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Preface

Professor C. R. Rao has continued his productive research career through his
tenth decade, and now begins the eleventh. A celebration of his 100th birthday is
completely appropriate. There has been no difficulty in encountering individuals
enthusiastic about contributing to this felicitation volume. That it will appear in time
for Prof. Rao’s 101st birthday is a consequence of the care invested in preparing suit-
able contributions by the many scholars whose lives have been directly or indirectly
influenced by him and his many contributions to Statistics and related fields. We,
the editors, consider it an honor to have been able to contribute to the organization
and development of this tribute volume. If ever there was a statistician who needs
no introduction, it is C. R. Rao. This is true even though many students may wonder
if his first name is Cramer, or perhaps that his last name might be Blackwell. Be
that as it may, they definitely know and respect (as we do) Prof. Rao and his many
accomplishments!

We present this volume to Prof. Rao with our best wishes for a continued
productive and enjoyable life.

We wish to take this opportunity to thank all those who have contributed papers
to this volume. In addition, we express our sincere gratitude to the scholars who
provided refereeing services. Their constructive commentaries were, in most cases,
much appreciated by the authors.

We also wish to thank our Springer editor, Ms. Veronika Rosteck, who has
patiently helped us by guiding us through the necessary steps to bring this project to
fruition.

Huntington Beach, CA, USA
Hamilton, Ontario, Canada
Caparica, Portugal
May 2021

Barry C. Arnold
Narayanaswamy Balakrishnan

Carlos A. Coelho

v



Dedication

The present volume is intended to honor Prof. Calyampudi Radhakrishna Rao on the
occasion of his 100th birthday, which occurred on September 10, 2020.

Professor Calyampudi Radhakrishna Rao is an Eberly Professor Emeritus of
Statistics at Pennsylvania State University and before his retirement he also served
as Director of the Centre for Multivariate Analysis at Penn State University and as
an Adjunct Professor at the University of Pittsburgh.

Calyampudi Radhakrishna Rao was born on September 10, 1920 in Huvvina
Hadagalli, then in the integrated Madras Province, now in the state of Karnataka, to
C. D. Naidu and A. Laxmikanthamma as their eighth child. If we are allowed to do
so, we will hereon address him just as C. R. Rao, for short, and also actually as a
statement of friendship and respect.

C. R. Rao’s father was a reputed police Inspector at the Criminal Investigation
Department, whose job required the family to move from place to place every two
or three years. For this reason, C. R. Rao completed his education in classes two
and three at Gudur, classes four and five in Nuzvid and the first and second forms
in Nandigrama, all nowadays in the state of Andhra Pradesh. After retirement, C. D.
Naidu decided to settle in a coastal city in Andhra Pradesh called Visakhapatnam
and C. R. Rao finished his high school and obtained his first college degree B.A.
(Hons.), with a first class and first rank, in Visakhapatnam. In 1943, C. R. Rao
received and MSc in Mathematics from Andhra University and on January 1, 1941,
he joined the Indian Statistical Institute (ISI) in Calcutta and a few months later he
became a student at Calcutta University, in the newly startedMA course in Statistics.
He obtained his M.A. degree in Statistics from Calcutta University in 1943 with a
first class, first rank, gold medal, and record marks unbeaten till now. Rao has the
distinction of standing first in the final examination of all classes where he studied
from Primary School to University.

In 1948, C. R. Rao, after working under the direction of R. A. Fisher, obtained
his Ph.D. degree from the Cambridge University, King’s College, with a Thesis
describing new methods for analyzing multivariate data that he developed during his
two years stay.
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viii Dedication

A few years later, Cambridge University awarded him the higher doctorate degree
Sc.D., based on peer review of his contributions to statistics andKing’s Collegemade
him a life fellow, a rare honor.

C. R. Rao completed his 100th birthday on September 10, 2020, and along his
long and very productive life he gathered, so far, an impressive list of 39 Honorary
Doctorate Degrees from nineteen countries in six different continents:

• in Asia: 14 from India (Andhra University, 1967; University of Delhi, 1973;
Osmania University, 1977; Indian Statistical Institute, 1989; University of
Hyderabad, 1991; Sri Venkateswara University, 1993; Visva Bharati Univer-
sity, 2001; Calcutta University, 2003; University of Madras, 2007; Jawaharlal
NehruTechnicalUniversity, 2011;KarnatakaUniversity, 2012;Rashtriya Sanskrit
Vidyapeeth University, 2014; Indian Institute of Technology, Kharagpur, 2014;
Jamia Hamdard University, 2018), 1 from the Philippines (University of Philip-
pines, Manila, 1983), 1 from Sri Lanka (University of Colombo, 2012);

• in Australia: 1 (University of Wollongong, 2001);
• in Africa: 1 (University of Pretoria, South Africa, 2004);
• in Europe: 1 from Cyprus (University of Cyprus, Nicosia, 2001), 1 from Finland

(University of Tampere, 1985), 1 from Germany (University of Munich, 1995), 2
from Greece (University of Athens, 1976; Athens University of Economics and
Business, 1994), 1 from Poland (University of Poznan, 1991), 1 from Portugal
(NOVAUniversity of Lisbon, 2006), 1 from Russia (Leningrad University, 1970),
1 from Slovakia (Slovak Academy of Sciences, 1994), 1 from Spain (University
of Barcelona, 1995), 1 from Switzerland (University of Neuchatel, 1989);

• in North America: 2 from Canada (University of Guelph, 1996; University of
Waterloo, 1997), 6 from U.S.A. (Ohio State University, 1979; Colorado State
University, 1990; Kent State University, 2000; Oakland University, Rochester,
2002; University of Rhode Island, 2007; University at Buffalo, State University
of New York, 2013);

• in South America: 1 from Brazil (University of Brasilia, 1982), 1 from Peru
(Universidad Nacional de San Marcos, Lima, 1982).

C. R. Rao was married to Bhargavi Rao for 69 years. She was a psychologist and
professor at Jadavpur University, India. He has a daughter, Tejaswini, a professor
of Nutrition and classical Indian dancer, and a son, Veerendra, an electrical engi-
neer and computer scientist whose wife Malini is a speech pathologist. He has two
grandchildren: Amar, a computer scientist and Rohith, in business administration.
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Some of C. R. Rao’s Most Notable Contributions
to Statistical Science and Other Areas

C. R. Rao is an extremely prolific author. He is the author of 476 research papers
published in prestigious journals and 16 books, one of which, “Statistics and Truth”,
originally published in English, was translated into French, German, Japanese,
Mandarin and Taiwanese, Turkish, and Korean. One other book, “Linear Statis-
tical Inference”, which has been in the market for over 50 years, is available, besides
English, also in German, Czech, Polish, Chinese, Japanese and Russian.

C. R. Rao has also edited 42 volumes of the “Handbook of Statistics”, dealing
with the latest methodologies in Statistics.

Some of C. R. Rao’s influential papers were the cornerstone for what nowadays
are well-known techniques and terms used in Statistics and other areas. His 1945
paper in the Bulletin of the Calcutta Mathematical Society, written at the young age
of 25 (Rao, 1945), together with the 1946 book by H. Cramér (Cramér, 1946) estab-
lished the basis for the well-known “Cramér-Rao lower bound” and the “Cramér-Rao
inequality”, which set the lower bound for the variance of unbiased estimators. This
same paper, together with another paper from Blackwell (Blackwell, 1947) also
established the foundations of the well-known Rao-Blackwell Theorem and of the
method commonly known as Rao-Blackwellization, through which one may be able
to obtain, by conditioning on a sufficient statistic, a much better estimator from what
might originally be just a crude estimator, and which combined with some results
from the Exponential Family allows for an easy way to obtain UMVU (Uniform
Minimum Variance Unbiased) estimators.

This 1945C. R. Rao paper established yet the basis for what are called the “Fisher-
Rao metric” and “Rao distance”, which are measures of the change induced in a
probability distribution by small changes in its parameters (Aitkinson and Mitchell,
1981). They were introduced in connection with statistical problems of classification
and cluster analysis and are based on a differential-geometrical approach, but have
found applications in different areas as in some problems in quantum mechanics
(Brody and Hughston, 1998) and in the detection of structures in images (Maybank,
2004, 2007). Amari (1985) refers that “It was Rao (1945), in his early twenties, who
first noticed the importance of the differential-geometrical approach” in Statistics
related problems. This Rao (1945) paper also gave rise to the term “Fisher-Rao
metric”, which keeps being a topic of research in distribution theory (Brigant et al,
2021).

C. R. Rao’s contributions to Multivariate Analysis originated from a study of
skeletons from the JebelMoya archaeological site in Sudan. JebelMoya is an archae-
ological site in the southern Gezira Plain in Sudan, approximately 250 km south
southeast of Khartoum, where still nowadays the University of Cambridge carries
on excavations. The site is one of the largest pastoralist cemeteries in Africa, where
thousands of burials have been excavated thus far. In the early 1940’s, the Anthro-
pology Department of Cambridge University sent an expedition to Jebel Moya, to
dig out ancient graves and bring the skeletons of people buried there for study. The
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Department wanted to analyze the measurements taken on the skeletons to determine
the relationship of the people who lived there with people currently living there or in
nearby areas. However, therewere nomultivariate statisticalmethods available at that
time to treat such problems, involving multiple measurements. C. R. Rao had devel-
oped some new multivariate methods for analyzing such multivariate data at the ISI,
in Calcutta, together with Prof. Mahalanobis, and had the experience of addressing
such problems. In July 1946, Dr. J.C. Trevor, Professor of the Anthropology Depart-
ment at Cambridge University, sent a telegram to Prof. Mahalanobis asking him
to send someone from ISI to analyze the measurements on Jebel Moya skeletons
using the methodology developed at ISI. C. R. Rao was selected along with R. K.
Mukherji, an anthropologist, to go to Cambridge to take measurements on skeletons
and analyze the data. They went to Cambridge and worked in the Duckworth Labo-
ratory of the Anthropology Museum for two years (1946–1948) as visiting scholars
with pay. Rao had anyway to develop some new multivariate methods to analyze the
data. The results based on the analysis of measurements were reported in the book,
Ancient Inhabitants of Jebel Moya, published by the Cambridge University Press
in 1954 under the joint authorship of C. R. Rao and the two anthropologists J.C.
Trevor and R. K. Mukherji. At the invitation of the Royal Statistical Society, C. R.
Rao presented a discussion paper describing the new multivariate methods he devel-
oped in solving the Jebel Moya problem. The paper with discussion was published
in the Journal of Royal Statistical Society, Utilization of multiple measurements in
problems of biological classification, J. Roy. Statist. Soc. 10: 159–203 (1948). Some
new multivariate tests and models that C. R. Rao used in analyzing the Jebel Moya
data such as MANOVA (multivariate analysis of variance) are described in his paper
Tests of significance in multivariate analysis, Biometrika, 35: 58–9 (1948). These
two papers are further discussed in Rao’s book, Advanced Statistical Methods, John
Wiley (1952) and they provided some of the foundations of Multivariate Analysis.

Yet in 1948, C. R. Rao published a paper (Rao, 1948) where he works out all the
details of what is known as “Rao’s Score Test”, an alternative to Likelihood Ratio and
Wald tests. The three tests are equivalent to the first order of asymptotics, being all
three asymptotically optimal, but differ to some extent in the second order properties.
Relative to the likelihood ratio test, Rao’s score test has the advantage of requiring
only the estimation of the likelihood function under the null hypothesis, and, unlike
the Wald test, it is invariant to transformations of the parameters. Also, in contrast to
most likelihood ratio tests, it may be used when the parameters lie on the boundary
of the parameter space. Rao’s Score Test found applications in a wide range of areas,
from genetics to econometrics (Rao, 1950, 2005; Bera and Ullah, 1991, Anselin,
2011).

But this extraordinarily productive and fruitful era of C. R. Rao has also produced
three papers (Rao, 1946, 1947, 1949) which would be the basis for the so-called
“Rao’s Orthogonal Arrays”, a term actually coined in 1950 by Bush (Bush, 1950).
Rao’s Orthogonal Arrays are “a versatile class of combinational arrangements useful
for conducting experiments to determine the optimum mix of a number of factors
in a product to maximize the yield, and in the construction of a variety of designs
for agricultural, medical and other experiments”, as referred by C. R. Rao himself
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(Rao, 2009). Orthogonal arrays found applications in several areas including factorial
designs in agricultural, medical and other experiments, software testing, being used
in situations where the number of inputs is relatively small, but too large to allow for
exhaustive testing of every possible input, and it is particularly effective in finding
errors associated with faulty logic (Roger and Maxim, 2019), and in quality control,
where, associated with the Taguchi methods (Taguchi, 1986; Taguchi et al, 1999),
developed during Taguchi’s visit to ISI in the early 1950’s, and which were largely
adopted by the Indian and Japanese industries, and later also by the US industry, are
used to improve the quality of manufactured goods, lower their costs and faster their
time to market, and also found uses in engineering, biotechnology, marketing and
advertising.

In 1954, C. R. Rao received some data from Japan. The aim was to use these data
to study the long-term effects of radiation. Since there were some linear relations in
the model matrix X, it was necessary to find a replacement for the common inverse
of the X’X matrix. As such, C. R. Rao introduced in his 1955 paper (Rao, 1955)
the “Pseudo inverse of a singular matrix”, or “g-inverse” of a singular matrix, as
he himself names it. This was indeed the same year Penrose published his paper
on generalized inverses (Penrose, 1955), which would give rise to the well-known
Moore-Penrose inverse, giving reference to the previous work of Moore on the topic
(Moore, 1920). However, it would be C. R. Rao’s paper in 1962 (Rao, 1962) and
the monograph he published together with Sujit Kumar Mitra (Rao and Mitra, 1971)
that would establish the importance of the generalized inverses in linear models and
other areas.

More recently, in a series of three papers published in 1982, C. R. Rao established
what is known as “Rao’s Quadratic Entropy”, a measure of diversity of ecolog-
ical communities, based on the proportion of the abundance of species present in a
community and ameasure of dissimilarity among them (Rao, 1982a, b, c). The unified
approach provided by Rao’s Quadratic Entropy is useful for performing Analysis of
Variance type analyses on both qualitative and quantitative data (Zhao, 2010), and
“it surpasses other proposed indices” when more than one trait is considered (Zoltán,
2005).

Positions held by C. R. Rao

C. R. Rao retired from active service at the age of 80 from The Pennsylvania State
University, PA, USA but he continues to hold an honorary Professorship at The
Pennsylvania State University, PA, USA and at the University at Buffalo, SUNY,
USA.

Other positions held were:
Indian Statistical Institute, in various capacities 1941–1979
Visiting Professor at University of Illinois 1951–1952
National Professor of India 1987–1992
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University Professor, University of Pittsburgh 1979–1988
Eberly Professor of Statistics, The Pennsylvania State University (PSU), PA, USA

1988–2001
Director, Centre for Multivariate Analysis, PSU 2001–2010
Eberly Professor Emeritus (PSU) 2001–
Research Professor, University at Buffalo, SUNY 2010–

C. R. Rao’s Fellowships of National Academies
and Professional Societies

National Academies
1953—Indian National Science Academy, India
1967—The Royal Society, FRS (U.K. Academy of Sciences)
1974—Indian Academy of Science, India
1975—American Academy of Arts and Science, USA
1983—Third World Academy of Sciences, Trieste, Italy (Founder Fellow)
1988—The National Academy of Sciences, India
1995—National Academy of Sciences, USA
1996—Member of Prometheus Society
1997—Lithuanian Academy of Sciences (Foreign Member)
2009—Honorary Fellow of European Academy of Sciences

Honorary Fellowships
1969—Honorary Fellow Royal Statistical Society, U.K.
1974—Honorary Life Fellow King’s College, Cambridge, U.K.
1974—Honorary Member Indian Society of Human Genetics
1983—Honorary Member International Statistics Institute, The Netherlands
1985—Honorary Fellow Calcutta Statistical Association
1986—Honorary Life Member Biometric Society
1990—Honorary Fellow the Finnish Statistical Society
1995—Honorary Fellow the Institute of Combinatorics and its Applications
1998—Honorary Fellow International Indian Statistical Association
2000—Honorary Fellow World Innovation Foundation
2002—Honorary Member Portuguese Statistical Society
2012—Honorary Fellowship Institute of Applied Statistics, Sri Lanka
2012—Honorary Member and Fellow of Indian Society of Probability and

Statistics (ISPS)

Fellowships (by Election)
1951—Member International Statistical Institute
1958—Fellow Institute of Mathematical Statistics, U.S.A.
1965—Fellow Andhra Pradesh Academy of Science, India
1972—Fellow American Statistical Association, U.S.A.
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1972—Fellow International Econometric Society, U.S.A.
1985—Fellow The Indian Society for Medical Statistics
1994—Fellow American Association for the Advancement of Science (AAAS)
2012—Fellow of the Indian Society of Probability and Statistics

Presidentship of Professional Societies
1971–76 Indian Econometric Society
1973–75 International Biometric Society
1976–77 Institute of Mathematical Statistics, U.S.A. (First person outside the

USA to be made president)
1977–79 International Statistical Institute, The Netherlands
1982–84 Forum for Interdisciplinary Mathematics, USA

C. R. Rao’s Awards

• Jerzy Splawa-Neyman Medal, from the Polish Statistical Association in recog-
nition of “his outstanding contributions to the theory, applications, and teaching
of statistics”—2014

• Guy Medal in Gold of theRoyal Statistical Society,UK“for thosewho are judged
to have merited a significant mark of distinction by reason of their innovative
contribution to theory or application of statistics” from the president of the Royal
Statistical Society—2011

• India Science Award, “for major contributions of a path-breaking nature based
on work done in India” from Prime Minister Manmohan Singh—2009

• The International Mahalanobis Prize, awarded by International Statistical
Institute at the 54th Session held in Berlin for “lifetime achievement”—2003

• Srinivas Ramanujan Medal from Indian National Science Association—2003
• National Medal of Science—highest award in the US for a scientist honored as

“prophet of a better age”, from President George W. Bush—2002
• Desikottama award, the highest honor bestowed by the University of Visva-

Bharati, India, in recognition of his "enormous contributions in the field of
statistics and its applications”—2003

• Padma Vibhushan, second highest civilian award, from the Government of India
for “outstanding contributions to Science and Engineering/Statistics”—2001

• Army Wilks Medal, American Statistical Association—2000
• Mahalanobis Birth Centenary Medal—1996
• Fellow of National Academy of Science, USA,—1995
• Samuel S. Wilks Medal, awarded by the American Statistical Association for

the great influence he has had on the application of statistical thinking in different
disciplines, embodying over a career of more than 40 years in the spirit and ideals
of Samuel S. Wilks—1989

• Founding Fellow of Third World Academy of Science, Trieste, Italy—1983
• Jagadish Chandra Bose Medal of Bose Institute, India—1979
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• Megnad Saha Medal, of Indian Science Academy, India—1969
• Padma Bhushan, one of the civilian awards of a high order of the Government

of India, for services in the field of statistical education and research—1968
• Shanti Swarup Bhatnagar Award, Council of Scientific and Industrial Research,

India, for “notable and outstanding research in statistics” from Pandit Jawaharlal
Nehru—1963

In 2000, the Prof. C. R. Rao Young Statistician Award was instituted by the
Ministry of Statistics and Programme Implementation, Government of India to be
awarded to young statisticians.

Dr. C. R. Rao on his 100th birthday
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Dr. C. R. Rao, with his daughter, Dr. Tejaswini Rao, on his 100th birthday
Photos courtesy of Dr. Tejaswini Rao.
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Robust Statistical Inference for One-Shot
Devices Based on Density Power
Divergences: An Overview

N. Balakrishnan , E. Castilla , and L. Pardo

Abstract In this chapter, we provide a detailed review of divergence-based robust
inferential methods for one-shot device testing under different lifetime distributions.
Proposed estimators and Wald-type tests are shown to possess a more robust behav-
ior than the classical maximum likelihood estimator (MLE) and Wald test. Some
simulation results and real data examples are also presented to illustrate the methods
detailed.

Keywords One-shot device testing · Censoring · Reliability · Robust inference ·
Power-divergence statistics · Wald-type tests

1 Introduction

In this chapter, one-shot device testing data, which is an extreme case of interval cen-
soring, is discussed. One-shot devices can be used only once as they get destroyed
immediately after use, and so one can only know whether the failure time is either
before or after a specific inspection time. The lifetimes are either left- or right-
censored, with the lifetime being less than the inspection time if the test outcome is
a failure (resulting in left censoring) and the lifetime being more than the inspection
time if the test outcome is a success (resulting in right censoring). Some examples
of one-shot devices are nuclear weapons, space shuttles, automobile air bags, fuel
injectors, disposable napkins, heat detectors, missiles (Olwell and Sorell 2001) and
fire extinguishers (Newby 2008). In survival analysis, these data are called “cur-
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rent status data”. For instance, in animal carcinogenicity experiments, one observes
whether a tumor has occurred by the examination time for each subject or not.

Due to the advances in manufacturing design and technology, products have now
become highly reliable with long lifetimes. This fact would pose a problem in the
analysis of data if only a few or no failures are observed. For this reason, accelerated
life-tests (ALT) are often used by adjusting a controllable factor, such as tempera-
ture or velocity or humidity, in order to induce more failures in the experiment. The
study of one-shot devices from ALT data has been developed considerably recently,
mainly motivated by the work of Fan et al. (2009). In this work, a Bayesian approach
was presented to make inferences on the failure rate and reliability of devices. They
found the normal prior to be the best one when the failure observations are rare, that
is, when the devices are highly reliable. Balakrishnan and Ling (2012a) developed
an expectation–maximization (EM) algorithm for the determination of the MLEs of
model parameters under exponential lifetime distribution for devices with a single
stress factor. Balakrishnan and Ling (2012b) further extended this work to a model
with multiple stress factors. Balakrishnan and Ling (2013) developed more general
inferential results for deviceswithWeibull lifetimes under non-constant shape param-
eters, while Balakrishnan and Ling (2014) provided inferential work for devices with
gamma lifetimes. In Balakrishnan et al. (2015a, b), the problem of one-shot devices
under competing risks was considered for the first time.

Most of the results mentioned above are based on MLEs which are well-known
to be not only efficient but also non-robust. Therefore, testing procedures based
on MLEs face serious robustness problems. Recently, robust inference for one-shot
device testing has been developed based on weighted minimum density power diver-
gence (DPD) estimators. These results may be found in several papers (Balakrishnan
et al. 2019a, b, 2020a, b, c, d). In this chapter, we present the framework necessary to
develop robust estimators and Wald-type tests based on them for different lifetime
distributions, and a concise review of the main results in the cited papers.

In this chapter the following data examples will be used to illustrate the method-
ologies being surveyed.

1. Electric current data: These data (see Table 2 in Balakrishnan and Ling 2012b)
consist of 120 one-shot devices that were divided into four accelerated conditions
with higher-than-normal temperature and electric current, and inspected at three
different times. By subjecting the devices to adverse conditions, we shorten the
lifetimes, observing more failures in a clear example of an ALT design.

2. Tumor toxicological data:These data considered, taken from theNationalCenter
for Toxicological Research, were originally reported byKodell andNelson (1980)
and recently analyzed by Balakrishnan and Ling (2013, 2014) using MLEs under
a one-shot device model. These data consisted of 1816 mice, of which 553 had
tumors, involving the strain of offspring (F1 or F2), gender (female or male) and
concentration of benzidine dihydrochloride (60 ppm, 120 ppm, 200 ppm or 400
ppm) as the stress factors. For each testing condition, the number of mice tested
and the number of mice having tumors were all recorded. This is a clear example
of current status data.
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Table 1 Data on one-shot devices at multiple stress levels and collected at different inspection
times

Condition Inspection
time

Devices Failures Covariates

Stress 1 · · · Stress J

1 I T1 K1 n1 x11 · · · x1J

2 I T2 K2 n2 x21 · · · x2J

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

I I TI K I nI xI1 · · · xI J

3. Glass Capacitors data: These data were presented in Zelen (1959) from a
life-test of glass capacitors at higher than usual levels of temperature (in ◦C),
T = {170, 180}, and voltage V = {350, 300, 250, 200}. At each of the eight com-
binations of temperature and voltage, eight items were tested.

The study of these examples, as well as the simulation results presented in this
chapter, have been obtained under the R Statistical Software. The nlm function has
been used for theminimization of the corresponding divergencemeasure.We suggest
the use of the packages hypergeo and expint for the manipulation of gamma and
Weibull distributions, respectively.

1.1 Model Description

Let us suppose that the data are stratified into I testing conditions and that in the i th
testing condition, Ki individuals are placed under stress-level combinations with J
stress factors, being maintained at certain levels, and the conditions of those units
are then observed at pre-specified inspection times I Ti , for i = 1, . . . , I . Then, the
number of devices that have failed by time I Ti are recorded as ni .

In this setting (as summarized inTable1),we consider that the density and distribu-
tion functions of the lifetimes are given, respectively, by f (t; xi , θ) and F(t; xi , θ),
where xi = (1, xi1, . . . , xi J )

T is the vector of stresses associated with the test condi-
tion i (i = 1, . . . , I ), and θ ∈ � ⊆ R

S is the model parameter vector (S depends on
the distribution associated with the model). The reliability function of the lifetimes
is denoted by R(t; xi , θ) = 1 − F(t; xi , θ).

Assuming independent observations, the likelihood functionbasedon theobserved
data, presented in Table1, is given by

L(n1, . . . , nI ; θ) ∝
I∏

i=1

Fni (I Ti ; xi , θ)RKi −ni (I Ti ; xi , θ), (1)
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and the corresponding MLE of θ , θ̂ , will be obtained by maximization of (1) or,
equivalently, its logarithm, which is

θ̂ = argmax
θ∈�

logL(n1, . . . , nI ; θ).

We introduce some notation in order to define the MLE on the basis of Kullback–
Leibler divergence (Kullback and Leibler 1951). We consider the empirical and
theoretical probability vectors

p̂i = ( p̂i1, p̂i2)
T , i = 1, . . . , I

and
π i (θ) = (πi1(θ), πi2(θ))T , i = 1, . . . , I,

with p̂i1 = ni
Ki
, p̂i2 = 1 − ni

Ki
, πi1(θ) = F(I Ti ; xi , θ) and πi2(θ) = R(I Ti ; xi , θ).

Definition 1 The Kullback–Leibler divergence measure between p̂i and π i (θ) is
given by

dK L( p̂i ,π i (θ)) = p̂i1 log

(
p̂i1

πi1(θ)

)
+ p̂i2 log

(
p̂i2

πi2(θ)

)
,

and similarly, the weighted Kullback–Leibler divergence measure for all the units,
where K =∑I

i=1 Ki is the total number of devices under the life-test, is given by

I∑

i=1

Ki

K
dK L( p̂i ,π i (θ)) = 1

K

I∑

i=1

Ki

[
p̂i1 log

(
p̂i1

πi1(θ)

)
+ p̂i2 log

(
p̂i2

πi2(θ)

)]
.

(2)

Proposition 1 The MLE can be obtained as the minimization of the weighted
Kullback–Leibler divergence measure in (2), i.e.,

θ̂ = argmin
θ∈�

I∑

i=1

Ki

K
dK L( p̂i ,π i (θ)).

1.2 The Weighted Minimum Density Power Divergence

In order to extend the MLE, we define the weighted DPD.

Definition 2 The weighted DPD between the probability vectors p̂i and π i (θ) for
β > 0 is given by
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dw
β (θ) =

I∑

i=1

Ki

K
dβ( p̂i ,π i (θ)),

where

dβ( p̂i ,π i (θ)) =
(
π

β+1
i1 (θ) + π

β+1
i2 (θ)

)
− β + 1

β

(
p̂i1π

β

i1(θ) + p̂i2π
β

i2(θ)
)

+ 1

β

(
p̂β+1

i1 + p̂β+1
i2

)
,

and dβ=0( p̂i ,π i (θ)) = limβ→0+ dβ( p̂i ,π i (θ)) = dK L( p̂i ,π i (θ)), if β = 0.

The term 1
β

(
p̂β+1

i1 + p̂β+1
i2

)
does not depend on θ and so we can define

d∗
β( p̂i ,π i (θ)) =

(
π

β+1
i1 (θ) + π

β+1
i2 (θ)

)
− β + 1

β

(
p̂i1π

β

i1(θ) + p̂i2π
β

i2(θ)
)

. (3)

Based on (3), we can define the weighted minimum DPD estimator, as follows.

Definition 3 The weighted minimum DPD estimator for θ is

θ̂β = argmin
θ∈�

I∑

i=1

Ki

K
d∗

β( p̂i ,π i (θ)), for β > 0,

and, in particular, for β = 0, we have the MLE.

For more details about DPD, see Basu et al. (1998). Now, the estimating equations
for obtaining this estimator are given in the following result.

Theorem 1 For β ≥ 0, the estimating equations are given by

I∑

i=1

(Ki F(I Ti ; xi , θ) − ni )
(

Fβ−1(I Ti ; xi , θ) + Rβ−1(t; xi , θ)
) ∂ F(I Ti ; xi , θ)

∂θ
= 0S,

where 0S is the null column vector of dimension S.

With regard to the asymptotic distribution of the weighted minimum DPD esti-
mator, θ̂β, we have the following result.

Theorem 2 Let θ0 be the true value of the parameter θ . Then, the asymptotic dis-
tribution of the weighted minimum DPD estimator θ̂β is given by

√
K
(̂
θβ − θ0) L−→

K→∞ N
(
0, J−1

β (θ0)Kβ(θ0)J−1
β (θ0)

)
,
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where the matrices Jβ(θ0) and Kβ(θ0) are given by

Jβ(θ) =
I∑

i=1

2∑

j=1

Ki

K
ui j (θ)uT

i j (θ)π
β+1
i j (θ), (4)

Kβ(θ) =
I∑

i=1

2∑

j=1

Ki

K
ui j (θ)uT

i j (θ)π
2β+1
i j (θ) −

I∑

i=1

Ki

K
ξ i,β(θ)ξ T

i,β(θ), (5)

with

ui j (θ) = ∂ logπi j (θ)

∂θ
and ξ i,β(θ) =

2∑

j=1

ui j (θ)π
β+1
i j (θ).

This result follows from Theorem 3.1 of Ghosh and Basu (2013).

1.3 Wald-Type Tests

Based on the asymptotic distribution of the weighted minimum DPD estimator, we
can define Wald-type tests.

Let us consider the function m : RS −→ R
r , where r ≤ S. Then, m (θ) = 0r

represents a composite null hypothesis. We assume that the S × r matrix

M (θ) = ∂mT (θ)

∂θ

exists and is continuous in θ , with rank M (θ) = r. For testing

H0 : θ ∈ �0 against H1 : θ /∈ �0, (6)

where �0 = {θ ∈ � : m (θ) = 0r } , we can consider the following Wald-type test
statistics:

WK (̂θβ) = KmT (̂θβ)
(
MT (̂θβ)�(̂θβ)M (̂θβ)

)−1
m(̂θβ), (7)

where �β (̂θβ) = J−1
β (̂θβ)Kβ (̂θβ)J−1

β (̂θβ) and Jβ(θ) and Kβ(θ) are as given in (4)
and (5), respectively.

In the following theorem, we present the asymptotic distribution of WK (̂θβ).

Theorem 3 The asymptotic null distribution of the proposed Wald-type test statis-
tics, given in Eq. (7), is a chi-squared (χ2) distribution with r degrees of freedom,
i.e.,

WK (̂θβ)
L−→

K→∞ χ2
r .
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Based on Theorem3, we will reject the null hypothesis in (6) if

WK (̂θβ) > χ2
r,α,

where χ2
r,α is the upper percentage point of order α of χ2

r distribution.
General results in relation to Wald-type tests based on minimum DPD estimators

can be seen in Basu et al. (2016, 2018).

1.4 Influence Function

An important concept in robustness theory is the influence function (Hampel et al.
1986). For any estimator defined in terms of a statistical functional U(F) from the
true distribution F , its influence function (IF) is defined as

I F(t,U, F) = lim
ε↓0

U(Fε) − U(F)

ε
= ∂U(Fε)

∂ε

∣∣∣∣
ε=0+

, (8)

where Fε = (1 − ε)F + ε	t , with ε being the contamination proportion and 	t

being the degenerate distribution at the contamination point t . Thus, the (first-order)
IF, as a function of t , measures the standardized asymptotic bias (in its first-order
approximation) caused by the infinitesimal contamination at the point t . The max-
imum of this IF over t indicates the extent of bias due to contamination and so the
smaller its value is, the more robust the estimator is.

In this section, we shall present the influence function for the weighted minimum
DPD estimator as well as for the Wald-type tests presented in (7).

1.4.1 Robustness of the Weighted Minimum Density Power Divergence
Estimators

Let us denote by Gi the true distribution function of a Bernoulli random variable with
an unknown probability of success, for the i th group of Ki observations, havingmass
function gi . Similarly, let Fi,θ be the distribution function of Bernoulli random vari-
able having a probability of success equal to πi1(θ), with probability mass function
fi (·, θ) (i = 1, ..., I ), which are related to the model. In vector notation, we consider
G = (G1 ⊗ 1T

K1
, . . . , G I ⊗ 1T

K I
)T and Fθ = (F1,θ ⊗ 1T

K1
, . . . , FI,θ ⊗ 1T

K I
)T .

For any estimator defined in terms of a statistical functional U(G) in the set up of
data from the true distribution function G, its IF in accordance with (8) is defined as

I F(t,U, G) = lim
ε↓0

U(Gε,t) − U(G)

ε
= ∂U(Gε,t)

∂ε

∣∣∣∣
ε=0+

,



10 N. Balakrishnan et al.

where Gε,t = (1 − ε)G + ε	t , with ε being the contamination proportion and 	t

being the distribution function of the degenerate randomvariable at the contamination
point

t = (t11, ..., t1K1 , ..., tI1, ..., tI K I )
T ∈ R

I K .

We first need to define the statistical functional Uβ(G) corresponding to the
weighted minimum DPD estimator as the minimizer of the weighted sum of DPDs
between the true and model densities. This is defined as the minimizer of

Hβ(θ) =
I∑

i=1

Ki

K

⎧
⎨

⎩
∑

y∈{0,1}

[
f β+1
i (y, θ) − β + 1

β
f β

i (y, θ)gi (y)

]⎫⎬

⎭ , (9)

where gi (y) is the probability mass function associated with Gi and

fi (y, θ) = yπi1(θ) + (1 − y)πi2(θ), y ∈ {0, 1}.

If we choose gi (y) ≡ fi (y, θ), expression (9) gets minimized at θ = θ0, implying
the Fisher consistency of the weighted minimum DPD estimator functional Uβ(G)

in our model.
Under appropriate differentiability conditions, we require the solution of the esti-

mating equations

∂ Hβ(θ)

∂θ
=

I∑

i=1

Ki

K

⎧
⎨

⎩
∑

y∈{0,1}

[
f β
i (y, θ)

∂ fi (y, θ)

∂θ
− f β−1

i (y, θ)
∂ fi (y, θ)

∂θ
gi (y)

]⎫⎬

⎭ = 0.

(10)

In order to get the IF of the weighted minimum DPD estimator at Fθ with respect
to the kth element of the i0th group of observations, we replace θ in (10) by

θ i0
ε = Uβ(G1 ⊗ 1T

K1
, . . . , Gi0−1 ⊗ 1T

Ki0−1
, Gi0,ε ⊗ 1T

Ki0
, Gi0+1, . . . , G I ⊗ 1T

K I
),

where Gi0,ε is the distribution function associated with the probability mass function

gi0,ε,k(y) = (1 − ε) fi (y, θ0) + ε	ti0 ,k (y),

	ti0 ,k (y) = y	
(1)
ti0 ,k

+ (1 − y)	
(2)
ti0 ,k

, with	
(1)
ti0 ,k

being the degenerating function at point

(ti0,k), 	
(2)
ti0 ,k

= (1 − 	
(1)
ti0 ,k

), and
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gi (y) =
{

fi (y, θ0) if i �= i0,
gi0,ε,k(y) if i = i0.

Differentiating with respect to ε and evaluating this derivative at ε = 0, we obtain
the following theorem.

Theorem 4 Let us consider the one-shot device testing with multiple stress factors
defined in (1). The IF with respect to the kth observation of the i0th group is given by

I F(ti0,k,Uβ, Fθ0) =J−1
β (θ0)

Ki0

K

∂πi01(θ)

∂θ

∣∣∣∣
θ=θ0

(11)

×
(
π

β−1
i01 (θ0) + π

β−1
i02 (θ0)

) (
πi01(θ

0) − 	
(1)
ti0 ,k

)
.

In order to get the IF of the weighted minimum DPD estimator at Fθ with respect
to all the observations, we replace the parameter θ in (10) by

θ i0
ε = Uβ(G1,ε ⊗ 1T

K1
, . . . , Gi0−1,ε ⊗ 1T

Ki0−1
, Gi0,ε ⊗ 1T

Ki0
, Gi0+1,ε, . . . , G I,ε ⊗ 1T

K I
),

and the probability mass function gi (y) by

gi,ε,k(y) = (1 − ε) fi (y, θ0) + ε	ti ,k(y),

in which case we get

∂ Hβ(θ)

∂θ

∣∣∣∣
θ=θ ε

=
I∑

i=1

Ki

K

⎧
⎨

⎩
∑

y∈{0,1}
f β

i (y, θ ε)
∂ fi (y, θ)

∂θ

∣∣∣∣
θ=θ ε

⎫
⎬

⎭

−
I∑

i=1

Ki

K

⎧
⎨

⎩
∑

y∈{0,1}
f β−1
i (y, θ ε)

∂ fi (y, θ)

∂θ

∣∣∣∣
θ=θ ε

fi (y, θ0)

⎫
⎬

⎭ .

Differentiating with respect to ε and evaluating the expression at ε = 0, we get the
following result.

Theorem 5 Let us consider the one-shot device testing with multiple stress factors
defined in (1). The IF with respect to all the observations is given by

I F(t,Uβ, Fθ0) =J−1
β (θ0)

I∑

i=1

Ki

K

∂πi1(θ)

∂θ

∣∣∣∣
θ=θ0

(12)

×
(
π

β−1
i1 (θ0) + π

β−1
i2 (θ0)

) (
πi1(θ

0) − 	
(1)
ti

)
,

where 	
(1)
ti =∑Ki

k=1 	
(1)
ti ,k

.
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1.4.2 Robustness of Wald-Type Tests

Next, we study the robustness of the proposed Wald-type test statistics. The IF of a
testing procedure, as introduced by Ronchetti and Rousseeuw (1979) for IID data,
is also defined as in the case of estimation but with the statistical functional corre-
sponding to the test statistics, and it is studied under the null hypothesis. This concept
has been extended to non-homogeneous data, in Aerts and Haesbroeck (2017) and
Ghosh and Basu (2018). In the present context, the functional associated with the
Wald-type test, evaluated at Uβ(G), is given by

WK (Uβ(G)) = KmT (Uβ(G))
(
MT (Uβ(G))�(Uβ(G))M(Uβ(G))

)−1
m(Uβ(G)).

The IF with respect to the kth observation of the i0th group of observations, of
the functional associated withWald -type test statistics for testing the composite null
hypothesis in (6), is then given by

I F(ti0,k, WK , Fθ0) = ∂WK (F
θ

i0
ε
)

∂ε

∣∣∣∣
ε=0+

= 0.

It, therefore, becomes necessary to consider the second-order IF, as presented in the
following result.

Theorem 6 The second-order IF of the functional associated with Wald-type test
statistics, with respect to the kth observation of the i0th group of observations, is
given by

I F2(ti0,k, WK , Fθ0) = ∂2WK (F
θ

i0
ε
)

∂ε2

∣∣∣∣∣
ε=0+

= 2 I F(ti0,k,Uβ, Fθ0)mT (θ0)
(
MT (θ0)�(θ0)M(θ0)

)−1
m(θ0)I F(ti0,k,Uβ, Fθ0),

where I F(ti0,k,Uβ, Fθ0) is as given in (11).

Similarly, for all the indices, we can state the following result.

Theorem 7 The second-order IF of the functional associated with Wald-type test
statistics, with respect to all the observations, is given by

I F2(t, WK , Fθ0) = ∂2WK (Fθ ε
)

∂ε2

∣∣∣∣
ε=0+

= 2 I F(t,Uβ, Fθ0)mT (θ0)
(
MT (θ0)�(θ0)M(θ0)

)−1
m(θ0)I F(t,Uβ, Fθ0),

where I F(t,Uβ, Fθ0) is as given in (12).

Note that the second-order influence functions of the proposed Wald-type tests
are quadratic functions of the corresponding IFs of the weighted minimum DPD
estimator for any type of contamination.
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2 Robust Inference for One-Shot Device Testing Under
Exponential Distribution

Let us consider the problem of one-shot device testing in which the failure time of the
devices is assumed to follow an exponential distribution. Some work has been done
for the particular case of a single stress model (J = 1). Fan et al. (2009) presented a
Bayesian approach to develop inference on the failure rate and reliability of devices.
They found the normal prior to be the best one when the failure observations are rare,
that is, when the devices are highly reliable. Balakrishnan and Ling (2012a) devel-
oped an EM algorithm and made a comparative study with the mentioned Bayesian
approach, showing that the EM method is more appropriate for products with low
and moderate reliability. This work was extended in Balakrishnan and Ling (2012b)
for the case of multiple stress factors.

The problem of one-shot device testing under the exponential distribution was
also studied on the basis of weighted minimum DPD estimators as well as Wald-
type tests based on them. In Balakrishnan et al. (2019b), the case of a single-stress
factor was considered, and was subsequently extended to the multiple-stress case
in Balakrishnan et al. (2020a). In this section, we present some of the key results
obtained in these two papers.

2.1 Inference Under Exponential Distribution

We shall assume that the true lifetime follows an exponential distribution with
unknown failure rate λi (θ), related to the stress factor xi in a log-linear form as

λi (θ) = exp(xT
i θ),

where xi = (xi0, xi1, . . . , xi J )
T and θ = (θ0, θ1, . . . , θJ )

T . Thus, here � = R
J+1.

The corresponding density function and distribution function are, respectively,

f (t; xi , θ) = λi (θ) exp{−λi (θ)t} = exp(xT
i θ) exp{− exp(xT

i θ)t}, t > 0, (13)

and

F(t; xi , θ) = 1 − exp{−λi (θ)t} = 1 − exp{−t exp(xT
i θ)}, t > 0. (14)

On the other hand, the reliability at time t and the mean lifetime under normal
operating conditions xi are given by

R(t; xi , θ) = 1 − F(t; xi , θ) = exp
(−t exp

(
xT

i θ
))

, t > 0 (15)

and
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E[Ti ] = 1

λi
= exp

(−xT
i θ
)
.

Then, specializing the result given in Theorem1, for β ≥ 0, the estimating equa-
tions are given by

I∑

i=1

(Ki F(I Ti ; xi , θ) − ni )
(

Fβ−1(I Ti ; xi , θ) + Rβ−1(t; xi , θ)
)

f (I Ti ; xi , θ)I Ti xi = 0J+1,

where f (I Ti ; xi , θ), F(I Ti ; xi , θ) and R(I Ti ; xi , θ) are given, respectively, by (13),
(14) and (15).

Following Theorem2, the asymptotic distribution is given by

√
K
(̂
θβ − θ0) L−→

K→∞ N
(
0J+1, J

−1
β (θ0)Kβ(θ0)J−1

β (θ0)
)

,

where

Jβ(θ) =
I∑

i

Ki

K
xi xT

i f 2(I Ti ; xi , θ)I T 2
i

(
Fβ−1(I Ti ; xi , θ) + Rβ−1(I Ti ; xi , θ)

)
,

(16)

Kβ(θ) =
I∑

i=1

Ki

K
xi xT

i f 2(I Ti ; xi , θ)I T 2
i F(I Ti ; xi , θ)R(I Ti ; xi , θ)

× (Fβ−1(I Ti ; xi , θ) + Rβ−1(I Ti ; xi , θ)
)2

. (17)

In the context of one-shot device testing under multiple stress factors, we may
be interested in checking whether there is a significant relationship between the j th
stress factor and the device lifetime. Under the exponential distribution assumption,
this can be tested through the Wald-type test given in (7), where m (θ) = θ j ,

MT (θ) = (0, . . . ,
( j+1)
1 , . . . ,

(J+1)
0 )

and Jβ(θ) and Kβ(θ) are as in (16) and (17), respectively. Some results in relation
to the power function of Wald-type tests as well as the asymptotic distribution of
W K (̂θβ) under contiguous alternative hypothesis can be found in Balakrishnan et al.
(2020a).

The IF with respect to the kth observation of the i0th group is given by

I F(ti0,k,Uβ, Fθ0) = J−1
β (θ0)

Ki0

K
f (I Ti0; xi0 , θ

0)I Ti0xi0

× (Fβ−1(I Ti0; xi0 , θ
0) + Rβ−1(I Ti0; xi0 , θ

0)
) (

F(I Ti0; xi0 , θ
0) − 	

(1)
ti0

)
.

The IF with respect to all the observations is given by
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I F(t,Uβ, Fθ0) = J−1
β (θ0)

I∑

i=1

Ki

K
f (I Ti ; xi , θ

0)I Ti xi

× (Fβ−1(I Ti ; xi , θ
0) + Rβ−1(I Ti ; xi , θ

0)
) (

F(I Ti ; xi , θ
0) − 	

(1)
ti

)
.

In Balakrishnan et al. (2019b), the authors studied the boundedness of the influ-
ence functions, for the particular case of only one stress level or with respect to
an observation or with respect to all the observations. It was shown that they are
bounded on ti0,k or t , but if β = 0 the norm of the bidimensional influence functions
can be very large on (x, I T ), in comparison with β > 0, implying that the proposed
weighted minimum DPD estimators with β > 0 are robust against leverage points,
but the classical MLE is evidently non-robust. The same happens for large I T s too,
but in accelerated processes inspection times tend not to be large.

2.2 Monte Carlo Simulation Study

In this section, we summarize the main results given in Balakrishnan et al. (2019b,
2020a), where Monte Carlo simulations were carried out to examine the behavior of
the weighted minimumDPD estimators of the model parameters under the exponen-
tial assumption, for lifetimes.

We consider the devices to have exponential lifetimes subjected to two types
of stress factors at two different conditions each, the first one at levels 55 and 70
and the second one at levels 85 and 100, and tested at three different inspection
times I T = {2, 5, 8}. Thus, we can consider a table, such as in Table1, with I = 12
rows corresponding to each of the 12 testing conditions. To evaluate the robustness
of the weighted minimum DPD estimators, we have studied the behavior of this
model under the consideration of an outlying cell in this table. The model has been
examined under (θ0, θ1, θ2) = (−6.5, 0.03, 0.03), different sample sizes and differ-
ent degrees of contamination. The estimates have been computed with values of the
tuning parameter β ∈ {0, 0.2, 0.4, 0.6, 0.8}.

In the top left of Fig. 1, efficiency of weighted minimum DPD estimators is
measured under different sample sizes Ki ∈ [40, 200] with contaminated data
where the observations in the i = 12 testing condition have been generated under
(θ0, θ1, θ̃2) = (−6.5, 0.03, 0.025). The best behavior (least RMSE) is obtained for
larger values of β. As expected, the RMSEs decrease as the sample size increases.
The efficiency is also studied for different degrees of contamination of the param-
eter θ1, as displayed in the top right of Fig. 1. Here, Ki = 100 and the degree of
contamination is given by 4(1 − θ̃1

θ1
) ∈ [0, 1]. We can see how the MLEs and the

weighted minimumDPD estimators with small values of tuning parameter β present
the smallest RMSEs for weak outliers, i.e., when the degree of contamination is close
to 0 (θ̃1 is close to θ1). On the other hand, large values of tuning parameter β result
in the weighted minimum DPD estimators having the smallest RMSEs, for medium
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Fig. 1 Exponential distribution at multiple stress levels: RMSEs (top panel) of the weighted min-
imum DPD estimators of θ , the simulated levels (middle panel) and powers (bottom panel) of
Wald-type tests with different sample sizes (left) and different degrees of contamination (right)
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and strong outliers, i.e., when the degree of contamination is away from 0 (θ̃1 is not
close to θ1).

Let us now empirically evaluate the robustness of the weighted minimum DPD
estimator-based Wald-type tests for the model. We first study the observed level
(measured as the proportion of test statistics exceeding the corresponding chi-square
critical value) of the test under the true null hypothesis H0 : θ2 = 0.03 against the
alternative H1 : θ2 �= 0.03. As before, these levels are plotted for different values of
the sample sizes for contaminated data and for different degrees of contamination of
θ1 with a fixed value of Ki = 100 (middle of Fig. 1). Notice that when the pure data
are considered, all the observed levels are quite close to the nominal level of 0.05.
In the case of contaminated data, the level of the classical Wald test (at β = 0) as
well as the proposed Wald-type tests with small β break down, while the weighted
minimum DPD estimator-based Wald-type tests for moderate and large values of β

provide greater stability in their levels. To investigate the power robustness of these
tests (obtained in a similar manner), we change the true data-generating parameter
value to be θ2 = 0.035; the resulting empirical powers are plotted at the bottom of
Fig. 1. Again, the classical Wald test (at β = 0) presents the best behavior under
the pure/low contaminated data, while the weighted minimum DPD estimator-based
Wald-type tests with larger β > 0 lead to better stability in power performance in
the case of contaminated samples.

Table 2 Electric current data: Estimated probabilities for different weighted minimum DPD esti-
mators

i ni
Ki

π̂
β
i

β = 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1 0 0.154 0.152 0.150 0.148 0.146 0.144 0.142 0.141 0.139 0.138 0.137

2 0.4 0.338 0.340 0.343 0.346 0.348 0.351 0.354 0.356 0.358 0.359 0.360

3 0.4 0.371 0.373 0.376 0.378 0.381 0.384 0.387 0.389 0.391 0.393 0.394

4 0.7 0.681 0.691 0.703 0.715 0.728 0.740 0.752 0.761 0.769 0.776 0.780

5 0.4 0.342 0.338 0.335 0.331 0.327 0.322 0.319 0.315 0.312 0.310 0.309

6 0.7 0.644 0.647 0.650 0.654 0.657 0.661 0.664 0.667 0.669 0.671 0.672

7 0.8 0.686 0.689 0.692 0.695 0.699 0.703 0.706 0.709 0.711 0.713 0.714

8 0.8 0.943 0.947 0.952 0.957 0.961 0.965 0.969 0.972 0.974 0.976 0.977

9 0.3 0.488 0.484 0.479 0.474 0.469 0.464 0.459 0.454 0.451 0.448 0.446

10 0.9 0.808 0.811 0.814 0.817 0.820 0.823 0.825 0.828 0.830 0.831 0.832

11 0.9 0.843 0.846 0.848 0.851 0.854 0.856 0.859 0.861 0.863 0.864 0.865

12 1 0.990 0.991 0.992 0.993 0.994 0.995 0.996 0.997 0.997 0.997 0.997

eβ
i 0.082 0.080 0.078 0.077 0.077 0.076 0.076 0.076 0.075 0.075 0.075

In bold: estimated probabilities nearest observed probabilities
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2.3 A Numerical Example: Electric Current Data

Let us consider the electric current data set introduced in Sect. 1. Table2 shows the
estimated probabilities of the observations computed by means of the weighted min-
imum DPD estimators with different tuning parameters β ∈ [0, 1], compared with
the observed probabilities. Last row in Table2 shows the estimated mean absolute
error of each weighted minimum DPD estimator considered here, eβ

i . MLE (β = 0)
seems, in general, to be one of the worst choices to predict each testing condition. In
particular, we can say that weighted minimum DPD estimators with a high or mod-
erate value of the tuning parameter β seem to have better behavior than the MLEs
when higher-than-normal testing conditions are considered.

3 Robust Inference for One-Shot Device Testing Under
Gamma Distribution

Gamma distribution is commonly used for fitting lifetime data in reliability and sur-
vival studies due to its flexibility. Its hazard function can be increasing, decreasing,
or constant. When the hazard function of the gamma distribution is a constant, it cor-
responds to the exponential distribution. In addition to the exponential distribution,
the gamma distribution also includes the Chi-square distribution as a special case.
The gamma distribution has found a number of applications in different fields. For
example, Husak et al. (2007) used it to describe monthly rainfall in Africa for the
management of water and agricultural resources, as well as food reserves. Kwon and
Frangopol (2010) assessed and predicted bridge fatigue reliabilities of two existing
bridges, the Neville Island Bridge and the Birmingham Bridge, based on long-term
monitoring data. They made use of log-normal, Weibull and gamma distributions
to estimate the mean and standard deviation of the stress range. Tseng et al. (2009)
proposed an optimal step-stress accelerated degradation testing plan for assessing
the lifetime distribution of products with long lifetimes based on a gamma process.

The problem of one-shot device testing under the gamma distribution was studied
on the basis of weighted minimum DPD estimators in Balakrishnan et al. (2019a).
This section summarizes some key results presented there.

3.1 Inference Under the Gamma Distribution

Let us denote by θ = (a0, . . . , aJ , b0, . . . , bJ )
T themodel parameter vector.We shall

then assume that the lifetimes of the units, under the testing condition i , follow the
gamma distribution with corresponding probability density function and cumulative
distribution function as
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f (t; xi , θ) = tαi −1

λ
αi
i � (αi )

exp

(
− t

λi

)
, t > 0,

and

F(t; xi , θ) =
∫ t

0

yαi −1

λ
αi
i � (αi )

exp

(
− y

λi

)
dy, t > 0, (18)

whereαi > 0 andλi > 0 are, respectively, the shape and scale parameters at condition
i , which we assume are related to the stress factors in log-linear forms as

αi = exp

{
J∑

j=0
a j xi j

}
and λi = exp

{
J∑

j=0
b j xi j

}
,

with xi0 = 1 for all i .

For β ≥ 0, the estimating equations are given by

I∑

i=1

(li xi , si xi )
T (Ki F (I Ti ; xi , θ) − ni )

×
(

Fβ−1 (I Ti ; xi , θ) + (1 − F (I Ti ; xi , θ))
β−1
)

= 02(J+1),

where

li = αi

⎧
⎪⎨

⎪⎩
− (αi ) πi1(θ) + log

(
I Ti

λi

)
πi1(θ) −

(
I Ti
λi

)αi

α2i �(αi )
2F2

(
αi , αi ; 1 + αi , 1 + αi ;− I Ti

λi

)
⎫
⎪⎬

⎪⎭

(19)
and

si = − f (I Ti ; xi , θ) I Ti , (20)

where F (I Ti ; xi , θ) is as given in (18).Here, n Fm(a1, . . . , an; b1, . . . , bm; z)denotes
the Gaussian hypergeometric function. For more details about the Gaussian hyper-
geometric function, one may refer to Seaborn (1991).

Let θ0 be the true value of the parameter θ . Then, the asymptotic distribution of
the weighted minimum DPD estimator, under the gamma distribution assumption,
is given by

√
K
(̂
θβ − θ0) L−→

K→∞ N
(
02(J+1), J

−1
β (θ0)Kβ(θ0)J−1

β (θ0)
)

,

where
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Jβ(θ) =
I∑

i=1

Ki

K
� i
(
Fβ−1(I Ti ; xi , θ) + (1 − F(I Ti ; xi , θ))β−1) , (21)

Kβ(θ) =
I∑

i=1

Ki

K
� i F(I Ti ; xi , θ) (1 − F(I Ti ; xi , θ))

× (Fβ−1(I Ti ; xi , θ) + (1 − F(I Ti ; xi , θ))β−1)2 , (22)

and

� i =
(

l2i xi xT
i li si xi xT

i
li si xi xT

i s2i xi xT
i

)
,

with li and si as given in (19) and (20), respectively.

If we want to test whether there is a significant relationship between the j th stress
factor and the device lifetime, we may use the Wald-type test given in (7), where
m (θ) = (a j , b j )

T ,

MT (θ) =
(
0 , . . . ,

( j+1)
1 , . . . ,

(J+ j+1)
0 , . . . ,

(2(J+1))
0

0 , . . . , 0 , . . . , 1 , . . . , 0

)
,

and Jβ(θ) and Kβ(θ) are as in (21) and (22), respectively.

The IF with respect to all the observations is given by

I F(t,Uβ , F
θ0

) =J−1
β (θ0)

I∑

i=1

Ki

K
(li xi , si xi )

T

×
(

Fβ−1(I Ti ; xi , θ
0) + Rβ−1(I Ti ; xi , θ

0)
) (

F(I Ti ; xi , θ
0) − 	

(1)
ti

)
,

where Jβ(θ) is as given in (21), and li and si are as in (19) and (20), respectively.

3.2 Monte Carlo Simulation Study

In this section, we summarize the simulation results provided in Balakrishnan et al.
(2019a), wherein an extensive Monte Carlo study was carried out to study the per-
formance of the proposed estimators and Wald-type tests under the assumption of
gamma lifetime distribution.

Weconsider the devices to have gamma lifetimes, under 4 different conditionswith
2 stress factors at 2 levels, taken to be {(30, 40), (40, 40), (30, 50), (40, 50)}. The
model parameters were set as (a0, a1, a2, b0, b1, b2) = (6.5,−0.06,−0.06,−0.36,
0.04,−0.01) and the inspection times as I T ∈ {5, 10, 15}. In order to study the
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Fig. 2 Gamma distribution at multiple stress levels: Levels and powers for pure (left) and contam-
inated data (right)

robustness of the proposed Wald-type tests, we consider a contaminated scheme,
wherein the first “cell” is generated under ã1 = −0.035.

We first study the observed level of the test under the true null hypothesis H0 :
a1 = −0.06 against the alternative H1 : a1 �= −0.06. In the top of Fig. 2, these levels
are plotted for different values of the sample sizes, pure data (left) and contaminated
data (ã1 = −0.035, right). Notice that in the case of pure data considered, all the
observed levels are close to the nominal level of 0.05. In the case of contaminated
data, the level of the classical Wald test (at β = 0) displays a lack of robustness,
while the weighted minimum DPD estimator-based Wald-type tests for moderate
and large positive β possess levels closer to the nominal level.

To investigate the power of these tests, we change the true data-generating param-
eters value to θ = (6.5,−0.06,−0.035,−0.36, 0.04,−0.01), and ã1 = −0.45 in a
contaminated scenario, nearer to the null hypothesis. The resulting empirical powers
are plotted at the bottom of Fig. 2. When there are no outliers in the data, the classical
Wald test (at β = 0) is quite similar, not even the most powerful one, to other tests.
On the other hand, when there are outliers in the data, the Wald-type test with larger
β > 0 provides significantly better power.
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Robustness of the proposed weighted minimumDPD estimators is also illustrated
in the detailed simulation study in Balakrishnan et al. (2019a).

3.3 A Numerical Example: Application to a Tumor
Toxicological Data

Let us apply the proposed procedures to the tumor toxicological data set presented
in Sect. 1. Let a1, a2 and a3 denote the parameters corresponding to the covari-
ates of strain of offspring, gender and square root of concentration of the chem-
ical of benzidine dihydrochloride in the shape parameter of the gamma distribu-
tion, while b1, b2 and b3 denote similarly for the scale parameter, respectively.
The mean time to occurrence of tumors for each group, for different values of
β ∈ {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1}, are computed and presented in
Table3, where strain = 0 for F1 strain of offspring and gender = 0 for females.

There is a significant difference between genders, with males having a higher
expected lifetime. Also, tumors are induced by an increase in the dosage of benzidine
dihydrochloride. Empirical mean absolute error (MAB) and RMSE, measured by
comparing predicted probabilities to the observed ones, are also computed. In both
cases, MLE is seen to present the maximum error.

Table 3 Gamma distribution at multiple stress levels: weighted minimum DPD estimators of the
mean time to the occurrence of tumors (in months), Ê[T ]
Strain Gender Conc Ê[T ]

β = 0 β = 0.2 β = 0.4 β = 0.6 β = 0.8 β = 1

0 0 60 17.461 17.316 17.395 17.433 17.449 17.455

0 1 60 30.103 30.188 30.598 30.712 30.713 30.694

1 0 60 18.438 18.039 18.031 18.029 18.036 18.044

1 1 60 31.787 31.447 31.719 31.762 31.747 31.728

0 0 120 14.676 14.565 14.577 14.594 14.605 14.610

0 1 120 25.301 25.392 25.643 25.710 25.707 25.691

1 0 120 15.496 15.173 15.111 15.092 15.096 15.103

1 1 120 26.715 26.451 26.582 26.588 26.572 26.557

0 0 200 12.348 12.265 12.231 12.231 12.238 12.243

0 1 200 21.288 21.381 21.514 21.547 21.541 21.529

1 0 200 13.039 12.776 12.678 12.649 12.650 12.656

1 1 200 22.478 22.273 22.302 22.283 22.266 22.254

0 0 400 8.991 8.942 8.858 8.840 8.843 8.848

0 1 400 15.500 15.589 15.583 15.574 15.566 15.558

1 0 400 9.493 9.315 9.183 9.142 9.141 9.146

1 1 400 16.366 16.240 16.153 16.106 16.090 16.082
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4 Robust Inference for One-Shot Device Testing Under
Weibull Distribution

In practice, theWeibull distribution is widely used as a lifetime model in engineering
and physical sciences. In fact, the Weibull model is also used extensively in biomed-
ical studies as a proportional hazards model for evaluating the effects of covariates
on lifetimes, meaning that the hazard rates of any two products stay in the constant
ratio over time; see Meeter and Meeker (1994); Meeker et al. (1998), and the ref-
erences therein. However, in some situations, the assumption of the constant shape
parameter may not be valid; see, for example, Kodell and Nelson (1980), Nogueira
et al. (2009) and Vázquez et al. (2010). In such situations, Balakrishnan and Ling
(2013) suggested using a log-link of the stress levels to model the unequal shape
parameters. Based on this idea, Balakrishnan et al. (2020b) developed robust infer-
ence for one-shot device testing under the Weibull distribution with scale and shape
parameters varying over stress. In this section, we summarize some of the key results
presented in this paper.

4.1 Inference Under the Weibull Distribution

Let us denote by θ = (a0, . . . , aJ , b0, . . . , bJ )
T the model parameter vector. We

shall then assume that the lifetimes of the units, under the testing condition i , follow
Weibull distribution with corresponding probability density function and cumulative
distribution function as

fT (t; xi , θ) = ηi tηi −1

α
ηi
i

e
−
(

t
αi

)ηi

, t > 0,

and

FT (t; xi , θ) = 1 − e
−
(

t
αi

)ηi

, t > 0,

whereαi > 0 andηi > 0 are, respectively, the scale and shapeparameters at condition
i , which we assume are related to the stress factors in log-linear forms as

αi = exp

{
J∑

j=0
a j xi j

}
and ηi = exp

{
J∑

j=0
b j xi j

}
,

with xi0 = 1 for all i . Let us denote by RT (t; xi , θ) = 1 − F(t; xi , θ) the reliability
function, the probability that the unit lasts lifetime t . The hazard function, given by
the ratio of the density function and the reliability function, is
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hT (t; xi , θ) = ηi tηi −1

α
ηi
i

, t > 0.

When ηi = 1, the hazard rate is constant and the Weibull distribution in this case
is simply exponential distribution. When ηi > 1, the unit suffers an increasing rate
of failure as it ages, while the opposite is the case when ηi < 1. This last case is less
common in practice, unless we only consider the early part of lifetimes of devices.

Notice that, as suggested in the literature (see, for example, Meeter and Meeker
1994 and Ng et al. 2002), it is often more convenient to work with the extreme value
distribution for the log-lifetimes, as it belongs to the location–scale family rather than
theWeibull distribution belonging to the scale–shape family. For this reason, we will
also consider here the extreme value distribution with the corresponding probability
density, distribution and reliability functions as

fW (ω; xi , θ) = 1

σi
e

ω−μi
σi e−e

ω−μi
σi = 1

σi
ξi e

−ξi , −∞ < ω < ∞, (23)

FW (ω; xi , θ) = 1 − e−e
ω−μi

σi = 1 − e−ξi , −∞ < ω < ∞, (24)

RW (ω; xi , θ) = 1 − FW (ω; xi , θ) = e−e
ω−μi

σi = e−ξi , −∞ < ω < ∞, (25)

where ω = log(t), ξi = e
ω−μi

σi , the location parameter μi = log(αi ) =
J∑

j=0
a j xi j and

the scale parameter σi = η−1
i = exp{−

J∑
j=0

b j xi j }.

Following this notation, for β ≥ 0, the estimating equations are given by

I∑

i=1

(li xi , si xi )
T (Ki FW (l I Ti ; xi , θ) − ni )

×
(

Fβ−1
W (l I Ti ; xi , θ) + Rβ−1

W (l I Ti ; xi , θ)
)

= 02(J+1),

where FW (l I Ti ; Si , θ), FW (l I Ti ; xi , θ) and RW (l I Ti ; xi , θ) are as given in (23),
(24) and (25), respectively, and

li = −{ξi e
−ξi }/σi , si = ξi e

−ξi log(ξi ), i = 1, . . . , I.

Let θ0 be the true value of the parameter. The asymptotic distribution of the
weighted minimum DPD estimator, θ̂β , is given by

√
K (̂θβ − θ0)

L−→
K→∞ N

(
02(J+1), J

−1
β (θ0)Kβ(θ0)J−1

β (θ0)
)

,
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where Jβ(θ) and Kβ(θ) are given by

Jβ(θ) =
I∑

i=1

Ki

K
� i

(
Fβ−1

W (l I Ti ; xi , θ) + Rβ−1
W (l I Ti ; xi , θ)

)
, (26)

Kβ(θ) =
I∑

i=1

Ki

K
� i FW (l I Ti ; xi , θ)RW (l I Ti ; SI , θ)

×
(

Fβ−1
W (l I Ti ; xi , θ) + Rβ−1

W (l I Ti ; xi , θ)
)2

, (27)

with

� i =
(

l2i xi xT
i li si xi xT

i
li si xi xT

i s2i xi xT
i

)
.

For testing m (θ) = 0r , with m : R2(J+1) −→ R
r , r ≤ 2(J + 1), we consider

Wald-type tests defined in (7). The 2 (J + 1) × r matrix M appearing in (7) is given
by

M (θ) = ∂mT (θ)

∂θ
,

and Jβ(θ) and Kβ(θ) are as given in (26) and (27), respectively.

4.2 Monte Carlo Simulation Study

An extensive simulation study was carried out in Balakrishnan et al. (2020b) to
illustrate the robustness of the weighted minimum DPD estimators and the Wald-
type tests under the assumption of the Weibull distribution for lifetimes. In this
section, we summarize the main results presented there.

Let us consider unbalanced data, which does not have an equal sample size for all
the groups. This data consists of a total of K = 300 observations, and is as presented
in Table4. The lifetimes of devices are simulated from the Weibull distribution with
θT = (5.3,−0.025,−0.6, 0.03) (moderate reliability). To examine the robustness
in this ALT plan, we increase each one of the parameters of the outlying first cell,
denoted by ã0, ã1, b̃0 and b̃1.

We compute empirical Wald-type test levels for the testing problem

H0 : a1 = −0.05 vs. H1 : a1 �= −0.05.

Results, presented in Fig. 3, illustrate again the lack of robustness of MLE in the
presence of medium and strong outliers.
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Table 4 Weibull distribution at multiple stress levels: ALT plan, unbalanced data

i xi I Ti Ki

1 30 8 60

2 40 8 40

3 50 8 20

4 30 16 60

5 40 16 20

6 50 16 20

7 30 24 40

8 40 24 20

9 50 24 20
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Fig. 3 Weibull distribution at multiple stress levels: empirical levels for unbalanced data
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4.3 A Numerical Example: Glass Capacitors

Let us consider the glass capacitors data set presented in Sect. 1. We adapt these
data to the one-shot device model taking the inspection times to be I T = {258, 315,
455, 1065}, respectively. Logically, higher inspection times are needed when apply-
ing less extreme voltages. These data and their relation with the Weibull distribution
have been widely studied in the literature; see, for example, Meeker et al. (1998) and
Rigdon et al. (2012). As suggested in these papers, we have used the predictors as
log(V ) and 1/TK , where TK is the temperature in degrees Kelvin.

Weighted minimum DPD estimators are computed for different values of the
tuning parameter, β, and predicted probabilities are compared to the observed ones
(Fig. 4). The MAEs and RMSEs are presented in this figure as well. It is easily seen
that the MLE seems to be either the worst, or one of the worst estimators in this case.

5 Robust Inference for One-Shot Device Testing Under
Proportional Hazards Model

Under the classical parametric setup, product lifetimes are assumed to be fully
described by a probability distribution involving some model parameters. This has
been done with some common lifetime distributions such as exponential
(Balakrishnan and Ling 2012b), gamma or Weibull (Balakrishnan and Ling 2013),
as described in the preceding sections. However, because data from one-shot devices
do not contain actual lifetimes, parametric inferential methods can be very sensi-
tive to violations of the model assumption. Ling et al. (2015) proposed a semi-
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parametric model, in which, under the proportional hazards assumption, the hazard
rate is allowed to change in a non-parametric way. The simulation study carried out
in Ling et al. (2015) shows that their proposed method works very well. However,
this method suffers again from lack of robustness, as it is based on the (non-robust)
MLEs of model parameters.

The problem of developing weighted minimum DPD estimators for one-shot
device testing under the proportional hazards model was dealt with in Balakrishnan
et al. (2020c). In this section, we summarize some key results presented there.

5.1 Model Description

Consider S constant-stress accelerated life-tests and I inspection times. For the i th
life-test, Ks devices are placed under stress-level combinations with J stress factors,
xs = (xs1, . . . , xs J ), of which Kis are tested at the i th inspection time I Ti , where
Ks =∑I

i=1 Kis and 0 < I T1 < · · · < I TI . Then, the number of devices that have
failed by time I Ti at stress xs are recorded as nis . One-shot device testing data
obtained from such a life-test can then be represented as (nis, Kis, xs, I Ti ), for
i = 1, 2, . . . , I and s = 1, 2, . . . , S.

Instead of assuming that the true lifetimes of devices follow a specific paramet-
ric distribution such as exponential, gamma and Weibull, we assume here that the
cumulative hazard function of the lifetimes of devices is of the proportional form

H(t, x; η,α) = H0(t; η)λ(x;α), (28)

where H0(t; η) is the baseline cumulative hazard function with η = (η1, . . . , ηI ),
and α = (α1 . . . , αJ ) is a vector of coefficients for stress factors. The model in (28)
is thus composed of two independent components, with one measuring the changes
in the baseline (H0(t; η)) and the other influencing the stress factors (λ(x;α)).

The corresponding reliability function is given by

R(t, x; η,α) = exp (−H(t, x; η,α)) = R0(t; η)λ(x;α),

where R0(t; η) = exp(−H0(t; η)) is the baseline reliability function, with 0 <

R0(I TI ; η) < R0(I TI−1; η) < · · · < R0(I T1; η) < 1. Therefore, we let

γ (ηi ) =
⎧
⎨

⎩

1 − R0(I TI ; η) = 1 − exp(− exp(ηI )), i = I,
1 − R0(I Ti ; η)

1 − R0(I Ti+1; η)
= 1 − exp(− exp(ηi )), i = 1, . . . , I − 1.

We then have
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R0(I Ti ; η) = 1 −
I∏

m=i

{1 − exp(− exp(ηm))} = 1 − Gi ,

where Gi =∏I
m=i {1 − exp(− exp(ηm))}.

We now assume a log-linear link function for relating the stress levels to the failure
times of the units in the cumulative hazard function in (28) as

λ(xs;α) = exp(αT xs) = exp

⎛

⎝
J∑

j=1

α j xs j

⎞

⎠ .

5.1.1 Maximum Likelihood Estimator and Weighted Minimum DPD
Estimators

Consider the proportional hazards model for one-shot devices in (28). The log-
likelihood function based on these data is then given by

�(n11, . . . , nI S; η,α) =
I∑

i=1

S∑

s=1

nis log [1 − R(I Ti , xs; η,α)]

+ (Kis − nis) log [R(I Ti , xs; η,α)] + C

=
I∑

i=1

S∑

s=1

nis log

[
1 − (1 − Gi )

exp
(∑J

j=1 α j xs j

)]

+ (Kis − nis) log (1 − Gi ) exp

⎛

⎝
J∑

j=1

α j xs j

⎞

⎠+ C, (29)

where C is a constant not depending on η and α.
Let θ = (η,α). The MLE, θ̂ , of θ , is obtained by the maximization of (29), i.e.,

θ̂ = argmin
θ

�(n11, . . . , nI S; η,α).

In order to study the relation between the MLE, θ̂ , with the Kullback–Leibler
divergence measure, we introduce the empirical and theoretical probability vectors,
as follows:

p̂is = ( p̂is1, p̂is2)
T =

(
nis

Kis
,

Kis − nis

Kis

)T

, i = 1, . . . , I, s = 1, . . . , S,

π is(η,α) = (πis1(η,α), πis2(η,α))T , i = 1, . . . , I, s = 1, . . . , S,
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where πis1(η,α) = 1 − R(I Ti , xs; η,α) and πis2(η,α) = R(I Ti , xs; η,α).
It can be shown that the log-likelihood function �(n11, . . . , nI S; η,α), given in

(29), is related to the weighted Kullback–Leibler divergence measure through

I∑

i=1

S∑

s=1

Kis

K
dK L( p̂is,π is(η,α)) = c − 1

K
�(n11, . . . , nI S; η,α),

with c being a constant not dependent on η and α. Therefore, the MLE, θ̂ , of θ , can
then be defined as

θ̂ = argmin
θ

I∑

i=1

S∑

s=1

Kis

K
dK L( p̂is,π is(η,α)). (30)

As an extension of this, the weighted minimum DPD estimator for θ is given by

θ̂β = argmin
θ

I∑

i=1

S∑

s=1

Kis

K
d∗

β( p̂is,π is(η,α)), for β > 0,

and for β = 0, we have the MLE, θ̂ , as given in (30).

Remark 1 Suppose the lifetimes of one-shot devices under test follow the Weibull
distribution with the same shape parameter τ = exp(b) and scale parameters related
to the stress levels,as = exp(

∑J
j=1 c j xs j ), s = 1, . . . , S. The cumulative distribution

function of the Weibull distribution is then given by

FT (t; as, τ ) = 1 − exp

(
−
(

t

as

)τ)
, t > 0.

If the proportional hazards assumption holds, then the baseline reliability and the
coefficients of stress factors are given by

R0(t;β) = exp(−tτ exp(−τc0))

and αs = −τcs, s = 1, . . . , S. Furthermore, we have

ηi = log

(
−log

(
1 − 1 − R0(I Ti )

1 − R0(I Ti+1)

))
,

ηI = τ(log(I TI ) − c0).
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5.2 Inference Under Proportional Hazards Model

In the same way, as done in previous models, the estimating equations for the
weighted minimumDPD estimator in the proportional hazards model and its asymp-
totic distribution can be derived and are presented in the following theorems.

Theorem 8 For β ≥ 0, the estimating equations are given by

I∑

i=1

S∑

s=1

δis(η) (Kis(1 − R(I Ti , xs; η,α)) − nis)

× [(1 − R(I Ti , xs; η,α))β−1 + Rβ−1(I Ti , xs; η,α)
] = 0I ,

I∑

i=1

S∑

s=1

δis(α) (Kis(1 − R(I Ti , xs; η,α)) − nis)

× [(1 − R(I Ti , xs; η,α))β−1 + Rβ−1(I Ti , xs; η,α)
] = 0J ,

where

δis(η) = ∂ R(I Ti , xs; η,α)

∂η
= −(1 − Gi )

λ(xs ;α)−1λ(xs;α)
∂Gi

∂η
, (31)

δis(α) = ∂ R(I Ti , xs; η,α)

∂α
= (1 − Gi )

λ(xs ;α)log(1 − Gi )λ(xs;α)xs, (32)

with
∂Gi

∂ηu
=
{
exp(ηu) exp(− exp(ηu))Gi/γ (ηu) , i ≤ u,

0 , i > u.

Theorem 9 Let θ0 be the true value of the parameter θ . Then, the asymptotic dis-
tribution of the weighted minimum DPD estimator, θ̂β , is given by

√
K (̂θβ − θ0)

L−→
K→∞ N

(
0I+J , J

−1
β (θ0)Kβ(θ0)J−1

β (θ0)
)

,

where Jβ(θ) and Kβ(θ) are given by

Jβ(θ) =
I∑

i=1

S∑

s=1

Kis

K
	is(η,α)

[
(1 − R(I Ti , xs; η,α))β−1 + Rβ−1(I Ti , xs; η,α)

]

Kβ(θ) =
I∑

i=1

S∑

s=1

Kis

K
	is(η,α)(1 − R(I Ti , xs; η,α))R(I Ti , xs; η,α),

× [(1 − R(I Ti , xs; η,α))β−1 + Rβ−1(I Ti , xs; η,α)
]2

,
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with

	is(η,α) =
(

δis(η)δT
is(η) δis(η)δT

is(α)

δis(α)δT
is(η) δis(α)δT

is(α)

)
,

and δis(η) and δis(α) being as given in (31) and (32), respectively.

Following similar steps as in the previous sections, Wald-type tests can be devel-
oped for testing composite null hypotheses here in this situation as well.

5.3 Monte Carlo Simulation Study

In Balakrishnan et al. (2020c), an extensive simulation study has been carried out
to illustrate the robustness of the proposed estimators and tests in the proportional
hazards model. Here, we present some illustrative results in relation to weighted
minimum DPD estimators.

Suppose the lifetimes of test units follow a Weibull distribution (see Remark1).
All the test units were divided into S = 4 groups, subject to different accelera-
tion conditions with J = 2 stress factors at two elevated stress levels each, that
is, (x1, x2) = {(55, 70), (55, 100), (85, 70), (85, 100)}, and were inspected at I = 3
different times, (I T1, I T2, I T3) = (2, 5, 8).

We assume (c0, c1, c2) = (6.5,−0.03,−0.03), for b = 0.5. The outlying cell
(taken to be i = 3, s = 4) is generated under the parameters (c̃1, c̃2) = (−0.027,
−0.027) and b̃ = 0.45.

Bias of the estimates are then computed for different (equal) sample sizes
Kis ∈ {50, 70, 100} and tuning parameters β ∈ {0, 0.2, 0.4, 0.6} for pure as well
as contaminated data. The obtained results are presented in Table5. As expected,
when the sample size increases, errors tend to decrease, while in the contaminated
data set, these errors are generally greater than in the case of uncontaminated data.
Weighted minimum DPD estimators with β > 0 present a better behavior than the
MLEs in terms of robustness. Note that reliabilities are underestimated and that the
estimates are quite precise in all the cases.

In Balakrishnan et al. (2020c), a numerical example was presented to illustrate
the proposed methods. In this example, it has been shown that the proportional
hazards assumption fits the data at least as well as the Weibull model (Sect. 4). The
problem of choosing the optimal tuning parameter is also considered in Balakrishnan
et al. (2020c). Both a discrepancy measure and the method of Warwick and Jones
(2005) are discussed and applied to the example, concluding that the optimal tuning
parameter is β ≈ 0.5.
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6 Robust Inference for One-Shot Device Testing Under
Exponential Distribution and Competing Risks

In lifetime data analysis, it is often the case that the products under study can expe-
rience one of the different types of failure. For example, in the context of survival
analysis, we can have several different types of failure (death, relapse, opportunistic
infection, etc.) that are of interest to us, leading to the so-called “competing risks”
scenario. A competing risk is an event whose occurrence precludes the occurrence
of the primary event of interest. In a study examining time to death attributable, for
instance, to cardiovascular causes, death attributable to non-cardiovascular causes
would be a competing risk. Crowder (2006) has presented a review of this compet-
ing risks problem for which one needs to estimate the failure rates for each cause.
Balakrishnan et al. (2015a, b) and So (2016) have discussed the problem of one-
shot devices under competing risks for the first time. A robust extension, based
on weighted minimum DPD estimators, and assuming exponential lifetimes, has
been done in Balakrishnan et al. (2020d). Some of the key results developed in
Balakrishnan et al. (2020d) are presented in this section.

6.1 Model Description

The setting for an accelerated life-test for one-shot devices under competing risks
scenario considered here is stratified in I testing conditions as follows:

1. The tests are checked at inspection times I Ti , for i = 1, . . . , I .
2. The devices are tested under J different stress levels, xi = (xi1, . . . , xi J )

T , for
i = 1, . . . , I .

3. Ki devices are tested in the i th test condition, for i = 1, . . . , I .
4. The number of devices failed due to the r th cause under the i th test condition is

denoted by nir , for i = 1, . . . I , r = 1, . . . , R.
5. The number of devices that survive under the i th test condition is denoted by

ni0 = Ki −∑R
r=1 nir .

This setting is summarized in Table6. For simplicity, and as considered in
Balakrishnan et al. (2015a), we will limit the number of stress levels to J = 1 and
the number of competing causes to R = 2, even though inference for the general
case when J > 1 and R > 2 can be presented in an analogous manner.

Let us denote the random variable for the failure time due to causes 1 and 2 as
Tirk , for r = 1, 2, i = 1, . . . , I , and k = 1, . . . , Ki , respectively. We now assume
that Tirk follows an exponential distribution with failure rate parameter λir (θ) and
its probability density function
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Table 6 One-shot device testing under competing risks
Condition Times Devices Survivals Failures Stress levels

Cause 1 · · · Cause R Stress 1 · · · Stress J

1 I T1 K1 n10 n11 · · · n1R x11 · · · x1J

2 I T2 K2 n20 n21 · · · n2R x21 · · · x2J

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

I I TI K I nI0 nI1 · · · nI R xI1 · · · xI J

fr (t; xi , θ) = λir (θ)e−λir (θ)t , t > 0,

λir (θ) = θr0 exp(θr1xi ),

θ = (θ10, θ11, θ20, θ21)
T , θr0, θr1 > 0, r = 1, 2,

where xi is the stress factor of the condition i and θ is the model parameter vector,
with θ ∈ R

4.
We shall use πi0(θ), πi1(θ) and πi2(θ) for the survival probability, failure prob-

ability due to cause 1 and failure probability due to cause 2, respectively. Their
expressions are

πi0(θ) = (1 − F1(I Ti ; xi , θ))(1 − F2(I Ti ; xi , θ)) = exp(−(λi1 + λi2)I Ti ),

πi1(θ) = λi1

λi1 + λi2
(1 − exp(−(λi1 + λi2)I Ti )),

πi2(θ) = λi2

λi1 + λi2
(1 − exp(−(λi1 + λi2)I Ti )),

where λir = λir (θ), r = 1, 2. Derivations of these expressions can be found in So
(2016) (p. 151).

6.1.1 Maximum Likelihood Estimator and Weighted Minimum DPD
Estimator

The likelihood function is given by

L(n01, . . . , nI2; θ) ∝
I∏

i=1

πi0(θ)ni0πi1(θ)ni1πi2(θ)ni2 , (33)

where n0i + n1i + n2i = Ki , i = 1, . . . , I .
The maximum likelihood estimator (MLE) of θ , denoted by θ̂ , is obtained by

maximizing the likelihood function in (33) or, equivalently, its logarithm. Let us
introduce the following probability vectors:
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p̂i = ( p̂i0, p̂i1, p̂i2)
T = 1

Ki
(ni0, ni1, ni2)

T , i = 1, . . . , I, (34)

π i (θ) = (πi0(θ), πi1(θ), πi2(θ))T , i = 1, . . . , I. (35)

The Kullback–Leibler divergence measure, between p̂i and π i (θ), is given by

dK L ( p̂i , π i (θ)) =
2∑

r=0

p̂ir log

(
p̂ir

πir (θ)

)

= 1

Ki

{
ni0 log

(
ni0/Ki

πi0(θ)

)
+ ni1 log

(
ni1/Ki

πi1(θ)

)
+ ni2 log

(
ni2/Ki

πi2(θ)

)}
,

and the weighted Kullback–Leibler divergence measure is given by

dW
K L(θ) =

I∑

i=1

Ki

K
dK L( p̂i ,π i (θ))

= 1

K

I∑

i=1

{
ni0 log

(
ni0/Ki

πi0(θ)

)
+ ni1 log

(
ni1/Ki

πi1(θ)

)
+ ni2 log

(
ni2/Ki

πi2(θ)

)}
,

with K = K1 + · · · + K I . The likelihood functionL(n01, . . . , nI2; θ), given in (33),
is related to the weighted Kullback–Leibler divergence measure through

dW
K L(θ) =

I∑

i=1

Ki

K
dK L( p̂i ,π i (θ)) = c − 1

K
logL(n01, . . . , nI2; θ), (36)

with c being a constant, not dependent on θ .
Then, the MLE of θ , θ̂ , can be obtained by the minimization of the weighted

Kullback–Leibler divergence measure given in (36).
Given the probability vectors p̂i and π i (θ), defined in (34) and (35), respectively,

the weighted DPD between the two probability vectors is given by

dW
β (θ) =

I∑

i=1

Ki

K

[(
π

β+1
i0 (θ) + π

β+1
i1 (θ) + π

β+1
i2 (θ)

)

−β + 1

β

(
p̂i0π

β
i0(θ) + p̂i1π

β
i1(θ) + p̂i2π

β
i2(θ)

)
+ 1

β

(
p̂β+1

i0 + p̂β+1
i1 + p̂β+1

i2

)]
,

but the term 1
β

(
p̂β+1

i0 + p̂β+1
i1 + p̂β+1

i2

)
, i = 1, ..., I , does not have any role in the

minimization with respect to θ . Therefore, in order to minimize dW
β (θ), we can

consider the equivalent measure
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∗dW
β (θ) =

I∑

i=1

Ki

K

[(
π

β+1
i0 (θ) + π

β+1
i1 (θ) + π

β+1
i2 (θ)

)

−β + 1

β

(
p̂i0π

β

i0(θ) + p̂i1π
β

i1(θ) + p̂i2π
β

i2(θ)
)]

.

We can define the weighted minimum DPD estimator of θ as

θ̂β = argmin
θ∈�

∗dW
β (θ), for β > 0

and for β = 0, we obtain the weighted maximum likelihood estimator.

6.2 Inference Under Exponential Distribution and
Competing Risks

Theorem 10 The weighted minimum DPD estimator of θ , with tuning parameter
β ≥ 0, θ̂β , can be obtained as the solution of the following system of four equations:

I∑

i=1

Ki

{
−πi0(θ)I Ti

[
πi0(θ)β−1(πi0(θ) − pi0) − (1 − πi0(θ))β−1�i,β

]
l i + (1 − πi0(θ))β�∗

i,β

}
= 04,

where

�i,β =
λ

β

i1

[
λi1

λi1+λi2
(1 − πi0(θ)) − pi1

]
+ λ

β

i2

[
λi2

λi1+λi2
(1 − πi0(θ)) − pi2

]

(λi1 + λi2)β
,

�∗
i,β =

λ
β−1
i1

[
λi1

λi1+λi2
(1 − πi0(θ)) − pi1

]
− λ

β−1
i2

[
λi2

λi1+λi2
(1 − πi0(θ)) − pi2

]

(λi1 + λi2)β−1
,

l i = (λi1/θ10, λi1xi , λi2/θ20, λi2xi )
T and r i = λi1λi2

(λi1+λi2)2
(1/θ10, xi ,−1/θ20,−xi )

T .

Now, by using Theorem 3.1 in Ghosh and Basu (2013), we can obtain the asymp-
totic distribution of the above weighted minimum DPD estimator.

Theorem 11 Let θ0 be the true value of the parameter θ . Then, the asymptotic
distribution of the weighted minimum DPD estimator of θ , θ̂β , is given by

√
K
(̂
θβ − θ0) L−→

K→∞ N
(
04, J−1

β (θ0)Kβ(θ0)J−1
β (θ0)

)
,

where
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Jβ(θ) =
I∑

i=1

2∑

r=0

Ki

K
u∗

ir (θ)u∗T
ir (θ)π

β−1
ir (θ),

Kβ(θ) =
I∑

i=1

2∑

r=0

Ki

K
u∗

ir (θ)u∗T
ir (θ)π

2β−1
ir (θ) −

I∑

i=1

Ki

K
ξ i,β(θ)ξ T

i,β(θ),

with ξ i,β(θ) =∑2
r=0 u

∗
ir (θ)π

β

ir (θ), u∗
ir (θ) = ∂πir (θ)

∂θT , and

∂πi0(θ)

∂θ
= −I Tiπi0(θ)l i ,

∂πi1(θ)

∂θ
= λi1

λi1 + λi2
I Tiπi0(θ)l i + (1 − πi0(θ))r i ,

∂πi2(θ)

∂θ
= λi2

λi1 + λi2
I Tiπi0(θ)l i − (1 − πi0(θ))r i ,

l i = (λi1/θ10, λi1xi , λi2/θ20, λi2xi )
T and r i = λi1λi2

(λi1+λi2)2
(1/θ10, xi ,−1/θ20,−xi )

T .

6.3 Monte Carlo Simulation Study

We consider unbalanced data with unequal sample sizes for the test conditions.
This data set, which consists a total of K = 300 devices, is presented in Table7.
A competing risks model, with two different causes of failure, was generated with
parameters θ = (0.001, 0.05, 0.0001, 0.08)T . To examine the robustness in this ALT

Table 7 ALT plan, unbalanced data

i xi I Ti Ki

1 35 10 50

2 45 10 40

3 55 10 20

4 65 10 40

5 35 20 20

6 45 20 20

7 55 20 30

8 65 20 20

9 35 30 20

10 45 30 20

11 55 30 10

12 65 30 10
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Fig. 5 RMSEs of the weighted minimum density power divergence estimators of θ for different
contamination parameter values. Unbalanced data

plan (in which the devices are tested under high stress levels, so that more failures can
be observed), we increased each of the parameters of the outlying first cell (Fig. 5).
The contaminated parameters are expressed by θ̃10, θ̃11, θ̃20 and θ̃21, respectively.

When there is no contamination in the cell or the degree of contamination is
very low, and in concordance with results obtained in the previous scenario, MLE is
observed to be the most efficient estimator. However, when the degree of contami-
nation increases, there is an increase in the error for all the estimators, but weighted
minimumDPD estimators are shown to be much more robust. This was also the case
for whatever choice of the contamination parameters we considered.
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7 Notes and Comments

A one-shot device is a unit that performs its function only once and, after use,
the device either gets destroyed or must be rebuilt. To evaluate the reliability of
such products, an ALT plan is usually employed by increasing the levels of stress
factors and then extrapolating the life characteristics from high stress conditions to
normal operating conditions. The study of a one-shot device fromALT data has been
developed considerably recently, mainly motivated by the work of Fan et al. (2009),
which was followed by other interesting papers (see, for example, Balakrishnan and
Ling 2012a, b, 2013). All these papers are based on MLE, although it’s lack of
robustness is well-known.

In this chapter, an overview of the divergence-based methodology for one-shot
device testing is provided. The use of DPDs allows the development of robust esti-
mators and Wald-type tests, which are shown to be an interesting alternative to the
classical MLE andWald test, although a slight loss in efficiency is unavoidable. This
robustness is proved with the study of the influence functions and illustrated with
simulation studies and numerical examples. Different lifetime distributions, such
as exponential, gamma and Weibull, are considered for the case of multiple stress
levels and one cause of failure, while a competing risks extension is also discussed
under the exponential assumption. Sections2, 3 and 4 summarize results presented
in Balakrishnan et al. (2020a, b, 2019a), respectively, while Sects. 5 and 6 present
the results in Balakrishnan et al. (2020c, d).

For further work, we can develop robust inference for one-shot devices with com-
peting risks under gamma and Weibull distributions. We can also consider a gener-
alized gamma distribution for lifetime and develop the corresponding inference and
model discrimination between exponential, gamma, Weibull and log-normal distri-
butions within this family, as the generalized gamma contains all these distributions
as special cases. Finally, we may consider the model with dependent components, as
the independence assumption may not be a realistic setting in many practical cases.
This could be done, for example, by modeling the dependence structure by a uni-
form or a Gaussian or Archimedean copula. Work on these problems is currently in
progress, and we hope to report these findings in a future paper.
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Statistical Meaning of Mean Functions:
A Novel Matrix Mean Derived from
Fisher Information

Abram M. Kagan and Paul J. Smith

Abstract C. R. Rao has contributed to a broad variety of statistics, including linear
models, Fisher information, multivariate analysis and matrix theory. This article
extends a line of Rao’s research, which exploits properties of Fisher information to
derive or rederive analytic inequalities. In this article, properties of Fisher information
are applied to mixed Gaussian distributions to yield a matrix mean function which
lies between the arithmetic and harmonic means, analogous to the geometric mean.
Fisher information also yields a generalized weighted arithmetic–harmonic mean
inequality.

Keywords Matrix inequalities · Fisher information · Scale mixtures of Gaussians

1 Introduction

Fisher information is a fundamental concept in statistics because it quantifies the
efficiency of point estimators in finite samples and the asymptotic behavior of max-
imum likelihood estimators. The importance of Fisher information is derived from
two properties:

• Monotonicity: The Fisher information in a statistic (a reduction of a set of data) is
never greater than the information in the complete data set.

• Additivity: The total Fisher information in a set of independent observations is the
sum of the Fisher information of each of its components.

This article applies the Fisher information to develop analytic inequalities involv-
ing both scalars and matrices. The monotonicity and additivity of Fisher information
are key tools in deriving or reproving analytic inequalities, as shown below. The
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general approach is to formulate a probability model, specialize it to Gaussian distri-
butions and use information-theoretic properties of the model to derive inequalities
based on statistical principles.

Kagan and Smith (2001) used the Fisher information to create statistical proofs of
the monotonicity and convexity of the matrix function A−1 for Hermitian matrices.
That is,

A ≥ B ⇒ B−1 ≥ A−1

and, given weights w1, . . . , wn such that w j ≥ 0 and
∑

w j = 1,

(w1A1 + · · · + wnAn)
−1 ≤ w1A−1

1 + · · · + wnA−1
n .

(Here and throughout the paper, for any pair of Hermitian matrices, A ≥ B means
A − B is nonnegative definite.) Similarly, the matrix function A2 is shown to be
convex using statistical methods.

The convexity result above was extended to a notion of matrix-weighted averages
in Kagan and Smith (1999). The scalar weights in w1A1 + · · · + wnAn are replaced
by matrix weights as follows:

BT
1A1B1 + · · · + BT

nAnBn

where BT
1 B1 + · · · + BT

n Bn = I. It was shown that A2 and A−1 are hyperconvex
functions, meaning that

(BT
1A1B1 + · · · + BT

nAnBn)
2 ≤ BT

1A
2
1B1 + · · · + BT

nA
2
nBn

and
(BT

1A1B1 + · · · + BT
nAnBn)

−1 ≤ BT
1A

−1
1 B1 + · · · + BT

nA
−1
n Bn.

As before, these results were derived by making use of the properties of the Fisher
information.

The results described above are similar to the use of properties of entropy and
related informational quantities to derive and extend classical inequalities. See
Dembo et al. (1991) for an exposition of that work.

2 Properties of Fisher Information

Basic results concerning Fisher information are given in standard textbooks onmath-
ematical statistics, for example, Rao (1973) and Bickel and Doksum (2015). Let X
be a random vector with density p(x;θ) depending on a parameter θ. We assume
the score function

J (x;θ) = (∂/∂θ) log p(x;θ)
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is well defined. Then IX(θ), the Fisher information on θ contained in X, is defined
as

IX(θ) = Var-Cov[J (X;θ)] = Eθ[J (X;θ)J (X;θ)T ].

Under further regularity conditions,

IX(θ) = Eθ

[

− ∂

∂θ

∂

∂θT log p(x;θ)

]

.

The fundamental information inequality (or Cramér–Rao inequality) states that if T
is an unbiased estimator of θ, then

Var-Covθ[T] ≥ IX(θ)−1.

When θ is a location parameter, X has density p(x − θ). The Fisher information
on a location parameter becomes

IX =
∫

(∂ log p(x)/∂x)(∂ log p(x)/∂xT )p(x)dx.

Plainly, IX(θ) = IX is constant in θ. (The notation IX by default denotes the infor-
mation on a location parameter θ throughout this paper.)

If Xσ is distributed as σX, the density of Xσ is (1/σ)p((x − θ)/σ) and plainly
IXσ

= IX/σ2.
For a scalar Gaussian random variable X ∼ N (θ,σ2), one has IX = 1/σ2, and

for any X with E[X ] = θ and Var(X) = σ2, IX ≥ 1/σ2. This is a consequence of
the Cramér–Rao inequality.

3 Mixtures, Mean Functions and Inequalities

Consider an experiment consisting of observing a pair (Δ, X), where Δ is a discrete
random variable with P(Δ = i) = wi and the conditional distribution of X given
Δ = i is N (θ,σ2

i ), i = 1, . . . , n.
The marginal distribution of X is a scale mixture of Gaussian distributions

N (θ,σ2
1), . . . , N (θ,σ2

n) with mixture parameter w = (w1, . . . , wn). Its density is

p(x − θ) = w1ϕσ1(x − θ) + · · · + wnϕσn (x − θ). (1)

Here, ϕ(x) is the density of the standard normal Z ∼ N (0, 1) and ϕσ(w) =
σ−1ϕ(w/σ). The variance σ2 of X with density (1) is

σ2 = w1σ
2
1 + · · · + wnσ

2
n . (2)
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The Fisher information on θ contained in the pair (Δ, X) is

I(Δ,X) = w1/σ
2
1 + · · · + wn/σ

2
n . (3)

Monotonicity of the Fisher information (the information in thewhole data set is never
less than in any part of it; in the present case, X is a part of (Δ, X)) implies

IX ≤ IΔ,X .

For any Y with E[Y ] = θ and finite variance, IY ≥ 1/Var(Y ). Hence, one gets a
two-sided inequality for IX with density p(x − θ):

[
n∑

1

wiσ
2
i

]−1

≤ IX ≤
n∑

1

wi/σ
2
i . (4)

Since p(x − θ) in (1) is completely determined by the weights w1, . . . , wn and
variances σ2

1, . . . ,σ
2
n , so is IX . On setting a1 = 1/σ2

1, . . . , an = 1/σ2
n , the inequality

(4) takes the form

[
n∑

1

wi/ai

]−1

≤ IX (a1, . . . , an;w1, . . . , wn) ≤
n∑

1

wi ai . (5)

4 An Information-Based Mean Function

Recall that a function M(a1, . . . , an) is called a mean function if for all
a1 ≥ 0, . . . , an ≥ 0:

(i) min(a1, . . . , an) ≤ M(a1, . . . , an) ≤ max(a1, . . . , an);
(ii) for any λ > 0, M(λa1, . . . ,λan) = λM(a1, . . . , an).

Classical examples ofmean functions are arithmetic, geometric and harmonicmeans.
From (5), the Fisher information IX (a1, . . . , an;w1, . . . , wn) satisfies (i). Further-

more, for any λ > 0, IX (λa1, . . . ,λan;w1, . . . , wn) is the Fisher information in Xλ

with density

pλ(x − θ) = w1ϕσ1/λ + . . . + wnϕσn/λ = √
λp(

√
λ(x − θ))

and due to the well-known property of the Fisher information mentioned above,

IX (λa1, . . . ,λan;w1, . . . , wn) = λIX (a1, . . . , an;w1, . . . , wn)

so that IX (a1, . . . , an;w1, . . . , wn) satisfies (ii). Thus, IX (a1, . . . , an;w1, . . . , wn)

is a mean function. We suggest calling it the infomean.
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Inequalities (4) and (5) have a statistical interpretation. Their right-hand sides are
the Fisher information on θ in the pair (Δ, X) with

P(Δ = i) = wi , X |{Δ = i} ∼ N (θ, ai = 1/σ2
i ), i = 1, . . . , n. (6)

The left-hand sides are the Fisher information on θ in a Gaussian X ∼ N (θ,σ2)with
σ2 given by (2).

Turn now to the case when a1, . . . , an are replaced by positive definite Hermitian
matrices A1, . . . ,An . As is well known, the inequality between the arithmetic and
harmonic means still holds:

[w1A−1
1 + · · · + wnA−1

n ]−1 ≤ w1A1 + · · · + wnAn. (7)

The matrices are not assumed to commute, so their geometric mean is not defined.
(See Sect. 6 for a discussion of geometric means of matrices.)

Suppose that X is a d-dimensional random vector with distribution given by a
density p(x − θ), where θ = [θ1, . . . , θd ]T is a d-dimensional parameter. Then the
vector score

J = J(X − θ) = [∂ log p/∂θ1, . . . , ∂ log p/∂θd ]T

is well defined, and Eθ‖J(X − θ)‖2 < ∞. The d × d matrix Eθ(JJT ) = IX(θ) is
called the matrix of the Fisher information on θ contained in X. (The superscript T
denotes transposition.)

For any Gaussian Y ∼ Nd(θ,V) with mean vector θ and non-degenerate covari-
ance matrix V, IY = V−1. For any Y ∼ p(y − θ) with covariance matrix V, the
information matrix is evidently constant with respect to θ and IX ≥ V−1.

Let (Δ,X) be a pair of random elements whose distribution is given by

P(Δ = i) = wi , X|{Δ = i} ∼ Nd(θ,Vi ), i = 1, . . . , n. (8)

The marginal density p(x − θ) of X is the mixture of the Nd(θ,V1), . . ., Nd(θ,Vn)

densities with mixture weights w1, . . . , wn . Similar to (2), the covariance matrix V
of X is

V = w1V1 + · · · + wnVn (9)

and the matrix of Fisher information on θ in the pair (Δ,X) is

IΔ,X = w1V−1
1 + · · · + wnV−1

n , (10)

which is constant in θ.
As in the case of a scalar-valued θ, when θ is vector-valued, the matrix of the

Fisher information is monotone. In this case, IX ≤ IΔ,X.
On setting A1 = V−1

1 , . . . ,An = V−1
n , IX becomes a function of A1, . . . ,An and

themixing probabilitiesw1, . . . , wn . Comparing it with IΔ,X on one side andwith the
matrix of the Fisher information in a Gaussian Z ∼ Nd(θ, V ) on the other leads to
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(w1A−1
1 + . . . + wnA−1

n )−1 ≤ IX(A1, . . . ,An;w1, . . . , wn) ≤ w1A1 + . . . + wnAn.

(11)
We want to emphasize that the matrices A1, . . . ,An are not assumed to commute.

As a function ofA1, . . . ,An , IX satisfies the above condition (ii) and the following
version of (i): if a matrix Ā and a positive matrix A are such that A ≤ Ai ≤ Ā, i =
1, . . . , n, then A ≤ IX ≤ Ā. The statistical interpretation of (11) is the same as that
of (4) and (5).

5 An Inequality for Fisher Information in Sums of Random
Variables

In the previous section, we considered the Fisher information in a scale mixture of
Gaussian densities to obtain analytic inequalities of mean functions. In this section,
we follow a different approach by examining the Fisher information on weighted
location parameters in an independent sample of n observations. The model is as
follows.

For independent X1, . . . , Xn with finite Fisher information and w1 > 0, . . . ,
wn > 0, w1 + · · · + wn = 1, set

Ui = Xi + wα
i θ, i = 1, . . . , n. (12)

The information in Ui on θ equals IUi = w2α
i IXi . Observe that for any constant

c > 0, the information on θ in Ui equals that in cUi . (This model may be regarded
as a version of regression through the origin.)

Multiplying both sides of (12) by w
β
i , where β = 1 − α, and taking the sum of

the results gives

U =
n∑

1

w
β
i Ui =

n∑

1

w
β
i Xi + θ

whence
IU = I∑n

1 w
β
i Xi

. (13)

The information about θ in the vector (w
β
1U1, . . . , w

β
nUn) with independent compo-

nents is the same as in the vector (U1, . . . ,Un). Due to monotonicity and additivity
of the Fisher information,

IU = I∑n
1 w

β
i Ui

≤
n∑

1

IUi (14)
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whence

I∑n
1 w

β
i Xi

≤
n∑

1

w2α
i IXi (15)

for α + β = 1. For n = 2,α = β = 1/2, this inequality is known (e.g., see Dembo
et al. 1991, Theorem 13).

When the Xi are independent Gaussian variables with variances σ2
i = 1/ai , the

sum
∑

w
β
i Xi has a Gaussian distribution with variance

∑
w

2β
i /ai and (15) takes the

form
n∑

1

w2α
i ai ≥ 1

∑
w

2β
i /ai

(16)

for α,β subject to α + β = 1.
Replacing 2α, 2β with α,β subject to α + β = 2 gives a generalization, in a

sense, of the classical inequality between the arithmetic and harmonic means:

n∑

1

wα
i ai ≥ 1

∑
w

β
i /ai

(17)

for α + β = 2.
In the d-dimensional Gaussian case, Xi has variance–covariance matrices Vi =

A−1
i and IXi = Ai . The above derivation yields the inequality

n∑

1

wα
i Ai ≥

(∑
w

β
i A

−1
i

)−1
(18)

for α + β = 2.

