
Tiziana Margaria · Bernhard Steffen (Eds.)
LN

CS
 1

24
79

9th International Symposium
on Leveraging Applications of Formal Methods, ISoLA 2020
Rhodes, Greece, October 20–30, 2020, Proceedings, Part IV

Leveraging Applications
of Formal Methods,
Verification and Validation
Tools and Trends

Lecture Notes in Computer Science 12479

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0001-8816-2693

More information about this subseries at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Tiziana Margaria • Bernhard Steffen (Eds.)

Leveraging Applications
of Formal Methods,
Verification and Validation
Tools and Trends

9th International Symposium
on Leveraging Applications of Formal Methods, ISoLA 2020
Rhodes, Greece, October 20–30, 2020
Proceedings, Part IV

123

Editors
Tiziana Margaria
University of Limerick and Lero
Limerick, Ireland

Bernhard Steffen
TU Dortmund
Dortmund, Germany

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-83722-8 ISBN 978-3-030-83723-5 (eBook)
https://doi.org/10.1007/978-3-030-83723-5

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer Nature Switzerland AG 2021
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-5547-9739
https://orcid.org/0000-0001-9619-1558
https://doi.org/10.1007/978-3-030-83723-5

Introduction

It is our responsibility, as general and program chairs, to welcome the participants to
the 9th International Symposium on Leveraging Applications of Formal Methods,
Verification and Validation (ISoLA), planned to take place in Rhodes, Greece, during
October 20–30, 2020, endorsed by the European Association of Software Science and
Technology (EASST).

This year’s event follows the tradition of its symposia forerunners held in Paphos,
Cyprus (2004 and 2006), Chalkidiki, Greece (2008), Crete, Greece (2010 and 2012),
Corfu, Greece (2014 and 2016), and most recently in Limassol, Cyprus (2018), and the
series of ISoLA workshops in Greenbelt, USA (2005), Poitiers, France (2007),
Potsdam, Germany (2009), Vienna, Austria (2011), and Palo Alto, USA (2013).

Considering that this year’s situation is unique and unlike any previous one due to
the ongoing COVID-19 pandemic, and that ISoLA’s symposium touch and feel is much
unlike most conventional, paper-based conferences, after much soul searching we are
faced with a true dilemma. “Virtualizing” the event, as many conferences have done,
violates the true spirit of the symposium, which is rooted in the gathering of com-
munities and the discussions within and across the various communities materialized in
the special tracks and satellite events. Keeping with the physical meeting and holding it
in a reduced form (as many may not be able to or feel comfortable with travel) under
strict social distancing rules may also end up not being feasible. At the time of writing
there is a resurgence of cases in several countries, many nations are compiling “green
lists” of countries with which they entertain free travel relations, and these lists are
updated – most frequently shortened – at short notice, with severe consequence for the
travelers. Many governments and universities are again strengthening the travel
restrictions for their employees, and many of us would anyway apply caution due to
our own specific individual situation.

To be able to react as flexibly as possible to this situation, we decided to split ISoLA
2020 into two parts, one this year and one in October 2021, with the track organizers
deciding when their track will take place. So far both dates have promoters, but it may
still happen that, in the end, the entire event needs to move. All accepted papers are
published in time, but some tracks will present their papers at the 2021 event.

As in the previous editions, ISoLA 2020 provides a forum for developers, users, and
researchers to discuss issues related to the adoption and use of rigorous tools and
methods for the specification, analysis, verification, certification, construction, test, and
maintenance of systems from the point of view of their different application domains.
Thus, since 2004, the ISoLA series of events serves the purpose of bridging the gap
between designers and developers of rigorous tools on one side, and users in engi-
neering and in other disciplines on the other side. It fosters and exploits synergetic
relationships among scientists, engineers, software developers, decision makers, and
other critical thinkers in companies and organizations. By providing a specific,
dialogue-oriented venue for the discussion of common problems, requirements,

algorithms, methodologies, and practices, ISoLA aims in particular at supporting
researchers in their quest to improve the usefulness, reliability, flexibility, and effi-
ciency of tools for building systems, and users in their search for adequate solutions to
their problems.

The program of the symposium consists of a collection of special tracks devoted to
the following hot and emerging topics:

• Reliable Smart Contracts: State-of-the-art, Applications, Challenges and Future
Directions
(Organizers: Gordon Pace, César Sànchez, Gerardo Schneider)

• Engineering of Digital Twins for Cyber-Physical Systems
(Organizers: John Fitzgerald, Pieter Gorm Larsen, Tiziana Margaria, Jim
Woodcock)

• Verification and Validation of Concurrent and Distributed Systems
(Organizers: Cristina Seceleanu, Marieke Huisman)

• Modularity and (De-) composition in Verification
(Organizers: Reiner Hähnle, Eduard Kamburjan, Dilian Gurov)

• Software Verification Tools
(Organizers: Markus Schordan, Dirk Beyer, Irena Boyanova)

• X-by-Construction: Correctness meets Probability
(Organizers: Maurice H. ter Beek, Loek Cleophas, Axel Legay, Ina Schaefer,
Bruce W. Watson)

• Rigorous Engineering of Collective Adaptive Systems
(Organizers: Rocco De Nicola, Stefan Jähnichen, Martin Wirsing)

• Automated Verification of Embedded Control Software
(Organizers: Dilian Gurov, Paula Herber, Ina Schaefer)

• Automating Software Re-Engineering
(Organizers: Serge Demeyer, Reiner Hähnle, Heiko Mantel)

• 30 years of Statistical Model Checking!
(Organizer: Kim G. Larsen, Axel Legay)

• From Verification to Explanation
(Organizers: Holger Herrmanns, Christel Baier)

• Formal methods for DIStributed COmputing in future RAILway systems (DisCo-
Rail 2020)
(Organizers: Alessandro Fantechi, Stefania Gnesi, Anne Haxthausen)

• Programming: What is Next?
(Organizers: Klaus Havelund, Bernhard Steffen)

With the embedded events:

• RERS: Challenge on Rigorous Examination of Reactive Systems (Falk Howar,
Markus Schordan, Bernhard Steffen)

� Doctoral Symposium and Poster Session (A.L. Lamprecht)
• Industrial Day (Falk Howar, Johannes Neubauer, Andreas Rausch)

vi Introduction

Colocated with the ISoLA symposium is:

• STRESS 2020 – 5th International School on Tool-based Rigorous Engineering of
Software Systems (J. Hatcliff, T. Margaria, Robby, B. Steffen)

Altogether the ISoLA 2020 proceedings comprises four volumes, Part 1: Verifica-
tion Principles, Part 2: Engineering Principles, Part 3: Applications, and Part 4: Tools
and Trends, which also covers the associated events.

We thank the track organizers, the members of the Program Committee and their
referees for their effort in selecting the papers to be presented, the local organization
chair, Petros Stratis, and the EasyConferences team for their continuous and precious
support during the entire two-year period preceding the events, and Springer for being,
as usual, a very reliable partner for the proceedings production. Finally, we are grateful
to Kyriakos Georgiades for his continuous support for the website and the program,
and to Markus Frohme and Julia Rehder for their help with the editorial system
Equinocs.

Special thanks are due to the following organization for their endorsement: EASST
(European Association of Software Science and Technology) and Lero – The Irish
Software Research Centre, and our own institutions – TU Dortmund University and the
University of Limerick.

We wish you, as an ISoLA participant, a wonderful experience at this edition, and
for you, reading the proceedings at a later occasion, valuable new insights that hope-
fully contribute to your research and its uptake.

August 2020 Tiziana Margaria
Bernhard Steffen

Introduction vii

Organization

PC Chair

Bernhard Steffen TU Dortmund University, Germany

PC Members

Christel Baier Technische Universität Dresden, Germany
Maurice ter Beek ISTI-CNR, Italy
Dirk Beyer LMU Munich, Germany
Irena Bojanova NIST, USA
Loek Cleophas Eindhoven University of Technology, The Netherlands
Rocco De Nicola IMT Lucca, Italy
Serge Demeyer Universiteit Antwerpen, Belgium
Alessandro Fantechi University of Florence, Italy
John Fitzgerald Newcastle University, UK
Stefania Gnesi CNR, Italy
Kim Guldstrand Larsen Aalborg University, Denmark
Dilian Gurov KTH Royal Institute of Technology, Sweden
John Hatcliff Kansas State University, USA
Klaus Havelund Jet Propulsion Laboratory, USA
Anne E. Haxthausen Technical University of Denmark, Denmark
Paula Herber University of Münster, Germany
Holger Hermanns Saarland University, Germany
Falk Howar Dortmund University of Technology

and Fraunhofer ISST, Germany
Marieke Huisman University of Twente, The Netherlands
Reiner Hähnle Technische Universität Darmstadt, Germany
Stefan Jähnichen TU Berlin, Germany
Eduard Kamburjan Technische Universität Darmstadt, Germany
Anna-Lena Lamprecht Utrecht University, The Netherlands
Peter Gorm Larsen Aarhus University, Denmark
Axel Legay Universitè Catholique de Louvain, Belgium
Heiko Mantel Technische Universität Darmstadt, Germany
Tiziana Margaria Lero, Ireland
Johannes Neubauer Materna, Germany
Gordon Pace University of Malta, Malta
Cesar Sanchez IMDEA Software Institute, Madrid, Spain
Ina Schaefer TU Braunschweig, Germany
Gerardo Schneider University of Gothenburg, Sweden
Markus Schordan Lawrence Livermore National Laboratory, USA
Cristina Seceleanu Mälardalen University, Sweden

Bernhard Steffen TU Dortmund University, Germany
Bruce Watson Stellenbosch University, South Africa
Martin Wirsing Ludwig-Maximilians-Universität München, Germany
James Woodcock University of York, UK

Reviewers

Pekka Aho
Bernhard Aichernig
Peter Backeman
Eduard Baranov
Davide Basile
Bernhard Beckert
Dirk Beyer
Ferruccio Damiani
Jean-Christophe Filliâtre
Roberto Guanciale
Bart Jacobs
Manfred Jaeger

Peter Jensen
Einar Broch Johnsen
Sung-Shik Jongmans
Sudeep Kanav
Igor Konnov
Nikolai Kosmatov
Jan Kretinsky
Bettina Könighofer
Ivan Lanese
Romain Soulat
Mattias Ulbrich

x Organization

Contents – Part IV

From Verification to Explanation

From Verification to Explanation (Track Introduction) 3
Christel Baier and Holger Hermanns

An Algorithm to Compute a Strict Partial Ordering of Actions
in Action Traces . 10

Martin Kölbl and Stefan Leue

TraceVis: Towards Visualization for Deep Statistical Model Checking. 27
Timo P. Gros, David Groß, Stefan Gumhold, Jörg Hoffmann,
Michaela Klauck, and Marcel Steinmetz

Engineering of Digital Twins for Cyber-Physical Systems

Engineering of Digital Twins for Cyber-Physical Systems 49
John Fitzgerald, Peter Gorm Larsen, Tiziana Margaria,
and Jim Woodcock

Understanding Digital Twins for Cyber-Physical Systems:
A Conceptual Model . 54

Tao Yue, Paolo Arcaini, and Shaukat Ali

Uncertainty Quantification and Runtime Monitoring Using
Environment-Aware Digital Twins . 72

Jim Woodcock, Cláudio Gomes, Hugo Daniel Macedo,
and Peter Gorm Larsen

Designing Distributed Control with Hybrid Active Objects 88
Eduard Kamburjan, Rudolf Schlatte, Einar Broch Johnsen,
and Silvia Lizeth Tapia Tarifa

Towards a Digital Twin - Modelling an Agricultural Vehicle 109
Frederik F. Foldager, Casper Thule, Ole Balling,
and PeterGorm Larsen

Digital Modelling in the Railways . 124
Thierry Lecomte

Engineering a Digital Twin for Manual Assembling 140
Alexandru Matei, Nicolae-Adrian Ţocu, Constantin-Bălă Zamfirescu,
Arpad Gellert, and Mihai Neghină

Towards Digital Twins for Knowledge-Driven Construction Progress
and Predictive Safety Analysis on a Construction Site 153

Beidi Li, Rasmus O. Nielsen, Karsten W. Johansen, Jochen Teizer,
Peter Gorm Larsen, and Carl Schultz

Software Verification Tools

Software Verification Tools (Track Introduction). 177
Markus Schordan, Dirk Beyer, and Irena Bojanova

Benchmarking Open-Source Static Analyzers for Security Testing for C 182
Christoph Gentsch, Rohan Krishnamurthy, and Thomas S. Heinze

Verification of Liveness and Safety Properties of Behavioral Programs
Using BPjs. 199

Michael Bar-Sinai and Gera Weiss

On Correctness, Precision, and Performance in Quantitative Verification:
QComp 2020 Competition Report . 216

Carlos E. Budde, Arnd Hartmanns, Michaela Klauck, Jan Křetínský,
David Parker, Tim Quatmann, Andrea Turrini, and Zhen Zhang

Every Component Matters: Generating Parallel Verification Benchmarks
with Hardness Guarantees . 242

Marc Jasper, Maximilian Schlüter, David Schmidt, and Bernhard Steffen

Author Index . 265

xii Contents – Part IV

From Verification to Explanation

From Verification to Explanation
(Track Introduction)

Christel Baier1 and Holger Hermanns2,3

1 Technische Universität Dresden, Germany
2 Universität des Saarlandes, Saarland Informatics Campus, Germany

3 Institute of Intelligent Software, Guangzhou, China

1 Introduction

It is becoming the norm that software artefacts participate in actions and deci-
sions that affect humans. This trend has been catching momentum for decades,
and is now amplified considerably by the remarkable abilities of machine-learnt
methods.

However, our understanding of what is the cause of a specific automated
decision is lagging far behind. More severe, we are lacking the scientifc basis to
explain how several such applications interact in cascades of automated deci-
sions. With the increase in cyber-physical technology impacting our lives, the
consequences of this gradual loss in understanding are becoming severe.

The long-term ambition of this track of ISOLA is to explore how computer
aided verification techniques can be leveraged to master the explanation chal-
lenge. Our focus are algorithmic and tool-supported approaches that aim at
making the behaviour of software and CPS systems understandable.

2 Context

Scientifc work on explanations has not been an explicit focus of past research in
the verification community, but nevertheless there are a number of prominent
techniques that can be considered individual attack points for orchestrated ef-
forts. We review the (according to our limited understanding) major research
directions below.

Explaining negative verification results. Most model-checking tools accompany
negative verification results with counterexamples to provide an evidence why
the model violates its specification. These are finite prefixes of erroneous exe-
cutions of the model. Although such counterexamples can support debugging,
they often tend to be long and identifying the failure in the counterexample
trace becomes a non-trivial task. This observation has motivated research on
how to extract the relevant information from counterexamples that is needed for
debugging purposes. Following the structural equation approach of Halpern and
Pearl, the causality-based analysis of counterexamples has been first proposed by
Beer et al. [2] with the intention to generate and visualise user-understandable

c© Springer Nature Switzerland AG 2021

https://doi.org/10.1007/978-3-030-83723-5 1
T. Margaria and B. Steffen (Eds.): ISoLA 2020, LNCS 12479, pp. 3–9, 2021.

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-83723-5_1&domain=pdf
https://doi.org/10.1007/978-3-030-83723-5_1

explanations in terms of diagrams for selected paths. This approach has been
further advanced by analysing sets of counterexample traces for the purpose
of extracting causal relations and representing them by logical formulas, which
are then used to generate visualisable fault trees [32,31]. Other techniques aim-
ing at explanations of negative model-checking results rely on distance metrics
for program executions to support understanding and the localisation of errors
[17,18]. An approach for cause consequence analysis using temporal logics has
been presented in [36,20].

Explaining positive verification results. Orthogonal to the approaches for ex-
plaining negative verification results is vacuity detection and the certification of
verification results. Vacuity detection [3,27,5] is motivated by the observation
that positive verification results cannot rule out cases where the model is wrong
or where there is no perfect match between the formal specification and the
desired requirements. It relies on a stronger (“non-vacuous”) satisfaction rela-
tion than in standard model checking and aims to report sufficiently informative
witnesses for non-vacuously valid temporal formulas in a given model. Another
direction is the certification of formal verification results [28,38] where the task
is to accompany positive model-checking results with a certificate that serves as
evidence for the successful system verification and can be checked separately to
confirm that the system indeed meets its specification. Certification techniques
for probabilistic models have been proposed that are based on Farkas certificates
[16,23,22] and shown to be related to the construction of witnessing subsystems
as in [1,40,21]. There is also recent work on certification techniques for timed
automata [43,42]. One step further is the line of research that addresses the ver-
ification and certification of formal verifiers using theorem-proving techniques,
see, e.g., [13,24].

Causality Reasoning. Besides the above mentioned work on the causality-based
analysis of counterexamples to extract user-understandable explanations of model-
checking results, combinations of causality-based reasoning and model-checking
techniques have also been used by Chockler et al. [8,9,4,7] to reason about the de-
gree of the responsibility of components for the satisfaction or violation of system
properties as well as related coverage metrics. First steps towards compositional
causality reasoning in nonprobabilistic systems and for temporal events of a
simple modal logic have been presented recently in [6].

Another research direction is to exploit synergies between causality tech-
niques and model checking. An on-the-fly approach to detect causal relationships
and to classify execution traces as good or bad with respect to the property to be
checked has been presented in [32] and extended in [33] for the quantitative anal-
ysis of Markov chains. The essential idea of the causality-based model-checking
[29,30,15] is to avoid the explicit reference to states of a system model as it is
the case for standard model checking. Instead it relies on a notion of concurrent
traces and causal links between them and proof rules given by trace transform-
ers. Together with sophisticated data structures, this approach can reduce the

4 Christel Baier, and Holger Hermanns

From Verification to Explanation (Track Introduction) 5

complexity of model checking for multi-threaded programs from exponential to
polynomial time.

Verfication Explanations for Humans. Many forms of graphical models have
been introduced to reason about causality. Examples include cause-effect graphs
that have been introduced in the context of software testing [35] or Petri nets
[10], or causal graphs [12] that have been used to design tractable algorithms
for deciding different forms for causes in Halpern and Pearl’s structural-model
approach.

In the probabilistic setting, various graphical models have been proposed
in the literature to represent causal dependencies. Most prominent are Bayesian
networks that rely on directed acyclic graphs where the nodes represent variables
and the edges indicate conditional dependencies (see, e.g., [37]). To overcome the
limitations of classical Bayesian networks that assume discrete variables and do
not support reasoning about time, several extensions have been proposed in
the literature to formalise how the dependencies evolve over time slices (dy-
namic Bayesian networks) or to reason about continuous variables (e.g., hybrid
or heterogeneous Bayesian networks). Another prominent visualisable model are
(dynamic) fault trees [39,11], a well-established industrial standard and graph-
ical notation to illustrate how a hazard can be caused by a combination of so
called basic events. In the context of probabilistic model checking, the gener-
ation of fault trees from probabilistic counterexamples for Markov chains has
been studied by Leitner-Fischer et al. [26,34,31].

Aiming at human-understandable textual explanations, the translations of
minimal critical sub-MDPs (counterexamples for MDPs as in [40]) into guarded
command language has been developed in [41]. The recent paper [14] proposes an
alternative approach based on structural natural language sentences to describe
the behaviour that leads to a violation of system requirements.

3 Contributions in this Track

For the 2020 edition of ISOLA, the track editors have selected two contribution
that represent the spectrum of research on verification methods for explanations
very well.

The paper by Kölbl and Leue entitled An Algorithm to Compute a Strict
Partial Orderering of Actions in Action Trees [25] focusses on tool support for
causality checking. At its core is a novel method for computing a causal expla-
nation. This explanation here takes the form of an ordered sequences of actions
that lead to a violation of a reachability property. Earlier work in this context
was able to compute the unordered set of such actions, while the present contri-
bution additionally provides them in a strictly partial ordered form, thus giving
more specific axplanatory feedback to the user. The approach is implemented in
the tool QuantUM and its performance and usability is discussed.

The paper by Gros et al. entitled TraceVis: Towards Visualization for Deep
Statistical Model Checking [19] showcases a very innovative explanation com-
ponent for neural network behaviour. It starts off from deep statistical model

checking (DSMC), a recently proposed approach to statistically analyse the be-
haviour of a neural network employed as a decision entity to solve a family
of two-dimensional navigation problems, known as the Racetrack. The DSMC
analysis delivers a variety of estimates of numerical nature. The present paper
explores the use of visualization techniques to support human analysts and do-
main engineers when exploringthese results. The authors present an interactive
visualization tool which enables visual exploration of Racetrack crash probabil-
ities as well as in-depth examination of the policy traces generated by DSMC.
By this, the authors succesfully demonstrate how visualization can foster the
effective model-checking-based analysis for the purpose of advanced explanation
support for neural network behaviour.

Acknowledgments. This initiative would not have been possible without the
support by the Deutsche Forschungsgemeinschaft for the Center for Perspicuous
Computing (TRR 248, Grant 389792660). It furthermore has received support
by the Key-Area Research and Development Program Grant 2018B010107004 of
Guangdong Province.

References

1. Erika Ábrahám, Bernd Becker, Christian Dehnert, Nils Jansen, Joost-Pieter Ka-
toen, and Ralf Wimmer. Counterexample generation for discrete-time markov
models: An introductory survey. In Marco Bernardo, Ferruccio Damiani, Reiner
Hähnle, Einar Broch Johnsen, and Ina Schaefer, editors, Formal Methods for Ex-
ecutable Software Models - 14th International School on Formal Methods for the
Design of Computer, Communication, and Software Systems (SFM), volume 8483
of Lecture Notes in Computer Science, pages 65–121. Springer, 2014.

2. Ilan Beer, Shoham Ben-David, Hana Chockler, Avigail Orni, and Richard J. Trefler.
Explaining counterexamples using causality. Formal Methods in System Design,
40(1):20–40, 2012.

3. Ilan Beer, Shoham Ben-David, Cindy Eisner, and Yoav Rodeh. Efficient detec-
tion of vacuity in temporal model checking. Formal Methods in System Design,
18(2):141–163, 2001.

4. Shoham Ben-David, Hana Chockler, and Orna Kupferman. Attention-based cov-
erage metrics. In 9th Int. Haifa Verification Conf. on Hardware and Software:
Verification and Testing (HVC), volume 8244 of LNCS, pages 230–245. Springer,
2013.

5. Shoham Ben-David, Fady Copty, Dana Fisman, and Sitvanit Ruah. Vacuity in
practice: temporal antecedent failure. Formal Methods in System Design, 46(1):81–
104, 2015.

6. Georgiana Caltais, Stefan Leue, and Mohammad Reza Mousavi. (de-)composing
causality in labeled transition systems. In First Workshop on Causal Reasoning for
Embedded and safety-critical Systems Technologies, volume 224 of EPTCS, pages
10–24, 2016.

7. Hana Chockler, Norman E. Fenton, Jeroen Keppens, and David A. Lagnado.
Causal analysis for attributing responsibility in legal cases. In 15th Int. Conf.
on Artificial Intelligence and Law (ICAIL), pages 33–42. ACM, 2015.

6 Christel Baier, and Holger Hermanns

https://perspicuous-computing.science
https://perspicuous-computing.science

From Verification to Explanation (Track Introduction) 7

8. Hana Chockler and Joseph Y. Halpern. Responsibility and blame: A structural-
model approach. Journal of Artificial Intelligence Research (JAIR), 22:93–115,
2004.

9. Hana Chockler, Joseph Y. Halpern, and Orna Kupferman. What causes a system
to satisfy a specification? ACM Transactions on Computational Logic, 9(3), 2008.

10. Jörg Desel, Andreas Oberweis, Torsten Zimmer, and Gabriele Zimmermann. Vali-
dation of information system models: Petri nets and test case generation. In IEEE
Int. Conf. on Cybernetics and Simulation, pages 3401–3406, 1997.

11. J.B. Dugan, S.J. Bavuso, and M.A. Boyd. Dyanamic fault-tree models for fault-
tolerant computer systems. IEEE Transactions on Reliability, 41(3):363–377, 1992.

12. Thomas Eiter and Thomas Lukasiewicz. Causes and explanations in the structural-
model approach: Tractable cases. Artifical Intelligence, 170(6-7):542–580, 2006.

13. Javier Esparza, Peter Lammich, René Neumann, Tobias Nipkow, Alexander
Schimpf, and Jan-Georg Smaus. A fully verified executable LTL model checker.
Archive of Formal Proofs, 2014.

14. Lu Feng, Mahsa Ghasemi, Kai-Wei Chang, and Ufuk Topcu. Counterexamples for
robotic planning explained in structured language. CoRR, arXiv:1803.08966, 2018.
To appear in IEEE Int. Conf. on Robotics and Automation (ICRA’18).

15. Bernd Finkbeiner, Manuel Gieseking, and Ernst-Rüdiger Olderog. Adam:
Causality-based synthesis of distributed systems. In 27th Int. Conf. on Computer
Aided Verification (CAV), volume 9206 of LNCS, pages 433–439. Springer, 2015.

16. Florian Funke, Simon Jantsch, and Christel Baier. Farkas certificates and minimal
witnesses for probabilistic reachability constraints. In Armin Biere and David
Parker, editors, 26th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS), volume 12078 of Lecture Notes
in Computer Science, pages 324–345. Springer, 2020.

17. Alex Groce. Error explanation with distance metrics. In 10th Int. Conf. on Tools
and Algorithms for the Construction and Analysis of Systems (TACAS), volume
2988 of LNCS, pages 108–122. Springer, 2004.

18. Alex Groce, Daniel Kroening, and Flavio Lerda. Understanding counterexamples
with explain. In 16th Int. Conf. on Computer Aided Verification (CAV), volume
3114 of LNCS, pages 453–456. Springer, 2004.

19. Timo P. Gros, David Groß, Stefan Gumhold, Jörg Hoffmann, Michaela Klauck,
and Marcel Steinmetz. Tracevis: Towards visualization for deep statistical model
checking. in this volume.

20. Axel Habermaier, Alexander Knapp, Johannes Leupolz, and Wolfgang Reif. Fault-
aware modeling and specification for efficient formal safety analysis. In Critical
Systems: Formal Methods and Automated Verification (FMICS-AVoCS), volume
9933 of LNCS, pages 97–114. Springer, 2016.

21. Nils Jansen. Counterexamples in probabilistic verification. PhD thesis, RWTH
Aachen University, Germany, 2015.

22. Simon Jantsch, Florian Funke, and Christel Baier. Minimal witnesses for prob-
abilistic timed automata. In Dang Van Hung and Oleg Sokolsky, editors, 18th
International Symposium on Automated Technology for Verification and Analy-
sis (ATVA), volume 12302 of Lecture Notes in Computer Science, pages 501–517.
Springer, 2020.

23. Simon Jantsch, Hans Harder, Florian Funke, and Christel Baier. SWITSS: comput-
ing small witnessing subsystems. In Alexander Ivrii and Ofer Strichman, editors,
20th Conference on Formal Methods in Computer-Aided Design (FMCAD). Aca-
demic Press TU Wien, 2020.

24. Jacques-Henri Jourdan, Vincent Laporte, Sandrine Blazy, Xavier Leroy, and David
Pichardie. A formally-verified C static analyzer. In 42nd Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL), pages
247–259. ACM, 2015.

25. Martin Kölbl and Stefan Leue. An algorithm to compute a strict partial orderering
of actions in action trees. in this volume.

26. Matthias Kuntz, Florian Leitner-Fischer, and Stefan Leue. From probabilistic
counterexamples via causality to fault trees. In 30th Int. Conf. on Computer
Safety, Reliability, and Security, volume 6894 of LNCS, pages 71–84. Springer,
2011.

27. Orna Kupferman and Moshe Y. Vardi. Vacuity detection in temporal model check-
ing. In 10th IFIP WG 10.5 Advanced Research Working Conf. on Correct Hardware
Design and Verification Methods (CHARME), volume 1703 of LNCS, pages 82–96.
Springer, 1999.

28. Orna Kupferman and Moshe Y. Vardi. From complementation to certification.
Theoretical Computer Science, 345(1):83–100, 2005.

29. Andrey Kupriyanov and Bernd Finkbeiner. Causality-based verification of multi-
threaded programs. In 24th Int. Conf. on Concurrency Theory (CONCUR), volume
8052 of LNCS, pages 257–272. Springer, 2013.

30. Andrey Kupriyanov and Bernd Finkbeiner. Causal termination of multi-threaded
programs. In 26th Int. Conf. on Computer Aided Verification (CAV), volume 8559
of LNCS, pages 814–830, 2014.

31. Florian Leitner-Fischer. Causality Checking of Safety-Critical Software and Sys-
tems. PhD thesis, University of Konstanz, Germany, 2015.

32. Florian Leitner-Fischer and Stefan Leue. Causality checking for complex system
models. In 14th Int. Conf. on Verification, Model Checking, and Abstract Inter-
pretation (VMCAI), volume 7737 of LNCS, pages 248–267. Springer, 2013.

33. Florian Leitner-Fischer and Stefan Leue. On the synergy of probabilistic causal-
ity computation and causality checking. In 20th Int. Symp. on Model Checking
Software (SPIN), volume 7976 of LNCS, pages 246–263. Springer, 2013.

34. Florian Leitner-Fischer and Stefan Leue. Probabilistic fault tree synthesis using
causality computation. Int. Journal of Critical Computer-Based Systems, 4(2):119–
143, 2013.

35. Glenford J. Myers. The Art of Software Testing. John Wiley & Sons, 1979.

36. F. Ortmeier, W. Reif, and G. Schellhorn. Formal safety analysis of a radio-based
railroad crossing using deductive cause-consequence analysis. In 5th European
Dependable Computing Conf. (EDCC), volume 3463 of LNCS. Springer, 2006.

37. Judea Pearl. Causality: Models, Reasoning and Inference. Cambridge University
Press, 2nd edition, 2009.

38. Ali Taleghani. Using Software Model Checking for Software Certification. PhD
thesis, University of Waterloo, Ontario, Canada, 2010.

39. W.E. Vasely and F.F. Goldberg. Fault Tree Handbook. US Nuclear Regulatory
Commission, 2014. NUREG-0492.

40. Ralf Wimmer, Nils Jansen, Erika Ábrahám, Joost-Pieter Katoen, and Bernd
Becker. Minimal counterexamples for linear-time probabilistic verification. Theo-
retical Computer Science, 549:61–100, 2014.

41. Ralf Wimmer, Nils Jansen, Andreas Vorpahl, Erika Ábrahám, Joost-Pieter Katoen,
and Bernd Becker. High-level counterexamples for probabilistic automata. Logical
Methods in Computer Science, 11(1), 2015.

8 Christel Baier, and Holger Hermanns

From Verification to Explanation (Track Introduction) 9

42. Simon Wimmer, Frédéric Herbreteau, and Jaco van de Pol. Certifying empti-
ness of timed büchi automata. In Nathalie Bertrand and Nils Jansen, editors,
18th International Conference on Formal Modeling and Analysis of Timed Sys-
tems (FORMATS), volume 12288 of Lecture Notes in Computer Science, pages
58–75. Springer, 2020.

43. Simon Wimmer and Joshua von Mutius. Verified certification of reachability check-
ing for timed automata. In Armin Biere and David Parker, editors, 26th Inter-
national Conference on Tools and Algorithms for the Construction and Analysis
of Systems (TACAS), volume 12078 of Lecture Notes in Computer Science, pages
425–443. Springer, 2020.

http://creativecommons.org/licenses/by/4.0/

An Algorithm to Compute a Strict Partial
Ordering of Actions in Action Traces

Martin Kölbl(B) and Stefan Leue(B)

University of Konstanz, Konstanz, Germany
{martin.koelbl,Stefan.Leue}@uni-konstanz.de

Abstract. Causality Checking [LL13] computes a causal explanation
in the form of minimal action traces that lead to the violations of a
reachability property. Causality Checking is implemented in the tool
QuantUM [LFL11] that currently only depicts in a fault tree the causal
actions in the action traces that lead to a property violation, but not
the possible order of these actions. We present an analysis to compute
the strict partial order of actions in action traces and succinctly depict
these orders by a fault tree. We implemented the analysis in the tool
QuantUM. We assess the performance of our algorithm by applying it to
several models of different size. The results show that the analysis can
compute the action order for thousands of action traces.

1 Motivation

Model-driven development is an efficient way to deal with the complexity of
modern systems. A model is a high-level abstraction of a system and can support
the development of a correct system. Before the implementation of a system, a
model checker can verify a model of the system to ensure that the system behaves
according to its specification. For the verification, the specification of a model
is given as a property. An initial design typically has shortcomings and violates
the property. When a model checker finds a violation of a property, it returns
a counterexample in the form of an execution that leads to the violation. An
execution contains an ordered sequence of actions that we call an action trace.
We proposed Causality Checking in [LL13] that analyzes the counterexamples
of a model based on the counterfactual argument [Lew01] and results in a set of
action traces that are considered to be causal, according to the counterfactual
actual cause definition given in [LL13]. When a system execution contains one of
the action traces the property will be violated. A system execution that contains
none of the action traces will not violate the property.

We implemented Causality Checking in the tool QuantUM. The input of
QuantUM is a reachability property and a model in SysML [Obj17]. Quan-
tUM converts the SysML model into the model checking language Spin [Hol04]
and executes Causality Checking based on a systematic state space exploration
to find every causal action trace in the model. Afterwards, QuantUM pools
the causal action traces with the same set of actions to a causality class.
c© Springer Nature Switzerland AG 2021
T. Margaria and B. Steffen (Eds.): ISoLA 2020, LNCS 12479, pp. 10–26, 2021.
https://doi.org/10.1007/978-3-030-83723-5_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-83723-5_2&domain=pdf
https://doi.org/10.1007/978-3-030-83723-5_2

An Algorithm to Compute a Strict Partial Ordering of Actions 11

start

Car Ca

Car Cc

Train Ta

Train Tc

Car Ca

Train Ta

Car Cc

Train Tc

Train Ta

Car Ca

Car Cc

Train Tc

(a) Railroad Crossing (RC) Traces (b) RC Fault
Tree

(c) RC Ordered
Fault Tree

Fig. 1. Railroad example

The disjunction of the different causality classes constitutes the cause of the prop-
erty violation and will be displayed as a fault tree [KL19]. Currently, QuantUM
depicts the set of actions in a causality class by a fault tree without indicating
the order of the contained actions. In previous work, amongst others we applied
Causality Checking to the architecture of a self-driving car [KL19], and showed
that Causality Checking supports the safety assessment in the development of a
safety-critical system.

We now illustrate the analysis performed during causality checking by apply-
ing it to the model of a railroad crossing, which we will refer to as a run-
ning example throughout the paper. In this model, a train approaches a cross-
ing (Train Ta), then enters the crossing (Train Tc) and leaves the crossing
(Train Tl). A car also approaches at the crossing (Car Ca), then enters the
crossing (Car Cc) and leaves the crossing (Car Cl). The crossing is unguarded
and has no gate. The car will not enter the crossing when the train is already
in the crossing. A hazard in this system occurs when a state can be entered in
which both the train and the car are in the crossing at the same time, which has
the potential to lead to a fatal accident. We, therefore, state the property that
such a state can not be reached.

Causality Checking computes causes for the violation of such a reachability
property in case it is violated in the model. The result of this cause computation
is a number of what is referred to as causality classes. The action traces in one
causality class are all formed over the same set of actions, and only vary in the
order in which these actions occur. For the railroad crossing example, Causality
Checking computes just one causality class over the set {Train Ta, Train Tc,
Car Ca, Car Cc} of actions. It contains 3 action traces, depicted in Fig. 1(a).
Notice that for systems of realistic size, a causality class may contain a much
higher number of action traces. For reasons of convenience and since QuantUM is
primarily used in the area of safety-critical system analysis, causality classes are
depicted as fault trees. The fault tree in Fig. 1(b) depicts the causality class com-
puted for the Railroad Crossing example. The top-level event TrainCarHazard is

12 M. Kölbl and S. Leue

valid when one of the causality classes is valid. Thus, an or-gate is connected to
the single causality class Class 0. A causality class is valid when every contained
basic event Car Ca, Car Cc, Train Ta and Train Tc occurred, which means that
an action trace is obtained from the system that contains exactly these events
in a given order. The basic events can occur in the model in different orders.
These basic events are combined by an and-gate that requires all of them to
occur without imposing a particular order on the occurrence. This fault tree
returned by QuantUM does not currently depict these different action orders,
even though the ordering information is contained in the set of action traces that
form the causality class. Assume, in the example above, that the train enters the
crossing before the car, then the car will never enter the crossing, as per the
model definition, and the hazard state will not be reached.

We describe the necessity of an action to occur before another action to reach
a property violation by a dependency relation. For this dependency relation, the
following properties hold.

– An action can not depend on itself, otherwise, the action can never occur
(irreflexivity).

– When an action b depends on another action a, then a cannot also depend
on b (antisymmetricity). Assume two actions would mutually dependent on
another, then these actions could never occur.

– When an action c depends on b and b depends on a then c depends also on a
(transitivity).

A strict partial order has exactly these properties. It differs from a (general)
partial order only in the property of irreflexivity. We use a strict partial order
to describe the dependencies of the actions in action traces.

In this paper, we propose an analysis that computes the strict partial orders
of actions in action traces and depicts the computed order in a fault tree. In
order to depict the action orders, we introduce the ordered-and-gate into the
Fault Tree notation. It is depicted as an and-gate labeled with a triangle. It is
satisfied when the actions connected to the gate occur from left to right. For
the running example, the analysis results in the fault tree depicted in Fig. 1(c)
which represents all orders of the action traces given in Fig. 1(a) that correspond
to the causality criteria defined in Causality Checking. The order in the fault
tree depicts, for instance, that Tc occurs always after the other actions, and the
action Ta is independent of action Ca and action Car Cc.

Contributions. In this paper, we present an analysis that computes and depicts
the order of actions in the action trace set belonging to a causality class. We
also implement this analysis in QuantUM.

Structure. In Sect. 2 we discuss the foundations of our work. In Sect. 3 we present
an algorithm to compute the strict partial order for the action traces of a causal-
ity class. We evaluate and compare an implementation of the algorithms in
Sect. 4. In Sect. 5 we draw conclusions and suggest future developments.

An Algorithm to Compute a Strict Partial Ordering of Actions 13

Related Work. A Mazurkiewicz trace [DR95] describes a set of traces by a
sequence t of actions and a dependence relation D. The D is symmetric which
means when (a, b) is in D then (b, a) is in D. Two in t neighboured actions a and
b can be reordered when (a, b) is not in D. In contrast, the strict partial order
that our analysis computes is antisymmetric. In the context of causality, either
a depends on b then b occurs before a in an action trace, or b depends on a then
a occurs before b but both dependencies are not possible at once.

Lamport’s happen-before describes strict partial orders for messages in an
asynchronous system [Lam78]. In contrast, we compute the strict partial order
of actions in a set of action traces.

A (strict) partial order is usually depicted by a Hasse diagram which is an
undirected acyclic graph where lower vertices connected to vertices above have
to happen first [ES13]. In the context of QuantUM, we prefer to use Fault Trees
to depict causality classes and the orders that they represent since they are a
notation that is well known to engineers of safety-critical systems.

We are not aware of any work that computes a strict partial order for a set
of action traces.

2 Preliminaries

The model of a system is given in form of a transition system [BK08]. A transition
system (TS) is a tuple (S, Act, →, I, AP, L) where S is a finite set of states, Act
is a finite set of actions, → ⊆ S×Act×S is a transition relation, I ⊆ S is a set of
initial states, AP is a set of atomic propositions, and L : S → 2AP is a labeling
function. An execution p of the transition system TS is an alternating sequence of
states s ∈ S and actions a ∈ Act : p = s0a1s1a2 . . . such that (si, ai+1, si+1) ∈→
for all i ≥ 0. The behavior of a system is described by the executions of the
TS. For an invariant property φ, a finite execution s0a0s1 . . . sn−1an−1sn where
sn �|= φ is called a counterexample.

An action trace a0a1 . . . is the projection of an execution s0a0s1a1 . . . on Act.
An action trace set is a set of action traces T where every action trace t in T
has the same alphabet A ⊆ Act and every action of the alphabet occurs in t
exactly once. Thus, every action trace in an action trace set has the same length
n = |A|. Notice that a causality class is an action trace set. An action trace t
of a TS can contain an action a several times. In this case, we substitute every
occurrence a in t with ai where the index i is the number of occurrences of a
up to the current action in t, and add ai to the alphabet.

A directed graph G is a pair (V,E) of a set of vertices V and a set of edges
E ⊆ V × V where V ∩ E = ∅ [CLF05]. A walk of G is a finite sequence of states
u0, u1, . . . , un where for 0 ≤ i ≤ n, ui ∈ V and for 0 ≤ i ≤ n − 1, (ui, ui+1) ∈ E.
A cycle is a nontrivial walk u0 . . . un with u0 = un. A vertex v is connected in G
to a vertex u when a walk v...u exists. A graph is connected when for every two
vertices v and u in V either a walk v..u or a walk u..v exists. A directed acyclic
graph (DAG) is a directed graph without a cycle. A tree is an acyclic connected
graph [CLF05]. The transitive closure (V,E∗) of a directed graph (V,E) contains
an edge (v, u) in E∗ for every walk v...u in (V,E).

14 M. Kölbl and S. Leue

In concurrent systems, the order in which events can occur is often deter-
mined by a partial order relation.

Definition 1 (Partial Order [SRH18]). A homogeneous relation
 ⊆ A × A
is called a partial order over set A if, and only if

– ∀a ∈ A.a
 a (reflexive)
– ∀a, b ∈ A.a
 b and b
 a then a = b (antisymmetric)
– ∀a, b, c ∈ A.a
 b and b
 c then a
 c (transitive).

A strict partial order is a partial order that is irreflexive, which means that
∀a ∈ A.a � a holds. We use the sign ≺ to denote a strict partial order.

The function it(a) returns the index of an action a in an action trace t. For
an action trace set T , we say that an action b depends on a when in every action
trace t ∈ T the index of a is smaller than the index of b. Formally, a depends on
b if ∀t ∈ T.it(a) < it(b) holds. We express dependencies by a strict partial order.
A dependency of action a on action b is denoted by a ≺ b. When a ≺ b holds,
we say that a is a precondition for b. When neither a ≺ b nor b ≺ a holds, we
say a and b are independent.

The action set A has a number |A| of actions. For some given causality
class over an action set A, we represent the dependencies of the actions in this
causality class in a Boolean matrix M of dimension |A| × |A|. An entry (a, b) in
M has the value true when b depends on a in the corresponding causality class.

3 Algorithm to Analyze Action Orders in Action Traces

In this section, we present an algorithm that we refer to as Algorithm 1, which
is designed to compute the strict partial order of the actions in a set of action
traces. We also define an algorithm called Algorithm 2, which translates this
strict partial order into a fault tree.

The input to Algorithm 1 is an action trace set defining a causality class.
For instance, in the railroad example the action trace set in Fig. 1(a) is the
action trace set forming the causality class computed for the railroad model.
This action trace set is built over the action set {Car Ca, Car Cc, Train Ta,
Train Tc}. Algorithm 1 computes the strict partial order of the actions in an
action trace set and stores it in a DAG which is accomplished in the following
way. The strict partial order a ≺ b holds for an action trace in which an action
a occurs before an action b. In the railroad model, for instance, Train Tc occurs
in every action trace after Car Cc and Car Ca. Thus, Car Cc ≺ Train Tc and
Car Ca ≺ Car Cc holds in every action trace. Since Car Cc ≺ Train Tc
holds in every action trace in Fig. 1(a), we deduce that Train Tc depends on
Car Cc occurring first in order to reach a property violation. In the same way,
Car Cc also depends on Car Ca and Train Tc depends on Car Ca. In the DAG
for the railroad example, the algorithm only needs to store the information that
Train Tc depends on Car Cc and that Car Cc depends on action Car Ca because
Train Tc also transitively depends on Car Ca. We define the direct dependency
relation in Definition 2 that removes transitive dependency relations.

An Algorithm to Compute a Strict Partial Ordering of Actions 15

Definition 2 (Direct Dependency Relation ≺̂). An action b directly
depends on action a, written as a ≺̂ b, in an action trace set T with an action
set A when a ≺ b holds and ¬∃a′ ∈ A.a ≺ a′ ∧ a′ ≺ b.

For instance, in the running example, the direct dependency relations
Car Ca ≺̂ Car Cc and Car Cc ≺̂ Train Tc holds and imply the dependency
relation Car Ca ≺ Train Tc but Car Ca ⊀̂ Train Tc because Car Cc has a
direct dependency with Car Ca and Train Tc.

The DAG in which the algorithm stores the dependencies is a DDAG G
defined in Definition 3. A DDAG has no superfluous edge e that can be implied
by transitivity, formally (E\e)∗ = E∗, and stores this transitive reduction of the
strict partial order.

Definition 3 (Dependency DAG (DDAG)). A dependency DAG (DDAG)
is a DAG (V,E) that stores a strict partial order ≺ over a set A with V = A
and (a, b) ∈ E for any actions a, b ∈ A where a ≺̂ b holds.

An action trace t = a0 . . . an satisfies G when for every vertex v ∈ V there exists
an action ai ∈ t, and any two vertices ai and aj in t with a walk ai...aj in G
satisfy 0 ≤ i < j ≤ n.

G is the input for Algorithm 2, which computes a causal tree as defined
in Definition 4. The causal tree represents the strict partial order in G. In the
context of Causality Checking, a causal tree is the part of a fault tree that
represents a single causality class. A causal tree consists of basic events that
represent the actions in a causality class, ordered-and-gates where a connected
event on the right side depends on every event on the left side, and and-gates
where the connected events are independent. The fault tree in Fig. 1(c) depicts
the basic events Car Ca, Car Cc, Train Ta and Train Tc. In the fault tree, an
ordered-and-gate specifies that Car Cc depends on Car Ca to occur first, and a
regular and-gate specifies that Train Ta and Car Cc are independent.

Definition 4 (Causal Tree). A causal tree CT is a connected DAG where a
vertex v is a basic event for an action, or is a gate. Any vertex v can have an
edge (v, g) to a gate g. A gate g is either an ordered-and-gate, where the vertices
v0...vj with edges (vi, g) are ordered by increasing index i from left to right, or
is an and-gate that does not impose an order of the vertices attached to it.

An action trace t = a0...an satisfies the action order imposed by a causal tree
CT when every vertex of CT is valid as defined in the following:

– A basic event v for an action a is valid by t when ∃0 ≤ i ≤ n.t[i] = a exists
and the validity of v at index i does not contradict the order of an ordered-
and-gate in CT .

– An order-and-gate og is valid when the vertices v0...vj become valid in the
order ∀0 ≤ i < i′ ≤ j.vi ≺ vi′ .

– An and-gate g is valid when every vertex v with an edge (v, g) to g is valid.

16 M. Kölbl and S. Leue

In order to compute a fault tree, we compute a causal tree for every causality
class and combine the obtained causal trees with an or-gate. For the railroad
example, the result of these computations is the fault tree depicted in Fig. 1(c). It
contains one causal tree which is the subgraph below and including the ordered-
and-gate, denoted by the and-gate symbol labeled with a triangle.

Algorithm 1 computes the strict partial order of the actions in an action trace set
and stores the resulting strict partial order relation in a DDAG. The functions
given in Listing 1 compute a DDAG with the strict partial order for a given action
trace set T built from an action set A. The function createPreconditionMap
preprocesses the action trace set and returns for any two actions a and b whether
the relation it(a) < it(b) holds in an action trace t∈ T. These relations are stored
in a map aM that returns for every action b in A the set of actions that occurred
in an action trace directly before b. The function iterates in lines 3 to 5 through
every action t[i] in every action trace t and adds the action t[i-1] occurring
before t[i] to the set of t[i] in aM.

The function createDAG obtains the map aM as an input and computes a
DDAG representing the strict partial order of a given action trace set T. The
algorithm uses aM as an input in line 8 to create a dependency matrix m of size
|A| × |A|. For any actions a and b, an entry (a, b) in m is true when it(a) < it(b)
holds in an action trace t of T . Hence, (a, b) is true when an action a is in aM[b].
Next, the algorithm ensures that the properties of a strict partial order hold for
the relation stored in m. In line 10, the algorithm computes the transitive closure
of m and stores it in m. In line 12, the algorithm removes symmetries in m by
setting (a, b) and (b, a) to false since, as we argue above, symmetrically ordered
actions cannot be dependent on each other. In line 13, the algorithm removes
reflexive transitions when for an action a the relation a ≺ a holds.

1 Map <Action , Set <Action >> aM;

2 function createPreconditionMap(Set <ActionTrace > T)

3 for ActionTrace t in T

4 for i: 1 ... t.length - 1

5 aM.get(t[i]). add(t[i-1]);

6

7 function createDAG(Map <Action , List <Action >> aM)

8 Matrix m = createDependencyMatrix(aM);

9 // transitive closure: a1 < a2 && a2 < a3 => a1<a3

10 m = ensureTransitivity(m);

11 // antisymmetric: a1<a2 && a2<a1 => independent(a1 , a2)

12 m = ensureAntisymmetricity(m);

13 m = removeReflexivity(m);

14 m = removeTransitiveDependencies(m);

15 return getDAG(m);

Listing 1. Pseudocode of Algorithm 1 to Compute DAG.

m now contains a strict partial order for T. In line 14, the algorithm removes
the transitive relations from m in order to compute a DDAG that contains only

An Algorithm to Compute a Strict Partial Ordering of Actions 17

direct dependencies. The algorithm removes transitive relations starting with an
action that has the most precondition actions and then iterating in decreasing
order over the other actions in A. In order to remove the transitive relations for
an action c, the algorithm checks for any actions b and a whether valid entries
(b, c) and (a, b) exists in m, in which case it sets the entry (a, c) to false.

In line 15, m is converted into a DDAG G. Every action is a vertex in G. For
any two actions a and b where the entry (a, b) is valid in m, the algorithm adds
an edge (a, b) to the DDAG. This DDAG is returned by the function getDAG.

Algorithm 2 uses the DDAG G returned by function getDAG as an input and
computes a causal tree. In lines 4 to 6 in Listing 2, the algorithm first iterates
through every action p in G where p is a precondition of another action a. It
stores this property of p using a Boolean variable Used for p in a map m. In lines
7 to 9, we search for every action that is not a precondition of another action.
These actions are independent of any other action. For every independent action
a, we call the recursive function createTree in line 10 in order to create a tree
that represents the dependencies of a. The function createTree creates a tree

1 Map <Action , (Tree , Used)> m;

2 Set <Tree > indep;

3 function createCausalTree (DDAG G)

4 for Action a in G

5 for p in a.getPre ()

6 m(p).Used = true

7 for Action a in G

8 if m(a).Used

9 continue;

10 indep.add(createTree(a));

11 return and(indep);

12

13 function createTree(Action a)

14 if(m(a).Tree)

15 return m(a).Tree;

16 Tree t, t’;

17 Tree e = createBasicEvent (a);

18 Set <Action > pL = a.getPre ();

19 if pL.size() = 0 then t = e;

20 else

21 if pL.size() = 1

22 t’ = createTree(pL[0]);

23 else // combine set of preconditions

24 t’ = and(foreach p in pL : createTree(p))

25 t = orderedAnd(t’, e); // preconditions before e

26 m.put(a, t);

27 return t;

Listing 2. Pseudocode of Algorithm 2 to Compute Causal Tree.

18 M. Kölbl and S. Leue

for the dependencies of an action a. In line 14, the algorithm checks whether the
tree of an action a was previously created. In case, this tree for a is stored in m,
the function createTree returns this tree. Otherwise, the algorithm creates the
tree for a and stores it in variable t. The algorithm first creates a basic event e
for a in line 17. In line 18, the algorithm gets the set pL of actions on which a
depends. In case a depends on no other action, e is the tree with the dependencies
of a and the algorithm stores e in t. In case pL contains only a single action
stored in pL[0], the algorithm creates the tree t’ with the dependencies for the
action in pL[0] in line 22. In case pL has several actions, the algorithm creates a
tree for every action in pL in line 24 and combines these trees with an and-gate
t’. g’ depicts the precondition actions for a, thus, the algorithm combines g’
and a in line 25 in this sequence with an ordered-and-gate. This ordered-and
gate is stored in t. t is stored in m for the action a in line 26 and in line 27
returned by the function. The function createTree is called in line 10 for every
independent action. The trees of these actions are stored in a set indep. After all
trees are created, they are combined by an and-gate in line 11 and this and-gate
is the causal tree that we wanted to compute.

It is possible to optimize the algorithm in the following way. An ordered-
and gate in the causal tree can be connected to another ordered-and gate. For
instance, when a1 occurs before a2 and a2 occurs before a3 then the presented
algorithm creates two ordered-and-gates instead of one with all three actions.
The implementation of line 22 and 25 in Listing 2 combines several ordered-and-
gates to a single one when possible and returns it.

Correctness of the Algorithms. We now prove that the presented algorithms to
compute a causal tree that depicts a strict partial order for an action trace set
T is correct with respect to completeness and soundness.

A DDAG G computed by Algorithm 1 is complete according to Definition 5
when every action trace in T corresponds to a valid ordering of the actions
according to the dependencies stored in G.

Definition 5 (Completeness DDAG Construction). Assume a DDAG G
computed for an action set T . G is complete when any action trace t ∈ T is an
action trace satisfying G.

Theorem 1 (Completeness of Algorithm 1). Algorithm 1 computes a com-
plete DDAG according to Definition 5.

Proof. Assume a DDAG G computed by Algorithm 1 for an action trace set T and
an action trace t in T that is not satisfying G. Since t is not satisfying G two actions
a and b exist that satisfy it(b) < it(a) but in G the dependency relation a ≺ b
holds. Since a ≺ b holds in G by construction of G another trace t′ in T exists
that satisfies it′(a) < it′(b). For t and t′, Algorithm 1 would store the relations
it(b) < it(a) and it′(a) < it′(b) in matrix m (line 8) and removes them (line 12)
afterwards since these relations contradict antisymmetricity. Thus, either a ≺ b
cannot hold in G or t �∈ T . Both cases contradict our assumptions. ��

An Algorithm to Compute a Strict Partial Ordering of Actions 19

A DDAG G computed by Algorithm 1 could be considered sound when any
action trace that satisfies G is in T . However, as we shall see, this definition of
soundness is too strict. Assume, a set with two action traces a, b, c and c, a, b.
Then, Algorithm 1 computes a strict partial order a ≺ b. This strict partial
order allows the action trace t3 = a, c, b but t3 is not in the original action trace
set. This observation was considered further in [Wei19]. For G, we therefore use a
different soundness criterium based on pairs of actions. Notice that in an action
trace that satisfies G, only the order of independent actions can be changed
while preserving its satisfaction of G. As mentioned above, two actions a and b
are independent when neither a ≺ b nor b ≺ a holds in G. a ≺ b does not
hold when a trace t with it(b) < it(a) exists, and b ≺ a does not hold when a
trace t′ with it′(a) < it′(b) exists. G is sound according to Definition 6 when for
any two independent action in G the action traces t and t′ exist.

Definition 6 (Soundness DDAG Construction). Assume a DDAG G com-
puted for an action set T . G is sound when for any two independent action a
and b in G, an action trace t ∈ T satisfying it(b) < it(a) exists and another
action trace t′ ∈ T satisfying it′(a) < it′(b) exists.

Theorem 2 (Soundness of the Algorithm 1). Algorithm 1 computes a
sound DDAG according to Definition 6.

Proof. Assume a DDAG G computed by Algorithm 1 for an action trace set T
and two actions a and b that are independent in G and a �= b. Two actions are
independent in G when no walk a...b and no walk b..a exists. By construction
of G, a walk a...b does not exist when a trace t with it(b) < it(a) and a walk
b...a does not exist when a trace t′ with it′(a) < it′(b) exists. We now show by
contradiction that the action traces t and t′ are in T .

In a first case, we assume that no action trace t exists that satisfies it(b) <
it(a). Thus, the relation a ≺ b is not removed in line 12 in Listing 1. In this
case, either a ≺̂ b and the algorithm creates an edge (a, b) (line 15) or actions
a1, ..., an with a ≺ a1 ≺ ... ≺ an ≺ b exists and the algorithm creates edges
(a, a1)(a1, a2) . . . (an, b) in G. Both, the single edge and the sequence of edges
represents a walk a...b. This walk contradicts the assumption that a and b are
independent.

In a second case, we assume that no action trace t′ exists that satisfies
it(b) < it(a). This case is equivalent to the first case since a and b are only
substituted with another. Thus, the reasoning that t′ has to exist is similar to
the argumentation for t.

We see that every case contradicts its assumption. Thus, when a and b are
independent then t and t′ have to exists. ��

We now discuss whether Algorithm 1 terminates. Algorithm 1 iterates over
actions and their relations. Since the number of action traces in T is finite, the
actions and the action relation are also finite. We conclude that Algorithm 1
terminates.

20 M. Kölbl and S. Leue

Assume that Algorithm 2 computes a causal tree CT for a DDAG G. Algo-
rithm 2 is sound when for any two actions a and b where a ≺ b holds in CT ,
a ≺ b holds in G, and the algorithm is complete when a ≺ b holds in G then
a ≺ b holds in CT . Remember that action b depends on a does not imply that
b directly depends on a, formally ¬∀a, b. a ≺ b ⇒ a ≺̂ b. In G, a ≺ b holds
when a walk a . . . b exists. In CT , the dependencies of actions are depicted by
ordered-and-gates. a ≺ b holds in CT when an ordered-and-gate gb with edges
(vx, gb) and (b, gb), where vx ≺ b, and a walk a...vxgb exist. Definition 7 ensures
that an action b depends on an action a in G iff b depends on a in CT .

Definition 7 (Correctness of Causal Tree Construction). Assume a
causal tree CT computed for a DDAG G with an action set A. CT is sound
when any two action a, b ∈ A that satisfy a ≺ b in CT also satisfy a ≺ b in
G. CT is complete when any two action a, b ∈ A that satisfy a ≺ b in G also
satisfy a ≺ b in CT . CT is correct when it is sound and complete.

Theorem 3 (Correctness of Algorithm 2). Algorithm 2 computes a correct
causal tree according to Definition 7.

Proof Assume a causal tree CT computed by the Algorithm 2 for a DDAG G,
and two actions a and b in G. In a first case ⇒, we assume that a ≺ b holds in
G and will show that a ≺ b holds in CT , and in a second case ⇐, we assume
that a ≺ b holds in CT and will show that a ≺ b holds in G. In line 25 of
Listing 2, an ordered-and-gate gb is created for b when b directly depends on at
least one other action in G. Thus, when b depends on another action, gb exists
and when gb exists, b depends on another action. By the construction of gb, b is
its most right vertex and so for any walk a..vxgb in CT , vx ≺ b holds.

⇒ We assume that a ≺ b holds in G but not in CT . Because a ≺ b holds in G,
a walk a0...an with a0 = a and an = b in G has to exist. This walk witnesses
that every action ai with 0 < i ≤ n has a precondition. Thus, Algorithm 2
creates an ordered-and-gate for every ai with i ≥ 1 (line 25 in Listing 2), and
for i > 1 either an edge (gi−1, gi) when ai has a single precondition (line 22),
or creates an and-gate g′

i and the edges (gi−1, g
′
i) and (g′

i, gi) (line 24). We see
a walk g1...gn has to exist in CT . Action a can also have a precondition then
similar to the other actions a walk ag0g1...gn exists in CT . Otherwise, a has
no precondition (line 19) and a walk ag1...gn exists. Since gn = gb both walks
ag0g1...gn and ag1...gn witness that a walk a..gb exists in CT . We conclude
that a ≺ b holds in CT . This contradicts the assumption that a ≺ b does
not hold in CT .

⇐ We assume that a ≺ b holds in CT . Thus, an ordered-and-gate gb with edge
(b, gb) and a walk a...gb exists in CT . We now construct a walk a...b in G.
In CT, an edge (a, g) is either an edge from a basic event to a gate or from
a gate to another gate. Hence, a is the only basic event in the walk a...gb
and we know that the other vertices g0, ..., gb are gates. Every gate gi in
g0...gb is an and-gate or an ordered-and-gate. By construction (line 25 and
17), every ordered-and-gate gi is created for an action ax in G and has an

An Algorithm to Compute a Strict Partial Ordering of Actions 21

edge (gi, ax) in CT . An and-gate gi is created (line 24) when ax has several
preconditions and depicts independence. We can remove every and-gate and
substitute every ordered-and-gate gi with its action ax in ag0...gb and result
in a walk aa1...b. Thus, we found a walk a...b in G that ensures a ≺ b in G.

Since both cases hold, we conclude that a ≺ b holds in G iff a ≺ b holds in
CT . ��

Algorithm 2 executes only finite loops over the actions in G in the function
createCausalTree and creates at most once a dependency tree for every action
in G. Since the actions in G are finite, Algorithm 2 will terminate.

Theorem 1 and Theorem 2 show that according to our correctness criteria,
Algorithm 1 computes a DDAG G with the dependencies contained in an action
trace set T . Theorem 3 shows that Algorithm 2 computes a causal tree CT
for G that depicts the action dependencies in G. In summary, a causal tree
CT computed by Algorithm 1 and Algorithm 2 correctly depicts the action
dependencies in T .

Complexity. In the following, we analyze the worst-case complexity of Algo-
rithm 1 and Algorithm 2.

The worst-case complexity of Algorithm 1 is determined by the size |T | of
the action trace set T and the size |A| of its alphabet A. Algorithm 1 has several
computation steps of different complexity. First, Algorithm 1 iterates over every
action trace in T and every action in an action trace (line 3–5), which has a
complexity in O(|A| · |T |). In the next computation step in line 8, a lookup is
executed for every tuple of two actions in A×A to create the dependency matrix
m. Thus, the complexity to create m is in O(|A|2). The worst-case-complexity to
compute the transitive closure is in O(|A|3) [OO73]. For every action in A,
irreflexivity is ensured in line 13 and this has a complexity in O(|A|). Next,
the transitive dependencies are removed in line 14. Therefore, the actions are
ordered by the number of their preconditions, which has a complexity in O(|A|2)
to count the number of preconditions, and a lookup happens for every triple of
three different actions in A × A × A which results in a complexity of O(|A|3).
In summary, the most complex computation steps are in O(|A|3 + |A| · |T |) and
this is the worst-case complexity of Algorithm 1.

Algorithm 2 first determines the independent actions in G in O(|A|2). After-
wards, function CreateTree is called for every action a in G to depict the depen-
dencies of a. Notice that a depends on at most |A|−1 other actions. For every a,
CreateTree creates at most one and-gate (line 24), one ordered-and-gate (line
25), and |A| + 1 edges. One edge starts in every action on which a depends
and one edge starts in every gate that is created. This computation to depict
the dependencies of a is executed at most once since the result is stored in the
map m. We see, CreateTree is called |A| times where every call is in O(|A|))
which results in an overall worst-case complexity in O(|A|2). In summary, the
worst-case-complexity of Algorithm 2 is in O(|A|2).

22 M. Kölbl and S. Leue

Table 1. Quantitative experimental results.

Model States Transitions #Causality
Classes

#Traces #Actions Time Memory

Railroad 92 231 1 3 4 4ms 0.605MB

Railroad gate 143 373 4 20 10 28ms 2.438MB

Airbag 3,456 14,257 5 252 9 28ms 2.622MB

TrainOdometer 4,032 19,624 3 5 5 34ms 2.590MB

FFU ECU 9,728 30,209 19 80 6 40ms 9.660MB

FFU Star 207,052 964,695 16 80 6 27ms 17.038MB

ASR 680,897 3,745,635 2 61,920 29 4ms 14.864MB

4 Case Study

We implemented Algorithm 1 and Algorithm 2 in the tool QuantUM. We quali-
tatively evaluate the algorithms in that we assess whether they can jointly ana-
lyze the strict partial order in a given set of action traces. In the quantitative
assessment, we measure the computing resources needed by the algorithms when
analyzing a set of models. All experiments were performed on a computer with
an i7-6700K CPU (4.00 GHz), 60 GB of RAM and a Linux operation system.

Qualitative Results and Interpretation. The resulting fault tree of the running
example is given in Fig. 1(c). In [KL19], we analyzed a slightly different model of
the railroad crossing example which includes the functionality of a gate. Without
the use of the algorithms proposed in the current paper, QuantUM computes the
fault tree in Fig. 2 in [KL19] that does not depict the order of the actions. When
using the proposed algorithms, QuantUM computes the fault tree in Fig. 3. It
depicts the order of the actions in a causality class as we defined it above. Both
fault trees contain the causality classes Class0 to Class3. In both fault trees, all
actions of Class0 are contained in Class2 and all actions of Class1 are contained
in Class3. It is not clear from the fault tree in [KL19] why Class2 and Class3
contain minimal counterexamples which would contradict the conditions of a
cause [KL19]. In the fault tree in Fig. 3, we see that in Class0 and Class2 the
gate has a failure caused by event Gate fail. In Class0, the gate is stuck open
and in Class2 the gate first closes and then opens in error. Thus, both times the
train and the car can be in the crossing at the same time, and therefore incur
an accident. In the fault tree in Fig. 3, we see the difference between Class0
and Class2 in the order of the actions. This fault tree also depicts the difference
between Class1 and Class3. In Class1, the car crosses the railroad and meanwhile,
the gate closes and the train enters the crossing. In Class3, two trains enter the
crossing subsequently, but the signal gate open to open the gate is late. Thus,
the gate opens when the second train is already in the crossing. The car can then
enter, leading to the hazard. In Class1 and Class3 the system behaves without a
failure of the system but the order of the actions causes the hazard. We conclude

An Algorithm to Compute a Strict Partial Ordering of Actions 23

Fig. 2. Time to compute a causal tree in relation to #Actions in a causality class.

that the ordering of the actions helps to understand causes for the occurrence
of the hazards.

Quantitative Results and Interpretation. We now want to analyze the perfor-
mance of the causal tree computation by Algorithm 1 and Algorithm 2. There-
fore, we applied the algorithms to several models of different size, in terms of the
number of states and transitions that they encompass, taken from [Lei15]. The
quantitative results are given in Table 1. The complexity of a model is given in
terms of the number of its states and transitions. For every model, we indicate
the number of causality classes and the maximal number of traces and actions in
one of the causality classes. The columns Time and Memory indicate the max-
imal computation time and memory consumption that the analysis required in
order to compute a fault tree of a model including the action order as per the
proposed algorithms.

For every model, QuantUM produces a fault tree where the causality classes
are depicted with the strict partial order of the actions. We had a detailed look
at all the fault trees and according to this manual inspection, every fault tree
depicts the strict partial orders of its causality classes.

The diagram in Fig. 2 gives the time in microseconds (μs) that is necessary to
compute a causal tree for every causality class in every model. For a model with
several causality classes, the diagram depicts several data-points. The worst-case
complexity to compute a causality class is the combined worst-case complexity
of Algorithm 1 and Algorithm 2 and is in O(|A|3). We let IBM SPSS [IBM20]
analyzed the cubic relation between the time to compute a causality class and
the number of actions and IBM SPSS automatically fits the function 31.583 +

24 M. Kölbl and S. Leue

Fig. 3. Fault tree of railroad crossing with gate with action order

An Algorithm to Compute a Strict Partial Ordering of Actions 25

13.583x − 1.057x2 + 0.057x3 which is depicted as a black in line in the diagram.
The distance of the points to the function can be measured by the coefficient of
determination R2 which is the quadrate of the correlation. The value range of
R2 is [0, 1] where R2 = 1 would be a perfect fit. The function in the diagram
has a R2 = 0.985. This function fits nearly perfectly to the data points, which
supports that the runtime of the proposed order analysis has a cubic complexity.

While the time to compute a causal tree is given in Fig. 2 in microseconds,
the overall time to compute a fault tree is in Table 1 in the area of milliseconds.
We wondered about this gap of factor 100 and detected that Java, which was
used for the implementation of QuantUM and the proposed algorithms, has an
offset time in the area of milliseconds to load and create a class when the class
is instantiated the first time. This implies that the overall computation times
given in Table 1 consists primarily of the time for loading classes and not of the
time for computing the causal trees.

Our proposed algorithms computed the strict partial orders within at most
40 ms and at most 17.038 MB of memory. This seems reasonable and is acceptable
for QuantUM since a causality class in the analyzed models contains up to 61, 920
traces of 29 actions.

5 Conclusion

In this work, we present an algorithm that computes a strict partial order of the
actions occurring in an action traces set and represents this strict partial order as
a fault tree. We implemented the algorithm in the tool QuantUM and computed
fault trees for several models. We showed that a representation of the action order
can be computed using a reasonable amount of computing resources, and that
the computed results provide helpful insight into the causes for a reachability
property violation.

In future research, we plan to further explore the considerations in [Wei19]
and to integrate the rewrite-logic based approach pursued in that work with the
algorithm described here. Another direction of research is to extend causality
checking as well as the computation of event orders in causality classes to the
violation of general ω−regular temporal properties.

References

[BK08] Baier, C., Katoen, J.-P.: Principles of Model Checking. MIT Press, Cambridge
(2008)

[CLF05] Chartrand, G., Lesniak-Foster, L.: Graphs & Digraphs, 4th edn. Chapman
and Hall/CRC, Boca Raton [u.a.] (2005)

[DR95] Diekert, V., Rozenberg, G. (eds.): The Book of Traces. World Scientific, Sin-
gapore (1995)

[ES13] Eppstein, D., Simons, J.A.: Confluent Hasse diagrams. J. Graph Algorithms
Appl. 17(7), 689–710 (2013)

[Hol04] Holzmann, G.J.: The SPIN Model Checker - Primer and Reference Manual.
Addison-Wesley, Boston (2004)

26 M. Kölbl and S. Leue

[IBM20] IBM Corp.: IBM SPSS Statistics for Windows, Version 27 (2020). https://
www.ibm.com/analytics/spss-statistics-software

[KL19] Kölbl, M., Leue, S.: An efficient algorithm for computing causal trace sets in
causality checking. In: Chen, Y.-F., Cheng, C.-H., Esparza, J. (eds.) ATVA
2019. LNCS, vol. 11781, pp. 171–186. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-31784-3 10

[Lam78] Lamport, L.: Time, clocks, and the ordering of events in a distributed system.
Commun. ACM 21(7), 558–565 (1978)

[Lei15] Leitner-Fischer, F.: Causality checking of safety-critical software and systems.
Ph.D. thesis, University of Konstanz, Germany (2015)

[Lew01] Lewis, D.: Counterfactuals. Wiley-Blackwell, London (2001)
[LFL11] Leitner-Fischer, F., Leue, S.: Quantum: quantitative safety analysis of UML

models. In: Massink, M., Norman, G. (eds.) QAPL, volume 57 of EPTCS,
pp. 16–30 (2011)

[LL13] Leitner-Fischer, F., Leue, S.: Causality checking for complex system models.
In: Giacobazzi, R., Berdine, J., Mastroeni, I. (eds.) VMCAI 2013. LNCS, vol.
7737, pp. 248–267. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-35873-9 16

[Obj17] Object Management Group: OMG Systems Modeling Language, Specification
1.5 (2017). http://www.omg.org/spec/SysML

[OO73] O’Neil, P.E., O’Neil, E.J.: A fast expected time algorithm for Boolean matrix
multiplication and transitive closure. Inf. Control 22(2), 132–138 (1973)

[SRH18] Steffen, B., Rüthing, O., Huth, M.: Mathematical Foundations of Advanced
Informatics, Volume 1: Inductive Approaches. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-68397-3

[Wei19] Weiser, J.: Derivation of a minimal representation of incomplete partial orders
from event sequences. Master’s thesis, University of Konstanz (2019)

https://www.ibm.com/analytics/spss-statistics-software
https://www.ibm.com/analytics/spss-statistics-software
https://doi.org/10.1007/978-3-030-31784-3_10
https://doi.org/10.1007/978-3-030-31784-3_10
https://doi.org/10.1007/978-3-642-35873-9_16
https://doi.org/10.1007/978-3-642-35873-9_16
http://www.omg.org/spec/SysML
https://doi.org/10.1007/978-3-319-68397-3

TraceVis: Towards Visualization for Deep
Statistical Model Checking

Timo P. Gros2(B), David Groß1(B), Stefan Gumhold1(B), Jörg Hoffmann2(B),
Michaela Klauck2(B), and Marcel Steinmetz2(B)

1 Technical University Dresden, Dresden, Germany
{david.gross1,stefan.gumhold}@tu-dresden.de

2 Saarland University, Saarland Informatics Campus, Saarbrücken, Germany
{timopgros,hoffmann,klauck,steinmetz}@cs.uni-saarland.de

Abstract. With the proliferation of neural networks (NN), the need to
analyze, and ideally verify, their behavior becomes more and more press-
ing. Significant progress has been made in the analysis of individual NN
decision episodes, but the verification of NNs as part of larger systems
remains a grand challenge. Deep statistical model checking (DSMC) is
a recent approach addressing that challenge in the context of Markov
decision processes (MDP) where a NN represents a policy taking action
decisions. The NN determinizes the MDP, resulting in a Markov chain
which is analyzed by statistical model checking. Initial results in a Race-
track case study (a simple abstract encoding of driving control) suggest
that such a DSMC analysis can be useful for quality assurance in system
approval or certification.

Here we explore the use of visualization to support DSMC users
(human analysts, domain engineers). We implement an interactive visu-
alization tool, TraceVis, for the Racetrack case study. The tool allows to
explore crash probabilities into particular wall segments as a function of
start position and velocity. It furthermore supports the in-depth exam-
ination of the policy traces generated by DSMC, in aggregate form as
well as individually. This demonstrates how visualization can foster the
effective analysis of DSMC results, and it forms a first step in combining
model checking and visualization in the analysis of NN behavior.

Keywords: Statistical Model Checking · Neural Networks ·
Visualization

1 Introduction

Neural networks (NN), in particular deep neural networks, have led to astounding
advances in many areas of computer science [21,26,36]. NNs are more and more
at the core of intelligent systems, taking decisions traditionally taken by humans.

Authors are listed alphabetically.

c© Springer Nature Switzerland AG 2021
T. Margaria and B. Steffen (Eds.): ISoLA 2020, LNCS 12479, pp. 27–46, 2021.
https://doi.org/10.1007/978-3-030-83723-5_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-83723-5_3&domain=pdf
https://doi.org/10.1007/978-3-030-83723-5_3

28 T. P. Gros et al.

For such systems, the need to analyze, and ideally verify, NN behavior
becomes more and more pressing. This constitutes a grand challenge as it
combines (1) the complexity of analyzing NN function representations with
(2) the state space explosion problem (analyzing large system behavior state
spaces). Remarkable progress is being made on (1), through SAT modulo the-
ories [8,23,25], abstract interpretation [12,29], and quantitative analysis [6,42].
This pertains to the verification of individual NN decision episodes, i.e., the
behavior of a single input/output function call. Yet the verification of decision-
taking NNs in intelligent systems requires the analysis of all possible situations
that may result from sequences of NN decisions.

Many intelligent systems using NN, e.g., the control of various forms of cyber-
physical systems, can be cast as discrete decision-making in the presence of
random phenomena. Hence a natural framework within which to start address-
ing the problem are Markov decision processes [35] (MDP), and specifically
the model families considered in probabilistic model checking [28]. Assume a
decision-making problem for which a NN has been trained, and assume that the
problem can be formally cast as a MDP. Then we may use this MDP as a context
to study properties of the NN. The NN is perceived as an action policy in the
MDP, determinizing the non-deterministic choices. This yields a Markov chain
which can be analyzed by probabilistic model checking techniques.

Recent work [14], henceforth referred to as DSMC20, proposed so-called deep
statistical model checking (DSMC) as a scalable approach of this kind. The idea
is to apply statistical model checking [20,43] to the Markov chain resulting from
the use of a NN policy in an MDP. DSMC20 realize this idea in the context of
MDPs represented in Jani [5], a language interfacing with leading probabilistic
model checking tools. They implement a generic connection between NNs and
the state-of-the-art statistical model checker modes [2,4], part of The Modest
Toolset [19].

DSMC20 perform practical experiments in a Racetrack case study (adopted
from benchmarks in AI autonomous decision-making [1,34]), where a vehicle
needs to choose accelerate/decelerate actions on a discrete map so as to reach
a goal line without bumping into a wall. We adopt this case study here. While
the problem is simple, it is suited as a starting point in the grand challenge
of intelligent system verification. It can be readily extended to include traffic,
sensing, fuel consumption, etc., ultimately up to models reflecting important
challenges in autonomous driving.

DSMC20 propose DSMC as a tool for quality assurance by human analysts or
domain engineers in system approval or certification. Clearly, given the complexity
of problem parameter spaces and the need to understand what is going wrong and
how, visualization methods are potentially very useful for that purpose. DSMC20
illustrate this with simple heat maps localizing safety issues. In the present paper,
we begin to address the full scope of this visualization problem.

We design a new highly immersive visual exploration tool, that we baptize
TraceVis, for the data space in DSMC on Racetrack. TraceVis exploits 3D visual-
ization for mapping probabilities to height, stacking of trajectories and mapping
of time. We develop a hierarchical navigation concept to avoid multiple views,

TraceVis: Towards Visualization for Deep Statistical Model Checking 29

such that all visualizations are integrated into a single 3D scene (which will
ease a future extension to a virtual reality setup). Besides TraceVis itself, our
contributions are:

– An interactive overview and context visualization of the goal and crash prob-
abilities computed by DSMC, where we can inspect for all start positions p of
the track either a single start velocity v or all start velocities at the same time.

– An aggregate view of all trajectories for a given start configuration (p, v)
that visualizes the velocity distribution over the whole track in a concise and
comprehensible way. Optionally, we allow disaggregation of time providing
more details into the data space.

– An efficient hierarchical navigation approach, from an overview over the whole
track to a trajectory ensemble for a selected start configuration, and over two
levels of trajectory clusters down to individual trajectories.

– A replay mode that animates policy traces, which can be used in the stacked
as well as in the aggregate trajectory visualization mode.

– A case study illustrating the analysis power of the new visual exploration tool
in Racetrack.

Our endeavor differs from previous work on visualization techniques for NNs (e.g.
[22,40,44]) in its focus on DSMC and Racetrack. We draw on established tech-
niques in visualization, in particular in ensemble visualization (e.g. [9,31,38]).

Overall, we initiate a connection between DSMC and visualization research,
laying the groundwork for long-term synergy between model checking and visu-
alization in this context. In particular, we believe that some of the key ideas in
TraceVis will carry over to more faithful representations of autonomous driv-
ing, and to other domains involving cyber-physical systems where position and
velocity in physical space are key dimensions.

The paper is organized as follows. Section 2 discusses related work. Section 3
briefly summarizes DSMC20 as relevant to understand our work and contribu-
tion. Section 4 outlines our data space and visualization concept, followed by
Sects. 5 and 6 which describe our visualization techniques for crash probabili-
ties and policy traces respectively. Section 7 exemplifies the use of TraceVis for
DSMC result analysis in Racetrack. Section 8 closes the paper with an outlook
on future challenges.

A video demonstrating TraceVis as well as its source code is available at DOI
10.5281/zenodo.3961196 [13].

