
Chapter 3
Introduction to the Theory
of Imprecise Probability

Erik Quaeghebeur

Abstract The theory of imprecise probability is a generalization of classical ‘pre-
cise’ probability theory that allows modeling imprecision and indecision. This is a
practical advantage in situations where a unique precise uncertainty model cannot
be justified. This arises, for example, when there is a relatively small amount of
data available to learn the uncertainty model or when the model’s structure cannot
be defined uniquely. The tools the theory provides make it possible to draw conclu-
sions and make decisions that correctly reflect the limited information or knowledge
available for the uncertainty modeling task. This extra expressivity however often
implies a higher computational burden. The goal of this chapter is to primarily give
you the necessary knowledge to be able to read literature that makes use of the theory
of imprecise probability. A secondary goal is to provide the insight needed to use
imprecise probabilities in your own research. To achieve the goals, we present the
essential concepts and techniques from the theory, as well as give a less in-depth
overview of the various specific uncertainty models used. Throughout, examples are
used to make things concrete. We build on the assumed basic knowledge of classical
probability theory.

3.1 Introduction

The theory of imprecise probability is a generalization of classical ‘precise’ proba-
bility theory that allows modeling imprecision and indecision. Why is such a theory
necessary? Because inmany practical applications a lack of information—e.g., about
model parameters—and paucity of data—especially if we also consider conditional
models—make it impossible to create a reliable model.

For example, consider a Bayesian context where a so-called prior probability
distribution must be chosen as part of the modeling effort. The lack of information
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may make it difficult to determine the type of the prior distribution, let alone its
parameters. Then, even if we assume some prior has been chosen—e.g., a normal
one—in a somewhat arbitrary way, a paucity of data will make the parameters of the
posterior—updated—distribution depend to a large degree on the prior’s somewhat
arbitrary parameters. The consequence is that conclusions drawn from the posterior
are unreliable and decisions based on it somewhat arbitrary.

The theory of imprecise probability provides us with a set of tools for dealing with
the problem described above. For the example above, instead of choosing a single
prior distribution, a whole set of priors is used, one that is large enough to sufficiently
reduce or even eliminate the arbitrariness of this modeling step. The consequence is
that conclusions drawn from an imprecise probabilistic model are more reliable by
being less committal—more vague, if youwish; somewould say ‘more honest’—and
that decisions based on it allow for indecision.

In this chapter, we will go over the basic concepts of the theory of imprecise prob-
ability theory. Therefore, we will consider ‘small’ problems, with finite possibility
spaces. However, the theory can be applied to infinite—countable and uncountable—
possibility spaces as well. Also, only the basics of more advanced topics such as
conditioning will be touched upon. But, and this is the chapter’s goal, after having
understood the material we do treat, the imprecise probability literature should have
become substantially more accessible. Good extensive general treatments are avail-
able [2, 16, 20] and the proceedings of the ISIPTA conferences provide an extensive
selection of papers developing imprecise probability theory or applying it [1, 3, 4,
6–12].

Concretely, we start with a discussion of the fundamental concepts in Sect. 3.2.
This is done in terms of themore basic notion of sets of acceptable gambles. Probabil-
ities only appear thereafter, in Sect. 3.3, together with the related notion of prevision
(expectation). The connection with sets of probabilities is made next, in Sect. 3.4.
Then we touch upon conditioning, in Sect. 3.5, and before closing add some remarks
about continuous possibility spaces, in Sect. 3.6. Throughout we will spend ample
time on a running example to illustrate the theory that is introduced.

3.2 Fundamental Concepts

In this section, we introduce the fundamental concepts of the theory of imprecise
probability [18] [20, §3.7]. First, in Sect. 3.2.1, we get started with some basic
concepts. Then, in Sect. 3.2.2, we list and discuss the coherence criteria on which
the whole theory is built.
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3.2.1 Basic Concepts

Consider an agent reasoning about an experiment with an uncertain outcome. This
experiment is modeled using a possibility space—a set—X of outcomes x . Now
consider the linear space L = X → R of real-valued functions over the outcomes.
We view these functions as gambles because they give a value, seen as a payoff, for
each outcome and because the outcome is uncertain and therefore the payoff is as
well.A special class of gambles are the outcome indicators 1x or subset indicators 1B ,
which take the value one on that outcome or subset and zero elsewhere.