6 General Comments

The paper reveals the statistical meaning of classical mean functions (see in this
connection Rao 2000a, b; Kagan and Smith 2001; Kagan 2003; Kagan and Rao
2003) and introduces a matrix mean of purely statistical origin, called the infomean.
It leads to a new inequality similar to the classical inequality among the arithmetic,
geometric and harmonic means and holds when the arguments of the mean functions
are Hermitian positive definite matrices, not necessarily commuting, in which case
the geometric mean is not uniquely defined.

Several definitions of a matrix geometric mean have been proposed, of which the
most plausible is A#B = A1/2

(
A−1/2BA−1/2

)1/2
A1/2, where A and B are positive

definite matrices. The concept extends to geometric means of several matrices. See
Bhatia (2013) for an exposition.
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The material of the paper can be used as a part of the chapter on the Fisher
information in graduate courses in Statistics.
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The Legend of the Equality of OLSE
and BLUE: Highlighted by C. R. Rao
in 1967

Augustyn Markiewicz, Simo Puntanen, and George P. H. Styan

Abstract In this article, we go through some crucial developments regarding the
equality of the ordinary least squares estimator and the best linear unbiased estimator
in the general linear model. C. R. Rao (Proceedings of the Fifth Berkeley Symposium
on Mathematical Statistics and Probability. University of California Press, Berke-
ley, pp. 355–372, 1967) appears to be the first to provide necessary and sufficient
conditions for the general case when both the model matrix and the random error
term’s covariance matrix are possibly deficient in rank. We describe the background
of the problem area and provide some examples. We also consider some personal
CRR-related glimpses of our research careers and provide a rather generous list of
references.

Keywords Best linear unbiased estimator · BLUE · Efficiency of ordinary least
squares · Estimability · Generalized inverse · Ordinary least squares estimator ·
OLSE · Linear model · Löwner ordering

1 Introduction and Background

Let us begin by quoting the beginning of Chap. 10, entitled “BLUE”, of the Matrix
Tricks Book by Puntanen et al. (2011):
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Over the years, one of our favourite research topics in linear models has been the equality
between OLSE and BLUE of Xβ. In Proposition 10.1 [in the present article Theorem 4]
we collect together some necessary and sufficient conditions for their equality. We find this
collection very useful andwe believe it includes several interesting linear algebraic problems.

While preparing this book, for a long time the title of this chapter was “OLSE versus
BLUE”, but the simpler version “BLUE” describes better the matrix tricks under consid-
eration. In the sections of this chapter we consider, for example, the best unbiased linear
predictors, BLUPs, and mixed models.

We will closely follow the article “The equality of the ordinary least squares
estimator and the best linear unbiased estimator” in The American Statistician by
Puntanen and Styan (1989), the most cited joint paper by these authors, as well as
the articles by Baksalary et al. (1990b) and by Puntanen and Styan (1996): “A brief
biography and appreciation of Calyampudi Radhakrishna Rao, with a bibliography
of books and papers”. Our aim is to give an easy-to-read review for a non-expert of
the area and illustrate the role of C. R. Rao in its development. This article contains
no new technical results, makes no claim at completeness; this is a brief survey—but
we believe that the years after 1989 have matured our insight into this area. Browsing
again through the old material was very interesting. Hopefully we can express this
in what follows.

To give some perspective, we start by going through some background in the spirit
of Puntanen and Styan (1996).

In 1954, C. R. Rao received some data collected in Japan in order to study the long-
term effects of radiation on atom bomb casualties in Hiroshima and Nagasaki. The
statistical analysis involved finding a matrix to replace the inverse of X′X, where
X is the model matrix in the linear model and X′ stands for its transpose; here
the matrix X′X was singular. This led to a pseudoinverse which was introduced
by Rao (1955) in Sankhyā. This was the same year that Penrose (1955) published
his paper on generalized inverses. Rao then discovered that the key condition for a
generalized inverse G of a matrix A was the equation AGA = A, introducing the
notation G = A−. The calculus of generalized inverses and the unified theory of
linear estimation were then presented by Rao (1962), in the Journal of the Royal
Statistical Society, Ser. B. The subject of generalized inverses was further developed
leading to the monograph (Rao and Mitra 1971a) with Sujit Kumar Mitra entitled
Generalized Inverse of Matrices and its Applications.

As a sidetrack, below is an excerpt from S.K. Mitra’s interview, carried out in
February 1993 in the Indian Statistical Institute, New Delhi, see Puntanen and Styan
(2012). Professor Mitra was replying to the following question: When was the deci-
sion made that you will start writing that book with Professor Rao?

In 1967 we had a summer school at the ISI, with a lot of students participating. Often new
areas of statistics and mathematics were exposed to the students during these six weeks of
summer. I was in fact once the programme director of such a summer school.

As a member of the summer school, I was able to get the best of C. R. Rao’s papers and
manuscripts. So I taught a course in the summer school and then by the time I had completed
the course, I myself had some new results. In fact my first two papers on generalized inverses,
which appeared in 1968, were essentially papers that appeared in their first form in these
summer schools.
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ProfessorC.R.Raohad at that time already decided towrite a bookongeneralized inverses all
by himself. It was also announced as a forthcoming publication of the Statistical Publishing
Society in Calcutta. He must have seen my new results and in a few days he invited me be a
coauthor. That is how that book started.

Using the concept of generalized inverse, Rao (1971, 1973a), further developed a
unified theory for linear estimation, noting that generalized inverseswere particularly
helpful with explicit expressions for projectors. We wish to cite a few words from
the Appendix of the article by Rao (1971). The title of the Appendix was “The Atom
Bomb and Generalized Inverse”. Below the first and last paragraph of the Appendix
are quoted.

The author was first led to the definition of a pseudoinverse (now called generalized inverse
or g-inverse) of a singular matrix in 1945–1955 when he undertook to carry out multivariate
analysis of anthropometric data obtained on families of Hiroshima and Nagasaki to study
the effects of radiation due atom bomb explosions, on request from Dr. W. J. Schull of the
University ofMichigan. The computation and use of a pseudoinverse are given in a statistical
report prepared by the author, which is incorporated in Publication No. 461 of the National
Academyof Sciences,U.S.A., byNeel and Schull (1956). Itmay be of interest to the audience
to know the circumstances under which the pseudoinverse had to be introduced.

It is hard to believe that scientists have found in what has been described as the greatest
tragedy a source for providing material and simulation for research in many directions.

2 What Is OLSE, What Is BLUE?

Let us quickly recall the definition of the ordinary least squares estimator, OLSE,
and the best linear unbiased estimator, BLUE, and before that, the linear statistical
model under discussion. We will consider the general linear model

y = Xβ + ε , or shortly the triplet M = {y,Xβ,V} , (1)

where X is a known n × p model matrix, y is an observable n-dimensional random
vector, β is p-dimensional vector of unknown but fixed parameters, and ε is an
unobservable vector of random errors with expectation E(ε) = 0, and covariance
matrix cov(ε) = V. We will denote μ = Xβ so that E(y) = μ = Xβ. Often the
covariance matrix is of the type σ 2V, where σ 2 is an unknown positive constant.
However, in our considerations σ 2 has no role. The nonnegative definite matrix V
is known and can be singular. If V is not known things get much more complicated;
for the so-called empirical best linear unbiased predictors in the linear mixed model,
see, for example, Haslett and Welsh (2019).

Then somewords about the notation. The symbolsA−,A+,A′,C (A), andC (A)⊥,
denote, respectively, a generalized inverse, the (unique) Moore–Penrose inverse, the
transpose, the column space, and the orthogonal complement of the column space
of the matrix A. Notation A− refers to any matrix satisfying AA−A = A and A+
satisfies the four Moore–Penrose conditions. By (A : B) we denote the partitioned
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matrix with Aa×b and Ba×c as submatrices. The symbol A⊥ stands for any matrix
satisfying C (A⊥) = C (A)⊥. Furthermore, we will use PA = AA+ = A(A′A)−A′
to denote the orthogonal projector (with respect to the standard inner product) onto
the column space C (A), and QA = I − PA, where I refers to the identity matrix of
appropriate order. In particular, we denote shortly

H = PX , M = In − PX . (2)

A linear statistic By is said to be a linear unbiased estimator, LUE, for the para-
metric function Kβ, where K ∈ R

q×p, if its expectation is equal to Kβ, i.e.

E(By) = BXβ = Kβ for all β ∈ R
p, i.e., BX = K . (3)

When C (K′) ⊆ C (X′) holds, Kβ is said to be estimable.

Definition 1 The linear unbiased estimator By is the best linear unbiased estimator,
BLUE, of estimableKβ ifBy has the smallest covariance matrix in the Löwner sense
among all linear unbiased estimators of Kβ:

cov(By) ≤L cov(B#y) for all B# : B#X = K , (4)

that is, cov(B#y) − cov(By) is nonnegative definite for all B# : B#X = K .

Under the model {y,Xβ,V}, the ordinary least squares estimator, OLSE, for β

is the solution minimizing the quantity ‖y − Xβ‖2 with respect to β yielding to
the normal equation X′Xβ = X′y . Thus, if X has full column rank, the OLSE of β

is β̂ = (X′X)−1X′y = X+y. In the general case, the set of all vectors β̂ satisfying
X′Xβ̂ = X′y, can be written as

β̂ = (X′X)−X′y + [Ip − (X′X)−X′X]t , (5)

where (X′X)− is an arbitrary (but fixed) generalized inverse of X′X and t ∈ R
p is

free to vary. On the other hand, every solution to the normal equations can be written
as β̂ = (X′X)−X′y for some (X′X)−.

Of course, it is questionable whether it is quite correct to call β̂ an estimator
when it is not unique (after y is being observed); it is merely a solution to the normal
equations; “This point cannot be overemphasized”, as stated by Searle (1971, p. 169).
In this context, we wish to cite also the following from Searle (2000, p. 26):

One of the greatest contributions to understanding the apparent quirkiness of normal equa-
tions of non-full rank (as is customarywith linearmodels),which have an infinity of solutions,
is due to Rao (1962). Using the work of Moore (1920) and Penrose (1955), he showed how
a generalized inverse matrix yields a solution to the normal equations and how that solu-
tion can be used to establish estimable functions and their estimators—and these results are
invariant to whatever generalized inverse is being used. Although the arithmetic of general-
ized inverses is scarcely any less than that of regular inverses, the use of generalized inverses
is of enormous help in understanding estimability and its consequences.
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If Kβ is estimable, then Kβ̂ = K(X′X)−X′y, i.e. the OLSE of Kβ is unique
whatever choice of β̂, i.e. whatever (X′X)− we use. This can be seen from Lemma
2.2.4 of Rao and Mitra (1971a) which states that for nonnull matrices A and C the
following holds:

AB−C = AB+C for all B− ⇐⇒ C (C) ⊆ C (B) & C (A′) ⊆ C (B′) . (6)

In particular, choosing (X′X)− as (X′X)+ and using X+ = (X′X)+X′, we can write
Kβ̂ = K(X′X)+X′y = KX+y.

For K = X, we have

OLSE(Xβ) = X(X′X)−X′y = XX+y = PXy = Hy = μ̂ . (7)

Obviously μ̂ = Hy is a LUE for Xβ. Let By be another LUE of Xβ, i.e. B satisfies
BX = X and thereby BH = H = HB′. Thus, under the model {y,Xβ, In}:

cov(By) = cov[Hy − (H − B)y] = cov(Hy) + cov[(H − B)y] ≥L cov(Hy) , (8)

and so we have proved a simple version of the Gauss–Markov theorem:

Theorem 1 Under the model {y,Xβ, In}, the OLSE of Xβ is the BLUE of Xβ, or
shortly

μ̂ = OLSE(Xβ) = BLUE(Xβ) = μ̃ , (9)

and for any estimable Kβ, OLSE(Kβ) = BLUE(Kβ).

When (9) holds, we will use phrases like “OLSE is BLUE”. The claim concerning
estimable Kβ in Theorem 1 can be confirmed by observing that due to estimabil-
ity,Kβ = LXβ for someL and thereby OLSE(Kβ) = LOLSE(Xβ) = LHy. Actu-
ally, under {y,Xβ,V}, the statements OLSE(Xβ) = BLUE(Xβ) and OLSE(Kβ) =
BLUE(Kβ) for all estimableKβ are equivalent. It is clear that β is estimable if and
only if X has full column rank.

Consider now the model M where V is positive definite, and suppose that V1/2

is the positive definite square root of V. PremultiplyingM by V−1/2 gives the trans-
formed model M# = {V−1/2y, V−1/2Xβ, In}. In light of Theorem 1, the BLUE of
Xβ under M# equals the OLSE under M# and thus

BLUE(Xβ | M#) = μ̃(M#) = X(X′V−1X)−X′V−1y = PX;V−1y , (10)

where PX;V−1 is the orthogonal projector onto C (X) when the inner product matrix
is V−1. Here is a crucial question: is the BLUE of Xβ under M# the same as under
M , in other words, has the transformation done via V−1/2 any effect on the BLUE
of Xβ? The answer is that there is no effect and that

PX;V−1y = BLUE(Xβ | M ) = BLUE(Xβ | M#) = OLSE(Xβ | M#) . (11)
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The result (11), sometimes referred to as the Aitken-approach, see Aitken (1935),
Farebrother (1990, 1997) and Searle (1996), is well known in statistical textbooks.
Farebrother (1990) points out that Aitken’s contribution to the subject was to show
that a least squares estimator of β minimizing (y − Xβ)′V−1(y − Xβ) could be
obtained by premultiplying the model {y,Xβ,V} by an n × n matrix D satisfying
DVD′ = In . However, Aitken did not show that this estimator was the best linear
unbiased estimator.

The property that the transformation via V−1/2 has no effect on the BLUE is
phrased as “V−1/2y is linearly sufficient forXβ”; see, e.g. Baksalary andKala (1981a,
1986) and Haslett et al. (2020).

Example 1 (Very simple model) Let us consider a linear model y = xβ + ε, where
cov(y) = V. Then

OLSE(β) = β̂ = (x′x)−1x′y , var(β̂) = (x′x)−2x′Vx , (12a)

BLUE(β) = β̃ = (x′V−1x)−1x′V−1y, var(β̃) = (x′V−1x)−1, (12b)

where “var” refers to the variance. Now we have var(β̃) ≤ var(β̂), i.e.

(x′V−1x)−1 ≤ (x′x)−2x′Vx , i,e., (x′x)2 ≤ x′V−1x · x′Vx , (13)

which is a special case of the famous Cauchy–Schwarz inequality. It is well known
that the equality in (13) holds if and only if

Vx = λx , for some λ ∈ R , (14)

and hence x is an eigenvector of V corresponding to eigenvalue λ. Condition (14) is
just a version of Anderson’s (1948) condition for the equality of OLSE and BLUE;
see the beginning of Sect. 3 below. Notice that putting x = 1, a vector of ones, shows
that the arithmetic mean ȳ is BLUEwheneverV has its row totals equal, i.e.V1 = λ1
for some scalar λ.

We might ask how “bad” the OLSE could be with respect to the BLUE. One
natural measure for the relative efficiency of OLSE is the ratio of their variances:

φ = eff(β̂) = var(β̃)

var(β̂)
= (x′V−1x)−1

(x′x)−1x′Vx(x′x)−1
= (x′x)2

x′Vx · x′V−1x
. (15)

Clearly, we have 0 < φ ≤ 1, where the upper bound is obtained if and only if OLSE
equalsBLUE.The lower boundofφ canbe obtained from theKantorovich inequality;
see, e.g. Watson et al. (1997),

τ 2
1 := 4λ1λn

(λ1 + λn)2
≤ (x′x)2

x′Vx · x′V−1x
= eff(β̂) = φ , (16)
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whereλ1 ≥ λ2 ≥ · · · ≥ λn > 0 are the eigenvalues ofV. The lower bound is obtained
when x is proportional either to t1 + tn or to t1 − tn; in short, x is proportional to
xbad = t1 ± tn , where T = (t1 : t2 : . . . : tn) is the matrix with ti being the orthonor-
mal eigenvectors of V corresponding to eigenvalues λ1, λ2, . . . , λn . �

Consider then the covariance matrices of OLSE and BLUE when X has a full
column rank and V is positive definite. Then under M = {y,Xβ,V},

cov(β̂) = (X′X)−1X′VX(X′X)−1, cov(β̃) = (X′V−1X)−1, (17)

and we have the Löwner ordering

(X′V−1X)−1 ≤L (X′X)−1X′VX(X′X)−1. (18)

If X does not have a full column rank then Xβ̃ = μ̃ = X(X′V−1X)−X′V−1y and

cov(μ̃) = X(X′V−1X)−X′ ≤L HVH = cov(μ̂) . (19)

What is now interesting is that the difference cov(β̂) − cov(β̃) has an alterna-
tive representation, expressed in Theorem 2 below. Among the first places where
Theorem 2 occurs are probably the papers by Khatri (1966, Lemma 1) and Rao
(1967, Lemmas 2a–2c); see also Rao (1973a, Problem 33, p. 77).

Theorem 2 Consider the linear model M = {y,Xβ,V}, where X has full column
rank and V is positive definite, and denote H = PX, M = In − H. Then

(a) cov(β̃) = (X′V−1X)−1 = (X′X)−1[X′VX − X′VM(MVM)−MVX](X′X)−1

= X+[V − VM(MVM)−MV](X+)′
= cov(β̂) − (X′X)−1X′VM(MVM)−MVX(X′X)−1,

(b) cov(β̂) − cov(β̃) = X+VM(MVM)−MV(X+)′,
(c) cov(μ̂) − cov(μ̃) = HVH − X(X′V−1X)−X′ = HVM(MVM)−MVH ,

(d) X(X′V−1X)−X′V−1 = In − VM(MVM)−M = H − HVM(MVM)−M .

In (c) and (d) the matrix X does not need to have full column rank.

Actually, instead ofM, Rao (1967, Lemmas 2a–2c) used a full column rankmatrix
Z spanning C (X)⊥. Thus, for example,

(X′V−1X)−1X′V−1 = X+ − X+VZ(Z′VZ)−1Z′. (20)

It is noteworthy that for a positive definite V we have

Ṁ : = M(MVM)−M = V−1/2PV1/2MV−1/2

= V−1/2(In − PV−1/2X)V−1/2 = V−1(In − PX;V−1) . (21)

Thus, the BLUE’s residual can be expressed as y − μ̃ = VṀy and the “weighted
sum of squares of errors” is
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SSE(V) = (y − μ̃)′V−1(y − μ̃) = y′Ṁy , (22)

while the corresponding quantity in model {y,Xβ, In} is SSE(I) = y′My.
What does it mean to have the equality OLSE = BLUE? There is no problem

if this equality is interpreted as a short version of the phrase “Hy has the minimal
covariance matrix in the sense of Definition 1”. On the other hand, for example, in
the full rank model, we might ask what is the “real meaning” of the equality

Hy = X(X′V−1X)−X′V−1y = PX;V−1y ? (23)

Estimator Hy is a random vector as is PX;V−1y; this is so before observing y. The
equality of two random vectors requires a specific definition and the essential matter
is how the set of possible realized values of the response variable y is defined. Notice
that we do not make a notational difference between the random vector y and its
realized value.

The modelM is said to be consistent if the observed value of y lies in C (X : V):

y ∈ C (X : V) = C (X : VX⊥) = C (X : VM) = C (X) ⊕ C (VM) , (24)

where ⊕ refers to the direct sum. For the equality C (X : V) = C (X : VM), see, e.g.
Rao (1974, Lemma 2.1). Let A and B be m × n matrices. Then, in the consistent
model M , the estimators Ay and By are said to be equal with probability 1 if

Ay = By for all y ∈ C (X : V) , i.e., A(X : V) = B(X : V) , (25)

which further can be written as A(X : VM) = B(X : VM). Often we drop off the
phrase “with probability 1”. In (23) the vector y varies through C (X : V) = R

n

and thus (23) becomes the equality between the multipliers H and PX,V−1 . For the
consistency of the linear model, see, e.g. Rao (1973a, p. 297), and Baksalary et al.
(1992).

We will use short notations like Ay = BLUE(μ | M ) = μ̃ = μ̃(M ) . Thus, the
equality OLSE(μ) = BLUE(μ), i.e. μ̂ = μ̃ means that

Hy = Ay for all y ∈ C (X : V) , (26)

where A is a matrix providing the μ̃. There is an infinite number of such matrices
A when rank(X : V) < n, but under a consistent model the realized value of Ay is
unique.

Example 2 (Equality of OLSE and PX;V+y) Denoting PX;V+ = X(X′V+X)+X′V+,
one might be curious to know under which condition PX;V+y equals μ̂ (w.p. 1). This
happens if and only if X(X′V+X)+X′V+(X : V) = H(X : V), i.e.

(i) X(X′V+X)+X′V+X = X , and (ii) X(X′V+X)+ X′PV = HV. (27)
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Postmultiplying (ii) in (27) by V+X and using (i) yields X = HPVX and thereby
X′X = X′PVX, i.e. X′QVX = 0, so that C (X) ⊆ C (V). This is the result obtained
by Baksalary and Kala (1983). It becomes particularly interesting if we utilize the
following fact, see Zyskind and Martin (1969) and Mitra and Rao (1968, p. 286):

X(X′V+X)+X′V+y = BLUE(Xβ) ⇐⇒ C (X) ⊆ C (V) . (28)

This means that PX;V+y equals μ̂ only if they equal μ̃. The model where C (X) ⊆
C (V), is often called a weakly singular linear model. Actually then PX;V+y is invari-
ant for any choice of generalized inverses involved. �

3 Year 1967: a Good One for the OLSE = BLUE

As noted by Puntanen and Styan (1989, p. 154), the first condition for the equality
between OLSE and BLUE of Xβ was obtained by Anderson (1948, p. 92):

Let X and V have full rank. If the p columns of the n × p matrix X are linear combinations
of p of the eigenvectors of V, then OLSE is BLUE.

Anderson’s result was published in Skandinavisk Aktuarietidskrift (from 1973: Scan-
dinavian Actuarial Journal), and as Anderson says in his interview in Statistical
Science (DeGroot 1986, p. 102): “As a result it did not get a great deal of attention
… So from time to time people discover that paper.”

ThatAnderson’s condition is also necessarymay be deduced from results obtained
by Watson (1951, 1955). Watson was discussing the efficiency of OLSE showing
the necessity of Anderson’s condition for p = 1.

Magness and McGuire (1962) appear to be the first to show that this condition is
both necessary and sufficient, though Anderson (1972, p. 472) mentioned that suf-
ficiency was essentially given in his (Anderson 1948) paper. Interestingly, Magness
and McGuire (1963) published the following “Acknowledgment of priority”:

Theorem 2 of the authors’ paper (Magness and McGuire 1962) is a special case of Eq. (3.5)
of Watson (1955). Also, the fact that least squares and minimum variance estimates are
equally efficient when the regression vectors are eigenvectors of the noise covariance matrix
is apparently known and is referred to by Watson. The authors regret having overlooked
Professor Watson’s outstanding prior contribution.

It seems that Zyskind, in an invited paper presented at the 1962 Institute of Math-
ematical Statistics Annual Meeting, was the first author to consider the equality of
the OLSE and BLUE when X has rank less than p, see Zyskind (1962) which is an
abstract of his talk. The covariance matrix was still assumed positive definite.

Goldman and Zelen (1964) allowed the covariance matrixV to be possibly singu-
lar; they obtained a similar eigenvector condition to that of Anderson (1948), namely
C (X) = C (T[r ])whereT[r ] is an n × r matrix whose columns are the r eigenvectors
corresponding to r nonzero eigenvalues of V with r = rank(X). As shown later by
Zyskind (1967, p. 1098), the nonzero requirement is not needed.
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Rao (1967, 1968) appears to be the first to provide further necessary and sufficient
conditions for the general case when both X and V are possibly deficient in rank. In
1965 at the Fifth Berkeley Symposium, Rao (1967, p. 364) presented the following
two conditions, each of which is both necessary and sufficient for the equality of the
OLSE(Xβ) and the BLUE(Xβ):

(i) X′VX⊥ = 0 , i.e., HVM = 0 , (ii) V = αIn + XAX′ + X⊥B(X⊥)′, (29)

for some scalar α and some symmetricA andB so thatV is nonnegative definite. It is
clear that (i) is equivalent toC (VX) ⊆ C (X),which becomes equality ifV is positive
definite. Rao (1968, p. 68) emphasized that “the basis of the proof is the following:
the necessary and sufficient condition that a statistic is a minimum variance unbiased
estimator is that it has zero covariance with statistics whose expectation is identically
zero (Rao 1965, pp. 185, 257) [referring to the first edition of Rao 1973a].”

Notice that the case (ii) of (29), which is sometimes called “Rao’s structure”,
occurs in the mixed linear model, where y = Xβ + Xu + X⊥v + e, and u, v and e
are uncorrelated random vectors with zero expectations and covariance matrices �,

�, and σ 2In , respectively. See also Mitra and Rao (1969) for properties of specific
structures of V.

Zyskind (1967, Theorem 2) who referred to Rao (1967), gave, without any restric-
tive rank assumptions, eight necessary and sufficient conditions under which OLSE
is BLUE, thus extending the results he gave in Zyskind (1962). Kempthorne (1975),
in the obituary for Zyskind (1929–1974), writes:

Zyskind’s interest in the method of least squares led to a rather remarkable set of papers.
…A subsequent (Zyskind 1967) paper laid out the bulk of the story with respect to equality
of OLSE and BLUE. …The importance of this whole line of work is underscored by the
occurrence of related work by W. H. Kruskal, C. R. Rao and G. S. Watson, as well as others.

Because Rao gave his paper in 1965 and Zyskind (1967) refers to it, we credit
Rao as the first author to have establishedHVM = 0; see Baksalary and Kala (1983,
pp. 119 and 240) and Kempthorne (1976, p. 217). In his Acknowledgements Zyskind
(1967) writes: “I wish to thank Professor C. R. Rao for permitting me to see a copy
of the final version of his manuscript (Rao 1967) before its publication.”

Wemight cite an interesting piece fromRao’s interview byDeGroot (1987, p. 59):

Rao: There was another incident recently in which somebody claimed priority because he
had mentioned a result slightly less general than mine in an abstract in the Annals. You can
say anything in an abstract. If it is right, you can claim credit and priority.

DeGroot: Yes. Take a chance; maybe it will be right. There is no serious screening of
abstracts. I think that’s OK, as long as everyone realizes that the results are not necessarily
correct or original.

Rao: Actually when that person wrote the full paper on the basis of the abstract, I was a
referee and it turned out that this result was also not correct as stated.

Rao (1968, p. 259) further commented on Zyskind (1967) and Watson (1967) in
the following way (in our notation):
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In my previous paper (Rao 1967), I gave details of the proof of (29) when V and X′X are
nonsingular andmentioned that the same proof holds more generally for singularV andX′X.
I omitted the details in the latter as the extension was extremely simple, and not relevant to
the main theme of the paper.

In a recent paper, Zyskind (1967) thought that there may be some difficulty in proving the
condition (29) in its widest generality when V is singular. Watson (1967) writes that, “Rao
(1965) [referring to the Fifth Berkeley Symposium] remarks that his result is true for V
singular and rank of X is below p. Some skill with generalized inverses might show the
proof is still valid.” In view of these remarks and other statements it seems necessary to
elaborate the earlier proof.

An early description of the coordinate-free approach to linear models was made
by Kruskal (1961, 1968). Watson (1967, p. 1682) wrote:

In some 1962 correspondence with Dr. M. E. Muller and the author, Professor W. Kruskal
indicated a coordinate-free proof of the necessity and sufficiency when X, but not V, is
possibly not of full rank. This result is particularly simple to prove because, instead of
working with β̂ and β̃ he uses μ̂ = Xβ̂ and μ̃ = Xβ̃. He states that “μ̂ = μ̃ if and only if
C (VX) = C (X)”. The author hopes that Professor Kruskal’s result will appear in the near
future.

In an interview by Zabell (1994, p. 294), Kruskal mentions, referring to his
(Kruskal 1968) paper: “That started out as an exercise, an exam exercise in the course
I was giving, and then Geoff Watson came along with much the same material; he
encouraged me to try for publication.”

Herr (1980, p. 46), in an interesting article “On the history of the use of geometry
in the general linear model”, commented on various approaches to handle linear
models. About Kruskal he writes the following:

These two papers. Kruskal (1968, 1975), are elegant examples of the analytic geometric
approach to linear models. In Kruskal (1968), the question of equality of simple least squares
and best linear unbiased estimates, which was considered in Zyskind (1967) and Watson
(1967), is treated using a coordinate-free approach. The comparison of the parts of the
three papers dealing with this question is very instructive. The simplicity and beauty of the
coordinate-free approach is clearly demonstrated by such a comparison.

In Kruskal (1975), an analytic geometric approach is used with such skill and grace that the
paper ought to be required reading for anyone whomight be tempted to deal with generalized
inverses.

Eaton, also a great promoter of the coordinate-free approach, see his papers (Eaton
1970, 1978), wrote in Eaton (2007, p. 265):

The direct effect of Kruskal (1968), a marvelous paper, is relatively easy to describe. In
coordinate-free language, here is a statement of the main result of that paper:

TheGauss–Markov and least squares estimators are the same if and only if the linearmanifold
of the mean vector is an invariant subspace of the covariance.

[C (VX) ⊆ C (X), in our notation.]

Anderson (1971, p. 563) gave a quite different rank criterion for the equality
of OLSE and BLUE in the form of rank-additivity, assuming V and X be of full
rank. George Styan (1973) extended this criterion by removing the restriction on the
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rank of X. Below is George’s description (in our notation) on this development, see
Baksalary and Styan (2005, p. 16).

I think that the first paper by Jerzy Baksalary I read was Baksalary and Kala (1977), which
I reviewed for Mathematical Reviews. In that paper it is shown that in the linear model
{y,Xβ,V} the best linear unbiased estimator of Xβ equals the ordinary least-squares esti-
mator if and only if

rank(X′T1) + rank(X′T2) · · · + rank(X′Ts) = rank(X) , (30)

where V has s distinct eigenvalues and T1,T2, . . . ,Ts are matrices of corresponding
orthonormalized eigenvectors. Here X can be less than full column rank and V may be
singular. The result for X possibly of less than full column rank but with V positive definite
was established by me in Styan (1973), extending the earlier result with X of full column
rank and V positive definite due to Anderson (1971, p. 561).

The paper byBaksalary andKala (1977) promptedme to read further papers byBaksalary and
Kala, and […old reminiscences …] on 27 August 1980 both Jerzy Baksalary and Radoslaw
Kala met me at the main railway station in Poznań.

A very different modification of the problem of when the OLSE is the BLUE
originates from McElroy (1967). We present it here in a generalized version due to
Zyskind (1969) and Baksalary and van Eijnsbergen (1988): Given a matrix U, such
that rank(U) ≤ n − 1, when does μ̂ = μ̃ hold for every model matrix X satisfying
C (U) ⊆ C (X).

We have now more or less covered the development of the OLSE versus BLUE
saga up till the end of the 1970s, having the role of Professor Rao in mind. There is
a lot of interesting literature after that (as well as before) that we have no space to
discuss. However, ‘

• Gouriéroux and Monfort (1980), Baltagi (1989), McAleer (1992) and Larocca
(2005) providing econometric examples and references;

• Chapter8 of Rao and Mitra (1971a), and Mathew and Bhimasankaram (1983a, b)
reviewing conditions for optimality and validity of least squares theory;

• Baksalary andKala (1978, 1980) andHaberman (1975)who studied the Euclidean
distance between OLSE and BLUE.

Wemay alsomentionYongge Tianwho in numerous papers has studiedOLSE versus
BLUE matters using so-called matrix rank methods; see, e.g. Tian (2013), Tian and
Zhang (2016) and Puntanen et al. (2005).

The model M can be extended to the case when we wish to predict a “new
future” value of y∗, assumed to be coming from y∗ = X∗β + ε∗, where X∗ is a
known q × p matrix and ε∗ is a q-dimensional random error vector. We assume
that cov(y, y∗) = V12 is known. For conditions of Ay being the best linear unbiased
predictor, BLUP, for y∗, minimizing the covariance matrix of the prediction error,
see, e.g. Goldberger (1962), Christensen (2011, p. 294), and Isotalo and Puntanen
(2006, p. 1015). For relations between OLSE, BLUE and BLUP, see, e.g. Watson
(1972), Baksalary and Kala (1981b) and Haslett et al. (2014).

We feel it appropriate, though not fully related toOLSE versus BLUE, to complete
this section (where themain yearwas 1967), bymentioning that on 5April 1967,C.R.
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Rao left Calcutta for London and attended the induction ceremony to the Fellowship
of the Royal Society, on 6 April 1967. This prompted Professor P. C. Mahalanobis to
use the following words in his speech on 12 February 1968, see Mahalanobis (1969,
p. 239):

I should now like to say, briefly, how proud I feel that C. R. Rao was elected a Fellow of the
Royal Society last year. He came to the Institute in January 1941 to learn statistics. I feel
proud that my direct pupil is now in the Royal Society. In India, we have a saying Putrat
ichhyet parajayam. One wishes for defeat by his son. I have no children. In India there is
also the alternative version Sishyat ichhyet parajayam. One wishes for defeat by his pupil.
It is my great happiness to admit defeat by my pupil.

4 OLSE = BLUE: Conditions

Theorem 3 Consider the general linear modelM={y,Xβ,V}. ThenOLSE(Xβ) =
BLUE(Xβ) if and only if any of the following equivalent conditions holds. (Note: V
is replaceable with V+ and H and M can be interchanged.)

(i) HV = VH, (ii) HV = HVH, (iii) HVM = 0,
(ii) X′VX⊥ = 0, (v) C (VX) ⊆ C (X), (vi) C (VX) = C (X) ∩ C (V),

(vii) HVH ≤L V, i.e. V − HVH is nonnegative definite,
(viii) HVH ≤rs V, i.e. rank(V − HVH) = rank(V) − rank(HVH), i.e. HVH and

V are rank-subtractive,
(ix) C (X) has a basis consisting of r eigenvectors of V, where r = rank(X),
(x) rank(T′

1X) + · · · + rank(T′
sX) = rank(X), where Ti is a matrix consisting of

the orthogonal eigenvectors w.r.t. the ith largest eigenvalue λ(i) of V; λ(1) >

· · · > λ(s),
(xi) T′

iHTi = (T′
iHTi )

2 for all i = 1, 2, . . . , s,
(xii) T′

iHT j = 0 for all i, j = 1, 2, . . . , s, i �= j ,
(xiii) C (Ti ) = C (Ti ) ∩ C (X) ⊕ C (Ti ) ∩ C (M) for all i = 1, . . . , s,
(xiv) the squared nonzero canonical correlations between y andHy are the nonzero

eigenvalues of V−HVH for all V−,

(xv) V ∈ V1 = {V ≥L 0 : V = HAH + MBM , A ≥L 0 , B ≥L 0 },
(xvi) V ∈ V2 = {V ≥L 0 : V = XCX′ + X⊥D(X⊥)′, C ≥L 0 , D ≥L 0 },
(xvii) V ∈ V3 = {V ≥L 0 : V = αI + XKX′ + X⊥L(X⊥)′, α ∈ R , K = K′, L =

L′ } .

Some sources for the above statements are given in Sect. 3. For collections of the
proofs, see Alalouf and Styan (1984) and Puntanen et al. (2011, Chap. 10). Notice
the somewhat peculiar statements (vii), (viii) and (xiv); they appear in Baksalary and
Puntanen (1989, 1990a, b). Some further conditions are given by Baksalary et al.
(2013, Theorem 5).

Example 3 (Centering the model) Consider the partitioned linear model
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M12 = {y, 1α + X0βx , In} , where X0 ∈ R
n×k, (31)

and 1 ∈ R
n is a vector of ones. Assume that X = (1 : X0) has full column rank.

PremultiplyingM12 by the centering matrix C = In − P1 yields the centered model

M12·1 = {Cy, CX0βx , C} . (32)

In this centered model, we have a singular covariance matrix and hence it may seem
that finding a BLUE would be problematic. However, corresponding to condition (v)
of Theorem 3 we have now C (C · CX0) ⊆ C (CX0) and thus

BLUE(βx | M12·1) = OLSE(βx | M12·1) = (X′
0CX0)

−1X′
0Cy := β̂x . (33)

On the other hand, it is standard textbook material that β̂x is the BLUE for βx
in the partitioned model M12. Thus centering has no effect on the BLUE of βx,
and so Cy is a linearly sufficient statistic for βx in M12. Centering is a simple
example of the model reduction, i.e. premultiplying M12 = {y,X1β1 + X2β2,V}
byM1 = In − PX1 , yielding to

M12·1 = {M1y, M1X2β2, M1VM1} , (34)

see, e.g. Groß and Puntanen (2000) and Chu et al. (2004, 2005). �

Example 4 (Intraclass correlation) ConsiderVwhich has the intraclass correlation
structure (of which the centeringmatrixC is an example), that is,V is of the typeV =
(1 − �)In + �11′, where− 1

n−1 ≤ � ≤ 1. In this situationHV = (1 − �)H + �H11′,
and thereby HV = VH if and only if

H11′ = 11′H . (35)

We can conclude that (35) holds if and only if 1 is an eigenvector ofH, i.e.H1 = λ1 .

The eigenvalues of H are 0 and 1, with multiplicities n − rank(X) and rank(X),
respectively. Hence (35) holds, i.e. OLSE = BLUE, if and only if 1 ∈ C (X) or
1 ∈ C (X)⊥. �

5 The Fundamental BLUE Equation

Theorem 4 below provides so-called fundamental BLUE equations.

Theorem 4 Consider the linear model M = {y,Xβ,V}. Then the linear estimator
Gy is the BLUE for μ = Xβ if and only if G ∈ R

n×n satisfies the equation

G(X : VX⊥) = (X : 0) . (36)
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Moreover, let Kβ, where K ∈ R
q×p, be estimable so that C (K′) ⊆ C (X′). Then By

is the BLUE of Kβ if and only if B ∈ R
q×n satisfies the equation

B(X : VX⊥) = (K : 0) . (37)

For the proofs, see, e.g. Rao (1973b, p. 282) and for coordinate-free approach
Drygas (1970, p. 55) and Zmyślony (1980). For further proofs see, for example, Groß
(2004), Kala (1981, Theorem 3.1), Puntanen et al. (2011), and Puntanen et al. (2011,
Theorem 10). Baksalary (2004) provides a proof which he describes as follows:
“From the algebraic point of view, the present development seems to be the simplest
from among all accessible in the literature till now”.

Of course, in (37) and (36) we can replace X⊥ with M = In − PX. Equation
(36) is always solvable for G while (37) is solvable whenever Kβ is estimable.
Solutions are unique if and only if rank(X : V) = n. The solution for G satisfying
G(X : VM) = (X : 0) can be expressed, for example, in the following ways:

G1 = (X : 0)(X : VM)−, G2 = In − VM(MVM)−M , (38a)

G3 = H − HVM(MVM)−M , G4 = X(X′W−X)−X′W−, (38b)

where W belongs to the class of matrices

W = {W ∈ R
n×n : W = V + XUX′, C (W) = C (X : V)} . (39)

In (39),U can be any p × p matrix as long asC (W) = C (X : V) is satisfied; see, e.g.
Baksalary et al. (1990a, Theorem 2), Baksalary and Mathew (1990, Theorem 2) and
Harville (1997, p. 468). The general solution to (36) can be expressed asGi + NiQW

where Ni ∈ R
n×n are free to vary. For the relations between the representations of

the BLUEs, see, e.g. Albert (1973), Rao (1978, 1979), Rao and Mitra (1971b) and
Searle (1994).

The covariance matrix of the μ̃ = BLUE(Xβ) can be expressed as

cov(μ̃) = HVH − HVM(MVM)−MVH = V − VM(MVM)−MV

= X(X′W−X)−X′ − XUX′, (40)

where W = V + XUX′ ∈ W; see, e.g. Baksalary et al. (1990a) and Isotalo et al.
(2008a, b). Notice that

cov(μ̂ − μ̃) = cov(μ̂) − cov(μ̃) = HVM(MVM)−MVH . (41)

Corresponding to (22), the weighted sum of squares of errors in the general case is

SSE(W) = (y − μ̃)′V−(y − μ̃) = y′Ṁy , where Ṁ = M(MVM)−M. (42)
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Suppose that we have two models A1 = {y,Xβ,V1} and A2 = {y,Xβ,V2},
which have different covariance matrices. Then we can ask, for example, what is
needed that every representation of the BLUE ofXβ underA1 remains BLUE under
A2. Mitra and Moore (1973) give a very clear description of the different problems
occurring. Let G be such a matrix that Gy is the BLUE for Xβ under A1, Then we
say that Gy remains BLUE under A2 if the following implication holds:

G(X : V1M) = (X : 0) =⇒ G(X : V2M) = (X : 0) . (43)

It appears that every representation of the BLUE for Xβ under A1 remains BLUE
under A2 and only if any of the following equivalent conditions hold:

(i) C (V2M) ⊆ C (V1M) , (ii) V2 = αV1 + XAX′ + V1MBMV1 , (44)

for some α ∈ R, andA andB such thatV2 is nonnegative definite. It is clear that even
if (44) holds, the covariance matrices ofGy underA1 andA2 may be different; see,
e.g. Rao and Mitra (1971b, Chap. 8). For the proof of (44) and related discussion,
see, e.g. Mitra and Moore (1973, Theorems 4.1–4.2), and Rao (1968, Lemma 5) and
Rao (1971, Theorems 5.2, 5.5). For a special note on the interpretation of (i) for
V2 = In , see Markiewicz et al. (2010).

6 The Relative Efficiency of OLSE

In this section, we follow closely Puntanen et al. (2011, Sect. 10.8) to take a brief
look at the relative efficiency of OLSE with respect to the BLUE. Consider the linear
model M = {y,Xβ,V}, where X has full column rank and V is positive definite.
Then by Theorem 2,

cov(β̂) = (X′X)−1X′VX(X′X)−1, cov(β̃) = (X′V−1X)−1, (45a)

cov(β̂) − cov(β̃) = (X′X)−1X′VM(MVM)−MVX(X′X)−1 := D . (45b)

The relative efficiency, so-called Watson efficiency, see Watson (1955, p. 330), of
OLSE versus BLUE is defined as the ratio of the determinants of the covariance
matrices:

eff(β̂) = |cov(β̃)|
|cov(β̂)| = |X′X|2

|X′VX| · |X′V−1X| = |cov(β̂) − D|
|cov(β̂)| . (46)

We have 0 < eff(β̂) ≤ 1, with eff(β̂) = 1 if and only if β̂ = β̃. Moreover, the effi-
ciency can be expressed as
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eff(β̂) = |Ip − X′VM(MVM)−MVX(X′VX)−1| = |[cov(β̂)]−1 · cov(β̃)|
= (1 − κ2

1 ) · · · (1 − κ2
p) = θ2

1 · · · θ2
p , (47)

where κ1 ≥ κ2 ≥ · · · ≥ κp ≥ 0 and θ1 ≥ θ2 ≥ · · · ≥ θp > 0 are the canonical corre-
lations between X′y and My, and β̂ and β̃, respectively. Notice that

cov

(
β̂

β̃

)
=

(
cov(β̂) cov(β̃)

cov(β̃) cov(β̃)

)
=

(
(X′X)−1X′VX(X′X)−1 (X′V−1X)−1

(X′V−1X)−1 (X′V−1X)−1

)
, (48)

and thus the squared canonical correlations between β̂ and β̃ are the eigenvalues of
the matrix product [cov(β̂)]−1 cov(β̃)[cov(β̃)]−1 cov(β̃):

{θ2
1 , . . . , θ

2
p} = ch

[[cov(β̂)]−1 cov(β̃)
]
, (49)

where ch(·) denotes the set of the eigenvalues of the matrix argument. On account
of (49), we see, as claimed in (47), that indeed

θ2
1 · · · θ2

p = |[cov(β̂)]−1 · cov(β̃)| . (50)

The efficiency formulas (47) in terms of κi ’s and θi ’s were first introduced by
Watson (1967, p. 1686) and by Bartmann and Bloomfield (1981), respectively. It can
be shown that the nonzero canonical correlations between X′y andMy are the same
as those between Hy and My. For further references on the relative efficiency and
canonical correlations, see, e.g. Chu et al. (2004, 2005) and Drury et al. (2002).

As regards the lower bound of the OLSE’s efficiency, Bloomfield and Watson
(1975) and Knott (1975) proved the following inequality:

eff(β̂) ≥ 4λ1λn

(λ1 + λn)2
· 4λ2λn−1

(λ2 + λn−1)2
· · · 4λpλn−p+1

(λp + λn−p+1)2
= τ 2

1 τ 2
2 · · · τ 2

p , (51)

where λi = chi (V) = ith largest eigenvalue and τi = i th antieigenvalue of V; it is
assumed that p ≤ n/2. The concept of antieigenvalue was introduced by Gustafson
(1972); see also Gustafson (2006, 2012) and Rao (2007).

Assuming that p ≤ n/2, the minimum of φ is attained when X is chosen as
(t1 ± tn : t2 ± tn−1 : . . . : tp ± tn−p+1), where ti are the orthonormal eigenvectors
of V with respect to λi . The inequality (51) was originally conjectured in 1955 by
Durbin (seeWatson 1955, p. 331), but first established (for p > 1) only twenty years
later by Bloomfield and Watson (1975) and Knott (1975). For further proofs (and
related considerations), see Khatri and Rao (1981, 1982).

Another measure of efficiency of OLSE, introduced by Bloomfield and Watson
(1975), is based on the Frobenius norm of the commutator HV − VH:

ψ = 1
2‖HV − VH‖2F = 1

2 trace(HV − VH)(HV − VH)′ = ‖HVM‖2F . (52)
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Bloomfield and Watson (1975) proved that ψ ≤ 1
4

∑p
i=1(λi − λn−i−1)

2, and that the
equality is attained in the same situation as the minimum of φ.

Rao (1985a) studied the trace of the difference between the covariance matrices
of the OLSE and BLUE of Xβ:

η = trace[cov(Xβ̂) − cov(Xβ̃)] = trace[HVH − X(X′V−1X)−1X′] . (53)

Styan (1983) considered (53) when p = 1 and Liski et al. (1992) considered the
upper bound of the trace of HVM(MVM)−MVH.

We can now conveniently complete this section with a somewhat curious remark.
Namely, in the references of Rao (1985a, p. 255), it is said: “Simo Puntanen, Personal
communication, 1982.” The story behind is that Simo indeed was communicating
with Professor Rao about the upperbound of (53) explaining it to be a tough problem.
So, Professor Rao conveniently decided to solve the problem.

7 Personal Glimpses and Conclusions

The matrix algebra related to matters like the equality of OLSE and BLUE is not
apparently everybody’s cup of tea and some discussion in the literature appears to
be rather critical. One of the most critical is by Kempthorne (1989) writing as his
comment on Puntanen and Styan (1989): “I suggest that Zyskind and Rao gave the
bulk of the story and that the flood of papers since their work has added only trivially,
arcanely, and (usually) uselessly.” Sengupta and Jammalamadaka (2003, p. 311)
agreed with Kempthorne’s criticism. Searle (1989), however, gives some supporting
remarks on the importance of theOLSE versus BLUE topic and according toHarville
(1990), “Puntanen and Styan’s (1989) article should be very useful to anyone with an
interest in linear-model theory”. Baksalary (1988, p. 98) states that “The importance
of this problem is due to the fact that such conditions characterize which (unknown)
dispersion structures can be ignored without consequence to best linear unbiased
estimation.”

In any event, we still find this area offering unexpected and interesting matrix
problems. Over the years, in our teaching (not only in research) we have attempted
to make our students familiar with the matrix algebra related to OLSE and BLUE
matters: we have found it very educational. One evidence of our interest is the book
Formulas Useful for Linear Regression Analysis and Related Matrix Theory: It’s
Only Formulas But We Like Them, by Puntanen et al. (2013).

When DeGroot (1987, p. 60) asked Professor Rao for his favourite publications,
part of the answer was the following:

Rao: …A second set of papers I like are mostly in the analysis of repeated measurements
and in singular linear models, i.e., when the design and covariance matrices are deficient in
rank. I developed generalized inverses of matrices for dealing with such problems. …
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There is some important interesting personal history between the authors and
Professor Rao that we briefly wish to mention. First, while spending his sabbatical
in Finland from September 1975 to August 1976, the third author, George, visited
C. R. Rao in spring 1976 in New Delhi. He sent a postcard to Simo:

En route, Calcutta – Bombay, 27 March 1976. Unbelievable that we’ve been gone six weeks
already & will be back in two. Spent a hectic month in Delhi; wrote two papers. Hope
C. R. Raowill visit Helsinki inmid-June. Relaxed for three days inKathmandu,…Greetings,
George.

C. R. Rao did not come to Finland in 1976 but indeed he did so in 1983, 1985,
1987 (twice), and 1990. He attended three conferences organized in Tampere and
in 1985 received an Honorary Ph.D. In June 1987 he attended a conference but in
January he was an opponent on the thesis defence of Simo. The thesis was entitled
“On the Relative Goodness of Ordinary Least Squares Estimation in the General
Linear Model”; see Puntanen (1987).

Actually Simomet C. R. Rao for the first time in Sheffield, UK, in August 1982, at
thefirst ICOTSConference (see thewebsite),whichGeorge also attended.During this
conference Simo invited C. R. Rao to be a keynote speaker in a statistical conference
in Tampere in 1983. Rao replied: “I’ll come if you George will come too.” So they
both certainly came—and wrote papers for the Proceedings, see Rao (1985b) and
Styan (1985).

The first author of the present paper, Augustyn Markiewicz, has two joint articles
with C. R. Rao, published in Baksalary et al. (1992, 1995). The third coauthor of
those papers was Jerzy K. Baksalary (1944–2005), a prolific Polish linear algebra
and linear models lover. Those papers deal with the admissibility concept and the
consistency of the linear model; see also C. R. Rao’s comments on Jerzy’s career in
Baksalary and Styan (2005, p. 16).

Acknowledgements We would like to acknowledge first the many conversations we had with our
colleagues who are no longer with us: T. W. Anderson (1918–2016), Jerzy K. Baksalary (1944–
2005), Oscar Kempthorne (1919–2000), Sujit Kumar Mitra (1932–2004), Shayle R. Searle (1928–
2013), Geoffrey S. Watson (1921–1998), and George Zyskind (1929–1974).

For lively discussions about 30 years ago, addressing in particular some least- squares historical
problems and linear unbiasedness concepts, we would like to thank Ronald Christensen, Richard
William Farebrother, and David A. Harville and in particular for their Letters to the Editor about
Puntanen and Styan (1989), see Christensen (1990), Farebrother (1990), Harville (1990), and the
“Reply” by Puntanen and Styan (1990).

We wish to thank the anonymous referee for valuable remarks improving our presentation.
Thanks go also to Kimmo Vehkalahti for constructive comments and to Jarmo Niemelä for very
helpful LATEX assistance while preparing this article.

The quotations in this article from Statistical Science and Annals of Mathematical Statistics
are reprinted with the permission of the Institute of Mathematical Statistics. Similarly, sincere
thanks for corresponding permissions go to IMAGE: The Bulletin of ILAS, Linear Algebra and its
Applications, Sankhyā: The Indian Journal of Statistics, and The American Statistician.

This researchwas essentially completed during themeetings of an International ResearchGroup
on Multivariate and Mixed Linear Models in the Mathematical Research and Conference Center,
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15, 253–280 (1955). https://www.jstor.org/stable/25048246

Rao, C.R.: A note on a generalized inverse of amatrixwith applications to problems inmathematical
statistics. J. Roy. Statist. Soc. Ser. B 24, 152–158 (1962). https://doi.org/10.1111/j.2517-6161.
1962.tb00447.x

Rao, C.R.: Least squares theory using an estimated dispersion matrix and its application to mea-
surement of signals. In: Le Cam, L.M., Neyman, J. (eds.) Proceedings of the Fifth Berkeley
Symposium on Mathematical Statistics and Probability, vol. 1, pp. 355–372. University of Cali-
fornia Press, Berkeley (1967). https://projecteuclid.org/euclid.bsmsp/1200512997

Rao, C.R.: A note on a previous lemma in the theory of least squares and some further results.
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Abstract The inferential problem of drawing inference about a common mean μ of
several independent normal populations with unequal variances has drawn universal
attention, and there are many exact and asymptotic tests for testing a null hypothesis
H0 : μ = μ0 against two-sided alternatives. In this paper we provide a review of
some of these exact and asymptotic tests and present theoretical expressions of local
powers of the exact tests and a comparison. It turns out that, in the case of equal sample
size, a uniform comparison and ordering of the exact tests based on their local power
can be carried out even when the variances are unknown. Our observation is that
both modified F and modified t tests based on a suitable combination of component
F and t statistics perform the best in terms of local power among all exact tests
under consideration. An exact test based on inverse normal method of combination
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Table 1 Percentage of albumin in plasma protein of four different experiments

Experiment ni Mean Variance

A 12 62.3 12.99

B 15 60.3 7.84

C 7 59.5 33.43

D 16 61.5 18.51

Table 2 Selenium content in nonfat milk powder using four methods

Method ni Mean Variance

Atomic absorption
spectrometry

8 105.0 85.71

Neutron activation:
instrumental

12 109.8 20.75

Neutron activation:
radiochemical

14 109.5 2.73

Isotope dilution mass
spectrometry

8 113.3 33.64

1 Introduction

The inferential problem of drawing inference about a common mean μ of several
independent normal populations with unequal variances has drawn universal atten-
tion, and there are many exact tests for testing a null hypothesis H0 : μ = μ0 against
two-sided alternatives H1 : μ �= μ0. In this paper we provide a review of their local
powers and a comparison.

A well-known context of this problem occurred when Meier (1953) was
approached to draw inference about the mean of albumin in plasma protein in human
subjects based on results from four experiments, reproduced below (Table1).

Another scenario happened when Eberhardt et al. (1989) had results from four
experiments about nonfat milk powder and the problem was to draw inference about
themeanSelenium innonfatmilk powder by combining the results from fourmethods
(Table2).

A similar situation arises in the context of environmental data analysis when upon
identifying a hot-spot in a contaminated area, samples are drawn and sent to several
labs simultaneously and then the resulting data are combined for eventual analysis.
This parallel data analysis is especially important for subsequent adoption of reme-
dial actions in case the mean contamination level at the site is found to exceed a
certain threshold.
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A possible application scenario at the Census Bureaumay arise if there is a need to
draw inference about average wage of college graduates in a specified age group in a
certain state. County level information can be collected from each county via simple
random sampling. Then under a model-based approach with a common overall mean
wage across the state and heterogeneous county level variances, the results developed
in this paper can be useful. Of course, in case of complex surveys involving survey
weights, our current formulation of the inference problem will not be applicable.

A general formulation of the problem can be stated as follows. There are k normal
populations with a common mean μ and different variances σ 2

1 , · · · , σ 2
k . Based on

a sample of size ni from the i th population, we want to test H0 : μ = μ0 versus

H1 : μ �= μ0. Obviously, there exist k independent t-tests based on ti =
√
ni (X̄i−μ0)

Si
that follows central t distributionwith νi degrees of freedom.Note that the assumption
of normality is crucial in our subsequent discussion.Most meta-analysis applications
are based on this assumption (Hartung et al. 2008).

The natural meta-analysis question now is: how to combine the results from the k
independent t-tests? As one can expect, there are many ways of accomplishing this
task based on some exact and some asymptotic procedures. Let us first briefly review
the asymptotic procedures for testing hypothesis about common mean μ.

In the trivial case when the k population variances are completely known, the
common mean μ can easily be estimated using the maximum likelihood estimator
μ̂ = [∑k

i=1
ni
σ 2
i
X̄ i ][∑k

j=1
n j

σ 2
j
]−1 with Var(μ̂) = [∑k

i=1
ni
σ 2
i

]−1
. This estimator μ̂ is

the minimum variance unbiased estimator under normality as well as the best linear
unbiased estimator without normality for estimating μ. A simple test based on stan-
dard normal z is obvious in this case.

However, in most cases, the population variances are unknown and a familiar
estimate, known as the Graybill–Deal estimate can be used (Graybill and Deal 1959).
This unbiased estimator μ̂GD together with its variance are given as

μ̂GD =
∑k

i=1
ni
S2i
X̄ i

∑k
j=1

n j

S2j

with Var(μ̂GD) = E

[( k∑

i=1

niσ 2
i

S4i

)/( k∑

i=1

ni
S2i

)2]

.

Khatri and Shah (1974) proposed exact variance expression for μ̂GD , which is
complicated and cannot be easily implemented. To address this inferential problem,
Meier (1953) derived a first-order approximation of the variance of μ̂GD as

Var(μ̂GD) =
[ k∑

i=1

ni
σ 2
i

]−1[

1 + 2
k∑

i=1

1

ni − 1
ci (1 − ci ) + O

( k∑

i=1

1

(ni − 1)2

)]

; ci = ni /σ
2
i

∑k
j=1 n j /σ

2
j

.
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Sinha (1985) in the same spirit derived an unbiased estimator of the variance of
μ̂GD that is a convergent series. A first-order approximation of this estimator is

̂Var (1)(μ̂GD) = 1
∑k

i=1
ni
S2i

[

1 +
k∑

i=1

4

ni + 1

(
ni/S2i

∑k
j=1 n j/S2j

− n2i /S
4
i

(
∑k

j=1(n j/S2j )
2

)]

.

The above estimator is comparable to Meier’s (1953) approximate estimator

̂Var (2)(μ̂GD) = 1
∑k

i=1
ni
S2i

[

1 +
k∑

i=1

4

ni − 1

(
ni/S2i

∑k
j=1 n j/S2j

− n2i /S
4
i

(
∑k

j=1(n j/S2j )
2

)]

.

The “classical” meta-analysis variance estimator, ̂Var (3)(μ̂GD), and approximate

variance estimator proposed by Hartung (1999)̂Var (4)(μ̂GD) are the two other vari-
ance estimators of μ̂GD which are given by

̂Var (3)(μ̂GD) = 1
∑k

i=1
ni
S2i

& ̂Var (4)(μ̂GD) = 1

k − 1

k∑

i=1

(
ni /S

2
i

∑k
j=1 n j /S

2
j

)

(X̄i − μ̂GD)2.

We should mention that a parametric bootstrap approach based on Graybill–Deal
estimate was suggested in Malekzadeh and Kharrati-Kopaei (2018) to draw infer-
ence about μ which works quite well in large samples. Likewise, inference based on
the MLE of μ suggested in Chang and Pal (2008) is also asymptotic in nature. As
mentioned earlier, the central focus of this paper is to critically examine some exact
tests for the commonmean. A power comparison of these available exact tests is then
a natural desire. In this paper this is precisely what we accomplish by comparing six
exact tests based on their local powers.

The organization of the paper is as follows. In Sect. 2we provide a brief description
of the six exact tests with their references. The pdf of non-central t which naturally
plays a pivotal role for studying power of t tests is given along with its local expan-
sion (in terms of its non-centrality parameter). Section3, a core section of the paper,
provides expressions of local powers of all the proposed tests. Appendix I at the end
contains proofs of all technical results. Section4 contains some numerical (power)
comparisons in the case of equal sample sizes and also in the case of one specific
unequal sample sizes. We conclude this paper with some remarks in Sect. 5.
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2 Review of Six Exact Tests for H0 Versus H1

Consider k independent normal populations where the i th population follows a nor-
mal distribution with mean μ ∈ R and variance σ 2

i > 0. Let X̄i denote the sample
mean, S2i the (unbiased) sample variance, and ni the sample size of the i th popu-

lation. Then, we have X̄i ∼ N(μ,
σ 2
i
ni

) and (ni−1)S2i
σ 2
i

∼ χ2
νi
, where νi = (ni − 1) and

i = 1, · · · , k. Note that the statistics {X̄i , S2i , i = 1, · · · , k} are all mutually inde-
pendent.

A generic notation for a t statistic based on a sample of size n is tobs =√
n(x̄ − μ0)/s. We can refer to this t computed from a given data set as the observed

value of our test statistic, and reject H0 when |tobs | > tν;α/2, where ν is the degrees
of freedom and α is Type I error level. A test for H0 based on a P-value on the other
hand is based on Pobs = P[|tν | > |tobs |], and we reject H0 at level α if Pobs < α.
Here tν stands for the central t variable with ν degrees of freedom and tν;α/2 stands
for the upper α/2 percentile of tν . It is easy to check that the two approaches are
obviously equivalent.

A random P-value which has a Uniform(0, 1) distribution under H0 is defined
as Pran = P[|tν | > |tran|], where tran = √

n(X̄ − μ0)/S. All suggested tests for H0

are based on Pobs and tobs values and their properties, including size and power, are
studied under Pran and tran . To simplify notations, we will denote Pobs by small p
and Pran by large P . Six exact tests based on tobs and p values from k independent
studies as available in the literature are listed below.

2.1 P-Value Based Exact Tests

2.1.1 Tippett’s Test

This minimum P-value test was proposed by Tippett et al. (1931), who noted that, if
P1, · · · , Pk are independent p-values from continuous test statistics, then each has
a uniform distribution under H0. Suppose that P(1), · · · , P(k) are ordered p-values.
According to this method, the commonmean null hypothesis H0 : μ = μ0 is rejected
at α level of significance if P(1) <

[
1 − (1 − α)

1
k
]
. Incidentally, this test is equivalent

to the test based on Mt = max1≤i≤k |ti | suggested by Cohen and Sackrowitz (1984).
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2.1.2 Wilkinson’s Test

This test statistic proposed by Wilkinson (1951) is a generalization of Tippett’s test
that uses not just the smallest but the r th smallest p-value (P(r)) as a test statistic.
The commonmean null hypothesis H0 : μ = μ0 will be rejected if P(r) < dr,α , where
P(r) follows a Beta distribution with parameters r and (k − r + 1) under H0 and dr,α
satisfies Pr{P(r) < dr,α|H0} = α. Obviously, this procedure generates a sequence
of tests for different values of r = 1, 2, · · · , k. And an attempt has been made to
identify the best choice of r (Table4).

2.1.3 Inverse Normal Test

This exact test procedure which involves transforming each p-value to the corre-
sponding normal score was proposed independently by Stouffer et al. (1949) and
Lipták (1958). Using this inverse normal method, hypothesis about the common μ

will be rejected at α level of significance if
[∑k

i=1 �−1(Pi )
][√

k
]−1

< −zα , where
�−1 denotes the inverse of the cdf of a standard normal distribution and zα stands
for the upper α level cutoff point of a standard normal distribution.

2.1.4 Fisher’s Inverse χ2-Test

This inverse χ2-test is one of the most widely used exact test procedures for com-
bining k independent p-values (Fisher 1932). This procedure uses the

∏k
i=1 Pi to

combine the k independent p-values. Then, using the connection between uni-
form and χ2 distributions, the hypothesis about the common μ will be rejected
if −2

∑k
i=1 ln(Pi ) > χ2

2k,α , where χ2
2k,α denotes the upper α critical value of a χ2-

distribution with 2k degrees of freedom.

2.2 Exact Test Based on a Modified t

Fairweather (1972) consider a test based on a weighted linear combination of the
ti ’s. In this paper, we consider a variation of this test based on a weighted linear
combination of |ti | as we are testing a non-directional alternative. Our test statistic
T1 is given as

∑k
i=1 w1i |ti |, where w1i ∝ [Var(|ti |)]−1 with Var(|ti |) = [[νi (νi −

2)−1] − ([�(νi−1
2 )

√
νi ][�(νi

2 )
√

π ]−1
)2]

. The null hypothesis H0 : μ = μ0 will be
rejected if T1 > d1α , where Pr{T1 > d1α|H0} = α. In applications d1α is computed
by simulation.
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2.3 Exact Test Based on a Modified F

Jordan and Krishnamoorthy (1996) considered a weighted linear combination of the
F-test statistics Fi , namely, T2, which is given as

∑k
i=1 w2i Fi , Fi = t2i ∼ F(1, νi ),

andw2i ∝ [Var(Fi )]−1 withVar(Fi ) = [2ν2
i (νi − 1)][(νi − 2)2(νi − 4)]−1 forνi >

4. The null hypothesis H0 : μ = μ0 will be rejected if T2 > d2α , where Pr{T2 >

d2α|H0} = α. In applications d2α is computed by simulation.

Wemention in passing that Philip et al. (1999) studied someproperties of the confi-
dence interval for the commonmeanμ based on Fisher’s test and inverse normal test.

The pdfs of t statistic under the null and alternative hypotheses which will be
required in the sequel are given below. δ = √

n(μ1 − μ0)/σ below stands for the
non-centrality parameter when μ1 is chosen as an alternative value. Later, we will
denote (μ1 − μ0) by 
.

fν(t) = �(ν+1
2 )√

νπ�(ν
2 )

(

1 + t2

ν

)− ν+1
2

fν;δ(t) = ν
ν
2 exp

( −νδ2

2(t2+ν)

)

√
π�(ν

2 )2
ν−1
2

(
t2 + ν

) ν+1
2

∫ ∞

0
yν exp

[

− 1

2

(
y − δt√

t2 + ν

)2
]

dy

First and second derivatives of fν;δ(t) evaluated at δ = 0 (equivalently, 
 = 0)
which will play a pivotal role in the study of local powers of the proposed tests appear
below.

∂ fν;δ(t)
∂δ

∣
∣
∣
δ=0

= t
√
2π

(
t2
ν

+ 1
) ν+2

2

∂2 fν;δ(t)
∂δ2

∣
∣
∣
δ=0

= �(ν+1
2 )

�( ν
2 )

√
νπ

[
t2 − 1

( t
2

ν
+ 1)

ν+3
2

]

3 Expressions of Local Powers of the Six Proposed Tests

In this section we provide the expressions of local powers of the suggested exact
tests. A common premise is that we derive an expression of the power of a test under

 �= 0, and carry out its Taylor expansion around 
 = 0. It turns out that due to
two-sided nature of our tests, the first term vanishes, and we retain terms of order
O(
2).
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The final expressions of the local powers of the proposed tests are given below
in the general case and also in the special case when n1 = · · · = nk = n, and ν1 =
· · · = νk = ν = n − 1. All throughout, we write � = ∑k

i=1
1
σ 2
i
which is relevant in

the special case. For detailed proofs of all technical results below we refer to the
Appendix section of this paper.

3.1 Local Power of Tippett’s Test [LP(T )]

LP(T ) ≈ α + (1 − α)
k−1
k


2

2

( k∑

i=1

ni
σ 2
i

|ξνi T (aα)|
)

(1)

= α +
[
n
2

2
�

][

(1 − α)
k−1
k

]

|ξνT (aα)| [
special case

]

where ξνT (aα) = ∫ tν (
aα
2 )

−tν (
aα
2 )

∂2 fν;δ(t)
∂δ2

∣
∣
∣
δ=0

dt; aα = [1 − (1 − α)
1
k ]. It turns out that

ξνT (aα) < 0.

3.2 Local Power of Wilkinson’s Test [LP(Wr)]

LP(Wr ) ≈ α +
(
k − 1

r − 1

)

dr−1
r;α (1 − dr;α)k−r 
2

2

[ k∑

i=1

ni
σ 2
i

|ξiW (dr,α)|
]

(2)

= α +
[
n
2

2
�

](
k − 1

r − 1

)

|ξνW (dr;α)|dr−1
r;α (1 − dr;α)k−r [

special case
]

where ξνW (dr;α) is equivalent to ξνT (aα)withaα = dr;α . It turns out that ξνW (dr;α) < 0.

Remark: For the special case r = 1, LP(Wr ) = LP(T ), as expected,
because d1;α = [1 − (1 − α)

1
k ], implying (1 − d1;α)k−1 = (1 − α)

k−1
k .

3.3 Local Power of Inverse Normal Test [LP(I NN)]

LP(I N N ) ≈ α + 
2

2
√
k
φ(zα)

k∑

i=1

niνi
σ 2
i

[
zα[Bνi − Cνi ]

2
√
k

− Aνi

]

(3)

= α +
[
n
2

2
�

]
ν√
k
φ(zα)

[
zα[Bν − Cν]

2
√
k

− Aν

]
[
special case

]
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where Aν = ∫ ∞
−∞ uφ(u)Qν(u)du; Bν = ∫ ∞

−∞ u2φ(u)Qν(u)du; Cν = ∫ ∞
−∞ φ(u)Qν(u)du;

Qν(u) =
[
x2−1
x2+ν

]

x=tν ( c2 ), c=�(u)
; φ(u) is standard normal pdf and �(u) is standard nor-

mal cdf.

3.4 Local Power of Fisher’s Test [LP(F)]

LP(F) ≈ α + 
2

2

[ k∑

i=1

ni νi
2σ 2

i

Dνi

][

E

{
{
ln(T/2)

}
I{T≥χ2

2k;α}
}

T∼χ2
2k

− αD0

]

(4)

= α +
[
n
2

2
�

]
νDν

2

[

E

{
{
ln(T/2)

}
I{T≥χ2

2k;α}
}

T∼χ2
2k

− αD0

]
[
special case

]

where D0 = E
[
log (q)

]; Dν = E
[
Uψν(U )

]; U ∼exp[2]; q ∼gamma[1, k];
T ∼gamma[2, k];ψν(u) =

[
x2−1
x2+ν

]

x=tν (
c
2 ), c=exp (− u

2 )
.

3.5 Local Power of a Modified t Test [LP(T1)]

LP(T1) ≈ α + 
2

2

( k∑

j=1

n j

σ 2
j

EH0

[{
(t2j − 1)ν j

t2j + ν j

}

I{∑k
i=1 w1i |ti |>d1α}

])

(5)

= α +
[
n
2

2
�

]

EH0

[{
(t21 − 1)ν

t21 + ν

}

I{∑k
i=1 |ti |>d1α}

]
[
special case

]

3.6 Local Power of a Modified F Test [LP(T2)]

LP(T2) ≈ α + 
2

2

( k∑

j=1

n j

σ 2
j

EH0

[{ [Fj − 1]ν j

Fj + ν j

}

I{∑k
i=1 w2i Fi>d2α}

])

(6)

= α +
[
n
2

2
�

]

EH0

[{ [F1 − 1]ν
F1 + ν

}

I{∑k
i=1 Fi>d2α}

]
[
special case

]

4 Comparison of Local Powers

It is interesting to observe from the above expressions that in the special case of
equal sample size, local powers can be readily compared, irrespective of the values
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Table 3 Comparison of the 2nd term of local powers [without n
2�/2] of six exact tests for
different values of k and n (equal sample size)

Exact test k = 5 k = 10 k = 15

n = 15 n = 25 n = 40 n = 15 n = 25 n = 40 n = 15 n = 25 n = 40

Tippett 0.0575 0.0633 0.0667 0.0322 0.0361 0.0383 0.0227 0.0257 0.0275

Wilkinson 0.0633 0.0664 0.0681 0.0412 0.0430 0.0441 0.0324 0.0338 0.0346

Inverse
normal

0.0667 0.0683 0.0699 0.0438 0.0454 0.0462 0.0349 0.0355 0.0369

Fisher 0.0575 0.0579 0.0602 0.0421 0.0429 0.0441 0.0321 0.0343 0.0363

Modified t 0.0737 0.0759 0.0768 0.0486 0.0511 0.0516 0.0391 0.0409 0.0412

Modified F 0.0752 0.0784 0.0807 0.0495 0.0527 0.0533 0.0388 0.0401 0.0411

Table 4 Comparison of the 2nd term of local powers [without n
2�/2] of Wilkinson’s test for
n = 15 (equal sample size) and different values of k and r (≤ k)

r k = 5 k = 10 k = 15 k = 20 k = 30 k = 40

1 0.0575 0.0322 0.0227 0.0177 0.0124 0.0096

2 0.0633 0.0395 0.0292 0.0234 0.0169 0.0134

3 0.0587 0.0412 0.0317 0.0259 0.0193 0.0155

4 0.0494 0.0404 0.0324 0.0271 0.0206 0.0168

5 0.0359 0.0384 0.0322 0.0275 0.0214 0.0176

6 0.0355 0.0314 0.0274 0.0214 0.0181

7 0.0320 0.0302 0.0270 0.0220 0.0185

8 0.0279 0.0287 0.0264 0.0219 0.0187

9 0.0230 0.0270 0.0256 0.0218 0.0188

10 0.0168 0.0250 0.0246 0.0215 0.0187

11 0.0229 0.0235 0.0212 0.0186

12 0.0205 0.0224 0.0208 0.0185

13 0.0178 0.0211 0.0203 0.0184

14 0.0147 0.0197 0.0198 0.0181

15 0.0108 0.0182 0.0192 0.0179

of the unknown variances (involved through �, which is a common factor in all the
expressions of local power).

Table3 represents values of the 2nd term of local power given above in Eqs. 1–6,
apart from the common term

[
n
2

2 �
]
for different values of k, n and choices of r

(≤ k) with maximum local power. A comparison of the 2nd term of local power of
Wilkinson’s test for different values of r (≤ k) is provided in Table4 for n = 15 and
k ∈ {5, 10, 15, 20, 30, 40}. All throughout we have used α = 5%.
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Fig. 1 Comparison of local powers of six exact tests for n = 15, k = 5 and � = 1

Here are some interesting observations: comparing Tippett’s and Wilkinson’s
tests, we note that Wilkinson’s test for some r > 1 always outperforms Tippett’s
test, and the optimal choice of r seems to increase with k (Table4 and Fig. 2), it is
just above

√
k. Among the other tests, Fig. 1 with � = 1 reveals that both modified

F and modified t tests fare the best uniformly in the design parameters n and k.
Inverse normal-based exact test also performs reasonably well in the case of equal
sample size for all values of k and n (Table3). Another advantage of this test is that
its cutoff point can be readily obtained without any simulation.

Some limited local power computations in case of unequal sample sizes are
reported in Table5. It again follows that both modified F andmodified t tests have an
edge over all other tests. Our recommendation based on the local power comparison
of the available exact tests is to advocate the use of these modified exact tests in all
scenarios.

Following the suggestion of first reviewer, we have added a table (Table6) that
shows a comparison ofmodified t andmodified F local powers andMonte Carlo sim-
ulated powers for different values of n, 
2, k = 5 and σ 2

i ∈ {1.0, 1.5, 2.0, 0.5, 0.3}.
It turns out that for smaller values of 
2 the accuracies are fairly good even for
small value of n. Following the suggestion of second reviewer, we have added two
figures (Figs. 3 and 4) displaying approximate pdf of U for small values of 
2 and
simulated pdf of U for the same small values of 
2 (Fig. 3), and approximate pdf
of U for small values of 
2 and approximate normal pdf of U for the same small
values of 
2 (Fig. 4). The figures attest testimony to our assumption that the pdf of
U for local alternatives can be approximated by a normal distribution.
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Table 5 Coefficients of 
2/2 in the 2nd term of local powers of six exact tests for different values
of k, n (unequal sample sizes) and σ 2

Exact test k = 2 k = 3 k = 4

n1 = 10, σ2
1 = 1

n2 = 20, σ2
2 = 2

n1 = 10, σ2
1 = 1

n2 = 20, σ2
2 = 2

n3 = 30, σ2
3 = 3

n1 = 10, σ2
1 = 1

n2 = 20, σ2
2 = 2

n3 = 30, σ2
3 = 3

n4 = 40, σ2
4 = 4

Tippett 2.3332 2.6606 2.9108

Inv normal 2.3603 2.7753 3.1284

Fisher 1.7280 2.1528 2.5140

Modified t 2.4524 2.9990 3.4404

Modified F 2.5011 3.0077 3.5252

Wilkinson (r = 1) 2.3332 2.6606 2.9108

Wilkinson (r = 2) 1.9464 2.5472 2.9611

Wilkinson (r = 3) 1.8972 2.5389

Wilkinson (r = 4) 1.8447
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Fig. 2 Comparison of local powers of Wilkinson’s exact test for n = 15, k = 5 and � = 1
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Table 6 Comparison of Modified t and Modified F local powers and Monte Carlo simulated
powers for different values of n, 
2, σ 2

i ∈ {1.0, 1.5, 2.0, 0.5, 0.3} and k = 5

n 
2 Local Power (α = 5%)

Modified t Modified F MC simulated

15 0.002 0.0583 0.0585 0.0563

0.004 0.0666 0.0669 0.0628

0.006 0.0749 0.0754 0.0708

0.008 0.0832 0.0838 0.0833

0.010 0.0915 0.0923 0.0956

25 0.002 0.0642 0.0647 0.0623

0.004 0.0785 0.0794 0.0774

0.006 0.0927 0.0941 0.0938

0.008 0.1069 0.1088 0.1133

0.010 0.1212 0.1235 0.1339

40 0.002 0.0730 0.0742 0.0723

0.004 0.0961 0.0984 0.1005

0.006 0.1191 0.1226 0.1310

0.008 0.1422 0.1468 0.1653

0.010 0.1652 0.1710 0.2041
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Fig. 3 Approximate pdf of U and simulated pdf of U for different values of 
2 ∈
{0.005, 0.010, 0.020, 0.030}
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Fig. 4 Approximate pdf of U and approximate normal pdf of U for different values of [
/σ ]2

5 Conclusion

Based on our computations of local powers of the available exact tests, we have
noted that a uniform comparison of them, irrespective of the values of the unknown
variances, can be readily made in case of equal sample size, and it turns out that
both modified F and modified t tests perform the best. Inverse normal-based exact
test also performs reasonably well in the case of equal sample size with the added
advantage that its cutoff point can be readily obtained without any simulation. Some
limited computations of local powers in case of unequal sample sizes also reveal the
superiority of these two modified tests compared to the other exact tests.
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Appendix 1: Proofs of Local Powers of Six Exact Tests

We begin by stating a result related to the distribution of a P-value under the alter-
native hypothesis H0 : μ = μ1, which will be crucial for providing the main results
on local power of all tests based on the P-values. We denote Fν(·) to represent the
cdf of a central t-distribution with ν degrees of freedom.
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Lemma 1

Pr{P > c|H1} ≈ (1 − c) + n
2

2σ 2
ξν(c). (7)

Proof

Pr{P > c|H1} = Pr

{

Pr

[

|tν | > |
√
n(X̄ − μ0

)

S
|
]

> c|H1

}

= Pr

{

1 −
[

Fν

(

|
√
n(X̄ − μ0

)

S
|
)

− Fν

(

− |
√
n(X̄ − μ0

S
|
)]

> c|H1

}

= Pr

{[

Fν

(

|
√
n(X̄ − μ0

)

S
|
)

− Fν

(

− |
√
n(X̄ − μ0

S
|
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< 1 − c|H1
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= Pr

{

|
√
n(X̄ − μ0
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S
| < tν

( c

2

)|H1

}

= Pr

{

− tν
( c

2

)
<

√
n(X̄ − μ0

)

S
< tν

( c

2

)|H1

}

= Pr

{

− tν
( c

2

)
< tν (δ) < tν

( c

2

)|H1

}

=
∫ tν ( c2 )

−tν ( c2 )
f (x |ν, δ) dx

[

f (x |ν, δ) ∼ non-central tν

(

δ =
√
n

σ



)]

≈
∫ tν ( c2 )

−tν ( c2 )

{

f (x |ν, 0) + δ

(
∂ f

∂δ

)∣
∣
∣
δ=0

+ δ2

2

(
∂2 f

∂δ2

)∣
∣
∣
δ=0

}

dx

≈ (1 − c) + n

2σ2

2

∫ tν ( c2 )

−tν ( c2 )

{
∂2 f (x |ν, δ)

∂δ2

∣
∣
∣
δ=0
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≈ (1 − c) + n
2

2σ2
ξν (c)

where ξν(c) = ∫ tν (
c
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−tν (
c
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{
∂2 f (x |ν,δ)

∂δ2
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�( ν
2 )

√
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c
2 )

−tν (
c
2 )

(
x2−1

[ x2
ν

+1] ν+3
2

)

dx . It turns

out that ξν(c) < 0. �

I. Local Power of Tippett’s Test [LP(T )]

Recall that Tippett’s test rejects the null hypothesis if P(1) <
[
1 − (1 − α)

1
k
] = aα .

This leads to

Power = 1 −
k∏

i=1

Pr
{
Pi > aα|H1

}
.
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Applying Lemma 1, the local power of Tippett’s test is calculated as follows:

Local power ≈ 1 −
k∏

i=1

[

(1 − aα) + 
2

2

(
ni
σ 2
i

ξνi T (aα)

)]

≈ 1 −
k∏

i=1

[

(1 − α)
1
k + 
2

2

(
ni
σ 2
i

ξνi T (aα)

)]

≈ 1 −
[

(1 − α) + (1 − α)
k−1
k


2

2

( k∑

i=1

ni
σ 2
i

ξνi T (aα)

)]

≈ α + (1 − α)
k−1
k


2

2

( k∑

i=1

ni
σ 2
i

|ξνi T (aα)|
)

.

For the special case n1 = · · · = nk = n; ν1 = · · · = νk = ν = n − 1 and
ξν1T (aα) = · · · = ξνk T (aα) = ξνT (aα), the local power of Tippett’s test reduces to

LP(T) ≈ α + (1 − α)
k−1
k
n
2

2
|ξνT (aα)|

( k∑

i=1

1

σ 2
i

)

= α +
[
n
2

2
�

][

(1 − α)
k−1
k

]

|ξνT (aα)| where � =
k∑

i=1

1

σ 2
i

.

II. Local Power of Wilkinson’s Test [LP(Wr)]

Using r th smallest p-value P(r) as a test statistic, the null hypothesis will be
rejected if P(r) < dr,α , where P(r) ∼ Beta[r, k − r + 1] under H0 and dr,α satisfies

α = Pr{P(r) < dr,α|H0} = ∫ dr,α
0

ur−1(1−u)k−r

B[r,k−r+1] du. This leads to

Power = Pr [P(r) < dr,α|H1]

=
k∑

l=r

Pr{Pi1 , . . . , Pil < dr,α < Pil+1 , . . . , Pik |H1}

where (i1, · · · , il , il+1, · · · , ik) is a permutation of (1, · · · , k). Applying Lemma 1,
we get
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Pr{Pi1, . . . , Pil < dr,α < Pil+1 , . . . , Pik |H1}

≈
{ l∏
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(
dr,α − ni j 


2

2σ 2
i j

ξi j W (dr,α)
)
}{ k∏
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2
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2

2
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.

Permuting (i1, . . . , ik) over (1, . . . , k), we get for any fixed l (r ≤ l ≤ k),

1st term =
(
k

l

)

dlr,α(1 − dr,α)k−l

2nd term = 
2

2
dlr,α(1 − dr,α)k−l−1

{(
k − 1

k − l − 1

)( k∑

i=1

ni
σ 2
i

ξiW (dr,α)

)}

3rd term = −
2

2
dl−1
r,α (1 − dr,α)k−l

{(
k − 1

l − 1

)( k∑

i=1

ni
σ 2
i

ξiW (dr,α)

)}

.

The second term above follows upon noting that when
[ ∑k

j=l+1
ni j
σ 2
i j

ξi j W (dr,α)
]
is

permuted over (il+1 < · · · < ik) ⊂ (1, . . . , k), each term ni
σ 2
i
ξiW (dr,α) appears exactly

( k−1
k−l−1

)
times, for each i = 1, · · · , k. The 3rd term, likewise, follows upon noting

that when
[∑l

j=1
ni j
σ 2
i j

ξi j W (dr,α)
]
is permuted over (i1 < · · · < il) ⊂ (1, . . . , k), each

term ni
σ 2
i
ξiW (dr,α) appears exactly

(k−1
l−1

)
times, for each i = 1, · · · , k.

Adding the above three terms and simplifying, we get

LP(Wr ) ≈ α +
(
k − 1

r − 1

)

dr−1
r;α (1 − dr;α)k−r 
2

2

[ k∑

i=1

ni
σ 2
i

|ξiW (dr,α)|
]

.

For the special casen1 = · · · = nk = n;ν1 = · · · = νk = ν = n − 1and ξν1W (dr;α)

= · · · = ξνkW (dr;α) = ξνW (dr;α), the local power of Wilkinson’s test reduces to



94 Y. G. Kifle et al.

LP(Wr ) ≈ α +
(
k − 1

r − 1

)

dr−1
r;α (1 − dr;α)k−r n
2

2
|ξiW (dr,α)|

( k∑

i=1

1

σ 2
i

)

= α +
[
n
2

2
�

](
k − 1

r − 1

)

|ξνW (dr;α)|dr−1
r;α (1 − dr;α)k−r where � =

k∑

i=1

1

σ 2
i

.

III. Local Power of Inverse Normal Test [LP(I NN)]

Under this test, the null hypothesis will be rejected if 1√
k

∑k
i=1Ui < −zα , where

Ui = �−1(Pi ), �−1 is the inverse cdf and zα is the upper α level critical value of a
standard normal distribution. This leads to

Power = Pr

{
1√
k

k∑

i=1

Ui < −zα|H1

}

.

First, let us determine the pdf ofU under H1, fH1(u), via its cdf FH1(u) = Pr{U ≤
u|H1}.
Pr{U ≤ u|H1} = Pr{�(U ) ≤ �(u)|H1}

= Pr{P ≤ �(u)|H1}
[
U = �−1(P) =⇒ P = �(U )

]

= 1 − Pr{P > �(u)|H1}

≈ 1 −
[

[1 − �(u)] + n
2

2σ 2

[
ξν(c)

]
c=�(u)

]
[
upon applying Lemma 1

]

≈ �(u) − n
2

2σ 2

[
ξν(c)

]
c=�(u)

.

This implies

fH1 (u) ≈ d

du

[

�(u) − n
2

2σ 2

[
ξν(c)

]
c=�(u)

]

≈ φ(u)

[

1 − n
2

2σ 2

(
d

dc

[
ξν(c)

]
c=�(u)

)]

≈
φ(u)

[
1 + nν
2

2σ2 Qν(u)
]

1 + nν
2

2σ2

∫ ∞
−∞ φ(u)Qν(u)du

, Qν(u) =
[
x2 − 1

x2 + ν

]

x=tν ( c2 ), c=�(u)

.

Here we have used the fact that d
du [ξν(c)] = d

dc [ξν(c)] dcdu , d
dc [ξν(c)] = −νQν(·)

given below in Eq. (10), upon simplification, and dc
du = φ(u). The denominator in

the last expression is a normalizing constant.
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d

dc
ξν(c) = d

dc

[ ∫ tν ( c2 )

−tν ( c2 )
f ∗(x)dx

] [

f ∗(x) = ∂2 f (x |ν, δ)

∂δ2

∣
∣
∣
δ=0

= �( ν+1
2 )

�( ν
2 )

√
νπ

(
x2 − 1

[ x2ν + 1] ν+3
2

)]

= d

dc

[
F∗(

tν(c/2)
) − F∗(−tν(c/2)

)]

= f ∗(
tν(c/2)

)[ d

dc
tν(c/2)

] + f ∗(−tν(c/2)
)[ d

dc
tν(c/2)

]

= d

dc
tν(c/2)

[
f ∗(

tν(c/2)
) + f ∗(−tν(c/2)

)]
f ∗(x) is a symmetric distribution

= 2 f ∗(
tν(c/2)

)[ d

dc
tν(c/2)

]
. (8)

Further
[
d
dc tν(c/2)

]
can be expressed in terms of f

(
tν(c/2)

)
as follows.

c

2
= Pr

[
tν ≥ tν(c/2)

]

=
∫ ∞
tν (c/2)

fν(x)dx = 1 − F
(
tν(c/2)

)
[

fν(x) = �( ν+1
2 )√

νπ�( ν
2 )

(

1 + x2

ν

)− ν+1
2

]

d

dc

[ c

2

] = d

dc

[
1 − F

(
tν(c/2)

)]

= − f
(
tν(c/2)

)[ d

dc
tν(c/2)

]

=⇒ d

dc
tν(c/2) = −1

2 f
(
tν(c/2)

) . (9)

Replacing Eq. (9) in (8) results in:

d

dc
ξν(c) = 2 f ∗(tν(c/2)

)
[ −1

2 f
(
tν(c/2)

)

]

= − f ∗(tν(c/2)
)

f
(
tν(c/2)

)

= −ν

[
x2 − 1

x2 + ν

]

x=tν (
c
2 ), c=�(u)

. (10)

Let us define Aν , Bν and Cν as Aν = ∫ ∞
−∞ uφ(u)Qν(u)du,

Bν = ∫ ∞
−∞ u2φ(u)Qν(u)du and Cν = ∫ ∞

−∞ φ(u)Qν(u)du. Using these three quanti-
ties, we now approximate the distribution of U as

U ∼ N [E(U ), Var(U )] where E(U ) =
∫ ∞

−∞
u fH1(u)du ≈ nν
2

2σ 2
Aν and

Var(U ) =
∫ ∞

−∞
u2 fH1(u)du ≈ 1 + nν
2

2σ 2
[Bν − Cν].

This leads to
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1√
k

k∑

i=1

Ui ∼ N

[
1√
k

k∑

i=1

E(Ui ),
1

k

k∑

i=1

Var(Ui )

]

∼ N

[

2

√
k
δ1, 1 + 
2

k
δ2

]

where δ1 =
k∑

i=1

niνi
2σ 2

i

Aνi and δ2 =
k∑

i=1

niνi
2σ 2

i

[Bνi − Cνi ].

Using the above result, the local power of inverse normal test is obtained by

approximating its Power = Pr

{
1√
k

∑k
i=1Ui < −zα|H1

}

as

Local power (INN) ≈ �

[−zα − 
2√
k
δ1

√
1 + 
2

k δ2

]

≈ �

[

− zα − 
2

√
k
δ1 + zα

2


2

k
δ2

]

≈ �

[

− zα + 
2

√
k

(
zα

2
√
k
δ2 − δ1

)]

≈ �(−zα) + 
2

√
k
φ(zα)

[
zα

2
√
k
δ2 − δ1

]

≈ α + 
2

√
k
φ(zα)

[
zα

2
√
k
δ2 − δ1

]

.

Substituting back the expressions for δ1 and δ2 results in

LP(I N N ) ≈ α + 
2

2
√
k
φ(zα)

k∑

i=1

niνi
σ 2
i

[
zα[Bνi − Cνi ]

2
√
k

− Aνi

]

.

For the special case n1 = · · · = nk = n and ν1 = · · · = νk = ν = n − 1, the local
power of Inverse Normal test reduces to

LP(I N N ) ≈ α + nν
2

2
√
k

φ(zα)

( k∑

i=1

1

σ 2
i

)[
zα[Bν − Cν ]

2
√
k

− Aν

]

= α +
[
n
2

2
�

]
ν√
k
φ(zα)

[
zα[Bν − Cν ]

2
√
k

− Aν

]

where � =
k∑

i=1

1

σ 2
i

.
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IV. Local Power of Fisher’s Test [LP(F)]

According to Fisher’s exact test, the null hypothesis will be rejected if
∑k

i=1Ui > χ2
2k;α , where

Ui = −2 ln (Pi ), and χ2
2k;α is the upper α level critical value of a χ2-distribution with 2k degrees

of freedom. This leads to

Power = Pr

{ k∑

i=1

Ui > χ2
2k;α |H1

}

.

In a similar way to the inverse normal test in Appendix III, first let us determine the pdf ofU under
H1, gH1 (u), via its cdf GH1 (u) = Pr{U ≤ u|H1}.
Pr{U ≤ u|H1} = Pr{−2 ln (P) ≤ u|H1}

= Pr{ln (P) > −u/2|H1}
= Pr{P > exp (−u/2)|H1}

≈ [1 − exp (−u/2)] + n
2

2σ 2

[
ξν(c)

]
c=exp (−u/2)

[
upon applying Lemma 1

]
.

This implies

gH1 (u) ≈ d

du

[

1 − exp (−u/2) + n
2

2σ 2

[
ξν(c)

]
c=exp (−u/2)

]

≈ 1

2
exp (−u/2) + [ n
2

2σ 2

] d

du

[
ξν(c)

]
c=exp (−u/2)

≈ 1

2
exp (−u/2) − 1

2
exp (−u/2)

[ n
2

2σ 2

] d

dc

[
ξν(c)

]
c=exp (−u/2)

≈
1
2 exp (−u/2)

[
1 + nν
2

2σ2 �ν(u)
]

1 + nν
2

2σ2

[ ∫ ∞
0

1
2 exp (−u/2)�ν(u)du

] , �ν(u)=
[
x2 − 1

x2 + ν

]

x=tν ( c2 ), c=exp (−u/2)
.

Here we have used the fact that d
du [ξν(c)] = d

dc [ξν(c)] dcdu , d
dc [ξν(c)] = −ν�ν(·) given in

Eq. (10), upon simplification, and dc
du = − 1

2 exp (−u/2). The denominator in the last expression
is a normalizing constant.

Define D0 = ∫ ∞
0

1
�(k) exp (−u)uk−1 ln (u)du and Dν = ∫ ∞

0
1
2 exp (−u/2)(u − 2)�ν(u)du.

Using these quantities, we can now approximate the distribution of U as

U ∼ Gamma[β = 2, γν ] where γν = [
1 + nν
2

4σ 2 Dν

]
.

Here Gamma[β, γν ] stands for a Gamma random variable with scale parameter β and shape
parameter γν with the pdf f (x) = [e−x/β xγν−1]/[βγν �(γν)]. By the additive property of indepen-
dent Gamma[β = 2, γν1 ], · · · ,Gamma[β = 2, γνk ] corresponding toU1, · · · ,Uk , we readily get
the approximate distribution of (U1 + · · · +Uk) as

k∑

i=1

Ui ∼ Gamma
[
β = 2, k + 
2A

]
where A = 1

4

k∑

i=1

niνi
σ 2
i

Dνi .

The local power of Fisher’s test under H1 is then obtained as follows:
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Local power (F) ≈
∫ ∞
χ2
2k;α

exp (−t/2)tk+A
2−1

2k+A
2
�(k + A
2)

dt

[

since
k∑

i=1

Ui∼Gamma
[
β = 2, k + 
2A

]
]

= Q(
2).

We now expand Q(
2) around 
2 = 0 to get

Local power (F) ≈ α + 
2
∫ ∞
χ2
2k;α

exp (−t/2)tk−1

2k

[
∂

∂
2

(
(t/2)A
2

�(k + A
2)

)


2=0

]

dt

≈ α + 
2
∫ ∞
χ2
2k;α

exp (−t/2)tk−1

2k

[
A ln (t/2)

�(k)
− A

∫ ∞
0 exp (−u)uk−1 ln (u)du

�2(k)

]

dt

≈ α + 
2A
∫ ∞
χ2
2k;α

exp (−t/2)tk−1

2k�(k)

[

ln (t/2) −
∫ ∞
0 exp (−u)uk−1 ln (u)du

�(k)

]

dt

≈ α + 
2A

[

E

{
{
ln(T/2)

}
I{T≥χ2

2k;α}
}

T∼χ2
2k

− αD0

]

.

Substituting back the expressions for A results in

LP(F) ≈ α + 
2

2

[ k∑

i=1

niνi
2σ 2

i

Dνi

][

E

{
{
ln(T/2)

}
I{T≥χ2

2k;α}
}

T∼χ2
2k

− αD0

]

.

For the special case n1 = · · · = nk = n and ν1 = · · · = νk = ν = n − 1, the local power ofFisher’s
test reduces to

LP(F) ≈ α + n
2

2
νDν

[ k∑

i=1

1

2σ 2
i

][

E

{
{
ln(T/2)

}
I{T≥χ2

2k;α}
}

T∼χ2
2k

− αD0

]

= α +
[
n
2

2
�

]
νDν

2

[

E

{
{
ln(T/2)

}
I{T≥χ2

2k;α}
}

T∼χ2
2k

− αD0

]

where � =
k∑

i=1

1

σ 2
i

.

V. Local Power of a Modified t Test [LP(T1)]
Using this exact test based on a modified t , the null hypothesis H0 : μ = μ0 will be rejected if T1 >

d1α , where T1 = ∑k
i=1 w1i |ti |, w1i ∝ [Var(|ti |)]−1, Var(|ti |) = [νi (νi − 2)−1] − ([�(

νi−1
2 )√

νi ][�(
νi
2 )

√
π ]−1

)2, and Pr{T1 > d1α |H0} = α. In applications d1α is computed by simulation.
This leads to

Power of T1 = Pr

{ k∑

i=1

w1i |ti | > d1α |H1

}

=
∫

· · ·
∫

∑k
i=1 w1i |ti |>d1α

k∏

i=1

[
fνi ,δi (ti )

]
dti

[
δi =

√
ni


σi

]
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≈
∫

· · ·
∫

∑k
i=1 w1i |ti |>d1α

k∏

i=1

[

fνi (ti ) + δi
∂ fνi ,δi (ti )

∂δi

∣
∣
∣
δi=0

+ δ2i
2

∂2 fνi ,δi (ti )

∂δ2i

∣
∣
∣
δi=0

]

dti

≈ α +
k∑

j=1

δ2j

2

[ ∫

· · ·
∫

∑k
i=1 w1i |ti |>d1α

{ k∏

i=1

fνi (ti )

}{ ∂2 fν j ,δ j (t j )

∂δ2

∣
∣
δ=0

fν j (t j )

}] k∏

i=1

dti

≈ α +
k∑

j=1

δ2j

2

[

EH0

[{
∂2 fν j ,δ j (t j )

∂δ2j

∣
∣
∣
δ j=0

fν j (t j )

}

I{∑k
i=1 w1i |ti |>d1α}

]]

≈ α +
k∑

j=1

δ2j

2

[

EH0

[{ (t2j − 1)ν j

t2j + ν j

}

I{∑k
i=1 w1i |ti |>d1α}|H0

]]

≈ α + 
2

2

( k∑

j=1

n j

σ 2
j

EH0

[{ (t2j − 1)ν j

t2j + ν j

}

I{∑k
i=1 w1i |ti |>d1α}

])

using

[

δ j =
√n j


σ j

]

.

EH0 [·] above is computed by simulation. It is easy to verify from Sect. 3 that the product

terms

{
∂ fνi ,δi (ti )

∂δi

∣
∣
∣
δi=0

}

×
{

∂ fν j ,δ j (t j )

∂δ j

∣
∣
∣
δ j=0

}

involve (ti t j ), apart from t2i and t2j , whose integral over

{∑k
i=1 w1i |ti | > d1α} under H0 is zero.
For the special case n1 = · · · = nk = n and ν1 = · · · = νk = ν = n − 1 which implies w11 =

· · · = w1k = 1, the local power of this exact test based on modified t reduces to

LP(T1) ≈ α + n
2

2

( k∑

j=1

1

σ 2
j

)

EH0

[{
(t21 − 1)ν

t21 + ν

}

I{∑k
i=1 |ti |>d1α}

]

= α +
[
n
2

2
�

]

EH0

[{
(t21 − 1)ν

t21 + ν

}

I{∑k
i=1 |ti |>d1α}

]

where � =
k∑

j=1

1

σ 2
j

.

VI. Local Power of a Modified F Test [LP(T2)]
According to this exact test basedon amodified F , the null hypothesis H0 : μ = μ0 will be rejected if
T2 > d2α , where T2 = ∑k

i=1 w2i Fi , Fi ∼ F(1, νi ), w2i ∝ [Var(Fi )]−1 = [2ν2i (νi − 1)]−1[(νi −
2)2(νi − 4)], and Pr{T2 > d2α |H0} = α. In applications d2α is computed by simulation. This leads
to

Power of T2 = Pr

{ k∑

i=1

w2i Fi > d2α |H1

}

=
∫

· · ·
∫

∑k
i=1 w2i Fi>d2α

k∏

i=1

[
fνi ,λi (Fi )

]
dFi

[

fν,λ(F) ∼ non-central F1,ν

(

λ = n
2

σ 2

)]

.
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Note that fν,λ(F) and its local expansion around λ = 0 are give by

fν,λ(F) = exp (−λ

2
)

∞∑

j=0

( λ
2 ) j

j !
[

(
ν1
ν2

)
ν1+2 j

2 �(
ν1+ν2+2 j

2 )

�(
ν1+2 j

2 )�(
ν2
2 )

][
F

ν1+2 j
2 −1

(
1 + F ν1

nu2

) ν1+ν2+2 j
2

]

≈ fν(F)
(
1 − λ

2

) +
[

( λ
2 )(

ν1
ν2

)
ν1+2
2 �(

ν1+ν2+2
2 )

�(
ν1+2
2 )�(

ν2
2 )

][
Fν1

(
1 + F ν1

ν2

) ν1+ν2+2
2

]

= fν(F) + λ

2

[
f ∗
ν (F) − fν(F)

]
, where f ∗

ν (F) =
(
1

ν

) 3
2
[

F

(1 + F
ν )

ν+3
2 B[ 32 , ν

2 ]

]

.

Using the above first-order expansion of fν,λ(F) leads to the following local power of T2.

LP(T2) ≈
∫

· · ·
∫

∑k
i=1 w2i Fi>d2α

[ k∏

i=1

fνi (Fi ) +
k∑

j=1

λ j

2

(

f ∗
ν j

(Fj ) − fν j (Fj )

){ ∏

i �= j

[
fνi (Fi )

]
}] k∏

i=1

dFi

≈ α +
( k∑

j=1

λ j

2
EH0

[{ f ∗
ν j

(Fj ) − fν j (Fj )

fν j (Fj )

}

I{∑k
i=1 w2i Fi>d2α}

])

EH0 [·] stands for expectation w.r.t F1, . . . , Fk under H0[Fi ∼ F(1, νi )].

≈ α +
( k∑

j=1

λ j

2
EH0

[{
Fj − 1
Fj
ν j

+ 1

}

I{∑k
i=1 w2i Fi>d2α}

])

≈ α + 
2

2

( k∑

j=1

n j

σ 2
j

EH0

[{ [Fj − 1]ν j
Fj + ν j

}

I{∑k
i=1 w2i Fi>d2α}

])

using

[

λ j = n j

2

σ 2
j

]

.

EH0 [·] is obtained by simulation.

For the special case n1 = · · · = nk = n and ν1 = · · · = νk = ν = n − 1 which implies w21 =
· · · = w2k = 1, the local power of this exact test based on modified F reduces to

LP(T2) ≈ α + n
2

2

( k∑

j=1

1

σ 2
j

)

EH0

[{ [F1 − 1]ν
F1 + ν

}

I{∑k
i=1 Fi>d2α}

]

= α +
[
n
2

2
�

]

EH0

[{ [F1 − 1]ν
F1 + ν

}

I{∑k
i=1 Fi>d2α}

]

where � =
k∑

j=1

1

σ 2
j

.
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Quantile Function: Overview of
Collaboration with Professor C. R. Rao

G. Jogesh Babu

Abstract The author’s collaboration with Professor C. Radhakrishna Rao covers
several topics. Some of these results will be presented in this note. In particular, the
study of joint asymptotic distribution of the marginal sample quantiles and its use
in developing tests of significance for population medians will be discussed. The
estimation of the density quantile function at a point, which is needed in evaluating
the asymptotic dispersionmatrix of vector of sample quantiles, will also be described.

Keywords Asymptotic distribution of marginal sample quantiles · Tests of
significance · Median · Estimation of density quantile function · Bahadur’s
representation of sample quantiles · Pooled estimator

1 Introduction

My collaboration with professor C. R. Rao covers several research projects (Babu
et al. 1999, 2000; Babu and Rao 1988, 1990, 1992, 1993, 2003, 2004; Babu et al.
1992; Rao et al. 1991; Lee et al. 2012) including estimation of quantiles, and their
applications. The results of Babu and Rao on quantiles developed in Babu and Rao
(1988, 1990) make use of Bahadur’s representation (Bahadur 1966) of sample quan-
tiles. Bahadur’s representation provides an elegant way to study large sample prop-
erties of sample quantiles. It also helps in density estimation. In this note, I shall
briefly review the results of two of the research projects that I have collaborated
with professor Rao. The first one is on nonparametric treatment of joint asymptotic
distribution of marginal sample quantiles based on samples from a multivariate pop-
ulation. The second one is on consistent and efficient estimation for the density at a
quantile point, where the rates of convergence depend on the smoothness properties
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of the density. Unlike classical density estimation, these estimators do not require
knowledge of the actual values of the derivatives of the density. Rate of convergence
depends only on the smoothness of the density (number of derivatives).

2 Bahadur’s Representation

To describe Bahadur’s representation we start with a definition.

Definition For any probability distribution function F on the real-line, the quantile
function F−1 is defined as

F−1(u) = inf{x : F(x) ≥ u}, for 0 < u < 1.

For 0 < p < 1, the p-th sample quantile of U1, . . . ,Un is defined as U([np]) or
F−1
n (p), where [ y] is the largest integer not exceeding y, and Fn is the empirical

distribution function:

Fn(x) = 1

n
#{1 ≤ i ≤ n : Ui ≤ x}.

