
Chapter 14
Teleparallel Gravity: Foundations and
Cosmology

Sebastian Bahamonde, Konstantinos F. Dialektopoulos, Manuel Hohmann,
and Jackson Levi Said

14.1 Foundations of Teleparallel Gravity

Teleparallel Gravity theories have received growing attention during the last decade.
Their most distinguishing feature is the use of a different geometric setting compared
to General Relativity, which features a flat (curvature-free) connection, and torsion
instead of curvature. This section gives a brief introduction to themathematical back-
ground and foundations of Teleparallel Gravity. Section14.1.1 gives an overview of
the geometric setting and dynamical field content. Its relation to a gauge theory of
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translations is explained in Sect. 14.1.2. Local Lorentz invariance is discussed in
Sect. 14.1.3. Section14.1.4 briefly elucidates how matter couples to the teleparal-
lel geometry. Finally, Sect. 14.1.5 gives an account of the most simple Teleparallel
Gravity theory, which is equivalent to General Relativity at the level of its field equa-
tions. The notation used here and in the following sections on Teleparallel Gravity
is summarized in the Convention Table in the beginning of the book.

14.1.1 Teleparallel Geometry

The most important, distinguishing feature of Teleparallel Gravity [1] is its use of
an affine connection, whose connection coefficients will be denoted by

•
�μ

νρ, and
which is different from the Levi-Civita connection of the metric gμν . This connection
is chosen to be flat, in the sense that has vanishing curvature

•
Rμ

ναβ = ∂α

•
�μ

νβ − ∂β

•
�μ

να + •
�μ

ρα

•
�ρ

νβ − •
�μ

ρβ

•
�ρ

να ≡ 0 , (14.1)

where we denote quantities related to the teleparallel connection with a bullet • to
distinguish them from their Levi-Civita counterparts. For instance,

•∇μ denotes the
teleparallel covariant derivative, while ∇μ denotes the Levi-Civita covariant deriva-
tive. The flatness of the connection allows a path-independent parallel transport,
hence maintaining a notion of being parallel at a distance, which is the reason for
calling it “teleparallel” [2]. Further, the teleparallel connection is metric compatible,
so that its non-metricity tensor vanishes,

•
Qρμν = •∇ρgμν = ∂ρgμν − •

�σ
μρgσν − •

�σ
νρgμσ ≡ 0 , (14.2)

while its torsion •
T ρ

μν = •
�ρ

νμ − •
�ρ

μν (14.3)

is allowed to be non-vanishing. In Teleparallel Gravity, the torsion takes the role of
the gravitational field strength, in contrast to General Relativity, where this role is
attributed to the Levi-Civita curvature.

There are different, equivalent possibilities to implement the teleparallel con-
nection as a dynamical field. In the original formulation by Einstein [2], the only
fundamental dynamical field is a tetrad (or vielbein) field eA = eAμdxμ. Here and in
the remainder of this section, capital Latin letters A, B = 0, . . . , 3 denote Lorentz
indices. The tetrad defines both the metric

gμν = ηABe
A

μe
B

ν (14.4)

and the coefficients •
�μ

νρ = eA
μ∂ρe

A
ν (14.5)
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of the teleparallel affine connection,where ηAB = diag(−1, 1, 1, 1) is theMinkowski
metric and eA = eAμ∂μ is the inverse tetrad satisfying eAμeAν = δν

μ and eAμeBμ =
δA
B . This particular choice of the connection is known as theWeitzenböck connection,
and it belongs to a family of flat, metric compatible connections. The constituents of
this family can be expressed in terms of the connection one-forms •

ωA
B = •

ωA
Bμdxμ

of a flat Lorentz spin connection via the relation

•
�μ

νρ = eA
μ(∂ρe

A
ν + •

ωA
Bρe

B
ν) . (14.6)

Here, flatness corresponds to vanishing curvature of the spin connection,

•
RA

Bαβ = ∂α
•
ωA

Bβ − ∂β
•
ωA

Bα + •
ωA

Cα
•
ωC

Bβ − •
ωA

Cβ
•
ωC

Bα ≡ 0 , (14.7)

while metric compatibility follows from the antisymmetry •
ω(AB)

μ ≡ 0. In the covari-
ant formulation of teleparallel gravity theories [3], the spin connection is promoted to
a dynamical field, and its flatness must be imposed either through Lagrange multipli-
ers in the gravitational action or by explicitly allowing only for flat connections and
accordingly restricting the variation with respect to the spin connection in the deriva-
tion of the Euler-Lagrange equations [4]. Yet another possibility to ensure the flatness
of the spin connection is to consider it as a dependent quantity •

ωA
Bμ = �A

C∂μ�B
C

derived from a local Lorentz transformation �A
B , and to promote the latter to a

fundamental dynamical field next to the tetrad [5, 6].
Another implementation of teleparallel geometry is the Palatini approach, which

considers as fundamental fields the metric gμν and the affine connection coefficients•
�ρ

μν , and enforces metric compatibility and flatness of the connection via Lagrange
multipliers [7].

14.1.2 Translation Gauge Theory

One argument that is commonly mentioned in favour of Teleparallel Gravity is its
possible interpretation as a gauge theory of translations. Various approaches and
realisations of this gauge theory have been studied [8]. It was first found in the
non-covariant formulation of Teleparallel Gravity that the tetrad allows for a gauge
symmetry, which can be related to infinitesimal translations, and that imposing this
symmetry leads to an action equivalent to theEinstein-Hilbert action [9, 10].Relaxing
the condition of local Lorentz invariance yields a more general class of theories [11].
A more sophisticated approach relates Teleparallel Gravity to higher gauge theory,
and generalisations of Cartan geometry [12]. Cartan geometry has also been sug-
gested as a possible interpretation of the non-standard nature of translational gauge
transformations, which act not only on an internal space, is usual in gauge theory,
but also on the underlying spacetime manifold [13]. This interpretation has been
contrasted with a formulation making use of a principal bundle of translations [14].
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Despite their differences, the aforementioned approaches have in common that the
tetrad field is related to a gauge potential of translations, while the spin connection
is related to an external Lorentz gauge symmetry. However, for a more fundamental
understanding of how the tetrad and spin connection in the covariant formulation of
Teleparallel Gravity arise, it is helpful to take a step backwards and view Telepar-
allel Gravity in the more general context of Poincaré gauge theory, and even more
generally in the context of metric-affine gravity [15, 16]. We therefore briefly review
their description in terms of gauge connections.

We denote by FM the general linear frame bundle of the spacetime manifold M .
The fiber FxM at a point x ∈ M is the set of all frames, i.e., ordered bases of the
tangent space TxM . Any frame can be expressed by a bijective linear map f : R

4 →
TxM . Given coordinates (xμ) on M , we can introduce coordinates (xμ, f Aμ) on FM ,
where the frame f maps an element v ∈ R

4 with components vA to vA fAμ∂μ ∈ TxM .
Note that FM is a principal bundle: the group H0 = GL(4, R) acts from the right
on the fibres of FM . Writing the matrix components of an element � ∈ H0 as �A

B ,
the action reads

(xμ, f A
μ) �→ (xμ, f A

μ) · � = (xμ, fB
μ�B

A) (14.8)

in the coordinates we used.
A frame allows expressing tensor fields in a basis that is different from the

coordinate basis. Changing the frame changes the basis, while keeping the point
fixed at which the tensor field is evaluated. In order to incorporate translations
as well, one considers a larger bundle, which may be constructed as follows. Let
G0 = GA(4, R) = R

4
� GL(4, R) be the general affine group. The group H0, being

a subgroup of G0, acts on G0 by left multiplication: given �̃ ∈ H0 and (�, v) ∈ G0,
one has

�̃ · (�, v) = (�̃�, �̃v) . (14.9)

This action gives rise to an associated bundle AM = FM ×H0 G0, which we call the
affine frame bundle. To understand the geometry of AM , recall that for each x ∈ M
the elements of the fiber AxM are given by equivalence classes

[ f̃, (�, v)] = [ f̃ · �̃−1, �̃ · (�, v)] , (14.10)

where f̃ ∈ FxM is a frame at x and (�, v) ∈ G0, and equivalence is given by the
simultaneous actionof �̃ ∈ H0 onbothof these objects, following the equation above.
One can see that every such equivalence class is defined by a frame f = f̃ · �, as
well as a tangent vector y = f̃ v, or in components

f A
μ = f̃ B

μ�B
A and yμ = vA f̃ A

μ , (14.11)

since these combinations are invariant under the application of �̃. Hence, the affine
frame bundle has the structure
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AM = T M ×
M
FM , (14.12)

or in other words, every element of AM consists of a base point x ∈ M , a vector y ∈
TxM and a frame f ∈ FxM . Coordinates on AM thus take the form (xμ, yμ, f Aμ).
One finds that AM is a principal G0-bundle, where the right action is given by

(xμ, yμ, f A
μ) �→ (xμ, yμ, f A

μ) · (�, v) = (xμ, yμ + f A
μvA, fB

μ�B
A) (14.13)

for (�, v) ∈ G0.
The bundle AM is the arena for the gauge theory wemodel. The gauge connection

is given by a one-form Â ∈ �1(AM, g0) on AM , taking values in the Lie algebra g0
of G0. Since this Lie algebra splits as g0 = h0 ⊕ z into the homogeneous part h0 and
translations z ∼= R

4, the same holds for the gauge connection Â = ω̂ + e. Using the
canonical matrix and vector representations of these Lie algebras, it turns out that
the most general one-form connection can be written in the form

ω̂A
B = f −1 A

μ( fB
ν�̂μ

νρdx
ρ + d fB

μ) , (14.14a)

eA = f −1 A
μ(E

μ
νdx

ν + �̂μ
νρy

νdxρ + dyμ) (14.14b)

in our chosen coordinates, where Eμ
ν and �̂μ

νρ are functions of x only. This form
is a consequence of the demand that Â is a principal connection.

Finally, to obtain the gauge fields on the spacetimemanifoldM , we need to choose
a gauge; this corresponds to choosing a section σ : M → AM . In our coordinates
this section can be expressed as

σ : x �→ (xμ,σμ,σA
μ) . (14.15)

The section allows us to take the pullbacks

σ∗ω̂A
B = ω̂A

Bμdx
μ = σ−1 A

μ(σB
ν�̂μ

νρ + ∂ρσB
μ)dxρ , (14.16a)

σ∗eA = eAμdx
μ = σ−1 A

μ(E
μ

ρ + �̂μ
νρσ

ν + ∂ρσ
μ)dxρ . (14.16b)

Here we have already suggestively identified these pullbacks with the tetrad eAμ and
teleparallel spin connection ω̂A

Bμ. To justify this identification and to resort to more
familiar notation, we introduce new coordinates

(xμ, yμ, f A
μ) �→ (xμ, ξA, f A

μ) = (xμ, f −1 A
μy

μ, f A
μ) , (14.17)

and accordingly replace σμ = σAσA
μ. Then the tetrad (14.16b) becomes

σ∗eA = eAμdx
μ = (BA

ρ + ω̂A
Bρσ

B + ∂ρσ
A)dxρ , (14.18)
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where BA
ρ = σ−1 A

μEμ
ρ. This is the form most commonly encountered in the lit-

erature [1]. Note that changing the section σA
μ simply corresponds to a change of

the Lorentz frame, while a change of σA can be interpreted as a translation gauge
transformation. Finally, calculating the torsion yields

T̂ A
μνdx

μ ∧ dxν = deA + ω̂A
B ∧ eB = (∂μB

A
ν + ω̂A

BμB
B

ν + ∂μω̂A
BνσB + ω̂A

Cμω̂C
BνσB )dxμ ∧ dxν .

