
From Verification to Explanation
(Track Introduction)

Christel Baier1 and Holger Hermanns2,3

1 Technische Universität Dresden, Germany
2 Universität des Saarlandes, Saarland Informatics Campus, Germany

3 Institute of Intelligent Software, Guangzhou, China

1 Introduction

It is becoming the norm that software artefacts participate in actions and deci-
sions that affect humans. This trend has been catching momentum for decades,
and is now amplified considerably by the remarkable abilities of machine-learnt
methods.

However, our understanding of what is the cause of a specific automated
decision is lagging far behind. More severe, we are lacking the scientifc basis to
explain how several such applications interact in cascades of automated deci-
sions. With the increase in cyber-physical technology impacting our lives, the
consequences of this gradual loss in understanding are becoming severe.

The long-term ambition of this track of ISOLA is to explore how computer
aided verification techniques can be leveraged to master the explanation chal-
lenge. Our focus are algorithmic and tool-supported approaches that aim at
making the behaviour of software and CPS systems understandable.

2 Context

Scientifc work on explanations has not been an explicit focus of past research in
the verification community, but nevertheless there are a number of prominent
techniques that can be considered individual attack points for orchestrated ef-
forts. We review the (according to our limited understanding) major research
directions below.

Explaining negative verification results. Most model-checking tools accompany
negative verification results with counterexamples to provide an evidence why
the model violates its specification. These are finite prefixes of erroneous exe-
cutions of the model. Although such counterexamples can support debugging,
they often tend to be long and identifying the failure in the counterexample
trace becomes a non-trivial task. This observation has motivated research on
how to extract the relevant information from counterexamples that is needed for
debugging purposes. Following the structural equation approach of Halpern and
Pearl, the causality-based analysis of counterexamples has been first proposed by
Beer et al. [2] with the intention to generate and visualise user-understandable

c© Springer Nature Switzerland AG 2021

https://doi.org/10.1007/978-3-030-83723-5 1
T. Margaria and B. Steffen (Eds.): ISoLA 2020, LNCS 12479, pp. 3–9, 2021.

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-83723-5_1&domain=pdf
https://doi.org/10.1007/978-3-030-83723-5_1


explanations in terms of diagrams for selected paths. This approach has been
further advanced by analysing sets of counterexample traces for the purpose
of extracting causal relations and representing them by logical formulas, which
are then used to generate visualisable fault trees [32,31]. Other techniques aim-
ing at explanations of negative model-checking results rely on distance metrics
for program executions to support understanding and the localisation of errors
[17,18]. An approach for cause consequence analysis using temporal logics has
been presented in [36,20].

Explaining positive verification results. Orthogonal to the approaches for ex-
plaining negative verification results is vacuity detection and the certification of
verification results. Vacuity detection [3,27,5] is motivated by the observation
that positive verification results cannot rule out cases where the model is wrong
or where there is no perfect match between the formal specification and the
desired requirements. It relies on a stronger (“non-vacuous”) satisfaction rela-
tion than in standard model checking and aims to report sufficiently informative
witnesses for non-vacuously valid temporal formulas in a given model. Another
direction is the certification of formal verification results [28,38] where the task
is to accompany positive model-checking results with a certificate that serves as
evidence for the successful system verification and can be checked separately to
confirm that the system indeed meets its specification. Certification techniques
for probabilistic models have been proposed that are based on Farkas certificates
[16,23,22] and shown to be related to the construction of witnessing subsystems
as in [1,40,21]. There is also recent work on certification techniques for timed
automata [43,42]. One step further is the line of research that addresses the ver-
ification and certification of formal verifiers using theorem-proving techniques,
see, e.g., [13,24].

Causality Reasoning. Besides the above mentioned work on the causality-based
analysis of counterexamples to extract user-understandable explanations of model-
checking results, combinations of causality-based reasoning and model-checking
techniques have also been used by Chockler et al. [8,9,4,7] to reason about the de-
gree of the responsibility of components for the satisfaction or violation of system
properties as well as related coverage metrics. First steps towards compositional
causality reasoning in nonprobabilistic systems and for temporal events of a
simple modal logic have been presented recently in [6].

Another research direction is to exploit synergies between causality tech-
niques and model checking. An on-the-fly approach to detect causal relationships
and to classify execution traces as good or bad with respect to the property to be
checked has been presented in [32] and extended in [33] for the quantitative anal-
ysis of Markov chains. The essential idea of the causality-based model-checking
[29,30,15] is to avoid the explicit reference to states of a system model as it is
the case for standard model checking. Instead it relies on a notion of concurrent
traces and causal links between them and proof rules given by trace transform-
ers. Together with sophisticated data structures, this approach can reduce the

4 Christel Baier, and Holger Hermanns



From Verification to Explanation (Track Introduction) 5

complexity of model checking for multi-threaded programs from exponential to
polynomial time.