2 Related Work

In the context of explainable AI research, a lot of recent research has been
devoted to interactive visualization of NN [22]. Goals for such techniques include
interpretability, explainability, NN debugging, as well as model comparison and
selection. Most of the work has been dedicated to NNs for image analysis tasks.
Only few recent works address the debugging and interpretation of deep networks
used in reinforcement learning [40,44]. These are dedicated to Deep Q-Learning

10.5281/zenodo.3961196
https://doi.org/10.5281/zenodo.3961196

30 T. P. Gros et al.

of agents playing Atari Retro Games, where high state-space dimensionality is
the core problem addressed. In [44] the authors embed the state space based on
the last layer of the NN with t-SNE into two dimensions and colorize the 2D
points with handcrafted features. Their main contribution is an analysis of the
MDP through spacetime clustering of the state space. The resulting hierarchical
decomposition into skills allows for a better interpretation of the strategy of the
learned agents. Wang et al. [40] developed a visual analysis tool with multiple
coordinated views supporting a hierarchical navigation from an overview of the
learning process down to individual traces of gameplays. Their main contribution
is a scalable visualization of these traces that visualizes the position of the paddle
together with the actions taken.

One of our contributions pertains to the visual analysis of large collections of
traces. So our work relates to ensemble visualization, which is an active research
area. Wang et al. [41] survey sixty recent ensemble visualization papers and
found that all visualization techniques are based on aggregation over ensemble
members before the visualization, and on composition of ensemble members
after the visualization. For the case of trace or trajectory ensembles, prominent
aggregation techniques generalize 1D boxplots [39]. Mirzargar et al. [31] use the
concept of data depth to define a band which encloses a given percentile of the
curves in a curve ensemble. Due to the high computational complexity of curve
boxplots, Etienne et al. [9] propose trajectory box plots, which are based on per
frame oriented boxes that are fast to compute but introduce more visual clutter.
With respect to composition of 2D trajectory ensembles, the stacking of the
trajectories in 3D has shown to be a versatile solution [38]. Here, we develop a
new aggregation technique specifically designed for Racetrack, and also support
the stacking of trajectory ensembles.

3 Background: DSMC20 and Racetrack

This paper is a direct follow-up on DSMC20 [14], so we give the background
in terms of a summary of that work, as relevant to understand our study and
contribution.

Deep Statistical Model Checking (DSMC). The models considered in DSMC20,
and here, are discrete-state MDPs. For any nonempty set S let D(S) denote the
set of probability distributions over S.

Definition 1 (Markov Decision Process). A Markov Decision Process
(MDP) is a tuple M = 〈S,A, T , s0〉 consisting of a finite set of states S, a finite
set of actions A, a partial transition probability function T : S × A � D(S),
and an initial state s0 ∈ S. We say that action a ∈ A is applicable in state
s ∈ S if T (s, a) is defined. We denote by A(s) ⊆ A the set of actions applicable
in s. We assume that A(s) is nonempty for each s (which is no restriction).

An action policy resolves the non-deterministic choices in a state, determining
which applicable action to apply as a function of the state history so far. We
represent histories as finite sequences of states, hence elements of S+. We use
last(w) to denote the last state in w ∈ S+.

TraceVis: Towards Visualization for Deep Statistical Model Checking 31

Definition 2 (Action Policy). A (deterministic, history-dependent) action
policy is a function σ : S+ → A such that ∀w ∈ S+ : σ(w) ∈ A(last(w)).

An MDP together with an action policy defines a Markov chain:

Definition 3 (Markov Chain). A Markov Chain is a tuple C = 〈S, T , s0〉
consisting of a set of states S, a transition probability function T : S → D(S)
and an initial state s0 ∈ S.

Given an MDP M = 〈S,A, T , s0〉, an action policy σ : S+ → A induces a
countable-state Markov chain 〈S+, T ′, s0〉 over state histories in the obvious way:
For any w ∈ S+ with T (last(w), σ(w)) = μ, set T ′(w) = ρ where ρ(ws) = μ(s)
for all s ∈ S.

The idea in DSMC is to analyze this Markov chain for an action policy
represented as a neural network (NN). The NN is assumed to be trained exter-
nally prior to the DSMC analysis, but is assumed to operate on the same state
space as a given MDP M (i.e., the NN’s inputs are states and its outputs are
actions). The NN policy σ together with M then induces a Markov chain C as
described. Statistical model checking is a promising approach to analyze C, as it
merely requires to evaluate the NN on input states, otherwise treating it like a
blackbox. DSMC20 implemented this approach for modes [4] in The Modest
Toolset [19].

Observe that, for DSMC to work in this form, the MDP and the NN need to
operate on the same level of system abstraction. This is a simplification (relative
to, e.g., NNs whose input are camera images) that renders the model checking
problem crisp. Another subtlety is that the NN may return inapplicable actions
(giving guarantees on NN outputs is notoriously hard), and in that sense may
not actually fit the definition of an action policy. DSMC20 handle this through
a more permissive definition of action oracle, transitioning to a new stalled state
in the induced Markov chain C if the NN oracle’s chosen action is inapplicable.

Racetrack Benchmark and Jani Model. Racetrack is originally a pen and paper
game [10]. It was adopted as a benchmark for MDP algorithms in the AI com-
munity [1,3,15,30,33,34]. The track is a two-dimensional grid, where each cell of
the grid can be a starting position, a goal position, a free position, or a wall. The
vehicle starts with velocity 0 at any of the starting positions, and the objective
is to reach the goal as fast as possible without crashing into a wall. The actions
modify the velocity vector by one unit in the eight discrete directions; one can
also choose to keep the current velocity. We consider noise emulating slippery
road conditions: actions may fail with a given probability, in which case the
velocity remains unchanged. Here we use two Racetrack benchmarks, i.e., track
shapes, originally introduced by Barto et al. [1]. They are illustrated in Fig. 1.

32 T. P. Gros et al.

Fig. 1. The maps of our Racetrack benchmarks: Barto-small (left) and Barto-big
(right). Starting positions green, goal positions red. (Color figure online)

DSMC20 encode these Racetrack benchmarks in Jani [5,24]. Many tools offer
direct support for Jani, including ePMC, Storm and The Modest Toolset
[7,18,19]; an automatic translation from Jani to Prism [27] is available too.

DSMC20’s Jani model represents the grid as a two-dimensional array. Vehi-
cle movements and collision checks are represented by separate automata that
synchronize using shared actions. This is straightforward except for the collision
checks, i.e., checking whether the vehicle’s move – represented through hori-
zontal and vertical speed (dx, dy) – hits a wall. This is done by generating a
(discrete approximation of) a straight line from the vehicle position (x, y) to
(x + dx, y + dy), and checking whether any position on that line contains a wall
segment.

Neural Networks. NNs consist of neurons that apply a non-linear function to a
weighted sum of their inputs. DSMC20 use feed-forward NNs, where neurons
are arranged in a sequence from an input layer via several hidden layers to an
output layer. So-called “deep” neural networks consist of many layers. Feed-
forward NNs are comparatively simple, yet are wide-spread [11] (and anyway
our visualization techniques are independent of the NN architecture).

To learn NN action policies in Racetrack, DSMC20 employ deep Q-learning
[32], where the NN is trained by iterative execution and refinement steps. Each
step executes the current policy until a terminal state is reached (goal or crash),
and updates the NN weights using gradient descent. NNs are learnt for a specific
map (cf. Fig. 1). The NNs have two hidden layers each of size 64.

Case Study and Heat Maps. DSMC20 use Racetrack as a case study to highlight
the use of DSMC for quality assurance. They use simple heat maps for a lim-
ited visualization of the DSMC outcome. Here we advance way beyond this, to
interactive visualization of a much richer data space. To give the comparison to
DSMC20, in what follows we briefly show a representative result from their case
study.

TraceVis: Towards Visualization for Deep Statistical Model Checking 33

< 0.002

< 0.01

< 0.03

< 0.1

< 0.25

< 0.5

< 0.75

≥ 0.75

Fig. 2. DSMC20 heat maps, showing aggregated crash probability as a function of
start position when fixing start velocity to 0. (Color figure online)

Figure 2 shows aggregated crash probability – the probability of crashing into
any wall – as a function of start position when fixing start velocity to 0. The
heat maps use a simple color scheme as indicated in the figure. From this simple
visualization, quality assurance analysts can conclude that the NN policies are
fairly safe, to different degrees depending on the map region. What the heat
maps don’t show is, for example, how the shown probabilities depend on initial
velocity, where unsuccessful policy runs tend to crash into the wall, and to what
degree such crashes are due to noise or bad policy decisions. We show in what
follows how to make all these details accessible through interactive visualization
methods.

4 Visualization Concept

Before we go into the details of our visualization techniques, let us outline our
concept in terms of the data space we visualize, and the principles behind our
visualization approach.

Data Collection. We collect extensive information about the to-be-analyzed
action policy from modes, allowing to analyze policy behavior as a function
of start position p and start velocity v, and showing not only whether the policy
succeeded or crashed but also where. To this end, we run separate model checks
with modes for every pair (v, p), with properties representing every possible ter-
minal (goal/crash) position. The number of runs is thus quadratic in map size,
with a constant factor of 25 for the start velocities (in {−2,−1, 0, 1, 2}2). We
ignore start velocities that directly lead to a crash in the first step.

We furthermore collect all policy traces generated by modes during DSMC,
with detailed per-step information: position, velocity, action taken by policy, and
a Boolean indicating whether the action succeeded or failed (i.e., whether noise
occurred). In Barto-big, to keep computation times reasonable, we generated
this data only for 7 of the 25 possible start velocities.

34 T. P. Gros et al.

We want to highlight that the information about the policies we extracted
from modes are not specific to DSMC. We only used state and action information
of the MDP under investigation. These trace information can be obtained with
every statistical model checker independent of the mechanism used to resolve
nondeterminism which in our case was DSMC.

Computation and export of this data for Barto-small/Barto-big took 17/20 h
on 25 virtual machines having an AMD EPYC Processor at approximately
2.5 GHz using Ubuntu 18.04 with 8vCPUs and 16 GB RAM. The data com-
prises 5473/3826 start configurations consuming 1.25 MB/1.18 MB for probabil-
ities and 15.3 GB/13.4 GB for traces/reduced traces on disk, in a concise text
file format organized in two folders for probabilities and traces with one file
per start configuration. The largest trace file has 13 MB on disk and contains
18270 traces of average/max length 44/65. The data is publicly available at DOI
10.5281/zenodo.3961196 [13].

Visualization Principles and Rationales. Neither the probabilities nor the traces
can be visualized in their entirety in a single visualization. We therefore opted
for the development of a highly interactive visual analysis tool, TraceVis. As
Racetrack is 2-dimensional, we chose a 3-dimensional visualization space to be
able to exploit the 3rd dimension to map additional features. We implemented
TraceVis as a plugin to the CGV-Framework [16], which allows rapid prototyping
of interactive 3D tools in C++ with OpenGL. The CGV-Framework supports
efficient high-quality rendering of large amounts of primitive shapes like boxes,
spheres and rounded cones based on the concept of GPU based raycasting [17,
37]. All primitives allow color mapping.

Figure 3 illustrates the design of TraceVis. For each track position we render
a box whose type is color coded: start/goal locations in green/blue, walls in red,
other track locations in light gray or color-mapped, and an additional row of
dark grey boundary cells added around the track.

To keep the tool as clear as possible, we completely abstained from multiple
views, incorporating all visualizations and interactions within a single 3D scene
built on top of the Racetrack map. The view onto the 3D scene can be adjusted
with the mouse based on an adjustable focus point with the typical navigation
commands for translate, zoom and orbiting around the focus. Mode switches
are used to navigate through different visualizations, and mouse pointer and
wheel are used for direct selection and ergonomic configuration. All selections
and configurations can also be adjusted through a classical user interface, which
shows the current status of TraceVis and serves as manual by providing help
on mouse interaction and hotkeys through tooltips. For fast navigation and to
foster comprehension, an important design goal was the support for high frame
rates even when visualizing a large number of traces at the same time.

10.5281/zenodo.3961196
https://doi.org/10.5281/zenodo.3961196

TraceVis: Towards Visualization for Deep Statistical Model Checking 35

Fig. 3. Screenshot to illustrate the design of TraceVis. Highly interactive 3D view,
accompanied by classical UI showing current tool state and providing tooltip based
help. (Color figure online)

In accordance to Schneiderman’s mantra – “Overview first, zoom and filter,
then details-on-demand” – we designed a hierarchical navigation scheme. A heat-
map visualization similar to the one in DSMC20 serves as overview over all
start configurations. The user can select individual start configurations to view
crash and goal probabilities (as described in Sect. 5). The user can dive into
more detail by switching to trace visualization mode where the corresponding
trace file is read on the fly; the traces can further be navigated from main
clusters down to single traces (as described in Sect. 6). To navigate to a different
start configuration, the user first needs to navigate back up the hierarchy to the
probability visualization mode. This allows for the reuse of the same hotkeys on
different hierarchy levels, reducing the number of hotkeys to be learned for fast
interaction.

5 Visualizing Probabilities

We next describe our techniques for visualizing crash/goal probabilities as a
function of start position p and start velocity v.

Start Configuration Selector. DSMC20 provides for each start configuration (p, v)
and each wall, boundary and goal location q the probability that traces from
(p, v) end in q. Visualizing the entire probability mapping P (p, v, q) in a single
image or 3D-scene seems futile. Our approach is to instead leverage interac-
tive visualization, based on selection and aggregation of arguments to P (p, v, q).
TraceVis supports selection of a single p and/or a single v at a time. We indicate
these user-fixed parameters notationally as p̂ and v̂.

36 T. P. Gros et al.

The user can interactively select p̂ by hovering with the mouse over the
track while pressing Shift. v̂ can be selected by additionally holding the Ctrl
modifier key and hovering to neighboring locations of p̂. p̂ is visualized by a
yellow box and v̂ by a bent arrow with a direction dependent color scale as
shown in Fig. 4 (left). The user can either focus on v̂, or on all possible velocities
v for which probabilities have been precomputed. The latter all velocity mode
is auto-selected by hovering over the track with the Ctrl modifier pressed as
illustrated in Fig. 4 (right).

Fig. 4. Start configuration selection and different probability visualization approaches.
Left: selected start configuration (p̂, v̂) shown as yellow box and pink arrow. Summed
crash probabilities

∑
q̃ P (p, v̂, q̃) mapped to color of valid track locations p. Pink bar

charts show crash and goal probabilities for start configuration (p̂, v̂). Middle: Same as
left, with additional mapping of summed crash probabilities to height of track boxes.
Right: All velocity mode shows summed probabilities aggregated over all start velocities
– here the maximum of the summed crash probabilities. Colored charts show crash and
goal probabilities for all start configurations (p̂, v). (Color figure online)

Heat Map Overview. We extend the DSMC20 heat map overview by the option
to adjust the height of the track boxes, as shown in Fig. 4 (middle). The user
can select the probability type with hotkeys. In all velocity mode the summed
probabilities are aggregated per start location over all start velocities with one of
the user-selectable aggregation operators min, max or range = min − max. In this
way we can visualize

∑
q̃ P (p, v̂, q̃) and aggṽ

∑
q̃ P (p, ṽ, q̃), where agg denotes the

selected aggregation operator. These visualizations can be used as a guidance to
finding start configurations of interest and continuing further investigation from
there.

Bar Chart Details. While the heat maps allow to efficiently determine start
positions with a high rate of crashing, they do not show the crash positions q.
TraceVis supports the latter through track boxes in the form of bar charts, visible
e.g. in Fig. 4 (left) in the back on the left-hand side (pink bar). The bar heights
indicate the probability of crashing/reaching the goal, thus visualizing P (p̂, v̂, q).
In all velocity mode, an individual bar is included for each possible start velocity,
i.e. we visualize P (p̂, v, q). To this end, we use the visual metaphor of spatial and
color coding: the thin bars have the same color and positional offset as the start
velocity vectors, as can be seen in Fig. 4 (right).

TraceVis: Towards Visualization for Deep Statistical Model Checking 37

6 Visualizing Policy Traces

Once a start configuration (p̂, v̂) of interest is found, a natural means to investi-
gate further is to inspect the actual policy traces generated by DSMC starting
from (p̂, v̂). TraceVis supports this in depth, through the techniques we describe
next.

Trace Visualization Modes. To initiate trace inspection, the user presses the
Enter key. TraceVis reads the trace file, and by default filters out duplicates of
the traces while keeping track of the number of duplicates per trace. Figure 5
illustrates our three distinct modes to visualize traces: Stacked, spatial and space-
time.

Fig. 5. Comparison of different trace rendering modes for a start configuration with
17530 traces of which 2856 remain after duplicate filtering. Left: stacked rendering of
2856 traces, sorted and color coded by end location. Top right: spatial aggregation
showing segments as arcs with appearance counts mapped to height and luminance.
Bottom right: spacetime mode disaggregates segments over time, mapping time to
height. (Color figure online)

Traces are visualized as colored 3D tubes or, in the case of an aggregated
view, bent arrows. While the direction of traces is towards the goal positions
in general, there are exceptions (e.g. when the agent needs to turn around first
given a particular start velocity). Using tubes alone is not sufficient to show the
direction of movement, hence we map an arrow texture onto the tubes.

Stacked Trace Visualization. In stacked mode, all traces that were calculated
for a specific start configuration are shown stacked vertically above the track.
Traces are sorted by their end location, and are arranged into two main clusters:

38 T. P. Gros et al.

one for traces that end at a goal position and one for those that crash. A sub-
cluster is formed for each end position. As shown in Fig. 5 (left), the goal (crash)
clusters are colored with a blue to cyan (red to orange) color scale. Stacking
in the order of the sub clusters and with cluster based coloring reduces visual
cluttering significantly. The stacking offset in z direction can be adjusted with
the mouse wheel.

Spatial Aggregation. Given the number of traces, simply visualizing the set of
all traces is often not helpful. We design a more comprehensible visualization in
terms of the velocity distribution over the track. To this end, we leverage the
discrete nature of the underlying MDP, aggregating over discrete time and space.
Specifically, we consider the possible move segments that action applications
result in on the map. Each segment is defined by a start position ps and end
position pe. Multiple segments of different traces share the same ps and pe.
We can therefore compute a segment histogram by counting, for each segment
(ps, pe), the number of appearances in the DSMC traces.

In the spatial mode shown in Fig. 5 (top right) this histogram is visualized
by mapping the appearance counts to bent arcs with height proportional to
the appearance count. Additionally, the appearance count is mapped to the
luminance of the bent arc with a gamma correction that can be adjusted with the
mouse wheel. The absolute values of the appearance counts can be read from the
legend. The mapping to bent arcs has the additional advantage that overlapping
segments get visually separated (compare Fig. 6). To maximize visual separation,
we optionally allow mapping the arc height to half the segment length, resulting
in circular arcs.

Fig. 6. Variants of segment rendering. From left to right: straight tube segments; added
arrow texture; arcs with height equal to half step size; tilted arcs; arcs with height
proportional to appearance counts. (Color figure online)

For starting configurations where the agent needs to reverse its direction,
overlapping inverse movements can be observed, see Fig. 6 (middle). This pre-
vents the visual separation of oppositely pointing arrows. We overcome this issue
by slightly tilting the arcs sideways to visually separate them again as shown in
Fig. 6 (2nd from right).

Spacetime Visualization. The aggregation of segments characterized by start and
end position (ps, pe) can be extended to also incorporate time information. Due

TraceVis: Towards Visualization for Deep Statistical Model Checking 39

to the noise influencing the successful application of a policy action, it is possible
that no agent movement occurs in a given time step. Since we do not consider
time in the other visualization modes, this is hard to notice. Furthermore, dif-
ferent traces might run along segments with equal start and end position but at
different times. For exploration scenarios where this is important, we therefore
implemented the spacetime mode as shown in Fig. 5 (bottom right). Given the
discrete-time nature of the MDP, the time t of a segment is simply defined by
its position in the trace.

To calculate the aggregated segments for the spacetime mode we calculate
the appearance count histogram over the triples (ps, pe, t). While rendering the
segments, appearance counts are again mapped to luminance and optionally to
arc height. We map time to an increasing height offset. This allows to efficiently
identify faster and slower runs, as well as showing track points where the agent
temporarily stops. A thin yellow stick is rendered to visually link trace vertices
to their corresponding track locations.

To support the analysis of local behavior at a given position, we added
another mouse hovering mode (activated by the Alt modifier), that restricts
the view to the outgoing arcs at the current mouse pointer position. The height
scale for arcs and the time offset can be adapted with the mouse wheel with
different modifier keys.

Cluster Navigation. To reduce visual clutter in the aggregated trace visualiza-
tion modes further, the user can navigate hierarchically through clusters and
individual traces as illustrated in Fig. 7. The Enter key goes down the hierarchy
from all traces to main clusters, then to sub-clusters and finally to individual
traces. Sub-clusters can also be selected by hovering over a trace end position.
At each level, the Up and Down arrow keys allow to navigate through the respec-
tive clusters/traces. Backspace is used to back up one hierarchy level. Pressing
Backspace on the all-trace level terminates the trace mode, and brings the user
back to probability mode.

Fig. 7. Illustration of four cluster hierarchy levels in spatial mode: top level (top left),
main cluster level (top right), sub-cluster level (bottom left), individual trace (bottom
right). (Color figure online)

40 T. P. Gros et al.

Noise Visualization. All visualization modes make use of spheres placed at the
track points where two segments are connected. The color coding of these spheres
correlates to the amount of noise which influenced the agent during the DSMC
runs. Red color indicates the appearance of noise, while green color states the
successful movement according to the action chosen by the NN. This is especially
useful for the in-depth examination of individual traces, visualizing the policy
reacting to action failures at difficult track locations and configurations. For
aggregated views, the color is interpolated between red and green according to
the noise frequency.

Animation. To illustrate synchronicity in time across traces, we added an ani-
mation of spherical probe particles moving along the traces synchronously with
adjustable speed. The animation is supported in all trace visualization modes.
Space allows to toggle the animation, and with the Left and Right arrow keys
one can step back and forth over individual time steps.

7 Case Study

To illustrate the use of TraceVis for policy behavior analysis, we now consider
TraceVis from a user’s (rather than a visualization researcher’s) perspective. We
highlight some interesting observations supported by TraceVis in analyzing the
NN policies trained by DSMC20 in Racetrack.

Fig. 8. Unsafe behavior near goal line. Overview of crash/goal probabilities across start
velocities (left), and individual view for particularly problematic start velocity (right).
(Color figure online)

Figure 8 shows our first observation, for a position just before the goal curve
in Barto-small. We can see in Fig. 8 (left) that, overall, the policy has a high
chance of reaching the goal line as one would expect. However there are two start
velocities not directed into the wall for which that is not so. Such problematic
cases can very conveniently be located simply by dragging this overview pre-
sentation over the map. Selecting the most problematic start velocity in Fig. 8
(right), it becomes evident that policy behavior is highly, and unnecessarily,

TraceVis: Towards Visualization for Deep Statistical Model Checking 41

unsafe here. One can reach the goal with high probability simply by keeping the
velocity and turning once the wall is cleared. Yet the policy tends to “cut the
corner” and crash.

Fig. 9. Unsafe turning between walls: Successful (left) vs. crashed (right) trace. (Color
figure online)

Figure 9 shows another instance of curious policy behavior, also needlessly
unsafe but less obviously so. Here the start position is in a tight spot between
walls on the left and right, with a start velocity away from the goal and to the
left. The safest decision would be to “turn around on the spot”, i.e., decelerate,
get left-right velocity down to 0, accelerate to the goal. Instead, as we see in the
successful policy trace in Fig. 9 (left), the policy over-accelerates to the right,
going for a curve that only just avoids the right-hand side wall. Yet that curve
relies on action success (green balls at move arcs in the visualization), and is
brittle to action failure (red balls) as we see in the crashing trace in Fig. 9
(right).

Fig. 10. Counterintuitive turning near goal: Overview of crash/goal probabilities across
start velocities (left), and policy-trace overview for one particular start velocity (right).
(Color figure online)

Consider finally Fig. 10. Here the agent is placed in front of the goal near the
corner, and the overview (left) shows that the start velocities going towards the

42 T. P. Gros et al.

corner have a tendency to crash. This is not surprising given the actual risk of
crashing here when actions fail, plus our previous observations in Fig. 8. A more
surprising insight is obtained when choosing a harmless start velocity, away from
the goal at speed 1. Here we again get a counterintuitive turning behavior. Like
above, a human player would “turn around on the spot”, simply accelerating
towards the goal and reaching it on a straight path with probability almost 1
(the only possibility to crash being 7 action failures in a row). Yet the trained
neural network policy does not do that. Instead, it travels along a potentially
large de-tour towards the start line, curving back to reach the goal on a trajectory
scraping along the wall. This does work out with a high probability here, but
nevertheless points to a weakness in policy behavior. Together with the odd
behavior observed in Fig. 9, it seems the policy generally has issues in situations
requiring a full turn-around – giving a strong hint for possible re-training.

Note that TraceVis is key to all these observations. We miss them if we
aggregate over start velocities (or fix these to 0 as DSMC20 does), if we aggregate
over crash positions, if we have no in-depth visualization of policy traces.

Interestingly, TraceVis enabled us to find bugs in our own technology stack.
Apart from initial data discrepancies due to bugs in cross-tool communication,
this pertained also to a bug in our Jani model introduced when modifying it
for this paper. Examining crash probabilities as a function of start velocity as
illustrated above, we observed unintuitive results where start velocities heading
directly into a wall did not lead to a crash. This behavior prompted us to re-
examine the Jani model, identifying a bug in the vehicle automaton (where an
initialization value was set incorrectly). Such a faulty behavior would not have
been visible in DSMC20’s heat maps as these ignore start velocities. The bug
would be exceedingly hard (if not impossible) to identify based solely on modes,
given the overwhelming amount of log data. Hence TraceVis can be useful also
for debugging the model itself, arguably a crucial part of model checking.

8 Conclusion

Deep statistical model checking (DSMC) is a natural approach to quality assur-
ance of MDP action policies represented by neural networks. We have designed
and implemented a new tool, TraceVis, for visualizing and navigating DSMC
results, as well as for deeply understanding the underlying causes by examining
the actual policy traces. Our case study and own debugging experience with
TraceVis suggests that interactive visualization can be useful for the practical
application of DSMC, and potentially more general statistical model checking
contexts as well.

We believe that the combination of formal methods with visualization is a
key instrument to address the problem of NN action policy analysis (by DSMC
or other methods). First, in contrast to traditional software artefacts, NN defy
direct human inspection. Second, in many cases, full verification will be pro-
hibitively complex or bound to fail (an autonomous car will hardly guarantee
to avoid all possible accidents). Therefore, third, to gain trust in an action pol-
icy, human quality assurance analysts will have to understand its behavior and

TraceVis: Towards Visualization for Deep Statistical Model Checking 43

inspect its reactions against a large space of possible environment behaviors. The
combination of formal analysis tools with human-accessible data and results pre-
sentation seems predestined for that purpose. We view our work as one initial
piece of this big puzzle.

Our contribution at this point is, of course, limited to the simple Racetrack
benchmark, and it remains to be seen which ideas will carry over to other and
more complex domains. That said, we believe that the Racetrack case study
was useful, and remains useful, to focus on key aspects of many cyber-physical
systems: position and velocity in physical space. This is different from the focus
on visualizing complex strategy patterns, naturally entailed by the study of
policies for computer games as done by the aforementioned previous works [40,
44].

Our envisioned research trajectory thus is to stick to Racetrack-like case
studies, incrementally extending these to reflect more aspects of, and ultimately
approach, autonomous driving. Fuel consumption for example seems easy to
integrate, Lidar sensing can be integrated by additional views, similarly for sim-
ple camera images showing a grey-scale view of what’s ahead. In 3-dimensional
extensions like drone control, most of TraceVis’s current features will be appli-
cable.

In the longer term, a major challenge will be multi-dimensional state spaces,
in particular multi-agent behavior like traffic in autonomous driving/drones, or
collaborative agents in cyber-physical production. We envision to extend Trace-
Vis by dimension reduction techniques, providing an abstract visualization of
the state space, where we can morph back to 3D space in order to focus on
the behavior of individual agents or the 3D relationship between the agents at
certain instances of time. It may also be possible to leverage prior insights from
computer games, not as much to elicit strategy patterns, but to elicit environ-
ment patterns, like typical traffic scenarios of special cases of particular interest.
We expect to still stick to physical space as the main organization paradigm for
the visualization.

Acknowledgements. This work was partially supported by the ERC Advanced
Investigators Grant 695614 (POWVER), by DFG grant 389792660 as part of TRR 248
(see https://perspicuous-computing.science) and by the two Clusters of Excellence
CeTI (EXC 2050/1, grant 390696704) and PoL (EXC-2068, grant 390729961) of TU
Dresden.

References

1. Barto, A.G., Bradtke, S.J., Singh, S.P.: Learning to act using real-time dynamic
programming. Artif. Intell. 72(1–2), 81–138 (1995)

2. Bogdoll, J., Ferrer Fioriti, L.M., Hartmanns, A., Hermanns, H.: Partial order meth-
ods for statistical model checking and simulation. In: Bruni, R., Dingel, J. (eds.)
FMOODS/FORTE 2011. LNCS, vol. 6722, pp. 59–74. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-21461-5 4

3. Bonet, B., Geffner, H.: Labeled RTDP: improving the convergence of real-time
dynamic programming. In: ICAPS, pp. 12–21 (2003)

https://perspicuous-computing.science
https://doi.org/10.1007/978-3-642-21461-5_4

44 T. P. Gros et al.

4. Budde, C.E., D’Argenio, P.R., Hartmanns, A., Sedwards, S.: A statistical model
checker for nondeterminism and rare events. In: Beyer, D., Huisman, M. (eds.)
TACAS 2018. LNCS, vol. 10806, pp. 340–358. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-89963-3 20

5. Budde, C.E., Dehnert, C., Hahn, E.M., Hartmanns, A., Junges, S., Turrini, A.:
JANI: quantitative model and tool interaction. In: Legay, A., Margaria, T. (eds.)
TACAS 2017. LNCS, vol. 10206, pp. 151–168. Springer, Heidelberg (2017). https://
doi.org/10.1007/978-3-662-54580-5 9

6. Croce, F., Andriushchenko, M., Hein, M.: Provable robustness of ReLU networks
via maximization of linear regions. In: AISTATS, PMLR 89, pp. 2057–2066 (2019)

7. Dehnert, C., Junges, S., Katoen, J.-P., Volk, M.: A storm is coming: a mod-
ern probabilistic model checker. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017.
LNCS, vol. 10427, pp. 592–600. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-63390-9 31

8. Ehlers, R.: Formal verification of piece-wise linear feed-forward neural networks.
In: D’Souza, D., Narayan Kumar, K. (eds.) ATVA 2017. LNCS, vol. 10482, pp.
269–286. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68167-2 19

9. Etienne, L., Devogele, T., Buchin, M., McArdle, G.: Trajectory Box Plot: a new
pattern to summarize movements. Int. J. Geograph. Inf. Sci. 30(5), 835–853 (2016).
https://doi.org/10.1080/13658816.2015.1081205

10. Gardner, M.: Mathematical games. Sci. Am. 229, 118–121 (1973)
11. Gardner, M., Dorling, S.: Artificial neural networks (the multilayer perceptron)–a

review of applications in the atmospheric sciences. Atmos. Environ. 32(14), 2627–
2636 (1998)

12. Gehr, T., Mirman, M., Drachsler-Cohen, D., Tsankov, P., Chaudhuri, S., Vechev,
M.T.: AI2: safety and robustness certification of neural networks with abstract
interpretation. In: IEEE Symposium on Security and Privacy 2018, pp. 3–18 (2018)

13. Gros, T.P., Groß, D., Gumhold, S., Hoffmann, J., Klauck, M., Steinmetz, M.:
TraceVis: Visualization for DSMC: tool, demonstration video, data (2020). https://
doi.org/10.5281/zenodo.3961196

14. Gros, T.P., Hermanns, H., Hoffmann, J., Klauck, M., Steinmetz, M.: Deep statis-
tical model checking. In: Gotsman, A., Sokolova, A. (eds.) FORTE 2020. LNCS,
vol. 12136, pp. 96–114. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
50086-3 6

15. Gros, T.P., Höller, D., Hoffmann, J., Wolf, V.: Tracking the race between deep
reinforcement learning and imitation learning. In: Gribaudo M., Jansen, D.N.,
Remke, A. (eds.) Proceedings of the 17th International Conference on Quantitative
Evaluation of SysTems (QEST). Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-59854-9

16. Gumhold, S.: The computer graphics and visualization framework. https://github.
com/sgumhold/cgv. Accessed 18 May 2020

17. Gumhold, S.: Splatting illuminated ellipsoids with depth correction. In: Ertl, T.
(ed.) Proceedings of the Vision, Modeling, and Visualization Conference 2003
(VMV 2003), München, Germany, 19–21 November 2003, pp. 245–252. Aka GmbH
(2003)

18. Hahn, E.M., Li, Y., Schewe, S., Turrini, A., Zhang, L.: iscasMc: a web-based
probabilistic model checker. In: Jones, C., Pihlajasaari, P., Sun, J. (eds.) FM 2014.
LNCS, vol. 8442, pp. 312–317. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-06410-9 22

https://doi.org/10.1007/978-3-319-89963-3_20
https://doi.org/10.1007/978-3-319-89963-3_20
https://doi.org/10.1007/978-3-662-54580-5_9
https://doi.org/10.1007/978-3-662-54580-5_9
https://doi.org/10.1007/978-3-319-63390-9_31
https://doi.org/10.1007/978-3-319-63390-9_31
https://doi.org/10.1007/978-3-319-68167-2_19
https://doi.org/10.1080/13658816.2015.1081205
https://doi.org/10.5281/zenodo.3961196
https://doi.org/10.5281/zenodo.3961196
https://doi.org/10.1007/978-3-030-50086-3_6
https://doi.org/10.1007/978-3-030-50086-3_6
https://doi.org/10.1007/978-3-030-59854-9
https://doi.org/10.1007/978-3-030-59854-9
https://github.com/sgumhold/cgv
https://github.com/sgumhold/cgv
https://doi.org/10.1007/978-3-319-06410-9_22
https://doi.org/10.1007/978-3-319-06410-9_22

TraceVis: Towards Visualization for Deep Statistical Model Checking 45

19. Hartmanns, A., Hermanns, H.: The modest toolset: an integrated environment
for quantitative modelling and verification. In: Ábrahám, E., Havelund, K. (eds.)
TACAS 2014. LNCS, vol. 8413, pp. 593–598. Springer, Heidelberg (2014). https://
doi.org/10.1007/978-3-642-54862-8 51

20. Hérault, T., Lassaigne, R., Magniette, F., Peyronnet, S.: Approximate probabilistic
model checking. In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937, pp.
73–84. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24622-0 8

21. Hinton, G., et al.: Deep neural networks for acoustic modeling in speech recogni-
tion: the shared views of four research groups. IEEE Signal Process. Mag. 29(6),
82–97 (2012)

22. Hohman, F., Kahng, M., Pienta, R., Chau, D.H.: Visual Analytics in Deep Learn-
ing: An Interrogative Survey for the Next Frontiers. arXiv:1801.06889 [cs, stat],
May 2018

23. Huang, X., Kwiatkowska, M., Wang, S., Wu, M.: Safety verification of deep neural
networks. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10426, pp.
3–29. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63387-9 1

24. The JANI specification. http://www.jani-spec.org/. Accessed 28 Feb 2020
25. Katz, G., Barrett, C., Dill, D.L., Julian, K., Kochenderfer, M.J.: Reluplex: an

efficient SMT solver for verifying deep neural networks. In: Majumdar, R., Kunčak,
V. (eds.) CAV 2017. LNCS, vol. 10426, pp. 97–117. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-63387-9 5

26. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep con-
volutional neural networks. In: NIPS, pp. 1097–1105 (2012)

27. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 585–591. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22110-1 47

28. Kwiatkowska, M., Norman, G., Parker, D.: Stochastic model checking. In:
Bernardo, M., Hillston, J. (eds.) SFM 2007. LNCS, vol. 4486, pp. 220–270. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-72522-0 6

29. Li, J., Liu, J., Yang, P., Chen, L., Huang, X., Zhang, L.: Analyzing deep neural
networks with symbolic propagation: towards higher precision and faster verifica-
tion. In: Chang, B.-Y.E. (ed.) SAS 2019. LNCS, vol. 11822, pp. 296–319. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-32304-2 15

30. McMahan, H.B., Gordon, G.J.: Fast exact planning in Markov decision processes.
In: ICAPS, pp. 151–160 (2005)

31. Mirzargar, M., Whitaker, R.T., Kirby, R.M.: Curve Boxplot: generalization of box-
plot for ensembles of curves. IEEE Trans. Vis. Comput. Graph. 20(12), 2654–2663
(2014). https://doi.org/10.1109/TVCG.2014.2346455. Conference Name: IEEE
Transactions on Visualization and Computer Graphics

32. Mnih, V., et al.: Human-level control through deep reinforcement learning. Nature
518, 529–533 (2015)

33. Pineda, L.E., Lu, Y., Zilberstein, S., Goldman, C.V.: Fault-tolerant planning under
uncertainty. In: IJCAI, pp. 2350–2356 (2013)

34. Pineda, L.E., Zilberstein, S.: Planning under uncertainty using reduced models:
revisiting determinization. In: ICAPS, pp. 217–225 (2014)

35. Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Pro-
gramming. Wiley, New York (1994)

36. Silver, D., et al.: A general reinforcement learning algorithm that masters chess,
shogi, and Go through self-play. Science 362(6419), 1140–1144 (2018)

https://doi.org/10.1007/978-3-642-54862-8_51
https://doi.org/10.1007/978-3-642-54862-8_51
https://doi.org/10.1007/978-3-540-24622-0_8
http://arxiv.org/abs/1801.06889
https://doi.org/10.1007/978-3-319-63387-9_1
http://www.jani-spec.org/
https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-540-72522-0_6
https://doi.org/10.1007/978-3-030-32304-2_15
https://doi.org/10.1109/TVCG.2014.2346455

46 T. P. Gros et al.

37. Stoll, C., Gumhold, S., Seidel, H.P.: Incremental raycasting of piecewise quadratic
surfaces on the GPU. In: 2006 IEEE Symposium on Interactive Ray Tracing, pp.
141–150. IEEE. https://doi.org/10.1109/RT.2006.280225. http://ieeexplore.ieee.
org/document/4061556/

38. Tominski, C., Schumann, H., Andrienko, G., Andrienko, N.: Stacking-based visu-
alization of trajectory attribute data. IEEE Trans. Vis. Comput. Graph. 18(12),
2565–2574 (2012). https://doi.org/10.1109/TVCG.2012.265. Conference Name:
IEEE Transactions on Visualization and Computer Graphics

39. Tukey, J.W.: Mathematics and the picturing of data. In: Proceedings of the Inter-
national Congress of Mathematicians, Vancouver, 1975, vol. 2, pp. 523–531 (1975)

40. Wang, J., Gou, L., Shen, H.W., Yang, H.: DQNViz: a visual analytics approach to
understand deep Q-networks. IEEE Trans. Vis. Comput. Graph. 25(1), 288–298
(2019). https://doi.org/10.1109/TVCG.2018.2864504. https://ieeexplore.ieee.org/
document/8454905/

41. Wang, J., Hazarika, S., Li, C., Shen, H.W.: Visualization and visual analysis of
ensemble data: a survey. IEEE Trans. Vis. Comput. Graph. 25(9), 2853–2872
(2019). https://doi.org/10.1109/TVCG.2018.2853721. Conference Name: IEEE
Transactions on Visualization and Computer Graphics

42. Wicker, M., Huang, X., Kwiatkowska, M.: Feature-guided black-box safety testing
of deep neural networks. In: Beyer, D., Huisman, M. (eds.) TACAS 2018. LNCS,
vol. 10805, pp. 408–426. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-89960-2 22

43. Younes, H.L.S., Simmons, R.G.: Probabilistic verification of discrete event systems
using acceptance sampling. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS,
vol. 2404, pp. 223–235. Springer, Heidelberg (2002). https://doi.org/10.1007/3-
540-45657-0 17

44. Zahavy, T., Zrihem, N.B., Mannor, S.: Graying the black box: understanding
DQNs. arXiv:1602.02658 [cs], April 2017

https://doi.org/10.1109/RT.2006.280225
http://ieeexplore.ieee.org/document/4061556/
http://ieeexplore.ieee.org/document/4061556/
https://doi.org/10.1109/TVCG.2012.265
https://doi.org/10.1109/TVCG.2018.2864504
https://ieeexplore.ieee.org/document/8454905/
https://ieeexplore.ieee.org/document/8454905/
https://doi.org/10.1109/TVCG.2018.2853721
https://doi.org/10.1007/978-3-319-89960-2_22
https://doi.org/10.1007/978-3-319-89960-2_22
https://doi.org/10.1007/3-540-45657-0_17
https://doi.org/10.1007/3-540-45657-0_17
http://arxiv.org/abs/1602.02658

Engineering of Digital Twins
for Cyber-Physical Systems

Engineering of Digital Twins
for Cyber-Physical Systems

John Fitzgerald1(B), Peter Gorm Larsen2, Tiziana Margaria3,
and Jim Woodcock2,4

1 School of Computing, Newcastle University, Newcastle upon Tyne, UK
John.Fitzgerald@ncl.ac.uk

2 DIGIT, Department of Electrical and Computer Engineering, Aarhus University,
Aarhus, Denmark

{pgl,jcpw}@ece.au.dk
3 University of Limerick and Lero, Limerick, Ireland

Tiziana.Margaria@lero.ie
4 Department of Computer Science, University of York, York, UK

jim.woodcock@york.ac.uk

Abstract. Advances in sensing, communications and data analytics
have made it possible to construct virtual replicas of Cyber-Physical
Systems (CPSs). Such replicas, known as digital twins, can in princi-
ple inform decision making during operation and evolution of the sys-
tems they model. This short paper introduces the ISoLA 2020/21 series
of papers on the technology and practice of engineering digital twins
for CPSs. The focus is on the relationship between model-based design,
machine learning, digital twins and CPSs.

1 Introduction

Ensuring the dependability of Cyber-Physical Systems (CPSs) poses challenges
for model-based engineering, stemming from the semantic heterogeneity of the
models of computational, physical and human processes, and from the range
of stakeholders involved. Delivering such dependability may thus be expected
to require the coordinated use of multi-disciplinary models developed during
design alongside models derived from data gathered from the operational system.
Together, these have the potential to form the basis of a learning digital twin,
able to inform decision making both in redesign and in operation.

There is an extensive and diverse literature on digital twins. The Gartner
group put the concept among its 10 strategically most important technologies in
2019 because of the many potential benefits by establishing digital twins1. The
benefits claimed for digital twins include the ability to:

1. reduce time to market,
2. establish preventive maintenance possibilities,

1 https://tinyurl.com/y5wkfewe.

c© Springer Nature Switzerland AG 2021
T. Margaria and B. Steffen (Eds.): ISoLA 2020, LNCS 12479, pp. 49–53, 2021.
https://doi.org/10.1007/978-3-030-83723-5_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-83723-5_4&domain=pdf
https://tinyurl.com/y5wkfewe
https://doi.org/10.1007/978-3-030-83723-5_4

50 J. Fitzgerald et al.

3. enable additional services for the users,
4. visualise the physical twin,
5. enable fault detection and possibly fault diagnosis,
6. increase autonomy, and
7. provide decision support capabilities.

Although there is considerable hype around the potential for digital twins, the
technology poses many open research questions, particularly when one considers
twins of CPSs and the need for dependability in order that decisions based on
twins are sound. The foundations, processes, techniques and tools for engineering
digital twins have not so far been the subject of large-scale and systematic study.

– What foundations are needed for a dependable digital twin of a CPS?
– What are the key concepts to be captured in understanding the requirements

for a digital twin?
– Where are the limits for a digital twin? When is it ‘good enough’?
– What value can be expected from a digital twin, and when it is worthwhile

constructing one?

The dependable operation of CPSs requires both the ability to address the
consequences of evolving system components, and the ability to explore and iden-
tify optimal changes that do not unduly compromise overall dependability. This
combination of prediction and response alongside support for informed decision-
making and redesign by humans requires both the data derived from operations
and the models developed in design. Tackling the challenges of CPS design thus
requires a marriage of both descriptive multi-models of the type that might be
developed in a design process, and inductive models derived from data acquired
during operation. This combination of models, cutting across formalisms as well
as across design and operation, has the potential to form a learning digital twin
for a CPS, enabling off-line and on-line decision-making.

The goal of the track on the Engineering of Digital twins for CPSs at ISoLA
2020 is to discuss how one can enable the well-founded engineering of digital twins
for dependable CPSs. In order to make the benefits listed above a reality there are
important challenges to overcome. These range from the creation of a common
basis for discourse in what is inherently a mulitdisciplinary field, through design
methodology in the face of the uncertainties that arise when computational pro-
cess interact with the physical environment, through system architecture to ver-
ification. The papers selected for this track address some of these issues from the
perspective of formal and model-based approaches, seeking to leverage advances in
modelling and verification to address the dependability of digital twins for CPSs.

2 Contributions

In the context of a diverse and rapidly growing literature on digital twins, Yue
et al. recognise the need for a conceptual framework to underpin discourse [7].
The framework includes characterisations of digital and physical twins and their

Engineering of Digital Twins for Cyber-Physical Systems 51

environments, and also the critical properties of systems that contain twins, such
as notions of fidelity. Central to the benefits claimed for digital twin technology is
the ability to manage change, and this in turn requires careful conceptualisation
of evolution and life-cycle events in both the digital and physical twins. Further,
there is a need to clarify the role of uncertainty in many contemporary CPSs,
especially where autonomy is present.

Woodcock et al. [6] consider some of the sources of uncertainty alluded to
by Yue et al. In particular, they consider the challenge of handling discrepancies
between the values of observed data – which may be subject to noise and delays –
and the values predicted in the digital twin. Following an example in agricultural
robotics, they consider the description of tolerable deviations the generation of
runtime monitors that enforce the identified tolerances. They also consider the
use of the digital twin to perform what-if analysis in order to identify optimal
system configurations.

Modern CPSs are decentralised, distributed structures. As Kamburjan et al.
[2] point out, it may be unrealistic to expect that such CPSs will be captured ade-
quately as physical twins by single models; the architecture of the digital twin
will be more heterogeneous and layered. To support such a view, the authors
develop a formalised hybrid active object model and demonstrate the expres-
siveness of the approach. An interesting trade-off is identified between ease of
composition and support for simulation: two properties that are needed together
to support both analysis and prediction in the digital twin.

Four of the contributed papers examine the potential and the challenges of
model-based and formal techniques in realising the potential of digital twins in
specific industry sectors: construction, rail transportation, manufacturing and
agricultural robotics.

In the construction sector, model-based methods are beginning to bring real
benefits, through the use of Building Information Models (BIM). In [4], Li et al.
examine the potential of 4-dimensional BIM (BIM updated with real-time sen-
sor data from a construction site or building) as a basis for digital twins. In
particular, the paper illustrates how abductive reasoning can provide a basis
for checking conformance to construction safety codes. The authors note how
a consideration of the digital twin from a formal perspective leads to a need
for precision in often tangled concepts, such as building code formalisation and
building code execution. As with [7], codification of core concepts via an ontology
forms a key part of their approach.

Lecomte [3] reviews the classes of model and modelling activity in the rail
sector, pointing out that the heterogeneity of models in the industry results from
the diverse purposes for which models are constructed (such as specification,
validation, and certification) or the diversity of subjects being modelled (such
as signalling and rolling stock). Given the characteristics of the sector, Lecomte
concludes that a universal model or digital twin is unlikely to arise, but that
new analyses (such as performance improvement) or threats (such as that of
infrastructure cyber attack) might provide a motivator to develop digital twins
in the future.

52 J. Fitzgerald et al.

Matei et al. [5] recount experience in developing a digital twin for a manu-
facturing system with computational, physical and human elements. A notable
feature of this study is the combination of Virtual Reality with machine learning
in a manufacturing scenario where a human is collaborating with an assembly
workstation (usually a cobot). This includes quite advanced sensors enabling
detailed feedback from the human live.

In [1] Foldager et al. have taken the first steps towards exploiting multi-
modelling as the basis for a digital twin of an agricultural robot. The paper
demonstrates the co-simulation of dynamics using a multi-physics modelling
framework that allows modelling of comparatively low-level features such as
soil/surface interaction. In such an application, the discrepancies (in time as well
as value) between data reaching the twin and the twin’s predictions becomes a
significant aspect of the twin’s design.

3 Concluding Remarks

The contributions in this track make it clear that realising the considerable
potential benefits of digital twins for CPSs presents many challenges and oppor-
tunities for research and innovation. It is evidently not simply a matter of taking
heterogeneous design models and streaming data from a physical twin to iden-
tify discrepancies. Many other factors that have a significant impact on the
interaction between the physical and digital twins must be taken into account
systematically before one can consider the digital twin’s predictive functionality
to be sufficiently dependable. We look forward to the interdisciplinary research
that will be conducted over at least the next decade as digital twin technology
comes to deliver its promise in many fully independent domains.

Acknowledgements. We acknowledge the support of the Poul Due Jensen Founda-
tion for research towards the engineering of digital twins; the European Union’s funding
of HUBCAP (Grant Agreement 872698) and DIGITbrain (Grant Agreement 952071);
the Innovation Foundation Denmark for funding MADE FAST; AgroRobottiFleet and
ITEA3 for funding the UPSIM project (19006).

References

1. Foldager, F.F., Thule, C., Balling, O., Larsen, P.G.: Towards a digital twin - mod-
elling an agricultural vehicle. In: Margaria, T., Steffen, B. (eds.) ISoLA 2020, Part
IV. LNCS, vol. 12479, pp. 109–123. Springer, Cham (2021)

2. Kamburjan, E., Schlatte, R., Johnsen, E.B., Tarifa, S.L.T.: Designing distributed
control with hybrid active objects. Margaria, T., Steffen, B. (eds.) ISoLA 2020, Part
IV. LNCS, vol. 12479, pp. 88–108. Springer, Cham (2021)

3. Lecomte, T.: Digital modelling in the railways. In: Margaria, T., Steffen, B. (eds.)
ISoLA 2020, Part IV. LNCS, vol. 12479, pp. 124–139. Springer, Cham (2021)

4. Li, B., Neilsen, R.O., Johnasen, K.W., Teizer, J., Larsen, P.G., Schultz, C.: Towards
digital twins for knowledge-driven construction progress and predictive safety anal-
ysis on a construction site. In: Margaria, T., Steffen, B. (eds.) ISoLA 2020, Part IV.
LNCS, vol. 12479, pp. 153–174. Springer, Cham (2021)

Engineering of Digital Twins for Cyber-Physical Systems 53

5. Matei, A., Tocu, N.A., Zamfirescu, C.B., Gellert, A., Neghină, M.: Engineering a
digital twin for manual assembling. In: Margaria, T., Steffen, B. (eds.) ISoLA 2020,
Part IV. LNCS, vol. 12479, pp. 140–152. Springer, Cham (2021)

6. Woodcock, J., Gomes, C., Macedo, H.D., Larsen, P.G.: Uncertainty quantification
and runtime monitoring using environment-aware digital twins. In: Margaria, T.,
Steffen, B. (eds.) ISoLA 2020, Part IV. LNCS, vol. 12479, pp. 72–87. Springer,
Cham (2021)

7. Yue, T., Arcaini, P., Ali, S.: Understanding digital twins for cyber-physical systems:
a conceptual model. In: Margaria, T., Steffen, B. (eds.) ISoLA 2020, Part IV. LNCS,
vol. 12479, pp. 54–71. Springer, Cham (2021)

Understanding Digital Twins for
Cyber-Physical Systems: A Conceptual

Model

Tao Yue1,2(B) , Paolo Arcaini3(B) , and Shaukat Ali2(B)

1 Nanjing University of Aeronautics and Astronautics, Nanjing, China
taoyue@ieee.org

2 Simula Research Laboratory, Oslo, Norway
shaukat@simula.no

3 National Institute of Informatics, Tokyo, Japan
arcaini@nii.ac.jp

Abstract. Digital Twins (DTs) are revolutionizing Cyber-Physical Sys-
tems (CPSs) in many ways, including their development and operation.
The significant interest of industry and academia in DTs has led to var-
ious definitions of DTs and related concepts, as seen in many recently
published papers. Thus, there is a need for precisely defining different DT
concepts and their relationships. To this end, we present a conceptual
model that captures various DT concepts and their relationships, some
of which are from the published literature, to provide a unified under-
standing of these concepts in the context of CPSs. The conceptual model
is implemented as a set of Unified Modeling Language (UML) class dia-
grams and the concepts in the conceptual model are explained with a
running example of an automated warehouse case study from published
literature and based on the authors’ experience of working with the real
CPS case study in previous projects.

Keywords: Cyber-physical systems · Digital twins · Conceptual model

1 Introduction

Cyber-Physical Systems (CPSs) are complex interdisciplinary systems present in
many domains. With time, these systems are getting even more complicated due
to, e.g., ever-changing hardware, software updates, protocols, the increased use of
advanced artificial intelligence (AI) techniques, and highly uncertain operating
environments. As a result, advanced technologies such as digital twins (DTs)

The work is supported by the National Natural Science Foundation of China
under Grant No. 61872182. The work is also partially supported by the Co-evolver
project (No. 286898/F20) funded by the Research Council of Norway under the
FRIPRO program. Paolo Arcaini is supported by ERATO HASUO Metamathemat-
ics for Systems Design Project (No. JPMJER1603), JST; Funding Reference number:
10.13039/501100009024 ERATO.

c© Springer Nature Switzerland AG 2021
T. Margaria and B. Steffen (Eds.): ISoLA 2020, LNCS 12479, pp. 54–71, 2021.
https://doi.org/10.1007/978-3-030-83723-5_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-83723-5_5&domain=pdf
http://orcid.org/0000-0003-3262-5577
http://orcid.org/0000-0002-6253-4062
http://orcid.org/0000-0002-9979-3519
https://doi.org/10.1007/978-3-030-83723-5_5

Understanding Digital Twins for Cyber-Physical Systems 55

have been proposed to ensure correct development and dependable operation
throughout lifetimes of such CPSs.

However, DTs are not specific to CPSs and can be built for any living or
non-living thing. For example, there exists an initiative in the European Union
about building digital twins for life sciences1 and even building a digital twin of
the Earth (i.e., the Destination Earth (DestinE) initiative)2. In the context of
this paper, we focus only on DTs for CPSs. DTs for CPSs may share similarities
with DTs for other things, but may also differ. For instance, a DT built for an
ocean may be reused for various CPSs operating in the ocean such as subsea oil
production systems [6] and autonomous vessels [11].

DTs for CPSs have attracted huge interests in industrial and academic cir-
cles, as it can be seen by major companies promoting their digital twin plat-
forms (e.g., ANSYS3, Siemens4), and an increased number of scholarly publica-
tions [16,21,25]. Due to the increasing interest in DTs for CPSs, DTs and their
concepts have been emerging with various definitions. Though some recent papers
have started to unify the meaning of such concepts (e.g., [16,22,25]), due to several
similar publications appearing close to each other, they have resulted in another
set of definitions of DTs and their concepts. To this end, we present a conceptual
model for the purpose of unifying various DT concepts. In addition, in our con-
ceptual model, we made the effort to establish relationships among the concepts
and characterize important concepts such as DTs with their functionalities, matu-
rity level, and quality requirements. We developed our conceptual model as a set
of UML class diagrams. To explain the concepts, we used a running example of a
CPS case study from the logistics domain.

The rest of the paper is organized as follows. Section 2 presents the descrip-
tion of our running example. Section 3 introduces core concepts, while Sect. 4
describes more detailed concepts of a DT and its CPS. We discuss evolution
and uncertainty of DTs and their CPSs in Sect. 5 and their life-cycles in Sect. 6.
Finally, we present related work in Sect. 7 and draw conclusions in Sect. 8.

2 Running Example

To explain various concepts, we will use the running example of a CPS case
study, i.e., Automated Warehouse System (AWS), all throughout the paper to
explain the conceptual model. This AWS CPS case study has been used in our
previous works for assessing the definition of: a conceptual model for uncer-
tainty in CPSs [30], a UML state machine based methodology for modeling
uncertainty [29], a model-based testing framework for CPS testing under uncer-
tainty [28], a CPS product line modeling methodology [23], and an approach for
monitoring CPSs [15].
1 https://euroocs.eu/funding-opportunities/eu-fet-proact-eic-07-2020-digital-twins-

for-the-life-sciences/.
2 https://ec.europa.eu/digital-single-market/en/destination-earth-destine/.
3 https://www.ansys.com/products/systems/digital-twin.
4 https://www.plm.automation.siemens.com/global/en/our-story/glossary/digital-

twin/24465.

https://euroocs.eu/funding-opportunities/eu-fet-proact-eic-07-2020-digital-twins-for-the-life-sciences/
https://euroocs.eu/funding-opportunities/eu-fet-proact-eic-07-2020-digital-twins-for-the-life-sciences/
https://ec.europa.eu/digital-single-market/en/destination-earth-destine/
https://www.ansys.com/products/systems/digital-twin
https://www.plm.automation.siemens.com/global/en/our-story/glossary/digital-twin/24465
https://www.plm.automation.siemens.com/global/en/our-story/glossary/digital-twin/24465

56 T. Yue et al.

Fig. 1. Physical twin, digital twin, their connections and environments

AWSs can be used for diverse applications, such as in food industry for auto-
matically producing orders for supermarkets. An AWS system typically consists
of many different physical systems such as conveyor belts, sorting systems, and
cranes. An AWS usually has an accompanying supervision system, which is often
deployed on a cloud. This supervision system performs various operations such
as monitoring warehouses, taking actions in case of emergency situations, and
performing advanced analyses based on data collected from various warehouses.
This can be considered as the initial version of a DT for the AWS. We can
imagine that the DT can be extended with additional functionalities to reach
a higher level of maturity (see Sect. 4.2). In this paper, we describe our vision
towards this direction, and illustrate it with this running example.

3 Overview

In this section, we introduce basic concepts related to DTs. We introduce com-
mon concepts that have been used in different papers, as reported in the sys-
tematic literature review in [16]. Note that sometimes different terms have been
used in different papers to refer to the same concept. We will report the most
common term or, in any case, the one that we think is more representative.
Figure 1 reports the concepts we identified.

A central concept is Physical Twin (also called physical entity), representing
the physical artifact for which a DT has been built or is to be built. Examples of
physical twins include buildings, vessels, farms, and vehicles. In our context, we
particularly focus on CPSs, and we use the example of an AWS in this paper.
Various concepts related to the DT of AWS are listed in Table 1.

Understanding Digital Twins for Cyber-Physical Systems 57

A physical twin (PT) is characterized by a list of physical processes that
it performs (see Fig. 1). Different processes require different considerations by a
DT. Some are critical processes required to be monitored by the DT, while others
are non-critical and no attention is needed from the DT. Usually, the execution of
a monitored process produces a state change, which should be observed and dealt
with accordingly by the DT. A PT exists and lives/operates in a PT environment
that encompasses all the elements that can affect, in some way, its operation.
Examples are environmental conditions of the AWS such as temperature and
humidity in the warehouse. More detailed discussions about PTs are provided
in Sect. 4.1.

Digital Twin (also named virtual twin) is the central concept of the concep-
tual model we propose in this paper. A DT of a PT represents the digital and
live replica of the PT. The DT synchronizes with its PT, and performs different
functionalities. More detailed discussions about DT Functionalities are provided
in Sect. 4.2.

A DT interacts with a virtual environment (see Fig. 1), which is a replica of
the physical environment of its counterpart PT. Note that some of the aspects
of the physical environment may be unknown, and so the view provided by the
virtual environment is, by definition, partial. Please refer to Sect. 5 for more
detailed discussions on this. Having the virtual environment separated from the
DT is convenient, as this could be reused over different DTs (e.g., the virtual
environment of the warehouse could be used for the DT of a food production
and retail). Moreover, variations of the virtual environment could also be used
for prediction activities, to predict what could happen to the PT under possible
future (probably uncertain) environmental conditions.

Both the PT and the DT are characterized, at any given time point, by their
State (see Fig. 1). The twins operate by changing their states. The concept of state
change is particular relevant in this context, as the modification of the current
state of the PT could be used to trigger analyses implemented in the DT.

An important concept for the operation of the DT is the connection between
the twins. This is actually achieved through two different types of connec-
tions: PT-To-DT-connection and DT-To-PT-connection (see Fig. 1). PT-To-DT-
connection allows the DT to update its view of the state of the PT (e.g., the
positioning of stock and number of shelving units), i.e., transmitting such infor-
mation through the connection from the PT to the DT. In the opposite direction,
the DT-To-PT-connection allows the DT to trigger the evolution of the oper-
ating PT for, e.g., applying some mitigation actions. For instance, the DT of
an AWS might send a request to reboot one or more programmable logic con-
troller (PLCs) of an AWS system. Another example could be that the DT of
a smart building [10] could request its Heating, Ventilation, and Air Condi-
tioning (HVAC) system to turn down the temperature of some empty rooms,
as a shortage of electricity has been forecasted by a prediction model of the
DT. The connection can be established with the same connection means used
in the PT-To-DT-Connection. Additionally, the DT-To-PT-connection requires
that the PT provides actuators to apply changes decided by the DT. Note that

58 T. Yue et al.

the DT-To-PT-Connection could also be performed by a human operator who,
on the basis of the outcomes of the analyses performed by the DT, manually
modifies the PT. This is necessary when no digital connection can be estab-
lished, and/or the PT does not provide a way to be digitally controlled. For
instance, an operator of the DT of an AWS system might directly talk to an
onsite AWS operator to inspect a malfunctioning PLC in the warehouse. Alter-
natively, when the DT observes an anomaly of a PLC, the DT sends a signal
directly to the computer that a specific AWS operator is interacting with and
requests for manual inspection of the PLC.

The overall process of synchronization (in both directions) between the PT
and the DT is referred to as Twinning (see Fig. 1). The twinning is characterized
by the twinning rate, i.e., how often the synchronization takes place. In case of
(almost) real-time synchronization, the twins are always aligned. However, if the
twinning rate is non-negligible, there could be moments in which, for example,
the DT has an outdated view of the PT.

The type of information that is exchanged between the twins can be described
in terms of parameters, each characterized by a parameter type (see Fig. 1).
The number and the accuracy of these parameters define the fidelity of the
virtual representation. Indeed, despite the name twin, the DT is by definition an
abstraction of the PT. Increasing the number and accuracy of the parameters
allows to lower down the abstraction and, therefore, increase the fidelity of the
representation.

The running case study illustrating this part of the conceptual model is shown
in Table 1.

4 Physical Twin and Digital Twin

In this section, we present the conceptual models for characterizing PTs and
DTs.

4.1 Physical Twin

PTs, i.e., CPSs in our context, appear in many diverse domains, such as com-
munication, energy, healthcare, robotics, and transportation, as shown in enu-
meration CPS Application Domain in Fig. 2.

This classification was borrowed from the concept map of CPSs developed
by Lee et al. [2]. Also, based on the concept map, we characterize a CPS with
a list of properties such as being networked and/or distributed, being adaptive
(responding to its changing Physical Environment and requests from its DT) and
predictive (predicting changes in its Physical Environment), being intelligent in
terms of self-learning, understanding and perception, and/or being real-time.
Additionally, there are two other properties that are interleaved with these prop-
erties: uncertainty and evolution, which will be discussed separately in Sect. 5.

We would also like to acknowledge that there exist many conceptual models
for characterizing CPSs in the literature. In this paper, we tried to characterize

Understanding Digital Twins for Cyber-Physical Systems 59

Table 1. Running example for conceptual model – overview

Concept(s) Explanation

Physical Twin An AWS and its constituent systems such as sorters, cranes,
and conveyor belts

Physical Process A process to automatically create an order requested by a
supermarket, including various quantities of various items
such as breads and soda

Physical Environment Everything included in the operating environment of an
AWS (including humans), characterized with factors such as
the warehouse temperature

DT and DT
Environment

A digital replica of an AWS and its operating environment.
Such a replica may consist of several simulators integrated
with each other with the FMI standard [1] simulating the
physical environment of the AWS

DT Functionality Examples include monitoring an AWS, raising alarms in
case of emergencies, and predicting the time for the next
warehouse maintenance

DT-To-PT
Connection/PT-to-
DT Connection

Communication interfaces defined for transferring
information from sensors of the AWS to its DT. The DT
feeds back insights to the PT via actuators to intervene with
the physical processes of the AWS

Twinning The DT is synchronized with its AWS every half an hour,
for instance

State The current values of all the state variables of an AWS, its
constituent systems, and environment

State Change The change in the current values of all the state variables of
an AWS

Parameter Examples include values of the state variables of the sorter
system in an AWS being transferred from the AWS and its
DT

Table 2. Running example for conceptual model – physical twin

Concept(s) Explanation

CPS Application Domain The AWS CPS belongs to the
manufacturing domain

CPS Property The AWS CPS is a networked,
adaptive, and real-time system

CPSs at the minimum level as readers can refer to many available descriptions
of CPSs at the conceptual level such as the concept map presented by Lee et al.
[2] and the survey presented in [14].

The running case study illustrating this part of the conceptual model is shown
in Table 2.

60 T. Yue et al.

Fig. 2. Characterizing cyber-physical systems (CPSs)

4.2 Digital Twin

We first like to acknowledge that, in this section, we make the effort to charac-
terize DTs from several aspects that we think are important. Therefore, it is,
by no means, comprehensive. This part of the conceptual model is presented in
Fig. 3.

As shown in Fig. 3, a Digital Twin can be operated by human operators,
developed with specific DT platforms (e.g., GE Digital Twin5), supported by
a diverse set of technologies such as machine learning and artificial intelligence
(ML/AI), modeling and simulation techniques belonging to different paradigms
(e.g., numerical modeling, software and system modeling, co-simulation sup-
ported with Simulink and SysML), as shown in the enumeration Technology
Type of Fig. 3.

A DT is situated in its DT Environment (as discussed in Sect. 3), which
naturally requires a Data Management Infrastructure, as the DT needs to obtain
data from the PT at real time, analyze the data received at real time and also
historical data collected in the past, manage the data in terms of storing, sharing,
authorizing the access of data, and so on.

The essential component of a DT is its DT Model, which aims to virtually
represent a diverse set of aspects of its counterpart, i.e., the PT. As suggested
by Solomon W. Golomb in [12] decades ago: ‘Don’t limit yourself to a single
model, more than one may be useful for understanding different aspects of the
same phenomenon’. Considering that engineering a CPS is inherently multi-
disciplinary, a DT model, therefore, needs to be developed with modeling lan-
guages (e.g., SysML, Simulink, Modelica), methodologies and tools belonging

5 https://www.ge.com/digital/applications/digital-twin.

https://www.ge.com/digital/applications/digital-twin

Understanding Digital Twins for Cyber-Physical Systems 61

Fig. 3. Characterizing digital twins

to different modeling paradigms, some of which are shown in the enumeration
Modeling Paradigm Type of Fig. 3.

Fidelity is often used to characterize the degree to which a DT model imi-
tates the PT. High fidelity models are often required to infer properties of real
systems in the context of scientific modeling and simulations from the perspec-
tive of physics, for instance [18]. However, when a model already clearly serves
its purpose in an engineering context, it is often unrealistic and even meaning-
less to pursue a higher fidelity, which often requires significant amount of effort
and might result in low efficient models. Therefore, selecting suitable modeling
paradigms and capturing different modeling aspects at suitable levels of abstrac-
tions will lead to multi-fidelity DT models, as also discussed in [5].

A DT is intended for achieving one or more specific functionalities such
as real-time monitoring and control, predictive maintenance, scenario and risk
assessment (e.g., unknown or uncertain scenarios, what-if analyses), efficient and
informed decision making, and data/information visualization, as shown in the
enumeration DT Functionality Type in Fig. 3. Achieving these functionalities
requires the support of various technologies (shown in enumeration Technology
Type) and the achieved functionalities determine the maturity level of a DT. We
borrow the different DT maturity levels defined in [26] and present them as enu-
meration DT Maturity Level in Fig. 3. The first two levels offer supervision via
monitoring and manual control of the operation of the PT, respectively. At the
third level, the DT can simulate the PT’s behavior to provide a stronger decision

62 T. Yue et al.

support for the design and operation of the PT. Such decision support is fur-
ther enhanced by benefiting from machine learning (ML) and advanced artificial
intelligence (AI) techniques to automate decision support with minimal human
intervention, to achieve the intelligent and autonomous maturity levels.

Same as for other software systems, a developed DT should be verified against
a list of quality requirements such as security, safety, performance, reliability, and
trustworthiness, as shown in the enumeration DT Quality Requirement in Fig. 3.
For example, as shown in Fig. 1, a DT is bidirectionally connected with its corre-
sponding PT to support Twinning, i.e., transferring data of parameters between
twins at runtime through the established connections. Therefore, in certain appli-
cation contexts (e.g., healthcare), a particular care should be taken to ensure no
leaking of sensitive information (e.g., patient personal medical profiles).

A DT may be composed of a set of other DTs of the same or different types
(DT Aggregation in Fig. 3). This is because a complex CPS might be composed of
different components, which are developed or operated with their own DTs. For
example, an AWS might have a set of aggregated DTs corresponding to various
subsystems (e.g., automated material handling systems, warehouse management
and execution systems) for dealing with different physical processes. A better
example is presented in [9], where two connected digital twins are suggested
for the trauma management: managing the physical process of the pre-hospital
phase with one DT, and the physical process of managing the trauma inside the
hospital with another DT, as reported in [9].

A DT often needs a Human-Machine Interface (HMI), which can be of vari-
ous types and developed with different technologies such as Augmented Reality
(AR)/Virtual Reality (VR), Natural Language Processing (NLP) enabled com-
munication between humans and machine via voice, hand gesture-based control,
or simply a control panel with or without a touch screen, as represented in enu-
meration HMI Type in Fig. 3. HMI is important for DTs because being fully
autonomous (without human intervention, having the DT Maturity Level being
the highest, i.e., autonomous) is not realistic in a lot of application contexts;
therefore, operating DTs will be highly dependent on human interactions and,
consequently, their designs need to take care of the human-in-the-loop aspect by
selecting and applying appropriate HMI techniques. Dependent on the design
of HMI, additional devices might need to be introduced to DTs, represented as
concept DT Device in Fig. 3. A relevant work is presented in [13], where the
authors proposed to enhance the capability of DTs with VR in the context of
manufacturing Cyber-Physical Production System.

The running case study illustrating this part of the conceptual model is shown
in Table 3.

Understanding Digital Twins for Cyber-Physical Systems 63

Table 3. Running example for conceptual model – digital twin

Concept(s) Explanation

Human-Machine
Interface

The HMI of the DT of an AWS can come in different shapes, for
instance, designed to have a touch screen

Data Management
Infrastructure

The DT can use various data management infrastructures which can
be cloud-based solutions or in-house data centers

DT Aggregation It is realistic to develop a DT that is an aggregation of a set of DTs,
which corresponds to various subsystems of an AWS such as
automated material handling systems and warehouse management and
execution systems

DT Platform Existing platforms for developing DTs can be used

DT Human
Operator

DT operators monitor the operation of the AWS through the provided
HMI, identify potential improvements to the AWS operation, and
intervene with its operation when needed, with the help of data
analytic of the DT

Technology Different sensors attached to monitor the surface of conveyor belts in
an AWS. Such sensors help to determine when to clean the surface of
the conveyor belts

DT Quality
Requirement

The DT and the AWS are connected through internet; therefore, any
unauthorized access to the DT should be prevented

DT Maturity
Level

The DT of the AWS provides supervision facility and allows running
simulations to assess the performance of the operational AWS

DT Model and
Modeling
Paradigm

The DT of an AWS can consist of various hardware models of various
systems (e.g., sorters), in Simulink for instance. In addition, the
environment of the DT of the AWS can be modeled with numerical
models. Moreover, the warehouse management process can be modeled
with Petri Nets

Fidelity Depending on what functionalities a DT implements, the DT model
might have different fidelity levels. For instance, 3D model of high
fidelity is often used to allow users to visualize certain pallets in the
warehouse and help operators to have an overview of the warehouse
such that the operators might identify opportunities to improve stock
placement and picking processes. Such a high fidelity model is however
inappropriate for visualizing goods quantities, and data visualization
techniques such as customizable charts and tables might better serve
the purpose

5 Evolution and Uncertainty

As previously discussed, we consider evolution and uncertainty as two important
aspects to be considered when developing, operating and maintaining DTs and
CPSs. Therefore, in this section, we provide our vision and call for contributions
on these two aspects.

64 T. Yue et al.

Fig. 4. PT and DT evolution

5.1 Evolution

An intelligent PT naturally evolves during its operation by constantly interacting
with its physical environment (probably partially known at a given time point),
humans and its DT, which we call PT Evolution (Fig. 4).

Consequently, a DT also naturally evolves when it interacts with the virtual
environment (probably presenting a partial view of the physical environment as
this is partially known at a given time point), and continuously receives data
from its PT, i.e., DT Evolution. As shown in Fig. 4, PT Evolution triggers DT
Evolution, and vice versa.

Specifically, DT Evolution is often triggered in the following situations:

– The PT evolves as a result of a software update or replacement of a hardware
component, etc., which consequently triggers the evolution of the DT;

– The DT needs to be evolved to accommodate a new DT Functionality ;
– The DT needs to be evolved to refine the DT Model when more data from

the PT becomes available and more information becomes available during its
interactions with the virtual environment and human operators via HMI;

– An adaptive and autonomous DT self-evolves when its operating environment
changes, through its implemented self-configuration mechanism for instance.

PT Evolution is often triggered in three situations:

– The upgrade or replacement of its own software and hardware components;
– Configurations from human operators or the DT received during its operation

and maintenance;
– Self-adaptation or self-configuration implemented in an adaptive and/or

autonomous physical twin.

Understanding Digital Twins for Cyber-Physical Systems 65

Fig. 5. Characterizing uncertainty

Therefore, this situation is an instance of co-evolution of two intelligent sys-
tems. Particular designs of the twins themselves and the twinning between them
are needed to cost-effectively accommodate such co-evolution, which, to the best
of our knowledge, has not received sufficient attention probably because applying
DTs to empower CPSs is still at its early stage.

5.2 Uncertainty

In the last decade, uncertainty, especially external uncertainty in the open and
operational environment in CPSs (e.g., [3,29]) and self-adaptive systems (e.g.,
[19,20]), has attracted a lot of attention because uncertainty is an unavoid-
able feature of such systems. Properly dealing with uncertainty in DTs and
CPSs is especially critical, considering the increasing complexity in terms of the
scales of the digital and physical twins, network communications within and
between the twins, and/or deployed ML/AI algorithms in both of the twins, and
their ever-changing and open operating environment. Therefore, as presented in
enumeration Place of Uncertainty in Fig. 5, different places of the digital and
physical twins, the twinning between them, their respective environments, inter-
actions with humans, and even data/information transferred collected by the
twins and transferred across the twins, all possibly contain uncertain informa-
tion. Therefore, uncertainty is yet another dimension that significantly increases
the complexity of engineering both DTs and CPSs.

There exist related works on specifying, modeling and measuring/quantifying
uncertainty in the context of CPSs. For example, Zhang et al. [30] proposed a
conceptual model (named U-Model) to understand and characterize uncertainty
and its associated concepts from the angle of software engineering and espe-
cially model-based engineering. Later on, Zhang et al. also instantiated U-Model
for specifying system requirements as use case models [31] and for modeling
uncertainty by extending standard UML state machine notations [29]. Along
the same line, in the context of dynamically adaptive systems, Betty et al. [8]

66 T. Yue et al.

Table 4. Running example for conceptual model – evolution and uncertainty

Concept(s) Explanation

PT
Evolution

The introduction of a new sorter hardware to the AWS

DT
Evolution

New and high quality sensors are added to monitor the
surface of the sorter systems

Uncertainty The AWS system sometimes stops without any obvious
reason, which requires manual restart of the AWS. This is
an example of uncertainty in the PT. The network
connection between the DT and PT might get lost
occasionally, which should be considered as a kind of
uncertainty in the connections between the DT and the
PT. There might be uncertainty in DT-recommended
warehouse maintenance strategies

proposed RELAX [8] to support uncertainty specification and analysis. Later
on, FLAGS [4] was proposed for enabling the specification of adaptive goals.
To support decision making under uncertainty, various methodologies have been
proposed for testing CPSs under uncertainty [7,28], etc.

Though these related works have built the foundation for developing
uncertainty-aware solutions in the context of engineering DTs for CPSs, it lacks
systematic solutions going from uncertainty specification, modeling and analysis,
design and development of solutions to support decision making under uncer-
tainty, all the way down to uncertainty-wise verification and validation, as shown
in enumeration Uncertainty-aware Activity in Fig. 5. Especially during its oper-
ation, the DT constantly receives data from its corresponding PT, which can
be used to discover (previously) unknown information from these received data
and, consequently, make more informed decisions. It is expected that specific DT
functionalities are hence needed to elegantly deal with uncertainties that may
exist or occur in different places (enumeration Place of Uncertainty in Fig. 5).

An instantiation of the running case study for these conceptual models is
shown in Table 4.

6 Life-Cycle

A DT co-exists with its counterpart and it is expected to support the full life-
cycle of its PT. As a complex system itself, a DT has its own development
life-cycle. As shown in Fig. 6, inspired by the concept model developed by Lee et
al. [2], we consider that both the life-cycles of a DT and its PT are composed of
a list of essential activities, captured in enumeration Essential Activity Type. We
acknowledge that there exist standards and methodologies (e.g., ISO/IEC/IEEE
15288) for developing CPSs, but we are not aware of any standard or method-
ology for developing DTs.

Understanding Digital Twins for Cyber-Physical Systems 67

Fig. 6. DT and PT life-cycles and essential activities

In addition, to support a CPS development and operation through a DT,
a fundamental research question is: how to coordinate the life-cycle of the DT
with the life-cycle of its counterpart CPS? Below, we list three such DT and
CPS dual life-cycle options (with in total five different settings):

Option 1: CPS and DT do not exist. This is the typical case when a very
complex and safety-critical CPS (e.g., an entirely new smart hospital) need to be
built, and the usage of a DT is chosen to strengthen, for instance, the safety and
the performance of the CPS. There are three settings for this option: 1) Building
a CPS and its DT together right from scratch; 2) Starting with building a CPS,
and, at a later point in time, starting the development of the DT and aligning
its development with its CPS); 3) Starting with building a DT for a CPS, and
later introducing the development of the CPS itself, with the DT that has been
(partially) developed as the basis.

Option 2: DT exists. It starts developing a CPS from an existing DT. This
is the typical case that can occur in product lines, i.e., a DT DT 1 has been
developed in the past for a product p1, and the DT DT 2 for another new product
p2 is derived by extending DT 1 (reasoning on the similarities and differences
between p1 and p2).

Option 3: CPS exists. It builds a DT for an operational CPS to better sup-
port its operation and maintenance. This case happens when the CPS has been
developed in the past, but further requirements on its operation have emerged. If
its re-engineering is not feasible, the development of a DT can be a cost-effective
solution.

Rigorous methodologies are needed to guide the development of a DT and
coordinate with the development life-cycle of the counterpart CPS. Also, the
Twining Process (see Fig. 1) brings another layer of complexity to the dual devel-
opment life-cycles of the twins. We also acknowledge that developing the twins
is naturally a highly iterative process due to their complex nature.