In particular, the sample median mn = F−1
n (1/2).

Bahadur (1966) developed an elegant way to express a sample quantile in terms of
the empirical distribution and the density at a population quantile, with a negligible
reminder. Bahadur’s representation is presented as Theorem1 below.

Theorem 1 Let U1, . . . ,Un be i.i.d.r.v.s with common distribution function F. Sup-
pose F ′(F−1(p)) exists and non-zero at p-th population quantile F−1(p), and

Rn = F−1
n (p) − F−1(p) + Fn(F−1(p)) − p

F ′(F−1(p))
.

Then
√
nRn →p 0 as n → ∞.

A simple proof by Ghosh (1971) establishes this weaker version, which is sufficient
for most of the convergence in distribution results. This representation is used to get
the joint asymptotic distribution of multiple sample quantiles.

In fact, Bahadur establishes a stronger result,

lim sup
n→∞

(n3/4/ log n)|Rn| < ∞ a.e.

when the second derivative of F exists and is bounded in a neighborhood of F−1(p).
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3 Joint Asymptotic Distribution of Marginal Quantiles

In this section, the joint asymptotic distributions of the marginal sample quantiles,
and quantile functions based on samples from a k-variate population are described.
Of particular interest is the joint asymptotic distribution of marginal samplemedians.
Based on this, tests of significance for population medians were developed by Babu
and Rao (1988). Methods of estimating unknown nuisance parameters are briefly
discussed below. The approach is completely nonparametric.

Let T = (Y1, . . . ,Yk) be a random vector. Let Fi denotes themarginal distribution
of Yi . Suppose T 1, . . . , T n are n independent copies of T . Let Fn and Fi;n denote
the empirical distribution of T 1, . . . , T n and their i-th coordinates Yi;1, . . . ,Yi;n .
For 0 < qi < 1, the qi -th sample quantile F−1

i;n (qi ) of the i-th coordinate is a good
estimator of the population marginal quantile F−1

i (qi ). Define a diagonal matrix

A = diag
(
(1/F ′

1(F
−1
1 (q1)), . . . , 1/F

′
k(F

−1
k (qk))

)
, (1)

and let
τi j (t, s) = P

(
Yi ≤ F−1

i (t), Y j ≤ F−1
j (s)

) − ts. (2)

The following theorem on joint asymptotic distribution of marginal sample quan-
tiles (F−1

1;n (q1), . . . , F
−1
k;n (qk)) was established by Babu and Rao (1988).

Theorem 2 Suppose Fi is continuously twice differentiable in a neighborhood of
F−1
i (qi ) and F ′

i (F
−1
i (qi )) > 0, i = 1, . . . , k. Then the asymptotic distribution of

Vn(q1, . . . , qk) = √
n

(
F−1
1;n (q1) − F−1

1 (q1), . . . , F
−1
k;n (qk) − F−1

k (qk)
)

(3)

is a k-variate normal with mean vector zero, and variance-covariance matrix

� = AT A, (4)

where T is a k × k matrix with i j -th entry τi j (qi , q j ).

Remark The variance-covariance matrix � in the theorem above is not completely
known. So in practice, the unknown entries P(Yi ≤ F−1

i (qi ), Y j ≤ F−1
j (q j )) and

F ′
i (F

−1
i (qi )) need to be estimated. By Theorem 2.2 of Babu and Rao (1988), as

n → ∞,

1

n
#

{
1 ≤ k ≤ n : Yi;k ≤ F−1

i;n (qi ), Y j;k ≤ F−1
j;n(q j )

}
→ P

(
Yi ≤ F−1

i (qi ), Y j ≤ F−1
j (q j )

)
,

with probability 1. Several methods for estimation of density function at a given
population quantile exist in the literature. A consistent estimator for the reciprocal of
the density at a quantile point was developed in Babu (1986). More details on density
quantile estimation are given in Sect. 4. Unlike the classical density estimators, these
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density quantile estimators do not require knowledge of the actual values of the
derivatives of the density.

The infinite dimensional weak limits of the entire marginal quantile process were
also developed by Babu and Rao (1988) under the following Assumptions for j =
1, . . . , k:

(i) the marginal distribution Fj of Y j is twice differentiable on (a j , b j ), where

−∞ ≤ a j = sup{x : Fj (x) = 0}, inf{x : Fj (x) = 1} = b j ≤ ∞;

(ii) f j = F ′
j �= 0 on (a j , b j );

(iii) max
j

sup
a j<x<b j

Fj (x)(1 − Fj (x))| f ′
j (x)|/ f 2j (x) < ∞;

(iv) f j is non-decreasing (non-increasing) on an interval to the right of a j (to the
left of b j ).

Theorem 3 Under assumptions (i) - (iv) on Fj , the process Zn converges weakly to
a Gaussian process W = (W1, . . . ,Wk), where

Zn(q1, . . . , qk) =√
n
(
F ′
1(F

−1
1 (q1)(F

−1
1;n (q1) − F−1

1 (q1),

. . . , F ′
k(F

−1
k (qk))(F

−1
k;n (qk) − F−1

k (qk))
)

=Vn(q1, . . . , qk)A
−1,

(5)

Wj is a Brownian bridge for each j , and the covariance function is given by

E(Wi (t)Wj (s)) = τi j (t, s). (6)

3.1 Tests of Significance for the Vector Medians

Using Theorem2, tests of significance for the populationmedians based on the vector
of marginal sample medians were developed by Babu and Rao (1988). These results
are similar to the classical tests for means in multivariate case. To describe the test,
let �1, . . . , �r be k-variate populations. To test that they all have the same vector of
marginalmedians, let ni samples be drawn from the i-th population�i ; i = 1, . . . , r .
Let m̂i denote the vector of marginal medians based on the sample from �i , and
�i denote the corresponding estimate of �. See Eq. (4) and the Remark following
Theorem2.

To test the hypothesis that all the marginal populationmedian vectors are identical
(m̂1 = · · · = m̂r ), use the statistic
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χ2 = trace

[
r∑

i=1

ni�
−1
i m̂i m̂

′
i −

(
r∑

i=1

ni�
−1
i

)

m̂m̂′
]

,

where

m̂ =
(

r∑

i=1

ni�
−1
i

)−1 r∑

i=1

ni�
−1
i m̂i .

This statistic has approximately chi-square distribution with k(r − 1) degrees of
freedom, provided the sample sizes n1, . . . , nr are large.

4 Estimation of Density Quantile Function

As seen in Sect. 3, the density at a quantile appears as a nuisance parameter for the
inference on quantiles. Similarly, inference based on least absolute deviation (L1)
norm also involves such nuisance parameters. These unknown nuisance parameters
may be substituted by their estimates in the analysis. We now focus on consistent
estimators for the reciprocal of the density at a quantile point in the univariate case.
Note that the reciprocal of the density at a quantile is the derivative of the quantile
function. Building on an estimator proposed in Babu (1986), the rates of convergence
for the estimator of reciprocal of the density at a quantile point were developed by
Babu and Rao (1990). The rates of convergence depend on the smoothness properties
of the density only.

LetU be a random variable with a differentiable distribution function F . Suppose
the quantile density function F ′(F−1(p)) > 0 for a fixed 0 < p < 1, and assume
that F is twice continuously differentiable in a neighborhood of F−1(p).

Wenowconcentrate on efficient estimation ofα = (1/F ′(F−1(p))) = (F−1)′(p),
based on i.i.d. random variablesU1, . . . ,Un , with finite second moment and a com-
mon distribution function F .

For 0 < δ < 1
2 , and an integer n ≥ 3, let

Dn(δ; h) = nδ

∫ min{log n,(1−p)nδ}

0

(
F−1
n (p + un−δ) − F−1

n (p)
)
h(u)e−u du

Hn(δ; h) = nδ

∫ min{log n,(1−p)nδ}

0

(
F−1(p + un−δ) − F−1(p)

)
h(u)e−u du,

(7)

where Fn is the empirical distribution function of the sample, and h is a polynomial
such that ∫ ∞

0
uh(u)e−u du =

∫ ∞

0
h(u)e−u du = 1. (8)
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For example, the polynomials h1(y) = 1, h2(y) = 2y − 1
2 y

2, h3(y) = −2 + 8y −
7
2 y

2 + 1
3 y

3 and h4(y) = −5 + 20y − 25
2 y

2 + 7
3 y

3 − 1
8 y

4 satisfy Eq. (8). The choice
of polynomial h depends on the assumed number of derivatives of the density only.
The following result is established in Babu and Rao (1990).

Theorem 4 As n → ∞,

n(1−δ)/2α−1(Dn(δ; h) − Hn(δ; h))
D→ σ Z ,

where Z has standard normal distribution and

σ 2 =
∫ ∞

0

∫ ∞

0
min(u, v)h(u)h(v) du dv.

The rates of convergence in Theorem4 is dependent on finding a polynomial hm
(for m ≥ 2) of degree not exceeding m and satisfying the integral equation

∫ ∞

0
y j hm(y)e−ydy =

{
1 for j = 0, 1,

0 for j = 2, . . . ,m.
(9)

Such a distinctive polynomial is constructed in Babu (1986). The construction is
surprisingly simple and uses a positive definite matrix B with (m + 1) columns
and its i j-th entry is (i + j)!, i, j = 0, . . . ,m. As

∫ ∞
0 y j e−ydy = j !. The required

function hm is defined as

hm(y) =
m∑

j=0

u j y
j ,

where (u0, . . . , um) = (1, 1, 0, . . . , 0)B−1, and

u j = (−1) j+1

j !
(
m

(
m + 1

j + 1

)
−

(
m + 2

j + 2

))
, j = 0, 1, . . . ,m.

Until this point δ is arbitrary. From a computational point of view, Dn(δ; hm) is
a good estimator if F is m times continuously differentiable in a neighborhood of
F−1(p) and δ = 1/(2m − 1). In this case, by (9),

Hn(δ; hm) =α + o

(∫ log n

0
n−(m−1)δum |hm(u)| du

)

=α + o
(
n(1−δ)/2

)
, (10)

and
bias = E (Dn(δ; hm)) − α = o

((
E (Dn(δ; hm) − α)2

)1/2)
.

Thus, it follows from Theorem4 and Eq. (10), that
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n(m−1)/(2m−1)α−1(Dn(δ; hm) − α)
D→ σ Z , (11)

where Z and σ are as in Theorem4.

4.1 Location Family

Using the above results, Babu and Rao proposed two estimators based on several
samples from a location family in Babu and Rao (1990). The samples are drawn
from a family with unknown and different location parameters. Such results are
needed in estimating the asymptotic dispersion matrix of several sample quantiles as
they involve density at population quantiles.

Theorem4was extended to a case when the i.i.d. random variable Yi1, . . . ,Yini are
drawn from a location family Gi , i = 1, . . . , r . Here F is a continuous distribution
function that links these distributions asGi (x) = F(x − βi ) for all x , where location
parametermi is the p-th quantile ofGi . Thus Yi j are from the same population except
for differences in location; that is

Yi1 − βi , . . . ,Yini − βi (12)

are i.i.d. random variables with the common distribution F . We assume, as before
that F ism times continuously differentiable in a neighborhood of F−1(p). Let N =
n1 + · · · + nr . It is natural to assumenoneof the sample sizes are negligible compared
to the others. That is, we assume Na ≤ ni ≤ Nb for some positive constants a, b.

Two estimators of α = 1/F ′(F−1(p)) > 0 based on (i) pooled, and (i i) location
adjusted combined sample are considered in Babu and Rao (1990).

4.1.1 Pooled Estimator

Pooled estimator d∗
N = ∑r

i=1 γi Dni (1/(2m − 1); hm) is a linear combination of indi-
vidual estimators, where γi > 0,

∑r
i=1 γi = 1 and Dn is defined in (7). The estimates

Dni are independent of location parameters βi as Dni depends only on the differences
of order statistics. In this case Theorem 2 of Babu and Rao (1990) shows that

(
r∑

i=1

γ 2
i n

2(m−1)/(2m−1)
i

)1/2

α−1(d∗
N − α)

D→ σ Z ,

and the mean square error σ 2
N1 of α−1d∗

N satisfies

σ 2
N1 ∼

(
r∑

i=1

γ 2
i n

−2(m−1)/(2m−1)
i

)

σ 2. (13)
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This leads to the optimal choice for γi as

γi = n2(m−1)/(2m−1)
i

⎛

⎝
r∑

j=1

n2(m−1)/(2m−1)
j

⎞

⎠

−1

.

4.1.2 Location Adjusted Combined Sample Estimator

The second method involves adjusting the observations in each sample for location
and constructing the estimate based on the resultant combined sample of size N .
More precisely, obtain the empirical distribution

F∗
N (x) =

r∑

i=1

ni
N
Gi

n(x + βi N − βi )

of the combined adjusted sample,

Yi1 − βi N , . . . ,Yini − βi N , i = 1, . . . , r,

where βi N is the p-th sample quantile of the i-th sample and Gi
n is the empirical

distribution function based on the sample in Eq. (12). We now consider the combined
adjusted estimator

dc
N = N 1/(2m−1)

∫ log N

0

(
F∗−1
N (p + uN−1/(2m−1)) − F∗−1

N (p)
)
h(u)e−u du.

Theorem 3 of Babu and Rao (1990) establishes

N (m−1)/(2m−1)α−1(dc
N − α)

D→ σ Z , as N → ∞,

and the mean square error σ 2
N2 of α−1dc

N satisfies

σ 2
N2 ∼ N−2(m−1)/(2m−1)σ 2. (14)

From Eqs. (13) and (14), it follows that σ 2
N1/σ

2
N2 ∼ ν < 1. Thus pooled estimator

seems to be better than location adjusted combined sample estimator.
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5 Concluding Remarks

A brief description of some of the results of my collaboration with Professor C. R.
Rao is given above. The main focus of this article is on the large sample theory for
a vector of marginal sample quantiles, and estimation of density at a quantile point.
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Some Bivariate and Multivariate Models
Involving Independent Gamma
Distributed Components

Barry C. Arnold

Abstract Several multivariate models involving independent gamma distributed
components (three of which are new) are described. The flexible bivariate beta(2)
model introduced by Arnold and Ng (2011) provides the template for the other
models. It involved ratios of sums of independent gamma variables. The othermodels
involve differences, sums, products, and minima rather than ratios.

Keywords Beta(2) distribution · Asymmetric Laplace distribution · Gamma
difference · Gamma product · Copulas

1 Introduction

Arnold and Ng (2011) introduced a bivariate second kind beta or beta(2) distribution
involving 8 independent random variables with gamma distributions (subsequently
such random variables will be referred to as gamma distributed variables or, more
simply, as gamma variables). Recall that a random variable X has a second kind beta
distribution with parameters δ1 and δ2 if its density is of the form

fX (x) = xδ1−1 I (x > 0)

B(δ1, δ2)(1 + x)δ1+δ2
, (1)

where δ1 > 0 and δ2 > 0. In this formula B(δ1, δ2) denotes the classical Beta function
and indicator function notation is used so that I (P(x)) is equal to 1 if the proposition
P(x) is true and is equal 0 otherwise. A convenient stochastic representation of such
beta(2) variables is available. If X has density (1) then it has the same distribution as
the ratio of two independent gamma distributed random variables. Specifically we

For C. R. Rao on his 100th Birthday.

B. C. Arnold (B)
University of California, Riverside, CA, USA
e-mail: barry.arnold@ucr.edu

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
B. C. Arnold et al. (eds.), Methodology and Applications of Statistics,
Contributions to Statistics,
https://doi.org/10.1007/978-3-030-83670-2_6

115

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-83670-2_6&domain=pdf
mailto:barry.arnold@ucr.edu
https://doi.org/10.1007/978-3-030-83670-2_6


116 B. C. Arnold

have

X
d= U1

U2
, (2)

whereU1 andU2 are independent gamma variables withUi ∼ Γ (δi , 1) for i = 1, 2.
The flexible Arnold–Ng model subsumed and extended several previously avail-
able bivariate beta(2) models. The construction of this bivariate model relies on two
well-known facts. (1) A sum of independent gamma variables with a common scale
parameter has again a gamma distribution. (2) Ratios of independent gamma vari-
ables with a common scale parameter have beta distributions of the second kind. A
convenient source for discussion of the history, properties, and applications of the
gamma distribution is Chap.17 of Johnson et al. (1994).

Arnold and Ng (2011) sought to identify the most general bivariate distribution
whose marginals are ratios of sums of independent gamma variables. The most
general model turns out to involve 8 independent gamma component variables. For
this model, we begin withU1,U2, ...,U8 a set of 8 independent variables withUj ∼
Γ (δ j , 1), j = 1, 2, ..., 8.We then define the two-dimensional random vector (X,Y )

by

X = U1 +U5 +U7

U3 +U6 +U8
,

(3)

Y = U2 +U6 +U7

U4 +U5 +U8
.

This clearly defines an 8-parameter family of bivariate distributions with beta(2)
marginal distributions. If (X,Y ) is defined as in (3) then we write: (X,Y ) ∼
BB(2)(δ), to be read as (X,Y ) has a bivariate second kind beta distribution with
parameter vector δ.

Some explanation regarding the placement of the Uj ’s in (3) and why there are
no more than 8 of them, will perhaps be helpful. There are four locations where
a particular Uj may be placed. (1) In the numerator of X . (2) In the denominator
of X . (3) In the numerator of Y and (4) In the denominator of Y . The variables
U1,U2,U3, and U4 appear only once and each one of them appears in only one of
the four possible locations. A variable Uj cannot appear in both the numerator and
denominator of X , nor of Y , since otherwise the independence of numerators and
denominators, required for beta(2) marginals, would be destroyed.U5 appears in the
numerator of X and in the denominator of Y . U6 appears in the denominator of X
and the numerator of Y . U7 appears in both numerators, while U8 appears in both
denominators. NoUj can appear in 3 or in 4 of the possible locations, since thatwould
destroy the required independence of at least one numerator and its corresponding
denominator. If an additional independent gamma variable is introduced in one or
two permissible locations in (3) then it can be combined with one of the existing 8
Uj ’s and no enrichment of the model will result. Thus, for example, ifU9 is added to
both numerators, then U7 +U9 will continue to play the role of U7 with an adjusted
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shape parameter δ7 + δ9. In this fashion it becomes apparent that the most general
bivariatemodel involving ratios of sums of independent gammavariableswill involve
8 such random variables. This number of independent component variables will be
subsequently observed in the general models to be introduced in Sects. 3, 4 and 5.

We adopt the convention that a random variable with a Γ (δ, 1) distribution with
δ = 0 will be defined to be a random variable that is degenerate at 0, By setting some
of the δ j ’s in the Arnold–Ngmodel (3) equal to zero, simplified sub-models (some of
which have been discussed in the literature, e.g.,Olkin andLiu 2003)will be obtained.
Note that after setting certain δ j ’s equal to zero, we must retain δ1 + δ5 + δ7 > 0,
δ3 + δ6 + δ8 > 0, δ2 + δ6 + δ7 > 0, and δ4 + δ5 + δ8 > 0, in order to continue to
have beta(2) marginal distributions.

The bivariate beta(2) model is clearly closed under reciprocation, since the uni-
variate beta(2) distribution has this property. Thus if (X,Y ) has a BB(2) distribution
then so do each of the related random vectors (X, 1/Y ), (1/X,Y ), and (1/X, 1/Y ).

In the case of the bivariate beta(2) model, we dealt with ratios of sums of gamma
variables. In subsequent sections of this paper we will consider replacing ratios with
products, sums, and differences and we will also consider two other 8 parameter
constructions which are closely related.

2 Concerning Flexible Copulas

If X has a beta(2) distribution then V = X/(1 + X) has a beta distribution of the
first kind, i.e., the usual beta distribution. Consequently, if (X,Y ) ∼ BB(2)(δ)
then (V,W ) = (X/[1 + X ]),Y/[1 + Y ]) has a bivariate distribution with beta(1)
marginals. Specifically, V ∼ B(δ1 + δ5 + δ7, δ3 + δ6 + δ8) and W ∼ B(δ2 + δ6 +
δ7, δ4 + δ5 + δ8). If we impose the constraints, δ1 + δ5 + δ7 = 1, δ3 + δ6 + δ8 = 1,
δ2 + δ6 + δ7 = 1, and δ4 + δ5 + δ8 = 1, then (V,W ) will have Uni f orm(0, 1)
marginal distributions. That is to say, (V,W ) has a joint distribution function that
is a copula. We thus have available a 4 parameter family of copulas, Most copula
families have only one or perhaps two parameters. Arvanitis (2018) provides detailed
discussion of this flexible 4 parameter family of copulas.

3 A Bivariate Gamma-Product Model

If W1 and W2 are independent gamma distributed random variables with Wj ∼
Γ (δ j , 1) j = 1, 2, then the product Z = W1W2 has what is known as a gamma-
product distribution with parameters δ1 and δ2. Note that this model is not identi-
fiable, since interchanging the roles of δ1 and δ2 will not change the distribution.
Identifiability will be assured if we impose the constraint that δ1 ≤ δ2. If a random
variable Z has a gamma-product distribution then we write Z ∼ GP(δ1, δ2), and we
may verify that the density of Z is given by
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fZ (z) = 2

Γ (δ1)Γ (δ2)
z[δ1+δ2]−1Kδ1−δ2(2

√
z)I (z > 0), (4)

where Ku(v) is a modified Bessel function of the third kind (see Johnson et al. 1994).
Although this is not the most simple density, it must be remarked that simulation

of realizations from this distribution is readily accomplished.
Discussion of products of independent gamma variables as special cases of prod-

ucts of generalized gamma variables may be found in Mathai (1972). Muhammed
et al. (2019) discuss the role of such distributions in certain stochastic volatility
models.

With this definition at hand, we turn to the problem of developing flexible bivariate
models with gamma-product marginal distributions. When the word flexible is used
here, it is used to reflect the fact thatmodel has the capacity to exhibit awide spectrum
of dependence relations between the coordinate variables. When the word tractable
is used to describe a model, it typically refers to the fact that some distributional
features of the distribution are readily derived and that, at the very least, simulation
of realizations from the distribution are easily accomplished. The models discussed
in this paper are generally both flexible and tractable.

To the end of developing a bivariate gamma-product distribution, we begin as in
Sect. 1,with 8 independent gammavariablesU1,U2, ...,U8 withUj ∼ Γ (δ j , 1), j =
1, 2, ..., 8. We then define (X,Y ) by

X = (U1 +U5 +U7)(U3 +U6 +U8),

(5)

Y = (U2 +U6 +U7)(U4 +U5 +U8),

analogous to (3). If (X,Y ) is as defined by (5) thenwewrite (X,Y ) ∼ BGP(δ), to be
read as a bivariate gamma-product distribution. Clearly (X,Y ) has gamma-product
marginals. Since W1W2 = W2W1, the BGP model is not identifiable. Identifiability
can be assured by imposing the constraint that δ7 ≤ δ8. If we consider sub-models
obtained by setting some of the δ j ’s equal to zero, it may be necessary to impose a
different constraint to ensure identifiability.

The means and variances for the BGP model are readily calculated recalling that
the Uj ’s are independent gamma variables. Thus

E(X) = (δ1 + δ5 + δ7)(δ3 + δ6 + δ8), (6)

E(Y ) = (δ2 + δ6 + δ7)(δ4 + δ5 + δ8), (7)

var(X) = E(X)[1 + δ1 + δ5 + δ7 + δ3 + δ6 + δ8], (8)

var(Y ) = E(Y )[1 + δ2 + δ6 + δ7 + δ4 + δ5 + δ8], (9)
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Expressions for the covariance of X and Y and their correlation, though elemen-
tary, are quite complicated and will not be included here.

Simplified sub-models obtained by setting certain of the δ j ’s equal to zero, or by
imposing linear constraints on them, will in some cases allow for simple expressions
for the covariance, and may be preferable as models for some data sets.

4 A Bivariate Gamma-Difference Model

If W1 and W2 are independent gamma distributed random variables with Wj ∼
Γ (δ j , 1) j = 1, 2, then the difference Z = W1 − W2 has what is known as a gamma-
difference distribution with parameters δ1 and δ2, and we write Z ∼ GD(δ1, δ2), A
recent paper by Klar (2015) provides details, possible applications and historical
perspective on this model. Many early appearances of the model dealt with the sym-
metric case in which δ1 = δ2.

If Z ∼ GD(δ1, δ2) it follows that its moment generating function is of the form

MZ (t) = (1 − t)−δ1(1 + t)−δ2 , |t | < 1. (10)

The moments of Z could be obtained from this moment generating function, but
they may more easily be obtained by expanding (W1 − W2)

k , where k is a positive
integer, and using available expressions for gamma moments. The mean, variance
ad skewness of Z are thus, respectively:

δ1 − δ2 δ1 + δ2
2(δ1 − δ2)

(δ1 + δ2)3/2
. (11)

The distribution of Z is asymmetric unless δ1 = δ2. Klar (2015) provides the follow-
ing expression for the density of Z .

fZ (z) =
⎧
⎨

⎩

[Γ (δ1)Γ (δ2)]−1ez
∫ ∞
z xδ1−1(x − z)δ2−1e−2xdx, z > 0,

[Γ (δ1)Γ (δ2)]−1e−z
∫ ∞
−z x

δ1−1(x + z)δ2−1e−2xdx, z < 0.
(12)

He points out that the integrals in (12) can be evaluated in terms of Whittaker-W
functions, although he cautions that there may be some problems for certain choices
of δ1 and δ2. Of course, if δ1 and δ2 are positive integers, successive integration by
parts can be used to evaluate the integrals.

The representation Z = X1 − X2 not only allows for ready computation of the
moments of Z , but also permits straightforward simulation of realizations from its
distribution. Klar (2015), observing the simplicity of the expression for the charac-
teristic function of Z , suggests a parameter estimation strategy using the empirical
characteristic function. Variations of the method of moments could also be used to
estimate (δ1, δ2).
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Simple bivariate versions of the GD distribution can be developed using the “vari-
ables in common”methodology. For it, we can beginwith 3 independent gamma vari-
ables U1,U2, and U3 with Uj ∼ Γ (δ j , 1), j = 1, 2, 3. Then define X = U1 −U3

and Y = U2 −U3.

Instead, in order to develop a more flexible bivariate model, we can behave in
a manner analogous to that used in the earlier sections of this paper. We begin, as
usual, with 8 independent gamma variablesU1,U2, ...,U8 withUj ∼ Γ (δ j , 1), j =
1, 2, ..., 8. We then define (X,Y ) by

X = (U1 +U5 +U7) − (U3 +U6 +U8),

(13)

Y = (U2 +U6 +U7) − (U4 +U5 +U8),

analogous to (3). If (X,Y ) is as defined by (13) then we write (X,Y ) ∼ BGD(δ),
to be read as a bivariate gamma-difference distribution. Clearly (X,Y ) has gamma-
difference marginals. The BGD distribution is identifiable. Observe that each Uj

plays a different role in the construction. Moreover, the BGD model represents the
most general model in which both X and Y are linear combinations of independent
gamma variables with all coefficients equal to 1 or −1. Of course sub-models of
(13), in which certain δ j ’s are set equal to 0 with the usual convention that the corre-
spondingUj ’s are equal to 0 with probability 1, may frequently be found adequate to
model particular data sets. For example, the three-parameter “variables in common”
model described in the previous paragraph is identifiable as a special case obtained
by setting 5 of the parameters equal to 0. It exhibits a limited range of correlation
values (only non-negative ones). Alternatively, it is sometimes appropriate to impose
linear constraints on the δ j ’s to arrive at a model with a parameter space of reduced
dimension. An example, in which linear constraints are imposed is provided by one
of the bivariate asymmetric Laplace model to be described in the next section.

Moments of the BGD distribution are generally not difficult to evaluate, since
they are functions of available gamma moments. For example, we have

E(X) = δ1 + δ5 + δ7 − δ3 − δ6 − δ8, (14)

E(Y ) = δ2 + δ6 + δ7 − δ4 − δ5 − δ8, (15)

var(X) = δ1 + δ5 + δ7 + δ3 + δ6 + δ8, (16)

var(Y ) = δ2 + δ6 + δ7 + δ4 + δ5 + δ8, (17)

and
cov(X,Y ) = −δ5 − δ6 + δ7 + δ8. (18)

In this bivariate model, a simple expression is at hand for the covariance, in contrast
to the situation in the other bivariate models that have been discussed. It is clearly
possible to have a full range of correlations in the BGD model. Zero correlation can
occur even though X andY are dependent. It only requires that−δ5 − δ6 + δ7 + δ8 =
0. Independence will be the case if δ5 = δ6 = δ7 = δ8 = 0.
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5 Bivariate Asymmetric Laplace Distributions

A special case of the gamma-difference distribution when δ1 = δ2 = 1 is more
tractable than the general model. For in that case, we are dealing with a difference of
two independent standard exponential random variables. It is of course well-known
that such a difference has a Laplace distribution. Not so well known, but not much
more difficult to deal with, is the case in which the exponential variables have differ-
ent intensity parameters, denoted by λ1 and λ2. Thus we begin with two independent
random variables W1 and W2 with Wj ∼ exp(λ j ), j = 1, 2.

As in the general gamma-difference case (but this time not having unit scale
parameters), we define Z = W1 − W2. The moment generating function of Z is then
of the form

MZ (t) =
(

1 − t

λ1

)−1 (

1 + t

λ2

)−1

, |t | < λ̃ = min{λ1,λ2}. (19)

Expanding this expression via partial fractions, we obtain

MZ (t) = λ2

λ1 + λ2

(

1 − t

λ1

)−1

+ λ1

λ1 + λ2

(

1 + t

λ2

)−1

, |t | < λ̃ (20)

This can be recognized as a mixture of two moment generating functions, one
corresponding to an exponential random variable and the other to a random variable
that is the negative of an exponential variable. From this observation we obtain the
following expression for the density of Z :

fZ (z) =
⎧
⎨

⎩

λ1λ2
λ1+λ2

e−λ1z, z > 0,

λ1λ2
λ1+λ2

eλ2z, z < 0,
(21)

The random variable Z , in this case is said to have an asymmetric Laplace distri-
bution with parameters λ1 and λ2. To indicate this, we write Z ∼ AL(λ1,λ2). Note
that, if λ1 = λ2 this reduces to become the usual (symmetric) Laplace distribution.
Moments of the asymmetric Laplace distribution are easily obtained, making use of
the representation Z = W1 − W2, thus:

E(Z) = λ−1
1 − λ−1

2 , (22)

var(Z) = λ−2
1 + λ−2

2 . (23)

Somediscussion of the asymmetricLaplace distributionmaybe found inKozubowski
and Podgórski (2000), using different notation.

Two different bivariate asymmetric Laplace distributions will be described in
this section. Before introducing them, we will review two features of the exponential
distribution thatwill be used in the discussion. First we note that if we have three inde-
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pendent gamma variables U1,U2, and U3 with Uj ∼ Γ (δ j , 1), j = 1, 2, 3 then, if
δ1 + δ2 + δ3 = 1 then the randomvariableλ−1(U1 +U2 +U3) ∼ exp(λ).Next note
that if V1, V2, and V3 are independent exponential variables with Vj ∼ exp(λ j ), j =
1, 2, 3, then V = min{V1, V2, V3} ∼ exp(λ) where λ = λ1 + λ2 + λ3.

5.1 Bivariate Asymmetric Laplace Distribution of the First
Kind (BAL(I))

The first bivariate asymmetric Laplacemodelwas introduced byArvanitis (2018) and
we refer the reader to that source for detailed discussion of the model. Construction
of the model begins with the components used in Sect. 4 in developing the bivari-
ate gamma-difference model. Thus we begin with 8 independent gamma variables
U1,U2, ...,U8 with Uj ∼ Γ (δ j , 1), j = 1, 2, ..., 8. We then define (X,Y ) by

X = λ−1
11 (U1 +U5 +U7) − λ−1

12 (U3 +U6 +U8),

(24)

Y = λ−1
21 (U2 +U6 +U7) − λ−1

22 (U4 +U5 +U8),

where it is assumed that the constraints, δ1 + δ5 + δ7 = 1, δ3 + δ6 + δ8 = 1, δ2 +
δ6 + δ7 = 1, and δ4 + δ5 + δ8 = 1, have been imposed. This model will be called
the bivariate asymmetric Laplace model of the first kind and if (X,Y ) is as defined
in (24) we will write (X,Y ) ∼ BAL(1)(λ11,λ12,λ21,λ22, δ), Since there were four
constraints on the δ j ’s, this is an 8 parameter model. The marginal distributions
depend only on the four λ parameters, thus:

X ∼ AL(λ11,λ12), Y ∼ AL(λ21,λ22). (25)

Moments are obtainable from the representation (24):

E(X) = λ−1
11 − λ−1

12 , (26)

E(Y ) = λ−1
21 − λ−1

22 , (27)

var(X) = λ−2
11 + λ−2

12 , (28)

var(Y ) = λ−2
21 + λ−2

22 , (29)

and
cov(X,Y ) = −λ−1

11 λ−1
22 δ25 − λ−1

12 λ−1
21 δ26 + λ−1

11 λ−1
21 δ27 + λ−1

12 λ−1
22 δ28 . (30)

It is evident from (30), that a full range of correlations are available in this model. A
submodel with non-negative correlations can be identified by setting δ5 = δ6 = 0.
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5.2 Bivariate Asymmetric Laplace Distribution of the Second
Kind (BAL(I I))

The second bivariate asymmetric Laplace model that we will consider will utilize the
closure under minimization property of the exponential distribution. For it we again
begin, as is becoming customary in this paper, with 8 independent random variables,
V1, V2, ..., V8 but this time we assume that they are exponentially distributed, thus
Vj ∼ exp(λ j ), j = 1, 2, ..., 8. We then define

X = min{V1, V5, V7} − min{V3, V6, V8},
(31)

Y = min{V2, V6, V7} − min{V4, V5, V8},

using a construction somewhat parallel to that used in the construction of models
earlier described in this paper. If (X,Y ) has the structure shown in (31) then we
will write (X,Y ) ∼ BAL(I I )(λ) and say that it has a bivariate asymmetric Laplace
distribution of the second kind with parameter vector λ. Note that both the first kind
and the secondkind bivariate asymmetricLaplace distributions have an 8dimensional
parameter space. The marginal distributions of the BAL(II) distribution are of the
asymmetric Laplace form, Thus:

X ∼ AL(λ1 + λ5 + λ7,λ3 + λ6 + λ8), (32)

Y ∼ AL(λ2 + λ6 + λ7,λ4 + λ5 + λ8). (33)

The moments of the BAL(II) distribution are thus given by

E(X) = [λ1 + λ5 + λ7]−1 − [λ3 + λ6 + λ8]−1, (34)

E(Y ) = [λ2 + λ6 + λ7]−1 − [λ4 + λ5 + λ8]−1, (35)

var(X) = [λ1 + λ5 + λ7]−2 + [λ3 + λ6 + λ8]−2, (36)

var(Y ) = [λ2 + λ6 + λ7]−2 + [λ4 + λ5 + λ8]−2, (37)

and

cov(X,Y ) = ξ(λ1 + λ5,λ2 + λ6,λ7) − ξ(λ1 + λ7,λ4 + λ8,λ5)

(38)

−ξ(λ3 + λ8,λ2 + λ7,λ6) + ξ(λ3 + λ6,λ4 + λ5,λ8),

in which we use the notation ξ(τ1, τ2, τ3) to denote

cov(min{W1,W3},min{W2,W3})
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where the Wi ’s are independent with Wi ∼ exp(τi ), i = 1, 2, 3. The value of
ξ(τ1, τ2, τ3) is most easily approximated by simulation. In fact, one could just eval-
uate cov(X,Y ) directly by simulation using the definition (31).

Ifwe adopt a convention that a randomvariable that has an exponential distribution
with parameter λ = 0 is equal to +∞ with probability 1, then we can consider
various sub-models of (31) obtained by setting certain of the λ j ’s equal to 0. For
many data fitting applications such simplified models may be adequate. Of course
the expressions for the moments of such sub-models will be less complicated than
they would be for the full model.

6 The Case in Which Addition Is Used Instead of
Subtraction, Multiplication, Division, and Minimization

Parallel to the construction in (13) in which differences of sums of independent
gamma variables are considered, it is natural to ask “What happens if we replace
differences by sums?”

In such a case we would begin, once more, with 8 independent gamma variables
U1,U2, ...,U8 with Uj ∼ Γ (δ j , 1), j = 1, 2, ..., 8. We then define (X,Y ) by

X = (U1 +U5 +U7) + (U3 +U6 +U8),

(39)

Y = (U2 +U6 +U7) + (U4 +U5 +U8),

However, if we define

W1 = U1 +U3,

W2 = U2 +U4,

W3 = U5 +U6 +U7 +U8,

then theWj ’s are independent gamma random variables, and the model (39) is equiv-
alent to

X = W1 + W3,

(40)

Y = W2 + W3,

where the Wj ’s are independent with Wj ∼ Γ (δ j , 1), j = 1, 2, 3. This then is just
a well-known bivariate gamma distribution known as Cheriyan’s distribution (which
was later reinvented by several other researchers, so in re-inventing it, we have good
company!). For this model (40) we have
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E(X) = δ1 + δ3, (41)

E(Y ) = δ2 + δ3, (42)

var(X) = δ1 + δ3, (43)

var(Y ) = δ2 + δ3, (44)

and
cov(X,Y ) = δ3. (45)

Only non-negative correlations are encountered in this model.
In the Sect. 8, wewill briefly considermultivariate versions of the bivariatemodels

introduced in Sects. 3–5. We will see that, unless we set many of the parameters in
the corresponding multivariate models equal to zero, the dimension of the parameter
space, which in the bivariate case was 8 (often already considered by some to be
excessively large), will become much larger in higher dimensional models. In the k
dimensional model there will turn out to be 3k − 1 parameters. In contrast it is not
difficult to construct k-dimensional versions of the Cheriyan model that involve a
more reasonable number of parameters. We can illustrate this in the 3-dimensional
case. Begin with 7 independent gamma variables, Wj ∼ Γ (δ j , 1) j = 1, 2, ..., 7.
Then define:

X = W1 + W4 + W5 + W7,

Y = W2 + W4 + W6 + W7, (46)

Z = W3 + W5 + W6 + W7.

The number of parameters in this model is
(3
1

) + (3
2

) + (3
3

) = 23 − 1 = 7. The k-

dimensional version of this model will have
∑k

j=1

(k
j

) = 2k − 1 parameters, a con-

siderably smaller number than 3k − 1. Note also that the computation of means,
variances, and covariances for the multivariate Cheriyan models is not difficult. A
negative feature of these distributions is that all correlations in the model are non-
negative.

It is not easy to identify papers dealingwith the use of Cheriyan’smodel to analyze
real-world data. However, multivariate versions of it have been utilized. Prekopa and
Szantai (1978) used a 6-dimensional Cheriyan model in an analysis of streamflow
data.

7 Possible Extensions Involving Dependent Component
Variables

The flexible models discussed thus far all share the feature that the basic building
blocks consisted of 8 independent variables, having gamma distributions or exponen-
tial distributions. A referee suggests that it may be worthwhile investigating similar
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models in which 8 dependent gamma variables replace the independent ones. In the
case of the models in Sects. 2, 3, 4, and 5.1, one might endow the vector U with a
multivariate gamma distribution of the kind introduced byMathai andMoschopoulos
(1992) or that introduced by Furman (2008). Instead, onemight assume amultivariate
Tweedie distribution forU (Furman and Landsman 2010). In the case of the model in
Sect. 5.2, instead of having independent exponential components, one could consider
that U obeys a multivariate exponential model as introduced in Marshall and Olkin
(1967).

8 On Multivariate Versions of the Models in Sects. 3–5

k-dimensional versions of the Arnold–Ng beta(2) distribution were mentioned in
Arnold and Ghosh (2014), in a context of copula models. We will describe the
approach with reference to the bivariate gamma-difference distribution. The reader
will readily recognize how to develop analogous k-variate models involving gamma
products, and asymmetric Laplace distributions. After describing the three dimen-
sional case, it will be evident how to deal with higher dimensions. A three dimen-
sional gamma-difference distribution will be one whose structure is of a form which
involves 26 Uj ’s. This is the appropriate number of gamma distributed components
since a trivariate model (X,Y, Z) expressed as differences of two independent sums
of independent gamma variables (with unit scale parameter), will involve 6 places
where a particular U can appear, three places in the first sums and three places in
the subtracted second sums. But a particular U cannot appear in both the first sum
and the subtracted second sum of any of the three variables X,Y , and Z , There will
be 6 U ’s which appear in just one of the 6 possible places. These will be denoted
by U1,U2, ...,U6. There will be 12 U ’s that appear in exactly two of the 6 possible
positions, denoted byU7,U8, ...,U18. Finally there are 8U ’s that appear in 3 places,
namely, U19,U20, ...,U26. No U can appear in more than 3 places without violating
the requirement that first sumsmust be independent of their corresponding subtracted
second sums.

Thus, there are a total of 26 parameters in the model where Uj , j = 1, 2, ..., 26
are independent variables with Uj ∼ Γ (δ j , 1) for each j . The model can then be
expressed in the following form.

X = (U1 +U7 +U8 +U9 +U10 +U19 +U20 +U21 +U22) (47)

−(U4 +U11 +U12 +U13 +U14 +U23 +U24 +U25 +U26),

Y = (U2 +U7 +U11 +U15 +U16 +U19 +U20 +U23 +U24) (48)

−(U5 +U9 +U13 +U17 +U18 +U21 +U22 +U25 +U26),
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and

Z = (U3 +U8 +U12 +U15 +U17 +U19 +U21 +U23 +U25) (49)

−(U6 +U10 +U14 +U16 +U18 +U20 +U22 +U24 +U26).

The pattern for the dimensions of the parameter spaces of the multivariate models
should now be clear. The univariate model involves 2U ’s, i.e., 31 − 1. The bivariate
model involves 8 U ’s, i.e., 32 − 1. The trivariate case involves 26 U ’s, i.e., 33 − 1,
and, in general, the k-dimensional model involves 3k − 1 U ’s.

Use of the fully parameterized k-dimensional model would not usually be recom-
mended, if ever. Instead simplified sub-models, obtained by setting many of the δ’s
equal to zero, can be expected to be adequate for many data sets.

9 Discussion

Inference questions concerning the models described in Sects. 3, 4 and 5, will be
the subjects of separate reports. The present paper has provided an introduction to a
broad spectrum of bivariate models and sub-models which can potentially be useful
additions to the modeler’s tool kit. These new flexible models can be expected to find
application in cases in which the simpler well-known models prove to be inadequate
to adapt to particular data sets.
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An Absolute Continuous Bivariate
Inverse Generalized Exponential
Distribution: Properties, Inference and
Extensions

Debasis Kundu

Abstract The aim of this paper is to introduce an absolutely continuous bivariate
inverse generalized exponential (BIGE) distribution. The proposed distribution has
been obtained by removing the singular component from the BIGE distribution sim-
ilarly as the Block and Basu absolute continuous bivariate exponential distribution.
This distribution has four parameters, and due to this, the joint probability density
function can take variety of shapes. This distribution can be used quite effectively if
there are no ties in the bivariate data set and particularly if the marginals are from a
heavy tailed distribution. We have developed different properties of this distribution
and provided classical inference of the unknown parameters. The maximum likeli-
hood (ML) estimators cannot be obtained in closed form and one needs to solve a
four-dimensional optimization problem to compute the ML estimators in this case.
To avoid that, we propose to use the expectation maximization (EM) algorithm to
compute the ML estimators of the unknown parameters. The analysis of one data set
has been performed to see the effectiveness of the proposed algorithm and extended
the results to the multivariate case also. Finally, we conclude the paper with several
open problems for future research.

Keywords Generalized exponential distribution · Maximum likelihood estima-
tors · Absolutely continuous distribution · Expectaion maximization algorithm ·
Fisher information matrix · Competing risks

1 Introduction

Two-parameter generalized exponential (GE) has received a considerable amount of
attention in the last two decades. It has been introduced by Gupta and Kundu (1999)
as a special case of the three-parameter exponentiatedWeibull distribution originally
proposed by Mudholkar and Srivastava (1993). It can also be obtained as a special
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case of the three-parameter generalized Gompertz–Verhulst family of distributions
introduced by Ahuja and Nash (1967); see also Verhulst (1945) in this respect.

The two-parameterGEdistributionhas the following cumulative distribution func-
tion (CDF), probability density function (PDF) and hazard function (HF) for x > 0,
α > 0, λ > 0:

FGE (x;α,λ) = (1 − e−λx )α (1)

fGE (x;α,λ) = αλe−λx (1 − e−λx )α−1, (2)

hGE (x;α,λ) = αλe−λx (1 − e−λx )α−1

1 − (1 − e−λx )α
. (3)

Here, α is the shape parameter and λ is the scale parameter. The PDF (2) of a GE
distribution can be either a decreasing or a unimodal function depending on the values
of α. If α ≤ 1, the PDF is a decreasing function, otherwise it becomes a unimodal
function. When α = 1, it coincides with the one-parameter exponential distribution.
The hazard function of a GE distribution (3) can be increasing (α > 1), decreasing
(α < 1) or constant (α = 1). It is observed by Gupta and Kundu (1999) that the GE
distribution behaves very similarly as the two-parameter gamma distribution. But
because of the explicit expression of the CDF, it can be used very effectively for the
censored data. Due to this reason, an extensive amount of work has been done in
establishing different properties and also developing various inferential procedures
of the unknown parameters of this model. A book length treatment can be found in
Al-Hussaini and Ahsanullah (2015), see also the review articles by Gupta and Kundu
(2007), Nadarajah (2011) and the references cited therein.

Although the GE distribution is a very flexible distribution, it cannot have a non-
monotone hazard function or heavy tailed property. Due to this reason, Oguntunde
and Adejumo (2015) introduced the inverted GE distribution (IGE) similar to the
inverted Weibull distribution; see, for example, Murthy et al. (2004). The IGE distri-
bution has the following survival function (SF), PDF and HF for x > 0, α > 0 and
λ > 0:

SIGE (x;α,λ) = (1 − e− λ
x )α (4)

f IGE (x;α,λ) = αλ

x2
e− λ

x (1 − e− λ
x )α−1 (5)

hIGE (x;α,λ) = αλ

x2(e− λ
x − 1)

. (6)

The PDF and the HF of an IGE distribution are always unimodal for all values of
α > 0 and λ > 0. When λ = 1, the mode of an IGE is at 1/2 if α = 1, for α > 1,
the mode is less than 1/2 and for α ≤ 1, the mode is greater than 1/2. Moreover,
depending on the values of α, it becomes a heavy tailed distribution. If α ≤ 1, the
mean does not exist. If 1 < α ≤ 2, themean exists, but the variance does not exist. For
α > 2, the variance exists. From now on, an absolutely continuous random variable
with PDF (5) will be denoted by IGE(α,λ).
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Recently, Alqallaf and Kundu (2020) introduced a bivariate IGE distribution sim-
ilar to the Marshall–Olkin bivariate exponential (MOBE) distribution or bivariate
generalied exponential distribution, see, for example, Marshall and Olkin (1967)
and Kundu and Gupta (2009).

Definition 1 Suppose U1 follows (∼) IGE(α1,λ), U2 ∼ IGE(α2,λ) and U0 ∼
IGE(α0,λ), and they are independently distributed. If X = min{U1,U0} and Y =
min{U2,U0}, then the distribution of (X,Y ) is said to have a bivariate IGE (BIGE)
distribution with parameters α1, α2, α0 and λ.

We denote this by BIGE(α1,α2,α0,λ). It may be mentioned that this BIGE distri-
bution has the same interpretation as the shock model similar to the MOBE model.
Here the shock appears following an IGE distribution, which can be heavy tailed.

The BIGE introduced by Alqallaf and Kundu (2020) has a singular component
along X = Y , i.e. P(X = Y ) > 0, similar to the MOBE distribution. Therefore, if
there are no ties in the data, it may not be reasonable to use BIGE distribution in
this case. It may be recalled that since MOBE has a singular component, it is not
used when there are no ties in the data. Due to this reason, Block and Basu (1974)
introduced an absolutely continuous bivariate exponential distribution, from now
on, we call it as the Block and Basu bivariate exponential (BBBE) distribution,
by removing the singular component from the MOBE distribution. Although the
MOBE is a singular distribution, the BBBE distribution enjoys all the properties of
an absolutely continuous distribution. It can be used quite effectively to analyze a
bivariate data set when there are no ties in the data.

The main aim of this paper is to introduce absolutely continuous BIGE (ABIGE)
by removing the singular component of a BIGE distribution. Clearly, ABIGE is an
absolutely continuous distribution with four parameters. We study different proper-
ties of the ABIGE distribution and its marginals. Due to presence of the four parame-
ters, the joint PDF of an ABIGE can take variety of shapes. Moreover, the marginals
of an ABIGE can be heavy tailed also. Hence, the ABIGE model can be used quite
effectively for a bivariate data set when there are no ties. The ML estimators of the
unknown parameters of a ABIGE cannot be obtained in explicit forms. They have to
be obtained by solving four non-linear equations simultaneously. Therefore, some
numerical algorithms like Newton–Raphson or Gauss–Newton method may be used
to solve these non-linear equations. Hence, very accurate initial values are needed to
start the iterative process, otherwise it may not converge or it may converge to some
local optimum. To avoid that, we have proposed an EM algorithm to compute theML
estimators. The proposed EM algorithm requires solving only one-dimensional opti-
mization problem at each ‘E’-step of the EM algorithm. Hence, the implementation
of the proposed EM algorithm is quite simple in practice. The analysis of one data
set has been performed to see the performances of the proposed EM algorithm and
the effectiveness of the model. Finally, we have introduced the absolute continuous
multivariate IGE (AMIGE) and showed how the EM algorithm can be developed
for the multivariate model also. We have indicated several open problems for further
research.
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The rest of the paper is organized as follows. In Sect. 2, we have defined the
ABIGE model and discuss its different properties. The inference procedure has been
developed in Sect. 3. In Sect. 4, we provide the analysis of one bivariate data set. In
Sect. 5, we have discussed AMIGE distribution, and finally we conclude the paper
and provide several open problems for future work, in Sect. 6.

2 Model Description and Properties

2.1 Model Description

We have already introduced BIGE in Sect. 1. If (X,Y ) ∼ BIGE(α1,α2,α0,λ), then
the joint SF of X and Y for x > 0 and y > 0 becomes

SX,Y (x, y) = P(X > x, Y > y) =

⎧
⎪⎪⎨

⎪⎪⎩

(1 − e− λ
x )α1 (1 − e− λ

y )α2+α0 if 0 < x < y < ∞
(1 − e− λ

x )α1+α0 (1 − e− λ
y )α2 if 0 < y < x < ∞

(1 − e− λ
x )α1+α2+α0 if 0 < x = y < ∞.

The joint SF of X and Y has the following unique decomposition:

SX,Y (x, y) = α1 + α2

α1 + α2 + α0
Sac(x, y) + α0

α1 + α2 + α0
Ssi (x, y)

Here,

Ssi (x, y) =
{

(1 − e− λ
x )α1+α2+α0 if x = y,
0 if x �= y,

and

Sac(x, y) = α1 + α2 + α0

α1 + α2
(1 − e− λ

x )α1(1 − e− λ
y )α2(1 − e− λ

z )α0 −
α0

α1 + α2
(1 − e− λ

x )α1+α2+α0 ,

here z = max{x, y}. Note that here Sac(x, y) is the absolute continuous part and
Ssi (x, y) is the singular part.

From the joint SF, the joint PDF of X and Y can be obtained as follows:

fX,Y (x, y) = α1 + α2

α1 + α2 + α0
fac(x, y) + α0

α1 + α2 + α0
fsi (u), (7)

where
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fac(x, y) = α1 + α2 + α0

α1 + α2
×

{
f IGE (x; α1,λ) f IGE (y;α2 + α0,λ) if 0 < x < y < ∞
f IGE (x; α1 + α0,λ) f IGE (y;α2,λ) if 0 < y < x < ∞,

and for x = y = u,
fsi (u) = f IGE (u;α1 + α2 + α0,λ).

It should be mentioned that when we write the joint PDF of X and Y as in (7),
it is understood that fac(x, y) is a PDF with respect to two-dimensional Lebesgue
measure and fsi (u) is a PDF with respect to one-dimensional Lebesgue measure;
see, for example, Bemis et al. (1972).

Now we define ABIGE by removing the singular component from the BIGE,
similar to the construction of BBBE from MOBE distribution, as follows:

Definition 2 If the joint PDF of the random variables U and V is

fU,V (u, v) = α1 + α2 + α0

α1 + α2
×

{
f IGE (u; α1,λ) f IGE (v;α2 + α0,λ) if 0 < u < v < ∞
f IGE (u; α1 + α0,λ) f IGE (v;α2,λ) if 0 < v < u < ∞,

then (U, V ) is said to have ABIGE distribution with parameters α1, α2, α0, λ and it
will be denoted by ABIGE(α1,α2,α0,λ).

The joint survival function of (U, V ) becomes

SU,V (u, v) = α1 + α2 + α0

α1 + α2
(1 − e− λ

u )α1(1 − e− λ
v )α2(1 − e− λ

w )α0 −
α0

α1 + α2
(1 − e− λ

u )α1+α2+α0 ,

here w = max{u, v}. The marginal survival functions of U and V become:

SU (u) = α1 + α2 + α0

α1 + α2

(
1 − e− λ

u

)α1+α0 − α0

α1 + α2

(
1 − e− λ

u

)α1+α2+α0

SV (v) = α1 + α2 + α0

α1 + α2

(
1 − e− λ

v

)α2+α0 − α0

α1 + α2

(
1 − e− λ

v

)α1+α2+α0

,

respectively. The marginal PDFs of U and V become

fU (u) = α1 + α2 + α0

α1 + α2
f IGE (u;α1 + α0,λ) − α0

α1 + α2
f IGE (u;α1 + α2 + α0,λ)

fV (v) = α1 + α2 + α0

α1 + α2
f IGE (v;α2 + α0,λ) − α0

α1 + α2
f IGE (v;α1 + α2 + α0,λ),

respectively. It may be observed that the relation between the BIGE and ABIGE is
the following:

(U, V ) = (X,Y )|{X �= Y }. (8)
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The above relation (8) can be used quite effectively to generate ABIGE distribution.
The following algorithm can be used to generate (U, V ) ∼ ABIGE(α1,α2,α0,λ)

as follows:
Algorithm
Step 1: Generate U1 ∼ IGE(α1,λ), U2 ∼ IGE(α2,λ) and U0 ∼ IGE(α0,λ).
Step 2: If U0 < min{U1,U2}, go to Step 1.
Step 3: U = min{U1,U0} and V = min{U2,U0}.

2.2 Properties

The following result provides the shape of the joint PDF of ABIGE.

Theorem 1 Let (U, V ) ∼ ABIGE(α1,α2,α0,λ). We use the following notations.
S0 = {(u, v); 0 < u = v < ∞}, S1 = {(u, v); 0 < u < v < ∞}, S2 = {(u, v); 0 < v <

u < ∞}.
(a) If α1 = α2 = α, then fU,V (u, v) is continuous on S0 ∪ S1 ∪ S2 = R

2, fU,V (u, v)
is unimodal and the mode is at (x0, x0) ∈ S0, where x0 is the unique solution of the
non-linear equation

2(e
1
x − 1)(1 − 2x) = (2α + α0 − 2). (9)

(b) If α2 + α0 < 1 < α1, then fU,V (u, v) is continuous on S1 ∪ S2, fU,V (u, v) is
unimodal and the mode is at (x1, x2) ∈ S1, where x1 and x2 are unique solutions of
the non-linear equations

(e
1
x − 1)(1 − 2x) = (α1 − 1) (10)

(e
1
x − 1)(1 − 2x) = (α2 + α0 − 1). (11)

(c) If α1 + α0 < 1 < α2, then fU,V (u, v) is continuous on S1 ∪ S2, fU,V (u, v) is
unimodal and the mode is at (x1, x2) ∈ S2, where x1 and x2 are unique solutions of
the non-linear equations

(e
1
x − 1)(1 − 2x) = (α2 − 1) (12)

(e
1
x − 1)(1 − 2x) = (α1 + α0 − 1). (13)

Proof See Appendix 1.
In Figs. 1, 2, 3 and 4, we have provided the surface plots of the of the joint PDF

of ABIGE(α1,α2,α0,λ) for different values of α1, α2 and α0 keeping λ = 1. It is
observed that for all values of α1, α2 and α0, the joint PDF is an unimodal function.
�
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Fig. 1 Bivariate surface
plots of BIGE(α1,α2,α0,λ)

distribution for
(α1,α2,α0,λ) =
(1.0, 1.0, 1.0, 1.0)
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Fig. 2 Bivariate surface
plots of BIGE(α1,α2,α0,λ)

distribution for
(α1,α2,α0,λ) =
(1.0, 1.0, 2.0, 1.0)
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Fig. 3 Bivariate surface
plots of BIGE(α1,α2,α0,λ)

distribution for
(α1,α2,α0,λ) =
(1.0, 2.0, 1.0, 1.0)
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Fig. 4 Bivariate surface
plots of BIGE(α1,α2,α0,λ)

distribution for
(α1,α2,α0,λ) =
(2.0, 1.0, 2.0, 1.0)
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3 Inference

In this section, we derive the ML estimators of the unknown parameters of a
ABIGE(α1,α2,α0,λ) based on a random sample of size n and it is as follows:

Data = {(u1, v1), . . . , (un, vn)}. (14)

We use the following notations I1 = {i : ui < vi }, I2 = {i : ui > vi } and � =
(α1,α2,α0,λ)�. Moreover, n1 = |I1| = number of elements in I1 and similarly,
n2 = |I2|. Based on the sample (14), the log-likelihood function can be written as

l(�|Data) = n ln(α1 + α2 + α0) − n ln(α1 + α2) +
∑

i∈I1
ln f IGE (ui ;α1,λ) +

∑

i∈I1
ln f IGE (vi ;α2 + α0,λ) +

∑

i∈I2
ln f IGE (ui ;α1 + α0,λ) +

∑

i∈I2
ln f IGE (vi ;α2,λ)

= C + n ln(α1 + α2 + α0) − n ln(α1 + α2) − Aλ + 2n ln λ +
n1(lnα1 + ln(α2 + α0)) + n2(ln(α1 + α0) + lnα2) +
(α1 − 1)

∑

i∈I1
ln(1 − e− λ

ui ) + (α2 + α0 − 1)
∑

i∈I1
ln(1 − e− λ

vi ) +

(α1 + α0 − 1)
∑

i∈I2
ln(1 − e− λ

ui ) + (α2 − 1)
∑

i∈I2
ln(1 − e− λ

vi ). (15)

HereC is a constant does not dependon the parameters and A =
n∑

i=1

(u−1
i + v−1

i ). The

ML estimate of � can be obtained by maximizing (15) with respect to the unknown
parameters. It is immediate that it cannot be obtained in explicit form. It has to be
obtained by solving a four-dimensional optimization problem. Therefore, one needs
to use some iterative algorithms like Newton–Raphson or Gauss–Newton method to
compute the ML estimates. Any iterative algorithm needs very good initial guesses,
which may not be a trivial issue in four dimension. Moreover, it may converge to a
local maximum rather than the global maximum.

To avoid that we treat this problem as a missing value problem, and we will show
that if we have the complete data set, then the ML estimates of � can be obtained by
solving only one non-linear equation. Hence, we propose to use a very simple EM
algorithm, where at each ‘E’-step, the corresponding ‘M’-step can be performed by
solving only one non-linear equation, and that is the main motivation of the proposed
EM algorithm.

Suppose instead of observing only (U, V ), we also observe the indicator vector
(�1,�2) associate with the corresponding U1,U2,U0 defined before as follows:
Case 1: (U < V ) : �1 = 1 and
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�2 =
{
2 if V = U2

3 if V = U0.

Case 2: (V < U ) : �2 = 2 and

�1 =
{
1 if U = U1

3 if U = U0.

Now we will provide the log-likelihood contribution of a typical data point
(u, v, δ1, δ2) for different cases.
Case 1: u < v, δ1 = 1 and δ2 = 2. The log-likelihood contribution becomes

ln f IGE (u;α1,λ) + ln f IGE (v;α2,λ) + ln SIGE (v;α0,λ).

Case 2: u < v, δ1 = 1 and δ2 = 3. The log-likelihood contribution becomes

ln f IGE (u;α1,λ) + ln f IGE (v;α0,λ) + ln SIGE (v;α2,λ).

Case 3: v < u, δ1 = 1 and δ2 = 2. The log-likelihood contribution becomes

ln f IGE (u;α1,λ) + ln f IGE (v;α2,λ) + ln SIGE (u;α0,λ).

Case 4: u < v, δ1 = 3 and δ2 = 2. The log-likelihood contribution becomes

ln f IGE (u;α0,λ) + ln f IGE (v;α2,λ) + ln SIGE (u;α1,λ).

In this case, it can be easily shown that for the complete data set, namely, {(ui , vi ,
δ1i , δ2i ); i = 1, . . . , n}, theML estimates ofα1,α2 andα0 can be obtained in explicit
forms if λ is known. Hence, the ML estimate of λ can be obtained by maximizing
the profile log-likelihood function in one dimension only. The following Table1 will
be useful for further development of the EM algorithm.

Now following the idea of Dinse (1982), see also Kundu (2004) in this respect, for
each incomplete data (u, v), we form ‘pseudo observations’ by fractioning (u, v) to
two partially complete ‘pseudo observation’ of the form {(u, v,w1), (u, v, 1 − w1)}
and {(u, v,w2), (u, v, 1 − w2)} depending on whether u > v or u < v, respectively.
Here, w1 is the conditional probability that U1 < U0 given that V < U . Similarly,
w2 is the conditional probability that U2 < U0, given that U < V . From Table1

w1 = α1

α1 + α0
and w2 = α2

α2 + α0
.

Now let us denote by �(k) = (α(k)
1 ,α(k)

2 ,α(k)
0 ,λ(k))� as the estimates of the param-

eters at the k-th stage of the EM algorithm. Similarly, let us denote w(k)
1 and w(k)

2
as the estimates of w1 and w2, respectively, at the k-th stage. At the k-th stage the
‘pseudo-log-likelihood’ function can be written as follows:
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Table 1 Possible configuration of U1,U2,U0 and the associated probabilities

Set Relation
between U
and V

Possible
configuration
of U0, U1, U2

Observed
variable

Conditional
probability

(�1,�2)

I1 U < V U1 < U2 <

U0

U = U1,
V = U2

α2

(α2 + α0)
(1, 2)

U1 < U0 <

U2

U = U1,
V = U0

α0

(α2 + α0)
(1, 3)

I2 V < U U2 < U1 <

U0

U = U1,
V = U2

α1

(α1 + α0)
(1, 2)

U2 < U0 <

U1

U = U0,
V = U2

α0

(α1 + α0)
(3, 2)

l(�|�(k)) = w(k)
2

∑

i∈I1
(ln f IGE (ui ; α1,λ) + ln f IGE (vi ; α2,λ) + ln SIGE (vi ;α0,λ)) +

(1 − w(k)
2 )

∑

i∈I1
(ln f IGE (ui ; α1,λ) + ln f IGE (vi ;α0,λ) + ln SIGE (vi ;α2,λ)) +

w(k)
1

∑

i∈I2
(ln f IGE (ui ; α1,λ) + ln f IGE (vi ; α2,λ) + ln SIGE (ui ;α0,λ)) +

(1 − w(k)
1 )

∑

i∈I2
(ln f IGE (ui ; α0,λ) + ln f IGE (vi ;α2,λ) + ln SIGE (ui ;α1,λ))

=
∑

i∈I1
ln f IGE (ui ; α1,λ) +

∑

i∈I2
ln f IGE (vi ; α2,λ) +

∑

i∈I2

{
w(k)
1 ln f IGE (ui ; α1,λ) + (1 − w(k)

1 ) ln SIGE (ui ;α1,λ)
}

+
∑

i∈I1

{
w(k)
2 ln f IGE (vi ; α2,λ) + (1 − w(k)

2 ) ln SIGE (vi ;α2,λ)
}

+

w(k)
2

∑

i∈I1
ln SIGE (vi ; α0,λ) + (1 − w(k)

2 )
∑

i∈I1
ln f IGE (vi ;α0,λ) +

w(k)
1

∑

i∈I2
ln SIGE (ui ; α0,λ) + (1 − w(k)

1 )
∑

i∈I2
ln f IGE (ui ; α0,λ). (16)

Therefore, �(k+1) can be obtained from �(k) by maximizing (16) with respect to �.
For a fixed λ

α(k+1)
1 (λ) = − n1 + w(k)

1 n2
∑

i∈I ln(1 − e− λ
ui )

α(k+1)
2 (λ) = − n2 + w(k)

2 n1
∑

i∈I ln(1 − e− λ
vi )
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α(k+1)
0 (λ) = − n1(1 − w(k)

2 ) + n2(1 − w(k)
1 )

∑
i∈I1 ln(1 − e− λ

vi ) + ∑
i∈I2 ln(1 − e− λ

ui )
,

maximize (16). Hence, λ(k+1) which maximizes (16) can be obtained by maximizing
the profile log-likelihood function, i.e. λ(k+1) = argmax g(λ), where

g(λ) = 2(n1 + n2) ln λ + (n1 + w(k)
1 n2) lnα(k+1)

1 (λ) + (n2 + w(k)
2 n1) lnα(k+1)

2 (λ) +

(n1(1 − w(k)
2 ) + n2(1 − w(k)

1 )) lnα(k+1)
0 (λ) − λ

(
∑

i∈I1∪I2

1

ui
+ 1

vi

)

−
∑

i∈I1∪I2

(
ln(1 − e− λ

ui ) + ln(1 − e− λ
vi )

)
.

Therefore,

α(k+1)
1 = α(k+1)

1 (λ(k+1)), α(k+1)
2 = α(k+1)

2 (λ(k+1)), α(k+1)
0 = α(k+1)

0 (λ(k+1)).

Once the ML estimates of α1, α2, α3 and λ are obtained the associated confidence
intervals can be obtained from the observed Fisher information matrix as suggested
by Louis (1982). In Appendix 2, we have provided the observed Fisher information
matrix.

4 Data Analysis

In this section, we provide the analysis of a real data set to show how the proposed
EM algorithm can be implemented in practice. This data set is obtained from Johnson
andWichern (1999) and it represents the cholesterol level of 23 adults at two different
times. It is presented below for easy reference: (317, 275), (186, 190), (377, 368),
(229, 282), (276, 306), (272, 250), (219, 236), (260, 264), (284, 241), (365, 294),
(298, 341), (274, 262), (232, 244), (367, 358), (253, 247), (230, 245), (190, 212),
(290, 291), (337, 383), (283, 277), (325, 288), (266,253), (338, 307).

Before progressing further, we have subtracted 165 and divided by 10 for each
data point, mainly for computational purposes. It is not going to affect the inference
procedure. One natural question arises whether ABIGE can be used to analyze this
data set or not. First of all, there are no ties in the data set. We have fitted the IGE to
the minimum of the two cholesterol levels, and the ML estimates of the shape and
scale parameters are 4.7691 and 17.5489, respectively. The Kolmogorov-Smirnov
distance between the fitted and empirical distribution is 0.1451 and the associated
p value is 0.7178. Therefore, it is clear that IGE distribution fits the minimum quite
well. Hence, we have fitted ABIGE distribution to the above bivariate data set.

We have used the EM algorithm to compute the ML estimates of the unknown
parameters. The following initial values have been used:α1 = α2 = α0 = 1 and λ =
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17.0.Wehave started theEMalgorithmwith these initial values and theEMalgorithm
stops when the relative difference between the two consecutive log-likelihood values
is less than 10−6. The iteration stops after 20 steps. The ML estimates and the
associated 95% confidence intervals based on the observed Fisher informationmatrix
are provided below

α̂1 = 3.2683(∓0.9876), α̂2 = 3.5433(∓1.0145), α̂0 = 2.4060(∓0.7655)

λ̂ = 19.6523(∓4.1276).

We have tried the above EM algorithm with different initial guesses, it converges
to the same point, although the number of iterations are different. Another natural
question is whether the EM algorithm converges to the global maximum or not. To
verify that, we have tried to find the maximum of the log-likelihood function using
the grid search method. We have taken the range of α0, α1 and α2 as (0, 5) and the
range of λ as (0, 30) with grid size 0.0001 for each parameter. It gives the maximum
at the same point although it took more than three hours to execute, whereas in the
same machine the EM algorithm converges in few seconds.

5 Absolute Continuous Multivariate IGE Distribution

In this section, we define absolute continuous multivariate IGE (AMIGE) distribu-
tion along the same way as the multivariate Block and Basu absolutely continuous
exponential distribution, see for example Pradhan and Kundu (2016). The basic idea
is the same. First, we define the multivariate IGE distribution as follows:

Definition 3 Suppose U0, . . . ,Up are independent IGE distributions, and Ui ∼
IGE(αi ,λ), for i = 0, . . . , p. Now, define X j = min{Uj ,U0}, for j = 1, . . . , p.
Then, (X1, . . . , X p)

� is called theMIGE distribution with parametersα0, . . . ,αp,λ
and it is denoted by MIGE(α1, . . . ,αp,α0,λ).

Now, anAMIGE distribution can be constructed from aMIGE distribution by remov-
ing the singular components. We give the formal definition of a AMIGE distribution.

Definition 4 A random vector (Y1, . . . ,Yp)
� is said to have a p-variate AMIGE

distribution with parameters α0,α1, . . . ,αp and λ, if the joint PDF of (Y1, . . . ,Yp)
�

is of the form

fY1,...,Yp (y1, . . . , yp) = c fIGE (yi1;αi1 ,λ) × . . . × f IGE (yip−1;αi p−1 ,λ) ×
f IGE (yip ;αi p + α0,λ), (17)

here c is the normalizing constant and {i1, . . . , i p} is a permutation of {1, . . . , p},
where yi1 < . . . < yip . From now on, it will be denoted by AMIGE(α1, . . . ,αp,

α0,λ).



An Absolute Continuous Bivariate Inverse Generalized Exponential … 141

The normalizing constant c is such that

∫

Rp

fY1,...,Yp (y1, . . . , yp)dy1 . . . dyp = 1.

It can be seen (see Appendix 3) from the simple multiple integration that

c−1 =
∑

P

αi1

αi1 + . . . + αi p + α0
× . . . × αi p−1

αi p−1 + αi p + α0
. (18)

Here, P denotes the set of all permutations of {1, . . . , p}. Note that when p = 2,

c = α1 + α2 + α0

α1 + α2
. The relation between a MIGE and AMIGE can be described as

follows:

(Y1, . . . ,Yp)
� = (X1, . . . , X p)

�|{Xi1 �= Xi j , 1 ≤ i1, i j ≤ p}. (19)

The above relation (19) can be easily used to generate randomsamples fromaAMIGE
distribution. We have the following results.

Theorem 2 Let (Y1, . . . ,Yp)
� ∼ AMIGE(α1, . . . ,αp,α0,λ).

(a) If q < p, then (Y1, . . . ,Yq)� ∼ AMIGE(α1, . . . ,αq ,α0,λ).
(b) If α1 = . . . = αp = 1, then fY1,...,Yp (y1, . . . , yp) is continuous on R

p, fY1,...,Yp

(y1, . . . , yp) is unimodal and the mode is at (x0, . . . , x0), where x0 is the unique
solution of the non-linear equation

n(e
1
x − 1)(1 − 2x) = n(α − 1) + α0.

(c) Z = min{Y1, . . . ,Yp} ∼ IGE(α1 + . . . + αp + α0,λ).

(d) P(Yi < Y j ) = αi

αi + α j
.

(e) Yi |{Yi < Y j } ∼ IGE(αi + α j + α0,λ).

Proof See Appendix 4.
Now we consider the estimation of the unknown parameters based on a random

sample from a AMIGE distribution. For notational simplicity, we illustrate the pro-
cedure for p = 3, although the result can be easily obtained for a general p also. It
is assumed that we have a random sample of size n from AMIGE(α1,α2,α3,α0,λ)

as follows:
Data = {(y1i , y2i , y3i ); i = 1, . . . , n}. (20)

In this case also,we use the samenotations as before, i.e.� = (α1,α2,α3,α0,λ)�. It
is clear that the MLE of � cannot be obtained in explicit forms, and we use the EM
algorithm as before. We use the following notations I jkm = {i : y ji < yki < ymi },
here { jkm} belongs to the class of all permutations of {1, 2, 3}. Moreover,
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w1 = α1

α1 + α0
, w2 = α2

α2 + α0
, w3 = α3

α3 + α0
.

Let us denote n1 = |I123| + |I213| + |I312| + |I132|, n2 = |I123| + |I213| + |I321| +
|I231|, n3 = |I312| + |I321| + |I231| + |I132|. The ‘pseudo-log-likelihood’ function at
the k-th stage of the EM algorithm can be written as follows:

l(�|�k) =
∑

i∈I123∪I132∪I213∪I312

ln f IGE (y1i ;α1,λ) +
∑

i∈I231∪I321

{
w(k)
1 ln f IGE (y1i ;α1,λ) + (1 − w(k)

1 ) ln SIGE (y1i ;α1,λ)
}

+
∑

i∈I123∪I213∪I321∪I231

ln f IGE (y2i ;α2,λ) +
∑

i∈I132∪I312

{
w(k)
2 ln f IGE (y2i ;α2,λ) + (1 − w(k)

2 ) ln SIGE (y2i ;α2,λ)
}

+
∑

i∈I312∪I132∪I321∪I231

ln f IGE (y3i ;α3,λ) +
∑

i∈I123∪I213

{
w(k)
3 ln f IGE (y3i ;α3,λ) + (1 − w(k)

3 ) ln SIGE (y3i ;α3,λ)
}

+
∑

i∈I231∪I321

{
w(k)
1 ln SIGE (y1i ;α0,λ) + (1 − w(k)

1 ) ln f IGE (y1i ;α0,λ)
}

+
∑

i∈I132∪I312

{
w(k)
2 ln SIGE (y2i ;α0,λ) + (1 − w(k)

2 ) ln f IGE (y2i ;α0,λ)
}

+
∑

i∈I123∪I213

{
w(k)
3 ln SIGE (y3i ;α0,λ) + (1 − w(k)

3 ) ln f IGE (y3i ;α0,λ)
}

.(21)

It is clear that for a given λ

α̂(k+1)
1 (λ) = n1 + w(k)

1 (n − n1)
∑

i∈I ln(1 − e− λ
y1i )

,

α̂(k+1)
2 (λ) = n2 + w(k)

2 (n − n2)
∑

i∈I ln(1 − e− λ
y2i )

,

α̂(k+1)
3 (λ) = n3 + w(k)

3 (n − n3)
∑

i∈I ln(1 − e− λ
y3i )

,

α̂(k+1)
0 (λ) = (n − n1)(1 − w(k)

1 ) + (n − n2)(1 − w(k)
2 ) + (n − n3)(1 − w(k)

3 )
∑

i∈I ln(1 − e− λ
y1i ) + ∑

i∈I ln(1 − e− λ
y2i ) + ∑

i∈I ln(1 − e− λ
y3i )

,
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maximize (21). Moreover, λ(k+1) can be obtained bymaximizing the profile ‘pseudo-
log-likelihood’ function of λ. Hence, ‘M’-step can be performed by solving only one
one-dimensional optimization problem. �

6 Conclusions and Some Open Problems

In this paper, we have introduced a new absolutely continuous bivariate distribution
by removing the singular component of the singular bivariate inverse generalized
exponential distribution. The marginals of the present bivariate distribution can be
heavy tailed and have non-monotone hazard function. Due to the presence of four
parameters, the proposed distribution is very flexible. We have developed an EM
algorithm which can be used very conveniently to compute the ML estimators of the
unknown parameters. The method has been extended to the multivariate case also.

As it has been mentioned before that the GE distribution can be obtained as a
special case of the generalized Gompertz–Verhulst (GGV) distribution as introduced
by Ahuja and Nash (1967). The CDF of a GGV distribution with parameters p > 0,
σ > 0 and θ > 0 takes the following form:

FGGV (x; θ,σ, p) =
{

0 if x ≤ σ ln p
(
1 − pe− x

σ

)θ
if x > σ ln p.

(22)

Therefore, if we reparameterize as λ = σ−1 and μ = σ ln p, then (22) can be written
as

FGGV (x; θ,λ,μ) =
{

0 if x ≤ μ
(
1 − e−λ(x−μ)

)θ
if x > μ.

(23)

Hence, the GGV distribution is the same as the three-parameter (location shift)
GE distribution. Three-parameter IGE can be analogously defined from the three-
parameter GE distribution. Similarly, five-parameter ABIGE can be defined with one
location, one scale and three shape parameters and all the properties also remain the
same. If the common location parameter is known, then the proposed EM algorithm
can be used to compute the MLEs of the unknown parameters. All the results can
be easily generalized to the multivariate case also. But if the location parameter is
unknown, then it is no more a regular family and MLEs may not exist always. It
will be interesting to develop a proper inference procedure in this case. More work
is needed in this direction.

Recently, Feizjavadian and Hashemi (2015), Cai et al. (2017) and Shen and Xu
(2018) developed dependent competing risks model based Marshall–Olkin bivari-
ate Weibull distribution. The main assumption in developing the model based on
Marshall–Olkin bivariate Weibull distribution is that, an experimental unit can fail at
a particular time due to two competing causes simultaneously. But it may not be true
in many cases. It seems this distribution can be used to develop dependent compet-
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ing risks data when there are no ties on the cause of failure. The detailed inference
procedure needs to be developed. The work is in progress, it will be reported later.
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Appendix 1: Proof of Theorem 1

Proof (a) It is clear that fU,V (u, v) is continuous in S1 ∪ S2. Since fU,V (x, x) =
limu,v→x fU,V (u, v), it follows that fU,V (u, v) is continuous in S0 ∪ S1 ∪ S2. Since
for all 0 < u, v < ∞,

fU,V (0, 0) = fU,V (∞,∞) = fU,V (u, 0) = fU,V (u,∞) = fU,V (0, v) = fU,V (∞, v) = 0,

that fU,V (u, v) has a local maximum. It can be easily checked by taking derivatives
of ln fU,V (u, v) that fU,V (u, v) does not have any critical point in the region S1 ∪ S2,
hence fU,V (u, v) does not have any critical point in the region S1 ∪ S2, hence it does
not have any local maximum in S1 ∪ S2. Therefore, in this case, the local maximum
will be at S0. By taking derivative with respect to x of ln fU,V (x, x) and equating
it to zero, we can get one needs to solve the Eq. (9). It can be easily seen that the
left-hand side of (9) is a decreasing function of x , and it decreases from ∞ to -4.
Hence, it has a unique solution.
(b) Note that since α1 > 1 and α2 + α0 < 1, it can be easily seen by taking partial
derivatives of ln fU,V (u, v) that fU,V (u, v)has a critical point at (x1, x2), where x1 and
x2 are solutions of the non-linear Eqs. (10) and (11), respectively. Clearly, x1 < 1/2,
since α1 > 1 and x2 < 1/2, since α2 + α0 < 1. Hence, (x1, x2) ∈ S1. Uniqueness
follows using the same argument as in (a). It can be easily checked that fU,V (u, v)
does not have a critical point in S2.
(c) Follows similarly as in (b). �

Appendix 2: Observed Fisher Information Matrix

Using the same notation as Louis (1982), the observed Fisher information matrix
can be written as

Fobs = B − SS�,

here B is the negative of the second derivative of the log-likelihood function and S
is the derivative vector. We provide the elements of the matrix B and the vector S.
We will use the following notation for brevity.
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a11 =
∑

i∈I1

1

u2i (1 − e− λ̂
ui )2

, a12 =
∑

i∈I2

1

u2i (1 − e− λ̂
ui )2

,

a22 =
∑

i∈I2

1

v2i (1 − e− λ̂
vi )2

, a21 =
∑

i∈I1

1

v2i (1 − e− λ̂
vi )2

b11 =
∑

i∈I1

1

ui (1 − e− λ̂
ui )

, b12 =
∑

i∈I2

1

ui (1 − e− λ̂
ui )

,

b22 =
∑

i∈I2

1

vi (1 − e− λ̂
vi )

, b21 =
∑

i∈I1

1

vi (1 − e− λ̂
vi )

c11 =
∑

i∈I1

1

ui
, c12 =

∑

i∈I2

1

ui
, c22 =

∑

i∈I2

1

vi
, c21 =

∑

i∈I1

1

vi
,

d11 =
∑

i∈I1
ln(1 − e− λ

ui ), d12 =
∑

i∈I2
ln(1 − e− λ

ui )

d22 =
∑

i∈I2
ln(1 − e− λ

vi ), d21 =
∑

i∈I1
ln(1 − e− λ

vi ).

If the (i, j)-th element of the matrix B is B(i, j), then B(i, j) = B( j, i), for 1 ≤
i, j ≤ 4, and for 1 ≤ i ≤ j ≤ 4,

B(1, 1) = n1 + n2w2

α̂2
1

, B(2, 2) = n2 + n1w1

α̂2
2

, B(3, 3) = n1(1 − w1) + n2(1 − w2)

α̂2
0

,

B(4, 4) = 2

λ̂2
+ a11[α̂1 − 1] + a22[α̂2 − 1] + a12[α̂1 + α̂0 − 1] + a21[α̂2 + α̂0 − 1]

B(1, 4) = − 1

λ̂2
− (c11 + b11), B(2, 4) = − 1

λ̂2
− (c22 + b22), B(3, 4) = b12 + b21,

B(1, 3) = B(2, 3) = B(1, 2) = 0.

If S = (S(1), S(2), S(3), S(4))�, then

S(1) = n1 + w2n2
α̂1

+ (d11 + d12), S(2) = n2 + w1n1
α̂2

+ (d22 + d21), S(3) = d12 + d21,
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S(4) = λ̂(c11 + c12 + c21 + c22) − 2n

λ̂
− α̂1(b11 + b12) + α̂2(b22 + b21) + α̂0(b21 + b12)

+(b11 + b12 + b21 + b22).

Appendix 3: Normalizing Constant c

In this section, we show that the normalizing constant c satisfies (18). We will show
the result for p = 3, the general result easily follows from there. If (Y1,Y2,Y3)�
follows a AMIGE with parameters α0, α1, α2, α3 and λ, then for Y = (Y1,Y2,Y3)
and y = (y1, y2, y3)

fY ( y) = c

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

f IGE (y1;α1,λ) f IGE (y2;α2,λ) f IGE (y3;α0 + α3,λ) if y1 < y2 < y3
f IGE (y1;α1,λ) f IGE (y3;α3,λ) f IGE (y2;α0 + α2,λ) if y1 < y3 < y2
f IGE (y2;α2,λ) f IGE (y1;α1,λ) f IGE (y3;α0 + α3,λ) if y2 < y1 < y3
f IGE (y2;α2,λ) f IGE (y3;α3,λ) f IGE (y1;α0 + α1,λ) if y2 < y3 < y1
f IGE (y3;α3,λ) f IGE (y1;α1,λ) f IGE (y2;α0 + α2,λ) if y3 < y1 < y2
f IGE (y3;α3,λ) f IGE (y2;α2,λ) f IGE (y1;α0 + α1,λ) if y3 < y2 < y1.

Now, note that

∫ ∞

0

∫ ∞

y1

∫ ∞

y2

f IGE (y1;α1,λ) f IGE (y2;α2,λ) f IGE (y3;α0 + α3,λ)dy3dy2dy1 =
∫ ∞

0

∫ ∞

y1

f IGE (y1;α1,λ) f IGE (y2;α2,λ)SIGE (y2;α0 + α3,λ)dy3dy2 =
α2

α2 + α3 + α0

∫ ∞

0

∫ ∞

y1

f IGE (y1;α1,λ)SIGE (y1;α2 + α3 + α0,λ) =
α1

α1 + α2 + α3 + α0
× α2

α2 + α3 + α0
.

Similarly, the other integrations also can be obtained. Hence

c−1 = α1

α1 + α2 + α3 + α0
× α2

α2 + α3 + α0
+ α1

α1 + α2 + α3 + α0
× α3

α2 + α3 + α0
+

α2

α1 + α2 + α3 + α0
× α1

α1 + α3 + α0
+ α2

α1 + α2 + α3 + α0
× α3

α1 + α3 + α0
+

α3

α1 + α2 + α3 + α0
× α1

α1 + α2 + α0
+ α3

α1 + α2 + α3 + α0
× α2

α1 + α2 + α0
.
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Appendix 4: Proof of Theorem 2

Proof (a) Follows from the definition.
(b) Proof follows along the same way as the proof of Part (a) of Theorem 2.1.
(c)

P(Z > z) = P(U1 > z, . . . ,Up > z,U0 > z)

= SIGE (z;α1,λ) × . . . × SIGE (z;αp,λ)SIGE (z;α0,λ)

= SIGE (z;α1 + . . . + αp + α0,λ).

(d) Observe that (Yi ,Y j ) ∼ ABIGE(αi ,α j ,λ). Hence,

P(Yi < Y j ) = αi + α j + α0

αi + α j

∫ ∞

0

∫ ∞

u
f IGE (u;αi ,λ) f IGE (v;α j + α0,λ)dvdu

= αi + α j + α0

αi + α j

∫ ∞

0
f IGE (u;αi ,λ)SIGE (u;α j + α0,λ)du

= αi

αi + α j
.

(e) Observe that (Yi ,Y j ) ∼ ABIGE(αi ,α j ,λ). Hence,

P(Yi > a|Yi < Y j ) = P(a < Yi < Y j )

P(Yi < Y j )

= αi + α j + α0

αi

∫ ∞

a

∫ ∞

u
f IGE (u;αi ,λ) f IGE (v,α j + α0,λ)dvdu

= αi + α j + α0

αi

∫ ∞

a
f IGE (u; αi ,λ)SIGE (u,α j + α0,λ)du

= SIGE (a; αi + α j + α0,λ).

�
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The Likelihood Ratio Test of Equality
of Mean Vectors with a Doubly
Exchangeable Covariance Matrix

Carlos A. Coelho and Jolanta Pielaszkiewicz

Abstract The authors derive the LRT statistic for the test of equality ofmean vectors
when the covariance matrix has what is called a double exchangeable structure. A
second expression for this statistic, based on determinants of Wishart matrices with
a block-diagonal parameter matrix, allowed for the expression of the distribution of
this statistic as that of a product of independent Beta random variables.Moreover, the
split of the LRT statistic into three independent components, induced by this second
representation, will then allow for the expression of the exact distribution of the LRT
statistic in a very manageable finite closed form for most cases and the obtention of
very sharp near-exact distributions for the other cases. Numerical studies show that,
as expected, due to the way they are built, these near-exact distributions are indeed
asymptotic not only for increasing sample sizes but also for increasing values of all
other parameters in the distribution, besides lying very close to the exact distribution
even for extremely small samples.

Keywords Asymptoticity for all parameters · Exact distribution · Near-exact
distributions · Product of Betas · Quadratic space · Small samples

1 Introduction

Let us suppose we have a multivariate random vector X which is split into m sub-
vectors Xi (i = 1, . . . , m), all of the same length vr , each of which is, in turn, split
into v subvectors Xi j ( j = 1, . . . , v), each of them of length r , that is, we have
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X = [
X11, X12, . . . , X1v︸ ︷︷ ︸

X1

, X21, X22, . . . , X2v︸ ︷︷ ︸
X2

, . . . , Xm1, Xm2, . . . , Xmv︸ ︷︷ ︸
Xm

]′

where each Xi j (i = 1, . . . , m; j = 1, . . . , v) is of dimension r .
The Xi may correspond for example to different times of measurement (i =

1, . . . , m), with the Xi j ( j = 1, . . . , v), for a given i , corresponding to the set of r
variables measured at different v locations at that given time i .

Then it may make sense to assume a covariance structure where we have, for
i = 1, . . . , m,

V ar(Xi ) = Iv ⊗ U + (Iv − Jv) ⊗ V =

⎡

⎢⎢⎢
⎣

U V . . . V
V U . . . V
...

...
. . .

...

V V . . . U

⎤

⎥⎥⎥
⎦

and for i �= i ′ (i, i ′ ∈ {1, . . . , m})

Cov(Xi , Xi ′) = Jv ⊗ M =

⎡

⎢⎢⎢
⎣

M M . . . M
M M . . . M
...

...
. . .

...

M M . . . M

⎤

⎥⎥⎥
⎦

where Ip represents an identitymatrix of order p and Jp amatrix of 1’s of dimensions
p×p, so that for any i = 1, . . . , m and j = 1, . . . , v

V ar(Xi j ) = U

and for j �= j ′ ( j, j ′ ∈ {1, . . . , v}) and i �= i ′ (i, i ′ ∈ {1, . . . , m})

Cov(Xi j , Xi j ′) = V and Cov(Xi j , Xi ′ j ′) = Cov(Xi j , Xi ′ j ) = M .

In this case the covariance matrix for our random vector X will have what we call a
double exchangeable structure, with

Σ = Ivm ⊗ U + {Im ⊗ (Jv − Iv)} ⊗ V + {Jvm − (Im ⊗ Jv)} ⊗ M , (1)

for any positive-definite r×r matrices U and symmetric r×r matrices V and M , such
that U − V , U − V + v(V − M) and U − V + v(V − M) + vm M are positive-
definite.

An account of the properties of this covariance structure was given by several
authors and its applicability in spatial/time analyses established (Roy and Fonseca
2012; Pavlenko and Roy 2017; Coelho and Roy 2020). It also has as particular cases
several covariance structures of interest as for example the well-known compound-
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symmetric structure, for r = 1 and m = 1 or v = 1, the block-compound-symmetric
structure, form = 1orv = 1, and the double complete symmetry (Coelho andSingull
2020) for r = 1.

For example for m = 4 and v = 3, Σ would have the following structure

Σ =

⎡

⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎢
⎣

U V V M M M M M M M M M
V U V M M M M M M M M M
V V U M M M M M M M M M
M M M U V V M M M M M M
M M M V U V M M M M M M
M M M V V U M M M M M M
M M M M M M U V V M M M
M M M M M M V U V M M M
M M M M M M V V U M M M
M M M M M M M M M U V V
M M M M M M M M M V U V
M M M M M M M M M V V U

⎤

⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎥
⎦

.

Let us suppose that we have q independent replicates of X , which we will denote
by X (k), for k = 1, . . . , q, with

E
(
X (k)

) = μ(k) and V ar(X (k)) = Σ ,

where Σ has the above double exchangeable structure, and let us suppose that we
are then interested in testing the null hypothesis

H0 : μ(1) = · · · = μ(q) , (2)

based on q independent samples, one from each X (k), accounting for the structure of
Σ in (1).

In the next section we obtain the LRT statistic for this test, deriving the MLE’s
for Σ , under the null and the alternative hypotheses, using a strategy based on the
fact that both Σ and Σ−1 have a similar structure. Then in Sect. 3 we first rewrite the
expression for this LRT statistic, expressing it in terms of determinants of diagonal
blocks of Wishart matrices with a block-diagonal parameter matrix. This will enable
us to obtain the distribution of the LRT statistic in terms of the distribution of a
product of independent Beta r.v.’s. This form of the distribution will in turn enable
us to obtain the exact distribution of this LRT statistic in a closed finite and very
manageable form for all cases where q is odd or r is even and also to develop very
sharp near-exact distributions for all other cases. Finally in Sect. 4 conclusions are
drawn and a discussion is undertaken upon the methods and techniques used.
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2 The LRT Statistic

Let X (k) ∼ Nvmr (μ
(k), Σ) (k = 1, . . . , q), where Σ has the double exchangeable

structure in (1) and let us suppose that we are interested in testing the null hypothesis
in (2).

Let

A =
q∑

k=1

(nk − 1)Sk and B =
q∑

k=1

nk(X
(k) − X)(X

(k) − X)′ (3)

where nk is the size of the sample from X (k) and Sk and X
(k)

are respectively the
sample covariance matrix and mean vector of the k-th sample and where

X = 1

n

q∑

k=1

nk X
(k)

,

for n = ∑q
k=1 nk . Then, see for example Kshirsagar (1972, Sect. 9.1), the (2/n)-th

power of the LRT statistic to test H0 in (2), without accounting for the structure in
Σ , is

Λ = |A|
|A + B| ,

where A and A + B are the unstructured MLEs of Σ , respectively under the alter-
native and under the null hypotheses.

So, the question now is: which will be the ((2/n)-th power of the) LRT statistic
to test H0 in (2), accounting for the structure of Σ in (1)?

It is not too hard to show that the answer is: it is a statistic of the form

Λ = |A∗|
|A∗ + B∗| , (4)

where A∗ and A∗ + B∗ will be the MLEs of Σ , respectively under the alternative
and under the null hypotheses, both of them accounting for the double exchangeable
structure of Σ .

So, the next question is: how will we be able to obtain A∗ and B∗?
Wemay note that, not only the space of doubly exchangeable covariance matrices

is itself a quadratic space (Seely 1971), as well as if we let Γp denote an orthogonal
Helmert matrix whose first row is proportional to a vector of 1’s, and consider the
orthogonal matrix

Γ = Γm ⊗ Γv ⊗ Ir , (5)

then we have, for Σ in (1) (Roy and Fonseca 2012),

Γ ΣΓ ′ = Ψ ,
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with

Ψ = bdiag(Ψ1, Ψ3, . . . , Ψ3︸ ︷︷ ︸
v−1

, Ψ2, Ψ3, . . . , Ψ3︸ ︷︷ ︸
v−1

, . . . , Ψ2, Ψ3, . . . , Ψ3︸ ︷︷ ︸
v−1︸ ︷︷ ︸

m−1

) , (6)

where bdiag denotes a block-diagonal matrix and where Ψ1, Ψ2 and Ψ3 are all r×r
positive-definite matrices, with

Ψ1 = U + (v − 1)V + v(m − 1)M

Ψ2 = U + (v − 1)V − vM

Ψ3 = U − V .

(7)

But then, since we will have

Ψ −1=bdiag(Ψ −1
1 , Ψ −1

3 , . . . , Ψ −1
3︸ ︷︷ ︸

v−1

, Ψ −1
2 , Ψ −1

3 , . . . , Ψ −1
3︸ ︷︷ ︸

v−1

, . . . , Ψ −1
2 , Ψ −1

3 , . . . , Ψ −1
3︸ ︷︷ ︸

v−1
︸ ︷︷ ︸

m−1

),

we may write
Σ−1 = Γ Ψ −1Γ ′ ,

which shows that both Σ and Σ−1 have the double exchangeable structure, what
allows us to use the results in Szatrowski (1978, 1980) and Seely (1971) in order to
obtain the MLEs of Σ under H0, as well as under the alternative hypothesis, built
from the MLEs of the corresponding blocks of dimensions r×r , which will then be
obtained by averaging the corresponding blocks of the unstructured MLE.

This way, under the alternative hypothesis H1 : ∃k,k ′∈{1,...,q} : μ(k) �= μ(k ′), the
MLE of Σ is

A∗ = Ivm ⊗ Û|H1 + [Im ⊗ (Jv − Iv)] ⊗ V̂|H1 + [Jvm − (Im ⊗ Jv)] ⊗ M̂|H1 , (8)

where

Û|H1 = 1

mv

mv∑

j=1

A j j , (9)

V̂|H1 = 1

v(v − 1)m

m−1∑

j=0

v−1∑

k=1

v−k∑

�=1

A jv+k, jv+k+� + A′
jv+k, jv+k+� , (10)

and
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M̂|H1 =
1

v2m(m − 1)

m−2∑

j=0

v∑

k=1

vm−( j+1)v−1∑

�=0

A jv+k,( j+1)v+1+� + A′
jv+k,( j+1)v+1+� , (11)

with A jk representing the r×r block of A starting at row r( j − 1) + 1 and column
r(k − 1) + 1.

Under the null hypothesis in (2) the MLE of Σ is

A∗+B∗ = Ivm ⊗ Û|H0 + [Im ⊗ (Jv − Iv)] ⊗ V̂|H0 + [Jvm − (Im ⊗ Jv)] ⊗ M̂|H0 ,

where

Û|H0 = 1

mv

mv∑

j=1

A j j + B j j ,

V̂|H0 = 1

v(v − 1)m

m−1∑

j=0

v−1∑

k=1

v−k∑

�=1

(
A jv+k, jv+k+� + A′

jv+k, jv+k+�

+B jv+k, jv+k+� + B ′
jv+k, jv+k+�

)

and

M̂|H0 =
1

v2m(m − 1)

m−2∑

j=0

v∑

k=1

vm−( j+1)v−1∑

�=0

(
A jv+k,( j+1)v+1+�+ A′

jv+k,( j+1)v+1+�

+B jv+k,( j+1)v+1+� + B ′
jv+k,( j+1)v+1+�

)
,

where A jk and B jk represent respectively the r×r blocks of A and B starting at row
r( j − 1) + 1 and column r(k − 1) + 1.

Then, for a sample of size n = ∑q
k=1 nk , the (2/n)-th power of the LRT statistic

to test H0 in (2) is the statistic Λ in (4).
However, although that expression may be used to obtain the computed value of

the statistic, it is much useful in helping us derive the distribution of Λ. In order to
do this the best way is to take the approach in the next section.

3 The Distribution of the l.r.t. Statistic

The results on the distribution of the statistic Λ in (4), which will be used to obtain
its distribution in a finite closed form for most cases and near-exact approximations
for the remaining cases, are summarized in the following Theorem, whose Corollary
shows that the results in Coelho (2017) are indeed a particular case of the present
results.
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Theorem 1 The distribution of Λ in (4) is the same as that of

⎧
⎨

⎩

r∏

j=1

Y j

⎫
⎬

⎭
×

⎧
⎨

⎩

r∏

j=1

(
Y ∗

j

)m−1

⎫
⎬

⎭
×

⎧
⎨

⎩

r∏

j=1

(
Y ∗∗

j

)(v−1)m

⎫
⎬

⎭
, (12)

where, for j = 1, . . . , r , and for n > q + r − 1,

Y j ∼ Beta

(
n − q + 1 − j

2
,

q − 1

2

)

Y ∗
j ∼ Beta

(
(m − 1)(n − q)

2
+ 1 − j

2
,
(m − 1)(q − 1)

2

)

Y ∗∗
j ∼ Beta

(
(v − 1)m(n − q)

2
+ 1 − j

2
,
(v − 1)m(q − 1)

2

)

(13)

form three sets of independent r.v.’s, also all independent among themselves.

Proof Let us consider the matrices

A∗∗ = Γ AΓ ′ and B∗∗ = Γ BΓ ′ , (14)

for Γ in (5). Then, we should remark that, given the fact that the matrices A and B
in (3) are independent, with

A ∼ Wvmr (n − q,Σ) and B ∼ Wvmr (q − 1,Σ) ,

then, A∗∗ and B∗∗ will be two independent matrices, with

A∗∗ ∼ Wvmr (n − q, Ψ ) and B∗∗ ∼ Wvmr (q − 1, Ψ ) , (15)

for Ψ in (6).
Then, it is possible to show that (see Appendix 1)

|A∗| = | A∗∗
1︸︷︷︸

A∗∗∗
1

|
(∣∣∣∣

1

m − 1

m−1∑

j=1

A∗∗
jv+1

︸ ︷︷ ︸
A∗∗∗
2

∣
∣∣∣

)m−1

×
(∣∣
∣∣

1

(v − 1)m

m∑

j=1

v−1∑

k=1

A∗∗
( j−1)v+1+k

︸ ︷︷ ︸
A∗∗∗
3

∣∣
∣∣

)(v−1)m

,

(16)

and
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|A∗ + B∗| = | A∗∗
1 + B∗∗

1︸ ︷︷ ︸
A∗∗∗
1 +B∗∗∗

1

|
(∣∣∣
∣

1

m − 1

m−1∑

j=1

A∗∗
jv+1 + B∗∗

jv+1

︸ ︷︷ ︸
A∗∗∗
2 +B∗∗∗

2

∣∣∣
∣

)m−1

×
(∣∣∣∣

1

(v − 1)m

m∑

j=1

v−1∑

k=1

A∗∗
( j−1)v+1+k + B∗∗

( j−1)v+1+k

︸ ︷︷ ︸
A∗∗∗
3 +B∗∗∗

3

∣∣∣∣

)(v−1)m

,

(17)
where A∗∗

j and B∗∗
j represent the j-th diagonal block of dimensions r×r respectively

of A∗∗ and B∗∗.
But then, from (4), (16) and (17) we may write

Λ = |A∗∗∗
1 |

|A∗∗∗
1 + B∗∗∗

1 |
︸ ︷︷ ︸

Λ1

( |A∗∗∗
2 |

|A∗∗∗
2 + B∗∗∗

2 |
)m−1

︸ ︷︷ ︸
Λ2

( |A∗∗∗
3 |

|A∗∗∗
3 + B∗∗∗

3 |
)(v−1)m

︸ ︷︷ ︸
Λ3

(18)

where, under H0 in (2), given the distributions of A∗∗ and B∗∗ in (15) and the fact
that Ψ is a block-diagonal matrix, A∗∗∗

1 , A∗∗∗
2 , A∗∗∗

3 , B∗∗∗
1 , B∗∗∗

2 and B∗∗∗
3 are all

independent, with
A∗∗∗
1 ∼ Wr (n − q, Ψ1)

A∗∗∗
2 ∼ Wr

(
(m − 1)(n − q), Ψ2

)

A∗∗∗
3 ∼ Wr

(
(r − 1)m(n − q), Ψ3

)

and
B∗∗∗
1 ∼ Wr (q − 1, Ψ1)

B∗∗∗
2 ∼ Wr

(
(m − 1)(q − 1), Ψ2

)

B∗∗∗
3 ∼ Wr

(
(r − 1)m(q − 1), Ψ3

)

for Ψ1, Ψ2 and Ψ3 in (6), so that, under H0 in (2), we have (Coelho and Arnold 2019,
Chap.5, App. A)

Λ1
st∼

r∏

j=1

Y j , Λ2
st∼

r∏

j=1

(
Y ∗

j

)m−1
and Λ3

st∼
r∏

j=1

(
Y ∗∗

j

)(v−1)m
,

where, for j = 1, . . . , r , and for n > q + r − 1, the r.v.’s Y j , Y ∗
j and Y ∗∗

j form three
sets of independent r.v.’s, which, given the independence of Λ1, Λ2 and Λ3, conse-
quence of the block-diagonal structure of the matrix Ψ , are also independent among
themselves, with the distributions in (13). �

For r = 1 and v = 1 or for r = 1 and m = 1, the matrix Σ is a compound-
symmetric matrix, and as such, for these values of the parameters it is possible to
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establish the following Corollary, which shows that the results in Coelho (2017) are
a particular case of the results in the present paper.

Corollary 1 For r = 1, v = 1 and m = p, or for r = 1, m = 1 and v = p, we may
write, from (16)–(18), the statistic Λ as

Λ = a∗∗∗
11

c∗∗∗
11

(a∗∗∗)p−1

(c∗∗∗)p−1

for
c∗∗∗
11 = a∗∗∗

11 + b∗∗∗
11 and c∗∗∗ = a∗∗∗ + b∗∗∗ ,

where a∗∗∗
11 and b∗∗∗

11 stand for the only diagonal element in A∗∗∗
1 and B∗∗∗

1 respectively,
which are now 1×1 matrices, and where a∗∗∗ and b∗∗∗ represent respectively either
the sum or the average of the A∗∗

j and the B∗∗
j for j = 2, . . . , p.

Furthermore, for r = 1, v = 1 and m = p we have, from (12) and (13), the dis-
tribution of Λ as that of

Y1
(
Y ∗
1

)p−1
,

where

Y1 ∼ Beta

(
n − q

2
,

q − 1

2

)
and Y ∗

1 ∼ Beta

(
(p − 1)(n − q)

2
,
(p − 1)(q − 1)

2

)
,

are two independent r.v.’s, and for r = 1, m = 1 and v = p, as that of

Y1
(
Y ∗∗
1

)p−1
,

where Y ∗∗
1 has exactly the same distribution as that of Y ∗

1 above, being also indepen-
dent of Y1.

These results establish those in Coelho (2017) as a particular case of the present
ones.

In addressing the distribution of the l.r.t. statistic in (18) we will have to consider
four different scenarios, split into two main scenarios, the second of which, itself
split into three sub-scenarios.

The two main scenarios to consider are:

(i) the case of odd q or even r , where we will be able to obtain the exact distribution
of Λ in a closed manageable form,

(ii) the case of even q and odd r , where we will have to approximate the distribution
of Λ using near-exact distributions, which will be shown to lay very close to the
exact distribution, and where we will have to consider three sub-scenarios:

(ii.a) where m and v are odd, in which case we may still obtain the distribution
of Λ1 and Λ2 in a closed finite manageable form,

(ii.b) where m is odd and v is even, in which case we may obtain only the
distribution of Λ2 in a closed finite manageable form, and
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(ii.c) wherem is even, in which case only the distribution ofΛ3 may be obtained
in a closed finite manageable form.