(14.19)
In the teleparallel geometry the spin connection has vanishing curvature (14.7), and
so the two terms involving σB vanish. The torsion then becomes the field strength of
the translation gauge potential BA

μ.

14.1.3 Local Lorentz Invariance

When the concept of teleparallelismwas introduced, the only dynamical fieldwas the
tetrad eAμ, which has 16 components. It was believed that gravity is described by the
10 components of the metric, while the additional six components could be attributed
to the electromagnetic field strength [2]. However, this turned out not to be the case,
and it was realised that these additional components are related to local Lorentz trans-
formations eAμ �→ �A

BeBμ instead. Further, it was found that in general Teleparallel
gravity theories are not invariant under such local Lorentz transformations, due to
the presence of the Weitzenböck connection

•
�ρ

μν = eAρ∂νeAμ: in order to solve the
field equations of such theories, one cannot choose an arbitrary tetrad corresponding
to a particular metric, but only specific tetrads are allowed [17–21]. This means that
the extra components present in the tetrad cannot be regarded as pure gauge degrees
of freedom. This fact raised a debate regarding the nature of the additional degrees
of freedom, whether they might be acausal or even superluminal, or whether some
of them can be absorbed by a remnant gauge symmetry that is still present despite
the otherwise broken Lorentz symmetry [22–30].

In order to resolve the aforementioned issues, a covariant formulation of Telepar-
allel Gravity theories was developed, which features the flat Lorentz spin connection
•
ωA

Bμ as an additional dynamical field [3, 4, 31, 32]. In the covariant formulation,
local Lorentz transformations take the form

eAμ �→ �A
Be

B
μ ,

•
ωA

Bμ �→ �A
C(�−1)DB

•
ωC

Dμ + �A
C∂μ(�

−1)C B , (14.20)

and thus act on both the tetrad and the spin connection. The teleparallel connec-
tion (14.6), and hence also its torsion (14.3), are invariant under this combined trans-
formation. It thus follows that any action constructed from the (in any case invariant)
metric, the torsion and their derivatives are locally Lorentz invariant.

Note that the spin connection (14.16a) also naturally arises in the gauge theory
approach shown in Sect. 14.1.2. In this picture, local Lorentz transformations are
simply transformations of the Lorentz part σA

μ of the section defining the gauge.
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14.1.4 Matter Coupling

An important issue in Teleparallel Gravity is the question about how to couple matter
to the teleparallel geometry. The most commonly considered procedure is given by
the minimal coupling prescription, according to which the metric gμν in the matter
action is chosen to be the metric (14.4) obtained from the tetrad. This prescription is
sufficient for bosonic fields, which couple to the metric only, without direct coupling
to a spin connection. This differs from the case of fermions, where a spin connection
must be specified. The question about a consistent coupling of fermions and the
proper choice of the spin connection is a highly topic [16, 33–37]. We will not enter
this debate here, and assume that fermions couple to the metric geometry through
the spin connection associated with the Levi-Civita connection only. Following this
assumption, the matter action does not depend on the teleparallel spin connection,
but only on the tetrad. For the variation with respect to the tetrad we may write

δeSmatter = −
∫

d4x eTA
μδeAμ . (14.21)

The quantity TA
μ introduced here is the matter energy-momentum tensor, which

we also write in the form Tμν = eAμgμνTA
ρ.1 Demanding that the matter action is

invariant under local Lorentz transformations, which is equivalent to demanding
that it depends only on the metric obtained from the tetrad, then implies that the
energy-momentum tensor is symmetric, T[μν] = 0 [38].

14.1.5 Teleparallel Equivalent of General Relativity (TEGR)

An interesting feature of Teleparallel Gravity is that it allows for an alternative
formulation of General Relativity, in which gravity is mediated by torsion instead of
curvature [39]. One possibility to derive the action for the Teleparallel Equivalent of
General Relativity (TEGR) is by starting from the Einstein-Hilbert action

SGR = 1

2κ2

∫
d4x

√−g R , (14.22)

where κ2 = 8πG, and by rewriting the Ricci scalar in terms of the torsion of the
teleparallel connection. For this purpose, we introduce the contortion tensor

•
K ρ

μν = •
�ρ

μν − �ρ
μν = 1

2

( •
T μ

ρ
ν + •

T ν
ρ
μ − •

T ρ
μν

)
(14.23)

1 While Tμν refers to the energy-momentum tensor,
•
T ρ

μν refers to the torsion tensor which is not
related.
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as the difference between the teleparallel and Levi-Civita connection coefficients.
By making use of this relation, one can write the Riemann curvature tensor of the
Levi-Civita connection in the form

Rμ
νρσ = •

Rμ
νρσ − ∇ρ

•
K μ

νσ + ∇σ

•
K μ

νρ − •
K μ

τρ

•
K τ

νσ + •
K μ

τσ

•
K τ

νρ , (14.24)

keeping inmind that the curvature of the teleparallel connection vanishes,
•
Rμ

νρσ ≡ 0,
while the curvature of the Levi-Civita connection does not vanish in general. Taking
the appropriate contractions, and using the antisymmetry

•
K (μν)ρ = 0, the Ricci scalar

reads

R = −2∇μ

•
K μν

ν + •
K ρμ

μ

•
K ρν

ν − •
K ρμν

•
K ρνμ = −T + 2∇μ

•
T ν

νμ = −T + B .

(14.25)
Here we introduced the torsion scalar T, which can be written in the form

T = 1

2

•
T ρ

μν

•
Sρ

μν = 1

4

•
T μνρ

•
T μνρ + 1

2

•
T μνρ

•
T ρνμ − •

T μ
μρ

•
T ν

νρ , (14.26)

where we used the superpotential

•
Sρ

μν = •
K μν

ρ − δμ
ρ

•
T σ

σν + δν
ρ

•
T σ

σμ . (14.27)

Finally, the last term in the expression (14.25) is a total divergence, and thus appears
as a boundary term in the action, which does not contribute to the field equations.
Omitting this term and using the fact that the determinants of the metric and the
tetrad are related by

e = √−g , (14.28)

the TEGR action finally reads

STEGR = − 1

2κ2

∫
d4x eT . (14.29)

Variation of this action, together with a matter action, with respect to the tetrad,
and transforming the resulting Lorentz index into a spacetime index, yields the field
equations

∇ρ

•
S(μν)

ρ − 1

2

•
S(μ

ρσ
•
T ν)ρσ + 1

2
Tgμν = κ2Tμν . (14.30)

The right-hand side is given by the energy-momentum tensor (14.21). The left-hand
side of these field equations is most easily understood by realising the geometric
identity

∇ρ

•
S(μν)

ρ − 1

2

•
S(μ

ρσ
•
T ν)ρσ + 1

2
Tgμν = Rμν − 1

2
Rgμν = Gμν , (14.31)
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and so it turns out that the field equations indeed agree with those of General Rela-
tivity, as one would expect. An interesting property of the action (14.29) is the fact
that the teleparallel spin connection •

ωA
Bμ enters only in the form of a boundary

term [40]. This can be seen from the relation (14.25) between the Ricci scalar of the
Levi-Civita connection and the torsion scalar. The left-hand side is independent of
the teleparallel spin connection, and so its variation δωR vanishes. This implies

δωT = 2δω∇μ

•
T ν

νμ = 2∇μδω

•
T ν

νμ , (14.32)

so that variation of the TEGR action with respect to the teleparallel spin connection
yields a boundary term only. One consequence is that the teleparallel spin connection
drops out of the field equations, as can be seen from the identity (14.25). From this,
further follows that the theory is invariant not only under the local Lorentz transfor-
mations (14.20), but also under the pure tetrad transformations eAμ �→ �A

BeBμ. This
invariance, which does not hold for general teleparallel theories, as discussed in the
following section, is one reason why Teleparallel Gravity was originally developed
without appealing to a non-trivial spin connection, and the viability of the covariant
formulation of TEGR has been challenged [41].

14.2 Teleparallel Gravity Extensions

Even if�CDMhas passedmost of the observational testswith flying colours,General
Relativity (GR), and thus the Teleparallel Equivalent of GR (TEGR) as well, contain
some shortcomings. Motivated mostly by the accelerated expansion of the Universe,
many people initiated the hunt for a modification of gravity. In the same way as in
the curvature case, the literature abounds different theories of Teleparallel Gravity,
that introduce new degrees of freedom to describe several phenomena.

Either by introducing scalar fields to the TEGR Lagrangian, or by generalising it
to an arbitrary function of the torsion scalar, i.e. f (T), by introducing non-localities,
non-linear boundary terms and other topological invariants, there has been a great
plethora of models studied. In this section we will give a brief review on the most
well-known modifications.

14.2.1 f (T) Gravity

In the curvature case, the most straightforward modification, and maybe the simplest
one, is the so-called f (R) gravity. As the name witnesses, it is a generalisation of the
Einstein-Hilbert action to an arbitrary function of the Ricci scalar that offers richer
phenomenology [42–45] by introducing a new scalar degree of freedom [46–48]. In
the same spirit, f (T) theory was proposed almost a decade ago [19, 49–51] and its
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action reads

S f (T) = 1

2κ2

∫
d4x e f (T) + Smatter . (14.33)

It is worth mentioning that even though at the level of field equations GR and TEGR
are totally equivalent theories, the same does not happen for f (R) and f (T) the-
ories. As already discussed in the previous section, R = −T + B (14.25), where
B = −2∂α(e

•
T μα

μ)/e is a boundary term, that in TEGR does not contribute to the
field equations. However, the arbitrary function f (T) is non-linear and thus the two
theories are no longer equivalent.

Varying the action (14.33) with respect to the tetrad eAμ we get its field equations
that read

fT∂ν

(
e

•
SA

μν
)

+ e

(
fTT

•
SA

μν∂νT − fT
•
T B

νA
•
SB

νμ + fT
•
ωB

Aν
•
SB

νμ + 1

2
f eA

μ

)
= κ2eTA

μ ,

(14.34)
with fT and fTT being respectively the first, and second-order derivatives of f with
respect to T and Tμ

ν = eAμTA
ν is the energy-momentum tensor of the matter fields.

As one can immediately notice, the equations for the tetrad are of second order, in
contrast with those in f (R) gravity. For the unimodular formulation of f (T) gravity,
where the determinant of the tetrad is kept constant, one can check [52].

Variation of (14.33) with respect to the spin connection [4, 53, 54] gives the
antisymmetric part of the tetrad equations (14.34), meaning

fTT
•
S[AB]ν

•
T ν = 0 (14.35)

There was a period when it was believed that f (T) gravity violates local Lorentz
invariance [17, 18]. Indeed, if one considers the theory with the tetrad being the only
variable, the discussion is constrained on a very specific class of frames where the
spin connection vanishes. That is why the existence of good and bad tetrads was
proposed [20], referring to tetrads in the same equivalence class that solve and do not
solve respectively the field equations. An illuminating example is that the diagonal
tetrad in spherical symmetry

eAμ = diag (A, B, r, r sin θ) , (14.36)

corresponding to the metric gμν = diag
[
A2(r).B2(r), r2, r2 sin2 θ

]
, is a bad tetrad,

not satisfying the field equations (14.34) with a vanishing spin connection for fTT �=
0, while the non-diagonal tetrad associated to the same metric

eAμ =

⎛
⎜⎜⎝
A 0 0 0
0 B cosφ sin θ r cosφ cos θ −r sin φ sin θ
0 −B cos θ r sin θ 0
0 B sin φ sin θ r sin φ cos θ r cosφ sin θ

⎞
⎟⎟⎠ , (14.37)
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is a good tetrad. The problem was resolved when the covariant formulation of f (T)

gravity was proposed [3], where both the tetrad eAμ and the spin connection •
ωA

Bμ

are determined by the field equations (14.34). For a more detailed study about tetrads
in spherical symmetry in Teleparallel theories, see [55].

