

Definition 4. A fault forest FF is valid if and only if for all FT ∈ FF, the
fault tree FT is valid as per Definition 2.

The goal of this formalization is to show that the composition of fault forests
results in a valid fault forest. First, we assume we can derive all minimal coun-
terexamples to the proof of a property (or guarantee) at any layer of compo-
sitional assume-guarantee analysis. Then we prove that after composition, the
tree we obtain is a fault tree describing the system in the presence of faults. In
Sect. 4, we discharge the assumption and show how we derive a valid fault forest
for each layer of analysis. Since a fault forest is only valid with respect to the
transition system from whence it came, we will now iteratively extend the model
with each composition step.

Components and Their Composition: To prove each parent component
guarantee πi ∈ π, a certain subset of child guarantees are required to be non-
faulty, i.e., the associated activation literals are given a false valuation. We use
the set NFV to denote the non-faulty variables of the children components that
are required to prove parent guarantees π. These non-faulty variables are used
in the relaxation of T ′ (Eq. 2). This can be stated as (I, T ′(NFV)) � π.

The violation of certain child guarantees may lead to the violation of a parent
guarantee πi. The activation literals of the child are given a true valuation and
are denoted as FV : faulty variables. A set of faulty variables of the children
components contain the activation literals that correspond to leaves of a fault

264 D. Stewart et al.

tree L with the root r = ¬πi for parent guarantee πi. In other words, the fault
tree FTi ∈ FF is associated with a property πi. The non-faulty variables NFV
contain the valid child guarantees that are required to prove πi, and the fault
tree FTi reflects the child guarantee violations that may lead to the violation of
πi.

Definition 5. A component is the tuple Comp(M,FF ,NFV , π) where:

• M : the model consisting of the set of all children properties Pc extended with
non-deterministic faults: gfi ∈ Pc where gfi = if afi then fi else gi,

• FF: the ordered set of fault trees for this component,
• NFV : the set of non-faulty variables, NFV ⊆ Pc,
• π: the ordered set of properties π ⊆ P such that (I, T ′(NFV)) � π, i.e., all

properties π hold if the variables in NFV are given a true valuation.

and FT i ∈ FF corresponds to πi ∈ π for each of the i properties: the root of FTi
is ¬πi.

Given the definition of a component, we now discuss what it means to com-
pose components. Each layer of composition moves iteratively closer to a mono-
lithic model by the enlargement of each set described in a component. To begin
this iterative process, we define the composition of fault forests. To show that
the composition of fault trees results in a valid fault tree, let φ be a function
φ : B × B → B for Boolean equations B. We use this mapping to define the
composition of parent component fault tree FTp and child component fault tree
FTc , where FT c = (rc,Lc) and FT p = (rp,Lp).

FT c ◦ FT p = φ(FT c,FT p) =

{
(rp,Lp(rc,Lc)) rc ∈ Lp

(rp,Lp) rc ∈ Lp

(3)

where Lp(rc,Lc) is the replacement of afrc in Lp with (rc,Lc). Intuitively,
each of the violated guarantees has an associated activation literal. If an activa-
tion literal is found in the parent leaf equation Lp, replace that activation literal
(afrc) with the associated violated child guarantee (rc).

Let n be the number of properties for some parent component p and let
m be the number of properties for some child component c. Then the parent
fault forest FF p is a mapping FF p : S1 → B for S1 = {1, 2, . . . ,m} and the
set of Boolean equations B and FF c : S2 → B for S2 = {1, 2, . . . n}. And
let φF be a function φF : seq(B) × seq(B) → seq(B) for finite sequences of
Boolean equations seq(B). We use this function to define the composition of
parent and child component fault forests FF p = {(rp1,Lp1), . . . , (rpm,Lpm)}
and FF c = {(rc1,Lc1), . . . , (rcn,Lcn)}. φF is a mapping such that for all i ∈ S1

and for all j ∈ S2:

FF c ◦ FF p = φF (FF c,FF p) =

{
(rpi,Lpi(rcj ,Lcj)) rcj ∈ Lpi

(rpi,Lpi) rcj ∈ Lpi

(4)

where Lpi(rcj ,Lcj) is the replacement of afrcj in Lpi with (rcj ,Lcj).

Composition of Fault Forests 265

Fig. 2. Sensor system composition of fault trees

Each literal in the formula Lp is a fault activation literal afi . If afi has its
associated guarantee gfi in the set of child roots rc, then the mapping φF will
extend afi in Lp with the leaf formula of the child root gfi . The resulting fault
forest is a sequence of fault trees FF = {(rpk,Lk) : k = 1, . . . , m}. The roots of
the resulting forest are the same roots as the parent forest while the leaf formulae
may change based on replacement.

We return to the sensor system example to illustrate this mapping. Graphi-
cally, this is represented in Fig. 2. The top level (parent) component is defined as:
Compp(Mp,FF p,NFV p, πp) and FF p = {(¬P, af p∨af t∨af r)} where each acti-
vation literal is associated with the unconstrained guarantees Gp, Gt, and Gr.
The child layer has a fault forest consisting of three fault trees, one for each sub-
system. The pressure subsystem fault tree is FT p = (¬Gp, (af p1∧af p2)∨(af p1∧
af p3) ∨ (af p2 ∧ af p3). The leaf formulae for each subsystem tree corresponds to
pairwise combinations of active sensor faults. We now show the composition of
the pressure subsystem child and top level parent fault trees.