This enchaining of scenarios is addressed in the following subsections.

3.1 The Case of Odd q and Even r

When either q is odd or r is even we are actually able to obtain the exact distribution
of Λ in a closed finite and very manageable form.

This is so because in this case we may use Theorem 3.2 in Coelho and Arnold
(2019) to obtain, for odd q or even r the exact distribution of Λ1, Λ2 and Λ3 in a
closed finite and very manageable form, which moreover, given the independence of
the three statistics, will then open the way for obtaining the exact distribution of Λ

in a closed finite and very manageable form.
We have thus the following Theorem, which gives the exact distribution of Λ for

odd q or even r in a closed finite and very manageable form.

Theorem 2 For odd q or even r the exact distribution of Λ is an EGIG distribution
(Arnold et al. 2013) of depth at most 3r + vm(q − 1) − 6, with rate parameters

λ jk = n − 1

2
− j + 1

2ck
, j = 1, . . . , r + ck(q − 1) − 2; k = 1, . . . , 3 , (19)

for
c1 = 1 , c2 = m − 1 and c3 = (v − 1)m , (20)

and shape parameters

r jk =
{

h jk j = 1, 2

h jk + r j−2,k j = 3, . . . , r + ck(q − 1) − 2
(21)

where

h jk = (# of elements in {r, ck(q − 1)} ≥ j) − 1

=

⎧
⎪⎪⎨

⎪⎪⎩

1 j = 1, . . . ,min(r, ck(q − 1))

0 j = 1 + min(r, ck(q − 1)), . . . ,max(r, ck(q − 1))

−1 j = 1 + max(r, ck(q − 1)), . . . , r + ck(q − 1) − 2 ,

(22)

with p.d.f. and c.d.f. respectively given by

fΛ(z) = f EG I G

(
z
∣
∣∣

≈{r jk

≈}, {̃λ j k̃}; #̃{λ j k̃}
)

(23)
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and

FΛ(z) = F EG I G

(
z
∣∣∣

≈{r jk

≈}, {̃λ j k̃}; #̃{λ j k̃}
)

, (24)

for 0 < z < 1, and where f EG I G and F EG I G denote respectively the p.d.f. and the
c.d.f. of the EGIG distribution, with the full notation being explained in Appendix 2,
and with {̃λ j k̃} denoting the set of unique λ jk in (19) (given the fact that for different

k some of the λ jk may be equal) and with
≈{r jk

≈} denoting the set of corresponding
shape parameters, where the original shape parameters r jk that correspond to equal
λ′

jks are added together (this has to be done because the definition of the EGIG p.d.f.
and c.d.f. requests a set of unique rate parameters). The depth of this distribution,
which is the number of different Gamma distributions involved and the product of

whose exponentials form the EGIG distribution, is then equal to #̃{λ j k̃} or #
≈{r jk

≈} ,
where # denotes the cardinality of the set.

Proof Let Wk = − log Λk , for k = 1, . . . , 3. Then, for even r , the distribution of
Λk and Wk (k = 1, . . . , 3) are given, for ck in (20), by Theorem 3.2 in Coelho and
Arnold (2019) for

m∗ = 1 , k1 = 2 , n1 = r/2 , m1 = ck(q − 1) and a1 = ck(n − q)

2
+ 1

2
,

or, for odd q, for

m∗ = 1 , k1 = 2 , n1 = ck(q − 1)/2 , m1 = r and a1 = ck(n − 1) − r

2
+ 1

2
,

(25)
yielding, in either case,

Wk
d≡

r+ck (q−1)−2∑

j=1

Z jk or Λk
d≡

r+ck (q−1)−2∏

j=1

e−Z jk (26)

where “
d≡” stands for “is equivalent in distribution to” and

Z jk ∼ Γ (r jk, λ jk) , j = 1, . . . , r + ck(q − 1) − 2 (27)

are a set of independent r.v.’s, with r jk given by (21)–(22) and

λ jk = n − q

2
+ j − r

2ck
, j = 1, . . . , r + ck(q − 1) − 2; k = 1, . . . , 3 ,

thus yielding for Wk a GIG distribution (Coelho 1998) and for Λk an EGIG distribu-
tion (Arnold et al. 2013) of depth r + mv(q − 1) − 2 (where mv = c1 + c2 + c3),
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with rate parameters λ jk and shape parameters r jk ( j = 1, . . . , r + ck(q − 1) −
2; k = 1, 2, 3).

Given the fact that the shape parameters r jk are symmetric for j = 1, . . . , r +
ck(q − 1) − 2, for any k = 1, . . . , 3, we may reverse the index j in the expression
for λ jk , writing these parameters as in (19). This will render simpler expressions and
a simpler approach later in Sect. 3.2.

The exact characteristic function (c.f.) of Wk (k = 1, . . . , 3) is thus,

ΦWk (t) =
r+ck (q−1)−2∏

j=1

λ
r jk

jk

(
λ jk − it

)−r jk
, (28)

for r jk given by (21)–(22), λ jk given by (19) and ck given by (20), and therefore,
given the independence of Λ1, Λ2 and Λ3, and as such also that of W1, W2 and W3,
the exact c.f. of W = − log Λ = W1 + W2 + W3 is

ΦW (t) = ΦW1(t)ΦW2(t)ΦW3(t)

and the exact distribution of W is, therefore, a GIG distribution of depth at most
3r + (c1 + c2 + c3)(q − 1) − 6 with rate parameters λ jk and shape parameters r jk

(k = 1, . . . , 3; j = 1, . . . , r + ck(q − 1) − 2) and that of Λ an EGIG distribution
of the same depth and with the same rate and shape parameters. We say that the
depth of this GIG distribution, that is, the number of different rate parameters it has,
is at most 3r + (c1 + c2 + c3)(q − 1) − 6, since for some combinations of values
of the parameters m, q, v and r , some of the rate parameters λ jk may be equal for
different k’s. In this case the depth of the GIG and of the EGIG distributions will
be smaller than 3r + (c1 + c2 + c3)(q − 1) − 6 since we will have to “collapse”, or
more precisely, to add together the Gamma r.v.’s with the same rate parameters into a
singleGamma r.v. with that same rate parameter and a shape parameter that is the sum
of the shape parameters for the original Gamma r.v.’s with that same rate parameter.
We could arrange for a rather intricate play of indexes to index all these different rate
parameters and also to indicate which would collapse for different possible relations
among the parameters m, q, v and r , but since we will anyway need a software to
compute the values of the p.d.f. and the c.d.f. of Λ or W , this “selection” of the
different rate parameters may then be easily done by this software using a function
similar to the function Tally in Mathematica�.

Using the notation in Appendix 2 for the GIG p.d.f. and c.d.f., and using for the
sets of rate and shape parameters the notation used and explained in the statement of
the Theorem, we will write, for w > 0, the exact p.d.f. of W as

fW (w) = f G I G

(
w

∣
∣∣

≈{r jk

≈}, {̃λ j k̃}; #̃{λ j k̃}
)

and its c.d.f. as
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FW (w) = FG I G

(
w

∣∣
∣

≈{r jk

≈}, {̃λ j k̃}; #̃{λ j k̃}
)

,

The corresponding exact p.d.f. and c.d.f. of Λ = e−W are then easily obtained by
simple transformation, and may be expressed in terms of the p.d.f. and c.d.f. of the
EGIG distribution, as in (23) and (24). �

The following Corollary shows that the exact distribution in Theorem2 fully
matches the exact distribution obtained for odd q in Coelho (2017) for the case when
Σ is a compound-symmetric matrix, that is, when r = 1 and either v = 1 or m = 1.
Although in face of Corollary1 such result would be fully expected, it may be not
immediately discernible from the result in Theorem2, besides the fact that there is a
small typo in expression (13) in Coelho (2017) which matters to correct.

Corollary 2 For r = 1, v = 1 and m = p, or for r = 1, m = 1 and v = p, and odd
q, the exact distribution of Λ is an EGIG distribution of depth (q − 1)(p − 1)/2,
with rate parameters

λ j = n − q

2
+ j − 1

p − 1
, j = 1, . . . , (q − 1)(p − 1)/2 (29)

and shape parameters

r j =

⎧
⎪⎨

⎪⎩

1 , j = 1, . . . , (q − 1)(p − 1)/2
j �= (� − 1)(p − 1) + 1 for � = 1, . . . , (q − 1)/2

2 , j = (� − 1)(p − 1) + 1 for � = 1, . . . , (q − 1)/2

(30)

with p.d.f. and c.d.f.

fΛ(z) = f EG I G

(

z
∣
∣∣ {r j } j=1:g,

{
n − q

2
− j − 1

p − 1

}

j=1:g
; g

)

(31)

and

FΛ(z) = F EG I G

(

z
∣∣∣ {r j } j=1:g,

{
n − q

2
− j − 1

p − 1

}

j=1:g
; g

)

(32)

for g = (q − 1)(p − 1)/2 and r j given by (30).

Proof Being a direct Corollary of Theorem2, no formal proof is indeed necessary.
All one has to do is to set r = 1, v = 1 and m = p in Theorem2, and notice that in
this case we have, from (20),

c1 = 1 , c2 = p − 1 and c3 = 0 ,

so that we have, from (19),
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λ j1 = n − q

2
+ j − 1

2
, j = 1, . . . , q − 2

and

λ j2 = n − q

2
+ j − 1

2(p − 1)
, j = 1, . . . , (p − 1)(q − 1) − 1 ,

while the λ j3 vanish. Furthermore, from (22) we have

h j1 =
{
1 , j = 1

0 , j = 2, . . . , q − 2

so that, from (21) we obtain

r j1 =
{
1 , for odd j, i.e. j = 1, . . . , q − 2, step 2

0 , for even j, i.e. j = 2, . . . , q − 3, step 2

and

h j2 =
{
1 , j = 1

0 , j = 2, . . . , (p − 1)(q − 1) − 1

which gives

r j2 =
{
1 , for odd j, i.e. j = 1, . . . , (p − 1)(q − 1) − 1, step 2

0 , for even j, i.e. j = 2, . . . , (p − 1)(q − 1) − 2, step 2 .

We may thus write the c.f. of W1 as

ΦW1(t) =
q−2∏

j=1

λ
r j1

j1

(
λ j1 − it

)−r j1 =
q−1
2∏

j=0

(
n − q

2
+ j

)1 (n − q

2
+ j − it

)−1

(33)

and the c.f. of W2 as

ΦW2(t) =
(p−1)(q−1)−2∏

j=1

λ
r j2

j2

(
λ j2 − it

)−r j2

=
(p−1)(q−1)/2∏

j=1

(
n − q

2
+ j − 1

p − 1

)1 (n − q

2
+ j − 1

p − 1
− it

)−1

,

while Λ3 and W3 vanish. This gives for W a c.f. which is
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ΦW (t) = ΦW1(t)ΦW2(t) =
(p−1)(q−1)/2∏

j=1

λ
r j

j (λ j − it)−r j (34)

for λ j in (29) and r j in (30), which is exactly the c.f. on page 24 of Coelho (2017),
thus confirming that result as a particular case of the result in Theorem 2. In this
reference there is a small typo on the second row of expression (13), where a j
appears where there should be an �.

For r = 1, m = 1 and v = p, in Theorem2,we have

c1 = 1 , c2 = 0 and c3 = p − 1

so that we will have again the c.f. of W1 given by (33) and W3 with a similar distri-
bution to that of W2 for the case r = 1, v = 1 and m = p, while Λ2 and W2 vanish,
this way giving again the c.f. of W as that in (34), confirming, also for this case, the
result in Coelho (2017) as a particular case of the result in Theorem2. �

3.2 The Case of Even q and Odd r

When q is even and r is odd there are indeed a number of sub-cases to consider. That
is what we do in the next subsections. On our study of these cases we will need to
obtain the c.f.’s of W1, W2, and W3, for situations where the distributions of these
statistics will not have a closed finite form representation, in a form suitable for the
development of near-exact approximations.

In order to fulfill this aim we may use the results in Appendix A2 of Marques
et al. (2011) concerning the statistic Λ2 in that paper.

Using these results, we may write the c.f. of W1, when r is odd and q is even, the
c.f. of W2 when r is odd, q is even and m is also even or the c.f. of W3 when r is odd,
q is even, m is odd and v is even, as

ΦWk (t) =
⎧
⎨

⎩

r+ck (q−1)−2∏

j=1

λ
r jk

jk

(
λ jk − it

)−r jk

⎫
⎬

⎭
︸ ︷︷ ︸

ΦWk ,1(t)

×
Γ
(

ck (n−1)
2

)
Γ
(

ck (n−1)−1
2 − ck it

)

Γ
(

ck (n−1)−1
2

)
Γ
(

ck (n−1)
2 − ck it

)

︸ ︷︷ ︸
ΦWk ,2(t)

(35)

now with
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r jk =
{

h jk + (−1) j , j = 1, 2

h jk + r j−2,k , j = 3, . . . , r + ck(q − 1) − 2
(36)

for h jk still given by (22), and thus yielding r1k = 0 and r2k = 2 (k = 1, . . . , 3), and
λ jk and ck , respectively, given by (19) and (20).

In all other cases the c.f.’s of W1, W2, and W3 will be given by (28), with λ jk and
r jk respectively given by (19) and (21)–(22).

3.2.1 The Case of Even q, Odd r , Odd m, and Odd v

We should note that in this case we still have the exact distribution of Λ2 and Λ3,
and as such also that of W2 and W3, given by Theorem 3.2 in Coelho and Arnold
(2019), for m∗ = 1 and k1, n1, m1, and a1 given by (25).

Then we have the following Theorem, which gives near-exact distributions for Λ

when q is even, r is odd and m and v are also both odd.

Theorem 3 For even q and odd r, m and v, near-exact distributions for Λ will have
p.d.f.’s and c.d.f.’s respectively of the form

fΛ(z) =
ν∑

�=0

π� f G N I G

(
− log z

∣∣∣
≈{r jk

≈}, 1
2

+2�; {̃λ j k̃}, n−2

2
− 1

4
; #̃{λ j k̃}+1

)
1

z
(37)

and

FΛ(z) =
ν∑

�=0

π�

(
1−FG N I G

(
− log z

∣∣∣
≈{r jk

≈}, 1
2

+2�; {̃λ j k̃}, n−2

2
− 1

4
;

#̃{λ j k̃}+1

))
,

(38)
for 0 < z < 1, where f G N I G and FG N I G stand respectively for the p.d.f. and c.d.f. of
the GNIG distribution (Coelho 2004), using the notation in Appendix 2, and where
λ jk are given by (19) and r jk are given by (36) and (22) for k = 1 and by (21)–(22)

for k = 2, 3, and where the notations {̃λ j k̃} and
≈{r jk

≈} are the same as the ones used
in Theorem2.

Proof Given the remark right before the statement of this Theorem, on the distribu-
tions of W2 and W3, in order to build a near-exact distribution for Λ we will use, for
even q, odd r , and odd m and v, the c.f. of W1 given by (35) and those of W2 and W3

given by (28) and write

ΦW (t) = ΦW1,1(t)ΦW2(t)ΦW3(t)︸ ︷︷ ︸
Φ1(t)

ΦW1,2(t)︸ ︷︷ ︸
Φ2(t)

, (39)
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where we will keep untouched Φ1(t) and will approximate asymptotically Φ2(t), in
such a way that the c.f. that will work as its asymptotic replacement may then be
“joined” back together with Φ1(t) to produce the c.f. of a manageable distribution.
Since Φ2(t) is the c.f. of a single Logbeta

(
n−2
2 , 1

2

)
r.v., we will use the approach in

Sect. 3.3 in Coelho and Alberto (2021) and we will replace Φ2(t) in (39) by

Φ̃2(t) =
ν∑

�=0

πk

(
n − 2

2
− 1

4

) 1
2 +2� (n − 2

2
− 1

4
− it

)−( 1
2 +2�)

(40)

which is the c.f. of a finite mixture with ν + 1 components which are Gamma dis-
tributions, all with the same rate parameter n−2

2 − 1
4 and shape parameters 1

2 + 2�
(� = 0, . . . , ν), whose weights π� for � = 0, . . . , ν − 1 will be obtained through the
numerical solution of the linear system of ν equations

∂�

∂t�
Φ2(t)

∣∣
∣∣
t=0

= ∂�

∂t�
Φ̃2(t)

∣∣
∣∣
t=0

, � = 1, . . . , ν ,

with πν = 1 −∑ν−1
�=0 π�.

This approach will lead to near-exact distributions that match the first ν exact
moments of W = − log Λ and yields for this r.v. the near-exact c.f.

Φ̃W (t) = Φ1(t) Φ̃2(t) =
ν∑

�=0

πk Φ1(t)

(
n−2

2
− 1

4

)1
2 +2� (n−2

2
− 1

4
−it

)−( 1
2 +2�)

with Φ1(t) given by (39) and Φ̃2(t) by (40), which gives as near-exact distribu-
tions for W a mixture of ν + 1 GNIG (Generalized Near-Integer Gamma) dis-
tributions (Coelho 2004) with integer shape parameters r jk (k = 1, . . . , 3; j =
1, . . . , r + ck(q − 1) − 2), given by (21) and (22) for k = 3 and by (36) and (22) for
k = 1, and non-integer shape parameter 1

2 + 2� (� = 0, . . . , ν) and corresponding
rate parameters λ jk (k = 1, . . . , 3; j = 1, . . . , r + ck(q − 1) − 2), given by (19),
and n−2

2 − 1
4 .

This yields near-exact distributions for W with p.d.f.’s given by

fW (w) =
ν∑

�=0

π� f G N I G

(
w

∣∣∣
≈{r jk

≈}, 1
2

+ 2�; {̃λ j k̃}, n − 2

2
− 1

4
; #̃{λ j k̃} + 1

)

and c.d.f.’s given by

FW (w) =
ν∑

�=0

π� FG N I G

(
w

∣∣
∣

≈{r jk

≈}, 1
2

+ 2�; {̃λ j k̃}, n − 2

2
− 1

4
; #̃{λ j k̃} + 1

)
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for w > 0, and where we use for the GNIG p.d.f. and c.d.f. the notation in Appendix
2.

The corresponding near-exact distributions for Λ may then be easily obtained
through the transformation Λ = e−W and these have p.d.f.’s and c.d.f.’s given by
(37) and (38). �

These near-exact distributions will be asymptotic not only for increasing sample
sizes but also for increasing values of all other parameters in the distribution of Λ

and W , that is, for r , q, m, and v, as it is shown by the values in Tables1 and 2, where
are displayed values of the measure

Δ =
∫ +∞

−∞

∣∣
∣∣
ΦW (t) − Φ̃W (t)

t

∣∣
∣∣ dt . (41)

This measure gives a very sharp upper-bound on the absolute value of the difference
between the exact and the near-exact c.d.f.’s of W or Λ, with

Δ ≥ max
w>0

∣
∣FW (w) − F̃W (w)

∣
∣ = max

0<z<1

∣
∣FΛ(z) − F̃Λ(z)

∣
∣ ,

where FW ( · ) and F̃W ( · ) represent, respectively, the exact and the near-exact c.d.f.’s
of W , and FΛ( · ) and F̃Λ( · ) represent, respectively, the exact and near-exact c.d.f.’s
of Λ.

As we may see from the values of the measure Δ in Tables1 and 2, the near-
exact distributions exhibit very low values of Δ, showing their great closeness to
the exact distribution, even for extremely small sample sizes, as it is the case of the
sample sizes of n = q + r , which are the smallest possible ones, and even for the
smaller values of ν, the number of exact moments of W matched by the near-exact
distributions. The values in these Tables also show the asymptotic behavior of these
near-exact distributions for increasing values of all other parameters, q, r , m and
v, with a more marked asymptotic trend for larger values of ν, that is, with a more
accentuated decrease in the values of Δ for the near-exact distributions that match
more of the exact moments of W .

Although it is possible to obtain different forms of analytical upper bounds on
max{w>0}|FW (w) − F̃W (w)| or max{0<z<1}|FΛ(z) − F̃Λ(z)|, the ones obtained so far
are not sharp enough. Given the fact that the measure Δ in (41) gives a really sharp
upper-bound on these quantities, the analysis of the values of this measure in Tables1
and 2, for different values of the parameters in the distribution, gives a much better
idea of the asymptotic characteristics of the near-exact distributions obtained and
their closeness to the exact distribution.

For r = 1, m = 1 and v = p, the near-exact distributions in Theorem 3 may be
used as near-exact distributions for the statistic studied in Coelho (2017), for even q
and odd p, exhibiting some advantages, in terms of closeness to the exact distribution,
over the near-exact distributions developed in Sect. 5.2 of that reference.
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3.2.2 The Case of Even q, Odd r , Odd m and Even v

In this case we still have the exact distribution of Λ2 and W2 given by Theorem 3.2
in Coelho and Arnold (2019), for m∗ = 1 and k1, n1, m1 and a1 given by (25), while
for W1 and W3 we will have to take their c.f.’s given by (35), with ck given by (20)
for k = 1 and k = 3.

We then have the following Theorem, which gives near-exact distributions for Λ

when q is even, r and m are odd and v is even.

Theorem 4 For even q and odd r and m and even v, near-exact distributions for Λ

will have p.d.f.’s and c.d.f.’s respectively of the form

fΛ(z) =
ν∑

�=0

π� f EG I G

(
z
∣∣∣

≈{r jk

≈}, 1 + �; {̃λ j k̃}, λ; #̃{λ j k̃}+1

)
(42)

and

FΛ(z) =
ν∑

�=0

π� F EG I G

(
z
∣∣∣

≈{r jk

≈}, 1 + �; {̃λ j k̃}, λ; #̃{λ j k̃}+1

)
, (43)

for 0 < z < 1, where f EG I G and F EG I G stand, respectively, for the p.d.f. and c.d.f.
of the EGIG distribution, using the notation in Appendix 2, and where λ jk are given
by (19) and r jk are given by (36) and (22) for k = 1, 3 and by (21)–(22) for k = 2,
and λ is obtained from the numerical solution of the system of equations (46), and

where the notations {̃λ j k̃} and
≈{r jk

≈} are the same as the ones used in Theorem2.

Proof Given the remark at the beginning of the present subsection, in order to build
near-exact distributions for Λ and W = − log Λ, for the case of even q, odd r and
m and even v, we will take ΦW2(t) given by (28) and ΦW1(t) and ΦW3(t) given by
(35), and write

ΦW (t) = ΦW1,1(t)ΦW2(t)ΦW3,1(t)︸ ︷︷ ︸
Φ1(t)

ΦW1,2(t)ΦW3,2(t)︸ ︷︷ ︸
Φ2(t)

, (44)

where, as we did in the previous subsection, we will keep Φ1(t) unchanged and will
approximate asymptotically Φ2(t). We may note that in this case Φ2(t) is the c.f. of
the sum of two independent Logbeta r.v.’s, one with parameters n−2

2 and 1
2 and the

other with parameters (v−1)m(n−1)−1
2 and 1

2 , this last one multiplied by (v − 1)m. As
such, we will replace Φ2(t) by

Φ̃2(t) =
ν∑

�=0

π� λ1+�(λ − it)−(1+�), (45)

where the parameter λ is obtained as the rate parameter in a mixture of two Gamma
distributions.
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This approximation is based on a somewhat heuristic approach,whichwas already
used in similar situations where it proved to be extremely effective (Coelho et al.
2010, 2015; Coelho and Marques 2013; Coelho and Roy 2020) and which is based
on the fact that from the results in Sect. 5 of Tricomi and Erdélyi (1951) we may
asymptotically approximate a Logbeta(a, b) distribution by a mixture of Γ (b +
k, a) (k = 0, 1, . . . ) distributions. The parameter λ in (45) is itself obtained through
the numerical solution of the system of four equations

∂�

∂t�
Φ2(t)

∣∣∣∣
t=0

= ∂�

∂t�
Φ∗(t)

∣∣∣∣
t=0

, � = 1, . . . , 4 , (46)

where
Φ∗(t) = θ λs1(λ − it)−s1 + (1 − θ)λs2(λ − it)−s2

is the c.f. of a mixture of twoGamma distributions, both with the same rate parameter
λ. The weights π� (� = 0, . . . , ν) are obtained in a similar manner to the one used in
Sect. 3.2.1, where now Φ̃2(t) is given by (45) and where the 1 in 1 + � comes exactly
from the sum of the second parameters of the Logbeta r.v.’s in Φ2(t).

This way we obtain, for Φ1(t) in (44), as near-exact c.f. for W

Φ̃W (t) = Φ1(t) Φ̃2(t) =
ν∑

�=0

π� Φ1(t) λ1+�(λ − it)−(1+�) (47)

which is the c.f. of a mixture of GIG distributions with integer shape parameters
r jk (k = 1, . . . , 3; j = 1, . . . , r + ck(q − 1) − 2), given by (21) and (22) for k = 2
and by (36) and (22) for k = 2, 3, and 1 + � (� = 0, . . . , ν) and rate parameters λ jk ,
given by (19), and λ.

The corresponding near-exact p.d.f.’s and c.d.f.’s for W are given by (using the
notation in Appendix 2)

fW (w) =
ν∑

�=0

π� f G I G

(
w

∣∣∣
≈{r jk

≈}, 1 + �; {̃λ j k̃}, λ; #̃{λ j k̃} + 1

)

and c.d.f.’s given by

FW (w) =
ν∑

�=0

π� FG I G

(
w

∣∣
∣

≈{r jk

≈}, 1 + �; {̃λ j k̃}, λ; #̃{λ j k̃} + 1

)

for w > 0.
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The corresponding near-exact distributions forΛ, may then, once again, be easily
obtained through the transformationΛ = e−W andwill have p.d.f.’s and c.d.f.’s given
by (42) and (43), respectively. �

Given the fact that these near-exact distributions are based on the approximation
of the distribution of a sum of two independent Logbeta r.v.’s and not on the approx-
imation of the distribution of a single Logbeta r.v., as it happened in the previous
subsection, they will yield larger values of the measure Δ in (41) than those near-
exact distributions, anyway still showing very low values of this measure, mainly
when four or more of the exact moments of W are matched by these distributions,
thus showing also for this case an extreme closeness to the exact distribution. Values
of the measure Δ for these near-exact distributions are shown in Tables3 and 4.

From these valueswe can see that once again these near-exact distributions display
a very good performance even for extremely small sample sizes and an asymptotic
behavior not only for increasing sample sizes but also for increasing values of all the
other parameters in the distributions of Λ and W , once again with this asymptotic
character being more accentuated for larger values of ν, the number exact moments
of W matched by these near-exact distributions.

For r = 1, m = 1 and v = p, the near-exact distributions in Theorem 4 may be
used as near-exact distributions for the statistic studied in Coelho (2017), yielding
equivalent near-exact distributions to the ones obtained in Sect. 5.1 of that reference.

3.2.3 The Case of Even q, Odd r and Even m

In this case we have the exact distribution of Λ3 and W3 given by Theorem 3.2 in
Coelho and Arnold (2019), for m∗ = 1 and k1, n1, m1, and a1 given by (25), while
for W1 and W2 we will have to take their c.f.’s given by (35), with ck given by (20)
for k = 1 and k = 2. Hence we have the following Theorem.

Theorem 5 For even q, odd r and even m we have near-exact distributions for Λ

with p.d.f.’s and c.d.f.’s similar to the ones in (42) and (43), now with r jk given by
(21) for k = 3 and by (36) for k = 1, 2.

Proof For even q, odd r and even m, in order to build near-exact distributions for
Λ and W = − log Λ we will follow an approach in all similar to the one taken
in the previous subsection, taking into account the remark at the beginning of this
subsection and thus taking ΦW3(t) given by (28) and ΦW1(t) and ΦW2(t) given by
(35) and writing

ΦW (t) = ΦW1,1(t)ΦW2,1(t)ΦW3(t)︸ ︷︷ ︸
Φ1(t)

ΦW1,2(t)ΦW2,2(t)︸ ︷︷ ︸
Φ2(t)

, (48)
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where, as we did in the previous subsections, we will once again keep Φ1(t)
unchanged and will approximate asymptotically Φ2(t). As we said, we will take an
approach in all similar to the one taken in the previous subsection. In the present case
Φ2(t) is the c.f. of the sum of two independent Logbeta r.v.’s, one with parameters
n−2
2 and 1

2 and the other with parameters (m−1)(n−1)−1
2 and 1

2 , this last one multiplied
by (m − 1).

So, following the same approach as we did in the previous subsection, we will
replaceΦ2(t) by Φ̃2(t), with a similar structure to the one in (45) and with λ obtained
in a similarmanner to the one described in Sect. 3.2.2, andwhere the 1 in 1 + � comes
once again from the sum of the second parameters of the Logbeta r.v.’s in Φ2(t).

The weights π� (� = 0, . . . , ν) are obtained in a similar manner to the one used in
Sects. 3.2.1 and 3.2.2, and in this way we obtain, for Φ1(t) in (48), as near-exact c.f.
for W a c.f. with a similar expression to the one in (47), which is, as in the previous
subsection, the c.f. of a mixture of GIG distributions with integer shape parameters
r jk (k = 1, . . . , 3; j = 1, . . . , r + ck(q − 1) − 2), but now given by (21) and (22)
for k = 3 and by (36) and (22) for k = 1, 2, and 1 + � (� = 0, . . . , ν), and rate
parameters λ jk , given by (19), and λ, which now, although being computed in a
somewhat similar manner, will have different values than the ones obtained in the
previous subsection.

The corresponding near-exact p.d.f.’s and c.d.f.’s for W and Λ will have similar
expressions to the ones in the previous subsection, now with the differences in the
parameters pointed out above. �

In Tables5 and 6 we may analyze the values of the measure Δ in (41) for these
near-exact distributions. We may how generally they have quite similar values to the
ones in Tables3 and 4 for the near-exact distributions in the previous subsection,
which was indeed expected, given the similitude in structure and building approach
between the near-exact distributions obtained in the present subsection and the ones
obtained in the previous subsection. Once again, these near-exact distributions show
their asymptotic character not only for increasing sample sizes but also for increasing
values of all other parameters, that is, for increasing values of the overall number
of variables involved in the test, at the same time that they keep showing very good
performances even for very small sample sizes.

For r = 1, v = 1 and m = p, the near-exact distributions in Theorem5 will yield
for the statistic studied in Coelho (2017), similar near-exact distributions to the ones
obtained for this statistic from the results in Theorem4, and thus also similar to the
ones developed in Sect. 5.1 of that reference, for even q and even p.
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4 Conclusions and Discussion

The problem addressed seemed to pose a couple of interesting challenges. The first of
these challenges was the question of the approach that had to be followed in order to
be able to express the distribution of the LRT statistic in the form of that of a product
of independent Beta distributed r.v.’s. Then, there was the question of the possible
existence of several scenarios to be considered, in terms of different combinations
of values of the five parameters in the distribution of the LRT statistic, and if for any
of them it would be possible to obtain the distribution of the LRT in a closed finite
and manageable form and yet if for the other cases, using the so-called near-exact
distributions, it would be possible to build approximations that would be asymptotic
for all five parameters involved in the distribution of Λ, while performing very well
even for small samples.

The way around that was taken in trying to express the distribution of Λ in terms
of that of a product of independent Beta r.v.’s, not taking an approach directly based
on the expression for Λ in (4) but rather using a different approach by rewriting
the determinants that appear in the numerator and denominator in that expression in
terms of the diagonal blocks of another matrix which has a Wishart distribution with
a block-diagonal parameter matrix, proved itself very effective. Indeed somewhat
similar approaches had already proven effective in somewhat similar situations, but
in our case the proof of the relation in (16) or (17) was quite a challenge.

Then, once the distribution of Λ was obtained in the form of that of a product
of independent Beta distributed r.v.’s, Theorem 3.2 in Coelho and Arnold (2019)
proved itself extremely useful in being able to very quickly and quite easily obtain
the exact distribution of Λ1, Λ2 and Λ3 and as such also of Λ in a closed finite and
manageable form for the cases where q is odd or r is even.

It remained then the problemof building near-exact distributions for the remaining
cases. A detailed check of these cases showed that there were indeed three sub-cases
to be taken into account andwhich should be considered individually since thiswould
allow for a more dedicated approach to each sub-case. This allowed us to see that
in each of these three sub-cases there was always one or two of the partial statistics
Λ1, Λ2 or Λ3, for which we could obtain the exact distribution in a closed finite
form, while for the other or others it was possible to obtain a decomposition of the
c.f. of its or their logarithm which might lead to very sharp near-exact distributions.
Typically these distributions, when properly built, are supposed to be asymptotic for
increasing values of all the parameters involved in the exact distribution, but anyway
this was a challenge for a distribution that has five parameters, four of which related
with the number of variables in the analysis. Indeed, the approach followed proved
effective in obtaining near-exact distributions that not only perform very well for
very small samples, but which besides that are asymptotic not only for increasing
sample sizes but also for increasing values of all other parameters, which are related
with the overall number of variables involved in the testing procedure.
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Given the ease of computation for the form of the exact distribution for the cases
where q is odd or r is even, which are indeed the majority of the cases, and given the
quite easy computability of the near-exact distributions obtained, the authors feel that
the results in the present work may not only be useful for practical applications but
also they may encourage the pursual of the obtention of similar results for situations
that at first may seem very complicated or very challenging to approach, while the
techniques used showed to be quite effective in addressing the problem and as such
seem to be possible to be applied in a wide range of situations.

The results in Sect. 11 of Chap.8 of Anderson (2003), namely the one in Theorem
8.11.3, together with the properties of the double exchangeable covariance matrix,
namely the one that makes it part of a quadratic space, allow us to foresee that the
present test statistic should have the same null distribution for elliptically contoured
and left-spherical distributions.

Taking into account the particular cases of the double exchangeable covariance
structure enumerated in the Introduction, for r = 1 and m = 1 or v = 1 we have the
test of equality of mean vectors with compound-symmetric matrices, and for just
m = 1 or v = 1, the test of equality of mean vectors for block compound-symmetric
covariance matrices, while for r = 1 we have the same test for double complete
symmetric covariance matrices.

Acknowledgements This work is funded by Portuguese National Funds through FCT - Fundação
para a Ciência e a Tecnologia, I.P., under the scope of the project UIDB/00297/ 2020 (CMA-
FCT/UNL – Center for Mathematics and Applications)

Appendix A: Proof of Expression (16)

For ease of exposition let us split the proof of (16) into the proof of three consecutive
results. First let us prove the following result.

Result 1: The MLE ofΣ under H1, which is A∗ into (8), may be equivalently written
as

A∗ = Pvm ⊗ Ψ̂1|H1 + Qvm ⊗ Ψ̂2|H1 + Rvm ⊗ Ψ̂3|H1 , (A.1)

where, from (7),

Ψ̂1|H1 = Û|H1 + (v − 1)V̂|H1 + v(m − 1)M̂|H1

Ψ̂2|H1 = Û|H1 + (v − 1)V̂H1 − vM̂|H1

Ψ̂3|H1 = Û|H1 − V̂|H1 ,

(A.2)

and
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Pvm = 1

mv
Jvm

Qvm = 1

v
(Im ⊗ Jv) − Pvm

Rvm = Ivm − Qvm − Pvm .

(A.3)

Proof The proof is easier if we start from (A.1) and try to end with (8), by using
(A.2) and (A.3) to write

Pvm ⊗ Ψ̂1|H1 + Qvm ⊗ Ψ̂2|H1 + Rvm ⊗ Ψ̂3|H1

= 1

mv
Jvm ⊗ (

Û|H1 + (v − 1)V̂|H1 + v(m − 1)M̂|H1

)

+
(
1

v
(Im ⊗ Jv) − 1

mv
Jvm

)
⊗ (

Û|H1 + (v − 1)V̂|H1 − vM̂|H1

)

+ (Ivm − 1
v
(Im ⊗ Jv) + Pvm − Pvm

)⊗ (Û|H1 − V̂|H1)

=
(

1

mv
Jvm + 1

v
(Im ⊗ Jv) − 1

mv
Jvm + Ivm − 1

v
(Im ⊗ Jv)

)
⊗ Û|H1

+
(

v−1

mv
Jvm + v−1

v
(Im ⊗ Jv) − v−1

mv
Jvm − Ivm + 1

v
(Im ⊗ Jv)

)
⊗V̂|H1

+
(

m − 1

m
Jvm − (Im ⊗ Jv) + 1

m
Jvm

)
⊗ M̂|H1

= Ivm ⊗ Û|H1 + (Im ⊗ (Jv − Iv)) ⊗ V̂|H1 + (Jvm − (Im ⊗ Jm)) ⊗ M̂|H1

which is (8). �

We now prove that Pvm , Qvm and Rvm in (A.3) are indeed mutually orthogonal
projectors.

Result 2 : Pvm , Qvm and Rvm in (A.3) are mutually orthogonal projectors with
rank(Pvm) = 1, rank(Qvm) = m − 1, rank(Rvm) = m(v − 1).

Proof Pvm , Qvm and Rvm in (A.3) are idempotent, since

Pvm Pvm = 1

mv
Jvm

1

mv
Jvm = 1

(mv)2
mv Jvm = 1

mv
Jvm = Pvm,

Qvm Qvm =
(
1

v
(Im ⊗ Jv) − Pvm

)(
1

v
(Im ⊗ Jv) − Pvm

)

= 1

v2
(Im ⊗ Jv)(Im ⊗ Jv) − 1

v
(Im ⊗ Jv)Pvm − 1

v
Pvm(Im ⊗ Jv) + Pvm

= 1

v
(Im ⊗ Jv) − 2

vm
Jvm + 1

vm
Jvm = 1

v
(Im ⊗ Jv) − Pvm = Qvm,
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Rvm Rvm = (Ivm − Qvm − Pvm)(Ivm − Qvm − Pvm) = Ivm − Qvm − Pvm

−Qvm + Qvm Qvm + Qvm Pvm − Pvm + Pvm Qvm + Pvm Pvm

= Ivm − Qvm − Pvm − Qvm + Qvm − Pvm + Pvm

= Ivm − Qvm − Pvm = Rvm,

and they are mutually orthogonal since

Pvm Qvm = Pvm
(
1
v
(Im ⊗ Jv) − Pvm

) = 1
v

Pvm(Im ⊗ Jv) − Pvm

= 1

vm
Jvm

(
1

v
(Im ⊗ Jv) − Ivm

)
= 0vm,

Rvm Pvm = (Ivm − Qvm − Pvm)Pvm = Pvm − Pvm = 0vm,

Rvm Qvm = (Ivm − Qvm − Pvm)Qvm = Qvm − Qvm = 0vm .

Since Pvm , Qvm and Rvm are idempotent, we have

rank(Pvm) = tr(Pvm) = 1

vm
tr(Ivm) = 1

rank(Qvm) = tr(Qvm) = 1

v
tr(Im ⊗ Jv)−tr(Pvm) = mv

v
−1 = m−1

rank(Rvm) = tr(Rvm) = tr(Ivm)−tr(Qvm)−tr(Pvm) = vm−m = (v−1)m.

�

Setting together the previous two results with the next one, we will finally be able
to prove (16).

Result 3 : For the matrix A∗∗ in (14), we may write

Ψ̂1|H1 = A∗∗
1 ,

Ψ̂2|H1 = 1

m − 1

m−1∑

j=1

A∗∗
jv+1,

Ψ̂3|H1 = 1

m(v − 1)

m∑

j=1

v−1∑

k=1

A∗∗
( j−1)v+k+1 .



The Likelihood Ratio Test of Equality of Mean Vectors … 183

Proof Let BTrr (A) denote the sum of all r×r diagonal blocks of A. Then, for U|H1 ,
V|H1 and W|H1 in (9)–(11) we may write

Û|H1 = 1

mv
BTrr (A),

V̂|H1 = 1

mv(v − 1)
(BTrr ((Im ⊗ Jv ⊗ Ir )A) − BTrr (A)) ,

M̂|H1 = 1

mv2(m − 1)
(BTrr ((Jvm ⊗ Ir )A) − BTrr ((Im ⊗ Jv ⊗ Ir )A)) .

Then, since from (14) we may write

A = Γ ′ A∗∗Γ , (A.4)

from (A.2), and from the definition of the matrix Γ in (5), we have

Ψ̂1|H1 = Û|H1 + (v − 1)V̂|H1 + v(m − 1)M̂|H1

= 1

mv
BTrr (A) + 1

mv
(BTrr ((Im ⊗ Jv ⊗ Ir )A) − BTrr (A))

+ 1

mv
(BTrr ((Jvm ⊗ Ir )A) − BTrr ((Im ⊗ Jv ⊗ Ir )A))

= 1

mv
BTrr ((Jvm ⊗ Ir )A) = BTrr ((Pvm ⊗ Ir )A)

= BTrr ((Pvm ⊗ Ir )Γ
′ A∗∗Γ ) = BTrr (Γ (Pvm ⊗ Ir )Γ

′ A∗∗)
= BTrr (( ((Γm ⊗ Γv)Pvm(Γm ⊗ Γv)

′)︸ ︷︷ ︸
=diag(1, 0, . . . , 0︸ ︷︷ ︸

vm

)

⊗Ir )A∗∗) = A∗∗
1 ,

where A∗∗
1 represents the first diagonal block of A∗∗ of dimensions r×r , since, given

the definition of a Helmert matrix, Γm ⊗ Γv is a vm×vm matrix whose first row is
equal to 1√

vm
1′

vm , where 1vm denotes a vector of 1’s of dimension vm, and as such

(Γm ⊗ Γv)Pvm is a vm×vm matrix whose first row is equal to 1√
vm

1′
vm and all other

rows are null, so that

(Γm ⊗ Γv)Pvm(Γm ⊗ Γv)
′ = diag( 1, 0, . . . , 0︸ ︷︷ ︸

vm

) , (A.5)

what implies

((Γm ⊗ Γv)Pvm(Γm ⊗ Γv)
′) ⊗ Ir = bdiag(Ir , 0v(m−1)×v(m−1)) .
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Using (A.4), and once again the definition of the matrix Γ in (5), we also have

Ψ̂2|H1 = Û|H1 + (v − 1)V̂|H1 − vM̂|H1

= 1

mv
BTrr (A) + 1

mv
(BTrr ((Im ⊗ Jv ⊗ Ir )A) − BTrr (A))

− 1

mv(m − 1)
(BTrr ((Jvm ⊗ Ir )A) − BTrr ((Im ⊗ Jv ⊗ Ir )A))

= 1

mv

(
1 + 1

m − 1

)
BTrr ((Im ⊗ Jv ⊗ Ir )A)

− 1

mv(m − 1)
BTrr ((Jvm ⊗ Ir )A)

= 1

m − 1
BTrr

(((
1

v
(Im ⊗ Jv) − 1

mv
Jvm

)
⊗ Ir

)
A

)

= 1

m − 1
BTrr ((Qvm ⊗ Ir ) A) = 1

m − 1
BTrr ((Qvm ⊗ Ir )Γ

′ A∗∗Γ )

= 1

m − 1
BTrr (Γ (Qvm ⊗ Ir )Γ

′ A∗∗)

= 1

m − 1
BTrr ((((Γm ⊗ Γv)Qvm(Γm ⊗ Γv)) ⊗ Ir )A∗∗)

= 1

m − 1

m−1∑

j=1

A∗∗
jv+1 ,

where A∗∗
j represents the j-th diagonal block of A∗∗ of dimensions r×r , since

(Γm ⊗ Γv)Qvm(Γm ⊗ Γv)
′ = diag( 0, . . . , 0︸ ︷︷ ︸

v

, 1, 0, . . . , 0︸ ︷︷ ︸
v

, . . . , 1, 0, . . . , 0︸ ︷︷ ︸
v︸ ︷︷ ︸

m−1 times

) (A.6)

and as such,

((Γm ⊗ Γv)Qvm(Γm ⊗ Γv)
′) ⊗ Ir

= bdiag(Ivr×vr , Ir , 0(v−1)r×(v−1)r︸ ︷︷ ︸
, . . . , Ir , 0(v−1)r×(v−1)r︸ ︷︷ ︸

︸ ︷︷ ︸
m−1

) .
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This is so because, given the definition of a Helmert matrix, for a v×v Helmert matrix
Γv , we have that Γv Jv is a matrix whose first row is equal to 1√

v
1′

v , and as such we
have

Γv JvΓ
′
v = diag( v, 0, . . . , 0︸ ︷︷ ︸

v

) ,

so that we have

1

v

(
Im ⊗ Γv JvΓ

′
v

)

= bdiag(diag( 1, 0, . . . , 0︸ ︷︷ ︸
v

), diag( 1, 0, . . . , 0︸ ︷︷ ︸
v

), . . . , diag( 1, 0, . . . , 0︸ ︷︷ ︸
v

)

︸ ︷︷ ︸
m

)

= diag( 1, 0, . . . , 0︸ ︷︷ ︸
v

, 1, 0, . . . , 0︸ ︷︷ ︸
v

, . . . , 1, 0, . . . , 0︸ ︷︷ ︸
v︸ ︷︷ ︸

m

)

and as such we may write, using the relation in (A.5),

(Γm ⊗ Γv)Qvm(Γm ⊗ Γv)
′

= (Γm ⊗ Γv)

(
1

v
(Im ⊗ Jv) − pvm

)
(Γm ⊗ Γv)

′

=
(
1

v
(Γm ⊗ Γv Jv) − (Γm ⊗ Γv)Pvm

)
(Γm ⊗ Γv)

′

= 1

v
(Γm ⊗ Γv Jv)(Γm ⊗ Γv)

′ − (Γm ⊗ Γv)Pvm(Γm ⊗ Γv)
′

= 1

v
(ΓmΓ ′

m ⊗ Γv JvΓ
′
v) − (Γm ⊗ Γv)Pvm(Γm ⊗ Γv)

′

= 1

v
(Im ⊗ Γv JvΓ

′
v)) − diag( 1, 0, . . . , 0︸ ︷︷ ︸

vm

)

= diag( 1, 0, . . . , 0︸ ︷︷ ︸
v

, 1, 0, . . . , 0︸ ︷︷ ︸
v

, . . . , 1, 0, . . . , 0︸ ︷︷ ︸
v︸ ︷︷ ︸

m

) − diag( 1, 0, . . . , 0︸ ︷︷ ︸
vm

)

= diag( 0, . . . , 0︸ ︷︷ ︸
v

, 1, 0, . . . , 0︸ ︷︷ ︸
v

, . . . , 1, 0, . . . , 0︸ ︷︷ ︸
v︸ ︷︷ ︸

m−1 times

) .

And finally, using once again (A.4), and the definition of Rvm in (A.3), we have
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Ψ̂3|H1 = Û|H1 − V̂|H1

= 1

mv
BTrr (A) − 1

mv(v − 1)
(BTrr ((Im ⊗ Jv ⊗ Ir )A) − BTrr (A))

= 1

mv

(
1 + 1

v − 1

)
BTrr (A) − 1

mv(v − 1)
BTrr ((Im ⊗ Jv ⊗ Ir )A)

= 1

m(v − 1)

(
BTrr (A) − 1

v
BTrr ((Im ⊗ Jv ⊗ Ir )A)

)

= 1

m(v − 1)
BTrr

(
(Imvr − 1

v
(Im ⊗ Jv ⊗ Ir ))A

)

= 1

m(v − 1)
BTrr

(
((Imv − 1

v
(Im ⊗ Jv)) ⊗ Ir )A

)

= 1

m(v − 1)
BTrr ((Rvm ⊗ Ir )A)

= 1

m(v − 1)
BTrr

(
(Rvm ⊗ Ir )Γ

′ A∗∗Γ
)

= 1

m(v − 1)
BTrr

(
Γ (Rvm ⊗ Ir )Γ

′ A∗∗)

= 1

m(v − 1)
BTrr ((((Γm ⊗ Γv)Rvm(Γm ⊗ Γv)

′) ⊗ Ir )A∗∗)

= 1

m(v − 1)

m∑

j=1

v−1∑

k=1

A∗∗
( j−1)v+k+1 ,

where, once again, A∗∗
j represents the j-th diagonal block of A∗∗ of dimensions r×r .

This is so given that from the definition of Rvm in (A.3) and from (A.5) and (A.6)
it is clear that we have

(Γm ⊗ Γv)Rvm(Γm ⊗ Γv)
′

= (Γm ⊗ Γv)(Γm ⊗ Γv)
′ − (Γm ⊗ Γv)Qvm(Γm ⊗ Γv)

′

−(Γm ⊗ Γv)Pvm(Γm ⊗ Γv)
′

= Ivm − diag( 0, . . . , 0︸ ︷︷ ︸
v

, 1, 0, . . . , 0︸ ︷︷ ︸
v

, . . . , 1, 0, . . . , 0︸ ︷︷ ︸
v︸ ︷︷ ︸

m−1 times

) − diag( 1, 0, . . . , 0︸ ︷︷ ︸
vm

)

= diag(0, 1, . . . , 1︸ ︷︷ ︸
v−1

, 0, 1, . . . , 1︸ ︷︷ ︸
v−1

, . . . , 0, 1, . . . , 1︸ ︷︷ ︸
v−1︸ ︷︷ ︸

m times

) ,

so that
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((Γm ⊗ Γv)Rvm(Γm ⊗ Γv)
′) ⊗ Ir

= bdiag( 0r×r , I(v−1)r , 0r×r , I(v−1)r , . . . , 0r×r , I(v−1)r︸ ︷︷ ︸
m times

).

�

Finally, expression (16) holds since from Result 1 and the mutual orthogonality
of Pvm , Qvm and Rvm proven in Result 2 and yet the rank results therein, we may
write

|A∗| = |Ψ̂1|H1 | |Ψ̂2|H1 |m−1 |Ψ̂3|H1 |m(v−1),

which given the expressions obtained in Result 3 for Ψ̂1|H1 , Ψ̂2|H1 and Ψ̂3|H1 yields
(16).

Expression (17) would be proven in a completely similar way.

Appendix B: The GIG, EGIG and GNIG distributions

In this appendix we define the GIG (Generalized Integer Gamma), EGIG (Exponen-
tiated Generalized Integer Gamma) and GNIG (Generalized Near-Integer Gamma)
distributions and establish the notation used concerning their p.d.f.’s and c.d.f.’s.

We say that the r.v. (random variable) X has a Gamma distribution with shape
parameter r (> 0) and rate parameter λ (> 0), and we will denote this fact by X ∼
Γ (r, λ), if the p.d.f. of X is

fX (x) = λr

Γ (r)
e−λx xr−1 (x > 0) .

Let X j ∼ Γ (r j , λ j ) ( j = 1, . . . , p) be a set of p independent r.v.’s and consider
the r.v.

W =
p∑

j=1

X j .

In case all the r j ∈ N, the distribution of W is what we call aGIG distribution (Coelho
1998). If all the λ j are different, W has a GIG distribution of depth p, with shape
parameters r j and rate parameters λ j , with p.d.f.

fW (w) = f G I G
(
w
∣∣ {r j } j=1:p; {λ j } j=1:p; p

)
= K

p∑

j=1

Pj (w) e−λ j w ,

and c.d.f.
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FW (w) = F G I G
(
w
∣∣ {r j } j=1:p; {λ j } j=1:p; p

)
= 1 − K

p∑

j=1

P∗
j (w) e−λ j w ,

for w > 0, where

K =
p∏

j=1

λ
r j

j , Pj (w) =
r j∑

k=1

c j,k wk−1 (B.1)

and

P∗
j (w) =

r j∑

k=1

c j,k(k − 1)!
k−1∑

i=0

wi

i ! λk−i
j

, (B.2)

with

c j,r j = 1

(r j − 1)!
p∏

i=1
i �= j

(λi − λ j )
−ri , j = 1, . . . , p , (B.3)

and, for k = 1, . . . , r j − 1 and j = 1, . . . , p,

c j,r j −k = 1

k

k∑

i=1

(r j − k + i − 1)!
(r j − k − 1)! R(i, j, p)c j,r j −(k−i) , (B.4)

where

R(i, j, p) =
p∑

k=1
k �= j

rk(λ j − λk)
−i (i = 1, . . . , r j − 1) . (B.5)

In case some of the λ j assume the same value as other λ j ’s, the distribution of W
still is a GIG distribution, but in this case with a reduced depth. In this more general

case, let {̃λ�̃}�=1:g(≤p) be the set of different λ j ’s and let
≈{r�

≈}�=1:g(≤p) be the set of
the corresponding shape parameters, with r� (� = 1, . . . , g) being the sum of all r j

( j ∈ {1, . . . , p}) which correspond to the λ j assuming the value λ�. In this case W
will have a GIG distribution of depth g, with shape parameters r� and rate parameters
λ� (� = 1, . . . , g).

The r.v. Z = e−W has then what Arnold et al. (2013) call an Exponentiated Gen-
eralized Integer Gamma (EGIG) distribution of depth g, with p.d.f.
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fZ (z) = f EG I G

(
z
∣
∣

≈{r�

≈}�=1:g; {̃λ�̃}�=1:g; g

)

= f G I G

(
− log z

∣∣
≈{r�

≈} j=1:g; {̃λ�̃}�=1:g; g

)
1

z

= K ∗
g∑

�=1

P�(− log z) zλ�−1 (0 < z < 1)

(B.6)

and c.d.f.

FZ (z) = F EG I G

(
z
∣∣

≈{r�

≈}�=1:g; {̃λ�̃}�=1:g; g

)

= 1 − F G I G

(
− log z

∣∣
≈{r�

≈}�=1:g; {̃λ�̃}�=1:g; g

)

= K ∗
g∑

�=1

P∗
� (− log z) zλ� (0 < z < 1) ,

(B.7)

for

K ∗ =
g∏

�=1

λ
r�

� (B.8)

and P�( · ) and P∗
� ( · ) given by (B.1) and (B.2), with j replaced by �.

Then let W be a r.v. with a GIG distribution of depth g, with rate parame-

ters {̃λ�̃}�=1:g and shape parameters
≈{r�

≈}�=1:g (∈ N) and let W ∗ ∼ Γ (r, λ), with
r ∈ R

+\N. Let further W and W ∗ be two independent r.v.’s. Then the r.v.

Y = W + W ∗

has a Generalized Near-Integer Gamma (GNIG) distribution (Coelho 2004) of depth
g + 1, with rate parameters {̃λ�̃}�=1:g and λ and corresponding shape parameters
≈{r�

≈}�=1:g (∈ N) and r , with p.d.f.

fY (y) = f G N I G
(

y | ≈{r�

≈}�=1:g, r; {̃λ�̃}�=1:g, λ; g + 1
)

= K ∗λr
g∑

�=1

e−λ� y
r�∑

k=1

{
c�,k

Γ (k)

Γ (k + r)
y k+r−1

1F1
(
r, k+r,−(λ−λ�)y

)}

and c.d.f.
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FY (y) = F G N I G
(

y | ≈{r�

≈}�=1:g, r; {̃λ�̃}�=1:g, λ; g + 1
)

= λr yr

Γ (r + 1)
1F1

(
r, r + 1,−λy

)

−K ∗∗
g∑

�=1

e−λ� y
r�∑

k=1

c∗
�,k

k−1∑

i=0

{
y r+i λi

�

Γ (r∗+i)
1F1

(
r, r∗+i,−(λ−λ�)y

)}

where z > 0, K ∗∗ = K ∗λr , for K ∗ in (B.8), r∗ = r + 1, and

c∗
�,k = c�,k

λk
�

Γ (k)

for c�,k given by (B.3)–(B.5) with j replaced by �, and

1F1(a, b, y) =
∞∑

i=0

Γ (a + i)

Γ (b + i)

Γ (b)

Γ (a)

zi

i !

is the Kummer confluent hypergeometric function.
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Bilinear Regression with Rank
Restrictions on the Mean and Dispersion
Matrix

Dietrich von Rosen

Abstract A bilinear regression model with rank restrictions imposed on the mean-
parameter matrix and the dispersion matrix is studied. Maximum likelihood-inspired
estimates are derived. The approach generalizes classical reduced rank regression
analysis and principal component analysis. It is illustrabed via a simulation study
and a real example that even for small dimensions, the method works similarly to
reduced rank regression analysis whereas the approach in this article also can be used
when the dimension is large.

Keywords Bilinear regression model · Latent processes · Rank restriction on the
dispersion · Rank restriction on the mean

1 Introduction

The rapid development of technology enables the use of various types of sensors
together with advanced computer facilities in modern empirical studies which often
results in data with quite complex structures. Well-established models do not exist
in this case since one only has a vague idea of what should be included in a model
adequately describing the data. For example, a huge number of chemical soil charac-
teristics can be observed which, however, are all governed by a few latent processes,
or brain activity can be measured via EEG signals from a large number of electrodes
which are placed on the scalp though there are a few latent processes which direct
the signals. At the end of this section, another example is presented in some detail.

Our philosophy is that latent processes should be looked upon as non-observable
processes on which we do not want to put a distribution. The concept of latent vari-
ables appears in the literature in different contexts. Sometimes, latent variables are
motivating mixed linear models. Other examples where latent variables are men-
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tioned are finite mixtures of regression models and the terms latent class models and
latent factor models are also often used. In this article, we relate latent variables to
rank restrictions on parameter matrices which according to data analysis seems to
be a rewarding strategy.

Statistical modeling under a normality assumption often means joint modeling
of the mean and dispersion. The available literature comprises results on using
latent variables to model the mean (reduced rank regression, cointegration; e.g. see
Anderson 1951; Johansen 1991; Reinsel and Velu 1998) or to model the disper-
sion (principal component analysis, among other methods; e.g. see Jolliffe 2002).
To our knowledge there are, however, no results concerning jointly modeling multi-
processes, i.e. the case when simultaneously some latent processes are affecting the
mean whereas other latent processes steer the dispersion.

In this article, the focus is on the bilinear regression model (BRM) which is
often called the growth curve model or generalized multivariate analysis model
(GMANOVA). The model was introduced by Potthoff and Roy (1964) although
other authors had earlier considered similar models. For general references about
the model, e.g. see Woolson and Leeper (1980), von Rosen (1991), Kshirsagar and
Smith (1995) and von Rosen (2018).

As has been mentioned above, the inference in this article is based on the fact
that latent processes can be described through rank restrictions on parameters. For
references to results and applications of rank restrictions on the mean, including the
mean structure of the BRM , we refer the readers to the book by Reinsel and Velu
(1998), Albert and Kshirsagar (1993), Reinsel and Velu (2003) or to a recent work
by von Rosen and von Rosen (2017). Today, high-dimensional statistical analysis is
rapidly developing. A pure high-dimensional perspective on rank restrictions on the
mean is presented in an interesting article by Kargin (2015) and Chen and Huang
(2012) combined reduced rank regression with a variable selection method. Fur-
ther, there exists extensive literature on linear models when the dispersion matrix is
proportional to a known positive semi-definite matrix (the Gauss-Markov model),
e.g. see Rao (1973a, 1979), Nordström (1985) and Baksalary et al. (1992). However,
when the dispersion matrix is unknown, only a few references exist (see Wong and
Cheng 2001 and Srivastava and von Rosen 2002).

The aim of this work is to find estimates of the mean and dispersion parameters
under simultaneous rank restrictions on the matrix of regression coefficients and the
dispersion matrix.

Grizzle and Allen (1969) published a data set which later was analyzed by Albert
and Kshirsagar (1993) who used a reduced rank restriction on the mean parameter in
order to discriminate groups of independent observationswhich is linked to canonical
correlation analysis (see Tso 1981; Johansen 1988). The data set consists of 36 dogs
randomly assigned to four groups. For each dog, measurements of potassium were
obtained at seven equally spaced time points, and then a reduced rank growth curve
model was applied. As Grizzle and Allen (1969), the authors used a cubic regression
model and tested what rank on the mean parameters would be natural to assume.
Albert and Kshirsagar (1993) suggested the rank to be one. Moreover, Albert and
Kshirsagar (1993) aimed to reduce the dimensionality in data via rank restrictions on
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the mean (similar to canonical correlation analysis) whereas in this article we also
employ ideas from principal component analysis and additionally reduce the data
via rank restrictions on the dispersion matrix.

The following notation will be used. Bold upper cases denote matrices: C(A)

is the column vector space generated by the columns of A, and C(A)⊥ denotes its
orthogonal complement; Ao denotes any matrix of full rank which generates C(A)⊥.
The orthogonal projector on C(A) is denoted by P A and equals P A = A(A′A)−A′,
where “−” denotes an arbitrary generalized inverse (g-inverse). Moreover, we will
often write (Q)()′ instead of (Q)(Q)′, where Q represents any matrix expression.
Additionally, necessary notation will be introduced in the following sections.

2 The Model

Consider the BRM with normally distributed error which without loss of generality
can be written as

X = ABC + E, (1)

where X : p × n consists of independent response vectors, A: p × q is a known
within-individuals design matrix, C: k × n is a known between-individuals design
matrix, E ∼ Np,n(0,�, In), i.e. E is a matrix normally distributed (see Ohlson et al.
2013), the mean matrix B: q × k and the dispersion matrix �: p × p are unknown
parameter matrices. A distinguishing characteristic of the BRM studied here are the
following reduced-rank restrictions on the model parameters

r(B) = f < min(q, k), (2)

r(�) = r < p, r ≥ f, (3)

where both f and r are supposed to be known. Thus, � is positive semi-definite
instead of being positive definite, which is a usual assumption. As mentioned in the
introduction, the main aim of this article is to estimate the parameters B and� in (1)
when the rank restrictions (2) and (3) hold so that themodel can be used for prediction.
Note that in the majority of published articles, B is interpretable or one wants to find
interpretable scores such as in Albert and Kshirsagar (1993) which can be difficult
in practice. However, it is possible that B constitutes an object with rank restrictions
corresponding to latent processes where we really do not know the implications of
these processes. The latent process can not only have a clear interpretation of the
“between-individuals” structure of the model but can also be interpretable in terms
of the “within-individuals” structure. In both cases (precise or vague interpretation
of B), the mathematics will be the same when deriving estimators, i.e. the only thing
which matters is the interpretation of the estimators. In this article, we focus on
statistical inference rather than interpreting the results which can depend on the data
and purpose of the empirical study.
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3 Preliminaries

We will present three lemmas which are used to derive the estimates in model (1).
The first lemma is essentially a restatement of Theorem 1.5.3 in Srivastava andKhatri
(1979).

Lemma 1 For any �: q × k, with rank restrictions, say r(�) = f , there exist �1:
q × f , �2: f × k, r(�i ) = f , i = 1, 2, such that � = �1�2.

Note that �1 and �2 together can include more unknown elements than �. In this
case, the estimation strategy is to consider a larger parameter space than the original
one, i.e. some type of imbedding takes place. On the other hand, if r(�) = f there
exist k − f linear combinations of�which equal 0, say L� = 0, where L is of size
(q − f ) × q, or L�′ = 0, where L is of size (k − f ) × k. Both conditions imply,
since L is unknown, that � = �1�2, and thus the factorization of � is a natural
approach to apply. However, what type of restrictions exist can be important for the
interpretation of the analysis. The next lemma is also well known.

Lemma 2 (spectral decomposition) Let �: p × p be positive semi-definite of rank
r(�) = r . Then there exists a semi-orthogonalmatrix�, i.e.�′� = I r andadiagonal
matrix �: r × r with positive diagonal elements, such that � = ���′.

It is well known that C(S) ⊆ C(�), when S ∼ W p(�, n), i.e. Wishart distributed.
Furthermore, if n ≥ r(�), then C(S) = C(�) holds with probability 1 (e.g. see Sri-
vastava and von Rosen 2002, Lemma 3.1). In this article, S = X(I − PC ′)X ′ ∼
Wp(�, n − r(C)). Let S = HDH ′ where H consists of eigenvectors of S, and D is
a diagonal matrix with eigenvalues of S on its diagonal. If we have observations Xo,
i.e. realizations of X , we can calculate Ho which is the observed H , where however
eigenvectors corresponding to the p − r smallest eigenvalues of Xo(I − PC ′)X ′

o
have been removed, and Do is the diagonal matrix consisting of the observed eigen-
values of Xo(I − PC ′)X ′

o, where the p − r smallest eigenvalues have been removed.
Then

So = HoDoH ′
o (4)

does not represent the observed S but a quantity corresponding to S, where the p − r
smallest eigenvalues have been put to 0. The way of defining So is fundamental for
the results of this article.

Furthermore, throughout the paper we make the following two crucial assump-
tions.

Assumption 1 For the model in (1), it is assumed that C(Xo) ⊆ C(A) + C(�).

Assumption 2 For the model in (1), if n ≥ r + r(C), it is assumed that C(So) =
C(�).
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Removing the p − r smallest eigenvalues in (4) is not obvious.However,Assumption
2, i.e. C(So) = C(�), is motivated by C(S) = C(�)which as noted before holds with
probability 1. Therefore, under Assumption 2,

C(Ho) = C(So) = C(�) = C(�). (5)

It is worth noting that the equality C(Ho) = C(�). Instead of Assumption 1, we
can use C(Xo) ⊆ C(A) + C(S), and using Assumption 2, C(S) can be replaced by
C(So). In reality, it means that before analyzing data, Xo has to be preprocessed,
i.e. Xo should be projected on C(A) + C(So), and then Assumption 1 holds. In the
Gauss-Markov literature, Assumption 1 is a so called consistency assumption.

Lemma 3 Let � and Ho, defined in Lemma 2 and (4), respectively, be the matrices
of eigenvectors corresponding to� and So, respectively, and suppose n ≥ r + r(C).
Then, for some orthogonal matrix Q, under Assumption 2,

� = Ho Q.

Proof Theproof follows from(5) and a fewcalculations: I r = �′� = Q′H ′
oHo Q =

Q′ Q. �

Corollary 1 Let � and So be defined as in Lemma 3; Xo is the realization of X in
(1) where also C is given. Then, under Assumption 2,

�′Xo(I − PC ′)X ′
o� − �′So� = 0.

Proof According to Lemma (3), � = Ho Q and thus

Q′H ′
o(Xo(I − PC ′)X ′

o − So)Ho Q = 0.

�

Corollary 2 Let � and So be defined as in Lemma 3. Then

�(�′So�)−1�′ = S+
o ,

where “+” denotes the Moore-Penrose generalized inverse (e.g. see Rao 1973b;
p. 26).

Proof Since � = Ho Q for some orthogonal Q, the Moore-Penrose generalized
inverse is established by verification of its four defining conditions. �

The next lemma can be found, for example, in Rao (1973b; pp. 64–65), and it follows
from the Poincaré separation theorem concerning eigenvalues.

Lemma 4 Let F: p × q satisfy F′F = Iq , and let U: p × p be positive definite.
Then
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|F′UF| ≥
q∏

i=1

λi ,

where λq ≥ λq−1 ≥ · · · ≥ λ1 are the q smallest eigenvalues of U .

Equality holds in Lemma 4 if F comprises the eigenvectors corresponding to the q
smallest eigenvalues of U which follows, for example, from Lemma 2.

4 Estimation

In this section, the goal is to estimate B and � in (1) under the constraints in (2) and
(3). The following decomposition of the whole space,

C(�) � C(�)⊥ ∩ C(A : �) � C(A : �)⊥,

where � denotes the “orthogonal sum” of linear spaces, yields a one-one transfor-
mation of the original model presented in (1):

⎛

⎝
�′

A′(I − ��′)
(A : �)o

′

⎞

⎠ X,

where it has been utilized that C((I − ��′)A) = C(�)⊥ ∩ C(A : �) (e.g. see Kollo
and von Rosen 2005; Theorem 1.2.16). Thus, we obtain three relations which are
fundamental for obtaining the estimates of the parameters:

�′X = �′ABC + �1/2 Ẽ, Ẽ ∼ Nr,n(0, I r , In), (6)

A′(I − ��′)X = A′(I − ��′)ABC, (7)

(A : �)o
′
X = 0. (8)

Note that “=” in (6) stands for equality in distribution whereas “=” in (7) and
(8) means equality with probability 1. To perform likelihood inference, we should
replace X by Xo in these equations. In (6), the density is a function of Xo. Because
of Assumption 1, (8) is trivially satisfied when X is replaced by Xo, and will not be
considered anymore. We call (6) to be the random part of the original model and (7)
to be the deterministic part. Next, (7) will be exploited. From Lemma 3, it follows
that we should study

A′(I − HoH ′
o)Xo = A′(I − HoH ′

o)ABC

which is identical to
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A′Ho
oH

o′
o Xo = A′Ho

oH
o′
o ABC. (9)

Thus, data put restrictions on B which is unusual and not obvious on how to handle.
One strategy is to ignore them, but here we will think that utilizing the restrictions
will improve our estimators. Assumption 1 implies that

C(A′Ho
oH

o′
o Xo) ⊆ C(A′Ho

oH
o′
o A

′). (10)

Moreover, it will be further assumed that

C(X ′
oH

o
o) ⊆ C(C ′) (11)

and therefore instead of X ′
oH

o
o its orthogonal projection on C(C ′),

PC ′ X ′
oH

o′
o ,

will be used when estimating the parameters. The projection could also have taken
place in a preprocessing step of Xo. Note that C(X ′Ho

o) ⊆ C(C ′) holds with proba-
bility 1. Hence, we replace (9) by

A′Ho
oH

o′
o XoPC ′ = A′Ho

oH
o′
o ABC, (12)

and we have now a consistent system of linear equations. A general solution to (12)
is given by (see Kollo and von Rosen 2005; Theorem 1.3.4)

B = (A′Ho
oH

o′
o A)+A′Ho

oH
o′
o XoC ′(CC ′)− + (A′Ho

o)
o�1

+A′Ho
oH

o′
o A�2Co′

, (13)

where �1: (q − r(A′Ho
o)) × k, and �2: q × (k − r(C)), are new parameters.

However, Ho′
o A has to be considered in some detail. The first observation is that

if Ho′
o A = 0 or H ′

oA = 0, which in principle never will hold mathematically, we
cannot use the model in (1), with rank restrictions given by (2) and (3), and thus it
will be assumed that Ho′

o A = 0 or H ′
oA = 0 will not occur, which was implicitly

assumed in the above discussion. In the following subsections, two cases will be
studied:

(a) C(A) ∩ C(�) = {0}, q ≤ p − r , which implies r(Ho′
o A) = q;

(b) C(A) ∩ C(�) 	= {0}.
In (b) there exists a special case, r(Ho′

o A) = p − r < q, which, however, will not be
considered because the treatment of the model under this condition follows the case
discussed in the forthcomingSect. 4.2.Theonlydifference is that if r(Ho′

o A) = p − r
holds, Assumption 1 is not needed, since in this case C(A) + C(�) spans the whole
space and Xo belongs always to this space.
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4.1 Estimation Under the Condition C(A) ∩ C(�) = {0}

If q ≤ p − r , C(A) ∩ C(�) = {0} yields r(Ho′
o A) = q, we get from (13) the relation

B = (A′Ho
oH

o′
o A)−1A′Ho

oH
o′
o XoC ′(CC ′)− + A′Ho

oH
o′
o A�2Co′

, (14)

because now (A′Ho
o)

o = 0. However, the estimation of �2 which only can be per-
formed via (6) is impossible, because the term involving �2 will disappear when
inserting B, given by (14), into (6). Thus, we can only estimate � but not B.

Theorem 1 Let the model be defined in (1) with rank restrictions given by (2) and
(3). Assume that C(A) ∩ C(�) = {0}, Ho′

o A 	= 0, H ′
oA 	= 0, C(Xo) ⊆ C(A) + C(�)

and C(X ′
oHo) ⊆ C(C ′). Put

Y o = (I − A(A′Ho
oH

o′
o A)+A′Ho

oH
o′
o )Xo.

Then

n�̂ = �̂o�̂o�̂
′
o,

where the estimate n�̂o equals the diagonal matrix with the r largest eigenvalues of
Y oY ′

o on the diagonal, and �̂o comprises the eigenvectors of Y oY ′
o corresponding

to these eigenvalues.

Proof The proof follows from the proof of Theorem 2. �

4.2 Estimation Under the Condition C(A) ∩ C(�) �= {0}

According to (2), there exists the rank restriction r(B) = f and itwill be assumed that
f − r(Ho′

o Xo) < min((q − r(Ho′
o Xo)), k). To estimate parameters, the idea is to

insert an appropriate chosen B in (6), for example, based on (13). It seems reasonable
to consider, instead of (13), the following solution:

B = (A′Ho
oH

o′
o A)+A′Ho

oH
o′
o XoC ′(CC ′)− + (A′Ho

o)
o�1, (15)

because when inserting this B into (6) �2 disappears, and when choosing B accord-
ing to (15) the effect of the rank restrictions will be “maximal”. Thus, the challenge
is to put appropriate rank restrictions on �1 so that r(B) = f holds. It is noted that

r((A′Ho
oH

o′
o A)+A′Ho

oH
o′
o XoC ′(CC ′)− : (A′Ho

o)
o�1)

= r((A′Ho
oH

o′
o A)+A′Ho

oH
o′
o XoC ′(CC ′)−) + r((A′Ho

o)
o�1),
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since (A′Ho
o)

o′
(A′Ho

oH
o′
o A)+ = 0 because C((A′Ho

oH
o′
o A)+) = C(A′Ho

oH
o′
o A)

(see Harville 1997; Theorem 20.5.1). It can be remarked that it is essential that
the Moore-Penrose generalized inverse has been chosen. Hence, from (15)

f = r((A′Ho
oH

o′
o A)+A′Ho

oH
o′
o XoC ′(CC ′)−) + r((A′Ho

o)
o�1)

= r(A′Ho
oH

o′
o XoC ′(CC ′)−) + r((A′Ho

o)
o�1)

= r(A′Ho
oH

o′
o XoC ′) + r(�1),

where it has been utilized that r((A′Ho
o)

o�1)=r(�1 : A′Ho
o) − r(A′Ho

o)=r(�1),
with an underlying assumption that the spaces generated by A′Ho

o and �1, respec-
tively, are disjoint. The relations in (10) and (11) show that

f = r(Ho′
o Xo) + r(�1)

and therefore �1 can be factored as �1 = �1�2, with

�1 : (q − r(Ho′
o A)) × ( f − r(Ho′

o Xo)),

�2 : ( f − r(Ho′
o Xo)) × k.

Here, it is seen why the condition f − r(Ho′
o Xo) < min((q − r(Ho′

o Xo)), k) is
needed. Inserting the expression for �1 into (13) yields an appropriate parametriza-
tion of B which then is inserted in (6). Thus, the model in (1) becomes

�′X = �′A(A′Ho
oH

o′
o A)+A′Ho

oH
o′
o Xo + �′A(A′Ho

o)
o�1�2C + �1/2 Ẽ, (16)

where Ẽ ∼ Nr,n(0, I r , In). Via this model, the parameters B, �1, �2, �, � and �,
or sometimes linear combinations of them, e.g. L′B or L′�1, for some L, will be
discussed.

Let

Y o = (I − A(A′Ho
oH

o′
o A)+A′Ho

oH
o′
o )Xo, (17)

Y = X − A(A′Ho
oH

o′
o A)+A′Ho

oH
o′
o Xo. (18)

The model in (16) can be rewritten as

�′Y = �′A(A′Ho
o)

o�1�2C + �1/2 Ẽ.

The likelihood for �′Y equals

L(�1,�2,�,�)

= c|�|−n/2exp{− 1
2 tr{�−1(�′Y o − �′A(A′Ho

o)
o�1�2C)()′}}

≤ c| 1n {(�′Y o − �′A(A′Ho
o)

o�1�2C)()′}d |−
n
2 exp{− 1

2rn}, (19)
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where c = (2π)
− 1
2 rn and {W}d is the diagonal matrix with non-zero elements equal

to elements on the main diagonal of W . The proof of the inequality can be obtained
from the proof of Theorem 1.10.4 in Srivastava and Khatri (1978). Equality in (19)
holds if and only if

n� = {(�′Y o − �′A(A′Ho
o)

o�1�2C)()′}d . (20)

Moreover, from (19) it follows that we shall study the following determinant:

|{(�′Y o − �′A(A′Ho
o)

o�1�2C)()′}d |
≥ |(�′Y o − �′A(A′Ho

o)
o�1�2C)()′| (21)

and equality holds if � comprises the eigenvectors corresponding to the r smallest
eigenvalues of (Y o − A(A′Ho

o)
o�1�2C)()′. Thus, � can be estimated if�1 and�2

can be estimated.
Now the goal is to minimize the determinant on the right-hand side of (21). Let

So be defined as in (4), where Ho consists of the r eigenvectors corresponding to
the r largest eigenvalues of Y o(I − PC ′)Y ′

o which are placed in the diagonal matrix
Do. Hence, the right-hand side of (21) equals (see Corollary 1)

|(�′(Y o(I − PC ′)Y ′
o − So)� + �′So�

+(�′Y oPC ′ − �′A(A′Ho
o)

o�1�2C)()′|
= |�′So� + (�′Y oPC ′ − �′A(A′Ho

o)
o�1�2C)()′|

= |�′So�||I + (�′Y oPC ′ − �′A(A′Ho
o)

o�1�2C)′(�′So�)−1

×(�′Y oPC ′ − �′A(A′Ho
o)

o�1�2C)|. (22)

Let

T = A(A′Ho
o)

o�1, (23)

which is of size p × ( f − r(Ho′
o Xo)). In order to estimate �2 as a function of �1,

we are going to apply the same technique used to findmaximum likelihood estimates
in the growth curve model (e.g. see Kollo and von Rosen 2005; pp. 358–361). We
can note that Tso (1981) used the same approach as in this article whereas Johansen
(1988) estimated first�1 as a function of�2. Below, some calculations are presented
showing the estimation approach. An important result is (for a proof, e.g. see Kollo
and von Rosen 2005; Theorem 1.2.25)

(�′So�)−1 = (�′So�)−1�′T (T ′�(�′So�)−1�′T )−T ′�(�′So�)−1

+(�′T )o((�′T )o
′
�′So�(�′T )o)−(�′T )o

′
. (24)

Applying this result yields that the right-hand side of (22) is larger or equal to
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|�′So�||I + PC ′Y ′
o�(�′T )o((�′T )o

′
�′So�(�′T )o)−(�′T )o

′
�′Y oPC ′ | (25)

and equality holds if and only if

T ′�(�′So�)−1�′(Y oPC ′ − T�2C) = 0,

which is identical to (see Corollary 2)

T ′S+
o (Y oPC ′ − T�2C) = 0.

This is a consistent system of linear equations in �2 and all solutions satisfy

T�2C = T (T ′S+
o T )−1T ′S+

o Y oPC ′ . (26)

Note that the solutions are independent of the choice of � and that the inverse in (26)
exists. Moreover, (25) is identical to

|D−1
o ||I + PC ′Y ′

oHo(H ′
oT )o((H ′

oT )o
′
Do(H ′

oT )o)−(H ′
oT )o

′
H ′

oY oPC ′ | (27)

which also is independent of �. Now an appropriate linear combination of �1 which
is included in T will be estimated. Using (24) again, the relation in (27) will be
manipulated, i.e. (27) is identical to

|D−1
o ||I + PC ′Y ′

oS
+
o Y oPC ′

−PC ′Y ′
oHoD−1

o H ′
oT (T ′HoD−1

o H ′
oT )−1T ′HoD−1

o H ′
oY oPC ′ |. (28)

Let

F = D−1/2
o H ′

oT (T ′HoD−1
o H ′

oT )−1/2, (29)

where the square root is supposed to be symmetric. Then (28) can be written as

|D−1
o ||I + PC ′Y ′

oS
+
o Y oPC ′ |

×|I − F′D−1/2
o H ′

oY oPC ′(I + PC ′Y ′
oS

+
o Y oPC ′)−1PC ′Y ′

oHoD−1/2
o F|

= |D−1
o ||I + PC ′Y ′

oS
+
o Y oPC ′ |

×|F′(I − D−1/2
o H ′

oY oPC ′(I + PC ′Y ′
oS

+
o Y oPC ′)−1PC ′Y ′

oHoD−1/2
o )F|. (30)

Since (e.g. see Kollo and von Rosen 2005; Proposition 1.3.5) the following matrix

I − D−1/2
o H ′

oY oPC ′(I + PC ′Y ′
oS

+
o Y oPC ′)−1PC ′Y ′

oHoD−1/2
o

= (I + D−1/2
o H ′

oY oPC ′Y ′
oHoD−1/2

o )−1
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is positive definite and F is of full rank, Lemma 4 can be applied. Thus, a lower
bound of (30) is given by

|D−1
o ||I + PC ′Y ′

oS
+
o Y oPC ′ |

g∏

i=1

δi , (31)

where δ1, . . . , δg (g = f − r(Ho′
o Xo)) are the g smallest eigenvalues of

(I r + D−1/2
o H ′

oY oPC ′Y ′
oHoD−1/2

o )−1 (32)

which do not depend on any unknown parameters. Therefore, we have to find an
estimator of �1 so that the lower bound is attained. Let

F̂ = (v1, v2, . . . , vg),

where {vi } are the eigenvectors which correspond to the g eigenvalues {δi }. If it is
possible to solve the following non-linear equation in �1, see Eq. (29),

F̂ = D−1/2
o H ′

oT {T ′HoD−1
o H ′

oT }−1/2

= D−1/2
o H ′

oA(A′Ho
o)

o�1{� ′
1(A

′Ho
o)

o′
A′HoD−1

o H ′
oA(A′Ho

o)
o�1}−1/2, (33)

there is chance to find an estimator of �1 but it is known from the usual BRM
that without any rank condition on A it is not possible to estimate �1. The linear
combinations

H ′
oA(A′Ho

o)
o�1 = H ′

oT

are, however, estimable and

̂H ′
oA(A′Ho

o)
o�1 = D1/2

o F̂ (34)

which is verified by inserting this expression in (33) and using that the eigenvectors
F̂ are of unit length, i.e. F̂

′
F̂ = I . Note that A(A′Ho

o)
o is connected to the fact that

we only consider B in (13) to be a function of �1, and H ′
o is used because we are

now working with the random part of the model in (6). If A = I , the parameter �1

is always estimable whereas if � is positive definite A�1 is always estimable and
if additionally r(A) = q, �1 is estimable. Moreover, if r((H ′

oA
o)o) = p − r then

C(Ho) ⊆ C(A) and �1 is estimable.

Proposition 1 Let the model be defined in (1) with rank restrictions given by
(2) and (3). If C(A) ∩ C(�) 	= {0}, Ho′

o A 	= 0, H ′
oA 	= 0, C(Xo) ⊆ C(A) + C(�),

C(X ′
oHo) ⊆ C(C ′) and
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�̂2C = F̂
′
D−1/2

o H ′
oY oPC ′ ,

H ′
oA(A′Ho

o)
o�̂1 = D1/2

o F̂,

where Do, Y o and F̂ are presented in (4), (17) and (33), respectively, then

H ′
oAB̂C

= H ′
oA(A′Ho

oH
o′
o A)+A′Ho

oH
o′
o XoPC ′ + D1/2

o F̂ F̂
′
D−1/2

o H ′
oY oPC ′ .

Motivation: First, we show the relation for �̂2C. From (26), it follows that

�̂2C = (T̂
′
S+
o T̂ )−1T̂

′
S+
o Y oPC ′ = (T̂

′
HoD−1

o H ′
oT̂ )−1T̂

′
HoD−1

o H ′
oY oPC ′ ,

where according to (23) and (34) H ′
oT̂ = H ′

oA(A′Ho
o)

o�̂1 = D1/2
o F̂. A few calcu-

lations show that T̂
′
S+
o T̂ = F̂

′
F̂ = I g , g = f − r(Ho′

o Xo)

and T̂ ′S+
o Yo = F̂′D−1/2

o H ′
oYo which establish �̂2C .

From (13), one can see that

H ′
oAB̂C = H ′

oA(A′Ho
oH

o′
o A)+A′Ho

oH
o′
o XoPC ′ + H ′

oA(A′Ho
o)

o�̂1�̂2C,

and using (34) together with �̂2C , presented above, implies the expression for
H ′

oAB̂C .
In Proposition 1, we have estimated ABC within the random part of the model.

However, in most realistic situations we can make a stronger statement.

Proposition 2 Assume that C(A) ∩ C(�)⊥ = {0}, r(A) = q and r(C) = k, and let
the matrices be as in Proposition 1. Then B can be estimated using

B̂ = (A′Ho
oH

o′
o A)+A′Ho

oH
o′
o XoC ′(CC ′)−1

+(A′HoH ′
oA)−1A′HoD1/2 F̂ F̂

′
D−1/2H ′

oY oC ′(CC ′)−1.

Motivation: By assumption, it follows that (A′HoH ′
oA)−1 exists and therefore pre-

multiplying H ′
oAB̂C by (A′HoH ′

oA)−1A′Ho establishes the statement.
The assumption C(A) ∩ C(�)⊥ = {0} in Proposition 2 is natural since inference

about the mean parameters is connected to the random part of the model in (1).

Proposition 3 Let the model be defined in (1) with rank restrictions given by (2)
and (3). Assume that C(A) ∩ C(�) 	= {0}, Ho′

o A 	= 0, H ′
oA 	= 0, C(Xo) ⊆ C(A) +

C(�), C(X ′
oHo) ⊆ C(C ′) and Y o is given in (17). The estimate n�̂o equals the diag-

onal matrix with the r smallest eigenvalues of (Y o − HoH ′
oAB̂C)()′ on its main

diagonal, and �̂o is given by the eigenvectors of (Y o − HoH ′
oAB̂C)()′ correspond-

ing to the r eigenvalues, where H ′
oAB̂C is presented in Proposition 1. Then

n�̂ = �̂o�̂o�̂
′
o.
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Motivation:The result follows from (19), (20), (21) and the fact that�′ = �′(HoH ′
o +

Ho
oH

o′
o ) = �′HoH ′

o. 
�
Theorem 2 If choosing H ′

oAB̂C as in Proposition 1 and �̂ as in Proposition 3, the
likelihoodwhich corresponds to (6), with restrictions on B given by (7), ismaximized.

Weend this section by studying H ′
oAB̂C when n → ∞. Firstly, it is observed that the

“largest” eigenvalues of 1
n S converge in probability to the non-zero eigenvalues of�

which for simplicity are supposed to beofmultiplicity 1.Moreover, the corresponding
eigenvectors of 1

n S which correspond to Ho converge to �. We will not be able to
say anything about Ho and therefore in our expressions, Ho

o is kept and not replaced
by any random variable. To show that the eigenvectors converge, it can be noted
that S = ZZ′, for Z ∼ Np,n−r(C)(0,�, I), r(Z) = r , and then its density which is
defined on a subspace (see Srivastava and Khatri, p. 43) can be used. Based on this
density, D and H (D and H correspond to Do and Ho) are maximum likelihood
estimators and therefore they are also consistent. Hence, in probability,

H → �, 1
n D → �.

Now we study what happens with the random version of H ′
oAB̂C (which will be

called H ′AB̂C):

H ′AB̂C = H ′A(A′Ho
oH

o′
o A)+A′Ho

oH
o′
o XoPC ′

+D1/2 F̂ F̂
′
D−1/2H ′Y PC ′ , (35)

where Y is given by (18) and now F̂ is a random variable. The crucial point
is to observe that the random version of (32) converges to I r . This holds since√
nD−1/2 → �−1/2 and n−1Y PC ′Y ′ → 0 in probability, under some mild assump-

tions on C , which are supposed to hold. Therefore, the eigenvalues of (32) converge
to 1. Since F̂ F̂

′
is an eigenprojector, we will construct our result so that its limit also

is an eigenprojector. Thus, F̂ → (I g : 0)′, in probability, implying the result

F̂ F̂
′ →

(
I g 0
0 0

)
, F̂

′
F̂ = I g,

where obviously

(
I g 0
0 0

)
is a projector.

Theorem 3 The expression H ′AB̂C in (35) is asymptotically equivalent to

�′A(A′Ho
oH

o′
o A)+A′Ho

oH
o′
o XoPC ′ +

(
I g 0
0 0

)
�′Y PC ′

which is normally distributed.
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A final remark is that if assuming Ho
o = 0, i.e. � is positive definite, then the

estimates in Propositions 1 and 3 for B and � under rank restrictions on B are
identical to known estimates of the parameters of the growth curve model with rank
restrictions on B.

5 Illustrations

Example 1 Firstly, we present a small simulation study showing that our estimators
make sense. Since B with rank restrictions is difficult to interpret, the focus will
be on prediction, i.e. H ′

o X̂C ′(CC ′)−1 = H ′
oAB̂ will be considered, and is obtained

from Proposition 1. Note that for small n, there is rather much variation in Ho. It is
not obvious how to evaluate H ′

o X̂ , but we have decided to compare H ′
o X̂C ′(CC ′)−1

with H ′
oP AXC ′(CC ′)−1 which for a fixed Ho is an unbiased estimator of H ′

oAB,
irrespectively if there exist rank restrictions on B or there are no rank restrictions.

Let

A =

⎛

⎜⎜⎝

1 8 64
1 10 100
1 12 144
1 14 196

⎞

⎟⎟⎠ , B =
⎛

⎝
17.1 37.1 34.2
0.54 0.23 1.08

−0.003 0.0020 −0.006

⎞

⎠ ,

C =
⎛

⎝

⎛

⎝
1
0
0

⎞

⎠ ⊗ 1′
10 :

⎛

⎝
0
1
0

⎞

⎠ ⊗ 1′
9 :

⎛

⎝
0
0
1

⎞

⎠ ⊗ 1′
8

⎞

⎠ , �0 =

⎛

⎜⎜⎝

5.1 2.4 3.6 2.5
3.9 2.7 3.1

6.0 3.8
4.6

⎞

⎟⎟⎠ .

This means that we have a growth curve model with polynomial growth of order two
and three groups, respectively, consisting of 10, 9 and 8 independent observations.
Data were generated from the model X = ABC + E, where E ∼ Np,27(0,�, I27)
and � = HDH ′, where D is a diagonal matrix which consists of the three largest
eigenvalues of�0 and H is thematrix of corresponding eigenvectors. Thus r(�) = 3.
Note that the third column of B equals two times its first column, meaning that the
rank of B equals 2. Then 1000 simulations took place and H ′

o X̂C ′(CC ′)−1 was com-
pared to H ′

oP AXC ′(CC ′)−1, where H ′
o X̂C ′(CC ′)−1 follows from Proposition 1.

Since the size of these matrices is 3 × 3, there are nine elements which are to be
compared. The results of the simulation study are presented in Table1. One con-
clusion is that there is almost no difference between the two estimators besides that
H ′

o X̂C ′(CC ′)−1 is of rank equal to two and the other estimator is of rank three.
Thus, we can conclude that our approach makes sense from a point of view that even
in small samples the estimators seem to be appropriate.

Example 2 Now we turn to the real data example utilized by Albert and Kshirsagar
(1993) which was mentioned in the introduction. Group averages for potassium
values are plotted separately for each group of dogs in Fig. 1.

The A and C matrices equal



208 D. von Rosen

Table 1 Let p = vec(H ′
o X̂C ′(CC ′)−1) and pi be the i th element of p. Correspondingly, let

q = vec(H ′
oP AXC ′(CC ′)−1) and let qi be the i th element of q

p1 q1 p2 q2 p3 q3 p4 q4 p5 q5

Mean 44.6 44.6 78.5 78.4 89.1 89.2 4.54 4.53 8.08 8.09

Std 1.4 1.4 1.8 1.8 1.9 1.9 3.6 3.7 6.0 6.0

Min 39.7 39.8 70.1 69.9 80.3 80.3 −1.9 −2.4 −1.6 −1.7

Max 39.7 48.2 83.9 84.3 94.7 94.8 19.4 19.0 34.6 34.6

p6 q6 p7 q7 p8 q8 p9 q9
Mean 9.08 9.08 4.61 4.56 8.68 8.79 9.22 9.14

Std 7.3 7.4 3.6 3.6 6.2 6.2 7.2 7.2

Min −3.7 −4.7 −1.9 −2.5 −1.6 −1.5 −3.8 −3.9

Max 38.7 38.9 20.3 20.1 35.7 35.8 40.7 40.9

Fig. 1 The dogs’ data used
in Grizzle and Allen (1969)
and Albert and Kshirsagar
(1993) are presented. Each
line corresponds to one
group of dogs where the
average values are plotted
over time
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A =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.378 −0.567 0.546 −0.408
0.378 −0.378 0 0.408
0.378 −0.189 −0.327 0.40
0.378 0 −0.436 0
0.378 0.189 −0.327 −0.408
0.378 0.378 0 −0.408
0.378 0.567 0.546 0.408

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

C =

⎛

⎜⎜⎝

⎛

⎜⎜⎝

1
0
0
0

⎞

⎟⎟⎠ ⊗ 1′
9 :

⎛

⎜⎜⎝

0
1
0
0

⎞

⎟⎟⎠ ⊗ 1′
10 :

⎛

⎜⎜⎝

0
0
1
0

⎞

⎟⎟⎠ ⊗ 1′
8 :

⎛

⎜⎜⎝

0
0
0
1

⎞

⎟⎟⎠ ⊗ 1′
9

⎞

⎟⎟⎠ .

Wewill assume that r(�) equals 7, 6 or 5. When r(�) = 7, i.e. the dispersion matrix
is of full rank, Albert and Kshirsagar (1993) developed a testing strategy to decide
about the rank of B. We will compare four models by assuming

r(�) = 7, r(B) = 4; r(�) = 7, r(B) = 1; r(�) = 6, r(B) = 2 or r(�) = 5, r(B) = 3.

The first case is a model without any rank restrictions. In the second alternative, we
only have rank restrictions on the mean parameters, which was the case treated by
Albert and Kshirsagar (1993), and for the other two cases we have rank restrictions
on both the mean parameters and the dispersion matrix. As in the simulation study
(Example 1), we will compare it with H ′

o X̂C ′(CC ′)−1 where the choice of Ho

depends on r(�), in particular the length of the column in Ho depends on the rank
assumption. Moreover, it is impossible to present all elements in H ′

o X̂C ′(CC ′)−1

and therefore the focus will be on the first and last rows of H ′
o X̂C ′(CC ′)−1 of

which each consists of four elements. Table2 shows similar prediction values for the
different models. For the last row, i.e. pl1–pl4, some differences appear but it should
not be forgotten that different Ho matrices are used in the different models so these
minor differences are not unexpected.

Thus, as with the simulation study, we find an agreement between existing meth-
ods and our new approach where rank restrictions on the mean are combined with

Table 2 Let pi j = (H ′
o X̂C ′(CC ′)−1)i j , i = 1, l, (l stands for the last row), j = 1, 2, 3, 4, where

H ′
o X̂C ′(CC ′)−1 follows from Proposition 1

p11 p12 p13 p14 pl1 pl2 pl3 pl4

r(�) = 7, r(B) = 4 12.3 9.2 10.7 10.1 −0.003 0.06 0.07 0.1

r(�) = 7, r(B) = 1 11.7 10.0 10.3 10.3 0.09 0.08 0.08 0.08

r(�) = 6, r(B) = 2 12.4 9.3 10.6 10.0 0.7 0.6 0.7 0.7

r(�) = 5, r(B) = 3 11.9 10.2 10.2 10.0 0.1 0.2 0.3 0.3
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rank restrictions on the dispersion. Moreover, if p is large, those existing methods
mentioned above cannot be used because the dispersion matrix cannot be estimated
and S cannot be inverted which in our approach can take place. Therefore, we believe
that it is worth continuing to study the new approach presented in this article.

Acknowledgements This research has been supported by the Swedish Research Council (2017-
03003).
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Limiting Canonical Distribution of Two
Large-Dimensional Random Vectors

Zhidong Bai, Zhiqiang Hou, Jiang Hu, Dandan Jiang, and Xiaozhuo Zhang

Abstract In multivariate analysis, canonical correlation analysis is a powerful tool
to deal with the relationship between two random vectors. In this paper, we establish
a functional relation between the sample canonical correlation matrix and a special
noncentral Fisher matrix. And under the large-dimensional setting, i.e., the dimen-
sions of the random vectors tend to infinity proportionally to the sample size, we
develop a phase transition and a central limit theorem for the sample spiked eigen-
values of the noncentral Fisher matrix. By these results, we further derive the limits
and fluctuations of the sample canonical correlation coefficients.

Keywords Canonical correlation analysis · Noncentral fisher matrix · Spiked
eigenvalues · Central limit theorem

1 Introduction

Canonical correlation analysis (CCA) is one of the most classical and important tools
in multivariate statistics, which has been widely used in various fields to explore the
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relation between two sets of variables measured on the sample. The basic theory
of CCA was initiated by Hotelling (1936). Under the condition that the dimensions
of the random vectors are fixed and the sample size tend to infinity, Hsu (1941)
presented the limiting distribution of the sample canonical correlations, which can
be used to evaluate the population canonical coefficients.

However, rapid development of modern technology necessitates statistical infer-
ence on high-dimensional data in many scientific fields, such as image processing,
genetic engineering, signal processing, microarray, finance, and economics. A con-
sensus amongst the statisticians is that the classical statistical inferences need to be
re-examined when they meet high-dimensional data. So far, there are only a hand-
ful of works to the high-dimensional CCA. By extended Fisher’s z-transformation,
Fujikoshi and Sakurai (2009) concluded the asymptotic distributions of the canonical
correlation coefficients and their asymptotic expansions under the condition that one
dimension of the two random vectors tends to infinity proportionally to the sample
sizewhile the other dimension is fixed. The above results are based on that the popula-
tion eigenvalues are distinguishedwith each other. Later, under the same assumptions
in Fujikoshi and Sakurai (2009) except the multiplicities the population characteris-
tic roots greater than unity, Fujikoshi (2016) obtained the asymptotic distributions of
the canonical correlation coefficients. Gao et al. (2015, 2017) focused on the sparse
CCA. The former introduced a method to estimate the leading canonical correlation
directions and the latter considered adaptive minimax and computationally tractable
estimation of leading sparse canonical coefficient vectors. Han et al. (2018) proposed
a unified matrix model and got asymptotic distributions of the maximum eigenvalues
of it. In this model, the authors transformed the unified matrix into a canonical cor-
relation matrix by selecting a certain matrix. Johnstone and Onatski (2015) derived
the asymptotic properties of the likelihood ratio processes of CCA. Recently, Bao
et al. (2019) investigated the asymptotic behavior of the sample canonical corre-
lation coefficients under the assumption that the rank of the population canonical
correlation matrix is finite.

In this paper, we will establish a relationship between the sample canonical cor-
relation matrix and a special noncentral spiked Fisher matrix. Actually, the central
spiked matrix has been widely investigated since Johnstone (2001) proposed the
spiked model with the application for principal component analysis (PCA). Baik
and Silverstein (2006) proved the almost sure version of phase transition phenom-
ena about the limits of the sample spiked eigenvalues. Paul (2007) considered the
central limit theorem (CLT) for the sample spiked eigenvalues under the Gaussian
assumption, and Bai and Yao (2008, 2012) obtained the CLT for the spiked eigen-
values under the moment assumptions. Under more general assumption, Cai et al.
(2017) and Jiang and Bai (2018) improved these results under some more general
assumption. For two samples case, Wang and Yao (2017) proposed the concept of
spiked Fisher matrix and established the phase transition phenomena and CLT for
the extreme eigenvalues. Based on Zheng et al. (2017), Jiang et al. (2019) proposed
a concept of the general spiked Fisher matrix. Then, Jiang et al. (2019) derived the
CLT for the sample spiked eigenvalues of the general spiked Fisher matrix.
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It’s remarkable that all the results introduced above mainly focused on the cen-
tral sample covariance matrix or central Fisher matrix. The works devoted to the
noncentral sample covariance matrix or noncentral Fisher matrix are relatively limit.
Dozier and Silverstein (2007) accomplished the global spectral properties of the
information-plus-noise type matrix, which can be viewed as a noncentral sample
covariance matrix. Bodnar et al. (2019) derived the CLT for linear spectral statistics
of large-dimensional noncentral Fisher matrices under normality assumption.

In this paper, we build a bridge between sample canonical correlation coefficients
and the eigenvalues of a special noncentral Fisher matrix. Then via establishing
a phase transition and a CLT for the sample spiked eigenvalues of this kind of
noncentral Fishermatrix,wederive the limits andfluctuations of the sample canonical
correlation coefficients under high-dimensional setting. One of the contributions of
this paper is using a different approach fromBao et al. (2019), but obtaining the same
results, such as limits and fluctuations of the extreme sample canonical correlation
coefficients.

To guarantee the coherence and readability of this paper, we introduce some
essential concepts here. For any n × n matrix An with only real eigenvalues, let Fn

be the empirical spectral distribution (ESD) function of An , that is,

Fn(x) = 1

n
Card{i; λ

An
i ≤ x},

where λ
An
i denotes the i-th largest eigenvalue ofAn . If FAn has a limiting distribution

F , then we call it the limiting special distribution (LSD) of sequence {An}. For any
function of bounded variation G on the real line, its Stieltjes transform is defined by

m(z) =
∫

1

λ − z
dG(λ), z ∈ C

+.

The rest of the paper is organized as follows. In Sect. 2, we give some preliminaries
and show the relationship between the eigenvalues of the sample canonical correlation
matrix and the noncentral Fisher matrix. In Sects. 3 and 4, we present the limits and
fluctuations of spiked eigenvalues of the noncentral sample covariance matrix and
noncentral Fishermatrix, respectively. In Sect. 5, we derive the limits and fluctuations
of the sample canonical correlation matrix. All the technical proofs are presented in
Sect. 6.

2 A Functional Relationship

Let zi = (xT
i , yT

i )T , i = 1, . . . , n, be independent observations from a (p + q)-
dimensional normal distribution with mean zero and covariance matrix
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� =
(

�xx �xy

� yx � yy

)
, (1)

where xi and yi are p-dimensional and q-dimensional vectors with the population
covariancematrices�xx and� yy , respectively.Without loss of generality, we assume
that p ≤ q. Define the corresponding sample covariance matrix of as

Sn = 1

n

n∑
i=1

zi zT
i (2)

which can be formed as

Sn =
(
Sxx Sxy

Syx Syy

)
= 1

n

(
XXT XY T

YXT YY T

)
(3)

with

X = (x1, . . . , xn)p×n, Y = (y1, . . . , yn)q×n, (4)

In the sequel,�−1
xx �xy�

−1
yy � yx is called as the population canonical correlationmatrix

and its eigenvalues are denoted as

1 > ρ2
1 ≥ ρ2

2 ≥ · · · ≥ ρ2
p. (5)

According to Theorem 12.2.1 of Anderson (2003), the nonnegative square roots
ρ1, . . . , ρp are the population canonical correlation coefficients. Correspondingly,
we call S−1

xx SxyS−1
yy Syx the sample canonical correlation matrix and its eigenvalues

are denoted by

λ2
1 ≥ λ2

2 ≥ · · · ≥ λ2
p. (6)

By the singular value decomposition, we have that

�
− 1

2
xx �xy�

− 1
2

yy = P1�PT
2 , (7)

where

� = (
�11 012

)
,

�11 = diag(ρ1, ρ2, . . . , ρp), 012 is a p × (q − p) zero matrix, P1 and P2 are orthog-
onal matrix with size p × p and q × q, respectively. It follows that ρ2

1 , ρ
2
2 , . . . , ρ

2
p

are also the eigenvalues of the diagonal matrix ��T .
Inspired by Johnstone and Nadler (2017) and Jiang et al. (2013), we find λ2

i /(1 −
λ2

i ) happen to be the eigenvalues of a special noncentral Fisher matrix, the detailed
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presentation is postponed in next section. Before that we need some preliminaries.
Define the population

z̃ =
(
x̃
ỹ

)
=
(
PT
1 0
0 PT

2

)(
�

− 1
2

xx 0

0 �
− 1

2
yy

)(
x
y

)
, (8)

then

Cov (z̃) =
(

Ip �

�T Iq

)
.

Let

x̃i = �ỹi + �w̃i i = 1, . . . , n, (9)

where w̃i
i.i.d∼ N (0, Ip) independent of ỹi and � satisfies

�2 = Ip − ��T = Ip − �11�
T
11.