14.2.2 New General Relativity and Extensions

This modification of TEGR is the first one, and it was proposed by Hayashi and
Shirafuji in [11]. The torsion tensor can be decomposed into its three irreducible
parts as

•
T λμν = 2

3

( •
tλμν − •

tλνμ

) + 1

3

(
gλμ

•
vν − gλν

•
vμ

) + ελμνρ
•
aρ , (14.38)

where •
vμ = •

T λ
λμ,

•
aμ = 1

6εμνσρ

•
T νσρ, and

•
tλμν = 1

2 (
•
T λμν + •

T μλν) + 1
6 (gνλ

•
vμ + gνμ

•
vλ) −

1
3gλμ

•
vν .

Contracting these components, one can construct the following scalars up to
quadratic order

Tten = •
tλμν

•
tλμν , Tax = •

aμ
•
aμ , Tvec = •

vμ
•
vμ . (14.39)

The torsion scalar T is equal to

T = 3

2
Tax + 2

3
Tten − 2

3
Tvec , (14.40)

and an immediate generalisation of this, with arbitrary coefficients, is the action of
the New General Relavitiy, i.e.

SNGR = 1

2κ2

∫
d4xe (c1Tax + c2Tvec + c3Tten) . (14.41)

For completeness we should mention that there are two more quadratic scalars that
one can construct from the torsion tensor,

P1 = •
vμ

•
aμ and P2 = εμνρσ

•
tλμν •

tλ
ρσ . (14.42)

However, both of them are parity violating and we do not consider them here. For
more details one can check Ref. [56], where the authors argue that the parity violating
sector could play a crucial role for the well-posedness of the Cauchy problem. It is
not clear whether these parity violating scalars can play a fully consistent role in
gravitational theories.
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The theory (14.41) has been studied and constrained since its proposal inRefs. [23,
57, 58]. In greater detail, Solar System tests were studied [11], singularities of
Schwarzschild-like spacetimes in [59], axially symmetric solutions in [60] and its
weak-field limit in [61].More recently, in [62] the propagation of gravitational waves
was studied, aswell as its Hamiltonian analysis was considered in [5, 63, 64]. Finally,
the linearized theory was studied in [65], were the author shows that in order for
the theory to be viable, the 2-form field has to feature a gauge symmetry so that it
describes amasslessKalb-Ramondfield.However, cubic order interactions show [66]
that the above gauge symmetry of the 2-form is not preserved at higher orders.

Beyond the NGR theory, extensions of different kinds were considered as well.
In [67] it was found that is it possible to construct a conformally invariant theory
considering a quadratic Lagrangian based on the tensorial and axial part of torsion,
which has the following form,

SConformal−TG = 1

2κ2

∫
d4xe

(
3

2
Tax + 2

3
Tten

)2

. (14.43)

Note that the vectorial part of the torsion tensor does not appear in this theory.
Specifically, in [68] a generalisation of NGR by nine functions of the d’Alembertian
operator was considered and the authors show that it can accommodate the ghost-
and singularity-free structure that was realised in the metric theories [69–71]. In
addition, in the same spirit with f (T), a straightforward generalisation of NGR
is the f (Tax, Tvec, Tten) theory proposed in [72]. Apart from richer phenomenology
compared to f (T) gravity, this theory provides us with the ability to study conformal
transformations of teleparallel theories in a simple way. In particular, the quadratic
scalars constructed by the irreducible parts of the torsion tensor (14.39) transform
under the conformal transformation of the tetrad ẽAμ = �eAμ (or of themetric g̃μν =
�2gμν), with � being the conformal factor, as

Tax = �2T̃ax , Tten = �2T̃ten , Tvec = �2T̃vec + 6�vμ∂̃μ� + 9g̃μν ∂̃μ�∂̃ν� .

(14.44)
Obviously, unlike the f (R) case [42], in modified teleparallel theories there cannot
be an Einstein frame because of the way Tvec transforms. More studies on conformal
transformations in the teleparallel framework can be found in Refs. [73, 74].

14.2.3 Higher-Order Derivatives, f (T, B, TG, BG)

In the f (T) theory only the torsion scalar takes part in the action, and since it contains
only first derivatives of the tetrads, the resulting equations are of second order. This
is not a necessity though (if you can ignore or screen out ghosts), and thus the field
equations can be of higher order as well; as is in f (R).
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One of the most well-studied theories include, in addition to the torsion scalar,
the boundary term B = −2∂α(e

•
T μα

μ)/e. The action of this theory [75–77] reads

S f (T,B) = 1

2κ2

∫
d4xe f (T, B) + Smatter (14.45)

and varying this with respect to the tetrad we take the field equations

2eeA
ν� fB − 2eeA

μ∇ν∇μ fB + eB fBeA
ν + 4e

(
∂μ fB + ∂μ fT

) •
SA

μν+
+ 4∂μ(e

•
SA

μν) fT − 4e fT
•
T λ

μA
•
Sλ

νμ − e f eA
λ = 2κeTA

ν .

(14.46)

It is interesting to notice that such theories are much more general than the f (R) the-
ories, since the last ones are just a subclass when f (T, B) = f (−T + B) = f (R).

In addition to these, theories with higher derivative terms of the torsion scalar, e.g.
∇2

T,�T, etc., where also proposed [78].
Last but not least, theories with higher-order invariants were also considered in

the literature. An interesting example is the inclusion of the Gauss-Bonnet invariant,

G = R2 − 4RμνR
μν + RαβμνRαβμν . (14.47)

Its teleparallel version reads, as with the Ricci scalar,

G = −TG + BG , (14.48)

where TG is the teleparallel Gauss-Bonnet term and BG its boundary term. Such
theories have an action of the form

S f (T,TG) = 1

2κ2

∫
d4x e f (T, TG) , (14.49)

or evenmore complicated functions like f (T, B, TG .BG). Such theories present some
interesting features in cosmology [79–82]. Other theories considering non-minimal
couplings between matter and gravity have also been considered in Teleparallel
Gravity. One example for this is the so-called f (T, T ) gravity, where T is the trace
of the energy-momentum tensor [83]. This theory is analogous to the famous f (R, T )

gravity considered in the GR framework [84]. Other theories based on Lagrangian
like f1(T) + f2(T)(1 + λLm), where Lm is the matter Lagrangian density and λ is a
constant, have been studied in [85]. Furthermore, a more general theory concerning
f (T, B,Lm) gravity has also been studied in order to connect and generalise these
kind of theories [86].
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14.2.4 Teleparallel Non-local Theories

Apart from adding new degrees of freedom, modifications can be done in the foun-
dations of a theory, like violating general covariance, locality, abandoning the equiv-
alence principle, etc. In the Riemaniann geometry, the first non-local proposal came
a bit more than a decade ago, with the introduction of a distortion function f (�−1R)

of the inverse d’Alembertian operator acting on the Ricci scalar. The action of that
theory reads

Snon−local = 1

2κ2

∫
d4x

√−gR(1 + f (�−1R)) . (14.50)

The argument of f can be expressed using the retarded Green’s function G(x, x ′) as

�−1F(x) =
∫

d4x ′e(x ′)F(x ′)G(x, x ′) . (14.51)

The motivation came clearly from high energies, since such terms arise in quantum
loop corrections and they are also considered as possible solution to the black hole
information paradox [87, 88]. It was seen however, that even at larger scales, such
non-local terms can unify the inflation with the late-time acceleration era and they
have been proven ghost-free and stable.

Based on that, it was natural to study what the effect of such terms would be in
the teleparallel framework. That is why the teleparallel non-local (TNL) theory

STNL = − 1

2κ2

∫
d4xeT + 1

2κ2

∫
d4xeT f

(
�−1

T
)

. (14.52)

was proposed in [89]. The authors show that the theory is consistent with cosmolog-
ical data from SNe Ia + BAO + CC + H0 observations. A generalisation of (14.52)
was proposed in [90], where they also introduced the effect of the d’Alembertian
operator on the boundary term B. The action of that theory is

STNL = − 1

2κ2

∫
d4xeT + 1

2κ2

∫
d4xe (ξT + χB) f

(
�−1

T,�−1B
)

. (14.53)

A localised version of this has been studied, introducing scalar fields. In addition,
using symmetries, a classification of the distortion function has been done.

14.2.5 Horndeski Analog and Subclasses

Horndeski theory is the most general scalar tensor theory (with a single scalar field)
that leads to second-order field equations in four dimensions [91, 92]. Most of the
modified theories of gravity can be mapped onto its action; from Brans-Dicke [93],
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extended quintessence [94, 95], kinetic gravity braiding [96] to f (R) [42]. However,
there is no physical requirement that forces us to use the Levi-Civita connection as
the fundamental connection to formulate the theory, and thus we have the freedom
to build the theory in any affine geometry. For this reason, in [97] S. Bahamonde,
K. F. Dialektopoulos and J. Levi Said formulated the BDLS theory, that is the telepar-
allel analog of the Horndeski gravity.

In greater detail, they wanted to build a theory which has the properties: i. leads
to second order field equations; ii. the scalar invariants are not parity violating; and
iii. only quadratic contractions of the torsion tensor are included. In that way, BDLS
action reads

SBDLS = 1

2κ2

∫
d4x eLTele + 1

2κ2

5∑
i=2

∫
d4x eLi , (14.54)

where

LTele = GTele (φ, X, T, Tax, Tvec, I2, J1, J3, J5, J6, J8, J10) , (14.55)

and

L2 := G2(φ, X) , (14.56)
L3 := G3(φ, X)�φ , (14.57)

L4 := G4(φ, X) (−T + B) + G4,X (φ, X)
[
(�φ)2 − φ;μνφ;μν

]
, (14.58)

L5 := G5(φ, X)Gμνφ;μν − 1

6
G5,X (φ, X)

[
(�φ)3 + 2φ ν

;μ φ α
;ν φ

μ
;α − 3φ;μνφμν (�φ)

]
.

(14.59)

where comma denotes the partial derivative, semi-colon the covariant derivative with
respect to the Levi-Civita connection, and � the associated d’Alembertian operator.
The scalars that appear in the (14.55) are

I2 = •
vμ∂μφ , J1 = •

aμ •
aν∂μφ∂νφ , J3 = •

vμ
•
tμλν∂λφ∂νφ , J5 = •

tσμν •
tαβγ∂σφ∂μφ∂νφ∂αφ∂βφ∂γφ ,

(14.60)

J6 = •
tσμν •

tσ
κλ∂μφ∂νφ∂κφ∂λφ , J8 = •

tσμν •
tσμ

α∂νφ∂αφ , J10 = εμ
νρσ

•
aν •

tασρ∂μφ∂αφ , (14.61)

all the rest they are either parity violating or can be obtained combining these [97–99].
Obviously, because of the existence of GTele in the action, this theory contains

muchmore phenomenology compared to its curvature analog. Specifically, it contains
the curvature analog as a subclass when GTele = 0. Its relation with various known
theories is depicted in Fig. 14.1.