The mapping φF iterates through each tree in the parent forest – in this case,
we have only one. Then for each parent tree it iterates through the Boolean
literals in L. If there is a match between a child root and a parent leaf, the
replacement is made. We represent the unconstrained (violated) guarantee as
¬Gp and it is associated with the fault activation literal af p. Thus, af p will be
extended with {¬Gp, (af p1∧af p2)∨(af p1∧af p3)∨(af p2∧af p3)}. This extension
is done for each leaf formula in Lp from the parent fault forest. The end result
of the replacement is easy to see in Fig. 2.

We have provided the foundational definitions necessary to discuss what it
means to compose components. The composition of child component Compc and
parent component Compp is defined as:

266 D. Stewart et al.

Definition 6. Compc(Mc,FF c,NFV c, πc) ◦ Compp(Mp,FT p,NFV p, πp)
= Comp◦(M ′,FF ′,NFV ′, π′) where:

• M ′ = Mc∪Mp is the iterative enlargement of the model by combining children
guarantees with parent guarantees,

• FF c ◦ FF p is the composed fault forest,
• NFV ′ = NFV c ∪ NFV p is the set of non-faulty variables,
• π′ = πc ∪ πp are valid properties such that (I, T ′(NFV ′)) � π′.

The enlargement of the model, M ′, iteratively flattens the composed layers
by taking the union of children guarantees and parent guarantees. The fault
forests are composed into a set of fault trees describing the enlarged model.
The non-faulty variables from child and parent are combined into a set NFV ′

such that (I, T ′(NFV ′)) � π′. Given that in child and parent components, the
properties π can be derived from the non-faulty variables, we show that this
relationship holds after composition. To state (I, T ′(NFV)) � π, we use the
shorthand NFV � π.

Theorem 2. If NFV c � πc and NFV p � πp, then NFV ′ � π′

Proof. Assume antecedent. Let p′ ∈ π′. If p′ ∈ πc then NFV c � p′ and likewise
if p′ ∈ πp, then NFV p � p′. In either case, NFV c ∪ NFV p = NFV ′ � π′. 	

Composition of Fault Trees and Forests: We work under the monotonicity
assumption, commonly adopted in safety analysis, that an additional fault cannot
cancel the effect of existing faults. Without this assumption, we cannot show that
the resulting fault tree is valid. Given Definition 2, we show that the composition
of two fault trees results in a valid fault tree. We will then extend this to show
that the composition of two fault forests results in a valid fault forest.

Lemma 1. If FT c and FT p are valid fault trees, then their composition
φ(FT c,FT p) is also a valid fault tree.

Proof. Assume the antecedent. Then (rc,Lc) is satisfiable with regard to the
child component transition system and all af ∈ Lc and rc are given true valua-
tions.

Case 1: If the child root ¬gi does not have an associated afi ∈ Lp, then
φ(FT c,FT p) = FT p and the inclusion of the additional constraints from the
child transition system in Mc does not negate the effects of the faults in FTp.
Thus, it is a valid fault tree.

Case 2: If the child root ¬gi has an associated afi ∈ Lp, then afi has a
true valuation. Given the mapping defined between guarantees and activation
literals, replacement of afi ∈ Lp with ¬gi preserves satisfiability. Furthermore,
by the monotonicity assumption, the addition of more constraints (af ∈ Lc) to
the Boolean formula does not change satisfiability in the extended transition
system.

In all cases, φ(FT c,FT p) is a valid fault tree. 	

Composition of Fault Forests 267

Lemma 2. If FFc and FFp are valid fault forests, then their composition
φ(FFc ,FFp) is also a valid fault forest.

Proof. Assume the antecedent. Then for all FTj ∈ FFp and FTi ∈ FFc , FTi
and FTj are valid fault trees as per Definition 4. For each iteration defined in
the mapping φF , apply Lemma 1 and the monotonicity assumption. 	

We have shown that a single layer of composition produces valid fault forests.
To perform this analysis across n layers of architecture we use induction to show
that the resulting fault forest is valid. The notation φn

F indicates the iterated
function φF which is a successive application of φF with itself n times. Assume
the fault forest FF0 is obtained at the leaf level of the architecture.

Theorem 3. If φn
F (FFn−1 ,FFn) is a valid fault forest, then φn+1(FFn ,FFn+1)

is a valid fault forest.

Proof. Base case: Each fault forest per layer is valid by construction. By
Lemma 2, φF (FF0 ,FF1) is a valid fault forest.

Inductive assumption: Assume φn
F (FFn−1 ,FFn) is a valid fault forest.

φn+1
F (FFn ,FFn+1) = ((FF0 ◦ FF1) ◦ FF 2) ◦ · · · ◦ FFn) ◦ FFn+1))

= φn
F (FFn−1 ,FFn) ◦ FFn+1

By inductive assumption and Lemma 2, φn+1
F (FFn ,FFn+1) is a valid fault

forest. 	

After applying these techniques to the pressurized water reactor example,

the resulting fault forest consists of one tree associated with the single top level
safety hazard as shown in Fig. 3.

In this section, we have formalized the idea that fault trees (and forests) can
be composed without losing the validity of each composed tree. We proved that
this can be performed iteratively across an arbitrary number of layers.

Fig. 3. Sensor system fault forest

268 D. Stewart et al.

4 Implementation

To implement the formalism described in Sect. 3, we must compute minimal cut
sets per layer of analysis, transform them into their related Boolean formula,
and compose them. As previously described, Ghassabani et al. developed the
all minimal inductive validity core algorithm (All MIVCs) [19,20]. The All MIVCs

algorithm gives the minimal set of contracts required for proof of a safety prop-
erty. If all of these sets are obtained, we have insight into every proof for the
property. Thus, if we violate at least one contract from every MIVC set, we have
in essence “broken” every proof. The idea is that the hitting sets of all MIVCs
produces the minimal cut sets.