Let

��T = ỸT (ỸỸT )−1Ỹ, ��T = In − ỸT (ỸỸT )−1Ỹ, (10)

where

X̃ = (x̃1, . . . , x̃n)p×n, Ỹ = (ỹ1, . . . , ỹn)q×n, W̃ = (w̃1, . . . , w̃n)p×n,

� and � are n × q and n × (n − q) matrices, respectively. Now let B = W̃�, C =
W̃� and

S̃1 = 1

q
(�−1�(ỸỸT )1/2+B)((ỸỸT )1/2�T �−1+BT ), (11)

S̃2 = 1

n − q
CCT . (12)

Apparently, B and C are independent random matrices with i.i.d standard normal
entries. Because the distributions of B and C are independent of Ỹ, the matrices
B and C are independent of Ỹ. According to Dozier and Silverstein (2007), the
matrix S̃1 defined in (11) can be viewed as an information-plus-noise type matrix
conditional on Ỹ, which also can be reguareded as a noncentral sample covariance
matrix. Denote Ŷ be the first p rows of Ỹ, T = �−1�11 and

� := 1

q
�−1�ỸỸT �T �−1 = 1

q
�−1�11ŶŶT �11�

−1 = n

q
T(n−1ŶŶT )TT (13)



218 Z. Bai et al.

Fig. 1 Comparison of the ESD of S−1
xx SxyS−1

yy Syx (Ip − S−1
xx SxyS−1

yy Syx )
−1 (the left panel)

and F(�)/kn,q (the right panel) with (ρ2
1 , ρ

2
2 , . . . , ρ

2
5 , . . . , ρ

2
p) = (0.8, 0.7, . . . , 0.4, 0, . . . , 0),

(p, q, n) = (200, 600, 1000)

be the noncentral parameter matrix, then we have the noncentral Fisher matrix

F(�) := S̃1S̃−1
2 . (14)

We are now in a position to form the functional relationship between the eigenvalues
of sample canonical correlation matrix and that of the noncentral Fisher matrix (14).
Before describing the theorem, we make the following assumption throughout the
work.

Assumption 1 Assume that (xT
i , yT

i )T , i = 1, . . . , n, is a sample of i.i.d. observa-
tions from a (p + q)-dimensional normal distributionwithmean zero and covariance
matrix � defined in (1).

Theorem 1 Suppose that λ2
i , i = 1, . . . , p, are the ordered eigenvalues of the sam-

ple canonical correlation matrix S−1
xx SxyS−1

yy Syx . Then, under Assumption 1, there

exists a noncentral Fisher matrix F(�), such that li = (n−q)λ2
i

q(1−λ2
i )

, i = 1, . . . , p, where

li are the ordered eigenvalues of F(�).

To illustrate Theorem 1, we present a numerical result. In this simulation, we
compare the ESD between S−1

xx SxyS−1
yy Syx (Ip − S−1

xx SxyS−1
yy Syx )

−1 and F(�)/kn,q

with 3000 realizations. According to Fig. 1, we find the ESD of them are almost
identical.

Remark 1 In the sequel, we denote kn,q := n/q − 1 and the functional relationship
between the eigenvalues of S−1

xx SxyS−1
yy Syx and the noncentral Fisher matrix be

li := g(λ2
i ) = kn,q · λ2

i

1 − λ2
i

i = 1, . . . , p. (15)
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Note that the function g is strictly increasing. Hence, the limits and fluctuations
of the sample canonical correlation coefficients λi can be obtained by that of the
eigenvalues of the noncentral Fisher matrix.

3 Fluctuations for the Eigenvalues of ˜S1

Throughout the paper, we consider the following assumptions about the high-
dimensional setting and the spiked structure.

Assumption 2 Assume that as min(p, q, n) → ∞, c1n := p/n → c1 ∈ (0, 1),
c2n := q/n → c2 ∈ (0, 1) and c1 + c2 < 1.

Assumption 3 Assume that ρ2
i , i = 1, . . . , p, are the ordered eigenvalues of the

diagonal matrix ��T , satisfying

ρ2
1 = · · · = ρ2

m1
> ρ2

m1+1 = · · · = ρ2
m1+m2

> · · · > ρ2∑K−1
i=1 mi +1

= · · · = ρ2
M > 0,

and

ak = ρ2
mk−1+1 = · · · = ρ2

mk−1+mk
, k ∈ {1, . . . , K },

where M = ∑K
i=1 mi is a fixed positive integer with convention m0 = 0. In addition,

we assume that there exits ε > 0, a constant independent of n, such that ρ2
1 < 1 − ε,

ρ2
M > ε, for any 1 ≤ i < K , ρ2

mi+1
− ρ2

mi
> ε, and for all i > M , ρi = 0.

In the following, we discuss the CLT for the sample spiked eigenvalues of S̃1

defined in (11), that is

S̃1 = (�1/2 + q−1/2B)(�1/2 + q−1/2B)T , (16)

where �1/2 := q−1/2�−1�(ỸỸT )1/2. Before that, we first introduce some known
results for the spiked eigenvalues of �.

By the definition of T in (13) and Assumption 3, we denote the eigenvalues of
n
q TT

T be

aT
1 > aT

2 > · · · > aT
K > 0, (17)

with multiplicity mk , k = 1, . . . , K , respectively. Thus, we have that m1 + · · · +
mK = M and

aT
k = n

q
· ρ2

jk

1 − ρ2
jk

, k = 1, . . . , K , (18)
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where jk = ∑k−1
i=0 mi + 1.

In addition, we denote the eigenvalues of � be

l�1 ≥ l�2 ≥ · · · ≥ l�M . (19)

Here one should note that aT
k , k = 1, . . . , K , are constant but l�i , i = 1, . . . , M , are

random variables. For the phase transition of the spiked eigenvalues of the noncentral
parameter matrix �, by the law of large numbers we have the following lemma.

Lemma 1 Suppose Assumptions 1–3 hold. For any j ∈ Jk := { jk + 1, . . . , jk +
mk}, we have that

l�j
aT

k

a.s.−→ 1. (20)

In the following, wewill present theCLT for the sample spiked eigenvalues, which
can be verified from Lindeberg-Feller CLT easily.

Lemma 2 If Assumptions 1–3 hold, then the mk-dimensional random vector

γ �
k = √

n

{
l�i
aT

k

− 1, i ∈ Jk

}

converges weakly to the joint distribution of the mk eigenvalues of random matrix

	 := (
ωi j
)

mk×mk
,

where 	 is a Gaussian Orthogonal Ensemble (GOE), i.e., an mk-dimensional
symmetric Gaussian random matrix with independent (up to symmetry) entries
ωi i ∼ N (0, 2) and ωi j ∼ N (0, 1) for i 	= j .

Denote the ordered eigenvalues of S̃1 be

l S̃11 ≥ l S̃12 ≥ · · · ≥ l S̃1p . (21)

Then we have the following the limits for these eigenvalues.

Theorem 2 Suppose that Assumptions 1–3 hold. For any k ∈ {1, . . . , K } satisfying
lim

n→∞ aT
k >

√
c1/c2, we have that

l S̃1j

ψS̃1(a
T
k )

− 1
a.s.−→ 0. j ∈ Jk, (22)

where

ψS̃1(a
T
k ) = (

aT
k + c1/c2

) (
aT

k + 1
)
/aT

k . (23)
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Remark 2 This theorem can be easily verified by Lemmas 1–2 and Theorem 2.2 in
Ding (2020). Thus, we omit the proof in this paper.

Now, we are in a position to present the CLT for the sample spiked eigenvalues of
matrix S̃1 and its proof is postponed to Sect. 4.

Theorem 3 Suppose Assumptions 1–3 hold. For any k ∈ {1, . . . , K } satisfying
lim

n→∞ aT
k >

√
c1/c2, then the mk-dimensional random vector

γ
S̃1
k = √

q

⎧⎨
⎩

l S̃1j

ψn,̃S1(a
T
k )

− 1, j ∈ Jk

⎫⎬
⎭

converge weakly to the joint distribution of the mk eigenvalues of Gaussian random
matrix

	
(
θ−2
1

)
,

where ψn,̃S1(·) is a substitute of ψS̃1(·) with c1 and c2 replaced by c1n and c2n and
	(θ−2

1 ) is a GOE matrix with a scale parameter θ−2
1 , i.e., θ1	(θ−2

1 ) is a GOE, and

θ2
1 :=

(
θ

(k)
1

)2 =
(
aT

k

)4 (
aT

k + c1/c2
)2 (

aT
k + 1

)2
(
aT

k

)4 ((
aT

k

)2 − c1/c2
) (

aT
k + 1 + c1/c2

)+ c2
((

aT
k

)2 − c1/c2
)2 .

Remark 3 As the limits defined in (22) may converge very slow, to guarantee
the existence of limiting distribution, here and in the sequel, we need to use the
nonasymptotic parameters cn1, cn2 and aT

k in the CLTs.

4 Limits and Fluctuations for the Eigenvalues of F(�)

Recall the noncentral Fisher matrix F(�) defined in (14),

F(�) = S̃1 S̃
−1
2 (24)

and its eigenvalues

l1 ≥ l2 ≥ · · · ≥ l p. (25)

Then we have the following theorems and their proof are postponed to the Sect. 4.

Theorem 4 Suppose that Assumptions 1–3 hold. For any k ∈ {1, . . . , K } satisfying
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lim
n→∞ aT

k >
c1c2 +

√
c21c22 + c1c2(1 − c1 − c2)

c2(1 − c1 − c2)
, (26)

then we have

l j

ψ(aT
k )

− 1
a.s.−→ 0, j ∈ Jk,

where

ψ(aT
k ) = (1 − c2)(aT

k + c1)(aT
k + 1)

(1 − c1 − c2)aT
k − c1

. (27)

Theorem 5 If Assumptions 1–3 hold, then the mk-dimensional random vector

γ F
k = √

n − q

{
l j − ψn(aT

k )

ψn(aT
k )

, j ∈ Jk

}

converge weakly to the joint distribution of the mk eigenvalues of the following
Gaussian random matrix

	
(
θ−2
2

)
,

where

ψn(a
T
k ) = (1 − c2n)(aT

k + c1n)(aT
k + 1)

(1 − c1n − c2n)aT
k − c1n

and

θ22 :=
(
θ

(k)
2

)2 = 1

(1 − c2)(aT
k )2(aT

k c2 + 1)
(
c22(a

T
k )2 + ((c1 − 1)aT

k + 2c1)c2aT
k + c1

)

× c2(aT
k + 1)2(aT

k c2 + c1)2(aT
k c2 + (c1 − 1)aT

k + c1)2(
c22aT

k + ((c1 − 2)aT
k + 2c1 − 1)c2 − c1

) .

5 Limits and Fluctuations for the Sample Canonical
Correlation Coefficients

As Theorem 1 has established the one-to-one relation between the square of the
sample canonical correlation coefficients and the eigenvalues of the noncentral Fisher
matrix. Thus, by the results introduced in last subsection, we can easily obtain the
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limits and fluctuations of the sample canonical correlation coefficients, which are
presented as the following two theorems.

Theorem 6 Suppose that Assumptions 1–3 hold. For any k ∈ {1, . . . , K } satisfying

ak = lim
n→∞

c2aT
k

c2aT
k + 1

>

√
c1c2

(1 − c1)(1 − c2)
, (28)

then we have that for any i ∈ Jk , the square of sample canonical correlation coeffi-
cient λ2

i almost surely converges to φ(ak), where

φ(ak) = (ak(1 − c1) + c1) (ak(1 − c2) + c2)/ak . (29)

Theorem 7 If Assumptions 1–3 hold, then the mk-dimensional random vector

γ k = √
n
{
λ2

i − φn(ak), i ∈ Jk
}

converges weakly to the joint distribution of the mk eigenvalues of Gaussian random
matrix

	(θ2
3 ),

where

φn(ak) = (ak(1 − c1n) + c1n) (ak(1 − c2n) + c2n)/ak

and

θ2
3 := (θ

(k)
3 )2 = (1 − ak)

2(2vak + c1 + c2 − 2w)(va2
k − w)

a2
k

(30)

w = c1c2 and v = (1 − c1)(1 − c2).

Remark 4 Noted that Theorems 6, Theorem 7 agree with the results in Bao et al.
(2019). Thus, this paper can be viewed as a different approach fromBao et al. (2019),
but achieving the same destination.

Remark 5 This theorem can be proved by Theorems 1, 5 and Delta method. As the
calculation is mechanical and tedious, so we omit the details in this paper.

Remark 6 In order to verify the performance ofTheorem7,wepresent the following
numerical studies (Fig. 2). We compare the empirical density (the blue histogram) of
λ2
1 or λ2

2 with standard normal density curve (the red line) with 4,000 repetitions.
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Fig. 2 The asymptotic normality of λ21 (the left panel) and λ22 (the right panel) with
(ρ2

1 , ρ
2
2 , . . . , ρ

2
5 , . . . , ρ

2
p) = (0.8, 0.7, . . . , 0.4, 0, . . . , 0), (p, q, n) = (200, 600, 1000)

6 Technical Proofs

In this section, we give the technical proofs of Theorems 1, 3–6. Note that we may
also use c1, c2 to denote c1n , c2n respectively in the proofs of CLTs for simplicity.
The context will be clear enough that there is no risk of ambiguity.

6.1 Proof of Theorem 1

Recall the notation

X̃ = (x̃1, . . . , x̃n)p×n, Ỹ = (ỹ1, . . . , ỹn)q×n, W̃ = (w̃1, . . . , w̃n)p×n .

we define the sample covariance matrix of (X̃T , ỸT )T be

S̃n
(
x̃i ỹi

) = 1

n

(
X̃X̃T X̃ỸT

ỸX̃T ỸỸT

)
=
(
S̃xx S̃xy

S̃yx S̃yy

)
. (31)

It is easy to check that under Assumption 1, S̃xy S̃−1
yy S̃yx S̃−1

xx and SxyS−1
yy SyxS−1

xx share
the same eigenvalues. In addition, by the notation

� = ỸT (ỸỸT )−1/2, In − ỸT (ỸỸT )−1Ỹ = ��T .

We have that

S̃xy S̃−1
yy S̃yx S̃−1

xx (Ip − S̃xy S̃−1
yy S̃yx S̃−1

xx )−1 = X̃��T X̃T (X̃��T X̃T )−1, (32)
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�T X̃T = (ỸỸT )1/2�T + �T W̃T �T (33)

and

�T X̃T = �T (�Ỹ + �W̃)T = �T ỸT �T + �T W̃T �T = �T W̃T �T . (34)

Write B = W̃� and C = W̃�. As ��T and ��T are projection matrices with
�T � = 0, thuswe haveB andC are independent randommatriceswith i.i.d standard
normal entries, which implies

(32) = �(�−1�(ỸỸT )1/2 + B)((ỸỸT )1/2�T �−1 + BT )(CCT )−1�−1,

which has the same eigenvalues of q
n−q F(�) := q

n−q S̃1 S̃
−1
2 . Thus, the ordered eigen-

values of S̃xy S̃−1
yy S̃yx S̃−1

xx and that of the noncentral Fisher matrix have the following
relation

li = g(λ2
i ) = kn,q

λ2
i

1 − λ2
i

,

where kn,q = n
q − 1. Then we complete the proof of Theorem 1.

6.2 Proof of Theorem 3

We start to consider the conditional limiting distribution of γ
S̃1
k given Ỹ, denoted by

γ
S̃1
k |Ỹ in the following. For simplicity, we let λS̃1

k = (aT
k + c1/c2)(aT

k + 1)/aT
k stand

for the limits of l S̃1i .
As � has finite rank, thus we can decompose �1/2 as

�1/2 = O1DO2 = O1

(
D1

0

)
O2 = O1

(
D11 0
0 0

)
O2, (35)

whereD is a p × q matrix,D1 is the first M rows ofD,D11 is the first M columns of
D1,O1 andO2 are two orthogonal matrices. Suppose λ solve the following equation

0 = |λI − S̃1| = |λI − OT
1 (�1/2 + q−1/2B)(�1/2 + q−1/2B)TO1|

= |λI − (D + q−1/2OT
1 BO

T
2 )(D + q−1/2OT

1 BO
T
2 )T |.

SinceB isGaussian distributed,we haveOT
1 BO

T
2

d= B, where d= stands for identically
distributed. Thus, without loss of generality, we can assume that the matrix � =
DDT . Similar to D, we decompose B as
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B =
(
B1

B2

)
=
(
B11 B12

B21 B22

)
.

Thus for the sample spiked eigenvalues l S̃1i , i ∈ Jk , k = 1, . . . , K , we have that

0 =
∣∣∣∣l S̃1i Ip − (D + 1√

q
B)(D + 1√

q
B)T

∣∣∣∣

=
∣∣∣∣∣∣
l S̃1i IM −(D1+ 1√

q B1)(D1+ 1√
q B1)

T −(D1+ 1√
q B1)

1√
q B

T
2

− 1√
q B2(D1+ 1√

q B1)
T l S̃1i Ip−M − 1√

q B2
1√
q B

T
2

∣∣∣∣∣∣ . (36)

Since |l S̃1i Ip−M − 1
q B2BT

2 | 	= 0, we can rewrite (36) as

0=
∣∣∣∣∣l
S̃1
i IM −

(
D1+ 1√

q
B1

)[
Iq + 1

q
BT
2

[
l S̃1i Ip−M − 1

q
B2B

T
2

]−1
B2

](
D1+ 1√

q
B1

)T
∣∣∣∣∣ ,

which is equivalent to

0=
∣∣∣∣∣IM −

(
D1 + 1√

q
B1

)(
l S̃1i Iq − 1

q
BT
2 B2

)−1 (
D1+ 1√

q
B1

)T
∣∣∣∣∣ (37)

when l S̃1i 	= 0. Then we let

	S̃1
q = IM −

(
D1+ 1√

q
B1

)(
l S̃1i Iq − 1

q
BT
2 B2

)−1 (
DT

1 + 1√
q
BT
1

)

= IM + 1

q
tr

(
1

q
BT
2 B2 − l S̃1i Iq

)−1

IM + D1DT
1

l S̃1i (1 + c3nm2n(l
S̃1
i ))

+ 	
S̃1
0 , (38)

where c3n = (p − M)/q,

	
S̃1
0 = 1

q
B1

(
1

q
BT
2 B2 − l S̃1i Iq

)−1

BT
1 − 1

q
tr

(
1

q
BT
2 B2 − l S̃1i Iq

)−1

IM

+ 1√
q

(
B1

(
1

q
BT
2 B2 − l S̃1i Iq

)−1

DT
1 +D1

(
1

q
BT
2 B2 − l S̃1i Iq

)−1

BT
1

)

+ DT
11

[(
1

q
BT
2 B2 − l S̃1i Iq

)−1

M M

+ IM

l S̃1i (1 + c3nm2n(l
S̃1
i ))

]
D11, (39)

and

m2n(l
S̃1
i ) = 1

p − M
tr

[
1

q
B22BT

22−l S̃1i Ip−M

]−1

.
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Note that c3n = (p − M)/q → c3 := c1/c2 and m2n(z) is the Stieltjes transform
of the ESD of q−1B22BT

22, which almost surely tends to the Stieltjes transform
m2(z) of the M-P law. For using later, we denote the Stieltjes transform of the ESD
of q−1BT

22B22 by m2n(z). Then, it follows that m2n(z) → m2(z) = −(1 − c3)/z +
c3m2(z).

Next, we will consider the limiting distribution of
√

q	
S̃1
0 defined in (39).

As stated above, by classical CLT, it is not difficult to obtain that the M × M

matrix 1√
q B1(

1
q B

T
2 B2 − l S̃1i Iq)

−1BT
1 − 1√

q tr(
1
q B

T
2 B2 − l S̃1i Iq)

−1IM converge weakly

to a GOE matrix with a scale parameter m ′
2(λ

S̃1
k ).

ForB1(
1
q B

T
2 B2 − l S̃1i Iq)

−1DT
1 + D1(

1
q B

T
2 B2 − l S̃1i Iq)

−1BT
1 , we denote its (i, j)-th

(i ≤ M, j ≤ M) entry by d jbia j + diaT
i b

T
j , where bi is the i-th row of B1 and a j is

the j-th column of ( 1q B
T
2 B2 − l S̃1i Iq)

−1. Since B1 and ( 1q B
T
2 B2 − l S̃1i Iq)

−1 are inde-

pendent, thus (d jbia j + diaT
i b

T
j , 1 ≤ i ≤ j ≤ M) are asymptotically independent

and normally distributed with variances

σ 2
n (i, j) =

{
4d2

i E(aT
i ai ) if i = j

d2
i E(aT

i ai ) + d2
j E(aT

j a j ), if i 	= j
. (40)

Here we use the fact that for i 	= j , E(aT
i a j ) → 0 when n → ∞, which can be

verified from the following calculation.
Let a j = (a′

1 j , a
′
2 j )

′, where a1 j is the first M components of a j . Then by the
inverse matrix formula, we have that

aT
j a j = aT

1 ja1 j + aT
1 j

1

q
BT
21
1

q
B22

(
1

q
BT
22B22 − l S̃1i Iq

)−2

BT
22B21a1 j .

Notice that

1 + 1

q
tr

(
1√
q
B22

(
1

q
BT
22B22 − l S̃1i Iq

)−2 1√
q
BT
22

)

= 1 + 1

q
tr

(
1

q
BT
22B22 − l S̃1i Iq

)−1

+ l S̃1i

q
tr

(
1

q
BT
22B22 − l S̃1i Iq

)−2

= 1 + m2n(l
S̃1
j ) + l S̃1j m ′

2n(l
S̃1
j )

and



228 Z. Bai et al.

(
1

q
BT
2 B2 − l S̃1i Iq

)−1

M M

=
(
1

q
BT
21B21 − l S̃1i IM − 1

q
BT
21

1√
q
B22

[
1

q
BT
22B22 − l S̃1i Iq−M

]−1 1√
q
BT
22B21

)−1

=
(

−l S̃1i IM − l S̃1i

q
tr

[
1

q
B22BT

22 − l S̃1i Ip−M

]−1

IM − 	
S̃1
1

)−1

, (41)

where

	
S̃1
1 = l S̃1i

q
BT
21

(
1

q
B22BT

22 − l S̃1i Ip−M

)−1

B21 − l S̃1i

q

[
tr

(
1

q
B22BT

22 − l S̃1i Ip−M

)−1
]
IM .

Thus, from Theorem 2 and notation λ
S̃1
k we have

E(aT
j a j ) → 1 + m2(λ

S̃1
j ) + λ

S̃1
j m ′

2(λ
S̃1
j )

(λ
S̃1
j )2(1 + c3m2(λ

S̃1
j ))2

. (42)

Similarly, by Eq. (41), we can find that

√
q

[
(
1

q
BT
2 B2 − l S̃1i Iq)

−1
mk mk

+ 1

l S̃1i (1 + c3nm2n(l
S̃1
i ))

Imk

]

convergesweakly to themk × mk GOEmatrixwith scale parameter c3m ′
2(λ

S̃1
k )

(λ
S̃1
k )2(1+c3m2(λ

S̃1
k ))4

.

As the three parts of (39) are asymptotically independent, thus we conclude that√
q	

S̃1
0 converges weakly to the M × M random matrix

	1(m
′
2(λ

S̃1
k ))+D11	2

⎛
⎜⎝
(
1+m2(λ

S̃1
k ) + λ

S̃1
k m′

2(λ
S̃1
k )
) (

1+c3m2(λ
S̃1
k )
)4+c3m′

2(λ
S̃1
k )

(λ
S̃1
k )2(1+c3m2(λ

S̃1
k ))4

⎞
⎟⎠D11,

where 	1 and 	2 are two independent GOEs.

Let a S̃1
k stand for the sample spiked eigenvalues of � given Ỹ, γ

S̃1
ki |Ỹ =

√
q l

S̃1
i −λ

S̃1
k

λ
S̃1
k

|Ỹ,

ε1 = m2n(l
S̃1
i ) − m2n(λ

S̃1
k ) = γ

S̃1
ki |Ỹ√

q
λ
S̃1
k m ′

2(λ
S̃1
k ) + γ

S̃1
ki |Ỹ√

q
op(1)

and
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ε2 =
⎛
⎝ −1

l S̃1i + l S̃1i
p−M

q m2n(l
S̃1
i )

⎞
⎠−

(
−1

λ
S̃1
k + λ

S̃1
k c3nm2n(λ

S̃1
k )

)

= γ
S̃1

ki |Ỹ√
q

1 + c3m2(λ
S̃1
k ) + cλS̃1

k m ′
2(λ

S̃1
k )

λ
S̃1
k [1 + c3m2(λ

S̃1
k )]2

+ op

(
1√
q

)
.

Then, from the above argument, we have that the matrix 	S̃1
q becomes

(1 + m2(λ
S̃1
k ))Imk − D1D∗

1

λkb(λk)
+ 	

S̃1
0 (λ

S̃1
k ) + ε1IM + ε2D1D∗

1 + op(
1√
q

),

where b(λ
S̃1
k ) = 1 + c3m2(λ

S̃1
k ). And from Theorem 2, we have

1 + m2(λk) − a S̃1
k

λkb(λk)
= 0.

By Skorokhod strong representation theorem (see Skorokhod 1956 or Hu and Bai
2014 for more details), on an appropriate probability space, one may redefine the

random variables such that
√

q	
S̃1
0 tends to the normal variables with probability

one. Then, the eigen-equation (37) becomes

0 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a
S̃1
k

λ
S̃1
k b(λ

S̃1
k )

(1− a
S̃1
1

a
S̃1
k

)+O( 1√
q ) O( 1√

q ) O( 1√
q )

O( 1√
q ) · · · O( 1√

q )

O( 1√
q ) [	S̃1

0 ]kk +ε1Imk +ε2a S̃1
k Imk + o( 1√

q ) · · ·
O( 1√

q ) · · · O( 1√
q )

O( 1√
q ) · · · a

S̃1
k

λ
S̃1
k b(λ

S̃1
k )

(1− a
S̃1
K

a
S̃1
k

)+O( 1√
q )

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

where [	S̃1
0 ]kk is k-th diagonal block of 	

S̃1
0 .

One can find that all non-diagonal elements tend to zero and all the diagonal
entries are bounded away from zero, except the k-th block. By multiplying q1/4 to
the k-th row block and k-th column block of the determinant of the eigen-equation

above, and making q → ∞, we have that γ S̃1
k tends to a solution of

|[√q	
S̃1
0 ]kk + √

qε1Imk + √
qε2a S̃1

k Imk | = 0.

In fact, the limit of
√

q(ε1 + ε2a S̃1
k )/γ

S̃1
k |Ỹ satisfies

1 + c3m2(λ
S̃1
k ) + c3λ

S̃1
k m ′

2(λ
S̃1
k )

λ
S̃1
k [1 + c3m2(λ

S̃1
k )]2

a S̃1
k + λ

S̃1
k m ′

2(λ
S̃1
k ).
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By basic calculation, we have the limit distribution of γ
S̃1
k |Ỹ√

q(ε1+ε2aT
k )

	
S̃1
0 is 1

θ11
	1, where

	1 is a GOE and

θ11 = (aT
k + c3)(aT

k + 1)√
((aT

k )2 − c3)(2aT
k + 1 + c3)

.

Thus, for general Ỹ, we have that

γ
S̃1

k = √
q

l S̃1i − λ
S̃1
k

λ
S̃1
k

= √
q

l S̃1i − ψn,̃S1(a
S̃1
k )

λ
S̃1
k

|Ỹ + √
q

ψn,̃S1(l
�
i ) − λ

S̃1
k

λ
S̃1
k

= √
q

l S̃1i − ψn,̃S1(a
S̃1
k )

λ
S̃1
k

|Y +
√

q

n
ψ ′̃

S1
(aT

k )
√

n
l�i − aT

k

aT
k

aT
k

λ
S̃1
k

,

where ψn,̃S1(·) is defined in Theorem 3 and ψ ′̃
S1

(·) is its derivatives. It follows from
Lemma 2 that,

√
q
n ψ ′̃

S1
(aT

k )
aT

k

λ
S̃1
k

γ k converges weakly to 1
θ12

	2, where 	2 is a GOE

and independent of 	1, and

θ12 = (aT
k )2(aT

k + c1/c2)(aT
k + 1)√

c2[(aT
k )2 − c1/c2] .

Thus, we conclude that γ S̃1
k converges weakly to

1

θ1
	, (43)

where

1

θ2
1

= 1

θ2
11

+ 1

θ2
12

= (aT
k )4

(
(aT

k )2 − c1/c2
) (

aT
k + 1 + c1/c2

)+ c2
(
(aT

k )2 − c1/c2
)2

(aT
k )4

(
aT

k + c1/c2
)2 (

aT
k + 1

)2 .

Then, we complete the proof of Theorem 3.



Limiting Canonical Distribution of Two Large-Dimensional Random Vectors 231

6.3 Proof of Theorem 4

According the contents of the previous section, we let the eigenvalues of S̃1 be sorted
as

l S̃11 ≥ l S̃12 ≥ · · · ≥ l S̃1p , (44)

and the spectral decomposition of S̃1 be

S̃1 = U
(

�1 0
0 �2

)
UT , (45)

where �1 = diag(l S̃11 , . . . , l S̃1M ) is an M × M diagonal matrix, U is a orthogonal
matrix. In addition, let the sample eigenvalues for noncentral Fisher matrix F(�) be
sorted as

l1 ≥ l2 ≥ · · · ≥ l p. (46)

Recall that

S̃2 = 1

n − q
CCT = 1

n − q

(
C1

C2

) (
CT

1 CT
2

) = 1

n − q

(
C1CT

1 C1CT
2

C2CT
1 C2CT

2

)
,

where C1 is the first M rows of C. Then we have that the eigen-equation

∣∣∣̃S1 S̃
−1
2 − λI

∣∣∣ = 0

equals

∣∣∣∣
(

�1 0
0 �2

)
− λ

n − q
UTCCTU

∣∣∣∣ = 0. (47)

According to the facts that the entries of C are standard normally distributed and
1

n−q C̃C̃
T := 1

n−q U
TCCTU d= 1

n−q CC
T , the eigen-equation (47) can be rewritten as

∣∣∣∣
(

�1 0
0 �2

)
− λ

n − q
C̃C̃T

∣∣∣∣ =
∣∣∣∣∣
(

�1 0
0 �2

)
− λ

(
1

n−q C̃1C̃T
1

1
n−q C̃1C̃T

2
1

n−q C̃2C̃T
1

1
n−q C̃2C̃T

2

)∣∣∣∣∣ = 0.

If we only consider the sample spiked eigenvalues li , i ∈ Jk , k = 1, . . . , K , then we
have that almost surely |�2 − li

1
n−q C̃2C̃T

2 | 	= 0 for large enough n, which implies

∣∣∣∣�1 − li
1

n − q
C̃1C̃T

1 − l2i
1

(n − q)2
C̃1C̃T

2 (�2 − li
1

n − q
C̃2C̃T

2 )−1C̃2C̃T
1

∣∣∣∣ = 0,
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or equivalently

∣∣∣�1 + 1
n−q tr(

1
n−q C̃

T
2 �−1

2 C̃2 − l−1
i I)−1I + 	F

q (l−1
i )

∣∣∣ = 0.

Here

	F
q (l−1

i ) = 1

n − q
C̃1

[
1

n − q
C̃T

2 �−1
2 C̃2 − l−1

i I
]−1

C̃T
1

− 1

n − q
tr

(
1

n − q
C̃T

2 �−1
2 C̃2 − l−1

i I
)−1

I. (48)

By the strong law of large numbers and the Stietjes transformation equation of M-P
law, we have that

	F
q (l−1

i )
a.s.−→ 0, (49)

and

1
n−q tr

(
1

n−q C̃
T
2 �−1

2 C̃2 − l−1
i I

)−1 a.s.−→ m�−1
2

(l−1
i ), (50)

where m�−1
2

(l−1
i ) satisfies the following equation:

l−1
i = − 1

m�−1
2

(l−1
i )

+ c4

∫
t

1 + tm�−1
2

(l−1
i )

d F�−1
2 (t), (51)

where c4 = c1/(1 − c2) and F�2 is the LSD of the matrix �2 defined in (45). Thus,
let n → ∞ and solve the eigen-equation, we have that

aF
k + m�−1

2
((λF

k )−1) = 0,

which implies

λF
k =ψF(a

F
k ) := aF

k

1+c4aF
k m2(aF

k )
. (52)

Thus, by Lemma 1 and Theorem 2, we obtain that

ψF(a
F
k ) = ψF(ψS̃1(ψ�(aT

k ))),

where

ψ�(aT
k ) = aT

k , ψS̃1(ψ�(aT
k )) = (aT

k + c3)(aT
k + 1)

aT
k

.
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Then we conclude that

ψ(aT
k ) := ψF(aF

k ) = (aT
k + c3)(aT

k + 1)

aT
k

1

1 − c4(1 + 1/aT
k )

= (aT
k + c3)(aT

k + 1)

aT
k − c4(aT

k + 1)
,

which completes the proof of Theorem 4.

6.4 Proof of Theorem 5

We first show the proof of the CLT of the random vector γ F
k = {√n − q(li −

λF
k )/λF

k , i ∈ Jk} when given S̃1. In the sequel, we let λF
k stand for the limit of

li . Recall the eigen-equation

∣∣∣∣∣�1 + 1

n − q
tr

(
1

n − q
C̃T

2 �−1
2 C̃2 − l−1

i I
)−1

I + 	F
q (l−1

i )

∣∣∣∣∣ = 0,

or equivalently

∣∣∣∣�1 + 1

n − q
tr(

1

n − q
C̃T

2 �−1
2 C̃2 − (λF

k )−1I)−1I + 	F
q ((λF

k )−1) + ε3

∣∣∣∣ = 0, (53)

where

ε3 = 1

n − q
tr

(
1

n − q
C̃T
2 �−1

2 C̃2 − l−1
i I

)−1

I − 1

n − q
tr

(
1

n − q
C̃T
2 �−1

2 C̃2 − (λF
k )−1I

)−1

I

+ 	F
q (l−1

i ) − 	F
q ((λF

k )−1).

By the same proof procedure in Sect. 6.2, we have that

ε3 = ε̃3I + op(
1√

n − q
)11′ = − γ F

k |̃S1√
n − q

m′
�−1

2
((λFk )−1)

λFk

(1 + op(1))I + op(
1√

n − q
)11′,

where m ′
�−1

2
(·) is the derivative of m�−1

2
(·). Then, by (51), we have that

1

m ′
�−1

2
((λF

k )−1)
= 1

m2
�−1

2
((λF

k )−1)
− c4m ′

2(−m�−1
2

((λF
k )−1))

which implies
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Table 1 Definition

Matrices type Sample spikes Limit Population spikes

� l�i aT
k = ψ�(aT

k ) aT
k

S̃1|� l S̃1i λ
S̃1
k = ψS̃1 (a

S̃1
k ) a S̃1

k

F(�)|̃S1 =
S̃1 (̃S2)−1 |̃S1

li λF
k = ψF(aF

k ) aF
k

m ′
�−1

2
((λF

k )−1) = (aF
k )2

1 − c4(aF
k )2m ′

2(a
F
k )

.

Denote

θF :=
m ′

�−1
2

((λF
k )−1)

(λF
k )2

= [1 + c4aF
k m2(aF

k )]2
1 − c4(aF

k )2m ′
2(a

F
k )

.

By Theorem 7.1 in Bai and Yao (2008), we have (1/λF
k )

√
n − q	F

q ((λF
k )−1) when

given S̃1 tends to a GOEmatrix with a scale parameter θF(aF
k ). As mentioned above,

li → λF
k as n → ∞. Therefore, if i ∈ Jk , then the eigen-equation becomes

0 =

∣∣∣∣∣∣∣∣∣∣∣∣

aF
1 −aF

k +O((n−q)− 1
2 ) O((n−q)− 1

2 ) O((n−q)− 1
2 )

O((n − q)− 1
2 ) · · · O((n − q)− 1

2 )

O((n−q)− 1
2 ) [	F

q ]kk +ε̃3Imk + o((n − q)− 1
2 ) · · ·

O((n−q)− 1
2 ) · · · O((n−q)− 1

2 )

O((n−q)− 1
2 ) · · · aF

M −aF
k +O((n−q)− 1

2 )

∣∣∣∣∣∣∣∣∣∣∣∣
,

where [	F
q ]kk is k-th diagonal block of	F

q ((λF
i )−1). By Skorokhod strong represen-

tation theorem, and analogous discussion in last subsection, we have that

(1/λF
k )

√
n − q[	F

q ]kk − γ F
k |S̃1 × θF(aF

i )Imk

a.s.→ 0,

which implies γ F
k |̃S1 converges weakly to the jointed eigenvalues of the matrix

1√
θF

	,

where

θF = (1 − c1 − c2 − c1/aT
k )2(1 − c3/(aT

k )2)

(1 − c2)[1 − c1 − c2 − 2c1/aT
k − c3/(aT

k )2] .

Next, we present the proof of Theorem 5, by applying the previous results. We
first recall the relative definition in the Table 1.
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By the notation in this table, we have the following results:

ψ�(aT
k ) = aT

k , ψS̃1(ψ�(aT
k )) = (aT

k + c3)(aT
k + 1)

aT
k

ψF(aF
k ) = (aT

k + c3)(aT
k + 1)

aT
k

1

1 − c4(1 + 1/aT
k )

= (aT
k + c3)(aT

k + 1)

aT
k − c4(aT

k + 1)
,

where c3 = c1/c2 and c4 = c1/(1 − c2). Recall the three CLTs above,

√
n

l�i − ψ�(aT
k )

ψ�(aT
k )

d→ the eigenvalues of 	kk

√
q

l S̃1i − ψS̃1(a
S̃1
k )

ψS̃1(a
S̃1
k )

∣∣Y d→ the eigenvalues of
1

θ1
	kk

√
n − q

li − ψF(αF
i )

ψF(aF
k )

∣∣Y,B
d→ the eigenvalues of

1√
θF(aF

k )

	kk,

where

θ1 = (aT
k + c3)(aT

k + 1)√
((aT

k )2 − c3)(2aT
k + 1 + c3)

θF = (1 − c1 − c2 − c1/aT
k )2(1 − c3/(aT

k )2)

(1 − c2)[1 − c1 − c2 − 2c1/aT
k − c3/(aT

k )2] .

Noted that a S̃1
k = l�i given Ỹ and aF

k = l S̃1i given Ỹ and B, we have

√
n − q

li − (ψF ◦ ψS̃1 ◦ ψ�)(aT
k )

(ψF ◦ ψS̃1 ◦ ψ�)(aT
k )

= √
n − q

li − ψF(aF
k )

ψF(aF
k )

ψF(aF
k )

(ψF ◦ ψS̃1 ◦ ψ�)(a�
k )

∣∣∣∣(Y,B)

+√
n − q

ψF(l S̃1i ) − ψF(ψS̃1(a
S̃1
k ))

(ψF ◦ ψS̃1 ◦ ψ�)(aT
k )

∣∣∣∣Y

+√
n − q

ψF(ψS̃1(l
�
i )) − (ψF ◦ ψS̃1 ◦ ψ�)(aT

k )

(ψF ◦ ψS̃1 ◦ ψ�)(aT
k )

,

where ◦ stands for the symbol for the function composition. For the second and third
parts, by the Delta method we obtain that
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√
n − q

ψF(ψS̃1(l
�
i )) − ψF ◦ ψS̃1(a

T
k )

(ψF ◦ ψS̃1 ◦ ψ�)(aT
k )

=
√

n − q

n
(ψF ◦ ψS̃1)

′(aT
k )

√
n

l�i − aT
k

aT
k

aT
k

(ψF ◦ ψS̃1 ◦ ψ�)(aT
k )

+ op(1),

√
n − q

ψF(l S̃1i ) − ψF(λ
S̃1
k )

(ψF ◦ ψS̃1 ◦ ψ�)(aT
k )

∣∣∣∣Y

=
√

n − q

q
(ψF)′(λS̃1

k )
√

q
l S̃1i − λ

S̃1
k

λ
S̃1
k

λ
S̃1
k

(ψF ◦ ψS̃1 ◦ ψ�)(aT
k )

∣∣∣∣Y + op(1).

Because the matrix B and C are independent when given Ỹ, by rewriting the first
part we have

√
n − q

li − ψF(aF
k )

ψF(aF
k )

∣∣∣∣(Y,B)
d= √

n − q
li − ψF(aF

k )

ψF(aF
k )

∣∣∣∣Y.

Now we have the limits of the above terms,

ψF(aF
k )

(ψF ◦ ψS̃1 ◦ ψ�)(a�
k )

∣∣∣∣(Y,B)
p→ 1,

aT
k

(ψF ◦ ψS̃1 ◦ ψ�)(aT
k )

p→ aT
k [aT

k − c4(aT
k + 1)]

(aT
k + c3)(aT

k + 1)
,

λ
S̃1
k

(ψF ◦ ψS̃1 ◦ ψ�)(aT
k )

∣∣∣∣Y p→ 1 + c4a
F
k m2(a

F
k )

ψ ′
F(a

F
k ) = 1

θF
, (ψF ◦ ψS̃1)

′(aT
k ) = 1

θF

(aT
k )2 − c3
(aT

k )2
.

As themean and covariance of the limiting distribution of the first and second parts
are not related to Ỹ, we conclude that the three parts are asymptotically independent.
Then we have that

√
n − q

li − (ψF ◦ ψS̃1 ◦ ψ�)(aT
k )

(ψF ◦ ψS̃1 ◦ ψ�)(aT
k )

converges weakly to the joint distribution of the eigenvalues of Gaussian random
matrix

	1√
θF

+
√
1 − c2√

c2

aT
k −c4(aT

k + 1)

aT
k

√
θFθ1

	2 +
√
1 − c2
θFaT

k

[(aT
k)

2−c3][aT
k −c4(aT

k +1)]
(aT

k +c3)(aT
k +1)

	3

By simplifying the above formula, we obtain that the above matrix is identically
distributed as 1

θ2
	, where
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1

θ2
2

= (1 − c2)(a
T
k )2(aT

k c2 + 1)
(
c22(a

T
k )2 + ((c1 − 1)aT

k + 2c1)c2aT
k + c1

)

×
(
c22aT

k + ((c1 − 2)aT
k + 2c1 − 1)c2 − c1

)
c2(aT

k + 1)2(aT
k c2 + c1)2(aT

k c2 + (c1 − 1)aT
k + c1)2

,

which completes the proof of Theorem 5.

6.5 Proof of the Theorem 6

From (18), we have aT
k = 1

c2
ak

1−ak
and a S̃1

k = aT
k = 1

c2
ak

1−ak
= 1

c2
t . Then from (27), we

have

ψ(aT
k ) = (aT

k + c3)(aT
k + 1)

aT
k − c4(aT

k + 1)

= (1 + c1t−1)(1 + c2t−1)

c2t−1(1 − c1
1−c2

(1 + c2t−1))
.

Thus by (15), we obtain

λ2
i =

c2
1−c2

ψ(aT
k )

1 + c2
1−c2

ψ(aT
k )

= (1 + c1t−1)(1 + c2t−1)

1 + t−1

=ak(1 − c1 + c1a
−1
k )(1 − c2 + c2a−1

k ).

Then we complete the proof of Theorem 6.
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Contributions to Multivariate Analysis
Due to C. R. Rao and Associated
Developments

Yasunori Fujikoshi

Abstract C. R. Rao has made various significant contributions to multivariate anal-
ysis. Among them, we consider the following topics: (i) Rao’s U -statistic in dis-
criminant analysis, (ii) MANOVA tests, (iii) Asymptotic expansion and Rao’s F
approximation for � statistic, (iv) Growth curve analysis, and (v) Information cri-
teria for the selection of variables. Some of these were introduced at the dawn of
multivariate analysis. Under topic (v), we also discuss recent developments on the
selection of variables in discriminant analysis.

Keywords Additional information · Growth curve analysis · MANOVA tests ·
Model selection - Rao’s F approximation · Rao’s U -statistic

1 Introduction

In this paper, we consider some important contributions to multivariate analysis
due to C. R. Rao, and overview associated developments. In Sect. 2, we focus on
Rao’sU -statistic for additional information in two-group discriminant analysis. This
research leads to a development of statisticalmethods for the selection of variables. In
Sect. 3, multivariate analysis of variance (MANOVA) problems are discussed, based
on Rao (1948). We note that Rao developed various types of tests based on real
data, which are essentially LR tests. One of these is to test an additional information
hypothesis for a set of response variables. Section4 considers the distribution of a
Lambda statistic, �p(q, n − q), which appears as the null distribution for various
tests, including a MANOVA test. It is noted that an asymptotic expansion of T =
−{n − (p + q + 1)/2}�p(q, n − q) was first obtained by Rao (1948). Afterwards,
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Box (1949) gave an asymptotic expansion for a class of statistics including T . Rao
(1952) proposed a highly accurate F approximation for a transformed version of
�p(q, n − q). Section5 is concerned with analysis of growth curve data. Rao (1965)
introduced two types of models for such data and developed statistical inference of
the growth curve models.

It is important to examine whether a set of variables has additional information
in the presence of a given set of variables. Such notions were discussed by Rao and
others in various models. Applying information criteria such as AIC and BIC to such
models, variable selection methods have been proposed. After explaining these, in
Sect. 6, we provide more detail on discriminant analysis.

We note that there have been many other important contributions to multivariate
analysis due to Rao that are not covered in this paper, some of which are concerned
with topics in the following areas: (a) Factor analysis (Rao 1955, etc.). (b) Principal
component analysis (Rao 1964, etc.). (c) Correspondence analysis (Rao 1997, etc.).
(d) Separation theorems and reduction of dimensionality (Rao 1979, etc.).

2 Rao’s U-Statistic in Discriminant Analysis

In two-group discriminant analysis, Rao (1946) investigated whether some variables
can be dropped without losing discriminative information. One of his motivations
was to reduce computational problems, in addition to enabling efficient discrimina-
tion. He proposed the following test of an additional information hypothesis, which
determines whether augmenting a given set of p variables with another set of q
variables provides additional discrimination between two populations. Suppose that
there are ni samples from (p + q)-variate populations, and let D2

p+q and D2
p be the

squared Mahalanobis distances based on the (p + q) variate and the p variate. He
proposed a test statistic

U = n − (p + q) − 1

q

n1n2(D2
p+q − D2

p)

n(n − 2) + n1n2D2
p

. (1)

whose null distribution is an F-distribution with degrees of freedom q and n −
(p + q) − 1,where n = n1 + n2. The statisticsU or c(D2

p+q − D2
p)/{n − 2 + cD2

p},
where c = n1n2/n, were named Rao’s U -statistic by Kshirsagar (1972). The test
based on U -statistic is called U -test.

The above additional information hypothesis can be formulated as follows. In two-
group discriminant analysis, we have two populations �i , i = 1, 2, and ni observa-
tions from �i of p-dimensional variate Y . The mean vectors of Y when Y ∈ �i are

E(Y | �i ) = μ(i), i = 1, 2,
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where it is assumed that the covariance matrices are the same, i.e., Var(Y | �i ) = �.
In discriminant analysis, we are interested in which set of variables are important, or
which set of variables are redundant. Let Y be decomposed as Y = (Y ′

1,Y
′
2)

′, where
Yi ; pi × 1. Let us formulate the notion that Y2 provides no additional information for
the discriminant analysis in the presence of Y1, or simply that Y1 is sufficient or Y2 is
redundant. We refer to such a notion as the sufficiency of Y1 or the redundancy of Y2.

When the parameters are known, it is natural to classify a new observation Y into
�1 if

(Y − μ(1))′�−1(Y − μ(1)) < (Y − μ(2))′�−1(Y − μ(2)) (2)

and otherwise classify Y into �2. This expression (2) is equivalent to
L(Y ,μ(1),μ(2),�) > 0, where

L(Y ,μ(1),μ(2),�) = (μ1 − μ2)
′�−1Y − 1

2
(μ1 − μ2)

′�−1(μ1 − μ2), (3)

which is called the population discriminant function. The coefficients of the popula-
tion discriminant function are given by

β = �−1(μ(1) − μ(2)) = (β ′
1,β

′
2)

′,

where β1 : p1 × 1 and β2 : p2 × 1. One way to define the redundancy of Y2 is to
define it as β2 = 0. Let δ and δ1 be the population Mahalanobis distances between
�1 and �2 based on Y and Y1, respectively. Then,

δ2 = (μ(1) − μ(2))′�−1(μ(1) − μ(2)),

δ21 = (μ
(1)
1 − μ

(2)
1 )′�−1

11 (μ
(1)
1 − μ

(2)
1 ),

where μ(i) and � are partitioned as

μ(i) =
(

μ
(i)
1

μ
(i)
2

)
, � =

(
�11 �12

�21 �22

)
, (4)

μ
(g)
i : pi × 1, g = 1, 2 and �i j : pi × p j . It is also reasonable to define the redun-

dancy of Y2 as δ2 = δ21 . Note that we have

δ2 = δ21 + δ22·1, (5)

where

δ22·1 = (μ
(1)
2·1 − μ

(2)
2·1)

′�−1
22·1(μ

(1)
2·1 − μ

(2)
2·1),

�22·1 = �22 − �21�
−1
11 �12,

μ
(i)
2·1 = μ

(i)
2 − �21�

−1
11 μ

(i)
1 , i = 1, 2.
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This relation is obtained by substituting a well-known inverse matrix formula

�−1 =
(

�−1
11 O
O O

)
+

(−�−1
11 �12

Ip−k

)
�−1

22·1
(−�21�

−1
11 Ip−k

)

for �−1 in δ2. On the other hand, the coefficient vector of the linear discriminant
function is expressed as

β1 = �−1
11 (μ

(1)
1 − μ

(2)
1 ) − �−1

11 �12β2, β2 = �−1
22·1(μ

(1)
2·1 − μ

(2)
2·1).

From these results, we can see that, as proved by Rao (1970), the following three
statements are equivalent:

(i) δ2 = δ21, (ii) μ
(1)
2·1 = μ

(2)
2·1, (iii) β2 = 0.

The second statement is related to the equality of conditional means. In fact,

E(Y (i)
2 | Y (i)

1 ) = μ
(i)
2 + �21�

−1
11 (Y (i)

1 − μ
(i)
1 )

= μ
(i)
2·1 + �21�

−1
11 Y

(i)
1 , i = 1, 2. (6)

Statements (i) and (iii) help in understanding that Y2 provides no additional infor-
mation for the discriminant analysis in the presence of Y1. Statement (iii) is used for
obtaining a likelihood ratio test for (i) or (iii), which is equivalent to a U -test. State-
ments (i), (ii), and (iii) and their equivalence were extended to the case of several
groups by Fujikoshi (1982). Gupta et al. (2006) derive a large sample asymptotic
expansion of Rao’s U -statistic under nonnormality. Pynnönen (1987) extended the
notion of redundancy to the case where the covariance matrices are different.

In general, it is important to formulate that a subset of response or explanatory
variables is sufficient, or the set of remainder variables has no additional information
or redundant, as in discriminant analysis. It is also important to extend statistical
inferences for such formulations. For some of such results, see Fujikoshi (1989,
1992). In Sect. 6,we see that such formulations are used in variable selectionmethods.

3 MANOVA Tests

Rao made many important contributions to MANOVA through the analysis of var-
ious real data. First, we note that he gives an example in his book (1952) where
Mahalanobis D2 (or Hotelling T 2) based on two variables showed no significance
between the two populations; whereas two sample t-tests based on each of the vari-
ables were highly significant. This is the first example of what is called the “curse
of dimensionality” in multivariate analysis, which was named as Rao’s paradox by
Healy (1969) and Rencher (2002, p.116). Rencher (2002) explained this paradox in
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detail, and also showed the situation that, conversely, the multivariate test is more
powerful in some situations, despite the univariate tests are not being significant. In
general, the “curse of dimensionality” phrase was introduced by Bellman (1957) for
describing the problem caused by the exponential increase in volume associated with
adding extra dimensions to the Euclidean space. When we are concerned with the
analysis of a p variate, we might be concerned with the analysis of various subsets
of the p variate. Related to this problem, Rao (1966a) gave conditions under which
additional variables are useful in tests of significance.

As in a typical MANOVA model, consider a multivariate one-way analysis of
variance model, in which we measure p dependent variables on each experimental
unit instead of just one variable. We consider q treatments and assign ni subjects
to the i th treatment. It is assumed that all of the n (= n1 + · · · + nq) observations
are normally distributed with the common covariance matrix �. Let Yi1, . . . ,Yini
be samples from the i th treatment group Np(μ

(i),�). For testing the equality of the
mean vectors, i.e., H0 : μ(1) = · · · = μ(q), let BandW be the matrices of sums of
squares and products due to treatments (between groups) and errors (within groups),
respectively. These matrices are defined by

B =
q∑

i=1

ni (Ȳi · − Ȳ··)(Ȳi · − Ȳ··)′, W =
q∑

i=1

ni∑
j=1

(Yi j − Ȳi ·)(Yi j − Ȳi ·)′

where Ȳi · = (1/ni )
∑ni

j=1 Yi j and Ȳ·· = (1/n)
∑q

i=1

∑ni
j=1 Yi j . Then, under H0, B

and W are independently distributed as Wishart distributions Wp(q − 1,�) and
Wp(n − q,�), respectively. Letting T = B + W, an LR test for H0 is based on � =
|W|/|T|, whose null distribution does not depend on � and is denoted by �p(q −
1, n − q). Such � was called Wilks Lambda in Rao (1948), based on the underlying
theory of � due to Wilks (1932).

In MANOVA, there are two types of problems. One is the problem of comparing
themean vectors as in the above one-wayMANOVAmodel. The other is the problem
of comparing within the mean vectors. Rao (1948) gave various types of MANOVA
methods through real data, most of which can also be formulated as a general testing
problem in a multivariate linear model. A multivariate linear model is given by

Y = A� + E, (7)

where A is an n × k given matrix and � is a k × p unknown parameter matrix. It
is assumed that the rows of the error matrix E are independently distributed as a
p-variate normal distribution with mean zero and unknown covariance matrix �,
i.e., Np(0,�). Various hypotheses are expressed as

Hg : C�D = O, (8)

whereC andD are givenmatrices of c × k and p × d with ranks c and d, respectively.
In fact, a relation between the row vectors of � and a relation within the row vectors
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of� are expressed by, respectively, definingC andD, as appropriate. The likelihood
ratio test is based on

� = |Se|
|Se + Sh | = |Se|

|St | , (9)

whose null distribution is �d(c, n − k), where

Sh = {C(X′X)−1X′YD}′{C(X′X)−1C′}−1C(X′X)−1X′YD,

Se = D′Y′
(In − PA)YD,

St = Sh + Sw.

Rao (1948) proposed a test for whether Y2 = (Yk+1, . . . ,Yp)
′ brings out further

differences in q populations when the differences due to Y1 = (Y1, . . . ,Yk)′ are
removed. Let us consider this problem in amultivariate one-wayMANOVAormulti-
group discriminantmodel. Such an additional information hypothesismay be defined
as

μ
(1)
2·1 = · · · = μ

(q)

2·1, (10)

where μ
(i)
2·1 = μ

(i)
2 − �21�

−1
11 μ

(i)
1 , i = 1, . . . , q. Here, μ(i) and � have been decom-

posed as in (4). Let us decompose B and W as

B =
(
B11 B12

B21 B22

)
, W =

(
W11 W12

W21 W22

)
,

and decompose T similarly. Then, the LR test is based on

�2·1 = |W|/|W11|
|T|/|T11| = |W22·1|

|T22·1| , (11)

where W22·1 = W21 − W21W
−1
11 W21 and T22·1 = T21 − T21T

−1
11 T21. The null dis-

tribution is �p−k(q − 1, n − q − k). For a proof of the result, see, for example,
Fujikoshi et al. (2010), Theorem 3.3.2.

4 Asymptotic Expansion and Rao’s F Approximation for �

Statistic

We consider the lambda distribution, defined as the distribution of

� = |W|
|W + B| ∼ �p(q, n − q), (12)



Contributions to Multivariate Analysis Due to C. R. Rao … 245

where B and W are independently distributed and follow the Wishart distributions
Wp(q,�) andWp(n − q,�), respectively. Such� appears, for example, as a likeli-
hood ratio test for testing the equality of mean vectorsμi , i = 1, . . . , q + 1, based on
an Ni sample from Np(μi ,�). In this case, N = N1 + · · · + Nq+1 and n = N − 1.
When we consider the distribution of �, we may assume � = Ip. The likelihood
ratio criterion is based on λ = �n/2. The hth moment of � is given by

E[�h] =
p∏

j=1

�[ 12 (n − q − j + 1) + h]�[ 12 (n − j + 1)]
�[ 12 (n − q − j + 1)]�[ 12 (n − j + 1) + h] . (13)

We consider an asymptotic expansion of the distribution of −2ρ log�n/2 with a
Bartlett correction factor ρ under a large sample framework:

p, q; fixed, n → ∞.

Here, ρ is chosen as 1 − (p + q + 1)/(2n), and we set

m = nρ = n − 1

2
(p + q + 1). (14)

Then, the characteristic function of V = −m log� is expressed as

C(t) = E
[
�−mit

]

=
p∏

j=1

�[ 12m(1 − 2i t) + 1
4 (p − q + 1) − 1

2 ( j − 1)]
�[ 12m + 1

4 (p − q + 1) − 1
2 ( j − 1)]

× �[ 12m + 1
4 (p + q + 1) − 1

2 ( j − 1)]
�[ 12m(1 − 2i t) + 1

4 (p + q + 1) − 1
2 ( j − 1)] . (15)

We can derive an expansion for C(t) by using the generalized version of Stirling’s
formula for the gamma function

log�(z + h) = log
√
2π +

(
z + h − 1

2

)
log z − z

−
m∑

r=1

(−1)r
Br+1

r(r + 1)zr
+ Rm+1(z),

where Rm+1(z) = O
(
z−(m+1)

)
and Br (h) is the Bernoulli polynomial of degree r

defined by
τehτ

eτ − 1
=

∞∑
r=0

τ r

r ! Br (h).
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The first three of these are B0(h) = 1, B1(h) = h − 1
2 , B2(h) = h2 − h + 1

6 . The
final result is given as follows:

C(t) = (1 − 2i t)− f/2
[
1 + γ2

m2
{(1 − 2i t)−2 − 1}

+ 1

m4

{
γ4((1 − 2i t)−4 − 1) − γ 2

2 ((1 − 2i t)−2 − 1)
}] + O(m−5), (16)

where f = pq, γ2 = pq(p2 + q2 − 5)/48, and

γ4 = pq{3p4 + 3q4 + 10p2q2 − 50(p2 + q2) + 159}/1920.

Inverting the above characteristic function formally, we have an asymptotic expan-
sion:

P(−m log� ≤ x) = G f (x) + γ2

m2
[G f +4(x) − G f (x)]

+ 1

m4
[γ4{G f +8(x) − G f (x)} − γ 2

2 {G f +4(x) − G f }] + O(m−5), (17)

where G f (x) is the distribution function of χ2
f .

It may be noted that result (17) was first derived by Rao (1948), based on an
expression due toWald andBrookner (1941). On the other hand, Box (1949) obtained
the result as a special case of a general asymptotic expansion of the distribution of a
random variable whose moments belong to a class of Box-type moments.

Rao (1951) proposed a better F approximation of the distribution of another
function of � = �p(q, n − q). The approximation is to consider

1 − �1/s

�1/s
· ms + 2λ

pq
(18)

as an F approximation with pq and ms + 2λ degrees of freedom, where

λ = −1

4
pq + 1

2
, s =

(
p2q2 − 4

p2 + q2 − 5

)1/2

. (19)

For p = 1 or 2 (or q = 1 or 2), the F-distribution is exactly as given. Ifms + 2λ is not
an integer, interpolation between two integer values can be used. The F approxima-
tion may be also written as a beta approximation β( 12 (ms + 2λ), 1

2 pq) for Y = �1/s

which was obtained in Rao (1951) as follows. From (17), the density function of
V = −m log� can be expressed as

fV (v) = gr (v)

[
1 + γ2

m2

{
v2

r(r + 2)
− 1

}
+ O(m−3)

]
, (20)
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where r = pq and gr (v) is the density functionofχ2
r , byusing gr+2(v) = (v/r)gr (v).

Rao considered a better approximation for

Y = �1/s = e−V/(sm), (21)

introducing a constant s. The density function of Y is expressed as

fY (y) = fV (sm(− log y))
sm

y

= 1

�(r/2)2r/2
(ms)r/2y(ms)/2+λ−1y−λ(− log y)r/2−1

×
{
1 + γ2s2

r(r + 2)
(− log y)2 + o(m−2) + o((1 − y)2)

}
, (22)

introducing a constant λ. Now, we use

y−λ = {1 − (1 − y)}−λ

= 1 + λ(1 − y) + 1

2
λ(1 + λ)(1 − y)2 + · · · ,

(− log y)r/2−1 = [− log {1 − (1 − y)}]r/2−1

= (1 − y)r/2−1

[
1 + 1

2

(
1

2
r − 1

)
(1 − y)

+
{
1

3

(
1

2
r − 1

)
+ 1

8

(
1

2
r − 1

) (
1

2
r − 2

)}
(1 − y)2 + · · ·

]
.

Substituting the above expansions to the density of Y given by (22), we have

fY (y) = 1

�(r/2)2r/2
(ms)r/2y(ms)/2+λ−1(1 − y)r/2−1

× {
1 + a1(1 − y) + a2(1 − y)2 + o(m−2) + o((1 − y)2)

}
, (23)

where

a1 = λ + 1

2

(
1

2
r − 1

)
,

a2 = 1

2
λ(1 + λ) +

(
1

2
r − 1

) {
1

2
λ + 1

3
+ 1

8

(
1

2
r − 2

)
+ γ2s2

r(r + 2)

}
.

Here, we note that defining s and λ as in (19) is equivalent to equating a1 and a2
to zero. Further, using the generalized version of Stirling’s formula for the gamma
function, we can see that
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�( 12ms + λ + 1
2r)

�( 12ms + λ)�( 12r)
= 1

�( 12r)2
r/2

(ms)r/2 + O(m−1).

This shows that the distribution of Y = �1/s has an expansion whose leading term
is a Beta distribution β( 12 (ms + 2λ), 1

2 pq) with a smaller error.
Nowwe note there have been developments related to asymptotic approximations

of�. A computable error bound for large-sample approximations was derived based
on an error bound in the L1-norm for a multivariate-scale mixture; see Fujikoshi
and Ulyanov (2006). A high-dimensional approximation and its error bound have
been studied under p/n → c ∈ (0, 1) by Fujikoshi et al. (2010) and Wakaki (2007).
The distribution of � is called the nonnull distribution of � when B is distributed
as a noncentral Whishart distribution Wp(q,�;�). An extension of (17) up to the
order m−2 to the nonnull case was given by Sugiura and Fujikoshi (1969). Kulp
and Nagarsenker (1984) gave an asymptotic expansion of the nonnull distribution of
Y = �1/s .

5 Growth Curve Analysis

Research of growth curve analysis dates back to Wishart (1938), who compared the
growth curves of animals under different treatments. In particular, the weight of each
animal under each treatment was ascertained each week for a number of weeks. For
the original measurements of weekly weights (y1, . . . , yp), Wishart (1938) fitted
orthogonal polynomials, for example,

a + b1φ1(t) + b2φ2(t)

to each growth curve dataset and replaced the original measurements of weekly
weights (y1, . . . , yp) by (y1, b1, b2). Then, a univariate analysis of variance on b1 or
b2 was considered, using y1 as a concomitant.

Rao (1959) proposed to analyze such growth curve data by considering a mul-
tivariate structure in addition to a growth curve structure. In general, suppose that
a single variable Y is measured at p time points t1, . . . , tp (or different conditions)
on n subjects, chosen at random from a group. One way to analyze such repeated
measures is to specify a polynomial regression for Y on the time variable t , and to
assume that the covariance matrix of Y = (Y1, . . . ,Yp)

′ is unknown and positive
definite.

Let the observations Yi1, . . . ,Yip of the i th subject be denoted by

Yi = (Yi1, . . . ,Yip)
′, i = 1, . . . , n.

Then, in the growth curve model, it is assumed that for i = 1, . . . , n,
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E(Yi ) = μ = Xθ , (24)

and Var(Yi ) = �, where X is a given p × q matrix with rank q, θ = (θ1, . . . , θq)
′ is

an unknown parameter vector, and � is unknown positive and definite. The matrix
X is called a within-design matrix. In the growth curve model (24), Rao (1959)
proposed and developed the following theory:

(1) Is the specification (24) adequate?
(2) How can estimators of θ1, . . . , θq be obtained and the precision of the estimators

be expressed?
(3) How can general linear hypotheses concerning θ1, . . . , θq be tested?
(4) How can simultaneous confidence limits for a class of linear functions of

θ1, . . . , θq be obtained?

In addition, Rao (1987) proposed approaches to the following problem.

(5) Suppose that the measurements of growth at the time points t1, . . . , tp, tp+1 are
available for n individuals and only at t1, . . . , tp for an (n + 1)−th individual.
How do we predict the measurement at tp+1 for the (n + 1)−th individual?

The growth curve model for above one-group data was extended by Potthoff and
Roy (1964) as follows. Suppose that the rows of Y are independently distributed as
p-dimensional normal distributions with a common covariance matrix �, and

E(Y) = A�X′, (25)

where A is the n × k between-group design matrix, X is the p × q within design
matrix, and � is the k × q unknown parameter matrix. A general testing problem is
to test

Hg : C�D = O, against Kg : C�D 	= O. (26)

Here, C is a given c × k matrix with rank c, and D is a given q × d matrix with
rank d. The growth curve model (25) is reduced to a MANOVA model when the
within-individual design matrix X is Ip. In this sense, the growth curve model is a
generalized MANOVA model.

In order to relate the growth curve model to a multivariate linear model, consider
the transformation from Y to (U V):

(U V) = Y(G1 G2), (27)

where G1 and G2 are the same matrices as in the group, G1 = X(X′X)−1, G2 = X̃,
and X̃ is a p × (p − q) matrix satisfying X̃

′
X = O and X̃

′
X̃ = Ip−q . Then, the rows

of (U V) are independently distributed as p-dimensional normal distributions with
means

E[(U V)] = (A� O)

and the common covariance matrix
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� = G′�G =
(
G′

1�G1 G′
1�G2

G′
2�G1 G′

2�G2

)
=

(
�11 �12

�21 �22

)
,

whereG = (G1G2). This transformation canbe regarded as one fromY = (Y1, . . . ,Yp)
′

to a q-dimensional main variable U = (U1, . . . ,Uq)
′ and a (p − q)-dimensional

auxiliary variable V = (V1, . . . , Vp−q)
′. The growth curve model is equivalent to

the following two models:
(1) The conditional distribution of U given V is

U | V ∼ Nn×q(A
∗	, �11·2). (28)

(2) The marginal distribution of V is

V ∼ Nn×(p−q)(O, �22), (29)

where

A∗ = (A V), 	 =
(

�




)
,


 = �−1
22 �21, �11·2 = �11 − �12�

−1
22 �21.

Rao (1965) also gave the above reduction, and called V the observation matrix of
concomitant variables. Statistical methods based on likelihood were introduced by
Rao (1959, 1965), Khatri (1966), Gleser and Olkin (1970), and others. The LR test
was first given by Khatri (1966). Gleser and Olkin (1970) gave the LR test based on
a canonical for the testing problem (26). The LR test is based on

� = |Se|/|Se + Sh |,

where
Se = D′(X′S−1X)−1D, Sh = (C�̂D)(CRC′)−1C�̂D

and

R = (A′A)−1 + (A′A)−1A′YS−1{S − X′(XS−1X′)−1X}
× S−1Y′A(A′A)−1.

Here, �̂ and S are given by

�̂ = A(A′A)−1A′YS−1X(X′S−1X)−1,

S = 1

m
Y′

(In − A(A′A)−1A′)Y, m = n − k.

Further, the null distribution of � is �d(c, n − k − (p − q)).
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Rao (1965) and Grizzle and Allen (1969) discuss the possibility of using fewer
than p − q covariables. Fujikoshi and Rao (1991) proposed two types of formulation
for the hypotheses of redundancy of a given set of covariables. The likelihood ratio
criteria were obtained for testing these hypotheses. Further, using these results, they
proposed information criteria such as for selection of the best subset of covariables.

In the growth curvemodels as in (24) and (25), it is necessary that the observations
be observed at the same timepoints for eachof the subjects, and that eachof the groups
have the same within-design matrix X. In order to resolve the latter assumption, a
general growth curve model was proposed by Rosen (1987), Verbyla and Venables
(1988), etc., as follows:

E(Y) =
r∑

i=1

Ai�iX′
i , (30)

which is called the sum-of-profiles model. On the other hand, in order to incorporate
individual effects fully, the following random coefficients model or mixed effects
model was considered:

Yi = Xiβ i + ei , i = 1, . . . , n,

β i = θ + bi , i = 1, . . . , n,

where Xi is a pi × k known matrix,

b1, . . . , bn ∼ i.i.d. Nk(0,�),� ≥ O,

e1, . . . , en are independent, ei ∼ Npi (0, σ
2Ini ),

{e1, . . . , en} and {b1, . . . , bn} are independent.

This model is a special case of mixed effects and random coefficients models (see
Laird andWare 1982, andVonesh and Carter 1987). Rao (1965) considered the above
model in the case X1 = · · · = Xr , and developed its statistical inference.

At the end of this section, we consider some topics on discriminant analysis of
growth curve data. Such problemswere first discussed by Burnaby (1966). The paper
pointed out a need for a general procedure of eliminating either a single growth factor
or several nuisance factors from discriminant functions or generalized distances
between numbers of populations. Some results were given with the help of Rao’s
comments. Rao (1966b) and, in his book, Rao (1973) treated this problem in a
more general form which was called discrimination between composite hypotheses,
as follows. Let Y be a p-variate random vector depending on a parameter vector
θ ∈ �. Let H1 be the hypothesis that θ ∈ �1 and H2 that θ ∈ �2, where �1 and �2

are two disjoint subsets of �. The problem involves choosing between H1 and H2

on the basis of an observed value of Y . More concretely, let Y be a p-variate normal
vector such that

E(Y | θ i , Hi ) = ai + Xθ i , Var(Y | θ i , Hi ) = �, i = 1, 2.
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Here, X is a given p × k matrix of rank k. Let Z be a p × (p − k) matrix of rank
p − k such that X′Z = O. Then,

E(Z′Y | Hi ) = Z′ai , Var(Z′Y | Hi ) = Z′�Z′, i = 1, 2.

From (3), the discriminant function based on Z′Y is given by

(Z′a1 − Z′a2)′(Z′�Z)−1Z = (a1 − a2)′Z(Z′�Z)−1Z′Y ,

which is reduced as

(a1 − a2)′{�−1 − �−1X(X′�−1X)−1X′�−1}Y . (31)

Further, it was shown that

sup
X′�=0

[E(�′Y | H1) − E(�′Y | H2)]2
2−1[Var(�′Y | H1) + Var(�′Y | H2)] (32)

is attained at

�∗ = {�−1 − �−1X′(X′�−1X)−1X�−1}(a1 − a2). (33)

The result follows by using the fact that, under the condition X′� = 0, expression
(32) is reduced to

sup
X′�=0

[E{�′(a1 − a2)}2]
�′��

. (34)

The discriminant function (31) is �′∗Y , where �∗ is as defined in (33).
On the other hand, the usual discriminant method and its modifications have been

studied for some growth curve models. For example, assume that Y is observed at
two populations �i , i = 1, 2, and

Y | �i ∼ Np(μi ,�), i = 1, 2,

where μ(i) = Xθ i , i = 1, 2. Further, let θ̂ i , i = 1, 2 and �̂ be the MLEs of θ i , i =
1, 2 and�, based on ni samples from�i , i = 1, 2. Then, there is a situation to decide
which a newobservationY belongs to�1 and�2. A naturalmethod is to discriminate
Y based on the discriminant function L(Y , μ̂(1), μ̂(2), �̂) in (3). As another example,
Lee (1982) considered the classification of growth curves from a non-Bayesian and
Baysian viewpoint, under the case where � is arbitrary positive definite and is of
Rao’s simple structure (Rao 1967). In some cases, it will be necessary to evaluate the
expected probabilities of misclassification. However, this subject has not been much
well researched.
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6 Information Criteria for Selection of Variables

Related to the selection of variables in multivariate analysis, Rao (1977) stated the
following in the foreword of Multivariate Analysis IV (P. R. Krishnaiah, ed., 1977,
North-Holland Publishing Company):

“While refinement of Fisherian methods continue to be made, relatively few new
lines of investigations are started. New extensions of univariate methods to multiple
measurement are being made, which are no doubt useful, but there has not been
adequate discussion of the number or choice of variables. In spite of the enormous
increase in the multivariate methods, they do not seem to be rich enough to meet all
practical demands...”

As we have seen in Sect. 2, Rao proposed a U -statistic for testing a hypothesis
that Y2 provides no additional information to a discriminant analysis in the presence
of Y1, where Y = (Y ′

1,Y2)
′ and Y : pi × 1. However, if several other specifications

are considered, we need to decide upon the best specification. One approach is to
apply model selection criteria such as AIC, BIC, and Cp. In order to represent these
approaches, it is standard to formulate the notions of sufficiency or redundancy of a
subset of variables such that its likelihood is obtained in a computable form. Before
describing it in detail in the case of two-group discriminant analysis, here we note
that such an approach has been extended for the selection of variables in various
multivariate models. Corresponding results have been obtained for, for example,
the selection of the response variables and the explanatory variables in multivariate
linear models, the selection of the main variables and the covariables in growth curve
models, the selection of variables in canonical correlation analyses, and the selection
of dimensionality in principal component analyses.

In the following, we state a more detailed two-group discriminant analysis, fol-
lowing Fujikoshi and Sakurai (2019) and Oda et al. (2020). Suppose that j denotes
a subset of ω = {1, . . . , p} containing p j elements, and Y j denotes the p j vector
consisting of the elements of Y , indexed by the elements of j . We use the notation
D j and Dω for D based on Y j and Yω(= Y), respectively. Let M j be a variable
selection model, defined by

M j : βi 	= 0 if i ∈ j , and βi = 0 if i /∈ j . (35)

The model M j is equivalent to� j = �ω, i.e., theMahalanobis distance based on Y j

is the same as the one based on the full set of variables, Y . We identify the selection
of M j with the selection of Y j . Let AIC j be the AIC for M j . Then, it is known (see,
e.g., Fujikoshi 1985) that

A j = AIC j − AICω

= n log

{
1 + g2(D2

ω − D2
j )

n − 2 + g2D2
j

}
− 2(p − p j ), (36)
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where g = √
(n1n2)/n. Similarly, let BIC j be the BIC for M j , and we have that

B j = BIC j − BICω is the one replaced 2 in A j by log n.
The variable selectionmethods based onAIC andBIC are given asmin j AIC j and

min j BIC j , respectively. Therefore, such criteria become computationally onerous
when p is large. To circumvent this issue, we can use a test-based method (TM,
see 2020) or KOO method (Zhao et al. 1986; Nishii et al. 1988; Bai et al. 2018),
drawing on the significance of each variable. A critical region for “βi = 0” based on
the likelihood ratio principle is expressed (see, e.g., Rao 1946, 1973) as

Td,i = n log

{
1 + g2(D2

ω − D2
(−i))

n − 2 + g2D2
(−i)

}
− d > 0, (37)

where (−i), i = 1, . . . , p is the subset of ω = {1, . . . , p} obtained by omitting the
i from ω, and d is a positive constant that may depend on p and n. Note that

T2,i > 0 ⇐⇒ AIC(−i) − AICω > 0.

A test-based method or KOOmethod is defined by selecting the set of suffixes or the
set of variables given by

TMd = {i ∈ ω | Td,i > 0}, (38)

or {Yi ∈ {Y1, . . . ,Yp} | Td,i > 0}. The notation ĵTMd is also used for TMd .
In general, if d is large, a small number of variables are selected.On the other hand,

if d is small, a large number of variables are selected. Ideally, we want to select only
the true variableswhose discriminant coefficients are not zero.Consistencyproperties
of AIC, BIC, and TMd have been studied under a large-sample framework (n → ∞)
and a high-dimensional framework (n/p → c ∈ (0, 1)); see Fujikoshi (1985), Nishii
et al. (1988), Fujikoshi and Sakurai (2019) and Oda et al. (2020). In general, we
note that the conclusions of asymptotic consistencies of model selection criteria
may be reversed. For example, in the selection of the explanatory variables in a
multivariate regression model, it is known (Nishii et al. 1988) that under a large-
sample framework, BIC is consistent, but AIC is not consistent. On the other hand,
it is known (Fujikoshi and Sakurai 2014; Yanagihara et al. 2015; Bai et al. 2018) that
under a high-dimensional framework, AIC is consistent, but BIC is not consistent.

For high-dimensional data such that p > n, Lasso and other regularization meth-
ods have been extended. For such studies, see, e.g., Clemmensen et al. (2011),Witten
and Tibshirani (2011), and Hao et al. (2015).
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On Testing Structures of the Covariance
Matrix: A Non-normal Approach

Tõnu Kollo and Marju Valge

Abstract Test-statistics for testing covariance structures are examined for non-
normal p-dimensional populations with the finite fourth-order mixed moments. Spe-
cial attention has been paid to the sphericity and uncorrelatedness hypotheses. For the
sphericity test, test-statistics based on trace functions are examined. A χ2-statistic is
constructed for the uncorrelatedness test. In a special case when all the fourth-order
moments are equal, the results are simplified. Taylor expansions of the test-statistics
have been derived, asymptotic normal and chi-square distributions have been estab-
lished and their behaviour examined in the situation when both, sample size n and
the number of variables p are growing when p

n < 1. A simulation experiment was
carried out to investigate empirically speed of convergence to the asymptotic distri-
butions depending on the sample size, the number of variables and the parameters
of the population distribution.

Keywords Asymptotic normality · Chi-square statistic · Covariance structure ·
Sphericity hypothesis · Uncorrelatedness hypotheses
1 Set-Up of the Problem

Let X = (x1, . . . , xn) be a sample of size n from a p-dimensional population x ∼
xi ∼ Px with

Ex = μ ; Dx = �,

and the finite fourth-order mixed moments.
Denote

x̄ = 1

n

n∑

i=1

xi ; S = 1

n − 1

n∑

i=1

(xi − x̄)(xi − x̄)′.
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We are interested in testing some basic hypotheses about the covariance structure

H0 : � = �0, (1)

with a special interest to the hypotheses

H01 : � = Ip, (2)

H02 : � = σ 2Ip, (3)

H03 : � = �, � − diagonal. (4)

Test H02 is called the sphericity test while H03 is the uncorrelatedness test. The first
tests for detection covariance structures under normality go back to 1940s. Wald
(1943) suggested a score test based on the information matrix, Rao (1948) proposed
another score test using score function and information matrix. In practice maximum
likelihood ratio (MLR) test (seeRao 1973, § 6e), for instance) is themost popular one,
but it is known that when the number of parameters to be tested is large, the test will
almost always reject the null hypothesis. In Kollo et al. (2016), it is shown for the nor-
mal population that instead of MLR test the Rao’s score test should be used when the
number of variables is growing. In 1970s, new tests were constructed where instead
of information matrix trace functions were used. This approach became later fruitful
in the high-dimensional set-up. John (1971, 1972) proved that the test based on

U = 1

p
tr

[(
S

(1/p)tr S
− Ip

)2
]

is locally most powerful invariant test for sphericity H02. Nagao (1973) suggested
test statistics for H02

T2 = p2

2
tr

[(
S
tr S

− 1

p
Ip

)2
]

and H03

T3 = n

2
tr
[(

SS−1
d − Ip

)2]
,

where Sd is the diagonalized matrix S. In high-dimensional set-up (p ≥ n), several
papers were published in the beginning of 2000s for a normal population. Ledoit and
Wolf (2002) suggested for H01 the statistic

W = 1

p
tr
[
(S − Ip)2

]− p

n

(
1

p
tr S
)2

+ p

n
.

For the hypotheses (2)–(4)Kapetanios (2004),modifiedLedoit–Wolf test and applied
it to normalized data from normal population. Srivastava (2005, 2006) constructed
test statistics in high-dimensional set-up for a normal population. For H01 he sug-
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gested a test, which is based on non-zero eigenvalues of the sample covariancematrix
S. For H02, he proposed the statistic

T ∗
2 = n2

(n − 1)(n + 2)

1
p

[
trS2 − 1

n (trS)2
]

[
trS
p

]2 − 1

In Srivastava (2006), there are two test-statistics for the uncorrelatedness test H03:
– one is based on Fisher’s z-transformation of correlation coefficients;
– another one – T ∗

3 —is an analogue of T ∗
2 , but involves beside trace functions the

fourth order moments of the coordinates of x.
Ahmad and von Rosen (2015b) modified Nagao’s statistics to test H01 and H02

under normality in high-dimensional situation when p > n and proved asymptotic
normality of the tests using U -statistics.

We are going to construct test statistics for non-normal populations in the sit-
uation when both, the number of variables p and the sample size n are growing,
p, n → ∞, p/n < 1. The last assumption makes it possible to rely on asymptotic
normality and asymptotic chi-square distributions. Non-normal case has got much
attention in recent years. Shapiro and Browne (1987) consider the maximum likeli-
hood test about covariance structure for elliptical distributions when some mildscale
invariance conditions are fulfilled. Yuan and Bentler (1999) study robustness of the
likelihood ratio statistic for two non-normal populations, including elliptical distri-
butions. Srivastava and Reid (2012) test covariance structures under normality when
P≥n, Srivastava et al. (2011) consider some tests for the covariance matrices with
fewer observations than the dimension under non-normality, Harrar (2009) examines
asymptotic for several tests under non-normality. Chen et al. (2010) develop tests
for high-dimensional covariance matrices modifying Ledoit–Wolf test for elliptical
distributions. Ahmad and vonRosen (2015a) proved asymptotics normality for trace-
based statistics, introduced in Ahmad and von Rosen (2015b) for H01 and H02 using
U -statistics when normality assumption is replaced by certain mild assumptions
on the trace of the covariance matrix. Srivastava and Singull (2017) also consider
sphericity test in high-dimensional set-up, usingU -statistics. We derive expressions
of test-statistics for sphericity and uncorrelatedness tests and examine empirically
speed of convergence to the asymptotic distributions in simulation experiments.

2 Some Notation and Preliminary Results

Derivations in the paper utilize matrix technique which is based on vec-operator,
Kronecker product, commutation matrix and matrix derivative. For deeper insight
into this technique, an interested reader is referred toMagnus and Neudecker (1999),
Harville (1997), Rao andRao (1998) or Kollo and vonRosen (2010). From properties
of vec-operator, the following two are frequently used
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vec (ABC) = (C′ ⊗ A)vecB;

tr (AB) = vec ′(A)′vecB

where tr denotes the trace function.
Later on we shall use matrix derivatives repeatedly, and the definition of Kollo

and von Rosen (2010), p. 127 is applied.

Definition 1 Let the elements of Y ∈ R
r×s be functions of X ∈ R

p×q . The matrix
dY
dX ∈ R

pq×rs is called matrix derivative of Y by X in a set A, if all the partial deriva-
tives ∂ykl

∂xi j
exist, are continuous in A, and

dY
dX

= d

dvecX
vec ′Y

where

d

dvecX
=
( ∂

∂x11
, . . . ,

∂

∂xp1
,

∂

∂x12
, . . . ,

∂

∂xp2
, . . . ,

∂

∂x1q
, . . . ,

∂

∂xpq

)′

and vec (·) is the usual vectorization operator.

Further, the following properties of the matrix derivative are used (Kollo and von
Rosen 2010, p. 149)

1. dX
dX = Ipq ;

2. d(Y+Z)

dX = dY
dX + dZ

dX ;
3. d(AXB)

dX = B ⊗ A′;
4. When Z = Z(Y), Y = Y(X), then dZ

dX = dY
dX

dZ
dY ;

5. When W = YZ, Z ∈ R
s×t , then dW

dX = dY
dX (Z ⊗ Ir ) + dZ

dX (It ⊗ Y′);
6. When X ∈ R

p×p then dX−1

dX = −X−1 ⊗ (X′)−1;
7. When X ∈ R

p×p, then d|X|
dX = |X|vec (X−1)′, where | · | denotes the determinant;

8.
dtr (A′X)

dX
= vecA.

We shall use moments of a random vector x in the followingmatrix representation

Mk(x) = E
[

x ⊗ x′ ⊗ x ⊗ x′ ⊗ . . .︸ ︷︷ ︸
k times

] = E
[
xx′ ⊗ xx′ ⊗ . . .

]
, k = 1, 2, . . . .

The corresponding kth central moment is

Mk(x) = Mk(x − Ex).

Denote convergence in probability by
P→ and in distribution by

D→. We are going to
use the following convergence result (see Kollo and von Rosen (2010), p. 285, for
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instance): √
n vec (S − �)

D→ Np2(0,�) (5)

where
� = M4(x) − vec� vec ′�. (6)

Also we use a convergence theorem (Anderson 2003, pp. 132–133).

Theorem 1 Assume that for {xn} and a constant vector a

√
n (xn − a)

D→ Np(0,�)

where
xn

P→ a

when n → ∞. Let the function g(x) : Rp → R
q have continuous partial derivatives

in a neighbourhood of a. Then, if n → ∞,

√
n (g(xn) − g(a))

D→ Nq(ξ
′�ξ),

where

ξ = dg(x)

dx

∣∣∣
x=a

�= 0

is the matrix derivative
dg(x)

dx
= d

dx
(g(x))′ .

We are going to examine later a special case when dependence between coordi-
nates of x is determined by a linear transformation. This is a traditional assumption
in Independent Component Analysis (Hyvärinen et al. 2001). Let y = (Y1, . . . , Yp)

′
be a random p-vector with independent coordinates Yi and let

Ey = 0; Dy = Ip.

Assume that the first four moments of y exist. Consider the equality

x = Ay + μ (7)

with non-singular A : p × p. Then

Ex = μ; Dx = AA′ = �.

Assume the initial sample x1, . . . , xn comes from this population. Then we can
represent x and S via the independent copies of y:
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S = A

(
1

n − 1

n∑

i=1

(yi − y)(yi − y)′
)

A′. (8)

Denote

Sy = 1

n − 1

n∑

i=1

(yi − y)(yi − y)′, (9)

then (8) has the form
S = ASyA′, (10)

And, from (10), we get

D(vec S) = D[(A ⊗ A)vec Sy] = (A ⊗ A)D[vec Sy](A ⊗ A)′.

After opening brackets in (9), we have

Sy = 1

n − 1

n∑

i=1

yiy′
i − n

n − 1
yy′.

In the following, we need expression of D[vec (yy′)]. From Kollo and von Rosen
(2010), p. 285, we get the representation via the fourth order moments

D vec (yy′) = E
[
yy′ ⊗ yy′]− vec Ipvec ′Ip. (11)

Because of independence of Yi , i = 1, . . . , p, the fourth-order mixed moments in
(11) have a simple form

E(Y jYkYlYm) =
⎧
⎨

⎩

1, when there are two different pairs of equal indices;
m4(Y j ), when j = k = m = l;
0, otherwise.

(12)
Taking into account the block-structure of the Kronecker product, we have the j-th
diagonal block of the E[(yy′) ⊗ (yy′)] by using (12) in the form

E

⎡

⎣Y 2
j

⎛

⎝
Y 2
1 Y1Y2 · · · Y1Yp

· · · · · · · · · · · ·
YpY1 YpY2 · · · Y 2

p

⎞

⎠

⎤

⎦ =

⎡

⎢⎢⎢⎢⎢⎢⎣

1 0
. . .

m4(Y j )

. . .

0 1

⎤

⎥⎥⎥⎥⎥⎥⎦
= m4(Y j ).

If j �= k, in the partitioned matrix (11), we have in the jk-th block the jk-th and
k j-th elements equal to one and all the other elements are zeros. Denote the diagonal
matrix of the fourth-order moments m4(Y j ) of the random variables Yi as (m4)[d]
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(m4)[d] =
⎛

⎜⎝
m4(Y1) 0

. . .

0 m4(Yp)

⎞

⎟⎠ . (13)

Using the commutation matrix Kp,p, we can present E(yy ⊗ yy′) as a sum

E(yy′ ⊗ yy′) = Ip2 + Kp,p + vec Ipvec ′Ip + [(
(m4)[d] ⊗ Ip

)− 3Ip2
] (

Kp,p
)
d .

(14)
Here, (Kp,p)d denotes the diagonalizedmatrixKp,p. For results on partitionedmatri-
ces, the reader is referred to Kollo and von Rosen (2010) or Magnus and Neudecker
(1999), for example.

In a special case when m4(Y j ) = γ , j = 1, . . . , p, the equality (14) is simplified

E(yy′ ⊗ yy′) = Ip2 + Kp,p + vec Ipvec ′Ip + (γ − 3)(Kp,p)d . (15)

From here,

�A = (A ⊗ A)D[vec yy′](A′ ⊗ A′)
= (Ip2 + Kp,p)(� ⊗ �) + (A ⊗ A)

[(
(m4)[d] ⊗ Ip

)− 3Ip2
]
(Kp,p)d(A ⊗ A)′.

(16)
In the special case m4(Y j ) = γ (elliptical distributions, for example), j = 1, . . . , p,
we get from (15) and (16)

�
γ

A = (A ⊗ A)D
[
vec yy′] (A ⊗ A)′

= (
Ip2 + Kp,p

)
(� ⊗ �) + (γ − 3)(A ⊗ A)(Kp,p)d(A ⊗ A)′.

(17)

In the case of i.i.d. normal variables Yi , i = 1, . . . , p, the equality (17) turns into the
well-known asymptotic covariance matrix for S:

(
Ip2 + Kp,p

)
(� ⊗ �).

Due to the asymptotic normality of the sample covariance matrix (see Kollo and von
Rosen 2010) p. 285, for example), we can formulate the following theorem.

Theorem 2 Let y = (Y1, . . . ,Yp) be a p-vector with i.i.d. coordinates and Ey = 0;
Dy = Ip. Let random p-vector x be represented via y by the formula (7). Then, if
n → ∞, √

nvec (S − �)
D→ Np(0,�A)

where �A is given by (16). In a special case when m4(Y j ) = γ , j = 1, . . . , p, the
asymptotic covariance matrix is of the form

�
γ

A = (Ip2 + Kp,p)(� ⊗ �) + (γ − 3)(A ⊗ A)(Kp,p)d(A ⊗ A)′.
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3 Ratio of Trace Functions

In Sect. 1, most of the statistics for testing covariance structures are based on the
ratios of trace functions. Consider the statistic

T2(S) = tr S2

(tr S)2
.

Values of T2(S) close to 1 refer to the null hypothesis H02 and critical region is of
the form T2(S) > cα . Let us examine the asymptotic behaviour of T2 under H0 in (1)
when n → ∞. Expand T2(S) into the Taylor series at T2(�). The first terms in the
expansion are (Kollo and von Rosen 2010, p. 152)

T2(S) = T2(�) +
(
dT2
dS

)′

S=�

vec (S − �) + 1

2
vec ′(S − �)

(
d2T2
dS2

)

S=�

vec (S − �) + . . . (18)

The first derivative is

dT2
dS

= d

dS

[
tr S2(tr S)−2

] = dtr S2

dS
(tr S)−2 + d(tr S)−2

dS
tr S2

= dS2

dS
dtr S2

dS2
(tr S)−2 + dtr S

dS
d(tr S)−2

dtr S
tr S2

= (S ⊗ I + I ⊗ S)vec Ip(tr S)−2 − 2(tr S)−3tr S2vec Ip

= 2vec S(tr S)−2 − 2
tr S2

(tr S)3
vec Ip.

We obtained
dT2
dS

= 2vec

(
S − tr S2

tr S
Ip

)
1

(tr S)2
. (19)

From Theorems 1 and 2, follows next result.

Theorem 3 Let T2(S) = tr S2

(tr S)2
where S is the sample covariance matrix (8). Then we

have the following convergence under H0 : � = �0 when the sample size n → ∞
and �0 �= tr�2

0
(tr�0)2

Ip √
n(T2(S) − T2(�0))

D→N (0, σ 2
A0

),

where

σ 2
A0

= 4

(tr�0)4
vec ′(�0 − T2(�0)Ip)�A0vec (�0 − T2(�0)Ip),

�A0 is given by (16) with � = �0 and �0 = A0A′
0. When m4(Y j ) = γ , j =

1, . . . , p, then in the expression of the asymptotic covariance matrix�A0 is replaced
by �

γ

A0
from (17).
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Remark 1 Under H02 : � = σ 2Ip, the first derivative in (19)

dT2
dS

∣∣∣
S=σ 2Ip

= 0.

Therefore, asymptotic normality does not hold for T2(S) under the null hypothesis
H02. The asymptotic behaviour under H02 is determined by the second term in the
Taylor expansionwhich includes the second-order derivative of T2(S). The same time
under the two-sided alternative hypothesis H12 : � �= σ 2Ip asymptotic normality
holds.

Let us find the second-order derivative

d2T2
dS2

= d

dS

[
vec

(
S − tr S2

tr S
Ip

)
2

(tr S)2

]

= 2
d

dS

[
vec

(
S − tr S2

tr S
Ip

)]
1

(tr S)2
+ 2

d

dS

[
1

(tr S)2

]
vec ′

(
S − tr S2

tr S
Ip

)

= 2

[
Ip2 − d

dS

(
tr S2

tr S

)
vec ′Ip

]
1

(tr S)2
+ 2

[
−2

1

(tr S)3
vec Ipvec ′

(
S − tr S2

tr S
Ip

)]

= 2

{
Ip2 +

[
−2vecS

1

tr S
+ tr S2

(tr S)2
+ vec Ip

]
vec ′Ip

}
1

(tr S)2

−4
1

(tr S)3
vec Ipvec ′

(
S − tr S2

tr S
Ip

)

= 2

(tr S)2

[
Ip2 − 2

tr S
vecSvec ′Ip + 3

tr S2

(tr S)2
vec Ipvec ′Ip − 2

tr S
vec Ipvec ′S

]
.

The final expression is

d2T2
dS2

= 2

(tr S)2

[
Ip2 − 2

tr S

(
vec Svec ′Ip + vec Ipvec ′S

)+ 3
tr S2

(tr S)2
vec Ipvec ′Ip

]
.

(20)
Under H02 the second-order derivative (20)

d2T2
dS2

∣∣∣
S=σ 2I

= 2

p2σ 4

[
Ip2 − 4

p

(
vec Ipvec ′Ip

)+ 3
p

p2
vec Ipvec ′Ip

]

= 2

p2σ 4

[
Ip2 − 1

p
vec Ipvec ′Ip

]
.

The second term in the Taylor expansion under H02 equals

1

2
vec ′(S − σ 2Ip)

d2T2
dS2

∣∣∣
S=σ 2Ip

vec (S − σ 2Ip) = 1

p2σ 4

[
tr S2 − 1

p
(tr S)2

]
.
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The asymptotic behaviour of T2 under H02 is determined by the last expression. If
p → ∞ then this term tends to zero when H02 is true.

Corollary 1 Under the null hypothesis

H02 : � = σ 2I,

the expansion (18) has the following form

T 0
2 (S) = 1

p
+ 1

p2σ 4
tr S2 − 1

p3σ 4
(tr S)2 + . . . (21)

Proof Equality (21) is obtained straightforwardly from (18) when � is replaced by
σ 2I and we take into account that tr� = σ 2 p ; tr�2 = σ 4 p. Consider instead of
T2(S) the following modified version

T ∗
2 (S) = p · T2(S) =

tr S2

p
(
tr S
p

)2 .

From (21), we get under H02 : � = σ 2Ip the expansion for T ∗
2 (S)

T ∗
2 (S) = 1 + 1

σ 4

(
tr S2

p
−
(
tr S
p

)2
)

+ . . . (22)

When p, n → ∞, the asymptotic behaviour of T ∗
2 (S) in (22) is determined by tr S2

p .

We investigate in a simulation experiment behaviour of the statistic T ∗
2 (S) under

H02 at different sample sizes. In Fig. 1, graphs of T ∗
2 (S) at n = 50, 100, 250, 500,

750, 1000 are presented. We see that starting from the sample size 250 values of the
statistic are very close to 1.
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Fig. 1 Simulation of T ∗0
2 (S): H0: � = σ 2I5, σ 2 = 4

To examine behaviour of T ∗
2 (S), we simulated also values of n(T ∗

2 (S) − 1) under
H02 at the same sample sizes. The resulting distribution is skewed, the best fit with
empirical distribution was obtained by the chi-distribution (Fig. 2).
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Fig. 2 Simulation of n(T ∗0
2 (S) − 1): H0: � = σ 2I5, σ 2 = 4

We also examined the behaviour of T ∗
2 (S) under the alternative hypothesis H12.

In Fig. 3, the simulated values of the statistic are presented for the covariance matrix
where the elements outside the main diagonal were equal to e = 0.1, 0.5, 1.0, 2.0,
while diagonal elements were taken equal to 4. We see that, when e = 0.1, the
graph is still close to the null hypothesis but very quickly the shape of the empirical
distribution changes when value of e is growing.
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Fig. 3 Simulation of T ∗0
2 (S): H1: � �= σ 2I5, (�)i j = e, i �= j , σ 2 = 4

4 Test for Uncorrelatedness

4.1 Null Hypothesis

Let H03 : � = �, � diagonal, � �= σ 2Ip, be the null hypothesis of interest under
the alternative

H13 : � �= �.

Under H03, we have σi j = 0, i, j = 1, . . . , p; i �= j . Under H03, the first derivative
of T2 is
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dT2
dS

∣∣∣
S=�

= 2vec
(
� − tr�2

tr�

) 1

(tr�)2
.

We could apply now Theorem 3 in a special case �0 = �, with A0A′
0 = �, get an

asymptotically normal test-statistic for testing H03 and repeat the study in the same
way as we did for the sphericity test.

Instead, let us construct a chi-square statistic to test H03. As

(
Ip2 − (Kp,p)d

) (
Ip2 − (Kp,p)d

) = Ip2 − (Kp,p)d ,

we have the chi-square statistic of the form

T3 = nvec ′S(Ip2 − (Kp,p)d)�̂
−
as(Ip2 − (Kp,p)d)vec S (23)

where �̂
−
as is an estimate of a generalized inverse of the asymptotic covariance

matrix of vec S. As shown in Moore (1977), the statistic is invariant under the choice
of generalized inverses.

From (5)–(6), we get the statistic (23) of the form

T3 = nvec ′(S)(Ip2 − (Kp,p)d)�̂
−
(Ip2 − (Kp,p)d)vec S. (24)

By �̂, the estimate of � is denoted where the fourth-order moments are replaced
by their sample estimates and � with the sample covariance matrix S.

Following Moore (1977)

T3
D→ χ2

1
2 p(p−1) (25)

as we have 1
2 p(p − 1) nonrepeated elements in (Ip2 − (Kp,p)d)vec S.

Assumptions for the convergence (25) are fulfilled as (Ip2 − (Kp,p)d)vec S
belongs to the column space of

(Ip2 − (Kp,p)d)�̂
−
(Ip2 − (Kp,p)d).

Under H03, the matrix � in the asymptotic covariance matrix � in (6) is diagonal,
� = �. In a special casewhen the fourth-ordermoments are determined by the linear
transformation (7), x = Ay, we have M4(x) in a simpler form.

M4(x) = (A ⊗ A)M4(y)(A ⊗ A)′ (26)

whereM4(y) is given in (14). If all univariate fourth-order momentsm4(Yi ) are equal

m4(Yi ) = γ ,

M4(x) takes the form (15).
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Structure of the asymptotic covariance matrix �A in this case is simplified under
H03.

Theorem 4 Under H03, the asymptotic covariance matrix � has the form

�A = (Ip2 + Kp,p − 3(Kp,p)d )(� ⊗ �) + (A ⊗ A)((m4)[d] ⊗ Ip)(Kp,p)d (A ⊗ A)′
(27)

where the diagonal matrix (m4)[d] : p × p is defined in (13).

Proof Under H03, taking into account (26), the asymptotic covariance matrix in (6)
takes the form

�A = (A ⊗ A)M4(y)(A ⊗ A)′ − vec�vec ′�.

After taking into account (16), we have

�A = (A ⊗ A)
{

Ip2 + Kp,p + vec Ipvec ′Ip +
[
(m4)[d] ⊗ Ip − 3Ip2

]
(Kp,p)d

}
(A ⊗ A)′

−vec�vec ′�

=
(

Ip2 + Kp,p

)
(� ⊗ �) + (A ⊗ A)

[
(m4)[d] ⊗ Ip − 3Ip2

]
(Kp,p)d (A ⊗ A)′,

as under H03

(A ⊗ A)vec Ipvec ′Ip(A ⊗ A)′ = vec�vec ′�.

When we open square brackets in the expression of �A,

�A = (
Ip2 + Kp,p

)
(� ⊗ �) + (A ⊗ A)((m4)[d] ⊗ Ip)(Kp,p)d(A ⊗ A)′

−(A ⊗ A)3Ip2(Kp,p)d(A ⊗ A)′.
,

The second term can be simplified

(A ⊗ A)3Ip2(Kp,p)d(A ⊗ A)′ = 3(Kp,p)d(A ⊗ A)(A ⊗ A)′ = 3(Kp,p)d(� ⊗ �)

and we have got the expression of �A as stated in the theorem .

In Theorem 5, we present our test-statistic under H03 in this particular case.

Theorem 5 Let x be as defined in (7). Then the test-statistic T3 in (24) has the form

TA
3 = nvec ′S(Ip2 − (Kp,p)d )

×
{

Ip2 + Kp,p − 3(Kp,p)d + (A ⊗ A)
[
(m̂4)[d] ⊗ Ip

]
(Kp,p)d (A ⊗ A)

(
S−1
d ⊗ S−1

d

)}−

×
(

S−1
d ⊗ S−1

d

)
(Ip2 − (Kp,p)d )vec S.

(28)

Proof From (24) and (27), it follows that we have to examine the product
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(Ip2 − (Kp,p)d )�̂
−
A(Ip2 − (Kp,p)d )

= (Ip2 − (Kp,p)d )

×
{
(Ip2 + Kp,p − 3(Kp,p)d ) + (A ⊗ A)

[
(m̂4)[d] ⊗ Ip

]
(Kp,p)d (A ⊗ A)′(�̂ ⊗ �̂)−1

}−

×(�̂ ⊗ �̂)−1(I − (Kp,p)d )

= (Ip2 − (Kp,p)d )

×
{

Ip2 + Kp,p − 3(Kp,p)d + (A ⊗ A)
[
(m̂4)[d] ⊗ Ip

]
(Kp,p)d )(A ⊗ A)′(�̂−1 ⊗ �̂

−1
)
}−

×(�̂
−1 ⊗ �̂

−1
)(I − (Kp,p)d ),

Whenwe replace �̂ by an estimateSd —obtained from the sample covariancematrix,
we get the final form of TA

3 in (28).

Corollary 2 In assumptions of Theorem 5 when all the fourth-order moments of y
are equal, m4(Yi ) = γ , i = 1, . . . , p, test-statistic T γ

3 has a simple form

T γ

3 = n

2
vec ′R(Ip2 − (Kp,p)d)vecR,

where R is the sample correlation matrix.

Proof Under our assumptions, M4(xi ) takes form (15) and �A can be simplified.
Denote the asymptotic covariance matrix now by �

γ

A

�
γ

A = (Ip2 + Kp,p + (γ − 3)(Kp,p)d)(� ⊗ �).

Then

T γ

3 = nvec ′S(Ip2 − (Kp,p)d)
{
(Ip2 + Kp,p + (γ − 3)(Kp,p)d)(�̂ ⊗ �̂)

}−

×(Ip2 − (Kp,p)d)vec S

= nvec ′S(�̂ ⊗ �̂)− 1
2 (Ip2 − (Kp,p)d)

{
(Ip2 + Kp,p + (γ − 3)(Kp,p)d)

}−

×(I − (Kp,p)d)(�̂ ⊗ �̂)− 1
2 vec S.

When we replace �̂ by its estimate Sd , we have

T γ
3 = nvec ′R(Ip2 − (Kp,p)d )

{
Ip2 + Kp,p + (γ − 3)(Kp,p)d

}−
(Ip2 − (Kp,p)d )vecR.

The generalized inverse in curly brackets can be expressed as a sum of two matrices.
Direct calculation shows that the following representation satisfies the necessary and
sufficient condition of the generalized inverse A = AA−A

{
I + Kp,p + (γ − 3)(Kp,p)d

}− = 1

4
(I + Kp,p) + [

c(Kp,p)d
]
.
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where

c = −γ 2 − 5γ + 6

γ 2 − 2γ + 1
.

As (Kp,p)d(I − (Kp,p)d) = 0, the second term vanishes in the expression of T γ

3 .
Note that 1

4

(
Ip2 + Kp,p

)
is theMoore–Penrose generalized inverse of Ip2 + Kp,p,

(
Ip2 + Kp,p

)+ = 1

4

(
Ip2 + Kp,p

)
.

As (Ip2 − (Kp,p)d)
(
Ip2 + Kp,p

) = I − (Kp,p)d + Kp,p − (Kp,p)d = Ip2 + Kp,p −
2(Kp,p)d , we have

T γ

3 = n

4
vec ′R(Ip2 + Kp,p − 2(Kp,p)d)(Ip2 − (Kp,p)d)vecR

= n

2
vecR(Ip2 − (Kp,p)d)vecR,

as Ip2 − (Kp,p)d is an idempotent matrix.