The curvature case of Horndeski was severely constrained [100, 101] after the
observation of GW170817 and its companion GW170817A [102], since the speed
of the gravitational waves is constrained to the value of the speed of light
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∣∣∣cg

c
− 1

∣∣∣ � 10−15 . (14.62)

That is another reason the BDLS theory is worth studying. In [98] the authors study
the tensor mode perturbations on a flat FLRW background and they show that the
models that survive the above constraint (14.62) are given by

L = G̃ tele(φ, X, T, Tvec, Tax, I2, J1, J3, J6, J8 − 4J5, J10) + G2(φ, X) + G3(φ, X)�φ ,

+ G4(φ, X) + G4,X

[
(�φ)2 − φ;μνφ;μν + 4J5

]
+ G5(φ)Gμνφ;μν − 4J5G5,φ , (14.63)

meaning thatmanymodels that were eliminated in the curvature case, like quartic and
quintic Galileons, the Fab-Four and more, will survive in the teleparallel framework
because of the appearance of the J5 scalar.

14.2.6 Teleparallel Dark Energy Models

All the scalar torsion theories in four dimensions with a single scalar field are sub-
classes of the BDLS theory [103–111]. The first one with a non-minimal coupling
between the scalar field and the torsion scalar was proposed in [103] under the name
teleparallel dark energy, and its action reads

STDE =
∫

d4x e

[
T

2κ2
+ 1

2
ξTφ2 + 1

2
∇μφ∇μφ − V (φ)

]
. (14.64)

Such models present interesting cosmological behaviour, not necessarily the same
compared to f (T) models [112, 113]. There are similar to the ξRφ2 models in
the Riemannian geometry and such models will be discussed in detail in Sect. 14.3.
Moreover, in [114], a generalisation of the above theory with an extra termχBφ2 was
considered. This theory contains the theory with the coupling ξRφ2 as a special case
for the case χ = −ξ. Apart from these ones, in a recent series of papers [31, 115–
117] the most general scalar-torsion theories have been presented in their covariant
formulation, as well as theories involving kinetic and derivative couplings of the
scalar field with torsion.

14.3 Phenomenology of Teleparallel Gravity

After formulating a possible well-motivated gravitational theory, it is then important
to see its viability in terms of its confrontations with observations. It is well-known
that GR works very well at Solar System scales, therefore, any meaningful theory
must not deviate toomuch from these predictions at this scale of phenomenology. The
easiest way to verify if a modified theory passes these constraints is by computing the
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so-calledpost-Newtonian parameters (PPN).Basically, these parametersmeasure the
weak-field approximation of a theory with the corresponding post-Newtonian terms.
For a detailed review about this method, see Ref. [118]. Usually, this method is con-
structed for theories concerning themetric but since Teleparallel Gravity uses tetrads,
a different approach is needed as discussed in [119]. These parameters already put
some constraints on different modified gravity models. In the context of Teleparallel
Gravity, it was found that the PPN parameters of both f (T) gravity and teleparallel
dark energy (see Sect. 14.2) are exactly the same as GR, therefore, these theories
automatically pass all the Solar System observations [120–122], as confirmed in
[123–125]. If one further generalises f (T) to f (Tax, Tvec, Tten) or teleparallel dark
energywith an extra couplingbetween the boundary termand the scalar field asχBφ2,
the PPN parameters γ and β deviate from GR, constraining these models [122, 126,
127]. These studies were further generalised to more general teleparallel scalar ten-
sor theories such as f (T, X,Y,φ) and Teleparallel Horndeski in [128, 129], finding
again that only α and β can differ from GR. For the general f (T, B) gravity sce-
nario, the precise form of this deviation is investigated in [130, 131], where the solar
system tests and gravitomagnetic effects are probed against current observations.
Moreover, in [132] the stability of theory and its thermodynamics are probed. One
of the strongest bounds coming from these PPN parameters are the observations
from Cassini, which is |γ − 1| � 2 · 10−5 and also, using the lunar laser ranging
experiments, |β − 1| � 2 · 10−4 [118].

There are other new observational bounds that one needs to take into account for
constructing a coherent theory. For example, in Ref. [133], it was found that the speed
of the propagation of gravitational waves cg is very close to the speed of light |c/cg −
1| � 3 · 10−15. The theories f (T), f (T, TG) and f (T, B) predict that cg = c [134,
135], so that they are not observationally constrained through this test. Furthermore,
there are only two propagating modes in both f (T) and f (T, TG) gravity [135, 136],
exactly like GR. On the other hand, as in f (R) gravity, f (T, B) exhibits an extra
polarisation mode (longitudinal or breathing mode) [135]. Further generalisations
such as Teleparallel Horndeski predicts a different speed of the gravitational waves,
and hence, the theory needs to be constrained for a certain type of them. However,
one notices that the number of theories respecting cg = c is larger than in standard
Horndeski gravity. Furthermore, the coupling functions G4(φ, X) and G5(φ) that
were highly constrained in the standard version of Horndeski, can now be restored
in its teleparallel analogue [98].

Themajority of the work produced inmodified Teleparallel Gravity has been done
in the context of cosmology. There are several works regarding this for different kinds
of theories. Some important results in these theories are:

• The possibility of explaining the acceleration of the Universe without evoking a
cosmological constant (see, for example, Sects. 14.3.6 and 14.3.7).

• The possibility of roughly describing the evolution of the observed Universe eras
(see, for example, Sect. 14.3.6) and crossing of the phantom divide line [114].

• The possibility of reducing the tension for the value of the H0 parameter and the
growing f σ8 tension (see Sect. 14.3.4).
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• The existence of cosmological bouncing solutions (see Sect. 14.3.8).
• The possibility of avoiding dark matter for describing the galactic rotation
curves [137].

In the following sections, we will briefly describe some of these results, and also
some techniques used for studying cosmology in these theories.

14.3.1 f (T) Cosmology and the Power-Law Model

The framework that Teleparallel Gravity offers in the form of its f (T) gravity
formulation can be investigated against cosmological observations, where tensions
appear to be growing with � CDM [138–140]. The analysis takes the good tetrad
eaμ = (1, a(t), a(t), a(t)) for a homogeneous and isotropic universe (this repro-
duces the standard FLRWmetric in its Cartesian coordinates form). By choosing the
Lagrangian density to take the form −T + F(T), the resulting field equations turn
out to be [3, 49, 141]

H 2 = κ2

3
(ρ + ρDE) , (14.65)

2Ḣ = −κ2 (ρ + p + ρDE + pDE) , (14.66)

where κ2 := 8πG, and the effect of the extension to the TEGR Lagrangian is to act
as an exotic fluid with components

ρDE = 1

2κ2
(2TFT − F) , (14.67)

pDE = 1

2κ2

[
F − TFT + 2T

2FTT

1 + FT + 2TFTT

]
. (14.68)

Together, these fluid properties satisfy the continuity equation

ρ̇DE + 3H (ρDE + pDE) = 0 , (14.69)

as well as make up the effective EoS

wDE = − F/T − FT + 2TFTT

(1 + FT + 2TFTT) (F/T − 2FT)
, (14.70)

which returns a constant wDE = −1 for the appearance of a cosmological constant
through the condition FT = 0. Here, we assume that F(T) �= 0, so that gravity is
indeed modified by f (T) gravity.

Finally, using the EoS in Eq. (14.70), it follows that F/T − FT + 2T fTT = 0
has solutions F(T) = c1

√
T + c2, where the first part plays no role in the cosmic
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dynamics in four dimensions, while the second part plays the role of the cosmological
constant [142–144]. Thus, this case is neglected since it reduces to �CDM.

14.3.2 Cosmography in f (T) Gravity

Cosmographyoffers amodel independentway inwhich to determine viablemodels of
gravity through standard candle data (such as SNeIa) [145]. That is, by using theHub-
ble diagram, gravitational Lagrangians can be constrained in their parameter space by
using expansion data. In Refs. [146–148], this is considered for the following param-
eters: Hubble (H = ȧ/a), deceleration (q = − 1

a
d2a
dt2 H

−2), jerk ( j = 1
a
d3a
dt3 H

−3), and

snap (s = 1
a
d4a
dt4 H

−4). These cosmographic parameters can then be correlated with
the Hubble diagram by considering the Taylor expansion of the scale factor about
present time, a0 = 1, together with the luminosity distance relation

H(z) =
[
d

dz

(
dL(z)

1 + z

)]−1

, (14.71)

and redshift relation a = (1 + z)−1, which result in the Hubble cosmographic rela-
tions

H(z) � H0

[
1 + H (1)z + H (2)

2
z2 + H (3)

6
z3

]
, (14.72)

where

H (1) = 1 + q0 , H (2) = j0 − q2
0 , H (3) = 3q2

0 + 3q3
0 − j0 (3 + 4q0) s0 ,

(14.73)
with (H, q, j, s) = (H0, q0, j0, s0) are all determined at current times. This expan-
sion is considered up to fourth-order derivatives, due to the lack of accuracy of
the cosmological data beyond that point [149, 150]. Fitting each of these parame-
ters, using the Hubble diagram, it is then straightforward to infer an F(T) model
by using the modified Friedmann equations in Eqs. (14.65)–(14.66). To do this,
consider f (T) = −T + F(T), so that we can impose the following constraints: (i)
the effective gravitational constant must be equal to Newton’s constant at present
times [148]

d f

dz

∣∣∣∣
z=0

= 1 , (14.74)

which emerges by considering again the Friedmann equation in Eq. (14.65) as
H 2 = κ2(ρ − 2F/(3κ2))/(6FT) and recognising the effective coupling parameter,
Geff = G/ fT ( fT = d f/dT). The requirement can thenbewritten asGeff|z=0 = G ⇒
fT|z=0 = 1. This means that at current time we recover TEGR. (ii) The second con-
straint is an evaluation of the Friedmann equation in Eq. (14.65) at current times,
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such that the present value of the Lagrange density must be

f (T(z))
∣∣
z=0 = 6H 2

0 (�M0 − 2) , (14.75)

where �M0 is the present value of the matter density parameter.
In Refs. [146–148], various f (T) models were considered, but we focus on the

power-law model here. This can be represented by [151]

f (T) = αT + βT
n , (14.76)

where α,β, n are arbitrary constants, and the constraints on the Lagrangian density
result in the relations

α = (2 − �M0) n − 1

n − 1
, β = (�M0 − 1) T 1−n

0

1 − n
. (14.77)

While the parameter β is used, it can be made dimensionless by taking the trans-
formation β → β0/T

n
0. To preserve TEGR for Solar System scale physics and the

astrophysics regime, theα parameter can be set to−1 so that this is recovered as a first
approximation. The best-fit cosmographic parameters then give n = −0.011 [147].
The result is an expansion rate very close to �CDM but not exactly equal. Along
a similar vein, in [152] cosmography was used to reconstruct various f (T) gravity
Lagrangians by imposing conditions in the jerk parameter.

This analysis relies heavily on the assumption that higher-order contributions,
which have much less accurate observational data, are sub-dominant, which may not
always hold. Also, this analysis has only been applied to the popular F(T) extension
to TEGR. It would be interesting to explore other avenues of Teleparallel Gravity
such as, for example, the ones presented in Sect. 14.2.

Along a similar rationale, in [153, 154] the f (T) Lagrangian is reconstructed
against phenomenological data, achieving very interesting constraints on viablemod-
els.

14.3.3 The Growth Factor

The inflationary epoch rendered an early Universe that was nearly uniform. It was
small quantum fluctuations that then resulted in the seeds of structure formation.
Over the cosmic timescale, these seeds then grew into the structure we can observe
today. This effect was amplified during the early matter-dominated phase of the
Universe, where density perturbations were intensified by gravity. The growth factor
can propagate how this growth changes between different theories of gravity.