The running case study illustrating this part of the conceptual model is shown
in Table 5.

7 Related Work

Jones et al. [16] presented a systematic literature review of 92 digital twin pub-
lications and identified a list of concepts such as physical entity, virtual entity,

68 T. Yue et al.

Table 5. Running example for conceptual model – life-cycle

Concept(s) Explanation

Life-cycle of PT The AWS system is in the operational phase

Life-cycle of DT The DT is in the operational phase

Activity The development of an AWS and its corresponding DT often
requires to go through some of the phases defined in
enumeration Essential Activity Type shown in Fig. 6

fidelity, and twining. In our paper, we constructed the conceptual model pre-
sented in Fig. 1 based on the review results of this paper. The authors of the
paper also presented a list of future directions and research gaps. For example,
they discovered that the majority of the works studies have put their focuses
on the implementation phase of the DT life-cycle and insufficient attention has
been given to the early phases of the DT life-cycle. In addition, the majority of
identified use cases of DTs are manufacturing-related, and talk about simula-
tion modeling, optimization, and data management. Similarly, another literature
review was presented by Josifovska et al. in [17], which defines concepts similar
to those of Jones et al. [16].

Negri et al. [21] conducted a literature review of 26 publications to answer
two questions: how DTs are defined in the literature and what is the role of
a DT in Industry 4.0. The authors concluded that: (1) the scientific literature
is still immature as the studied literature mostly refers to different definitions
of DTs; and (2) in the manufacturing industry, it is relevant to define a DT
as a virtual counterpart (a digital representation) of a physical device, which
is augmented/updated/synchronized with data continuously from the physical
object, to support decision making and predictive maintenance.

Tao et al. [24] presented their vision of engineering DTs for CPSs of the
manufacturing domain, by providing a mapping between the physical and digital
worlds, and a hierarchical structure that divides CPSs and DTs into three levels:
the unit, system, and system of systems (SoS) levels. In this structure, DTs are
connected to their corresponding CPSs at every single level. For instance, a
unit-level DT is actually a model of a physical object specifying its geometric
shape, identity, operating status, and even its high-fidelity visual simulation. A
system-level DT is an integration of the models constructed at the unit level. In
addition, the system-level CPS and DT share the same architecture. For instance,
an aircraft is composed of various components (e.g., engines, wings), each of
which has a DT. An SoS-level DT is simply the integration of the system-level
DTs. This structure naturally implies the development life-cycle of going from
the unit-level to the SoS-level, which is the same for both CPSs and DTs. The
authors also explicitly say that they consider CPSs and DTs as conceptually
similar in smart manufacturing, and the key difference is that DTs are more
concerned about models and data.

Understanding Digital Twins for Cyber-Physical Systems 69

Rasheed et al. [22] also presented a literature review of methodologies and
techniques for constructing DTs with the aim of identifying values of apply-
ing DTs (e.g., supporting what-if analysis and informed decision making), their
application domains (e.g., health, meteorology, and manufacturing), and cur-
rent challenges (e.g., large-scale data fusion, data security, and real-time sim-
ulations). In addition, the paper also discussed enabling technologies such as
physics-based modeling, data-driven modeling, big data and IoT technologies,
and human-machine interface.

Xiaodong et al. [27] reviewed the use of DTs for Prognostics and Health
Management (PHM) in the literature. They identified that, in this context, the
main functionalities of a DT are (i) keeping historical data about the PT, (ii)
monitoring its health and performing fault diagnosis, (iii) devising an efficient
maintenance schedule for the PT, and (iv) allowing testing in a virtual environ-
ment to avoid damages to the PT occurring from destructive tests. The concepts
are illustrated with a high-speed train electric multiple unit.

Boschert and Rosen [5] focused on the simulation aspects of the DT. Apart
from common concepts also presented in other papers, the authors underline the
importance of selecting the suitable abstraction of the model for the problem
to be solved, as having unnecessarily too-detailed models can lead to scalability
issues. Moreover, they underline that the simulation facilities of the DT make
it suitable to be used along all the life-cycle of the physical twin, not only in
operation. In the design phase, for example, the models that are created for
building the system are a first foundation of the DT itself.

8 Conclusion

Digital twins (DTs) for Cyber-Physical Systems (CPSs) aim to improve the cur-
rent practice of developing and operating CPSs. The increased interest in DTs for
CPSs have resulted in various definitions of DTs and their associated concepts.
Thus, in this paper, we presented a conceptual model of different DTs concepts
and their relationships based on the published literature. Moreover, concepts are
also explained with a running example. The conceptual model serves as the first
step towards providing a unified meaning of various DT concepts in the CPS com-
munity. In addition, we acknowledge the needs of developing systematic solutions
for dealing various uncertainties in the development and operation of both CPSs
and their DTs, and their co-evolution. We also encourage more research activities
on designing dual lifecycles of engineering DTs and CPSs.

References

1. The FMI Standard. https://fmi-standard.org/
2. Asare, P., et al.: Cyber-Physical Systems - A Concept Map. http://

cyberphysicalsystems.org/

https://fmi-standard.org/
http://cyberphysicalsystems.org/
http://cyberphysicalsystems.org/

70 T. Yue et al.

3. Bandyszak, T., Daun, M., Tenbergen, B., Weyer, T.: Model-based documentation
of context uncertainty for cyber-physical systems. In: 2018 IEEE 14th International
Conference on Automation Science and Engineering (CASE), pp. 1087–1092. IEEE
(2018)

4. Baresi, L., Pasquale, L., Spoletini, P.: Fuzzy goals for requirements-driven adapta-
tion. In: 2010 18th IEEE International Requirements Engineering Conference, pp.
125–134. IEEE (2010)

5. Boschert, S., Rosen, R.: Digital twin—the simulation aspect. In: Hehenberger, P.,
Bradley, D. (eds.) Mechatronic Futures, pp. 59–74. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-32156-1 5

6. Cameron, D.B., Waaler, A., Komulainen, T.M.: Oil and gas digital twins after
twenty years. How can they be made sustainable, maintainable and useful? In:
Proceedings of the 59th Conference on Simulation and Modelling (SIMS 59), 26–
28 September 2018, Oslo Metropolitan University, Norway, pp. 9–16. Linköping
University Electronic Press (2018)

7. Camilli, M., Bellettini, C., Gargantini, A., Scandurra, P.: Online model-based test-
ing under uncertainty. In: 2018 IEEE 29th International Symposium on Software
Reliability Engineering (ISSRE), pp. 36–46. IEEE (2018)

8. Cheng, B.H.C., Sawyer, P., Bencomo, N., Whittle, J.: A goal-based modeling app-
roach to develop requirements of an adaptive system with environmental uncer-
tainty. In: Schürr, A., Selic, B. (eds.) MODELS 2009. LNCS, vol. 5795, pp. 468–483.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04425-0 36

9. Croatti, A., Gabellini, M., Montagna, S., Ricci, A.: On the integration of agents
and digital twins in healthcare. J. Med. Syst. 44(9), 1–8 (2020)

10. Dembski, F., Wössner, U., Letzgus, M., Ruddat, M., Yamu, C.: Urban digital twins
for smart cities and citizens: the case study of Herrenberg, Germany. Sustainability
12(6), 2307 (2020). https://doi.org/10.3390/su12062307

11. Fonseca, Í.A., Gaspar, H.M.: Challenges when creating a cohesive digital twin ship:
a data modelling perspective. In: Ship Technology Research, pp. 1–14 (2020)

12. Golomb, S.W.: Mathematical models: uses and limitations. IEEE Trans. Reliab.
R-20(3), 130–131 (1971)

13. Havard, V., Jeanne, B., Lacomblez, M., Baudry, D.: Digital twin and virtual reality:
a co-simulation environment for design and assessment of industrial workstations.
Prod. Manuf. Res. 7(1), 472–489 (2019)

14. Hehenberger, P., Vogel-Heuser, B., Bradley, D., Eynard, B., Tomiyama, T.,
Achiche, S.: Design, modelling, simulation and integration of cyber physical sys-
tems: methods and applications. Comput. Ind. 82, 273–289 (2016). https://doi.
org/10.1016/j.compind.2016.05.006

15. Iglesias, A., Lu, H., Arellano, C., Yue, T., Ali, S., Sagardui, G.: Product line engi-
neering of monitoring functionality in industrial cyber-physical systems: a domain
analysis. In: Proceedings of the 21st International Systems and Software Product
Line Conference - Volume A, SPLC 2017, pp. 195–204. Association for Computing
Machinery, New York (2017). https://doi.org/10.1145/3106195.3106223

16. Jones, D., Snider, C., Nassehi, A., Yon, J., Hicks, B.: Characterising the digital
twin: a systematic literature review. CIRP J. Manuf. Sci. Technol. (2020). https://
doi.org/10.1016/j.cirpj.2020.02.002

17. Josifovska, K., Yigitbas, E., Engels, G.: Reference framework for digital twins
within cyber-physical systems. In: Proceedings of the 5th International Workshop
on Software Engineering for Smart Cyber-Physical Systems, SEsCPS 2019, pp.
25–31. IEEE Press (2019). https://doi.org/10.1109/SEsCPS.2019.00012

https://doi.org/10.1007/978-3-319-32156-1_5
https://doi.org/10.1007/978-3-319-32156-1_5
https://doi.org/10.1007/978-3-642-04425-0_36
https://doi.org/10.3390/su12062307
https://doi.org/10.1016/j.compind.2016.05.006
https://doi.org/10.1016/j.compind.2016.05.006
https://doi.org/10.1145/3106195.3106223
https://doi.org/10.1016/j.cirpj.2020.02.002
https://doi.org/10.1016/j.cirpj.2020.02.002
https://doi.org/10.1109/SEsCPS.2019.00012

Understanding Digital Twins for Cyber-Physical Systems 71

18. Lee, E.: The past, present and future of cyber-physical systems: a focus on mod-
els. Sensors (Basel, Switzerland) 15, 4837–4869 (2015). https://doi.org/10.3390/
s150304837

19. Ma, T., Ali, S., Yue, T., Elaasar, M.: Testing self-healing cyber-physical systems
under uncertainty: a fragility-oriented approach. Softw. Qual. J. 27(2), 615–649
(2019)

20. Moreno, G.A., Cámara, J., Garlan, D., Klein, M.: Uncertainty reduction in self-
adaptive systems. In: Proceedings of the 13th International Conference on Software
Engineering for Adaptive and Self-Managing Systems, pp. 51–57 (2018)

21. Negri, E., Fumagalli, L., Macchi, M.: A review of the roles of digital twin in CPS-
based production systems. Procedia Manuf. 11, 939–948 (2017). https://doi.org/
10.1016/j.promfg.2017.07.198

22. Rasheed, A., San, O., Kvamsdal, T.: Digital twin: values, challenges and enablers
from a modeling perspective. IEEE Access 8, 21980–22012 (2020)

23. Safdar, S.A., Yue, T., Ali, S., Lu, H.: Evaluating variability modeling techniques
for supporting cyber-physical system product line engineering. In: Grabowski, J.,
Herbold, S. (eds.) SAM 2016. LNCS, vol. 9959, pp. 1–19. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-46613-2 1

24. Tao, F., Qi, Q., Wang, L., Nee, A.: Digital twins and cyber–physical systems toward
smart manufacturing and Industry 4.0: correlation and comparison. Engineering
5(4), 653–661 (2019). https://doi.org/10.1016/j.eng.2019.01.014

25. Tao, F., Zhang, H., Liu, A., Nee, A.Y.: Digital twin in industry: state-of-the-art.
IEEE Trans. Ind. Inform. 15(4), 2405–2415 (2018)

26. Wagg, D.: Asset Management using the Digital Twin concept. https://www.
thefuturefactory.com/blog/26. Accessed 4 Sept 2020

27. Xiaodong, W., Feng, L., Junhua, R., Rongyu, L.: A survey of digital twin technol-
ogy for PHM. In: Jain, V., Patnaik, S., Popentiu Vlădicescu, F., Sethi, I.K. (eds.)
Recent Trends in Intelligent Computing, Communication and Devices. AISC, vol.
1006, pp. 397–403. Springer, Singapore (2020). https://doi.org/10.1007/978-981-
13-9406-5 48

28. Zhang, M., Ali, S., Yue, T.: Uncertainty-wise test case generation and minimization
for cyber-physical systems. J. Syst. Softw. 153, 1–21 (2019). https://doi.org/10.
1016/j.jss.2019.03.011

29. Zhang, M., Ali, S., Yue, T., Norgren, R., Okariz, O.: Uncertainty-wise cyber-
physical system test modeling. Softw. Syst. Model. 18(2), 1379–1418 (2019).
https://doi.org/10.1007/s10270-017-0609-6

30. Zhang, M., Selic, B., Ali, S., Yue, T., Okariz, O., Norgren, R.: Understanding
uncertainty in cyber-physical systems: a conceptual model. In: W ↪asowski, A., Lönn,
H. (eds.) ECMFA 2016. LNCS, vol. 9764, pp. 247–264. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-42061-5 16

31. Zhang, M., et al.: Specifying uncertainty in use case models. J. Syst. Softw. 144,
573–603 (2018)

https://doi.org/10.3390/s150304837
https://doi.org/10.3390/s150304837
https://doi.org/10.1016/j.promfg.2017.07.198
https://doi.org/10.1016/j.promfg.2017.07.198
https://doi.org/10.1007/978-3-319-46613-2_1
https://doi.org/10.1016/j.eng.2019.01.014
https://www.thefuturefactory.com/blog/26
https://www.thefuturefactory.com/blog/26
https://doi.org/10.1007/978-981-13-9406-5_48
https://doi.org/10.1007/978-981-13-9406-5_48
https://doi.org/10.1016/j.jss.2019.03.011
https://doi.org/10.1016/j.jss.2019.03.011
https://doi.org/10.1007/s10270-017-0609-6
https://doi.org/10.1007/978-3-319-42061-5_16

Uncertainty Quantification and Runtime
Monitoring Using Environment-Aware

Digital Twins

Jim Woodcock1,2(B), Cláudio Gomes2(B), Hugo Daniel Macedo2,
and Peter Gorm Larsen2

1 Department of Computer Science, University of York, York, UK
jim.woodcock@york.ac.uk

2 DIGIT, Department of Electrical and Computer Engineering, Aarhus University,
Aarhus, Denmark

{claudio.gomes,hdm,pgl}@ece.au.dk

Abstract. A digital twin for a Cyber-Physical System includes a sim-
ulation model that predicts how a physical system should behave. We
show how to quantify and characterise violation events for a given safety
property for the physical system. The analysis uses the digital twin to
inform a runtime monitor that checks whether the noise and violations
observed fall within expected statistical distributions. The results allow
engineers to determine the best system configuration through what-if
analysis. We illustrate our approach with a case study of an agricultural
vehicle.

1 Introduction

We engineer a Cyber-Physical System (CPS) using separate models for its dif-
ferent parts [9,13,16,27,32]. If we use different formalisms, then this is a multi-
model and we must use the corresponding support tools in coordination. In
particular, we must connect the different simulation tools in a co-simulation. A
co-simulation is a generalised form of simulation where different simulation tools
are coupled together (see [14,19] for an introduction to the topic).

Typically, we use multi-models only in the engineering phase of the CPS in
question (e.g., as in the V-process [31]). Recently, we have been reusing multi-
models as digital twins after deploying the CPS (see [10]). We stream sensor
and actuation signals from the CPS (the physical twin) to the multi-model co-
simulation (the digital twin). We then predict how the physical twin should
behave. However, the predictions can never be 100% accurate. This is because
the multi-models cannot capture the full detail of physical reality: the sensor
data is noisy and sampled at a finite frequency; the numerical solution of the
multi-models is an approximation; and the environment for the physical twin
may be different from the one used for prototyping.

An important practical question is: how large can these discrepancies be
before we judge that the CPS is no longer behaving as we intended? We cannot
c© Springer Nature Switzerland AG 2021
T. Margaria and B. Steffen (Eds.): ISoLA 2020, LNCS 12479, pp. 72–87, 2021.
https://doi.org/10.1007/978-3-030-83723-5_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-83723-5_6&domain=pdf
https://doi.org/10.1007/978-3-030-83723-5_6

Uncertainty Quantification and Runtime Monitoring 73

Fig. 1. The necessary components of a CPS operating in its environment.

hope to answer this question in general, as it depends on the CPS, the level of
detail of the multi-models, and the properties of the CPS that we are interested
in. However, we can provide tools and methods that make it easier to specify
allowed discrepancies.

In this paper, we try to answer the above question based on a case study
representing an agricultural vehicle. The data used is simulated data, but repre-
sentative of the real system. The reproducibility code for the results can be found
in [15]. This work is a stepping stone towards bridging numerical and statistical
simulation techniques with the runtime monitoring and verification field, where
important techniques have been developed to synthesise monitoring algorithms
[2,5,8]. We show how, by embedding noise into the model of the system, we
may understand how that noise impacts the system’s behaviour (e.g., are safety
boundaries still respected?), and devise a runtime monitor that checks whether
the noise observed in practice still corresponds to the modelled noise. When this
condition is not observed, actions need to be taken to ensure that the system
continues to operate correctly.

After this introduction, Sect. 2 motivates the need to operate with tolerances
in a digital twin context. Afterwards Sect. 3 presents a case study with an agri-
cultural vehicle. Finally Sect. 4 discusses how it is possible to talk about safety
in the presence of statistical inaccuracies and provides a few concluding remarks
and points towards the future work we wish to carry out.

2 The Need for Digital Twins and Tolerance

A simplified1 representation of a CPS is depicted in Fig. 1. It comprises a digital
component that controls a physical asset operating in some environment. In order
to study the behaviour of the CPS, having a good model of the environment is
as important as having a model of both the digital and the physical component,
as the environment affects the behaviour of both.

As stated in Kritzinger et al. [18] and Tao et al. [30], a digital twin can be
used to monitor the conformance of the real CPS to these models, and possibly
affect the real CPS when such conformance is violated.
1 In practice, there may be many sub-components of each of the controller, plant, and

environment, elements, and they may have complex interactions.

74 J. Woodcock et al.

Here we define the digital twin as the system that ensures the correct func-
tioning of the system, aptly named the physical twin. For some systems, the
digital twin can be realised with sensory data directly. For more complex sys-
tems, a combination of state estimators, data fusion algorithms, and numerical
simulation, might be required to get a more comprehensive state of the system.
As a simple example, suppose we want to monitor the torque acting on an elec-
trical agricultural vehicle’s wheels. The digital twin can read the current on the
motor of each wheel. It measures this from sensory data. If the digital twin has
a well-calibrated torque constant, then the torque is just the multiplication of
the torque constant by the current measured.

Discrepancies between the values observed from the system and the values
computed by the digital twin may occur for the following reasons:

1. Sensor data represent delayed discrete samples of the system;
2. Sensors (and actuators) have inaccurate and noisy readings.
3. The models used by the digital twin (e.g., used to derive data) do not fully

represent the physical twin.
4. There are processing delays in the digital twin.

The statistician George Box is famous for the quote: “All models are wrong,
but some are useful” [3]. This is sometimes used as an excuse for bad models,
but that is not what Box meant. Box clarifies this: “Remember that all models
are wrong; the practical question is how wrong do they have to be to not be
useful?” [4]. The same question applies to discrepancies between digital twin
and the system.

To give an example, suppose we need to check whether the physical twin satis-
fies some safety property. In the face of uncertainty of noisy sampled sensor data,
how do we know that a violation is not a false positive? Or that a non-violation
is a real non-violation? These questions highlight the need to incorporate noise
models, which can be considered environment models, into the digital twin, and
monitor whether those noise models correspond to the noise observed in practice.

If we successfully address the above questions, we can use the detection of
violations for:

– Switching system operation to a fail-safe mode (as in Mitsch et al. [24]).
– Alerting human operators.
– Triggering a recalibration of the digital twin in a tracking simulator (e.g.,

[20,23,25]) (if the violation represents a change in the environment).
– Triggering maintenance activities (if the violation represents a change in the

system’s components, e.g., due to wear and tear).
– Triggering root-cause analysis [28] (e.g., by running multiple simulations with

varying parameters that try to explain the violation observed).

3 The Agricultural Vehicle Case Study

Autonomous agricultural systems are a prime application domain for digital twin
technology. They are complex systems working in remote environments with a
high degree of intrinsic uncertainty.

Uncertainty Quantification and Runtime Monitoring 75

As example of the need to monitor these vehicles, consider the following.

Example 1. The speed controllers on the wheels of an agricultural vehicle are
tuned such that, for a particular static and viscous friction profile, they quickly
settle on the speed that is commanded by the user. This is highly beneficial not
just from a safety point of view, but also because it enables the use of path plan-
ning and job scheduling algorithms that rely only on kinematic2 models. With
wear and tear, manufacturing variability, unexpected operating temperatures,
etc., the friction profile used to tune the speed controller becomes outdated.
This makes the controllers perform poorly, and may invalidate the kinematic
models used for planning.

Monitoring alleviates the problem highlighted in Example 1 by, e.g., measur-
ing the current drawn and speed of the motors to detect when the controllers
have deviated from the original behaviour (obtained through simulations and
initial experimentation with the system). We must tolerate certain deviations
because they might be due to noisy current measurements. We can specify a
threshold as a function of the uncertainty in current measurements. Deviations
that exceed the threshold trigger one of the following actions:

1. Alert human operators to lubricate the joints of the vehicle (i.e., change the
physical system to match the kinematics).

2. Alert human operators to re-tune the controller parameters (i.e., calibrate
the controller’s models of friction).

3. Recalibrate the kinematic models, finding new acceleration and speed profiles.

Each of the above actions has a different impact in the operations of the vehicle.
For instance, option (3) invalidates all prior path planning and optimisation
results.

We now show two analyses to quantify the uncertainty in the measurements
of the physical system. The first analysis is a well known Montecarlo simulation,
which consists of running several simulations, with noise drawn from statisti-
cal distributions that characterise the environment of the system. The second
consists of combining what-if analysis with Montecarlo co-simulations. It enables
designers to understand which noise sources have the biggest impact in the safety
of the vehicle. Both analyses use models of the system environment (in this case,
the noise).

We introduce a simple agricultural vehicle and derive its kinematic and con-
troller equations. We can generalise the analysis described here to the more
complex system described in Foldager et al. [11] and Macedo et al. [22].

2 Some terminology. Kinematics is the space of all possible configurations of a system
at one time without considering the forces acting on the system. For example, invari-
ants between state variables that follow from conservation laws. Dynamics is how
configurations change as a function of time, due to the forces acting on the system.

76 J. Woodcock et al.

3.1 Vehicle Kinematics

We derive simple kinematic equations for the agricultural vehicle. We consider
it to be a bicycle model3 with front steering and centre of gravity at the centre
of the rear axis. For a more general derivation see Rajamani [26, Section 2.2].

Figure 2 gives a diagram of the agricultural vehicle, inspired by Alur [1]. The
vehicle has four wheels, two at the back that have a fixed direction and two at
the front that the driver can steer towards the left or the right. We define the
vehicle’s current position to be the centre of the rear axle (x , y). The distance
between the front and back axles is Lm. The vehicle is moving forward at a speed
of v ms−1. The front wheels are at an angle of θ◦ to the frame of reference (the
x -y axes in the diagram). The driver has turned the front wheels to the right
by an angle of δ◦. Because of its steering geometry, this is causing the vehicle
to follow a circle with the origin at point C . We determine the centre of the
turning circle by producing two lines, one following the rear axle and the other
following the front axle rotated clockwise by the steering angle δ.4

We deduce some facts about the vehicle’s motion. The geometric interpreta-
tion of the derivative of a function f (x) at x = x0 is the slope of the graph of f
at that point. This is defined to be the slope of the tangent line to the graph at
x0.5 Thus, by definition we have:

dy
dx

= tan θ

=
{

by the chain rule of differentiation:
dy
dt

=
dy
dx

· dx
dt

}

dy/dt
dx/dt

= tan θ

= { changing from Leibniz’s notation to Newton’s for conciseness }
ẏ/ẋ = tan θ

3 The term “bicycle model” is used because the equations assume that the angle of
each front wheel is the same, as happens with vehicles that have only one front
wheel. In practice, the angle between the two front wheels differs and the difference
is proportional to the distance between them (as in Ackermann steering geometry).

4 We assume that the vehicle moving at a constant speed describes a circle about its
forward travelling frame of reference. In reality, steering is more complicated than
this. It depends on whether the vehicle is front or rear-wheel driven; whether the
front or rear-wheels steer the vehicle; what particular steering geometry is present;
what the tyre characteristics are; and whether there are differential axles. A stan-
dard configuration is for the vehicle to have front-wheel steered driving wheels with
Ackermann steering geometry (Zhao et al. show how to derive this geometry in a
mechanical engineering setting [33]). This approximates idealised steering along a
circular arc.

5 More formally, it is the limit of the secant lines through (x0, f (x0)) and nearby points
(x , f (x)) as x approaches x0. For the tangent line to be well-defined, the graph of f
at x0 must be continuous. The tangent line must not be vertical: a vertical line is
not a function and so does not have a slope.

Uncertainty Quantification and Runtime Monitoring 77

ρ

L

(x,y)

y

x

v

θ

δ

C

Fig. 2. Agricultural vehicle.

= { trigonometry: tan θ = sin θ/ cos θ }
ẏ/ẋ = sin θ/ cos θ

= { arithmetic }
ẏ cos θ = ẋ sin θ

This equation is satisfied by ẋ = cos θ and ẏ = sin θ and their scalar multiples,
which correspond to the vehicle’s velocity v . That means ẋ = v cos θ and ẏ =
v sin θ.

Now we want to find the angular speed of the vehicle. The angle between the
lines that meet at C is also δ. The distance between the centre of the axle and
C is ρ (see Fig. 2). Therefore,

tan δ = L/ρ

= ρ = L/(tan δ)

The vehicle follows a circular path. Suppose that the vehicle travels s metres
along its circular trajectory and s is half the distance it takes to intersect the
y = x axis again. Given that θ is the angle subtended by this arc, identical
to the one measured at the centre of the rear axle, and ρ is the radius of this

78 J. Woodcock et al.

circular trajectory, then we have s = ρ θ. This comes directly from the formula
that relates degrees of arc and radians: angle θ =

s
ρ

radians. Now calculate:

s = ρ θ

⇒ { differentiate both sides (assumption: monotonic functions) }
ds
dt

=
d(ρ θ)
dt

= { constant circle radius ρ }
ds
dt

= ρ
dθ

dt

=
{

replacing linear velocity
ds
dt

= v and angular velocity
dθ

dt
= θ̇

}

v = ρ θ̇

To summarise, the kinematic equations of our simplified vehicle are:

ẋ (t) = v(t) cos θ(t)
ẏ(t) = v(t) sin θ(t)

θ̇(t) = (v/L) tan δ(t)

(1)

where the controlled inputs are t and δ(t), and the initial values for the states
x , y , θ are known.

3.2 Controller

To keep the explanation simple, we develop a controller whose purpose is to
drive the vehicle in a straight line, in the x direction with a constant speed.

Given a position (x , y) and orientation of the vehicle θ, the controller com-
putes δ and v that get the vehicle closer to the intended y coordinate ytarget = 0
and orientation θtarget = 0, as follows:

δerror(t) = −(ktθ(t) + kpy(t))

δ(t) =

⎧⎪⎨
⎪⎩

δmax if δerror(t) > δmax

−δmax if δerror(t) < −δmax

δerror(t) otherwise

v(t) = 1

(2)

where kt > 0 and kp > 0 are tunable constants and δ represents the steering angle
limited by the maximum steering wheel angle, represented by δmax . Figure 3
shows an example solution of the closed (no inputs) system formed by putting
together Eqs. (1) and (2).

Uncertainty Quantification and Runtime Monitoring 79

Fig. 3. Example simulation where vehicle starts 1m away from the straight line (right),
and with wrong orientation (left). As can be seen, the controller corrects this (saturating
δ initially) and settles the vehicle in the straight line after a few seconds. Here, the
parameters kt = kp = 1, and theta and delta correspond to θ and δ.

3.3 Deployed System

The system of equations derived so far in Eqs. (1) and (2) does not reflect the
actual deployment of the system. This is because: (i) the deployed controller will
sample the position and orientation of the vehicle every H > 0 seconds; and (ii)
there is noise in the sensor measurements of x , y , θ and in the actuators v , δ.

To represent the sampled system, we note that, between samples, the actu-
ation of the controller is constant, and the only continuous behaviour is the
vehicle’s. In the time interval τ ≤ t < τ + H , the system’s motion is given by
Eqs. (1) and (2) with the difference that the vehicle speed and steering angle
are kept constant throughout the interval, and are computed according to the
orientation and position of the vehicle at the beginning of the interval:

ẋ (t) = v(τ) cos θ(t)
ẏ(t) = v(τ) sin θ(t)

θ̇(t) = (v(τ)/L) tan δ(τ)

(3)

where the initial state values x (τ), y(τ), θ(τ), are given, and δ(τ), v(τ) are com-
puted as in Eq. (2) (or Eq. (4) if there’s noise) from the initial state values. Note
that throughout the interval, θ̇(t) is constant.

The behaviour of the system is computed in a co-simulation involving the
controller and the vehicle kinematics as follows:

1. At time t = τ , the controller gets the values for position and orientation from
the sensors, calculates the steering wheel angle and speed, and sets those
values through the actuators.

2. We use a numerical solver to solve Eq. (3) in the interval τ ≤ t ≤ τ + H .

80 J. Woodcock et al.

Fig. 4. Results of the co-simulation using the controller with noise (Eq. (4)) and the
system dynamics in Eq. (3). The noise terms are drawn from statistical distributions.
The communication step size H = 0.1 seconds.

3. At the end of the interval, when t = τ + H , the controller gets new values
for position and orientation from the sensors, recalculates the steering wheel
angle and speed, and sets those values through the actuators (this is Step 1
for the new interval τ + H ≤ t ≤ τ + 2H), and the cycle is repeated.

To account for noise, we introduce noise terms by reformulating Eq. (2) as follows:

δerror = −(kt(θ + εθ) + kp(y + εy)) + εδ

δ =

⎧⎪⎨
⎪⎩

δmax if δerror > δmax

−δmax if δerror < −δmax

δerror otherwise

v = 1 + εv

(4)

We assume that the noise terms introduced are constant during the continuous
evolution of the system’s kinematics, but may change at each control execution
cycle. The system behaviour is computed by the same co-simulation algorithm
as described above, except when the controller computes δ, v , it does so using
new values for the noise terms. The values for these terms can be taken from
a statistical distribution. They will perturb the system and cause deviations on
its correct behaviour, even when the vehicle starts in the target position and
orientation. The simulation results in Fig. 4 illustrate an example.

3.4 Statistical Analysis

In the previous subsections, we derived a simple model of how the deployed agri-
cultural vehicle behaves. In the following subsections, we introduce the statistical
analysis used to quantify the uncertainty of the vehicle’s behaviour with respect
to the uncertainty in the environment of the vehicle. The methods we introduce

Uncertainty Quantification and Runtime Monitoring 81

here can be applied automatically for different parametrisations of the system,
and therefore they can be used to guide design choices and parameter tuning.

To illustrate the importance of these analyses with respect to safety, suppose
that we wish the system to always stay within a maximum distance of the center
of road.

∀ t ,Y (t) < ymax (5)

where Y denotes the trace of y coordinates of the system, and ymax is a constant
reflecting, for example, the half-width of the road where the vehicle will drive.
The more general property ∀ t , |Y (t)| < ymax could be used, but the analyses
are analogous.

Assuming that the noise in the system can be characterised as a statistical
distribution, then running Montecarlo co-simulations may help us determine the
expected system’s behaviour with respect to its safety properties.

For instance, suppose that each time the controller computes the velocity
and steering angle, in Eq. (4), the noise values are drawn from a Normal distri-
bution with zero mean and standard deviation that’s been estimated from real
measurements:

εp � N (0, σp) for p ∈ {θ, y , δ, v} (6)

Then running many simulations, as Fig. 5 exemplifies, will yield estimates on
important measures of expected violations. Those measures can then be used in
a runtime monitor that checks whether the violations of the real system agree
with the simulation data. To exemplify this, we first need to define the quantities
of interest for the case study used.

Definition 1 (Violation Events, Peak, and Duration). Given a trajectory
of the vehicle Y (t), the i-th violation event, denoted as a tuple with the start
time and end time [t i , t i], represents the interval during which the vehicle is
violating that property. Formally, ∀ t ∈ [t i , t i],Y (t) ≥ ymax. The peak of the
i-th violation event is given by max

{
Y (t) − ymax : t ∈ [t i , t i]

}
. The maximum

peak of a trace is the maximum of the peak of each violation event.

Figure 6 illustrates these concepts.
Within the same trace, violation events are not Independent and Identically

Distributed (i.i.d.), because of the dynamics of the vehicle. To see why, note
that, right after a violation event, the probability of another event occurring
depends on the dynamics of the control system. In particular, the control system
is steering the vehicle towards the line y = 0, regardless of the values that the
noise terms may take (the noise terms are i.i.d.). The further the vehicle is from
the line, the stronger the control action, and the smaller the set of possible noise
terms that will make the vehicle violate the property. This set gets bigger as

82 J. Woodcock et al.

Fig. 5. Results of 100 co-simulations using the controller with noise (Eq. (4)) and the
system kinematics in Eq. (3). The noise terms are drawn from statistical distributions
with the following standard deviations: σθ = σy = σv = 0.1, σδ = 0.01. The communi-
cation step size matches the controller execution cycle H = 0.1 seconds. The straight
line represents the property limit ymax = 0.1. As can be seen, there are a few violations.

the control action gets weaker, e.g., as the vehicle gets closer to the line y = 0,
affecting the probability of a subsequent violation event.

However, between two traces, the violation events are i.i.d.. Hence, we can
compute statistics between traces for:

– Maximum violation peak within the same trace.
– Maximum violation duration.

Figure 7 shows the results of these quantities, computed from simulations like
the ones in Fig. 5.

3.5 Runtime Monitoring

Having estimated the quantities in Fig. 7, a run-time monitor can be synthesised
that will perform the following, at each monitoring step:

1. Compute moving average of each sensor and actuation signal.
2. Compute moving standard deviation of each sensor and actuation signals

(such standard deviations represent the noise standard deviations observed).
3. Compare each observed noise standard deviation with the noise standard

deviation used to obtain the simulation results.
4. If the observed noise parameters are too different from the noise parame-

ters used to create the simulations, give an alert to the user (because the
simulation results used the wrong assumptions and should be repeated).

5. Quantify how safe the system is (e.g., evaluate Eq. (5), compute for how long
it does not hold, maximum violation, etc.).

6. If such quantification does not match what was observed with the simulation
data (in Fig. 7), then alert the user that the system is unsafe.

Uncertainty Quantification and Runtime Monitoring 83

peak 1
peak 0

Fig. 6. Illustration of the concepts in Definition 1. There are two violation events. The
peak of each violation event is the maximum distance between the trace and the safety
line ymax. The maximum peak is peak 0.

Fig. 7. Statistics of quantities of interest for runtime monitoring, computed from 10000
co-simulations. The parameters are the same as in Fig. 5.

3.6 What-If Analysis

The property in Eq. (5) reflects a characteristic of the road in which the vehicle
operates. These properties may come from industrial regulations, etc., and are
independent of the way the vehicle is designed. The previous subsection shows
how to characterise and quantify the violation events caused by the vehicle and
control system characteristics, in particular, the noise in the sensors and actu-
ators. This subsection shows how the same technique can be used to identify
which noise sources have a bigger impact in the system operation.

Suppose we are trying to decide whether to upgrade the vehicle with a better
GPS receiver, or a better servomotor for the steering wheel. With only enough
budget for one purchase, we would like to know which makes the system safer.
Repeating the statistical analysis with the new noise characteristics provides
estimates on the impact of each configuration.

For brevity, we show the results and conclusions of the statistical for both
new GPS configuration and new servo, in Fig. 8.

84 J. Woodcock et al.

Fig. 8. What-if analysis results. The nominal standard deviations for the noise terms
are as in Fig. 5: σθ = σy = σv = 0.1, σδ = 0.01. As can be seen, the new GPS
configuration reduces both the mean and standard deviation of the violation events
more than the new servo configuration.

4 Conclusion

We set out to describe some of the techniques that can be used to measure
discrepancies between a CPS and a digital twin. We have shown how, for a given
safety property Eq. (5), to quantify and characterise the violation events of that
property. The analysis is based on a model of the system, and can then inform a
runtime monitor that checks whether the noise and violations observed fall within
the expected statistical distributions. For this analysis, we assume that the noise,
initial states, and inputs to the system must be such that violation events can
occur. If the system is already safe with respect to the property, regardless of
the noise, then the analyses presented here confirm that and there’s nothing to
be tolerated.

Additionally, the results presented here allow the engineers to determine the
best system configuration through what-if analysis. For instance, the statistical
analysis could be used to calculate the minimum accuracy of the GPS signal, so
that the probability of a violation event occurring is below some threshold.

We now summarise the limitations and assumptions of this case study:

1. The statistical analysis can be computationally expensive (even though the
simulations can be run in parallel).

2. The analyses presume that the standard deviations of the noise can be
obtained from empirical data. They are supposed to make use of the models
to relieve but not eliminate the need for some physical experimentation with
the real vehicle.

3. In each simulation, we assume that the noise terms are constant in between
controller samples. In practice, noise may affect the physical system in
between those samples.

4. The performance of the co-simulation plays a fundamental role in enabling
the Montecarlo co-simulations.

Uncertainty Quantification and Runtime Monitoring 85

Additionally, we have assumed that it is possible to quantify the violation
degree of a safety property. Signal Temporal Logic (STL) is a formalism for spec-
ifying the requirements of CPSs [7]. It mixes models of discrete and analogue
components and a continuous environment. STL has a quantitative semantics
and is a natural candidate to quantify safety. Algorithms exist for offline com-
putation of quantitative semantics and methods for online analysis monitoring
satisfaction during simulation [6].

Our work is related to the field of run-time verification. These techniques
checks that a run of a system satisfies or violates a given correctness property [21].
This is the natural technology for checking behavioural deviations between a
physical asset and its digital twin. Techniques exist for robust online monitoring
of properties described in STL [6].

Regarding the performance of the co-simulation, if the example is sufficiently
complex, it won’t be feasible to run the 10 000 co-simulations. To this end,
researchers have employed many system identification [17], grey-box modelling
[29], and surrogate modelling techniques [12], to create faster simulation models
that can be used for the analysis.

Ongoing work is focusing on generalising this method into a framework that
allows user to describe the safety properties, described tolerable violations, and
generate runtime monitors that enforce such tolerances. In particular, we will
develop an ontology based on multiple case studies, which will in turn inform us
of the most common tolerable violations for safety properties.

Acknowledgements. We acknowledge the European Union for funding the INTO-
CPS project (Grant Agreement 644047), which developed the open tool chain and the
INTO-CPS Application; the Poul Due Jensen Foundation that funded subsequent work
on taking this forward towards the engineering of digital twins; and the European Union
for funding the HUBCAP project (Grant Agreement 872698). We acknowledge support
from the UK EPSRC for funding for the RoboCalc (EP/M025756/1) and RoboTest
projects (EP/R025479/1). Finally, we acknowledge support from the Royal Society and
National Natural Science Foundation of China for funding for the project Requirements
Modelling for Cyber-Physical Systems IEC/NSFC/170319. Early versions of the ideas
in this paper were presented to the Digital Twin Centre in Aarhus in December 2019
(twice) and to the RoboStar team in York in January 2020. We are grateful for their
feedback.

References

1. Alur, R.: Principles of Cyber-Physical Systems. The MIT Press, Cambridge (2015)
2. Bartocci, E., Falcone, Y., Francalanza, A., Reger, G.: Introduction to runtime

verification. In: Bartocci, E., Falcone, Y. (eds.) Lectures on Runtime Verification.
LNCS, vol. 10457, pp. 1–33. Springer, Cham (2018). https://doi.org/10.1007/978-
3-319-75632-5 1

3. Box, G.E.P.: Robustness in the strategy of scientific model building. In: Launer,
R.L., Wilkinson, G.N. (eds.) Robustness in Statistics, pp. 201–236. Academic Press
(1979)

https://doi.org/10.1007/978-3-319-75632-5_1
https://doi.org/10.1007/978-3-319-75632-5_1

86 J. Woodcock et al.

4. Box, G.E.P., Draper, N.R.: Empirical Model-Building and Response Surfaces.
Wiley, Hoboken (1987)

5. Cassar, I., Francalanza, A., Aceto, L., Ingólfsdóttir, A.: A survey of runtime moni-
toring instrumentation techniques. Electron. Proc. Theor. Comput. Sci. 254, 15–28
(2017)

6. Deshmukh, J.V., Donzé, A., Ghosh, S., Jin, X., Juniwal, G., Seshia, S.A.: Robust
online monitoring of signal temporal logic. Formal Methods Syst. Des. 51(1), 5–30
(2017). https://doi.org/10.1007/s10703-017-0286-7

7. Donzé, A.: On signal temporal logic. In: Legay, A., Bensalem, S. (eds.) RV 2013.
LNCS, vol. 8174, pp. 382–383. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-40787-1 27

8. Falcone, Y., Krstić, S., Reger, G., Traytel, D.: A taxonomy for classifying run-
time verification tools. In: Colombo, C., Leucker, M. (eds.) RV 2018. LNCS, vol.
11237, pp. 241–262. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-
03769-7 14

9. Fitzgerald, J., Gamble, C., Larsen, P.G., Pierce, K., Woodcock, J.: Cyber-physical
systems design: formal foundations, methods and integrated tool chains. In: 2015
IEEE/ACM 3rd FME Workshop on Formal Methods in Software Engineering (For-
maliSE), pp. 40–46 (2015)

10. Fitzgerald, J., Larsen, P.G., Pierce, K.: Multi-modelling and co-simulation in the
engineering of cyber-physical systems: towards the digital twin. In: ter Beek, M.H.,
Fantechi, A., Semini, L. (eds.) From Software Engineering to Formal Methods and
Tools, and Back. LNCS, vol. 11865, pp. 40–55. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-30985-5 4

11. Foldager, F.F., Larsen, P.G., Green, O.: Development of a driverless lawn mower
using co-simulation. In: Cerone, A., Roveri, M. (eds.) SEFM 2017. LNCS, vol.
10729, pp. 330–344. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
74781-1 23

12. Forrester, A., Sobester, A., Keane, A.: Engineering Design via Surrogate Modelling:
A Practical Guide. Wiley, Hoboken (2008)

13. Gibson, J.P., Larsen, P.G., Pantel, M., Fitzgerald, J., Woodcock, J.: Cyber-physical
systems engineering: an introduction. In: Margaria, T., Steffen, B. (eds.) ISoLA
2018, Part III. LNCS, vol. 11246, pp. 407–410. Springer, Cham (2018). https://
doi.org/10.1007/978-3-030-03424-5 27

14. Gomes, C., Thule, C., Broman, D., Larsen, P.G., Vangheluwe, H.: Co-simulation:
a survey. ACM Comput. Surv. 51(3), 49:1–49:33 (2018)

15. INTOCPS Association: Uncertainty quantification repository (2020). https://
gitlab.au.dk/clagms/2020.isola.uncertaintyquantification. Accessed 21 Dec 2020

16. Jantsch, A., Sander, I.: Models of computation and languages for embedded system
design. IEE Proc. Comput. Digit. Tech. 152(2), 114–129 (2005)

17. Keesman, K.J.: System Identification: An Introduction. Springer, London (2011).
https://doi.org/10.1007/978-0-85729-522-4

18. Kritzinger, W., Karner, M., Traar, G., Henjes, J., Sihn, W.: Digital twin in man-
ufacturing: a categorical literature review and classification. IFAC-PapersOnLine
51, 1016–1022 (2018)

19. Larsen, P.G., Fitzgerald, J., Woodcock, J., Gamble, C., Payne, R., Pierce, K.:
Features of integrated model-based co-modelling and co-simulation technology. In:
Cerone, A., Roveri, M. (eds.) SEFM 2017. LNCS, vol. 10729, pp. 377–390. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-74781-1 26

https://doi.org/10.1007/s10703-017-0286-7
https://doi.org/10.1007/978-3-642-40787-1_27
https://doi.org/10.1007/978-3-642-40787-1_27
https://doi.org/10.1007/978-3-030-03769-7_14
https://doi.org/10.1007/978-3-030-03769-7_14
https://doi.org/10.1007/978-3-030-30985-5_4
https://doi.org/10.1007/978-3-030-30985-5_4
https://doi.org/10.1007/978-3-319-74781-1_23
https://doi.org/10.1007/978-3-319-74781-1_23
https://doi.org/10.1007/978-3-030-03424-5_27
https://doi.org/10.1007/978-3-030-03424-5_27
https://gitlab.au.dk/clagms/2020.isola.uncertaintyquantification
https://gitlab.au.dk/clagms/2020.isola.uncertaintyquantification
https://doi.org/10.1007/978-0-85729-522-4
https://doi.org/10.1007/978-3-319-74781-1_26

Uncertainty Quantification and Runtime Monitoring 87

20. Legaard, C.M., Gomes, C., Larsen, P.G., Foldager, F.F.: Rapid prototyping of self-
adaptive-systems using python functional mockup units. In: SummerSim 2020.
ACM, New York (2020)

21. Leucker, M., Schallhart, C.: A brief account of runtime verification. J. Log. Alge-
braic Program. 78(5), 293–303 (2009)

22. Macedo, H., Nilsson, R., Larsen, P.: The harvest coach architecture: embedding
deviation-tolerance in a harvest logistic solution. Computers 8(2), 31 (2019)

23. Mart́ınez, G.S., Karhela, T., Vyatkin, V., Miettinen, T., Pang, C.: An OPC UA
based architecture for testing tracking simulation methods. In: 2015 IEEE Trust-
com/BigDataSE/ISPA, vol. 3, pp. 275–280 (2015)

24. Mitsch, S., Platzer, A.: ModelPlex: verified runtime validation of verified cyber-
physical system models. Formal Methods Syst. Des. 49(1–2), 33–74 (2016). https://
doi.org/10.1007/s10703-016-0241-z

25. Nakaya, M., Li, X.: On-line tracking simulator with a hybrid of physical and Just-
In-Time models. J. Process Control 23(2), 171–178 (2013)

26. Rajamani, R.: Vehicle Dynamics and Control. Springer, Boston (2012). https://
doi.org/10.1007/978-1-4614-1433-9

27. Rajhans, A., et al.: Supporting heterogeneity in cyber-physical systems architec-
tures. IEEE Trans. Autom. Control 59(12), 3178–3193 (2014)

28. Rooney, J.J., Heuvel, L.N.V.: Root cause analysis for beginners. Qual. Prog. 37(7),
45–56 (2004)

29. Sohlberg, B., Jacobsen, E.: Grey box modelling – branches and experiences. IFAC
Proc. Vol. 41(2), 11415–11420 (2008)

30. Tao, F., Zhang, H., Liu, A., Nee, A.Y.C.: Digital twin in industry: state-of-the-art.
IEEE Trans. Ind. Inf. 15(4), 2405–2415 (2019)

31. Van der Auweraer, H., Anthonis, J., De Bruyne, S., Leuridan, J.: Virtual engi-
neering at work: the challenges for designing mechatronic products. Eng. Comput.
29(3), 389–408 (2013). https://doi.org/10.1007/s00366-012-0286-6

32. Vangheluwe, H.: Foundations of modelling and simulation of complex systems.
Electron. Commun. EASST 10 (2008)

33. Zhao, J.S., Liu, Z.J., Dai, J.: Design of an Ackermann type steering mechanism.
J. Mech. Eng. Sci. 227, 2549–2562 (2013)

https://doi.org/10.1007/s10703-016-0241-z
https://doi.org/10.1007/s10703-016-0241-z
https://doi.org/10.1007/978-1-4614-1433-9
https://doi.org/10.1007/978-1-4614-1433-9
https://doi.org/10.1007/s00366-012-0286-6

Designing Distributed Control
with Hybrid Active Objects

Eduard Kamburjan1,2(B) , Rudolf Schlatte1(B) , Einar Broch Johnsen1(B) ,
and Silvia Lizeth Tapia Tarifa1(B)

1 University of Oslo, Oslo, Norway
{eduard,rudi,einarj,sltarifa}@ifi.uio.no

2 Technische Universität Darmstadt, Darmstadt, Germany

Abstract. Models of distributed software systems extend naturally to
cyber-physical systems “in the large”; i.e., systems of loosely coupled soft-
ware components which interact with models of physical processes. But
how do we model such combined systems? This paper discusses this prob-
lem from the perspective of active object systems. We attach different
active objects to models of physical systems, but maintain the objects’
actor-like decoupling of communication and synchronization. The result
is a model of hybrid active objects. In this setting, we discuss different
ways of modeling and controlling time advance and value propagation
between components, which may be inside the model, controlled by the
model, or controlling the model as a simulation unit. The patterns of
on-demand value propagation as well as fixed- and variable-step time
advance arise naturally from the semantics of hybrid active object mod-
els in HABS, a hybrid extension of the formal specification language
ABS.

1 Introduction

Models of distributed systems extend naturally to cyber-physical systems “in
the large”; i.e., loosely coupled distributed systems which include one or more
cyber-physical components. Cyber-physical systems in the large describe both
applications building on the Internet of Things and for Digital Twins in which
various models of physical systems interact with a distributed software system.
It is today a challenge to verify and even to validate such hybrid distributed
system models [11].

This paper discusses a compositional approach to this challenge, based on
formal semantics and executable models of loosely coupled distributed systems
of so-called hybrid active objects. Hybrid active objects are a hybrid extension of
active objects for modeling distributed cyber-physical systems. Active objects [5]
are object-oriented systems based on the actor concurrency model [12] which
decouple communication and synchronization through asynchronous message
passing, allowing very flexible decentralized systems to be easily expressed. ABS
[13] is a formally defined, executable modelling language based on active object

c© Springer Nature Switzerland AG 2021
T. Margaria and B. Steffen (Eds.): ISoLA 2020, LNCS 12479, pp. 88–108, 2021.
https://doi.org/10.1007/978-3-030-83723-5_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-83723-5_7&domain=pdf
http://orcid.org/0000-0002-0996-2543
http://orcid.org/0000-0001-5601-5517
http://orcid.org/0000-0001-5382-3949
http://orcid.org/0000-0001-9948-2748
https://doi.org/10.1007/978-3-030-83723-5_7

Designing Distributed Control with Hybrid Active Objects 89

concepts that has proven to be suited for intuitive and natural modeling, and
formal verification of complex systems in an industrial context and a multitude
of domains, ranging from railway operations [17] to cloud-based systems [27].
Timed ABS adds a dense-time discrete event semantics to active objects. ABS
also includes an interface for data acquisition from outside sources via http
requests, called the Model API. To model hybrid active object systems, the
Hybrid Abstract Behavioral Specification language (HABS) [14,18] is designed
to combine simulation and verification as a hybrid extension of the modeling
language ABS.

In this paper, we explore concepts of distributed control in the setting of
HABS. We discuss these concepts in the context of two simple water tank exam-
ples, the first one targeting distributed controllers and the second one targeting
prediction capabilities. We examine their components to discuss the runtime
structure of the HABS models. In particular, we distinguish between implicit (or
declarative) and explicit (or operational) components of a model, and between
messages needed for time advance and value-passing. A central consideration is
the level of control in the HABS models. HABS differentiates between control
over time advance and control over value passing. Time advance is specified by
the active objects and regulated by a central orchestrator that computes the
maximal possible time advance. This time-orchestrator cannot rewind time and
can only send time advance messages to the objects. Control over value passing
does not involve the time orchestrator; it is distributed and explicitly modeled
in the active objects. This allows flexible and complex communication patterns
to be expressed, that capture communication as it is happening in the modeled
system. This decoupling may also make the system simulation more performant,
because the time-orchestrator is no bottleneck for communication of values. This
is critical if the modeled system itself is distributed and communication is more
complex than simple value propagation, but triggers complex behavior in the
hybrid active objects.

HABS relies on a white-box model of discrete controllers as well as continuous
dynamics for verification. To bridge between HABS and possible white- and
black-box components of a model, we explore how interfacing to the continuous
dynamics can be used to integrate implemented systems with recreated live
data, as functional mock-ups or complex simulators for simulation (as a white-
box) while retaining the ability of formal reasoning. We also explore how to
integrate recorded data (as a black-box), via the Model API, a REST interface, to
explore what-if scenarios for predictions, in this case formal analysis can still be
done using, e.g., runtime monitoring and assertion checking. These integrations
provide two ways to link between HABS models and Digital Twins.

Related Work. Digital Twins are a very interesting application area for formal
methods because the basis for Digital Twins is model-based analysis. To cover
an asset life-cycle, a digital twin need to combine a declarative model of the
design of the asset with an inductive model derived from data observations of
the system in operation [8]. However, the richness of the models makes it hard
to do full verification and analysis in a digital twin setting, particularly for

90 E. Kamburjan et al.

hybrid models with discrete and dynamic components. Such analysis is often
based on simulation [22] or co-simulation [11]. A prominent example of work
in this direction is INTO-CPS [30], which is pushing a co-simulation platform
in the direction of Digital Twins based on FMI [3], an emerging standard for
connecting simulators. In the case of ABS, the Model API allows data to be
fed into a running model, thus integrating snapshots of industrial data with
simulations in real time [27]. We have also used ABS to model a digital twin
triggering software upgrades of connecting cars by sensor data [21,26].

Digital Twins are closely related to cyber-physical systems, but typically
consider only distributed cyber-physical systems which connect various cyber-
physical components into a distributed system, which is a major challenge for
formal methods [28]. We do not attempt to cover that large area here, but men-
tion Platzer’s work on verification of cyber-physical systems using differential
dynamic logic dL [25], which has been a source of inspiration for our work on
HABS as a hybrid extension of ABS. HABS is a formally defined, executable
modeling language with a proof theory building on dL. Formal support for co-
simulation algorithms has been done by means of model checking [29] and ver-
ification of the simulation itself by means of basic contracts [10]. The use of
Hybrid Active Objects complements this work by offering a rich toolkit for the
analysis of expressive properties for distributed and hybrid systems, which hope-
fully suffice to verify models of distributed control. Whereas this paper hints at
verification for such models, the verification of such algorithms is not attempted
here.

Structure. In Sect. 2 we describe active objects and the ABS modelling language
for distributed active objects, and in Sect. 3 the hybrid extension HABS. In Sect. 4
we give two water tank models to illustrate modeling with HABS showcasing
different notions of distributed control. In Sect. 5 we relate these notions to co-
simulation and digital twins. We conclude the paper in Sect. 6 and present future
work.

2 A Short Overview of ABS

ABS [13] is an actor-based, object-oriented language for modeling concurrent
and distributed systems and supporting the design, verification, and execution
of such systems. ABS has a purely functional layer of functions and algebraic
datatypes, and an object-oriented layer for modeling Java-like objects and inter-
faces. Communication between objects is implemented via asynchronous method
calls, which produce a future at the caller and a new process at the callee
object. The caller continues execution immediately and only synchronizes with
the future when the result of the call is needed. The callee schedules one of its
pending processes; that process runs without preemption until it either finishes
or suspends, e.g., when waiting for a future, at which point the object schedules
another waiting process. These cooperative, explicit scheduling points are the
foundation of the compositional proof system of distributed ABS models [6] and
of its timed semantics which is explained later in this section.

Designing Distributed Control with Hybrid Active Objects 91

minlevel

maxlevel

drainrate

level

valve

Fig. 1. The discrete-event watertank model and its behavior

Example 1. Consider a simple model of a WaterTank, which is filled from the
top at a fixed fillrate and is drained (if the valve is open) from the bottom
at a fixed drainrate (see Fig. 1 left for a basic sketch and Fig. 2 for its ABS
implementation). We explain the basic concepts of asynchronous method calls
and cooperative scheduling in ABS using an example from class Controller

(Fig. 2, Line 27), which controls the water level of such tank. The execution of an
asynchronous call statement like tank!valvecontrol(Open) (Line 33) creates
a new process in the object tank which will execute the method valvecontrol

but does not release the control at the caller object, where the current process
continues its execution. Since we do not store the return value of the call, this
corresponds to a “pure” message sending operation.

If we want to synchronize and/or receive the result of a method call, we store
its future (f=o!m();). This future f can be used to both suspend the current
process until the callee process has finished (Syntax: await f?;) and to read the
future’s value (Syntax: f.get). Suspending the current process means that the
object running the calling process can schedule another process from its own
pool or stay idle; when awaiting on a future, the suspended process becomes
eligible for scheduling once the future f contains a value (i.e., when its process
has finished).

As a shorthand, the statement level = await tank!getLevel() (Fig. 2
Line 31) creates a new process in the object tank, suspends the calling pro-
cess until the return value of that method has been received, and then assigns
the value to the variable level. Figure 1 shows a sketch of the physical setup
(left) and its expected behavior (during “a kind of” discrete event simulation) in
terms of how the level of the water changes as time progress (right).

2.1 The Time Model of Timed ABS

The previous section has already hinted that an object in ABS can be either
running or idle; the latter case occurs when its process queue is empty or all
processes are waiting on some condition. Timed ABS, an extension of ABS, adds
a global logical clock, which acts as a time orchestrator that advances once all

92 E. Kamburjan et al.

Fig. 2. ABS (Non-hybrid) model of a water tank and controller

objects are idle. All objects can specify their own time advance interval; the clock
will advance by the maximum amount that satisfies all these conditions. Since
the time domain is the rational numbers, dense time and thus Zeno behavior is
supported.

Designing Distributed Control with Hybrid Active Objects 93

For example, In Lines 19 and 37 of Fig. 2, we see statements await duration
(1, 1);. These statements suspend the running process until the global clock
has advanced by 1 (which is both the minimum and maximum advance given in
the statement).

Timed ABS thus allows models to incorporate explicit manipulation of time
from a dense time domain, which can be used to represent execution time inside
methods, which either block an object, using duration(min, max); or suspend a
thread, using await duration(min, max); for a certain amount of time between
min and max. This way of modelling timed behavior is well-known from, e.g.,
timed automata in UPPAAL [20]. By using this modelling of the passage of
time, we abstract from the actual execution time and execution context of a
thread (i.e., the computation time of the thread is independent of the cpu speed
and the load on the server where it is executed).

2.2 The Model API

The Model API of ABS is a way to call methods on objects of a running model
from the outside via http requests. The model annotates the objects and methods
that should be callable, i.e., the model is not completely open via the Model API.
In addition, the Model API provides some measure of control over the model
time advance: As explained in Sect. 2.1, the clock advances by the maximum
possible amount. The Model API can set a limit for the clock and then raise it,
again controlled by a http request from an agent on the outside of the model.

Using the Model API transforms a model into an open system, where the
behavior cannot be determined statically, although class invariants and method
contracts hold as before. The Model API is reactive, i.e., it receives method calls
and time advance triggers as external stimuli but cannot send stimuli to the
outside of the model.

3 Hybrid Abstract Behavioral Specification Language

The Hybrid ABS (HABS) [18] language is an extension of Timed ABS for mod-
eling Cyber-Physical systems. In this section we introduce the main features of
HABS: (1) integrated continuous behavior declared in a special block in the class
that contains ODEs, (2) special await statements to react to changes caused by
this continuous behavior and (3) a transparent extension of the time model.

3.1 Syntax and Semantics

HABS extends ABS by two new constructs:

– A physical block in class definitions contains physical fields which define the
continuous behavior over time of a part of the object state via (autonomous)
ordinary first-order differential equations (ODE). In the definition of a phys-
ical field f, the notation f’ is used for the first derivative of f. All physical
fields have the type Real, while non-physical fields can have any type.

94 E. Kamburjan et al.

minlevel = 7/3

maxlevel = 19/2

level

Fig. 3. The multi-controller watertank and its behavior

– A new suspension statement await diff g which suspends the running thread
until g holds. The guard g is a quantifier-free formula over the object’s physi-
cal fields and the local variables of the process. This statement plays a similar
role as transition guards in hybrid automata [2] and allows one to model reac-
tion to state change.

In HABS, an object that has a physical block is a hybrid object. If the object
has no physical block, but uses duration statements in its methods, then it is a
timed object. Otherwise it is a discrete object. Note that HABS does not model
evolution domains (e.g., level ≥ 0, sometimes called mode invariants) directly,
to give the user the possibility to implement how leaving the evolution domain
shall influence the behavior of the object upon time advance of the system.

Example 2. Consider a model of a water tank, depicted in Fig. 3 left, and coded
in Fig. 4. It declares an object with a physical field level to describe the water
level of the tank, and three normal fields flowA, flowB, flowC that hold the
status of three different valves of the tank, which let water either fill or drain
depending on the direction of the flow. The field declaration in the physical
block, in addition to specifying an initial value inVal, describes the dynamics of
the level field via an ODE. We use level’ = flowA+flowB+flowC to denote
that the derivative of level (seen as a function over time) is equal to the sum of
the three flows. The setFlow method, when called, sets any of the valves, and
the outLevel method returns the current water level. Finally, the acqLevel

method suspends until the water level falls below a certain level r.

The acqLevel method shows how continuous behavior in the physical block and
discrete program in the rest of the object interact, by using a differential suspen-
sion await diff g. Semantically, this statement suspends the running process P
until the earliest time td where g holds for the physical block. The solution F of
the physical block can be computed over the time interval within now() and td,
with the initial values (with underscore 0) provided by the current state. Upon
reactivation, the values of the physical fields are updated according to F (td). In
our example, F for the variable level is the solution defined by:

F (td) = level0 + flowA0 × td + flowB0 × td + flowC0 × td

Designing Distributed Control with Hybrid Active Objects 95

Fig. 4. A water tank with three controllers in Hybrid ABS.

such that the solution over the time interval keeps the current values of level,
flowA, flowB and flowC as constants.

Any other process that runs between now() and td, and thereby modifies
the object state and the state of the physical variables, will cause the solution
for g to be recomputed and the waiting time for P to be extended or shortened
according to the new object state. For every blocking statement that might cause
time to advance, such as get or duration, we similarly compute the solution to the
continuous behavior in the current state and update the state once the passed
time is known.

This is transparent to the time model of Timed ABS because the messages
for suspension, possible time advance and reactivation do not change for HABS.

For simulation, HABS uses maxima [23] to (1) compute the solution to the
initial value problem stated by the physical block and the current heap and
(2) to compute td by minimization of time for the solution, constrained by the
guard. For the scheduler of the active object in ABS, the extension is transparent:
Processes in hybrid active objects are scheduled in the same way as for normal
active objects and the time orchestrator handles td in the same way as timed
duration statements. HABS and the tools in its backend, can handle differential
equations beyond ODEs and linear dynamics.

3.2 Analyzability

The semantics of HABS take care of the problems that naturally occur in hybrid
systems: solving ODEs and computing the next time advance, and keeping the
state updated after discrete time steps. The model in Example 2 is, thus, more
concise and natural than its discretized counterpart in Example 1. The update

96 E. Kamburjan et al.

of state is crucial for modeling distributed systems, as a hybrid object must be
reactive to calls from the outside at any point in time.

Formal analysis and verification is also more simple than in the discrete case:
the continuous behavior of each object is described directly and centralized in
the physical block with a well-established mechanism. The physical block is an
abstraction of the numerical and symbolic operations performed by the runtime
(in HABS) or the explicit discretization (in ABS). Verification of Example 2 can
use the ODEs to reason about continuous dynamics, while Example 1 requires
an analysis of the implemented simulator. There are established tools for ODEs
and the code in Example 2 can be automatically translated in proof obligations
in differential dynamic logic [24] which can be checked with the KeYmaera X
theorem prover [9].

A hybrid system in HABS contains hybrid objects and non-hybrid (timed and
discrete) objects. Due to the strong encapsulation of the language semantics,
properties of distributed systems that are not dependent on the hybrid objects
can be analyzed by the rich toolkits [1] and logics [15] for discrete objects.

However, execution (simulation) becomes more complex, as the abstraction
provided by the physical block does not help with simulation. While simulation
is not an analysis per se, it plays an important role during development by using
testing as a complement to verification. HABS uses assert statements for runtime
verification. HABS can be executed using a simple simulator, but increasing its
performance by connecting it to external tools is an open challenge.

The Model API and HABS . The model API allows one to connect a HABS
model to external tools at runtime. This makes the model open and has two
main consequences: On one hand, continuous behavior which is too complex to
be described in the physical block can interact with the model. On the other
hand, static analysis becomes difficult and must possibly be mixed with runtime
monitoring with assert statements. The reason for this are two-fold: (1) there is no
abstraction of the external continuous behavior that can be used for verification
and (2) the order of send messages cannot be analyzed a priori.

4 Models for Distributed Control

This section explores the design of modular cyber-physical systems in HABS.
Two HABS models of distributed water tanks show different possible runtime
structures, showing in particular the issue of control : which parts of the HABS
code are models of physical devices and which parts are modeling their control.

– The first HABS model has a tank with three controllers that must coordinate
the three valves, as in Fig. 3, to keep the tank level in a safe zone. The three
controllers read the level of the tank and use a simple round-robin leader
election mechanism to make decisions. The behavior of the water tank model
is passive.

– The second HABS model has a different scenario: the model API is used to
communicate the current level to the HABS model and the water tanks are
used to predict the optimal control of a single valve.

Designing Distributed Control with Hybrid Active Objects 97

Fig. 5. Distributed control with pull communication from physical device to controllers.

4.1 Internal Control

The first model uses the tank from Fig. 4 and adds three controllers, one for each
valve. The controllers read the value of the current level and coordinate the new
state of the valves accordingly. Time advances in constant intervals of size tick

via an await duration(tick,tick); statement in each controller.

Example 3. Consider the tank in Fig. 4, with its three controllers. Each controller
can control the flow of up to 0.5 l

s water in or out of the tank, but the tank is only
considered safe if the total flow is between −1 l

s and 1 l
s , hence the controllers

need to coordinate.
The code in Fig. 5 shows one controller implementing the following behavior:

After every tick seconds (Line 9), the controller checks whether it is the current
leader (Line 10) and if so, reads the current water level (Line 11). If the level
is below a certain threshold, it sets its own valve to −0.5 l

s and orders the other
controllers to set theirs to 0.5 l

s (Line 13). This realizes the requirement above
that it is not safe to add/remove water with more than 1 l

s at every valve. The
inverse happens if the water level is above a certain threshold (Line 16). Finally,
the controller passes leadership to its left controller (Lines 18–19). Figure 3 shows

98 E. Kamburjan et al.

Fig. 6. Structure of the compiled HABS model of Fig. 5.

a sketch of the physical setup (left) and its expected behavior (right) in terms of
how the level of the water changes as time progress (during “a kind of” contin-
uous time simulation). In the sketch we are depicting a state in which the first
controller has a positive flow (filling water into the tank), while the other two
have a negative flow (draining water from the tank).

Runtime Structure. The structure of the compiled model of Example 3 has the
following components:

Water Tank Object. This object is hybrid, because it has a physical block.
Three Valve Controller Objects. These objects are timed, because they

have a duration guard but no physical block. The messages send around in the
distributed system are only between the three controller and the water tank
objects.

Maxima. A maxima instance computes the continuous dynamics of the physical
block of the water tank instance on-demand when asked by it.

Time Orchestrator. The global scheduler of ABS coordinates the global time
advance over all objects. It is not responsible for passing values and schedul-
ing messages. Maxima, in essence the “main” simulator in this system, is
controlled by its hybrid object.

The communication is pictured in Fig. 6. Communication here is pull communi-
cation, because the valve controllers pull the values of the tank object, which is
passive otherwise. The main control lies with the three controllers, which also
execute the leader election.

Designing Distributed Control with Hybrid Active Objects 99

minlevel = 3

maxlevel = 10

level

Fig. 7. The predictive watertank and its behavior

As for modeling, each object is a representation of a real world structure,
while the implicit components (time orchestrator, maxima) are not exposed in
the model. The model is more intuitive, as it requires no knowledge about the
details of time advance or synchronization and, thus, is more easy to validate
with domain experts. Having the implicit components fixed in the language also
simplifies analysis.

We discussed the water tank from the modeling point of view. From a co-
simulation point of view we make three observations.

Observation 1. The maxima instance for a physical block of the water tank
object is essentially a simulation unit, controlled by the ABS water tank object
(for values) and the orchestrator (for time). Its ODEs can be seen twofold: as
configuration of the simulation unit or as the behavioral interface of the contin-
uous behavior used for verification.

Observation 2. The ABS objects without the physical block can be seen as a
(value and time) orchestrator that propagates and computes values of the sole
continuous simulation unit.

Observation 3. The controllers can be seen as simulation units themselves.

From the model and the observations we can derive three points to connect
HABS with co-simulation:

1. One can connect the co-simulation engine to the physical block, i.e., extend
the physical block with a more generic interface to the outside. The enveloping
object would play the role of an orchestrator. From this view, the water tank
object is a co-simulation engine with one simulator (a maxima script).

2. One can connect the HABS-orchestrator with the orchestrator of a co-
simulation engine as a sub-orchestrator. However, this would require that
the orchestrator can propagate values to the objects.

3. One can connect a co-simulation engine with a designated object, that shares
values with other objects and time advances with the HABS-orchestrator, but
is transparent to the time semantics of HABS.

We examine these possibilities in detail in Sect. 5.

100 E. Kamburjan et al.

4.2 Predictive Control

The second model illustrates the use a physical tank model to simulate “what-if”
scenarios in order to optimize a model parameter.

Example 4. Consider the water tank depicted in Fig. 7 and coded in Fig. 8. Its
outResult methods simulates the water tank, returning the final water level
by adjusting the flow at the given rate flowrate for wait time units. The
initial water level is always reset to inVal. This model can therefore be used
for predictive control by simulating possible settings for adjusting the flow and
choosing an appropriate one.

Fig. 8. Water tank for predictive control.

Figure 9 shows a controller that calculates the largest flow rate that keeps
the tank level within bounds for 1 time unit. A call to go returns the maximal or
minimal setting (depending on whether the water should rise or fall depending
on the negative or positive value) for flow. To do so, starting from the most
extreme setting (determined by pivot), the potential flow is changed by 1/10
until the simulated water level is within bounds for 1 time units. Figure 7 shows
a sketch of the physical setup (left) and its expected predicted behavior (right)
in terms of how the chosen value for the flow can predict an optimal level in the
water for a targeted time.

For the sake of brevity, we refrain from using the three-valve model of Sect. 4.1
here. In brief, extending the model with these cooperating controllers can be done
by extending the method outResult to take three objects as parameters and
simulating, e.g., pull control for one iteration.

Note that in Fig. 9, the controller itself is exposed via the model API. This
means that the main control and the parallelism lie outside the model. Since this
model simulates alternative scenarios, it will typically run under a temporary
time orchestrator that does not influence the surrounding model.

Observation 4. The previous model discussed the HABS runtime as a co-
simulation framework. This model exposes that we can see the HABS model as a
simulation unit in itself.

Designing Distributed Control with Hybrid Active Objects 101

Fig. 9. Predictive controller.

Thus, we can connect co-simulation to HABS at a forth point:

4. One can connect the co-simulation engine via the model API with a special
object (here: the FlowCtrl instance) as the interface.

Compared to the first model, predictive control is more easy to connect to tech-
niques like co-simulation and digital twins, especially since the model API can
be integrated into a live system, but less natural : the parts of the water tank
do no longer correspond directly to some physical equivalent in the physical sys-
tem. The outResult method, with its discrete change of the water level, is only
relevant for simulation. Naturalness is a critical property of models because it
influences the communication with domain experts [19].

Observation 5. If the data is input from a live system, then the overall model
is a predictive model of a digital twin.

From an analysis point of view there are 3 challenges: 1. The model is open
and thus harder to analyze statically. 2. The model is harder to specify because
some properties (here: whether the water tank empties completely) are violated

102 E. Kamburjan et al.

by design without consequence. 3. The model is harder to specify as parts of the
system are outside the model, yet influence its behavior.

5 Discussion: Hybrid Active Objects in Relation to
Co-simulation and Digital Twins

As we have shown in the last section, HABS models have some similarities to co-
simulation and digital twins. This raises some questions on the relation between
these concepts and how they would benefit from an integration.

5.1 Relation to Co-simulation

The distributed control patterns discussed for HABS models have some similarity
with co-simulation frameworks. Co-simulation consists of techniques to enable
global simulation of a coupled system via the composition of simulators [11]. Each
simulator can be seen as a black-box capable of exhibiting behavior, consuming
inputs, and producing outputs. In discrete event simulations, a simulation unit
synchronizes with the environment at some specific timestamps to exchange
values. If two events happen at the same time, both are processed before the
simulated time progresses. In continuous time simulation (e.g., for cyber-physical
systems), state evolves continuously, which introduces flexibility in the step size
of the time synchronization. For co-simulation with hybrid simulation units,
the units cannot be coupled together by simply connecting input to output
ports. Instead the orchestrator needs to reconcile the different assumptions about
the inputs and output of each unit, to make sure that the properties of the
constituent systems are retained. In the large majority of co-simulators which
couple such hybrid simulation units, the coupling is done ad-hoc [11], which
makes the co-simulation systems increasingly complex and error-prone.

HABS is expressive enough to model a (distributed) co-simulation framework
and reason about the correctness of the framework. We have seen that loosely
coupled orchestration can be modeled, separating data exchange from time syn-
chronization. More tightly coupled orchestration can be modeled as a special
case in which, e.g., all data pass through a central object. ABS has a devel-
oped, tool-supported theory of reproducibility [31] and search through reachable
states, which may be used to reason about determinism and confluence for par-
allel orchestrators, a recognized challenge in discrete event simulation [11]. The
hybrid extension of HABS does not affect the semantics of parallelism underly-
ing this theory. In a hybrid co-simulation, the orchestrator needs to ensure the
validity of the simulation in terms of the assumptions about parameter values
to the different simulation units. Although the time semantics of HABS makes
it difficult to directly model roll-back and similar direct manipulation of time
inside the executable model, but we believe HABS can be used to reason about
such time manipulation by branching executions.

Designing Distributed Control with Hybrid Active Objects 103

Table 1. Connection between internal and external components.

Aspect Physical block Orchestrator Model API Interface objects

Runtime − + + +

Naturalness + + − −/+
Analyzability + − −− −/+
Relevant example Sect. 4.1 Sect. 4.1 Sect. 4.2 Sect. 4.2

HABS models can also be part of a co-simulation framework. Section 4.1
illustrates a HABS model as a decentralized orchestrator, which needs to obtain
consensus on the actions of the different pumps. Section 4.2 illustrates a HABS
model as a simulation unit in a co-simulation setting, which receives parameter
values from the outside. Our work so far does not point to a clear “best way” to
connect HABS to a co-simulation framework, as this depends on the modeling
style used for a system.

The observations made in Sect. 4 suggest what we can expect from the differ-
ent integration concepts we have considered between HABS and a co-simulation
framework. The benefit of such an integration would be an enhancement of
simulation capabilities for HABS and an enhancement of analyzability of the
co-simulation framework. Such an integration would be an important step to
simulate large and hybrid HABS systems. There are three main questions, which
we now discuss in more detail:

I Runtime: how to technically connect external units to HABS entities?
II Naturalness: how to preserve the naturalness of a HABS model when
connecting external units?
III Analyzability: how to keep parallelism analyzable and retain tools devel-
oped for closed HABS/ABS systems?

Table 1 summarizes the expected consequences of using a particular connection
method with respect to runtime integration (i.e., how easy is it to exchange data
with external entities), naturalness of the model and model analyzability. We
discuss the table from left to right.

– Interfacing to external components using the physical block preserves the nat-
uralness of the model and, if a proper abstraction can be provided, we expect
the model to be analyzable in the sense that the semantics of parallelism does
not change and the system is still closed (because the object containing the
physical block retains control). However, this control over the physical block
limits the kind of simulation one can do at runtime because the semantics do
not allow for complex message exchanges.

– Using the orchestrator, we expect a better connection at runtime but a worse
analyzability, because the control is now outside of the formal semantics. Nat-
uralness again depends on how the interface is modeled, but as the connection
is to an implicit runtime component, we expect only limited effects.

104 E. Kamburjan et al.

– Using the model API moves more control to the outside of the formal seman-
tics. This gives one most freedom about the connection to an external orches-
trator, but will lead to less natural models and lower analyzability.

– We can, however, internalize the model API to retain its benefits of easy inte-
gration while limiting its impact on analyzability and naturalness. This can
be done by means of designated interface objects. which are the only objects
exposed in the model API. These objects could extend the current Model
API to support not only receiving messages but may also sending messages
to the outside. In future work, we intend to define the design space for inter-
face objects such that they comply with the compositional time semantics
of HABS, to preserve the analyzability. Both timed and functional behavior
should be specifiable, e.g., by behavioral types that specify communication,
time and state [4,16]. This would allow specified assumptions about external
behavior to be monitored at runtime, such that static checking of internal
behavior remains feasible. We expect such specifications to improve the nat-
uralness of models with interface objects.

In summary, the model API appears as a difficult choice because we lose the
benefits of using a formal modeling language, but it gives the best prospect for
simulation. The other discussed options give possible trade-offs between simula-
tion, naturalness and analyzability. Using a special interface object that serve to
control the external interface may be the best compromise if external behavior
can then be encapsulated with specifications which allow static intra-model rea-
soning combined with runtime monitoring of the interface behavior. However,
this approach does impose restrictions on the control of an external orchestrator.

5.2 Relation to Digital Twins

A digital twin (DT) is a digital replica of an underlying system, often called the
physical twin (PT). The digital twin is connected to its physical twin in real-
time through sensor measurements at different locations and by other ways of
collecting data. This turns the DT into a live replica of the PT, with the purpose
of providing insights into its behavior, and clearly distinguishes a DT from, e.g.,
a standard simulation model.

A DT is commonly seen as an architecture with three layers: the data layer
with, e.g., CAD drawings and sensor data, an information layer, which turns
these raw data into structures, and an insight layer, which applies different analy-
sis and visualization techniques to these data structures. The analysis techniques
of the insight layer can be classified as follows: The DT is typically able to com-
pute an approximation of how the PT acts in a given scenario (simulation
or “what-happened” scenarios), or to estimate how the PT will behave in the
future based on historical and current data (prediction or “what-may-happen”
scenarios). By configuring the parameters of the different models, the DT may
analyze the consequence of different options on future behavior (prescription
or “what-if” scenarios).

Designing Distributed Control with Hybrid Active Objects 105

When modeling human-built artifacts, the physical twin can be divided into a
cyber-physical system (CPS) and its physical environment. The latter is a mix of
physical conditions (e.g., temperature or fluid pressure) and modeled conditions
(e.g., motion tracking devices or computerized decision rules). In the DT, the
CPS model may consist of several sub-models reflecting the different parts of
the CPS. Similarly, the environment model comprises many models capturing
the relevant dynamics of the operational environment. These smaller, targeted
models are typically created by experts in the respective fields.

