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1 Introduction

It is becoming the norm that software artefacts participate in actions and deci-
sions that affect humans. This trend has been catching momentum for decades,
and is now amplified considerably by the remarkable abilities of machine-learnt
methods.

However, our understanding of what is the cause of a specific automated
decision is lagging far behind. More severe, we are lacking the scientifc basis to
explain how several such applications interact in cascades of automated deci-
sions. With the increase in cyber-physical technology impacting our lives, the
consequences of this gradual loss in understanding are becoming severe.

The long-term ambition of this track of ISOLA is to explore how computer
aided verification techniques can be leveraged to master the explanation chal-
lenge. Our focus are algorithmic and tool-supported approaches that aim at
making the behaviour of software and CPS systems understandable.

2 Context

Scientifc work on explanations has not been an explicit focus of past research in
the verification community, but nevertheless there are a number of prominent
techniques that can be considered individual attack points for orchestrated ef-
forts. We review the (according to our limited understanding) major research
directions below.

Ezxplaining negative verification results. Most model-checking tools accompany
negative verification results with counterexamples to provide an evidence why
the model violates its specification. These are finite prefixes of erroneous exe-
cutions of the model. Although such counterexamples can support debugging,
they often tend to be long and identifying the failure in the counterexample
trace becomes a non-trivial task. This observation has motivated research on
how to extract the relevant information from counterexamples that is needed for
debugging purposes. Following the structural equation approach of Halpern and
Pearl, the causality-based analysis of counterexamples has been first proposed by
Beer et al. [2] with the intention to generate and visualise user-understandable
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explanations in terms of diagrams for selected paths. This approach has been
further advanced by analysing sets of counterexample traces for the purpose
of extracting causal relations and representing them by logical formulas, which
are then used to generate visualisable fault trees [32,31]. Other techniques aim-
ing at explanations of negative model-checking results rely on distance metrics
for program executions to support understanding and the localisation of errors
[17,18]. An approach for cause consequence analysis using temporal logics has
been presented in [36,20].

Ezplaining positive verification results. Orthogonal to the approaches for ex-
plaining negative verification results is vacuity detection and the certification of
verification results. Vacuity detection [3,27,5] is motivated by the observation
that positive verification results cannot rule out cases where the model is wrong
or where there is no perfect match between the formal specification and the
desired requirements. It relies on a stronger (“non-vacuous”) satisfaction rela-
tion than in standard model checking and aims to report sufficiently informative
witnesses for non-vacuously valid temporal formulas in a given model. Another
direction is the certification of formal verification results [28,38] where the task
is to accompany positive model-checking results with a certificate that serves as
evidence for the successful system verification and can be checked separately to
confirm that the system indeed meets its specification. Certification techniques
for probabilistic models have been proposed that are based on Farkas certificates
[16,23,22] and shown to be related to the construction of witnessing subsystems
as in [1,40,21]. There is also recent work on certification techniques for timed
automata [43,42]. One step further is the line of research that addresses the ver-
ification and certification of formal verifiers using theorem-proving techniques,
see, e.g., [13,24].

Causality Reasoning. Besides the above mentioned work on the causality-based
analysis of counterexamples to extract user-understandable explanations of model-
checking results, combinations of causality-based reasoning and model-checking
techniques have also been used by Chockler et al. [8,9,4,7] to reason about the de-
gree of the responsibility of components for the satisfaction or violation of system
properties as well as related coverage metrics. First steps towards compositional
causality reasoning in nonprobabilistic systems and for temporal events of a
simple modal logic have been presented recently in [6].

Another research direction is to exploit synergies between causality tech-
niques and model checking. An on-the-fly approach to detect causal relationships
and to classify execution traces as good or bad with respect to the property to be
checked has been presented in [32] and extended in [33] for the quantitative anal-
ysis of Markov chains. The essential idea of the causality-based model-checking
[29,30,15] is to avoid the explicit reference to states of a system model as it is
the case for standard model checking. Instead it relies on a notion of concurrent
traces and causal links between them and proof rules given by trace transform-
ers. Together with sophisticated data structures, this approach can reduce the
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complexity of model checking for multi-threaded programs from exponential to
polynomial time.

Verfication Ezplanations for Humans. Many forms of graphical models have
been introduced to reason about causality. Examples include cause-effect graphs
that have been introduced in the context of software testing [35] or Petri nets
[10], or causal graphs [12] that have been used to design tractable algorithms
for deciding different forms for causes in Halpern and Pearl’s structural-model
approach.

In the probabilistic setting, various graphical models have been proposed
in the literature to represent causal dependencies. Most prominent are Bayesian
networks that rely on directed acyclic graphs where the nodes represent variables
and the edges indicate conditional dependencies (see, e.g., [37]). To overcome the
limitations of classical Bayesian networks that assume discrete variables and do
not support reasoning about time, several extensions have been proposed in
the literature to formalise how the dependencies evolve over time slices (dy-
namic Bayesian networks) or to reason about continuous variables (e.g., hybrid
or heterogeneous Bayesian networks). Another prominent visualisable model are
(dynamic) fault trees [39,11], a well-established industrial standard and graph-
ical notation to illustrate how a hazard can be caused by a combination of so
called basic events. In the context of probabilistic model checking, the gener-
ation of fault trees from probabilistic counterexamples for Markov chains has
been studied by Leitner-Fischer et al. [26,34,31].

Aiming at human-understandable textual explanations, the translations of
minimal critical sub-MDPs (counterexamples for MDPs as in [40]) into guarded
command language has been developed in [41]. The recent paper [14] proposes an
alternative approach based on structural natural language sentences to describe
the behaviour that leads to a violation of system requirements.

3 Contributions in this Track

For the 2020 edition of ISOLA, the track editors have selected two contribution
that represent the spectrum of research on verification methods for explanations
very well.

The paper by Kdélbl and Leue entitled An Algorithm to Compute a Strict
Partial Orderering of Actions in Action Trees [25] focusses on tool support for
causality checking. At its core is a novel method for computing a causal expla-
nation. This explanation here takes the form of an ordered sequences of actions
that lead to a violation of a reachability property. Earlier work in this context
was able to compute the unordered set of such actions, while the present contri-
bution additionally provides them in a strictly partial ordered form, thus giving
more specific axplanatory feedback to the user. The approach is implemented in
the tool QuantUM and its performance and usability is discussed.

The paper by Gros et al. entitled TraceVis: Towards Visualization for Deep
Statistical Model Checking [19] showcases a very innovative explanation com-
ponent for neural network behaviour. It starts off from deep statistical model
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checking (DSMC), a recently proposed approach to statistically analyse the be-
haviour of a neural network employed as a decision entity to solve a family
of two-dimensional navigation problems, known as the Racetrack. The DSMC
analysis delivers a variety of estimates of numerical nature. The present paper
explores the use of visualization techniques to support human analysts and do-
main engineers when exploringthese results. The authors present an interactive
visualization tool which enables visual exploration of Racetrack crash probabil-
ities as well as in-depth examination of the policy traces generated by DSMC.
By this, the authors succesfully demonstrate how visualization can foster the
effective model-checking-based analysis for the purpose of advanced explanation
support for neural network behaviour.
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