To explore this aspect of cosmology, the evolution of linear scalar perturbations
must be considered, which at the level of the metric appear as
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ds2 = a2(τ )
[− (1 + 2�) dτ 2 + (1 − 2�) γi jdx

idx j
]
, (14.78)

where the spatial metric is chosen to be theCartesian coordinate system. The problem
then becomes,what perturbed tetrad to consider?One approach is given inRef. [155],
but the resulting field equations turn out to restrict the f (T) Lagrangian to its TEGR
value which is not allowable with a good tetrad. It was later in Refs. [142, 156–159]
that the correct good tetrad was studied. In perturbation theory, a good tetrad must
adhere to the already discussed conditions for being a good tetrad up to perturbative
order (see Sect. 14.2.1 for further details). This is ultimately represented by

eaμ = (
δab + χa

b

)
ēbμ , (14.79)

where ēb0 = δa0 and ēbi = aδai , and the scalar perturbations are given by

χab =
(

φ ∂iw

∂i w̃ δi jψ + ∂i∂ j h + εi jk∂
k h̃ ,

)
(14.80)

where w and w̃ are 2 scalar degrees of freedom (DoFs) of mass dimension and h
and h̃ are parity-violating terms. To obtain the correct scalar perturbations in the
Newtonian gauge, the setting w = −w̃ and h = 0 [142] needs to be taken, while
h̃ vanishes naturally at the level of the metric. Using this tetrad setting, the correct
scalar perturbations at the level of the metric are obtained, as in Eq. (14.78) (in
cosmic time rather than conformal time). We consider only the scalar perturbations
in this work, but interesting results have also been obtained for tensor perturbations in
Refs. [134, 156, 158–163]. The end result indeed appears in the linear perturbations
of the torsion scalar as

T = 6H 2 − 12H
(
ψ̇ + Hφ

)
, (14.81)

which means that the scalar perturbations have an effect in the F(T) gravity section,
while, thematter perturbations are taken by considering only dust (p = 0 = δ p). The
density perturbations, δρ, can then be encapsulated in the so-called gauge invariant
fractional matter perturbation given by

δm = δρm

ρm
− 3Hv , (14.82)

where v is the magnitude of the velocity of the fluid, vi = ui/u0 [164]. This regime
is best studied by going into the Fourier domain and considering subhorizon modes
where φ ∼ ψ. By combining the f (T) field equations, the following linear matter
evolution equation is obtained in Ref. [142]

δ̈m + 2H δ̇m − 4πGeffρmδm = 0 , (14.83)
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Fig. 14.2 Matter perturbation evolution for �CDM (solid red line), power-law F(T) (dashed blue
line), and constant dark energy EoS in GR (dotted black line) [142]

whereGeff = G/(−1 + FT) is the effective gravitational constant. This is generalised
in Ref. [157] to include the Lagrangians formed with arbitrary combinations of the
contraction of the stress-energy tensor, T = T μ

μ.
To probe the growth of matter density perturbations, Ref. [142] defines the variable

g(a) := D(a)

a
, (14.84)

which is defined this way to avoid scale factor dependence during matter-dominated
eras, and where the reasonable initial conditions g(ai ) = 1, (dg/d ln a) |a=ai = 0
are chosen. Here, D(a) := δm(a)/δm(ai ) (for some reference scale factor ai ) is the
growth factor.

Considering again the power-law model with F(T) = βT
n , the growth factor as

a function of redshift can be solved numerically and turns out to give the evolution
depicted in Fig. 14.2. Given that FT > 0 for the power-law, it follows that the growth
factor will be dampened due to the effective gravitational constant relation. The main
result of this is that over-dense perturbations grow slower when compared with GR.
In Ref. [159], it was also found that the vector perturbations are well-behaved for
sub-horizon modes. These results are confirmed in Refs. [156, 158], where it is also
noted that the cause of the lack of extra propagating DoFs could be the symmetric
nature of the background cosmology.
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14.3.4 The H0 Tension Problem

The discrepancy between model-independent measurements of the current value of
the Hubble parameter [139, 140] and those inferred from the CMB using flat�CDM
[138, 165] is now corroborated by an overwhelming wealth of evidence. The H0

tension problem then points to the necessity of new physics beyond flat �CDM,
such as modified gravity within the Teleparallel Gravity regime [166].

To explore this possibility in Teleparallel Gravity, we need to consider again the
perturbations in Eq. (14.79). However, in this scenario the contributions of matter
and radiative pressures are not neglected even at perturbative level [167, 168]. Also,
the gravitational potentials φ and ψ are no longer equal. As already discussed in
Refs. [158, 162], the following modified Poisson equation is derived

k2ψ = 4πGeffa
2δρ , (14.85)

where we have transformed to Fourier space. By keeping to the power-law model,
Ref. [162] explores this possibility in terms of the H0 problem as well as the growing
f σ8 tension. In this work, the authors show that the H0 tension can be reduced in
conjunction with reducing the f σ8 tension. As they show in Fig. 14.3, a consistent
cosmological setup can be constructed for a small value of index n.

One of the principal motivations for exploring modified gravity in cosmology is
to better explain the appearance of dark energy without modifying the matter content
of the Universe. This entails reinterpreting the Friedmann equation as an effective
equation in which the modified gravity component acts as a separate contribution to
cosmic evolution beyond GR. This can easily be done by writing [167]

H 2(z, r)

H 2
0

= �m0 (1 + z)3 + �r0 (1 + z)4 + �F0y(z, r) , (14.86)

where �F0 = 1 − �m0 − �r0 is the F(T) density parameter at current times, and

y(z, r) = 1

T0�F0
(F − 2TFT) , (14.87)

represent the background evolution of the F(T)model. In the right panel of Fig. 14.3,
the n − �F0 plane is shown, where Ref. [162] reports promising results for small
values of n.

Along a similar vein, the authors of Ref. [170] confront the growth of structure in
the Universe by using several cosmological probes. The study involves three F(T)

models, but we highlight the results for the power-law model here. In their analysis,
they use growth rate data for f σ8 that has been verified for internal robustness [171],
which differs from some other approaches where inconsistencies can arise due to
overlaps between separate studies. The second data set used in this study is the
updated Hubble expansion through the cosmic chronometric method [172], while
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Fig. 14.3 The comparison of �CDM with the f (T) gravity power-law model as reported in
Ref. [162]. Left panel: Plot of the σ8 − H0 parameter space comparing the �CDM model in red
(blue) for CMB+BAO (CMB+BAO+H0) data respectively. Additionally, we present the results
for the power-law f (T) model in black (green) for the same data, where the vertical gray band
corresponds to H0 = 73.24 ± 1.74 km s−1 [169]. The extended model has best fit index parameter
n = 0.0043+0.0033

0.0039 (0.00540.00200.0020) [161] (more details here about the data used). Right panel: 68%
and 95% confidence levels for CMB+BAO (CMB+BAO+H0) data in black (green) [161]

the third is the latest standard candle data in Ref. [173]. These three data sets are
used in a joint analysis for the power-law F(T) model resulting in the likelihood
plots shown in Fig. 14.4.

In this work, the authors use the Akaike Information Criterion (AIC) [174],
Bayesian Information Criterion (BIC) [175] and Deviance Information Criterion
(DIC) [176] to compare the different models. The power-law is favoured using the
AIC and BIC comparisons when compared to �CDM. While not performing best
using the DIC to compare the models, it still fares relatively well compared to other
prominent models in the literature.

Another important contribution to the reduction of the H0 tension are Refs. [177–
179], where Hubble data is interpreted as a stochastic process such that the various
model ansatz choices must reproduce. By taking this approach, the authors deter-
mine a region for acceptable Lagrangian forms for the F(T) model. While this
region is model-independent and goes up to z = 2.4, various models can be con-
strained against cosmic data. In Ref. [179], Gaussian processes are used on Hubble
data which is interpreted as being sourced by stochastic processes. Here, the authors
reconstruct values of the arbitrary Lagrangian through the Friedmann equation and
then use Gaussian processes to determine the best fit for this function. The result is
a model independent reconstruction of the Lagrangian F(T ) (except for the assump-
tion that �CDM dominates at current times, which resonates with the results from
cosmography in Sect. 14.3.2). These values, together with their 1 and 2 σ errors are
shown in Fig. 14.5, which depicts the allowable regions in which all cosmological
models must predict values for the arbitrary Lagrangian.
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Fig. 14.4 The 1σ, 2σ and 3σ likelihood contours for the F(T) power-law model (with F(T) =
α(T)b) [170]

There has also been a growing body of work of confronting observations within
other extensions of Teleparallel Gravity, such as [180], where Pantheon data is used
in f (T, B) gravity. In this work, the H0 tension problem is also confronted with new
constraints on literature models within this framework of gravity.

14.3.5 Inflation in Teleparallel Theories of Gravity

The first modification of Teleparallel Gravity was introduced in [51], with the aim
of studying inflation. In this paper, the authors found that for a Born-Infield f (T)

gravity model, it is possible to cure the horizon problem without an inflation field,
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Fig. 14.5 The regions are produced by a model-independent reconstruction from Hubble data with
1 and 2 σ error regions coming from the Gaussian process method (the present matter density
parameter is imposed to be �m0 = 0.302). The blues regions represent cosmic chronometer data,
green includes also supernova data, while orange represents the inclusion of baryonic acoustic data
[179]

and describe a de-Sitter expansion. This paper was the crucial starting point for
investigating cosmology in the context of Teleparallel Gravity. So far, the majority
of the inflationary models in modified teleparallel theories have been carried out in
f (T) gravity. By performing a 3+1 decomposition for the tetrad, the cosmic infla-
tionary perturbations for f (T) were computed in [112]. Similar to the Starobinsky
inflationary model R + αR2, in [181] it was found that the case −T + αT

2 behaves
differently since in this case, a de-Sitter solution occurs (not a quasi de-Sitter). This
means that in the teleparallel version of the Starobinsky model, only eternal de Sitter
inflation is possible. In [182] it was further found that these models can have good
agreements with a hot big bang nucleosynthesis, and also that the system evolves
towards a flat FLRW universe naturally, even if we start with a non-flat one. Later
in [183], it was found that power-law and intermediate inflationary models in f (T)

gravity are compatible with Planck measurements, and that a self-interacting quartic
potential V (φ) ∝ φ4, which has an interesting reheating process is viable in f (T)

inflation. Further, the standard inflationary model is not observationally compatible
with this kind of potential. After introducing a suitable scale factor, it was found
that depending on a parameter, f (T) gravity can have a graceful exit inflation or
can have a bounce [184]. In that study it was obtained that the problem of a large
tensor-to-scalar ratio is not present in the bouncing models. The standard logamedi-
ate inflation is not compatible with observations but in [185] it was concluded that
in f (T) gravity, this model can be compatible with Planck observations. Finally,
in [186] it was found that a super inflation scenario can be achieved in f (T) gravity.
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Concerning extensions to f (T) gravity, in [187], the authors introduced a coupling
between a Maxwell field and the torsion scalar, I (T)FμνFμν , finding the possibility
of generating large-scale magnetic fields from inflation. In f (T, TG) gravity, there
was obtained a model that unifies inflation with dark energy with a super inflation
mechanism [188]. A unimodular f (T) gravitymodelwas also analysed in the context
of inflation, finding another alternative inflationarymodelswith, graceful inflationary
exit [189].