HABS is an expressive modeling language, which includes abstractions of
cyber-physical systems. Although in theory an entire physical twin can be cap-
tured in a huge model, we do not think this is the way to go for complex, indus-
trial cases. The digital twin as a “stack of models” seems more realistic, and a
HABS model could be situated at many layers of such a stack. The composi-
tional treatment of time in HABS suggests that models can contain components
at different levels of abstraction, synchronized through the timed semantics. The
information layer of a digital twin may quickly become very large and contain
a lot of unnecessary information for a given analysis. HABS is not made for
modeling complex data relations and large sets of data, and we propose to use
complementary techniques to connect the executable models to static data (see,
e.g., recent work on combining semantic ontologies with formal models [7]). We
have shown how HABS models may both receive such data from the outside
(Sect. 4.2) and call external simulators such as maxima (Sect. 4.1). Section 4.2
has shown by example how HABS models can integrate real-time data series
through the Model API [27], which enables real-time simulation in a DT con-
text of sensor data. This example also suggests through a simple example how
different, alternative parameter settings can be used to explore what-if scenarios
for prescriptive analysis.

6 Conclusion

This paper considers decentralized orchestration of cyber-physical systems “in
the large”. We have explored different ways of connecting a model of distributed
active objects with cyber-physical components to model different forms of
orchestration.

We did so from an active object perspective, a concurrency model that decou-
ples communication from synchronization. This makes control-flow of active
object systems flexible and enables complex orchestration patterns which depend
on the exchange of values between different active objects. Our hybrid active
object model HABS, a hybrid extension of ABS, is executable, which makes the
language well-suited for model simulation, yet it has a formal, compositional
semantics which makes the language well-suited for verification and validation.

We discuss different solutions to the modeling of distributed cyber-physical
systems which combine a HABS model with external simulators for natural sys-
tems from the perspective of both analysis, simulation and naturalness. The
resulting hybrid multi-models give rise to a co-simulation problem. Our exam-
ples show that it is challenging to preserve both support for simulation and for

106 E. Kamburjan et al.

compositional reasoning which relies on the formal language semantics of HABS.
The examples allow us to observe that we profit from built-in time orchestra-
tion in HABS which facilitates composition, but that we suffer from external
simulation units which reduce that value of a composition formal semantics for
reasoning about the orchestration model.

Despite the challenges, we identify interface objects with formal specifications
as a promising solution that may provide a reasonable compromise between
flexible simulation and orchestration, and restricting on the level of control to
which an external unit may subject the HABS model. The work reported in this
paper points to several interesting directions for further work.

Formally Analyzable Co-Simulation. By implementing orchestrators as
models in HABS that interact with the external simulation units through
(possibly extended) physical blocks, we plan to study correctness properties
for orchestration algorithms through formal analysis, including safety proofs
for value propagation.

Formally Analyzable Digital Twins. By implementing designated interface
objects, we plan to study the combination of compositional reasoning and
simulation for predictive and prescriptive analysis in a digital twin setting.

References

1. Albert, E., et al.: SACO: static analyzer for concurrent objects. In: Ábrahám,
E., Havelund, K. (eds.) TACAS 2014. LNCS, vol. 8413, pp. 562–567. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-642-54862-8_46

2. Alur, R., et al.: The algorithmic analysis of hybrid systems. Theor. Comput. Sci.
138(1), 3–34 (1995)

3. Blochwitz, T., et al.: Functional mockup interface 2.0: the standard for tool inde-
pendent exchange of simulation models. In: Proceedings of the 9th International
Modelica Conference, pp. 173–184. The Modelica Association (2012)

4. Bocchi, L., Murgia, M., Vasconcelos, V.T., Yoshida, N.: Asynchronous timed
session types. In: Caires, L. (ed.) ESOP 2019. LNCS, vol. 11423, pp. 583–610.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17184-1_21

5. Boer, F.D., et al.: A survey of active object languages. ACM Comput. Surv. 50(5),
76:1–76:39 (2017)

6. Din, C.C., Owe, O.: Compositional reasoning about active objects with shared
futures. Formal Aspects Comput. 27(3), 551–572 (2014). https://doi.org/10.1007/
s00165-014-0322-y

7. Dubslaff, C., Koopmann, P., Turhan, A.-Y.: Ontology-mediated probabilistic model
checking. In: Ahrendt, W., Tapia Tarifa, S.L. (eds.) IFM 2019. LNCS, vol. 11918,
pp. 194–211. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34968-
4_11

8. Fitzgerald, J., Larsen, P.G., Pierce, K.: Multi-modelling and co-simulation in the
engineering of cyber-physical systems: towards the digital twin. In: ter Beek, M.H.,
Fantechi, A., Semini, L. (eds.) From Software Engineering to Formal Methods and
Tools, and Back. LNCS, vol. 11865, pp. 40–55. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-30985-5_4

https://doi.org/10.1007/978-3-642-54862-8_46
https://doi.org/10.1007/978-3-030-17184-1_21
https://doi.org/10.1007/s00165-014-0322-y
https://doi.org/10.1007/s00165-014-0322-y
https://doi.org/10.1007/978-3-030-34968-4_11
https://doi.org/10.1007/978-3-030-34968-4_11
https://doi.org/10.1007/978-3-030-30985-5_4
https://doi.org/10.1007/978-3-030-30985-5_4

Designing Distributed Control with Hybrid Active Objects 107

9. Fulton, N., Mitsch, S., Quesel, J.-D., Völp, M., Platzer, A.: KeYmaera X: an
axiomatic tactical theorem prover for hybrid systems. In: Felty, A.P., Middeldorp,
A. (eds.) CADE 2015. LNCS (LNAI), vol. 9195, pp. 527–538. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-21401-6_36

10. Gomes, C., Lúcio, L., Vangheluwe, H.: Semantics of co-simulation algorithms with
simulator contracts. In: MODELS Companion, pp. 784–789. IEEE (2019)

11. Gomes, C., Thule, C., Broman, D., Larsen, P.G., Vangheluwe, H.: Co-simulation:
a survey. ACM Comput. Surv. 51(3), 49:1–49:33 (2018)

12. Hewitt, C., Bishop, P., Steiger, R.: A universal modular ACTOR formalism for
artificial intelligence. In: Proceedings of the 3rd International Joint Conference on
Artificial Intelligence, IJCAI 1973, San Francisco, CA, USA, pp. 235–245. Morgan
Kaufmann Publishers Inc. (1973)

13. Johnsen, E.B., Hähnle, R., Schäfer, J., Schlatte, R., Steffen, M.: ABS: a core lan-
guage for abstract behavioral specification. In: Aichernig, B.K., de Boer, F.S.,
Bonsangue, M.M. (eds.) FMCO 2010. LNCS, vol. 6957, pp. 142–164. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-25271-6_8

14. Kamburjan, E.: From post-conditions to post-region invariants: deductive verifica-
tion of hybrid objects. In: HSCC 2021 (2021, to appear)

15. Kamburjan, E.: Behavioral program logic. In: Cerrito, S., Popescu, A. (eds.)
TABLEAUX 2019. LNCS (LNAI), vol. 11714, pp. 391–408. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-29026-9_22

16. Kamburjan, E., Chen, T.-C.: Stateful behavioral types for active objects. In: Furia,
C.A., Winter, K. (eds.) IFM 2018. LNCS, vol. 11023, pp. 214–235. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-98938-9_13

17. Kamburjan, E., Hähnle, R., Schön, S.: Formal modeling and analysis of railway
operations with active objects. Sci. Comput. Program. 166, 167–193 (2018)

18. Kamburjan, E., Mitsch, S., Kettenbach, M., Hähnle, R.: Modeling and verifying
cyber-physical systems with hybrid active objects. CoRR abs/1906.05704 (2019)

19. Kamburjan, E., Stromberg, J.: Tool support for validation of formal system models:
interactive visualization and requirements traceability. In: Monahan, R., Prevosto,
V., Proença, J. (eds.) Proceedings of the Fifth Workshop on Formal Integrated
Development Environment, F-IDE@FM 2019, Volume 310 of EPTCS, Porto, Por-
tugal, 7 October 2019, pp. 70–85 (2019)

20. Larsen, K.G., Pettersson, P., Yi, W.: UPPAAL in a nutshell. Int. J. Softw. Tools
Technol. Transfer 1(1–2), 134–152 (1997)

21. Lin, J., Mauro, J., Røst, T.B., Yu, I.C.: A model-based scalability optimization
methodology for cloud applications. In: 2017 IEEE 7th International Symposium
on Cloud and Service Computing (SC2 2017), pp. 163–170. IEEE Computer Society
(2017)

22. Margaria, T., Schieweck, A.: The digital thread in industry 4.0. In: Ahrendt, W.,
Tapia Tarifa, S.L. (eds.) IFM 2019. LNCS, vol. 11918, pp. 3–24. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-34968-4_1

23. Maxima Development Group: Maxima Manual, 5.43.0 ed. (2019).
maxima.sourceforge.net

24. Platzer, A.: The complete proof theory of hybrid systems. In: LICS, pp. 541–550.
IEEE (2012)

25. Platzer, A.: Logical Foundations of Cyber-Physical Systems. LNCS, Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-63588-0

26. Røst, T.B., Seidl, C., Yu, I.C., Damiani, F., Johnsen, E.B., Chesta, C.: HyVar. In:
Mann, Z.Á., Stolz, V. (eds.) ESOCC 2017. CCIS, vol. 824, pp. 159–163. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-79090-9_12

https://doi.org/10.1007/978-3-319-21401-6_36
https://doi.org/10.1007/978-3-642-25271-6_8
https://doi.org/10.1007/978-3-030-29026-9_22
https://doi.org/10.1007/978-3-319-98938-9_13
https://doi.org/10.1007/978-3-030-34968-4_1
http://maxima.sourceforge.net/
https://doi.org/10.1007/978-3-319-63588-0
https://doi.org/10.1007/978-3-319-79090-9_12

108 E. Kamburjan et al.

27. Schlatte, R., Johnsen, E.B., Mauro, J., Tapia Tarifa, S.L., Yu, I.C.: Release the
beasts: when formal methods meet real world data. In: de Boer, F., Bonsangue,
M., Rutten, J. (eds.) It’s All About Coordination. LNCS, vol. 10865, pp. 107–121.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-90089-6_8

28. Seshia, S.A.: New frontiers in formal methods: learning, cyber-physical systems,
education, and beyond. CSI J. Comput. 2(4), R1:3–R1:13 (2015)

29. Thule, C., Gomes, C., Deantoni, J., Larsen, P.G., Brauer, J., Vangheluwe, H.:
Towards the verification of hybrid co-simulation algorithms. In: Mazzara, M., Ober,
I., Salaün, G. (eds.) STAF 2018. LNCS, vol. 11176, pp. 5–20. Springer, Cham
(2018). https://doi.org/10.1007/978-3-030-04771-9_1

30. Thule, C., Lausdahl, K., Gomes, C., Meisl, G., Larsen, P.G.: Maestro: the INTO-
CPS co-simulation framework. Simul. Model. Pract. Theory 92, 45–61 (2019)

31. Tveito, L., Johnsen, E.B., Schlatte, R.: Global reproducibility through local control
for distributed active objects. In: FASE 2020. LNCS, vol. 12076, pp. 140–160.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45234-6_7

https://doi.org/10.1007/978-3-319-90089-6_8
https://doi.org/10.1007/978-3-030-04771-9_1
https://doi.org/10.1007/978-3-030-45234-6_7

Towards a Digital Twin - Modelling an
Agricultural Vehicle

Frederik F. Foldager1,3(B), Casper Thule2, Ole Balling1,
and Peter Gorm Larsen2

1 Department of Mechanical and Production Engineering, Aarhus University,
Inge Lehmanns Gade 10, 8000 Aarhus C, Denmark

{ffo,oba}@mpe.au.dk
2 DIGIT, Department of Electrical and Computer Engineering, Aarhus University,

Finlandsgade 22, 8200 Aarhus N, Denmark
{casper.thule,pgl}@ece.au.dk

3 Agro Intelligence ApS, Agro Food Park 13, 8200 Aarhus N, Denmark

Abstract. In this work, we present the initial steps in the develop-
ment of a digital twin of the agricultural autonomous vehicle, Robotti.
A model of the vehicle dynamics is initially developed in the open-source
multi-physics code, Chrono, and then wrapped as a Functional Mock-up
Unit. We provide an overview of the envisioned digital twin system and
a description of currently implemented features. The dynamic system of
the vehicle chassis is characterised by the implementation of a revolute
joint that ensures wheel–surface contact in uneven terrain. The vehicle
dynamics model is applied for testing two scenarios describing the loads
on the vehicle as a consequence of this mechanism. Finally, we give point-
ers to future work on modelling the Robotti and the establishment of a
digital twin.

Keywords: Modelling and Simulation · Vehicle dynamics · Chrono ·
Functional mock-up interface · Digital twin · Agricultural robot ·
Robotti

1 Introduction

Model-based approaches are commonly applied to simulate and understand the
behaviour of physical or cyber-physical systems in various fields of engineering.
In this work, we describe the initial steps towards establishing a digital twin of
the autonomous agricultural vehicle, Robotti (Agrointelli, Denmark).

Within the last decade, various autonomous farming robots have emerged
[12], including the Robotti. It is designed for applications such as seeding, weed-
ing and spraying. The robotic system consists of a number of main components
including: navigation, steering control, safety systems, and a modular mechani-
cal system that can be configured with different track widths and different tools
can be mounted. A photo of the vehicle is shown in Fig. 1. When operating in
c© Springer Nature Switzerland AG 2021
T. Margaria and B. Steffen (Eds.): ISoLA 2020, LNCS 12479, pp. 109–123, 2021.
https://doi.org/10.1007/978-3-030-83723-5_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-83723-5_8&domain=pdf
https://doi.org/10.1007/978-3-030-83723-5_8

110 F. F. Foldager et al.

field conditions, the effects of terrain needs to be considered. To comply with
uneven terrain, the chassis of the vehicle is designed such that the two main-
modules can move independently. The left module is connected to the mainframe
with a revolute joint whereas the right module and the mainframe has a fixed
connection.

To obtain a digital representation of the vehicle, models of the sub-
components such as the mechanical and the control systems are required. Co-
simulation [11] allow for combining models of such components in simulation.
Previously, co-simulations have been conducted of a simple two-dimensional ver-
sion of the Robotti [9] and the steering controller [10] using the Functional Mock-
up Interface 2.0 (FMI) [2] and the co-simulation engine, Maestro [23]. In this
work, a three-dimensional model of the dynamics is developed and FMI-enabled
by generating a Functional Mock-up Unit (FMU) of the model. The FMU will
serve as one of the components leading towards a digital twin [7]. The dynamic
system is modelled using the open-source multi-physics code Chrono1 [21]. It is a
mature tool for simulating dynamic systems and a suitable choice for modelling
the mechanical framework of the vehicle. Chrono has support for simulating
various advanced features such as soft-soil surface interaction. Such capability
is particularly relevant in the future work of modelling the Robotti operating in
field conditions. Additional applications of Chrono [21] count granular dynamics
[16], solid–fluid interaction [15] and others. A part of this work is to produce an
FMU of such model developed using Chrono.

We demonstrate a single component of the digital twin, a Chrono-based
multibody dynamics and the corresponding FMU. Using the model of the
mechanical system of the vehicle in three dimensions, the static and dynamic
loads as a consequence of driving across an uneven surface can be computed.

Our objectives are:

(i) To develop a model in Chrono of the agricultural vehicle, Robotti and pro-
duce an FMU of the model.

(ii) To take the initial steps towards a digital twin system with FMI as the
simulation interface.

The rest of this paper is structured such that Sect. 2 introduces the materials
and methods used in the research presented here. Afterwards, Sect. 3 presents
the results produced so far from our research. Finally, Sect. 4 discusses the results
achieved and look ahead for the future work planned.

2 Materials and Methods

In the following section, the fundamentals of the Chrono-based Robotti model
and its relation to a digital twin tool-chain and case study is described. Simula-
tions using FMI will become a central part of the future work on establishing a
digital twin setup of the Robotti.

1 https://projectchrono.org/.

https://projectchrono.org/

Towards a Digital Twin - Modelling an Agricultural Vehicle 111

Fig. 1. Robotti performing a seeding operation. Photo credit: Agrointelli.

2.1 Functional Mockup Interface

The FMI 2.0 standard [2]2, describes how to represent a component, such that
it can participate in an FMI-based simulation. The FMI standard contains both
FMI for Model Exchange and Co-Simulation, where the contributions of this
manuscript are restricted to the latter. A component adhering to the FMI stan-
dard is referred to as an FMU and is treated as a ‘black box’ in the context of
a simulation, thereby supporting the separation of Intellectual Property (IP).
In practical terms, an FMU implements a C-interface, offers a static description
file of its interface in terms of inputs, outputs and parameters along with offered
functionality, i.e. the possibility of setting and getting state and is packaged in
a particular fashion. This enables a FMI master to set inputs, compute over
simulation intervals, and get outputs from FMUs that may represent different
formalisms, i.e. discrete-event or continuous-time systems. The coordination of
multiple FMUs is done through an orchestration engine [23], which acts as an
FMI master. Such FMI masters have not been standardised, and offer challenges
in both research and practice [18]. However, there is a long list of modelling
and simulation tools that are able to export their functionality as independent
FMUs3. It is even possible to enable easy-to-produce FMUs from popular pro-
gramming languages such as Python as presented in [14].

2.2 Digital Twin Tool-Chain

We envision an open platform for creating digital twins that integrate multi-
models (digital system configurations) with data derived from CPS operations.
The platform should also include inductive models learned from such operational
data. The goal of our current work is to create and evaluate such a digital twin,
using platforms that admit, as far as possible, open integration of a wide range
of tools. FMI plays a central role as interfacing technology in the realisation of
such a tool-chain, which is revisited in Sect. 4.

2 http://fmi-standard.org/.
3 https://fmi-standard.org/tools/.

http://fmi-standard.org/
https://fmi-standard.org/tools/

112 F. F. Foldager et al.

Fig. 2. Functionality of a digital twin (from [7])

Figure 2 shows the main features of a digital twin of the kind we envisage.
In operation, the CPS will be interacting with the physical world and human
users, generating additional data related to system commissioning, configuration
or tuning from the administrator side. The twin receives data from the real
CPS, and multi-models developed within design activities. It supports decision-
making, either by having an autonomous supervisory system that automatically
take action in case of irregularities, or having a human operator taking decisions.
This may result in updates to both the operational CPS and consistent updates
to multi-models. Within the digital twin, the following levels of functionality are
delivered:

– Multi-model and Data Storage include the basic handling of multi-models
covering the architecture and interaction between the operational CPS and
the digital twin, recording and maintaining time series data acquired from
sensors, correlating it to existing multi-models. The operational data may for
example be transferred to the digital twin using a message broker as presented
in [22].

– Model and Data Processing turns data into information. It includes static
and dynamic analysis on multi-models, via a range of tools, including co-
simulation and model checking. Data Analytics includes the analysis of time-
series data and in particular the use of Machine Learning (ML) techniques
to derive models based on the CPS ‘as built’, as well as incident prediction.
Specific ML techniques can be selected depending on the application and data
characteristics.

Towards a Digital Twin - Modelling an Agricultural Vehicle 113

– Decision Enabling presents information to decision-makers based on the
model and data processing analyses done on operational data and multi-
models. This will include decision support through possibilities to carry out
trials, visualisation and Design Space Exploration (DSE).

– The API enables interaction between the digital twin and externals, includ-
ing (potentially) other digital twins.

The tooling to support the different levels outlined above are in development.
Figure 3 gives an impression of the current state and is as follows: The hardware
and logging of time-series data to a database (DB) are in development for a scaled
replica of the realised Robotti (expanded upon in Sect. 4. The realised Robotti
contains these features). Data via RabbitMQ is an off-the-shelf component4. An
FMU capable of subscribing to such a message broker and making data available
in an FMI-based co-simulation has been developed [22]5. The FMI interface of
the Robotti model has been developed as part of the work carried out in the con-
text of this manuscript6. A controller FMU has been developed for other models
of Robotti and is expected to be applicable to this case with minor modifications
[3]. The Monitor FMU capability and methodology are under development as
part of a project called AgroRobottiFleet7. FMI-based co-simulation is expected
to be carried out with the open-source orchestration engine called Maestro [23].
Finally, an example of an open-source Digital Twin Master to connect the above-
mentioned constituents of a digital twin is under development8.

Fig. 3. Digital Twin functionality realised (checkmark) and in development (question-
mark)

2.3 The Robotti Model

The Robotti is compatible with existing and third-party tools through a stan-
dard three-point linkage positioned on the centre frame. Two modules carry
4 Available at https://www.rabbitmq.com/, visited December 14, 2020.
5 Available at https://github.com/INTO-CPS-Association/fmu-rabbitmq, visited

December 14, 2020.
6 Available at https://gitlab.au.dk/software-engineering/chronofmu isola along with

a demonstration, visited January 7, 2021.
7 See https://projects.au.dk/agrorobottifleet/, visited December 14, 2020.
8 One such tool is being developed at the Centre for Digital Twins of Aarhus Univer-

sity: https://digit.au.dk/centre-for-digital-twins/, visited December 14, 2020.

https://www.rabbitmq.com/
https://github.com/INTO-CPS-Association/fmu-rabbitmq
https://gitlab.au.dk/software-engineering/chronofmu_isola
https://projects.au.dk/agrorobottifleet/
https://digit.au.dk/centre-for-digital-twins/

114 F. F. Foldager et al.

the propulsion engines and additional hardware. The Robotti can be configured
with different track widths up to 3.5 m. The configurations of different tools and
widths add up to a number of scenarios that affect the dynamic and static loads
on the vehicle which are important both in the design and during operation.
Two scenarios are presented. Using a three-dimensional multi-body dynamics
model of the vehicle, the forces in the system can be computed. The model is
developed using Chrono [4].

The model consists of 13 bodies and 12 constraints including four driving con-
straints. A sketch of the model abstraction is shown in Fig. 4. The bodies are:
four wheels (a-d), four wheel fixtures (e-h), a centre frame (i), two main mod-
ules (j-k), a three-point linkage (l) and a payload (m). Four kinematic drivers
are applied as motors positioned at the wheels for imposing kinematic propul-
sion. Two drivers are implemented for steering the front wheels. The model is
constrained such that only the revolute joint (Joint A in Fig. 4) is free to move.
Masses and inertia are estimated based on a 3D CAD representation of the indi-
vidual bodies. The static wheel loads of the unloaded machine are verified by
weighing the actual vehicle. The simulations are conducted using undeformable
solid surface and tyres. An FMU is generated of the model with an interface as
shown in Fig. 5. The inputs to the model configuration are the track width of the
Robotti, payload of the tool and steering properties. The outputs are time series
of wheel normal loads, the joint forces, positions and orientation. All constraint
forces, constraint torques and contact forces are available in the model.

P

T

L

Revolute joint

Fixed connection

x

y

z

px
(Joint A)

yaw
pitch

roll

a

b

c

d

e

f

g

h
i

j

k

l

m

Fig. 4. Illustration of the Robotti model, bodies and joints. T is track width, L is the
wheelbase and P is payload. Green arrows indicate hydraulic motors for propulsion.
Dots (•) indicate fixed joints and circles (◦) indicate revolute joints. (Color figure
online)

The mechanical configuration affects the dynamic and static loads on the
vehicle which are examined in two scenarios. A test-track is included in the
model for inducing roll motion and hereby relative motion in the revolute joint.
The track is designed to induce both positive and negative roll of the vehicle.

Towards a Digital Twin - Modelling an Agricultural Vehicle 115

Width (m)
Tool payload (kg)

Wheel Speed (rad/s)
Steering input

Robotti model

Chrono

Wheel normal loads (N)
Joint forces/torques (N,Nm)
Positions: x,y,z (m)
Orientation: pitch, roll and yaw (rad)

Fig. 5. Model interface.

A: Initial position
B: Positive roll

C: Negative roll

Fig. 6. Visualisation of the simulated Robotti driving from (A) to (C) across the test
track. (A) is the initial position. Position (B) corresponds to the maximum negative roll.
Position (C) corresponds to maximum positive roll motion. The green box illustrate
the payload. (Color figure online)

A visualisation of the simulated vehicle on the track is shown in Fig. 6. To com-
pensate for lateral motion, a simple controller is implemented to maintain the
orientation of the vehicle.

3 Results

The kinematic and dynamic effects of the terrain-following mechanism are exam-
ined in two scenarios. Initially, we describe the effects of configuring the Robotti
with different track widths. Secondly the effects of loading and unloading are
described.

3.1 Scenario 1: Changing Track Width
The first scenario examine how the pitch, roll, and yaw motion of the vehi-
cle are affected when changing track width T of the Robotti. By changing the
width, the mass and inertia of the body describing the centre frame are adjusted
accordingly.

Two simulations are conducted to investigate the kinematic response to
changing the track width of the vehicle using the minimum and maximum pos-
sible track widths, 1.25 m and 3.5 m respectively. The pitch, roll and yaw are

116 F. F. Foldager et al.

computed during the simulation at the three-point linkage as the result of pass-
ing across the track as shown in Fig. 6. The vehicle initiate at point A and passes
through points B and C.

By reducing the width of the vehicle, the roll angle increased consequently as
shown in Fig. 7. Similar results could have been obtained by simple kinematics.
However, using the dynamics model we can examine the response of complex
topographical surfaces as a function of time. Additionally, it is observed that
the pitch of the three-point linkage is only introduced in the case of negative roll
for both the wide and narrow configuration. This is an effect of the rotational
joint on the centre frame.

Fig. 7. Pitch, roll and yaw characteristics at the minimum and maximum track width
T .

The pitch angle is relevant to compute since this affects the distance between
the tool and the surface for lift mounted applications. Such kinematic consider-
ations become increasingly important in applications of precision agriculture.

3.2 Scenario 2: Loading the Three-Point Linkage

In the second scenario, a static load, P , is introduced in the model correspond-
ingly to the load of a carried tool e.g. a sprayer. In this example, the load is
applied at a distance px = 1 m from the centre frame.

The revolute joint at the centre frame changes the normal loads on the wheels
when loaded. The load shift is caused by the moment generated by the payload
which can only be obtained through the fixed connection between the centre
frame and the right module. Contrary to the fixed connection, the revolute joint
can only obtain forces in x and z directions and no moment. The normal loads
on the wheels are coupled to the ability to generate the lateral and longitudinal
forces on the wheel-surface interface needed to manoeuvre the vehicle in both
on-road and off-road applications.

Towards a Digital Twin - Modelling an Agricultural Vehicle 117

A simulation of the Robotti in a static scenario is conducted. The vehicle is
positioned stationary on a horizontal surface and at steady state, the contact
forces on the wheels are monitored and interpreted as the static normal loads.
To evaluate the influence of the revolute joint on the centre-frame, the vertical
point load P is increased. We normalised the normal loads N by the mean wheel
normal load at P = 0 kg using Eq. (1). In Fig. 8, the normalised loads n on each
wheel k are shown as a function of increasing P .

nk(P) =
Nk(P)

∑4
k=1 (Nk(P = 0))/4

(1)

The subscript k represent each wheel: front left wheel, front right wheel, rear
left wheel, and rear right wheel. N is the simulated normal load at each wheel
and n is the normalised value.

Fig. 8. Normalized wheel loads at px = 1 m from the centre frame.

By loading the vehicle at the three-point linkage changes the load distribu-
tion. The load shifts from the right front wheel to the right rear wheel and will
consequently increase with the weight of the tool. However, in an unloaded situ-
ation (P = 0), the normal loads are close to evenly distributed. The wheel loads
are important to the steering and driving performance of the vehicle. The model
can be applied to investigate how a given tool or payload at a given track width
configuration will affect the loads and the overall performance of the vehicle.

In a moving scenario, e.g. driving across an uneven field or in this case the
test track, the contact forces on each body and the constraint forces/torques in
each link are computed. By simulating the dynamic system, such values become
available as a consequence of the dynamic loads from both the applied tool and
the configuration of the machine.

118 F. F. Foldager et al.

4 Discussion and Future Work

Using the dynamics model of the Robotti, the static effects of loading the vehicle
is computed. A load shift from the front right wheel to the rear right wheel is
identified. However, by recognising this effect it can be compensated for in the
design and operation. Similarly, a load shift would also appear on a conventional
tractor by vertically loading the three-point hitch behind the rear wheels. The
distribution of normal load and stress is not only a relevant topic in understand-
ing the mobility of a vehicle but also important to the soil function and for
minimising the risk of compaction [6].

The pitch, roll and yaw-response corresponding to driving across a test track
are computed. Such considerations become important in applications where the
distance to the ground is of importance since a pitch of the three point link
will impact the distance and angle to the ground of a given tool. Such applica-
tions include camera-based detection of plants [19] or LiDAR-based soil surface
detection [8]. Using co-simulation of FMUs that describe such tools or sensors
combined with the Robotti FMU could elaborate on effects of the interaction
between the tool and the robot.

An FMU is generated of the dynamics model to be compatible with the digital
twin tool chain. However, Chrono has already interfaces to MATLAB, Simulink
(MathWorks, Massachusetts, USA) and a Python-based module PyChrono [1]
that alternatively could have been applied for the integration with the digital
twin tool chain. FMI-enabling Chrono models allow for taking advantage of
both the 3D dynamics capabilities in Chrono and the co-simulation capabilities
through FMI-related tools. By wrapping the model in an FMU, we can co-
simulate our physics-based models with e.g. controllers developed in dedicated
tools such as 20sim (Controllab Products, The Netherlands) or in the VDM-RT
notation [24].

There are several future activities related to modelling the Robotti. Espe-
cially the machine–soil interaction and modelling the control system for future
fleet operations are relevant. Using the model, alternative solutions to the surface
contact mechanisms or suspension systems can be examined. Furthermore, the
results presented here are purely based on simulations. Experimental calibration
and validation are needed in future studies. Calibration and validation of the
model can be conducted using different methods depending on the scope.

To evaluate the driving performance, a model of the propulsion system
needs to be calibrated via dedicated tests to relate driving torque wheel speed
and hydraulic pressure in the system. Also the steering controller can be cal-
ibrated by performing a series of tests to match the measured and modelled
response [3].

4.1 Soil–Machine Interaction

In the current model of the Robotti, the tyres and the surface are rigid. However,
a future task involves modelling the performance in soft soil conditions. Chrono
already has support for simulating soft soil using the Soil Contact Model (SCM)

Towards a Digital Twin - Modelling an Agricultural Vehicle 119

[20]. The SCM is semi-empirical and based on inputs that relates the contact
patch pressure and deformation of the soil. The SCM origins in the classical
terramechanics by [25] and [13].

A so-called drawbar pull test can be conducted to quantify the performance
in off road conditions by measuring corresponding values of pulling force, wheel
torques and slip. Such considerations are often applied to research the mobility
of off-road applications. Another relevant method for including soft soil is the use
of the discrete element method (DEM) [5] where the soil is composed of distinct,
often spherical, bodies that interact via friction and adhesion. The DEM is an
appealing approach in agricultural research since it allows for simulating soil dis-
turbance and reaction forces [17]. However, the results obtained using the DEM
comes with a high computational cost. We intend to apply these capabilities
within agricultural research to better understand the soil–machine interaction
and predict the performance of the Robotti under different soil conditions.

4.2 Co-simulation and Digital Twins

The FMI is the main simulation interface of the envisioned co-simulation and
digital-twin system. Thus, several tools have been/are being developed with FMI
as an underlying technology, some of which are mentioned next.

So far, we have carried out initial tests in which we have aligned a physical
twin with co-simulation inside a digital twin where the live data is streamed from
the physical twin. For the streaming technologies, we wish to use a number of
different alternatives. Currently, we have FMI-enabled a message queuing tech-
nology using the open-source message broker software RabbitMQ [22]. Addition-
ally, research is ongoing into self-adaptive systems, also related to the Robotti,
where [14] considers a self-adapting tracking model to match the trajectory of
a 2D reference model (mentioned in Sect. 1). The self-adaption was carried out
when the discrepancy between the models has reached a certain point, at which
a re-calibration of the tracking model is issued. This research also uses FMI
as the simulation interface. An ongoing research topic surrounds how to best
approximate a global state at a specific point in time as sensor data arrives at
different points in time. The use of Kalman filtering in conjunction with the
tracking model mentioned above if currently under analysis.

We also expect that it will be necessary to have an additional layer to the
INTO-CPS Application, which acts as a user interface to our co-simulation
efforts, such that it enables users of the digital twin to define precisely what
discrepancies can be tolerated between the values measured from the physical
twin and the corresponding predictions made by the co-simulation inside the
digital twin before raising the issue to a higher-level or a human [26].

4.3 Desktop-Version of Robotti

The next phase of agricultural robotics contains fleets of robots and control that
can handle multiple cooperating units in a single field. Future research related to
this topic will be conducted through a project called AgroRobottiFleet. In order

120 F. F. Foldager et al.

Fig. 9. Photo of the Desktop-Robotti. Dimensions: 0.7 m × 0.4 m × 0.2 m (w × l × h).
(Photo: Søren Bak, Agrointelli)

to research and develop both digital twin systems and the fleet control manage-
ment system, a light-weight scaled version of the Robotti called Desktop-Robotti
is developed to accommodate indoor tests. The dynamics model presented here
is parameterised such that a corresponding model of the Desktop-Robotti can
be configured. A photo of the Desktop-Robotti is shown in Fig. 9. It is equipped
with sensors and actuators such that it can function as the physical version of
the Robotti in related digital twin case studies. Furthermore, an indoor posi-
tioning system capable of detecting the position of the Desktop-Robotti is in
development. Two contemplated case studies are a part of the future work on
the Desktop-Robotti:

1. The Desktop-Robotti manoeuvres around an untested, yet predefined path.
The steering-controller does not perform satisfactorily for the task. To iden-
tify the updates needed to make the Desktop-Robotti capable of manoeuvring
around the path, the digital representation within the digital twin is aligned
to exhibit the same behaviour as the physical twin. At this stage, the steering-
controller within the digital twin is updated to accommodate the desired tra-
jectory. Once this is achieved, the steering-controller of the Desktop-Robotti
is updated similarly, and the motion of the physical twin is verified.

2. The Desktop-Robotti manoeuvres around a predefined path, yet a monitor
detects discrepancies between the behaviour of the Desktop-Robotti and the
Robotti within the digital twin. In an attempt to identify the cause of the dis-
crepancy, the digital twin is subjected to a number of co-simulation scenarios.
One of these scenarios match the trajectory of the physical Desktop-Robotti
and a possible cause is identified.

Towards a Digital Twin - Modelling an Agricultural Vehicle 121

4.4 Concluding Remarks

In this work, the current state of model-developments concerning the agricultural
vehicle Robotti is presented. A model of the 3D dynamics is constructed in
Chrono and enabled in the context of FMI 2.0 for co-simulation. Based on the
simulation results, we were able to (i) compute the normal loads as a consequence
of loading the vehicle, and (ii) compute the resulting pitch, roll, and yaw response
as a consequence of driving across a virtual test track designed to induce motion
in the revolute joint. We presented two digital twin-related case studies that
employ the Robotti model and a related physical realisation called Desktop-
Robotti along with an overview of the current status of the digital twin support.

Acknowledgments. This research was supported by the Innovation Fund Denmark
under grant number 7038-00231B. We acknowledge the European Union for funding
the INTO-CPS project (Grant Agreement 644047), which developed the open tool
chain and the INTO-CPS Application; the Poul Due Jensen Foundation that funded
subsequent work on taking this forward towards the engineering of digital twins; and
the European Union for funding the HUBCAP project (Grant Agreement 872698). The
authors would like to acknowledge the developers of Project Chrono. We would also
like to acknowledge Zachary Gasick from the University of Wisconsin for inputs to the
Chrono model. And finally a great thanks to Prof. Dan Negrut and Dr. Radu Serban
from University of Wisconsin for valuable discussions and inputs.

References

1. Benatti, S., Tasora, A., Fusai, D., Mangoni, D.: A modular simulation platform
for training robots via deep reinforcement learning and multibody dynamics. In:
ACM International Conference Proceeding Series (2019). https://doi.org/10.1145/
3365265.3365274

2. Blochwitz, T., et al.: Functional mockup Interface 2.0: the standard for tool inde-
pendent exchange of simulation models. In: 9th International Modelica Conference,
Munich, Germany, pp. 173–184. Linköping University Electronic Press, November
2012. https://doi.org/10.3384/ecp12076173

3. Bogomolov, S., et al.: Tuning Robotti: the machine-assisted exploration of param-
eter spaces in multi-models of a cyber-physical system. In: Oda, T., Fitzgerald, J.
(eds.) 18th Overture Workshop, 7 December 2020 (online) (2020)

4. Chrono: An open source framework for the physics-based simulation of dynamic
systems (2020). https://projectchrono.org. Accessed 25 June 2020

5. Cundall, P.A., Strack, O.D.L.: A discrete numerical model for granular assemblies.
Géotechnique 29(1), 47–65 (1979)

6. ten Damme, L., et al.: Construction of modern wide, low-inflation pressure tyres
per se does not affect soil stress. Soil Tillage Res. 204, 104708 (2020). https://doi.
org/10.1016/j.still.2020.104708

7. Fitzgerald, J., Larsen, P.G., Pierce, K.: Multi-modelling and co-simulation in the
engineering of cyber-physical systems: towards the digital twin. In: ter Beek, M.H.,
Fantechi, A., Semini, L. (eds.) From Software Engineering to Formal Methods and
Tools, and Back. LNCS, vol. 11865, pp. 40–55. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-30985-5 4

https://doi.org/10.1145/3365265.3365274
https://doi.org/10.1145/3365265.3365274
https://doi.org/10.3384/ecp12076173
https://projectchrono.org
https://doi.org/10.1016/j.still.2020.104708
https://doi.org/10.1016/j.still.2020.104708
https://doi.org/10.1007/978-3-030-30985-5_4
https://doi.org/10.1007/978-3-030-30985-5_4

122 F. F. Foldager et al.

8. Foldager, F., Pedersen, J., Skov, E., Evgrafova, A., Green, O.: Lidar-based 3D
scans of soil surfaces and furrows in two soil types. Sensors (Switzerland) 19(3),
34 (2019). https://doi.org/10.3390/s19030661

9. Foldager, F.F., Balling, O., Gamble, C., Larsen, P.G., Boel, M., Green, O.: Design
space exploration in the development of agricultural robots. In: Proceedings of the
AgEng2018 Conference (2018)

10. Foldager, F.F., Larsen, P.G., Green, O.: Development of a driverless lawn mower
using co-simulation. In: Cerone, A., Roveri, M. (eds.) SEFM 2017. LNCS, vol.
10729, pp. 330–344. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
74781-1 23

11. Gomes, C., Thule, C., Broman, D., Larsen, P.G., Vangheluwe, H.: Co-simulation:
a survey. ACM Comput. Surv. 51(3), 49:1–49:33 (2018)

12. Grimstad, L., From, P.J.: The Thorvald II agricultural robotic system. Robotics
6(4), 45 (2017). https://doi.org/10.3390/robotics6040024,http://www.mdpi.com/
2218-6581/6/4/24

13. Janosi, Z., Hanamoto, B.: The analytical determination of drawbar pull as a func-
tion of slip for tracked vehicles in defarmable soils. In: Proceedings of 1st Interna-
tional Conference of ISTVS, Turin (1961)

14. Legaard, C.M., Gomes, C., Larsen, P.G., Foldager, F.F.: Rapid prototyping of self-
adaptive-systems using Python functional mockup units. In: SummerSim 2020.
ACM, New York, NY, USA (2020)

15. Rakhsha, M., Pazouki, A., Serban, R., Negrut, D.: Using a half-implicit integration
scheme for the SPH-based solution of fluid-solid interaction problems. Comput.
Methods Appl. Mech. Eng. 345, 100–122 (2019)

16. Recuero, A., Serban, R., Peterson, B., Sugiyama, H., Jayakumar, P., Negrut, D.:
A high-fidelity approach for vehicle mobility simulation: nonlinear finite element
tires operating on granular material. J. Terramechanics 72, 39–54 (2017). https://
doi.org/10.1016/j.jterra.2017.04.002

17. Saunders, C., Ucgul, M., Godwin, R.J.: Discrete element method (DEM) simulation
to improve performance of a mouldboard skimmer. Soil Tillage Res. 205, 104764
(2021). https://doi.org/10.1016/j.still.2020.104764

18. Schweiger, G., et al.: Functional mock-up interface: an empirical survey identifies
research challenges and current barriers. In: The American Modelica Conference,
Cambridge, MA, USA (2018)

19. Skovsen, S., et al.: Estimation of the botanical composition of clover-grass leys
from RGB images using data simulation and fully convolutional neural networks.
Sensors (Switzerland) 17(12), 56 (2017). https://doi.org/10.3390/s17122930

20. Tasora, A., Mangoni, D., Negrut, D., Serban, R., Jayakumar, P.: Deformable soil
with adaptive level of detail for tracked and wheeled vehicles 5(1), 60–76 (2019).
https://doi.org/10.1504/IJVP.2019.097098

21. Tasora, A., et al.: Chrono: an open source multi-physics dynamics engine. In:
Kozubek, T., Blaheta, R., Š́ıstek, J., Rozložńık, M., Čermák, M. (eds.) HPCSE
2015. LNCS, vol. 9611, pp. 19–49. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-40361-8 2

22. Thule, C., Gomes, C., Lausdahl, K.G.: Formally Verified FMI Enabled External
Data Broker: Rabbitmq FMU. Society for Computer Simulation International, San
Diego (2020)

23. Thule, C., Lausdahl, K., Gomes, C., Meisl, G., Larsen, P.G.: Maestro: the INTO-
CPS co-simulation framework. Simul. Model. Pract. Theory 92, 45–61 (2019)

https://doi.org/10.3390/s19030661
https://doi.org/10.1007/978-3-319-74781-1_23
https://doi.org/10.1007/978-3-319-74781-1_23
https://doi.org/10.3390/robotics6040024,
http://www.mdpi.com/2218-6581/6/4/24
http://www.mdpi.com/2218-6581/6/4/24
https://doi.org/10.1016/j.jterra.2017.04.002
https://doi.org/10.1016/j.jterra.2017.04.002
https://doi.org/10.1016/j.still.2020.104764
https://doi.org/10.3390/s17122930
https://doi.org/10.1504/IJVP.2019.097098
https://doi.org/10.1007/978-3-319-40361-8_2
https://doi.org/10.1007/978-3-319-40361-8_2

Towards a Digital Twin - Modelling an Agricultural Vehicle 123

24. Verhoef, M., Larsen, P.G.: Enhancing VDM++ for Modeling Distributed Embed-
ded Real-time Systems. Technical Report (to appear), Radboud University
Nijmegen, a preliminary version of this report, (March 2006). https://www.cs.
ru.nl/marcelv/vdm/

25. Wong, J.Y., Reece, A.R.: Prediction of rigid wheel performance based on the anal-
ysis of soil-wheel stresses: part II. Performance of towed rigid wheels. J. Terrame-
chanics 4(2), 7–25 (1967)

26. Woodcock, J., Gomes, C., Macedo, H.D., Larsen, P.G.: Uncertainty quantifica-
tion and runtime monitoring using environment-aware digital twins. In: Isola 2021
(2021)

https://www.cs.ru.nl/marcelv/vdm/
https://www.cs.ru.nl/marcelv/vdm/

Digital Modelling in the Railways

Thierry Lecomte(B)

ClearSy, 320 avenue Archimède, Aix en Provence, France
thierry.lecomte@clearsy.com

Abstract. The railways have a quite long modelling history, covering
many technical aspects from infrastructure to rolling stock, train move-
ment, maintenance, etc. These models are mostly separate and operated
independently by various stakeholders and with diverse objectives. This
article presents some of the various digital modelling activities, includ-
ing formal ones, that are undertaken by the railway industry, for design,
development, validation, qualification, and exploitation. It also intro-
duces trends toward regrouping models to obtain more significant results
together with a larger scope, prefiguring digital twins.

Keywords: Railways · Digital modelling · Formal methods

1 Introduction

Modelling activities are central to the railways, mainly in the form of separate
models of diverse natures. Very early in a development, train manufacturers
and operators need to assess and verify that a metro line or a main line will
fulfil expectations in term of performance, number of passengers transported,
operation costs, power consumed, etc. Most of these models (data and related
tooling) are often developed to cover one verification activity, for historical rea-
sons, for regulation reasons (qualification model should be independent from
design model), for organisational/political reasons (different services of a same
company prefer to develop their own solution), or for technical reasons (models
reconciliation/connection requires excessive investment). Initiating a new prod-
uct line is a good occasion to initiate a new model, distinct from the existing
ones, and to contribute to increase their population. Of course, the situation
depends on the company developing/operating trains but it is common trend
observed during the last decades. However, with the increasing complexity of
the systems developed and the competition on the railway market, modelling is
going global, including more aspects to obtain more effective results.

Based on a non-exhaustive picture of the use of models for the trains/metros
manufacture and operation, this article tentatively outlines what could be the
integration of the digital twin concept in the railways. It presents some of the
current digital modelling activities, including formal ones, that are undertaken
by the railway industry, for design, development, validation, qualification, and

c© Springer Nature Switzerland AG 2021
T. Margaria and B. Steffen (Eds.): ISoLA 2020, LNCS 12479, pp. 124–139, 2021.
https://doi.org/10.1007/978-3-030-83723-5_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-83723-5_9&domain=pdf
https://doi.org/10.1007/978-3-030-83723-5_9

Digital Modelling in the Railways 125

exploitation. It also introduces trends toward regrouping models to obtain more
significant results together with a larger scope, prefiguring digital twins.

This paper is structured in 6 parts. Section 2 introduces the terminology.
Section 3 presents how the infrastructure is modelled. Modelling safety is exposed
in Sect. 4. Section 5 presents some new modelling directions in relation with
emerging paradigms. Section 6 sketches some pros and cons arguments concern-
ing the adoption of the digital twin concept in the railways before concluding.

2 Terminology

This section contains specific definitions, concepts, and abbreviations used
throughout this paper.

Formal methods refers to mathematically rigorous techniques for the spec-
ification, development and verification of software and hardware systems. [9]
identifies a collection of formal methods and tools to be applied in railways.

PLC put for programmable logic controller [21], is an industrial digital com-
puter which has been ruggedized and adapted for the control of any activity
that requires high reliability control and ease of programming and process fault
diagnosis.

Safety refers to the control of recognised hazards in order to achieve an
acceptable level of risk.

Reliability is the ability of a system to perform its required functions under
stated conditions for a specified time.

3 Modelling Infrastructure

This section introduces some important notions about the railway elements sub-
ject to modelling.

3.1 Categories

Railways are divided into two main areas: metro lines and main lines. Below is
a summary of the main differences between the two kinds:

– metro lines: installed in and around cities, the lines are tens of kilometres
long. Except if the line is circular, trains are operated on a carousel: when
they reach the end of a line (forward movement), they fallback using another
set of rails associated to the back movement. Metro stations are usually close
to the next one (around 500 m in Paris): the train spends the same time in
station and travelling between stations. The interval between trains is a key
performance factor: at rush hour, when a train leaves a platform, another one
is going to enter. Only trains from a line are operated on this line, even if the
number of trains is likely to vary to match passengers flow. One signalling
system is installed on board and on the tracks. The train order is fixed as all
trains stop to all successive stations.

126 T. Lecomte

– main lines: they cover large areas, possibly several countries. Lines are up to
thousands of kilometres long. Trains move from point A to point B, with
zero/some stops/all stops. Trains may gain/lose cars in station. Additional
trains may be injected in the flow, coming from other countries/operated by
different companies. Signalling systems change when crossing national bor-
ders.

3.2 Rails

Rails are common equipment among metros and main lines. As such they are
first class citizens: they are the first elements modelled in a project. The network
is called scheme plan or track plan (Fig. 1). These plans contain mainly:

– rails or tracks, made of connected circuits,
– switches, to guide the train from one track to another,
– optical signals, that display instruction or warning to the driver,
– balises/beacons: signals could be duplicated/replaced by electronic equipment

in case of (partial) automation.
– axle counters, track circuits to detect the presence of a train,
– interlocking,
– rail crossings.

Modelling items have attributes like position, length, gradient (slope), max-
imum speed.

Fig. 1. Scheme plan of the Taita metro station, New Zealand.

Many track plan editor tools are available. Some examples are given below.
They are either developed by:

– train manufacturers (SIGART by Alstom, TMDS by Wabtec),
– software/services companies (ERSA traffic simulator, iFrank by iRFP, Fer-

rovia by CGS Labs, Anylogic, Track Editor Tool by SA Transurb, OpenRail
by Bentley, OpenTrack),

– or universities (SafeCap by University of Newcastle).

Digital Modelling in the Railways 127

These tools have specific GUIs with different graphical representations. For
data persistence/exchange, they rely on either:

– RailML [5]: based on XML to describe tracks and signalling equipment,
timetables, vehicles (rolling stock) and signalling routes (interlocking),

– RailTopoModel [13]: promoted by the International Union of Railways, is
a systemic, general, standard model for describing the topology-based rail-
way infrastructure, able to take into account many non-standard descriptions
needed for addressing specific needs.

Other proprietary formats (mostly closed specification) are also available like
Siemens Infrastructure Format, Infraspeed Infrastructure Format, Bentley Rail
Track, or OpenTrack.

The modelling of the tracks and related equipment is central as it provides
a basis for forthcoming engineering activities. An overall system deployment is
in five steps:

– capture of the railway environment and infrastructure,
– develop railway infrastructure data and generate track plan,
– prepare and compile data necessary for configuration of equipment (beacons,

telecommunication, PLCs, interlocking, etc.),
– validation of data by check or automatic methods (Sect. 4.3),
– validation by simulation including train environment.

The drawing of the track and the positioning of the equipment have to comply
with rules (issued from the train manufacturer, from the train operator, and from
regulations). Engineering also includes the design of the technical rooms (where
equipment is installed), the cable layout and its estimated length.

3.3 Dynamics

Modelling the rails and related equipment provides a static view of the network.
The dynamic view is obtained with:

– a model of the driver. The driver is able to accelerate, decelerate, and brake
(as well as open and close doors). The driving behaviour has to be somehow
optimal by complying with several, sometimes antagonist, requirements:
• the time to travel from one station to another has to be minimal,
• the train speed has to be lower than speed limits,
• the train speed has to be lower than its braking curve, taking into account

the minimum train braking capability,
• train acceleration/deceleration has to be kept within bounds, ensuring a

comfortable travel to passengers.
Such an acceleration profile is given in Fig. 2.

– a model of the train. Reacting to the acceleration/braking of the driver,
this model includes technical characteristics like tractive effort/speed dia-
grams, load, length, adhesion factor, and power systems. It also takes into
account track gradients (Fig. 3) that make the computation of the train
dynamics more complicated [2]:

128 T. Lecomte

Fig. 2. An example of speed profile. X axis represents the train position, red curve is
breaking curve, blue curve is speed limit, black curve is train speed, beige curve is train
acceleration. (Color figure online)

• positive gradient slows down the train and reduces travel performances,
• negative gradient has to be taken into account for the safety braking

curves in relation with the minimal braking capabilities,
• bathtub curve gradient combines both effects. In case of a train at stand-

still in such a place, an oscillation movement could be observed.

Fig. 3. Paris Metro line 14 tunnel depth.

The wheel-rail interface is also a complex domain to model [1,15]. Wheel
slipping occurs when tractive effort exceeds adhesive weight whereas sliding
occurs when braking effort exceeds adhesive weight. In both the situations,
it is the adhesive weight playing the most important role. When tractive
effort is more than adhesive weight, difference in power accelerates the wheel
which results into grinding action on the rail. In the similar manner, when
braking effort exceeds the adhesive weight, extra braking force prevents its
rotation but with continuation of linear motion which results rubbing of wheel
at one location on the circumference and called development of wheel flat.

Digital Modelling in the Railways 129

Fig. 4. Maximum actionable adhesion in function of speed and rail state.

Both these conditions create unsafe situation. Weather and environmental
conditions, including dry leaves, play a vital role in reducing adhesion.
Slipping and sliding have a dramatic impact on the safety:

– braking distances may be greater than expected, leading to a potential
collision with a train.

– train position is deduced from a number of inputs sources (beacons,
odometer, GPS). In a tunnel, the position between two beacons is esti-
mated with the rotation of the wheels - sliding may bias the precision of
the position and lead to a collision if the train is ahead of its estimated
position.

Many other aspects, not listed here, have an impact on the behaviour of
the train. For example, strong wind (Mistral wind in Provence) implies a speed
restriction because of important windward grip (strong side wind may lead to
train rollover [18]).

3.4 Timetables

With several trains being operated on a line, a timetable specifies where each
train is located at given times over a certain period and is often presented as
a graphical space-time diagram (Fig. 5). That the timetable is feasible means
that it should be free of conflicts between trains and satisfy certain functional
constraints given by the railway system, such as the track capacity resulting
from the physical infrastructure and the signalling system.

The timetable stores information for each train at each station, including
arrival and departure times, minimal stop time, and connections to other trains.
It can be computed from the static model (routes) and from the dynamic model.

Simulation tools (like OpenTrack or SafeCap) could be used to evaluate
timetables by introducing random delays. Predefined trains run according to
the timetable on a railway network. During the simulation, train movements are
calculated under the constraints of the signalling system and timetable.

130 T. Lecomte

Traffic is:

– cyclic (or not): all train services are operated with some fixed interval time
– homogeneous (or not): trains have the same profile (speed, running time, stop

patterns).
– passengers traffic or freight traffic or mixed.

Fig. 5. Diagram of a single route timetable [20]

After a simulation run, train graphs, occupation diagrams and statistics are
used for assessment. In particular, the headway between two successive trains is
used to identify critical block sections. Simulation may be used to:

– compute real-time optimum strategies for traffic flow,
– explore the design space by modifying the track plan and the signalling

parameters,
– minimise energy usage: when employing rheostatic braking, a train could

provide energy to the network that could be used by another close accelerating
train.

In [8], the automation of a large part of the ETCS rail track planning process
is addressed by the algorithmic sequencing of formalized planning rules based on
the knowledge and some best practices obtained from experienced track planners.

Simulation may also be used to assess compliance to standards. For exam-
ple, the ERSA traffic simulator implements the ERTMS principles1 that are
explained in 700 pages (Fig. 6).

1 https://www.era.europa.eu/content/set-specifications-3-etc.s-b3-r2-gsm-r-b1 en.

https://www.era.europa.eu/content/set-specifications-3-etc.s-b3-r2-gsm-r-b1_en

Digital Modelling in the Railways 131

Fig. 6. Transitions between ERTMS driving modes (matrix 17 × 17 !). White cells
represent conditions and priorities for feasible transitions. Priorities enable avoiding
conflict between simultaneously actionable transitions.

4 Modelling Safety

Models are also developed and used to ensure safety.

4.1 Automatic Pilot - Braking

The automatic train protection (ATP for the metro) is a system on-board the
train which continually checks that the speed of a train is compatible with the
permitted speed allowed by signalling, including automatic stop at certain signal
aspects.

If it is not, ATP activates an emergency brake to stop the train. The braking
curve is calculated based on the track topology (including gradient), the distance
to go to the next red signal (including a safety margin), the guaranteed train
braking capability and the estimated train localisation (Sect. 3.3).

Around 30% of the automatic metros ATP specification are modelled with
the B language (Fig. 7). Their implementation are proved [3] to be correct refine-
ments (no contradiction wrt specification). The model is huge, representing more
than 50,000 lines of specification. The overall model requires to mathematically
demonstrate 23,000 proof obligations to ensure its correctness.

132 T. Lecomte

Fig. 7. Top-level specification of an ATP main loop (excerpt) written in B. For each
cycle, the software has to verify all conditions to either enable a permissive behaviour
or stop the train.

4.2 Estimating Maintenance Periods

The rail integrity is a critical subject for train control as well as for maintenance
strategies. Over all the possible rail flaws, a broken rail is obviously the most
sensitive point. Typically, flaws are detected with special ultrasound monitoring
trains and with unusual noise reports from drivers.

Two facts have a strong influence on the availability and safety of the railway
system:

– the occurrence of critical defects of infrastructure subsystems,
– false alarms for instance triggered by monitoring devices designed for the

defect detection.

For these two points, the railway operators need a degradation model of
the rail and, as accurate as possible, an estimated rate of good detection of
defects by their measuring devices. Then, various maintenance strategies can
be simulated and their impact on the broken rail monitoring process can be
completely estimated. In [4], dynamic Bayesian networks theory are introduced
for the rail degradation and for the broken rail monitoring process model. The
objective is keep (or improve) the ability to detect flaws when automating metros
(the driver’s feedback is not available anymore).

4.3 Formal Data Validation

Data validation consists in the verification and validation of the static data
(Sect. 3.2) against railways signalling rules (that are specific to every country or

Digital Modelling in the Railways 133

even each company in a single country), on rolling stock features (constant or
variable train size or configuration) and operating conditions. By data valida-
tion, we mean the validation of the parameters (i.e. constants) that determine
a specific behaviour of a software/system over a wide range of possible sets of
values. Microsoft Excel defines data validation in terms of type checking: a cell
may contain a date, an integer, a string or a floating point number. In our case,
the data to validate are not only scalar but also represent more complex struc-
tures like graphs. A metro line is seen as a graph, made of connected tracks
with distributed signals and switches implementing signalling rules. Graphs are
encoded through a large number of tables.

Fig. 8. Example of verification rule. Signals belonging to an interlocking territory are
searched (clause WHERE); such signals have to be linked to this interlocking (clause
VERIFY). If not, an error message is displayed for each faulty signal found (clause
MESSAGE).

Formal data validation consists in:

– formalising the verification rules,
– formally proving that the data to verify comply with the formal rules.

In [14], rules are formalised with the B language (Fig. 8) and the proof is per-
formed with the ProB model checker. Formal data validation has been applied to
complete metro lines/main lines interlocking systems, demonstrating its applica-
bility to large systems. In [17], configuration rules for interlocking are specified
by temporal logic formulas interpreted on Kripke structure representations of
the interlocking configuration.

4.4 Proving Interlocking (Model-Checking, Installation-Based)

An interlocking is the safety-critical system that controls the movement of trains
in a station and between adjacent stations. The interlocking monitors the status

134 T. Lecomte

of the objects in the railway yard and allows or denies the routing of trains in
accordance with the railway safety and operational regulations that are generic
for the region or country where the interlocking is located. Verification of cor-
rectness of control tables has always been a central issue for formal methods
practitioners, and the literature counts the application of several techniques to
the problem. It is a well known fact that interlocking systems, due to their
inherent complexity related to the high number of variables involved, are not
amenable to automatic verification, typically incurring in state space explosion
problems. Model-checking [10,11] has been exercised with considerable success
for specific implementation and up to a certain complexity measured by a num-
ber of managed Boolean equations.

4.5 Modelling Design Reasoning

A railway system is often huge and very difficult to assess as structural modelling
is not able to scale up properly. For example, a RER A regional train simulator
modelling all track-side equipment (including wires, relays, etc.) contains more
than 2,000,000 variables and requires seven computer to simulate simplified traf-
fic scenarios on the central sector of the line. In [16], structural formal modelling
is applied to an existing interlocking specification, but the results are a single
error (“well known” by the customer) and an Event-B model refined 15 times,
unreadable/unusable by the recipients.

Fig. 9. The complete picture of the formal approach for safe systems.

A different formal methodology was then invented [6,19] where the design rea-
soning is modelled and proved against properties, based on assumptions admitted
by all experts. Figure 9 below illustrates its different stages, which can be called
“the ideal formal world” and which makes it possible to obtain a system that is
guaranteed to be zero-defect:

– The left side of the diagram represents the “formal proof of correct interop-
erability”. The aim is to ensure that if the individual sub-systems making up
the overall solution are implemented in accordance with their specifications,

Digital Modelling in the Railways 135

then the safety of the overall system is guaranteed. This proof enables the
entity responsible for the integrated system to ensure that there are no hidden
safety bugs in the subsystem breakdown.

– The right side of the schema could be named “formal proof of correct design”.
It is a question of guaranteeing that a given implementation is designed in
such a way that the safety expectations expressed in the specifications are
effectively met.

The by-product of this methodology is a book, written in natural language,
providing an irrefutable mathematical demonstration that the various subsys-
tems meet the expected refined properties [7].

5 Convergence and Relevance

The previous sections show that many railway activities are now subject to
modelling. The complete picture of the situation is difficult to obtain as many
of them are not publicly disclosed, for various reasons (competitiveness, secrecy,
insufficient maturity, etc.) or are more a marketing by-product unable to survive
the demonstration/prototyping phase.

Several initiatives to combine/associate theses modelling activities have been
launched in order to address larger engineering problems or new paradigms like
AI, hybrid modelling2, and model-in-the-loop. Among them, we may notice:

• MegaM@RT3 project, with the analysis of traces at execution time by com-
parison with system-level models (search for patterns, AI)

• Shift2Rail4 improved train localisation with the formal modelling of the forth-
coming Moving Block specification and the fusion of diverse data (GPS,
odometer, kinematics, digital maps) to get rid of most track-side signalling.

• Simulating ERTMS Hybrid level 3 specification [12], a novel approach between
ETCS level 2 fixed blocks and full moving blocks. Figure 10 shows the formal
B model being executed in real-time, along with a visualisation of the model’s
state: over 40 issues were identified.

• SNCF Réseau5 is developing a digital mock-up of its network to provide
valuable input for scheduling predictive maintenance operations, foresee
behaviour, train teams and test-drive strategic solutions.

• Alstom6 develops a rail network digital twin for railway yard design and
predictive fleet maintenance based on AnyLogic.

2 The combination of continuous and discrete models to associate a logic controller to
the physics of a controlled system described with differential equations.

3 https://megamart2-ecsel.eu/.
4 Call for Project 2R-OC-IP2-01-2020.
5 https://www.sncf-reseau.com/en/entreprise/newsroom/sujet/the-digital-twin.
6 https://www.anylogic.com/digital-twin-of-rail-network-for-train-fleet-

maintenance-decision-support/.

https://megamart2-ecsel.eu/
https://www.sncf-reseau.com/en/entreprise/newsroom/sujet/the-digital-twin
https://www.anylogic.com/digital-twin-of-rail-network-for-train-fleet-maintenance-decision-support/
https://www.anylogic.com/digital-twin-of-rail-network-for-train-fleet-maintenance-decision-support/

136 T. Lecomte

Fig. 10. Formal B model of Hybrid Level 3 Principles running in real-time.

• On-going autonomous train projects7 are integrating AI for decision and
diverse sensors for detection, while ensuring a human remote control in case
of unexpected situation.

Besides the fact of using state-of-the-art techniques, how relevant the concept
of digital twin is in the railways? Due to the different domains, timescales, and
objectives8 covered by the modelling activities listed above, having a digital twin
of a whole railway system does not seem much adequate.

A digital twin would probably find a more suitable usage for a restricted
domain/timescale/objective combination like training simulation or validation
test bench9. More precise results are expected with the integration of addi-
tional modelling dimensions. However tool/model integration costs are a high
barrier as there are many tools, specific to a line/model/plant, for which source
code/(design, interface) documentation is often hardly available. The combina-
tion of these tools/models, developed separately, would induce extra effort to
validate their semantic and pragmatic consistency, especially if used for safety
certification. Moreover developing new tools/models for legacy systems already
in exploitation requires a sound justification (exploitation/maintenance costs
saving, solving design issues uncovered lately).

7 https://tech.sncf.com/dossier/train-autonome/.
8 For example, respectively functional vs safety, seconds for slipping vs thousands

years for rail maintenance, and development vs certification.
9 SNCF test bench BATIR enabling the real-time functional simulation, including

HiL, of full high speed trains to validate embedded software.

https://tech.sncf.com/dossier/train-autonome/

Digital Modelling in the Railways 137

Digital twin is probably more adequate to address newer systems (new base-
line) or new themes like:

– ERTMS: its evolving specification and the lack of feedback (compared to
historical national signalling which have been designed over decades/century),
difficult to deploy10 and enabling the late discovery of errors [12].

– Cyber security: critical transportation infrastructure is facing increasing secu-
rity risks given that many systems are (going to be) connected to the Internet,
while related standards are as of today being written (hence not ready for
deployment). In particular, joint security and safety modelling are closely
related and are good candidates to populate a digital twin.

– Terrorism: At the highest level, there is a clear need for the combination of
models from different transportation systems11, to take into account multi-
modalities, especially with respect to the terrorist risk and the way indepen-
dent transportation infrastructures will manage security.

– Autonomy: automating trains requires to consider more aspects than for auto-
mated metros, as the environment is more complex with more elements, inter-
faces, and interactions. The variety of scenarios and situations met requires
precise models of the system and its environment to ensure AI consistency.

6 Conclusion and Perspectives

Railways are heavy modelling providers and users. Most models are:

– separate;
– have different natures and objectives: logic, physical world, performances,

safety, etc.
– have different subjects: infrastructure, rolling stocks, environment;
– used for different activities (specification, development, validation, qualifica-

tion/certification, exploitation/maintenance);

The on-going tendency is to support more engineering activities with mod-
elling or cross-modelling (either by combining modelling to obtain an augmented
one, or by exercising modelling with the support of another one). For example,
slipping/sliding physical modelling provides outputs (i.e. tables) for the esti-
mation of the train localisation precision, but is not included into train traffic
simulation per se.

However it seems unreasonable to imagine a model of a complete rail-
way system (a metro line) shared among different stakeholders, as the range
of uses is quite large and the systems considered made of many equip-
ment/subsystems/parts.

Applications to new themes (AI for autonomy, cyber security, terrorist risks,
etc.) might constitute a suitable entry point for digital twins in the railways.
10 “Bring in the disruptors to drive rail innovation”, Stuart Calvert, Digital Rail, Tran-

sCityRail North conference, London, 06/10/2017.
11 H2020 Call SU-INFRA-01-2020: Prevention, detection, response and mitigation of

combined physical and cyber security threats to critical infrastructure in Europe.

138 T. Lecomte

References

1. Alacoque, J.C., Chapas, P.: Traction ferroviaire adhérence par commande d’effort.
Techniques de l’ingénieur Infrastructure ferroviaire et matériel roulant base doc-
umentaire : TIB576DUO. (ref. article : d5535) (2005). https://www.techniques-
ingenieur.fr/base-documentaire/ingenierie-des-transports-th14/infrastructure-
ferroviaire-et-materiel-roulant-42576210/traction-ferroviaire-d5535/, fre

2. Banach, R.: Issues in automated urban train control: ‘tackling’ the rugby club
problem. In: Butler, M., Raschke, A., Hoang, T.S., Reichl, K. (eds.) ABZ 2018.
LNCS, vol. 10817, pp. 171–186. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-91271-4 12

3. Behm, P., Benoit, P., Faivre, A., Meynadier, J.-M.: Météor: a successful application
of B in a large project. In: Wing, J.M., Woodcock, J., Davies, J. (eds.) FM 1999.
LNCS, vol. 1708, pp. 369–387. Springer, Heidelberg (1999). https://doi.org/10.
1007/3-540-48119-2 22

4. Bouillot, L.: Dynamic bayesian networks modelling maintenance strategies: pre-
vention of broken rails. In: WCCR 2008, vol. 2008, Seoul, South Korea (2008)

5. Ciszewski, T., Kornaszewski, M., Nowakowski, W.: RailML application for descrip-
tion of railway interlocking systems, vol. 19, pp. 373–377, December 2018

6. Comptier, M., Déharbe, D., Perez, J., Mussat, L., Pierre, T., Sabatier, D.: Safety
analysis of a CBTC system: a rigorous approach with event-B. In: Fantechi, A.,
Lecomte, T., Romanovsky, A. (eds.) RSSRail 2017. LNCS, vol. 10598, pp. 148–159.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68499-4 10

7. Comptier, M., Leuschel, M., Mejia, L.-F., Perez, J.M., Mutz, M.: Property-based
modelling and validation of a CBTC zone controller in event-B. In: Collart-
Dutilleul, S., Lecomte, T., Romanovsky, A. (eds.) RSSRail 2019. LNCS, vol. 11495,
pp. 202–212. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-18744-
6 13

8. Dillmann, S., Hähnle, R.: Automated planning of ETCS tracks. In: Collart-
Dutilleul, S., Lecomte, T., Romanovsky, A. (eds.) RSSRail 2019. LNCS, vol. 11495,
pp. 79–90. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-18744-6 5

9. Ferrari, A., et al.: Survey on formal methods and tools in railways: the ASTRail
approach. In: Collart-Dutilleul, S., Lecomte, T., Romanovsky, A. (eds.) RSSRail
2019. LNCS, vol. 11495, pp. 226–241. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-18744-6 15

10. Ferrari, A., Magnani, G., Grasso, D., Fantechi, A.: Model checking interlocking
control tables. In: Schnieder, A., Tarnai, G. (eds.) FORMS/FORMAT 2010, pp.
107–115. Springer, Heidedlberg (2011). https://doi.org/10.1007/978-3-642-14261-
1 11

11. Halchin, A., Feliachi, A., Singh, N.K., Aı̈t-Ameur, Y., Ordioni, J.: B-PERFect
- Applying the PERF approach to B based system developments. In: Fantechi,
A., Lecomte, T., Romanovsky, A. (eds.) RSSRail 2017. LNCS, vol. 10598, pp.
160–172. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68499-4 11,
https://hal.archives-ouvertes.fr/hal-02451007

12. Hansen, D., et al.: Validation and real-life demonstration of ETCS hybrid level 3
principles using a formal B model. Int. J. Softw. Tools Technol. Transf. 22, 315–332
(2020)

13. Hlubuček, A.: Railtopomodel and RailML 3 in overall context. In: Acta Polytech-
nica CTU Proceedings, vol. 11, p. 16, August 2017

https://www.techniques-ingenieur.fr/base-documentaire/ingenierie-des-transports-th14/infrastructure-ferroviaire-et-materiel-roulant-42576210/traction-ferroviaire-d5535/
https://www.techniques-ingenieur.fr/base-documentaire/ingenierie-des-transports-th14/infrastructure-ferroviaire-et-materiel-roulant-42576210/traction-ferroviaire-d5535/
https://www.techniques-ingenieur.fr/base-documentaire/ingenierie-des-transports-th14/infrastructure-ferroviaire-et-materiel-roulant-42576210/traction-ferroviaire-d5535/
https://doi.org/10.1007/978-3-319-91271-4_12
https://doi.org/10.1007/978-3-319-91271-4_12
https://doi.org/10.1007/3-540-48119-2_22
https://doi.org/10.1007/3-540-48119-2_22
https://doi.org/10.1007/978-3-319-68499-4_10
https://doi.org/10.1007/978-3-030-18744-6_13
https://doi.org/10.1007/978-3-030-18744-6_13
https://doi.org/10.1007/978-3-030-18744-6_5
https://doi.org/10.1007/978-3-030-18744-6_15
https://doi.org/10.1007/978-3-030-18744-6_15
https://doi.org/10.1007/978-3-642-14261-1_11
https://doi.org/10.1007/978-3-642-14261-1_11
https://doi.org/10.1007/978-3-319-68499-4_11
https://hal.archives-ouvertes.fr/hal-02451007

Digital Modelling in the Railways 139

14. Lecomte, T., Mottin, E.: Formal data validation in the railways. In: Safety Critical
Symposium, Brighton, UK (2016)

15. Malvezzi, M., Pugi, L., Papini, S., Rindi, A., Toni, P.: Identification of a wheel-rail
adhesion coefficient from experimental data during braking tests. Proc. Inst. Mech.
Eng. Part F J. Rail Rapid Transit 227, 128–139 (2013)

16. Metayer, C., Clabaut, M.: DIR 41 case study. In: Börger, E., Butler, M., Bowen,
J.P., Boca, P. (eds.) ABZ 2008. LNCS, vol. 5238, pp. 357–373. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-87603-8 44

17. Peleska, J., Krafczyk, N., Haxthausen, A.E., Pinger, R.: Efficient data valida-
tion for geographical interlocking systems. In: Collart-Dutilleul, S., Lecomte, T.,
Romanovsky, A. (eds.) RSSRail 2019. LNCS, vol. 11495, pp. 142–158. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-18744-6 9

18. Quost, X.: Modélisation de l’effet du vent sur les trains à grande vitesse. Ph.D.
thesis, Ecole Centrale de Lyon (2005)

19. Sabatier, D.: Using formal proof and B method at system level for industrial
projects. In: Lecomte, T., Pinger, R., Romanovsky, A. (eds.) RSSRail 2016. LNCS,
vol. 9707, pp. 20–31. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
33951-1 2

20. Wikipedia Contributors: Fundamentals of transportation/timetabling and
scheduling – wikibooks (2020). https://en.wikibooks.org/wiki/Fundamentals of
Transportation/Timetabling and Scheduling. Accessed 05 June 2020

21. Wikipedia Contributors: Programmable logic controller – Wikipedia, the
free encyclopedia (2020). https://en.wikipedia.org/wiki/Programmable logic
controller. Accessed 08 May 2020

https://doi.org/10.1007/978-3-540-87603-8_44
https://doi.org/10.1007/978-3-030-18744-6_9
https://doi.org/10.1007/978-3-319-33951-1_2
https://doi.org/10.1007/978-3-319-33951-1_2
https://en.wikibooks.org/wiki/Fundamentals_of_Transportation/ Timetabling_and_Scheduling
https://en.wikibooks.org/wiki/Fundamentals_of_Transportation/ Timetabling_and_Scheduling
https://en.wikipedia.org/wiki/Programmable_logic_controller
https://en.wikipedia.org/wiki/Programmable_logic_controller

Engineering a Digital Twin for Manual
Assembling

Alexandru Matei(B) , Nicolae-Adrian Ţocu , Constantin-Bălă Zamfirescu(B) ,
Arpad Gellert , and Mihai Neghină

Lucian Blaga University of Sibiu, Victoriei Blvd. 10, 550024 Sibiu, Romania
{alex.matei,nicolae.tocu,constantin.zamfirescu,arpad.gellert,

mihai.neghina}@ulbsibiu.ro

Abstract. The paper synthesizes our preliminary work on developing a digital
twin, with learning capabilities, for a system that includes cyber, physical, and
social components. The system is an industrial workstation for manual assembly
tasks that uses severalmachine learningmodels implemented asmicroservices in a
hybrid architecture, a combination between the orchestrated and the event stream
approaches. These models have either similar objectives but context-dependent
performance, or matching functionalities when the results are fused to support
real-life decisions. Some of the models are descriptive but easy to transform
in inductive models with extra tuning effort, while others are purely inductive,
requiring intrinsic connection with the real world.

Keywords: Manual assembling · Digital twin · Virtual simulation ·Machine
learning

1 Introduction

Due to their flexibility, human operators are pervasive in many factories where full
automation is either unfeasible or too costly. Manual assembling is one of the manu-
facturing operations where humans are still playing the major role. Therefore, in the
last decade there has been an increased interest from both academia and industry to
develop intelligent assistance systems to support the assembling process. These sys-
tems are complex cyber-physical-social systems, with extended sensing capabilities of a
working environment with physical, cyber, and human components. They should be able
to recognize the product components and human features and actions, to learn patterns
and correlate human operator contexts with the assembly states of a product, to assist in
the correct product assembly by recommending the next step or by detecting the wrong
ones, to train the human operator and so on.

The main challenge in the engineering of such systems is the complexity of inte-
grating several sensors, with their own control capabilities, in a specific socio-technical
context. The straightforward way to integrate these models is a virtual reality (VR)
environment, enabling the creation of an artificial world for the manual assembling. The
users are immersed in this artificial world with limited behavioral capacity, disconnected

© Springer Nature Switzerland AG 2021
T. Margaria and B. Steffen (Eds.): ISoLA 2020, LNCS 12479, pp. 140–152, 2021.
https://doi.org/10.1007/978-3-030-83723-5_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-83723-5_10&domain=pdf
http://orcid.org/0000-0003-4299-1052
http://orcid.org/0000-0002-0725-1609
http://orcid.org/0000-0003-0128-2436
http://orcid.org/0000-0002-5482-967X
http://orcid.org/0000-0001-9828-4299
https://doi.org/10.1007/978-3-030-83723-5_10

Engineering a Digital Twin for Manual Assembling 141

from the real system. Over the years, this technology proved to be sufficient to address
specific issues in many domains, but we are currently at a point where we need models
to control the real systems which are not suitable for the artificial system. Consequently,
this integration cannot be achieved completely in a digital way and requires perpetual
correlations with the real world.

In contrast to VR, the Digital Twin (DT) concept emphasizes control models for the
real system and not for the virtual ones. DT is a natural evolution of the Decision Support
System concept which connects the models developed in the design phase with the IoT
technology. In this way the problem-solving capabilities become an order of magnitude
faster, with the additional capability to synchronize the models with reality. Therefore,
the combination of DT and VR is used in many industrial applications, from simple
monitoring tasks of an industrial equipment [1] to more complex tasks like fine-tuning
the interactions of an operator with a robotic arm [2].

To faithfully reflect the real system along its entire life-cycle, a DT should exhibit
some key characteristics [3]: 1) the ability to inspect the system at multiple levels,
from system level to system of systems level; 2) the ability to transform, combine and
establish equivalence between models; 3) the ability to integrate, add or replace models
and the ability to describe the closeness to the physical system. Moreover, a DT needs to
integrate the human’s data and related context, either to assess the working conditions
of humans in a factory [4] or to investigate the task allocation problem in human-
robot collaborations [5]. Note that these desiderata are the key concerns in developing
multi-model co-simulations as well.

The paper synthesizes the preliminary development of a DT with learning capabili-
ties for a manual assembly workstation. Section 2 introduces the adopted architectural
concept to engineer the DT. The underlying technologies and the microservices that
are developed to provide the DT functionalities are described in Sect. 3. These services
employ several machine learning models which are discussed in Sect. 4. Most of these
models are descriptive but can easily be converted into inductive models with extra
tuning effort. The last section highlights the current research and conclusions.

2 Assembly Workstation Digital Twin Concept

In the manufacturing industry, the implementation of a DT is following several methods
that lack a common understanding, development methods and technological framework.
The main concern in designing the assembly workstation is to maximize the reuse of
control assets for both systems: physical and virtual. In this case, the DT will be a
controller for both the physical and the virtual system that has predictive and adaptive
capabilities. By following the guidelines presented in [6] to describe the DT concept,
the main features for the manual assembly DT are the following:

• Physical Entity is the physical assembly workstation: a table frame with adjustable
height for ergonomic use. The tabletop is a large smart tablet where the instructions
are given to the user, either visually, audio or a combination of both. In case of heavy
pieces that could potentially damage the screen of the tablet, an alternative would be
to use a hard tabletop with a separate screen and a speaker.

142 A. Matei et al.

• Virtual Entity is the VR application, which contains the virtual 3D model of the
product together with the 3D model of the physical assembly workstation.

• Physical Environment is represented by the assembled modules on the assembly
workstation and the human operator who is doing the assembly.

• Virtual Environment includes different VR rooms for specific needs, such as: sim-
ulation, tutorial, operator manual assembly training, product presentation, etc. The
virtual environment is designed for a specific need. The link between the physical and
virtual entities is made in the DT Scene.

• State composed of the variables needed to replicate in the virtual world the states
of the following: physical entity (i.e. table height), physical environment (i.e. 3D
position and orientation of the objects, assembly status), and human operator (i.e.
emotion, eye tracking, skeleton model). In addition, the states of the control unit (i.e.
the instructions that are presented) are considered as well. All these variables belong
to a certain range that define the required levels of fidelity (e.g. high-fidelity for the
physical entity, and medium to high fidelity for the physical environment).