4.1 Formal Background

JKind is an open-source industrial infinite-state inductive model checker for
safety properties [17]. Models and properties in JKind are specified in Lustre [22],
a synchronous dataflow language, using the theories of linear real and integer
arithmetic. JKind uses SMT-solvers to prove and falsify multiple properties in
parallel.

Each step of induction is sent to an SMT (Satisfiabilty Modulo Theory)-
solver to check for satisfiability, i.e. there exists a total truth assignment to a
given formula that evaluates to true. If there does not exist such an assignment,
the formula is considered unsatisfiable. A k -induction model checker utilizes par-
allel SMT-solving engines at each induction step to glean information about the
proof of a safety property. The transition formula is translated into clauses such
that satisfiability is preserved. Expression of the base and induction steps of a
temporal induction proof as SAT problems is straightforward and is shown below
for step k:

I(s0) ∧ T (s0, s1) ∧ · · · ∧ T (sk−1, sk) ∧ ¬P (sk)

When proving correctness it is shown that the formulas are unsatisfiable, i.e.,
the property P is provable. The idea behind finding an inductive validity core
(IVC) for a given property P is based on inductive proof methods used in SMT-
based model checking, such as k -induction and IC3/PDR [23]. Generally, an IVC
computation technique aims to determine, for any subset S ⊆ T , whether P is
provable by S . A minimal subset that satisfies P is seen as a minimal proof
explanation and called a minimal inductive validity core.

Definition 7. Inductive Validity Core (IVC) [19]: S ⊆ T for (I, T) � P is an
Inductive Validity Core, denoted by IVC (P ,S), iff (I ,S) � P .

Definition 8. Minimal Inductive Validity Core (MIVC) [20]: S ⊆ T is a mini-
mal Inductive Validity Core, denoted by MIVC (P ,S), iff IVC (P ,S) ∧ ∀Ti ∈ S.
(I, S \ {Ti}) � P .

Composition of Fault Forests 269

The constraint system consists of the constrained formulas of the transition
system and the negation of the property. The All MIVCs algorithm collects all
minimal unsatisfiable subsets (MUSs) of a constraint system generated from a
transition system at each induction step [2,20].

Definition 9. A Minimal Unsatisfiable Subset (MUS) M of a constraint system
C is a set M ⊆ C such that M is unsatisfiable and ∀c ∈ M : M\{c} is satisfiable.

The MUSs are the minimal explanation of the infeasibility of this constraint
system; equivalently, these are the minimal sets of model elements necessary for
proof of the safety property.

Returning to our running example, this can be illustrated by the following.
Given the constraint system C = {Gp, Gt, Gr,¬P}, a minimal explanation of
the infeasability of this system is the set {Gp, Gt, Gr, }. If all three guarantees
hold, then P (the disjunction of these guarantees) is provable.

In the case of an UNSAT system, we may ask: what will correct this unsat-
isfiability? A related set answers this question:

Definition 10. A Minimal Correction Set (MCS) M of a constraint system C
is a subset M ⊆ C such that C \ M is satisfiable and ∀M ′ ⊂ M : C \ M ′ is
unsatisfiable.

An MCS can be seen to “correct” the infeasability of the constraint system
by the removal from C the constraints found in an MCS. Returning to the PWR
example, the MCSs of the constraint system C are MCS1 = {Gt}, MCS2 =
{Gp}, MCS3 = {Gr}. If any single guarantee is violated, a shut down from that
subsystem may not get sent when it should and the safety property P will be
violated. This corresponds exactly to the definition of a minimal cut set.

For the following definitions, we remind readers of the extended transition
system defined in Eq. 2 of Sect. 3 and that the elements of T ′ are the set GF ∪AF
for potentially faulty guarantees GF and activation literals AF . We use the
notation af → {true, false} to indicate a constraint on the literal af .

Definition 11. Given a constraint system C, a cut set S of a top level event
¬P is a set S ⊆ AF ⊆ C such that ∀af ∈ S, af → {true} and S ∪ {¬P} is
satisfiable in C.

Intuitively, a cut set is a true valuation for some subset of fault activation
literals within a constraint system containing such that the constraint system is
satisfiable given those true valuations and the violation of a safety property.

Definition 12. A cut set S is minimal if and only if ∀af ∈ S, S \ {af } ∪ {¬P}
is unsatisfiable.

Our approach in computing minimal cut sets through the use of inductive
validity cores is to supply activation literals constrained to be false to the algo-
rithm. The resulting MCSs consist of elements ¬af i. The removal of this con-
straint from the constraint system results in non-deterministically true activa-
tion literals. By the definition of an MCS, we know that C \MCS is satisifiable.

270 D. Stewart et al.

This removal of constraints from C removes the false constraint from each ele-
ment in the MCS. Liffiton et al. showed that any subset of a satisfiable set is
also satisfiable [24], so we know that for set S consisting of elements of MCS
with constraints removed, S ∪ {¬P} is also satisfiable. This is the definition of
a cut set. Minimality comes directly from the definition of a minimal correction
set.

A duality exists between the MUSs of a constraint system and the MCSs as
established by Reiter [28]. This duality is defined in terms of Minimal Hitting
Sets (MHS).

Definition 13. A hitting set of a collection of sets A is a set H such that every
set in A is “hit” by H; H contains at least one element from every set in A.