Verfication Explanations for Humans. Many forms of graphical models have
been introduced to reason about causality. Examples include cause-effect graphs
that have been introduced in the context of software testing [35] or Petri nets
[10], or causal graphs [12] that have been used to design tractable algorithms
for deciding different forms for causes in Halpern and Pearl’s structural-model
approach.

In the probabilistic setting, various graphical models have been proposed
in the literature to represent causal dependencies. Most prominent are Bayesian
networks that rely on directed acyclic graphs where the nodes represent variables
and the edges indicate conditional dependencies (see, e.g., [37]). To overcome the
limitations of classical Bayesian networks that assume discrete variables and do
not support reasoning about time, several extensions have been proposed in
the literature to formalise how the dependencies evolve over time slices (dy-
namic Bayesian networks) or to reason about continuous variables (e.g., hybrid
or heterogeneous Bayesian networks). Another prominent visualisable model are
(dynamic) fault trees [39,11], a well-established industrial standard and graph-
ical notation to illustrate how a hazard can be caused by a combination of so
called basic events. In the context of probabilistic model checking, the gener-
ation of fault trees from probabilistic counterexamples for Markov chains has
been studied by Leitner-Fischer et al. [26,34,31].

Aiming at human-understandable textual explanations, the translations of
minimal critical sub-MDPs (counterexamples for MDPs as in [40]) into guarded
command language has been developed in [41]. The recent paper [14] proposes an
alternative approach based on structural natural language sentences to describe
the behaviour that leads to a violation of system requirements.

3 Contributions in this Track

For the 2020 edition of ISOLA, the track editors have selected two contribution
that represent the spectrum of research on verification methods for explanations
very well.

The paper by Kölbl and Leue entitled An Algorithm to Compute a Strict
Partial Orderering of Actions in Action Trees [25] focusses on tool support for
causality checking. At its core is a novel method for computing a causal expla-
nation. This explanation here takes the form of an ordered sequences of actions
that lead to a violation of a reachability property. Earlier work in this context
was able to compute the unordered set of such actions, while the present contri-
bution additionally provides them in a strictly partial ordered form, thus giving
more specific axplanatory feedback to the user. The approach is implemented in
the tool QuantUM and its performance and usability is discussed.

The paper by Gros et al. entitled TraceVis: Towards Visualization for Deep
Statistical Model Checking [19] showcases a very innovative explanation com-
ponent for neural network behaviour. It starts off from deep statistical model



checking (DSMC), a recently proposed approach to statistically analyse the be-
haviour of a neural network employed as a decision entity to solve a family
of two-dimensional navigation problems, known as the Racetrack. The DSMC
analysis delivers a variety of estimates of numerical nature. The present paper
explores the use of visualization techniques to support human analysts and do-
main engineers when exploringthese results. The authors present an interactive
visualization tool which enables visual exploration of Racetrack crash probabil-
ities as well as in-depth examination of the policy traces generated by DSMC.
By this, the authors succesfully demonstrate how visualization can foster the
effective model-checking-based analysis for the purpose of advanced explanation
support for neural network behaviour.

Acknowledgments. This initiative would not have been possible without the
support by the Deutsche Forschungsgemeinschaft for the Center for Perspicuous
Computing (TRR 248, Grant 389792660). It furthermore has received support
by the Key-Area Research and Development Program Grant 2018B010107004 of
Guangdong Province.

References

1. Erika Ábrahám, Bernd Becker, Christian Dehnert, Nils Jansen, Joost-Pieter Ka-
toen, and Ralf Wimmer. Counterexample generation for discrete-time markov
models: An introductory survey. In Marco Bernardo, Ferruccio Damiani, Reiner
Hähnle, Einar Broch Johnsen, and Ina Schaefer, editors, Formal Methods for Ex-
ecutable Software Models - 14th International School on Formal Methods for the
Design of Computer, Communication, and Software Systems (SFM), volume 8483
of Lecture Notes in Computer Science, pages 65–121. Springer, 2014.

2. Ilan Beer, Shoham Ben-David, Hana Chockler, Avigail Orni, and Richard J. Trefler.
Explaining counterexamples using causality. Formal Methods in System Design,
40(1):20–40, 2012.

3. Ilan Beer, Shoham Ben-David, Cindy Eisner, and Yoav Rodeh. Efficient detec-
tion of vacuity in temporal model checking. Formal Methods in System Design,
18(2):141–163, 2001.

4. Shoham Ben-David, Hana Chockler, and Orna Kupferman. Attention-based cov-
erage metrics. In 9th Int. Haifa Verification Conf. on Hardware and Software:
Verification and Testing (HVC), volume 8244 of LNCS, pages 230–245. Springer,
2013.