Sowehave established that if all the fourth-ordermoments of the randomvariables
Yi equal to γ , the statistic T γ

3 does not depend on this constant γ and

T γ

3 = n

2

p∑

i, j=1
i �= j

r2i j .

To examine the convergence to the limiting chi-square distribution when all the
fourth-order moments are equal, a simulation experiment was carried out. We con-
sidered sample sizes from n = 100 to n = 1000 in the situation when the number of
variables was growing from p = 5 to p = 50; the number of replications k = 500.
We see that fit with the asymptotic chi-square distribution is very good even for
the relatively small sample size 100 and the goodness of fit does not depend on the
dimensionality (Fig. 4).
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Fig. 4 Simulation results under H03: � = �, λi = p − i, i = 0, . . . , p − 1

5 Conclusions and Discussion

We have studied covariance structures under the null hypothesis H0: � = �0, while
special attention has been paid to the sphericity test H02: � = σ 2Ip and the uncorre-
latedness test H03: � = �. Dependence between the coordinates of a random vector
under consideration, x, has been introduced by the linear transformation x = Ay,
where the coordinates Yi of y are i.i.d. random variables with EYi = 0, DYi = 1.
This is the typical situation in the Independent Component Analysis, for instance.

For the sphericity test, a ratio of trace functions was examined. It came out that the
considered statistic did not converge under H02 to the normal distribution, instead
chi-distribution gave the best fit. The same time under the two-sided alternative
asymptotic normality holds.

For the uncorrelatedness test, a chi-square test statistic was designed. It came out
that when the fourth-ordermoments are equal,m4(Yi ) = γ, i = 1, . . . , p, the statis-
tic did not depend on γ and was expressed through the sum of squared correlation
coefficients.

There are several problems to study in future. Asymptotic distributions for test-
statistics have been obtained in two special cases for simple covariance structures
under null-hypothesis. Study of asymptotic behaviour of other structures (compound
symmetry, Toeplitz structure, autocorrelation structure, etc.) is of interest. Additional
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simulation experiments have to be carried out when the fourth order momentsm4(Yi )
are different. For the sphericity test further theoretical work is needed. In derivations,
we assumed that the sample size n > p. In high-dimensional set-up, n ≤ p behaviour
of the considered statistics will be different and a new approach to the problem has
to be worked out.
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Design and Sampling



The Existence of Perpendicular
Multi-arrays

Kazuki Matsubara and Sanpei Kageyama

Abstract As a generalization of perpendicular arrays defined by C. R. Rao in 1961,
Li et al. have newly introduced a combinatorial array, called a perpendicular multi-
array, in 2018 for constructions of splitting authentication codes having some per-
fect t-fold secrecy. Moreover, several classes of perpendicular multi-arrays have
been constructed in the literature. In this paper, necessary conditions for the exis-
tence of a perpendicular multi-array are discussed, and fundamental/useful results
for the existence of perpendicular multi-arrays are provided by use of the results on
combinatorial designs. As a main result, it is shown that the necessary conditions
are also sufficient for the existence of a perpendicular multi-array with block size
3 × 2 with the only one exception. Finally, the asymptotic existence of perpendicular
multi-arrays with a cyclic automorphism is presented.

Keywords Perpendicular multi-array · Perpendicular array · Splitting-balanced
block design · Group divisible

1 Introduction

A perpendicular multi-array of size N × k, denoted by PMAλ(k × c, v), is an N × k
multi-array, A = (Ai j ), on a set V of v points, which satisfies the following condi-
tions:

(P1) each entry Ai j (|Ai j | = c) is a c-subset of V and kc distinct points occur in k
entries of each row of A, and
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(P2) for any pair of columns of A and for any pair of points x1, x2 in V , there are
exactly λ rows ofA such that each of the rows contains the points x1, x2 in the
different entries of the two columns.

Here it holds that N = λv(v − 1)/(2c2).
Let us illustrate the definition of a PMA.

Example 1 A PMA4(2 × 4, 8) on Z8 by giving an example:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0, 1, 2, 4 3, 5, 6, 7
0, 2, 3, 5 4, 6, 7, 1
0, 3, 4, 6 5, 7, 1, 2
0, 4, 5, 7 6, 1, 2, 3
0, 5, 6, 1 7, 2, 3, 4
0, 6, 7, 2 1, 3, 4, 5
0, 7, 1, 3 2, 4, 5, 6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

with k = 2, c = 4, N = 7, A11 = {0, 1, 2, 4}, A12 = {3, 5, 6, 7}, etc.
From now on, each row of a PMAλ(k × c, v) is separately displayed in the form

of

(a11, a12, . . . , a1c | a21, a22, . . . , a2c | . . . | ak1, ak2, . . . , akc)

by use of kc points on V or (Ai1 | Ai2 | . . . | Aik) by use of k entries Ai j (1 ≤ i ≤ N ).
Furthermore, let R be a set of N rows and Pi ( j1, j,2 ) be the multi-set of pairs of the
points from the j1th and the j2th entries of the i th row as follows:

Pi ( j1, j2) = {{v, v′} | v ∈ Ai j1 , v
′ ∈ Ai j2

}
. (1)

Note that the condition (P2) implies that
⋃

1≤i≤N Pi ( j1, j2) contains every pair of
two points in V exactly λ times for any j1, j2 with 1 ≤ j1 < j2 ≤ k.

The PMA has been newly introduced in Li et al. (2018) with some applications
for constructing c-splitting authentication and secrecy codes with k source states and
v messages, where c messages can be used to communicate a source state under
the same encoding rule. Actually, Li et al. (2018) focused on the PMAs with the
following additional condition in essence:

(P3) for any pair of points x1 and x2, in the subarray that consists of the rows of
A that contain x1 and x2 in different columns, each of the two points appears
equally often in all columns.

The PMAλ(k × c, v) satisfying the condition (P3) is called an authentication
perpendicular multi-array, denoted by APMAλ(k × c, v). It is shown in Li et al.
(2018) that (i) the existence of a PMAλ(k × c, v) implies the existence of a c-
splitting authentication code with perfect 2-fold secrecy and (ii) the existence of
an APMAλ(k × c, v) implies the existence of a c-splitting authentication code with
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perfect 2-fold secrecy and 1-fold secure against spoofing. Especially, a c-splitting
authentication code obtained from an APMA1(k × c, v) has an optimality in some
sense (see also Li et.al 2018). Furthermore, the existence of an APMA1(3 × 2, v) is
shown in the literature.

Theorem 1 (Li et.al 2018) There exists an APMA1(3 × 2, v) if and only if v ≡ 1
(mod 8) with seven possible exceptions v ∈ {9, 17, 41, 65, 113, 161, 185}.
Note that, by taking u copies of each row of A, it is clear that the existence of a
PMAλ(k × c, v) (or an APMAλ(k × c, v)) implies the existence of a PMAλu(k ×
c, v) (or an APMAλu(k × c, v)).

In this paper, the PMAλ(k × c, v) (not necessarily with the condition (P3)) is
considered. It is clear that the PMAλ(k × 1, v) coincides with the perpendicular
array, denoted by PAλ(k, v), defined in Rao (1961), who call the perpendicular array
by the other name “an orthogonal array of Type II”. The review of results on the
existence of PAs is found in Bierbrauer (2007). Especially, the following result will
be useful for the construction of PMAs given in Sect. 4.

Lemma 1 (Bierbrauer 2007) There exists a PA1(k, k) for any odd prime power k.

A PMA is regarded as a pair (V,R) of a point set V and a row set R. When
V = Zv and R = {R + t | R ∈ R} with R + t = (a11 + t, . . . , a1c + t | . . . | ak1 +
t, . . . , akc + t) for any t ∈ Zv, the array is said to be cyclic. Then a row orbit of R ∈ R
is defined by {R + t | t ∈ Zv}. Choose an arbitrary row from each row orbit and call
it a base row. Hence, for a cyclic PMAλ(k × c, v), the array can be represented by
displaying base rows.

Example 2 A cyclic PMA1(3 × 2, 17) on Z17 is given by two base rows:

(0, 13 | 3, 9 | 2, 12) , (0, 16 | 1, 11 | 7, 13) mod 17.

For two points x and y in the j1th and the j2th (1 ≤ j1 < j2 ≤ k) entries, respec-
tively, of each base row, x − y ≡ d (mod v) implies that in the orbit of the base row
there exists a row containing x ′ and y′ in the j1th and the j2th entries, respectively,
for any distinct points x ′, y′ in Zv with x ′ − y′ ≡ d (mod v). Hence, it is seen that
the array obtained from orbits of m base rows (A∗

i1 | . . . | A∗
ik), 1 ≤ i ≤ m, satisfies

the condition (P2) of a PMAλ(k × c, v) if

⋃
1≤i≤m

{±(d − d ′) | d ∈ A∗
i j1 , d

′ ∈ A∗
i j2} = λ (Zv\{0}) (2)

holds for any j1, j2 with 1 ≤ j1 < j2 ≤ k, where λS means a multi-set containing
each element of the set S exactly λ times.

Since any APMAλ(k × c, v) is a PMAλ(k × c, v), Theorem 1 shows the exis-
tence of a PMA1(3 × 2, v) for any v ≡ 1 (mod 8) with seven possible exceptions
v ∈ {9, 17, 41, 65, 113, 161, 185} = E . In this paper, the remaining cases for the
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existence of a PMAλ(3 × 2, v), i.e., v ∈ E, λ = 1 and v ≥ 6, λ ≥ 2, are mainly dis-
cussed. In Sect. 2, several combinatorial designs are introduced and some existence
results of them are given for constructions of a PMAλ(k × c, v). In Sect. 3, nec-
essary conditions for the existence of a PMAλ(k × c, v) and some existence (or
non-existence) results are provided. In Sect. 4, two methods of construction are pre-
sented by use of the combinatorial designs. In Sect. 5, as a main result of this paper,
it is shown that the necessary conditions for the existence of a PMAλ(3 × 2, v) are
sufficient with a definite exception of (v, λ) = (9, 1). This kicks out v = 9 from The-
orem 1. Finally, in Sect. 6, the asymptotic existence on cyclic PMAs is discussed.

2 Preliminaries

In this section, some types of combinatorial designs which play an important role
for constructions of PMAs are mainly described.

Let v, k, c, λ be positive integers. A splitting-balanced block design, denoted by
(v, k × c, λ)-SBD, is a pair (V,B), where V is a set of v points and B (|B| = b) is
a family of subsets (called blocks) of size kc each of V such that

(S1) the i th block Bi ∈ B is expressed as a disjoint union of k subblocks of size c,
Bi = Bi1 ∪ · · · ∪ Bik for 1 ≤ i ≤ b, and

(S2) every pair of distinct points x, y ∈ V occurs in exactly λ blocks with x and y
being in different subblocks.

In a (v, k × c, λ)-SBD (V,B)with b blocks, it is seen that every point is contained
in exactly r blocks, where

b = λv(v − 1)

c2k(k − 1)
, r = λ(v − 1)

c(k − 1)
(3)

hold (cf. Ogata et al. 2004). The parameter r is called a replication number of the
design. The blocks in B is displayed in the form of

{v11, v12, . . . , v1c | v21, v22, . . . , v2c | . . . | vk1, vk2, . . . , vkc}.

by use of kc points on V or {Bi1 | Bi2 | . . . | Bik} by use of k subblocks Bi j (1 ≤ i ≤
b).

This has been called a splitting balanced incomplete block design (splittingBIBD)
in Du (2004, 2005), Ge et al. (2005), Liang (2018), Ogata et al. (2004), Wang and Su
(2010) since 2004. However, this naming may not be proper, because of the fact that
for only c = 1 a (v, k × 1, λ)-SBD coincides with the traditional notion of a balanced
incomplete block (BIB) design (V,B), denoted by (v, k, λ)-BIBD (cf. Raghavarao
1988). Hence, we have called the structure a splitting-balanced block design (SBD)
in Matsubara et al. (2017) instead.
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A (v, k, λ)-BIBD is said to be resolvable if b blocks can be grouped into r sets
(called resolution sets) of b/r (= v/k) blocks each such that every point appears
in each resolution set exactly once. Moreover, a resolvable (v, k, λ)-BIBD with b =
v + r − 1 is said to be affine resolvable (cf. Abel et al. 2007; Raghavarao 1988).

A necessary condition for the existence of a (v, k × c, λ)-SBD is given as follows.

Lemma 2 (Matsubara et al. 2017) In a (v, k × c, λ)-SBD with b blocks,

b ≥ v − 1

k − 1
(4)

holds. Furthermore, the existence of a (v, k × c, λ)-SBD with b = (v − 1)/(k − 1)
blocks is equivalent to the existence of an affine resolvable (v, c, λ∗)-BIBD with
v = kc and λ∗ = r − λ, where r is a common replication number of both designs.

The existence of several classes of the (v, k × c, λ)-SBD is discussed in literature
(e.g., Du 2004, 2005; Ge et al. 2005; Liang 2018; Matsubara et al. 2017; Ogata et al.
2004; Wang and Su 2010). Especially, the following result will be useful to construct
a PMAλ(3 × 2, v).

Lemma 3 (Du 2004) There exists a (v, 3 × 2, λ)-SBD if and only if

λ(v − 1) ≡ 0 (mod 4), λv(v − 1) ≡ 0 (mod 24)

with a definite exception (v, λ) = (9, 1).

If each of families B1, . . . ,Bk consisting of c-subsets in each column of a
PMAλ(k × c, v) yields a (v, c, λ∗)-BIBD with some λ∗, then a set of the k BIB
designs (V,B1), . . . , (V,Bk) is known to be k-pairwise additive BIB designs (cf.
Matsubara and Kageyama 2015; Sawa et al. 2007). Especially, in k-pairwise addi-
tive (v, c, λ∗)-BIBDs, any pair of two BIB designs yields a (v, 2c, λ∗∗)-BIBD with
λ∗∗ = λ + 2λ∗ (cf. Sawa et al. 2007).Moreover, the existence of a 3-pairwise additive
(v, 2, 1)-BIBD is given as the following shows.

Lemma 4 (Matsubara and Kageyama 2015) There exists a 3-pairwise additive
(v, 2, 1)-BIBD for any v ≥ 6.

Lemma 4 provides the existence of a PMA4(3 × 2, v) for any v ≥ 6 which corre-
sponds with the case λ = 4 of the main result (Theorem 8) in Sect. 5.

Let v, k, λ be positive integers. A group divisible design, denoted by (k, λ)-GDD,
is a triplet (V,G,B), where V is a set of v points, G is a partition of V into subsets
(called groups) and B (|B| = b) is a family of subsets (called blocks) of size k each
of V such that

(G1) every pair of distinct points x, y ∈ V in different groups occurs in exactly λ

blocks, and
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(G2) every pair of distinct points x, y ∈ V in the same group does not occur in any
block.

The group type of a (k, λ)-GDD is a multi-set {|G| | G ∈ G}. The usual exponen-
tial notation is used to describe group types. Thus the notation ht11 h

t2
2 · · · htnn means

that there are ti groups of size hi for 1 ≤ i ≤ n (cf. Ge 2007).
The following proposition on GDDs is shown.

Lemma 5 (Ge 2007) Let g, u and m be non-negative integers. Then there exists a
(3, 1)-GDD of type gum1 if and only if the following conditions are all satisfied:

1. if g > 0, then u ≥ 3, or u = 2 and m = g, or u = 1 and m = 0, or u = 0;
2. m ≤ g(u − 1) or gu = 0;
3. g(u − 1) + m ≡ 0 (mod 2) or gu = 0;
4. gu ≡ 0 (mod 2) or m = 0; and
5. 1

2g
2u(u − 1) + gum ≡ 0 (mod 3).

The following results of GDDs are obtained by checking that the parameters
satisfy the conditions described in Lemma 5.

Corollary 1 There exists a (3, 1)-GDD of type 12u8 for any u ≥ 3.

Corollary 2 There exists a (3, 1)-GDD of type 84.

Corollary 3 There exists a (3, 1)-GDD of type 62u+18 for any u ≥ 1.

The combinatorial designs given in this section will be utilized for constructions
of PMAs discussed in Sect. 5.

3 Some Necessary Conditions and Existence Results

In this section, the existence of a PMAλ(k × c, v) is considered by taking account
into some results on the other combinatorial structures.

At first, the necessary conditions for the existence of a PMAλ(k × c, v) are con-
sidered. It is obvious by the conditions (P1) and (P2) that for any PMAλ(k × c, v)
of size N × k

kc ≤ v (5)

holds and

N = λv(v − 1)

2c2
(6)

is a positive integer.
When k ≥ 3, since any two rows of a PMAλ(k × c, v) yield a (v, 2 × c, λ)-SBD,

every point must occur equally (cN/v times) in each column. Hence it is seen that

cN

v
= λ(v − 1)

2c
(7)
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is a positive integer.
The sufficiency of these necessary conditions (5), (6), (7) for the case of (k, c) =

(3, 2) will be proved as in Theorem 8 of Sect. 5.
Regarding the number of rows in an array, Lemma 2 provides the following

necessary condition for the existence of a PMAλ(k × c, v).

Theorem 2 In a PMAλ(k × c, v) of size N × k,

N = λv(v − 1)

2c2
≥ v − 1

holds. In particular, N = v − 1 implies v = 2c.

Proof Any pair of two columns of a PMAλ(k × c, v) yields a (v, 2 × c, λ)-SBD by
regarding N rows of the two columns as b blocks of the design. Since the number of
blocks of the (v, 2 × c, λ)-SBD is equal to the number of rows of thePMAλ(k × c, v),
Lemma 2 implies that N ≥ v − 1 holds. Moreover, Lemma 2 also shows that the
existence of a (v, 2 × c, λ)-SBD with b = v − 1 obtained from a PMAλ(k × c, v)
with N = v − 1 leads v = 2c. �

Now, the existence of PMAs with N = v − 1, v is discussed. At first, the case of
k = 2 is considered. Since the existence of a PMAλ(2 × c, v) is equivalent to the
existence of a (v, 2 × c, λ)-SBD, it is seen that the existence results on (v, 2 × c, λ)-
SBDs given in Du (2005), Ge et al. (2005), Liang (2018), Matsubara et al. (2017)
show the existence of some classes of a PMAλ(2 × c, v). Especially, for the case of
(N , k) = (v − 1, 2), Lemma 2 implies that the existence of a PMAλ(2 × c, v) with
N = v − 1 is equivalent to the existence of the affine resolvable (2c, c, λ∗)-BIBD,
that is, an Hadamard matrix of order 2c (cf. Abel et al. 2007), where λ = c and
λ∗ = c − 1. Note that, in an Hadamard matrix, the smallest unknown order is 668
(= 2c) (Kharaghani and Tayfeh-Rezaie 2005). Hence, the existence of PMAs with
N = v − 1 is presented as follows.

Theorem 3 There exists a PMAc(2 × c, 2c) with N = v − 1 (= 2c − 1) for any
even c < 334.

The PMA4(2 × 4, 8) given in Example 1 is the case c = 4 of Theorem 3.
On the other hand, for the case of (N , k) = (v, 2), the existence of a (2c2 + 1, 2 ×

c, 1)-SBDwith b = v and a (c2 + 1, 2 × c, 2)-SBDwith b = v is given for any c ≥ 2
inGe et al. (2005). Hence, the existence of PMAswith N = v is presented as follows.

Theorem 4 There exist a PMA1(2 × c, 2c2 + 1) with N = v (= 2c2 + 1) and a
PMA2(2 × c, c2 + 1) with N = v (= c2 + 1) for any c ≥ 2.

Furthermore, the following results are given byMatsubara et al. (2017) [Theorems
6 and 7].

Theorem 5 When c ≥ 3 and t ≥ 1 are both odd, there does not exist a PMAtc(2 ×
c, 2c).
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Theorem 6 For given c, a PMAc(2 × c, 2c + 1) exists only if 2c + 1 is the sum of
two squares.

Note that Theorems 5 and 6 give the results of the cases N = t (v − 1) with t ≥ 1
and N = v, respectively. For example, Theorem 6 shows the following result.

Corollary 4 A PMA10(2 × 10, 21) and a PMA16(2 × 16, 33) do not exist.

Next, the case of k ≥ 3 is considered.

Theorem 7 There does not exist a PMAλ(k × c, v) with N = v − 1 and k ≥ 3.

Proof Theorem2 implies that v = 2c holds for anyPMAλ(k × c, v)with N = v − 1.
Hence, k ≥ 3 implies that kc > 2c = v, which is a contradiction to (5). �

On the other hand, a PMAλ(k × c, v) with N = v and k = 3 can be constructed
by use of a computer as follows.

Example 3 A cyclic PMA2(3 × 6, 37) on Z37 is given by

(0, 13, 15, 17, 20, 35 | 3, 5, 11, 19, 28, 34 | 9, 14, 22, 27, 32, 33) mod 37.

To the best of the authors’ knowledge, any PMAλ(k × c, v)with N = v and k ≥ 3
is not available except for the PMA2(3 × 6, 37) in Example 3.

4 Constructions from Combinatorial Designs

In this section, twomethods of constructing PMAs through the combinatorial designs
given in Sect. 2 are provided.

At first, the construction by use of a (v, k × c, λ)-SBD is considered. When k is
an odd prime, useful constructions of APMAs has been found in Li et al. (2018).
Similarly, we can obtain other two constructions for the PMAs.

Lemma 6 The existence of a (v, k × c, λ)-SBDand aPA1(k, k) implies the existence
of a PMAλ(k × c, v).

Proof Let the i th block of a (v, k × c, λ)-SBD (V,B) be

{Bi1 | Bi2 | . . . | Bik}, 1 ≤ i ≤ b,

where Bi1, . . . , Bik are c-subsets of V . Also let the j th row of a PA1(k, k) on
{1, 2, . . . , k} be

(a j1, a j2, . . . , a jk), 1 ≤ j ≤ 1

2
k(k − 1).
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Then, since there uniquely exists a j (1 ≤ j ≤ k(k − 1)/2) for any {x, y} ⊂
{1, 2, . . . , k} and any h1, h2 with 1 ≤ h1 < h2 ≤ k such that {x, y} = {a jh1 , a jh2},
the following rows yield the required multi-array:

(
Bia j1 | Bia j2 | . . . | Bia jk

)

with 1 ≤ i ≤ b and 1 ≤ j ≤ k(k − 1)/2. �

Lemma 7 The existence of a (k, λ)-GDD of type ht11 h
t2
2 · · · htnn , a PA1(k, k) and a

PMAλ(k × c, hi c + 1) for each i (1 ≤ i ≤ n) implies the existence of a PMAλ(k ×
c, v∗) with v∗ = c(h1t1 + · · · + hntn) + 1.

Proof Let G� (1 ≤ � ≤ t1 + t2 + · · · + tn) be groups of a (k, λ)-GDD of type
ht11 h

t2
2 · · · htnn on Zv with v = ∑n

i=1 hi ti . Then, we take the direct product Zv × Zc

and let (Zv × Zc) ∪ {∞} be a point set of the required multi-array.
Let the i th block of the (k, λ)-GDD of type ht11 h

t2
2 · · · htnn be

{vi1, vi2, . . . , vik}, 1 ≤ i ≤ b,

where b is the number of blocks of the (k, λ)-GDD. Let the j th row of a PA1(k, k)
on Zk be

(a j1, a j2, . . . , a jk), 1 ≤ j ≤ 1

2
k(k − 1).

Then, by replacing each point vii ′ ∈ Zv with a subset Bii ′ = {(vii ′ , e) | e ∈ Zc} for
1 ≤ i ≤ b and 1 ≤ i ′ ≤ k, the following row set R0 is at first considered:

(
Bia j1 | Bia j2 | . . . | Bia jk

)

with 1 ≤ i ≤ b and 1 ≤ j ≤ k(k − 1)/2.
Furthermore, let R� on (G� × Zc) ∪ {∞} with 1 ≤ � ≤ t1 + · · · + tn be the row

sets obtained from a PMAλ(k × c, |G�|c + 1)with |G�| = hi for some i (1 ≤ i ≤ n)

by the assumption. Then the 1 + t1 + · · · + tn row setsR0 andR� (1 ≤ � ≤ t1 + · · · +
tn) can yield the required multi-array. �

5 Existence of a PMAλ(3× 2, v)

In this section, the existence of a PMAλ(3 × 2, v) is shown through individual exam-
ples and the construction results given in Sect. 4. For such existence, from the nec-
essary conditions (5), (6) and (7) with (k, c) = (3, 2), i.e., v ≥ 6, N = λv(v − 1)/8
and cN/v = λ(v − 1)/4, it is sufficient to show the existence of a PMAλ(3 × 2, v)
for the following cases:

(I) v ≡ 1 (mod 8) when λ ≥ 1,
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(II) v ≡ 5 (mod 8) when λ ≡ 0 (mod 2),
(III) v ≡ 0, 2, 3 (mod 4) when λ ≡ 0 (mod 4).

At first, two individual examples are provided by use of a computer.

Example 4 A cyclic PMA1(3 × 2, 41) on Z41 is given by

(0, 24 | 1, 15 | 33, 36), (0, 21 | 28, 33 | 2, 35), (0, 27 | 3, 25 | 17, 20),
(0, 1 | 22, 37 | 26, 38), (0, 17 | 11, 27 | 30, 40) mod 41.

Example 5 A cyclic PMA2(3 × 2, 29) on Z29 is given by

(1 · 4d ,−1 · 4d | 2 · 4d ,−2 · 4d | 4 · 4d ,−4 · 4d) mod 29

with 0 ≤ d ≤ 6.

For both of Examples 4 and 5, it can be checked that the base rows satisfy the
condition (2). Hence, it is seen that the arrays obtained from the base rows satisfy
the conditions (P1) and (P2).

Next, the non-existence result can be presented.

Lemma 8 There does not exist a PMA1(3 × 2, 9).

Proof Assume that there exists a PMA1(3 × 2, 9) on Z9, i.e., 9 × 3 multi-array
A = (Ai j ) with |Ai j | = 2. For convenience, Ai j is denoted by A j

i here.
Let a set of entries in the first column of A be A1 = {A1

i | 1 ≤ i ≤ 9}. Then,
since (λ, k, c, v) = (1, 3, 2, 9) implies that each point is contained in exactly two
of the entries in A1, there exists a set S = {A1

i1
, A1

i2
, . . . , A1

id
} ⊂ A1 for some d

(2 ≤ d ≤ 9) such that

A1
ih ∩ A1

ih+1
�= φ (1 ≤ h ≤ d − 1), A1

id ∩ A1
i1 �= φ. (8)

Since any permutation of points and any permutation of rows are both allowed in a
PMA, it can be assumed without loss of generality that

S = {A1
1, A

1
2, . . . , A

1
d}, A1

i = {i − 1, i}, 1 ≤ i ≤ d, (9)

where A1
d = {d − 1, 0}. Note that each point of Zd is not contained in any entry in

A1\S.
Hereafter A j

i and Pi ( j1, j2) defined by (1) are considered for 1 ≤ i ≤ d ≤ 9,
1 ≤ j ≤ 3 and 1 ≤ j1 < j2 ≤ 3, where A j

i+d and Pi+d( j1, j2) are regarded as A j
i

and Pi ( j1, j2), respectively. Then, in the PMA with λ = 1 each of
(d
2

)
pairs of two

distinct points inZd is contained in
⋃

1≤i≤d Pi ( j1, j2) exactly once for each ( j1, j2) =
(1, 2), (1, 3). Since both elements of A1

i (1≤i≤d) are contained in Zd , it is seen that

∑
1≤i≤d

∣∣∣A j
i ∩ Zd

∣∣∣ = d(d − 1)

4
, j = 2, 3. (10)
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Since d(d − 1)/4 must be a positive integer in (10) for d ≤ 9, it is seen that d =
4, 5, 8, 9.

When d = 4, (9) implies that A1
i = {i − 1, i}, A1

i+1 = {i, i + 1}, A1
i+2 = {i +

1, i + 2} (1 ≤ i ≤ 4) on Z4. Since {i, i + 1} must be contained in both of
⋃

1≤i≤4

Pi (1, 2) and
⋃

1≤i≤4 Pi (1, 3) exactly once each, it holds that i + 1 ∈ A2
i ∪ A3

i

and i ∈ A2
i+2 ∪ A3

i+2 for each i of 1 ≤ i ≤ 4. This implies
∑

1≤i≤4 |A2
i ∩ Zd | +∑

1≤i≤4 |A3
i ∩ Zd | = 8, which is a contradiction to (10), i.e.,

∑
1≤i≤4 |A2

i ∩ Zd | +∑
1≤i≤4 |A3

i ∩ Zd | = 6.
When d = 5, it is seen that there exists a set S′ = {A1

i1
, A1

i2
, . . . , A1

id′ } consisting
of the entries inA1\S for some d ′ (2 ≤ d ′ ≤ 4) which satisfies (8). However, by the
discussion similar to S with 2 ≤ d ≤ 4, it can be shown that there does not exist an
S′ with 2 ≤ d ′ ≤ 4. Hence it follows that d �= 5.

When d = 8, (9) implies A1
9 = {8, 8}, which is a contradiction.

When d = 9, (9) implies that A1
i = {i − 1, i}, A1

i+1 = {i, i + 1}, A1
i+2 = {i +

1, i + 2} (1 ≤ i ≤ 9) on Z9. Since {i, i + 1} must be contained in both of
⋃

1≤i≤9
Pi (1, 2) and

⋃
1≤i≤9 Pi (1, 3) exactly once each, it follows that

i + 1 ∈ A2
i ∪ A3

i , i ∈ A2
i+2 ∪ A3

i+2, 1 ≤ i ≤ 9. (11)

Also, (9) implies that A1
i = {i − 1, i}, A1

i+1 = {i, i + 1}, A1
i+2 = {i + 1, i + 2},

A1
i+3 = {i + 2, i + 3}, A1

i+4 = {i + 3, i + 4} (1 ≤ i ≤ 9) on Z9. Moreover, (11)
implies that {i, i + 2} appears in both of Pi+1(1, 2) ∪ Pi+1(1, 3) and Pi+2(1, 2) ∪
Pi+2(1, 3) for 1 ≤ i ≤ 9. Hence, it is seen that i /∈ A2

i+3 ∪ A3
i+3 and i + 3 /∈ A2

i+1 ∪
A3
i+1 for 1 ≤ i ≤ 9. Since {i, i + 3} must be contained in both of

⋃
1≤i≤9 Pi (1, 2)

and
⋃

1≤i≤9 Pi (1, 3) exactly once each, it follows that

i + 3 ∈ A2
i ∪ A3

i , i ∈ A2
i+4 ∪ A3

i+4, 1 ≤ i ≤ 9.

Thus, it is seen that A2
i ∪ A3

i = {i + 1, i + 3, i + 5, i + 7} (1 ≤ i ≤ 9). However,
the {i, i + 1} does not appear in ⋃

1≤i≤9 Pi (2, 3), which is a contradiction. �

Now, the main theorem of this paper will be established.

Theorem 8 The necessary conditions (5), (6) and (7) are sufficient for the existence
of a PMAλ(3 × 2, v) with a definite exception (v, λ) = (9, 1).

Proof At first, for each of three cases (I) with λ = 1 and v �= 9, (II) with λ = 2
and (III) with λ = 4 described at the beginning of this section, the required array is
constructed.
Case (I): On account of Theorem 1 and Examples 2 and 4, it is sufficient to prove
the existence of a PMA1(3 × 2, v) with v ∈ {65, 113, 161, 185}. Note that v ≡ 17
(mod 24) holds for every v ∈ {65, 113, 161, 185}.

Corollary 1 provides a (3, 1)-GDD of type 12u8 with 12u + 8 points and u + 1
groups for any u ≥ 3. In addition, a PMA1(3 × 2, v) for v = 17 is given inExample 2.
Furthermore, a PA1(3, 3) and a (25, 3 × 2, 1)-SBD can be obtained by Lemmas 1
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and 3, respectively. Hence, a PMA1(3 × 2, 25) can be constructed by use of the
construction in Lemma 6. Then, Lemma 7 with c = 2 shows that the (3, 1)-GDD of
type 12u8 and the PMA1(3 × 2, v) for v = 17, 25 yield a PMA1(3 × 2, 24u + 17)
for any u ≥ 3. Hence, there exists a PMA1(3 × 2, v) for v = 113, 161, 185.

On the other hand, Lemma 7 with c = 2 also shows that the (3, 1)-GDD of type
84 given in Corollary 2 and the PMA1(3 × 2, 17) yield a PMA1(3 × 2, 65).
Case (II): For v ≡ 13, 21 (mod 24), Lemma 6 with the (v, 3 × 2, 2)-SBD given in
Lemma 3 and the PA1(3, 3) provide the required array. Hence, it is sufficient to prove
the existence of a PMA2(3 × 2, v) for v ≡ 5 (mod 24).

Now, Example 5 is the case of v = 29. Lemma 7 with c = 2 also shows that
a (3, 2)-GDD of type 62u+18 with 12u + 14 points and 2u + 2 groups obtained
by taking copies of the design given in Corollary 3 and the PMA2(3 × 2, v) with
v = 13, 17 yield a PMA2(3 × 2, v) for v ≡ 5 (mod 24) with v ≥ 53.
Case (III): Lemma 4 provides the PMA4(3 × 2, v) for any v ≥ 6.

Therefore, for larger λ in each of the three cases (I) with v �= 9, (II) and (III), the
required array can be constructed by taking copies of the array with λ = 1, λ = 2 and
λ = 4, respectively. For v = 9, Lemma 6with a (9, 3 × 2, λ)-SBD given in Lemma 3
and the PA1(3, 3) yields a PMAλ(3 × 2, 9) for any λ ≥ 2. Furthermore, Lemma 8
shows the non-existence of a PMA1(3 × 2, 9). The proof is complete. �
Remark 1 Lemma 8 also shows the non-existence of an APMA1(3 × 2, 9) which
improves Theorem 1 mentioned in Sect. 1.

6 Asymptotic Existence on a Cyclic PMA1(4× 2, v)

It does not seem to be easy to construct an infinite family of PMAs for some classes of
k ≥ 4 or c ≥ 3. The asymptotic existence of such PMAs is here discussed. Regarding
some cyclic combinatorial structures, asymptotic results have been obtained by using
Weil’s theorem (cf. Lidl and Niederreiter 2018) on multiplicative character sums
(e.g., Buratti and Pasotti 2009; Chang and Ji 2004; Li et al. 2018). In this section, the
asymptotic existence of a cyclic PMA1(4 × 2, p) is shown for a prime p ≡ 1 (mod
8) with p > 5 × 109 based on the result in Li et al. (2018, Theorem 3.16). Note that
Theorem 3.16 in Li et al. (2018) shows the existence of an APMA1(5 × 2, p) for any
prime p ≡ 1 (mod 40) with p > 41 by use of an asymptotic method and a computer
search.

For q ≡ 1 (mod n) and a primitive element α ∈ GF(q), denote by Cn
0 the unique

multiplicative subgroup {αin | 0 ≤ i ≤ (q − 1)/n} of index n and order (q − 1)/n,
while Cn

j (1 ≤ j ≤ n − 1) denotes the multiplicative coset of Cn
0 represented by

α j , i.e., Cn
j = α j · Cn

0 . The multiplicative cosets Cn
0 ,C

n
1 , . . . ,C

n
n−1 of C

n
0 are called

cyclotomic classes of index n in GF(q). The following result can be obtained by
using Weil’s theorem.

Lemma 9 (Chang and Ji 2004) Let p ≡ 1 (mod q) be a prime satisfying the inequal-
ity
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p −
[ ∑
0≤i≤s−2

(
s

i

)
(s − i − 1)(q − 1)s−i

]
√
p − sqs−1 > 0. (12)

Then, for any given s-tuple ( j1, j2, . . . , js) ∈ {0, 1, . . . , q − 1}s and any given s-
tuple (c1, c2, . . . , cs) of pairwise distinct elements of GF(p), there exists an element
x ∈ GF(p) such that x + ci ∈ Cq

ji
for each i = 1, 2, . . . , s.

Now, for a cyclic PMA1(4 × 2, v), the following asymptotic existence result can
be obtained.

Theorem 9 Let p ≡ 1 (mod 8) be an odd prime with p > 5 × 109. Then there exists
a cyclic PMA1(4 × 2, p).

Proof Let p = 8m + 1 be a prime, where m is a positive integer and p > 5 × 109.
Then, it is seen that the inequality (12)with (q, s) = (4, 7)holds for any p > 5 × 109,
more precisely p > 4.84881 · · · × 109. Let α be a primitive element of GF(p) and
C4
0 ,C

4
1 ,C

4
2 ,C

4
3 be a cyclotomic classes of index 4. Then the following row is at first

considered for some x ∈ GF(p):

R = (
α, αx | α2, α2x | α3, α3x | α4, α4x

)
.

Now, we can uniquely determine integers a1, a2 and a3 in Z4 such that α − 1 ∈
C4
a1 , α

2 − 1 ∈ C4
a2 and α3 − 1 ∈ C4

a3 , respectively. Moreover, Lemma 9 with

( j1, j2, j3, j4, j5, j6, j7) = (1, a1 + 2, a1 + 2, a2 + 2, a2 + 1, a3 + 2, a3)

on Z4 and

(c1, c2, c3, c4, c5, c6, c7) = (0,−α,−α−1,−α2,−α−2,−α3,−α−3)

on GF(p) provides an element x ∈ GF(p) such that

x ∈ C4
1 , x − α ∈ C4

a1+2, x − α−1 ∈ C4
a1+2, x − α2 ∈ C4

a2+2,

x − α−2 ∈ C4
a2+1, x − α3 ∈ C4

a3+2, x − α−3 ∈ C4
a3 .

Then it follows that

±(αi − 1) ∈ C4
ai , ±x(αi − 1) ∈ C4

ai+1, ±(x − αi ) ∈ C4
ai+2, ±αi (x − α−i ) ∈ C4

ai+3.

for i = 1, 2, 3.
For R with the x , let the i th base row be Ri = α4(i−1)R = (Ai1 | Ai2 | Ai3 | Ai4)

for 1 ≤ i ≤ m, where

Ai j = {
α4(i−1)+ j , α4(i−1)+ j x

}
, j = 1, 2, 3, 4.

Then, the j1th and the j2th entries of Ri (1 ≤ i ≤ m) yield the following differences:



294 K. Matsubara and S. Kageyama

⋃
1≤i≤m

α4(i−1)+ j1
{±(α − 1),±x(α − 1),±(x − α),±α(x − α−1)

}

for ( j1, j2) = (1, 2), (2, 3), (3, 4),

⋃
1≤i≤m

α4(i−1)+ j1
{±(α2 − 1),±x(α2 − 1),±(x − α2),±α2(x − α−2)

}

for ( j1, j2) = (1, 3), (2, 4) and

⋃
1≤i≤m

α4(i−1)+ j1
{±(α3 − 1),±x(α3 − 1),±(x − α3),±α3(x − α−3)

}

for ( j1, j2) = (1, 4). Since p = 8m + 1 and {ai , ai + 1, ai + 2, ai + 3} = Z4 for i =
1, 2, 3, it is seen that the m base rows Ri with 1 ≤ i ≤ m satisfy the condition (2).

Thus, m row orbits of the base rows yield the required array. �

Remark 2 Similarly to Theorem 9, various asymptotic results of cyclic PMAs can
be obtained. For example, it can be shown that there exists a cyclic PMA1(k × 2, p)
for any k ≥ 3 and any prime p ≡ 1 (mod 8) satisfying the inequality (12) with
(q, s) = (4, 2k − 1).

7 Conclusions

As pointed out in Li et al. (2018), authentication and secrecy codes without splitting
have been intensively studied in literature, but authentication and secrecy codes with
splitting have been much less studied than their counterparts. To construct the codes
with splitting, they newly defined the PMA and the APMA. In this paper, we made
some progress on the results of the PMAs. However, not many PMAs with N =
v − 1, v are constructed except for the case of k = 2 as inTheorems 3 and 4.Although
Theorem 7 shows the non-existence of a PMAwith N = v − 1, k ≥ 3, there possibly
exists a PMAwith N = v, k ≥ 3. Unfortunately, the methods presented in this paper
cannot provide the exact existence, even if the asymptotic existence, of any (cyclic)
PMAλ(k × c, v) with N = v and k ≥ 3 except for (λ, k, c, v) = (2, 3, 6, 37) and
(1, 3, 2, 9) given in Example 3 and Lemma 8, respectively.

To the best of our knowledge, any application of PMAs (or APMAs) has never
been considered except for Li et al. (2018), and any other application is not also
discussed in this paper. On the other hand, other types of combinatorial multi-arrays
have been introduced in literature, for example, an orthogonal multi-array (OMA)
(Brickell 1984) and a balanced orthogonal multi-array (BOMA) (Mukerjee 1998;
Sitter 1993) which are generalizations of the orthogonal array. Especially, the OMA
and the BOMA are multi-arrays allowed to have different sizes of entries in each row
and each column, and statistical applications of the BOMA are given in Mukerjee
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(1998); Sitter (1993). Furthermore, in Bailey and Cameron (2019), a special class of
the BOMA is focused as multi-part balanced incomplete-block designs, and another
statistical application of the designs is discussed. The “balanced” property of the
BOMA implies that entries of each column yield a pairwise balanced design (PBD),
where the PBD is a generalization of a BIB design by allowing various block sizes
(see Raghavarao 1988). It is clear that the existence of a PMA A = (Ai j ) with
the balanced property, i.e., {Ai j | 1 ≤ i ≤ N } yields a BIB design for each j with
1 ≤ j ≤ k, is equivalent to the existence of pairwise additive BIB designs discussed
in Matsubara and Kageyama (2015), Sawa et al. (2007).

It is well known that perpendicular arrays can be used to construct orthogonal
arrays. Furthermore, some relationship between the pairwise additive BIB designs
and a special class of mutually orthogonal latin squares equivalent to the orthogonal
array is discussed in Matsubara and Kageyama (2015), Sawa et al. (2007). However,
it seems that any construction of the OMA (or the BOMA) by use of the PMA (or
the pairwise additive BIB designs) has never been known.

Several generalizations of a PMA can be considered. One of the generalizations
is to consider a strength of the PMA. Actually, the PMA with the strength t is
defined for any t ≥ 2 in Li et al. (2018). Another generalization is to allow different
sizes of the entry for PMA. Moreover, since Rao (1961) introduced two types of
orthogonal arrays, orthogonal arrays of type I (called ordered designs in Bierbrauer
2007) and orthogonal arrays of type II (called perpendicular arrays in Bierbrauer
2007), a generalization of the ordered design as an ordered multi-design (OMD) and
its applications may be discussed. In fact, a PMA given in Example 5 is such an
ordered multi-design.

The relationship among three types of the combinatorial multi-arrays (OMA,
OMD,PMA), their generalizations and their applications to the design of experiments
(or other fields) will be discussed in a forthcoming paper.

Acknowledgements The authors would like to thank the referee for constructive comments.

References

Abel, R..J.R., Ge, G., Yin, J.: Resolvable and near-resolvable designs. In: Colbourn, C.J., Dinitz,
J..H. (eds.) The CRC Handbook of Combinatorial Designs, 2nd edn., pp. 124–132. CRC Press,
Boca Raton (2007)

Bailey, R.A., Cameron, P.J.: Multi-part balanced incomplete-block designs. Stat. Papers 60, 405–
426 (2019)

Bierbrauer, J.: Ordered designs, perpendicular arrays, and permutation sets. In: Colbourn, C.J.,
Dinitz, J.H. (eds.) The CRC Handbook of Combinatorial Designs, 2nd edn., pp. 543–547. CRC
Press, Boca Raton (2007)

Brickell, E.F.: A few results in message authentication. Congr. Numer. 43, 141–154 (1984)
Buratti, M., Pasotti, A.: Combinatorial designs and the theorem of Weil on multiplicative character
sums. Finite Fields Appl. 15, 332–344 (2009)

Chang, Y., Ji, L.: Optimal (4up, 5, 1) optical orthogonal codes. J. Combin. Des. 12, 346–361 (2004)
Du, B.: Splitting balanced incomplete block designs. Australas. J. Combin. 31, 287–298 (2005)



296 K. Matsubara and S. Kageyama

Du, B.: Splitting balanced incomplete block designs with block size 3 × 2. J. Combin. Des. 12,
404–420 (2004)

Ge, G.: Group divisible designs. In: Colbourn, C.J., Dinitz, J.H. (eds.) The CRC Handbook of
Combinatorial Designs, 2nd edn., pp. 255–260. CRC Press, Boca Raton (2007)

Ge, G., Miao, Y., Wang, L.: Combinatorial constructions for optimal splitting authentication codes.
SIAM J. Discrete Math. 18, 663–678 (2005)

Kharaghani, H., Tayfeh-Rezaie, B.: A Hadamard matrix of order 428. J. Combin. Des. 13, 435–440
(2005)

Li,M., Liang,M., Du, B., Chen, J.: A construction for optimal c-splitting authentication and secrecy
codes. Des. Codes Cryptogr. 86, 1739–1755 (2018)

Liang, M.: Splitting balanced incomplete block designs with block size 2 × 5. J. Combin. Math.
Combin. Comput. 105, 67–76 (2018)

Lidl, R., Niederreiter, H.: Finite Fields. Cambridge University Press, Cambridge (1997)
Matsubara, K., Kageyama, S.: The existence of 3 pairwise additive B(v, 2, 1) for any v ≥ 6. J.
Combin. Math. Combin. Comput. 95, 27–32 (2015)

Matsubara, K., Sawa,M., Kageyama, S.: Existence on splitting-balanced block designs with resolv-
ability. Graphs Combin. 33, 561–572 (2017)

Mukerjee, R.: On balanced orthogonal multi-arrays: Existence, construction and application to
design of experiments. J. Statist. Plann. Inference 73, 149–162 (1998)

Ogata,W.,Kurosawa,K., Stinson,D.R., Saido,H.:Newcombinatorial designs and their applications
to authentication codes and secret sharing schemes. Discrete Math. 279, 383–405 (2004)

Raghavarao, D.: Constructions and Combinatorial Problems in Design of Experiments. Dover, New
York (1988)

Rao, C.R.: Combinatorial arrangements analogous to orthogonal arrays. Sankhya A23, 283–286
(1961)

Sawa, M., Matsubara, K., Matsumoto, D., Kiyama, H., Kageyama, S.: The spectrum of additive
BIB designs. J. Combin. Des. 15, 235–254 (2007)

Sitter, R.R.: Balanced repeated replications based on orthogonal multi-arrays. Biometrika 80, 211–
221 (1993)

Wang, J., Su, R.: Further results on the existence of splittingBIBDs and application to authentication
codes. Acta Appl. Math. 109, 791–803 (2010)



Statistical Design Issues for fMRI
Studies: A Beginner’s Training Manual
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Abstract An experimental subject [patient] is presented with a mental stimulus
such as a 1.5-second flickering checkerboard image or a painful heat stimulus at
some of a total of n time points in the experiment. During this presentation, the
patient absorbs a sequence of mental stimuli along with a provision for intermediate
resting period as well. The measurement of a brain voxel at an instant is collected
by an fMRI scanner. The purpose is to examine a collection of the response profiles
to understand the nature and extent of local brain activity in response to the stimuli.
Functional Magnetic Resonance Imaging (fMRI) is a technology for studying how
our brains respond to mental stimuli. In recent times, researchers have paid attention
to “modeling” the responses in terms of sequences of mental stimuli received during
a given period including the “resting phase” as well. The simplest such model incor-
porates linear relation between mean response and the parameters describing the
effects of the stimuli, applied at regularly spaced time points during the study period.
There is a nuisance parameter and also those representing the unknown heights of the
hemodynamic response function, HRF, at the stimulus onset time point and at some
of the immediately preceding time points. Statistical design theorists have focused
their attention to the study of design sequences for collecting most informative data
in order to render most precise inference about these parameters under an assumed
statistical model. We have noted that most experimental design researchers are not
aware of this application of linear models and design considerations in fMRI studies.
Accordingly, our primary consideration has been to introduce this application area
and related concepts in simple terms. We have given illustrative examples at length.
In the process, we have introduced the concept of “Clear Zero”. We thought this
would create enough interest among researchers in the broad areas of linear models
and DoE. In this paper, we review the linear model and discuss estimation issues and
related concepts such as “orthogonality” and “balance”, as are applicable to fMRI
research study. Incidentally, a concept termed “Clear 0” is introduced and studied at
length. This is geared toward our understanding of comparison between two given
design sequences from inferential aspects.
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1 Introduction

The key reference to this article is Cheng and Kao (2015) who carried out an investi-
gation on the scope of study of optimal experimental designs in the context of fMRI
studies.

In fMRI studies, each instant is defined as a compact duration of 4 seconds.
According to the linearmodel envisaged in this context, at any instant, the brain voxel
captures the cumulative effects of a “nuisance parameter” θ and the h-parameters at
the current instant aswell as at each of the immediate past ordered (K − 1) instants—
for some K—whenever there has been an onset of active stimulus [coded by 1] at any
of these instances. The h-parameters are said to represent the unknown heights of the
hemodynamic response function, HRF, at the stimulus onset time point and at some
of the immediately preceding time points. This is akin to the concept of “residual” or
“carry-over” effects in the framework of Repeated Measurements Designs [RMDs].
Vide Shah and Sinha (1989).

In actual implementation of stimulus, “doses” may be administered at different
activation levels and their effects may be studied. Here we consider only a (1 − 0)
situation, i.e., only two available codes which correspond to active phase or resting
phase. We refer to Kao et al. (2008) for this and related considerations.

In real-life applications of fMRI studies, a design sequence is of sufficiently
large length n and the number of h-parameters (K ) is also substantially large. We
have tried to keep the length of the design sequences quite general in most of the
illustrations. However, we have confined to very small values of K in most examples
to illustrate the concepts and also to highlight the difficulty levels with large values.
It will be amply clear from the text that an analysis of the data accrued through a
given design sequence is, most often, a routine exercise. It is only when we seek
desirable properties of the parameter estimates that we run into complexities unless
the number of non-negligible h-parameters is small or moderate.

The mean model formulation is developed as follows. An experimental design
of length n, say D(n), is a description of a sequence of 0s and 1s of total length
n. For example, for n = 8, the following describes an eight-point design: D(8) =
[0, 1, 1, 0, 1, 0, 0, 1]. The utility of the suggested design D(8) is described below.
For any n, D(n) is very much like D(8). The linear model to be described below
is developed as a “circular” model—a well-known consideration in the context of
RMDs or cross-over designs. Vide Kunert (1984) or Shah and Sinha (1989). To
visualize a circularmodel, the same sequence (describing D(8)) is used as a “dummy”
sequence and this is described as follows:

< 0, 1, 1, 0, 1, 0, 0, 1 > → [0, 1, 1, 0, 1, 0, 0, 1]
Dummy Sequence followed by Data-generating Sequence
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There are eight data/time points and as such we observe the responses y1 to y8
corresponding to the eight time points in the data-generating sequence [0, 1, 1, 0,
1, 0, 0, 1] going from left to right. The response at the uth time point corresponds
to the measurement of a brain voxel collected by the fMRI scanner at that time
point. According to the description in the linear model, the scanner also reads and
incorporates the effects of the phases in the preceding K − 1 time points. In the
terminology of RMDs or cross-over designs, for the first time point, the “direct
effect” [denoted by h1] is to be captured along with the “carry-over effects” [h2, h3,
....] of the preceding time points as described in the Dummy Sequence—from right
to left. Although, at each data point, only if the stimulus is active [denoted by 1],
the corresponding h-parameter will be considered. Lastly, for n data/time points, we
can incorporate at the most n “parameters”—including the constant parameter θ .
This implies that we can incorporate in the model at the most (n − 1) h-parameters.
Otherwise, identifiability/estimability issues creep in. In terms of K , it means that we
assume—to start with—that K ≤ (n − 1). In reality, the experimenter has a perfect
knowledge about a “cap” on the number of h-parameters and accordingly he/she
makes a choice of n, the number of data points.

We start with Table1 describing the linear model underlying the design D(8). We
assume K = 7. Once for all, we may fix the notation as DS(K , n) to denote a design
sequence of length n, assuming that there are K h-parameters, besides the nuisance
parameter θ . Naturally, for estimability, it is necessary that n > K . When K is not
understood clearly from the context, we may simply write it as DS(n).

Remark 1 Interestingly enough, one single design sequence of length n results in
n responses and an underlying linear model with ((1, 0)) elements. Cheng and Kao
(2015) have rightly referred to “Biased (Spring Balance) Weighing Designs” with
reference to the linear model described above. In the terminology of spring balance
weighing designs with bias, the nuisance parameter θ represents the bias component
and the h-parameters behave like “true (unknown) weight” parameters of a number
of objects. The coefficients 0, 1 appearing in the linear model are also worth noting
as in case of a spring balance weighing design framework. Our understanding of
weighing designs—including the use of Hadamard Matrices—comes in handy to

Table 1 Linear model with positional carry-over effects

S1. No. h7 h6 h5 h4 h3 h2 h1 y Mean model

1 1 0 1 0 0 1 0 y1 θ + h2 + h5 + h7
2 0 1 0 0 1 0 1 y2 θ + h1 + h3 + h6
3 1 0 0 1 0 1 1 y3 θ + h1 + h2 + h4 + h7
4 0 0 1 0 1 1 0 y4 θ + h2 + h3 + h5
5 0 1 0 1 1 0 1 y5 θ + h1 + h3 + h4 + h6
6 1 0 1 1 0 1 0 y6 θ + h2 + h4 + h5 + h7
7 0 1 1 0 1 0 0 y7 θ + h3 + h5 + h6
8 1 1 0 1 0 0 1 y8 θ + h1 + h4 + h6 + h7
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address the question of formation of “optimal” sequences. Vide Raghavarao (1971)
or Shah and Sinha (1989). However, there is a fundamental difference between the
two design formulations. In case of weighing designs, each single weighing results
in just one observation whereas in case of fMRI designs, each single design sequence
of length n generates the full sequence of n observations. This explains the difficulty
level in recommending design sequences with parameters (K , n) possessing nice
properties. There is no sequential search of a design sequence in fMRI study.

In theory, in a study of fMRI design sequence, there is an inherent linear model
(Y,X(∗)β, σ 2I) where (i) coefficient matrix X = ((xi j )) consists of 0s and 1s, (ii)
X(∗) = (1,PX) and β = (θ, h1, h2, . . .)′. It may be noted that in the above table, the
X-matrix is shown in the reverse order. Multiplication by a permutation matrix P
will bring it to the right/standard order. That explains the use of the matrix P above.

Remark 2 It may be noted that the “Dummy Sequence” displayed above forms the
basis of what is known as a “Circular Model”. One should realize the implication of
“circular model” in this context. It implies that the columns h1,h2, .... are circular
in nature. That is, the columns of the matrix X are circular in nature.

Remark 3 We now discuss the implication of a non-circular model. First of all,
there is no “Dummy Sequence” attached to a non-circular model. We straightaway
have the “Data Generating Sequence”, to be in operation from left to right. Therefore,
model expectation of y1 is θ or θ + h1, depending on the nature of onset of the phase
at time point 1, i.e., resting or active. Next, model expectation of y2 will involve θ

and one of the four possible combinations of the h-parameters: −, h1, h2, h1 + h2,
depending on the cases: (0, 0); (0, 1), (1, 0), (1, 1). This will continue until yK−1.
From yK onward, all the K potential h-parameters qualify to enter the model. In
a sense, under a non-circular model, the first K − 1 observations provide curtailed
information about the h-parameters while the rest provide full information. For large
n compared to K , as is usually the case, one recommendation is to discard the initial
K − 1 observations and work with the rest. In other words, effective sample size is
reduced from n to n − K + 1. Consideration of a non-circular model does not pose
any problem for statistical analysis of the entire body of data. However, we do not
expect any “nice” structural pattern of the X-matrix. That may be the reason why
such a model has not been studied in detail in fMRI research.We will not discuss this
matter any further except for providing a general description of a DS(K , n) which
satisfies the rank condition for a non-circular model. We assume K to be even. This
DS is composed of the first K + 1 members as (1, 0, 1, 0, . . . , 1, 0; 0) of length
K + 1. Successive terms in the model expectation (in a non-circular model) are θ +
h1, θ + h2, θ + h1 + h3, . . . , θ + h2 + h4 + · · · + hK ; θ + h3 + h5 + ..... It can be
verified that θ and all the h-parameters are estimable from the K + 1 observations
accrued from this DS of length K + 1.

Remark 4 In case it is believed that there are only K ∗[< K ] h-parameters in
the model, the understanding is that the initial set of K ∗ h-parameters, viz.,
h1, h2, . . . , hK ∗ are important and the rest can be ignored from the mean model.
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For K = K ∗ = 7, the model expectations of successive responses corresponding to
the above design are already shown in the last column of the table. It is readily seen
that E(y8 − y3) = h6 − h2 = E(y7 − y4). Thus, the design layout corresponds to a
singular model. We now assume that h7 = 0 which amounts to saying that K ∗ = 6
and that the underlying X(∗) matrix is of order 8 × 7. In the final analysis, it turns
out that the above design sequence entails one to estimate all the h-parameters only
when there are four of them, viz., h1, h2, h3, h4 are non-negligible and the rest are
negligible. In reality, one has to possess perfect knowledge about K ∗ [or, at least,
a comfortable upper bound of it] and then look for appropriate design sequence to
ensure estimability of all the non-negligible h-parameters.

The rest of the paper is organized as follows. In Sect. 2, we revisit the concepts of
structurally balanced and orthogonal design sequences by using illustrative examples
with small values of K and n. As mentioned before, our aim is to familiarize the
readers with this area of application of linear models in fMRI studies, similar in
context to that of biased spring balance weighing designs. In Sect. 3, we introduce
the concept of “Clear Zero” sequence in fMRI studies. The purpose is to increase
the efficiency of a given design sequence in terms of inference on the h-parameters.
We deal with the special cases of K = 2, 3 while n is kept general. In most of the
subsequent sections, we deal with possible applications of the notion of “Clear Zero”
to derivemodified and possibly “improved” design sequences.Our focus ismorewith
an exposure to the topics with suitable illustrative examples.

2 Structurally Balanced and Orthogonal Design Sequences

For K = 3 h-parameters, the mean model generally involves expressions such as
θ, θ + hi , i = 1, 2, 3; θ + hi + h j , i �= j and, finally, θ + h1 + h2 + h3. The under-
lying design sequence is said to be “Structurally BalancedDesign Sequence [SBDS]”
when frequency counts of θ + h1, θ + h2, θ + h3 are the same and also those of
θ + h1 + h2, θ + h1 + h3, θ + h2 + h3 are the same. In other words, for an SBDS
with K = 3, in terms of the h-parameters, singletons are equally frequent and also
doubletons are equally frequent. The notion generalizes naturally for higher values
of K .

Before we proceed further, we must admit the inherent difficulty level in attaining
structural balance of a design sequence. For arbitrary values of K , n(> K ), specifi-
cation of a DS(K , n) of length n attaining SB in the above sense is highly non-trivial.
When SB obtains, there is “complete symmetry” in the information matrix of the
h-parameters in the sense that it attains the form pI + qJ for suitable scalars p, q.

Specifically, for K = 3 and for an SBDS(3, n) of size n, let f0, f1, f2, f3 rep-
resent, respectively, the frequency counts of θ , each of the singletons, each of the
doubletons and finally that of θ + h1 + h2 + h3. Then n = f0 + 3 f1 + 3 f2 + f3 and
the 4 × 4 information matrix of the β-parameter vector is given by
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[n, f1 + f2 + f3, f1 + f2 + f3, f1 + f2 + f3]; [− − −, f1 + 2 f2 + f3, f2 + f3, f2 + f3];
[− − −,− − −, f1 + 2 f2 + f3, f2 + f3]; [− − −,− − −,− − −, f1 + 2 f2 + f3].

We set a = f1 + 2 f2 + f3 and b = f2 + f3. Then, the 3 × 3 information matrix
for the h-parameters has the representation

[(a(n − a), nb − a2, nb − a2), (nb − a2, a(n − a), nb − a2), (nb − a2, nb − a2, a(n − a)]

and it is completely symmetric (cs). Further, orthogonality of the estimates happens
whenever a2 = nb which simplifies to

( f0 + f1)( f2 + f3) = ( f1 + f2)
2.

When this obtains, pairwise covariances of estimates of the h-parameters are
zeros. Here is an example for n = 8, K = 3: DS(3, 8) = [1, 1, 1, 0, 1, 0, 0, 0]. It is
structurally balanced with f0 = f1 = f2 = f3 = 1. Hence, orthogonality condition
is trivially satisfied.

It is interesting to note that a design sequence can be structurally unbalanced but
still it may turn out to be orthogonal ! Here is an example from Kao (2015).

n = 12, K ∗ = 4 : D(4, 12) = [1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0].

Whereas each one of the coefficient vectors (involving the h-parameters)

[1000]′; [0100]′, [0001]′

appears exactly once, [0010]′ appears twice in the model expectations of the obser-
vations. That explains structural imbalance of the design sequence. In spite of that,
it turns out that V (ĥi ) = 3;Cov(ĥi , ĥ j ) = 0; i �= j = 1, 2, 3, 4.

Kao (2015) listed some orthogonal design sequences for K = 3, 4, 5 while n is
a multiple of 4 and these were found using Hadamard matrices and the theory of
quadratic residues. We list some of these sequences below.

Literature survey suggests that design sequences for very general design parame-
ters K , n and possessing such structurally balanced and/or orthogonality properties
are hard to find. A combinatorially challenging problem would be: For given K ,
to find out a balanced orthogonal design with smallest length n of design sequence!
Another related problemwould be to ascertain if an orthogonal/structurally balanced
design sequence for a given value of K continues to be so for smaller/higher values
of K .

It is well known that there is a close connection between Hadamard Matrices and
Weighing Design Matrices [of both types: Chemical Balance and Spring Balance].
Vide Raghavarao (1971) and Shah and Sinha (1989). Researches have examined the
possibility of starting with Hadamard Matrices and converting them into ((0, 1))-
matrices so as to examine their properties asDesignSequences for fMRI experiments.

We will come back to this aspect of orthogonality later in Sect. 4.
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Table 2 Orthogonal design sequences

S1. No. n K Sequence

1 8 3 1 1 1 0 1 0 0 0

2 12 4 1 0 1 1 1 1 0 0 0 1 0 0

3 20 5 1 0 0 1 1 1 1 1 0 1 0 1
0 0 0 0 1 1 0 0

4 24 5 1 1 1 1 1 0 1 0 1 1 0 0
1 1 0 0 1 0 1 0 0 0 0 0

5 32 5 1 1 0 1 1 0 1 1 1 1 1 0
0 0 1 0 1 0 1 1 1 0 0 0
0 1 0 0 1 0 0 0

3 Concept of “Clear Zero” Sequence

Suppose a design sequence contains a succession of 0s of length f . Further, assume
that there are K non-negligible h-parameters in the model. Then there are ( f −
K + 1) y-observations whose model expectations are θ each! As such there is no
information on the h-parameters from these observations. What if all or a subset of
these 0s are replaced by 1s? Would it provide increased precision for the estimates
of the h-parameters? This and similar issues were raised by one of the authors in the
form of “Clear 0s” and now we provide a systematic study of this concept below.
Our goal is to introduce the concept using small illustrative examples, keeping the
design sequence length n as general as possible. However, we confine to K = 2, 3.
This area of research is just coming up and we hope the readers would be interested
to pursue this topic.

3.1 Type I: D( f + 3) = [1 0 0 f 1]

We start with a design sequence called Type I: D( f + 3) = [1 0 0 f 1] and invoke
the “operation” of “Clear 0” to the collection of f 0s. Thus, the design sequence is
transformed to D∗( f + 3) = [1 0 1 f 1]. Note that y-observations y1, y2, . . . , yn
correspond to the design points from left to right where n = f + 3. For the original
design sequence, we separate out y1, y2, yn from the rest. To start with, let us assume
that there are only two h-parameters, viz., h1, h2. Then the model expectations are

E(y1) = θ + h1 + h2; E(y2) = θ + h2; E(yn) = θ + h1

while E(yi ) = θ for the rest of the observations.
Again, for the transformed sequence, we separate out y1, y2, y3 from the rest. This

time the model expectations are
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E(y1) = θ + h1 + h2; E(y2) = θ + h2; E(y3) = θ + h1

while E(yi ) = θ + h1 + h2, for the rest of the observations.

For two h-parameters and the constant parameter θ , the information matrix is of
order 3 × 3.Thefirst part of the informationmatrix is formedof the three observations
separated out in the beginning. It is the same for both the structures and is given by

(3, 2, 2); (2, 2, 1); (2, 1, 2).

The other part is different for the two sequences. For the first choice, we have

( f, 0, 0); (0, 0, 0); (0, 0, 0).

For the second choice, we have f J.
It turns out that for the first choice, we have determinant of the information matrix

for (h1, h2) as

Det (I) = (c0 − d0)[(c0 + d0) − 2
b20

(a0 + f )
].

Similarly, for the second choice, it is given by

Det (I∗) = (c0 − d0)[2 f + c0 + do − 2
(b0 + f )2

(a0 + f )
].

In the above, we have used the notations a0, b0, c0, d0 to represent the first part
of the information matrix as

(a0, b0, b0); (b0, c0, d0); (b0, d0, c0).

It follows that second choice would result in higher value of the Det(.) provided
a0 > 2b0. In this example, a0 = 3, b0 = 2. Consequently, use of “Clear 0” operation
does not help in this particular design sequence.

3.2 Type II: D( f + 4) = [1 0 0 f 0 1] Versus
D∗( f + 4) = [1 0 1 f 0 1]

For f = 1, 2, 3 and for K = 2, the second design sequence has a smaller value of
the Det.(.) and hence it is not gainful. For f = 4, the two determinantal values are
identical!And for f > 4, the seconddesign sequence continues to show improvement
in terms of higher determinantal value.
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We also observe that the same phenomena hold for K = 3. We skip the details.

3.3 Type III: D(2s + f + 2) = [1s 0 0 f 0 1s] Versus
D∗(2s + f + 2) = [1s 0 1 f 0 1s]

For K = 2, we deduce that for the design sequence D(2s + f + 2),

I (h) = [(2s( f + 2), 2s( f + 2) − n); (2s( f + 2) − n, 2s( f + 2)]

and hence Det.(I ) = (P + 2)(4s f + 6s − f − 2) where P = 2s + f .
Again, for the design sequence D∗(2s + f + 2), we deduce that

I ∗(h) = [(2(2s + f ),−4); (−4, 2(2s + f ))]

and hence Det.(I ∗) = 4(P + 2)(P − 2). Hence, the second design sequence has a
larger value of the Det.(.) provided 4s f < 2s + 5 f + 2.

For s = 1, this holds for all f . For s = 2, it holds when f = 1, 2. For all other
values of s > 2, there is no solution to f .

We will now study the case of K = 3. For the design sequence D(2s + f + 2),
the full information matrix of all the four parameters is given by

[(n, 2s, 2s, 2s); (2s, 2s, 2s − 1, 2s − 2); (2s, 2s − 1, 2s, 2s − 1); (2s, 2s − 2, 2s − 1, 2s)].
From this, we derive the form of the information matrix of the three h-parameters:

[(2s( f + 2), 2s( f + 2) − n, 2s( f + 2) − 2n); (2s( f + 2) − n, 2s( f + 2), 2s( f + 2) − n);

(2s( f + 2) − 2n, 2s( f + 2) − n, 2s( f + 2))].

From the above, we deduce that

Det.(I ) = 4(2s + f + 2)2[2s( f + 1) − f − 2].

Next, we take up the design sequence D∗(2s + f + 2) and derive an expression for
the information matrix of all the four parameters as

[(n, 2s + f, 2s + f, 2s + f ); (2s + f, 2s + f, 2s + f − 2, 2s + f − 2);
(2s + f, 2s + f − 2, 2s + f, 2s + f − 2); (2s + f, 2s + f − 2, 2s + f − 2, 2s + f )].

From this, we derive the form of Det.(I ∗) as is given below. We use the notation
P = 2s + f .

Det.[(2P, 2P − 2n, 2P − 2n), (2P − 2n, 2P, 2P − 2n), (2P − 2n, 2P − 2n, 2P)].

This simplifies to Det.(I ∗) = 8n2(P − 4) and it fails to show improvement over the
first design sequence whenever s > 1. Also for s = 1, improvement holds for f > 4.
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3.4 Type IV: D( f + 5) = [1 0 0 f 0 1 0] Versus
D∗( f + 5) = [1 0 1 f 0 1 0]

In this case, after carrying out usual analysis for K = 2 and n = f + 5, we find that
Det(I) = Det. [(2n − 4,−4); (−4, 2n − 4)] = 4( f + 1)( f + 5) while Det(I ∗)

= Det. [(( f + 2)(n − f − 2), n( f − 1) − ( f + 2)2); (n( f − 1) − ( f + 2)2, ( f +
2)(n − f − 2))] = 9( f − 1)( f + 5). For f = 1, second design sequence breaks
down; for f = 2, again, second design fails to show any improvement. However,
for all other values of f , it performs better.

Again, for K = 3, we find that when f = 1, second design sequence is singular.

For f = 2, we obtain

Det(I) = Det. [(10,−4, 3); (−4, 10,−4); (3,−4, 10)] = 686 while

Det (I ∗) = Det.[(12,−9, 5); (−9, 12,−9); (5,−9, 12)] = 294.

So second design sequence does not serve our purpose.

We now continue our search for f = 3 and K = 3.
Det (I ) = Det.[(12,−4, 4); (−4, 12,−4); (4,−4, 12)] = 1280.

Again, for Det (I ∗), we obtain
Det (I ∗) = Det.[(15,−9, 7); (−9, 15,−9); (7,−9, 15)] = 1344. Therefore, for

each f ≥ 3, there is likely to be an improvement by adopting the second design
sequence.

3.5 Type V: D( f + 6) = [0 1 0 0 f 0 1 0] Versus
D∗( f + 6) = [0 1 0 1 f 0 1 0]

First we study the case of K = 2.
Det(I) = Det. [(2(n − 2),−4); (−4, 2(n − 2)] = 4n(n − 4). Next, we compute

Det.(I ∗) = [(4( f + 2), f − 10); ( f − 10, 4( f + 2))] = 3n(5 f − 2). This shows
that for all f ≥ 2, second design sequence shows improvement over first design
sequence.

Next, we study the case of K = 3. It follows that
Det(I) = Det. [(2(n − 2),−4,−4); (−4, 2(n − 2),−4); (−4,−4, 2(n − 2)] =

8n2(n − 6), where n = f + 6.
For Det (I ∗), we go case by case:
For the case of f = 1, n = 7, Det (I ∗) = Det[(12,−9, 5); (−9, 12,−9); (5,

−9, 12)] = 294 which is smaller than Det (I ) value of 392. Again, for the case
of f = 2, n = 8, Det (I ∗) = Det[(16,−8, 0); (−8, 16,−8); (0,−8, 16)] = 2048



Statistical Design Issues for fMRI Studies: A Beginner’s Training Manual 307

Table 3 Ratio Det.(I ∗)/Det.(I ) as a function of f

S1. No. f Det.(I ∗)/Det.(I )

1 2 2

2 3 3.17

3 4 3.75

4 5 4.1

5 10 4.8

which doubles the value of Det (I ), i.e., 1024.

We tend to believe that such improvements will continue even further whenever
f > 2.
As to the general case, we find as follows:

Det(I ∗) =Det. [(4( f + 2), f − 10, 2( f − 2)); ( f − 10, 4( f + 2), f − 10); (2( f −
2), f − 10, 4( f + 2))] = 12n( f + 2)(5 f − 2) − 2( f + 2)( f − 10)2 − 2( f − 2)
(7 f 2 + 20 f − 132) = 44 f 3 + 472 f 2 + 912 f − 2016, upon simplification.

It follows that Det.(I ∗) > Det.(I ) iff 36 f 3 + 376 f 2 + 624 f − 2016 > 0. This
is obviously true whenever f > 2. Computation of the ratio of the two determinants
Det.(I ∗)/Det.(I ) is quite revealing as a function of f .

3.6 Type VI: D(2s + f + 4) = [0 1s 0 0 f 0 1s 0] Versus
D∗(2s + f + 4) = [0 1s 0 1 f 0 1s 0]

First we study the case of K = 2.
Det.(I ) = Det.[(2s( f + 4), 2s( f + 4) − 2n); (2s( f + 4) − 2n, 2s( f + 4)] =

2n[2 f (2s − 1) + 4(3s − 2)].
Next, we compute

Det.(I ∗) = Det.[(4(2s + f ), 4(2s + f ) − 3n); (4(2s + f ) − 3n, 4(2s + f ))] = 3n(5n − 32).

This shows that for all f ≥ 2, second design sequence shows improvement over
first design sequence, irrespective of the value of s!

Now we take up the case of K = 3.
For the design sequence D(2s + f + 4) and the entire vector parameter of dimen-
sion 4, we derive the form of the Information Matrix as

[(n, 2s, 2s, 2s); (−, 2s, 2(s − 1), 2(s − 2)Is≥2); (−,−, 2s, 2(s − 1)Is≥2); (−,−,−, 2s)].

Particular cases of s = 1, 2 are readily derivable. For s = 1, Det.(I ) = 8 f n2

where n = f + 6. For s = 2, Det.(I ) = 32 f n2 where n = ( f + 8).
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For general s ≥ 2, Det.(I ) is to be evaluated as

Det.[(2s( f + 4), 2s( f + 4) − 2n, 2s( f + 4) − 4n); (−, 2s( f + 4), 2s( f + 4) − 2n); (−,−, 2s( f + 4)]

which simplifies to

Det.(I ) = 8ns( f + 4)[2s( f + 4) − n] − 16n[s( f + 4) − n]2 + 8n2[s( f + 4) − 2n].

This is a cubic function of s. We can simplify it further. Set Q = s( f + 4). Then

Det.(I ) = 8nQ(2Q − n) − 16n(Q − n)2 + 8n2(Q − 2n) = 32n2(Q − n) = 32n2[ f (s − 1) + 2(s − 2)],

upon simplification.

We now take up the case of D∗(2s + f + 4) which results in Det.(I ∗). We sort
out the particular cases first.

(i) For s = f = 1, n = 7, Det.(I ∗) = Det.[(12,−9, 5); (−9, 12,−9); (5,−9,
12)] = 294 while Det.(I ) = 192.

(ii) For s = 1, f = 2, n = 8, Det.(I ∗) = Det.[(16,−8, 0); (−8, 16,−8); (0,−8,
16)] = 2048 while Det.(I ) = 1024

(iii) For s = 2, f = 1, n = 9, Det.(I ∗) = Det.[(20,−7,−7); (−7, 20,−7); (−7,
−7, 20)] = 4374 while Det.(I ) = 5132.

(iv) For s = f = 2, n = 10, Det.(I ∗) = Det.[(24,−6,−16); (−6, 24,−6);
(−16,−6, 24)] = 4800 while Det.(I ) = 6400.

Now we take up the general case. WOLG, we assume s, f ≥ 2. As before, we first
derive an expression for the information matrix of all the four parameters:

[(n; 2s + f, 2s + f, 2s + f ); (−, 2s + f, 2s + f − 3, 2s + f − 4);

(−,−, 2s − f, 2s + f − 3); (−,−,−, 2s + f )].
From this it follows that

I ∗(h1, h2, h3) = [(P, P − 3n, P − 4n); (−, P, P − 3n); (−,−, P)]; P = 4(2s + f ).

We now obtain

Det.(I ∗) = 3nP(2P − 3n)8n(P − 3n) + (P − 4n).(9n2 − 2Pn) = 8n2[7(2s + f ) − 36],

upon simplification.
In the general case, for K = 3, we now refer to Det.(I ) and Det.(I ∗) and

resolve that Det.(I ) < Det.(I ∗) iff 4 f (s − 1) + 8(s − 2) < 14s + 7 f − 36 which
is equivalent to 4 f s − 6s − 11 f + 20 < 0. For s = 2, this holds true whenever
f ≥ 3. However, for s > 2, this is not true for any f > 1.
We will take up some more aspects of comparison of design sequences later.
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Remark 5 In the above, we have discussed at length various data structures (design
sequences) to introduce and explore the concept of “Clear Zero” for improving
information on the h-parameters. As we mentioned in the beginning, this is a new
topic and we encourage the researchers/readers to take up this study seriously in
general terms.

4 More on Orthogonal Design Sequences and
Implementation of “Clear Zero”

We start with the design sequence for N = 32 observations given by Kao (2015)
and listed in Table2. We display it in the reverse order. Note that we are adopting a
circular model so that the two orders are information-equivalent(Table 3).

DS(32) = [0(3) 1(1) 0(2) 1(1) 0(4) 1(3) 0(1) 1(1) 0(1) 1(1) 0(3) 1(5) 0(1) 1(2) 0(1) 1(2)].

To save space, we have used “frequency count” inside brackets. Thus, 0(3)means
(0, 0, 0). It is known that for 2 ≤ K ≤ 5, this design sequence is orthogonal. The
information matrix for all the six parameters (θ, h1, h2, . . . , h5) is given by

[(32, 16, 16, 16, 16, 16); (−, 16, 8, 8, 8, 8); (−,−, 16, 8, 8, 8);

(−,−,−, 16, 8, 8); (−,−,−,−, 16, 8); (−,−,−,−,−, 16)].

From this, orthogonality of estimates of h-parameters follows readily. Kao (2015)
also developed design sequences for N = 31 and N = 30 which possess structural
balance properties. We confine to K = 3 and note the following. First we take up the
case of N = 31.

DS(3, 31) = [0(3) 1(1) 0(2) 1(1) 0(4) 1(3) 0(1) 1(1) 0(1) 1(1) 0(3) 1(4) 0(1) 1(2) 0(1) 1(2)].

We readily observe that the 4 × 4 information matrix is given by

[(31, 15, 15, 15); (−, 15, 7, 7); (−,−, 15, 7); (−,−,−, 15)].

It transpires that
I (h) = (8/31)[31I − J ].

Next we take up the case of N = 30.

DS(3, 30) = [0(3) 1(1) 0(2) 1(1) 0(3) 1(3) 0(1) 1(1) 0(1) 1(1) 0(3) 1(4) 0(1) 1(2) 0(1) 1(2)].

Here again the 4 × 4 information matrix is given by
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[(30, 15, 15, 15); (−, 15, 7, 7); (−,−, 15, 7); (−,−,−, 15)].

It transpires that
I (h) = (1/2)[16I − J ].

We will now take up similar study after introducing “clear zero” concept in the
above sequences. We recall that introduction of “clear zeros” is meant to replace
zeros by ones in suitable positions. This is likely to enhance information on the
h-parameters.

Kao (2015) design sequence for N = 31 displayed above is changed to an Alter-
native Design Sequence [ADS] as follows by using “clear zero” concept:

ADS(3, 31) = [0(3) 1(1) 0(2) 1(1) 0(3) 1(3) 0(1) 1(1) 0(1) 1(1) 0(3) 1(5) 0(1) 1(2) 0(1) 1(2)].

This time, the 4 × 4 information matrix is given by

[(31, 16, 16, 16); (−, 16, 8, 8); (−,−, 16, 8); (−,−,−, 16)].

It turns out that the 3 × 3 information matrix of the h-parameters is identical to that
derived above.

Next, we take up the case of N = 30 and derive the form of ADS by using “clear
zero” concept.

ADS(3, 30) = [0(3) 1(1) 0(2) 1(1) 0(2) 1(3) 0(1) 1(1) 0(1) 1(1) 0(3) 1(5) 0(1) 1(2) 0(1) 1(2)].

This time, the 4 × 4 information matrix is given by

[(30, 16, 16, 16); (−, 16, 8, 8); (−,−, 16, 8); (−,−,−, 16)].

It turns out that the 3 × 3 information matrix of the h-parameters is equal to
(8/15)[15I − J ) and this is less than (1/2)[16I − J ] in the sense of nnd matrices.

We will continue with this topic further with some more examples.

5 On the Relative Status of Comparable Design Sequences

We start with a general n and K < n. Consider the following design sequences:

DS1(K , n) = [1; 0, 0, . . . , 0, 0]; DS2(K , n) = [1, 1; 0, 0, . . . , , 0, 0];

DSt (K , n) = [1, 1, . . . , 1; 0, 0, . . . , 0, 0]; 1 ≤ t ≤ K .

Note that DSK (K , n)) = [1, 1, . . . , 1; 0, 0, . . . , 0, 0] has an active phase of length
K for every choice of the pair (n, K , K < n). Henceforth, we will deal with these K
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design sequences only. Our aim is to provide estimates of the h-parameters, following
each design sequence.

For a typical 1 ≤ t ≤ K , model expectations of the observations underlying
DSt (K , n) are given by

θ + h1; θ + h1 + h2; . . . , θ + h1 + h2 + · · · + ht ;

θ + h2 + h3 + · · · + ht+1; . . . , θ + hK−t+1 + · · · + hK ;

θ + hK−t+2 + · · · + hK ; . . . , θ + hK ; θ; θ; . . . .

Specializing to t = 1,

ĥi = yi − θ̂; i = 1, 2, . . . , K ; θ̂ =
i=n∑

i=K+1

yi/(n − K )

whence
V (ĥi ) = 1 + (n − K )(−1),Cov(ĥi , ĥ j ) = (n − K )(−1).

On the other hand, for the other extreme case of t = K , we observe that for each
h-parameter, there are two estimates available. These are given by

h1 : y1 − θ̂ , yK − yK+1; h2 : y2 − y1, yK+1 − yK+2; . . . ;

hK−1 : yK−1 − yK−2, y2K−2 − y2K−1; hK : yK − yK−1, y2K−1 − θ̂ .

In the above, θ̂ is based on n − 2K + 1 observations—independent of the others.
Note that pairs of estimates of each of the h-parameters are mutually uncorrelated.
Hence, easily we can provide combined estimates and compute their variances.

In the general case, from the first set of t observations, we can estimate h1, h2,
. . . , ht [using θ̂ based on n − K − t + 1 observations at the end]. Likewise, estimates
of h2, h3, . . . , hK−1, hK are derived from the observations yt+1, yt+2, . . . , yK+t−1.
Estimates of each h-parameter are pairwise uncorrelated. So the two can be appro-
priately combined.

Remark 6 So longwe have presented results related to the vector η of h-parameters.
The determinantal value of the information matrix is known to serve as the reciprocal
of the generalized variance. We have also undertaken a comparison of the design
sequencesw.r.t. the average variance for estimatedη and derived parametric functions
φ(1) = h1, φ(2) = h1 + h2, φ(3) = h1 + h2 + h3. We skip the details.
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6 Further Comparisons of Design Sequences: Case of
K = 3

We consider a few more design sequences, still with K = 3.

DS1(8) : [1, 0, 1, 0, 0, 1, 0, 1]; DS2(8) : [1, 1, 0, 0, 0, 0, 1, 1];

DS3(8) : [1, 1, 1, 0, 0, 1, 1, 1]; DS4(8) : [1, 1, 1, 1, 0, 0, 0, 0].

Again “Clear 0” concept is applied to DS(2) and DS(4) to derive one from each
as are shown below:

DS∗
2 (8) : [1, 1, 0, 0, 1, 0, 1, 1]; DS∗

4 (8) : [1, 1, 1, 1, 0, 0, 1, 0].

Below we display information matrices for the h-parameters, assuming K = 3.

I (1) : [16,−8, 0); (−8, 16,−8); (0,−8, 16)]; Det (I ) = 211.

I (2) : [(16, 8, 0); (8, 16, 8); (0, 8, 16)]; Det (I ) = 211.

I (∗(2)) : [(15,−1,−1); (−1, 15,−1), (−1,−1, 15)]; Det (I ) = 28 × 13.

I (3) : [(12, 4,−4); (4, 12, 4), (−4, 4, 12)]; Det (I ) = 210.

I (4) = I (DS(2)).

I (∗(4)) : [(15,−1,−4), (−1, 15, 4), (−4, 4, 16)]; Det (I ) = 3136 = 26 × 49.

Observations

1. DS∗
2 (8) performs better than DS2(8)! Also DS∗

4 (8) performs better than
DS4(8)! Moreover, DS∗

2 (8) fares better than DS∗
4 (8).

2. The above comparison may not be “fair” since the design sequences are based
on unequal number of 1s.Note that every sequence comprises 1s and 0s and the under-
standing is that a 0-phase corresponds to “idle” phase while a 1-phase is “active”.
So the number of active phases should also be considered while examining relative
performances. We may apply the usual concept of “Efficiency” and work out “Effi-
ciency per active phase”. For a single parameter, efficiency is directly related to and
measured by [Fisher] Information. For K = 3 h-parameters, we can compute the
determinant of the 3 × 3 information matrix and divide it by the cube of the number
of active phases, for the criterion of maximization. If we go by comparison w.r.t.
the average variance, the criterion is to minimize average variance multiplied by the
number of active phases.
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Below we take up a comparison of the above four design sequences—each of
length n = 8.

We have already computed Det.(I ) forK = 3 [excluding the common divisor].
We again show them below for comparison purpose.

DS1(8) : 211; DS2(8) : 211; DS3(8) : 210; DS4(8) : 211.

Next, we divide each determinantal value by cube of the number of 1’s in each
design sequence. This amounts to comparison of

211/43, 211/43, 210/63, 211/43

in terms of maximization.

It transpires that, except DS3(8), all others are equivalent in terms of “per active
phase” criterion.

Note that in the above, we have also introduced DS∗
2 (8) and DS∗

4 (8) as “action-
taken” in the presence of “Clear Zero”. Moreover, these have been compared with
others—though without regard to the number of 1’s, i.e., active phases in the DS.
We revert back to the computations with the required modifications. We only take
up DS2(8), DS∗

2 (8), and DS∗
4 (8) below. This amounts to comparison of

211/43, 28 × 13/53, 26 × 49/53

in terms of maximization. It follows that DS2(8) is the best of the lot.

7 Further Comparisons of Design Sequences: Focus on
“Clear Zero” Feature

Consider the design sequence

DS(r, K ; n) : [(1, 1, . . . , 1)( f req. r) f ollowed by (0, 0, 0, . . . , 0( f req. n − r))]

Under the assumption that (n − r) ≥ (K − 1), the Information Matrix for the h-
parameters for the case of K = 3 is given by

[(A, A − n, A − 2n); (A − n, A, A − n); (A − 2n, A − n, A)] where A = r(n − r).

Further, it is seen that [ignoring the common multiplier] Det (I ) = 4n2[r(n − r) −
n].

In the above, we have indicated the position of “Clear Zero” by 0. We now replace
this 0 by 1 and call the sequence D∗. For simplicity, we take n ≥ (r + 5).
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For D∗, the Information Matrix changes to

[(B, B − 2n, B − 3n), (B − 2n, B, B − 2n), (B − 3n, B − 2n, B)] where B = (r + 1)(n − r − 1).

This time the determinant is given by Det (I ∗) = 3n2(5B − 8n).
We now take up
Case (i) : n = 2(r + 1).
In that case, B = n2/4 and Det (I ∗) = 3n2(5n2/4 − 8n) = 3n3(5n − 32)/4.
Recall the assumption n − r ≥ 5. Thismeans r + 2 ≥ 5, i.e., r ≥ 3. Hence, n ≥ 8

so that Det (I ∗) > 0.
Comparison of Det (I ) and Det (I ∗) is made below.

Det (I ) = 4n2[r(n − r) − n] = 4n2[r(r + 2) − 2(r + 1)] = 4n2(r2 − 2).

Det (I ∗) > Det (I ) <=> 3n3(5n − 32)/4 > 4n2(r2 − 2)

<=> 15n2 − 96n > 4(n2 − 4n − 4) <=> 11n2 − 80n + 16 > 0,

which is true since n ≥ 8.
Case (i i) : n = 2r + 1
Here, Det (I ) and Det (I ∗) come out as

Det (I ) = n2[(n − 2)2 − 5]; Det (I ∗) = 3n2[5n2 − 32n − 5]/4.

Hence Det (I ∗) improves over Det (I ) iff, after simplification, we have 11n2 −
80n − 11 > 0 which is true for all n ≥ 8.

This indicates that “Clear Zero” concept has an edge over the original sequence
w.r.t. generalized variance criterion. Similarly, we can take up the study involving
average variance.

Remark 7 It is desirable to “extend” this result and accommodate more “Clear
Zeros” in the sequence. We will take up one more adjacent zero and consider the
changed design sequence

DS∗∗(r, K , n) : [(1, 1, . . . , 1)( f req. r) f ollowed by (0, 0, 1, 1, 0, 0, . . . , 0( f req. n − r))].

We assume n − r ≥ K and K = 3. The Information Matrix I ∗∗ for the h-
parameters is given by

[(C,C − 2n,C − 4n); (C − 2n,C,C − 2n); (C − 4n,C − 2n,C)]whereC = (r + 2)(n − r − 2).

Ignoring common multiplier,

Det (I ∗∗) = 16n2[(r + 2)(n − r − 2) − 2n].



Statistical Design Issues for fMRI Studies: A Beginner’s Training Manual 315

Note that the choice of (n, r) should ensure that Det.(I ∗∗) is positive. As before,
we now consider two cases.
Case (i): n = 2(r + 1)

In this case,

Det (I ∗∗) > Det (I ) <=> 3r(n − r) − 16(r + 1) + n <=> 3n2 − 28n − 12 > 0,

which holds for n ≥ 10.
A comparison between Det(I∗∗) and Det (I ∗) shows that DS∗∗ fares better than

DS∗ iff n ≥ 34.
Case (ii): n = 2r + 1

In this case, we deduce

Det (I ∗∗) > Det (I ) <=> 3n2 − 28n − 35 > 0,

which holds for n ≥ 11.
Here again it is found that DS∗∗ fares better than DS∗ only when n > 35.

8 Comparisons of Symmetrized Design Sequences: More
on “Clear Zero” Feature

In this section, we generalize the results of Sect. 7 for fairly general design sequences
with symmetrized structures.

At firstwe note that the design sequences [DS1(8) − DS4(8)] introduced in Sect. 7
are “symmetric” in nature. Each DS has length n = 8 and it exchanges the positions
of 0s and 1s exactly from one half to the other half—preserving a symmetric structure
from the middle on both sides. We will generalize this in a general form.

DS(r, K , n) < 1 1 . . . r times; 0 0 . . . (n − r) times; 0 0 . . . (n − r) times; 1 1 . . . r times >

Assume K = 3. Further, assume r ≥ 2; n − r ≥ 3. It follows that

I (h) = [(A, A − 2n; A − 4n), (A − 2n, A, A − 2n); (A − 4n, A − 2n, A)], A = 4r(n − r).

Hence, Det (I ) = 32n2[2r(n − r) − n].
We now define a “symmetrized version” of DS(r, K , n) as DS(t, r, K , n) where

t is a new design parameter used as follows.

DS(t, r, K , n) < 1 1 . . . r times; 0 0 . . . t t imes; 1 1 . . . (n − r − t) times; do symmetri zation >

We study this DS(t, r, K , n) = DS∗ now. Assume r ≥ 2, t ≥ 2, n − r − t ≥ 2
while K = 3.
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Set A = 4t (n − t).
Then

I ∗(h) = [(A, A − 4n, A − 8n); (A − 4n, A, A − 4n); (A − 8n, A − 4n, A)].

It follows that Det (I ∗) = 256n2[t (n − t) − n]. We can now go for a comparison
between DS(r, K , n) and DS∗(t, r, K , n).

CaseI : n = 2r

Det.I = 256r3(r − 1); Det.I ∗ = 256n2[t (n − t) − n].

Note that n − r = r and this n − r splits into t and n − r − t . Set t = pr, 0 <

p < 1. Then

Det.I ∗/Det.I = n2[t (n − t) − n]/r3(r − 1) = [4pr4(2 − p) − 8r3]/r3(r − 1).

This ratio is greater than 1 iff

[4pr(2 − p) − 8] > (r − 1) <=> r [4p(2 − p) − 1] > 7.

For any given p, we can find a lower bound for r .
For example, p = 1/4 => r ≥ 10; p = 1/2 => r ≥ 4; p = 3/4 => r ≥ 3.
Of course, pr must be an integer.
On the other hand, for any given r , we may choose a value of p so that pr is an

integer, subject to satisfying the superiority condition which simplifies to

0 < p < 1 − √[(3 − 7/r)]/2.

For r = 3, upper bound = 1 − 0.2357 => t = 2; r = 4, upper bound = 1 −
0.5590 => t = 2; r = 5, upper bound = 1 − 0.6324 => t = 2.Therefore,we can
make a choice of (r, t) with a pay-off, following “Clear Zero” policy.

Lastly, we can take up the comparison, incorporating “per active phase-adjusted”
criteria. Recall the structures of DS(n, r) and DS∗(n, r, t). Consider the case: n =
2r .

We need to compare Det (I )/(2r)3 and Det (I ∗)/[2(n − t)]3.

(1) Det.(I ) = 256r3(r − 1); (2) Det.(I ∗) = 256n2[t (n − t) − n].

Note that n − r = r and this n − r splits into t and n − r − t . Set t = pr, 0 < p < 1.
Then

Det (I )/(2r)3 < Det (I ∗)/[2(n − t)]3 <=> (n − t)3Det (I ) < r3Det (I ∗).....(1)

Using the expressions for Det (I ) and Det (I ∗),
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(1) <=> 256 × (n − t)3 × r3(r − 1) < r3 × 256 × n2 × [t (n − t) − n]
<=> (n − t)3(r − 1) < 4r3[p(2 − p)r − 2] <=> (2 − p)3(r − 1) < 4[rp(2 − p) − 2]

<=> r(2 − p)(8p − 4 − p2) > [8 − (2 − p)3].

This requires 8p > 4 + p2 <=> p > 4 − 2
√

(3) = 0.5359. Particular cases:

(i) p = 0.6 => r ≥ 9, (i i) p = 0.7 => r ≥ 4, (i i i) p = 0.8 => r ≥ 3.

Case2 : n = 2r + 1
The condition Det (I ∗)/Det (I ) > 1 turns out to be

8r2.p2 − 8(r + 1)(2r + 1)p + C < 0; t = rp,

where C = 2r2 + 16r + 7. Particular cases:

r = 3 => p ≥ 0.58; r = 4 => p ≥ 0.446.

9 Concluding Remarks

Regarding potential applications of linear models in the analysis of design sequences
for fMRI studies,wehave explained themodel in its simplest form—as is suggested in
the literature. Having done this, we have discussed about estimability issues. Then the
emphasis has been on relative comparison of design sequences. Inference questions
center around what are called h-parameters. In the process, we have introduced
what is termed as the concept of “Clear Zero”. Efficiency comparisons are also made
taking due regard to “per active phase” basis. Our objective has been to familiarize the
readers to this fascinating area of research in the general framework of linear models
and having similarity with spring balance weighing designs [with bias]. There is
enough scope for generalizations and extensions in several directions.
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A Review of Rigorous Randomized
Response Methods for Protecting
Respondent’s Privacy and Data
Confidentiality

Tapan K. Nayak

Abstract Randomized response (RR) methods for protecting respondent’s privacy
when collecting data on sensitive characteristics have been proposed and discussed
for over fifty years. The basic ideas of RR have also been used to develop the post-
randomization method (PRAM) for protecting data confidentiality. Both RR and
PRAM randomize true responses using specified probabilities and the choice of
those probabilities is central to designing RR methods and PRAM. However, most
papers do not give clear guidance on how to choose the transition probabilities. Some
rigorous approaches have appeared only recently. This paper reviews the essential
elements of RR and PRAM, some important differences between the two, and design-
ing RRmethods and PRAM for achieving certain precise privacy and confidentiality
protection goals. In particular, we discuss (i) designing an RR survey to guarantee
that a randomized response would not reveal much information about the respon-
dent, in a precise sense, and (ii) devising PRAM to strictly control identification risks
when releasing microdata.

Keywords Data utility · Identity disclosure · Minimaxity · Post-randomization ·
Privacy criteria · Transition probability

1 Introduction

The primary objective of randomized response (RR) methods is to protect respon-
dent’s privacy and thereby reduce false responses when collecting data on sensitive
or stigmatizing characteristics, such as tax evasion, drug use, gambling, and abortion.
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The first RR method, introduced by Warner (1965), concerns interview surveys of
a binary characteristic, where the population consists of a sensitive group A (e.g.,
drug users) and its complement Ac (e.g., not drug users). In Warner’s method, a
respondent answers one of the two questions: Q1: Do you belong to A? and Q2: Do
you belong to Ac? Each respondent selects a question by performing a specified ran-
dom experiment, unobserved by the interviewer, with a given device, e.g., a spinner
or a shuffled deck of cards bearing the two questions. The respondent answers the
selected question. Thus, the interviewer does not know the question that a respondent
answers. The experiment imposes specific and known probabilities, say p and 1 − p,
of selecting Q1 and Q2. The value of p determines both the degree of privacy pro-
tection and the amount of statistical information loss due to randomization. Thus, to
design Warner’s method, one should first select p and then construct an experiment
for implementing it.

Following the pioneering work of Warner (1965), numerous other RR methods
with differentmechanisms for randomizing the true responses have been proposed for
both categorical and quantitative variables. We refer interested readers to the books
Chaudhuri and Mukerjee (1988), Chaudhuri (2010) and Chaudhuri et al. (2016) for
discussion of various methods and further references. In this article, we consider RR
methods only for categorical variables. An RRmethod transforms the true responses
probabilistically. For a true response, the RR output is generated from a predeter-
mined probability distribution on an output space. In Sect. 2, we briefly review a
general framework and some key theoretical results that are needed for later sec-
tions. RR methods for quantitative variables are structurally quite different and can
generally be viewed as (additive or multiplicative) random noise infusion to the true
values.

For many years, research on RR methods was done primarily by statisticians
and for use in face-to-face interview surveys, which requires experiments that are
easy to understand and perform correctly and randomization devices that are simple
and portable. Various randomization devices and mechanisms have been proposed
as different RR methods. Recently, Blair et al. (2015) stated that “our extensive
search yields only a handful of published studies that use the randomized response
method to answer substantive questions.” Evidently, the theoretical advances in RR
methods have not been used much in real surveys. Perhaps, one reason for that gap
is the increasing adoption of mail, telephone and online surveys, replacing interview
surveys, in the past several decades. Notably, Holbrook and Krosnick (2010) tested
RRmethods in one telephone and eight Internet surveys ofAmerican adults and found
that respondents were either unable or unwilling to implement the RR mechanisms
properly.

Interestingly, starting around the beginning of this century, interest in RR meth-
ods has grown tremendously among computer scientists and in new dimensions. The
explosive growth of automated data capture by companies from business transac-
tions, online searches, postings and other activities have raised much public aware-
ness and concerns about privacy. Computer scientists have taken substantial interest
in developing theory and methods for privacy-preserving data mining and data pub-
lishing; see, e.g., Aggarwal and Yu (2008), Chen et al. (2009) and Fung et al. (2019).
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New privacy concepts and measures have been developed and RR methods have
been implemented by leading companies such as Google, Apple and Microsoft; see
Erlingsson et al. (2014), Ding et al. (2017) and Cormode et al. (2018). Perhaps, one
impetus for this resurgence and expansion of interest inRR techniques is that in online
data capturing, the actual randomization can be carried out easily and accurately by
computer programs. Consequently, recent research on RR theory and methods has
focused appropriately on the choice of the randomization probabilities, leaving aside
ancillary features of possible physical mechanisms for implementing them.

Gouweleeuw et al. (1998) used the basic ideas of RR to introduce the post-
randomization method (PRAM) for perturbing categorical data to protect data confi-
dentiality. It also randomizes the true responses, similar to RR. But, the data agency
performs randomization after data collection and so, the randomization probabilities
may be chosen based on the data set.We discuss some important differences between
RR and PRAM in Sect. 2. For both methods, the choice of the transition probabil-
ities is critical. Intuitively, one should try to choose those to minimize data utility
(or statistical information) loss while meeting privacy and confidentiality protection
goals. Some precise and practical privacy and confidentiality protection goals have
been proposed and investigated only recently. One primary objective of this article
is to review some rigorous approaches to privacy and confidentiality protection via
RR and PRAM. We also attempt to cover some important works that appeared in
computer science literature.

In Sect. 2, we describe the essential elements of RR and PRAM and some basic
mathematical results. We do not aim to give a comprehensive review of RR and
PRAM, but attempt to highlight some important points that we think have not been
appreciated well. In Sect. 3, we discuss a rigorous notion of privacy protection. The
basic idea is that an RR procedure should guarantee that an output would not reveal
much new information about the respondent’s true value. A formal development of
this idea compares prior and posterior probabilities. This criterion is closely con-
nected to local differential privacy, which has received considerable attention in
recent years. We also discuss a necessary and sufficient condition that an RRmethod
must satisfy in order to guarantee such privacy. In Sect. 4, we discuss optimal RR
methods for providing specified privacy. In particular, we describe an admissibility
result under a very general view of data utility, and optimal methods under certain
criteria. Section5 relates to data confidentiality protection. Specifically, we consider
identity disclosure control in microdata release and review a procedure that uses
PRAM to guarantee an upper bound for the probability of correctly identifying any
unit in perturbed microdata. Section6 is devoted some concluding remarks.

2 Basic Elements of RR and PRAM

In this section, we describe the mathematical structures of RR and PRAM. Applying
RR to multiple variables is equivalent to applying it to the cross-classification of
those variables. Let X denote a categorical variable or cross-classification of several
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variables that we want to subject to RR. Let SX = {c1, . . . , ck} denote the set of pos-
sible categories of X . Let πi = P(X = ci ), i = 1, . . . , k, and π = (π1, . . . , πk)

′,
which is unknown. The goal of an RR survey is to obtain information about π

while protecting respondent’s privacy. The basic idea of RR is to collect a stochastic
transformation of each respondent’s true category. Let Z denote the output vari-
able with output space SZ = {d1, . . . , dm}. A special case is SZ = SX . In gen-
eral, SZ may be different from SX , with possibly m �= k. For each input, the out-
put is selected according to some probabilities specified by the RR method. Let
pi j = P(Z = di |X = c j ), i = 1, . . . ,m, j = 1, . . . , k, denote the transition proba-
bilities of an RR method. Obviously,

∑
i pi j = 1 for j = 1, . . . , k. The transition

probability matrix (TPM), P = ((pi j )), is chosen during the planning of an RR
method.

For any given P , one can devise multiple physical experiments to implement
it (see Nayak et al. 2016). Under the common assumption of truthful respondent
participation, all statistical properties of anRRmethod depend solely on its TPM.The
choice of the experiment for implementing a given P does not affect themathematical
properties of the method. Thus, formal assessments and comparisons of RRmethods
should be made via their TPMs, ignoring the randomization experiments. However,
as Leysieffer andWarner (1976), Fligner et al. (1977), Nayak (1994) and others have
noted, when comparing different RRmethods some papers have incorrectly matched
disparate features of the experiments and drawn false conclusions. We consider P as
the design of an RR method and discuss the planning and analysis of an RR method
in terms of P .

A common assumption for analyzing RR data is multinomial sampling, i.e.,
random sampling from an infinite population or simple random sampling with
replacement if the population is finite. Let λi = P(Z = di ), i = 1, . . . ,m, and
λ = (λ1, . . . λm)′. Also, let Si denote the frequency of Z = di and S = (S1, . . . , Sk)′.
Then, S is multinomially distributed, S ∼ Mult (n, λ), where

λ = Pπ (1)

and n is the sample size. We can use S to make inferences about λ. If m = k and
P is nonsingular, from an estimator of λ one can obtain an estimator of π via (1).
In particular, λ̂ = S/n, which is the MLE (and UMVUE) of λ, yields π̂ = P−1λ̂ =
P−1(S/n). It can be seen that π̂ is an unbiased estimator of π and

Var(π̂) = 1

n
(Dπ − ππ ′) + 1

n
[P−1Dλ(P

−1)′ − Dπ ], (2)

where Dπ is a diagonal matrix with diagonal elements π1, . . . , πk and Dλ is defined
similarly (see Chaudhuri and Mukerjee 1988, p. 43). The first term on the right side
of (2) is the sampling variance and the last term is the additional variance due to
randomization.

If m < k or rank(P) < k, then the model for S is not identifiable with respect
to π and hence π is not estimable from RR data. Thus, for estimability of π , one
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should only considerm ≥ k and rank(P) = k.Whilem = k is quite common, several
methods with m > k have also been proposed, e.g., Leysieffer and Warner (1976),
Kuk (1990) and Christofides (2003). Also, we shall see in Sect. 4.2 that m > k in
some optimal designs. We should mention that while most authors discussed esti-
mation of π under multinomial sampling, Padmawar and Vijayan (2000), Chaudhuri
(2001, 2004) andNayak andAdeshiyan (2009) derived estimators ofπ under general
sampling designs.