Every MUS of a constraint system is a minimal hitting set of the system’s
MCSs, and likewise every MCS is a minimal hitting set of the system’s MUSs.
This is noted in previous work [14,24] and the proof of such is given by Reiter
(Theorem 4.4 and Corollary 4.5) [28].

4.2 Algorithm Implementation

The algorithms in this paper are implemented in the Safety Annex [32] for the
Architecture Analysis and Design Language (AADL) [1] and require the Assume-
Guarantee Reasoning Environment (AGREE) [13] to annotate the AADL model
in order to perform verification using the back-end model checker JKind [17]. For
more information on the application of the safety annex in practice, see previous
work [32–34].

In the formalism, any guarantee in the model had an associated fault activa-
tion literal and could be unconstrained. In the implementation, we rely on the
fault model created in the safety annex to dictate which output constraints are
modified (i.e., which guarantees can be violated) and how they are modified. A
user may define multiple, single, or no faults on a single output. Each explicit
fault defined in the safety annex is added to the Lustre program as are assocated
fault activation literals [32,34]. This corresponds to the fi and af i described in
Sect. 3.

The All MIVCs algorithm requires specific equations in the Lustre model to
be flagged for consideration in the analysis; these we call IVC algorithm ele-
ments. All equations in the model can be used as IVC algorithm elements or one
can specify directly the equations to consider. In this implementation, the IVC
algorithm elements are added differently depending on the layer. In the leaf archi-
tectural level, fault activation literals are added to the IVC algorithm elements
and are constrained to false. In middle or top layers, supporting guarantees are
added. This is shown in Fig. 4. The figure shows an arbitrary architecture with
two analysis layers: top and leaf. The top layer analysis adds G as IVC algorithm
element; the leaf layer analysis adds f1 and f2.

A requirement of the hitting set algorithm is that to find all MCSs, all MUSs
must be known. Ghassabani et al. [20] showed that finding all MIVCs is as hard
as model checking. Once the MIVC analysis is complete for a property at a

Composition of Fault Forests 271

Fig. 4. Illustration of two layers of analysis

given layer, a hitting set algorithm is used to generate the related MCSs [18].
Depending on the layer of analysis, the MCSs contain either guarantees (mid
layer) or fault activation literals (leaf layer).

Algorithm 1: Compose Results
1 R ← All MCSs(P) = ∨n

i=1MCS i

2 where MCS i = ∧m
j=1gfj

3 Function resolve(R):
4 for ∀ OR-node in R do
5 for ∀gfj in OR-node do
6 if ∃MCS(gfj) then
7 R ← replace gfj in R with All MCSs(gfj);
8 resolve (All MCSs(gfj));

9 else
10 R ← replace gfj in R with afj ;

11 convert R to DNF

The composition of these results is performed top down and shown in Algo-
rithm 1. For each guarantee found in an MCS, a replacement is made with the
guarantee’s own MCSs. This is done recursively until all replacements have been
made (line 7, 8 of Algorithm 1). If on the other hand there are no MCSs for
a given guarantee, that guarantee is replaced by its associated fault activation
literal (line 10). At the leaf level of analysis, no guarantees have associated MCSs
(there are no children properties) and thus reaches the end of recursion. At that
time, the formula is converted back into disjunctive normal form of fault activa-
tion literals to finish the translation into the traditional fault tree (line 11). The
fault tree that is produced has a depth associated with the architecture of the
system model. The gates supported in this tool include And and Or gates.

272 D. Stewart et al.

Theorem 4. Algorithm 1 terminates

Proof. No infinite sets are generated by the All MIVCs or minimal hitting set
algorithms [20,25]; therefore, for all gi in the model, All MCSs(gi) is a finite
set and MCS (gi) is a finite set. Each call to Resolve processes a guarantee
that was not previously resolved, and for all gi at the leaf layer of analysis,
All MCSs((gi) = ∅. Given that there are finite layers in a model, the algorithm
terminates. 	

5 Related Work

Minimal cut sets generated by monolithic analysis look at explicitly defined
faults throughout the architecture and attempt through various techniques to
find the minimal violating set for a particular property. We now outline some of
the common monolithic approaches to minimal cut set generation.

The representation of Boolean formulae as Binary Decision Diagrams (BDDs)
was first formalized in the mid 1980s [11] and was extended to the representa-
tion of fault trees not many years later [27]. After this formalization, the BDD
approach to FTA provided a new approach to safety analysis. The model is con-
structed using a BDD, then a second BDD - usually slightly restructured - is
used to encode minimal cut sets. Unfortunately, due to the structure of BDDs,
the worst case is exponential in size in terms of the number of variables. In
industrial sized systems, this is not realistically useful.

SAT based computation was introduced to address scalability problems in
the BDD approach; initially it was used as a preprocessing step to simplify
the decision diagram [8], but later was extended to allow for all minimal cut
set processing and generation without the use of BDDs [7]. Since then, much
research has focused on leveraging the power of model checking in the problems
of safety assessment, e.g., [4,31,32]. Bozzano et al. formulated a Bounded Model
Checking (BMC) approach to the problem by successively approximating the
cut set generation and computations to allow for an “anytime approximation”
in cases when the cut sets were simply too large and numerous to find [7]. These
algorithms are implemented in xSAP [5] and COMPASS [6]. Another related
work is contract based safety analysis performed using the OCRA tool [9]. By
contrast, this research performs the minimal cut set computations in a purely
compositional fashion.