Thefirst study related to inflation in the context of teleparallel scalar tensor theories
was done in [190], where an extended f (T) plus an inflation field with a kinetic, a
potential term and an interaction term was introduced. In this work, it was found that
a possible warm-inflation model is compatible with the Planck data. Later in [191],
a similar model was studied, finding a reheating process, with the scalar field being
responsible to reheat the Universe after the inflationary era. In [192], another scalar
tensor model concerning two non-minimally couplings with the scalar field, one
with the torsion scalar F(φ)T and the other with a vector field G(φ)FμνFμν , was
considered in the context of anisotropic inflation, obtaining that in the strong coupling
regime, the anisotropy shear to expansion ratio has a different value than its standard
form. The constant-roll inflation in f (T), minimally coupled with a scalar field,
was analysed in [193], allowing the theory to have a wide range of viability in
terms of observations. In [194] the authors studied slow-roll inflation in a more
general teleparallel scalar-tensor theory, with a canonical scalar field non-minimally
coupled to torsion with a Galileon-type field G(φ, X)�φ and a monomial scalar
field potential V ∝ φn/n. This theory is a particular case of the BDLS theory (see
Sect. 14.2.5). Based on Planck 2018 data for both the spectral index ns and the
tensor-to-scalar ratio r , standard inflation with monomial scalar field potential with
n ≥ 2 is ruled out. However, in this teleparallel version, n = 2 (chaotic quadratic
inflation) is in agreement with data and n = 1 and n = 2/3 are even more favoured
than previous models. In a model with non-minimally couplings between a scalar
field and both the boundary term and the torsion scalar, it was shown that the scalar
field does not source linear scalar perturbations, unless the coupling functions satisfy
certain conditions [195]. Only in these situations, can one have successful Higgs
inflationarymodels. Finally, consideringmore exoticmodels, a tachyonic teleparallel
one explaining inflation and agreeingwith the current observational Planck limitswas
studied in [196]. Further, it was also found in [197] that by extending the study with
a boundary term non-minimally coupled with the scalar field, accelerated expansion
and scaling solutions are attained.

14.3.6 Dynamical System in Cosmology for Teleparallel
Theories Of Gravity

When one starts modifying or extending the Einstein field equations, the cosmolog-
ical equations become more involved to solve. The FLRW equations can be written
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as an autonomous system of differential equations, and for this, they can be recast
as a dynamical system. Mathematicians have studied these systems for a long time,
giving an easy way to understand the dynamics of a model and how the stability of
their critical points behave. Hence, this is a powerful mathematical technique, which
is very useful for studying cosmology in modified theories of gravity. For a detailed
review about dynamical systems, both mathematically and in terms of cosmology,
see [198–201].

There are several works in modified Teleparallel Gravity that use dynamical sys-
tems in the context of cosmology. The first work for f (T) cosmology was presented
in [202], where the authors studied a power-law f (T) finding one critical point
behaving as a late-time attractor and another two describing matter and radiation
eras as saddle points. Later, in [203], a logarithmic f (T) cosmology was studied,
finding a de-Sitter late-time attractor. In [204–206], it was also found that by intro-
ducing an interaction between the dark fluids and considering a power law f (T),
it is possible to get tracker cosmological solutions. Other dynamical system stud-
ies concerning more general approaches for f (T) cosmology have been done. For
example, in [207] the authors used the nullcline method to study the bifurcation
phenomenon to study the global dynamical properties of the dynamical system. In
[208], it was found that there are three conditions which ensure that f (T) cosmology
could roughly describe the cosmological history of the evolution of the Universe.
Using non-standard dimensionless variables, Hohmann et al. [209] found de-Sitter
fixed points, accelerated expansion, crossing the phantom divide, and finite time sin-
gularities in f (T) cosmology. They also found some bounce solutions in this model.
Finally, in [210], the authors were able to rewrite the f (T) dynamical system as a
one dimensional one by using the fact that T depends only on the Hubble parameter
as T = 6H 2 in flat FLRW. Doing this, they found that it is possible to reconstruct the
whole history of the Universe starting from a big bang singularity and finalising in an
accelerating expansion. In addition, they also found some other exotic solutions, such
as cosmological bounce and turnaround, the phantom-divide crossing, the Big Brake
and the Big Crunch, and also they found that it may exhibit various singularities.

Let us nowbriefly review the dynamical systemof−T + F(T) (TEGRplus F(T))
cosmology described by the modified flat FLRW equations (14.65) and (14.66).
For a universe composed of two fluids with effective energy density described by
ρ = ρrad + ρm, where the first fluid represents a radiation fluid and the second one a
pressureless fluid, one can introduce the following dimensionless variables

x = − F(T)

6H 2
, y = TFT

3H 2
, �rad = z = κ2ρrad

3H 2
, �m = κ2ρm

3H 2
, (14.88)

to then rewrite the first FLRW equation (14.65) as follows

�m = 1 − x − y − z , (14.89)

which gives a constraint and reduces the dynamical system to be a 3 dimensional
one. By introducing N = log(a), the dynamical system for this model becomes
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dx

dN
= −(2x + y)

z + 3 − 3x − 3y

2my − 2 + y
, (14.90)

dy

dN
= 2my

z + 3 − 3x − 3y

2my − 2 + y
, (14.91)

dz

dN
= −4z − 2z

z + 3 − 3x − 3y

2my − 2 + y
, (14.92)

where we have introduced the quantity

m = TFTT

FT

. (14.93)

In order to close the dynamical system, one needs to assume a form for F(T). The
easiest case is to assume that m = constant, which closes the dynamical system and
includes two kind of F(T), one behaving as a power-law F(T) = C1T

m+1/(m +
1) + C2 when m �= −1 and also including a logarithmic case F(T) = C1 log(T) +
C2 for m = −1. We will assume this case for simplicity. For other kinds of F(T),
see the papers mentioned before. The dark energy state parameter (14.70) in the
dimensionless variables reads

wDE = − x + y/2 − my

(1 − y/2 − my)(x + y)
. (14.94)

For m = constant, one finds that the dynamical system (14.90)–(14.92) has three
critical points. The first critical point is P1 = (x, y, z) = (0, 0, 0)which is the origin
of the phase space and represents amatter-dominated era, since�m = 1. This critical
point has three eigenvalues with different signs, {3,−1,−3m}, so that, this point
is always a saddle point. This behaviour is expected for describing the standard
matter-dominated era, since it is known that this point needs to be represented by a
point which attracts trajectories in some directions but repels them along others. The
second critical point is P2 = (x, y, z) = (0, 0, 1), representing a universe dominated
by radiation, �rad = 1. This point has also three eigenvalues {4, 1,−4m} but now
depending ifm > 0, the point is saddle, and ifm < 0 the point is unstable. This again
has the correct cosmological behaviour, since it is known that there was a radiated-
dominated era at some point of the history of the Universe but after this era, this
era changed to be a matter-dominated era. This is then achieved by having either an
unstable or a saddle point for P2 (neglecting inflation). The final point is represented
by the critical line P3 = (x, 1 − x, 0)whose cosmological behaviour is representing
an accelerating universe with an effective state parameter of −1, which denotes a
de-Sitter accelerating expansion. This critical line has three eigenvalues {0,−4,−3}.
Since one of them is zero, one cannot study its stability property with the standard
linear stability theory since it is a non-hyperbolic point, and this method fails for
analysing such points. Other stability methods can then be used, such as Lyapunov
functions or centre manifold theory. See [198] for a detailed description about these
methods. If one uses the secondmentionedmethod, one needs to first shift the critical



14 Teleparallel Gravity: Foundations and Cosmology 221

Fig. 14.6 Evolution of energy density matter �m, radiation �rad and dark energy �DE for a
f (T) = −T + C1

m+1T
m+1 model with m = 0.1

point to the origin, then introduce newvariables in such away that one can diagonalise
the Jacobianmatrix associatedwith the dynamical system.After doing this, the centre
manifold can then be constructed according to the theorem described in Sect. 2.4
in [198]. By doing this for our dynamical system, we find that the leading term in
the dynamical system is reduced to the centre manifold ż = −4z + O(z2), which
tells us that the point P3 is always stable. Thus, the critical line P3 represents a late-
time accelerating attractor behaving as a de-Sitter. Then,−T + F(T) cosmology can
describe a transition from radiation- to matter-dominated eras, finalising in a dark
energy era with a de-Sitter accelerating expansion of the Universe. This analysis
would be valid for both logarithmic and power-law kinds of F(T). As an example,
Fig. 14.6 shows the evolution of the relative energy density of matter �m, radiation
�rad and dark energy�DE related to themodifications coming from F(T) for the case
where m = 0.1, which represents a power-law type of F(T). One can notice that the
evolution of the Universe is roughly described as one expected from our Universe,
starting from a radiation-dominated era, then passing to a matter dominated era and
finalising in a dark energy dominated era.

Other different modified Teleparallel Gravity cosmological models extending
f (T) gravity have also been analysed using dynamical systems techniques. In the
papers [211–213] , a f (T, B) gravity model including the boundary term B, which
connects the Ricci scalar computed with the Levi-Civita connection and the torsion
scalar, was analysed, finding scaling solutions, a matter epoch of the Universe, and
that two accelerated phases can be recovered describing de-Sitter universes. Later,
using non-minimally torsion-matter theories like f1(T) + f2(T)Lm, with Lm being
the matter density Lagrangian, some scaling decelerated solutions, dark-matter dom-
inated, or dark-energy dominated accelerated solutions were found. Further gener-
alisations such as f (T, B,Lm) also found similar results [86]. Other models with
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higher-order torsion invariants such as f (T, TG) found scaling solutions and found
past, present and future singularities, depending on the parameters of the theory [82].
In two recent papers [214, 215], the authors studied the dynamical system of a
teleparallel Lovelock gravity theory and string-inspired theories finding a rich phe-
nomenology that can also describe a late-time acceleration of the Universe. Further
higher-order derivative torsion theories such as f (T, (∇T)2,�T) or non-local theo-
ries T f (�−1

T) found vacuum de-Sitter solutions and phantom divide line crossing
in agreement with observations [78, 216]. Regarding higher dimensional models,
in [217] the authors used dynamical systems to find that f (T) gravity in eleven
dimensions can give rise to an early inflationary epoch driven by the presence of
extra dimensions without other matter sources.

In [113], the authors analysed the first teleparallel scalar-tensor theory using
dynamical system techniques. He analysed a model called teleparallel dark energy
(see Sect. 14.2), which is constructed by a non-minimally coupling between the tor-
sion scalar T and a scalar field φ as (1 + ξφ2)T, with ξ being a constant, finding
that these models contain certain similarities to Elko spinor dark energy models.
In a non-minimally coupled model between the Ricci scalar and a scalar field, it
is possible to find scaling solutions but in teleparallel dark energy, this cannot be
achieved [113]. However, if the coupling is changed to F(φ)T scaling solutions can
be obtained [218]. Further, in [219] the authors analysed the phase space of this
model, finding similar results as standard quintessence models but having an addi-
tional late-time solution behaving as de-Sitter without any fine-tuning. They also
found that the crossing of the phantom divide line is possible for this model. In a
series of two papers, Skugoreva et al. [220, 221] also studied this model, giving a
detailed comparison between it with the standard non-minimally coupled case con-
structed from the Ricci scalar, finding that in teleparallel dark energy the presence
of oscillatory behaviors is more frequent [220, 221]. If one uses the teleparallel dark
energy model and adds an additional coupling between dark matter and dark energy,
is a deceleration to acceleration phase transition via a Z2 symmetry breaking results
[222]. Another proposed teleparallel model was introduced in [114] by adding a
new coupling χBφ2, where χ is a constant and B is the boundary term. Clearly,
the standard Ricci case non-minimally coupled with the scalar field is recovered by
setting χ = −ξ. The authors studied the case where only a boundary term coupling
exists, and they found that the evolution of the model evolves towards a late-time
accelerating attractor without any fine-tuning. They also found the possibility of the
crossing of the phantom divide line in this model. Later, in [223], it was found that
using this coupling, one can also get scaling solutions. Other more exotic models
have been also proposed, such as tachyonic teleparallel models [197, 218, 224–227]
finding scaling solutions, alleviating the coincidence problem without fine-tuning,
obtaining a late-time accelerating attractor and also finding a field-matter-dominated
era. Moreover, quintom models concerning two scalar fields (one phantom and the
other canonical), non-minimally coupled two both the torsion scalar and the bound-
ary term, have also been studied using the dynamical system, finding similar results
to the other models obtaining the correct picture of the history of the Universe [107].
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As discussed in this section, the correct use of recasting the FLRW equations into
a dynamical system form helps in understanding the main behaviour of the system
without the need for analytically solving the equations directly. In the next section,
a different approach that is related to obtain analytical cosmological solutions will
be presented.