5. Shoham Ben-David, Fady Copty, Dana Fisman, and Sitvanit Ruah. Vacuity in
practice: temporal antecedent failure. Formal Methods in System Design, 46(1):81–
104, 2015.

6. Georgiana Caltais, Stefan Leue, and Mohammad Reza Mousavi. (de-)composing
causality in labeled transition systems. In First Workshop on Causal Reasoning for
Embedded and safety-critical Systems Technologies, volume 224 of EPTCS, pages
10–24, 2016.

7. Hana Chockler, Norman E. Fenton, Jeroen Keppens, and David A. Lagnado.
Causal analysis for attributing responsibility in legal cases. In 15th Int. Conf.
on Artificial Intelligence and Law (ICAIL), pages 33–42. ACM, 2015.

6 Christel Baier, and Holger Hermanns

https://perspicuous-computing.science
https://perspicuous-computing.science


From Verification to Explanation (Track Introduction) 7

8. Hana Chockler and Joseph Y. Halpern. Responsibility and blame: A structural-
model approach. Journal of Artificial Intelligence Research (JAIR), 22:93–115,
2004.

9. Hana Chockler, Joseph Y. Halpern, and Orna Kupferman. What causes a system
to satisfy a specification? ACM Transactions on Computational Logic, 9(3), 2008.

10. Jörg Desel, Andreas Oberweis, Torsten Zimmer, and Gabriele Zimmermann. Vali-
dation of information system models: Petri nets and test case generation. In IEEE
Int. Conf. on Cybernetics and Simulation, pages 3401–3406, 1997.

11. J.B. Dugan, S.J. Bavuso, and M.A. Boyd. Dyanamic fault-tree models for fault-
tolerant computer systems. IEEE Transactions on Reliability, 41(3):363–377, 1992.

12. Thomas Eiter and Thomas Lukasiewicz. Causes and explanations in the structural-
model approach: Tractable cases. Artifical Intelligence, 170(6-7):542–580, 2006.

13. Javier Esparza, Peter Lammich, René Neumann, Tobias Nipkow, Alexander
Schimpf, and Jan-Georg Smaus. A fully verified executable LTL model checker.
Archive of Formal Proofs, 2014.

14. Lu Feng, Mahsa Ghasemi, Kai-Wei Chang, and Ufuk Topcu. Counterexamples for
robotic planning explained in structured language. CoRR, arXiv:1803.08966, 2018.
To appear in IEEE Int. Conf. on Robotics and Automation (ICRA’18).

15. Bernd Finkbeiner, Manuel Gieseking, and Ernst-Rüdiger Olderog. Adam:
Causality-based synthesis of distributed systems. In 27th Int. Conf. on Computer
Aided Verification (CAV), volume 9206 of LNCS, pages 433–439. Springer, 2015.

16. Florian Funke, Simon Jantsch, and Christel Baier. Farkas certificates and minimal
witnesses for probabilistic reachability constraints. In Armin Biere and David
Parker, editors, 26th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS), volume 12078 of Lecture Notes
in Computer Science, pages 324–345. Springer, 2020.

17. Alex Groce. Error explanation with distance metrics. In 10th Int. Conf. on Tools
and Algorithms for the Construction and Analysis of Systems (TACAS), volume
2988 of LNCS, pages 108–122. Springer, 2004.

18. Alex Groce, Daniel Kroening, and Flavio Lerda. Understanding counterexamples
with explain. In 16th Int. Conf. on Computer Aided Verification (CAV), volume
3114 of LNCS, pages 453–456. Springer, 2004.

19. Timo P. Gros, David Groß, Stefan Gumhold, Jörg Hoffmann, Michaela Klauck,
and Marcel Steinmetz. Tracevis: Towards visualization for deep statistical model
checking. in this volume.

20. Axel Habermaier, Alexander Knapp, Johannes Leupolz, and Wolfgang Reif. Fault-
aware modeling and specification for efficient formal safety analysis. In Critical
Systems: Formal Methods and Automated Verification (FMICS-AVoCS), volume
9933 of LNCS, pages 97–114. Springer, 2016.

21. Nils Jansen. Counterexamples in probabilistic verification. PhD thesis, RWTH
Aachen University, Germany, 2015.

22. Simon Jantsch, Florian Funke, and Christel Baier. Minimal witnesses for prob-
abilistic timed automata. In Dang Van Hung and Oleg Sokolsky, editors, 18th
International Symposium on Automated Technology for Verification and Analy-
sis (ATVA), volume 12302 of Lecture Notes in Computer Science, pages 501–517.
Springer, 2020.

23. Simon Jantsch, Hans Harder, Florian Funke, and Christel Baier. SWITSS: comput-
ing small witnessing subsystems. In Alexander Ivrii and Ofer Strichman, editors,
20th Conference on Formal Methods in Computer-Aided Design (FMCAD). Aca-
demic Press TU Wien, 2020.