The model based safety assessment tool AltaRica 3.0 [26] performs a series
of processing to transform the model into a reachability graph and then compile
to Boolean formula in order to compute the minimal cut sets. Other tools such
as HiP-HOPS [12] have implemented algorithms that follow the failure propa-
gations in the model and collect information about safety related dependencies
and hazards. The Safety Analysis Modeling Language (SAML) [21] provides a
safety specific modeling language that can be translated into a number of input
languages for model checkers in order to provide model checking support for
minimal cut set generation.

Composition of Fault Forests 273

To our knowledge, a fully compositional approach to generating fault forests
or minimal cut sets has not been introduced.

6 Conclusion and Future Work

We presented a formalism that defines the composition of fault forests by extend-
ing the transition system to allow for fault activation literals. This formalism is
implemented by leveraging recent research in model checking techniques. Using
the idea of minimal inductive validity cores (MIVCs), which are the minimal
model elements necessary for a proof of a safety property, we are able to pro-
vide fault activation literals as model elements to the All MIVCs algorithm which
provides all the MIVCs that pertain to this property. These are used to gen-
erate minimal cut sets. Future work includes leveraging the system informa-
tion embedded in this approach to generate graphical hierarchical fault trees
as well as perform scalability studies that compare this approach with other
non-compositional approaches to minimal cut set generation.

Acknowledgments. This research was funded by NASA contract NNL16AB07T and
the University of Minnesota College of Science and Engineering Graduate Fellowship.

References

1. AS5506C: Architecture Analysis & Design Language (AADL), January 2017
2. Bend́ık, J., Ghassabani, E., Whalen, M., Černá, I.: Online enumeration of all min-

imal inductive validity cores. In: Johnsen, E.B., Schaefer, I. (eds.) SEFM 2018.
LNCS, vol. 10886, pp. 189–204. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-92970-5 12

3. Berezin, S., Campos, S., Clarke, E.M.: Compositional reasoning in model checking.
In: de Roever, W.-P., Langmaack, H., Pnueli, A. (eds.) COMPOS 1997. LNCS,
vol. 1536, pp. 81–102. Springer, Heidelberg (1998). https://doi.org/10.1007/3-540-
49213-5 4

4. Bieber, P., Castel, C., Seguin, C.: Combination of fault tree analysis and model
checking for safety assessment of complex system. In: Bondavalli, A., Thevenod-
Fosse, P. (eds.) EDCC 2002. LNCS, vol. 2485, pp. 19–31. Springer, Heidelberg
(2002). https://doi.org/10.1007/3-540-36080-8 3

5. Bittner, B., et al.: The xSAP safety analysis platform. In: TACAS (2016)
6. Bozzano, M., Bruintjes, H., Cimatti, A., Katoen, J.P., Noll, T., Tonetta, S.: The

COMPASS 3.0 toolset. In: IMBSA 2017 (2017)
7. Bozzano, M., Cimatti, A., Griggio, A., Mattarei, C.: Efficient anytime techniques

for model-based safety analysis. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV
2015. LNCS, vol. 9206, pp. 603–621. Springer, Cham (2015). https://doi.org/10.
1007/978-3-319-21690-4 41

8. Bozzano, M., et al.: Safety assessment of AltaRica models via symbolic model
checking. Sci. Comput. Program. 98, 464–483 (2015)

9. Bozzano, M., Cimatti, A., Mattarei, C., Tonetta, S.: Formal safety assessment via
contract-based design. In: Automated Technology for Verification and Analysis
(2014)

https://doi.org/10.1007/978-3-319-92970-5_12
https://doi.org/10.1007/978-3-319-92970-5_12
https://doi.org/10.1007/3-540-49213-5_4
https://doi.org/10.1007/3-540-49213-5_4
https://doi.org/10.1007/3-540-36080-8_3
https://doi.org/10.1007/978-3-319-21690-4_41
https://doi.org/10.1007/978-3-319-21690-4_41

274 D. Stewart et al.

10. Bozzano, M., Cimatti, A., Tapparo, F.: Symbolic fault tree analysis for reactive
systems. In: ATVA (2007)

11. Bryant, R.E.: Graph-based algorithms for Boolean function manipulation. Comput.
IEEE Trans. 100(8), 677–691 (1986)

12. Chen, D., Mahmud, N., Walker, M., Feng, L., Lönn, H., Papadopoulos, Y.: Systems
modeling with EAST-ADL for fault tree analysis through HiP-HOPS*. IFAC Proc.
Vol. 46(22), 91–96 (2013)

13. Cofer, D., Gacek, A., Miller, S., Whalen, M.W., LaValley, B., Sha, L.: Compo-
sitional verification of architectural models. In: Goodloe, A.E., Person, S. (eds.)
NFM 2012. LNCS, vol. 7226, pp. 126–140. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-28891-3 13

14. De Kleer, J., Williams, B.C.: Diagnosing multiple faults. Artif. Intell. 32(1), 97–130
(1987)

15. Ericson, C.: Fault tree analysis - a history. In: Proceedings of the 17th International
Systems Safety Conference (1999)

16. Feiler, P., Gluch, D.: Model-Based Engineering with AADL: An Introduction to
the SAE Architecture Analysis & Design Language. Addison-Wesley Professional,
Boston (2012)

17. Gacek, A., Backes, J., Whalen, M., Wagner, L., Ghassabani, E.: The JKind model
checker. In: Chockler, H., Weissenbacher, G. (eds.) CAV 2018. LNCS, vol. 10982,
pp. 20–27. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96142-2 3

18. Gainer-Dewar, A., Vera-Licona, P.: The minimal hitting set generation problem:
algorithms and computation. SIAM J. Discrete Math. 31(1), 63–100 (2017)