• Synchronization presumes the bidirectional connections between the physical and
virtual system together with the twinning rate. The physical-to-virtual connection is
realized with various devices to acquire data about the current state of the physi-
cal objects (object types and their position with an RGB depth camera) and human
operator (facial expressions and body movement with an additional camera, emotion
detection with GSR sensors and/or voice recognition, intentional stance and atten-
tion with eye tracking glasses). All this data is transmitted to the VR application.
The virtual-to-physical connection is restricted in the current implementation to the
height adjustment for the physical table from the VR application. An assembly pro-
cess restart or reset command from VR is possible only with the help of an external
mediator who will manually rearrange the assembly parts on the physical table for
correspondence with the VR scenarios. The twinning rate is 1 state update per second.
Partial state updates can be made more frequently depending on the update frequency
of each sensor.

• Physical Processes consist in guiding the human operator to assemble a product. The
human operator must follow step by step instructions presented by the system.

• Virtual Processes are used for optimization, simulation, supervision, analysis, and
improvement of the decision algorithms.

Note that the physical and virtual processes reflect intentions of the decision-makers,
such as support human workers either for manual assembly training or real-time oper-
ation. They need to be sufficiently connected to the operational reality and complete to
allow the execution of either in the physical or in the virtual space. Figure 1 depicts the
main modules that are needed to control the physical or virtual assembly workstation.
As mentioned, the main concern in designing the DT was to maximize the reuse of
control assets for both systems (physical and virtual) while allowing early testing of the
manual assembly training processes and algorithm, improving them side by side with
the physical entity.

Engineering a Digital Twin for Manual Assembling 143

Assembly Status

Adapt Instruction
Sequence

Object Sensors

Human Sensors

Virtual Object
Sensors

Human Sensors

Adapt Instruction
Content

Assembly
Workstation App

Physical
actuators

VR Assembly
Workstation App

Virtual
Actuators

Database

Synchronization

Fig. 1. The DT concept for the assembly workstation

The Physical Assembly Workstation has sensors to measure the physical system and
environment, and actuators that are used by the Virtual AssemblyWorkstation to change
the physical environment. The Assembly Workstation Application module is used to
provide audio, video or written instructions to the user, highlight the assembly parts and
control the physical actuators of the system. There are two types of sensors:

• Object Sensors are aimed at the objects that are assembled on the physical workstation.
These sensors can be video cameras, depth cameras, lidars, etc. Another way is to use
smart products or product tracing techniques. The data stream of these sensors will
be used by the Assembly Status module.

• Human Sensors are used to detect changes in the user’s emotion and intentions, where
it is looking, height, and other characteristics. These sensors include video cameras,
depth cameras, Galvanic Skin Response sensors, eye tracking sensors, etc.

144 A. Matei et al.

The control elements shared between the physical and virtual assembly workstations
are:

• Assembly Statusmodule is responsible for identifying the current state of the assembly
using input from the Object Sensors module. Based on that state, it must decide if it
is a valid or invalid one. In other words, it detects if the user is making mistakes in
the assembly process.

• Adapt Instruction Sequencemodule receives inputs from the Assembly Statusmodule
and recommends the next step that should be done in the assembly process. If the
human operator is making mistakes, this module will repeat the current instruction
and if not, it will move to the next one. When moving to the next instruction, the
module will have to provide the optimal instruction from the available list of feasible
ones.

• Adapt Instruction Content module decides on how to present the current instruction
for a certain human operator. The instruction should be personalized by choosing the
communication form (i.e. video, audio, text, or a combination of those). It should also
decide the timing and amount of information given to the human operator.

In the case of the Virtual Assembly Workstation, all the data that is acquired in the
Physical Assembly Workstation using Object Sensors will be available directly from the
VR application through the SDK, without the need of additional sensors or equipment.
We will consider this functionality of the SDK as virtual sensors – named Virtual Object
Sensors in Fig. 1. Some of the user’s information is also available using the VR SDK but
this requires the VR equipment which will be considered as part of the Human Sensors
in this case for the Virtual Assembly Workstation. There are some exceptions in the case
of Human Sensors of the Virtual Assembly Workstation where some parameters cannot
be extracted because the user’s face is obstructed by the VR headset. The same sensors
from the physical workstation could monitor the human operator and send the data to
the VR application. However, these sensors are hard to use from the virtual side. Also,
under some circumstances, their usage from the virtual side is unnecessary because the
virtual environment is a controlled environment where most of the information is easily
available in the software. Next, a correspondence between the sensors used to capture
the physical environment and the ones used for the virtual environment is presented in
Table 1.

The database is used to store the assemblies done on either the physical or the
virtual assembly workstation for a later analysis and verification through replay. Using
the recorded assembly processes, it is possible to continuously improve the Machine
Learning (ML) algorithms of the system, especially the Adapt Instruction Sequence and
Adapt Instruction Content modules.

Using the real time synchronization between the Physical and Virtual Assembly Sta-
tions, additional functionalities can be enabled: a trainer from VR can supervise the
trainee from real medium using the DT or vice versa, remote operator manual assem-
bly training, real-time manual assembly training analysis, etc. In the end, the Virtual
Assembly Station is not acting only as a simulator, but also as a product for real-time
visualization and analysis or testing new functionalities using real-time sensor input
from the physical environment.

Engineering a Digital Twin for Manual Assembling 145

Table 1. Sensor correspondence

Behavior/Measurement Physical station Virtual station

Determine user’s body
characteristics: movement, skeleton
data, height

Azure Kinect Software-based using the existing
VR equipment: headset,
controllers, and trackers

Eye tracking and user intention Tobii Pro Glasses 2 HTC Vive Pro Eye Series

Tracking the objects that are being
assembled

RGB depth camera Software-based as the position of
all parts is always known in the
virtual environment

Detection of the user’s emotional
state

Video camera,
Microphone,
GSR sensors

Face based is not possible,
Microphone,
GSR sensors

3 Implementation Issues

The concept of the physical workstation is presented in [7]. The software architecture
of the system is based on a hybrid microservices architecture, a combination between
orchestrated and event stream approaches. Having a hybrid architecture, allows for a
greater flexibility in the development of the microservices and their interaction. The
microservices are developed using gRPC1, an open-source remote procedure call (RPC)
framework. For monitoring, control, discovery, and health checking of themicroservices
we are using Consul2, an open-source platform. The types of services that are currently
available on the assembly workstation:

• Physical Assembly Station:

– Table Height Adjustment – interface that allows control of the physical table height.

• Object Data:

– Object Detection – allows identification of known objects in an image. Depending
on the assembly scenario, a customized detection algorithm is needed for each object
that is assembled. For a basic and fast detection, a bounding box algorithm like YOLO
[8] might be enough but for a greater, pixel-level accuracy at the expense of speed,
an instance segmentation algorithm like Mask R-CNN [9] should be used. In our
implementation we opted for using a YOLO artificial neural network that was trained
on demo objects.

– Object Position – allows identification of the XYZ position of the detected objects
in a depth image based on the output of the Object Detection service.

1 https://grpc.io/.
2 https://www.consul.io/.

https://grpc.io/
https://www.consul.io/

146 A. Matei et al.

– Object Segmentation – allows the further segmentation of the detected object(s). It
is used to extract 2D orientation and pixel-level segmentation of the detected objects.
This is achieved using traditional image processing methods like: Otsu binarization,
edge detection, contour detection, contour fill, etc.

• Human Data:

– User Characteristics – used to extract user information like height, age, gender. In
[10] is presented the approach for this step of extracting these human characteristics.

– User emotion detection based on voice – uses a phase vocoder together with an arti-
ficial neural network. The method was trained and validated using the RAVDESS
database [11] (Ryerson Audio-Visual Database of Emotional Speech and Song).
Details about the approach can be found in [12].

– User emotion based on facial expression – is a microservice that is based on an input
image with the user’s face, identifies face landmarks. Based on the face landmarks
and the distance between them, seven possible emotions can be predicted using an
artificial neural network. The seven detected emotion are: angry, disgust, fear, happy,
sad, surprise and neutral.

– User Intention – This microservice is using the eye tracking data to predict what the
user wants to assembly next. The video feed together is feed into the Object Detection
microservices and based on the gaze location it can be inferred if the user is looking at
an object. Currently, the algorithm behind this microservice that will determine user
fixation on an object or confusion if the user is looking around is under development.

• Assembly Instruction Data:

– Correct Assembly – used to determine if user follows the assembly steps correctly.
This microservice, based on the object spatial position, orientation, and segmenta-
tion from Object Segmentation microservice can determine whether the pieces are
assembled correctly or not.

– Next Assembly Step – used to provide the next suitable instruction based on the
previous instruction. For this microservice, several types of predictors were tested,
like two-level prediction table, Markov predictors, prediction by partial matching and
long-term short memory artificial neural networks. Details about the implemented
predictors can be found in [13, 14] and [15].

– Adapt Assembly Step – used to adapt the next instruction based of several factors:
user state, mistakes made, assembly state, etc. This microservice is currently under
development.

• Other microservices:

– Publish-Subscribe – allows for a pub-sub communication/event stream-based
alternative to direct RPC calls (orchestrated) between microservices.

– Video Streaming – this microservice allows viewing the stream of any video source
(including screen) connected to the assembly station. To reduce the bandwidth, the
video is H264 encoded on the server side using theWindowsMedia Foundation SDK.

Engineering a Digital Twin for Manual Assembling 147

The DT of the physical assembly workstation is an adapted VR simulation. The VR
simulator was developed in Unity 3D and it is compatible with Oculus Rift and HTC
Vive headsets. The compatibility problem was easily solved using the VRTK Toolkit.
This toolkit is a collection of scripts and prefabs made for Unity and VR. Using VRTK
and Steam VR we could use the same classes and events to access the controller’s apps
from both hardware. The VR simulator is further detailed in [16]. In Fig. 2 the physical
assembly workstation and its virtual representation in the VR application are shown.

Fig. 2. Physical prototype [15] and its DT

4 Machine Learning Capabilities

As described in the previous section, the DT for assembly workstation combines multi-
ple ML models developed during the design process. There are three broad categories
employed in the current developments: 1) human emotion recognition, 2) context predic-
tors for the assembling sequences, and 3) traditional image processingmethods for object
recognition. In the following sections the first two categories are discussed, whereas the
third uses classical image processing algorithm with no need for data to improve their
object recognition capability in real-time.

4.1 Human Emotions

Human emotions are known to play a significant role in human behavior and are an
essential source of data for improving and adapting human interaction. There aremultiple
ways of recognizing human emotions, through facial expressions in [17] and [18], speech
in [19] and [20], or biometric signals in [21] and [22]. For both the audio (speech) and
video (face) channels, the detection of human emotions involves a pre-processing and
feature extraction stage and a classification stage. The main features isolated in the audio
channel are spectral, the Mel-frequency cepstral coefficients, although other time-based
features such as short-term energy, zero-crossing and cross-correlation coefficients for

148 A. Matei et al.

pitch detection are additionally used. The pre-processing of the still images from the
video channel revolves around the face detection and the extraction of discriminative
features from salient face regions, as well as the history of those features from recent
frames. For both the audio and video channel, the classifier chosen is an artificial neural
network (ANN). Although there are many approaches, ANNs have been shown to be the
most promising of artificial intelligence (AI) techniques, having good results in general
pattern recognition tasks.

In the case of the biometric signals, only the galvanic skin response (GSR) is mea-
sured, as the heart rate reactions are relatively slow and persist for a long time (con-
sidering the general manual assembly training scenario), while EEG sensors are a lot
less practical for an assembly workstation. Unlike the audio and image methods, which
attempt full emotion identification, the GSR processing consists of adaptive filtering and
peak detection, mainly used to identify emotion excitation. However, this approach has
the big drawback of not being able to detect the explicit emotion, as the GSR peak can
be triggered both by positive (e.g. happy) and negative (e.g. fear) emotions.

Each human emotion investigation channel has its strengths and weaknesses: face
caption and GSR are continuous, whereas speech is voluntary; in contrast, the lack of
speech inflexions despite emotions is less common than poker-face expressions, while
physiological responses to emotions are almost never controlled; audio and video data
can be gathered at a distance, whereas GSR, EEG and other biometric measurements
require equipping the user. The combination of the methods thus offers a better chance
of correctly identifying the true mix of emotions for the observed user and thus pro-
vides better data for the workstation to adapt and improve the instructions and feedback
provided during the manual assembly training.

ANNmethods for detecting human emotions are descriptive models trained on large
sets of audio and image (or video) data. However, given the opportunity, they are easily
transformed into inductive models through continuous training and refinement of the
network weights based on data acquired during the operation. The assembly worksta-
tion offers the opportunity of observing the same user during multiple operations, thus
enabling both the general refinement and the adaptation to the particularities of the user.
In contrast, the GSR peak detection is implicitly an inductivemodel, adapting its filtering
and thresholds to the user to compensate for variability of the physiological responses
from human to human.

Although not an emotion, confusion of the user is another important state of mind
that, if identified correctly, would greatly improve the performance of the assembling
instructions. For the detection of this state, data from all channels may be combined with
information from gaze-tracking glasses to provide valuable insights in the human state
of mind.

As human emotions are personal, and represent internal biological states, questions
about data privacy and ethics arise. Regarding this issue, the ANNs presented are trained
on datasets that are freely available in the public domain. Also, the inferred emotional
state of the user is used only momentarily by the software application and is not stored
anywhere by the system.

Engineering a Digital Twin for Manual Assembling 149

4.2 Context-Based Predictors for the Assembly Sequences

In our previous works [13, 14] and [15] we investigated different models for context
predictors, such us two-level prediction table, Markov predictors, prediction by partial
matching and even long short-termmemory artificial neural networks.Thesemodels have
the same objective of providing adaptive assembly assistance by dynamically adapting
the assembling process to the human operator’s actual condition, his/her general charac-
teristics, preferences, and behaviors in assembling products. These models are using a
context-based predictor to recommend the next assembly step based on the current state
of both: the semi-product, and the worker.

Being pre-trained with a set of rules extracted from a dataset of product assembly
sequences we can consider them to be descriptive. The two-level context-based predictor
from [13] is able to reproduce the assembly step which was last seen after a certain
context, whereas the Markov predictors from [14] and [15] can provide multiple choices
for the next assembly step, in their descending probability order. All these models can
be enhanced with run-time training. Thus, after the pre-training, during the exploitation
of the predictors, they can be updated after each assembly step. We expect that with
run-time learning, the predictor can cover a higher number of situations.

In the case of the Markov predictors presented in [14], the next state probabilities
for a given context are estimated using the state occurrence frequencies in that certain
context. Currently, since only a limited pre-training stage is applied, these frequencies
are maintained as simple counters. When a prediction is to be made for a given context,
the state having the maximum counter can be provided as the most probable next state.
If we extend the prediction mechanism with run-time learning, some of these counters
can increase a lot in time, reaching very high magnitudes, while others can remain on
low levels. Therefore, saturating counters would be more appropriate. The saturating
counters, whose magnitude is limited, can adapt faster to changes in the behavior of a
certain human operator, and can easily adapt also to different users. Obviously, this fast
adaptation could be assured by increasing the saturating counter associated to the correct
next state and by decrementing the saturating counters corresponding to wrong states,
after each assembly step.

We are currently developing a prediction algorithm based on pre-trained Hidden
Markov Models (HMM). That prediction scheme can be easily adapted for run-time
learning by periodically adjusting the HMM on a certain window of assembly steps.
Another predictor which is currently in evaluation is a Long Short-Term Memory
(LSTM). It is pre-trained through a certain number of epochs. We intend to analyze the
influence of a possible run-time learning over the LSTM’s prediction accuracy. How-
ever, since the optimal number of epochs in the pre-training stage is 5000, we expect
a slower adaptation capability for the LSTM by run-time learning with respect to the
above-mentioned Markov and HMM prediction schemes.

The experiments with these models revealed that:

• If the dataset is strictly restricted to the assembly behavior of the human operator there
is no significant difference if the dataset used to pre-train the ML models is generated
either from physical or virtual assembly workstation. This finding may significantly
speed up the pre-training of ML models.

150 A. Matei et al.

• There will be always a tradeoff between adaptability and prediction accuracy among
alternative ML models. Some works well with a large pre-training dataset, but they
have slower adaptability to real-time data coming from the physical system. Therefore,
choosing the optimal model depends very much on the contextual use (i.e. products
diversity, assembling complexity in terms of number of sequential steps and alternative
choices, etc.).

• TheMLmodels developed to predict the assembly behavior trained with data from the
virtualworkspace has limited applicability.Wehave found strong correlations between
the assembling performance of some processes with the operators’ psychomotor capa-
bilities, such as the gender, if he/she is wearing glasses, tiredness, height, etc. While it
is clear that the data coming from the real space are limited due to lack of high volume
of data and slower generation of data, models developed for the virtual space cannot
cope with the entire spectrum of real-life data as a result of limited sensorial capabil-
ities. Consequently, left-over parts that should be considered by the DT in extending
the descriptive models into inductive ones will always remain.

5 Conclusions and Future Work

The paper synthetized the preliminary developments of a DT for a manual assembly
workstation. This cyber-physical-social system employs several ML models imple-
mented as microservices in a hybrid architecture, a combination between the orches-
trated and the event stream approaches. For a fast and intuitive integration of different
ML models a VR application have been twinned with the physical workstation. In addi-
tion, it was used to generate datasets to pre-train the ML models. These models ana-
lyzed in this paper have either similar objectives but context-dependent performance (i.e.
context-based predictors for the assembly sequence), or matching functionalities when
the results are fused to support real-life decisions (i.e. detection of human emotions).
Some of the models are descriptive but easy to transform in inductive models with extra
tuning effort, while others are purely inductive requiring intrinsic connection with the
real world.

These resultswill be further exploited on at least two directions. Firstly, the prediction
models investigated to suggest the next assembly step can be easily reverted and used
to simulate the assembly process of a human operator. The lack of a reliable model for
the cognitive behavior of a human operator in assembly tasks was the main concern
in not building at design time a co-simulation. The models discussed in the previous
section will be further used in a co-simulation to reproduce the user’s behavior. This will
increase the speed for an extended design-space exploration when new microservices
will be added. Moreover, coupled with specific real-time user data (i.e. gender, if he/she
is wearing glasses, tiredness, height, etc.) there is the potential to have personalized
design-space exploration capabilities for various assembly tasks, limiting substantially
the combinatorial complexity arising from the interactions ofmultiplemodels. Secondly,
all the ML models reported in the paper were pre-trained with datasets obtained from
laboratory experiments with students. Real-life experiments with human operators from
industry are envisaged. These experiments will provide a better insight on how to employ
the alternative models in different contexts.

Engineering a Digital Twin for Manual Assembling 151

Acknowledgements. This work is supported through the DiFiCIL project (contract no.
69/08.09.2016, ID P_37_771, web: http://dificil.grants.ulbsibiu.ro), co-funded by ERDF through
the Competitiveness Operational Programme 2014–2020.

References

1. Schroeder, G., et al.: Visualising the digital twin using web services and augmented reality. In:
IEEE 14th International Conference on Industrial Informatics (INDIN), Poitiers, pp. 522–527
(2016)

2. Havard, V., Jeanne, B., Lacomblez, M., Baudry, D.: Digital twin and virtual reality: a co-
simulation environment for design and assessment of industrial workstations. Prod. Manuf.
Res. 7(1), 472–489 (2019)

3. Schleich, B., Anwer, N., Mathieu, L., Wartzack, S.: Shaping the digital twin for design and
production engineering. CIRP Ann. Manuf. Technol. 66(1), 141–144 (2017)

4. Lu, Y., Liu, C., Wang, K.I.-K., Huang, H., Xu, X.: Digital twin-driven smart manufacturing:
connotation, reference model, applications and research issues. Robot. Comput. Int. Manuf.
61, 101837 (2020)

5. Bilberg, A.,Malik, A.A.: Digital twin driven human-robot collaborative assembly. CIRPAnn.
Manuf. Technol. 68(1), 499–502 (2019)

6. Jones, D., Snider, C., Nassehi, A., Yon, J., Hicks, B.: Characterising the digital twin a
systematic literature review. CIRP J. Manuf. Sci. Technol. 29(A), 36–52 (2020)

7. Pîrvu, B.C.: Conceptual overview of an anthropocentric training station formanual operations
in production. In: Balkan Region Conference on Engineering and Business Education, vol.
1, no. 1, pp. 362–368 (2019)

8. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time
object detection. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), Las Vegas, NV, pp. 779–788. IEEE (2016)

9. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: 2017 IEEE International
Conference on Computer Vision (ICCV), Venice, Italy, pp. 2980–2988. IEEE (2017)

10. Cruceat, A.M., Matei, A., Pîrvu, B.C., Butean, A.: Extracting human features to enhance
the user experience on a training station for manual operations. Int. J. User Syst. Interaction
12(1), 54–66 (2019)

11. Livingstone, S.R., Russo, F.A.: The Ryerson audio-visual database of emotional speech
and song (RAVDESS): a dynamic, multimodal set of facial and vocal expressions in North
American English. PLoS ONE 13(5), e0196391 (2018)

12. Govoreanu, V.C., Neghină, M.: Speech emotion recognition method using time-stretching
in the preprocessing phase and artificial neural network classifiers. In: 2020 IEEE 16th
International Conference on Intelligent Computer Communication and Processing (ICCP),
Cluj-Napoca, Romania, pp. 69–74. IEEE (2020)

13. Gellert, A., Zamfirescu, C.B.: Using two-level context-based predictors for assembly assis-
tance in smart factories. In: 8th International Conference on Computers Communications and
Control, Oradea, Romania (2020)

14. Gellert, A., Zamfirescu, C.B.: Assembly support systems using Markov predictors in smart
factories. In: 20th Open Conference of the IFIP WG 8.3 on Decision Support, Wrocław,
Poland (2020)

15. Gellert, A., Precup, S.A., Pirvu, B.C., Zamfirescu, C.B.: Prediction-based assembly assis-
tance system. In: 25th International Conference on Emerging Technologies and Factory
Automation, Vienna, Austria (2020)

http://dificil.grants.ulbsibiu.ro

152 A. Matei et al.

16. T, ocu, N.A., Gellert, A., S, tefan, I.R., Nit,escu, T.M., Luca, G.A.: The impact of virtual reality
simulators in manufacturing industry. In: 12th International Conference on Education and
New Learning Technologies (2020)

17. Dudul, S.V., Kharat, G.U.: Emotion recognition from facial expression using neural networks.
In: 2008 Conference on Human System Interactions, Krakow, pp. 422–427. IEEE (2008)

18. Khanal, S.R., Barroso, J., Lopes, N., Sampaio, J., Filipe, V.: Performance analysis of
Microsoft’s andGoogle’s emotion recognitionAPI using pose-invariant faces. In: DSAI 2018:
Proceedings of the 8th International Conference on Software Development and Technologies
for EnhancingAccessibility and Fighting Info-Exclusion, Thessaloniki, Greece, pp. 172–178.
ACM (2018)

19. Tóth, S.L., Sztahó, D., Vicsi, K.: Speech emotion perception by human and machine. In:
Esposito, A., Bourbakis, N.G., Avouris, N., Hatzilygeroudis, I. (eds.) Verbal and Nonver-
bal Features of Human-Human and Human-Machine Interaction. LNCS (LNAI), vol. 5042,
pp. 213–224. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-70872-8_16

20. Sezgin, M.C., Gunsel, B., Kurt, G.K.: Perceptual audio features for emotion detection.
EURASIP J. Audio Speech Music Process. 2012(1), 1–21 (2012). https://doi.org/10.1186/
1687-4722-2012-16

21. Tarnowski, P., Kołodziej, M., Majkowski, A., Rak, R.J.: Combined analysis of GSR and
EEG signals for emotion recognition. In: 2018 International Interdisciplinary PhDWorkshop
(IIPhDW), Swinoujście, pp. 137–141. IEEE (2018)

22. Wu, G., Liu, G., Hao, M.: The analysis of emotion recognition from GSR based on PSO.
In: 2010 International Symposium on Intelligence Information Processing and Trusted
Computing, Huanggang, pp. 360–363. IEEE (2010)

https://doi.org/10.1007/978-3-540-70872-8_16
https://doi.org/10.1186/1687-4722-2012-16

Towards Digital Twins for Knowledge-Driven
Construction Progress and Predictive Safety

Analysis on a Construction Site

Beidi Li1(B), Rasmus O. Nielsen1(B), Karsten W. Johansen1(B), Jochen Teizer2(B),
Peter Gorm Larsen1(B), and Carl Schultz1(B)

1 DIGIT, Department of Electrical and Computer Engineering, Aarhus University,
Aarhus, Denmark

{beidi.li,pgl,cschultz}@ece.au.dk
2 DIGIT, Department of Civil and Architecture Engineering, Aarhus University,

Aarhus, Denmark
teizer@cae.au.dk

Abstract. Civil engineering has only recently started the digitalisation journey
by standardising around Building Information Models (BIMs). In the process of
construction a dimension of time is added in what is called 4D BIM and this can
serve as the basis for a digital twin. It is predicted that such a digital twin can
enhance the overall overview of status of the construction of a new building by
means of different types of sensors, and interpreting these in relation to a BIM. In
the construction phase there are rules and regulations targeting the safety of the
different kinds of construction workers at the construction site. In this paper we
provide a vision of how digital twins can assist with spotting potential violations
of the constraints stated by the rules and regulations, and empirically evaluate a
proof-of-concept software tool on a large scale, real-world 4D BIM.

1 Introduction

All project stakeholders that facilitate design, planning, construction and operation play
a vital role in achieving project objectives for cost, schedule and quality. However,
few recognise that design and planning can play a critical role for the safety, health
and well-being of construction workers, maintenance staff or users during an entire
project lifecycle. Although significant research has been undertaken in occupational
construction safety, health and well-being, human-assisted software tools for detection
and prevention of hazards embedded in construction schedules hardly exist in practice.

In light of this, we advocate Digital Twins as a technological framework for provid-
ing a unifying platform for enhanced construction safety that can be used to:

– integrate real-time sensor data from the construction sight (the “physical” twin) into
a formal model of a construction site (the “digital” twin, in the form of 4D Building
Information Model (BIM), Sect. 2);

c© Springer Nature Switzerland AG 2021
T. Margaria and B. Steffen (Eds.): ISoLA 2020, LNCS 12479, pp. 153–174, 2021.
https://doi.org/10.1007/978-3-030-83723-5_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-83723-5_11&domain=pdf
https://doi.org/10.1007/978-3-030-83723-5_11

154 B. Li et al.

Formalised
Construction
Knowledge

Sensor
Data

Updated
BIM

Construction
Activity Analyser

Real
Building

Expert
Construction
Knowledge

Logic
Programming

Engine

+ SPATIAL REASONING

Safety Code
Compliance

Report

Formalised
Safety Code Safety

Codes

Fig. 1. Workflow pipeline for updating a 4D BIM with realtime sensor data, and automatic
safety code compliance analysis. Thin grey arrows represent automatic data flows (inputs/outputs)
between software components, or from sensors detecting the environment. Large blue arrows rep-
resent manual (human) knowledge engineer activities in formalising expert domain knowledge
and natural language safety codes. The “digital” twin is the BIM (bottom middle). The “physical”
twin is the real, partially constructed building (bottom left). The compliance report is delivered
to construction project managers for decision support.

– facilitate predictive safety analysis of a construction site (Sects. 5–6).

These two roles of digital twins in construction are illustrated in the conceptual work-
flow pipeline in Fig. 1, centred around BIM of a building under construction. BIMs
are an object oriented formal representation of buildings, including classes such as
Door, Wall, Slab etc. In construction planning, 4D BIM is used to model how a BIM is
planned to be erected in a series of discrete time steps, i.e. a 4D BIM is equivalent to a
sequence of partially constructed BIMs that represent the building under construction.

In the first proposed application of digital twins, the 4D BIM is automatically
updated based on sensor data, knowledge about construction activities in general, and
background knowledge about the project at hand, which is formalised and used to inter-
pret sensor data into construction activities and events. Having accurate information
about progress and the current state of the partially-constructed building is critical
for effective and timely safety analysis at each stage of the construction process. In
Sect. 2 we present our initial results on automatically assessing construction progress
and updating BIMs accordingly.

In the second application of digital twins, official standard safety codes that are
currently complied with (by law) are formalised and checked against the BIM to identify
hazards and recommend mitigation strategies. To keep our methodology concrete, we
specifically focus on the German construction safety codes BG Bau [1].

We seek to consolidate and formalise expert knowledge on construction manage-
ment into a new, semantically rich domain model of construction site safety called
SafeConDM [20,23,24,34], that can be exploited for enhanced predictive analysis with
4D BIM. Importantly, 4D BIMs are often incomplete in that the designer has omitted
certain key pieces of information (e.g. the particular order in which roof panels will
be installed) that are necessary to assess whether a safety code is complied with or not.

Towards Digital Twins for Knowledge-Driven Construction Progress 155

This motivates the role of default reasoning in safety analysis, so that we might assume
certain details that are missing from an incomplete BIM, and hypothetical reasoning
that supports queries such as: “Suppose a particular safety code is violated, can we
fill in the missing information in such a way that would result in this violation?”. In
Sects. 5 – 6 we present our initial results in digital twins for safety analysis.

Thus, our proposed digital twin framework for safety analysis before, and during
construction, consists of the following key components:

– a semantically rich domain model of different features in a 4D BIM (such as leading
edges and other refining semantic categories that further distinguish different types
of leading edge);

– a knowledge base of formal rules that can take a 4D BIM, analyse it, and augment
it with these new concepts, injected as new, special kinds of “objects” in the model
based approach on the concept of spatial artefacts;

– a reasoning engine that can take hypothetical statements about safety violations and
identify construction sequences that result in such dangerous violation while still
being consistent with construction plan information that is available.

1.1 Related Work

The particular research niche that our work resides in, with respect to employing BIMs
in the context of digital twins is: (a) safety analysis (b) during the construction stage of
a building’s lifecycle. Thus far there has been relatively little attention given to auto-
mated safety analysis via 4D BIMs as the “digital” twin, and the construction site as the
“physical” twin.

Digital Twins have their origins in the concept of Mirror Worlds by Gelernter [17],
where the digital version of some real product or system is used for prediction: simu-
lating “what if” scenarios and reasoning about properties of the digital model to infer
properties of the real-world counterpart. Digital twin technology is not yet being fully
utilised within the building and construction sector [9,21]. The primary role of digi-
tal building twins thus far is employed during the building operation phase (e.g. [25]),
not during construction (corresponding with 4D BIM), in order to monitor and opti-
mise building performance e.g. energy reduction [43], sustainability and waste reduc-
tion [3,32], building state degradation [11,21].

Methods have been developed for automated construction progress monitoring
based on interpreting images, videos, laser scans, e.g.[18,19], and comparing 4D BIM
“as-planned” vs “as-built” through point clouds constructed from images [10,42]. These
approaches are compatible with our framework for utilising digital twins in construc-
tion safety analysis, where the digital twin platform unifies various technologies centred
around a 4D BIM. The primary distinction here is that we emphasise the primary goal
of safety, and situate sensor data interpretation within a framework of abductive (spa-
tial) reasoning, with an emphasis on rich semantic models of experience and behaviour
[4,7,14,37]. This leverages expert knowledge, inference, and project-specific knowl-
edge in the form of the planned construction schedule so that, ideally, different kinds

156 B. Li et al.

of sensors can be used to infer progress (enabling accurate safety analysis during con-
struction) that are relatively inexpensive and simple to deploy, to complement video and
laser scanning approaches.

Automated building code compliance has been the focus of numerous research
efforts [8,12,13]. Popular commercial systems such as the Solibri Model Checker1

primarily support clash detection analysis between physical components and provide
a form of rule checking. The rules are parameterised and can be configured (e.g. com-
bined, deactivated, etc.), although completely new rules cannot be defined by a user
e.g. for implementing the B100 construction safety code [35,38]. Moreover, the under-
lying algorithms for determining spatial relations that systems such as Solibri imple-
ment (such as nearest spaces) are subject to numerical instabilities, and are impossible
to directly verify and modify due to being proprietary and closed. The approach we are
developing incorporates real arithmetic constraint solving (i.e. not only floating point)
to overcome such limitations [22,24].

2 Automatic Construction Progress Analysis

In this first phase we aim to automatically infer progress of the construction plan and
update the 4D BIM accordingly based on sensor data collected from the construction
site. We cannot directly ‘sense’ task completion, i.e. there is no such device as a ‘wall
exists’ sensor, and thus we use sensor data, such as worker location tracking, to infer
the plausbility of work being done. This application of digital twins corresponds to the
workflow illustrated in the left part of the workflow in Fig. 1.

We adopt the common approach of decomposing so-called ‘high level’ construction
tasks into a hierarchy of subtasks that can be more reliably reasoned about based on
sensor data (e.g., [47]). For example, erecting brick pillars may consist of the following
subtasks:

– cutting bricks at the saw machine;
– moving bricks from the saw machine to the pillar zone; and
– laying the bricks in the pillar zone.

Given sensor data collected from the construction site, our system needs to infer such
subtasks that are consistent with this sensor data in real time, and subsequently qual-
itatively assess task completion. For example, given a timestamped series of geo-
referenced locations associated with a particular worker (e.g., tracked Ultra Wideband
(UWB) tags attached to personal protective equipment (PPE)) our system may infer that
the worker has moved from region A to job site B where they remained for some time,
and then moved back to region A. Moreover, given the time spent at job site B our sys-
tem may infer progress on task X assigned to the worker that can only be undertaken
using a particular machine at worksite B.

1 www.solibri.com.

http://www.solibri.com

Towards Digital Twins for Knowledge-Driven Construction Progress 157

Such inferences are only plausible, tentative explanations of the data: if it was
indeed the case that the worker undertook these activities then we would expect the
sensor readings that we did in fact observe. However, many other scenarios would
also result in these sensor readings - what if the PPE with the tags were acciden-
tally swapped between workers? Given this new information our system would need
to be able to revise its previous inferences. This kind of explanation-based hypotheti-
cal reasoning is a form of abduction (in contrast to deduction in which inferences are
never retracted). The challenge in abductive reasoning is to efficiently produce a select
few useful hypotheses that are justified by the data, out of the enormous multitude of
hypotheses that are also consistent with the data available.

2.1 Explaining Sensor Data via Abductive Reasoning

Consider the fundamental equation of inference [28]:

BK ∧ H |= Obs

In our framework based on logic programming, Background Knowledge (BK) is a set
of IF-THEN rules between propositions, and facts that we know to hold in the current
setting such as the 4D BIM of the construction project, the up-to-date worker roster,
current time of day, construction project plan and task schedules, etc. For example, a
number of work areas have been identified in the construction site illustrated in Fig. 2,
represented as polygonal regions.

Fig. 2. Left: Semantically meaningful work areas represented as polygons on a construction site.
Right: Worker trajectory data (cyan lines) captured via UWB sensors are directly converted into
symbolic facts asserting the time intervals during which the worker was located in particular work
areas.

158 B. Li et al.

Observations (Obs) are represented as symbolic facts, derived directly from sensor
data. For example, we convert detailed 2D trajectory data (Fig. 2, right) into discrete
symbolic facts that assert the time intervals during which a given worker is located in a
given work area, as defined in Fig. 2 (left).

Hypotheses (H) are tentative facts that, when combined with BK, entail the obser-
vations. For example, the hypothesis that worker W performed the subtask of “cutting
bricks at the saw machine” during time interval T entails that the worker was located
in the same area where the saw machine is located (the “sawZone”), and that the dura-
tion of time they spent in that area is above a plausible threshold (e.g. more than five
minutes), to distinguish workers that are instead only passing through that area.

Deduction is the process of inferring Obs given H and BK. Abduction [40] is the
process of inferring H given BK and Obs, such that background knowledge alone is
not enough to explain the observations (BK �|= Obs), the hypothesis is not inconsistent
with background knowledge (BK ∧ H �|= false) and the hypothesis is sufficient to
explain the observations together with background knowledge. Our abductive reasoning
module is implemented using Answer Set Programming (ASP) [16,26].

2.2 Answer Set Programming (ASP)

ASP is a declarative logic programming language that is used to represent and reason
about semantic information in a given application domain (such as 4D BIM and safety)
in the form of facts and rules, and has an in-built search engine for finding models
(combinations of deduced facts) that follow from the given premises. In the context of
logic programming, the rules in BK that provide the basis for abductive reasoning are
a set of Horn clauses of the form: h ← b1, . . . , bn, where proposition h is true (the rule
head) if propositions b1, . . . , bn are all true (the rule body). We represent a 4D BIM in
ASP as ASP facts, background knowledge about construction activities are formalized
as ASP rules, and valid hypothetical explanations are encoded as ASP models discov-
ered by the ASP search engine. In ASP syntax, rules are denoted as follows (read as “IF
b1, . . . , bn are true THEN h must be true):

h :- b1, ..., bn.

An ASP fact h is a rule of the form: h ← true. An integrity constraint that forbids
b1 ∧ · · · ∧ bn is a rule of the form: false ← b1, . . . , bn. A weak constraint is a default
integrity constraint that intuitively states that: prefer models that satisfy the constraint.
Weak constraints provide a means to find optimal models that minimise the number of
violated weak constraints. Specifically, for each weak constraint that is violated in a
given model, the model is assigned a penalty p, assigned to a so-called term tuple t.2

ASP then searches for models that minimise the sum of penalties. In ASP syntax, weak
constraints with penalty w and term tuple t are denoted as:

:∼ b1, ..., bn. [w, t]

2 The role of the term tuple can be understood as follows: when a weak constraint is violated, a
term tuple is added to the model and assigned the penalty, rather than the weak constraint itself.
This provides a mechanism to relate weak constraints. We will not elaborate on the details of
term tuples here, and instead refer the reader to ASP documentation [15].

Towards Digital Twins for Knowledge-Driven Construction Progress 159

ASP supports choice rules: given propositions h1, . . . , hm a choice rule is used to spec-
ify that zero or more of those propositions can be true in a model. This is generalised
so that at least i and at most j of the propositions must appear in each model. In ASP
syntax choice rules are denoted as:

i {h1; ...; hm} j :- b1, ..., bn.

Finally, unlike another well known logic programming language Prolog (the predeces-
sor of ASP), ASP operates in a 3-valued logic setting: propositions in a model can be
true, false, and neither (which can be interpreted as unknown depending on the appli-
cation context). The proposition −p denotes that “p is false” in classic propositional
logic. A model can not contain both p and −p, which is defined as a logical contra-
diction, whereas models can omit both p and −p (i.e. which, as mentioned, can be
interpreted as “p is unknown”). The operator “not p” is satisfied if p is not in the model,
i.e. the model either contains −p or neither p nor −p. Similarly, “not −p” is satisfied if
−p is not in the model, i.e. the model either contains p or neither p nor −p.

2.3 Abductive Reasoning Using Answer Set Programming

We implement abduction in ASP by adapting the approach presented in [30]. Observa-
tions o1, . . . , on derived from sensor data (also referred to as evidence) are implemented
as ASP facts:

holds(o 1).
...
holds(o n).

Each hypothetical predicate p in H (called an abducible) is implemented as an ASP
choice rule:

{hypothesis(p)}.
This choice rule means that every hypothesis can either be made or not (i.e. the
abducible is either asserted to hold, or remain unknown). Given n hypotheses then the
corresponding set of choice rules yields at most 2n complete explanations (models), i.e.
the set of models is a subset of every combination of hypotheses. We rank these models
by preferring models that propose hypotheses over those that do not (as also argued in
[30]), i.e. we use ASP to derive rich interpretations of the construction scenario that are
consistent with the data.

Such an “optimistic” set of hypotheses corresponds to an upper bound on construc-
tion progress where observations are used to justify the largest number of hypotheses
about work progress. We implement this in ASP using weak constraints [30]:

:∼ hypothesis(p). [1, p]

The knowledge that hypothesis p entails observation o (or other consequent proposi-
tions) is implemented as an ASP rule:

expected(o) :- hypothesis(p).

If multiple observations o1, . . . , ok are entailed, then this is implemented as choice rules
requiring all k propositions to be in the model:
k{expected(o 1),...,expected(o k)}k :- hypothesis(p).

160 B. Li et al.

Every expected observation inferred from a hypothesis must be corroborated by evi-
dence. This is implemented as an ASP integrity constraint asserting that a model is
inconsistent if it contains an expected observation that was not observed from sensor
data:

:- expected(o), not holds(o).

3 From Physical Twin to Digital Twin: The Framework and
Workflow

This section details the three modules in our construction progress framework. In this
first iteration of our framework, sensor data from the construction site consists of Real-
Time Locating System (RTLS)-data of human workers and on-site heavy vehicles. We
opted for Ultra Wideband (UWB)-based localization as the means of capturing trajec-
tory in this first iteration, due to UWB being relatively uncomplicated to install, operate
and maintain. In comparison to GPS, UWB requires more effort and time to install
and configure, however it also provides up to an order of magnitude improved location
tracking accuracy. Tags are configured to run at an update rate between 1–60 Hz, and
are attached to human workers and heavy vehicles moving on the construction site. It
is assumed that these subjects do not exceed a speed threshold of 7 km/h during typical
construction site activities.

3.1 Three Framework Modules

These modules are responsible for collecting and preparing trajectory data collected
from workers on a construction site that is ultimately used to determine construction
project progress, which in turn is used to update the 4D BIM digital twin to reflect the
reality on the construction site.

Module 1 is responsible for data preparation (Fig. 3). This consists of preprocessing
RTLS trajectory data in a continuous stream-fashion, and for preparing the original
as-planned 4D BIM once at the start up of the digital twin platform.

Fig. 3. Workflow diagram of Module 1 for data preparation.

Towards Digital Twins for Knowledge-Driven Construction Progress 161

Preprocessing RTLS (UWB) Data. Firstly, adjacent data points that exceed a thresh-
old speed limit of 7 km/h for human workers and heavy vehicles are filtered away,
removing noisy data spikes. Next, line smoothing is applied to more accurately capture
human movement patterns, specifically via Savitzky–Golay filter which fits polynomial
functions to sliding windows of data points [33]. Finally, redundant data points that are
within a collinearity threshold ε are removed via the Ramer-Douglas-Peucker algorithm
[31], i.e. curve decimation up to a threshold Hausdorff distance.

4D BIM. The open Industry Foundation Classes (IFC) BIM standard has been adopted
in our framework. Building elements (members of the class IfcProduct) with properties
such as their location and orientation are converted into JSON format for interoperabil-
ity between modules. Five temporal scheduling properties are added to each product:
the planned- and actual- start date, and end date, and the status which is the digital
twin property that is updated from construction site sensor data. Status represents the
stage of construction of the product, taking the values of either built, possibly built, and
not built.

Observations. Symbolic terms representing semantic observations during specified
time intervals are generated by combining processed trajectory data with the 4D BIM.
The following initial set of observations in our framework were derived iteratively
through pilot studies on real construction case data, and through rounds of dialogue
with construction expert and co-author Jochen Teizer:

– proximity to a building element: “worker is near a particular element”;
– work-zone occupancy: “worker is in a particular work zone”;
– qualitative changes in speed: “worker movement is faster/slower/stopped”;
– qualitative changes in height: “worker position is lower/higher”;
– paths clashing with building elements: “worker moved through as-planned product”,

used as evidence that the given element has not yet been constructed;
– paths avoiding building elements: “worker moved around as-planned product”, used

as evidence that the given element has now been constructed.

Module 2 is responsible for inferring construction progress (Fig. 4), as described in
Sects. 2.1–2.3. Module 3 is responsible for updating the 4D BIM digital twin based
on inferences made about construction progress (Fig. 5). Inferences on construction
progress formatted in JSON are parsed back into the IFC BIM format, annotating as-
planned products (not yet physical) as as-built products according to the updated sta-
tus properties, or marking zones around possibly built products where construction is
(hypothetically) inferred to be underway.

162 B. Li et al.

Fig. 4. Workflow diagram of Module 2 for hypothesis generation of construction progress.

Fig. 5. Workflow diagram of Module 3 for updating the 4D BIM digit twin.

4 Functional Demonstration with Trajectory Data from a
Construction Site

This section presents a prototype implementation of the system, applied to a real con-
struction case in which RTLS trajectory data was collected from workers. The purpose
is to demonstrate feasibility of our framework on real data, with respect to reliably
updating a 4D BIM (i.e. the digital twin of the construction environment) within a prac-
tical amount of time.

Our prototype system used in this functional demonstration generates hypotheses
based on trajectory data, an extract of which is presented in Fig. 2 (right). Six hours
worth of work time on a construction site was recorded as as Ultra Wideband (UWB)
localization data tracking 32 tags (where each tag roughly corresponds to one worker).
Trajectory data was preprocessed to:

– eliminate clear instances of noise where spatial locations were recorded to jump
erratically beyond a threshold distance epsilon within a single timestep, and

– to reduce the number of geo-referenced time points without changing the interpreta-
tion of construction activities; the UWB system ran 60 Hz, generating far more data
points than needed to effectively track the workers.

Towards Digital Twins for Knowledge-Driven Construction Progress 163

Data was then converted into holds/1 symbolic observations over time intervals
asserting the area that the tag was in, inArea/3, and whether the tag was moving or
stopped, movement/2. For example, an extract of facts is listed as follows:

holds(inArea(tag50e,1,interval(0,5692))).
holds(inArea(tag50e,10,interval(5692,5706))).
holds(inArea(tag50e,1,interval(5706,5712))).
holds(inArea(tag50e,10,interval(5712,5719))).
...

Intervals from the observations are used to discretise the time periods over which
hypotheses are made:
interval(T1,T2) :- holds(inArea(, ,interval(T1,T2))).

We implemented three subtasks to demonstrate a proof of concept of our abduction
approach:

– working saw: worker is located in the area with the saw for a duration more than
a threshold amount of time (e.g. 2 min);

– laying bricks: worker is located in the area where pillars are being constructed
for a duration more than a threshold amount of time (e.g. 2 min);

– moving bricks: worker spends some duration of time at the saw location (where
bricks are cut and prepared), and later arrives and spends some time at the pillar
location, without stopping in any other area in between.

We implement these abducible hypotheses in ASP as follows (where predicate “h” is
used to represent “hypothesis” for brevity):
{h(working saw(Tag, Area, at(T1,T2)))} :-
tag(Tag), saw(Area), interval(T1,T2).

{h(laying bricks(Tag, Area, at(T1,T2)))} :-
tag(Tag), pillars(Area), interval(T1,T2).

{h(moving bricks(Tag, Area, at(T1,T3)))} :-
tag(Tag), pillars(Area), interval(T1,T2),

interval(T3,T4),
T2 - T1 > 5, T4 - T3 > 5.

Domain constraints on hypotheses are implemented as ASP integrity constraints. For
example, the following constraint forbids the hypothesis that working at the saw takes
less than 5 units of time:

:- h(working saw(, , at(T1,T2))), T2 - T1 < 5.

Models that propose hypotheses are preferred, implemented as weak constraints, e.g.
the following weak constraint applies for the working saw hypothesis:
:∼ tag(Tag), interval(T1,T2),
not h(working saw(Tag, 3, at(T1,T2))).
[1,h(working saw(Tag, 3, at(T1,T2)))]

164 B. Li et al.

Expected consequences of hypotheses are implemented as ASP rules, e.g. the hypoth-
esis that the worker assigned to the UWB tag Tag is working at the saw from time t1
to t2 entails the expected observation that the tag is located at the saw area during this
period:
expected(inArea(Tag,Area,interval(T1,T2))) :-
h(working saw(Tag, Area, at(T1,T2))).

The following is an example of a hypothesis that entails multiple expected observations,
including the negation of observations. It states that moving bricks entails being located
at the saw area during the period t1 to t2, not stopping until time t3, and arriving at the
pillar location during the period t3 to t4:

3{ expected(inArea(Tag,SawArea,interval(T1,T2)));
expected(inArea(Tag,PillarArea,interval(T3,T4)));

-expected(movement(Tag,stopped,interval(T2,T3)))
} :-
h(moving bricks(Tag,PillarArea, at(T1,T4))),
pillars(PillarArea), saw(SawArea),
interval(T1,T2), interval(T3,T4), T2 <= T3.

Finally, expected observations entailed from hypotheses must be corroborated by obser-
vation evidence, implemented as ASP integrity constraints, e.g.:
:- expected(inArea(Tag,Area,interval(T1,T2))),

not holds(inArea(Tag,Area,interval(T1,T2))).

Similarly, expecting the negation of observations during time period t1 to t4 is imple-
mented as an ASP integrity constraint that forbids evidential observations appearing
during this period between time points t2 and t3 such that t1 < t2 and t3 < t4, for
example:

:- -expected(movement(Tag,Motion,interval(T1,T4))),
holds(movement(Tag,Motion,interval(T2,T3))),

T1 < T2, T3 < T4.

We ran our system with the above rules on the trajectory data illustrated in Fig. 2 (right).
The data was preprocessed into 133 holds/1 facts (symbolic observations). Our system
found an optimal interpretation in 0.28 seconds (generating 6 prior sub-optimal models)
that maximised the number of corroborated hypotheses that explain the observations,
totalling 46 hypotheses in the model. The optimal model had a penalty score of 1147,
meaning that 1147 potential hypotheses were rejected (either they could not be corrob-
orated or they otherwise contradicted other hypotheses in the same model).

In total, 87 observations were not directly explained by any hypothesis (out of the
133 observations). Importantly, we do not aim to explain the maximum number of
observations. Instead, our focus is on (a) ensuring that every presented hypothesis has
a solid, plausible foundation in observed evidence, and (b) maximising the number of
such generated hypotheses. More observations would be explained with the inclusion of
additional rules representing activities such as lunch breaks, moving through an area,

Towards Digital Twins for Knowledge-Driven Construction Progress 165

and so on. Based on the interpretation, the total amount of (hypothesised) work time
can be summed up as a qualitative estimate of progress on erecting the pillars, which in
turn is used to update progress on the 4D BIM.

As the execution completed within less than 1 s, this demonstration suggests that
our framework for generating optimal, plausible interpretations operates fast enough to
run in real-time on real-world construction site data.

5 From Manual to Automatic Safety Analysis

Fig. 6. Example of safety regulation for
fall prevention [1]

Safety and health of workers is among the top
priorities in construction. Thus, concerning high-
impact safety analysis, approximately 1/3 of all
fatalities are due to falls from a dangerous height
and thus falls are the largest category of causes of
fatalities, out of the four major categories of fatal
accidents [2]. Construction safety codes identify
situations where such hazards arise, and dictate
mitigation measures that must be employed to
prevent accidents. For example, Fig. 6 illustrates
the preventative German construction safety reg-
ulation B100 for prevention [1]. The code states that a guard rail must be installed at a
leading edge if a worker could fall more than 2m, or a covering if the drop is a hole in
the platform greater than 9m2.

Fig. 7. Manual hazard identification and
mitigation.

To detect and prevent, for example, a
fall-from-height hazard and apply a protective
guardrail system, in an ideal case, a designer
would design-out the hazard (so it does not
appear during construction or later in mainte-
nance). In reality, a safety engineer manually
identifies the hazard locations on paper-based
drawings (e.g. colours in Fig. 7 indicate types
and locations where protective equipment needs
to be installed) or substitutes unsafe construc-
tion methods with a safer method (e.g., instead
of workers using ladders that can tilt, workers should apply a scissor lift platform).
While Prevention through Design (PtD) concepts have been practiced for many years
[41], most of the existing risk mitigation approaches are done manually, and are thus
prone to error or not performed at the right time [39]. We aim to automate this safety
analysis on 4D BIMs that are being updated in real time.

166 B. Li et al.

5.1 Formalising Safety Building Codes for Automatic Safety Analysis

BIM

window opening

empty elevator shaft

Fig. 8. Example violations of the B100
safety code on fall hazards in the given
4D BIM.

Research on Job Hazard Analysis (JHA) [44]
and safety rule checking [27,36,45,46] that can
automatically detect and resolve known hazards
embedded in individual work activities have been
introduced. However, there is still a wide gap in
standardisation of safety concepts and software
tools and a lack of strong demand from project
owners and contractors. An extensible, intu-
itive to apply, integrated suite of safety analysis
software tools for construction is currently still
missing.

For example, given a BIM we seek to develop
tools that can identify hazards that are defined in
(natural language) safety codes. Figure 8 illustrates a BIM with two hazards highlighted
that are described by the B100 code.

Our approach has been developed based on previous research in ontological and
logic-based approaches to Construction Safety including [44,46]. To illustrate this we
integrate our approach into a broader existing ontological framework for construction
safety. Figure 9 illustrates the Construction Safety Ontology by Zhang, Boukamp and
Teizer [44] extended with new (abstract) classes: spatial artefact and hazard space [34].
The authors distinguish the following three modelling layers: (1) Construction Prod-
uct Model: building products and relations, such as doors, walls, storeys, slabs, and so
on; (2) Construction Process Model: the construction plan including resources (equip-
ment, materials, labour); (3) Construction Safety Model: construction safety knowledge
(potential hazards, regulations, mitigating steps).

We define pertinent spatial artefacts [6] that capture semantic information about
regions of empty space based on construction site activities, and human perception
and behaviour (movement, visibility, falling spaces, activity, etc.). Similarly, we model
hazards as spatial artefacts whose existence and (geometric) definition is often a sim-
ple expression involving topological relations and Boolean operations between regions
(intersection, union, offset etc.), i.e. the algorithm for hazard detection is often as sim-
ple as clash detection. Spatial artefacts are modelled on the same ontological level as
any other object in the product model, i.e. they inherit from the abstract class Product.

Towards Digital Twins for Knowledge-Driven Construction Progress 167

Building_Element

Task

Activity

Job_Step

Construction_Method

Resource

Potential_Hazard

Mitigation_Recommendation Safety_Specification

Construction Product Model

Construction Process Model

Construction Safety Model

Spatial_Artefact

Hazard_Space

Product

produce

consists_of

consists_of

has_hazard

controlled_by

require regulated_by

is_a

is_a

is_a

uses

needs

Fig. 9. Construction Safety Ontology from [44] extended with spatial artefacts to create Safe-
ConDM [34] (magenta boxes are our extension).

5.2 The Shape of Meaningful “Empty Spaces” in Construction Safety

To explain the concept of spatial artefacts, a simple scenario is illustrated in Fig. 10
consisting of a worker, an excavator, and a job site, and a relevant safety code hazard
definition is that: “a worker is located too close to a heavy vehicle while occupied with
an activity”. In order to formalise this hazard, consider the empty space around the
excavator that it needs to move through to carry out its function; we may refer to this
special region of empty space as the excavator’s operational space (Fig. 10). Similarly,
there is a region of empty space around the job site within which the worker needs to
be located in order to carry out their task, i.e. the functional space of the job site. These
two semantically rich regions of empty space can be treated as objects in the BIM, and
used to formalise the hazard: “The intersection between the operational space of the
excavator and the functional space of the job site”.

functional space

operational space

movement space

blindspot spaceWORKER

EXCAVATOR
JOBSITE

Fig. 10. Construction scenario augmented with
spatial artefacts that provides a suitable concep-
tual language to formalise safety codes.

These are examples of spatial arte-
facts, a concept that was pioneered by
Bhatt et al. in the context of architec-
tural analysis [5,6]: regions of empty
space that are rich with perceptual-
locomotive semantics. Spatial artefacts
“elevate” these semantically meaning-
ful regions of empty space to become
first-class objects, on the same onto-
logical level as doors, walls, slabs, etc.
Concretely, in a BIM such as IFC, spa-
tial artefacts form an abstract class that
is a subclass of IfcSpace. Consider the

168 B. Li et al.

previously discussed natural language code about a specific fall hazard: “A platform
that has a leading edge to a drop of more than 2m must be secured by a guardrail.”

We define a new spatial artefact called Fall Space, parametrically defined as: the
region in which a person will fall by at least height a “dangerous distance” parameter
i.e. in the German code example the parameter is set to 2m. The dangerous platform
edges can now be precisely, formally defined as: “where Movement spaces horizontally
meet (touch) a Fall Space”. An example illustrating fall spaces is presented in Fig. 11;
the building cross-section is taken from the study from [29].

This formalisation based on spatial artefacts is (a) very faithful to the original natu-
ral language code (semantics only), (b) easy to understand and verify (transparent); (c)
directly applies to different contexts without changing the declarative statement that for-
malises the code, i.e. the geometry of Fall Space is customised according to the project
and context, whereas the concept ‘dangerous edge’ as defined above does not need to
change. Importantly, this provides a uniform approach for modelling a large range of
human-centred concepts (movement, visibility, performing tasks etc.) that can seam-
lessly be integrated within a BIM, and are effective “building blocks” for formalising a
broad range of hazards in a clear and transparent way.

Fig. 11. Building cross section (left) [29] augmented with fall spaces (orange regions), move-
ment spaces of workers (pink regions), and hazardous leading edges (red regions) defined as the
intersection of fall spaces with movement spaces. (Color figure online)

6 Reasoning About Safety in 4D BIM Construction Plans

4D BIM introduces time to model a (possibly incomplete) construction plan. We for-
malise 4D BIM using ASP, specifically, we encode temporal information of a 4D BIM
in ASP using two predicates, construct/2 and next/2. Each element can optionally be
assigned to a symbolic time point construct/2. The set of time points form a partial order
through an intransitive relation next/2: given time points ti, tj then the interpretation of
next(ti, tj) is that tj occurs directly after ti such that there does not exist time point
tk where next(ti, tk) and next(tk, tj). Importantly, time points can branch (defining the
partial order), e.g. given time points ti, tj , tk and relations next(ti, tj), next(ti, tk) then
the following two alternative time point sequences are consistent with the partial order:
<ti, tj , tk> and <ti, tk, tj>. The temporal relation before/2 between time points is the
transitive closure of next/2. Finally, 4D BIMs express temporal dependencies between

Towards Digital Twins for Knowledge-Driven Construction Progress 169

elements: dependency/2 between two BIM elements A,B means that element A must
be constructed before B.

The following ASP rule states that, for all movement spaces that meet flush (touch
horizontally) with a fall space, deduce a fall hazard space object. Its geometric represen-
tation is the intersection of the movement with the fall space offset by a given threshold
e.g. 0.2 m in this example.

Similarly, movement spaces are created as the volume 2m directly on top of slabs,
geometrically subtracted by 3D regions occupied by walls, columns and other move-
ment obstacles. Fall spaces are the volume of space between the top surface of each
object, and the next surface directly above (or the “sky”) with the lower 2m subtracted.
For this first prototype we simplified the calculation of movement spaces as the top sur-
face of slabs subtracted by movement obstacles (columns and walls with voids where
windows and doors will be placed), and we simplified fall spaces by taking a 2D bound-
ing box of the site on each building storey (i.e. level by level) and subtracting the slabs
on that storey.

6.1 Functional Demonstration of Safety Analysis

We have developed a second prototype system that applies the safety code B100 to a
4D BIM. In this section we present a functional demonstration of this second prototype
on a real BIM to illustrate the effectiveness of our approach in implementing a safety
code, and its practicality with respect to runtime performance. Our case study deals with
Navitas (Fig. 13), a large multi-story multi-purpose building in Aarhus, Denmark. We
extract the first floor from the BIM model and identify 1 slab, 102 walls, and 43 columns.

Fig. 12. The Navitas BIM used in the
demonstration.

At time point 1, we identify 14 movement
spaces, each demarcated by floor-intersecting
obstacles (walls and columns), and derive 10 fall
hazard spaces on the leading edge of the lower
slab. At time point 2, the previous leading edge
is connected to a middle slab, thus previous fall
hazards disappear. We identify new walls and
columns that are supported by the middle slab
and union them with previous movement obsta-
cles. We derive 12 new fall hazard spaces that
are present on the boundaries of the slabs (where
a worker could fall from the edge), or along the holes in the slabs (where a worker
could fall onto a open space). At time point 3, all slabs are constructed. We derive 15

170 B. Li et al.

fall hazard spaces, that must be guarded by safety rails or covering depending on their
shape (Fig. 12).

Table 1 presents the number of spatial artefacts derived at time point 1, 2, 3 and
runtime statistics. Figure 13 shows fall hazard spaces at each time point. Navitas has 707
building objects with an average number of 55 vertices (which we estimate to be small
to medium in terms of typical real-world BIM size). IfcConvert3 was used to generate
3D meshes from the BIM, taking 19.0 s. Our ASP program with spatial optimisations
run with the clingo ASP solver derives a total of 94 spatial artefacts at time point 3 in
an average of 0.24 s.

As the derivation of spatial artefacts (which constitutes safety compliance check-
ing) completes within less than 1 s, it is fast enough to be used in practice where BIM
updates are expected approximately once every few minutes (at most). This is signifi-
cantly faster, semantically richer, and more numerically stable than previous fall hazard
detection software systems, that instead opt for a point-test sampling strategy to deter-
mine dangerous leading edges [27].

Fig. 13. a) Top-down view of the first floor in Navitas with slabs (blue regions) and movement
obstacles (red regions); b) Fall hazards spaces (green regions, bottom row) (Colour figure online)

3 http://www.ifcopenshell.org/.

http://www.ifcopenshell.org/

Towards Digital Twins for Knowledge-Driven Construction Progress 171

Table 1. BIM statistics and runtime for safety compliance analysis, including deriving all spatial
artefacts for the Navitas case study.

BIM objects Time point Fall spaces Movement spaces Fall hazard spaces clingo Runtime (seconds)

707 t = 1 2 14 10 0.238

t = 2 4 52 12 0.242

t = 3 8 71 15 0.244

7 Concluding Remarks and Future Work

In this paper we proposed a digital twin framework for construction progress and safety
analysis. Firstly, to update 4D BIMs in real time based on sensor data collected from a
construction site we employ abductive reasoning via ASP to generate plausible hypothe-
ses about construction site activities, corroborated by the sensor data. These hypotheses
are then used as a qualitative measure of construction progress which is used to update
the 4D BIM.

Secondly, to formalise natural language construction safety codes we use spatial
artefacts, and develop a new kind of spatial artefact referred to as fall spaces. We
demonstrated our approach with a prototypical implementation that formalises the Ger-
man safety code B100, that we apply to a real BIM of the Navitas building in Denmark.
Results show that the system identifies hazardous leading edges as defined in B100, and
is practical in scaling to large BIMs, taking less than 1 s per time step of the 4D BIM.

Although the work presented here has not yet been deployed in a digital twin context
we are convinced that this will be a reality in the coming years inside two new H2020
projects called BIM2Twin and COGITO. The time constraints in the building industry
may only give sensor inputs on a daily basis but it would be sufficient to be able to flag
potential hazards that could occur on a construction site. Thus a digital twin could be a
proactive way of dealing with safety on a construction site which, for example, would
encourage the application of protective guardrail systems at the right point of time in
the process.

Acknowledgments. The authors gratefully acknowledge the Independent Research Fund Den-
mark for their financial support of the project “Intelligent Software Healing Environments” (DFF
FTP1). We acknowledge the European Union for funding the BIM2TWIN (Grant agreement ID:
958398) and COGITO (Grant agreement ID: 958310) projects related to digital twins in a build-
ing context and the Poul Due Jensen Foundation for their funding for basic research in relation
with digital twins.

References

1. Bau, B.G.: Absturzsicherungen auf Baustellen (2019). https://www.bgbau.de/fileadmin/
Medien-Objekte/Medien/Bausteine/b 100/b 100.pdf. Accessed 28 Feb 2020

2. OSHA: Commonly used statistics (2019). www.osha.gov/data/commonstats. Accessed 28
Feb 2020

https://www.bgbau.de/fileadmin/Medien-Objekte/Medien/Bausteine/b_100/b_100.pdf
https://www.bgbau.de/fileadmin/Medien-Objekte/Medien/Bausteine/b_100/b_100.pdf
www.osha.gov/data/commonstats

172 B. Li et al.

3. Akbarieh, A., Jayasinghe, L.B., Waldmann, D., Teferle, F.N.: BIM-based end-of-lifecycle
decision making and digital deconstruction: literature review. Sustainability 12(7), 2670
(2020)

4. Bhatt, M.: Reasoning about space, actions, and change: a paradigm for applications of spa-
tial reasoning. In: Qualitative Spatio-Temporal Representation and Reasoning: Trends and
Future Directions, pp. 284–320. IGI Global (2012)

5. Bhatt, M., Hois, J., Kutz, O.: Ontological modelling of form and function for architectural
design. Appl. Ontol. 7(3), 233–267 (2012)

6. Bhatt, M., Schultz, C., Huang, M.: The shape of empty space: human-centred cognitive foun-
dations in computing for spatial design. In: 2012 IEEE Symposium on Visual Languages and
Human-Centric Computing (VL/HCC), pp. 33–40. IEEE (2012)

7. Bhatt, M., Wallgrun, J.O.: Geospatial narratives and their spatio-temporal dynamics: com-
monsense reasoning for high-level analyses in geographic information systems. ISPRS Int.
J. Geo Inf. 3(1), 166–205 (2014)

8. Bloch, T., Sacks, R.: Clustering information types for semantic enrichment of building infor-
mation models to support automated code compliance checking. J. Comput. Civ. Eng. 34(6),
04020040 (2020)

9. Boje, C., Guerriero, A., Kubicki, S., Rezgui, Y.: Towards a semantic construction digital
twin: directions for future research. Autom. Construct. 114, 103179 (2020)

10. Braun, A., Tuttas, S., Borrmann, A., Stilla, U.: A concept for automated construction
progress monitoring using BIM-based geometric constraints and photogrammetric point
clouds. ITcon 20(8), 68–79 (2015)

11. Deo, D., Esterman Jr., M., Thorn, B.K.: A methodology to quantify Cumulative Damage
Function (CuDF) for integration into an object-oriented Life Cycle Assessment (LCA). In:
International Design Engineering Technical Conferences and Computers and Information in
Engineering Conference, vol. 58165, p. V004T05A033. American Society of Mechanical
Engineers (2017)

12. Dimyadi, J., Amor, R.: Automated building code compliance checking-where is it at. In:
Proceedings of CIB WBC, vol. 6, p. 1 (2013)

13. Dimyadi, J., Clifton, C., Spearpoint, M., Amor, R.: Regulatory knowledge encoding guide-
lines for automated compliance audit of building engineering design. In: Computing in Civil
and Building Engineering, pp. 536–543. ASCE (2014)

14. Dubba, K., Bhatt, M., Dylla, F., Hogg, D.C., Cohn, A.G.: Interleaved inductive-abductive
reasoning for learning complex event models. In: Muggleton, S.H., Tamaddoni-Nezhad, A.,
Lisi, F.A. (eds.) ILP 2011. LNCS (LNAI), vol. 7207, pp. 113–129. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-31951-8 14

15. Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., Wanko, P.: Theory
solving made easy with Clingo 5. In: Technical Communications of the 32nd International
Conference on Logic Programming (ICLP 2016). Schloss Dagstuhl-Leibniz-Zentrum fuer
Informatik (2016)

16. Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: clasp: a conflict-driven answer set
solver. In: Baral, C., Brewka, G., Schlipf, J. (eds.) LPNMR 2007. LNCS (LNAI), vol. 4483,
pp. 260–265. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72200-7 23

17. Gelernter, D.: Mirror Worlds: Or: the Day Software Puts the Universe in a Shoebox... How
It Will Happen and What It Will Mean. Oxford University Press, Oxford (1993)

18. Golparvar-Fard, M., Bohn, J., Teizer, J., Savarese, S., Peña-Mora, F.: Evaluation of image-
based modeling and laser scanning accuracy for emerging automated performance monitor-
ing techniques. Autom. Construct. 20(8), 1143–1155 (2011)

19. Golparvar-Fard, M., Peña-Mora, F., Savarese, S.: D4AR-A 4-dimensional augmented real-
ity model for automating construction progress monitoring data collection, processing and
communication. J. Inf. Technol. Construct. 14(13), 129–153 (2009)

https://doi.org/10.1007/978-3-642-31951-8_14
https://doi.org/10.1007/978-3-540-72200-7_23

Towards Digital Twins for Knowledge-Driven Construction Progress 173

20. Johansen, K.W., Nielsen, R.O., Schultz, C., Teizer, J.: Non-monotonic reasoning for auto-
mated progress analysis of construction operations. In: 20th International Conference on
Construction Applications of Virtual Reality (CONVR 2020), pp. 292–303 (2020)

21. Khajavi, S.H., Motlagh, N.H., Jaribion, A., Werner, L.C., Holmström, J.: Digital twin: vision,
benefits, boundaries, and creation for buildings. IEEE Access 7, 147406–147419 (2019)

22. Li, B., Bhatt, M., Schultz, C.: lambdaProlog (QS): functional spatial reasoning in higher
order logic programming (short paper). In: 14th International Conference on Spatial Infor-
mation Theory (COSIT 2019). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2019)

23. Li, B., Schultz, C., Melzner, J., Golovina, O., Teizer, J.: Safe and lean location-based con-
struction scheduling. In: 37th International Symposium on Automation and Robotics in Con-
struction (ISARC 2020), pp. 1409–1416 (2020)

24. Li, B., Teizer, J., Schultz, C.: Non-monotonic spatial reasoning for safety analysis in con-
struction. In: Proceedings of the 22nd International Symposium on Principles and Practice
of Declarative Programming, pp. 1–12 (2020)

25. Lu, Q., Xie, X., Parlikad, A.K., Schooling, J.M., Konstantinou, E.: Moving from building
information models to digital twins for operation and maintenance. Proc. Inst. Civ. Eng.
Smart Infrastruct. Construct. 1–11 (2020)

26. Marek, V.W., Truszczyński, M.: Stable models and an alternative logic programming
paradigm. In: Apt, K.R., Marek, V.W., Truszczynski, M., Warren, D.S. (eds.) The Logic
Programming Paradigm, pp. 375–398. Springer, Heidelberg (1999). https://doi.org/10.1007/
978-3-642-60085-2 17

27. Melzner, J., Zhang, S., Teizer, J., Bargstädt, H.J.: A case study on automated safety compli-
ance checking to assist fall protection design and planning in building information models.
Construc. Manage. Econ. 31(6), 661–674 (2013)

28. Michalski, R.S.: Inferential theory of learning as a conceptual basis for multistrategy learn-
ing. Mach. Learn. 11(2–3), 111–151 (1993)

29. Migda, W., Szczepański, M., Lasowicz, N., Jakubczyk-Gałczyńska, A., Jankowski, R.:
Non-linear analysis of inter-story pounding between wood-framed buildings during ground
motion. Geosciences 9(12), 488 (2019)

30. Perri, S., Scarcello, F., Leone, N.: Abductive logic programs with penalization: semantics,
complexity and implementation. Theory Pract. Logic Program. 5(1–2), 123 (2005)

31. Ramer, U.: An iterative procedure for the polygonal approximation of plane curves. Comput.
Graph. Image Process. 1(3), 244–256 (1972)

32. Rocca, R., Rosa, P., Sassanelli, C., Fumagalli, L., Terzi, S.: Integrating virtual reality and
digital twin in circular economy practices: a laboratory application case. Sustainability 12(6),
2286 (2020)

33. Savitzky, A., Golay, M.J.: Smoothing and differentiation of data by simplified least squares
procedures. Anal. Chem. 36(8), 1627–1639 (1964)

34. Schultz, C., Li, B., Teizer, J.: Towards a unifying domain model of construction safety: Safe-
ConDM. In: 27th International Workshop On Intelligent Computing In Engineering (EG-
ICE) (2020)

35. Schwabe, K., König, M., Teizer, J.: BIM applications of rule-based checking in construc-
tion site layout planning tasks. In: ISARC. Proceedings of the International Symposium on
Automation and Robotics in Construction, vol. 33, p. 1. IAARC Publications (2016)

36. Schwabe, K., Teizer, J., König, M.: Applying rule-based model-checking to construction site
layout planning tasks. Autom. Construct. 97, 205–219 (2019)

37. Suchan, J., Bhatt, M., Walega, P., Schultz, C.: Visual explanation by high-level abduction: on
answer-set programming driven reasoning about moving objects. In: 32nd AAAI Conference
on Artificial Intelligence (AAAI 2018), New Orleans, USA, 2–7 February 2018, pp. 1965–
1972. AAAI Press (2018)

https://doi.org/10.1007/978-3-642-60085-2_17
https://doi.org/10.1007/978-3-642-60085-2_17

174 B. Li et al.

38. Sydora, C., Stroulia, E.: Towards rule-based model checking of building information models.
In: ISARC. Proceedings of the International Symposium on Automation and Robotics in
Construction, vol. 36, pp. 1327–1333. IAARC Publications (2019)

39. Teizer, J.: Right-time vs real-time pro-active construction safety and health system architec-
ture. Construction Innovation (2016)

40. Thagard, P., Shelley, C.: Abductive reasoning: logic, visual thinking, and coherence. In: Dalla
Chiara, M.L., Doets, K., Mundici, D., van Benthem, J. (eds.) Logic and scientific methods,
pp. 413–427. Springer, Dordrecht (1997). https://doi.org/10.1007/978-94-017-0487-8 22

41. Toole, T.M., Gambatese, J.A., Abowitz, D.A.: Owners’ role in facilitating prevention through
design. J. Prof. Issues Eng. Educ. Pract. 143(1), 04016012 (2017)

42. Tuttas, S., Braun, A., Borrmann, A., Stilla, U.: Acquisition and consecutive registration of
photogrammetric point clouds for construction progress monitoring using a 4D BIM. PFG J.
Photogram. Remote Sens. Geoinf. Sci. 85(1), 3–15 (2017)

43. Vering, C., Mehrfeld, P., Nürenberg, M., Coakly, D., Lauster, M., Müller, D.: Unlocking
potentials of building energy systems’ operational efficiency: application of digital twin
design for HVAC systems. In: 16th International Building Performance Simulation Asso-
ciation (IBPSA) (2019)

44. Zhang, S., Boukamp, F., Teizer, J.: Ontology-based semantic modeling of construction safety
knowledge: towards automated safety planning for job hazard analysis (JHA). Autom. Con-
struct. 52, 29–41 (2015)

45. Zhang, S., Sulankivi, K., Kiviniemi, M., Romo, I., Eastman, C.M., Teizer, J.: BIM-based
fall hazard identification and prevention in construction safety planning. Saf. Sci. 72, 31–45
(2015)

46. Zhang, S., Teizer, J., Lee, J.K., Eastman, C.M., Venugopal, M.: Building information mod-
eling (BIM) and safety: automatic safety checking of construction models and schedules.
Autom. Construct. 29, 183–195 (2013)

47. Zoliner, R., Pardowitz, M., Knoop, S., Dillmann, R.: Towards cognitive robots: building hier-
archical task representations of manipulations from human demonstration. In: Proceedings
of the 2005 IEEE International Conference On Robotics and Automation, pp. 1535–1540.
IEEE (2005)

https://doi.org/10.1007/978-94-017-0487-8_22

Software Verification Tools

Software Verification Tools
(Track Introduction)

Markus Schordan1 , Dirk Beyer2 , and Irena Bojanova3

1 Lawrence Livermore National Laboratory, CA, USA
2 LMU Munich, Germany

3 National Institute of Standards and Technology, MD, USA

Abstract. This ISoLA track is concerned with methods for the eval-
uation and comparison of analysis and verification techniques: we dis-
cuss conservative static-analysis and verification tools, as well as discuss
and evaluate state-of-the-art approaches. As developers of conservative
static-analysis tools aim at reducing the false-alarm rate, developers of
verification tools aim at reducing the resource consumption when verifying
program properties, that is, within a shorter period of time and with
lower memory requirements, but still provide a definitive answer whether
a program satisfies a specification or not, avoiding to report false alarms.

Keywords: Static analysis · Software verification · False-alarm rate · Tool
Competition · Formal Methods · Verification Tools

1 Introduction

An existing static analysis in a compiler is always a good basis for a software-
analysis tool implementation, and in recent years there has been an increasing
effort in providing more open and flexible compiler technology for advanced static
analysis. The Clang analyzer4, based on Clang, has been available several years,
and an alternative analysis can also be performed at the LLVM-IR level. This tech-
nology has been integrated with several tools in recent years with growing interest.
It has created an active community in the Clang/LLVM community, offering sev-
eral tutorials in an attempt to make it easier for developers to start utilizing static
analysis in software projects. Recently, starting with the release of GCC 10, there
has been also a lot of activity in the GCC community with positive reactions from
various groups, about the new static analysis in GCC [1, 14, 15]. Companies such
as Google started also building their own static-analysis tools in recent years [16].
They evaluated their tools with respect to how much users benefit from using
the tool, and indeed for tools in practice, this is the ultimate challenge to meet.

In addition to more accessible compiler infrastructures, over the last few
years, competitions and challenges have played an increasingly important role
in the formal-methods community. In 2019, the TOOLympics brought together
4 https://clang-analyzer.llvm.org
c© Springer Nature Switzerland AG 2021
T. Margaria and B. Steffen (Eds.): ISoLA 2020, LNCS 12479, pp. 177 181, 2021.
https://doi.org/10.1007/978-3-030-83723-5_12

–

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-83723-5_12&domain=pdf
https://orcid.org/0000-0002-9571-5994
https://orcid.org/0000-0003-4832-7662
https://orcid.org/0000-0002-3198-7026
https://clang-analyzer.llvm.org
https://doi.org/10.1007/978-3-030-83723-5_12

16 different competitions of formal-methods tools [3]. The competitions have
quite different competition formats, ranging from fully automated to interactive
evaluations, from collected and maintained benchmark sets to yearly generated
benchmark sets, and from objective scoring schemas to voting-based rankings,
to assess who or which tool provided the best-quality results. Also the target
languages and program representations greatly differ.

The International Competition on Software Verification (SV-COMP) [4] is
fully automated, where participants submit a verification tool and each verification
tool is evaluated on the benchmark suite SV-Benchmarks (https://github.com/
sosy-lab/sv-benchmarks), comprising thousands of C programs divided into
various categories. A number of correctness properties are specified for each
program. The properties include the absence of assertion violations, memory-safety
errors, concurrency bugs, and program termination. The programs, properties,
and expected results are all provided to the participants beforehand. SV-COMP
requires that the verification tools give a reason for their verdict, that is, it is
not sufficient to return an answer true or false, but tools must supplement the
answer with a verification witness [5, 6, 7], which can be used to validate the
verification result or understand the reason for violation or correctness.

In contrast, in the annual RERS Challenge [11, 12] new benchmarks are
synthesized every year from specifications. Each RERS problem presents a reactive
system and a set of properties of that system. (That is, one RERS problem induces
a set of verification tasks.) Like other competitions, RERS has also added tracks
over the years, since 2012, and consists now of 4 tracks, separated into two
sequential and parallel categories where each one is again split into two tracks,
one for reachability analysis and one for the verification of properties specified
in linear temporal logic. All sequential programs are available in two languages,
C and Java. The parallel verification tasks are provided as a parallel system of
(rooted) labeled transition systems (LTS) that communicate via synchronized
transitions. In RERS only the results are submitted, but not the tools themselves.
This is possible because resources are not controlled and new benchmarks are
generated every year and the correct answers are not known to the participants.