14.3.7 Noether Symmetry Approach in Teleparallel Theories
of Gravity

The Einstein field equations are a system of ten partial differential equations and
certain symmetries need to be assumed (such as spherical or cylindrical symmetries)
in order to find analytical solutions. When they are modified, usually, the equations
become even more involved, and for this reason, it is not so easy to find analytical
solutions in those models (even for the maximally symmetric cases). One useful
tool to obtain analytical solutions for a certain Lagrangian is Noether’s symmetry
approach, which allows us to reduce dynamics for a certain model by using their
symmetries and conserved quantities from the Noether theorem. This allows us to
get an exact integration of a system because their symmetries are first integrals.

The procedure to get analytical solutions using Noether’s theorem is quite simple,
but in practice it sometimes becomes a hard task. First, the point-like canonical
Lagrangian associated with the studied action in the examined geometry needs to
be written down. After this, Noether’s theorem is used which can be stated in two
parts [228–230]:

Theorem 1 (Noether’s theorem part one) Let qi be some generalised coordinates
in the configured space Q = {qi } of a non-higher derivative order Lagrangian
L = L(t, qi , q̇ i ) whose tangent space is T Q = {qi , q̇ i } with dots representing dif-
ferentiation with respect to the time coordinate. The existence of a Noether symmetry
that leaves the Euler Lagrange equations Ei (L) = 0 associated with the Lagrangian
invariant under the transformations t̄ = t + εξ(t, qi ) and q̄i = qi + εηi (t, qk), with
ε being a parameter, implies the existence of a function g(t, qk) which satisfies the
condition

X[1]L + L
dξ

dt
= dg

dt
, (14.95)

where X[1] is the first prolongation of the generator vector field given by

X[1] = ξ(t, qi )
∂

∂t
+ ηi (t, qi )

∂

∂qi
+ η̇i (t, qi )

∂

∂q̇ i
= X + η̇i (t, qi )

∂

∂q̇ i
, (14.96)

and X is the Noether symmetry vector.

Theorem 2 (Noether’s theorem part two) For any Noether symmetry vectorX asso-
ciated with the Lagrangian L = L(t, qi , q̇ i ), there corresponds a function called the
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Noether integral of the Euler Lagrange equations, which is given by

I =
(
q̇ i ∂L

∂q̇ i
− L

)
− ηi ∂L

∂q̇ i
+ g (14.97)

and is the first integral of the equations of motion dI/dt = 0.

Using this theorem, one can get the conserved quantities related to the symmetries
of a certain theory. This method has been used in TG in the context of cosmology
and also in the case of spherically symmetric spacetimes. It is important to mention
that different authors have used an incomplete version of Noether’s theorem just by
considering the uncompleted Noether’s condition XL = 0 instead of the complete
Noether’s condition (14.95). This method is also correct but it does not give all the
possible symmetries of a model. The first work related to this method in teleparallel
theories was done in [231] for vacuum f (T) cosmology, finding power-law f (T) =
c1Tn solutions using the incomplete Noether’s condition and then finding power-law
analytical cosmological solutionsa(t) ∝ t2n−3. Somedays later, independently, other
authors found the same results in [232]. Using the complete Noether’s condition,
a more detailed analysis was carried out in [233] and [234] in f (T) cosmology,
obtaining similar cosmological solutions to the first work. In [235] the authors added
aminimally coupled scalar field, obtaining f (T) ∝ T

3/4 with a potential V (φ) ∝ φ2.
One of the first non-trivial spherically symmetric solutions in f (T) theories was
found using Noether’s symmetry approach in [236]. Among these solutions, one of
them behaves similarly to the Schwarzschild solution. For f (T, B) gravity, in [77],
several types of power-law cosmological solutions were obtained, along with a new
logarithmic boundary term solution f (T, B) = −T + (1/3)B log B, which admits a
new cosmological solution a(t) = (c2eC1t + 3C3(t + c4))1/3. The authors also made
a comparison between the symmetries found in f (T), f (R) and−T + f (B) gravity.
Further, in [237], new spherically symmetric exact solutions were found in f (T, B)

gravity. The modified teleparallel Gauss-Bonnet theory f (T, TG) [79] and then the
extended case with the boundary terms f (T, B, TG, BG) [238] also found different
kinds of analytical power-law types of gravity solutions for f , with some non-trivial
scale factors behaving as a combination of exponentialwith power-laws or hyperbolic
functions.

Later, using Noether’s symmetry approach for a generalised non-local telepar-
allel theory (ξT + χB) f (�−1

T,�−1B) and without assuming any condition, the
authors found that the non-local coupling functions are constrained from the sym-
metries to be either linear combination or exponential [90]. It is interesting to remark
that some non-local theories were using exponential non-local coupling functions
by hand to get renormalisable theories, but in [90], this result appears directly from
the symmetries of the theory. Regarding teleparallel scalar tensor theories, there
have been a large amount of papers on different theories, such as teleparallel dark
energy or its extended version to non-minimally coupling F(φ)T [239, 240], adding
non-minimal couplings with the boundary term and the scalar field [241, 242], or
adding vector fields [243, 244], or with a fermionic field [245], or even adding an
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unusual coupling F(φ, ∂μφ∂μφ)T [246]. In these works, new wormhole spherically
symmetric solutions and also non-trivial cosmological solutions were found in flat
FLRW and in Bianchi models concerning different non-trivial scale factors, along
with different types of coupling functions F(φ) between both the torsion scalar and
the boundary term B. Therefore, the teleparallel community has used Noether’s sym-
metry approach in many different works in order to get cosmological and spherically
symmetric solutions.

As an example, following [234], let us here briefly review the simplest non-
trivial modified TG case, which is vacuum f (T) gravity in flat FLRW cosmology.
The canonical point-like Lagrangian for f (T) gravity in the minisuperspace of flat
FLRW can be found by considering the canonical variables a, T in the action (14.33)
and then using T = 6H 2 in flat FLRW cosmology. This lets us rewrite the action
using Lagrange multipliers to then finally obtain the following point-like Lagrangian

L = a3( f (T) − T f (T)) + 6aȧ2 fT . (14.98)

Now, we replace the above point-like Lagrangian into Noether’s condition (14.95),
finding a set of partial differential equations for Noether’s vector, and also depending
on the function f (T). For this model, there are seven differential equations

a3 ( fTT − f ) ξ,T = g,T , 3a2η1 ( fTT − f ) + a3 fTTTη2 + a3 ( fTT − f ) ξ,t = g,t ,

(14.99)

ξ,a = 0 , ξ,T = 0 , η1,T = 0 , 12 fTaη1,t + a3 ( fTT − f ) ξ,a = g,a ,

(14.100)

fTη1 + fTTTaη2 + 2 fTaη1,a − fTaξ,t = 0 ,

(14.101)

where ηi∂qi = η1(t, a, T)∂a + η2(t, a, T)∂T. We now need to solve the above sys-
temof partial differential equations to get the symmetries of themodel. It is easy to see
from (14.100) that Noether’s vector is constrained to ξ = ξ(t), η1 = η1(a) and g =
g(t). If one uses these conditions into (14.101), one gets η2 = fTS(a, T)/ fTT with
S(a, T) being an arbitrary function thatmust be of the form S(a, T) = M(a) + N (T)

due to (14.99). Considering all of these equations, one finds that g = constant, and
then the above system for f (T) �= eC1T is reduced to be

fTT

fTT − f
= n

n − 1
,

(14.102)

N = c + ξ,t , 2η1,a + η1

a
+ M = c , 3

η1

a
+ n

n − 1
M = m ,

n

1 − n
N − ξ,t = m ,

(14.103)

where m, n and c are constants. This yields the power-law solution f (T) = f0Tn

with Noether’s vector and Noether’s integral for n �= 3/2 and n �= 1/2 being equal
to
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X =
(

3C

2n − 1
t

)
∂t +

(
Ca + c3a

1− 3
2n

)
∂a

+
[
1

n

(
(c − m) n + 3c3a

− 3
2n

)
+ 3C

2n − 1
+ c

]
T∂T , (14.104)

I =
(

3C

2n − 1
t

)
H − 12 f0n

(
Ca2 + c3a

2− 3
2n

)
T
n−1ȧ , (14.105)

with H being the Hamiltonian and ci some integration constants. The other cases
n = 3/2 and n = 1/2 have different Noether’s symmetries. Finally, if one assumes
the power-law f (T) = f0Tn obtained by the symmetries, it is easy to find from the
modified FLRW equations (14.65)–(14.66) with ρ = p = 0, that a(t) ∝ t2n−3 is an
analytical solution of the system. Thus, even in vacuum, f (T) power-law admits
power-law a(t) solutions. In this way, one is not putting the function f (T) by hand,
instead, the symmetries of the model based on Noether’s theorem are choosing the
form of the function. One can follow the other branch of Noether’s equation and find
that exponential f (T) = f0eC1T are also part of the symmetries of the model. For
this case, one can obtain de-Sitter cosmological solutions from the modified FLRW
equations.

14.3.8 Bounce Solutions in Modified Teleparallel Cosmology

Onekeyproblem inGeneralRelativity is the existence of both cosmological andblack
hole singularities. The�CDMmodel, which is based onGR, states that the Universe
started from an unnatural initial big bang cosmological singularity and this cannot be
alleviated without evoking new physics. This means that the cosmological equations
break down at t = 0 and some divergences in the curvature appears. In other words,
there exists a singularity due to the incompleteness of the geodesic deviation equation
. Possible solutions for this in cosmology are the so-called bouncing cosmological
solutions, which essentially are solutions describing a contraction of the Universe
until a minimum non-zero radius to then describing an expanded Universe passing
through a bounce. This means that generically, there needs to be a model starting
with a contracting universe whose Hubble parameter is H < 0, then passing to a
continuous bounce with H = 0, to then finalising in an expansion with H > 0. There
are several types of bounce solutions. Some of them have a different evolution, for
example, exhibiting a discontinuity in the Hubble parameter. These solutions do not
appear in GR, but it is possible to achieve them if either exotic matter or modified
gravity are introduced. The simplest way to achieve this in GR is by introducing
a quintom scalar field model with two scalar fields. The first scalar field behaves
as a standard canonical scalar field and the other one has an incorrect sign in the
kinetic term, and then behaves as a ghost scalar field. It is unclear how physical it
is to introduce these kind of exotic scalar fields, due to the possible existence of
instabilities. If one modifies GR, on the other hand, it is possible to obtain bouncing
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solutions without introducing such exotic elements. Basically, the method is very
simple, a form of the scale factor (or the Hubble parameter) is assumed, which can
describe bounces. Then, a reconstruction technique can be used to get a model (or
a theory) that has these kind of solutions. For a more detailed description about
bouncing cosmological solutions, see [247].