19. Ghassabani, E., Gacek, A., Whalen, M.W.: Efficient generation of inductive validity
cores for safety properties. CoRR abs/1603.04276 (2016). http://arxiv.org/abs/
1603.04276

20. Ghassabani, E., Whalen, M.W., Gacek, A.: Efficient generation of all minimal
inductive validity cores. In: 2017 Formal Methods in Computer Aided Design
(FMCAD), pp. 31–38 (2017)

21. Gudemann, M., Ortmeier, F.: A framework for qualitative and quantitative formal
model-based safety analysis. In: HASE 2010 (2010)

22. Halbwachs, N., Caspi, P., Raymond, P., Pilaud, D.: The synchronous dataflow
programming language lustre. IEEE 79(9), 1305–1320 (1991)

23. Kahsai, T., Garoche, P.-L., Tinelli, C., Whalen, M.: Incremental verification with
mode variable invariants in state machines. In: Goodloe, A.E., Person, S. (eds.)
NFM 2012. LNCS, vol. 7226, pp. 388–402. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-28891-3 35

24. Liffiton, M.H., Previti, A., Malik, A., Marques-Silva, J.: Fast, flexible MUS enu-
meration. Constraints 21(2), 223–250 (2015). https://doi.org/10.1007/s10601-015-
9183-0

25. Murakami, K., Uno, T.: Efficient algorithms for dualizing large-scale hypergraphs.
In: 2013 Proceedings of the Fifteenth Workshop on Algorithm Engineering and
Experiments (ALENEX). SIAM (2013)

26. Prosvirnova, T.: AltaRica 3.0: a Model-based approach for safety analyses. The-
ses, Ecole Polytechnique, November 2014. https://pastel.archives-ouvertes.fr/tel-
01119730

27. Rauzy, A.: New algorithms for fault trees analysis. Reliab. Eng. Syst. Saf. 40(3),
203–211 (1993)

28. Reiter, R.: A theory of diagnosis from first principles. Artif. Intell. 32(1), 57–95
(1987)

https://doi.org/10.1007/978-3-642-28891-3_13
https://doi.org/10.1007/978-3-642-28891-3_13
https://doi.org/10.1007/978-3-319-96142-2_3
http://arxiv.org/abs/1603.04276
http://arxiv.org/abs/1603.04276
https://doi.org/10.1007/978-3-642-28891-3_35
https://doi.org/10.1007/978-3-642-28891-3_35
https://doi.org/10.1007/s10601-015-9183-0
https://doi.org/10.1007/s10601-015-9183-0
https://pastel.archives-ouvertes.fr/tel-01119730
https://pastel.archives-ouvertes.fr/tel-01119730

Composition of Fault Forests 275

29. Ruijters, E., Stoelinga, M.: Fault tree analysis: a survey of the state-of-the-art in
modeling, analysis and tools. Comput. Sci. Rev. 15–16, 29–62 (2015)

30. SAE ARP4754A: Guidelines for Development of Civil Aircraft and Systems,
December 2010

31. Schäfer, A.: Combining real-time model-checking and fault tree analysis. In: Araki,
K., Gnesi, S., Mandrioli, D. (eds.) FME 2003. LNCS, vol. 2805, pp. 522–541.
Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45236-2 29

32. Stewart, D., Liu, J., Heimdahl, M., Whalen, M., Cofer, D., Peterson, M.: The safety
annex for architecture analysis and design language. In: 10th Edition European
Congress Embedded Real Time Systems, January 2020

33. Stewart, D., Liu, J.J., Cofer, D., Heimdahl, M., Whalen, M.W., Peterson, M.: Aadl-
based safety analysis using formal methods applied to aircraft digital systems.
Reliab. Eng. Syst. Saf. 213, 107649 (2021). https://doi.org/10.1016/j.ress.2021.
107649, https://www.sciencedirect.com/science/article/pii/S0951832021001903

34. Stewart, D., Whalen, M.W., Cofer, D., Heimdahl, M.P.E.: Architectural model-
ing and analysis for safety engineering. In: Bozzano, M., Papadopoulos, Y. (eds.)
IMBSA 2017. LNCS, vol. 10437, pp. 97–111. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-64119-5 7

35. Vesely, W., Goldberg, F., Roberts, N., Haasl, D.: Fault tree handbook. Technical
Report, US Nuclear Regulatory Commission (1981)

https://doi.org/10.1007/978-3-540-45236-2_29
https://doi.org/10.1016/j.ress.2021.107649
https://doi.org/10.1016/j.ress.2021.107649
https://www.sciencedirect.com/science/article/pii/S0951832021001903
https://doi.org/10.1007/978-3-319-64119-5_7
https://doi.org/10.1007/978-3-319-64119-5_7

Author Index

Alexander, Rob 195

Barrett, Clark 3
Becker, Philipp 149
Bozóki, Szilárd 51
Burton, Simon 149

Calinescu, Radu 3
Cârlan, Carmen 115
Ceccarelli, Andrea 210
Chechik, Marsha 130
Clavière, Arthur 34
Cofer, Darren 258

Damour, Mathieu 34
De Grancey, Florence 34
Denil, Joachim 178
Drabek, Christian 163
Durling, Michael 101

Frey, Joshua 226

Gabreau, Christophe 34
Gallina, Barbara 115
Gauffriau, Adrien 34
Gerndt, Andreas 243
Ginestet, Jean-Brice 34
Graeber, Torben 149
Grese, John 3

Heimdahl, Mats 258
Hervieu, Alexandre 34
Hillen, Daniel 226
Hong, Massimo 210
Horbelt, Jessica 226
Huraux, Thomas 34