One crucial aspect of detected errors is how they are reported, what termi-
nology is used to describe them, and in general how people can speak about
them and agree on bug fixes. The Bugs Framework (BF) [8] is one attempt
to provide a proper terminology for this purpose. It organizes software weak-
nesses (bugs) into distinct classes, such as Memory Allocation, Injection, and
Encryption. With BF, software-testing tools could produce more precise reports.
With BF, practitioners and researchers could more accurately and clearly (a) de-
scribe problems in software and discuss the classes of bugs that tools report,
and (b) explain what kinds of vulnerabilities the proposed mitigation techniques
prevent. Each BF class has an accurate and precise definition and comprises
(i) a level (high or low) that identifies the fault as language-related or semantic,
(ii) attributes that identify the software fault, (iii) causes of the fault, (iv) con-
sequences the fault could lead to, and (v) sites in code where the fault might
occur. Those concerned with software quality, the reliability of programs and

178 M. Schordan, D. Beyer, I. Bojanova

https://github.com/sosy-lab/sv-benchmarks
https://github.com/sosy-lab/sv-benchmarks

digital systems, or cyber-security, might be able to make more rapid progress by
more clearly labeling the results of errors in software using BF. Those responsible
for designing, operating, and maintaining computer clusters can communicate
more exactly about threats, attacks, patches, and exposures.

2 Contributions with Published Papers in the Track

This year, four papers dealing with different aspects of evaluating, comparing,
and combining software-verification tools were accepted for this track.

In Benchmarking Open-Source Static Analyzers for Security Testing for C [10],
Christoph Gentsch, Rohan Krishnamurthy, and Thomas S. Heinze present an
in-depth evaluation of static-analysis security testing (SAST) tools. They eval-
uate eleven static-analysis tools for the C programming language on the Juliet
test suite and six tools on the Wireshark application.

In Verification of Liveness and Safety Properties of Behavioral Programs
using BPjs [2], Michael Bar-Sinai and Gera Weiss present an approach and
a tool suite for the specification and verification of safety and liveness prop-
erties. Liveness properties are defined using so called “hot states”, in which
scenarios are allowed to stay for a finite time, but not forever. Safety proper-
ties are defined using assertions. They define liveness violations with regards
to specific program components and describe an approach for validating the
absence of such violations. The proposed approach is supported by BPjs, an
open-source tool suite developed by the authors.

In On Correctness, Precision, and Performance in Quantitative Verifica-
tion: QComp 2020 Competition Report [9], Carlos E. Budde, Arndt Hartmanns,
Michaela Klauck, Jan Kretinsky, David Parker, Tim Quatmann, Andrea Turrini,
and Zhen Zhang present a detailed report of the QComp Competition 2020.
QComp evaluates tools for quantitative verification. These tools compute proba-
bilities, expected rewards, or steady-state values for formal models of stochastic
and timed systems. The paper reports on experimental evaluations of trade-offs
between precision and achieved performance. The trade-offs are necessary because
exact results often cannot be determined efficiently for such systems, and most
tools use floating-point arithmetic in iterative algorithms to approximate the
quantity of interest. In 2020, nine tools participated in the competition. They
gave rise to a performance evaluation in five tracks with varying correctness
criteria, which are presented and explained in detail in the report.

In Every Component Matters: Generating Parallel Verification Benchmarks
with Hardness Guarantees [13], Marc Jasper, Maximilian Schlüter, David Schmidt,
and Bernhard Steffen present an approach for generating hard verification prob-
lems for concurrent systems. In some areas of verification, there is only a limited
amount of benchmark verification tasks available and there is a need for more
verification tasks. The new contribution of this paper is to consider concurrent
systems and make sure that for analyzing the generated system, one cannot
simply ignore (abstract away) one of the components. Rather, the approach
gives certain guarantees that all components must be analyzed. This approach

Software Verification Tools (Track Introduction) 179

nicely complements existing methods and can be helpful for closing gaps in
benchmark sets by automatically generating new problems.

3 Conclusion

The evaluation of conservative static-analysis and verification tools has become
an important aspect in the development of secure software and quality assur-
ance in software development in general. In this track, the publications give
insights into the state-of-the-art of conservative static-analysis tools [10], into
a specific verification technique for safety and liveness properties [2], into the
competition QComp 2020, reporting about several experimental evaluations of
trade-offs between precision and performance with varying correctness criteria [9],
and into an approach to generate hard verification tasks for the verification of
concurrent systems [13]. All four publications have in common that software
tools aid developers in better understanding the various aspects of program
correctness and performance, and are contributions of researchers in advancing
the state-of-the-art of software-verification technology.

Acknowledgments

This work was partially performed under the auspices of the U.S. Depart-
ment of Energy by Lawrence Livermore National Laboratory under Contract
DE-AC52-07NA27344, Lawrence Livermore National Security, LLC. IM re-
lease number LLNL-CONF-814571, and was partially funded by the Deutsche
Forschungsgemeinschaft (DFG) – 418257054 (Coop).

Disclaimer

Certain trade names and company products are mentioned in the text or iden-
tified. In no case does such identification imply recommendation or endorse-
ment by the National Institute of Standards and Technology (NIST), nor that
they are necessarily the best available for the purpose.

References

1. Bahena, V.R.: Major improvements in GCC 10.1 (2020), https://clearlinux.org/
blogs-news/major-improvements-gcc-101, (urldate: 2020-07-27)

2. Bar-Sinai, M., Weiss, G.: Verification of liveness and safety properties of behavioral
programs using BPjs. In: Proc. ISoLA 2020, LNCS. Springer (2021). https://doi.
org/10.1007/978-3-030-83723-5_14

3. Bartocci, E., Beyer, D., Black, P.E., Fedyukovich, G., Garavel, H., Hartmanns, A.,
Huisman, M., Kordon, F., Nagele, J., Sighireanu, M., Steffen, B., Suda, M., Sutcliffe,
G., Weber, T., Yamada, A.: TOOLympics 2019: An overview of competitions in
formal methods. In: Proc. TACAS (3). pp. 3–24. LNCS 11429, Springer (2019).
https://doi.org/10.1007/978-3-030-17502-3_1

180 M. Schordan, D. Beyer, I. Bojanova

https://gepris.dfg.de/gepris/projekt/418257054
https://clearlinux.org/blogs-news/major-improvements-gcc-101
https://clearlinux.org/blogs-news/major-improvements-gcc-101
https://doi.org/10.1007/978-3-030-83723-5_14
https://doi.org/10.1007/978-3-030-83723-5_14
https://doi.org/10.1007/978-3-030-17502-3_1

4. Beyer, D.: Software verification: 10th comparative evaluation (SV-COMP 2021). In:
Proc. TACAS (2). pp. 401–422. LNCS 12652, Springer (2021). https://doi.org/10.
1007/978-3-030-72013-1_24

5. Beyer, D., Dangl, M., Dietsch, D., Heizmann, M.: Correctness witnesses: Exchanging
verification results between verifiers. In: Proc. FSE. pp. 326–337. ACM (2016).
https://doi.org/10.1145/2950290.2950351

6. Beyer, D., Dangl, M., Dietsch, D., Heizmann, M., Stahlbauer, A.: Witness validation
and stepwise testification across software verifiers. In: Proc. FSE. pp. 721–733. ACM
(2015). https://doi.org/10.1145/2786805.2786867

7. Beyer, D., Dangl, M., Lemberger, T., Tautschnig, M.: Tests from witnesses:
Execution-based validation of verification results. In: Proc. TAP. pp. 3–23. LNCS
10889, Springer (2018). https://doi.org/10.1007/978-3-319-92994-1_1

8. Bojanova, I., Black, P.E., Yesha, Y., Wu, Y.: The bugs framework (BF): A structured
approach to express bugs. In: Proc. QRS. pp. 175–182 (2016). https://doi.org/10.
1109/QRS.2016.29

9. Budde, C.E., Hartmanns, A., Klauck, M., Kretinsky, J., Parker, D., Quatmann, T.,
Turrini, A., Zhang, Z.: On correctness, precision, and performance in quantitative
verification - QComp 2020 competition report. In: Proc. ISoLA 2020, LNCS. Springer
(2021). https://doi.org/10.1007/978-3-030-83723-5_15

10. Gentsch, C., Krishnamurthy, R., Heinze, T.S.: Benchmarking open-source static
analyzers for security testing for C. In: Proc. ISoLA 2020, LNCS. Springer (2021).
https://doi.org/10.1007/978-3-030-83723-5_13

11. Howar, F., Isberner, M., Merten, M., Steffen, B., Beyer, D., Păsăreanu, C.S.:
Rigorous examination of reactive systems. International Journal on Software
Tools for Technology Transfer 16(5), 457–464 (2014). https://doi.org/10.1007/
s10009-014-0337-y

12. Jasper, M., Fecke, M., Steffen, B., Schordan, M., Meijer, J., Pol, J.v.d., Howar, F.,
Siegel, S.F.: The RERS 2017 challenge and workshop (invited paper). In: Proc. SPIN.
pp. 11–20. SPIN 2017, ACM (2017). https://doi.org/10.1145/3092282.3098206

13. Jasper, M., Schlüter, M., Schmidt, D., Steffen, B.: Every component matters:
Generating parallel verification benchmarks with hardness guarantees. In: Proc.
ISoLA 2020, LNCS. Springer (2021). https://doi.org/10.1007/978-3-030-83723-5_
16

14. Malcolm, D.: Static analysis in GCC 10 (2020), https://developers.redhat.com/
blog/2020/03/26/static-analysis-in-gcc-10, (urldate: 2020-03-26)

15. Nichols, S.: GCC 10 gets security bug trap. And look what just fell into it: OpenSSL
and a prod-of-death flaw in servers and apps (2020), https://www.theregister.com/
2020/04/23/gcc_openssl_vulnerability, (urldate: 2020-04-23)

16. Sadowski, C., Aftandilian, E., Eagle, A., Miller-Cushon, L., Jaspan, C.: Lessons
from building static analysis tools at Google. Commun. ACM 61(4), 58–66 (Mar
2018). https://doi.org/10.1145/3188720

Software Verification Tools (Track Introduction) 181

https://doi.org/10.1007/978-3-030-72013-1_24
https://doi.org/10.1007/978-3-030-72013-1_24
https://doi.org/10.1145/2950290.2950351
https://doi.org/10.1145/2786805.2786867
https://doi.org/10.1007/978-3-319-92994-1_1
https://doi.org/10.1109/QRS.2016.29
https://doi.org/10.1109/QRS.2016.29
https://doi.org/10.1007/978-3-030-83723-5_15
https://doi.org/10.1007/978-3-030-83723-5_13
https://doi.org/10.1007/s10009-014-0337-y
https://doi.org/10.1007/s10009-014-0337-y
https://doi.org/10.1145/3092282.3098206
https://doi.org/10.1007/978-3-030-83723-5_16
https://doi.org/10.1007/978-3-030-83723-5_16
https://developers.redhat.com/blog/2020/03/26/static-analysis-in-gcc-10
https://developers.redhat.com/blog/2020/03/26/static-analysis-in-gcc-10
https://www.theregister.com/2020/04/23/gcc_openssl_vulnerability
https://www.theregister.com/2020/04/23/gcc_openssl_vulnerability
https://doi.org/10.1145/3188720

Benchmarking Open-Source Static
Analyzers for Security Testing for C

Christoph Gentsch(B), Rohan Krishnamurthy(B), and Thomas S. Heinze(B)

German Aerospace Center (DLR), Institute of Data Science, Jena, Germany
{christoph.gentsch,rohan.krishnamurthy,thomas.heinze}@dlr.de

Abstract. As the number of available static analysis security testing
(SAST) tools grows, the more difficult it becomes for developers to decide
which tool(s) to use. We report on our evaluation of 11 open-source
general-purpose SAST tools for the C programming language on the
SARD Juliet Test Suite and of six tools on the Wireshark software. In
line with the previous work, we find that there is no single superior tool,
though sound tools performed the best on the Juliet test cases.

1 Introduction

In recent years, the market for static analysis security testing (SAST) tools has
expanded, since software security increasingly becomes a concern and draws
more and more attention. As a result, there exists a variety of tools, whether
commercial or open-source, which claim more or less to do a “security analysis”.
Some of these tools are basically simple syntax checkers, which apply context-
insensitive pattern matching to check program source code for compliance to a
certain standard or best practices. As these tools certainly can help in improving
code style and security to some extent, it is though questionable, how good
they are at finding, e.g., deep nested memory errors or concurrency problems.
Then there are more sophisticated, semantic analyzers, which focus on finding
bugs and vulnerabilities instead of compliance checking, but make no claims
on the complete absence of vulnerabilities or run-time errors. Last, there are
sound semantic analyzers, which rely for example on abstract interpretation or
reasoning on program behavior using Hoare logic, and promise to make strong
guarantees. What this means in practice may vary, depending on the addressed
use case. Most sound tools try to guarantee the absence of vulnerabilities by
over-approximating program behavior and thus accept that some of the reported
warnings are false positives – e.g., for the authors of Frama-C, soundness means
to “aim at being correct, that is, never to remain silent for a location in the
source code where an error can happen at run-time”1. Other sound tools in
contrast aim at reducing the burden from developers to scroll through numerous

1 cf. Frama-C website (https://www.frama-c.com).

c© Springer Nature Switzerland AG 2021
T. Margaria and B. Steffen (Eds.): ISoLA 2020, LNCS 12479, pp. 182–198, 2021.
https://doi.org/10.1007/978-3-030-83723-5_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-83723-5_13&domain=pdf
https://www.frama-c.com
https://doi.org/10.1007/978-3-030-83723-5_13

Benchmarking Open-Source Static Analyzers 183

reported warnings and try to reduce the number of false positives. The authors
of Infer thus state: “soundness” does not translate to ‘no bugs are missed’ [3].

As the variety of tools and techniques can be confusing for a developer, it
is apparent that an evaluation of their abilities is desirable. The objective of
our paper is to conduct such an evaluation and, in particular, to measure to
which extent open-source SAST tools are capable of finding vulnerabilities in C
code. The focus on C has several reasons: C is still one of the most important
programming languages around. Approximately one third of the packages of
Debian Linux are written in C. In the field of (in-)security, C also stands out:
A small fraction of C programs is responsible for 50% of all vulnerabilities in
Debian Linux (cf. Sect. 3). There exist several tools for analyzing C code and
datasets with C code to analyze. The SARD Juliet Test Suite [5] provides a
state-of-the-art benchmarking dataset for SAST tools and is also the basis for
our evaluation. The limitation to open-source tools comes from our requirement
to have for anyone reproducible results and avoid problems with DeWitt clauses,
as used in license agreements of commercial tools [12]. As open-source developers
usually use open-source tools themselves, this is also a test of the ability of the
open-source community to facilitate secure software development.

The question we want to answer is: If I, as a software developer, use this
tool, what can I expect of the security of my code? In this light, a SAST tool
can also be seen as a kind of “insurance” for the developer: “If I run this tool,
my code is mostly secure”. Apparently, this proposition only holds if the used
tool is able to identify most types of defects which threaten security. Thus, we
need a benchmark which reflects the most common vulnerabilities, weighted for
their observed frequency, or “prevalence”, and test every tool on it. We therefore
also focus on general-purpose SAST tools for C, which address a wide-spread
spectrum of software vulnerabilities. For this reason, we have also deliberately
chosen to mostly exclude verification technology, and with the exception of three
tools, excluded software verifiers from our evaluation. Apparently, including more
tools in the evaluation, for example software verifiers, would allow for drawing
a more extensive picture. We however believe that our study can be a valuable
building block in creating this bigger picture on the state-of-the-art of SAST
tools for C. Thus, the contributions of the paper can be summarized as follows:

– We evaluated 11 open-source general-purpose static analysis security testing
tools for C on the Juliet Test Suite and report on the tools’ accuracy.

– We analyzed the prevalence of vulnerability patterns in the Juliet Test Suite
and in Debian Linux, as a representative for production software.

– We conducted a trial of the six most promising SAST tools on Wireshark v1.8
and report on the tools’ recall in finding real vulnerabilities.

The rest of the paper is structured as follows: In Sect. 2 we review related work
and discuss the challenges when evaluating SAST tools for C. An investigation
on the prevalence of C-related vulnerabilities for the Debian Linux distribution is
presented in Sect. 3. Based upon this, we introduce the evaluation methodology

184 C. Gentsch et al.

and dataset in Sect. 4 and present the results in Sect. 5. Threats of validity are
discussed in Sect. 6 and, eventually, Sect. 7 concludes the paper.

2 Previous Work on Benchmarking SAST Tools for C

Several authors have analyzed the effectiveness of SAST tools in finding vulner-
abilities in C code. Chatzieleftheriou and Katzaros [4] tested four open-source
tools and two commercial tools using their own test suite of C programs, cover-
ing 30 vulnerability patterns selected from the Common Weakness Enumeration
(CWE)2 catalogue and the CERT C Secure Coding Standard [13]. The test
suite included “bad” code, representing real vulnerabilities, and “good” code,
representing spurious findings if reported by a SAST tool, for each vulnerability
pattern and thus allowed to assess the tools effectiveness in terms of precision
and recall. They found the two commercial tools to rank best, achieving a F-
Score of 0.85, closely followed by the open-source tools Frama-C (0.8) and UNO
(0.7). CppCheck and Splint ranked at the lower end (<0.6). The same test suite
was used later in [10] to compare the tools Splint, CppCheck, Frama-C, Infer and
Clang. Clang and Frama-C lead again with a F-Score> 0.9, followed by Infer
(0.88) and CppCheck (0.78). The good scores may indicate that the test suite is
now too outdated to give a good measure for comparison of SAST tools.

The SARD Juliet Test Suite for C/C++ was first published in 2011 and last
updated in 2017 [5,11]. The test suite covers more than 100 different CWE’s in
64k test cases. Similar to Chatzieleftheriou and Katzaros [4], each test case has
a “bad” and a “good” function, together with the labels for the tested CWE.
As half of the test cases thus consists of “bad” functions, this implies that the
measured precision is only a precision for 50% prevalence – which means, there
is a 50% chance for a SAST tool to just guess the right location. To address this,
the authors suggested another metric in [11], the discrimination rate, wherein the
findings counted as true positive only if a tool reported the “bad” function, but
not the “good” function. Note that the type of error (CWE) also has to match
with the CWE associated to the test case. As this is a feasible procedure in
theory, the practical application is not as straightforward, especially when testing
open-source tools. Those tools often do not report CWE’s, or just report some
abstract CWE class, whereas the Juliet Test Suite asks for specific CWE variants.
One solution to this is proposed by Goseva-Popstojanova and Perhinschi [6], who
also used the Juliet Test Suite for benchmarking three anonymous commercial
tools. They carried out a fuzzy matching of vulnerabilities by matching CWE’s
that are closely related in the CWE hierarchy. This approach though does not
help in all cases. Consider the following example from the Juliet Test Suite3:

2 https://cwe.mitre.org/.
3 File CWE195 Signed to Unsigned Conversion Error negative malloc 18.c.

https://cwe.mitre.org/

Benchmarking Open-Source Static Analyzers 185

Listing 1.1. Example code from the Juliet Test Suite for C/C++

1 data = -1;
2 if (data < 100)
3 {
4 char * dataBuffer = (char *)malloc(data);
5 ...

Here, a SAST tool could report CWE-686 (function call with incorrect argu-
ment type) at line 5, since malloc expects unsigned integers. Otherwise, a CWE-
131 (incorrect calculation of buffer size) would also be correct. The Juliet Test
Suite however expects CWE-195 (signed To unsigned conversion error). The
complexity of the CWE hierarchy is causing these issues. With more than 800
weaknesses, it is very fine-grained and in addition offers more than 30 different
views, which change the relation between CWE’s. In this jungle, choosing the
correct CWE is hard for test suite designers and tool developers.

For a pragmatic approach, one could, instead of matching CWE’s, sophisti-
cally design the test cases in a way that only one type of vulnerability can be
identified at a specific location. This approach was taken by Shiraishi et al. [14]
and lead to the ITC Benchmark. This test suite has the advantage of being more
easy to comprehend, as there is no need to check the location of a vulnerability
and no CWE mapping has to be done. However, the tests are rather easy such
that static analysis tools can achieve up to perfect results on this benchmark in
case of some defect patterns [14]. As a result, comparing tools above this cutoff
is infeasible. Other issues regarding the ITC Benchmark include the inclusion of
unintended defects in the test cases, wrong and/or missing vulnerability markers
and the selection of types of defects in the test cases, which is not representa-
tive [7]. Besides, the ITC Benchmark has been designed with respect to safety
tools such that tests for security-related defects and flaws concerning input vali-
dation, path traversal, or code injection are completely missing. The benchmark
is though used in [1] to compare open-source SAST for C. According to the
results, Clang and Frama-C are leading the field, closely followed by CppCheck.

While the Juliet Test Suite was primarily designed for evaluating the effec-
tiveness of commercial SAST tools and benchmarking results are therefore pre-
sented anonymously [5], Lu et al. [9] report on a more recent comparison of open-
source SAST tools and one commercial tool. They used the Juliet Test Suite, but
left the method for evaluating the tools findings and measuring precision and
recall unspecified. Despite the included commercial tool, the best F-Scores were
reached by CppCheck (0.34), Frama-C (0.3), and Clang (0.3). We also acknowl-
edge the existence of benchmarks for the evaluation of static analysis tools for C
without a focus on security testing. As an example, the SV-Benchmark [2]4 pro-
vides an up-to-date collection of verification tasks to evaluate the effectiveness
and efficiency of fully automatic software verifiers for C. An overhaul of SAST
tool testing datasets, like the Juliet Test Suite, using insights gained from these
benchmarks seems a promising item for future work.
4 https://github.com/sosy-lab/sv-benchmarks.

https://github.com/sosy-lab/sv-benchmarks

186 C. Gentsch et al.

3 Prevalence of C-Related Vulnerability Patterns

To investigate which C-related flaws cause the most vulnerabilities found in pro-
duction software, and therefore should be included in a test suite for benchmark-
ing SAST tools, we analyzed vulnerabilities and vulnerability patterns reported
for the Debian Linux distribution5. Debian comes with thousands of software
packages, ranging from desktop applications like OpenOffice or Firefox to web
servers like Apache or shells like bash, which makes it a representative example
for production software. As a first step, we downloaded all software packages from
the stable Debian release when conducting our research, i.e., Debian 9 “Stretch”.
We then gathered reported vulnerabilities for the packages, as listed by means of
Common Vulnerabilities and Exposures (CVE) in the packages’ change-log files.
CVE’s are vulnerabilities, which were reported to the public CVE database6.

Table 1. Statistics on Debian vulnerabilities

Packages total: 24,438

Packages containing CVE’s: 1,327

Packages with C as main language: 8,132

Packages with C as main language containing CVE’s: 838

CVE’s since 1988 (not only Debian): 103,193

CVE’s in the Debian packages: 10,472

CVE’s in all C packages: 5,639

� CVE’s per package: 0.4

� CVE’s per C-package: 0.7

As can be seen in Table 1, we found 10k CVE’s reporting vulnerabilities for
all Debian software packages. Note that this accounts for approx. 10% of all
CVE’s ever reported since 1988. Considering only the Debian packages with C
as the main language, we found that 10% of those packages contain 50% of all
CVE’s reported for the Debian packages. The average count of CVE’s in a C
package is consequently higher than the overall average of CVE’s per package.

Combining the gathered CVE data with data from the National Vulnera-
bility Database (NVD)7 allowed us to map individual CVE’s to vulnerability
patterns, i.e., CWE’s, and weight them with their severity scores. This way, we
were able to analyze which types of vulnerabilities were found in those Debian
packages, whose main language is C. To gain an impression of the current sit-
uation, we only considered CVE’s as reported in the years 2017–2018. Table 2
presents the Top-10 CWE’s for C packages, according to the summed up NVD
severity scores. Apparently, the “buffer overflow” is still the leading flaw in C
5 https://www.debian.org.
6 https://cve.mitre.org.
7 https://nvd.nist.org.

https://www.debian.org
https://cve.mitre.org
https://nvd.nist.org

Benchmarking Open-Source Static Analyzers 187

Table 2. Top-10 vulnerabilities in Debian packages with C as main language

Common Weakness ID Percentage

CWE-119 (Improper Restriction of [..] the Bounds of a Memory Buffer) 32.1%

CWE-20 (Improper Input Validation) 10.5%

CWE-125 (Out-of-bounds Read) 10.0%

CWE-399 (Resource Management Errors) 8.1%

CWE-190 (Integer Overflow or Wraparound) 6.1%

CWE-476 (NULL Pointer Dereference) 5.0%

CWE-787 (Out-of-bounds Write) 4.3%

CWE-284 (Improper Access Control) 3.6%

CWE-264 (Permissions, Privileges, and Access Controls) 3.8%

CWE-416 (Use After Free) 3.6%

programs, followed by several other memory-related vulnerabilities. To provide
a more comprehensive overview, we also mapped the C-related CWE’s to the
clusters of the Software Fault Patterns (SFP) view of the CWE hierarchy8.

Table 3. Top SFP clusters found in Debian packages with C as main language

Cluster Percentage

Memory access 49.3%

Resource management 12.8%

Tainted input 10.7%

Risky values 6.8%

As shown in Table 3, the top fault cluster is memory access with a fraction
of approx. 50% of all found vulnerabilities. Members of this cluster are vul-
nerabilities like, e.g., faulty buffer access, faulty pointer use, improper NULL
termination. The second-severe fault cluster resource management with a frac-
tion of 12% includes vulnerabilities like use after free or missing release of file
handles. Tainted input with approx. 10% is related to missing sanitization of
data from user input. Finally, risky values consists of vulnerabilities related to
integer overflow, incorrect type conversions or divides by zero. Note that this
result is on par with the findings by other research [8]. Altogether, it seems like
most vulnerabilities come from implementation errors which have been in the
focus of static analysis tools for many years. In the following, we report on our
evaluation of the capabilities of SAST tools finding these errors.

8 https://cwe.mitre.org/data/definitions/888.html.

https://cwe.mitre.org/data/definitions/888.html

188 C. Gentsch et al.

4 SAST Tool Evaluation Method

4.1 Tested Open-Source SAST Tools

The open-source SAST tools for C which we included in our evaluation are
shown in Table 4. We included general-purpose static analysis tools for security
testing, but deliberately decided to omit pure linters, e.g., Lint, cpplint, and
model checkers, e.g., Blast, CPAchecker. A more exhaustive analysis, also taking
into account these kinds of tools, is an open item for future work. Also, we did
not include tools which are not maintained anymore, like Splint, RATS, or ITS4.
Besides, three sound SAST tools have been tested: Infer, IKOS, and Frama-C.
The latter was already evaluated on the Juliet Test Suite in [5], but in a separate
category for sound tools, which makes it difficult to compare with the other
tools. For all tools, we chose the latest stable version in Ubuntu 18.04 LTS in an
virtualization environment with disk size of 150 GB and 16 GB of RAM under
Intel i7-6600U CPU @ 2.60 GHz with 2 cores when conducting our research. Since
we were interested in the tools’ recall and precision and not in their resource
usage, we did not implement resource control for the benchmarking.

Table 4. In our study evaluated static analysis tools

Tool Version Reference

AdLint 3.2 http://adlint.sourceforge.net

Clang-Tidy 4.0 http://clang.llvm.org/extra/clang-tidy/index.html

Clang Scan-Build 4.0 http://clang-analyzer.llvm.org/scan-build.html

CppCheck 1.72 http://cppcheck.sourceforge.net

Flawfinder 1.31 http://dwheeler.com/flawfinder

Frama-C Eva 17 http://frama-c.com

IKOS 2.0 http://github.com/NASA-SW-VnV/ikos

Infer 0.15 http://fbinfer.com

OCLint 0.13.1 http://oclint.org

Pscan 1.2-9 http://deployingradius.com/pscan

Sparse 0.5.0 http://sparse.wiki.kernel.org/index.php/

4.2 Evaluation Datasets

As discussed in the report of the Static Analysis Tool Exposition (SATE) V [5],
the ideal benchmarking dataset should be representative of real, production code,
have large amounts of test data to yield statistical significance, and have a known
ground truth. Three types of datasets can thus be used:

http://adlint.sourceforge.net
http://clang.llvm.org/extra/clang-tidy/index.html
http://clang-analyzer.llvm.org/scan-build.html
http://cppcheck.sourceforge.net
http://dwheeler.com/flawfinder
http://frama-c.com
http://github.com/NASA-SW-VnV/ikos
http://fbinfer.com
http://oclint.org
http://deployingradius.com/pscan
http://sparse.wiki.kernel.org/index.php/

Benchmarking Open-Source Static Analyzers 189

Synthetic Test Suites. A synthetic test suite includes generated code with
limited complexity and precisely placed vulnerabilities and defects in it. For the
C/C++ track of SATE V, this is covered by the Juliet Test Suite 1.3 for C/C++.
The Juliet Test Suite was developed specifically for assessing the capabilities of
SAST tools and contains 64,099 test cases in 100k files. The suite covers more
than 100 different weaknesses, including all major software fault patterns and
satisfies the requirements of having ground truth and statistical significance.
Therefore, precision and recall metrics are applicable. In Table 5, the distribution
of software fault pattern clusters is shown. As can be seen, the top clusters are
comparable to the ones we found in our preliminary investigation of common C
fault patterns for Debian packages in Sect. 3.

Table 5. Top SFP clusters in the Juliet Test Suite 1.3 for C/C++

SFP cluster Percentage

Memory access 31.4%

Resource management 6.4%

Tainted input 12.1%

Risky values 32.6%

Production Software. Production software offers realism and statistical signif-
icance, due to the large number of warnings issued by tools. Production software
however suffers from the lack of ground truth, since we can not be sure about all
the defects it may contain. Findings thus need to be reviewed manually for cor-
rectness and for evaluating the precision of the tools; recall cannot be calculated
at all. All this makes this kind of data inappropriate for automated evaluation.

Software with CVE’s. Real production software with publicly reported vul-
nerabilities from the Common Vulnerabilities and Exposures (CVE) database,
which forms a prime source of known defects in production software. On the
one-hand side, they are unfortunately still too few to achieve statistical signif-
icance for measuring tools’ precision. On the other-hand side, the high realism
regarding code and the vulnerabilities is an advantage.

In our research, we have primarily used the Juliet Test Suite 1.3 for C/C++
and additionally conducted a trial on the Wireshark v1.8 software with 83 known
CVE’s. For the Juliet Test Suite, we though used a subset since we are focusing
on C programs on Linux, therefore skipping C++ and Win32 test cases, and we
used a single-file test setup, thus omitting multi-module-test cases.

4.3 Evaluation Procedure for Synthetic Test Cases

As pointed out in Sect. 2, benchmarking SAST tools using the Juliet Test Suite
is not straightforward, since vulnerabilities as reported by the tools need be

190 C. Gentsch et al.

mapped to the CWE’s associated to test cases. This can introduce a bias. Con-
sider for example a tool output like “memory error”, mapping this result to
CWE-119, or to CWE-120, or to CWE-125 makes a difference for evaluating the
recall of the tool and so the overall measured tool performance. This gets even
more problematic with respect to the many possible views in the CWE hierar-
chy. Due to this, we decided for a different approach. Under the assumption, that
the probability of a tool reporting a defect at the exact location but for another
defect type is very low, we matched reported defects and test case CWE’s solely
based upon the defect location, thus ignoring the reported defect type.

In more detail, we run the tools on the dataset file by file, and log the tool
reports. The test cases for a specific CWE are thus not compiled into one appli-
cation, as also possible with the Juliet Test Suite, but rather analyzed separately.
The tool reports are collected in a database for further processing. A tool’s find-
ings are compared with the Juliet Test Suite manifest files, specifying the exact
defect location for a test case by file and line number. If there is match between
a tool’s finding and a test case with respect to the reported location, we count
that as a true positive. If a tool reports another location, we count that as false
positive. All non-reported locations are treated as either true or false negatives,
according to whether the test case represents “good” or “bad” code. Note that
we in this way assume, that the totality of condition negative equates to the lines
of code of all test cases. This is in contrast to the original procedure, where the
totality of condition negative equates to the sum of test cases. In our case, the
probabilities for gaining a true positive or a true negative are though supposed
to be more realistic, compared to the 50:50 chance for the default Juliet Test
Suite procedure [5]. Although, this comes at the cost of penalizing tools which
report the right error on a different location, and otherwise rewards tools, which
report all locations with a wrong defect type. Using the counts of true/false
positives/negatives, the tools’ precision, recall and Matthews correlation coeffi-
cient (MCC) are calculated. We chose MCC in favor of the F-Score, because
the former also rewards a higher number of true negatives in contrast to the
latter. This penalizes very noisy tools which report every location. The MCC
is in general suggested when dealing with imbalanced datasets, as is often the
case for vulnerabilities. Measures like accuracy and F-Score do not reflect this
imbalance properly. The used metrics, i.e., precision, recall, MCC, are defined
as follows:

Precision =
TP

TP + FP

Recall =
TP

TP + FN

MCC =
TP × TN − FP × FN

√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

with TP denoting the number of true positives, TN the number of true negatives,
FP the number of false positives, and FN the number of false negatives.

Benchmarking Open-Source Static Analyzers 191

4.4 Trial on Production Software

For our trial on production software with real CVE’s, we only used the most
promising tools as evaluated in the first experiment. In general, this part was
more difficult to carry out, for several reasons:

– As first tests showed, it was not feasible to analyze the whole Wireshark
software at once using the sound analyzers like Frama-C and IKOS. Both
tools have the option to analyze single modules, using an alternative entry
point for the file to be analyzed. This however causes issues in finding a
suitable entry point among all functions in the module. We approached this
by calculating the call graphs of all modules and choosing the roots as entry
points. We in this way though still miss inter-module defects.

– Except for CppCheck and Flawfinder, all tools required include files and pre-
processor definitions of the sources under test. For Wireshark, we created
a JSON compilation database, where each source file had an entry for its
definitions and dependencies. All tools supported this compilation database
except AdLint and therefore AdLint was excluded from the trial.

– Similar to the Juliet Test Suite, we used a file-by-file test setup, collecting
the tools’ reports in a database. We also imported the CVE data into the
database. The CVE data did not only contain the defect, but also other
information, which required us to manually review the matched findings to
ensure that only true positives are counted. Due to the number of findings
reported by the tools, we only measured the tools’ recall, but not the precision.

5 Results and Discussion

In this section, we present the results of our evaluation. A replication package
is available online9. In the evaluation, we were mainly interested in the five
following research questions, which will be discussed in the following:

– What is the effect of the tools’ severity threshold parameter on the tools’ pre-
cision and recall?

– Are there differences in the tools’ sensitivity with respect to specific vulnera-
bility patterns?

– What is the overall tools’ accuracy on the Juliet Test Suite?
– Are one tool’s findings subsumed by another tool’s findings, i.e., do the tools’

findings overlap?
– What is the tools’ precision on the Wireshark production software?

5.1 Effect of Severity Thresholds

The SAST tools Flawfinder, Clang-Tidy, IKOS, and OCLINT support a severity
threshold parameter, i.e., a minimum severity level upon which found vulnera-
bilities are reported by the respective tool. In Fig. 1, the influence on the tools’
9 https://github.com/RohanKrishnamurthy/sastevaluation.

https://github.com/RohanKrishnamurthy/sastevaluation

192 C. Gentsch et al.

(a) Flawfinder (b) Clang-Tidy

(c) IKOS (d) OCLINT

Fig. 1. Vulnerability detection metrics with respect to chosen severity threshold

precision, recall, and MCC are shown for the Juliet Test Suite. As can be seen,
with increasing severity thresholds, most tools also showed an increase in their
precision, while their recall decreased. This is partly as expected, as IKOS for
example considers an Error to be a runtime error, while a Warning is either con-
sidered a runtime error for certain executions or a statement where the tool is not
powerful enough to prove the absence of errors. For other tools, like Flawfinder,
this is a rather coincidental, though beneficial, effect, as the severity associated to
a vulnerability is determined by its assumed security risk. Overall the accuracy,
as measured by MCC, did not change substantially. Note that the preference for
high recall or precision also depends on the use case, i.e., a tool for proving the
absence of vulnerabilities should aim at high recall, while a vulnerability detec-
tor should aim at high precision. Due to this, we have chosen the Warning-level
as minimum severity in all further experiments. For Flawfinder we chose the
highest level (5) to achieve optimal accuracy.

5.2 Tools’ Recall on SFP Clusters

Next, we were interested in whether some tools provided a better sensitivity for
vulnerabilities of certain types of vulnerabilities. In Fig. 2, we show the recall
of the 11 SAST tools on the top four SFP clusters, as introduced in Sect. 3.
Apparently, the sound tools Frama-C and IKOS excel particularly for the clus-
ters memory access and risky values, while having only an average recall for

Benchmarking Open-Source Static Analyzers 193

(a) Memory Access (b) Resource Management

(c) Tainted Input (d) Risky Values

Fig. 2. Recall on the Juliet Test Suite for top SFP clusters

vulnerabilities related to resource management and tainted input. In general,
with the exception of AdLint, none of the tools covers all the clusters with the
same sensitivity. Furthermore, some tools only provide a good sensitivity for
vulnerabilities of a certain type, such as Pscan for the cluster tainted input. For
an explanation of the good recall of AdLint, see the following section.

5.3 Overall SAST Tool Accuracy

In Fig. 3, we present the measured precision, recall, and MCCs for all 11 tested
SAST tools on the Juliet Test Suite. Apparently, there are differences in the
tools’ accuracy. With respect to recall, some of the tools found nearly noth-
ing (OCLINT), while others found more than 50% of all tested vulnerabilities
(AdLint, Frama-C). Regarding precision, there are tools where almost every sec-
ond finding is a true positive (Pscan), and others, where a developer would have
to go through hundred of findings to have only one true positive (OCLINT). In
particular two tools show a gap between precision and recall. PScan seems to be
highly specialized on certain types of vulnerabilities and therefore has only a low
recall but a high precision in that, what it finds. The tool AdLint shows a good
recall, but this comes at the cost of a bad precision. In fact, AdLint produced
warnings for about 1/8 of the test suite, resulting in 800k warnings in total.
Note that a tool reporting just every line of code as vulnerability gains 100%
recall. Finally, we can observe, that the different characteristics of precision and
recall lead to nearly aligned MCCs for some tools. Thus, the accuracy of AdLint,
Clang-Tidy, CppCheck, and Flawfinder are almost on par, while the sound tools

194 C. Gentsch et al.

Fig. 3. Precision, recall and MCC metrics on the Juliet Test Suite

Frama-C and IKOS are outstanding. This result is in line with the findings in
related work [1,4,9,10], in which Frama-C ranked similarly. We have though no
comparison for IKOS, as it was not included in those evaluations. Other tools
with reported good accuracy were Clang and CppCheck. We can confirm a high
precision of CppCheck and a fair recall of Clang in our experiments.

5.4 SAST Tool Overlap

We have also analyzed, if vulnerabilities reported by one tool are reported by
another tool as well. Basically, we were asking if there exists one superior tool or
if, instead, it makes sense to use more than one SAST tool. In Table 6, we denote
the measured overlap of the vulnerabilities reported for the Juliet Test Suite for
the four tools with the most findings, i.e., Clang-Tidy, Flawfinder, Frama-C,
and IKOS and several other tools. For example, Clang-Tidy found 75.6% of
the vulnerabilities that were also reported by Clang Scan-Build and Flawfinder
found all of the vulnerabilities found by Pscan. This last example may indicate,
that in some cases, using one SAST would make the use of another SAST tool
redundant. However, considering Flawfinder and Pscan, note that the latter tool
provides better precision than the former one and therefore still may the option
of choice. In general, we can observe that there exists no one single superior
open-source SAST tool for the C programming language.

5.5 Trial on Production Software

The results for the trial of the six tools Clang-Tidy, CppCheck, Flawfinder,
Frama-C, Infer, and IKOS on the Wireshark v1.8 production software are shown

Benchmarking Open-Source Static Analyzers 195

Table 6. Overlap of reported vulnerabilities for subset of tested SAST tools

Clang-Tidy CppCheck Infer Pscan Scan-Build Frama-C

Clang-Tidy 47.5% 40.2% 0.0% 75.6% 20.5%

Flawfinder 9.5% 6.4% 1.7% 100.0% 1.5% 4.3%

Frama-C 20.5% 38.0% 13.2% 0.0% 16.5%

IKOS 17.5% 36.6% 12.7% 50.0% 8.9% 57.9%

in Table 7. As mentioned in Sect. 4, we decided to only measure the tools’ recall
but not precision, due to the rather large number of reported warnings which
would need to be checked manually for being true or false positives otherwise. It
is apparent, that all of the six tools have much more difficulties in finding real
vulnerabilities in production software, compared to finding vulnerabilities in the
synthetic Juliet Test Suite. Altogether, only 17 out of the 83 CVE’s included in
the Wireshark v1.8 dataset [5] were found. That is even more surprising, as most
of the CVE’s are related to the SFP cluster memory access, which is supported
by most of the tools. Except for a large fraction of CVE’s related to infinite
loops, vulnerabilities which are out of the tools’ scope, like wrong API usage,
did not play a substantial role. There was also no overlap, each tool reported
different vulnerabilities. CppCheck and Infer surprisingly did not find any of
the CVE’s. IKOS produced so many warnings because of unknown side effects
of included code, that we removed it from the trial. Also, the other sound tool
Frama-C did not perform as good as on the synthetic data.

Table 7. Recall results for the SARD-94 test cases (Wireshark v1.8)

Tool Findings TP Recall

Clang-Tidy 1,733 1 1.2%

CppCheck 74 0 0.0%

Flawfinder 2,256 9 10.8%

Frama-C 10,273 7 8.4%

Infer 3,022 0 0.0%

IKOS 48,130 - -

6 Threats to Validity

In this section, we discuss the threats to the validity for our research.

Tool Selection. First to mention, a bias is introduced through the selection
of SAST tools. Since we did not consider commercial tools and mostly excluded

196 C. Gentsch et al.

verification technology, we can not provide a complete picture of the capabili-
ties of SAST tools. Nonetheless, we believe that we have covered a substantial
selection of mature and maintained general-purpose open-source SAST tools for
C. Another threat relates to the chosen version for the tools. Since we used the
latest stable version available for Ubuntu 18.04 LTS, some versions are already
outdated. This is especially true for the Clang-tools, which we tested for their
version 4. This is a general problem, as many tools are continuously updated and
improved. Establishing a ongoing SAST tools benchmark facility with automated
evaluation and reporting could help to cope with this problem.

Test Cases. Since our focus has been to benchmark open-source SAST tools,
which often did not support the Windows Platform, we omitted the Windows
test cases from the Juliet Test Suite. Also, since not all tools fully support C++
code, we omitted all C++ test cases. Note that this is no serious flaw of our
evaluation, but should be considered before one draws any conclusions on the
the tools for Windows-targeted code and/or C++. Also, as already mentioned,
the realism of synthetic test code as used in the Juliet Test Suite is not high, and
does probably not reflect the accuracy of the tools on production code. There is
no easy solution for this, due to the trade-off when benchmarking SAST tools
between realism and statistical significance and/or unknown ground truth.

Tool Coverage. We have chosen to test all 11 open-source SAST tools on all
test cases – regardless of the respective vulnerability pattern. Our results may
therefore differ from other benchmarks. For instance, in the SAMATE evalua-
tion [5], they used a special measure called applicable recall, where the supposed
tools’ coverage on vulnerability patterns is taken into account, which therefore
enhances the recall significantly. We have decided against such a measure, in
order to make the results more comparable and provide a comprehensible result.

Procedure. As discussed in Sect. 4, our method of counting true positives using
the vulnerabilities’ locations is based on the assumption that it is unlikely, that a
SAST tool would report the correct location with a wrong vulnerability. A very
noisy tool that reports almost every line of code as erroneous thus achieves low
precision but high recall, since we do not check if the tool reports the expected
vulnerability types. Averaging precision and recall by the F-Score, such a tool
would gain a reasonable ranking. To compensate for this, we use the MCC instead
of the F-Score. Our approach also penalizes tools, which report the expected vul-
nerabilities at a different code location, and tools, which find other defects than
the expected ones. This is problematic for tools like Frama-C and IKOS, as they
halt analysis after finding a defect, and may thus explain their unexpected low
precision of under 50% in the evaluation as well as their low recall for vulnerabil-
ity patterns related to memory access and risky values. As mentioned in Sect. 2,
Frama-C and IKOS may report another type of defect for a test case of the
Juliet Test Suite and subsequently stop analysis for this test case, thus missing

Benchmarking Open-Source Static Analyzers 197

the expected defect. However, these are general problems and known issues of
the Juliet Test Suite.

7 Conclusion

In this paper, we have reported on our evaluation of 11 open-source SAST tools
for the C programming language using synthetic test cases of the SARD Juliet
Test Suite 1.3 for C/C++ and the Wireshark v1.8 production software with real
CVE’s. Starting with a preliminary investigation on fault patterns and vulnera-
bilities in the Debian Linux distribution, we found that half of all vulnerabilities
are coding errors related to memory management, followed by errors related
to resource management, tainted input, and risky values. We therefore decided
to use the Juliet Test Suite as a dataset for our evaluation, as it covers these
weaknesses with a similar weighting. We confirmed findings of previous work on
benchmarking SAST tools for C, using other test suites and evaluation proce-
dures. For example, we can confirm that no superior tool among the evaluated
11 open-source SAST tools for C exists and the tools accuracy in detecting real
vulnerabilities in production software still leaves much room for improvement.
We also found that Frama-C is the best among the evaluated tools, even though
it is not specifically focused on security. Another sound tool IKOS, which has
not yet been evaluated on the Juliet Test Suite before, performed similar and
ranks second in our benchmark. While our evaluation considered the tools’ per-
formance over all SFP clusters, a more selective analysis taking only into account
a tool’s asserted vulnerability types is a prospect of future work.

Future benchmarks would as well benefit from a new or overhauled test suite,
which addresses the known problems we have also identified, like the absence of
unintended defects and vulnerabilities or better test annotations for matching
reported with expected vulnerabilities. It would be of general interest to develop
a benchmark suite as open standard, where tool developers and security experts
can join to promote realistic SAST tool benchmarking. To cope with the rapid
outdating of benchmarks and tools, establishing a regular and an automated
evaluation of SAST tools, e.g., analog to similar efforts in the software verification
community [2], would be a valuable contribution. Including more SAST tools in
the evaluation, in particular software verifiers, which we deliberately choose to
exclude from our evaluation, would also allow for drawing a more extensive
picture. However, we believe that our study can be a valuable building block in
creating this bigger picture on the state-of-the-art of SAST tools for C.

References

1. Arusoaie, A., Ciobâcă, Ş., Craciun, V., Gavrilut, D., Lucanu, D.: A comparison of
open-source static analysis tools for vulnerability detection in C/C++ code. In:
SYNASC, pp. 161–168. IEEE Computer Society (2017)

2. Beyer, D.: Advances in automatic software verification: SV-COMP 2020. TACAS
2020. LNCS, vol. 12079, pp. 347–367. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-45237-7 21

https://doi.org/10.1007/978-3-030-45237-7_21
https://doi.org/10.1007/978-3-030-45237-7_21

198 C. Gentsch et al.

3. Calcagno, C., et al. : Moving fast with software verification. In: Havelund, K.,
Holzmann, G., Joshi, R. (eds.) NFM 2015. LNCS, vol. 9058, pp. 3–11. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-17524-9 1

4. Chatzieleftheriou, G., Katsaros, P.: Test-driving static analysis tools in search of C
code vulnerabilities. In: COMPSAC Workshops 2011, pp. 96–103. IEEE Computer
Society (2011)

5. Delaitre, A., Stivalet, B., Black, P.E., Okun, V., Ribeiro, A., Cohen, T.S.: Sate V
report: ten years of static analysis tool expositions. Tech. Rep. NIST-SP-500-326,
NIST (2018). https://doi.org/10.6028/NIST.SP.500-326

6. Goseva-Popstojanova, K., Perhinschi, A.: On the capability of static code analysis
to detect security vulnerabilities. Inf. Softw. Technol. 68, 18–33 (2015)

7. Herter, J., Kästner, D., Mallon, C., Wilhelm, R.: Benchmarking static code ana-
lyzers. Reliab. Eng. Syst. Saf. 188, 336–346 (2019)

8. Kuhn, R., Raunak, M.S., Kacker, R.: Can reducing faults prevent vulnerabilities?
IEEE Comput. 51(7), 82–85 (2018)

9. Lu, B., Dong, W., Yin, L., Zhang, L.: Evaluating and integrating diverse bug
finders for effective program analysis. In: Bu, L., Xiong, Y. (eds.) SATE 2018.
LNCS, vol. 11293, pp. 51–67. Springer, Cham (2018). https://doi.org/10.1007/
978-3-030-04272-1 4

10. Moerman, J., Smetsers, S., Schoolderman, M.: Evaluating the performance of open
source static analysis tools. Bachelor thesis, Radboud University, The Netherlands,
p. 24 (2018)

11. NAS-CAS: On analyzing static analysis tools. Technical report, National Security
Agency Center for Assured Software (2017), https://media.blackhat.com/bh-us-
11/Willis/BH US 11 WillisBritton Analyzing Static Analysis Tools WP.pdf

12. Prause, C., Gerlich, R., Gerlich, R.: Evaluating automated software verification
tools. In: ICST 2018, pp. 343–353. IEEE Computer Society (2018)

13. Seacord, R.C.: The CERT R© C Coding Standard, Second Edition: 98 Rules for
Developing Safe, Reliable, and Secure Systems, 2nd edn. Addison-Wesley Profes-
sional (2014)

14. Shiraishi, S., Mohan, V., Marimuthu, H.: Test suites for benchmarks of static
analysis tools. In: ISSRE Workshops 2015, pp. 12–15. IEEE Computer Society
(2015)

https://doi.org/10.1007/978-3-319-17524-9_1
https://doi.org/10.6028/NIST.SP.500-326
https://doi.org/10.1007/978-3-030-04272-1_4
https://doi.org/10.1007/978-3-030-04272-1_4
https://media.blackhat.com/bh-us-11/ Willis/BH_US_11_WillisBritton_Analyzing_Static_Analysis_Tools_WP.pdf
https://media.blackhat.com/bh-us-11/ Willis/BH_US_11_WillisBritton_Analyzing_Static_Analysis_Tools_WP.pdf

Verification of Liveness and Safety
Properties of Behavioral Programs

Using BPjs

Michael Bar-Sinai(B) and Gera Weiss

Ben-Gurion University of the Negev, Be’er-Sheva, Israel
barsinam@post.bgu.ac.il

Abstract. This paper presents semantics, syntax, and tools for specifi-
cation and verification of safety and liveness properties of behavioral pro-
grams. Verification is performed directly on program code, by traversing
its transition system. Liveness properties are defined using “hot states”,
in which scenarios are allowed to stay for a finite time, but not forever.
Safety properties are defined using assertions which allow labeling pro-
gram states as having violations, and by analyzing program states for
deadlocks detection. The paper defines liveness violations with regards
to specific program components and describes an approach for validat-
ing the absence of such violations is a system. The proposed approach is
supported by BPjs, an open-source tool suite developed by the authors.

Keywords: Behavioral programming · Model-based software
engineering · Formal methods · Tools

1 Introduction

Behavioral programming (BP, [17,18]) is a paradigm for designing reactive sys-
tems focused on allowing formal executable specifications of reactive systems
that are fully aligned with the requirement documents. In this paper we discuss
a variant of BP, called BPjs [2,9], where a specification is given as a collection
of small fragments of JavaScript code, each describing an independent thread of
required system behaviour. These fragments are interwoven at runtime using a
simple protocol.

Ideally, when using BP, there is a module in the model per paragraph in the
document [12]. So far, however, BP was limited to describing safety properties
(properties that can be violated in a finite length of time), thus not allowing
direct modelling of liveness properties (properties whose violation requires an
infinite length of time). This work proposes an extension to the BP formal model,
allowing it to represent liveness requirements as well. Similar to the original
version, the extended BP model is executable and formally analyzable using
the BPjs tool. We describe an updated version of BPjs that integrates the new
capabilities with all existing features of the tool.
c© Springer Nature Switzerland AG 2021
T. Margaria and B. Steffen (Eds.): ISoLA 2020, LNCS 12479, pp. 199–215, 2021.
https://doi.org/10.1007/978-3-030-83723-5_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-83723-5_14&domain=pdf
http://orcid.org/0000-0002-0153-8465
http://orcid.org/0000-0002-5832-8768
https://doi.org/10.1007/978-3-030-83723-5_14

200 M. Bar-Sinai and G. Weiss

The main contributions of this paper are: An updated formal definition for
BP, which supports liveness properties using a concept called hot synchroniza-
tion; A distinction between types of liveness violations, based on the set of
b-threads that remain forever hot; An algorithm for verifying liveness and safety
properties of BP-based programs, supported by a reusable tool; And a discussion
of a case where phrasing safety requirements using liveness terms allows for a
higher-level description of what requirements were violated.

The rest of this paper is organized as follows. Section 2 presents the extended
formal BP model. Section 3 presents and discusses applications of the updated
model in an MBSE setting, using BPjs. Section 4 evaluates the updated BPjs
version. Section 5 looks at related work, and Sect. 6 concludes.

2 Problem Formulation

We begin with a mathematical formulation of the problem addressed in this
paper, based on the model of behavioral programs presented in [17]. We then
present the verification problems this paper focuses on. Our proposed model
describes a system from a specification, using product of labelled transition sys-
tems. Below, we use the mathematical model formalized in this section as the
foundation for the proposed programming and analysis tools.

Recall that a labeled transition system is defined as a quadruple 〈S,E,→,
init〉, where S is a set of states, E is a set of events, → is a transition relation
contained in (S × E) × S, and init ∈ S is the initial state [21]. The runs of
such a transition system are sequences of the form s0

e1−→s1
e2−→ . . .

ei−→si . . . where
s0 = init, and ∀i ∈ N, si ∈ S, ei ∈ E, and si−1

ei−→si ∈→.
The key concepts of behavioral programming, as presented in [17], is the

behavioral thread, or b-thread. A b-thread is a component in a system that can
request, wait-for, and block events. The semantics for these operators are: (1)
Requesting an event means proposing that said event be triggered, and asking
to be notified when this happens; (2) Waiting for an event means asking to be
notified if said event is triggered, but not proposing it be; (3) Blocking an event
means forbidding the triggering of said event, vetoing requests of other b-threads.
When a b-thread submits a request/wait-for/block statement, it is said to reach
a synchronization point. When it reaches such point, the b-thread is paused until
an event it requested or waited-for is triggered. B-threads do not interact directly
– they communicate only through this event-based, synchronization protocol.

We propose an extension to the above definition in two ways: (1) We allow
b-threads to explicitly specify the events they wait for; (2) We add a specifica-
tion of a labeling function that marks states as hot, cold or being in violation.
The first addition is technical, the waited-for events were specified via the tran-
sitions system in [17] and we allow explicit specification in order to allow natural
translation to code (a more direct compliance with the syntax and semantics of
BPjs). The second addition is more substantial as it allows formal specification
of liveness and safety properties, as will be discussed shortly.

Verification of Liveness and Safety in BP Using BPjs 201

Definition 1 (B-thread). A tuple 〈S,E,→, init, R,W,B,LBL〉 where 〈S,E,
→, init〉 forms a labeled transition system, R : S → 2E maps a state s to a
set of events requested by the b-thread when in s, W : S → 2E maps a state
s to a set of events waited-for by the b-thread when in s, B : S → 2E maps
a state s to a set of events blocked by the b-thread when in s. LBL : S →
{HOT,COLD,VIOLATION} is a labeling function that indicates if the b-thread
considers a state as hot, cold, or a violation.

The main design goal of this model is to independently represent individual
aspects of a system using b-threads. Then, using the request, wait-for, and block
idioms, b-threads can be combined to represent a complex system behavior. The
runs of a set of b-threads (a b-program) are defined as in [17], adding only the
requirement to respect the new wait-for specification:

Definition 2 (B-program). Runs of a {〈Si, Ei,→i, initi, Ri,Wi, Bi,
LBLi〉}n

i=1 set of b-threads, are the runs of the labeled transition system 〈S,E,→
, init〉, where S = S1 × · · · × Sn, E =

⋃n
i=1 Ei, init = 〈init1, . . . , initn〉, and →

includes a transition
〈s1, . . . , sn〉 e−→〈s′

1, . . . , s
′
n〉

if and only if

e ∈
n⋃

i=1

Ri(si)
∧

e /∈
n⋃

i=1

Bi(si)

and, for all i = 1, . . . , n,
(
e ∈ Ri(si) ∪ Wi(si) ⇒ si

e−→ s′
i

) ∧ (
e /∈ Ri(si) ∪ Wi(si) ⇒ si = s′

i

)
.

Depending on the order in which events are selected from the set of requested
and non-blocked events, there may be more than a single run of a given b-
program. The main addition this paper makes to the formal model is using the
labeling function added to the b-threads for categorizing the runs of a system.
This categorization enables better alignment of code with system requirements,
and improved tool support for model driven engineering, as we will elaborate
later.

The main new notion that we add is the concept of “hot” runs that, as
the name suggests, takes after the seminal work of Damm & Harel [11]. The
adjustment of the term to our context is given in the following definition:

Definition 3 (Hot run). An infinite run 〈s(0)
1 , . . . , s

(0)
n 〉 e1−→ 〈s(1)

1 , . . . , s
(1)
n 〉 e2−→

· · · of a b-program {〈Si, Ei,→i, initi, Ri,Wi, Bi, LBLi〉}n
i=1 is hot with respect

to a set of b-thread indices H ⊆ {1, . . . , n} if there exists t0 ≥ 0 such that
∀t ≥ t0, ∃i ∈ H s.t. LBLi(s

(t)
i) = HOT. A finite run of length t is hot with

respect to H if the last state of the run satisfies ∃i ∈ H s.t. LBLi(s
(t)
i) = HOT

(called hot termination condition).

202 M. Bar-Sinai and G. Weiss

The set H in the above definition can be a singleton, in which case we say
that the run contains a “hot b-thread” violation, or the whole system in which
case we say that the run contains a “hot system” violation. The idea is that a set
of states is marked as “hot” if b-threads can stay in them for a while, but it is a
violation to stay in them forever. For example, a mutual exclusion protocol may
allow a task to wait for the critical section for a while, but not forever (as this is
considered “starvation”). The set H is usually a singleton in which case a single
b-thread is responsible for a single type of hotness. This definition allows for sets
that contain more than one b-thread, to support rare cases where a specification
of a certain type of hotness is better defined using multiple b-threads.

The motivation for introducing the notion of hotness to BP is that without it,
in some natural cases, it may not be possible to represent individual requirements
using individual b-threads. This is a significant addition since the ability to align
code with requirements is one of the main “claim-to-fame”s of BP. Consider, for
example, the following requirements:

– A run must contain 10 A’s.
– A run must contain 10 B’s.
– A run must not contain two B’s in a row.

A direct translation to BP, without using HOT states, is:

– BT1 = 〈S,E,→, init, R,W,B,LBL〉 where S = {s0, . . . , s10}, E = {A},
→= {〈si, A, si+1〉 : i < 10} , init = {s0}, R = {s0, . . . , s9
→ {A}, s10
→ ∅},
W = B = {s
→ ∅ : s ∈ S}, and LBL = {s
→ COLD : s ∈ S}.

– BT2 = 〈S,E,→, init, R,W,B,LBL〉 where S = {s0, . . . , s10}, E = {B},
→= {〈si, B, si+1〉 : i < 10} , init = {s0}, R = {s0, . . . , s9
→ {B}, s10
→ ∅},
W = B = {s
→ ∅ : s ∈ S}, and LBL = {s
→ COLD : s ∈ S}.

– BT3 = 〈S,E,→, init, R,W,B,LBL〉 where S = {s0, s1}, E = {A,B},
→= {〈s0, B, s1〉, 〈s0, A, s0〉, 〈s1, A, s0〉} , init = {s0}, R = {s
→ ∅ : s ∈ S},
W = {s
→ {A,B} : s ∈ S}, B = {s0
→ ∅, s1
→ {B}}, and LBL = {s
→
COLD : s ∈ S}.

This model violates the second requirement, as it contains runs such as
〈s0, s0, s0〉 A−→ 〈s1, s0, s0〉 A−→ · · · A−→ 〈s9, s0, s0〉 B−→ 〈s9, s1, s1〉. The reason is
that, without HOT states, a b-program can only enforce safety properties while
the requirement to have at least ten A’s is a liveness property. To solve this, with
our new addition to the syntax, one can declare the states s0, . . . , s9 as HOT
and make said run hot.

Another type of problematic runs that we consider in this paper are runs
that lead to direct violation:

Definition 4 (Violation). A run 〈s(0)
1 , . . . , s

(0)
n 〉 e1−→ 〈s(1)

1 , . . . , s
(1)
n 〉 e2−→ · · ·

of a b-program 〈{Si, Ei,→i, initi, Ri,Wi, Bi, LBLi〉}n
i=1 contains a violation if

there is a t0 > 0 such that
∨m

i=1 LBLi(s
(t)
i) = VIOLATION.

This is a more standard type of error that has been studied before, e.g.,
in [15]. We include it in this paper in order to show how the proposed types of
analyses integrate and complement existing ones.

Verification of Liveness and Safety in BP Using BPjs 203

3 Model Driven Engineering with BP

We now apply the extended BP model proposed in Sect. 2 to a model-driven
engineering context [25]. We describe a software controller for a pancake bat-
ter mixer, whose control decisions are made by a model, implemented by a
b-program. Model decisions – events triggered by said b-program – are executed
by an actuation layer, implemented using traditional code.

Pancake batter is made of two mixtures: dry (flour, baking soda, salt), and
wet (eggs, buttermilk). Our batter mixer has two computer-controlled containers,
one for each type of mixture. When the mixer’s b-program triggers an ADD_DRY

event, its actuation layer releases a part of dry mixture into the mixing bowl.
When its b-program triggers an ADD_WET event, its actuation layer releases a part
of wet mixture.

B-programs in this paper are written using BPjs [9], an open-source tool suite
for execution and analysis of b-programs1. BPjs is a Java library that can be
embedded in traditional Java programs using a engine/listener pattern: The host
program executes a b-program by loading it into a runtime engine and registering
a listener on it. The host sends data to a b-program by enqueueing events into
its external event queue. For example, if a b-program needs to respond to engine
status, the host can read the status, wrap it in an event object, and enqueue
that event in the b-program’s external event queue. B-program verification is
done in a similar manner, but using an analysis engine instead of a runtime one.

BPjs uses direct program analysis: transition between two b-program states
is performed using program execution, with no model transformations. During
analysis, when it arrives at a new b-program state, BPjs stores that state, and
visits all next possible states by selecting each event requested and not blocked at
said state. During this traversal, the model checker searches for violating nodes
or paths2. BPjs allows developers to specify what violations are searched for.
BPjs users can add custom inspections by implementing a Java interface.

We begin with a näıve b-program for preparing basic batter (Listing 1.1).
To prepare batter for 5 pancakes, the mixer is required to add 5 doses of each
mixture. These requirements are represented by the b-program’s two b-threads.
These b-threads do not wait-for or block each other’s events. Thus, there are no
constraints over the order in which mixtures are added.

3.1 Conforming with Safety Properties

Unconstrained addition order may cause the batter to become very thick or very
thin, for example when a single wet dose is followed by many dry ones. Extreme
batter viscosities may harm the mixer’s engine – making it run too fast or to

1 Code shown in this section is available in the code appendix [3].
2 For this technically complex feat, BPjs relies in part on the Mozilla Rhino JavaScript

engine [24]. For the work presented here, we expanded BPjs to support hot synchro-
nization points, among other improvements. This work included code donations to
Mozilla Rhino itself.

204 M. Bar-Sinai and G. Weiss

Listing 1.1. Naive b-program for preparing batter for 5 pancakes. Consists of two
b-threads, each requesting the addition of 5 doses of mixture. B-threads are added by
invoking bp.registerBThread. B-threads enter a synchronization point by invoking
bp.sync, passing it events they request, wait-for, and block.

1 var DOSE_COUNT =5;
2 bp.registerBThread("AddDries", function (){
3 for (var i=0; i<DOSE_COUNT; i++) {
4 bp.sync({ request:ADD_DRY });
5 }});
6 bp.registerBThread("AddWets", function (){
7 for (var i=0; i<DOSE_COUNT; i++) {
8 bp.sync({ request:ADD_WET });
9 }});

exert too much effort. Thus, we add a safety requirement: batter viscosity should
be constrained within given bounds. To this end, we add the ViscosityMeter b-
thread (Listing 1.2, lines 7–14), which publishes batter viscosity via a Viscosity

event.
First, let us verify that the näıve controller may violate the bounded viscosity

requirement. For this, we add b-thread that waits-for viscosity events, and asserts
that their data is within bounds (Listing 1.2, 29–33). Indeed, when analyzing
the controller b-program, BPjs finds a violating run were viscosity exceeds its
required bounds3.

It is possible to keep batter viscosity within its required bounds by blocking
addition events before they cause the batter to become too thick or too thin. B-
thread RangeArbiter (Listing 1.2, 16–27) presents one possible implementation:
it keeps track of batter viscosity by waiting for Viscosity events. When batter
viscosity index nears a certain threshold, it blocks events that would take it over
that threshold. E.g. when batter viscosity reaches 2, it blocks ADD_DRY.

RangeArbiter makes the controller b-program correct by construction with
regards to the batter viscosity bounds requirement, ostensibly making assertions
redundant. However, assertions are useful for numerous reasons.

First, not all safety requirements can be conformed with by construction –
a b-program can only block its internal events. It makes no sense to block, e.g.,
an external event reporting that a mixer’s engine overheats. During verification,
it is common to add b-threads that simulate the b-program’s environment, as
well as b-threads asserting the relations between the verified b-program and its
environment. For example, a b-thread can assert that after the engine sends an
overheating alert event, the controller b-program must initiate an emergency
shutdown.

3 See code appendix [3] for code and execution instructions.

Verification of Liveness and Safety in BP Using BPjs 205

Listing 1.2. B-threads keeping track, constraining, and verifying batter viscosity.
Lines 1-5 define constants and event sets used by the b-threads that follow. B-thread
ViscosityMeter publishes current batter viscosity after each addition event. When
publishing viscosity, this b-thread must block all addition events, to prevent the pub-
lished value from becoming stale. B-thread RangeArbiter restricts batter viscosity to a
given range by waiting for viscosity events, and blocking addition events. This type of
restriction avoids over-specification by restricting event selection only when said events
will cause a requirement volation. Lastly, b-thread ViscosityVerification formally
implements the textual requirement “batter viscosity has to be between -3 and 3”. This
is a typical requirement b-thread, as it does not interfere with the core b-program’s
events, and is directly aligned with the requirement it validates.

1 const VISCOSITY_BOUND =2;
2 const ADDITION_EVENTS = [ADD_DRY , ADD_WET];
3 const VISCOSITY_EVENTS = bp.EventSet("Viscosity", function(e){
4 return e.name.contains("Viscosity");
5 });
6

7 bp.registerBThread("ViscosityMeter", function (){
8 let vsc=0;
9 while (true) {

10 let evt = bp.sync({ waitFor:ADDITION_EVENTS });
11 if (evt.equals(ADD_DRY)) vsc++;
12 if (evt.equals(ADD_WET)) vsc --;
13 bp.sync({ request:bp.Event("Viscosity",vsc), block:ADDITION_EVENTS });
14 }});
15

16 bp.registerBThread("RangeArbiter", function (){
17 while (true) {
18 let viscosityEvent = bp.sync({ waitFor:VISCOSITY_EVENTS });
19 let viscosity = viscosityEvent.data;
20 let toBlock;
21 if (Math.abs(viscosity) >= VISCOSITY_BOUND) {
22 toBlock = (viscosity >0) ? ADD_DRY : ADD_WET;
23 } else {
24 toBlock = bp.none;
25 }
26 let evt = bp.sync({ waitFor:ADDITION_EVENTS , block:toBlock });
27 }});
28

29 bp.registerBThread("ViscosityVerification", function (){
30 while (true) {
31 let evt = bp.sync({ waitFor:VISCOSITY_EVENTS });
32 bp.ASSERT(Math.abs(evt.data)<=VISCOSITY_BOUND , "Viscosity violation");
33 }});

Second, assertions may be used to state required properties in a declarative
way. Consider the code for RangeArbiter (Listing 1.2, 16–27), responsible for
maintaining batter viscosity within bounds. This code is statefull and procedural,
and as such prone to errors such as replacing >= with >. These error can be
detected during verification, by a b-thread that waits for Viscosity events and
asserts that |viscosity| < 3.

Last, assertions may be useful at runtime, where a failed assertion causes
the b-program to halt. This can be viewed a as a form of safety monitoring,
or runtime verification [1]. Should this happen, BPjs informs the host program
about the failed b-program assertion, allowing the host to drop to a “safe mode”,
or attempt recovery.

206 M. Bar-Sinai and G. Weiss

Listing 1.3. B-threads controlling and verifying blueberry addition. B-thread
Blueberries requests an ADD_BLUEBERRIES event which, when selected, causes the
actuation layer to add blueberries to the pancake batter. B-threads EnoughBatter and
BatterThinEnough prevent blueberry addition where there is not enough batter, or
when the batter is too thick. B-thread EventuallyAddBlueberries ensures that, even-
tually, blueberries are added.

1 bp.registerBThread("Blueberries", function (){
2 bp.sync({ request:ADD_BLUEBERRIES });
3 });
4

5 bp.registerBThread("EnoughBatter", function (){
6 bp.sync({ waitFor:ADDITION_EVENTS , block:ADD_BLUEBERRIES });
7 bp.sync({ waitFor:ADDITION_EVENTS , block:ADD_BLUEBERRIES });
8 bp.sync({ waitFor:ADDITION_EVENTS , block:ADD_BLUEBERRIES });
9 });

10 bp.registerBThread("BatterThinEnough", function (){
11 var toBlock=bp.none;
12 while (true) {
13 var viscosityEvt=bp.sync({ waitFor:VISCOSITY_EVENTS , block:toBlock });
14 toBlock =(viscosityEvt.data >=0) ? BLUEBERRIES:bp.none;
15 }});
16

17 bp.registerBThread("EventuallyAddBlueberries", function (){
18 bp.hot(true).sync({ waitFor:BLUEBERRIES });
19 });

3.2 Deadlock Detection

A b-program is deadlocked at a state s, when s contains requested events, and
they are all blocked (for other definitions, see Sect. 5). In these cases, no b-thread
can advance, even though some request to. As event blocking is a central to the
BP paradigm, deadlocks are a concern developers have to keep in mind; Formal
analysis for deadlock detection is an important tool in a b-programmer’s toolbox.

To demonstrate a deadlock, let us consider an upgrade to our batter mixer:
support for blueberry pancakes. This requires adding a b-thread requesting a new
event – ADD_BLUEBERRIES – whose semantics are similar to those of ADD_WET and
ADD_DRY. To reduce the amount of blueberries bursting, we additionally require
that (a) there is enough batter in the mixing bowl when blueberries are added,
and (b) that batter is relatively thin. Listing 1.3 contains b-threads for adding
blueberries, and for timing their addition.

Adding blueberry support to our controller b-program may cause it to dead-
lock. Specifically, in runs where batter thickness is always non-negative, the
b-program will arrive at a situation where the Blueberries b-thread requests to
add blueberries, BatterThinEnough blocks their addition, and the mixture adding
b-threads (Listing 1.1) have terminated. Thus, the controller program cannot
advance, event though some b-threads request to.

Verification of Liveness and Safety in BP Using BPjs 207

Assertions cannot be used to detect deadlocks, because assertions are made
by b-threads, which are locked in place. Hence, deadlock detection has to be done
at the b-program level. BPjs can detect and report these cases as it traverses a
b-program’s state-space. Deadlock reports include the involved b-threads, their
role in the detected deadlock (requestors or blockers), and the event trace leading
up to the deadlock (see Fig. 1 left).

Deadlocks and Hot Terminations. Recall that a hot termination occurs
when a b-program terminates while one or more of its b-threads are hot (Defini-
tion 3). Hot synchronization points are intended to specify liveness requirements,
which of course do not constrain finite runs, such as those that end in a deadlock.
However, describing requirements using liveness terms may allow a verification
process to detect what requirements are being violated at a higher level.

Consider the above blueberry batter b-program, composed with the b-thread
EventuallyAddBlueberries from Listing 1.3. This new b-thread consists of a single
declarative statement, stating that blueberries should eventually be added to the
batter. It does not affect the controller’s behavior, as it does not request or block
any events – only waits for a blueberry addition event. When a hot-termination
of this b-thread is detected during verification, the verifier is able to report that
the requirement to eventually add blueberries was violated.

Hot termination analysis may offer a significant improvement over dead-
lock analysis, which provides a low-level explanation of how things went wrong
(“event e requested by t1 and blocked by t2”), but misses the higher-level picture
of what went wrong. Here, it is not incorrect to say that the ADD_BLUEBERRIES

event was requested and blocked and that the b-program as a whole could not
advance. But a better, closer to the requirements phrasing of the problem would
be “we requested blueberries but they were never added”. Indeed, a hot termi-
nation analysis of the controller reports that EventuallyAddBlueberries can be
hot when the controller terminates, and does not look into the technicalities of
how this violation comes to be. Figure 1 compares the two report types.

To intuit why hot terminations are better phrased as liveness violations,
trivially extend finite runs to infinite ones as follows: Let r be a finite b-program
run s0

e0−→ s1
e1−→ . . .

en−1−−−→ sn. Extend it to an infinite run by adding a self loop at
sn, using a trivial event τ . Now, r becomes the hot b-thread run: s0

e0−→ . . .
en−1−−−→

sn
τ−→ sn

τ−→ sn The generated cycle violates the requirement violated by the
original hot termination, but does so as a “proper” liveness violation, in an
infinite run in which an event should happen, but never does.

Hot-termination analysis allows developers to declare that a certain event
should be triggered, without specifying who requests it. This is important for
BP-based systems, where programs are composed of multiple b-threads. As such,
they are prone to mis-configurations (e.g. omissions of program parts). In cases
where the missing parts are those responsible for requesting an essential event,
adding a b-thread that hot-waits for that event ensures mis-configured programs
will not pass verification.

208 M. Bar-Sinai and G. Weiss

Fig. 1. Two verification reports of the same issue: a run terminates without adding
blueberries to the batter. The report to the left treats the issue as a deadlock, providing
a low-level explanation of how the b-program has deadlocked. The report to the right
treats the issue as a hot termination, and provides a higher level explanation of which
requirement was violated.

3.3 Liveness Requirements

We now turn to definition and analysis of liveness requirements in b-programs,
using the proposed hot synchronization concept. Baier and Katoen [5], define
liveness properties as applying to infinite runs only. A typical liveness property
would be “eventually X happens” or “Y happens infinitely often”. We begin by
presenting a b-program whose runs are infinite, and thus can be constrained by
liveness requirements. Then, we discuss various requirements and hot runs of
said b-program.

Consider an industrial pancake batter mixer. It repeatedly prepares batter
for a pancake batch, releases it (presumably to an automated pan, left for future
work) and then prepares batter for the next batch. The server code, part of which
appears in Listing 1.4, builds on the code in Listing 1.1. Mixture addition loops
are wrapped in infinite loops, and are followed by a wait for a RELEASE event. A
newly added b-thread releases the batter when the bowl contains enough of it.

Hot B-Thread Run: Industrial Blueberry Pancakes. We begin by requir-
ing our industrial mixer to add blueberries to the batter infinitely often (LTL:
��ADD BLUBERRIES). To this end, we add the blueberry addition and require-
ment b-threads to its controller (Listing 1.3). These b-threads are modified to
support repetitive execution, by wrapping their code in an infinite loop.

Verification of Liveness and Safety in BP Using BPjs 209

Listing 1.4. Parts of the pancake server code. Mixture-adding b-threads run in an
infinite loop where they add the required amount of doses to the mixer bowl, and then
wait for the batter to be released. A Releaser b-thread is responsible for releasing the
batter, when the batter amount reaches a set threshold. For brevity, some definitions
and b-threads were omitted. Full code is available at [3]

1 const RELEASE = bp.Event("RELEASE_BATTER");
2

3 bp.registerBThread("Dry", function (){
4 while (true) {
5 for (var i=0; i<DOSE_COUNT; i++){
6 bp.sync({ request:ADD_DRY });
7 }
8 bp.sync({ waitFor:RELEASE });
9 });

10

11 bp.registerBThread("Releaser", function (){
12 var doseCount = 0;
13 while (true) {
14 bp.sync({ waitFor:ADDITION_EVENTS });
15 doseCount ++;
16 if (doseCount === (DOSE_COUNT *2)) {
17 bp.sync({ request:RELEASE , block:ADDITION_EVENTS });
18 doseCount =0;
19 }}});

Because of the requirement that the batter is thin enough when blueberries
are added, certain mixture addition orders prevent blueberries from being added
infinitely often (a situation similar to that described in Subsection 3.2). In such
runs, where blueberries are added a finite number of times, the iterative variant of
the EventuallyAddBlueberries b-thread eventually becomes always hot, making
the run a hot run. BPjs can detect these runs and provide execution traces which
allows developers to fix the b-program4.

Hot System Run: Industrial Blueberry-Kale Pancakes. Our final mixer
variant prepares healthy pancake batter, containing equal amounts of blueberries
and kale. To this end, we define the ADD_EXTRAS event, which holds two data fields:
amount of blueberries that should be added, and amount kale that should be
added. Two new b-threads—one for each ingredient—monitor the amount of
added extras, and issue requests to ensure the amounts are eventually balanced.
Listing 1.5 contains selected part of the code. Both b-threads request addition
of their respective ingredient using hot synchronization statements, stating that
the ingredient portion must be added eventually.

Consider a case where, during a run of a blueberry-kale mixer controller,
half a dose of kale is added to the batter. The two adder b-threads start adding
blueberries and kale to the mix, but cannot balance the kale/blueberry ratio, as
they add a single ingredient dose each time. The b-program is trapped in a hot
run, where the extras bias forever changes from 0.5 to –0.5 and back.

4 Sample execution logs are available at [3].

210 M. Bar-Sinai and G. Weiss

Listing 1.5. Code for balancing the amount of blueberries and kale in our proposed
blueberry-kale pancake batter maker. The BlueberryAdder and KaleAdder b-threads
monitor the blueberry/kale bias of the batter, and request events to correct it, when
it goes out of balance. Requests are done using bp.hot(true).sync, to signal that the
ingredients must eventually be added. Some code omitted for brevity.

1 function addExtrasEvent(blueberries , kales) {
2 return bp.Event("ADD_EXTRAS", {
3 blueberries:blueberries ,
4 kales:kales
5 });
6 }
7 var ADD_EXTRAS = bp.EventSet("sADD_EXTRAS", function(e){
8 return e.name.equals("ADD_EXTRAS");
9 });

10

11 bp.registerBThread("KaleAdder", function (){
12 var fruitBias =0;
13 while (true) {
14 var evt = null;
15 if (fruitBias > 0) {
16 evt = bp.hot(true).sync({ request:addExtrasEvent (1,0),
17 waitFor:ADD_EXTRAS });
18 } else {
19 evt = bp.sync({ waitFor:ADD_EXTRAS });
20 }
21 fruitBias = fruitBias+evt.data.blueberries -evt.data.kales;
22 }});
23 bp.registerBThread("BlueberryAdder", function (){...});

As described here, a b-program hot system run is a bug. However, one can
think of similar cases where a b-program hot system run is desirable. One exam-
ple is a traffic lights system, where a round-robin queue of the lights must keep
progressing forever.

4 Evaluation

This section evaluates BPjs’ performance both as a model analysis tool, and as
an execution engine. The b-program used was a simulation of a robot moving in
a house, where it has to avoid traps and walls, and cannot stay in areas marked
as “hot” forever [6]. Each measurement was repeated 10 times and averaged.