In the context of TG, the first study that found bouncing cosmological solutions
was conducted in f (T) gravity [248]. To achieve this scenario, it is necessary to
first check the existence of bounce solutions at the background level and then study
the evolution of perturbations through the bounce. Let us here briefly review what
happens at the background level. For the perturbation study, seemore details in [248].
One type of bouncing cosmological solution can be described by having the following
scale factor

a(t) = a0
(
1 + 3

2
σt2

)1/3
, (14.106)

whereσ > 0 and a0 are constants. The first parameter determines how fast the bounce
is, whereas a0 is the scale factor evaluated at the bouncing point. The Hubble param-
eter then behaves as

H(t) = σt

1 + 3
2σt

2
, (14.107)

with the time varying from−∞ to+∞. Figure 14.7 shows the behaviour of the above
Hubble parameter achieving the expected bounce scenario, starting from a matter
contraction, then following with a bounce (static) and finalising in an expansion. If
we assume a pressureless matter, from the conservation equation the energy density
becomes ρ = C1/(3σt2 + 2). Since T = 6H 2, we can then find that t = t (T), and
we can then use this expression for the first flat FLRW equation (14.65), to then solve
this differential equation for f (T), yielding

f (T) = T + 1

2
C1κ

2

√
T

σ
arcsin

(√
T

σ

)
+ C1κ

2

2

(
1 +

√
1 − T

σ

)
. (14.108)

The scale factor (14.106) that gives the Hubble parameter (14.107) describing a
bouncing cosmological solution is a solution of the above form of f (T) gravity,
which is a GR term plus some correction terms, depending on the scalar torsion.
There are other works finding other kinds of bounce solutions in the context of mod-
ified TG. In [249], different types of non-singular bounce solutions were found in
f (T), such as �CDM with a bounce in the past, with the scale factor behaving as
a(t) ∝ sinh[√t2 + τ 2/t0] or future bounceswithQuasi-rip andLittle-rip behaviours.
In [250] some superbounce solutions in f (T) gravity that have a ekpyrotic contract-
ing phase preventing large anisotropies are found. The authors also made some
comparisons between other modified models starting from GR, such as f (R) and
f (G) gravity. Later, it was found that in f (T) gravity it is possible to have a bounce
inflationmodelwith a graceful decelerated exit [184]. Using dynamical systems tech-
niques, in [209], the authors also found the possibility of bounces and turnaround



228 S. Bahamonde et al.

Fig. 14.7 Hubble parameter versus time for themodel (14.107)withσ = 70, in units whereκ2 = 1,
describing a bounce behaviour

solutions in f (T) gravity but the impossibility of cyclic and oscillating universes.
In [251], the authors studied a model with f (T) and a scalar field to then perform
perturbations for the bounce inflationary models, finding that it is difficult to obtain
a stable bounce inflation solution, since there are many conditions that the models
need to satisfy in order to have this property, though, they were able to show that
a combination of power-law types of f (T) can achieve these stable bounce infla-
tion solutions. If one understands the cosmological singularities as a break down of
GR at very high energies, then some studies have argued that Loop quantum cos-
mology could alleviate them. Some works like [252–254] have also found bounces
in a toy model in f (T) gravity, assuming Loop quantum cosmological considera-
tions. Further generalisations to f (T) gravity, such as considering the teleparallel
Gauss-Bonnet invariant TG in the so-called f (T, TG) gravity, have also been used to
analyse possible bounce solutions, finding five types of them [255, 256]. In [257]
the case of Born-Infeld gravity was studied. These kind of theories are achieved
from f (T) gravity with f (T) = λ

2κ2 ((1 + T

2λ )1/2 − 1), with λ being a parameter of
the theory that becomes important at high energies. In this paper, the author found
that at high energy regimes, the big bang singularity is absent, and either a de-Sitter
inflationary stage of geometrical character or a bounce is present. Later, in [258],
they showed that this behaviour is only valid for a certain region of the parameter
space, and other singularities such as Big Rip, Big Bang, Big Freeze, and Sudden
singularities can emerge. It is interesting to mention that recently, in [259], a regu-
lar Schwarzschild black hole solution was found in this theory. In this context, the
central Schwarzschild curvature singularity is replaced by an infinitely long cosmic
string related to the parameter λ.

As was seen in the previous example and also in the papers mentioned here,
it is not so complicated to get bouncing cosmological solutions in modified TG.
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It is important to emphasise that in standard GR, this cannot be achieved without
introducing matter that violates the energy conditions.

14.4 What Can Teleparallel Theories Have to Offer? What
Are the Open Problems in Teleparallel Theories?

Teleparallel theories give an alternative starting point for understanding gravity com-
pared with the standard curvature-based approach to gravity used in GR. Some inter-
esting features about them compared to GR are:

• Modified teleparallel theories are broader than standard modified theories start-
ing from GR:

We have seen that theories equivalent to GR, scalar-tensor gravity, Horndeski
theory, f (R) and Gauss-Bonnet gravity based on the teleparallel geometry exist
are subclasses of more general families of Teleparallel Gravity theories. In this
spirit, Teleparallel Gravity may be used to formulate broader classes of theories
than could be constructed by using only the metric and its Levi-Civita connection.
This should not be too surprising, since any theory of the latter type can be rewritten
into teleparallel language by using the relations (14.4), (14.23) and (14.24) to
replace the metric, its Levi-Civita connection and the corresponding curvature by
the tetrad and the contortion, and hence the torsion. This teleparallel formulation
then gives rise to further extensions and generalisations by splitting off boundary
terms or including additional terms that have no equivalent expression in terms of
the metric geometry only. An easy example would be to take the case of f (R) and
f (T) gravity. Ifwe start by formulating a theory fromGR, then torsion is zero and it
is not possible to derive a similar theory to f (T). On the other hand, if we start from
TG, we can generalise f (T) to f (T, B) and then we can formulate a teleparallel
equivalent version of f (R) by considering f (T, B) = f (−T + B) = f (R).

• It is easy to get second-order field equations, since torsion contains only first-order
derivatives:
Since most physical phenomena are described by up to second-order field equa-
tions, it is expected that gravity will not have a behaviour different to this. More-
over, higher-order field equations often lead to ghost instabilities. In Teleparallel
Gravity it is easy to get second order field equations because the torsion tensor con-
tains only first-order derivatives of the tetrad, in contrast with the Riemann tensor
that contains second-order derivatives in the metric. This means that in modifi-
cations like f (T) or even more complicated ones like f (Tax, Tvec, Tten), BDLS,
etc., the field equations will be of second order, unlike in, e.g., f (R) theory where
they are fourth-order in all cases beyond GR. In principle, one could construct a
theory with infinite contractions of the torsion tensor and still get second-order
field equations.
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• Similarity to Yang-Mills theory—possible connections to gauge theory and particle
physics:
The TEGR action in Eq. (14.29) has an obvious similarity with a Yang-Mills type
action, since it is quadratic in the first-order derivatives of the tetrad, the latter
being the fundamental dynamical field of the theory. This means that has more
in common with actions encountered in particle physics than it is the case for the
Einstein-Hilbert action. Furthermore, the potential interpretation as a gauge theory
of translations makes it more similar to theories describing the other fundamental
interactions in Nature, hence paving a potential road map towards a unification
of gravity and other forces. While still being non-renormalisable, it may provide
an alternative and possibly more promising starting point for constructing a UV
complete theory.

• The possibility of formulating the theory without the equivalence principle: In
GR, gravitation is characterised by curvature through the Ricci scalar, which then
acts on particles through the geodesic equation. TG is wholly different in that the
geometric torsion that is produced to expressed gravity, acts through a Lorentz
force-type equation. In this way, we recover the original concept of gravitation as
a force similar to the other fundamental forces of Nature. While the equations turn
out to be equivalent for TEGR, they differ for modifications to this model. Coupled
with the potential of being described as a gauge theory of translations, TG does
not rely on the weak equivalence principle in that it would survive a violation [1,
260]. However, in these settings, the Newtonian limits remain intact resulting in a
more natural weak-field limit compared with GR.

• Defining a gravitational energy-momentum tensor:
TG offers the possibility of describing gravitation as a gauge current [1, 5, 6].
Then, by separating inertial and gravitation, it may become possible to define an
energy-momentum tensor for gravitation. However, this feature of the theory may
require selection of a Lorentz frame, which would limit the applicability of this
result [261, 262].

• The regularity of the TEGR action. One does not need to introduce a Gibbons-
Hawking-York boundary term:
One may argue that the TEGR action in Eq. (14.29) is a more natural formulation
of the dynamics of GR than the Einstein-Hilbert action, since the latter also con-
tains second order derivatives of the metric. The latter mandates the inclusion of
a Gibbons-Hawking-York boundary term in order to possess a well-defined vari-
ational problem and Hamiltonian formulation, which is not the case for TEGR.
While this does not affect the classical equations of motion, it may affect the quan-
tum behavior and thermodynamics of black holes. Further, it was found in [263]
that the black hole entropy is more naturally expressed as a volume integral in
TEGR than in GR.

• Torsional or Curvature-based Gravity:
TEGR is dynamically equivalent to GR in that the identical field equations emerge
due to the respective Lagrangian densities being equal up to a boundary term.
However, the actionmay contain further information, such as the renormalisability
of the theory, as well as the symmetries of the theory. Moreover, modifications to
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TEGR offer a much richer avenue to construct new theories, due to the second-
order nature of the torsion scalar [264].

Although teleparallel theories have attained a lot of attention in the past ten years,
the community effort is still not comparable to that in GR. For this reason, there
are several open problems/questions that have not been addressed properly in the
literature. Some of these open problems are:

• Confrontation with cosmological data: Teleparallel theories have shown great
promise for consistently describing observations at cosmic scales while also satis-
fying Solar System and astrophysical-scale physics [105, 134, 160–163, 167, 170,
265–268]. Further work needs to be done in this direction to better understand the
explaining power of the theory in its various manifestations.

• Gravitational Waves: A strong effort has been made in regards to understanding
the cosmological consequences of gravitational waves in f (T) gravity [134, 162,
163, 269]. However, there remains many other contexts in which TG has shown
promise, and more than this, further work is needed in the astrophysical context.
In Refs. [62, 135, 136, 270], it is shown that f (T) gravity contains only two
propagating modes, while other variants of TG can provide more. It would be
interesting to investigate further the waveform for astrophysical events, which
would entail obtaining further information about the 3 + 1 formalism of the theory
and performing simulations of astrophysical events. Ultimately, it is crucial to
understand how current and future observatories can be exploited to test TG.

• The Galactic Rotation Curve Problem: f (T) gravity has shown positive results
for describing the rotation curves without the requirement of adding dark mat-
ter [137]. Weak lensing tests have also contributed to constraints on one of the
potential models of the theory [271]. However, further analysis needs to be done
on considering more cosmologically inspired models, as well as increasing the
breadth of the analysis. One possibility is to use the SPARC (Spitzer Photometry
and Accurate Rotation Curves) obtained in Ref. [272].

• Teleparallel quantum gravity: The majority of quantum gravity approaches have
been attempted with GR as the starting point, but not so many have been initiated
from TG. For example, the loop quantum corrections of the TEGR action (14.29)
are not so well-known. One of the first attempts was done in [273]. In GR, this
has been studied with a lot of effort, even obtaining corrections of an action with∑70

i=1 R
i [274]. This has been studied within the asymptotic safety approach to

quantum gravity [275] that has not also been applied to Teleparallel Gravity.
Another interesting route would be to formulate a teleparallel version of loop
quantum gravity, since both formulations use a similar mathematical language.

• What are singularities in Teleparallel Gravity?: Hawking and Penrose proposed
a way to define singularities in GR, which is based on the incompleteness of the
geodesic equation. Then, a simple way to quantify these singularities is by defining
some invariants such as the Kretschmann scalar K ≡ RμνασRμνασ. In TG, it is not
clear whether the Hawking-Penrose theorem would be the same, or if one would
need to define different invariants to check if there are singularities. Then, it is still
open as to how a singularity in the context of TG can be defined.
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