Ishigooka, Tasuku 163

Jöckel, Lisa 18
Jordon, Adeline 243

Katzenbeisser, Stefan 82
Kläs, Michael 18
Kokaly, Sahar 130

Kosmalska, Anna 163
Kurzidem, Iwo 149

Lesage, Benjamin 195
Liske, Jonas 82
Liu, Jing (Janet) 258

Matsumoto, Tsutomu 67
Meng, Baoluo 101
Mizuochi, Mariko 163
Moitra, Abha 101
Moradi, Mehrdad 178
Mori, Hisashi 67
Müller, Sascha 243
Muramatsu, Ryo 67

Nagatsuka, Tomoyuki 67
Noll, Thomas 243

Oakes, Bentley James 178
Otsuka, Satoshi 163

Pagetti, Claire 34
Păsăreanu, Corina S. 3
Pataricza, András 51
Paterson, Colin 3
Paul, Saswata 101
Piazzesi, Niccolò 210
Ponsolle, Ludovic 34
Püllen, Dominik 82

Schandar, Markus 226
Schleiss, Philipp 149
Schmidt, Andreas 226
Schneider, Daniel 226
Schwaiger, Adrian 149
Shahin, Ramy 130
Shimizu, Koichi 67
Siu, Kit 101

278 Author Index

Soima, Liana 115
Sorokos, Ioannis 226
Stewart, Danielle 258
Suzuki, Daisuke 67

Unterreiner, Michael 149

Van Mierlo, Simon 178
Vangheluwe, Hans 178

Weiss, Gereon 163
Whalen, Michael 258
Wu, Haoze 3

	Preface
	Organization
	Contents
	Machine Learning Safety Assurance
	Evaluation Framework for Performance Limitation of Autonomous Systems Under Sensor Attack
	1 Introduction
	2 Evaluation Framework Based on SOTIF Process
	2.1 Relevant Standards and SOTIF
	2.2 Evaluation Framework

	3 Identifying Attack Scenarios Using STAMP/STPA
	3.1 STAMP/STPA Safety Analysis
	3.2 Analysis Steps and Results

	4 Evaluating Performance Limitations Under Sensor Attacks
	4.1 Test Model for Verification of Safety Constraints
	4.2 Sensor Attack Simulator
	4.3 Evaluation Examples Using the Prototype

	5 Related Work
	6 Conclusion
	References

	Could We Relieve AI/ML Models of the Responsibility of Providing Dependable Uncertainty Estimates? A Study on Outside-Model Uncertainty Estimates
	1 Introduction
	2 Related Work on Uncertainty Predictions
	3 Study Planning and Execution
	3.1 Research Questions
	3.2 Study Design and Variation Points
	3.3 Study Execution

	4 Study Results and Discussion
	4.1 RQ1: Comparing UW Performance with In-Model Approaches
	4.2 RQ2: Synergies Between In-Model and Outside-model Approaches
	4.3 RQ3: Performance Under Common, Less Than Optimal Conditions

	5 Conclusion
	References

	Towards Certification of a Reduced Footprint ACAS-Xu System: A Hybrid ML-Based Solution
	1 Introduction
	1.1 ACAS Xu Overview
	1.2 Purpose of the Work

	2 ACAS Xu Hybrid Architecture
	2.1 Learning Process
	2.2 Design of the Hybrid Architecture
	2.3 Why a New Hybrid Architecture

	3 Certification Methodology
	3.1 Notations
	3.2 Assurance Case for the Hybrid Controller

	4 Related Work
	5 Conclusion
	References

	Security Engineering
	IT Design for Resiliency Using Extreme Value Analysis
	1 Introduction
	2 Extreme Value Analysis
	2.1 Detecting Extremity

	3 Modeling Risk
	3.1 Probabilistic Modeling for a Mission Duration
	3.2 Mission Risk: The Cumulative Cost of Failures
	3.3 Workflow

	4 Case Study
	4.1 Measurement-Based Extreme Value Analysis
	4.2 Risk Model and Availability Evaluation

	5 Extension to Cold-Backup
	6 Conclusion
	References

	DeepCert: Verification of Contextually Relevant Robustness for Neural Network Image Classifiers
	1 Introduction
	2 DeepCert Verification Method
	2.1 Overview
	2.2 DeepCert Instantiation for Test-Based Verification
	2.3 DeepCert Instantiation for Formal Verification

	3 Implementation
	4 Experimental Results
	4.1 Case Study 1: Road Traffic Speed Sign Classification
	4.2 Case Study 2: CIFAR-10

	5 Related Work
	6 Conclusions and Future Work
	References

	ISO/SAE 21434-Based Risk Assessment of Security Incidents in Automated Road Vehicles
	1 Introduction
	2 Related Work
	3 Introduction to ISO/SAE 21434
	4 Context-Aware Risk Assessments of Security Incidents
	4.1 Offline Phase
	4.2 Online Phase

	5 Case Study and Discussion
	5.1 Reference Vehicle
	5.2 Application of the Offline Phase
	5.3 Discussion of the Online Phase

	6 Conclusion
	References

	Safety and Assurance Cases
	Automating the Assembly of Security Assurance Case Fragments
	1 Introduction
	2 Contribution
	2.1 Augmented Goal Structuring Notation (GSN)
	2.2 Security Assurance Case Patterns
	2.3 Model-Based Architecture Analysis in VERDICT
	2.4 Security Assurance Case Construction