To evaluate BPjs as a runtime engine, we measured the time required for
a robot to perform 1000 moves in a house simulation program5. For this test,
we removed the trap cell, to ensure that runs were not terminated prematurely.
We repeated the experiment with a range of floor plan sizes, and compared the
results against a similar b-program executed using BPJ, the Java BP runtime
library introduced in [17]. The results show that BPJ is about 5 times faster than
BPjs (see Table 1). This is to be expected, as Java is a compiled language whilst

5 Measurements were taken on a 2.9 GHz Intel Core i9 MacBook Pro with 32GB
RAM, of which 16 GB was allocated to Java. The JVM used was OpenJDK 18.9
(Java 11).

Verification of Liveness and Safety in BP Using BPjs 211

Table 1. Average time required for a robot to take 1000 steps in a house simulation
(milliseconds). Measurements were taken using OpenJDK 18.9 (Java 11), on a 2.9 GHz
MacBook Pro with 16GB of RAM (out of 32) allocated to Java. Each measurement
was repeated 10 times.

Floor size B-threads BPJ (msec) BPjs (msec)

5 × 5 25 65.2 ±6 238.4 ±72

10 × 10 100 89.6 ±12 403.5 ±74

20 × 20 400 189.4 ±17 1,094.7 ±91

50 × 50 2,500 2031.2 ±20 8,461.3 ±102

100 × 100 10,000 Out of memory 12,605.7 ±110

JavaScript is interpreted. Moreover, due to technical restrictions, BPjs cannot
use runtime optimizations during execution. However, because BPjs can run
multiple b-threads using the same OS thread, it can execute b-programs with a
larger concurrent b-thread count. When running a simulation for a 100×100 floor
plan (containing 10,000 b-threads), BPJ exhausted its 16 GB memory allowance,
while BPjs was able to run the program to completion.

To evaluate the performance of BPjs as an analysis engine, we measured the
time required to fully traverse the state space of the house simulation b-program.
This metric is used, since it provides an upper bound for detecting both liveness
and safety violations. We used different floor plan sizes, and a hash-based visited
state store6 (see Table 2). We used two Java virtual machines: OpenJDK, and
the more advanced GraalVM7. While the latter was consistently faster, the speed
increase was not dramatic.

Table 2. Average time required for BPjs to fully traverse the state space of a b-program
simulating a robot moving in a house. Measurements were taken using OpenJDK 18.9
and GraalVM 20ce, on a 2.9 GHz MacBook Pro with 32GB of RAM. 16 GB were allo-
cated to the JVMs. Each measurement was repeated 10 times. sd : Standard Deviation

Floor size OpenJDK18.9 GraalVM

time (msec) sd time (msec) sd

5 × 5 290.2 45 233.1 58

10 × 10 544.3 34 535.7 20

20 × 20 1,531.1 12 1,510.7 34

50 × 50 10,810.5 179 9,966.7 194

100 × 100 66,703.5 1,769 64,152.6 1,231

6 BPjs visited state store is pluggable; other state stores exist as well.
7 https://www.graalvm.org.

https://www.graalvm.org

212 M. Bar-Sinai and G. Weiss

To compare BPjs’ verification performance against other verification alter-
natives, we implemented a similar program, using a modified version of BPJ [7],
verifying it with NASA’s JavaPathFinder (JPF) [19]. BPJ, which does not use
pluggable design, needed to be modified in order to support a random-based
event selection strategy. JPF is a modular Java virtual machine, aimed at pro-
gram analysis and verification. We used the core JPF system, which verifies a
program by running all of its possible thread interleaving combinations, and enu-
merating the overall random decision points. Thus, JPF’s view of a b-program’s
state space is much larger than that of a BP engine: A BP engine only counts syn-
chronization points as states, whereas JPF looks at thread interleaving options.
Not surprisingly, the JPF verification process took much longer, taking 85 s to
verify a 1× 1 floor plan (containing 3 b-threads), visiting 438,568 states. While
trying to verify a 2× 2 floor plan (6 b-threads), JPF ran out of memory after
8:31 min8. JPF is a mature and active product, used here as a common reference
point; other Java verification tools exist (see, e.g., [10]).

We explored two other alternatives for verification, and found both not viable.
BPMC, a model checker based on BPJ [15], does not support Java versions later
than Java 5, last updated at 2009. Thus, we no longer consider it a practical
tool. Our attempts to verify BPjs using JPF failed for technical reasons, as JPF
does not support some of the Java constructs used by BPjs.

5 Related Work

The work presented here draws its main concept—a hot state that a program
must eventually leave—from Live Sequence Charts (LSC) [11,16]. LSC is a form
of scenario-based programming that extends Message Sequence Charts. Under
LSC, when a lifeline arrives at a location where it sends a hot message, that
message must eventually be passed, or the run is marked as violating the speci-
fication. BP and LSC are both scenario-based [13], but differ significantly: LSC
models conversations between objects, while BP models synchronized behaviors.

LSC additionally defines the notion of a cut—the current location of each of
the chart’s lifelines during chart execution. If any of these locations are hot, the
cut is considered hot as well. LSC considers exiting a chart while its cut is hot
as a violation. The hot termination concept presented here is the BP equivalent
of that requirement.

LSC specifications can be verified through translation to LTL or to automa-
tons [22]. In [8], Marron and the authors offer a way of translating LSC to BPjs
programs for execution. Drawing on that translation and the hot synchronization
concept presented here, LSCs can be verified through transformation to BP.

8 Measurements were taken on a 2.9 GHz Intel Core i9 MacBook Pro with 32GB
RAM, of which 16 GB was allocated to Java. We used Java 8 (1.8.0 201), as JPF
was not able to run on Java 11.

Verification of Liveness and Safety in BP Using BPjs 213

BPmc [15] is the first model checker for b-programs. While it was the first
work to deliver on the promise of BP as a verifiable model, it is limited to safety
properties, and does not support some recent BP features, such as dynamic b-
thread additions and pluggable event selection strategies. The paper presenting
BPmc also sketched a methodology for verifying liveness properties by detect-
ing hot cycles in a b-program state-space. The work presented here builds on
this sketch, and broadens it with an updated formal model for BP, an elabo-
rated notion of hot run (respective to a group of b-threads), the hot termination
concept, and support for the modern BP feature set.

BPmc and BPjs detect deadlocks in the same way, but differ on their inter-
pretation of a state with no requested events: BPmc regards it as a deadlock, as
it is a state with no successors. BPjs, on the other hand, does not regard it as
a deadlock, since no b-thread is blocked. This distinction only holds for safety
properties—if a b-program gets to a state where no events are requested but at
least one b-thread is hot, BPjs will declare this a liveness violation. Furthermore,
BPjs’ pluggable architecture allows adding a BPJ-style deadlock detection easily.

BPC is a behavioral programming library for C++, presented by Katz and
Harel in [14]. It supports indirect verification through translation of programs
to SPIN [20], a popular verification system.

To the best of out knowledge, this paper is the first to present a formal model
of BP which allows representation and verification of liveness properties, the first
to offer a tool for direct verification of liveness properties of b-programs, the first
to present the concept of hot runs respective of a group of b-threads, and the
first to present the hot termination concept into the context of BP.

BPjs was used as a model execution engine in an MBSE design by Greenyer,
Sadon, Marron, and the authors for controlling an autonomous rover, as a solu-
tion for a design challenge published by MODELS18 [13]. Sadon, Elyasaf, and
the authors used BPjs in a similar manner to create an on-board controller for
a satellite [2].

Another system that combines traditional programming with formal model-
ing is Umple [23]. It does so by adding UML concepts to mainstream languages.
A developer can define relations between classes using UML notation, and have
Umple generate the required code when the model is realized. For modeling
dynamic system behavior, Umple uses UML Statecharts. These charts can be
analyzed at the model level, using execution scenarios [4]. However, Umple is
UML-based, and does not support BP concepts directly.

6 Conclusion

This paper proposes an extension to the BP formal model, enabling expres-
sion and verification of both safety and liveness properties. Liveness violations
are detected by marking b-threads as hot at certain synchronization points, and
searching for hot cycles in the verified b-program’s transition system. Safety vio-
lations are detected by marking specific program states as having a violation, or

214 M. Bar-Sinai and G. Weiss

by detecting deadlocks. The paper presents the concept of a hot run with respect
to a group of b-threads, and identifies two specific cases: hot b-thread runs, which
are always a violation of a liveness property, and hot system runs, which may or
may not be a violation. Additionally, the paper defines hot termination—a case
where phrasing a safety requirement using liveness terms allows model checkers
to identify requirements violated by finite runs at a higher abstraction level than
a safety phrasing would allow.

References

1. Runtime Verification Conference Website (2001–2019). http://www.runtime-
verification.org/

2. A scenario based on-board software and testing environment for satellites. In: Pro-
ceedings of the 59th Israel Annual Conference on Aerospace Sciences (2019)

3. Appendix, Code: Verification of Liveness and Safety Properties of Behavioral Pro-
grams Using BPjs. Zenodo, July 2020. https://doi.org/10.5281/zenodo.3967250

4. Aljamaan, H., Garzon, M., Lethbridge, T.: UmpleRun: a dynamic analysis tool
for textually modeled state machines using umple. In: EXE@MoDELS, pp. 16–20
(2015)

5. Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press, Cambridge
(2008)

6. Bar-Sinai, M.: BP visual running examples code repository (2019). https://github.
com/bthink-bgu/VisualRunningExamples

7. Bar-Sinai, M., Weiss, G.: Code Appendix for “BPjs - A Behavioral Pro-
gramming Tool Suite” (2018). https://github.com/michbarsinai/BPjs-SCP-OSP
CodeAppendix

8. Bar-Sinai, M., Weiss, G., Marron, A.: Defining semantic variations of diagrammatic
languages using behavioral programming and queries. In: EXE@MoDELS (2016)

9. Bar-Sinai, M., Weiss, G., Shmuel, R.: BPjs: an extensible, open infrastructure for
behavioral programming research. In: Proceedings of the 21st ACM/IEEE Inter-
national Conference on Model Driven Engineering Languages and Systems: Com-
panion Proceedings, MODELS 2018, Copenhagen, Denmark, 14–19 October 2018,
pp. 59–60 (2018). https://doi.org/10.1145/3270112.3270126

10. Beyer, D.: Advances in automatic software verification: SV-COMP 2020. In:
TACAS 2020. LNCS, vol. 12079, pp. 347–367. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-45237-7 21

11. Damm, W., Harel, D.: LSCs: breathing life into message sequence charts.
Formal Methods Syst. Des. 19(1), 45–80 (2001). https://doi.org/10.1023/A:
1011227529550

12. Gordon, M., Marron, A., Meerbaum-Salant, O.: Spaghetti for the main course?:
observations on the naturalness of scenario-based programming. In: Proceedings
of the 17th ACM Annual Conference on Innovation and Technology in Computer
Science Education (ITiCSE 2012). ACM, New York (2012). https://doi.org/10.
1145/2325296.2325346

http://www.runtime-verification.org/
http://www.runtime-verification.org/
https://doi.org/10.5281/zenodo.3967250
https://github.com/bthink-bgu/VisualRunningExamples
https://github.com/bthink-bgu/VisualRunningExamples
https://github.com/michbarsinai/BPjs-SCP-OSP_CodeAppendix
https://github.com/michbarsinai/BPjs-SCP-OSP_CodeAppendix
https://doi.org/10.1145/3270112.3270126
https://doi.org/10.1007/978-3-030-45237-7_21
https://doi.org/10.1007/978-3-030-45237-7_21
https://doi.org/10.1023/A:1011227529550
https://doi.org/10.1023/A:1011227529550
https://doi.org/10.1145/2325296.2325346
https://doi.org/10.1145/2325296.2325346

Verification of Liveness and Safety in BP Using BPjs 215

13. Greenyer, J., Bar-Sinai, M., Weiss, G., Sadon, A., Marron, A.: Modeling and pro-
gramming a leader-follower challenge problem with scenario-based tools. In: Hebig,
R., Berger, T. (eds.) Proceedings of MODELS 2018 Workshops: ModComp, MRT,
OCL, FlexMDE, EXE, COMMitMDE, MDETools, GEMOC, MORSE, MDE4IoT,
MDEbug, MoDeVVa, ME, MULTI, HuFaMo, AMMoRe, PAINS co-located with
ACM/IEEE 21st International Conference on Model Driven Engineering Lan-
guages and Systems (MODELS 2018), Copenhagen, Denmark, 14 October 2018.
CEUR Workshop Proceedings, vol. 2245, pp. 376–385. CEUR-WS.org (2018).
http://ceur-ws.org/Vol-2245/mdetools paper 8.pdf

14. Harel, D., Katz, G.: Scaling-up behavioral programming: steps from basic principles
to application architectures. In: Proceedings of the 4th International Workshop on
Programming Based on Actors Agents & Decentralized Control, pp. 95–108. ACM
(2014)

15. Harel, D., Lampert, R., Marron, A., Weiss, G.: Model-checking behavioral pro-
grams. In: Proceedings of 11th International Conference on Embedded Software
(EMSOFT), pp. 279–288 (2011)

16. Harel, D., Marelly, R.: Come, Let’s Play: Scenario-Based Programming Using LSCs
and the Play-Engine. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-
642-19029-2

17. Harel, D., Marron, A., Weiss, G.: Programming coordinated behavior in Java. In:
D’Hondt, T. (ed.) ECOOP 2010. LNCS, vol. 6183, pp. 250–274. Springer, Heidel-
berg (2010). https://doi.org/10.1007/978-3-642-14107-2 12

18. Harel, D., Marron, A., Weiss, G.: Behavioral programming. Comm. ACM 55(7)
(2012)

19. Havelund, K., Pressburger, T.: Model checking Java programs using Java
PathFinder. Int. J. Softw. Tools Technol. Transfer 2(4), 366–381 (2000). https://
doi.org/10.1007/s100090050043

20. Holzmann, G.J.: The model checker SPIN. IEEE Trans. Softw. Eng. 23(5), 279–295
(1997). https://doi.org/10.1109/32.588521

21. Keller, R.M.: Formal verification of parallel programs. Commun. ACM 19(7), 371–
384 (1976). https://doi.org/10.1145/360248.360251

22. Klose, J., Toben, T., Westphal, B., Wittke, H.: Check it out: on the efficient formal
verification of live sequence charts. In: Ball, T., Jones, R.B. (eds.) CAV 2006.
LNCS, vol. 4144, pp. 219–233. Springer, Heidelberg (2006). https://doi.org/10.
1007/11817963 22

23. Lethbridge, T.C., Mussbacher, G., Forward, A., Badreddin, O.: Teaching UML
using umple: applying model-oriented programming in the classroom. In: 2011 24th
IEEE-CS Conference on Software Engineering Education and Training (CSEE T),
pp. 421–428, May 2011. https://doi.org/10.1109/CSEET.2011.5876118

24. Mozilla, individual contributors: The Mozilla Rhino JavaScript Engine (2019).
https://mozilla.org/rhino

25. Rodrigues da Silva, A.: Model-driven engineering. Comput. Lang. Syst. Struct.
43(C), 139–155 (2015). https://doi.org/10.1016/j.cl.2015.06.001

http://ceur-ws.org/Vol-2245/mdetools_paper_8.pdf
https://doi.org/10.1007/978-3-642-19029-2
https://doi.org/10.1007/978-3-642-19029-2
https://doi.org/10.1007/978-3-642-14107-2_12
https://doi.org/10.1007/s100090050043
https://doi.org/10.1007/s100090050043
https://doi.org/10.1109/32.588521
https://doi.org/10.1145/360248.360251
https://doi.org/10.1007/11817963_22
https://doi.org/10.1007/11817963_22
https://doi.org/10.1109/CSEET.2011.5876118
https://mozilla.org/rhino
https://doi.org/10.1016/j.cl.2015.06.001

On Correctness, Precision, and
Performance in Quantitative Verification

QComp 2020 Competition Report

Carlos E. Budde1 , Arnd Hartmanns1(B) , Michaela Klauck2 ,
Jan Křetínský3 , David Parker4 , Tim Quatmann5 ,

Andrea Turrini6,7 , and Zhen Zhang8

1 University of Twente, Enschede, The Netherlands
a.hartmanns@utwente.nl

2 Saarland University, Saarland Informatics Campus, Saarbrücken, Germany
3 Technical University of Munich, Munich, Germany

4 University of Birmingham, Birmingham, UK
5 RWTH Aachen University, Aachen, Germany

6 State Key Laboratory of Computer Science, Institute of Software,
Chinese Academy of Sciences, Beijing, China

7 Institute of Intelligent Software, Guangzhou, Guangzhou, China
8 Utah State University, Logan, UT, USA

Abstract. Quantitative verification tools compute probabilities, expec-
ted rewards, or steady-state values for formal models of stochastic and
timed systems. Exact results often cannot be obtained efficiently, so most
tools use floating-point arithmetic in iterative algorithms that approxi-
mate the quantity of interest. Correctness is thus defined by the desired
precision and determines performance. In this paper, we report on the
experimental evaluation of these trade-offs performed in QComp 2020: the
second friendly competition of tools for the analysis of quantitative formal
models. We survey the precision guarantees—ranging from exact rational
results to statistical confidence statements—offered by the nine participat-
ing tools. They gave rise to a performance evaluation using five tracks with
varying correctness criteria, of which we present the results.

1 Introduction

Quantitative formal models feature probabilistic choices, real-time aspects, or
continuous dynamics. They are used to study safety, dependability, or per-
formance aspects of e.g. randomised algorithms, network protocols, biological

The authors are listed alphabetically. This work was supported by DFG grant 389792660
as part of TRR 248 (CPEC), DFG grant 383882557 (SUV), ERC Advanced Grant
787914 (FRAPPANT), ERC Advanced Grant 834115 (FUN2MODEL), ERC Advanced
Grant 695614 (POWVER), the Guangdong Science and Technology Department (grant
no. 2018B010107004), the National Natural Science Foundation of China (grant nos.
61761136011, 61532019, 61836005), National Science Foundation grant CCF-1856733,
NWO project 15474 (SEQUOIA), and NWO VENI grant no. 639.021.754.
c© Springer Nature Switzerland AG 2021
T. Margaria and B. Steffen (Eds.): ISoLA 2020, LNCS 12479, pp. 216–241, 2021.
https://doi.org/10.1007/978-3-030-83723-5_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-83723-5_15&domain=pdf
http://orcid.org/0000-0001-8807-1548
http://orcid.org/0000-0003-3268-8674
http://orcid.org/0000-0002-6353-227X
http://orcid.org/0000-0002-8122-2881
http://orcid.org/0000-0003-4137-8862
http://orcid.org/0000-0002-2843-5511
http://orcid.org/0000-0003-4343-9323
http://orcid.org/0000-0002-8269-9489
https://perspicuous-computing.science
https://www7.in.tum.de/~kretinsk/suv.html
https://www.rwth-aachen.de/cms/root/Forschung/Projekte/EU-Projekte/EU-Projekte-in-Horizon/~dbdey/FRAPPANT/?lidx=1
http://fun2model.org
https://powver.org
https://www.utwente.nl/en/eemcs/ds/research/sequoia/
https://doi.org/10.1007/978-3-030-83723-5_15

On Correctness, Precision, and Performance in Quantitative Verification 217

processes, or cyber-physical systems [1,58]. Probabilistic models need dedicated
numeric algorithms to compute or approximate rational or real-valued probabil-
ities, expected values, or long-run averages. In this paper, we focus on tools for
the analysis of probabilistic formal models w.r.t. such quantitative properties.

Over the past two decades, a variety of algorithms have been devised for this
purpose. Most of them can roughly be categorised as variants of probabilistic
model checking (PMC) [9] and statistical model checking (SMC) [2], with proba-
bilistic planning closely related to the former. In PMC, the model’s state space
is explored—partially or exhaustively—to obtain an in-memory representation
of the model’s underlying semantics, which is typically a Markov chain or some
extension thereof. The value of interest can then be computed using numeric
algorithms such as value iteration. PMC is thus subject to the state space explo-
sion problem, limiting its ability to be applied to very large case studies. SMC,
on the other hand, relies on Monte Carlo simulation—generating random runs
through the model’s semantics—to statistically estimate the value of interest. It
does not need to store states other than the current and next one during run gen-
eration, and thus avoids state space explosion entirely. However, when faced with
a rare event—e.g. when trying to estimate a reachability probability on the order
of 10−9 with a suitable error of, say, 10−10—the number of runs needed explodes.
Furthermore, nondeterminism—controllable or adversarial unquantified choices,
such as in Markov decision processes (MDP) [78]—turn the estimation problem
into an optimisation problem, which SMC cannot directly handle. Probabilis-
tic planning is similar to PMC, but crucially employs heuristics to try to avoid
exploring the entire state space. Its focus is on finding strategies in MDP, i.e. the
choices that lead to the maximum reward, whereas PMC traditionally computes
values (e.g. expected rewards) and checks complex logical formulas.

With new algorithms come new tools: first academic prototypes, which may
over time develop into extensive collections of algorithms or tools targeting vari-
ous problems and use cases. In 2019, the first competition of tools for the analy-
sis of quantitative formal methods, QComp 2019 [46], took place. Using selected
benchmarks from the quantitative verification benchmark set (QVBS) [58], all of
which are available in the tool-independent Jani model interchange format [19],
it compared nine tools—ranging from general-purpose probabilistic model check-
ers to specialised SMC tools for rare events in dynamic fault trees—in terms of
performance, versatility, and usability. A major concern that surfaced during
the setup of QComp 2019 was that quantitative verification tools return num-
bers—and most of them use inexact methods to obtain these numbers, relying
on floating-point arithmetic and iterative algorithms that only approximate the
true values. Additionally, the long-time standard algorithm used by PMC tools,
value iteration, is known to be unsound [43]; and SMC tools can only deliver
statistical guarantees that allow them to produce incorrect results with a certain
probability (typically ≤5% of the time). Thus, while we on the one hand should
demand verification tools to always deliver correct verdicts, correctness in quan-
titative verification cannot effectively be achieved without admitting some error.
The best we can do, then, is to accompany results with precise statements about
how correct they are guaranteed to be.

218 C. E. Budde et al.

In this paper, we report on QComp 2020, the second edition of this competi-
tion. We focus on the issue of correctness of results, in particular on the trade-off
between strength of correctness guarantees and analysis performance. After an
overview of the types of formalisms and properties considered by QComp 2020
in Sect. 2, we thus expand on this in Sect. 3. Subsequently, in Sect. 4, we describe
the tools that participated in the competition, noting in particular which kinds
of correctness guarantees each tool can provide. Finally, we describe in Sect. 5
the setup of the QComp 2020 performance evaluation, and present its outcomes.

2 Languages, Formalisms, and Properties

Formal models are specified in modelling languages: graphical or textual nota-
tions designed for human users to compactly describe complex systems. They are
equipped with a semantics in terms of a mathematical formalism that provides
the basis for various analysis algorithms. Models are accompanied by properties
that specify a quantity of interest related to a set of behaviours of the model.

Modelling Languages. QComp 2020 draws its benchmarks from the QVBS, which
currently consists of 78 different models, many of them parametrised to scale
from small to large state spaces, with a set of properties associated to each model.
Every model is available in Jani, a JSON-based format designed as an interme-
diate representation that bridges tools and that other modelling languages can
be transformed into, as well as in its “original” modelling language. The models
used for QComp 2020 were originally specified in the Galileo format [86] for
fault trees, the GreatSPN format [4] for generalised stochastic Petri nets, the
process algebra-based high-level modelling language Modest [47], the PGCL
specification for probabilistic programs [40], PPDDL for probabilistic planning
domains [89], and the guarded-command Prism language [68].

Formalisms. Most modelling languages or higher-level formalisms map to some
extension of automata, i.e. graphs of states (that may contain relevant structure)
connected by transitions (possibly with several annotations). The benchmarks of
QComp 2020 have a semantics in terms of discrete- and continuous-time Markov
chains (DTMC and CTMC, respectively), which provide finite-support prob-
abilistic choices and, in CTMC, stochastic delays that follow exponential dis-
tributions; Markov decision processes (MDP), which extend DTMC with non-
deterministic choices; Markov automata (MA) [35], which combine CTMC and
MDP in a compositional way; and probabilistic timed automata (PTA) [71],
which marry MDP and timed automata [3], thus providing probabilistic choices
together with nondeterministic continuous real-time behaviour.

Properties. For QComp 2020’s performance evaluation, we consider basic types
of quantitative properties only. This is to ensure that, for every property, we
have more than one tool able to compute its value. In particular, we include
unbounded probabilistic reachability (“what is the—maximum or minimum, in
case of models with nondeterminism—probability to eventually reach a given set
of goal states”), or P-type properties for short; bounded probabilistic reachability

On Correctness, Precision, and Performance in Quantitative Verification 219

(P-type properties with the additional requirement of reaching the states before
some quantity exceeds a specified bound, in particular time for Pt-type and
an accumulated reward for Pr-type properties, both summarised as type Pb);
expected accumulated rewards until a given set of states is reached, or E-type
properties, including bounded variants (type Eb); and long-run average rewards
for CTMC and MA (type S, with the special case of steady-state probabilities).

Beyond QComp. Many other quantitative modelling languages not yet repre-
sented in the QVBS exist such as Uppaal’s XML format [13] or those supported
by Möbius [26]. The formalisms of QComp are part of a larger family tree of
quantitative automata-based formalisms as shown in the previous competition
report [46, Fig. 1]. They are all 1- or 1.5-player games; a future QComp may
expand to games with more players that capture competitive behaviour towards
conflicting goals as tool support for stochastic games expands. From our basic
properties, logics can be constructed that allow the expression of nested quanti-
tative requirements, e.g. that with probability 1, we must reach a state within n
transitions from which the probability of eventually reaching an unsafe state is
< 10−9. Examples are CSL [10] for CTMC, PTCTL [71] for PTA, and rPATL [25]
for stochastic games. Of further interest are multi-objective trade-offs [36], which
query for Pareto-optimal strategies balancing multiple goals.

3 Correctness and Precision

We now describe the challenges and trade-offs in evaluating and ensuring the cor-
rectness of quantitative analysis results, and how QComp 2020 addresses them.

3.1 Correctness Challenges

Unsound Algorithms. For a long time, the standard algorithm for PMC was
value iteration (VI). It associates a value to each state that approximates the
local value of the quantity of interest (e.g. the probability to reach the goal from
that state), then iteratively improves those values. VI converges towards the
true correct values, but may never reach them. However, it also lacks an effective
criterion to determine whether the current value is within some ε-interval around
the true value. Tools thus used the standard relative-error criterion: if vi(s) is
the value for state s in iteration i, then they stopped as soon as maxs |vi(s) −
vi−1(s)| ≤ α · vi(s). However, this does not guarantee |vi(s) − vtrue(s)| ≤ α ·
vtrue(s), where vtrue(s) is the (unknown) correct value [43]. QComp 2019 allowed
the use of VI in this way. Since the benchmark problems and associated results
were known, every tool could have chosen to use, for every benchmark instance,
the highest α that produces a result satisfying the QComp 2019 correctness
criterion of a relative error with ε = 10−3, achieving correctness at optimal VI
performance. This would unrealistically over-tweak tools for the competition in
a way that no user would be able to do themselves, not knowing the true value
on their own model a priori. As a workaround, all participants agreed to use

220 C. E. Budde et al.

α = 10−6, which is the default setting of the Prism model checker, for VI.
Although this levelled the playing field for tools using VI, it puts other tools
that only implement slower algorithms guaranteeing the required error bound at
a disadvantage: they were essentially penalised for producing correct results.

Statistical Errors. Those participants that use SMC are unaffected by the VI
problem. However, they cannot satisfy the correctness criterion of always ensur-
ing at most an error of relative ε = 10−3 at all: SMC tools estimate the value of
interest using random sampling. As such, there is always a chance that the sam-
ples happen to be so bad that the result is more than ε off. A typical guarantee
is that P(|v−vtrue | > ε) < δ for δ = 0.05, i.e. one in twenty results may be incor-
rect. Similar guarantees can be established for the relative error, though fewer
statistically correct methods exist for that case. To check whether a tool statisti-
cally satisfies the QComp 2019 correctness criterion in such a way would require
a statistical test involving many repeated tool executions for each benchmark
instance, which is not feasible in a small-scale competition like QComp.

3.2 Correct Algorithms

Since the unsoundness of VI came to the attention of the PMC community,
several extensions appeared that compute intervals of values vl and vu guar-
anteed to be lower and upper bounds on the true values, respectively. Then a
sound relative-error criterion is to stop when vu(s0)−vl(s0) ≤ ε·vl(s0). The algo-
rithms mainly differ in how the upper values are computed. The first was interval
iteration [11,44], originally proposed in 2014 [43] concurrently with a learning-
based approach [15] that uses the same idea. Sound value iteration [80] and most
recently optimistic value iteration [56] are newer variants with improved perfor-
mance. Implementations use (double-precision) floating-point arithmetic since
the smaller and smaller increments from iteration to iteration do not play well
with using unlimited-precision rational numbers. Thus we may still get incorrect
approximations due to floating-point imprecisions and error accumulation.

It is possible to obtain exact rational results for some formalism and property
type combinations. The algorithms that do so, for example rational search [12]
or the topological approaches implemented in Storm (see Sect. 4), are usually
much slower and less scalable to large models than the approximative approaches,
though. Most of these may also be implemented using floating-point arithmetic,
sacrificing unconditional correctness to gain some performance; the only errors
caused by such implementations are then due to floating-point imprecisions.

3.3 Correctness in QComp 2020

As a verification competition, QComp should in principle not allow tools to
deliver incorrect results. However, as we saw above, correctness comes in various
forms, and comparing all tools under the least commonly achievable form is
unfair. For QComp 2020, we thus adopted five tracks whose requirements match
the different kinds of guarantees provided by the various available approaches:

On Correctness, Precision, and Performance in Quantitative Verification 221

Table 1. Tool capabilities overview (with changes compared to QComp 2019 marked)

+

+ +

+
+

+ +

+

+ + + +

+

correct results must match the rational true value, if known, i.e. ε = 0.
floating-point correct results must come from an algorithm that would produce

an exact result, except that it may use floating-point arithmetic; correctness
is checked w.r.t. ε = 10−14 as an approximation of double’s precision.

ε-correct results must always be correct up to ε = 10−6; this track matches
with the guarantees provided by sound variants of VI.

probably ε-correct results must be correct up to ε = 5 · 10−2 with probability
0.95; this requirement can be satisfied by SMC tools, thus also the higher ε.

often ε-correct results must be correct up to ε = 10−3, but we allow algorithms
that do not always deliver such precision; thus VI can be used here.

often ε-correct results (10’): instead of being asked to deliver a fixed-precision
result, every tool has 10min to obtain as precise a value as possible.

All ε-correctness checks are for relative error; the often ε-correct track mirrors the
QComp 2019 requirements. Tools participate in one and all less restrictive tracks.

4 Participating Tools

Nine tools participated in QComp 2020. Compared to the previous edition,
Probabilistic Fast Downward dropped out, and STAMINA is a new entrant.
Table 1 shows the modelling languages, formalisms, and property types sup-
ported by all tools. Checkmarks indicate capabilities that were already present
as of QComp 2019; plus signs highlight new capabilities. Smaller checkmarks or
plus signs indicate limited support as explained below.

In the following, we give a brief description of each tool, with more detailed
information on the algorithms it uses to achieve the requirements of the different
tracks. Table 2 shows the tracks that each tool participates in. For every bench-
mark instance, tools could provide a default and a specific command line; see
Sect. 5 for a detailed explanation of this distinction.

222 C. E. Budde et al.

Table 2. Participation of tools in QComp 2020 tracks

track DFTRES ePMC mcsta modes MFPL Prism PET Stamina Storm

correct — — — — — — — — �
floating-p. — — � — — — — — �
ε-correct — — � — — � � — �
probably ε � — � � — � � � �
often ε � � � � � � � � �
often ε (10’) � — � � � — � � �

DFTRES [83], the dynamic fault tree rare event simulator, is a statistical model
checker for dynamic fault trees (DFT) that uses the Path-ZVA algorithm [81] for
rare event simulation. Implemented in Java, it works on Linux, macOS, and Win-
dows. It is free and open source, available at github.com/utwente-fmt/DFTRES.

By default, DFTRES uses DFTCALC [5] to parse the Galileo format, with
extensions such as repairs and inspections [82]. DFTRES supports Galileo DFT
and a subset of Jani with DTMC, CTMC, and MA semantics. In MA, nondeter-
minism must be spurious, i.e. different choices must result in the same measures.
DFTRES implements statistical estimation of system reliability, availability, and
mean time to failure (covering subsets of P-, Pt-, S-, and E-type properties). Sim-
ulations run in parallel on all available processor cores, resulting in near-linear
speedup on multi-core systems. Each thread can run importance sampling, e.g.
forcing [73] and Path-ZVA, allowing for efficient analysis of rare event behaviour
in a modest amount of memory. Path-ZVA is optimised for S properties, but also
supports probabilistic reachability. Since it performs a statistical analysis, the
guarantees that DFTRES provides—confidence-interval estimates with nominal
real-value coverage—match with the probably ε-correct track. Accordingly, it also
participates in the often ε-correct track, including the 10-minute variant, without
any specific parameters or optimisations for its more relaxed requirements.

The current version of DFTRES is 1.0.1. Since its participation in QComp
2019, it gained support for DTMC and some optimisations: First, the automata
in parallel composition are reduced : if the composition of two automata will have
fewer than 256 states (overapproximated as the product of the individual state
space sizes), the automata are replaced by their composition, which is minimised
modulo weak bisimulation. Second, the don’t-care optimisation removes transi-
tions once they can no longer affect observable behaviour. For instance, if one
child of a DFT OR gate fails, transitions from the other children are pruned.
Finally, for Pt properties—where high-performance cycles cannot be collapsed—
a new basic importance sampling scheme boosts runs leaving the cycle.

ePMC (formerly iscasMC [51]) is mainly written in Java, with some
performance-critical parts in C. It runs on 64-bit Linux, Mac OS, and Win-
dows. It is available open-source at github.com/ISCAS-PMC/ePMC. It supports
the Prism language and Jani as input; DTMC, CTMC, MDP, and stochastic
games as formalisms; and PCTL* and reward-based properties. ePMC targets

https://github.com/utwente-fmt/DFTRES
https://github.com/ISCAS-PMC/ePMC

On Correctness, Precision, and Performance in Quantitative Verification 223

extensibility: it consists of a small core while plugins provide the ability to parse
models, model-check properties of certain types, perform graph-based analyses, or
integrate BDD packages [34]. In this way, ePMC can easily be extended for spe-
cial purposes or experiments without affecting the stability of other parts. ePMC
focuses on complex linear-time properties [50] and stochastic parity games [52]. It
has been extended to support multi-objective model checking [48] and bisimula-
tion minimisation [49] for interval MDP. It also has experimental support for para-
metric Markov models [39,74]. Specialised branches model check quantum Markov
chains [37] and epistemic properties of multi-agent systems [38]. However, ePMC
so far only implements VI for QComp’s formalisms and property types, and thus
only participates in the often ε-correct track (but not its 10-minute variant, since
it cannot return partial results on early termination).

mcsta is the Modest Toolset’s [53] explicit-state probabilistic model checker.
The toolset is centred around the Modest modelling language, but also supports
Jani. It is implemented in C# and works on 64-bit Linux, macOS, and Windows.
Currently at version 3.1, it is freely available at modestchecker.net.

mcsta provides state-of-the-art PMC algorithms for MDP and MA [21]. It
also supports PTA (as MDP via digital clocks [70]) as well as DTMC and CTMC
(as special cases of MDP and MA, respectively), but does not provide specialised
higher-performance algorithms for these submodels. The distinguishing features
of mcsta are its disk-based exploration and analysis [54], which allows checking
large unstructured models by making use of secondary storage like hard disks and
solid-state drives, and its comprehensive support for MA. mcsta participates in
the floating-point correct track by attempting to run VI until a (floating-point)
fixpoint is reached (not approximated) for P- and E-type properties, and by
using state elimination [45] for Pb properties on DTMC, MDP, and PTA. In
the ε-correct and probably ε-correct tracks, it uses optimistic value iteration,
switching to VI for the often ε-correct track.

Since its participation in QComp 2019, interval iteration for E-type prop-
erties, sound value iteration, and optimistic value iteration were implemented
in mcsta, considerably improving support for ε-correct results. State-of-the-art
algorithms for the analysis of MA were added [21], providing the switch-step
algorithm [20] for Pt properties as an alternative to Unif+, and adding support
for long-run average rewards (S-type properties). Finally, the essential states
reduction [29] brings significant speedups for some models at minimal overhead.

modes [18] is the Modest Toolset’s statistical model checker. As a sibling
of mcsta, it supports the same platforms and modelling languages. By default,
modes rejects models with nondeterminism—since that cannot be simulated—
and thus supports DTMC and CTMC. To efficiently estimate rare event prob-
abilities, modes provides rare event simulation methods based on importance
splitting [16], with a high degree of automation [17]. It implements lightweight
scheduler sampling (LSS) [72] to bring SMC to nondeterministic models like
MDP, MA [28], and PTA [27,59]. LSS chooses m random schedulers resolving
the nondeterminism and performs an SMC analysis on the DTMC or CTMC

http://www.modestchecker.net/

224 C. E. Budde et al.

induced by each. Its key insight is how to represent a scheduler in just 32 bits.
It needs an adaptated statistical evaluation that takes the repeated tests into
account. However, since LSS can only provide upper/lower bounds on mini-
mum/maximum probabilities or rewards with no guaranteed error, and the best
choice of m is highly model-dependent, modes only uses LSS to check MDP,
MA, and PTA in the 10-minute variant of the often ε-correct track, sampling
as many schedulers as possible within the time limit. In the regular probably
ε-correct and often ε-correct tracks, modes only considers DTMC and CTMC.
It does not use rare event simulation in the competition. The main addition to
modes since QComp 2019 is support for S-type properties.

Modest FRET-π LRTDP (MFPL) implements probabilistic planning for quanti-
tative formal models, motivated by earlier performance comparisons of using
planning algorithms for model checking [64,65]. Built upon the Modest
Toolset in C#, it supports the same input languages as mcsta and modes
and runs on the same platforms. It is freely available at dgit.cs.uni-saarland.de.

Probabilistic planning uses MDP heuristic search to try to avoid state space
explosion by computing values only for a small fraction of the states, just enough
for the given property and precision. The algorithms are usually designed for
maximum reachability and maximum expected rewards, and assume a specific
class of MDP. To apply them to QComp’s general MDP problems, they need to
be wrapped in FRET iterations [66,85]. MFPL uses the FRET-π [85] variant of
FRET together with the LRTDP [14] heuristic search optimisation of value itera-
tion. Compared to the version used in QComp 2019, which calculated maximum
reachability probabilities only, it has been extended with support for minimum
and maximum P- and E-type properties. Because MFPL’s core is based on VI,
it takes part in the often ε-correct track and its 10-minute variant only.

PET is the partial exploration tool : an explicit-state model checker for unbounded
reachability in discrete-time models. Implemented in Java, it works cross-
platform. It uses Prism as a library for model parsing and exploration, and
hence handles Prism language models, with migration to Jani planned.

PET only partially explores a model’s state space, focusing computation on
“important” areas [15]: states that are rarely reached can be omitted from the
computation if one is only interested in an approximate solution. For each state
in the system, the algorithm stores sound upper and lower bounds. It repeatedly
samples paths (like in simulation) and back-propagates the bounds on the paths’
states as in interval iteration, until convergence, with proper treatment of end
components. PET can thus participate in the ε-correct track and all tracks with
weaker requirements. Its performance depends on the structure of the model: on
some, the PET approach is orders of magnitude faster than standard interval
iteration; on the other hand, it is inherently ill-suited for e.g. strongly connected
models like restarting mutual exclusion protocols. PET supports (unbounded)
P-type properties on MDP, DTMC, and CTMC, plus step-bounded reachability
on MDP and DTMC. Truly continuous-time dynamics (such as Pt properties for
MA) are not handled yet due to the technical subtleties of such an extension [6].

https://dgit.cs.uni-saarland.de/Michaela/modest-fret-pi-lrtdp

On Correctness, Precision, and Performance in Quantitative Verification 225

Since QComp 2019, PET was extended by an SMC module [8] that uses
the same basic idea to solve problems where the transition dynamics are not
known, and thus have to be learnt. It however is not a competitor to the other
tools in QComp since it intentionally ignores information present in the models.
Other branches of PET support stochastic games [63] and mean-payoff/S-type
properties on DTMC and MDP [7], which, however, are not part of QComp.

Prism [68] is a general-purpose probabilistic model checker with support for a
wide range of formalisms and property types. It has been actively developed for
20 years; the first formal release was in 2001. It is implemented in C++ and Java,
runs cross-platform, and is open-source, available at prismmodelchecker.org.

Prism supports DTMC, CTMC, MDP, and PTA models specified in the
guarded command-based Prism language. It focuses on the ε-correct and often
ε-correct tracks. For the former, Markov chains and MDP are solved using inter-
val iteration; for the latter, iterative numerical methods are used for Markov
chains and VI for MDP. Bounded properties are always (except on PTA) solved
using iterative numerical methods (for DTMC and MDP) or uniformisation
(for CTMC), which provide guaranteed error bounds. PTA are solved using
stochastic-game abstraction refinement [67]. Prism participates in the prob-
ably ε-correct track using the same algorithms as for ε-correct results (thus
guaranteeing the requested error with probability 1). While Prism includes an
SMC engine, which would more closely match the requirements of the probably
ε-correct track, that engine only provides absolute error bounds, not relative
ones as required in QComp. Prism does not provide a mechanism for delivering
partial results when terminated early, thus it does not participate in the 10-
minute often ε-correct variant. Prism incorporates simple heuristics to choose
appropriate solution methods based on the type and size of the model and the
property being checked; these are mostly used for the specific invocations. In
particular, Prism automatically switches to its MTBDD engine for very large
models, with a lower threshold for QComp since the larger models here (as in the
Prism benchmark suite [69], from which many of them derive) are more likely
to perform well with symbolic approaches than might be expected in typical
verification scenarios.

Prism participates in QComp 2020 with its current public release, ver-
sion 4.6. Since the previous edition of the competition, most development on
Prism focused on support for models (e.g. stochastic games) or properties (e.g.
automata-based specifications) which are not yet part of QComp.

Stamina [76], the stochastic approximate model checker for infinite-state anal-
ysis, was created in early 2019 with a focus on complex synthetic biological
network models. It supports CTMC written in the Prism language and upper-
bounded transient CSL properties. Implemented in Java, it runs on Linux and
macOS. Stamina iteratively performs state space expansion and calls Prism to
perform CTMC analysis. Based on the truncation method [77], Stamina uses
property-guided pruning [76] to reduce large and possibly infinite-state CTMC
models to finite state representations. Truncation assumes that the probabil-
ity mass concentrates on a small number of states, and does not distribute

http://www.prismmodelchecker.org/

226 C. E. Budde et al.

Table 3. Overview of algorithms used by Storm

formalism prop. (floating-point) correct (probably) ε-correct often ε-correct

DTMC, CTMC P, E LU-factorisation optimistic value iter. gmres
MDP, MA P, E policy iter. optimistic value iter. value iteration
DTMC, CTMC S LU-factorisation value iteration gmres
MDP, MA S Linear programming value iteration value iteration
DTMC, MDP Pb, Eb Matrix-vector mult. (steps), sequential approach (rewards)
CTMC Pb, Eb – uniformisation uniformisation
MA Pb – Unif+ Unif+

uniformly as time progresses. Therefore, Stamina only participates for CTMC
with Pt-type properties. Its approach delivers upper and lower bounds on the
probabilities being approximated, the difference representing the states that are
cut off. Stamina thus participated in the probably ε-correct and often ε-correct
tracks.

Motivated by addressing large and infinite-state probabilistic models,
Stamina does not require a user to manually bound variables in a Prism model.
Its runtime advantage starts to manifest as the state space size grows, as evi-
denced in [76]. However, QComp only includes three Prism-language CTMC
benchmark instances with Pt properties, and in particular no infinite-state mod-
els, meaning that Stamina cannot show its strengths in the competition.

Storm [32] is a probabilistic model checker that supports many modelling lan-
guages including Jani, the Prism language, DFT, and generalised stochastic
Petri nets. Markov models can be built and checked using explicit and decision
diagram-based representations. Storm’s modular design, efficient C++ core,
and extensive Python API yield a powerful toolbox for PMC, parameter syn-
thesis, counterexample generation, fault tree analysis, and many other purposes.
Storm has been in active development since 2012. It runs on Linux and macOS,
and is open source, available at stormchecker.org.

Storm supports DTMC, CTMC, MDP, and MA. Some PTA models can be
checked after converting them to MDP using the Modest Toolset to apply
digital clocks [70]. Storm participates in all tracks of QComp 2020. An overview
of the algorithms used for each combination of track, formalism, and property
type is given in Table 3. For P- and E-type properties, Storm divides the model
into strongly connected sub-models that can then be solved individually with
the method indicated in the first two rows of Table 3. For the correct track, num-
bers are represented as infinite-precision rationals. LU-factorisation solves linear
equation systems exactly; it is performed within Eigen. Gmres is a fast numerical
solution method for systems of linear equations implemented in Gmm++. VI for
S-type properties on CTMC and MA [23] provides sound precision guarantees.
Storm can also check such properties in MDP and MA exactly by solving a
linear program [42] using z3 [75]. Reward-bounded properties are solved using
a sequential approach [45,55] that avoids an expensive unfolding of the model.

http://www.stormchecker.org/
http://eigen.tuxfamily.org/
http://getfem.org/gmm.html

On Correctness, Precision, and Performance in Quantitative Verification 227

Time-bounded properties on CTMC are solved via uniformisation following Fox
and Glynn [61]. Unif+ [22,41] extends uniformisation to MA. Time-bounded
properties for CTMC and MA cannot be solved exactly. DFT without repairs
are solved with methods that exploit the fault tree structure [87].

Compared to the version used in QComp 2019, Storm now applies optimistic
value iteration for ε-correct P- and E-type properties. The implementation of
Unif+ [22,41] has been revamped and now supports relative precision require-
ments. Model construction has been improved, including support for symbolic
MA. Upon timeouts, Storm now reports the best result known so far. The Python
interface has been extended and the command line interface streamlined. While
experts can still select specific analysis engines, first-time users now benefit from
an automatic engine choice: using features of the input Jani model, such as the
number of parallel automata or the average variable range, a decision tree pre-
dicts the most appropriate model checking approach. To avoid over-fitting, the
automatic choice currently only selects among four alternatives: sparse (explicit-
state), hybrid (BDD-based exploration, but explicit data structures for numeric
computations), exact (like sparse, but using rational arithmetic), and symbbisim
(like hybrid, but additionally applying symbolic bisimulation minimisation).

Storm implements many alternatives to the aforementioned algorithms. For
example, optimistic value iteration can be replaced by interval iteration or sound
value iteration. Storm can synthesise high-level counterexamples [30] useful
for synthesis loops [24]. In multi-objective model checking, Storm computes
Pareto fronts for multi-objective MDP [55] and MA [79] under general and more
restricted strategies [33]. Parametric model checking is supported by techniques
to (i) compute closed-form solution functions, (ii) divide the parameter space
into satisfying and rejecting regions, and (iii) analyse and exploit monotonici-
ties [84]. Storm serves as the backend for the parameter synthesis tool PROPh-
ESY [31,62]. Stormpy provides a simple Python interface to Storm’s under-
lying data structures, algorithms, and engines which enables rapid prototyping.
More details on these and other features of Storm are given in [60].

5 Performance Evaluation

To evaluate the performance of the participating tools, they were executed on
benchmark instances—a model, fixed values for the model’s parameters, and a
property—taken from the QVBS. QComp 2020 used the same set of 100 instances
as QComp 2019. We also ran the performance evaluation on the same system: a
standard desktop with an Intel Core i7-920 CPU and 12GB of RAM running 64-
bit Ubuntu Linux 18.04. Tools were given 30 min wall-clock time per instance.
We can thus compare the current and previous results in the often ε-correct
track. We again allowed every tool to submit two command lines per instance—
one running the tool in a default configuration, the other being allowed to use
instance-specific parameters to tweak for maximum performance. However, we
relaxed the requirements for the default invocations: they need not run the tool
in its default configuration (modulo any parameters necessary to achieve the

228 C. E. Budde et al.

track’s correctness requirements), but could instead use the parameters that the
tool’s authors would today recommend as defaults for the given combination of
formalism and property type. This is because a tool’s default settings may be
considered part of its interface, which authors may not want to change for com-
patibility reasons, even though they would implement different defaults today.
This slightly reduces the ability to compare with QComp 2019. The ability to
submit specific invocations was not used by all tools, and overall only made
a significant difference for Storm, and a noticeable but smaller difference for
Prism. In the remainder of this section, we thus mostly show the performance
of the default runs. As Storm was the only tool that participated in the correct
track, we do not show performance comparison results for this track. Similarly,
we found that the model checkers were able to obtain exact results on almost all
instances within the time limit of the 10-minute often ε-correct track, rendering
our intended comparison of the achieved relative error useless.

On Storm’s Automatic Engine Choice. Storm can now automatically select a
specific configuration for each benchmark instance, and its authors recommend
doing so by default. This, however, would render QComp’s distinction between
default and specific invocations somewhat pointless. While QComp participants
agree that such automatic self-configuration is necessary to improve the usability
of quantitative verification tools as they gain more and more analysis engines,
algorithms, and parameters, it was not expected to appear in tools for QComp
2020. We will thus drop the default/specific distinction for future competitions.
For QComp 2020, we adopted the following pragmatic approach: Storm uses its
automatic engine choice by default, and does not use specific invocations. How-
ever, this configuration runs hors concours for the individual tool comparisons in
Sect. 5.2. In addition to Storm, we also evaluate “Storm-static” (abbreviated
St.-static): the same version of Storm, but without automatic engine choice. It
thus uses today’s recommended defaults for the default invocations, and hand-
tweaked command lines for the specific comparison. Storm-static is included
in all comparisons. Section 5.1 and the bottom-middle plot in Fig. 8 show the
drastic performance gains achieved by the automatic engine selection.

Incorrect Results. For most—but not all—instances, we have reference results
obtained via exact algorithms, or reference intervals obtained via sound algo-
rithms using a low ε. Where available, we use these to establish whether a tool
delivers an incorrect result. Note that some incorrect results may go undetected
because no reference value is available. In all but the often ε-correct and probably
ε-correct tracks, tools shall not deliver incorrect results. In the probably ε-correct
track, we should expect no more than 5% of a tool’s results to be incorrect.

In the correct track, Storm did not deliver any incorrect results. In the
floating-point correct track, mcsta delivered 9, Storm-static 7, and Storm
3 incorrect results. In particular, mcsta terminated on several cyclic models
where VI was not expected to reach a fixpoint, indicating that the termination
was entirely due to rounding in floating-point computations. In the ε-correct
track, mcsta, PET, Prism, and Storm only returned correct results, with
Storm-static having just one incorrect result in its default invocations. In the

On Correctness, Precision, and Performance in Quantitative Verification 229

10 20 30 40
≤1

6

60

600

1800

instances, default (of 67)

ti
m
e
(s
)

mcsta (44)
St.-static (34)
Storm (45)

20 40
≤1

6

60

600

1800

instances, specific (of 67)

ti
m
e
(s
)

mcsta (46)
St.-static (44)
Storm (45)

Fig. 1. Quantile plots for the floating-point correct track

probably ε-correct track, where some incorrect results are allowed, one was
delivered by each of Storm-static, Prism, and Stamina. As tools switched
to unsound algorithms for the often ε-correct track, more incorrect results were
delivered; see the respective plots in Sect. 5.2 for an indication of their numbers
per tool.

5.1 Quantile Plots

We first look at selected subsets of tools via quantile plots. We usually only
consider the instances supported by all of the tools shown in the plot; this
is to avoid unsupported instances having the same visual effect as timeouts
and errors. For example, for Fig. 1, the intersection of what mcsta and Storm
support contained n = 67 instances (shown as “of n” in the x-axis label). The
plots’ legends indicate the number of correctly solved benchmarks for each tool in
parenthesis (i.e. where no timeouts or error occurred and the result was correct).
A point 〈x, y〉 on the line of a tool in this type of plot signifies that the individual
runtime for the x-th fastest instance as solved by the tool was y seconds.

By ordering instances independently for each tool, quantile plots only allow
a comparison of the total performance of tools over the included instances. In
particular, cases where e.g. a tool is slower overall, but manages to solve some
hard instances much faster than any other, will not be visible in a quantile plot.
We thus exclude the specialised tools, whose the entire purpose is to solve some
hard instances better than anyone else, from most of the quantile plots we show.

floating-point correct. The quantile plots in Fig. 1 show that mcsta’s ad-hoc “just
try VI” approach to get floating-point correct results turned out to be rather com-
petitive. Storm-static more often timed out and delivered four more incorrect
results. The automatic engine selection moves Storm into a class of its own. As
the right-hand side of Fig. 1 shows, its performance is only nearly matched by
the hand-optimised configurations of the same tool.

ε-correct. In Fig. 2, we compare the general-purpose tools that participated in
the ε-correct track. Since Prism only supports models in the Prism language,
the plots only range over 43 instances; the intersection of what mcsta and

230 C. E. Budde et al.

10 20 30 40
≤1

6

60

600

1800

instances, default (of 43)

ti
m
e
(s
)

mcsta (33)
Prism (36)
St.-static (36)
Storm (42)

10 20 30 40
≤1

6

60

600

1800

instances, specific (of 43)

ti
m
e
(s
)

mcsta (34)
Prism (38)
St.-static (42)
Storm (42)

Fig. 2. Quantile plots for the ε-correct track

10 20 30
≤1

6

60

600

1800

instances, default (DTMC&CTMC)

ti
m
e
(s
)

mcsta (17)
modes (27)
Prism (22)
St.-static (25)
Storm (32)

20 40 60 80
≤1

6

60

600

1800

instances, default (all)

ti
m
e
(s
)

DFTRES (10) mcsta (66)
modes (27) PET (9)
Prism (44) Stamina (1)
St.-static (78) Storm (87)

Fig. 3. Quantile plots for the probably ε-correct track

Storm support covers 86 instances. We see that mcsta, Prism, and Storm-
static perform similarly with default settings. Once it can make use of its wide
range of different engines and algorithms, however, Storm cannot be matched.

probably ε-correct. Once statistical model checkers can join in, the competition
becomes more diverse. If we plot the results of the probably ε-correct track for the
general-purpose tools, the overall relationships remain the same as in Fig. 2, thus
we do not show these plots. Instead, we restrict to DTMC and CTMC. Then, we
can make a useful comparison that includes modes, as shown on the left-hand
side of Fig. 3. We see that modes is drastically faster than the model checkers
in most cases, needing just a few seconds for more than 20 of the instances.
Its runtime only rises significantly when confronted with somewhat rare events
(due to the relative-error requirement), and for some complex models where
computing the available transitions in itself takes significant computation time.
On the right-hand side of Fig. 3, we show a quantile plot over all 100 instances
and all tools in the track. This mainly shows how many instances each tool
supports and solves, but does not do justice to the specialised tools.

often ε-correct. All QComp 2020 participants compete in the often ε-correct
track, including in particular the fourth general-purpose model checker, ePMC.
We show the results in Fig. 4, limited to default results since few tools supplied
and gained from specific invocations. The top two plots in Fig. 4 can be compared

On Correctness, Precision, and Performance in Quantitative Verification 231

20 40
≤1

6

60

600

1800

instances, default (of 56)

ti
m
e
(s
)

ePMC (29)
mcsta (40)
St.-static (44)
Storm (51)

10 20 30 40
≤1

6

60

600

1800

instances, default (of 41)

ti
m
e
(s
)

ePMC (26)
mcsta (30)
Prism (38)
St.-static (36)
Storm (41)

10 20 30
≤1

6

60

600

1800

instances, default (DTMC&CTMC)

ti
m
e
(s
)

ePMC (12)
mcsta (15)
modes (19)
Prism (24)
St.-static (26)
Storm (33)

20 40 60 80
≤1

6

60

600

1800

instances, default (all)

ti
m
e
(s
)

DFTRES (5) ePMC (31)
mcsta (62) modes (19)
MFPL (11) PET (9)
Prism (54) Stamina (1)
St.-static (77) Storm (86)

Fig. 4. Quantile plots for the often ε-correct track

with QComp 2019 [46, Fig. 2] modulo the relaxed definition of default settings,
while the bottom two plots correspond to Fig. 3. In particular, we see that SMC
in the form of modes is no longer competitive given the much increased preci-
sion requirement of ε = 10−3. This confirms the results of earlier comparisons
between PMC- and SMC-based methods in different settings [88].

5.2 Scatter Plots

We next show scatter plots that compare the performance of each tool over all
individual instances to the best-performing other tool for each instance, using
default invocations only. A point 〈x, y〉 states that the runtime of the plot’s tool
on one instance was x seconds while the best runtime on the same instance
among all other tools except Storm with automatic engine selection1 was y
seconds. Thus points above the solid diagonal line indicate instances where the
plot’s tool was the fastest; it was more than ten times faster than any other
tool on points above the dotted line. Points on the “TO”, “ERR” and “INC” lines
indicate instances where the plot’s tool encountered a timeout, reported an error
(such as running out of memory), or returned an incorrect result, respectively.
Points on the “n/a” line indicate instances that none of the other tools was able
to solve. These plots provide more detailed information than the quantile plots

1 Storm, on the other hand, is not compared with Storm-static, thus its “wins n”
numbers, marked *, are not part of the same sum as those of the other tools.

232 C. E. Budde et al.

1 6

6
0

6
0
0

1
8
0
0

1

6

60

600

1800

T
O

E
R
R

IN
C

n
/
s

TO
ERR
INC
n/s

mcsta (wins 34/69)

St
.-
st
at
ic

(w
in
s
20

/8
0)

1 6

6
0

6
0
0

1
8
0
0

1

6

60

600

1800

T
O

E
R
R

IN
C

n
/
s

TO
ERR
INC
n/s

mcsta (specific, wins 22/69)
St

o
r
m

(w
in
s
41

/8
0)

DTMC

CTMC

MDP

MA

PTA

Fig. 5. Scatter plots for the floating-point correct track

since they compare the performance on individual instances, and also include
instances outside of the intersections of what is supported by multiple tools. For
example, the right-hand plot of Fig. 5 shows that mcsta manages to be faster
than Storm on a few instances whereas Fig. 1 looked like mcsta is always slower.

floating-point correct. Figure 5 compares mcsta to Storm-static and Storm
using floating-point correct algorithms. The “n/s” lines indicate instances not
supported by the other tool. Storm behaves nearly like Storm-static in specific
mode, which is why we show Storm on the right-hand side. Both tools solve
several instances where the other fails with a timeout; in the default case, per-
formance is similar when we exclude timeouts. As mentioned, mcsta’s approach
surprisingly worked, usually correctly, on models where it was not expected to
terminate. In summary, the two tools’ very different approaches appear com-
plementary, together being able to solve many more instances than each on its
own.

ε-correct. Data for the ε-correct track is plotted in Fig. 6. These now include useful
data for PET: we see that it times out on most instances, but is the fastest of
all tools on nearly half of the ones that it does solve in time. This matches the
expectations for an approach highly dependent on the models’ structure.

probably ε-correct. Figure 7 now includes SMC tools for the probably ε-correct
track. We do not show Stamina since it works for only three instances, out
of which it solves one successfully; the current QComp benchmarks simply do
not match Stamina’s purpose as discussed in Sect. 4. We now see the typical
behaviour of a specialised tool for DFTRES again, with PET showing markedly
improved performance relative to the other tools due to the relaxed precision
requirement. modes’ ability to solve many models in almost no time is evident.

often ε-correct. Figure 8 provides the details for QComp 2020’s largest track,
with often ε-correct results. We omit DFTRES (it only solves two instances now,
facing the same problems as modes from the increased precision requirement),

On Correctness, Precision, and Performance in Quantitative Verification 233

1 6

6
0

6
0
0

1
8
0
0

1

6

60

600

1800

T
O

E
R
R

IN
C

n/a

mcsta (wins 34/88)

be
st

ot
he

r

1 6

6
0

6
0
0

1
8
0
0

1

6

60

600

1800

T
O

E
R
R

IN
C

n/a

Prism (wins 15/52)

be
st

ot
he

r

1 6

6
0

6
0
0

1
8
0
0

1

6

60

600

1800

T
O

E
R
R

IN
C

n/a

PET (wins 4/24)

be
st

ot
he

r

1 6

6
0

6
0
0

1
8
0
0

1

6

60

600

1800

T
O

E
R
R

IN
C

n/a

St.-static (wins 34/96)

be
st

ot
he

r

1 6

6
0

6
0
0

1
8
0
0

1

6

60

600

1800

T
O

E
R
R

IN
C

n/a

Storm (wins 54*/96)

be
st

ot
he

r
DTMC CTMC

MDP MA

PTA

Fig. 6. Scatter plots for the ε-correct track

1 6

6
0

6
0
0

1
8
0
0

1

6

60

600

1800

T
O

E
R
R

IN
C

n/a

DFTRES (wins 3/12)

be
st

ot
he

r

1 6

6
0

6
0
0

1
8
0
0

1

6

60

600

1800

T
O

E
R
R

IN
C

n/a

mcsta (wins 24/88)

be
st

ot
he

r

1 6

6
0

6
0
0

1
8
0
0

1

6

60

600

1800

T
O

E
R
R

IN
C

n/a

modes (wins 24/32)

be
st

ot
he

r

1 6

6
0

6
0
0

1
8
0
0

1

6

60

600

1800

T
O

E
R
R

IN
C

n/a

PET (wins 5/24)

be
st

ot
he

r

1 6

6
0

6
0
0

1
8
0
0

1

6

60

600

1800

T
O

E
R
R

IN
C

n/a

Prism (wins 7/52)

be
st

ot
he

r

1 6

6
0

6
0
0

1
8
0
0

1

6

60

600

1800

T
O

E
R
R

IN
C

n/a

Storm (wins 39*/96)

be
st

ot
he

r

Fig. 7. Scatter plots for the probably ε-correct track

234 C. E. Budde et al.

1 6

6
0

6
0
0

1
8
0
0

1

6

60

600

1800

T
O

E
R
R

IN
C

n/a

ePMC (wins 2/61)

be
st

ot
he

r

1 6

6
0

6
0
0

1
8
0
0

1

6

60

600

1800

T
O

E
R
R

IN
C

n/a

DFTRES (wins 2/12)
be

st
ot
he

r

1 6

6
0

6
0
0

1
8
0
0

1

6

60

600

1800

T
O

E
R
R

IN
C

n/a

mcsta (wins 26/88)

be
st

ot
he

r

1 6

6
0

6
0
0

1
8
0
0

1

6

60

600

1800

T
O

E
R
R

IN
C

n/a

modes (wins 8/32)

be
st

ot
he

r

1 6

6
0

6
0
0

1
8
0
0

1

6

60

600

1800

T
O

E
R
R

IN
C

n/a

MFPL (wins 8/31)

be
st

ot
he

r

1 6

6
0

6
0
0

1
8
0
0

1

6

60

600

1800

T
O

E
R
R

IN
C

n/a

Prism (wins 17/58)
be

st
ot
he

r

1 6

6
0

6
0
0

1
8
0
0

1

6

60

600

1800

T
O

E
R
R

IN
C

n/a

Storm (wins 46*/96)

be
st

ot
he

r

1 6

6
0

6
0
0

1
8
0
0

1

6

60

600

1800

T
O

E
R
R

IN
C

n/a

Storm

St
.-
st
at
ic

DTMC CTMC

MDP MA

PTA

Fig. 8. Scatter plots for the often ε-correct track

PET (with the same pattern as in the probably ε-correct track at somewhat
worse performance), and Stamina (as before). These plots can be compared
with QComp 2019 [46, Figs. 4–6]. The bottom-middle plot compares Storm to
Storm-static (default), again highlighting the gains of automatic engine choice.

6 Conclusion

QComp 2020 conservatively extended QComp 2019, focusing on the critical field
of problems and performance trade-offs around the correctness and precision of
results in quantitative verification. The different tools provide different ranges of
guarantees, from exact rational results to no sure guarantees at all in the often
ε-correct track. Overall, Storm with its new automatic engine selection domi-
nates the competition. As the first significantly self-configuring model checker in

On Correctness, Precision, and Performance in Quantitative Verification 235

QComp, it advances the usability of PMC tools but also poses challenges to com-
petition design. Still, once we look more deeply into the results—e.g. via scatter
plots—we see that each tool contributes to solving the QComp benchmark set,
and several specialised tools successfully occupy clearly defined niches.

QComp 2020 did not evaluate usability: aside from Storm’s improved
automation, little has changed, with still only Prism providing a graphical user
interface. In particular, we learned from the previous competition that a usabil-
ity evaluation needs clear and widely agreed-upon criteria to be useful, and plan
to create such a usability scorecard for a future edition of QComp. More tools
now venture into stochastic games, opening a direction to expand QComp.

Roles of Authors and Acknowledgments. Arnd Hartmanns and Michaela Klauck
organised QComp 2020. Carlos E. Budde submitted DFTRES; the tool’s main
developer is Enno Ruijters. Andrea Turrini submitted ePMC; its main devel-
oper is Ernst Moritz Hahn. Arnd Hartmanns develops and submitted mcsta
and modes; Yuliya Butkova added many new MA model checking algorithms to
mcsta. Michaela Klauck develops and submitted Modest FRET-π LRTDP.
Jan Křetínský submitted PET; it is developed by Pranav Ashok, Tobias Meggen-
dorfer, and Maximilian Weininger. David Parker submitted Prism with support
from Joachim Klein. Tim Quatmann submitted Storm; it is co-developed by
Christian Hensel, Sebastian Junges, Joost-Pieter Katoen, Jip Spel, Matthias
Volk, and many others. Zhen Zhang submitted Stamina; it is developed by
Thakur Neupane, Brett Jepsen, Riley Roberts, and Zhen Zhang.

Data Availability. The tools used and data generated in the performance evalu-
ation are archived at qcomp.org and DOI 10.5281/zenodo.3965313 [57].

References

1. Abate, A., et al.: ARCH-COMP19 category report: stochastic modelling. In:
ARCH. EPiC Series in Computing, vol. 61, pp. 62–102. EasyChair (2019). https://
doi.org/10.29007/f2vb

2. Agha, G., Palmskog, K.: A survey of statistical model checking. ACM Trans. Model.
Comput. Simul. 28(1), 6:1–6:39 (2018). https://doi.org/10.1145/3158668

3. Alur, R., Dill, D.L.: A theory of timed automata. Theoret. Comput. Sci. 126(2),
183–235 (1994). https://doi.org/10.1016/0304-3975(94)90010-8

4. Amparore, E.G., Balbo, G., Beccuti, M., Donatelli, S., Franceschinis, G.: 30 years
of GreatSPN. In: Fiondella, L., Puliafito, A. (eds.) Principles of Performance and
Reliability Modeling and Evaluation, pp. 227–254. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-30599-8_9

5. Arnold, F., Belinfante, A., Van der Berg, F., Guck, D., Stoelinga, M.: DFTCalc: a
tool for efficient fault tree analysis. In: Bitsch, F., Guiochet, J., Kaâniche, M. (eds.)
SAFECOMP 2013. LNCS, vol. 8153, pp. 293–301. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-40793-2_27

6. Ashok, P., Butkova, Y., Hermanns, H., Křetínský, J.: Continuous-time Markov
decisions based on partial exploration. In: Lahiri, S.K., Wang, C. (eds.) ATVA
2018. LNCS, vol. 11138, pp. 317–334. Springer, Cham (2018). https://doi.org/10.
1007/978-3-030-01090-4_19

http://qcomp.org/competition/2020/
http://doi.org/10.5281/zenodo.3965313
https://doi.org/10.29007/f2vb
https://doi.org/10.29007/f2vb
https://doi.org/10.1145/3158668
https://doi.org/10.1016/0304-3975(94)90010-8
https://doi.org/10.1007/978-3-319-30599-8_9
https://doi.org/10.1007/978-3-319-30599-8_9
https://doi.org/10.1007/978-3-642-40793-2_27
https://doi.org/10.1007/978-3-030-01090-4_19
https://doi.org/10.1007/978-3-030-01090-4_19

236 C. E. Budde et al.

7. Ashok, P., Chatterjee, K., Daca, P., Křetínský, J., Meggendorfer, T.: Value iter-
ation for long-run average reward in Markov decision processes. In: Majumdar,
R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10426, pp. 201–221. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-63387-9_10

8. Ashok, P., Křetínský, J., Weininger, M.: PAC statistical model checking for Markov
decision processes and stochastic games. In: Dillig, I., Tasiran, S. (eds.) CAV 2019.
LNCS, vol. 11561, pp. 497–519. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-25540-4_29

9. Baier, C., de Alfaro, L., Forejt, V., Kwiatkowska, M.: Model checking probabilistic
systems. In: Handbook of Model Checking, pp. 963–999. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-10575-8_28

10. Baier, C., Katoen, J.-P., Hermanns, H.: Approximative symbolic model checking
of continuous-time Markov chains. In: Baeten, J.C.M., Mauw, S. (eds.) CONCUR
1999. LNCS, vol. 1664, pp. 146–161. Springer, Heidelberg (1999). https://doi.org/
10.1007/3-540-48320-9_12

11. Baier, C., Klein, J., Leuschner, L., Parker, D., Wunderlich, S.: Ensuring the reli-
ability of your model checker: interval iteration for Markov decision processes.
In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10426, pp. 160–180.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63387-9_8

12. Bauer, M.S., Mathur, U., Chadha, R., Sistla, A.P., Viswanathan, M.: Exact quan-
titative probabilistic model checking through rational search. In: FMCAD, pp.
92–99. IEEE (2017). https://doi.org/10.23919/FMCAD.2017.8102246

13. Behrmann, G., et al.: UPPAAL 4.0. In: QEST, pp. 125–126. IEEE Computer Soci-
ety (2006). https://doi.org/10.1109/QEST.2006.59

14. Bonet, B., Geffner, H.: Labeled RTDP: improving the convergence of real-time
dynamic programming. In: ICAPS, pp. 12–21. AAAI Press (2003)

15. Brázdil, T., et al.: Verification of Markov decision processes using learning algo-
rithms. In: Cassez, F., Raskin, J.-F. (eds.) ATVA 2014. LNCS, vol. 8837, pp. 98–
114. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11936-6_8

16. Budde, C.E., D’Argenio, P.R., Hartmanns, A.: Better automated importance split-
ting for transient rare events. In: Larsen, K.G., Sokolsky, O., Wang, J. (eds.)
SETTA 2017. LNCS, vol. 10606, pp. 42–58. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-69483-2_3

17. Budde, C.E., D’Argenio, P.R., Hartmanns, A.: Automated compositional impor-
tance splitting. Sci. Comput. Program. 174, 90–108 (2019). https://doi.org/10.
1016/j.scico.2019.01.006

18. Budde, C.E., D’Argenio, P.R., Hartmanns, A., Sedwards, S.: An efficient statistical
model checker for nondeterminism and rare events. STTT (2020, to appear)

19. Budde, C.E., Dehnert, C., Hahn, E.M., Hartmanns, A., Junges, S., Turrini, A.:
JANI: quantitative model and tool interaction. In: Legay, A., Margaria, T. (eds.)
TACAS 2017. LNCS, vol. 10206, pp. 151–168. Springer, Heidelberg (2017). https://
doi.org/10.1007/978-3-662-54580-5_9

20. Butkova, Y., Fox, G.: Optimal time-bounded reachability analysis for concurrent
systems. In: Vojnar, T., Zhang, L. (eds.) TACAS 2019. LNCS, vol. 11428, pp.
191–208. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17465-1_11

21. Butkova, Y., Hartmanns, A., Hermanns, H.: A Modest approach to modelling and
checking Markov automata. In: Parker, D., Wolf, V. (eds.) QEST 2019. LNCS,
vol. 11785, pp. 52–69. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
30281-8_4

https://doi.org/10.1007/978-3-319-63387-9_10
https://doi.org/10.1007/978-3-030-25540-4_29
https://doi.org/10.1007/978-3-030-25540-4_29
https://doi.org/10.1007/978-3-319-10575-8_28
https://doi.org/10.1007/3-540-48320-9_12
https://doi.org/10.1007/3-540-48320-9_12
https://doi.org/10.1007/978-3-319-63387-9_8
https://doi.org/10.23919/FMCAD.2017.8102246
https://doi.org/10.1109/QEST.2006.59
https://doi.org/10.1007/978-3-319-11936-6_8
https://doi.org/10.1007/978-3-319-69483-2_3
https://doi.org/10.1007/978-3-319-69483-2_3
https://doi.org/10.1016/j.scico.2019.01.006
https://doi.org/10.1016/j.scico.2019.01.006
https://doi.org/10.1007/978-3-662-54580-5_9
https://doi.org/10.1007/978-3-662-54580-5_9
https://doi.org/10.1007/978-3-030-17465-1_11
https://doi.org/10.1007/978-3-030-30281-8_4
https://doi.org/10.1007/978-3-030-30281-8_4

On Correctness, Precision, and Performance in Quantitative Verification 237

22. Butkova, Y., Hatefi, H., Hermanns, H., Krčál, J.: Optimal continuous time Markov
decisions. In: Finkbeiner, B., Pu, G., Zhang, L. (eds.) ATVA 2015. LNCS, vol. 9364,
pp. 166–182. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24953-
7_12

23. Butkova, Y., Wimmer, R., Hermanns, H.: Long-run rewards for Markov automata.
In: Legay, A., Margaria, T. (eds.) TACAS 2017. LNCS, vol. 10206, pp. 188–203.
Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54580-5_11

24. Češka, M., Hensel, C., Junges, S., Katoen, J.-P.: Counterexample-driven synthesis
for probabilistic program sketches. In: ter Beek, M.H., McIver, A., Oliveira, J.N.
(eds.) FM 2019. LNCS, vol. 11800, pp. 101–120. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-30942-8_8

25. Chen, T., Forejt, V., Kwiatkowska, M.Z., Parker, D., Simaitis, A.: Automatic veri-
fication of competitive stochastic systems. Formal Methods Syst. Des. 43(1), 61–92
(2013). https://doi.org/10.1007/s10703-013-0183-7

26. Courtney, T., Gaonkar, S., Keefe, K., Rozier, E., Sanders, W.H.: Möbius 2.3: an
extensible tool for dependability, security, and performance evaluation of large and
complex system models. In: DSN, pp. 353–358. IEEE Computer Society (2009).
https://doi.org/10.1109/DSN.2009.5270318

27. D’Argenio, P.R., Hartmanns, A., Legay, A., Sedwards, S.: Statistical approximation
of optimal schedulers for probabilistic timed automata. In: Ábrahám, E., Huisman,
M. (eds.) IFM 2016. LNCS, vol. 9681, pp. 99–114. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-33693-0_7

28. D’Argenio, P.R., Hartmanns, A., Sedwards, S.: Lightweight statistical model check-
ing in nondeterministic continuous time. In: Margaria, T., Steffen, B. (eds.) ISoLA
2018. LNCS, vol. 11245, pp. 336–353. Springer, Cham (2018). https://doi.org/10.
1007/978-3-030-03421-4_22

29. D’Argenio, P.R., Jeannet, B., Jensen, H.E., Larsen, K.G.: Reduction and refine-
ment strategies for probabilistic analysis. In: Hermanns, H., Segala, R. (eds.)
PAPM-PROBMIV 2002. LNCS, vol. 2399, pp. 57–76. Springer, Heidelberg (2002).
https://doi.org/10.1007/3-540-45605-8_5

30. Dehnert, C., Jansen, N., Wimmer, R., Ábrahám, E., Katoen, J.-P.: Fast debug-
ging of PRISM models. In: Cassez, F., Raskin, J.-F. (eds.) ATVA 2014. LNCS,
vol. 8837, pp. 146–162. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
11936-6_11

31. Dehnert, C., et al.: PROPhESY: a PRObabilistic ParamEter SYnthesis tool. In:
Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 214–231.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21690-4_13

32. Dehnert, C., Junges, S., Katoen, J.P., Volk, M.: A Storm is coming: a modern
probabilistic model checker. In: CAV. LNCS, vol. 10427, pp. 592–600. Springer
(2017). https://doi.org/10.1007/978-3-319-63390-9_31

33. Delgrange, F., Katoen, J.-P., Quatmann, T., Randour, M.: Simple strategies in
multi-objective MDPs. In: TACAS 2020. LNCS, vol. 12078, pp. 346–364. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-45190-5_19

34. van Dijk, T., et al.: A comparative study of BDD packages for probabilistic sym-
bolic model checking. In: Li, X., Liu, Z., Yi, W. (eds.) SETTA 2015. LNCS,
vol. 9409, pp. 35–51. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
25942-0_3

35. Eisentraut, C., Hermanns, H., Zhang, L.: On probabilistic automata in continuous
time. In: LICS, pp. 342–351. IEEE Computer Society (2010). https://doi.org/10.
1109/LICS.2010.41

https://doi.org/10.1007/978-3-319-24953-7_12
https://doi.org/10.1007/978-3-319-24953-7_12
https://doi.org/10.1007/978-3-662-54580-5_11
https://doi.org/10.1007/978-3-030-30942-8_8
https://doi.org/10.1007/978-3-030-30942-8_8
https://doi.org/10.1007/s10703-013-0183-7
https://doi.org/10.1109/DSN.2009.5270318
https://doi.org/10.1007/978-3-319-33693-0_7
https://doi.org/10.1007/978-3-319-33693-0_7
https://doi.org/10.1007/978-3-030-03421-4_22
https://doi.org/10.1007/978-3-030-03421-4_22
https://doi.org/10.1007/3-540-45605-8_5
https://doi.org/10.1007/978-3-319-11936-6_11
https://doi.org/10.1007/978-3-319-11936-6_11
https://doi.org/10.1007/978-3-319-21690-4_13
https://doi.org/10.1007/978-3-319-63390-9_31
https://doi.org/10.1007/978-3-030-45190-5_19
https://doi.org/10.1007/978-3-319-25942-0_3
https://doi.org/10.1007/978-3-319-25942-0_3
https://doi.org/10.1109/LICS.2010.41
https://doi.org/10.1109/LICS.2010.41

238 C. E. Budde et al.

36. Etessami, K., Kwiatkowska, M.Z., Vardi, M.Y., Yannakakis, M.: Multi-objective
model checking of Markov decision processes. Logic. Methods Comput. Sci. 4(4)
(2008). https://doi.org/10.2168/LMCS-4(4:8)2008

37. Feng, Y., Hahn, E.M., Turrini, A., Ying, S.: Model checking omega-regular proper-
ties for quantum Markov chains. In: CONCUR. LIPIcs, vol. 85, pp. 35:1–35:16.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2017). https://doi.org/10.
4230/LIPIcs.CONCUR.2017.35

38. Fu, C., Turrini, A., Huang, X., Song, L., Feng, Y., Zhang, L.: Model checking
probabilistic epistemic logic for probabilistic multiagent systems. In: IJCAI, pp.
4757–4763. ijcai.org (2018). https://doi.org/10.24963/ijcai.2018/661