Now we turn our attention to PRAM. Like RR, it randomizes the true responses
with known probabilities. However, that is done after data collection and by data
agencies. These two practical matters yield some important differences between RR
and PRAM. Here, we state some special and helpful features of PRAM, which we
believe have not been well recognized. First, in PRAM, the transition probabilities
may be chosen based on the entire data set, containing all true responses (which is
not possible in RR surveys as the responses are randomized during data collection).
Indeed, unbiased PRAM, discussed below, requires the TPM to depend on the data.
When the TPM is data dependent, it is a random matrix and mathematical results
in RR for fixed P , e.g., (2), may not hold true. Second, randomization may be
applied selectively only to the responseswith high disclosure risks.Note that agencies
remove all direct identifiers, such as name and address, before releasing data. So,
a respondent’s values (true or randomized) are not revealed directly. In contrast, in
RR surveys, a respondent’s identity is known to the data collector. Third, related
to the previous point, one may partition the data into homogeneous sets and then
apply PRAM separately within the partition sets with possibly different TPMs. One
method that utilizes data partitioning and unbiased PRAM is described in Sect. 5.
Fourth, the randomization is carried out by a computer program, without needing
a physical experiment. Fifth, in PRAM SZ = SX and thus m = k and the original
and perturbed data appear in the same format. Sixth, the transition probabilities may
not be known publicly. In particular, the transition probabilities cannot be published
conveniently or helpfully when those are chosen diversely using the observed data,
as in Sect. 5. There, the data agency should use a carefully designed unbiased PRAM
to well preserve data utility, so that the released data may practically be treated as
original data for making inferences.

Next, to describe unbiased PRAM, let Ti and Si denote the frequency of ci in
the original and perturbed data, respectively, and let T = (T1, . . . , Tk)′ and S =
(S1, . . . , Sk)′. When the data are collected by multinomial sampling, a PRAM with
TPM P is said to be unbiased (Gouweleeuw et al. 1998 called this invariant) if

PT = T. (3)

It can be easily verified that the solution space of (3) is a convex set and a trivial
solution is P = I . Gouweleeuw et al. (1998) gave twomethods for finding nontrivial
solutions.

Unbiased PRAM was motivated by the fact that (3) implies E[S|T] = PT and
hence π̂∗ = S/n is an unbiased estimator ofπ . Also, π̂∗ is always a probability vector
and it can be calculatedwithout using P or its inverse. Thus,π can be estimated easily
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from perturbed data. Nayak et al. (2016) derived and explored the exact variance of
π̂∗. In particular, they gave a decomposition of the variance into sampling variance
and added variance due to PRAM, similar to (2). They also discussed estimation of
π under a general sampling plan and unbiased PRAM. There, P is called unbiased
if Pπ̂ = π̂ , where π̂ is an appropriately weighted (and usually unbiased) estimator
of π based on the original data.

We refer interested readers to Gouweleeuw et al. (1998), Willenborg and DeWaal
(2001), Van den Hout and Van der Heijden (2002), Van den Hout and Elamir (2006)
and Shlomo and Skinner (2010) for additional discussion and applications of PRAM.
The main task of designing RR and PRAM is choosing the transition probabilities.
Naturally, suitable choices should depend on privacy and confidentiality protection
goals. In the following sections, we discuss some recently developed precise privacy
and confidentiality protection goals and methods for achieving those goals.

3 Privacy Protection by RR

Most privacy measures in statistics literature were developed for the situation where
the survey variable is binary with one sensitive category and the response is also
binary, see, e.g., Leysieffer and Warner (1976), Lanke (1976), Fligner et al. (1977),
Nayak (1994), and Zhimin and Zaizai (2012). Using common terminology, let A
and Ac denote the two categories of X , of which A is sensitive, and let Y (for
yes) and N (for no) denote the two response categories. The privacy measures in
the binary case are mostly functions of the two posterior probabilities P(A|Y ) and
P(A|N ), where the prior probabilities of A and Ac are their population proportions,
say πA and 1 − πA. For example, Lanke (1976) measure of the degree of privacy
protection is max{P(A|Y ), P(A|N )}. This and most other measures for the binary
case depend also on πA, which is unknown. A common suggestion is choose the
RR design parameters P(Y |A) and P(Y |Ac) such that a chosen privacy measure
does not exceed a threshold at some πA. Here, the designer of the survey selects the
privacy measure, the threshold and πA. For many privacy measures, this is equivalent
to requiring

max
{ P(Y |A)

P(Y |Ac)
,
P(Y |Ac)

P(Y |A)

}
≤ γ, (4)

where γ is determined by the privacy measure, privacy threshold and πA.

3.1 Strict Privacy Criteria

The preceding approaches do not consider an intruder’s personal knowledge about
respondents. The following approach, recently initiated by computer scientists,
focuses on the basic goal of privacy protection, which is limiting the amount of infor-
mation an intruder might gain about a respondent from his/her randomized response.
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Informally, the main idea, due to Evfimievski et al. (2003), is that we should view
a privacy breach as an intruder gaining much new information about a respondent
and an RR design should guarantee that no such privacy breaches would occur. Fur-
thermore, an intruder’s information (or opinion) should be expressed precisely using
subjective probability.

Formally, let α = (α1, α2, . . . , αk) denote an intruder’s (subjective) prior distribu-
tion for a respondent’s true value of X , and for any Q ⊆ SX , let Pα(Q) and Pα(Q|di )
denote, respectively, the intruder’s prior and posterior probabilities of {X ∈ Q}, given
Z = di . Here, Q represents a “property” of the respondent. Clearly,

Pα(Q) =
∑

j :c j∈Q
α j and Pα(Q|di ) =

∑

j :c j∈Q
Pα(X = c j |Z = di ),

where

Pα(X = c j |Z = di ) = Pα(X = c j , Z = di )

Pα(Z = di )
= α j pi j

∑k
l=1 αl pil

.

One idea is that to protect respondent’s privacy, we should guarantee that Pα(Q|di )
would never be much higher or lower than Pα(Q), i.e., Pα(Q|di ) would always be
“close” to Pα(Q). This idea yields different privacy criteria for different specifications
of desired closeness between prior and posterior probabilities.

Evfimievski et al. (2003) used a specific “closeness” criterion and introduced
ρ1-to-ρ2 privacy as follows.

Definition 1 Let 0 < ρ1 < ρ2 < 1 be two numbers. (a) An RR procedure is said
to permit an upward ρ1-to-ρ2 privacy breach with respect to Q ⊆ SX and a prior
distribution α if

Pα(Q) < ρ1 and Pα(Q|di ) > ρ2

for some 1 ≤ i ≤ m with Pα(Z = di ) > 0. Similarly, a procedure permits a down-
ward ρ2-to-ρ1 privacy breachwith respect to Q andα if Pα(Q) > ρ2 and Pα(Q|di ) <

ρ1 for some di with Pα(Z = di ) > 0.
(b) An RR procedure provides ρ1-to-ρ2 privacy protection if it does not permit an

upward ρ1-to-ρ2 or a downward ρ2-to-ρ1 privacy breach with respect to any Q and
α.

Using the ratio of posterior to prior probabilities as a measure of closeness between
the two, Nayak et al. (2015) defined the following.

Definition 2 For a given β > 1, an RR procedure admits a β-factor privacy breach,
with respect to Q ⊆ SX and a prior α if Pα(Q) > 0 and

Pα(Q|di )
Pα(Q)

> β or
Pα(Q|di )
Pα(Q)

<
1

β

for some di such that Pα(Z = di ) > 0. An RR procedure provides β-factor privacy
if it does not allow a β-factor breach with respect to any Q and α.



326 T. K. Nayak

Chai and Nayak (2018) developed and explored the preceding ideas generally
and we review their main results below. A general criterion for considering two
probabilities as sufficiently “close” gives (explicitly or implicitly) for each 0 < p <

1, an interval [l p, u p] that consists of all values that are considered sufficiently close
to p (taking a closed interval for simplicity). So, if a prior probability is p, a privacy
breach occurs if and only if a corresponding posterior probability falls outside the
interval [l p, u p]. This yields two functions hl(p) ≡ l p and hu(p) ≡ u p, which specify
the lower and upper breach boundaries. Thus, a general criterion may be viewed as
a pair of given functions hl(p) and hu(p). Considering this, Chai and Nayak (2018)
introduced the following.

Definition 3 Let hl and hu be two functions from [0, 1] to [0, 1] such that 0 ≤
hl(a) ≤ a ≤ hu(a) ≤ 1 for all 0 ≤ a ≤ 1. An RR procedure is said to satisfy privacy
with respect to hl and hu if

hl(Pα(Q)) ≤ Pα(Q|di ) ≤ hu(Pα(Q)) (5)

for all α, Q ⊆ SX and i = 1, . . . ,m.

This definition says that a posterior probability p∗ is sufficiently close to the cor-
responding prior p if hl(p) ≤ p∗ ≤ hu(p). Geometrically, a (prior, posterior) pair
(p, p∗) is a point in the unit square, of which the regions below hl and above hu
constitute the privacy breach region (PBR) of the criterion in Definition 3. A privacy
satisfying RR method must not yield any prior-posterior pair that falls in the PBR.
Conversely, the PBR of an RR procedure P is the collection of all non-attainable
(prior, posterior) pairs under P . The privacy holding region of P or the complement
of the PBR (with respect to the unit square) is {(p, p∗), 0 ≤ p, p∗ ≤ 1 : Pα(Q) = p
and Pα(Q|di ) = p∗ for some di , α and Q ⊆ SX }.

3.2 Privacy Characterization

A natural question is for given hl and hu , how to find a TPM that satisfies (5)? The
first ≤ in (5) is equivalent to Pα(Qc|di )) ≤ 1 − hl(1 − Pα(Qc)). Considering this
for all Q ⊆ SX , and defining h(a) = min{hu(a), 1 − hl(1 − a)}, for 0 ≤ a ≤ 1, it
follows that an RR procedure P satisfies (5) if and only if

Pα(Q|di ) ≤ h(Pα(Q)) (6)

for all i = 1, . . . ,m and all α and Q ⊆ SX such that 0 < Pα(Q) < 1. Chai and
Nayak (2018) gave a necessary and sufficient condition for satisfying (6) using the
following concept.
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Definition 4 (Nayak et al. 2015) The i th row parity of P is defined as

ηi (P) = max
{ pi j
pil

| j, l = 1, . . . , k
}

= max j {pi j }
min j {pi j } ,

with the convention 0/0 = 1 and a/0 = ∞ for any a > 0. The parity of P is defined
as η(P) = maxi {ηi (P)}.
Theorem 1 For a given h, an RR procedure P satisfies (6) if and only if η(P) ≤
B(h), where

B(h) = inf
0<p<1

(1 − p

p

)( h(p)

1 − h(p)

)

and h(p)/[1 − h(p)] = ∞ when h(p) = 1.

The necessary and sufficient condition in Theorem 1 depends on h only through
B(h) andon P only through its parityη(P). Thus, B(h)quantifies the privacy demand
of h and η(P) quantifies the privacy level of P . These two measures are useful for
comparing privacy demands of different PBRs and privacy levels of various RR
procedures, respectively. Chai and Nayak (2018) also showed that an RR procedure
P with η(P) = γ > 1 guarantees (6) for all h such that

h(p) ≥ h(γ )(p) ≡ γ p

1 + (γ − 1)p
, 0 < p < 1. (7)

Thus, h(γ )(.) in (7) is the precise upper breach boundary of any P with parity γ .
Choosing hl and hu in practical applications may appear a difficult task. But, the
preceding discussions give helpful guidance. Specifically, we only need to consider
the functions in H = {h(γ )(.); γ > 1} and choose one of those for the upper breach
boundary. The precise lower breach boundary corresponding to h(γ )(.) is h̃(γ )(p) =
1 − h(γ )(1 − p). In practice, the plots of the precise PBRs for various γ might be
helpful in selecting an appropriate PBR.

Theorem 1 says that in order to satisfy the criterion inDefinition 3, each row parity
of P must not exceed an upper bound, determined by hl and hu . The privacy condition
(4) in the binary case with one sensitive category is similar. It gives an upper bound
for the parity of just one row, corresponding to the response Y . We should mention
that under (4), Nayak (1994) showed that the transition probabilities of an optimal
design are P(Y |A) = 1, P(Y |Ac) = 1/γ and hence P(N |A) = 0 and P(N |Ac) =
1 − 1/γ . However, this optimal design asks all respondents in the sensitive group to
answer “Yes,” which might be uncomfortable for some respondents. It also implies
P(A|N ) = 0,whichmight encourage some respondents to give the innocuous answer
“No.” Thus, the (mathematically) optimal design may not be suitable in real surveys.
This indicates that (4) is inadequate and we should impose additional restrictions on
the transition probabilities.

We also want to mention the following criterion that has received considerable
attention in recent years, especially from computer scientists; see, e.g., Kairouz et al.
(2016), Wang et al. (2016), Duchi et al. (2018), and Ye and Barg (2018).
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Definition 5 AnRR design provides ε-local differential privacy (ε-LDP), for ε > 0,
if

sup
Q⊆SZ

sup
ci ,c j∈SX

P(Z ∈ Q|X = ci )

P(Z ∈ Q|X = c j )
≤ eε .

Chai and Nayak (2018) proved that an RR procedure provides ε-LDP if and only if

Pα(Q)

1 + (γ − 1)(1 − Pα(Q))
≤ Pα(Q|di ) ≤ γ Pα(Q)

1 + (γ − 1)Pα(Q)

for all α, Q and di , where γ = eε . This shows that ε-LDP coincides with Defini-
tion 3, with hl(a) = a/[1 + (γ − 1)(1 − a)] and hu(a) = γ a/[1 + (γ − 1)a]. This
describes the PBRof ε-LPD,whichmay be used to communicate its privacy promises
in terms of bounds on an intruder’s possible information gain. It also follows that an
RR design P provides ε-LDP if and only if η(P) ≤ γ = eε .

4 Comparison of RR Designs

We have seen that to satisfy the privacy requirement of either ε-LDP or Definition 3
wemust use a design with η(P) ≤ γ , for a given value of γ . For any given γ > 1, let
Cγ = {Pm×k : η(P) ≤ γ },which is the class of all privacy-preserving designs at level
γ . Typically, Cγ is large and a natural question is how shouldwe choose a design from
Cγ for practical application? As we noted earlier, for estimability of π , we should
choose Pm×k with m ≥ k and full rank. Also, as Chai and Nayak (2018) discussed,
P should not have any proportional rows, to be concise. Two designs are statistically
equivalent if one can be obtained by merging the proportional rows of the other one.
Intuitively, we should choose a P from Cγ that satisfies the preceding two conditions
and maximizes data utility. However, data utility is a complex matter and it may be
assessed in different ways. In the following, we first review an admissibility result
under a broad view of data utility and then discuss design selection under certain
optimality criteria.

4.1 Admissible Designs

Blackwell (1951, 1953) introduced a general criterion for comparing experiments,
which in our context says the following.

Definition 6 An RR design Pm×k is said to be sufficient for (or at least as informa-
tive as) another RR design Ar×k , to be denoted P � A, if there exists a transition
probability matrix Cr×m such that A = CP .

If P � A and also A � P , then A and P are equivalent, and P is better than A
if P � A but A � P . Furthermore, P is said to be admissible if there does not exist
another design that is better than P .
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If P � A, then applying A is equivalent to randomizing the true responses first
using P and then randomizing the outputs of P using C . Intuitively, P should be
more informative than A because the second randomization withC inflicts additional
loss of statistical information. Formally, P � A implies that given any loss function
and any inference rule δ based on the data from A, there exists a rule δ∗ based on P
whose risk function is no larger than the risk function of δ. In this sense, if P � A,
then P is universally at least as good as A. Chai and Nayak (2018) proved that two
designs Pm×k and Ar×k in Cγ are equivalent if and only if m = r and A = CP ,
where C is a permutation matrix, i.e., A can be obtained by permuting the rows of
P , or just reordering the elements of the output space. Logically, we should use only
admissible designs. Here, an important question is how do we know if a given design
P is admissible or not? The following result of Chai and Nayak (2018) answers this
question.

Theorem 2 For any given γ , an RR design P ∈ Cγ is admissible if and only if (i)
ηi (P) = γ for all i (i.e., each row parity is γ ) and (ii) each row of P contains exactly
two distinct values.

Now,we discuss an important RRmethod, viz., the RAPPOR algorithm, proposed
recently by Erlingsson et al. (2014). Google, Apple, Microsoft, and other companies
have been using it for online data capture; see, Ding et al. (2017) and Cormode
et al. (2018). The basic method applies ε-LDP and works as follows. It represents
all true responses with indicator vectors X = (X1, . . . , Xk). Specifically, if the true
response is ci , then the i th component of X is 1 and all other components are 0.
RAPPOR’s randomization changes each component of (X1, . . . , Xk) independently
with probability p = 1/(

√
γ + 1) and produces an output vector Z = (Z1, . . . , Zk).

The output space of RAPPOR is SZ = {z = (z1, . . . , zk) : zi = 0 or 1 for i =
1, . . . , k}, which contains 2k elements. So, RAPPOR’s TPM is of order 2k × k. The
transition probabilities can be calculated easily. Let x (i) denote the indicator vector
for true response ci , i.e., x (i) = (x1, . . . , xk), where xi = 1 and x j = 0 for all j �= i .
For any z ∈ Sz , let tz = ∑

j z j . Then, it can be seen that

P((z1, . . . , zk)|x (i)) =
{
ptz−1(1 − p)k−tz+1, if zi = 1
ptz+1(1 − p)k−tz−1, if zi = 0.

(8)

Let 1 = (1, . . . , 1) and 0 = (0, . . . , 0). From (8), we see that P(1|x (i)) = pk−1(1 −
p) and P(0|x (i)) = p(1 − p)k−1 for all i . So, the two rows of the RAPPOR’s TPM,
corresponding to z = 0 and z = 1, have parity 1 (not γ ). This shows, in view of
Theorem 2, the RAPPOR’s design is not admissible.

We should mention that all other rows of RAPPOR’s TPM satisfy the conditions
of Theorem 2. So, the RAPPOR algorithm can be modified to make it admissible.
Specifically, removing the two rows corresponding to 0 and 1 and normalizing the
remaining matrix gives an admissible design. RAPPOR also gives a method for esti-
mating π from perturbed data. The RAPPOR estimator is unbiased but not efficient.
Chai and Nayak (2019) derived a better unbiased estimator that is also minimax
under certain conditions.
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4.2 Comparison of RR Designs

For k = 2, i.e., binary X , it follows from Theorem 2 that essentially only one design,
given below, is admissible and hence it is the best design.

Theorem 3 For binary X, an optimal RR design in Cγ is P2×2 with p11 = p22 =
γ (γ + 1)−1 and p12 = p21 = (γ + 1)−1.

The optimal design in Theorem 3 is a Warner’s design. For k ≥ 3, many designs
are admissible and choosing an optimal design requires additional criteria. In the
following, we review some recent results.

Agrawal et al. (2009) presented the following optimality result in a special case.
They required ρ1-to-ρ2 privacy. AnRR design P satisfies ρ1-to-ρ2 privacy if and only
if η(P) ≤ γ , with γ = [ρ2(1 − ρ1)]/[ρ1(1 − ρ2)]. They considered the special case
of SZ = SX . This implies thatm = k. Additionally, they considered only symmetric
P . Under these conditions, they proposed to take any P with the minimum condition
number as an optimal design. The condition number of a symmetric positive definite
matrix is defined as the ratio of its largest and smallest eigenvalues. To justify the cri-
terion, they stated that the stability of numerical calculations with a matrix decreases
as its condition number increases. They were mainly concerned with computing the
inverse of P , which is often used for calculating an estimate of π and its variance.
They proved that among all P ∈ Cγ that are also symmetric, the matrix P0 with ele-
ments pii = γ /(γ + k − 1), i = 1, . . . , k, and pi j = 1/(γ + k − 1) for i �= j has
the minimum condition number. Thus, P0 is the best design by their criterion.

Chai and Nayak (2018) also considered the special case of SZ = SX . Thus, the
true values are randomized within the categories X . Here, the diagonal elements
of P are the probabilities of keeping the true responses unchanged. Intuitively, we
should change the true responses as little as possible to minimize data utility loss.
This suggests to use a design P ∈ Cγ that has large diagonal values. One measure of
“largeness” of the diagonal values of P is

∑
i pii , the trace of P . With this, a design

P ∈ Cγ with the largest tracemay be considered a best design at privacy level γ . Chai
and Nayak (2018) proved that the optimal design P0 of Agrawal et al. (2009), given
above, is also the best design under the maximum trace criterion. Note that unlike
Agrawal et al. (2009), this approach does not require P to be symmetric, although
the optimal design P0 is so.

Next, we review a minimax approach, recently investigated by Chai and Nayak
(2019). Assuming multinomial sampling and squared error loss, they considered
optimum determination of an RR strategy, which consists of a design P and an
estimator π̂ = (π̂1, . . . , π̂k) of π . Under squared error loss, the risk function of an
RR strategy (P, π̂) is

R(P, π̂;π) = EP,π

[
‖π̂ − π‖2

]
= EP,π

[ k∑

i=1

(π̂i − πi )
2
]
, (9)
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where the expectation is with respect to both sampling and randomization. They
considered unbiased estimators of π that are also linear in S, i.e., π̂ = LS/n for
some matrix L , where S is the frequency vector of d1, . . . , dm and the divisor n is
used for mathematical simplicity. As, E(S) = nPπ , π̂ = LS/n is unbiased if and
only if LP = I . Recall that privacy protection requires that P ∈ Cγ , for specified
γ . Then, an RR strategy (P∗, π̃ = L∗S/n) is minimax among all privacy satisfying
strategies if P∗ ∈ Cγ , P∗L∗ = I and

sup
π

EP∗,π

[
‖ L∗S

n
− π‖2

]
= inf

P∈Cγ

inf
L:LP=I

sup
π

EP,π

[
‖ LS
n

− π‖2
]
.

The RR design P∗ is a minimax design.
To describe the minimax strategy, derived in Chai and Nayak (2019), for given

γ > 1 and k ≥ 2, define

f (x) = k2(xγ 2 + k − x)

(xγ + k − x)2
, x ≥ 0, (10)

and

q =

⎧
⎪⎨

⎪⎩

� k

1 + γ
�, if f (� k

1 + γ
�) ≥ f (� k

1 + γ
�) and � k

1 + γ
� ≥ 1

� k

1 + γ
�, otherwise.

(11)

Essentially, q is a maximizer of f (.) over positive integers.
To describe how P∗ randomizes the true categories,we represent the true responses

with indicator vectors X = (X1, . . . , Xk), as in RAPPOR. Then, for a true response
(x1, . . . , xk), P∗ generates an output (z1, . . . , zk) as follows. Suppose the true cat-
egory is ci , which implies xi = 1 and x j = 0 for j �= i . Then, P∗ assigns zi = 1
with probability p = (qγ )/(qγ + k − q) and zi = 0 with probability 1 − p. Next,
if zi = 1, P∗ randomly selects (q − 1) of the remaining (k − 1) components of z
and sets those to 1. If zi = 0, P∗ assigns 1 to q of the remaining components of z,
selected at random. In both cases, all other components of z are 0. Thus, exactly q
components of each output vector are 1 and the rest are 0. So, the output space of
P∗ is S∗

Z = {(z1, . . . , zk) : zi is 0 or 1, i = 1, . . . , k, and
∑

zi = q} and it contains
m = (k

q

)
elements. As before, let x (i) denote the indicator vector for true response ci .

Then, it can be seen that the transition probabilities of the minimax design are

P((z1, . . . , zk)|x (i)) =
{

γ p0, if zi = 1
p0, if zi �= 1

for i = 1, . . . , k and (z1, . . . , zk) ∈ S∗
Z , where p0 = k/[(kq

)
(qγ + k − q)]. So, each

row of the TPM has two distinct values and parity γ , satisfying the conditions of
Theorem 2.
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Aswe describe next, theminimax estimator π̃ ofπ under P∗ has a simple form and
can be calculated easily. With vector representation, both the original and perturbed
data under P∗ appear as n × k matrices, with each row showing one respondent’s
data. Let V′ = (V1, . . . , Vk) denote the vector of column sums of the perturbed data
matrix. Then, the minimax estimator, derived in Chai and Nayak (2019), is

π̃ = (k − 1)(qγ + k − q)

q(γ − 1)(k − q)

(V
n

)
+ 1

k

[ (1 − k)(qγ + k − q)

(γ − 1)(k − q)
+ 1

]
. (12)

The minimax estimator is also a method of moments estimator based on V. Here,
we want to mention that the estimator in RAPPOR is similar to (12). It is based on
method of moments and a linear function of the column sums of their perturbed data
matrix. Naturally, π̃ in (12) is an unbiased estimator and it also follows that the risk
function, as defined in (9), of the minimax strategy (P∗, π̃) is

R(P∗, π̃;π) = 1

n

[ (k − 1)2

f (q) − k
+ 1

k
− 1

]
+ 1

n

k∑

i=1

πi (1 − πi ), (13)

where the function f and the quantity q are as defined in (10) and (11). Due to
unbiasedness (13) also gives the trace of the variance-covariance matrix of π̃ , i.e.,
R(P∗, π̃;π) = tr[V (π̃)] = ∑

V (π̃i ). The last term of (13) is the risk of the MLE
of π under no randomization. So, it reflects only the sampling variation. The first
term in (13) is the added variance due to RR, which interestingly is independent of
π , unlike the sampling variation.

We want to mention that Duchi et al. (2018) also investigated minimaxity of RR
strategies and in a much broader setting. They considered a wider class of problems
and loss functions. They derived bounds on minimax values and their convergence
rates under ε-LDP. In particular, they obtained rate optimal methods for certain
estimation problems. Naturally, those asymptotic results may not be useful in small
samples. Also, rate optimality ignores the multipliers of convergence rates. So, a rate
optimal procedure need not be asymptotically efficient because the minimax risks of
two methods may converge to zero at the same (and optimal) rate, but with different
multipliers. In contrast, the results of Chai and Nayak (2019) are exact, but for a
specific problem.

5 Identification Risk Control by Post-randomization

Protecting data confidentiality is a difficult task because disclosure of personal infor-
mation about survey participants may occur in various forms depending on the con-
text, nature of released data and sensitivity of survey variables. Various types of
disclosure and methods for their control are discussed in the books: Willenborg and
De Waal (2001), Duncan et al. (2011) and Hundepool et al. (2012). In this article,
we shall consider only identity disclosure in microdata release. Consider a complete
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data set containing values of multiple variables for each of n sampled units. Data
agencies commonly publish summaries of the data. But, researchers often want the
full data set to explore different models and hypotheses. However, the original data
may disclose the values of some sensitive variables for some of the survey partici-
pants or units, even if name, social security number and other direct identifiers are
removed. In particular, one might be able to correctly identify the records of a tar-
get unit by matching gender, race, occupation, and other characteristics that can be
obtained easily from other sources. Then, one can learn the identified unit’s values
for all other variables. This is called identity disclosure, which is also regarded as
one of the most serious violations of data confidentiality.

5.1 Identification Risk Measures

The variables that an intruder might use for matching are called key (or pseudo-
identifying) variables,which are usually categorical. For reducing identification risks,
agencies perturb the true values of the key variables and then release the perturbed
data. For choosing a suitable perturbation method, the agency should first determine
its disclosure control goals. For that, the agency needs to select and specify the key
variables. Thus, we assume that the key variables are given and all are categorical.
As before, let X denote the cross-classification of all key variables and suppose X
takes values in SX = {c1, . . . , ck}. In this setting, Bethlehem et al. (1990), Skinner
and Elliot (2002), Shlomo and De Waal (2008), Shlomo and Skinner (2010) and
others have proposed and investigated different measures of identification risk.

Early works focusedmainly on the units that are unique in the sample with respect
to X . As agencies do not reveal which population units are in the sample, it is
reasonable to assume that an intruder would not know if his target is in the sample
or not. Such an intruder would correctly match a sample unique unit if it is also
population unique with respect to X . Motivated by this, Bethlehem et al. (1990)
defined identification risk as the probability that a unit is population unique, given
that it is sample unique, both with respect to X . Obviously, this concerns only the
sample unique units. Also, it ignores the effects of data perturbation. So, this measure
is not useful for determining a suitable perturbation mechanism. Essentially, it aims
to assess howmuch protection the sample unique units get from sampling.We refer to
Skinner and Elliot (2002) for a discussion of similar measures and related references.

Shlomo and Skinner (2010) took a more relevant approach that focuses on correct
matches in perturbed (and released) data. Naturally, they take data perturbation into
account. However, they were concerned only with the unique matches in released
data, presuming those to be the worst cases. Consequently, they defined a unit’s
identification risk as the probability that the unit is correctly identified given that it
has a unique match in released data. This (conditional) probability is with respect to
both sampling and data perturbation. This identification risk is unit specific and it
varies over the sampled units.
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There are some practical difficulties in using the preceding riskmeasure in finding
a suitable perturbation mechanism. First, the risks of the sampled units involve the
unknown population frequencies and hence those cannot be calculated from available
information. Methods for estimating those have been proposed, but they require
assumptions about the population distribution and data modeling. So, the estimates
depend on the model assumptions. Second, the effectiveness of data perturbation
is assessed using the average of the risks of all sampled units. That may not be
appropriate because a small average risk does not imply that disclosure risks of all
units are desirably small. Third, the search for a suitable perturbation procedure
requires an iterative approach. One would need to assess the effectiveness of several
procedures to select a procedure. For example, to apply data swapping, as described
in Shlomo and Skinner (2010), one would need to evaluate the average risk measure
for various swap rates to choose a suitable value for actual application.

Recently,Nayak et al. (2018), henceforthNZY, refinedShlomoandSkinner (2010)
approach and introduced a strict identification risk control goal. They also developed
amethod for achieving that goal. To describe the NZY approach, consider an intruder
J who wants to identify the records of a target unit B in the released perturbed data.
Let X(B) denote B’s value of X , and suppose X(B) = c j . NZY assumed that (a) J
knows X(B), (b) J knows that B is in the sample and (c) J randomly selects one of
the records in the released data that match X(B), and identifies those as B’s data. If
no records in released data match X(B), the intruder stops his search for B’s data.
While assumptions (a) and (c) are realistic, (b) is overly stringent because agencies
do not disclose which population units are included in the sample.

Let Tj and Sj denote the frequencies of c j in the original and perturbed data,
respectively, and let T = (T1, ..., Tk)′ and S = (S1, ..., Sk)′. Note that if X(B) = c j ,
then Sj records in the released data match B on key variables. Intuitively, J ’s con-
fidence in a declared match depends on Sj . Observing this, NZY considered the
following to propose a strict disclosure control goal:

R j (a) = P(CM |X(B) = c j , Sj = a), j = 1, . . . , k, a ≥ 1

where CM denotes the event that B is correctly matched in the preceding setup.
NZY proposed that the agency should select a suitable value ξ and guarantee, with
appropriate data perturbation, that

R j (a) ≤ ξ for all j = 1, . . . , k, and all integers a ≥ 1. (14)

Then, no unit’s correct match probability would exceed ξ . This gives a clear and
strong identification risk control goal.

Like all past identification risk measures, R j (a) also depends on the unknown
population frequencies. So, we cannot calculate R j (a)’s and thereby verify whether
a data perturbation mechanism guarantees (14) or not. To avoid this difficulty, NZY
considered

R j (a, t) = P(CM |X(B) = c j , Sj = a, T = t),
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further conditioning on t. Quite importantly, R j (a, t)’s do not involve unknown
parameters under PRAM and so, those can be assessed and controlled without esti-
mating any parameter. Note that R j (a, t)’s involve the original frequency vector t,
but that is available to the data agency. NZY suggested to satisfy (14) by using a data
perturbation mechanism such that

R j (a, t) ≤ ξ for j = 1, . . . , k, all a > 0 and all t. (15)

Effectively, (15) is their disclosure control goal, which readily implies (14).

5.2 A Post-randomization Method

Taking the preceding approach, NZY developed a class of unbiased PRAMs that can
be used to satisfy (15) for ξ > 1/3. They give two reasons for choosing a ξ > 1/3
in practical situations. First, intruders should have strong evidence for declaring
matches. To be credible, the correct match probability for a declared match should
be substantial, perhaps larger than 0.5. Second, as noted earlier, assumption (b) is
overly stringent. Usually, an intruder would not know if a target is in the sample or
not. For such an intruder, a correct match probability is much smaller than R j (a),
approximately R j (a) times the target’s sample inclusion probability, which is usually
quite small.

For any given ξ > 1/3, NZY developed an unbiased PRAM to satisfy (15) as
follows. First, we should mention that any unbiased PRAMdoes not affect the empty
categories. In other words, an unbiased PRAM does not change a true category to
a category that was originally empty. Truly, SZ consists of only the categories in
SX that have positive frequencies in the original data set, i.e., SZ = S∗

X = {ci : ci ∈
SX and ti > 0}, which may be a proper subset of SX . Actually, S∗

X is also the input
space as all observed values are in this set. For notational simplicity, we assume that
all categories are nonempty and thus S∗

X = SX .
The NZY method uses one specific class of unbiased PRAMs. Specifically, they

use the transition probabilities

pi j = P(Z = ci |X = c j ) =
{
1 − θ

t j
, if i = j;

θ
(k−1)t j

, if i �= j,
(16)

where t j is the original frequency of c j and θ is a design parameter, chosen suitably to
satisfy (15). Clearly, the TPM P = ((pi j )) given by (16) is adaptive, viz., it depends
on the observed data via the category frequencies. Also, P has a simple structure.
It changes a true category c j with probability θ/t j , which is inversely proportional
to the frequency of the unit’s true category. If a true category is c j , then it is kept
unchanged with probability 1 − θ/t j . When a true category is changed, the replace-
ment is selected at random from the remaining categories. One helpful feature of
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this P is that it is determined fully by a single parameter θ . So the effects of P on
identification risks and statistical inferences can be studied in terms of θ only.

One key result of NZY is that for given 1/3 < ξ < 1, the above P satisfies (15)
if θ is chosen as the solution of h(θ) = ξ , where

h(θ) =
{

1−θ
1−θ+θ2 , if θ ≤ 2

3 ,
2−θ

4−2θ+θ2 , if θ > 2
3 ,

and k ≥ (1 − θ)−1. They also showed that h(θ) is a strictly decreasing function of
θ , with h(0) = 1 and h(1) = 1/3 and thus for any 1/3 < ξ < 1, h(θ) = ξ admits
a unique solution for θ in (0, 1). This result gives a theoretical basis for designing
a post-randomization method for guaranteeing (15). Also, a suitable PRAM can
be designed directly, without iterative calculations or adjustments, unlike previous
approaches.

Actually, the method proposed by NZY applies the preceding result separately
to subsets of the data set, which are formed by partitioning the data into homo-
geneous groups and then taking only the sensitive records in each group. That is
done to better preserve data utility. While category and cell are synonymous, in the
rest of this section we shall use cell for a cross-classified variable and category for
individual variables, for additional clarity. So, we shall use cell for X , as it is the
cross-classification of all key variables. For given 0 < ξ < 1, a cell is considered sen-
sitive if its frequency is less than 1/ξ . A cell c j is nonsensitive if t j ≥ 1/ξ because
in the original data, the probability of correctly identifying a unit falling in that cell
is 1/t j ≤ ξ . The identification risks of all units in the nonsensitive cells are already
sufficiently small. So, we only need to post-randomize X for all units in the sensitive
cells. All sensitive cells in a partition set form a post-randomization block (PRB).
The NZYmethod applies PRAM to the PRB’s separately. More details of the method
and some parts of an illustrative example are given below.

The main purpose of data partitioning is to control the nature and magnitude of
possible changes due to PRAM, and even preserve selected parts and summaries of
the data set. NZY gave several ideas for data partitioning. One simple approach is
to partition the data by broader or generalized categories of the key variables. As
an illustrative example, NZY applied the method to a data set publicly released by
the U.S. Census Bureau. It contains values of several demographic and economic
variables for 59,033 individuals. For illustration, NZY took gender (2), age (92),
race (9), marital status (5), and public use microdata area (PUMA) (44) as the key
variables, where the values in parentheses show the number of categories of the
variables. The cross-classification of these key variables yields 364,320 cells.

In the example, NZY partitioned the data by gender, seven age intervals, viz.,
0–17, 18–24, 25–34, 35–44, 45–54, 55–64, and 65 and above, and the three race
categories: white, black, and “other races.” That divided the data into 42 partition
sets, corresponding to all possible combinations of gender, 7 age intervals, and 3
race classes. For example, all females of “other races” with age between 25 and 34
constitute one partition set. Similarly, all white males in the age interval 55–64 form



A Review of Rigorous Randomized Response … 337

another partition set. Note, for example, that all individuals in a partition set are
either male or female. As the method applies PRAMwithin each partition set, it will
not alter the gender of any individual. Similarly, it will preserve race if the original
category is white or black, which are the twomajor categories. Racemay change only
among the other races. Age will remain in the partitioning intervals. For example, if
the true value is 38, the perturbed value will be between 35 and 44. It will preserve
the counts of voting age (18 or above) and senior (65 and above) people, which are
important in policy research. Also note that since marital status and PUMA were
not used in data partitioning, those may change freely. This partition in one extreme
fully preserves gender and on the other extreme permits unlimited changes of marital
status and PUMA.

In the example,NZY took ξ = 0.395, forwhich only singleton and doubleton cells
(with frequency 1 and 2, respectively) are sensitive. So, all singleton and doubleton
cells of X in a partition set formed one PRB. In each of the 42 PRB’s, the true X cells
are post-randomized using the transition probabilities given by (16). For ξ = 0.395,
it turns out that θ = 0.8 and (1 − θ)−1 = 5. Earlier, we discussed (16) for one data set
and assuming that all cells are nonempty. For applying post-randomization, we need
to specialize (16) for each PRB. Specifically, we need to interpret k as the number of
cells in the PRB, which changes from PRB to PRB. Also, c1, . . . , ck should represent
the cells within a PRB. The theoretical results for guaranteeing (15) also require at
least (1 − θ)−1(= 5 for ξ = 0.395) cells in each PRB. This was satisfied in the
example. Actually, the number of cells in the 42 PRB’s ranged between 124 and
1480. One should not partition the data overly finely into too many sets so that the
condition k ≥ (1 − θ)−1 is satisfied.

We mention some other facts from the NZY example. The five key variables
defined 364,320 cells. The data set, with sample size 59,033, showed only 25,406
nonempty cells, of which 13,662 are singleton and 4,777 are doubleton. As θ = 0.8,
the method changed the true cell of each singleton unit with probability 0.8 and each
doubleton unit with probability 0.4. When a true cell was changed, the new cell was
picked at random from the remaining cells within the PRB. The method kept the true
values of all nonsensitive units unchanged.

Deriving methods for analyzing perturbed data, making appropriate adjustments
for data perturbation, is burdensome to data users. Also, data users usually do not
get full information about the perturbation mechanism that is needed for modeling
the perturbation effects. So, it is important to perturb the data in such a way that
standard inferential methods for the original data remain valid for the released data,
at least approximately. Generally, we want perturbation methods that add a small (or
negligible) variance and no bias. The NZY methods does quite well in that respect,
largely due to data partitioning and using unbiased PRAM. The relative frequen-
cies based on perturbed data are unbiased estimators of corresponding population
probabilities. NZY examined the variance of these estimators and proved that the
additional variance due to data perturbation is of order 1/n2, where n is sample size.
That is negligible in comparison to sampling variance, which is of order 1/n.

Consistent with the theoretical results, the NZY method exhibited very small
effects on data distributions in their example. We reproduce the distributions of
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Table 1 Frequency distributions of marital status

Marital status Original data Perturbed data Difference

Married 24688 (0.4182) 24678 (0.4180) 10

Widowed 3156 (0.0535) 3180 (0.0539) −24

Divorced 4742 (0.0803) 4704 (0.0797) 38

Separated 1040 (0.0176) 1039 (0.0176) 1

Never married 25407 (0.4304) 25432 (0.4308) −25

Table 2 Frequency distribution of race

Race Original data Perturbed data Difference

White 37201(0.6302) 37201 (0.6302) 0

Black 15239(0.2581) 15239(0.2581) 0

American Indian
alone

97 (0.0016) 92(0.0015) 5

Alaska Native alone 1(0.00002) 0 (0) 1

American Indian and
Alaska Native

42(0.0007) 46 (0.0008) −4

Asian 3461(0.0586) 3445(0.0584) 16

Native Hawaiian and
other Pacific Islander

20 (0.0004) 21(0.0004) −1

Some other race alone 1349(0.0228) 1337(0.0227) 12

Two or more races 1623(0.0275) 1652(0.0280) −29

marital status and race based on the original and perturbed data in Tables1 and 2.
There, columns 2 and 3 give the original and perturbed frequencies and the numbers
in parentheses are relative frequencies. The last column gives the difference between
the original and perturbed frequencies. Recall that marital status was allowed to
change freely. Even then, the original and perturbed frequencies are very close.
The differences between original and perturbed frequencies of race categories are
also quite small. Note that the difference is 0 for white and black. That is not by
coincidence, but due to the particular data partitioning, which forced to preserve
race for those two groups. We refer interested readers to the NZY paper for more
details about the method and the example.

6 Discussion

The idea of randomizing true responses for protecting respondent’s privacy and data
confidentiality has been around for a long time. But, it has not been used much in real
surveys, perhaps due to lack of practical privacy measures and adequate guidance
on choosing the transition probabilities. In recent years, RR methods have received
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significant attention from companies and computer scientists in a new context, viz.,
for protecting privacy when recording data from various online activities. Recent
research has yielded precise privacy concepts and measures and rigorous methods
for determining the transition probabilities.We have reviewed some of those develop-
ments. In particular, we covered one approach to strict privacy protection (in Sects. 3
and 4) and one rigorous method for identification risk control in releasing microdata
(in Sect. 5).

RR surveys and PRAM are similar in that both randomize true responses with
predetermined probabilities and the transition probabilities govern their mathemat-
ical properties. But, one important difference is that in PRAM, the original data
(containing true responses of all units) may be used to choose the transition prob-
abilities, whereas in RR surveys, those must be determined before data collection.
This implies that in PRAM, randomization may be applied after data partitioning
and only to some selected units. The NZYmethod displays and utilizes these special
features of PRAM.

Privacy and data confidentially are difficult but important topics and have been
investigated for a long time. Also, research in these areas has increased signifi-
cantly in recent years. New theories and methods are being developed by researchers
in statistics, computer science, public policy, and other fields. Other concepts and
methods such as grouping, data swapping, synthetic data, l-diversity, and differen-
tial privacy have been developed to mitigate disclosure risks. We consider response
randomization as one of the most basic and promising tools for protecting privacy
and data confidentiality. In particular, we believe that there is substantial scope for
developing post-randomization methods, like the NZY method, for protecting data
confidentiality.

Acknowledgements The author thanks Eric Slud, TommyWright, Bimal Sinha and Kyle Erimata
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Shape and Circular Analysis



A Statistical Analysis of the Cardioid
Radial Growth Model

John T. Kent, Kanti V. Mardia, Luigi Ippoliti, and Pasquale Valentini

Abstract A new two-parameter “full exponential cardioid” radial growth model for
two-dimensional geometric objects is proposed and analyzed. The model depends
additionally on two rotation parameters and on two seeds about which the growth
is centered, plus a choice of three possible assumptions about statistical errors. If
the seeds are assumed known, the remaining parameters can be estimated in closed
form. Comparisons are given to earlier approaches. Two examples are given, one for
a set of simulated data and one for a set of rat calvarial data.

Keywords Revised cardioid strain · Craniofacial growth · Deformation · Shape
analysis · Outlines · Von mises distribution

1 Introduction

This paper revisits the Todd and Mark (1981a) “revised cardioid strain (RCS) radial
growth model”, a simple mechanistic model for craniofacial growth. Ramanathan
et al. (2009) give a recent summary of its history and applications. A key property
of the model is that the growth rate is greater near the bottom of the head than at the
top so that it captures some of the key characteristics of real growth for humans and
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other animals. Further, the model gives a very simple description of growth, with
only one growth parameter (plus 6 registration parameters, often treated as known)
to fit.

The two key assumptions of the model are that (a) there is a “seed” inside the skull
about which growth is centered, and (b) the rate of growth at a particular point on
the head depends only on the angle from vertical. Various attempts have been made
to justify the model in terms of physical principles. For example, Todd and Mark
(1981a) motivate the model using hydrostatics and gravity.

The cardioid growth model can be considered as a very simplified version of the
pattern theoretic growth model of Grenander et al. (2007) and Portman (2009, p. 19),
which is based on infinitesimal growth patterns about a seed. However, the pattern
theoretic growth model is much richer, albeit more complicated, because cumulative
growth involves a series of iterated diffeomorphisms and many different seeds.

The use of the cardioidmodel as a “real” description of biological growth has been
hugely controversial. See especially the Letter to the Editor by Bookstein (1981) in
the same volume as Todd and Mark (1981a); there is also a rejoinder by the authors
Todd andMark (1981b).Oneof themain objections is the existence of a constant seed.
Another is the simplistic assumption that growth depends on a single parameter. The
full exponential cardioid (FEC) radial growth model developed below in (4) includes
two parameters for growth.

The RCS model was firstly used to characterize craniofacial growth. However,
this model has been also found useful to effectively approximate aging on frontal
photographs of faces. See, for example, Miyoshi and Hyodo (2006); Ramanathan
and Chellappa (2006); Ramanathan et al. (2009) and Yamaguchi and Oda (1999),
especially for female faces and faces that appear childlike.

One of the main successful uses of the cardioid model has been in psychological
experiments, where experimenters artificially age outlines or images of human heads
using this model, with the aim of getting subjects to visually react to the perceived
age; see, for example, Yamaguchi andOda (1999). For this purpose it is not necessary
for the model to be fully accurate biologically. It is only necessary that the subjects
perceive appropriate differences in age as the image is altered.

The purpose of this paper is to develop statistical shape methodology to assess the
strengths and weaknesses of the cardioid growth model. To facilitate the statistical
analysis, we emphasize a modified version of the growth model, which differs from
the original RCS model in three ways.

(a) Growth is modeled on a log scale rather than a linear scale.
(b) There are two parameters to model growth (essentially an intercept and slope

parameter) instead of a single slope parameter in the original RCS model.
(c) Explicit assumptions are introduced to model the statistical error. Three possi-

bilities are described.

It is a pleasure to include this paper in a volume dedicated toCRRao’s 100th birth-
day as it relates to two research areaswhere he hasmade substantial contributions. He
did pioneering work in growth starting fromRao (1958) and subsequently he worked
on shape analysis based on landmark data starting fromRao and Suryawanshi (1996).
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2 Radial Growth Models for Two-Dimensional Objects

Let X and Y denote two geometric objects in the plane where every point x ′
j ∈ X

has a unique counterpart y′
j ∈ Y , j = 1, . . . , J . A radial growth model states that

after appropriate centering and rotation, the X- and Y-configurations are related by
a simple parametric transformation in polar coordinates.

It is convenient to represent points in the planeby complexnumbers.Given “seeds”
μ, ν ∈ C define “centered” points by

x j = x ′
j − μ, y j = y′

j − ν

with polar coordinates

x j = x ′
j − μ = r j exp(iθ j ), y j = y′

j − ν = s j exp(iφ j ). (1)

Thus, r j , s j are the radial components and θ j , φ j are the angular components of the
centered data.

For graphical purposes, let an angle θ bemeasured counterclockwise fromvertical.
Thus, θ = 0 points upwards and θ = π/2 points to the left. Thus, a complex number
with positive real part lies in the upper half-plane and a complex numberwith positive
imaginary part lies in the left half-plane.

Let a function M(θ) = exp{L(θ)}, taking an angle to a positive number, be called
a radial deformation function, following Grenander et al. (2007). The specific choice

M(θ; a0, b) = exp{L(θ)} = exp(a0 − b cos θ) (2)

is called the full exponential cardioid (FEC) radial deformation function. The minus
sign is chosen so that if b is positive, then M(θ; a0, b) > M(0; a0, b) for θ �= 0; in
particular, the growth rate is smallest in the upwards vertical direction and largest in
the downwards vertical direction.

Consider a two-dimensional side or sagittal view of a human head, with a seed
inside the head but near the top of the skull. Suppose the head has been rotated so that
the direction from the seed to the top of the head points upwards (the preferred ori-
entation), with angle θ = 0. Then, the FEC radial deformation function can capture
the property that for babies and children, the growth rate is greater near the bottom
of the head than at the top.

In general, the configurations X and Y may need to be rotated to their preferred
orientations by angles α and β, say, before the deformation function can be applied.
Given a radial deformation function, a general radial growth model from X to Y is
defined by

e−iβ y j = M(θ j − α)e−iαx j = M∗(θ j )e
−iαx j (3)

where the angles α and β are nuisance orientation parameters and M∗(θ) = M(θ −
α) is the adapted version of the M function.
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For the FEC radial growth model, the adapted log radial deformation function can
be written as

L∗(θ) = L(θ − α) = a0 − b cos(θ − α) = a0 − a1 cos θ − a2 sin θ, say. (4)

Note that
b = (a21 + a22)

1/2 and α = atan2(a2, a1) (5)

can be recovered from a1 and a2. Here atan2, a function found in many computing
languages, is a version of the atan function, modified to ensure that the result is in
the correct quadrant, so that (a1, a2) = b(cosα, sin α).

For any radial growth model there are 6 registration parameters (two complex
seeds and two orientation parameters). For the FEC radial growth model, there are
additionally two growth parameters, a0 and b. Under any radial growth model, the
angular part does not change, φ j − β = θ j − α; it is only the radial part that changes.
That is, the angular part of e−iβ y j is the same as that of e−iαx j ; the radial part s j
of y j depends on the radial part r j of x j through the radial deformation function.
Although the phrase “growth”model is used for simplicity, shrinkage can occurwhen
M(θ) < 1.

If b is near 0, then the FEC radial growth model can be approximated by the full
linear cardioid (FLC) radial growth model with deformation function

MFLC(θ; k1, k2) = k1 − k2 cos θ, (6)

with k1 = exp(a0), k2 = b exp(a0). If θ is allowed to range around the whole circle
then the constraints k1 > 0 and k1 + |k2| > 0 are needed to ensure that MFLC(θ) =
MFLC(θ; k1, k2) is always positive.However, inmany applications the possible values
of θ j for points in X lie in a smaller arc θ(0) < θ < θ(1), say, and in such a situation
the constraints on k1 and k2 can be relaxed somewhat.

The full linear cardioid radial growth model (6) includes two one-parameter spe-
cial cases.

(a) The case k1 = 1 and k2 = kCS in (6), with parameter kCS, is known as the cardioid
strain (CS) model (Shaw et al. 1974). The analogous restriction for the FEC
model (2) is a0 = 0.

(b) The case k1 = 1 + kRCS and k2 = kRCS, with parameter kRCS, is known as the
revised cardioid strain (RCS) model (Todd and Mark 1981a). The analogous
restriction for the FEC model (2) is a0 = b.

These models are called “strain” models because a physical justification can be
attempted in terms of mechanical strain. For the other models, there is no claim of
any physical motivation.

If growth is viewed as a continuous activity, then the growth model of Eq. (6)
requires the choice of a unit time interval. After n time units with constant registration
parameters, the model has overall radial deformation function MFLC(θ; k1, k2)n and
it is not defined for non-integer values of time. On the other hand, a continuous
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Fig. 1 Radial deformation functions with kRCS = −0.2,−0.1, 0.0, 0.1, 0.2.Model 1 = RCSmodel
(blue); Model 2 = analogous FEC model (red)

version of (2) can be defined for all values of time t ≥ 0 through a time-dependent
radial deformation function Mt (θ) = exp{t L(θ)}. Hence, the second model feels
more natural when the choice of a unit time interval is arbitrary.

A comparison between radial deformation functions for the RCS and the FEC
growth models is given in Fig. 1 for different choices of kRCS, with a0 = b = kRCS.
The differences are small for small kRCS and increase for larger kRCS.

The choice of the model specification may be based on biological/scientific argu-
ments. For example, the CS model shows no growth in the direction θ = 90◦ while
the RCS shows no growth in the direction θ = 0◦. When there are no scientific rea-
sons to prefer one version over the other, it can be more useful to work with the
full model, either in continuous (2) or discrete (6) form. This paper emphasizes the
continuous models.

The study of growth models can viewed as part of the subject of statistical shape
analysis. Technically, the shape of an object consists of the information that remains
after location, rotation, and size effects have been removed. However, in growth
models it is important to retain information abut the size of an object. Hence, growth
models can be more accurately described as examples of size-and-shape analysis
(e.g., Dryden and Mardia 2016, p.66).

For convenience here is a reminder of the key abbreviations in the paper for vari-
ous radial growth models:

CS : cardioid strain
RCS: revised cardioid strain
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FLC: full linear cardioid, Eq. (6)
FEC: full exponential cardioid, Eq. (2).

3 Fitting the FEC Growth Model for Landmark Data

3.1 Landmark Data

In general, an object in the plane can be represented either by a finite set of landmarks
or by a continuous outline. In this section, we focus on the landmark case. The outline
case is covered below.

Thus, the two objects are described in terms of J landmarks, X = {x ′
1, . . . , x

′
J }

and Y = {y′
1, . . . , y

′
J } with x ′

j known to correspond to y′
j , j = 1, . . . , J .

3.2 Statistical Models

There are several ways to introduce statistical errors into the FEC radial growth
model. In each case the ε j are assumed to follow independent complex normal
distributions CN (0, σ 2), so the real and imaginary parts are independent N (0, σ 2).
We assume σ 2 is “small” in each case. Recall the polar coordinates θ j , φ j for the
centered landmarks are given in (1). In addition the notation L∗

j = L∗(θ j ) = L(θ j −
α) in (4) is used for the adapted log radial FEC value at the data points to simplify
the formulas.

• (multiplicative errors)

e−iβ y j = e−iαeL
∗
j x j

(
1 + ε j

)
. (7)

• (additive-in-x errors)
e−iβ y j = e−iαeL

∗
j
(
x j + ε j

)
. (8)

• (additive-in-y errors)
e−iβ y j = e−iα

(
eL

∗
j x j + ε j

)
. (9)

The model with additive-in-y errors is closest in character to a standard regression
model.

To fit these models it is convenient to write complex numbers in polar coordinates
and to look at the resulting models for the log radial and angular components. In
particular, write ε j = ε j1 + iε j2 in terms of its real and imaginary components and
note that the radial and angular components satisfy
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|1 + ε j | =
{(
1 + ε j1

)2 + ε2j2

}1/2 ≈ 1 + ε j1,

so that log |1 + ε j | ≈ ε j1, and

arg(1 + ε j ) = atan2(ε j2, 1 + ε j1) ≈ ε j2,

where the error in the approximations is O(|ε j |2). Hence, the multiplicative error
model can be written approximately as

log(s j/r j ) = L∗
j + ε j1 (10)

φ j − θ j = ψ + ε j2 (11)

where ψ = β − α. In (10) the left-hand side of the equation can be viewed as the
response variable in a linear regression and the right-hand side contains the regressor
variables. Equation (11) involves angles with small random errors about a common
mean. It is convenient to approximate the normal distribution for ε j2 by a von Mises
distribution.

The von Mises distribution V M(ψ, κ) with mean direction ψ and concentration
parameter κ has density

f (η) = 1

2π I0(κ)
exp{κ cos(η − ψ)}, 0 ≤ η < 2π

(e.g., Mardia and Jupp 2000). The normalizing constant I0(κ) is a modified Bessel
function. For large concentration parameter κ ,

I0(κ) ≈ eκ/(2πκ)1/2, (12)

and the vonMises distribution is approximately the same as a normal distributionwith
variance σ 2 = 1/κ . Hence, the angles φ j − θ j are approximately i.i.d. V M(ψ, κ), a
vonMises distributionwithmeandirectionψ and concentration parameterκ = 1/σ 2.

The calculations for the additive models are similar but a bit more involved.
Start with the additive-in-x error model. Since the complex normal distribution is
invariant under rotations of the complex plane about the origin, ε′

j = exp(−iθ j )ε j is
also CN (0, σ 2). Then,

|x j + ε j | = | r j + ε′
j | =

{(
r j + ε′

j1

)2 + ε
′2
j2

}1/2 ≈ r j + ε′
j1,

so that log | r j + ε′
j | ≈ log r j + ε′

j1/r j , and

arg(x j + ε j ) = θ j + arg(r j + ε′
j ) = θ j + atan2(ε′

j2, r j + ε′
j1) ≈ θ j + ε′

j2/r j .

Hence, the additive-in-x error model can be written approximately as
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log(s j/r j ) = L j + ε′
j1/r j (13)

φ j − θ j = ψ + ε′
j2/r j . (14)

Thus, (13) represents a weighted regression model, where the j th term has variance
σ 2/w j in terms of the weights

w j = r2j = |x j |2. (15)

Similarly, in (14), the angles φ j − θ j are independently distributed from a vonMises
distribution with a common mean direction ψ and with j th concentration parameter
κ j = w j/σ

2.
The expansion for the additive-in-y error model is similar, except the weights are

now given by
(
eL

∗
j |x j |

)2
. However, eL

∗
j |x j | is not observed, so it is approximated by

|y j | to give the weights
w j = s2j = |y j |2 (16)

which are used below for estimation.
Assuming for the moment that σ 2 is known, the parameters of both the radial and

the angular models can be estimated by maximum likelihood. Details are given in
the next section.

4 Estimation

In this section, details are given for estimating the parameters of the FEC model,
either in its multiplicative or additive form. The estimation procedure takes the same
form in all three cases, but with different “weight terms”. Define

w
(1)
j = 1, w

(x)
j = |x j |2 = r2j , w

(y)
j = |y j |2 = s2j . (17)

For the multiplicative model, the weight term is w j = w
(1)
j . For the additive models

in x and y, the weight terms are w j = w
(x)
j and w j = w

(y)
j , respectively.

If the seeds μ and ν are known, the estimation can be carried out in closed form.
The details for the radial and angular parts are given in the next two subsections,
and combined in the following subsection. Finally, the estimation of the seeds is
discussed.
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4.1 Estimation for the Radial Model

The model for the log radial component is a linear regression model where the
response variable v j = log(s j/r j )hasmean L j = a0 + a1 cos θ j + a2 sin θ j and nor-
mally distributed N (0, w−1

j σ 2) error, j = 1, . . . , J . Hence the parameters a0, a1, a2
can be estimated by minimizing the weighted sum of squares

∑
w j (v j − L j )

2.

The minimum sum of squares RSS1, say, is given by

RSS1 = vT (W − H)v.

Here, H = WX (XTW X)−1XTW is the weighted “hat” matrix based on the J × 3
design matrix

X = [
1 c s

]

where 1 is a vector of ones, and c and s are vectorswith entries− cos θ j , − sin θ j . The
matrix W = diag(w j ) is a diagonal matrix containing the weights. The parameter
estimates are given by ⎡

⎣
â0
â1
â2

⎤

⎦ = (XTW X)−1XTWv,

where v is a vector containing the v j .

4.2 Estimation for the Angular Model

The angular differences φ j − θ j = η j , say, can be modeled using a normal distribu-
tion

η j = φ j − θ j ∼ N (ψ, σ 2
j /w j ) mod 2π.

However, since angles are only defined up to a multiple of 2π , it is more convenient,
and nearly equivalent, to express the model in terms of the von Mises distribution

η j ∼ V M(ψ, κ j ),

with mean direction ψ and concentration parameter κ j = w jκ , where κ = 1/σ 2.
If the weights κ j are treated as known, the log-likelihood for ψ becomes
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∑
κ j cos(η j − ψ) − K =

∑
κ j {cos η j cosψ + sin η j sinψ} − K

= (
∑

κ j ){C cosψ + S sinψ} − K ,

where K = ∑
log{2π I0(κ j )}, and

C =
∑

(w j cosφ j )/
∑

w j , S =
∑

(w j sin φ j )/
∑

w j .

The maximizing value of ψ is atan2(S,C). If we define

RSS2 = 2(
∑

w j )(1 − R) = 2σ 2(
∑

κ j )(1 − R)

where R = {C2 + S
2}1/2 is the weighted resultant length, then the maximized log-

likelihood becomes

− 1

2σ 2
RSS2 − K +

∑
κ j .

Once ψ and α have been estimated, then β can be estimated using the identity
ψ = β − α.

4.3 Overall Estimation

Maximum likelihood estimation for the overall model requires several additional
considerations.

(a) (Known seeds) Assume the seedsμ and ν are known. Define an overall “residual
sum of squares”

RSS = RSS1 + RSS2. (18)

Then using the approximation (12), the log-likelihood maximized over the
parameters a0, a1, a2, ψ (or equivalently, over a0, b, α, β) is given up to a con-
stant term by

l = −1

2
{RSS/σ 2 + 2 J log σ 2 − 2

∑
logw j }. (19)

Further, maximizing (19) over σ 2 yields a profile log-likelihood

l = l(μ, ν) = −1

2
{2J + 2J log(RSS/(2J )) − 2

∑
logw j }, (20)

depending just on the seeds μ and ν.
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(b) (Standardization) Unfortunately, the log-likelihood in (20) is not suitable for
comparing different seeds. The reason is that the response variables v j =
log(s j/r j ) in (13) and η j = φ j − θ j in (14) measure changes in relative posi-
tions of the final landmark y j with respect to the seed ν. To appreciate the
problem for fixed data values x ′

j , y
′
j , j = 1, . . . , J , let the seeds take the form

μ = ν = c > 0, where for simplicity attention is restricted to the case c real.
Then for large c, v j ≈ (|y′

j | − |x ′
j |)/c and η j ≈ Im(x ′

j − y′
j )/c. For the mul-

tiplicative model, w j = 1 and so RSS = O(1/c) for large c. For both of the
additive models, w j ≈ c2 and RSS = O(1). In all three cases, (20) is approxi-
mately − 1

2 {−2J log(c2)} = J log(c2) → ∞ as c → ∞. That is, the likelihood
is maximized at the singular solution c = ∞.
The solution is to scale the response variables v j and η j to |y j |v j and |y j |η j so
that theymeasure changes in absolute positions instead of relative positions. The
effect on the log-likelihood is to include an extra term. The profile log-likelihood
for the scaled responses becomes

lscaled = lscaled(μ, ν) = − 1

2
{2J + 2J log(RSS/(2J )) − 2

∑
logw j + 2

∑
logw

(y)
j }. (21)

(c) (Regularization) However, there is additional problem that arises when using
(21) to compare different seeds. If the seed ν converges to one of the y j , then the
corresponding log weight diverges, logw

(y)
j → −∞. Thus for the multiplicative

model and the additive-in-x model, the log-likelihood has a singular maximum
at this limiting choice of seed.
The basic cause of the problem is that the polar decomposition of the error model
breaks down when the radial value is close to 0. A simple way to resolve the
problem is to “regularize” the log-likelihood by approximating J−1 ∑

logw j ,
the log of the geometric mean of the weights, by log(J−1 ∑

w j ), the log of the
arithmetic mean. This substitution yields the “regularized” scaled log-likelihood

lscaled,reg = lscaled,reg(μ, ν)

= − 1

2

{
2J + 2J log(RSS/(2J )) − 2J log(J−1

∑
w j ) + 2J log(J−1

∑
w

(y)
j )

}
. (22)

This approach works for all three models. However, note that for the additive-in-
y model, the final two terms in (21) cancel one another out and it does not matter
whether or not the scaled log-likelihood is regularized. In this case Eqs. (21) and
(22) are identical to one another.

(d) (Optimization) The value of−lscaled,reg(μ, ν) can then beminimized numerically
over the four parameters(μ),�(μ),(ν),�(ν), e.g., using the black-box min-
imizer nlm fromR.Onceμ and ν have been estimated, the regression parameters
a0, a1, a2 and the angular parameterψ can be estimated using Sects. 4.1 and 4.2,
respectively. Call the resulting estimator the approximate maximum likelihood
estimator (AMLE).



356 J. T. Kent et al.

(e) (Interpretation) Estimates of the regression and variance parameters are reported
using the definitions in Sect. 4.2. That is, they are not affected by the scaling of
the response variables introduced in (21). Further, since the FECmodel has eight
parameters, an “unbiased” estimate of the error variance can be defined by

σ̂ 2 = RSS

2J − 8
(23)

where RSS is defined by (18).
(f) (Standard errors) Once the parameters have been estimated by the AMLE,

it is important to include standard errors. These can be obtained as follows.
Sections4.1 and4.2discuss optimizationover the regressionparametersa0, a1, a2
and the angular parameter ψ , respectively. If these parameters are left in the
model, then a version of the approximation (22) is obtained for the log-likelihood,
where RSS depends on these parameters, as well as the four parameters in μ

and ν. Differentiating this version of (22) twice numerically at the AMLE and
changing the sign yields the 8 × 8 approximate observed Fisher information
matrix, Iobs, say. Inverting Iobs gives the approximate variance matrix, ̂, say
for the AMLE. In particular, the square roots of the diagonal elements give the
standard errors.
Further, the 2 × 2 submatrix of ̂ for the real and imaginary parts of the seed μ

can be used to construct a confidence ellipse for μ (and similarly for ν).

5 Outline Data

In general, an object in the plane can be represented either by a continuous outline
or by a finite set of landmarks. So far the paper has focused on the landmark case.

Mathematically, an outline can be represented as a continuous curve { f (u) ∈ C :
u ∈ I }, where the index variable u ranges through an interval I = [a, b]. The curve
is either open if f (a) �= f (b), or closed if f (a) = f (b). We note that the index
variable is a convenient tool to describe the curve, but is not an essential part of the
curve. In particular, the curve can be re-parameterized by any monotone function
�(u).

In general, given two curves, it is not possible to match a given point on the first
curve to a particular point on the second curve. In Biology, matching points on the
two objects are called homologous if they have the same biological interpretation. In
the landmark case, it has been assumed above that the landmarks are homologous.
However, in the outline setting, it is not assumed that any information about homol-
ogy is available. Fortunately, under the growth model approximate matching can be
carried out mathematically.

To proceed further, make the simplifying assumption that X and Y are “star-
shaped” about their centers μ and ν respectively. A star-shaped curve can thus be
written in polar coordinates with the angular part θ playing the role of the index
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variable j . That is, for the X outline, there is a radial function r(θ) such that we can
write

x(θ) = eiθr(θ), θ ∈ [θ(0), θ (1)].

The curve is closed if θ(0) = 0, θ (1) = 2π and r(0) = r(2π). The name “star-
shaped” arises because the ray from the centerμ at angle θ, θ ∈ [θ(0), θ (1)], intersects
the X outline exactly once.

A similar representation is assumed to hold for the Y outline with radial function
s(θ) and, for a given value of θ , we declare x(θ) and y(θ) to be matched. Of course
this matching procedure assumes the registration parameters are known or at least
estimated.

The fitting of growth models to outline data is left to future work.

6 Three-Dimensional Version of the Growth Model

It is straightforward to define a three-dimensional version of the growth model. If a
direction on the unit sphere in R

d is represented by a unit vector u, say, and if the
standard basis directions are represented by the unit vectors

e1 =
⎡

⎣
1
0
0

⎤

⎦ , e2 =
⎡

⎣
0
1
0

⎤

⎦ , e3 =
⎡

⎣
0
0
1

⎤

⎦ ,

then, with e3 denoting the polar direction, the growth function L can be written as

L(u) = a0 − buT e3 = a0 − bu3.

Unfortunately, the elegance of complex arithmetic is no longer available to sim-
plify the fitting procedure.

7 Numerical Considerations

If the seedsμ and ν are known, the estimation of the remaining parameters is straight-
forward and can be computed using standard linear regression and directional statis-
tics algorithms. However, the estimation of the seed is more challenging. Here are
some preliminary recommendations. The objective function is given by changing the
sign of the regularized scaled log-likelihood (22).

(a) Start by doing a grid search for the seeds, looking for the smallest value of the
objective function.
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(b) Then use a black-box optimizer to refine the estimate of the seeds. In this paper,
the nlm function in R has been used to minimize the objective function. The
log-likelihood given in (22), and the parameter is the 4-dimensional pair of seeds.

In general, there do not seem to be numerical problems using the regularized
scaled log-likelihood, provided there is enough information in the data to estimate
the seeds. However, as illustrated in the next section, there can be a high correlation
between the estimates of the seeds μ and ν, making it difficult to estimate them
individually.

8 Examples

8.1 Simulated Data

To illustrate the behavior of the fitting algorithm, consider the following simulated
data set. The x values at some initial time are given by

x j = (1 + ( j − 1)/7) exp(π i( j − 1)/7), j = 1, . . . 8,

so that the angular pars are equally-spaced on a semi-circle and the radial parts
increase in an arithmetic progression from 1 to 2. The y values at some final time
follow the FEC model with α = β = 0, a0 = 1.2, b = 0.2, with CN (0, σ 2) noise,
σ = 0.1.

The additive-in-y FEC model has been fitted, with the results plotted in Fig. 2. In
the figure, the two seeds have been shifted to lie at the origin and the configurations
have been rotated by the fitted angles α̂ and β̂. Growth is smallest in the vertically
upwards direction and largest in the vertically downwards direction. The black num-
bers closest to the origin correspond to the x configuration. The gray lines show the
direction of growth. The red numbers on the gray lines show the fitted y landmarks
under the growth model and the green numbers show the actual y configuration.

The estimated regression and angular parameters (with standard errors) are
given by â0 = 1.230 (0.022), â1 = 0.163 (0.027), â2 = −0.012 (0.013), ψ̂ =
−0.033 (0.031). Also, b̂ = 0.163. These estimates are broadly compatible with the
true values, though a1 and b are somewhat under-estimated. The estimated value of
a2 is compatible with the true value a2 = 0 (since α = 0). Similarly, the estimated
value of ψ is compatible with the true value ψ = 0.

Also plotted in Fig. 2 are 95% confidence ellipses for μ (the inner black ellipse)
and ν (the outer red ellipse). The seeds are not very tightly determined by the data,
even though the noise standard deviation is small.Note the estimated seeds are pushed
to the left from their true values. In particular, if the true regression parameters were
used in the plot, then landmarks 1 and 8 for x would lie on a vertical line and the true
seed for x would lie midway between them. The reason that the seeds are not very
accurately determined seems to be due to the high canonical correlations between
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Additive−in−y FEC model for simulated data

Fig. 2 Additive-in-y FEC model fitted to a simulated data set between an initial time and a final
time. The data have been shifted and rotated so that the initial and final seeds are located at the origin
and the polar direction is vertical. The black numbers nearest the origin are the initial landmark
locations. The red numbers at the end of the gray lines radiating from the origin are the fitted final
landmarks under the model. The green numbers are the final landmarks. The black ellipse about
the origin represents a 95% confidence region for the initial seed. The larger red ellipse is the
corresponding region for the final seed

the estimates of μ and ν (0.981 and 0.980). See, e.g., Mardia et al. (1979, Chap. 10)
for a description of canonical correlation.

To save space only the fit from the additive-in-y model has been plotted. However,
the figures for the multiplicative and the additive-in-x models are similar.

8.2 Rat Calvarial Data

The data set considered here consists of the position of J = 8 biological landmarks
from a two-dimensional midsagittal section of the calvarium, (the skull without the
lower jaw) from 18 different rats at 8 different ages from birth (7d old) to adulthood
(150d old). Many researchers have investigated craniofacial growth laws using this
data set, e.g., Moss et al. (1983, 1984, 1985), Bookstein (1991), Le andKume (2000),
Kent et al. (2001), Kent andMardia (2002), Starke et al. (2003), Kenobi et al. (2010),
Mardia et al. (2013), Dryden and Mardia (2016), Bookstein (2018).

A detailed description of the data is given in Bookstein (1991, Table3.4.1) and
Bookstein (2018, p. 122). The data can be found in, e.g., Dryden (2019). The land-
marks, labeled 1–8, have the following definitions:
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1: Bas, Basion 2: Opi, Opisthion
3: IPP, Interparietal Suture 4: Lam, Lambda
5: Brg, Bregma 6: SES, Spheno-ethmoid Synchondrosis
7: ISS, Intersphenoidal Suture 8: SOS, Spheno-occipital Synchondrosis

Landmark 1 lies at the back of the head and landmark 4 lies at the top of the head.
The upper part of the jaw lies to the right of landmark 6. Note that landmarks 1, 8,
7, 6 are nearly collinear.

For the purposes of this paper, we ignore any differences between the individual
rats and focus only on the changes in size and shape of the “average” configura-
tions obtained by means of Generalized Procrustes analysis of the 18 configurations
considered at each of the 8 times. In addition, the data at just the initial and final
times are used to fit the FEC model. All three variants of the models (multiplicative,
additive-in-x , and additive-in-y) have been fitted. A number of features can be noted.

(a) In each of Figs. 3, 4 and 5, the standardized data have been plotted. In partic-
ular, the two seeds lie at the origin and the configurations have been rotated
by the fitted parameters α̂ and β̂. Note that the top of the head points roughly
upwards in each figure, confirming this aspect of intuition about growth models.
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Multiplicative FEC model for rat data

Fig. 3 Multiplicative FEC model fitted to rat data between the initial time and the final time. The
data have been shifted and rotated so that the initial and final seeds are located at the origin and the
polar direction is vertical. The black numbers nearest the origin are the initial landmark locations.
The red numbers at the end of the gray lines radiating from the origin are the fitted final landmarks
under the model. The green numbers are the final landmarks. The initial landmarks have been joined
by a gray polygon; similarly for the final landmarks. The black ellipse about the origin represents
a 95% confidence region for the initial seed. The larger red ellipse is the corresponding region for
the final seed



A Statistical Analysis of the Cardioid Radial Growth Model 361

Fig. 4 Additive-in-x FEC
model fitted to rat data
between the initial time and
the final time. See caption to
Fig. 3 for more explanation

−400 −200 0 200 400 600 800

−2
00

0
20

0
40

0
60

0
80

0
10

00

1

2

3

4
5

6
7

81

2

3

4

5

6

7

8
1

2

3

4

5

6

7

8

●

Additive in x FEC model for rat data

Fig. 5 Additive-in-y FEC
model fitted to rat data
between the initial time and
the final time. See caption to
Fig. 3 for more explanation
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Additive in y FEC model for rat data

Growth is smallest in the vertically upwards direction and largest in the vertically
downwards direction.

(b) The black numbers closest to the origin correspond to the initial configuration.
The gray lines show the direction of growth. The red numbers on the gray lines
show the fitted landmarks at the final time under the growth model and the green
numbers show the final configuration.
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Table 1 The fitted regression parameters (with standard errors and p-values) for the multiplicative,
additive-in-x , and additive-in-y FEC models. Also given is the maximized log-likelihood for each
model

Par Mult Add-x Add-y

â0 0.702 (0.043) 0.916 (0.072) 0.903 (0.067)

â1 0.441 (0.055) 0.607 (0.068) 0.602 (0.067)

â2 0.071 (0.044) −0.119 (0.060) −0.106 (0.058)

ψ̂ −0.041 (0.028) −0.031 (0.024) −0.037 (0.027)

log-lik −61.85 −57.77 −58.21

(c) The estimated seeds for x and y lie just above landmark 8 for the multiplica-
tive model, and below the line segment connecting landmarks 1 and 8 for both
additive models. These locations (for rats) are broadly similar to one another,
but they go against the intuition for human heads, where it is expected the seeds
would lie nearer the top of the skull.

(d) At first sight the models appear to fit reasonably well. However, remember the
model contains 8 parameters and the data contain 2J = 16 degrees of freedom,
where J = 8 is the number of landmarks. Hence, there is considerable scope for
overfitting.

(e) Although the three models are non-nested, it is still interesting to compare their
log-likelihoods. The multiplicative model has the smallest log-likelihood and
the additive-in-x model the largest. In particular,

2(ladd-x − lmult) = 8.16, 2(ladd-x − ladd-y) = 0.88.

Hence, the additive models are similar to one another, and both are considerably
better than the multiplicative model. (Taking χ2

1 as an approximate benchmark
distribution, note that 8.16 > 3.84, the upper 5% critical value of χ2

1 .)
(f) By construction, the maximum growth rate in each figure is greatest in the

vertically downwards direction. For the multiplicative model there is only one
landmark below the seed (landmark 8). Since this landmark is very close to the
seed for both x and y, the data provide only limited confirmation of the model in
the downwards direction. The situation is evenmore extreme for the two additive
models; there are no landmarks below the seeds.

(g) The fitted regression parameters (with standard errors) are given in Table1.
All three models have a similar interpretation. First â2 is compatible with a
population value of 0, so no rotation of the x-configuration is needed to fit the
growth model. Since â0 is significantly different from 0, there is no supporting
evidence for an exponential version of the CS model. It is also reasonably clear
in each case that â0 is significantly different from both â1 and b̂. Hence, there
is no supporting evidence for an exponential version of the RCS strain model.
Finally, ψ̂ is compatible with a population value of 0, so there is no need for a
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rotation of the y-configuration (more specifically, there is no need to rotate the
x- and y-configurations differently from one another).

(h) Also plotted in Figs. 3, 4 and 5 are 95% confidence ellipses for μ (the inner
black ellipse) and ν (the outer red ellipse). Hence, the seeds are not very tightly
determined by the data.

(i) Moss et al. (1983) fitted a similar growth model with an estimated seed between
landmarks 7 and 8.

(j) In summary, at first sight the FEC growth model(s) seem to provide a plausible
fit to the data. However, the argument for a biological interpretation of the seeds
is not very convincing as the seeds lie near the boundary (multiplicative model)
or even outside the convex hull of the landmarks (additive models). Further, it
is important not to read too much into the fitted model. For data with a limited
number of landmarks such as the rat data, there is a tendency to overfitting.

9 Conclusions

Mathematically, the FEC growth model proposed here is more elegant and tractable
than earlier approaches. This paper has simplifiedonekey aspect of thefitting process.
If the seeds are known, then standard closed-form estimators can be used for the
remaining parameters in the model. Thus, issues relating to the estimation of the
seeds can be separated from the estimation of the remaining variables.

If a single model is to be used, then the additive-in-y model has several appealing
features. It is closest in character to standard regression models since the errors are
defined on the same scale as the response variable. Also, it is simpler to describe than
the other models since the regularization step in Sect. 4.3 is not needed. That is, it
makes no difference to the log-likelihood whether or not the weights are regularized.
Further, for the examples considered here, the fit is as good as or better than the other
two models.
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Abstract Probability distributions on the circle have been of long interest, see, e.g.,
Rao (1973). We extend this class of distributions to that for the joint distribution
of a discrete linear and a continuous circular random variables, which is not in the
support of a smooth manifold. The need of such distributions is widely recognized,
for example, that for enhancing errors-in-variables regression models with count
and circular variables. A new method of constructing these distributions is proposed
and shown to produce simple analytical forms. Several properties of this family
are established. Independence is elegantly characterized by the nullity of a linear-
circular correlation coefficient and equivalently, by the nullity of a scalar dependency
parameter. Relevant statistical inference procedures are derived. A real-life example
with count data on traffic accidents over different times of the day, which necessitates
a weighted distribution (Rao 1965) version of the proposed new distribution, is
presented and analyzed.
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1 Introduction

Professor C.R. Rao in his seminal book Linear Statistical Inference and Its Applica-
tion (Rao 1973, pp. 175–178) discusses “Distribution on a Circle”. Such distributions
are needed to model circular data. The recent emergence of circular, and more gen-
erally, directional data for which the observed random vector variable comprises
both linear and circular components, has been phenomenal in a variety of mod-
ern areas of applied sciences. This has necessitated the development of probability
distributions for directional data. The construction of bivariate linear and circular dis-
tributions which are not on a smooth manifold are of interest to model jointly linear
and circular data in many disciplines. General methods of constructions for bivariate
linear distributions are not directly applicable to circular distributions because of
the difference in topologies between the line and the circle. SenGupta (2004, 2008,
2010) presented many methods to construct multivariate circular (hyper-toroidal)
and cylindrical (see also Seal and SenGupta 2012) distributions. Ong and SenGupta
(2012) considered mixture constructions of bivariate circular distributions. Recently,
SenGupta and Ong (2014) presented a unified approach which is also based on the
mixture method to construct bivariate linear and linear-circular models involving the
exponential and the cardioid distributions with the truncated exponential distribution
as the mixing distribution.

There existmany examples of bivariate linear and circular distributions in practical
applications. For example, air pollution and wind direction data in environmental
studies (Johnson and Wehrly 1977, 1978), height and time of arrivals of aphids
(locusts) in agricultural research (SenGupta 1996), linear-circular time series model
for wave height prediction (Hokimoto and Shimizu 2008), etc., are appropriately
modeled by bivariate linear-circular, or cylindrical distributions. Further examples
of such data in statistical machine learning are presented for classification of skulls
(SenGupta and Ugwuowo 2011), asymmetric angular-linear multivariate regression
models (SenGupta and Ugwuowo 2006), etc. In all of the above examples, the linear
variables were continuous random variables.

Note, however, that there abound many real-life examples where there is need to
study the joint behavior of a discrete linear (or count), X, and a continuous circular
random variable, �. Such data arise with, e.g., number of arrivals of patients in a
hospital, of amphibians in a mating location using lunar phase as a cue (Jarvis et al.
2021), of traffic accidents in a city (Laha et al. 2017), etc., in different time periods.
In this paper, possibly as a maiden attempt, we construct a bivariate linear discrete
and continuous circular distribution. The proposed bivariate distribution, based on a
conditional distribution approach, has a joint pdf which has a basic simple form as
a product of the conditional distribution of X |� and the marginal distribution of �.
However, this form is generalized to generate a large family of flexible distributions.
This also facilitates the estimation of parameters.

In Sect. 2, we introduce the new family of mixed bivariate distributions with
discrete and circular marginal distributions. A connection with C.R. Rao’s weighted
distributions is also mentioned briefly. Analytic representation of the normalizing
constant of the marginal density of � in terms of the Gauss hypergeometric function
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2F1 is presented. Also, the joint, the marginal, and the conditional densities are
studied and further generalizations are discussed here. In Sect. 3, themarginal and the
joint moments are derived. Linear-circular correlation and regression are presented
in Sect. 4. Section5 discusses parameter estimation and details the computational
procedures and R subroutines needed. In Sect. 6, a result is proven relating a linear-
circular correlation measure with the dependency parameter ρ. This in turn enhances
a theorem on interesting and useful characterization of independence of the linear
random variable X and the circular random variable � through ρ. Sect. 7 presents a
real-life application of our distribution to the temporal behavior of traffic accidents
in a growing industrial city in India. Finally, Sect. 8 gives some concluding remarks
and research problems for future research.

2 Mixed Bivariate Distributions with Discrete and Circular
Marginal Distributions

Let X and � be a discrete linear and a continuous circular random variable, respec-
tively.We define the joint distribution of X and�with themixed probability function

fX,θ (x, θ) = e−βy (βy)x

x ! Cr (ρ)yr , x = 0, 1, 2, ..., θ ∈ [0, 2π), (1)

where y = 1 + ρ cos(θ − μ), β > 0, μ ∈ [0, 2π), −1 < ρ < 1, r ∈ R and

C−1
r (ρ) =

∫ 2π

0
[1 + ρ cos θ ]r dθ.

Also for a given ρ, 1 − |ρ| ≤ y ≤ 1 + |ρ| so that ∀ρ, 0 < y < 2. The role of β is
thus to extend the support of the parameter βy of the conditional Poisson distribution
to the full range of (0,∞).

2.1 Marginal Density of �

The marginal pdf of � is given by

f�(θ) = Cr (ρ)(1 + ρ cos θ)r = Cr (ρ)yr , θ ∈ [0, 2π), |ρ| < 1, r ∈ R. (2)

The above family of distributions may be viewed as a generalization of the cardioid
density and was initially proposed by Arnold and SenGupta (2004). Also henceforth,
unless otherwise specified, without loss of generality we will take the circular loca-
tion parameter μ of this pdf of � as 0.
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Normalizing Constant

The normalizing constant of f�(θ) is

Cr (ρ) = 1/[2π 2F1(−r/2, (1 − r)/2; 1; ρ2)] ,

where 2F1 denotes the Gauss hypergeometric function. The hypergeometric series
terminates if r is equal to a positive integer.

Note 1. If r ≤ 0, it is obvious that 2F1(−r/2, (1 − r)/2; 1; ρ2) > 0. If r > 0, it is
not obvious that the value of 2F1 is positive, but it follows from

2F1(a, b; c; z) = (1 − z)c−a−b
2F1(c − a, c − b; c; z)

that

2F1(−r/2, (1 − r)/2; 1; ρ2) = (1 − ρ2)r+1/2
2F1(r/2 + 1, (r + 1)/2; 1; ρ2) > 0.

Modality

For ρ = 0 or r = 0, the distribution is a uniform distribution. Otherwise, the distri-
bution is unimodal and symmetric about θ = 0 andπ . For 0 < ρ < 1 (−1 < ρ < 0),
it has a unique mode at θ = 0 (π) and an antimode at π (0) if r > 0, while if r < 0,
then it has a unique mode at θ = π (0) and an antimode at 0 (π).

Special Cases

If r = 0, the distribution with probability density function (pdf) (2) reduces to
a uniform distribution as 2F1(0, 1/2; 1; ρ2) = 1; if r = 1, to a cardioid distri-
bution as 2F1(−1/2, 0; 1; ρ2) = 1; if r = −1, to a wrapped Cauchy distribution
as 2F1(1/2, 1; 1; ρ2) = 1F0(1/2; ρ2) = (1 − ρ2)−1/2; And if ρ = κ/r (κ > 0) and
r → ∞, the power cardioid density (2) converges to eκ cos θ /{2π I0(κ)}, which is
the density of a von Mises distribution, because 2F1(−r/2, (1 − r)/2; 1; (κ/r)2)
tends to I0(κ) as r goes to infinity, where I0(·) denotes the modified Bessel func-
tion of the first kind and order zero. With the choice of ρ = tanh(κψ) and r = 1/ψ ,
κ ≥ 0, ψ ∈ R, the circular pdf studied by SenGupta (2010) also becomes yet another
special case as a member of the power cardioid family.

2.2 Marginal Distribution of X

The joint distribution of X and � is

fX,�(x, θ) = 1

x !e
−β(1+ρ cos θ)βx (1 + ρ cos θ)xCr (ρ)(1 + ρ cos θ)r ,

θ ∈ [0, 2π), β > 0, |ρ| < 1, r ∈ R.
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Then, the marginal probability mass function (pmf) of X is

pX (x) =
∫ 2π

0
fX,�(x, θ)dθ

= Cr (ρ)

x !
∫ 2π

0
e−β(1+ρ cos θ)βx (1 + ρ cos θ)x (1 + ρ cos θ)r dθ.

Now writing u = (1 + ρ cos θ), a(ρ) = 1 − |ρ| and b(ρ) = 1 + |ρ|, it is obvious
that as θ covers [0, 2π), u traverses [a(ρ), b(ρ)] twice. The integrand is an even
function. Also, | dθ

du | = {ρ2 − (u − 1)2}− 1
2 . Hence, after denoting the functions G(·)

and g(·) as the cdf and pdf of Gamma (x + r + 1, β) distribution, respectively, we
have

pX (x) = 2βxCr (ρ)

x !

b(ρ)∫

a(ρ)

{ρ2 − (u − 1)2}− 1
2 e−βuux+r du

= 2Cr (ρ)	(x + r + 1)

x !βr+1

b(ρ)∫

a(ρ)

{ρ2 − (u − 1)2}− 1
2 g(u)du

= {G(b(ρ)) − G(a(ρ))}2Cr (ρ)	(x + r + 1)

x !βr+1

b(ρ)∫

a(ρ)

gT (u)√
ρ2 − (u − 1)2

du,

where gT (u)denotes the pdf of a truncatedGamma (x + r + 1, β) distributionhaving
support [a(ρ), b(ρ)]. Now writing

Dr (x; ρ, β) = E
(
{ρ2 − (U − 1)2}− 1

2 |U ∼ gT (x + r + 1, β)
)

,

the marginal pmf of X can be expressed as

Result 1. pX (x) = 2{G(b(ρ)) − G(a(ρ))}	(x + r + 1)

x !βr+1
Cr (ρ)Dr (x; ρ, β),

x = 0, 1, 2, . . .

2.3 Generalizations

We now discuss some interesting and useful aspects, including generalizations, of
our proposed model given in (1) as itemized below.

1. β is used to get the full support of Poisson parameter on (0,∞), since ∀ρ, y ∈
(0, 2).
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2. Truncated Mixed distribution is often motivated by practical applications, e.g.,
number (count) of incidences exceeding a threshold such as with number of
accidents, patients, migratory animals, etc., over time. We will analyze such a
data set later.

3. Kernel of any circular pdf will work for themultiplier of β to yield the dependence
between X and � through the Poisson parameter. The von Mises kernel may not
be analytically attractive. However, we may replace the power cardioid kernel
by 1 + ρ cos[θ + λ cos θ ] to get an asymmetric family ( ρ ∈ (−1, 1), 	= 0), with
different peakedness by varying λ ∈ [−1, 1]. The kernel for Batschelet distribu-
tions (Batschelet 1981) is an attractive choice: 1 + ρ cos[θ + λ sin θ ]. It gives
a flexible family with extended platy- and sharply lepto- kurtic / flat-topped and
highly peaked unimodal symmetric distributions. Observe that these distributions
can be constructed from a known circular density f (θ) by deriving the generated
pdf f G(θ) ≡ f (ψ(θ)), for some bijective functionψ(·). For example, our power
cardioid kernel can be replaced by Batschelet’s kernel,

Kψ(θ) = 1 + ρ cos(ψ(θ)), ψ(θ) = θ + λ sin θ,

to model a family of symmetric flat-topped circular densities. Note that here the
number of parameters increases by 1 due to the inclusion of the parameter λ.

4. In practice, it may be meaningful or even necessary sometimes to consider a
restricted support for X or θ. The concept of weighted distribution was enhanced
by Prof. C.R. Rao through his pioneeringworks (Rao, 1965). Briefly, given the pdf
g(x; η) of a random variable X, a corresponding weighted distribution f (x; η)

for a properly defined weight function w(x) is obtained as

f (x; η) = w(x)g(x; η)/Eη(w(X)).

As a special case, letting w(x) = I (x ∈ C) where I (·) is the indicator function,
we get f (x; η) to be the truncated distribution of X defined on the support C.
Our joint distribution defined in (1) easily admits of such a truncated marginal
distribution. The related computational details will be discussed in Sect. 5.1.

5. Asymmetric kernels, as mentioned above, can be useful in practice. However, this
may require non-trivial computations. For example, even the estimation of the
location parameter there will be more involved compared to our simple estimator
ofμ above as the samplemeandirection in the symmetric case.Note that appealing
results on marginal moments, e.g., Theorem 1(a) below, will not hold. Further,
computation of the joint moments also, and hence the inference procedures, may
not lead to elegant and conveniently implementable results. Thus, this case will
be treated elsewhere to derive useful results.

Using the above notations and with known f (θ), our general approach is to use
a bivariate model which may be represented as

g�,X (θ, x) = PoiX (x |� = θ;βK∗(θ)) f�(ψ(θ); δ), (3)
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where K∗ is the kernel and δ is the parameter vector for the generated pdf f�(ψ(θ))

obtained from the original pdf f�(θ) of �.

2.4 Conditional Distributions

Conditional pdf of � given X = x is obtained as

f�(θ |x) = βe−βy(βy)x+r

2{G(b(ρ)) − G(a(ρ)}	(x + r + 1)Dr (x;β, ρ)
, θ ∈ [0, 2π).

Conditional pmf of X given � = θ is obtained as

fX (x |θ) = e−βy(βy)x/x !.

Independence

Independence occurs only under circular uniformity, i.e., ρ = 0, of �. Then, X
reduces to a Poisson random variable (rv) with parameter β.

3 Moments

We present below both the marginal and joint moments of X and � under model
(1). As will be seen from the latter section, these moments will play a pivotal role in
developing inference procedures under this model.

3.1 Moments of �

The trigonometric moments of the circular random variable � are given in

Theorem 1 (a) The qth sine moment of � is zero.
(b) For a positive integer r ,

E[cos(q�)] =

⎧⎪⎨
⎪⎩
Cr (ρ)2π

(ρ

2

)q
[(r−q)/2]∑

k=0

(
r

k

)(
r − k

q + k

) (ρ

2

)2k
, r ≥ q,

0, r < q,

where [z] denotes the greatest integer less than or equal to z. For values of r different
from a positive integer,
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E[cos(q�)] = (−r)q (−ξ)q

q!
2F1(−r, q − r; q + 1; ξ 2)

2F1(−r,−r; 1; ξ 2)

= (−r)q (−ρ)q

2rq!(1 + √
1 − ρ2)q−r

2F1(−r, q − r; q + 1; ξ 2)

2F1(−r/2, (1 − r)/2; 1; ρ2)

with ξ = ρ/(1 + √
1 − ρ2), q = 1, 2, · · · ((·)q denotes Pochhammer’s symbol).

Proof (a) This result follows by symmetry of the pdf around 0.
(b) From Eq.3.616.4 of Gradshteyn and Ryzhik (2007), we have

∫ π

0
(1 − 2a cos x + a2)n cos(mx)dx = 1

2

∫ 2π

0
(1 − 2a cos x + a2)n cos(mx)dx

=

⎧⎪⎨
⎪⎩

π(−a)m(1 + a2)n−m
[(n−m)/2]∑

k=0

(
n

k

)(
n − k

m + k

) (
a

1 + a2

)2k

, n ≥ m,

0, n < m,

wehave the result for a positive integer r . For the others, fromEq.9.112ofGradshteyn
and Ryzhik (2007), we have

2F1(p, p + n; n + 1; x2) = x−n

2π

	(p)n!
	(p + n)

∫ 2π

0

cos(nt)

(1 − 2x cos t + x2)p
dt

for n = 0, 1, 2, . . . ; p 	= 0,−1,−2, . . . ; |x | < 1 is used. Then,

2F1(p, p + n; n + 1; x2) = x−n

2π

n!
(p)n

∫ 2π

0

cos(nt)

(1 + x2)p[1 − {2x/(1 + x2)} cos t]p dt

= n!
2π(p)n xn(1 + x2)p

∫ 2π

0

cos(nt)

(1 − z cos t)p
dt

with z = 2x/(1 + x2), or x = z/(1 + √
1 − z2). Here, Pochhammer’s symbol (p)n

= p(p + 1) · · · (p + n − 1) = 	(p + n)/	(p). Thus,

1

2π

∫ 2π

0

cos(nt)

(1 − z cos t)p
dt = (p)n xn(1 + x2)p

n! 2F1(p, p + n; n + 1; x2)

= 2p(p)nzn

n!(1 + √
1 − z2)p+n

2F1(p, p + n; n + 1; x2).

When n = 0 as a special case, we have

1

2π

∫ 2π

0

1

(1 − z cos t)p
dt = (1 + x2)p 2F1(p, p; 1; x2).

It follows from Eq.9.134.2 of Gradshteyn and Ryzhik (2007)
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2F1(2α, 2α + 1 − γ ; γ ; x) = (1 + x)−2α
2F1(α, α + 1/2; γ ; 4x/(1 + x)2),

that putting 2α = p and γ = 1, we get

2F1(p, p; 1; x2) = (1 + x2)−p
2F1(p/2, (p + 1)/2; 1; z2).

Hence,

1

2π

∫ 2π

0

1

(1 − z cos t)p
dt = (1 + x2)p 2F1(p, p; 1; x2)

= 2F1(p/2, (p + 1)/2; 1; z2)

with z = 2x/(1 + x2), or x = z/(1 + √
1 − z2), and we finally have

1

2π

∫ 2π

0
(1 + ρ cos θ)r dθ = (1 + ξ 2)−r

2F1(−r,−r; 1; ξ 2)

= 2F1(−r/2, (1 − r)/2; 1; ρ2)

with ξ = ρ/(1 + √
1 − ρ2).

Note 2.Equivalent expressions using associatedLegendre functions for the normaliz-
ing constant and the qth cosine moment are obtainable as there exists the relationship
(Gradshteyn and Ryzhik 2007, Eq.8.772.3)

Pμ
ν (z) = 1

	(1 − μ)

(
z − 1

z + 1

)−μ/2 (
z + 1

2

)ν

×2F1

(
−ν,−ν − μ; 1 − μ; z − 1

z + 1

)
,

∣∣∣∣ z − 1

z + 1

∣∣∣∣ < 1

between the Gauss hypergeometric and associated Legendre functions.

3.2 Moments of X

Computation of marginal moments directly from the marginal distribution of X is
inconvenient. However, use of the conditional distribution of X given � = θ makes
it quite convenient. A descending factorial is defined by

n(k) = n(n − 1) · · · (n − k + 1)

for a nonnegative integer k with n(0) = 1.Descending factorialmoments for a Poisson
distribution with parameter λ are well known. Then, the conditional kth descending
factorial moment of X is
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E[X (k)|θ ] = λk = [β(1 + ρ cos θ)]k .

The corresponding unconditional moment is then easily given by

E[X (k)] = βkCr (ρ)

∫ 2π

0
(1 + ρ cos θ)k+r dθ = βkCr (ρ)/C(k+r)(ρ).

The power moments E(Xk) can be easily obtained recursively from the above fac-
torial moments E[X (k)].

3.3 Joint Moments

We show below that the joint moments of X and �, though somewhat involved, are
available in analytic form as derived in

Result 2. The (k, q)−th joint descending factorial-cosine moment of (X,�) is
expressed as

E[X (k) cos(q�)]
= βk(−(k + r))q (−ξ)q(1 + ξ 2)−k

q!
2F1(−(k + r), q − (k + r); q + 1; ξ 2)

2F1(−r,−r; 1; ξ 2)

= βk(−(k + r))q (−ξ)q(1 + ξ 2)−(k+r)

q!
2F1(−(k + r), q − (k + r); q + 1; ξ 2)

2F1(−r/2, (1 − r)/2; 1; ρ2)
.

Proof The k−th descending factorial moment for a Poisson distribution with param-
eter λ is easily computed as

E[X (k)] = λk .

From the formula of the q−th cosine moment of the generalized cardioid distribution
obtained earlier, the (k, q)th joint descending factorial-cosine moment is computed
as follows:

E[X (k) cos(q�)] =
∞∑
x=0

∫ 2π

0
x (k) cos(qθ) fX,�(x, θ)dθ

= βkCr (ρ)

∫ 2π

0
cos(qθ)(1 + ρ cos θ)k+r dθ,

from which the first expression stated in the above Result 2 follows by definition of
2F1(.) and the second by a well-known property of it.
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4 Linear-Circular Correlation and Regression

We next briefly discuss the correlation and regression measures associated with our
model.

4.1 Linear-Circular Correlation

A correlation coefficient for linear-circular random variables motivated by the mul-
tiple correlation coefficient for linear variables is given by (see Jammalamadaka and
SenGupta (2001)),

η2(X,�) = ρ2
xc + ρ2

xs − 2ρxcρxsρcs

1 − ρ2
cs

,

where

ρxc = Corr(X, cos�), ρxs = Corr(X, sin�), ρcs = Corr(cos�, sin�).

Observe that η2 greatly reduces to ρ2
xc, since other terms in the above formula vanish

due to the symmetry of the circular pdf.

4.2 Linear-Circular Regression

From the above, regression of X on � is given in an elegant form,

E(X |θ) = βy = β(1 + ρ cos θ).

However, regression of � on X does not have such a simple form as that of X on �.

5 Parameter Estimation

Let (xi , θi ), i = 1, 2, 3, ..., n be a random sample of size n from (1). The likelihood
function is given by

L(β, ρ, r) =
n∏

i=1

(β(1 + ρ cos θi ))
xi

xi ! Cr (ρ)[1 + ρ cos θi ]r e−β(1+ρ cos θi ).
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The parameters (β, ρ, r) are estimated by numerically maximizing L(β, ρ, r), the
likelihood function. This will usually call for a set of initial values for the three
parameters. Initial estimates (ρ̂, r̂) for (ρ, r) may be obtained from the marginal
likelihood of �. Then, an initial estimate β̂ of β may be obtained by maximizing
L(β, ρ̂, r̂) with respect to β. This set of estimated values (ρ̂, r̂ , β̂) may then be used
as an initial set of estimates to start the iterative process to obtain simultaneously
the final maximum likelihood estimators (MLEs) of the three parameters. Since the
parameter space is open and the likelihood function is regular, the resultingMLEswill
be consistent and asymptotically normal (CAN) estimators. Small sample properties
of these estimators may be studied separately.

5.1 Computational Details

Here, we consider the general situation where circular data are available in a grouped
form and the linear data are censored at x0 − 1. The cases of ungrouped (raw) and
uncensored data easily follow from this treatment. The computation of theMLE ofμ
from the joint likelihood can be non-trivial. However, by noting that the f (X,�) is
an even function, we get E(sin(� − μ)) = 0, leading to the trigonometric moment
estimator (TME) of μ as μ̂ = θ̄ , the sample mean direction of �. In the sequel, to
avoid cumbersome computational details, we may adopt θ̄ for the MLE of μ and
write θi ≡ θi − θ̄ . Some likelihood functions which can be useful for computations
are listed below. Observe that initial estimates for r and ρ may be obtained from the
marginal distribution of �. These may be substituted in the joint likelihood to get
an initial estimate of β. These may then be used as an initial set of estimates in the
joint likelihood to obtain the final MLEs of the parameter vector (β, ρ, r) by some
optimization sub-routine, e.g., constrOptim function in R package (R Core Team
2017).

1. For computation of initial value ofρ given particular r , we usemarginal likelihood
of ρ,

l(ρ) = lnL(ρ|r, θ) = K1 +
∑k

i=1
rni lnyi − N lnD,

where θ = (θ1, θ2, · · · , θk)
′, K1 is a constant, N = n1 + · · · + nk is total fre-

quency, ni is the frequency of the i−th class with mid-point θi , and yi =
1 + ρ cos θi . Denote for brevity,

D =
∫ 2π

0
[1 + ρ cos θ ]r dθ ≡ Cr (ρ)−1.

2. For simultaneous computation of initial values of both r and ρ, we use the like-
lihood l(r, ρ) which has the identical functional form as l(ρ) above, but now r is
also treated as an unknown parameter in it.



A Flexible Family of Mixed Distributions for Discrete Linear and Continuous … 377

3. For computation of initial value ofβ,wemay take both r and ρ as the initial values
obtained in Item 2 above, and then obtain β by maximizing the joint likelihood,

l1(β) = lnL(β|r, ρ, θ) = K2 − βS1 + T lnβ − S2,

where K2 is a constant,

S1 =
∑k

i=1
ni yi , S2 = N lnP(X ≥ x0) and T =

∑k

i=1

∑ni

j=1
xi j .

4. For simultaneous computation of MLEs of (r, ρ, β), we maximize the joint like-
lihood

l2(r, ρ, β) = lnL(r, ρ, β|θ , xi j ,∀(i, j))

= K3 − βS1 + T lnβ − S2 + S3 + S4 − N lnD,

where K3 is a constant, S3 =
∑k

i=1

∑ni

j=1
xi j lnyi and S4 =

∑k

i=1
rni lnyi .

5. The initial value of parameter vector needed for the above numerical optimization
using, e.g., method of constrOptim sub-routine in R for box constraints (R Core
Team 2017) can be taken as the estimated set from Item 3 above.

6. Item 3 encompasses a special setup where the observations on X are censored at
x0 − 1. x0 = 0 when there is no truncation. Since the truncated marginal distri-
bution is derived from the original joint distribution (1), no new distribution is
warranted for this special setup. For the example in Sect. 7, x0 = 10 and k = 8.

6 Characterizations and Tests for Independence

We now present two interesting and useful results below. First, it is shown that the
model admits of a single parameter, e.g., ρ, whose nullity is equivalent to the nullity
of the linear-circular correlation coefficient η2. Next, it is shown that this parameter
is indeed the dependency parameter, i.e., its nullity is equivalent to the independence
of X and�. This independence yields a special member of the power cardioid family,
e.g., the circular uniform distribution. It maybe worthwhile to recall that similar situ-
ations arise with distributions on torus too, i.e., independence can hold only under a
special member of the marginal family and not for all its members. For example, for
bivariate circular normal (vonMises) distribution, independence occurs with circular
normal marginals, which is a special case of the general family of marginals under
the general (dependent) joint pdf.

Result 3. η2(X,�) = 0 iff ρ = 0.