	3 Case Study: A Delivery Drone
	4 Discussion
	5 Related Work
	6 Conclusion and Future Work
	References

	Safety Case Maintenance: A Systematic Literature Review
	1 Introduction
	2 Background and Related Work
	3 Review Protocol
	3.1 Establishing the Quasi-Gold Standards by Manual Search
	3.2 Automated Search and Snowballing
	3.3 Exclusion and Inclusion Criteria
	3.4 Evaluation Criteria

	4 Review Results
	5 Discussion
	6 Summary and Future Lines of Work
	References

	Towards Certified Analysis of Software Product Line Safety Cases
	1 Introduction
	2 Background
	2.1 Safety Cases, GSN, and Change Impact Assessment
	2.2 Software Product Lines

	3 Methodology and Infrastructure
	4 Change Impact Assessment
	4.1 Single-Product Algorithm
	4.2 Lifted Algorithm
	4.3 Examples

	5 Towards Implementation
	6 Related Work
	7 Conclusion and Future Work
	References

	Machine Learning Applications
	Safety Assurance of Machine Learning for Chassis Control Functions
	1 Introduction
	2 Related Work
	3 Case Study
	4 Assurance Approach
	4.1 Domain Analysis
	4.2 System Design
	4.3 Verification and Validation
	4.4 Assurance Case

	5 Detailed Analysis of the Machine Learning Function
	6 Lessons Learned
	7 Conclusion
	References

	Safe Interaction of Automated Forklifts and Humans at Blind Corners in a Warehouse with Infrastructure Sensors
	1 Introduction
	2 Blind Corners in Warehouses
	2.1 Definition of Blind Corners
	2.2 Safety Standards for Driverless Industrial Trucks
	2.3 Intersection Cooperation and Coordination

	3 Infrastructure-Cooperative Autonomous Control
	3.1 Infrastructure-Cooperative Autonomous Control Architecture
	3.2 Infrastructure-Cooperative Autonomous Control Hazards
	3.3 Safety Concepts for Safe Interaction of Automated Forklifts and Human Workers at Blind Corners

	4 Evaluation
	5 Conclusion and Outlook
	References

	Machine Learning-Based Fault Injection for Hazard Analysis and Risk Assessment
	1 Introduction
	2 Adaptive Cruise Control
	3 ML-Based FI Within the SAHARA Methodology
	3.1 Required Information
	3.2 Scenario Selection
	3.3 Fault Injection and Reinforcement Learning Algorithm
	3.4 Simulation and Visualisation
	3.5 Hazard Classification

	4 Results
	5 Discussion
	6 Related Work
	7 Conclusion and Future Work
	References

	Safety Validation and Simulation
	SASSI: Safety Analysis Using Simulation-Based Situation Coverage for Cobot Systems
	1 Introduction
	2 Case Study: Industrial Manufacturing Cobot
	3 Overview of the SASSI Method
	4 Analysing the System Safety
	5 Monitoring Safety Artefacts
	6 Generating and Evaluating Configurations
	7 Evaluation
	7.1 Problem Space
	7.2 Simulation Setup
	7.3 Search Heuristics
	7.4 Results

	8 Related Work
	9 Conclusion
	References

	Attack and Fault Injection in Self-driving Agents on the Carla Simulator – Experience Report
	1 Introduction
	2 Background
	2.1 Adversarial Attacks Using the ART Toolbox
	2.2 Fault Injection in Trained Agents with PytorchFI
	2.3 Carla Simulator and Learning by Cheating (LbC)

	3 Injection of Attacks in a Self-driving Agent
	3.1 Selection of Suitable Attacks
	3.2 Integration of ART in Learning by Cheating

	4 Injection of Faults in a Self-driving Agent
	4.1 Perturbation Models
	4.2 Application of PyTorchFi in LbC

	5 Experiments and Results
	5.1 Description of the Experimental Campaign
	5.2 Adversarial Attacks Injection: Results
	5.3 Faults Injection: Results

	6 Limitations and Considerations for Real-World Scenarios
	7 Conclusions
	References

	A Framework for Automated Quality Assurance and Documentation for Pharma 4.0
	1 Introduction
	2 State-of-the-Art of Quality Assurance and Documentation in the Pharmaceutical Industry
	2.1 Lifecycle of Pharmaceutical Products and Good-X-Practice
	2.2 The Patient Batch Record
	2.3 Pre-Market Authorization, Research and Development
	2.4 Production of Products with Market Authorization

	3 Tools for Model-Based Quality Assurance and Dependability
	3.1 Assurance Cases and the Digital Dependability Identity
	3.2 Asset Administration Shells and Submodels

	4 Framework for End-to-End Automated Quality Assurance and Documentation
	4.1 A Car-T Production Process
	4.2 A Car-T Cell Assurance Case
	4.3 An Auto-Generated Batch Record Submodel
	4.4 Submodels for Collaborating Assets

	5 Conclusion
	References

	Fault Tolerance
	A Modular Approach to Non-deterministic Dynamic Fault Trees
	1 Introduction
	2 Related Work
	3 Background
	3.1 Fault Trees
	3.2 Non-deterministic Dynamic Fault Trees
	3.3 Synthesizing Recovery Strategies

	4 Modular Synthesis of Recovery Automata
	4.1 Modular Workflow
	4.2 Modularization

	5 Case Studies
	6 Conclusions and Future Work
	References

	Composition of Fault Forests
	1 Introduction
	2 Running Example
	3 Formalization
	4 Implementation
	4.1 Formal Background
	4.2 Algorithm Implementation

	5 Related Work
	6 Conclusion and Future Work
	References

	Author Index