39. Gainer, P., Hahn, E.M., Schewe, S.: Accelerated model checking of parametric
Markov chains. In: Lahiri, S.K., Wang, C. (eds.) ATVA 2018. LNCS, vol. 11138, pp.
300–316. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01090-4_18

40. Gordon, A.D., Henzinger, T.A., Nori, A.V., Rajamani, S.K.: Probabilistic pro-
gramming. In: FOSE, pp. 167–181. ACM (2014). https://doi.org/10.1145/2593882.
2593900

41. Gros, T.P.: Markov automata taken by Storm. Master’s thesis, Saarland University,
Germany (2018)

42. Guck, D., Hatefi, H., Hermanns, H., Katoen, J.-P., Timmer, M.: Modelling, reduc-
tion and analysis of Markov automata. In: Joshi, K., Siegle, M., Stoelinga, M.,
D’Argenio, P.R. (eds.) QEST 2013. LNCS, vol. 8054, pp. 55–71. Springer, Heidel-
berg (2013). https://doi.org/10.1007/978-3-642-40196-1_5

43. Haddad, S., Monmege, B.: Reachability in MDPs: refining convergence of value
iteration. In: Ouaknine, J., Potapov, I., Worrell, J. (eds.) RP 2014. LNCS, vol.
8762, pp. 125–137. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
11439-2_10

44. Haddad, S., Monmege, B.: Interval iteration algorithm for MDPs and IMDPs.
Theoret. Comput. Sci. 735, 111–131 (2018). https://doi.org/10.1016/j.tcs.2016.
12.003

45. Hahn, E.M., Hartmanns, A.: A comparison of time- and reward-bounded prob-
abilistic model checking techniques. In: Fränzle, M., Kapur, D., Zhan, N. (eds.)
SETTA 2016. LNCS, vol. 9984, pp. 85–100. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-47677-3_6

46. Hahn, E.M., et al.: The 2019 comparison of tools for the analysis of quantitative
formal models. In: Beyer, D., Huisman, M., Kordon, F., Steffen, B. (eds.) TACAS
2019. LNCS, vol. 11429, pp. 69–92. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-17502-3_5

47. Hahn, E.M., Hartmanns, A., Hermanns, H., Katoen, J.P.: A compositional mod-
elling and analysis framework for stochastic hybrid systems. Formal Methods Syst.
Des. 43(2), 191–232 (2013). https://doi.org/10.1007/s10703-012-0167-z

48. Hahn, E.M., Hashemi, V., Hermanns, H., Lahijanian, M., Turrini, A.: Multi-
objective robust strategy synthesis for interval Markov decision processes. In:
Bertrand, N., Bortolussi, L. (eds.) QEST 2017. LNCS, vol. 10503, pp. 207–223.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66335-7_13

49. Hahn, E.M., Hashemi, V., Hermanns, H., Turrini, A.: Exploiting robust optimiza-
tion for interval probabilistic bisimulation. In: Agha, G., Van Houdt, B. (eds.)
QEST 2016. LNCS, vol. 9826, pp. 55–71. Springer, Cham (2016). https://doi.org/
10.1007/978-3-319-43425-4_4

50. Hahn, E.M., Li, G., Schewe, S., Zhang, L.: Lazy determinisation for quantitative
model checking. CoRR abs/1311.2928 (2013). arxiv.org/abs/1311.2928

https://doi.org/10.2168/LMCS-4(4:8)2008
https://doi.org/10.4230/LIPIcs.CONCUR.2017.35
https://doi.org/10.4230/LIPIcs.CONCUR.2017.35
https://doi.org/10.24963/ijcai.2018/661
https://doi.org/10.1007/978-3-030-01090-4_18
https://doi.org/10.1145/2593882.2593900
https://doi.org/10.1145/2593882.2593900
https://doi.org/10.1007/978-3-642-40196-1_5
https://doi.org/10.1007/978-3-319-11439-2_10
https://doi.org/10.1007/978-3-319-11439-2_10
https://doi.org/10.1016/j.tcs.2016.12.003
https://doi.org/10.1016/j.tcs.2016.12.003
https://doi.org/10.1007/978-3-319-47677-3_6
https://doi.org/10.1007/978-3-319-47677-3_6
https://doi.org/10.1007/978-3-030-17502-3_5
https://doi.org/10.1007/978-3-030-17502-3_5
https://doi.org/10.1007/s10703-012-0167-z
https://doi.org/10.1007/978-3-319-66335-7_13
https://doi.org/10.1007/978-3-319-43425-4_4
https://doi.org/10.1007/978-3-319-43425-4_4
http://arxiv.org/org/abs/1311.2928

On Correctness, Precision, and Performance in Quantitative Verification 239

51. Hahn, E.M., Li, Y., Schewe, S., Turrini, A., Zhang, L.: iscasMc: a web-based
probabilistic model checker. In: Jones, C., Pihlajasaari, P., Sun, J. (eds.) FM 2014.
LNCS, vol. 8442, pp. 312–317. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-06410-9_22

52. Hahn, E.M., Schewe, S., Turrini, A., Zhang, L.: A simple algorithm for solving
qualitative probabilistic parity games. In: Chaudhuri, S., Farzan, A. (eds.) CAV
2016. LNCS, vol. 9780, pp. 291–311. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-41540-6_16

53. Hartmanns, A., Hermanns, H.: The Modest Toolset: an integrated environment
for quantitative modelling and verification. In: Ábrahám, E., Havelund, K. (eds.)
TACAS 2014. LNCS, vol. 8413, pp. 593–598. Springer, Heidelberg (2014). https://
doi.org/10.1007/978-3-642-54862-8_51

54. Hartmanns, A., Hermanns, H.: Explicit model checking of very large MDP using
partitioning and secondary storage. In: Finkbeiner, B., Pu, G., Zhang, L. (eds.)
ATVA 2015. LNCS, vol. 9364, pp. 131–147. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-24953-7_10

55. Hartmanns, A., Junges, S., Katoen, J.-P., Quatmann, T.: Multi-cost bounded
reachability in MDP. In: Beyer, D., Huisman, M. (eds.) TACAS 2018. LNCS, vol.
10806, pp. 320–339. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
89963-3_19

56. Hartmanns, A., Kaminski, B.L.: Optimistic value iteration. In: Lahiri, S.K., Wang,
C. (eds.) CAV 2020. LNCS, vol. 12225, pp. 488–511. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-53291-8_26

57. Hartmanns, A., Klauck, M.: The 2020 comparison of tools for the analysis of quan-
titative formal models: results and reproduction. Zenodo (2020). https://doi.org/
10.5281/zenodo.3965313

58. Hartmanns, A., Klauck, M., Parker, D., Quatmann, T., Ruijters, E.: The quanti-
tative verification benchmark set. In: Vojnar, T., Zhang, L. (eds.) TACAS 2019.
LNCS, vol. 11427, pp. 344–350. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-17462-0_20

59. Hartmanns, A., Sedwards, S., D’Argenio, P.R.: Efficient simulation-based verifi-
cation of probabilistic timed automata. In: Winter Simulation Conference, pp.
1419–1430. IEEE (2017). https://doi.org/10.1109/WSC.2017.8247885

60. Hensel, C., Junges, S., Katoen, J.P., Quatmann, T., Volk, M.: The probabilistic
model checker Storm. CoRR abs/2002.07080 (2020). arxiv.org/abs/2002.07080

61. Jansen, D.N.: Understanding Fox and Glynn’s “Computing Poisson probabilities”.
CTIT technical report series (2011)

62. Junges, S., et al.: Parameter synthesis for Markov models. CoRR abs/1903.07993
(2019). arxiv.org/abs/1903.07993

63. Kelmendi, E., Krämer, J., Křetínský, J., Weininger, M.: Value iteration for simple
stochastic games: stopping criterion and learning algorithm. In: Chockler, H., Weis-
senbacher, G. (eds.) CAV 2018. LNCS, vol. 10981, pp. 623–642. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-96145-3_36

64. Klauck, M., Steinmetz, M., Hoffmann, J., Hermanns, H.: Compiling probabilistic
model checking into prob. planning. In: ICAPS, pp. 150–154. AAAI Press (2018)

65. Klauck, M., Steinmetz, M., Hoffmann, J., Hermanns, H.: Bridging the gap between
probabilistic model checking and probabilistic planning: survey, compilations, and
empirical comparison. J. Artif. Intell. Res. 68, 247–310 (2020). https://doi.org/10.
1613/jair.1.11595

66. Kolobov, A., Mausam, Weld, D.S., Geffner, H.: Heuristic search for generalized
stochastic shortest path MDPs. In: ICAPS. AAAI Press (2011)

https://doi.org/10.1007/978-3-319-06410-9_22
https://doi.org/10.1007/978-3-319-06410-9_22
https://doi.org/10.1007/978-3-319-41540-6_16
https://doi.org/10.1007/978-3-319-41540-6_16
https://doi.org/10.1007/978-3-642-54862-8_51
https://doi.org/10.1007/978-3-642-54862-8_51
https://doi.org/10.1007/978-3-319-24953-7_10
https://doi.org/10.1007/978-3-319-24953-7_10
https://doi.org/10.1007/978-3-319-89963-3_19
https://doi.org/10.1007/978-3-319-89963-3_19
https://doi.org/10.1007/978-3-030-53291-8_26
https://doi.org/10.5281/zenodo.3965313
https://doi.org/10.5281/zenodo.3965313
https://doi.org/10.1007/978-3-030-17462-0_20
https://doi.org/10.1007/978-3-030-17462-0_20
https://doi.org/10.1109/WSC.2017.8247885
http://arxiv.org/org/abs/2002.07080
http://arxiv.org/org/abs/1903.07993
https://doi.org/10.1007/978-3-319-96145-3_36
https://doi.org/10.1613/jair.1.11595
https://doi.org/10.1613/jair.1.11595

240 C. E. Budde et al.

67. Kwiatkowska, M., Norman, G., Parker, D.: Stochastic games for verification of
probabilistic timed automata. In: Ouaknine, J., Vaandrager, F.W. (eds.) FOR-
MATS 2009. LNCS, vol. 5813, pp. 212–227. Springer, Heidelberg (2009). https://
doi.org/10.1007/978-3-642-04368-0_17

68. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 585–591. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22110-1_47

69. Kwiatkowska, M.Z., Norman, G., Parker, D.: The PRISM benchmark suite. In:
QEST, pp. 203–204. IEEE Computer Society (2012). https://doi.org/10.1109/
QEST.2012.14

70. Kwiatkowska, M.Z., Norman, G., Parker, D., Sproston, J.: Performance analysis
of probabilistic timed automata using digital clocks. Formal Methods Syst. Des.
29(1), 33–78 (2006). https://doi.org/10.1007/s10703-006-0005-2

71. Kwiatkowska, M.Z., Norman, G., Segala, R., Sproston, J.: Automatic verification
of real-time systems with discrete probability distributions. Theoret. Comput. Sci.
282(1), 101–150 (2002). https://doi.org/10.1016/S0304-3975(01)00046-9

72. Legay, A., Sedwards, S., Traonouez, L.-M.: Scalable verification of Markov decision
processes. In: Canal, C., Idani, A. (eds.) SEFM 2014. LNCS, vol. 8938, pp. 350–362.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-15201-1_23

73. Lewis, E., Böhm, F.: Monte Carlo simulation of Markov unreliability models. Nucl.
Eng. Design 77(1), 49–62 (1984). https://doi.org/10.1016/0029-5493(84)90060-8

74. Li, Y., Liu, W., Turrini, A., Hahn, E.M., Zhang, L.: An efficient synthesis algorithm
for parametric Markov chains against linear time properties. CoRR abs/1605.04400
(2016)

75. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3_24

76. Neupane, T., Myers, C.J., Madsen, C., Zheng, H., Zhang, Z.: STAMINA: STochas-
tic Approximate Model-checker for INfinite-state Analysis. In: Dillig, I., Tasiran, S.
(eds.) CAV 2019. LNCS, vol. 11561, pp. 540–549. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-25540-4_31

77. Neupane, T., Zhang, Z., Madsen, C., Zheng, H., Myers, C.J.: Approximation tech-
niques for stochastic analysis of biological systems. In: Liò, P., Zuliani, P. (eds.)
Automated Reasoning for Systems Biology and Medicine. CB, vol. 30, pp. 327–348.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17297-8_12

78. Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Pro-
gramming. Wiley Series in Probability and Statistics, Wiley (1994). https://doi.
org/10.1002/9780470316887

79. Quatmann, T., Junges, S., Katoen, J.-P.: Markov automata with multiple objec-
tives. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10426, pp.
140–159. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63387-9_7

80. Quatmann, T., Katoen, J.-P.: Sound value iteration. In: Chockler, H., Weis-
senbacher, G. (eds.) CAV 2018. LNCS, vol. 10981, pp. 643–661. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-96145-3_37

81. Reijsbergen, D., de Boer, P.T., Scheinhardt, W.R.W., Juneja, S.: Path-ZVA: gen-
eral, efficient, and automated importance sampling for highly reliable Markovian
systems. ACM Trans. Model. Comput. Simul. 28(3), 22:1–22:25 (2018). https://
doi.org/10.1145/3161569

82. Ruijters, E., et al.: FFORT: a benchmark suite for fault tree analysis. In: ESREL
(2019). https://doi.org/10.3850/978-981-11-2724-3_0641-cd

https://doi.org/10.1007/978-3-642-04368-0_17
https://doi.org/10.1007/978-3-642-04368-0_17
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1109/QEST.2012.14
https://doi.org/10.1109/QEST.2012.14
https://doi.org/10.1007/s10703-006-0005-2
https://doi.org/10.1016/S0304-3975(01)00046-9
https://doi.org/10.1007/978-3-319-15201-1_23
https://doi.org/10.1016/0029-5493(84)90060-8
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-030-25540-4_31
https://doi.org/10.1007/978-3-030-25540-4_31
https://doi.org/10.1007/978-3-030-17297-8_12
https://doi.org/10.1002/9780470316887
https://doi.org/10.1002/9780470316887
https://doi.org/10.1007/978-3-319-63387-9_7
https://doi.org/10.1007/978-3-319-96145-3_37
https://doi.org/10.1145/3161569
https://doi.org/10.1145/3161569
https://doi.org/10.3850/978-981-11-2724-3_0641-cd

On Correctness, Precision, and Performance in Quantitative Verification 241

83. Ruijters, E., Reijsbergen, D., de Boer, P.T., Stoelinga, M.: Rare event simulation
for dynamic fault trees. Reliab. Eng. Syst. Saf. 186, 220–231 (2019). https://doi.
org/10.1016/j.ress.2019.02.004

84. Spel, J., Junges, S., Katoen, J.-P.: Are parametric Markov chains monotonic? In:
Chen, Y.-F., Cheng, C.-H., Esparza, J. (eds.) ATVA 2019. LNCS, vol. 11781, pp.
479–496. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-31784-3_28

85. Steinmetz, M., Hoffmann, J., Buffet, O.: Goal probability analysis in probabilistic
planning: exploring and enhancing the state of the art. J. Artif. Intell. Res. 57,
229–271 (2016). https://doi.org/10.1613/jair.5153

86. Sullivan, K.J., Dugan, J.B., Coppit, D.: The Galileo fault tree analysis tool. In:
FTCS, pp. 232–235. IEEE Computer Society (1999). https://doi.org/10.1109/
FTCS.1999.781056

87. Volk, M., Junges, S., Katoen, J.P.: Fast dynamic fault tree analysis by model
checking techniques. IEEE Trans. Ind. Informatics 14(1), 370–379 (2018). https://
doi.org/10.1109/TII.2017.2710316

88. Younes, H.L.S., Kwiatkowska, M.Z., Norman, G., Parker, D.: Numerical vs. sta-
tistical probabilistic model checking. Int. J. Softw. Tools Technol. Transf. 8(3),
216–228 (2006). https://doi.org/10.1007/s10009-005-0187-8

89. Younes, H.L.S., Littman, M.L., Weissman, D., Asmuth, J.: The first probabilistic
track of the International Planning Competition. J. Artif. Intell. Res. 24, 851–887
(2005). https://doi.org/10.1613/jair.1880

https://doi.org/10.1016/j.ress.2019.02.004
https://doi.org/10.1016/j.ress.2019.02.004
https://doi.org/10.1007/978-3-030-31784-3_28
https://doi.org/10.1613/jair.5153
https://doi.org/10.1109/FTCS.1999.781056
https://doi.org/10.1109/FTCS.1999.781056
https://doi.org/10.1109/TII.2017.2710316
https://doi.org/10.1109/TII.2017.2710316
https://doi.org/10.1007/s10009-005-0187-8
https://doi.org/10.1613/jair.1880

Every Component Matters: Generating
Parallel Verification Benchmarks with

Hardness Guarantees

Marc Jasper(B), Maximilian Schlüter, David Schmidt, and Bernhard Steffen(B)

TU Dortmund University, Dortmund, Germany
{marc.jasper,maximilian.schlueter,david3.schmidt,

bernhard.steffen}@tu-dortmund.de

Abstract. In this paper, we show how to automatically generate hard
verification tasks in order to support events like the Model Checking Con-
test or the Rigorous Examination of Reactive Systems Challenge with
tailored benchmark problems for analyzing the validity of linear-time
properties in parallel systems. Characteristic of the generated bench-
marks are two hardness guarantees: (i) every parallel component is rele-
vant and (ii) the state space of the analyzed system is exponential in the
number of its parallel components. Generated benchmarks can be made
available, e.g., as Promela code or Petri nets.

Keywords: Benchmark generation · Program verification · Temporal
logics · LTL · Model checking · Property preservation · Modal
transition systems · Modal contracts · Alphabet extension

1 Introduction

Automated verification has seen a number of success stories in the last decades,
like the verification of medical device transmission protocols [10], industrial call-
processing software [6], or the autonomous behavior of the Curiosity rover [5].
The treatment of realistic parallel systems is, however, still in its infancy. The
development of corresponding verification tools is an area of very active research,
which is increasingly supported by competitions and challenges such as the Model
Checking Contest (MCC) [20] that aim at revealing the strengths and weaknesses
of state-of-the-art tools. One of the major challenges of such competitions is the
preparation of adequate benchmark problems. Ideally, they should be of realistic
size and have interesting yet known properties, a combination that is hard to
achieve. Traditionally, MCC focuses on realistic benchmarks and uses majority
voting during its property evaluation, while the Rigorous Examination of Reac-
tive Systems (RERS) Challenge [14] uses automatically generated benchmarks
with properties that are guaranteed by construction. RERS argues for practical-
ity by referring to the increasing importance of requirement-driven/generative
programming [14,15].

In this paper, we extend the results of our previous work [29] to not only
ensure that benchmarks are large, but also hard in the following sense:
c© Springer Nature Switzerland AG 2021
T. Margaria and B. Steffen (Eds.): ISoLA 2020, LNCS 12479, pp. 242–263, 2021.
https://doi.org/10.1007/978-3-030-83723-5_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-83723-5_16&domain=pdf
https://doi.org/10.1007/978-3-030-83723-5_16

Every Component Matters 243

i. no component can be neglected during the analysis and
ii. the number of reachable states of the considered parallel system is exponential

in the number of its parallel components.

Key to our approach is the construction of a complex ‘context’ that constrains
the behavior of an initial system.

On the one hand, the first item listed above guarantees that a task is not
trivial because one cannot simply abstract from parallel components while still
correctly solving a given task. A trivial modification to our approach allows to
freely adjust how many parallel components are required for correctly verifying
or refuting a given temporal property, hence we can arbitrarily scale the relevance
of the constructed parallel context. For simplicity, this paper focuses on the case
where all parallel components are required to solve a task.

On the other hand, the second of the above-listed items ensures that there
exist sufficient parallel interleavings to confront analyzers with what is commonly
referred to as state explosion, thus avoiding the generation of tasks that can fit
into modern computer memory.

Technically, the verification tasks V (L,ϕ) discussed in this paper consist of a
parallel composition L of labeled transition systems and a linear-time temporal
logic property ϕ. We do not address the subsequent code generation phase here
which allows to produce, e.g., Promela code [8,13] or (Nested-Unit) Petri nets
[7,16,25,28].

Fundamental to our construction are modal contracts [29], a specific type of
assume-guarantee contracts [2–4,11,26] that allow to decompose a component
into two new components such that temporal properties are preserved. Modal
contracts have been used successfully to generate large model checking tasks
based on the known dining philosophers problem [18], for weak bisimulation
checking tasks [30], and also for tasks based on branching-time properties [17].

In this paper, we provide a constructive method for achieving our hardness
results which have already been stated in [29]. The first of the following two
steps, namely the construction of an initial contract, has already been treated
in [19]. Thus, we focus on the second step that iteratively decomposes this initial
contract into a larger parallel composition.

Initial Contract Construction. Given a linear-time property ϕ, construct an
initial system M that (1) violates ϕ and (2) has a counterexample handle for ϕ,
i.e., a transition that is part of every counterexample trace. The construction
of such an M , as well as the subsequent construction of a corresponding initial
contract is detailed in [19,29].

Please note that for a verification task to which “False” is the correct
answer1—named negative verification task in the following—the initial contract
guarantees that both components need to synchronize in order to traverse the
handle. In contrast, for a verification task with correct answer “True”—named
positive verification task throughout this paper—the initial contract ensures that
one component prohibits such synchronization and thereby disables the handle.
1 This means that property ϕ does not hold in the final task.

244 M. Jasper et al.

Iterative Decomposition. This decomposition process refines the contract and
alphabet extension-based approach of [29] by propagating dependencies from
contract to contract via counterexample handles. These handles are the key to
guaranteeing our notion that ϕ is sensitive to the constructed parallel composi-
tion, i.e., the relevance of each component of the latter.

For negative verification tasks, we construct a decomposition tree and take its
leaves as the generated composition. This composition enables a counterexample
for ϕ, however abstracting from any leaf disables all such violation witnesses.2

Dually, our construction of a positive verification task is based on a decompo-
sition chain that disables all counterexamples for ϕ in a way such that abstract-
ing from any element of the final composition enables a potentially feasible
counterexample. Figure 1 sketches such a disabling chain.

M I1

M1
s

M1
c I2

M2
s

M2
c

...

(M1
s || UΓ1) ?|= ϕ

(UΣ1 || M1
c)

?|= ϕ

(M1
s || M2

s || UΓ2) ?|= ϕ

(M1
s || UΣ2 || M2

c)
?|= ϕ

(UΣ1 || M2
s || M2

c)
?|= ϕ

M |= ϕ

(M1
s || M1

c) |= ϕ

(M1
s || M2

s || M2
c) |= ϕ

contract
syst

em

context
contract

syst
em

context
contract

Fig. 1. Dependency propagation during contract-based decompositions. A satisfied
property cannot be verified if one abstracts from an entire component [29].

After some preliminaries in Sect. 2, Sect. 3 formally introduces our notion
of hardness. Subsequently, Sects. 4 and 5 present our core contributions, the
construction of hard negative verification tasks and hard positive verification
tasks, respectively, before we close in Sect. 6 with our conclusions and directions
for future work.

2 Preliminaries

Every verification task whose construction is explained in this paper consists of a
parallel composition of labeled transition systems (LTSs) and a linear temporal
logic (LTL) property. As an intermediate model structure during this construc-
tion, we employ modal transition systems (MTSs) [23], a generalization of LTSs
2 To be precise, the information of whether or not such violation witnesses exist is lost

during abstraction.

Every Component Matters 245

that feature a refinement relation which preserves temporal properties such as
LTL formulas.

2.1 Modal Transition Systems

Modal transition systems [23] allow to distinguish between behavior that must
be feasible and behavior that may be feasible.

Definition 1 (Modal Transition System). Let S be a set of states and Σ an
alphabet of action symbols. M = (S, s0, Σ, ���,−→) is called a (rooted) modal
transition system (MTS) with root s0 ∈ S iff the following condition holds:

−→ ⊆ ��� ⊆ (S × Σ × S)

Elements of ��� are called may transitions and those of −→ must transitions.
We use the notations s

a��� s′ and s
a−→ s′ to denote transitions (s, a, s′) ∈ ���

and (s, a, s′) ∈ −→, respectively. We further define the operator Σ(M) := Σ
to access the alphabet of M and overload it to access labels of transitions, i.e.,
Σ(s

a��� s′) := a for any t ∈ ��� and Σ(T) :=
⋃

t∈T {Σ(t)} for any T ⊆ ���.3

Definition 2 (Path, Transition Precedence, and Reachability). Given
an MTS (S, s0, Σ, ���,−→), a path is a sequence π = s0

a1��� s1
a2��� s2 · · · of

transitions that starts in s0 with i ranging from 0 to either a positive integer or
infinity. We use set notation to refer to the transitions of a path, e.g. s0

a1��� s1 ∈
π. The word w induced by the label sequence a1a2 . . . is denoted as w(π).

For a path π, the relation �π ⊆ π × π is defined such that t �π t′ holds iff
t′ ∈ π implies that t precedes t′ on π. A state s ∈ S is reachable iff a path exists
that ends in s.

An MTS can be seen as an extension of a traditional (rooted) labeled transition
system (LTS), which allows the following definition:

Definition 3 (Labeled Transition Systems). A labeled transition system
(LTS) is an MTS M = (S, s0, Σ, ���,−→) with ��� = −→. We thus join com-
ponents four and five in case of LTSs.

The following notion of refinement allows one to regard certain LTSs as imple-
mentations of MTSs [23].

Definition 4 (MTS Refinement)
Let M1 = (S1, s

1
0, Σ, ���1,−→1), M2 = (S2, s

2
0, Σ, ���2,−→2) be MTSs. A

relation � ⊆ (S1 × S2) is called a refinement iff the following hold for all
(p, q) ∈ �:

1.) ∀p
a���1 p′, ∃q

a���2 q′ : p′ � q′

2.) ∀q
a−→2 q′, ∃p

a−→1 p′ : p′ � q′

M1 refines M2, written as M1 � M2, iff there exists a refinement � with s1
0 � s2

0.
3 Note that Σ(M) = Σ(���) is not guaranteed in general.

246 M. Jasper et al.

For the model checking of LTL properties, the maximal and minimal languages
defined by an MTS M are important:

Definition 5 (Minimal and Maximal Language). The language L(L) of
words in an LTS L equals the label sequences of all paths in L. Infinite words in
a language L are denoted by Lω. Given an MTS M = (S, s0, Σ, ���,−→),

1. L⊥(M) := L((S, s0, Σ,−→)) is called the minimal language and
2. L�(M) := L((S, s0, Σ, ���)) the maximal language

of M , respectively. This definition propagates to subsets of infinite words. For a
word w from some language L, Σ(w) denotes the set of symbols that occur in w.

Obviously, we have L⊥(M) ⊆ L�(M) because of −→ ⊆ ���. The following
observation follows directly from the definition of MTS refinement and explains
why it preserves linear-time properties (see Sect. 2.4).

Proposition 1 (Preserved Languages). Let M,M ′ be two MTSs such that
M ′ � M . Then it holds that L⊥(M) ⊆ L⊥(M ′) and L�(M ′) ⊆ L�(M).

2.2 Parallel Composition and Weakest Specification

Our parallel composition operator for MTSs as introduced in [29] is reminiscent
of CSP [12] with synchronization of components on their common alphabets:

Definition 6 (Parallel MTS Composition). Let M1 = (S1, s
1
0, Σ1, ���1,

−→1), M2 = (S2, s
2
0, Σ2, ���2,−→2) be two MTSs. The parallel composition

M1 || M2 := (S1 × S2, (s1
0, s

2
0), Σ1 ∪ Σ2, ���,−→)

is then defined as a commutative and associative operation4 satisfying the fol-
lowing operational rules where ⇀ identifies the type of transition and is once
instantiated to represent may transitions and once to represent must transitions:5

p
a
⇀1 p′ q

a
⇀2 q′

(p, q) a
⇀ (p′, q′)

p
a
⇀1 p′ a /∈ Σ2

(p, q) a
⇀ (p′, q)

It is straightforward to establish that || preserves refinement for both operands:

Proposition 2 (Refinement Monotonicity). Let M,M ′, and M ′′ be MTSs.
Then refinement is preserved by parallel composition:

M � M ′ implies (M || M ′′) � (M ′ || M ′′)

4 These laws are meant to hold up to graph isomorphism.
5 Please note that every must transition is also a may transition.

Every Component Matters 247

Note that due to the commutativity of operator ||, this monotonicity holds for
both components of a composition.

It follows directly that parallel composition can only reduce the minimal and
maximal languages of an MTS if synchronization occurs.

Proposition 3 (Orthogonal Composition). Let M,M ′ be two MTS with
Σ(M) ∩ Σ(M ′) = ∅. Then we have:

L⊥(M) ⊆ L⊥(M || M ′) and L�(M) ⊆ L�(M || M ′)

The following notion allows us to link transitions of a component MTS to tran-
sitions in a parallel composition.

Definition 7 (Transition Occurrences)
Let M1 = (S1, s

1
0, Σ1, ���1,−→1) and M2 = (S2, s

2
0, Σ2, ���2,−→2) be two MTSs

with M := M1 || M2 and t = p
a���1 p′ a transition in M1. Then the set

{ (p, q)
a��� (p′, q′) | ∃q, q′ ∈ S2 }

of may transitions in M is denoted by t|M . This definition extends naturally to
sets T of transitions, i.e. T |M :=

⋃
t∈T (t|M). For any set of transition T ′ in M ,

we define t|T ′ := t|M ∩ T ′.

Parallel components are relevant for a verification task if they cannot be
abstracted to their weakest specification [24]:

Definition 8 (Weakest Modal Specification)
Let Σ be an alphabet. We call the one-state MTS UΣ with may transitions for
every a ∈ Σ the weakest modal Σ-specification:

UΣ =def ({s}, s,Σ, ({s} × Σ × {s}), ∅)

The following proposition follows from the semantics of parallel composition.

Proposition 4 (Unconstrained Maximal Language). Let M be an MTS
and UΣ the weakest modal Σ-specification for some alphabet Σ. Then we have:

L�(M) ⊆ L�(M || UΣ)

2.3 Alphabet View

Throughout this paper, we frequently inspect words that result form a projection
to sub-alphabets.

Definition 9 (Alphabet View). For a word w over Σ, we define [w]
Γ

as the
word that results from skipping all symbols in w that do not exist in Γ ⊆ Σ.
This definition extends naturally to languages.

It is apparent that adding parallel components only reduces the language of an
MTS when projected to its own alphabet.

248 M. Jasper et al.

Proposition 5 (Composition Monotonicity). Let M,M ′ be two MTSs.
Then the following hold:

[L⊥((M || M ′))]
Σ(M) ⊆ L⊥(M) and [L�((M || M ′))]

Σ(M) ⊆ L�(M)

Moreover, we have:

Proposition 6 (Maximal-Language Monotonicity). Let M , M ′, and M ′′

be three MTSs such that (Σ(M)\Σ(M ′))∩Σ(M ′′) = ∅. Then the following holds

[Lω
�(M ′)]

Σ(M) ⊆ Lω
�(M) implies [Lω

�(M ′ || M ′′)]
Σ(M||M′′) ⊆ Lω

�(M || M ′′)

The following monotonicity property is important for establishing the hardness
of positive verification tasks:

Proposition 7 (Minimal-Language Monotonicity). Let M , M ′, and M ′′

be three MTSs such that (Σ(M ′)\Σ(M)) ∩ Σ(M ′′) = ∅. Then we have:

L⊥(M) ⊆ [L⊥(M ′)]
Σ(M) implies L⊥(M || M ′′) ⊆ [L⊥(M ′ || M ′′)]

Σ(M||M′′)

2.4 Linear Temporal Logic Model Checking

The following definitions specify linear temporal logic (LTL) [1,31], more pre-
cisely, action-based LTL [9,27]:

Definition 10 (Syntax of Linear Temporal Logic (LTL)). Let Σ be an
alphabet of actions and a ∈ Σ. The syntax of (action-based) LTL is defined using
the following grammar in Backus-Naur form:

ϕ ::=
 | a | ϕ ∧ ϕ | ¬ϕ | Xϕ | (ϕ U ϕ)

LTL is the set of formulas ϕ that can be constructed this way.

The operator X (or “next”) describes behavior that has to hold at the next time
step. A formula (ϕ1 U ϕ2) describes that ϕ2 has to occur eventually and that
ϕ1 has to hold until ϕ2 occurs in a word. The formal semantics of LTL is based
on a satisfaction relation between infinite words and LTL formulas [1]:

Definition 11 (LTL Semantics). Let Σ be an alphabet of action symbols. For
any infinite word w = a1a2 . . . ∈ Σω and any i ∈ N, let wi = ai be the i-th
element of w and wi = aiai+1 . . . the suffix of w starting at index i.

The satisfaction relation |= ⊆ (Σω × LTL) is defined as the minimal relation
that adheres to the following rules for any w ∈ Σω and ϕ,ψ ∈ LTL:

1. w |=

2. w |= a iff w1 = a
3. w |= (ϕ ∧ ψ) iff w |= ϕ and w |= ψ
4. w |= ¬ϕ iff w �|= ϕ
5. w |= Xϕ iff w1 |= ϕ

Every Component Matters 249

6. w |= (ϕ U ψ) iff ∃k ∈ N : wk |= ψ and ∀i ∈ N<k : wi |= ϕ

The semantics of a formula ϕ ∈ LTL is given by �ϕ�A := { w ∈ Σω | w |= ϕ }.
Common abbreviations include Fϕ := (
 U ϕ) which expresses that ϕ will
eventually become true and its dual operator Gϕ := ¬F¬ϕ which claims that
ϕ is always true.

Model checking an LTL property on an MTS means to decide which of the
following three possibilities hold:

Definition 12 (Satisfaction/Violation Between MTSs and LTL). Let
M be an MTS and ϕ an LTL formula. Then M satisfies ϕ (denoted as M |= ϕ) iff:

∀w ∈ Lω
�(M) : w |= ϕ

Similarly, M violates ϕ (denoted as M �|= ϕ) iff:

∃w ∈ Lω
⊥(M) : w �|= ϕ

Moreover, M is indecisive concerning ϕ (denoted as M
?|= ϕ) iff M neither sat-

isfies nor violates ϕ.

3 Hardness

In this section, we establish our central notions of hardness of a verification task.

Definition 13 (Verification Task). A parallel composition L = (L1 || · · · ||Ln)
of LTSs and a temporal property ϕ specify a verification task V (L,ϕ) that is
called positive verification task iff L |= ϕ and negative verification task iff
L �|= ϕ.

The following two definitions are significant when defining the relevance of par-
allel components for a verification task.

Definition 14 (Component Abstraction)
Let M = (M1 || · · · || Mn) be a parallel composition of MTSs, Σi = Σ(Mi) the
alphabet of the i-th component of M , and UΣi

the weakest modal Σi-specification
(see Definition 8). Then we call the parallel MTS composition

α(M, i) =def (M1 || · · · || Mi−1 || UΣi
|| Mi+1 || · · · || Mn)

the i-th component abstraction of M .

Definition 15 (ϕ-Lossy Generalization). Let M be an MTS and ϕ a tempo-
ral property such that M either satisfies or violates ϕ. Then any MTS M ′ that
is indecisive concerning ϕ is called a ϕ-lossy generalization of M .

System sensitivity guarantees that all components of a parallel composition are
relevant for the verification/refutation of the considered formula ϕ.

250 M. Jasper et al.

Definition 16 (System-Sensitive Properties). Let M = (M1 || · · · ||Mn) be
a parallel composition of MTSs and ϕ a temporal property. We call ϕ M -sensitive
iff the following holds:

∀i ∈ 1 . . n : α(M, i) is a ϕ-lossy generalization of M

We obtain the parallel composition of LTSs for a verification task by means of
component-wise modal refinement.

Definition 17 (LTS Component Refinement). Let M = (M1 || · · · || Mn)
be a parallel composition of n MTSs. A parallel composition L = (L1 || · · · || Ln)
of n LTSs is called LTS component refinement of M iff Li � Mi holds for each
i ∈ 1 . . n.

Our approach depends on the following notion of interruptible temporal proper-
ties [27].

Definition 18 (Interruptible LTL Property). Let ϕ be an LTL property
over an alphabet Σ. Then ϕ is called interruptible iff for any alphabet ΣE and
any infinite words w ∈ Σω, wE ∈ Σω

E, the following holds:

w = [wE]
Σ

implies (w |= ϕ ⇐⇒ wE |= ϕ)

In Sects. 4 and 5, we will show how to establish n-hard verification tasks for
interruptible temporal properties.

Definition 19 (n-Hardness). Let V (L,ϕ) be a verification task such that L
contains n parallel components. We call V (L,ϕ) n-hard iff the following condi-
tions are met:

1. Property ϕ is L-sensitive.
2. The expanded LTS L consists of at least 2n distinct reachable states.

The following two sections follow the same pattern: (1) initial contract con-
struction followed by (2) iterative decomposition. Conceptually, these sections
are dual, which is directly reflected in required correctness arguments. Guar-
anteeing hardness, however, turns out to be much more involved for positive
verification tasks than for negative ones.

4 Negative Verification Tasks

In this section, we first sketch how to construct initial green contracts following
the lines of [19] and [29], before we present our iterative, decomposition-based
construction of hard negative verification tasks.

Every Component Matters 251

4.1 Initial Green Contract Construction

In order to control the validity of a property ϕ, we start our generation with a
single MTS M0 that features a transition which toggles the satisfaction of ϕ [19].

Definition 20 (CE-handle). Let M be an MTS and ϕ an LTL formula such
that M �|= ϕ. A transition t in M is called a counterexample handle (CE-handle)
for ϕ in M iff the removal of t results in M |= ϕ.

Given an initial MTS with a CE-Handle, we utilize green contracts for parallel
decomposition in order to obtain multiple components.

Definition 21 (Green Contract). Let M = (S, s0, Σ, ���,−→) be an MTS
and Γ ⊆ Σ. The green contract (GC) I = (M,Γ) specifies a set of context MTSs
Mc(I) such that for every Mc ∈ Mc(I), we have Σ(Mc) = Γ and M || Mc � M .
We define G(I) := { s

a−→ s′ | a ∈ Γ } and color transitions of G(I) green.

In the context of parallel decomposition, we refer to M as the system of I.
Intuitively speaking, a green contract specifies a set of must transitions for which
a corresponding context component always has to guarantee synchronization. We
can reuse the construction presented in [29] to obtain a matching context MTS.

Proposition 8 (Green Context Construction). Given a GC I = (M,Γ),
one can efficiently construct a context MTS Mc for I.

By combining CE-handles and green contracts and thereby the approaches pre-
sented in [19] and [29], we obtain the starting point for our decomposition.

Definition 22 (Initial Green Contract). Let ϕ be an LTL property and
M0 = (S, s0, Σ, ���,−→) an MTS such that a CE-handle s

a−→ s′ for ϕ in M0

exists. Then a GC I0 := (M0, Γ) with a ∈ Γ is called initial green contract for
ϕ based on M0.

Example 1. Consider MTS M0 from Fig. 2a and the interruptible LTL property
ϕ := FG¬a. We have M0 �|= ϕ because of the fact that the infinite path π with
w(π) = (abcd)ω violates ϕ: it satisfies its negation GF a. The single transition
labeled b is a CE-handle for ϕ because one needs to traverse it on every infinite
path π in M0 for which w(π) contains a.6 Therefore, choosing Γ = {b, c} yields
an initial green contract I0 = (M0, Γ) for ϕ (Fig. 2b).

Our construction can start with an arbitrary LTL property.

Theorem 1 (Initial Green Contract Construction). We can construct an
initial green contract for any LTL property ϕ that is not a tautology.

This theorem holds based on the following sketch to construct an MTS with a
CE-handle (see [19] for details):

6 Note that other CE-handles for ϕ exist, for example the transition labeled a itself.

252 M. Jasper et al.

1. Synthesize a Büchi automaton B with language L(B) = �ϕ�A.
2. Transform B to an MTS M of may transitions with Lω

�(M) ⊆ L(B) by
cutting all non-accepting loops.

3. Choose a counterexample lasso h with w(h) ∈ �¬ϕ�A.
4. Merge h into M while heuristically aiming for a long shared prefix between

h and M .
5. The first transition of h after this shared prefix is then a CE-handle for ϕ.

Section 4.2 shows how we can iteratively decompose our initial contract such
that hardness of the generated task is guaranteed.

4.2 Iterated Decomposition

Given the GCs introduced in the previous section, it is straightforward to itera-
tively decompose an initial MTS into arbitrarily many parallel components such
that properties are preserved due to the underlying modal refinement, regard-
less of how the initial green contract was chosen. We will see, however, that
guaranteeing hardness requires additional care.

Definition 23 (Prerequisite Contract). Let I = (M,Γ), I ′ = (M ′, Γ ′) be
two GCs. Then I ′ is called prerequisite contract of I iff the following holds for
all paths π in M || M ′:7

∀t ∈ G(I)|π, ∃t′ ∈ G(I ′)|π : t′ �π t

Example 2. Figure 2c contains three MTSs that include green transitions: these
all depict GCs. The two GCs on the intermediate level of the depicted tree are
prerequisite contracts of the tree’s root: on any path within these prerequisite
contracts, transitions labeled b and c are preceded by a green transition. Note
that for each of these prerequisite contracts, the underlying MTS is structurally
equivalent to its composition with the MTS that underlies the root GC.

Given Proposition 5 and the definition of parallel MTS composition (Defini-
tion 6), one can see that the precedence correspondence enforced by a prerequi-
site contract is preserved under composition:

Proposition 9 (Preserved Precedence). Let M1 = (S, s0, Σ, ���,−→), M2

be MTSs with t1, t
′
1 ∈ ���. If t′1 �π1 t1 holds for all paths π1 in M1, then for any

path π in M1 || M2 and any t ∈ t1|π, there exists a t′ ∈ t′1|π such that t′ �π t.

A straightforward transitivity argument now directly yields:

Corollary 1 (Precedence Transitivity)
Let I0 = (M0, Γ0), . . . , Ik = (Mk, Γk) be k + 1 GCs such that for all j ∈ 0 . . k,
there exists an i ∈ 0 . . j − 1 such that Ij is a prerequisite contract of Ii. Let π
be any path in M0 || M1 || . . . || Mk. Then the following holds for all m ∈ 1 . . k:

∀t ∈ G(I0)|π, ∃t′ ∈ G(Im)|π : t′ �π t

7 Please recall that the precedence relation �π has been introduced in Definition 2.

Every Component Matters 253

a

b

c

d

c

(a) MTS M0 which is a variant of Milner’s
four-state cycler as shown in [28] with
a CE-handle labeled b for the inter-
ruptible LTL property FG¬a

a

b

c

d

c

a

b

c

d

c

b
c

c
b

(b) Enabling tree based on M0: Initial
green contract I0 for FG¬a based on
M0 with its system M0 (left child) and
a corresponding context M0

c (right
child)

a

b

c

d

c

g

g

g

g

a

b

c

d

c

g

g

g

g

a

b

c

d

c

g

e

f

b

c

e

fc

b

e

f

b

c

e

fc

b f

(c) Enabling tree based on M0 after extending the alphabet of each leaf in Fig. 2b
and then replacing it with a prerequisite contract of I0 and corresponding sub-
tree.

Fig. 2. Exemplary construction of an enabling tree

254 M. Jasper et al.

Corollary 1 implies that the set of green transitions of any prerequisite contract
serves as a handle for the reachability of green transitions in the initial GC.

Corollary 2 (Green Remote Handle)
Let I0 = (M0, Γ0), . . . , Ik = (Mk, Γk) be k + 1 GCs such that for all j ∈ 0 . . k,
there exists an i ∈ 0 . . j − 1 such that Ij is a prerequisite contract of Ii. Further,
let M := M0 || · · · || Mk. Then for any m ∈ 0 . . k, removing all transitions
G(Im)|Mm

causes all transitions in G(I0)|M to be unreachable in M .

The following definition of alphabet extension is key towards scalability in size:

Definition 24 (Alphabet Extension). Let M,ME be two MTSs such that
ΣE := Σ(ME)\Σ(M) �= ∅. Then ME is called ΣE-alphabet extension of M iff
the following conditions hold:

Lω
⊥(M) = [Lω

⊥(M || ME)]
Σ(M) and Lω

�(M) = [Lω
�(M || ME)]

Σ(M)

Example 3. Consider again the three GCs with their green transitions in Fig. 2c.
When interpreting green transition as must transitions and thereby inspecting
the underlying MTS, the two on the intermediate level are alphabet extensions
of the MTS M0 on top.

Alphabet extensions can be constructed by utilizing a scheme that we introduced
previously [29]. This allows us to efficiently construct a prerequisite contract of
I based on the system or any context of I.

Lemma 1 (Prerequisite Contract Construction)
Given a GC I = (M,Γ), an M ′ ∈ {M} ∪ Mc(I), and an alphabet ΣE �= ∅
disjoint from Σ(M), one can efficiently construct

1. a ΣE-alphabet extension ME of M ′ and
2. a GC I ′ = ((M ′ || ME), Γ ′) with Γ ′ ⊆ ΣE

such that I ′ is a prerequisite contract of I.

Proof. Let ME be a deterministic MTS with two states such that ΣE leads from
the start state to the second state and Γ the other way around and such that all
transitions in ME are must transitions. Then ME is a ΣE-alphabet extension of
M ′ and I ′ = ((M ′ || ME), ΣE) is a GC.

For I ′ to be a prerequisite contract of I, we need to show that whenever a path
π in M || ME traverses some t ∈ G(I)|M ||ME

, then it previously traversed a t′ ∈
G(I ′)|M ||ME

(Definition 23). By the construction of ME we have that for every
path in ME , transitions from Γ are always preceded by ΣE . By Proposition 5,
this property carries over to the composition M || ME . The result follows as
Σ(G(I ′)|M ||ME

) ⊆ ΣE and Σ(G(I)|M ||ME
) ⊆ Γ . ��

Our goal is to automatically generate a set of prerequisite contracts that satisfies
the condition in Corollary 2 so that we can toggle the reachability of green
transitions from the initial green contract—and thereby that of the CE-handle
itself. The required decomposition history can be organized as a tree.

Every Component Matters 255

Definition 25 (Enabling Tree). Given an MTS M0, a decomposition tree
T based on M0 is inductively defined by starting with the trivial tree that only
contains M0 and then iteratively replacing any leaf M in T with either

1. a ΣE-alphabet extension of M such that ΣE contains symbols not yet in T ,
or

2. a subtree with root I = (M,Γ), a GC, and two children M and Mc ∈ MC(I).

The parallel composition of the leaves of T is denoted by M(T). We call T
enabling tree iff, except for its root, each GC I in T is a prerequisite contract of
some ancestor of I.

Example 4. The sub-figures in Fig. 2 each illustrate an enabling tree based on
an initial MTS M0 (Fig. 2a). The sub-figures build upon each other based on the
inductive definition of a decomposition tree.

Given the definition of an alphabet extension, the language preservation of modal
refinement (Proposition 1), and the monotonicity of this preservation w.r.t. par-
allel MTS composition (Propositions 6 and 7), the parallel composition of the
leaves of an enabling tree preserves both minimal and maximal languages.

Proposition 10 (Language Preservation of Enabling Tree). Let T be a
decomposition tree based on M0. Then we have:

L⊥(M0) ⊆ [L⊥(M(T))]
Σ(M0) and [Lω

�(M(T))]
Σ(M0) ⊆ Lω

�(M0)

Note that all components which share an alphabet symbol need to synchronize
based on must transitions for must behavior to prevail in the corresponding
composition. Combined with Corollary 2, this ensures that abstracting any leaf
of an enabling tree eliminates all counterexamples from the minimal language.

Proposition 11 (Green-Based Sensitivity). Let ϕ be an interruptible LTL
property and T an enabling tree for some M0 such that its root is a green initial
contract for ϕ based on M0. Then ϕ is M(T)-sensitive.

Component refinement is a special form of modal refinement. Thus, the following
proposition is straightforward.

Proposition 12 (Preserved Sensitivity). Let ϕ be a temporal property, M
a parallel composition of MTSs such that M �|= ϕ, and L an LTS component
refinement of M . If ϕ is M -sensitive, then it is also L-sensitive.

Exponential growth of the state space of the constructed parallel compositions
can be enforced as illustrated in [28]. Together with Proposition 12, this yields:

Theorem 2 (Hard Negative Verification Task). Given an initial green con-
tract I0 for some interruptible LTL property ϕ, one can efficiently construct an
n-hard negative verification task V (L,ϕ).

256 M. Jasper et al.

5 Positive Verification Tasks

In this section, we first sketch how to construct initial modal contracts, following
the lines of [29] and [19], before we present our decomposition-based, iterative
construction of hard positive verification tasks.

5.1 Initial Modal Contract Construction

For positive verification tasks, we employ modal contracts [29] in a way that
the CE-handle plays a dual role compared to initial green contracts: rather than
being enabled by the constructed contexts, it has to be disabled.

Definition 26 (Modal Contract). Let M = (S, s0, Σ, ���,−→) be an MTS,
Γ ⊆ Σ, R ⊆ S ×Γ ×S with R∩��� = ∅, and Ms := (S, s0, Σ, ���∪R,−→∪R).
Then the tuple I = (M,Γ,R) is a modal contract (MC) of M with communica-
tion alphabet Γ iff

MC(I) := {Mc | Ms || Mc � M ∧ Σ(Mc) = Γ} �= ∅.

Moreover, G(I) := { s
a−→ s′ |a ∈ Γ } and we color transitions of G(I) green and

transitions of R red. We call Ms(I) := Ms the system of I and any Mc ∈ MC(I)
a context of I.

Definition 27 (Initial Modal Contract). Let ϕ be an LTL property and
M = (S, s0, Σ, ���,−→) an MTS such that a CE-handle s

a−→ s′ for ϕ in M
exists. Then an MC I0 := (M0, Γ,R) is called initial modal contract for ϕ iff

1. M0 = (S, s0, Σ, ���\R,−→\R),
2. s

a−→ s′ ∈ R, and
3. UΣ || Mc is indecisive concerning ϕ for any context Mc ∈ MC(I0).

The third condition in Definition 27 ensures that ϕ is (Ms(I0) || Mc)-sensitive.
Further note that Ms(I0) = M . An efficient construction of contexts was given
in [29].

Proposition 13 (Modal Context Construction). A context Mc ∈ MC(I)
of an MC I = (M,Γ,R) can be constructed efficiently such that

L�(Mc) = (Γ ∗ ∪ Γω)\[LR]
Γ

holds where LR contains all words for which a path in I exists that traverses a
transition in R.

Example 5. The transition system at the top of Fig. 4 (center column) illustrates
an initial modal contract I0 for the interruptible LTL property ϕ := GF a. The
red self loop labeled d at the initial state of I0 is a CE-handle for ϕ in the
system Ms(I0) which is depicted to the right of I0. Below I0 in Fig. 4, a context
Mc ∈ Mc(I0) is shown: in a composition with Ms(I0), it disables transitions
that were colored red in I0 and thus the mentioned CE-handle.

Every Component Matters 257

The proof that initial contracts can be constructed mostly follows the rea-
soning in Sect. 4.1. Note that the third condition in Definition 27 can always be
satisfied by deferring communication to new symbols using alphabet extensions.

Theorem 3 (Initial Modal Contract Construction). We can construct an
initial modal contract for any LTL property ϕ that is not a tautology.

S0 S1 Sn Cn

I0

C0

I1

C1

In

Γ0 Γn

Fig. 3. Sketch of our decomposition chain for generating hard positive verification
tasks. The generated composition (bottom row) consists of system components except
for a final context.

5.2 Iterated Decomposition

Green transitions allow to symmetrically propagate dependencies to both system
and context components in a decomposition tree. In contrast, red transitions are
asymmetric: systems allow red transitions whereas contexts do not. This leads
to a decomposition chain of iteratively decomposed contexts (see Fig. 3).

We actually preserve the entire minimal language of our initial system compo-
nent Ms(I0)—the one with the CE-handle—throughout our chain of constructed
system components. Because the last context however disables red transitions of
the initial contract, we call such a sequence of modal contracts disabling chain.

Definition 28 (Disabling Chain). A sequence C = (I0 = (M0, Γ0, R0), . . . ,
Ik = (Mk, Γk, Rk)) of k + 1 MCs is called disabling chain (DC) for I0 iff the
following hold for all j ∈ 1 . . k:

(a) Mj only communicates with Mj−1 and Mj+1 (if existing)
(b) Σ(Mj−1) ∩ Σ(Mj) = Γj−1 �= ∅
(c) [Lω

�(Mj)]Γj−1
= Lω

�(M j−1
c) for some context M j−1

c of Ij−1

(d) L⊥(Ms(Ij−1)) ⊆ [L⊥(Ms(Ij−1) || Ms(Ij))]Γj−1

We further define:

1. Ms(C) := Ms(I0) || · · · || Ms(Ik)
2. M(C) := {Ms(C) || Mk

c | Mk
c is a context of Ik}

258 M. Jasper et al.

Given an initial modal contract I0, we can automatically generate a DC of I0 by
using alphabet extensions.

Lemma 2 (DC Construction). Given an MC I0, one can efficiently con-
struct a sequence I1, . . . , Ik of MCs such that C = (I0, I1, . . . , Ik) is a DC.

The proof of Lemma 2 is straightforward but tedious and therefore omitted in
this exposition.

Example 6. Figure 4 illustrates the construction of a DC C with two MCs based
on the initial modal contract of Example 5. Conditions (a) and (b) of Defini-
tion 28 are ensured by choosing new symbols from an alphabet extension for the
second MC. Similarly, condition (c) is ensured because of the language preserva-
tion of alphabet extensions (Definition 24). The minimal language preservation
in condition (d) is realized by introducing a red transition labeled f that leads
to an otherwise unreachable state: this target state enables the CE-handle in the
parallel composition of system components.

Given the modal refinement of MCs, the monotonicity stated in Proposi-
tion 6, and condition (c) of Definition 28, it follows that a DC does not extend
the maximal language of the MTS that underlies its initial contract (see also
Fig. 1).

Proposition 14 (Maximal-Language Reduction)
Let C = ((M0, Γ0, R0), . . . , Ik) be a DC and M ∈ M(C). Then we have:

[Lω
�(M)]

Σ(M0) ⊆ Lω
�(M0)

Moreover, based on Proposition 7, it is easy to show:

Proposition 15 (Preservation Transitivity). Let M,M ′,M ′′ be MTSs with
Σ(M) ∩ Σ(M ′′) = ∅. If we know that L⊥(M) ⊆ [L⊥(M || M ′))]

Σ(M) and also
L⊥(M ′) ⊆ [L⊥(M ′ || M ′′))]

Σ(M′) , then L⊥(M) ⊆ [L⊥(M || M ′ || M ′′))]
Σ(M) .

Because of Propositions 14 and 15, we know that a DC C as defined above
preserves the minimal language of Ms(I0) in Ms(C), as well as the maximal
language of M0 in any M ∈ M(C). As the red transitions in R0 are the only
difference between M0 and Ms(I0), it immediately follows that the last context
of C toggles the existence of paths that traverse some t ∈ R0 and thus the
existence of a counterexample.

Corollary 3 (Red Remote Handle). Let C = (I0 = (M0, Γ0, R0), . . . , Ik) be
a DC and M ∈ M(C). Further, let w ∈ Lω

⊥(Ms(I0)) such that for every path π
in Ms(I0) with w(π) = w, it holds that R(I0)|π �= ∅. Then

1. w ∈ [Lω
⊥(Ms(C))]

Σ(M0) , however
2. w /∈ [Lω

⊥(M)]
Σ(M0) .

This allows us to prove:

Every Component Matters 259

b

a

d

c

d

b

a

d

c

d

b

d

b

e

fb d ‖

e

f b

e

fd

b

e

f b

e

fd

b

f

d

e

f b

e

fd

b

f

d

e

f

e

system

context

alphabet extension

next MC

system

context

Fig. 4. Disabling chain C of an initial modal contract I0 for the interruptible LTL prop-
erty ϕ := GF a that results in a parallel composition M ∈ M(C) of three MTSs (right
column). Every LTS component refinement L of M yields a hard positive verification
task V (L, ϕ).

260 M. Jasper et al.

Lemma 3 (Red-based Sensitivity). Let ϕ be an interruptible LTL property
and C = (I0, . . . , Ik) a DC such that I0 is an initial modal contract for ϕ. Then
ϕ is L-sensitive for any LTS component refinement L of any M ∈ M(C).

Proof. Let ϕ, C satisfy the premise of Lemma 3 and M = Ms(C) || Mc ∈ M(C).
We first show that ϕ is M -sensitive. By construction, R(I0) contains a CE-
handle and M contains k + 2 parallel components. Corollary 3.2 ensures that
[Lω

⊥(M)]
Σ(M0) does not contain words for which a transition in R(I0) has to be

traversed, therefore M satisfies ϕ. In order to show that ϕ is M -sensitive, it
remains to be proven that for any i ∈ 0 . . k + 2, the component abstraction
α(M, i) is indecisive concerning ϕ.

Case i = 0: There exists a context M0
c of I0 with Lω

�(M0
c) ⊆ [Lω

�(Ms(I1))]Γ0

because of Definition 28(c) and the fact that the system of a modal contract
only extends the maximal language of its underlying MTS. The fact that
α(M, 0) is indecisive concerning ϕ thus follows from the third condition in
Definition 27 and the fact that only neighboring components communicate
(Definition 28(a)).

Case i = k+2: Corollary 3.1 implies that Lω
⊥(Ms(C)) contains a counterexample

which is inherited by the maximal language of any modal generalization of
Ms(C), in particular by α(M, i) = Ms(C)||UΓk

that abstracts from Mc. Thus,
ϕ is indecisive concerning α(M, i).

Case 1 ≤ i ≤ k + 1: In this case, the sub-compositions M i−1
s and M i+1

c defined
as follows are non-empty.

M = Ms(I0) || · · · || Ms(Ii−1)
︸ ︷︷ ︸

Mi−1
s

|| Ms(Ii) || Ms(Ii+1) || · · · || Ms(Ik) || Mc
︸ ︷︷ ︸

Mi+1
c

Corollary 3.1 implies that a counterexample w ∈ Lω
⊥(M i−1

s) exists based on
the sub-chain of i MCs. We know that Σ(M i−1

s) ∩ Σ(M i+1
c) = ∅ due to Defi-

nition 28(a), thus Proposition 3 ensures that w ∈ Lω
�(M i−1

s || M i+1
c). Propo-

sition 4 guarantees that adding the weakest specification of Mi to the com-
position does not reduce its maximal language, therefore w ∈ Lω

�(α(M, i)),
resulting in the fact that M is indecisive concerning ϕ.

As a consequence, ϕ is M -sensitive. Because a (component) refinement of Ms(C)
preserves its minimal language, such a refinement still guarantees the required
existence of counterexamples. Thus, ϕ is L-sensitive for any LTS component
refinement L of M . ��

As an exponential number of reachable states can again be realized via alpha-
bet extensions as in Sect. 4, we obtain:

Theorem 4 (Hard Positive Verification Task). Given an initial modal con-
tract I0 for some interruptible LTL property ϕ, one can efficiently construct an
n-hard positive verification task V (L,ϕ).

Every Component Matters 261

6 Conclusion and Outlook

We have presented a new method to automatically generate hard verification
tasks V (L,ϕ) consisting of a synchronous parallel system L and an interruptible
linear-time property ϕ. Key to our approach is a contract-based local decom-
position of components that can be iterated to construct arbitrarily large com-
positions of parallel components that are all relevant for solving the generated
task. By using available code generators, resulting verification tasks can be made
available in Promela, DOT8 format, or in the form of Petri Nets [16].

We are currently devising specific variants of our method to ensure that, e.g.,
formulas concern only actions of a single component, that various verification
tasks share the same parallel system, or that the prefixes of counterexamples
which need to be investigated have a minimum length [15]. Another line of
future research concerns the generalization to branching-time logics.

Parts of this work have already been used to generate parallel verification
benchmarks for the RERS Challenge in 20209 while utilizing an implementation
of modal contracts in the AutomataLib10. We target to fully support our new
approach in the next iteration of RERS. It will be particularly interesting to see
how well state-of-the-art approaches to (compositional) verification—including
techniques inspired by already available modal-contract-based benchmarks [21,
22,27]—can handle our hard verification tasks.

References

1. Baier, C., Katoen, J.P., Larsen, K.G.: Principles of Model Checking. MIT Press,
Cambridge (2008)

2. Bauer, S.S., et al.: Moving from specifications to contracts in component-based
design. In: de Lara, J., Zisman, A. (eds.) FASE 2012. LNCS, vol. 7212, pp. 43–58.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28872-2 3

3. Benveniste, A., Caillaud, B.: Synchronous interfaces and assume/guarantee con-
tracts. In: Aceto, L., Bacci, G., Bacci, G., Ingólfsdóttir, A., Legay, A., Mardare,
R. (eds.) Models, Algorithms, Logics and Tools. LNCS, vol. 10460, pp. 233–248.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63121-9 12

4. Benveniste, A., et al.: Contracts for system design. Found. Trends Electron. Des.
Autom. 12(2–3), 124–400 (2018). https://doi.org/10.1561/1000000053

5. Cardoso, R.C., Farrell, M., Luckcuck, M., Ferrando, A., Fisher, M.: Heterogeneous
verification of an autonomous curiosity rover. In: Lee, R., Jha, S., Mavridou, A.,
Giannakopoulou, D. (eds.) NFM 2020. LNCS, vol. 12229, pp. 353–360. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-55754-6 20

6. Chandra, S., Godefroid, P., Palm, C.: Software model checking in practice: an
industrial case study. In: Proceedings of the 24th International Conference on
Software Engineering, ICSE 2002, pp. 431–441 (2002). https://doi.org/10.1145/
581339.581393

8 https://graphviz.org/doc/info/lang.html.
9 http://www.rers-challenge.org/2020/.

10 https://learnlib.de/projects/automatalib/. Support for modal contracts is planned
to be made publicly available with the next release (0.11).

https://doi.org/10.1007/978-3-642-28872-2_3
https://doi.org/10.1007/978-3-319-63121-9_12
https://doi.org/10.1561/1000000053
https://doi.org/10.1007/978-3-030-55754-6_20
https://doi.org/10.1145/581339.581393
https://doi.org/10.1145/581339.581393
https://graphviz.org/doc/info/lang.html
http://www.rers-challenge.org/2020/
https://learnlib.de/projects/automatalib/

262 M. Jasper et al.

7. Garavel, H.: Nested-unit Petri nets. J. Log. Algebraic Methods Program. 104,
60–85 (2019). https://doi.org/10.1016/j.jlamp.2018.11.005

8. Geske, M., Jasper, M., Steffen, B., Howar, F., Schordan, M., van de Pol, J.: RERS
2016: parallel and sequential benchmarks with focus on LTL verification. In: Mar-
garia, T., Steffen, B. (eds.) ISoLA 2016. LNCS, vol. 9953, pp. 787–803. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-47169-3 59

9. Giannakopoulou, D., Magee, J.: Fluent model checking for event-based systems.
ACM SIGSOFT Softw. Eng. Notes 28(5), 257–266 (2003). https://doi.org/10.
1145/940071.940106

10. Goga, N., Costache, S., Moldoveanu, F.: A formal analysis of ISO/IEEE P11073-
20601 standard of medical device communication. In: 3rd Annual IEEE Systems
Conference, pp. 163–166 (2009). https://doi.org/10.1109/SYSTEMS.2009.4815792

11. Grumberg, O., Long, D.E.: Model checking and modular verification. ACM Trans.
Program. Lang. Syst. (TOPLAS) 16(3), 843–871 (1994). https://doi.org/10.1145/
177492.177725

12. Hoare, C.A.R.: Communicating sequential processes. In: The Origin of Concur-
rent Programming, pp. 413–443. Springer (1978). https://doi.org/10.1145/359576.
359585

13. Holzmann, G.: The SPIN Model Checker: Primer and Reference Manual, 1st edn.
Addison-Wesley Professional, Boston (2011)

14. Howar, F., Isberner, M., Merten, M., Steffen, B., Beyer, D., Păsăreanu, C.: Rigor-
ous examination of reactive systems. The RERS challenges 2012 and 2013. STTT
16(5), 457–464 (2014). https://doi.org/10.1007/s10009-014-0337-y

15. Howar, F., Jasper, M., Mues, M., Schmidt, D., Steffen, B.: The RERS challenge:
towards controllable and scalable benchmark synthesis. Int. J. Softw. Tools Tech-
nol. Transfer. (2021). https://doi.org/10.1007/s10009-021-00617-z

16. Jasper, M., et al.: The RERS 2017 challenge and workshop (invited paper). In:
Proceedings of the 24th ACM SIGSOFT International SPIN Symposium on Model
Checking of Software. SPIN 2017, pp. 11–20. ACM (2017). https://doi.org/10.
1145/3092282.3098206

17. Jasper, M., et al.: RERS 2019: combining synthesis with real-world models. In:
Beyer, D., Huisman, M., Kordon, F., Steffen, B. (eds.) TACAS 2019. LNCS, vol.
11429, pp. 101–115. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
17502-3 7

18. Jasper, M., Mues, M., Schlüter, M., Steffen, B., Howar, F.: RERS 2018: CTL,
LTL, and reachability. In: Margaria, T., Steffen, B. (eds.) ISoLA 2018. LNCS, vol.
11245, pp. 433–447. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-
03421-4 27

19. Jasper, M., Steffen, B.: Synthesizing subtle bugs with known witnesses. In: Mar-
garia, T., Steffen, B. (eds.) ISoLA 2018. LNCS, vol. 11245, pp. 235–257. Springer,
Cham (2018). https://doi.org/10.1007/978-3-030-03421-4 16

20. Kordon, F., et al.: Report on the model checking contest at Petri nets 2011. In:
Jensen, K., van der Aalst, W.M., Ajmone Marsan, M., Franceschinis, G., Kleijn,
J., Kristensen, L.M. (eds.) Transactions on Petri Nets and Other Models of Con-
currency VI. LNCS, vol. 7400, pp. 169–196. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-35179-2 8

21. Lang, F., Mateescu, R., Mazzanti, F.: Compositional verification of concurrent
systems by combining bisimulations. In: ter Beek, M.H., McIver, A., Oliveira, J.N.
(eds.) FM 2019. LNCS, vol. 11800, pp. 196–213. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-30942-8 13

https://doi.org/10.1016/j.jlamp.2018.11.005
https://doi.org/10.1007/978-3-319-47169-3_59
https://doi.org/10.1145/940071.940106
https://doi.org/10.1145/940071.940106
https://doi.org/10.1109/SYSTEMS.2009.4815792
https://doi.org/10.1145/177492.177725
https://doi.org/10.1145/177492.177725
https://doi.org/10.1145/359576.359585
https://doi.org/10.1145/359576.359585
https://doi.org/10.1007/s10009-014-0337-y
https://doi.org/10.1007/s10009-021-00617-z
https://doi.org/10.1145/3092282.3098206
https://doi.org/10.1145/3092282.3098206
https://doi.org/10.1007/978-3-030-17502-3_7
https://doi.org/10.1007/978-3-030-17502-3_7
https://doi.org/10.1007/978-3-030-03421-4_27
https://doi.org/10.1007/978-3-030-03421-4_27
https://doi.org/10.1007/978-3-030-03421-4_16
https://doi.org/10.1007/978-3-642-35179-2_8
https://doi.org/10.1007/978-3-642-35179-2_8
https://doi.org/10.1007/978-3-030-30942-8_13
https://doi.org/10.1007/978-3-030-30942-8_13

Every Component Matters 263

22. Lang, F., Mateescu, R., Mazzanti, F.: Sharp congruences adequate with temporal
logics combining weak and strong modalities. In: TACAS 2020. LNCS, vol. 12079,
pp. 57–76. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45237-7 4

23. Larsen, K.G.: Modal specifications. In: Sifakis, J. (ed.) CAV 1989. LNCS, vol. 407,
pp. 232–246. Springer, Heidelberg (1990). https://doi.org/10.1007/3-540-52148-
8 19

24. Guldstrand Larsen, K.: Ideal specification formalism = expressivity + composi-
tionality + decidability + testability + ... In: Baeten, J.C.M., Klop, J.W. (eds.)
CONCUR 1990. LNCS, vol. 458, pp. 33–56. Springer, Heidelberg (1990). https://
doi.org/10.1007/BFb0039050

25. Peterson, J.L.: Petri Net Theory and the Modeling of Systems. Prentice Hall PTR
(1981)

26. Raclet, J.B., Badouel, E., Benveniste, A., Caillaud, B., Legay, A., Passerone, R.:
A modal interface theory for component-based design. Fund. Inform. 108(1–2),
119–149 (2011). https://doi.org/10.3233/FI-2011-416

27. Siegel, S.F., Yan, Y.: Action-based model checking: logic, automata, and reduction.
In: Lahiri, S.K., Wang, C. (eds.) CAV 2020. LNCS, vol. 12225, pp. 77–100. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-53291-8 6

28. Steffen, B., Jasper, M., Meijer, J., van de Pol, J.: Property-preserving generation
of tailored benchmark Petri nets. In: 2017 17th International Conference on Appli-
cation of Concurrency to System Design (ACSD), pp. 1–8 (2017). https://doi.org/
10.1109/ACSD.2017.24

29. Steffen, B., Jasper, M.: Property-preserving parallel decomposition. In: Aceto, L.,
Bacci, G., Bacci, G., Ingólfsdóttir, A., Legay, A., Mardare, R. (eds.) Models, Algo-
rithms, Logics and Tools. LNCS, vol. 10460, pp. 125–145. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-63121-9 7

30. Steffen, B., Jasper, M.: Generating hard benchmark problems for weak bisimula-
tion. In: Bartocci, E., Cleaveland, R., Grosu, R., Sokolsky, O. (eds.) From Reac-
tive Systems to Cyber-Physical Systems. LNCS, vol. 11500, pp. 126–145. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-31514-6 8

31. Warford, J.S., Vega, D., Staley, S.M.: A calculational deductive system for lin-
ear temporal logic. ACM Comput. Surv. 53(3) (2020). https://doi.org/10.1145/
3387109

https://doi.org/10.1007/978-3-030-45237-7_4
https://doi.org/10.1007/3-540-52148-8_19
https://doi.org/10.1007/3-540-52148-8_19
https://doi.org/10.1007/BFb0039050
https://doi.org/10.1007/BFb0039050
https://doi.org/10.3233/FI-2011-416
https://doi.org/10.1007/978-3-030-53291-8_6
https://doi.org/10.1109/ACSD.2017.24
https://doi.org/10.1109/ACSD.2017.24
https://doi.org/10.1007/978-3-319-63121-9_7
https://doi.org/10.1007/978-3-030-31514-6_8
https://doi.org/10.1145/3387109
https://doi.org/10.1145/3387109

Author Index

Ali, Shaukat 54
Arcaini, Paolo 54

Baier, Christel 3
Balling, Ole 109
Bar-Sinai, Michael 199
Beyer, Dirk 177
Bojanova, Irena 177
Budde, Carlos E. 216

Fitzgerald, John 49
Foldager, Frederik F. 109

Gellert, Arpad 140
Gentsch, Christoph 182
Gomes, Cláudio 72
Gros, Timo P. 27
Groß, David 27
Gumhold, Stefan 27

Hartmanns, Arnd 216
Heinze, Thomas S. 182
Hermanns, Holger 3
Hoffmann, Jörg 27

Jasper, Marc 242
Johansen, Karsten W. 153
Johnsen, Einar Broch 88

Kamburjan, Eduard 88
Klauck, Michaela 27, 216
Kölbl, Martin 10
Křetínský, Jan 216
Krishnamurthy, Rohan 182

Larsen, Peter Gorm 49, 72, 153
Larsen, PeterGorm 109

Lecomte, Thierry 124
Leue, Stefan 10
Li, Beidi 153

Macedo, Hugo Daniel 72
Margaria, Tiziana 49
Matei, Alexandru 140

Neghină, Mihai 140
Nielsen, Rasmus O. 153

Parker, David 216

Quatmann, Tim 216

Schlatte, Rudolf 88
Schlüter, Maximilian 242
Schmidt, David 242
Schordan, Markus 177
Schultz, Carl 153
Steffen, Bernhard 242
Steinmetz, Marcel 27

Tapia Tarifa, Silvia Lizeth 88
Teizer, Jochen 153
Thule, Casper 109
Ţocu, Nicolae-Adrian 140
Turrini, Andrea 216

Weiss, Gera 199
Woodcock, Jim 49, 72

Yue, Tao 54

Zamfirescu, Constantin-Bălă 140
Zhang, Zhen 216

	Introduction
	Organization
	Contents – Part IV
	From Verification to Explanation
	From Verification to Explanation (Track Introduction)
	1 Introduction
	2 Context
	3 Contributions in this Track
	References

	An Algorithm to Compute a Strict Partial Ordering of Actions in Action Traces
	1 Motivation
	2 Preliminaries
	3 Algorithm to Analyze Action Orders in Action Traces
	4 Case Study
	5 Conclusion
	References

	TraceVis: Towards Visualization for Deep Statistical Model Checking
	1 Introduction
	2 Related Work
	3 Background: DSMC20 and Racetrack
	4 Visualization Concept
	5 Visualizing Probabilities
	6 Visualizing Policy Traces
	7 Case Study
	8 Conclusion
	References

	Engineering of Digital Twins for Cyber-Physical Systems
	Engineering of Digital Twins for Cyber-Physical Systems
	1 Introduction
	2 Contributions
	3 Concluding Remarks
	References

	Understanding Digital Twins for Cyber-Physical Systems: A Conceptual Model
	1 Introduction
	2 Running Example
	3 Overview
	4 Physical Twin and Digital Twin
	4.1 Physical Twin
	4.2 Digital Twin

	5 Evolution and Uncertainty
	5.1 Evolution
	5.2 Uncertainty

	6 Life-Cycle
	7 Related Work
	8 Conclusion
	References

	Uncertainty Quantification and Runtime Monitoring Using Environment-Aware Digital Twins
	1 Introduction
	2 The Need for Digital Twins and Tolerance
	3 The Agricultural Vehicle Case Study
	3.1 Vehicle Kinematics
	3.2 Controller
	3.3 Deployed System
	3.4 Statistical Analysis
	3.5 Runtime Monitoring
	3.6 What-If Analysis

	4 Conclusion
	References

	Designing Distributed Control with Hybrid Active Objects
	1 Introduction
	2 A Short Overview of ABS
	2.1 The Time Model of Timed ABS
	2.2 The Model API

	3 Hybrid Abstract Behavioral Specification Language
	3.1 Syntax and Semantics
	3.2 Analyzability

	4 Models for Distributed Control
	4.1 Internal Control
	4.2 Predictive Control

	5 Discussion: Hybrid Active Objects in Relation to Co-simulation and Digital Twins
	5.1 Relation to Co-simulation
	5.2 Relation to Digital Twins

	6 Conclusion
	References

	Towards a Digital Twin - Modelling an Agricultural Vehicle
	1 Introduction
	2 Materials and Methods
	2.1 Functional Mockup Interface
	2.2 Digital Twin Tool-Chain
	2.3 The Robotti Model

	3 Results
	3.1 Scenario 1: Changing Track Width
	3.2 Scenario 2: Loading the Three-Point Linkage

	4 Discussion and Future Work
	4.1 Soil–Machine Interaction
	4.2 Co-simulation and Digital Twins
	4.3 Desktop-Version of Robotti
	4.4 Concluding Remarks

	References

	Digital Modelling in the Railways
	1 Introduction
	2 Terminology
	3 Modelling Infrastructure
	3.1 Categories
	3.2 Rails
	3.3 Dynamics
	3.4 Timetables

	4 Modelling Safety
	4.1 Automatic Pilot - Braking
	4.2 Estimating Maintenance Periods
	4.3 Formal Data Validation
	4.4 Proving Interlocking (Model-Checking, Installation-Based)
	4.5 Modelling Design Reasoning

	5 Convergence and Relevance
	6 Conclusion and Perspectives
	References

	Engineering a Digital Twin for Manual Assembling
	1 Introduction
	2 Assembly Workstation Digital Twin Concept
	3 Implementation Issues
	4 Machine Learning Capabilities
	4.1 Human Emotions
	4.2 Context-Based Predictors for the Assembly Sequences

	5 Conclusions and Future Work
	References

	Towards Digital Twins for Knowledge-Driven Construction Progress and Predictive Safety Analysis on a Construction Site
	1 Introduction
	1.1 Related Work

	2 Automatic Construction Progress Analysis
	2.1 Explaining Sensor Data via Abductive Reasoning
	2.2 Answer Set Programming (ASP)
	2.3 Abductive Reasoning Using Answer Set Programming

	3 From Physical Twin to Digital Twin: The Framework and Workflow
	3.1 Three Framework Modules

	4 Functional Demonstration with Trajectory Data from a Construction Site
	5 From Manual to Automatic Safety Analysis
	5.1 Formalising Safety Building Codes for Automatic Safety Analysis
	5.2 The Shape of Meaningful ``Empty Spaces'' in Construction Safety

	6 Reasoning About Safety in 4D BIM Construction Plans
	6.1 Functional Demonstration of Safety Analysis

	7 Concluding Remarks and Future Work
	References

	Software Verification Tools
	Software Verification Tools (Track Introduction)
	1 Introduction
	2 Contributions with Published Papers in the Track
	3 Conclusion
	References

	Benchmarking Open-Source Static Analyzers for Security Testing for C
	1 Introduction
	2 Previous Work on Benchmarking SAST Tools for C
	3 Prevalence of C-Related Vulnerability Patterns
	4 SAST Tool Evaluation Method
	4.1 Tested Open-Source SAST Tools
	4.2 Evaluation Datasets
	4.3 Evaluation Procedure for Synthetic Test Cases
	4.4 Trial on Production Software

	5 Results and Discussion
	5.1 Effect of Severity Thresholds
	5.2 Tools' Recall on SFP Clusters
	5.3 Overall SAST Tool Accuracy
	5.4 SAST Tool Overlap
	5.5 Trial on Production Software

	6 Threats to Validity
	7 Conclusion
	References

	Verification of Liveness and Safety Properties of Behavioral Programs Using BPjs
	1 Introduction
	2 Problem Formulation
	3 Model Driven Engineering with BP
	3.1 Conforming with Safety Properties
	3.2 Deadlock Detection
	3.3 Liveness Requirements

	4 Evaluation
	5 Related Work
	6 Conclusion
	References

	On Correctness, Precision, and Performance in Quantitative Verification
	1 Introduction
	2 Languages, Formalisms, and Properties
	3 Correctness and Precision
	3.1 Correctness Challenges
	3.2 Correct Algorithms
	3.3 Correctness in QComp 2020

	4 Participating Tools
	5 Performance Evaluation
	5.1 Quantile Plots
	5.2 Scatter Plots

	6 Conclusion
	References

	Every Component Matters: Generating Parallel Verification Benchmarks with Hardness Guarantees
	1 Introduction
	2 Preliminaries
	2.1 Modal Transition Systems
	2.2 Parallel Composition and Weakest Specification
	2.3 Alphabet View
	2.4 Linear Temporal Logic Model Checking

	3 Hardness
	4 Negative Verification Tasks
	4.1 Initial Green Contract Construction
	4.2 Iterated Decomposition

	5 Positive Verification Tasks
	5.1 Initial Modal Contract Construction
	5.2 Iterated Decomposition

	6 Conclusion and Outlook
	References

	Author Index