Proof Recall from Sect. 4.1 that for our model, η2(X,�) reduces to ρ2
xc by virtue of

the symmetry of the joint pdf in terms of �. Next,
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EX,�(X cos�) = βCr (ρ)

∫ 2π

0
y((y − 1)/ρ)yrdθ = (β/ρ)[E�(Y 2) − E�(Y )],

EX (X) = βE�(Y ) and E�(cos�) = (1/ρ)[E�(Y ) − 1].

Thus,
Cov(X, cos�) = (β/ρ)Var�(Y ) = (βρ)Var�(cos(� − μ)),

which can be 0 iff ρ = 0.

Theorem 2 X and � are independent iff ρ = 0 and hence, iff η2(X,�) = 0.

Proof The result follows directly from the form of the joint pdf and Result 3. The
necessity part is immediate. For the sufficiency part, note that the joint pdf in (1) can
be written as

f (θ, x) = u(x)v(θ)w(x, θ),

where w(x, θ) is the only function involving x and θ and is given by

w(x, θ) = (1 + ρ cos θ)x .

Note that x is an integer and so w(.) > 0 is a polynomial of degree x in cos θ . Thus,
we can have the representationw(x, θ) = a1(x)b1(θ)∀(x, θ) iff both a1(x) and b1(θ)

are constant functions, i.e., iff ρ = 0.

Note 3. Some remarks regarding identifiability may be interesting. For the marginal
circular pdf, the power cardioid distribution reduces to the circular uniform density
for ρ = 0 or r = 0 or both. This may create identifiability problems, unless either
ρ or r is assumed to be non-zero. But the interesting fact is, for the joint likelihood
independence occurs only when ρ = 0 ; r has no role.

Theorem 3 The dependency parameter ρ characterizes the test for independence
of � and X as the test for H0 : ρ = 0 vs H1 : ρ 	= 0.

Proof The theorem follows by combining Result 3 and Theorem 2 above.

We can construct the LRT easily since theMLEs are available. Under H0, substantial
simplification results in the joint pdf and there is only one unknown parameter β,
and then β̂0 = X̄ . So, the estimated log-likelihood function under H0, L0 is given
by,

l̂0 ≡ lnL̂0 = −X̄ +
∑
i j

[(ln X̄)(xi j ) − ln (xi j !)] − N ln(2π).

Under the unconstrained parameter space, the MLEs of the parameters need to be
obtained numerically. Then, denoting the estimated likelihood function by L̂ , and
writing lnL̂ = l̂, we have
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Theorem 4 The LR test statistic for testing independence of X and � is given by

−2lnλ = −2[l̂0 − l̂].

Under H0, the asymptotic distribution of the LR statistic −2lnλ is χ2
3 .

7 Application to a Real-Life Data Set

Considered below, as an example, is a data set (adapted from the portal www.ncrb.
gov.in) on number of yearly traffic accidents in 3-hour time periods of a day over
8years, 2011–2017 (excluding 2012, for which data were not available) in Amritsar,
a fast growing industrial city in north India. The interest being on incidence of
significant number of accidents, we censored the data set for single-digit accidents,
i.e., we took the threshold as 10 (=x0 in the notation of Sect. 2.3, Item 4) and noted
the records for 10 or more yearly accidents. This yielded the corresponding weighted
or truncated distribution for X ≥ 10. There were several years having single-digit
number of accidents over certain 3h time periods and thus these observations got
dropped. 3h time periods were recorded as 0–3, 3–6, …, 21–24. Mapping 24h to
360◦, we have 1h = 15◦, which defines our circular random variable, θ ∈ [0, 360◦).
For example, the mid-point of the first time period is 1.5h which transforms to 22.5◦.
These 3h time periods were mapped to 8 mutually exclusive and exhaustive groups
or classes of 45◦ width each, thus retaining the quantitative nature of the original
data. There will be of course the usual unavoidable loss of precision due to this
grouping. For simplicity and also since it is not the focus of this paper, we have
not invoked the grouping corrections here. The final data set is exhibited below in
Table1. The estimation of the parameters were done following essentially the steps
mentioned in Sect. 5. Under unrestricted parameter space, the resulting MLEs were
μ̂ = 3.7317, r̂ = 1.2793, ρ̂ = 0.2849, β̂ = 18.5536. Under H0 : ρ = 0,MLEof the
only oneunknownparameter is β̂0 = ∑

i, j xi j/N =19.7907.Then,−2 ln λ=24.3554
with the p-value of 2.1056e-05, implying that the hypothesis of independence of X
and � is very strongly rejected. This means, among others, that in Amritsar the
incidence of accidents is not isotropic, but rather the time of the day has a significant
bearing on the number of occurrences of traffic accidents. These information may
be used by the Traffic Department for monitoring and taking preventive/abatement
measures in specific time periods to mitigate/compromise the incidence of large
number of accidents in those periods (Table1).

www.ncrb.gov.in
www.ncrb.gov.in
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Table 1 Yearly Accidents over 3h daily time periods

θi No. of accidents (xi j ) Frequency (ni )

22.5 10 11 2

67.5 16 14 15 3

112.5 18 18 19 21 24 5

157.5 16 18 11 16 22 24 28 22 8

202.5 12 15 18 19 30 30 20 7

247.5 16 18 18 24 31 26 6

292.5 15 30 28 36 36 23 6

337.5 13 14 14 11 11 20 6

Total frequency N = 43

8 Concluding Remarks

This is a maiden contribution to mixed linear—circular distribution. We have
enhanced a flexible family of distributions and indicated its appealing generaliza-
tions. The family is amenable toML estimation of its parameters. A significant result
obtained is the characterization of independence of X and � through the nullity of
a linear-circular correlation coefficient, which in turn is characterized by the nullity
of a scalar dependency parameter. Such a result is not commonly available in direc-
tional distributions. This facilitates the application of LRT for independence. Many
practical situations with linear-circular data warrant truncated distributions and we
analyze such a data set as on number—time of incidents of traffic accidents. This
work exposes the need of generalizations to real-life situations where both the count
as well as the circular variable may exhibit distributions which differ in shapes from
the ones considered in this paper. An important use of our proposed model lies in the
errors-in-variables regression modeling. We intend to pursue some of these topics in
our future research.
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Tests of Fit for Wrapped Stable
Distributions Based on the Characteristic
Function

Simos G. Meintanis, S. Rao Jammalamadaka, and Qianyu Jin

Abstract We consider composite goodness-of-fit tests for wrapped stable distribu-
tions on the circle with unknown parameters, based on the empirical characteristic
function. The tests are implemented in particular for testing goodness of fit of the
symmetric stable family against general alternatives. An extensiveMonteCarlo study
is carried out by using the parametric bootstrap in order to compare the new tests
with other existing omnibus tests for goodness of fit, which demonstrates that the
tests proposed here perform better against a large variety of alternatives. We then
illustrate our methods by applying the tests to a real data set.

Keywords Goodness of fit · Circular distributions · Wrapped stable family ·
Empirical characteristic function · Parametric bootstrap

1 Introduction

The family of wrapped stable distributions (WSDs) is one of themost flexiblemodels
for circular data. Specifically, this four-parameter family of distributions includes
symmetric as well as asymmetric members, with varying tail features ranging from
the medium-tailed wrapped normal distribution to the wrapped Cauchy distribution
with heavier tails, and beyond.
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The most convenient way to introduce the WSD is by means of its characteristic
function (CF) which is given by

Cϕ(r) = eiμr−τ γ |r |γ {1−iδsgn(r) tan(πγ /2)}, γ �= 1, (1)

= eiμr−τ |r |{1+iδ 2
π
sgn(r) log |r |}, γ = 1,

where (μ, τ) are location and scale parameters, and (γ, δ) are shape and skew-
ness parameters, respectively. We will write ϕ = (γ, δ, τ, μ) for the entire vector
of parameters, with the parameter space specified by (μ, τ) ∈ [0, 2π) × (0,∞) and
(γ, δ) ∈ (0, 2] × [−1, 1]. The parameter γ is often called the characteristic exponent
and regulates tail behavior. Specifically, smaller values of γ progressively lead from
lighter to heavier tails. On the other hand, δ is a skewness parameter, with δ = 0
corresponding to a distribution that is symmetric, while with increasing |δ|, and as δ

approaches +1 (resp. −1), the density becomes asymmetric to the right (resp. to the
left). In this connection, note that as γ → 2, the parameter δ loses its significance
with γ = 2 since it leads to the wrapped Normal distribution. The other well-known
member of the class of wrapped stable (WS) laws is the wrapped Cauchy distribution
for (γ, δ) = (1, 0) which admits a closed-form density, with all other WSDs admit-
ting only series representations for densities. See Jammalamadaka and SenGupta
2001, pp. 44–48 for a brief discussion of these distributions for modeling circular
data.

In this article, we suggest a class of goodness-of-fit tests for the family of WSDs
which utilizes the CF of these distributions. Specifically, let X be an arbitrary circular
random variable. Then on the basis of independent and identically distributed (i.i.d.)
copies X1, ..., Xn of X , we are interested in testing the (goodness-of-fit) composite
null hypothesis,

H0 : X follows Sϕ, for some ϕ ∈ �, (2)

against general alternatives, where Sϕ = {S(·;ϕ), ϕ ∈ �} denotes the family of
WSDs with distribution function S(·;ϕ), and � = (0, 2) × (−1, 1) × [0, 2π) ×
(0,∞).

We note that the CF of an arbitrary linear random variable at a given integer
argument r = 1, 2, ... is equal to the trigonometric moment of order r of the corre-
sponding distribution wrapped around the unit circle (see, e.g., Proposition 2.1 in
Jammalamadaka and SenGupta 2001). Although this connection of the CF with cir-
cular distributions has been noticed early on by Epps (1993), its use for performing
statistical inference in the circular context has been hitherto mostly confined to the
case of testing for uniformity or symmetry. The reader is referred to the early work
of Beran (1969), and to the more recent contributions of Pycke (2010) andMeintanis
and Verdebout (2019), and references therein. This is despite the fact that for conven-
tional stable distributions on the real line, CF-based methods have proved to be more
convenient to apply and have been shown to compete well with other methods; see
Csörgő (1987), Koutrouvelis and Meintanis (1999), Matsui and Takemura (2008),
Meintanis (2005), and Meintanis et al. (2015).
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The article is organized as follows. In Sect. 2, we introduce the new test procedure
for goodness of fit for wrapped stable distributions, while in Sect. 3, we focus on
testing for the symmetric WSD against general alternatives and study it in detail.
In Sect. 4, finite-sample properties and comparisons with some existing procedures
are elaborated using an appropriate resampling version of the test and by means of
a Monte Carlo study. In Sect. 5, we consider a practical application, and finally end
in Sect. 6 with a brief discussion and conclusions.

2 Tests Based on the Characteristic Function

In order to test the null hypothesis H0 specified in (2), we propose to use a distance
between the CF of the WS law given in (1) and the empirical CF based on the data,
defined for integers r , by

Cn(r) = 1

n

n∑

j=1

eir X j := αn(r) + iβn(r), i = √−1, (3)

where

αn(r) = 1

n

n∑

j=1

cos(r X j ), βn(r) = 1

n

n∑

j=1

sin(r X j ) (4)

are the Cartesian coordinates of the empirical CF. αn(r) and βn(r) are also called the
empirical trigonometric moments.

We now take into consideration two important facts, namely (i) for circular distri-
butions, the CF needs to be evaluated only at the integers (see, e.g., Jammalamadaka
and SenGupta 2001, Sect. 2.2) and (ii) the CF as well as the empirical CF enjoy
certain symmetry, namely that their value evaluated at arbitrary integers r and −r
are a pair of complex conjugates. In view of this, our test statistic can be formulated
to compare just the non-negative theoretical and empirical trigonometric moments.
Specifically, we suggest rejecting the null hypothesis H0 for large values of the test
statistic

Tn, f = n
∑

r≥0

∣∣Cn(r) − Cϕ̂(r)
∣∣2 f (r), (5)

where ϕ̂ is a suitable estimator of the parameter ϕ, and f (·) denotes a “weight
function” which we may take to be a probability function over the non-negative
integers.

Remark 1 We note that in some of these definitions and quantities, there is no loss
in omitting the term r = 0 and considering the index r running over r = 1, 2, ... .
However, this is not the case in every subsequent equation so we decided to consider
r ≥ 0 throughout.
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Remark 2 If the parameter ϕ is fixed (known), the test statistic proposed above is
equivalent to the test statisticswhichmeasure the squared length between the uniform
distribution function and the empirical distribution function; seeBeran (1969). This is
not the case, however, for distributionswith estimatedparameters since then such tests
cannot be reduced to testing uniformity even asymptotically; see Jammalamadaka
et al. (2019) for a detailed analysis.

By straightforward algebra, (5) may be re-written as

Tn, f = n
∑

r≥0

{
|Cn(r)|2 + ∣∣Cϕ̂(r)

∣∣2 − 2
(
αn(r)αϕ̂(r) + βn(r)βϕ̂(r)

)}
f (r), (6)

where αϕ(r) and βϕ(r) denote the population trigonometric moments of theWS law,
and |z|2 stands for the modulus of a complex number z.

3 Tests for the Symmetric WSD

Although the test as proposed in (5) is for the general case, the analytics for the case
of testing symmetric wrapped stable (SWS) distributions happen to be considerably
simpler, and we focus on this particular subclass and develop it in detail, in this
section.

3.1 The Test Statistic and Consistency for SWS Family

By a proper location shift, we can simplify the problem to testing the null hypothesis
thatH(s)

0 : C ≡ Cγ,τ where CX (r) = E(eir X ) is the CF of X and Cγ,τ (·) denotes the
CF of the zero-location SWS law that results from (1) by replacing ϕ by (γ, 0, τ, 0).
In fact, since the population resultant length 
 is equivalent to exp{−τ γ }, the test
statistic figuring in (5) may conveniently be reparameterized as

Tn, f = n
∑

r≥0

∣∣∣Ĉn(r) − 
̂r γ̂
∣∣∣
2
f (r) := n�n, f , (7)

where Ĉn(r) is the empirical CF resulting from (3) by replacing X j by

Y j = X j − μ̂, j = 1, ..., n, (8)

and where γ̂ , μ̂, and 
̂ denote consistent estimators of the parameters γ , μ, and 
,
respectively (discussed later in Sect. 3.3).

Before going any further, we will investigate the consistency of the test based
on Tn, f against all fixed alternative circular distributions. To this end, we assume
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that (i) the estimator ϕ̂(s) := (γ̂ , 
̂, μ̂) attains a strong probability limit, say ϕ
(s)
A :=

(γa, 
a, μa), even under alternatives, and (ii) f (r) > 0. Then we have the following
functional Law of Large Numbers.

Theorem 1 Let {X1, . . . , Xn} be i.i.d. copies of an arbitrary circular random vari-
able X with CF CX (·). Then under assumptions (i) and (ii), we have

Tn, f

n
−→

∑

r≥0

∣∣e−iμarCX (r) − 
a
rγa ∣∣2 f (r) := � f , a.s. as n → ∞, (9)

which implies the strong consistency of the test which rejects the null hypothesisH(s)
0

for large values of Tn, f .

Proof Clearly,
∣∣∣Ĉn(r) − 
̂r γ̂

∣∣∣
2 ≤ 4. Also by means of the strong pointwise consis-

tency of the empirical CF (see Feuerverger and Mureika 1977), we have Cn(r) →
CX (r), r ≥ 0, a.s. as n → ∞. Then (9) follows by invoking Lebesgue’s dominated
convergence theorem.

To proceed further, recall the definition of the parameter 
 and thus replace 
a
rγa

by Cγa,τa (r) = e−(τar)γa , where τa = (− log 
a)
1/γa . Then clearly the quantity � f fig-

uring in (9) is positive, unless CX (r) = eiμar−(τar)γa , identically in r , which by the
uniqueness of the CF would imply that X follows a SWS law indexed by ϕ

(s)
A , and

the proof is complete.

3.2 Computational Details

Let us return toEq. (6). Recall from the previous section that under the null hypothesis
H(s)

0 , we have that βϕ(·) ≡ 0, and hence the test statistic figuring in (6) reduces to

Tn, f = �1 + �2 − 2�3, (10)

with

�1 = 1

n

n∑

j,k=1

E1(Y j − Yk), (11)

�2 = nE2(γ̂ , τ̂ ), (12)

and

�3 =
n∑

j=1

E3(Y j ; γ̂ , τ̂ ), (13)

where the series figuring in (11)–(13) are defined by
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E1(x) =
∑

r≥0

cos(xr) f (r), (14)

E2(γ, τ ) =
∑

r≥0

e−2τ γ rγ

f (r), (15)

and
E3(x; γ, τ ) =

∑

r≥0

cos(xr)e−τ γ rγ

f (r). (16)

Now recall that f (r), r ≥ 0, is a probability function and therefore Ek, k =
1, 2, 3, may be viewed as expectations of corresponding quantities taken with respect
to the law f (r). Then after some extramanipulations, it follows that these three series
may be written as

E1(x) = Er [cos(xr)], (17)

E2(γ, τ ) = ErEX [cos(21/γ Xr)], (18)

and

E3(x; γ, τ ) = 1

2

{
ErEX [cos((X − x)r)] + ErEX [cos((X + x)r)]}, (19)

whereEr [·] andEX [·] aremeant as expectations takenwith respect to the law f (r) and
with respect to the SWS distribution with parameter ϕ = (γ, 0, τ, 0), respectively.

While the expectations shown in (17)–(19) are generally not easy to compute
analytically, they nevertheless allow for some simplification if the law f (r) corre-
sponding to the weights is properly chosen. Specifically, letting f (r) be a Poisson
distribution with mean λ, we have

E1(x) = cos(λ sin x)eλ(cos x−1). (20)

Moreover, since Ek, k = 2, 3, are absolutely convergent, by application of Fubini’s
theorem we have ErEX (·) = EXEr (·), so that the expectations in (18)–(19) may be
Monte-Carlo-approximated by the quantities

E2,M(γ, τ ) = 1

M

M∑

m=1

E1(21/γ xm), (21)

and

E3,M(x; γ, τ ) = 1

2

1

M

M∑

m=1

(E1(xm − x) + E1(xm + x)) , (22)
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respectively, where M is a large positive integer, and xm, m = 1, ..., M , denote i.i.d.
observations from the SWS distribution with parameter ϕ = (γ, 0, τ, 0).

Alternatively, sincewe have rapid convergence at least for γ ≥ 1, one can compute
the test statistic Tn, f given in (7) by means of direct numerical computation of only
the first few terms of the series defined in E2 and E3.

3.3 Estimation of Parameters

From Eq. (7), it is clear that the test statistic requires consistent estimators of the
stable law parameters. As estimators of the parameters (γ, 
, μ) of a SWS law, we
suggest the moment estimators given by the following equations (see Sect. 4.6 of
Jammalamadaka and SenGupta 2001):

μ̂ = tan−1

(
βn(1)

αn(1)

)
, (23)


̂ =
√

α2
n(1) + β2

n (1), (24)

γ̂ = 1

log 2
log

(
log(

√
α2
n(2) + β2

n (2))

log(
√

α2
n(1) + β2

n (1))

)
, (25)

where αn(·), βn(·) are the trigonometricmoments defined in (4), and tan−1(·) denotes
the principal inverse of tan(·).

We note that moment estimation of parameters yields an interesting limit for the
test statistic Tn, f figuring in (7). To this end, notice that Cn(0) = C(0) = 1, and
hence the first term in Tn, f (resulting from (7) for r = 0) vanishes regardless of the
distribution being tested and for any function f (r) used as a probability function. In
addition, the second term involves the quantity |Ĉn(1) − 
̂| which also vanishes on
account of (23) and (24), and because β̂n(1) = 0. Then write Tn,λ for the statistic in
(7) with f (r) being the Poisson probability function with mean λ, so that

Tn,λ = n e−λ

(∣∣∣Ĉn(2) − 
̂2γ̂
∣∣∣
2 λ2

2
+ o(λ2)

)
, λ → 0, (26)

which leads to

lim
λ→0

2Tn,λ

nλ2
=

∣∣∣Ĉn(2) − 
̂2γ̂
∣∣∣
2 := Tn,0. (27)

Clearly, the limit statistic Tn,0 simply compares the trigonometric moment computed
from the sample with the trigonometric moment of the SWS law, both of order r = 2.
(In this connection, note that Tn,0 vanishes as n → ∞ under the null hypothesis). On
the other hand, the test statistic Tn,λ employs an infinite weighted sum in which the
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empirical trigonometric moments of all integer orders r ≥ 0 are accounted for, and
with the probability function f (r)playing the role of aweight function.Consequently
if this function is decreasing with r (which is typically the case at least for large
r ), f (r) down-weights higher order trigonometric moments that are more prone to
periodic behavior (see, e.g., Epps 1993).

4 Finite-Sample Comparisons with Competing Tests

This section summarizes the results of a simulation study designed to evaluate the
performance of the proposed test and compare it with other existing tests. As com-
petitors, we include the Kuiper test (K) and the Watson test (W) for which there
exist computationally convenient formulae (Jammalamadaka and SenGupta 2001,
Sect. 7.2.1).

Specifically recall the notation S(·;ϕ) for the distribution function of theWSD, let
Uj = S(X j ; ϕ̂), and write U( j), j = 1, ..., n, for the corresponding order statistics.
Then we have

K = max
1≤ j≤n

{
U( j) − j − 1

n

}
+ max

1≤ j≤n

{
j

n
−U( j)

}
, (28)

W = 1

12n
+

n∑

j=1

((
U( j) − 2 j − 1

2n

)
−

(
U − 1

2

))2

, (29)

where U = n−1 ∑n
j=1Uj .

The asymptotic properties of test statistics such as Tn, f have been recently studied
in a general context by Jammalamadaka et al. (2019). As shown in that article, the
limit null distribution of Tn, f (as well as that of the statistics K andW) is complicated
and depends on several unknown quantities. Therefore, all tests are implemented
based on parametric bootstrap resampling which, as also shown in Jammalamadaka
et al. (2019), is under weak conditions an asymptotically valid method.

We now outline the steps involved in the parametric bootstrap procedure in a
fairly general setting of testing the null hypothesisH0 in (2) by means of an arbitrary
statistic T := T (X1, . . . , Xn). More specifically, write T̂ := T (X1, . . . , Xn; ϕ̂) for
this test statistic involving the original observations as well as the resulting parameter
estimate ϕ̂ := ϕ̂(X1, ..., Xn). Then parametric bootstrap critical points are computed
as follows:

1. Generate i.i.d. observations, {X∗
j , 1 ≤ j ≤ n} from S(·; ϕ̂).

2. Using these observations, obtain the bootstrap estimate ϕ̂∗ := ϕ̂(X∗
1, ..., X

∗
n) of

ϕ.
3. Calculate the bootstrap test statistic, say T ∗ := T (X∗

1, ..., X
∗
n; ϕ̂∗).

4. Repeat Steps 1–3 a number of times, say B, and obtain {T ∗
b }Bb=1.
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Table 1 Null and Alternative hypotheses used for data simulation

Hypothesis Distribution

Null 1 SWS(2, 0.5, π)

Null 2 SWS(1, 0.5, π)

Null 3 SWS(1, 1, π)

Null 4 SWS(1.9, 1, π)

Null 5 SWS(1.75, 1, π)

Null 6 SWS(1.5, 1, π)

Alternative 1 0.8vM(π, 5) + 0.2vM(π/2, 5)

Alternative 2 0.65vM(π, 5) + 0.35vM(π/2, 5)

Alternative 3 0.5vM(π, 5) + 0.5vM(π/2, 5)

Alternative 4 (1/3)vM(π, 8) + (2/3)vM(π, 0.1)

Alternative 5 vM(π/2, 2)

Alternative 6 AWS(1.2,−1, 0.5, π)

Alternative 7 0.5SWS(2, 0.75, 0) + 0.5AWS(1.5,−1, 0.5, π)

Alternative 8 GvM(π, 3π/4, 1, 5)

5. Calculate the critical point of a test of sizeα as the order (1 − α) empirical quantile
T ∗
1−α of T

∗
(b), (b = 1, ...,B), where T ∗

(1) ≤ T ∗
(2) ≤ . . . ≤ T ∗

(B) are the corresponding
order statistics.

6. Reject the null hypothesis if T̂ > T ∗
1−α .

Since the parametric bootstrap is somewhat time-consuming, we employ instead
its warp-speed version. In order to produce replications, this method capitalizes on
the inherent repetition of every Monte Carlo simulation, rather than relying on a
separate “bootstrap loop”. Specifically with the warp-speed bootstrap, conditionally
on them−thMonte Carlo sample, we compute the corresponding parameter estimate
ϕ̂m , and draw a single bootstrap resample X∗

1,m, ..., X∗
n,m from S(·; ϕ̂m). Having

calculated the bootstrap parameter estimate ϕ̂∗
m := ϕ̂(X∗

1,m, ..., X∗
n,m), we compute

the value of the test statistic for this resample, T ∗
m := T (X∗

1,m, ..., X∗
n,m; ϕ̂∗

m). Then
the critical point is computed as in Step 5 above from T ∗

m , (m = 1, ...,MC), where
MC denotes the number of Monte Carlo samples drawn; for more details, the reader
is referred to Giacomini et al. (2013).

In this simulation study, we chose six distributions from the family of SWS distri-
butions (under the null hypothesis) and eight distributions from alternative hypothe-
ses, including

• von Mises (vM) distributions.
• 2-component mixtures of vM distributions.
• Asymmetric WS (AWS) distributions.
• 2-component mixtures of an SWS distribution with an AWS distribution.
• Generalized von Mises (GvM) distributions (discussed in
Gatto and Jammalamadaka 2007).
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Fig. 1 Alternative densities considered
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Parameter configurations of simulated distributions (both under the null and alterna-
tives) are shown in Table1. The densities of the simulated alternatives are depicted
in Fig. 1.

The computations were carried out in R, utilizing CircStats package to gener-
ate random samples for WS and vM distributions. We choose λ = 0.3, 0.5, 0.7, 0.9,
with f (r) being the Poisson probability function with mean λ, and write Tλ for our
test statistic. The proportion of rejections of the null hypothesis under each null and
alternative distribution is computed by applying the tests to MC = 5,000 iterations,
with the critical points estimated using the warp-speed method (similar results were
obtained when we used MC = 10,000 iterations and we report the former). The
results for samples of size n = 100, 50, and 30 are summarized in Tables3, 4, and
5, respectively, given in Appendix, at nominal levels α = 0.05 and α = 0.10. On the
basis of these extensive simulation results, we make the following observations:

1. The empirical level of our test is close to the nominal level for Null 1 (which is
at the boundary of the parameter space), and Null 2, 3, and 6, while it is slightly
higher than the actual α for Null 4 and 5. (This type of inaccuracy was also noticed
in the Monte Carlo results of Koutrouvelis and Meintanis 1999).

2. The empirical power of our test is high for Alt. 1, 2, 3, 6, and 8, while it is very
low (almost indistinguishable from the level of the test) for Alt. 4 and Alt. 5. This
may be explained by the fact that distributions Alt. 4 and Alt. 5 are unimodal
and symmetrical, and thus they can be approximated sufficiently well by a SWS
distribution.

3. Compared with our test, both the Kuiper and the Watson tests exhibit a lower
percentage of rejection both under the null as well as under alternatives, except
for Null 1. Generally, these tests performmuchworse, and certainly no better than
our test in most cases, with rare exceptions like Null 4 with n = 100 and Alt. 3
with n = 30. In particular, for Alt. 8, both tests have almost no power while our
test attains higher power when the sample size is large.

4. The test statistic Tλ is robust with respect to the choice of λ and thus the value
of λ does not significantly affect the empirical level/power of our test. In other
testing situations though, finding a good value for λ turns out to be important;
see, for instance, Allison and Santana (2015) for more details on this issue.

5 Real Data Applications

This section shows the application of our proposed test on a couple of real data sets.
Taylor and Burns (2016) collected data sets for the radial distributions of mistletoes
and epiphytes from 5 different species, and discovered that they are highly directional
and related to the availability of light and humidity. We consider two of their data
sets: Data Set 1 consists of n = 67 observations on peraxilla colensoi and Data
Set 2 consists of n = 65 observations on asplenium flaccidum. Figure2 shows the
histograms of two data sets. The corresponding fitted SWS density functions are
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Fig. 2 Histograms of real data sets together with the fitted SWS density functions

Table 2 Parameter estimates and p-values of the tests for Data Sets 1 and 2

Data
set

Estimated
parameters

K W T0.3 T0.5 T0.7 T0.9 T1

1 γ̂ = 1.32, τ̂ =
1.06, μ̂ = 5.78

0.502 0.586 0.316 0.344 0.370 0.412 0.434

2 γ̂ = 1.40, τ̂ =
0.79, μ̂ = 2.82

0.036 0.012 0.028 0.020 0.014 0.008 0.006

shown in black lines. Table2 gives the estimated parameters and p-values of the tests
for Data Sets 1 and 2. At α = 0.05, all tests fail to reject the null hypothesis for Data
Set 1 and reject the null hypothesis for Data Set 2.

6 Discussion

We propose a goodness-of-fit test for the family of symmetric wrapped stable distri-
butions with unknown parameters. The proposed test statistic is based on the char-
acteristic function of this family, which unlike its density may be written in a closed
form. Furthermore, the estimation of the stable law parameters also utilizes the char-
acteristic function, and thus avoids numerically complicated likelihood-based proce-
dures. The suggested test statistic, which is expressed as a weighted L2-type distance
between empirical trigonometric moments and the corresponding theoretical quan-
tities, is shown to be consistent against general alternatives. The findings of a Monte
Carlo study show that the proposed test statistic competes well and indeed does better
than some of the existing procedures for the same problem. Finally, a couple of real
data examples further illustrate the applicability of the new procedures.
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Appendix

See Tables3, 4, and 5.

Table 3 Observed proportion of rejection at nominal level α for 5000 Monte Carlo samples of size
n = 100

Law α K W T0.3 T0.5 T0.7 T0.9 T1

Null 1 0.05 0.049 0.049 0.054 0.055 0.059 0.059 0.060

0.10 0.098 0.107 0.108 0.108 0.107 0.108 0.108

Null 2 0.05 0.010 0.014 0.047 0.047 0.045 0.045 0.042

0.10 0.038 0.043 0.096 0.096 0.094 0.092 0.092

Null 3 0.05 0.008 0.014 0.033 0.033 0.031 0.031 0.031

0.10 0.034 0.041 0.073 0.071 0.071 0.067 0.067

Null 4 0.05 0.044 0.059 0.101 0.101 0.098 0.098 0.097

0.10 0.092 0.117 0.183 0.180 0.175 0.172 0.169

Null 5 0.05 0.031 0.047 0.093 0.089 0.087 0.083 0.084

0.10 0.074 0.102 0.158 0.156 0.152 0.148 0.145

Null 6 0.05 0.022 0.031 0.063 0.062 0.061 0.058 0.056

0.10 0.062 0.071 0.112 0.112 0.111 0.110 0.108

Alt. 1 0.05 0.729 0.907 0.984 0.986 0.987 0.986 0.986

0.10 0.861 0.959 0.995 0.995 0.995 0.994 0.995

Alt. 2 0.05 0.933 0.987 0.982 0.986 0.989 0.990 0.990

0.10 0.972 0.994 0.994 0.995 0.996 0.996 0.996

Alt. 3 0.05 0.910 0.978 0.955 0.966 0.970 0.976 0.976

0.10 0.960 0.992 0.983 0.987 0.989 0.990 0.991

Alt. 4 0.05 0.000 0.000 0.038 0.036 0.033 0.033 0.032

0.10 0.003 0.008 0.090 0.086 0.082 0.079 0.077

Alt. 5 0.05 0.039 0.042 0.047 0.048 0.046 0.047 0.045

0.10 0.091 0.089 0.095 0.095 0.094 0.095 0.095

Alt. 6 0.05 0.294 0.317 0.696 0.715 0.725 0.730 0.731

0.10 0.526 0.579 0.816 0.834 0.842 0.844 0.844

Alt. 7 0.05 0.003 0.038 0.518 0.496 0.474 0.448 0.437

0.10 0.015 0.110 0.637 0.615 0.600 0.583 0.572

Alt. 8 0.05 0.000 0.000 0.947 0.933 0.910 0.872 0.848

0.10 0.000 0.001 0.982 0.975 0.967 0.952 0.943
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Table 4 Observed proportion of rejection at nominal level α for 5000 Monte Carlo samples of size
n = 50

Law α K W T0.3 T0.5 T0.7 T0.9 T1

Null 1 0.05 0.049 0.053 0.051 0.048 0.048 0.049 0.049

0.10 0.093 0.097 0.099 0.104 0.107 0.108 0.107

Null 2 0.05 0.005 0.011 0.035 0.036 0.036 0.034 0.034

0.10 0.031 0.038 0.078 0.076 0.074 0.078 0.076

Null 3 0.05 0.003 0.008 0.031 0.031 0.029 0.028 0.027

0.10 0.018 0.027 0.071 0.068 0.065 0.064 0.064

Null 4 0.05 0.015 0.035 0.110 0.109 0.106 0.102 0.103

0.10 0.049 0.080 0.190 0.185 0.181 0.175 0.174

Null 5 0.05 0.015 0.029 0.085 0.084 0.080 0.077 0.076

0.10 0.046 0.075 0.152 0.153 0.152 0.149 0.148

Null 6 0.05 0.009 0.017 0.063 0.064 0.063 0.060 0.058

0.10 0.036 0.046 0.128 0.125 0.119 0.116 0.114

Alt. 1 0.05 0.298 0.506 0.788 0.786 0.786 0.779 0.776

0.10 0.470 0.667 0.876 0.875 0.877 0.873 0.867

Alt. 2 0.05 0.588 0.778 0.770 0.796 0.813 0.828 0.831

0.10 0.729 0.865 0.889 0.901 0.909 0.910 0.911

Alt. 3 0.05 0.586 0.763 0.657 0.704 0.732 0.752 0.764

0.10 0.725 0.871 0.817 0.841 0.859 0.873 0.876

Alt. 4 0.05 0.001 0.003 0.049 0.049 0.045 0.044 0.042

0.10 0.010 0.016 0.092 0.090 0.087 0.084 0.083

Alt. 5 0.05 0.037 0.034 0.043 0.042 0.042 0.038 0.039

0.10 0.083 0.082 0.088 0.084 0.086 0.084 0.084

Alt. 6 0.05 0.038 0.035 0.327 0.342 0.343 0.346 0.348

0.10 0.145 0.136 0.498 0.508 0.510 0.518 0.521

Alt. 7 0.05 0.004 0.012 0.252 0.241 0.224 0.213 0.205

0.10 0.019 0.062 0.396 0.382 0.367 0.352 0.342

Alt. 8 0.05 0.000 0.001 0.658 0.595 0.538 0.467 0.423

0.10 0.000 0.005 0.794 0.754 0.705 0.656 0.620
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Table 5 Observed proportion of rejection at nominal level α for 5000 Monte Carlo samples of size
n = 30

Law α K W T0.3 T0.5 T0.7 T0.9 T1

Null 1 0.05 0.041 0.049 0.043 0.047 0.050 0.050 0.051

0.10 0.093 0.091 0.106 0.106 0.104 0.104 0.102

Null 2 0.05 0.004 0.006 0.033 0.033 0.030 0.028 0.029

0.10 0.023 0.031 0.081 0.080 0.081 0.076 0.076

Null 3 0.05 0.003 0.007 0.032 0.033 0.032 0.031 0.029

0.10 0.021 0.027 0.082 0.081 0.078 0.072 0.072

Null 4 0.05 0.005 0.014 0.084 0.082 0.077 0.075 0.074

0.10 0.035 0.052 0.150 0.148 0.147 0.143 0.140

Null 5 0.05 0.008 0.016 0.081 0.079 0.077 0.076 0.075

0.10 0.033 0.053 0.146 0.147 0.141 0.137 0.137

Null 6 0.05 0.005 0.011 0.061 0.059 0.056 0.053 0.052

0.10 0.025 0.039 0.112 0.110 0.105 0.104 0.105

Alt. 1 0.05 0.081 0.157 0.500 0.512 0.509 0.504 0.499

0.10 0.231 0.357 0.634 0.640 0.638 0.627 0.624

Alt. 2 0.05 0.262 0.430 0.522 0.540 0.559 0.566 0.572

0.10 0.437 0.610 0.695 0.715 0.727 0.729 0.729

Alt. 3 0.05 0.292 0.447 0.387 0.435 0.482 0.509 0.516

0.10 0.470 0.623 0.598 0.623 0.642 0.655 0.661

Alt. 4 0.05 0.003 0.005 0.056 0.055 0.052 0.050 0.047

0.10 0.013 0.022 0.108 0.105 0.101 0.099 0.098

Alt. 5 0.05 0.020 0.018 0.041 0.040 0.040 0.039 0.040

0.10 0.066 0.059 0.091 0.092 0.089 0.087 0.087

Alt. 6 0.05 0.015 0.016 0.177 0.183 0.183 0.183 0.184

0.10 0.070 0.066 0.314 0.315 0.319 0.322 0.321

Alt. 7 0.05 0.004 0.009 0.163 0.154 0.145 0.136 0.129

0.10 0.022 0.043 0.261 0.258 0.250 0.239 0.232

Alt. 8 0.05 0.000 0.002 0.408 0.377 0.343 0.276 0.251

0.10 0.000 0.006 0.565 0.536 0.478 0.427 0.405
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Partial Differential Equation Models
and Riemann–Stieltjes Integrals in
Measuring Sustainability

Arni S. R. Srinivasa Rao and Sireesh Saride

Abstract Abstract understanding sustainability through modeling involves one of
the complex and interdisciplinary activities where mathematics plays a key role. We
provide arguments favoring the need for developing global models for measuring
the status of sustainability. A global model (applicable in broader perspective) and
global sustainability indices are proposed which can be used with real-world data.
The solutions of the proposed Partial Differential Equations (PDEs) are blended with
the weight functions of Riemann–Stieltjes integrals to capture the differential impor-
tance of sustainability associated factors. The ideas, methods, and models are new
and are prepared for handling multidimensional and multivariate data. A practically
adaptable formula for measuring the sustainability index is developed with few key
variables. We provide a real-world example arising in civil engineering applications
with a numerical example to demonstrate our models.
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1 Introduction

According to the United States Environmental Protection Agency (USEPA 2021),
“Sustainability creates and maintains the conditions under which humans and nature
can exist in productive harmony, that permit fulfilling the social, economic, and other
requirements of present and future generations” and according to Oxford English
Dictionary (OXD 2020), sustainable means—“able to be maintained at a certain rate
or level”. Sustainability is a highly complex and very broad-meaning word amalga-
mated from several cross-disciplinary subjects and also influenced by political and
governmental involvement. Specific to Civil Engineering, American Society of Civil
Engineers (ASCE) defines sustainability as” a set of economic, Environmental, and
social conditions in which all of society has the capacity and opportunity to maintain
and improve its quality of life indefinitely, without degrading the quantity, quality,
or the availability of natural, economic, and social resources (Ref: https://www.asce.
org/advocacy/energy). It is within and beyond the subject of academic collabora-
tion. There are discussions on achieving sustainability at academic and government
levels (see for example, May 2002) and there is a need to address sustainability
from a common platform (Ostrom 2009). When we speak of the mathematics of
sustainability, the first question which comes to me as a mathematical modeler is,
can we build a global comprehensive mathematical model to explain the status of
sustainability? And secondly, can we use it for predicting whether the system under
investigation is sustainable or not? Supposing we can able to build one such model,
then how does the mathematical modeler (or mathematical community) present itto
peoplewith a non-mathematical background such that peoplewho are responsible for
policy, government administrators, and all other responsible individuals understand
the importance and implications of sustainability and can foresee the predictions of
a sustainability model? (It is, of course, possible that people with a mathematical
background occupy government, political, and other responsible professions). Math-
ematical ideas cannot be adopted for the overall development of mankind and for
the betterment of species surrounded by mankind unless they can be appreciated and
encouraged by non-mathematicians.

A mathematician might develop an excellent model to solve/explain certain prac-
tical issues, however, there are often ‘’gulfs” between ‘the people handling practical
issues related to sustainability’ and ‘themathematicianswho are building and analyz-
ing models’. These gulfs maybe both ideological and conceptual. Ideological gulfs
can be broadly classified as undermining the applicability of mathematical ideas
and models for practical use in general, whereas conceptual gulfs can be broadly
classified as a lack of sufficient background in mathematical sciences. Unless these
concepts are accessible to non-mathematicians, the fruits of mathematical reasoning
would not benefit mankind (and also surrounding species). But who will cross the
gap? Whether it is non-mathematicians who will cross the bridge to reach mathe-
matical thinkers or mathematicians who take their concepts across the bridge could
be a topic of consideration. One argument could be that, since mathematicians pro-
duce mathematical models (methods), they need to take them to other people and

https://www.asce.org/advocacy/energy
https://www.asce.org/advocacy/energy
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make them use models (like a salesman sells his/her product). How often do mathe-
maticians take things in this direction? There are occasions when cross-disciplinary
teams including mathematicians build models for real-world solutions in science and
engineering. Although there may be an overlap in techniques, modeling global sus-
tainability is different from the modeling to explain a particular phenomenon of sci-
ence (or engineering), which is usually conducted by a group of people with science
(or engineering) and mathematical backgrounds. There were several collaborative
attempts with mathematicians at building models for health policies that were con-
ceived by people responsible for policy formulation and successfully implemented
at the country level (for example, see Rao et al. 2012 and Rao et al. 2009).

Sustainability is a broader term than health policy formulation. For example, if we
have to formulate amathematical model based policy for controlling an epidemic and
supposewe have the following information: (i) health professionals who are handling
population-level treatment of this particular epidemic are aware of the transmission
dynamics of associated disease, (ii) time-series data on incidence and prevalence,
(iii) basic socio-demographic data for the population of concern, (iv) intervention
strategies by the government for controlling the epidemic, (v) vaccine availability and
distribution if at all there exists a vaccination, and (vi) any other relevant factors those
are essential in controlling the given epidemic. When a team of medical and public
health professionals with the above information approaches a mathematician, the job
of a mathematician is to understand the transmission dynamics and develop a model
for the same with all the variables and parameters of interest. In case parameters
are not readily available, one has to use statistical procedures for estimation before
model building. It is also necessary to involve health professionals at every stage
of the model building for maximum flexibility and accuracy of the model. Once a
model is built and successfully tested for its performance by taking inputs from health
professionals in the team, one can adapt the model for predicting the epidemic spread
with and without interventions. We can also measure the impact of certain policies
through such modeling. Understanding the sustainability status of the population is
not about to health alone. As mentioned previously, it involves obtaining accurate
information in all aspects of population well-being, ranging from health, climate,
food, agriculture resources, science and technology to economic situation. Each
category of this information across various fields is required to use independently and
dependently in the models for sustainability status. Modeling sustainability needs a
cross-disciplinary team with an understanding of cross-disciplinary data. See Figure
schematic structure of the process model building through the teamwork of cross-
disciplinary scientists, government agencies, politicians, etc. (Fig. 1).

For measuring the status of sustainability, we need global models with all-round
global data, however, such a global model could have components of sub-models (or
local models) quantifying sustainability status at various geographic regions on our
planet. These computationally intense models should be able to update global and
local sustainability status periodically such that time-dependent action-oriented poli-
cies can be skimmed from these efforts. Existing models for sustainability involved
variables from one or two categories and these models are well constructed (Ostrom
2009; Gunderson 2006; Pretty et al. 2002; Ravindranath et al. 2006). Our models
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Fig. 1 Schematic diagram of bridging between various sustainability stake holders.
a Commissioned debate on global sustainability: Team of scientists, politicians, government
and non-government agencies will debate on the status of sustainability, required fur-
ther information, direction of research needed for better understanding the status; b
Evolving methodology for measuring sustainability: Scientists who are working on sustainabil-
ity issues and organizations and individuals who are working in practical implementation
of maintaining sustainable environment (see, for example, see www.epa.gov), statisticians
and mathematicians discuss as a team on the method of measuring sustainability status; c
Information gathering & data collection: Required information as decided in b will be collected
which will eventually help to arrive at Table1; dWeights building: With the help of c weight func-
tionswill be formed and ordering of theweights by relative importance in-terms of their contribution
to the sustainability status is decided; eModel building and analysis:Modelswill be developed since
completion of b. The ideas generated in b, c and using the values obtained at d, model based output
will generated. There will be back-and-forth activities between b–d and e

proposed are new in terms of structure and conceptualization and methods involve
are different from the general sustainability modeling framework proposed, see for
example, Phillips (2010), Todorov and Marinova (2011). We have proposed to use
the weight functions of Riemann–Stieltjes for giving differential importance to var-
ious factors involved in sustainability measures. Since the length of the partitions in
Riemann-Stieltjes could be dynamically arranged, the corresponding weight func-
tions proposed in the work are flexible to capture variation in the sustainability data
of road transportation. In the next section, we propose sustainability indices and
models and show that these indices are solutions to proposed models.

www.epa.gov
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2 Global Sustainability Models

A general global model using a Partial Differential Equation (PDE) for studying a
measure of sustainability (say, sustainability index, H at time t), involving compo-
nents ψ1, ψ2, ..., ψk (i.e., independent variables) that determine sustainability and
partial derivatives of H can be conceptualized as one or more of the following equa-
tions:

S
(
t, ψ1, ψ2, ..., ψk, H, Ht , Hψ1 , Hψ2 , · · · , Hψk

) = 0 (1)

S

(
t, ψ1, ψ2, ..., ψk, H, Ht , Hψ1 , Hψ2 , · · · ,

Hψk , Hψ1ψ2 , Hψ1ψ3 , Hψ2ψ3 , · · · , Hψ1ψk , Hψ2ψk , · · ·
)

= 0

...
... (2)

S

(
t, ψ1, ψ2, ..., ψk, H, Ht , Hψ1 , Hψ2 , · · · ,

Hψk , Hψ1ψ2 , Hψ1ψ3 , · · · , Hψ2ψ3,···,ψk

)
= 0 (3)

where Hψ1 , Hψ2 , ...Hψk are partial derivatives and Hψ1ψ2 , Hψ1ψ3 , Hψ2ψ3 , · · · , Hψ1ψk ,

Hψ2ψk , · · · , Hψ2ψ3,···,ψk are mixed partial derivatives. For example,

Hψi = ∂H

∂ψi
,

Hψ1ψ2···ψk = ∂k H

∂ψ1ψ2 · · · ψk
,

Hψkψk ···ψk = ∂k H

∂ψk
k

,

and for |α| = α1 + α2 + · · · + αk whereαi is a non-negative integer, themixedpartial
derivative, Hψkψk ···ψk , means,

Hψ1(α1 times)ψk (α2 times)···ψk (αk times) = ∂k H

∂ψ
α1
1 ψ

α2
2 · · · ψαk

k

.

Here, H : U → R, whereU is an open subset inRk andψi ∈ U. (1) is first order,
(2) is second order, and (3) is kth-order PDE. In general,

S
(
t, ψ1, ψ2, ..., ψk, H, DH, D2H, · · · , Dk−1H, DkH

) = 0 (4)
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for (t, ψ1, ψ2, ..., ψk ∈ U ), is called a kthorder PDE, where S : Rk × R
k−1 × · · · ×

R → R and Di H is the set of all partial derivatives of order i for i = 1, 2, · · · , k.
The PDE (4) could be linear or non-linear. It is linear, by using DαH , and using two
functions, fα (t, ψ1, ψ2, ..., ψk) and f (t, ψ1, ψ2, ..., ψk), if we can write in the form
(5), else, we can say it is not linear.

∑

|α|≤k

fα (t, ψ1, ψ2, ..., ψk) D
αH = f (t, ψ1, ψ2, ..., ψk) (5)

The degree and combination of number of independent variables in Ψ = (ψ1,

ψ2, ..., ψk) and construction of H using Ψ needs inputs from the global commu-
nity who are working on sustainability issues. The impact of each of ψ1, ψ2, ..., ψk

could be different in quantifying H and hence, we might have to introduce global
weight functions Ω = (Ω1,Ω2, · · · ,Ωk) corresponding to each independent vari-
able. We associate Ω with a Riemann-Stieltjes integrable function F such that
F,Ω : [ωa, ωb] → R are bounded functions on a compact interval [ωa, ωb]. A range
of weights depending upon the fluctuations in independent variables, for example,
economic depression, shortage of resources like food, energy, etc. have to be assessed
with cross-disciplinary data such that a tagged partition function P of [ωa, ωb] is
obtained. Since F is Riemann–Stieltjes integrable, we will have,

∣∣∣∣Σ (F,Ω, P) −
∫ ωb

ωa

FdΩ

∣∣∣∣ < η (6)

for every η > 0. Here,

Σ (F,Ω, P) = Σ
g
i=1F(ti )

[
Ω(xi ) − Ω(xi−1)

]
(7)

is the Riemann–Stieltjes sum of F with respect to global sustainability weight func-
tionΩ for P = {([

xi−1, xi
]
, ti

)}g
i=1, where gis the size of partitions. For definitions,

properties and general description ofRiemann–Stieltjes integrals, refer to Tao (2009),
Nielsen (1997). Similarly, a general PDE for a specific geographic regional model
can be written in similar construction as that of model (3). The regional specific
independent variables and regional specific weights depending upon the regional
sustainability indicators satisfying the following Riemann–Stieltjes set up at the hth
region are

∣∣∣∣Σ (Fh,Ωh, Ph) −
∫ ωb

ωa

FhdΩh

∣∣∣∣ < η (8)
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Σ (Fh,Ωh, Ph) = Σ
g1
i=1Fh(ti )

[
Ωh(xi ) − Ωh(xi−1)

]
(9)

Ph = {([
xi−1, xi

]
, ti

)}g1
i=1 (10)

where g1 is the size of partitions at the hth region. Global models need to run
simultaneously with regional models over the time to obtain global sustainability
measures. Measurement of sustainability requires understanding influences of more
than one factor or variable and mutual inter-dependencies within these variables.
In fact, there will be several factors or variables (see Table1) that influence the
population sustainability over time period. Depending upon the situation one may
consider two factors or more factors together that influence the overall status of
sustainability. In Table1, a list of variables provided for a general guidance. This is
a probable list and an effective list of sustainability influencing could be emerged by
splitting or combining variables from this list.

We propose two types of PDE models for H , one without the mixed partial
derivatives and second with the mixed partial derivatives. First model (11) is a simple
starting point, because second-order PDEs are known to have wider applications in
science and engineering (for example, see Krantz 1992; Strauss 2008). This model is
good when each dependent variable is considered in the dynamics of sustainability
status. When we need to incorporate interaction (or influence) of more variables
then model (12) will be suitable. In this model we have considered the term ∂k H

∂ψ1···∂ψk

for demonstration of our analysis. One can consider other mixed partial derivatives
such as ∂k H

∂ψ
∂ψ�∂ψ�···∂ψk
or other combination or order of the partial derivatives. For

demonstration of the solution in this paper, we use the model (12), and similar
approach can be adapted for all other models with different mixed partial derivatives,
for example see (12) and (12).

∂H

∂t
= Σk

i=1
∂2H

∂ψ2
i

(k > 1) (11)

∂H

∂t
= Σk

i=1
∂k H

∂ψk
i

+ ∂k H

∂ψ1 · · · ∂ψk
(k > 1) (12)

If we ignore mixed partial derivatives in Model (12) and fix k = 2, then model
(12) becomes model (11). Other PDE model by varying mixed partial derivatives as
described above are,
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∂H

∂t
= Σk

i=1
∂k H

∂ψk
i

+ ∂k H

∂ψ3∂ψ2∂ψ1 · · · ∂ψk
(k > 1) (13)

∂H

∂t
= Σk

i=1
∂k H

∂ψk
i

+ ∂k H

∂ψ1 · · · ∂ψk
+ ∂k−1H

∂ψ1 · · · ∂ψk−1
+ (k > 1)

∂k−2H

∂ψ3∂ψ2∂ψ1 · · · ∂ψk−2
+ · · · + ∂H

∂ψk
(14)

Actual function form of a PDE model with a suitable order and degree are usu-
ally decided by the experts working in the field and in this case the team of cross-
disciplinary scientists after sufficient debate.We confine to themodel (12) for obtain-
ing a sustainability index to be used by groups or individuals working on practical
modeling.

Theorem 1 For the Model (11), (i)H = kt + 1
2Σ

k
i=1ψ

2
i and (i i)H = (2k)t + Σk

i=1
ψ2
i are solutions.

Proof (i) For k = 1, the model (11) is a heat equation and the solution is H =
t + 1

2ψ
2
1 . For H = kt + 1

2Σ
k
i=1ψ

2
i , we have

∂H
∂t = k = Σk

i=1
∂2H
∂ψ2

i
.

(ii) For H = (2k)t + Σk
i=1ψ

2
i we have ∂H

∂t = 2k = Σk
i=1

∂2H
∂ψ2

i
. Hence the theorem

is proved.

Theorem 2 For the Model (12), (i) H = (k + 1)t + 1
k!Σ

k
i=1ψ

k
i + k

i=1ψi and
(ii) H = ((k!k) + 1) t + Σk

i=1ψ
k
i + k

i=1ψi are solutions.

Proof (i) Let H = (k + 1)t + 1
k!Σ

k
i=1ψ

k
i + k

i=1ψi . We have ∂H
∂ψi

= k
k!ψ

k−1
i +

ψ1 · · · ψi−1ψi+1 · · ·ψk and ∂k H
∂kψi

= 1. We have,

∂k H

∂ψ1 · · · ∂ψk
= ∂k−1

∂ψ1 · · · ∂ψk−1

(
∂H

∂ψk

)

= ∂k−1

∂ψ1 · · · ∂ψk−1

(
k

k!ψ
k−1
k + k−1

i=1ψi

)

= ∂k−2

∂ψ1 · · · ∂ψk−2

(
k−2

i=1ψi
) = 1

Therefore,
∂H
∂t = k + 1 = Σk

i=1
∂k H
∂ψk

i
+ ∂k H

∂ψ1···∂ψk
(k > 1), which confirms that given H is a

solution.
(ii) Let H = ((k!k) + 1) t + Σk

i=1ψ
k
i + k

i=1ψi . We have ∂H
∂ψi

= kψk−1
i + ψ1 · · ·

ψi−1ψi+1 · · ·ψk and ∂k H
∂kψi

= k!. We have,
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∂k H

∂ψ1 · · · ∂ψk
= ∂k−1

∂ψ1 · · · ∂ψk−1

(
∂H

∂ψk

)

= ∂k−1

∂ψ1 · · · ∂ψk−1

(
kψk−1

k + k−1
i=1ψi

)

= ∂k−2

∂ψ1 · · · ∂ψk−2

(
k−2

i=1ψi
) = 1

Therefore,
∂H
∂t = k!k + 1 = Σk

i=1
∂k H
∂ψk

i
+ ∂k H

∂ψ1···∂ψk
(k > 1), which confirms that given H is a

solution.

Corollary 1 Suppose α > 0 and β > 0 are two parameters, then the function,
H(t, ψ1, · · · , ψk;α, β) = (kαk! + β) t + 1

k!Σ
k
i=1ψ

k
i + k

i=1ψi is also a solution of
the model (12).

These two theorems provide basic general idea of solutions for themodels in (11) and
(12). These solutions are two proposed candidates for sustainability indices without
weights. In the next theorem we provide a solution for above models (we will call
weighted sustainability index, H(Ω)), which has weight functions described in this
section.

Theorem 3 The weighted sustainability index

H(Ω) =
(
k!Σk

i=1Ωi + ∏k
i=1 Ωi

)
t +Σk

i=1Ωiψ
k
i + ∏k

i=1 Ωiψi is a solution for

the sustainability model (12) with mixed partial derivatives.

Proof Wehave, ∂H(Ω)

∂ψi
= Ωi kψ

k−1
i + Ω1ψ1 · · · Ωi−1ψi−1ΩiΩi+1ψi+1 · · · Ωkψk and

∂k H(Ω)

∂kψi
= Ωi k!. The mixed partial derivative terms in the model (12) can be obtained

for the given index as,

∂k H(Ω)

∂ψ1 · · · ∂ψk
= ∂k−1

∂ψ1 · · · ∂ψk−1

(
∂H(Ω)

∂ψk

)

= ∂k−1

∂ψ1 · · · ∂ψk−1

(
Ωkkψ

k−1
k + Ωk

k−1
i=1ψi

)

= ∂k−2

∂ψ1 · · · ∂ψk−2

(
ΩkΩk−1

k−2
i=1ψi

)

=
k∏

i=1

Ωi

Therefore,

∂H(Ω)

∂t
= k!Σk

i=1Ωiψi + ∏k
i=1 Ωi = Σk

i=1
∂k H

∂ψk
i

+ ∂k H

∂ψ1 · · · ∂ψk
(k > 1)
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Hence, the weighted function proposed is a solution of the model (12).

Corollary 2 From theorem (3), we can see that

H(Ω) =
(
Σk

i=1Ωi + ∏k
i=1 Ωi

)
t + 1

k!Σ
k
i=1Ωiψ

k
i + ∏k

i=1 Ωiψi is also a solution

for the model (12).

Corollary 3 Suppose α > 0 and β > 0 are two parameters, then the function,

H(t, ψ1, · · · , ψk,Ω1, · · · ,Ωk;α, β) =
(

αk!Σk
i=1Ωi + β

k∏

i=1

Ωi

)

t

+αΣk
i=1Ωiψ

k
i + β

k∏

i=1

Ωiψi

is also a solution of the model (12).

We shortlist seven key independent variables based on May (2002) and also using
self-intuition in measuring sustainability.Seven variables are, food and agricul-
ture (ψ1), climate and environment (ψ2), population and economics (ψ3), political
situation(ψ4), medical technology (ψ5), energy (ψ6), and science and technology
(ψ7). These variables reduce the models (11) and (12) with a lesser number of real-
istic variables. Models with reduced variables are to be run along with regional level
sub-models with regional specific weight functions and regional specific combina-
tions of key variables listed. A hypothetical description of these seven variables and
expected data at a country or a concerned region is given in Table1.Some of these
variables can be split into two or more variables if there is enough evidence from
the data. For smaller regions, one can have a larger number of variables because the
data needed for obtaining an index would be relatively easier to collect. For larger
countries, the more the number of variables more will be the potential variation in the
index. We suggest H(Ω7) and H(Ω7;α, β) as two candidates for the sustainability
index using the seven variables.

The seven variable sustainability index based on Corollary 2 is,

H(Ω7) =
(

Σ7
i=1Ωi +

7∏

i=1

Ωi

)

t + 1

7!Σ
7
i=1Ωiψ

7
i +

7∏

i=1

Ωiψi (15)

and the seven variable sustainability index based on Corollary 3 is,
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Table 1 Seven variables required for the sustainability index

Variable Description Symbol

Food and
agriculture

Proportion of yield of food production to the arable land ψ1

Climate and
environment

tproportion of people who are living under the clean air,

Clearn water facilities and normal climatic conditions
ψ2

Population and
economics

Proportion of people who are above he poverty levels

Prescribed by the multidimensional poverty index

and proportion of skilled population required for

economic growth

ψ3

Political
situation

Duration of the time period where the population

Concerned or a region or a country is living under

Stable political situation as per global perspective

ψ4

Medical
technology

Proportion of people who are living

Within the reach of best medical treatment

and health facilities

ψ5

energy

Proportion of industrial sector, transportation sector

and agricultural sector, general population infrastructure

Which are availaling sufficient electricity for

Optimum productivity

ψ6

Science and
technology

Level of research in basic sciences and

Overall technological advancements or

Availability of technology to support the needs

of concerned population or a region or a country

ψ7

H(Ω7;α, β) =
(

α6!Σ7
i=1Ωi + β

7∏

i=1

Ωi

)

t

+αΣ6
i=1Ωiψ

7
i + β

7∏

i=1

Ωiψi (16)

Once we have data for the variables in Table1 are collected and weights are com-
puted, the index given in (16) or similar index with different mixed partial derivatives
can be constructed. We have two more parameters, α and β in (16) which can be
fitted using a least square method or suitable method depending upon the dimension
of the data. Weight computation is needed to be done with the help of experts in the
respective field. The relative importance of various weights can be decided by the
entire team to capture the differential influences of variables in global sustainability
status.
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3 Properties of H (Ω)

We investigate properties of the sustainability index proposed in Sect. 2. For mea-
suring H(Ω j ) we need practical weight functions which is possible by assuming

Σn
i=1

∣∣Ω j (xi ) − Ω j (xi−1)
∣∣ ≤ M ∈ R for each j = 1, 2, · · · , k (17)

for all partitions of [ωa, ωb] . In this case, Ω j is an increasing function. Since Ω j :
[ωa, ωb] → R, the variation of Ω j over [ωa, ωb] is

Var
(
Ω j ; [ωa, ωb]

) = sup
{
Σn

i=1

∣∣Ω j (xi ) − Ω j (xi−1)
∣∣ : P} ≤ ∞

This implies, Ω j has bounded variation (BV) on [ωa, ωb] and written as, Ω j ∈
BV ([ωa, ωb]) and Ω j is bounded on [ωa, ωb]. Each of the Ω j is constructed from
the Ω j (h), which is a weight function for hth−region.

Theorem 4 For an Ω j satisfying (17),

sup
{
Σn

i=1

∣∣Ω j (xi ) − Ω j (xi−1)
∣∣ : P} ≥

∣
∣∣
∫ ωb

ωa
FdΩ j

∣
∣∣

[
supt∈[ωa ,ωb] |F(t)|] .

Proof From the existence theorem for the Riemann–Stieltjes integral (see for exam-
ple, Nielsen 1997), we have,

∣∣∣∣

∫ ωb

ωa

FdΩ j

∣∣∣∣ ≤
[

sup
t∈[ωa ,ωb]

|F(t)|
]

×

Var
(
Ω j ; [ωa, ωb]

)

=⇒
∣∣∣
∣

∫ ωb

ωa

FdΩ j

∣∣∣
∣ ≤

[
sup

t∈[ωa ,ωb]
|F(t)|

]
×

sup
{
Σn

i=1

∣∣Ω j (xi ) − Ω j (xi−1)
∣∣ : P}

( for all partitions P of [ωa, ωb])

=⇒ sup
{
Σn

i=1

∣∣Ω j (xi ) − Ω j (xi−1)
∣∣ : P} ≥

∣
∣∣
∫ ωb

ωa
FdΩ j

∣
∣∣

[
supt∈[ωa ,ωb] |F(t)|]

Remark 1 Suppose Ω j (ωa) = A j1 and Ω j (ωb) = A j2, and assuming Ω j is an 1 −
1 function for all j = 1, 2, · · · , k, then using Theorem 3 and Corollary 2, we have,
∂H(Ω j )

∂t =
(
Σk

j=1

[
A j1, A j2

] + ∏k
j=1

[
A j1, A j2

])
.
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4 Real World Situations: Recycling in Pavement
Construction

The availability of high-quality aggregates for the construction of highways is scarce
across the world; hence the cost of construction has become prohibitively high due to
increased lead distance to mobilize suitable quality materials. A simple calculation
shows that approx. Twelve thousand tons of Natural Aggregates are required per
lane kilometer to build an express highway. If locally available marginal or recy-
cled aggregates can be used after a proper stabilization process can solve the issue.
Besides, recycling the existing distressed pavements and reusing them back in the
construction of new and rehabilitated pavements has become a viable alternative to
natural aggregates. Recycling can address some of the sustainability issues such as
the conservation of natural resources and fossil fuels, preservation of the environ-
ment, and retention of the existing highway geometrics (Taha et al. 2002). Reusing
the construction and demolition waste generated from the construction industry can
reduce the burden on the landfills, thus reducing the impact on the environment;
otherwise, the waste would have been ended up in landfills. The sustainable cycle of
the construction industry can be seen in Fig. 2.

There are different types of recycled and/or reclaimed materials generated across
the world from different processes, include but not limited to construction and
demolition waste (C&D), crushed bricks (CB), recycled concrete aggregate (RCA),
reclaimed asphalt pavement (RAP), quarry waste, (QA), recycled glass (RG), roofing
shingles (RS), etc.Among these recycledmaterials, theRAP,RAC, andC&Dare gen-
erated in substantial quantities. The Federal Highway Administration (FHWA) has
estimated that close to 100million tons of RAPmaterial is produced bymillingHMA

Fig. 2 Sustainable life cycle
of a construction
materials—When the civil
structures are demolished
and recycles at the end of
their design life, can be
recycled and prepare for
reuse them as a resource
materials in a new and
rehabilitation works. When
we reuse the reclaimed
materials, the demand on the
natural materials can be
reduced. This cycle
continues to reduce the use
of natural resources and
increases the sustainability
index
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(Hot mix asphalt) each year (MO Asphalt Pavement Association 2007). According
to United States Geological Survey (USGS), the use of recycled crushed concrete
aggregates is still constituted by only about 0.5% of the total aggregates consumed
in the US (Gnanendran and Woodburn 2003). As high as 41 million tons of quarry
by-products are generated per annum in the United Kingdom (Manning 2004).

However, these recycled aggregates ‘as is’ can’t meet the structural and strength
characteristics required for various civil engineering applications, including pave-
ment construction due to their inferior characteristics. Several researchers have
pointed that stabilizing RAP and natural virgin aggregate (VA) mixes with conven-
tional cementitious materials like cement and lime have yielded superior strength
and stiffness properties (Taha et al. 2002; Puppala et al. 2009). However, they could
not promote the high replacement of VA with RAP. In the US, state transportation
agencies allowed only up to 20% RAP due to a lack of understanding of their behav-
ior. Nevertheless, the production of Portland cement is associated with a substantial
amount of energy depletion (5,000 MJ/ton cement), non-renewable resources (1.5-
ton limestone and clay/ton cement) as well as CO2 emissions (0.95 ton CO2/ton
cement) which leads to climate change and ecological imbalance (Higgins 2007; Yi
et al. 2013). Hence, there is a necessity to ascertain more environmentally friendly
and green materials that can match at least the performance of the traditional materi-
als (cement and lime) under similar circumstances. Thus the utilization of potential
industrial by-products is envisioned to replace either in the partial or full amount of
conventional stabilizers.

With the substantial availability of industrial by-products such as fly ash and
ground granulated blast furnace slag (GGBS), stabilizing RAP:VA blends with these
materials could reduce not only the cost of construction but also protect the envi-
ronment (Saride et al. 2015; Arulrajah et al. 2017; Saride snd Jallu 2020). Besides,
Agarwal et al. (2019) have demonstrated the geotechnical characteristics of recy-
cled aggregates, including C&D waste, and reported that these aggregates possess
considerable engineering properties, which can further be improved by stabilization.

Besides, Saride and Jallu (2020) have shown that about 60% of RAP can be used
in base layers stabilized with low calcium fly ash geopolymer through a series of lab-
oratory studies and field test sections. Geopolymer is an inorganic alumina-silicate
polymer material synthesized using alkaline activation of alumina-silicate source
materials (Davidovits 1991). Several researchers have reported that the geopoly-
mer stabilized materials possess higher compressive strength and durability char-
acteristics (Song et al. 2005; Fernandez-Jimenez et al. 2007). Nevertheless, if the
reactive silica content is low in the source material (fly ash), in addition to the alkali
hydroxides, an external supplement of silica is suggested to improve the formation of
geopolymer structures. In general, sodium silicate (Na2SiO3) or potassium silicate
(K2SiO3) are supplemented for this purpose.

It was reported that the stabilization of RAP with fly ash geopolymer would not
produce a unique product as it depends on the quality of fly ash and the RAP (Saride
snd Jallu 2020). They have also demonstrated that the layer coefficients used in the
design of flexible pavements by the American Association of State Highway and
Transportation Officials (AASHTO) method produce either conservative or unsafe
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base course thicknesses when fly ash geopolymers are used. They have proposed a
new set of layer coefficients for FRG stabilized RAP bases.

4.1 Design of a Flexible Pavement Using Reclaimed Material

Based on the recently developed novel approaches to accommodate secondary/
alternative materials in pavement construction, a full-scale study was undertaken
to evaluate the performance of fly ash stabilized RAP as a base course for a flexible
pavement (Saride et al. 2018). As part of the study, extensive laboratory and field
studies were undertaken.

The key features of the study are outlined below:

• As high as eighty percent of virgin aggregate was successfully replaced with RAP
aggregate. About 20–30% of low calcium fly ash was utilized by activating the
fly ash with alkali activators. About 350 metric tons of fly ash were consumed per
lane kilometer of national highway construction, which amounts to 1400 tons of
fly ash required for 4-lane express highways.

• Most of the pavement design guidelines across the world limit the amount of RAP
in the base course up to 30% by weight of the virgin aggregates (VA), due to the
presence of aged bitumen coating on the RAP aggregates. It was demonstrated that
at least 60% of the VA could be replaced while meeting all design requirements.

• The critical design parameters, including the Unconfined Compressive Strength
(UCS) andResilientModulus (Mr) characteristics of the FA geopolymer stabilized
RAP: VA blends were found to meet the threshold values proposed by various
design codes.

• Besides, exposure of thesemixes to the severe moisture and temperature variations
may alter the cementation. The permanency of the stabilizer was also verified
through rigorous wet-dry durability and leachate studies. TheUCS tests, durability
tests, and resilient modulus test (Mr) result indicated that the strength loss of
RAP: VA mixes were very minimal and were found suitable for the base course
applications.

• Based on the laboratory performance of the product, the performance of the design
mix was studied under actual traffic conditions for three years by laying a trial road
stretch (200m) as part of a state highway (SH 207) near Vijayawada in Andhra
Pradesh.

• Overall, based on the experimental and field data, a reduction in pavement base
course thickness by about 30%and cost of construction by about 20%was achieved
with a similar or better performance of the pavement.
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4.2 Variables Influence the Sustainability of Pavements

To establish the sustainability index for pavements, a typical cross-section of flexible
pavement is shown in Fig. 3 is proposed to build on a weak sub-grade with a resilient
modulus of 30 MPa. The pavement is designed according to Indian Roads Congress
(2018) for the traffic of 20 million standard axles (msa). The description of the
variables used and the range are presented in Table2. According to Indian Roads
Congress (2018), the standard base layer thickness, when virgin aggregate (VA) is
used, is found to be 275mmwith an 80mm thick asphalt layer and 200mm sub-base
layer (See Table3). Based on the above discussion, if the base layer is chosen to
be replaced with a recycled aggregate base (RAP), the thickness of the base layer
may be reduced, as suggested in Table3. As discussed above, since VA is replaced
with RAP, stabilization is inevitable to meet the structural strength and stiffness
criteria of the base layer. Further, to enhance sustainability in the construction, fly
ash was adopted against the conventional stabilizer such as cement. To quantify the
effectiveness of the method, the sustainability indicator for the proposed approach
may be evaluated to choose an appropriate design mix for the pavement design. To
calculate sustainability, several designmixeswere considered ranging from replacing

Fig. 3 A typical cross-section of a flexible pavement with recycled base material

Table 2 Description and range of variables used in the pavement design

Sr. No. Variables Description Range of
values

1 RAP
Reclaimed asphalt pavement material,

obtained from the milling of distressed pavements
50, 60, 80

2 VA Natural aggregates used for road construction 50, 40, 20

3 FA Fly ash, obtained from coal combustion in power plants 20, 30

4 Mr
Resilient modulus, a stiffness parameter used

in the design of pavement layer thickness
350 to
1350
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Table 3 Design of a flexible pavement with recycled materials in the base layer. Note: *The
pavement is designed using IRC 37:2018 guidelines for the design traffic of 20 million standard
axles (msa) and subgrademodulus of 50MPa.Remarks: Subgrade:Mr= 50MPa, Sub-base Layer:
Mr = 250 MPa, Drainage Layer: Mr =450 MPa, AC Layer: Mr =3000 MPa

Sr. No. Mix
combination

AC Drainage Sub-base Base
Total

Thickness

Base Mr (MPa)

considered
Reference

1 0R:100VA 80 NA 200 275 555 350 IRC:37
(2018)

2 50R:50V+20F 70 100 100 185 455 1344 –

3 60R:40V+20F 70 100 100 195 465 1191 Saride
et al.
(2015)

4 80R:20V+20F 70 100 100 205 475 988 Avirneni
et al.
(2016)

5 100R:0VA+20F 70 100 100 240 510 565 Arulrajah
et al.
(2017)

6 50R:50V+30F 70 100 100 195 465 1156 –

7 60R:40V+30F 70 100 100 205 475 968 Saride
snd Jallu
(2020)

8 80R:20V+30F 70 100 100 215 485 824 Saride
et al.
(2018)

50% VA with 50% RAP stabilized with fly ash. The variation in the combination
of RAP:VA blends are presented in Table3. The suitability of each design mix was
established by conducting the strength in terms of unconfined compressive strength
(UCS) and resilient modulus (Mr) (Arulrajah et al. 2017; Saride snd Jallu 2020;
Avirneni et al. 2016). The Mr values corresponding to each design mix (See Table3)
are used to obtain the design thickness of the base layer for each combination. It
is very clear from the Table3 that if the VA is replaced by 100% RAP, the overall
thickness of the pavement has reduced from 555mm to 510mm (8% reduction)
if it is 50% the reduction is 18% and 14.5% for 60% replacement for the similar
performance of the pavement. However, if the overall performance in terms of safety
and cost is considered, a 60% replacement ofVA ismore sustainable.We have plotted
Figs. 4 and 5 based on the data collected in this section. The scenario presented in
Tables2 and 3 is evaluated using the proposed sustainability model (11) by analyzing
the density functions as explained in Figs. 4 and 5. Figure4 depicts that when the
range is increased from 1 to 9, the relative influence of the variables is reducing,
indicating that when the proportion of RAP and VA are the same. Figure5 is plotted
by considering the RAP and VA proportion as 60% and 40%, respectively. Now the
influence of RAP on VA is skewed when the range increases. A similar analysis is
suggested to perform by considering all the variables in the given scenario to estimate
the sustainability index.
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(a) (b)

(c) (d)

Fig. 4 Plotting of the model for k = 2 based on two variables RAP and VA in the Table2. a
ψ1 → [0, 1] and ψ2 → [0, 1], b ψ1 → [0, 3] and ψ2 → [0, 3], c ψ1 → [0, 6] and ψ2 → [0, 6],
d ψ1 → [0, 9] and ψ2 → [0, 9]. We have used the initial and boundary conditions as follows:
H(ψ1, ψ2, 0) = 0, H(0, ψ2, t) = st , H(9, ψ2, t) = st , H(ψ1, 0, t) = st , H(ψ1, 9, t) = st and
s = 10, t ∈ [0, 1000]

5 Conclusions

There is a great need for collaborative efforts to build mathematical models for mea-
suring and understanding sustainability based on the perception of the people who
work on sustainability and who work for sustainability. The models (11) and (12) are
very flexible, can accommodate a variety of options to measure sustainability that
could arise from the cross-discipliners team of scientists. Using these models, one
canmeasure the overall sustainability of human life in a country or a region as a result
of several variables by treating each factor independently (model (11)) or resultant
measure of sustainability as a result of various overlapping variables (model (12)).
When there are not enough evidence on the dependencies of variables for a par-
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(a) (b)

(c) (d)

Fig. 5 Plotting of the model for k = 2 based on two variables RAP and VA in the Table2. a
ψ1 → [0, 4] and ψ2 → [0, 6], b ψ1 → [0, 6] and ψ2 → [0, 9], c ψ1 → [0, 8] and ψ2 → [0, 12],
d ψ1 → [0, 10] and ψ2 → [0, 15]. We have used the initial and boundary conditions as follows:
H(ψ1, ψ2, 0) = 0, H(0, ψ2, t) = st , H(18, ψ2, t) = st , H(ψ1, 0, t) = st , H(ψ1, 18, t) = st and
s = 10, t ∈ [0, 1000]

ticular population concerned to study sustainability, we can start the analysis using
the model (11). In fact, the model (11) is a subset of the model (12) under certain
situations. Usually, second-order PDEs arise in most of the natural and engineering
sciences situations. However, higher order PDEs are also prevalent in handling ques-
tions related to mechanics and elasticity. The degree and size of information to be
used at a country or regional level could be data-dependent, hence, we have proposed
flexible models. Mathematical models might help to understand factors and features
of sustainability, however, for practical solutions, these models must reach main-
stream developmental activities. Obtaining relevant data from the seven variables
mentioned might not be an easy exercise and could involve time-consuming efforts
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by people involved in sustainability research and other key people in political and
government circles.

Thedata fromatmosphere, oceans, vegetation, food,wetlands, species, and several
environmental parameters could generate multiple sources of errors and bias. Hence,
there is a requirement for the estimation of variability. As pointed out in Levin et al.
(2013) there is good scope for statistical thinking as well. There are documented
arguments on how collective efforts by social, political, government setup could form
a network that could help to maintain adaptability and transformability in ecological
dynamics (Gunderson 2006) and sustainable agriculture and energy and impact of
climate in developing countries (Pretty et al. 2002; Ravindranath et al. 2006). There
are several advances in computational techniques, and facilities to conduct global
level high intense computational experiments of complex mathematical models so
that the global community can easily come together for sustainable development.

Our approach of modeling the phenomena is also computationally challenging,
in terms of numerical approximation and numerical solutions to the proposed PDEs.
There is no unified approach for computing Riemann–Stieltjes weights when they
are used in PDEs. Even the decision of using an appropriate partition of the intervals
[ωa, ωb] needs construction of complex algorithms because we have mixed weights
with the PDEs. In fact, this kind of modeling initiation and developing global indices
will help to strengthen the data collection and information gathering activities. Gov-
ernments and non-government agencies like the UN, the World Bank, MacArthur
Foundation, Gates Foundation, etc., needs to encourage cross-disciplinary modeling
research teams and data collection programs. There is an urgent need to bring al the
activities into a common platform and need for standardization of the sustainability
control activities across the globe. Countries should take efforts to bring transparency
in the data collection methods and definitions of variables for the global health of the
human population. There is a need to start providing annual sustainability indices
for the country, region (formed by a group of countries), continent, and World.
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Extreme Point Methodology in Power
Calculations—The Case of
Hardy–Weinberg Equilibrium

Subramaniam Venkatesan, M. Bhaskara Rao, and Hung-I Hsiao

Abstract As a prelude to genetic analysis, one needs to check whether a specific bi-
allelic Single Nucleotide Polymorphism (SNP) is in Hardy–Weinberg Equilibrium.
Several tests are available to check equilibrium based on data collected on genotypes
at the location of interest. Comparing the powers of these tests, especially for small
sample sizes, is fraught with difficulties. Typically, comparisons are made based on
extensive simulations. In this note, we propose extreme point methodology, which
will facilitate exact computation of the power of a test at a specific alternative and
thus paving the way for power comparisons.

1 Introduction

Let A and a be the alleles of a SNP and AA, Aa, aa the associated genotypes. The
distribution P of the genotypes in the population is reported in the form of a Punnett
table, which is symmetric (Table1).

The genotypes are AA, Aa, and aa with probabilities PAA, 2PAa , and Paa , respec-
tively. The allele probabilities of A and a are p and 1 − p, respectively, obeying
the requirements PAA + PAa = p and PAa + Paa = 1 − p. The SNP is in Hardy–
Weinberg equilibrium if PAA = p2. The concept has profound implications. If the
SNP is in equilibrium, it will be in equilibrium, under random mating, in every sub-
sequent generation. See Gondro (2015), Zheng et al. (2012), Foulkes (2009), Weir
(1996), Wigginton et al. (2005), Lange (2002).

The null hypothesis to test is H0 : PAA = p2 for some 0 < p < 1. The alternative
is H1 : PAA �= p2 for any p. Both hypotheses are composite. The data consists of
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Table 1 Joint Distribution of Genotypes

Allels

Allels A a Allele Probabili t y

A PAA PAa p

a PAa Paa 1 − p

Allele Probabili t y p 1 − p 1

genotype frequencies n1, n2, and n3 compiled on a random sample of n subjects,
where n1 is the number of subjects in the samplewith genotype AA, n2 with genotype
Aa, and n3 with genotype aa. Theoretically, the vector (n1, n2, n3) has amultinomial
distribution (n, PAA, 2PAa, Paa). A plethora of tests is available in the literature.
The Exact Test is natural when we have small samples. The chi-squared test is the
standard staple for testing. The chi-squared test with continuity correction (cc) = 0.5
is implemented in many a software. See Yates (1934). The variation with cc =
0.25 was considered by Emigh (1980). See also Grizzle (1967) and Mantel and
Greenhouse (1968). The conditional chi-squared test was proposed by Li (1955)
and the tests with cc = 0.5 or cc = 0.25 were discussed by Emigh (1980). Several
variations were discussed and analyzed in papers by Emigh (1980), Elston and
Forthofer (1977), Freeman and Tukey (1950), Mantel and Li (1974). A comparison
of these tests through extensive simulations was carried out in Emigh (1980). Our
line of enquiry in this paper whether it is feasible to compare the performance of
these tests theoretically. We will demonstrate that it is doable, and we introduce
extreme point methodology in this connection. We will discuss the performance of
three tests in this connection along with our innovation to provide a contrast. A
comprehensive comparison of tests a la Emigh (1980) would be a laudable goal
and this will be our future project. Tests T2, T3, and T4 presented below (Table2)
are, basically, modifications of T1 with their avowed cc. All tests are at 5% level of
significance.

The work carried out in the paper is useful when testing Hardy–Weinberg equi-
librium for small sample sizes. The choice of a test should be carefully weighed in
before making a judgement on the equilibrium. It is also useful when some genotype
frequencies are small, which will certainly arise when a particular allele frequency
is very small. One thousand genome project with rare variants is a prime example.

2 Extreme Point Methodology

Let 0 < p < 1 be fixed. Assume p ≤ 1
2 , without loss of generality. Let Ω(p) be the

collection of all 2 × 2 symmetric matrices P with non-negative entries and row sums
equal to p and 1 − p. Note that Ω(p) is a compact convex set. Each entry in Ω(p)
is a prototype of the joint distribution of the genotypes. It has two extreme points P1
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Table 2 Description of Tests

T ests Description

T1 Traditional Chi-Squared Test, Reject H0 if n(
(n22−4n1n2)2

(2n1+n2)2(n2+2n3)2
) > 3.8416

T2 Yates’ Test with cc = 0.5, Reject H0 if

(

∣
∣
∣
∣
n1− (2n1+n2)2

4n

∣
∣
∣
∣
−0.5)2

(2n1+n2)2

4n

+ (

∣
∣
∣n2− (2n1+n2)(n2+2n3)

2n

∣
∣
∣−0.5)2

(2n1+n2)(n2+2n3)

2n

+
(

∣
∣
∣
∣
n3− (n2+2n3)2

4n

∣
∣
∣
∣
−0.5)2

(n2+2n3)2

4n

> 3.8416

T3 Emigh’s Test with cc = 0.25, Reject H0 if

(

∣
∣
∣
∣
n1− (2n1+n2)2

4n

∣
∣
∣
∣
−0.25)2

(2n1+n2)2

4n

+ (

∣
∣
∣n2− (2n1+n2)(n2+2n3)

2n

∣
∣
∣−0.25)2

(2n1+n2)(n2+2n3)

2n

+
(

∣
∣
∣
∣
n3− (n2+2n3)2

4n

∣
∣
∣
∣
−0.25)2

(n2+2n3)2

4n

>

3.8416

T4 New Test with cc = 0.35, Reject H0 if

(

∣
∣
∣
∣
n1− (2n1+n2)2

4n

∣
∣
∣
∣
−0.35)2

(2n1+n2)2

4n

+ (

∣
∣
∣n2− (2n1+n2)(n2+2n3)

2n

∣
∣
∣−0.35)2

(2n1+n2)(n2+2n3)

2n

+
(

∣
∣
∣
∣
n3− (n2+2n3)2

4n

∣
∣
∣
∣
−0.35)2

(n2+2n3)2

4n

>

3.8416

and P2 given by

P1 =
(

p 0
0 1 − p

)

and P2 =
(

0 p
p 1 − 2p

)

(1)

Every matrix P in Ω(p) is a convex combination of P1 and P2, i.e.,

P = γP1 + (1 − γ)P2, where γ = pAA

p

Using the structure of P , we give a representation theorem below for the power
function of any test of Hardy–Weinberg equilibrium. Let T ∗ be a test proposed
for testing the null hypothesis at a given level of significance 0 < α < 1. Let T =
T (n11, n12, n22) be the underlying test statistic and c the critical value. Structurally,
the test T ∗ is spelled out as follows:

Reject the null hypothesis i f and only i f T ≥ c (c = 3.8416 f or α = 0.05).

The test statistic T has a chi-squared distribution under the null hypothesis based
on the asymptotic theory. The power function of T ∗ is a function of the genotype
distribution P . The distribution P is uniquely determined by the specification of
any two entities from {p, pAA, pAa, paa}. We will stick to p and pAA. Thus, the
power function of T ∗ is defined by, P0(T ; pAA, p) = Pr(T ≥ c | p, pAA). For the
computation of the probability involved, we need the distribution of T when the
genotype probabilities are pAA, 2pAa , and paa . In order to compare the performance
of two tests, T ∗ and T ∗∗, with their underlying test statistics T1 an T2, we need to
compare,
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P0(T1; p, pAA) and P0(T2; p, pAA) f or every 0 < p ≤ 1

2
and 0 ≤ pAA ≤ p.

In order to facilitate such a comparison, we have the following representation the-
orem for the power function. Let 0 < p ≤ 1

2 and 0 ≤ pAA ≤ p be given. Let P1 and
P2 be the extreme points spelled out in (1). Let the individuals sampled be denoted by
I1, I2, . . . , In . Let Ψi = Pr(T ≥ c|I1, I2, . . . , Ii have genotype distribution P1 and
Ii+1, Ii+2, . . . , In have distribution P2), i = 0, 1, 2, . . . , n. Note thatΨi is a function
of p and n only. The following result gives an expression for the power function of
T .

2.1 Theorem

P0(T ; p, pAA) =
n

∑

i=0

(
n

i

)

γi (1 − γ)n−iΨi , where γ = pAA

p
(2)

2.2 Proof

The individuals I1, I2, ..., In have independent and identically distributed genotype
distribution P given by,

P =
(

PAA PAa

PAa Paa

)

with marginal row sums p and 1 − p. The joint genotype distribution of the indi-
viduals is given by the product probability measure Pn = P × P × · · · × P . Since
P = γP1 + (1 − γ)P2, the product probability measure is given by

Pn = (γ P1 + (1 − γ) P2)
n =

n
∑

i=0

(
n

i

)

γi Pi
1(1 − γ)n−i Pn−i

2

Consequently,

P0(T ; p, p11) = Pr(T ≥ c | I1, I2, . . . , In have joint genotype distribution Pn)

=
n

∑

i=0

(
n

i

)

γi (1 − γ)n−iΨi .
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3 Comments

1. The power function is a convex combination ofΨ0, Ψ1, Ψ2, . . . , Ψn , each of which
is a function of p and n only.

2. The entity γ = pAA
p depends on both p and pAA.

3. The above representation theorem helps us in comparing the power functions
of any two tests T ∗

1 and T ∗
2 of the same sample size at any vector (p, pAA) of

arguments for all 0 < pAA ≤ p. Let T1 and T2 be the corresponding test statis-
tics and c1 and c2 their respective critical values at level α. There is no need to
compute Pr(T1 ≥ c1 | p, pAA) and Pr(T2 ≥ c2 | p, pAA) afresh for every choice
of p and pAA. Let Ψi = Pr(T1 ≥ c1|I1, I2, . . . , Ii have genotype distribution P1
and Ii+1, Ii+2, . . . , In have distribution P2) and Ψ

′
i = Pr(T2 ≥ c2|I1, I2, . . . , Ii

have allele distribution P1 and Ii+1, Ii+2, . . . , In have distribution P2), i =
0, 1, 2, . . . , n. The quantities Ψi and Ψ

′
i can be used to calculate the powers of

the test T ∗
1 and T ∗

2 . If Ψi ≥ Ψ
′
i for all i , then P0(T1 ; p, pAA) ≥ P0(T2 ; p, pAA)

for all 0 < pAA ≤ p. This means that the test T ∗
1 is superior to T ∗

2 in the sense it
has higher powers.

4. The power function formula works in practice as follows. Let n be given. Let
T ∗ be a given test at level α with the underlying statistic T . Let 0 < p ≤ 1

2 and
0 < pAA ≤ p be given. This will determine the joint distribution of the genotypes.
Compute Ψ0, Ψ1, Ψ2, . . . , Ψn . These entities need only p and n. If pAA = p2, the
joint distribution falls under the spell of the null hypothesis. Then the power (2)
gives the exact level of the test. If pAA �= p2, the genotype distribution P comes
under the purview of the alternative hypothesis. In that case, the power (2) gives
the exact power of the test at P .

5. If one wants to compare the power functions of two tests, compare their respective
fundamental probabilities Ψi s.

4 Computation of Fundamental Probabilities

Let 0 < p ≤ 1
2 and n be given. Let T ∗ be the test under scrutiny and T the

underlying test statistic built on the data n1, n2, n3 (sum = n). The fundamental
probability Ψi (i = 0, 1, 2, . . . , n) is given by Ψi = Ψi (p, n) = Pr(T (n1, n2, n3) ≥
c | I1, I2, . . . , Ii ∼ P1 and Ii+1, Ii+2, . . . , In ∼ P2). We need to enumerate all pos-
sible (n1, n2, n3) with corresponding probabilities under the conditions spelled
out. If I1, I2, . . . , Ii ∼ P1, then (n1, n2, n3) ∼ Multinomial(i, p, 0, 1 − p), which
means n1 ∼ Binomial(i, p), n2 = 0, and n3 = i − n1. If Ii+1, Ii+2, . . . , In ∼ P2,
then (n1, n2, n3) ∼ Multinomial(n − i, 0, 2p, 1 − 2p), whichmeans n1 = 0, n2 ∼
Binomial(n − i, 2p) and n3 = (n − i) − n2. Every realization of (n1, n2, n3) is the
sum of realizations (n1, n2, n3) under P1 and of (n1, n2, n3) under P2 with the cor-
responding probabilities multiplied. For example, suppose i = 4, and n = 10.
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I1, I2, I3, I4 ∼ P1. This means n1 ∼ Binomial(4, p), n2 = 0, and n3 = 4 − n1.
Then (1, 0, 3) is a possible realization of (n1, n2, n3)with probability

(4
1

)

p (1 − p)3.
I5, I6, I7, I8, I9, I10 ∼ P2. This means n1 = 0, n2 ∼ Binomial(6, 2p), and n3 =

n1 − n2. One possible realization is (0, 2, 4) with probability
(6
2

)

(2p)2(1 − 2p)4.
Then (1, 0, 3) + (0, 2, 4) = (1, 2, 7) is a possible realization of (n1, n2, n3) with
probability

(4
1

)

p (1 − p)3 × (6
2

)

(2p)2(1 − 2p)4.

5 Comparison of 4 Tests

Wehave calculated the fundamental probabilitiesΨi , i = 0, 1, 2, . . . , nwhen n = 10
and p = 0.1, 0.2, 0.25, 0.3, 0.4, for four tests, Chi-squared, Yates’ test with cc =
0.5, Emigh’s test with cc = 0.25, and our interjection with cc = 0.35. The com-
putations are executed with Python and the code is available on request. The actual
probabilities are reported in Table3 for p = 0.25. The other probabilities are reported
in a graphical format (Fig. 1).

5.1 Comments on the Graphs

1. The fundamental probabilities are indistinguistable for the chi-squared test and
Emigh’s for all p under consideration.

2. When p = 0.1, our interjection out-performs all other tests.
3. When p = 0.2, then there is no clear-cut winner.
4. When p = 0.25, 0.3 and 0.4, chi-squared test out-performs all other tests.

Table 3 Fundamental Probabilities ΨI for n = 10 and p = 0.25

i T ests

Chi-Squared Emigh’s Yates’ New

0 0.05468749 0.01074218 0.0205078 0.0205078

1 0.01562499 0.0024414 0.01513671 0.01562499

2 0.00610351 0.0036621 0.01782226 0.0192871

3 0.01306152 0.01306152 0.02429199 0.02844238

4 0.03521729 0.03521729 0.03411866 0.04510499

5 0.08120728 0.08120728 0.05099488 0.07708741

6 0.16789246 0.16789246 0.08296205 0.13822938

7 0.31645966 0.31645966 0.14539338 0.24969483

8 0.54142378 0.54142378 0.26308058 0.43556593

9 0.81223488 0.81223488 0.46523857 0.69899178

10 0.94368553 0.94368553 0.7559452 0.94368553
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Fig. 1 Fundamental Probabilities of four tests for p = 0.10, 0.20, 0.25, 0.30 and 0.40

6 Conclusion

We have utilized extreme point methodology in order to derive a formula for the
power function of any test of Hardy–Weinberg equilibrium in the context of bi-
allelic markers. We compared the performance of three tests of equilibrium, namely,
the traditional chi-squared test, Yates’ test, and Emigh’s test with a sample size of
n = 10 and allele frequencies of p = 0.1, 0.2, 0.25, 0.3, 0.4.We proposed a new test
and examined its power function vis-á-vis the other three tests. A close inspection of
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the fundamental probabilities reveals that at a lower allele frequency (p = 0.1), our
improvisation cc = 0.35 outperforms all other tests considered. This has implication
in testing HW equilibrium in the environment of rare variants. In Genome Wide
Association Studies (GWAS), HW equilibrium is tested at thousands of SNPs, in
which one sees substantial variation in the allele frequency p. The study on Restless
Leg Syndrome conducted by Stefansson et al. (2007) is a prime example. In other
cases of common variants, the classical chi-squared test is as good as other tests
considered.

This is just a beginning of our research demonstrating the potentiality of extreme
point analysis for power comparisons. Future work will consist of comparing power
functions of some more tests for a variety of sample sizes and for 0 < p ≤ 0.5.
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On the Association of Professor
C. R. Rao with the Poznań School of
Mathematical Statistics and Biometry

Tadeusz Caliński

Abstract The long-standing association of C. R. Rao with Polish mathematicians
and statisticians started in 1954 when he visited Berkeley, at the invitation of Jerzy
Neyman. His first visit to Poland (to Warsaw) was in 1956, at the invitation of Oscar
Lange. C. R. Rao’s next visit to Warsaw was in 1964, under the exchange scheme
between the Indian Statistical Institute and the Polish Academy of Sciences. His third
visit to Polandwas in 1975, in connection with the Session of the International Statis-
tical Institute inWarsaw. At this occasion, we invited Professor C. R. Rao to Poznań,
to give a talk at our weekly seminar. In that way, a closer contact between him and
our school started. In 1991, Professor C. R. Rao received from the AdamMickiewicz
University in Poznań the highest academic distinction, Honoris Causa Doctoris. This
was then followed by active research collaboration and personal contacts with him.
There were some exchanges of visits and joint publications.

Keywords Biometric research · Design and analysis of experiments ·
Gauss–Markov model · Linear statistical inference ·Modern mathematical
statistics

1 Foreword

The Poznań school ofmathematical statistics and biometry has been developed under
a predominant influence of the works of Professor C. Radhakrishna Rao, whose two
classical books, on statistical methods in biometric research (Rao 1952) and on linear
statistical inference (Rao 1973), have been used as the main textbooks of statistical
knowledge. These and other works of the prominent Author have stirred interest
in statistical methodology among students, scientists, and research workers of the
various academical and research institutes in Poznań and its region. Theoretical and
applied results of C. R. Rao have been presented and discussed at the weekly joint
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statistical seminars conducted in Poznań since 1965. These results, thoroughly stud-
ied, have inspired research undertaken by mathematicians and biometricians from
Adam Mickiewicz University, Academy of Agriculture and from other educational
and research organizations of Poznań. Many young statisticians have obtained their
doctoral degrees after presenting theses influenced in various ways by C. R. Rao’s
published works. Now influences of C. R. Rao’s works can easily be traced in the
majority of results published by statisticians and biometricians from Poznań.

2 Memoirs

It may be interesting to recall the longstanding association of Professor Calyampudi
Radhakrishna Rao with Polish mathematicians and statisticians. It started in 1954
when he, for the first time, visited the University of California, invited by Profes-
sor Jerzy Neyman, a distinguished Polish statistician, who was from 1938 on living
and working in the USA, as director of the famous Statistical Laboratory in Berke-
ley. Professor Rao considered Neyman to be a scientist who essentially influenced
the character of research in mathematical statistics. According to C. R. Rao, Jerzy
Neyman was generous in giving his time and ideas to young mathematicians and
statisticians working under his guidance. It should also be noted that Jerzy Ney-
man, before that visit, took interest in some results of C. R. Rao on estimation of
parameters, and named one of Rao’s results as the “Cramér-Rao inequality.”

The next contact, of C. Radhakrishna Rao with Polish scientists, was with the
Polish econometrician Professor Oscar Lange, who in the mid-50s visited the Indian
Statistical Institute, where C. R. Rao was working as the head of the Division of
Theoretical Research and Training. Oscar Lange was invited by Professor P. C.
Mahalanobis, the director of that Institute, to participate in the discussion on 5-year
economic plans for India. On that occasion, Oscar Lange gave lectures on some
problems in econometrics.

The first visit of C. Radhakrishna Rao to Poland was in 1956. He was returning
from a conference in the Soviet Union and stopped in Warsaw for a few days, as a
guest of the PolishAcademyof Sciences, at the invitation ofOscarLange. Thatwas an
occasion for Rao to establish contact with several well-known Polishmathematicians
and other scientists. That visit also gave him an opportunity to see the massive
reconstruction work being undertaken in the capital of Poland which had been so
much damaged during the Second World War.

The next visit of C. Radhakrishna Rao to Warsaw was in 1964 to attend a spe-
cial seminar held in honor of Jerzy Neyman on his seventieth birthday. That visit
was arranged under the exchange scheme of scholars between the Indian Statistical
Institute and the Polish Academy of Sciences.

In 1972, a Polish delegation visited India to participate in theMahalanobisMemo-
rial Conference. This was another occasion to strengthen the contacts between Indian
and Polish scholars. Since then, several researchers from India visited Poland towork
with Polish mathematicians and statisticians.
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The third visit of C. Radhakrishna Rao to Poland was in 1975, in connection
with the Session of the International Statistical Institute held in Warsaw. That was
an excellent occasion to have a visit of Professor C. R. Rao to Poznań. An invitation
from the Department of Mathematical and Statistical Methods at the Academy of
Agriculture in Poznań (now the Poznań University of Life Sciences) was sent to him.
C. R. Rao was invited to give a talk at our weekly seminar on mathematical statistics
and its applications, attended not only by people from our department but also by
colleagues from Adam Mickiewicz University in Poznań and from other institutes.
This invitation was kindly accepted and we had the privilege of having such an
excellent speaker at our seminar. This seminar was attended also by Parachuri R.
Krishnaiah fromOhio in the USA, who also kindly accepted our invitation. A picture
of this seminar can be seen in the journal Statistical Science, Vol. 30, No. 3 (August
2015) on p. 437. After the seminar, we had a very friendly meeting with our guests.

This visit of Professor Rao in Poznań paved the way for very active collaboration
between statisticians in Poznań and the scientists connectedwith the Indian Statistical
Institute. Several exchanges of visits started, often leading to joint publications.

From the Poznań side, the individual most active in this fruitful cooperation was
Jerzy K. Baksalary. The main results of this joint work have been published in the
following papers. Those by Baksalary and Mathew (1986), Baksalary and Mathew
(1988) concern some applications of the general Gauss–Markov model. Next, three
by Baksalary and Puri (1987, 1988, 1990) are devoted to some conditions for block
designs. In addition, that by Baksalary and Mitra (1991) is devoted to the problem of
matrix ordering. Of particular interest are two other papers. That by Baksalary et al.
(1992) concerning some estimation problems in the singular Gauss–Markov model,
and the paper by Baksalary et al. (1995) related to the problem of admissibility of
linear estimation in the general Gauss–Markov model.

Most of the research on which these last two papers are based, was carried when
Jerzy K. Baksalary was a frequent visitor at the Center for Multivariate Analysis
at Pennsylvania State University. It is to be noted that from 1988 C. Radhakrishna
Rao was the director of that Center. This made it possible for Rao and Baksalary to
work together. The third co-author of these two papers, Augustyn Markiewicz, was
involved in this research by correspondence from our department in Poznań.

The next visit of Professor Rao to Poznań was connected with a special event. On
29 November 1989 the Senate of the Adam Mickiewicz University in Poznań con-
ferred an honorary doctoral degree (Honoris Causa Doctoris) on Professor Calyam-
pudi Radhakrishna Rao, to express the highest recognition of his achievements in
building modern mathematical statistics. This decision of the University Senate was
undertaken due to the initiative of the Institute of Mathematics of this University and
the application of scientists from the Poznań school of mathematical statistics and
biometry.

The great official ceremony of conferring on Professor C. R. Rao, in person, the
highest academic distinction took place in Poznań on 14 January 1991. In orations of
the Rector of the AdamMickiewicz University, the Dean of the Faculty ofMathemat-
ics and Physics, and particularly in the speech of the Promotor, Professor Mirosław
Krzyśko, attention was drawn to the great scientific results of C. Radhakrishna Rao,
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particularly in the development of mathematical statistics and its applications. But
also, on this occasion, the Dean of the Faculty of Mathematics and Physics recalled
the Indian invention of the decimal system and the introduction of the zero symbol.
Professor Rao in his speech, given in response to the award of Honoris Causa Doc-
toris, recalled in a very interesting form his long standing association with Polish
mathematicians and statisticians. Particularly, he cordially described his first visit to
Poznań in 1975.

After the official ceremony in the Adam Mickiewicz University we had the plea-
sure of spending together with C. Radhakrishna Rao some time in Poznań, on that
and the next day. In the afternoon of the first day (Monday, 14 January), I took him
for a walk to show him interesting places in the town, particularly those of historical
importance. He was very interested in places connected with the battle of Poznań in
January/February 1945. In the evening after the walk we had, together with several
colleagues, a friendly dinner at the Old Market of Poznań. On the next day (Tues-
day, 15 January) we had a special seminar at the Academy of Agriculture in Poznań
(now the Poznań University of Life Sciences) organized by our department. The first
speaker was C. R. Rao, with a talk on “Robust inference in linear models: a review
and some problems.” The next speakers were Jerzy K. Baksalary, Tadeusz Caliński,
and Mirosław Krzyśko. There was much interesting discussion during this seminar.

After returning to his home in Pennsylvania, Professor Rao sent me a very cordial
letter (dated 16 January 1991), in which he wrote (in particular): “Thanks for all
that you have done—an excellent guided tour of Poznań, delightful dinner, and the
fruitful one day seminar.”

This interesting contact with C. Radhakrishna Rao was followed by further active
scientific collaboration. As already mentioned, two joint papers with C. R. Rao
were published, in 1992 and 1995. We had also the pleasure of meeting him at
various international conferences. In fact, before the meeting in Poznań, some of us
already had the privilege of attending the International Workshop on Linear Models,
Experimental Designs, and Related Matrix Theory held on 6–8 August 1990 at the
University of Tampere in Finland, at which the two main lectures were given by C.
Radhakrishna Rao.

The next such occasion, after the celebration in Poznań, was at ProbaStat’94, i.e.,
at the International Conference on Mathematical Statistics, held on May 30–June 3,
1994, at Smolenice in Slovakia. The Opening Ceremony started with the lecture of
C. Radhakrishna Rao on “Recent contributions to statistical inference in censored
regression models.” This conference was attended by many Polish statisticians. It
was really a pleasure to meet Professor Rao and his wife there.

Another important occasion to meet Professor C. R. Rao was at SCRA 2006,
i.e., at the Interdisciplinary Mathematical and Statistical Techniques—Thirteenth
International Conference of the Forum for Interdisciplinary Mathematics, held on
1–4 September 2006 at the Polytechnic Institute of Tomar in Portugal. This con-
ference was organized in connection with another honorary distinction of Professor
C. Radhakrishna Rao. In the year 2006, the New University of Lisbon conferred the
Honoris Causa degree on him. The Honoris Causa Ceremony for Professor C. R. Rao
was held on the first day of the Conference. It was followed by the Keynote Session
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with the lecture of C. R. Rao entitled “Statistics: Reflections on the past and visions
for the future.” On the second day, at the first Plenary Session, I had the pleasure
to give a talk with the title “On some results of C. Radhakrishna Rao applicable to
the analysis of multi-environment variety trials.” In this presentation, published in
the following year (Caliński 2007), references have been made to 10 publications of
C. R. Rao, from the years 1947–1999. His results have been very useful in analyzing
agricultural experiments, not only crop variety trials.

I recall this conference in Tomar with a great pleasure. It was very well organized,
both from the scientific and the social point of view. Personally it gave me many
opportunities to meet famous people from various countries. Particularly I had many
private contacts with C. R. Rao, including friendly walks to interesting places.

Let me consider these contacts with Professor C. Radhakrishna Rao as a com-
pleteness of my memoirs.
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