24. Jacques-Henri Jourdan, Vincent Laporte, Sandrine Blazy, Xavier Leroy, and David
Pichardie. A formally-verified C static analyzer. In 42nd Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL), pages
247–259. ACM, 2015.

25. Martin Kölbl and Stefan Leue. An algorithm to compute a strict partial orderering
of actions in action trees. in this volume.

26. Matthias Kuntz, Florian Leitner-Fischer, and Stefan Leue. From probabilistic
counterexamples via causality to fault trees. In 30th Int. Conf. on Computer
Safety, Reliability, and Security, volume 6894 of LNCS, pages 71–84. Springer,
2011.

27. Orna Kupferman and Moshe Y. Vardi. Vacuity detection in temporal model check-
ing. In 10th IFIP WG 10.5 Advanced Research Working Conf. on Correct Hardware
Design and Verification Methods (CHARME), volume 1703 of LNCS, pages 82–96.
Springer, 1999.

28. Orna Kupferman and Moshe Y. Vardi. From complementation to certification.
Theoretical Computer Science, 345(1):83–100, 2005.

29. Andrey Kupriyanov and Bernd Finkbeiner. Causality-based verification of multi-
threaded programs. In 24th Int. Conf. on Concurrency Theory (CONCUR), volume
8052 of LNCS, pages 257–272. Springer, 2013.

30. Andrey Kupriyanov and Bernd Finkbeiner. Causal termination of multi-threaded
programs. In 26th Int. Conf. on Computer Aided Verification (CAV), volume 8559
of LNCS, pages 814–830, 2014.

31. Florian Leitner-Fischer. Causality Checking of Safety-Critical Software and Sys-
tems. PhD thesis, University of Konstanz, Germany, 2015.

32. Florian Leitner-Fischer and Stefan Leue. Causality checking for complex system
models. In 14th Int. Conf. on Verification, Model Checking, and Abstract Inter-
pretation (VMCAI), volume 7737 of LNCS, pages 248–267. Springer, 2013.

33. Florian Leitner-Fischer and Stefan Leue. On the synergy of probabilistic causal-
ity computation and causality checking. In 20th Int. Symp. on Model Checking
Software (SPIN), volume 7976 of LNCS, pages 246–263. Springer, 2013.

34. Florian Leitner-Fischer and Stefan Leue. Probabilistic fault tree synthesis using
causality computation. Int. Journal of Critical Computer-Based Systems, 4(2):119–
143, 2013.

35. Glenford J. Myers. The Art of Software Testing. John Wiley & Sons, 1979.

36. F. Ortmeier, W. Reif, and G. Schellhorn. Formal safety analysis of a radio-based
railroad crossing using deductive cause-consequence analysis. In 5th European
Dependable Computing Conf. (EDCC), volume 3463 of LNCS. Springer, 2006.

37. Judea Pearl. Causality: Models, Reasoning and Inference. Cambridge University
Press, 2nd edition, 2009.

38. Ali Taleghani. Using Software Model Checking for Software Certification. PhD
thesis, University of Waterloo, Ontario, Canada, 2010.

39. W.E. Vasely and F.F. Goldberg. Fault Tree Handbook. US Nuclear Regulatory
Commission, 2014. NUREG-0492.

40. Ralf Wimmer, Nils Jansen, Erika Ábrahám, Joost-Pieter Katoen, and Bernd
Becker. Minimal counterexamples for linear-time probabilistic verification. Theo-
retical Computer Science, 549:61–100, 2014.

41. Ralf Wimmer, Nils Jansen, Andreas Vorpahl, Erika Ábrahám, Joost-Pieter Katoen,
and Bernd Becker. High-level counterexamples for probabilistic automata. Logical
Methods in Computer Science, 11(1), 2015.

8 Christel Baier, and Holger Hermanns



From Verification to Explanation (Track Introduction) 9

42. Simon Wimmer, Frédéric Herbreteau, and Jaco van de Pol. Certifying empti-
ness of timed büchi automata. In Nathalie Bertrand and Nils Jansen, editors,
18th International Conference on Formal Modeling and Analysis of Timed Sys-
tems (FORMATS), volume 12288 of Lecture Notes in Computer Science, pages
58–75. Springer, 2020.

43. Simon Wimmer and Joshua von Mutius. Verified certification of reachability check-
ing for timed automata. In Armin Biere and David Parker, editors, 26th Inter-
national Conference on Tools and Algorithms for the Construction and Analysis
of Systems (TACAS), volume 12078 of Lecture Notes in Computer Science, pages
425–443. Springer, 2020.

http://creativecommons.org/licenses/by/4.0/

	From Verification to Explanation (Track Introduction)
	1 Introduction
	2 Context
	3 Contributions in this Track
	References