The agent can then express her uncertainty by specifying a set of gambles, called
an assessment A, that she considers acceptable. Starting from such an assessment,
she can reason about other gambles and decide whether she should also accept them
or not. If she were to do this for all gambles, then the natural extension E of her
assessment would be the set of all acceptable gambles. To reason in a principled way,
she needs some guiding criteria; these are the next section’s topic.

Let us now introduce our running example:

Wiske and Yoko Tsuno want to bet on Belgium vs. Japan

Given a sports match between Belgium and Japan, there is uncertainty about which
country’s team will win. So we consider the possibility space

{
be, jp

}
. There are to

agents—gamblers—:Wiske and Yoko Tsuno, two comic book heroines. Each has an
assessment consisting of a single gamble that they find acceptable:

• Wiske accepts losing 5 coins if Japan wins for the opportunity to win 1 coin if
Belgium wins; soAW = {1be − 5 · 1jp}.

• Yoko Tsuno accepts losing 4 coins if belgium wins for the opportunity to win
1 coin if Japan wins; soAY = {−4 · 1be + 1jp}.
The heroines are also discussing joining forces and forming a betting pool. The

pools they consider are

• ‘Simple’, formed by combining their assessments; so

ASP = {1be − 5 · 1jp,−4 · 1be + 1jp} .

• ‘Empty’ in case of disagreement, without any acceptable gambles; so AEP = ∅.

3.2.2 Coherence

In the theory of imprecise probabilities, the classical rationality criteria used for
reasoning about assessments are called coherence criteria. These are typically for-
mulated as four rules that should apply to any gambles f and g. (There are different
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variants in the literature, but the differences are not relevant in this introductory text.)
We divide the criteria into two classes.

Constructive State how to generate acceptable gambles from the assessment:
Positive scaling If f is acceptable and λ > 0, then λ · f is acceptable.

Addition If f and g are acceptable, then f + g is acceptable.

Background State which gambles are always or never acceptable:
Accepting gain If f is nonnegative for all outcomes, then f is acceptable.

Avoiding sure loss If g is negative for all outcomes, then g is not acceptable.

These criteria are quite broadly seen as reasonable, under the assumption that the
payoffs are ‘not too large’.

The last criterion, ‘Avoiding sure loss’, puts a constraint on what is considered
coherent; if it is violated, we say that an assessment incurs sure loss. The first three
rules can be used to create an explicit expression for the natural extension:

E =
{∑

f ∈K λ f · f : K � A ∪ { f ∈ L : f ≥ 0} and (∀ f ∈ K : λ f ≥ 0)
}

,

where � denotes the finite subset relation. Then E is the smallest convex cone of
gambles encompassing the assessment A and the nonnegative gambles—including
the zero gamble.

Let us apply the natural extension to our running example:

The natural extensions of Wiske, Yoko Tsuno, and the betting pools

For our finite possibility space,

{ f ∈ L : f ≥ 0} = {∑
x∈X μx · 1x : (∀x ∈ X : μx ≥ 0)

}

So, with λA, μx ≥ 0 for all outcomes x and agent identifiers A, we get the following
expressions that characterize the natural extensions:

Wiske
λW · (1be − 5 · 1jp) + μbe · 1be + μjp · 1jp

= (λW + μbe) · 1be + (−5 · λW + μjp) · 1jp,

Yoko Tsuno
λY · (−4 · 1be + 1jp) + μbe · 1be + μjp · 1jp

= (−4 · λY + μbe) · 1be + (λY + μjp) · 1jp,
Simple pool (λW − 4 · λY + μbe) · 1be + (−5 · λW + λY + μjp) · 1jp,
Empty pool μbe · 1be + μjp · 1jp.

To check whether the natural extension incurs sure loss, we must check whether the
coefficients of 1be and 1jp can become negative at the same time. Only the simple pool
incurs sure loss; e.g., fill in λW = λY = 1 and μbe = μjp = 0 to convince yourself.
(Convince yourself as well that the others avoid sure loss indeed.)



3 Introduction to the Theory of Imprecise Probability 41

3.3 Previsions and Probabilities

In this section, we move from modeling uncertainty using sets of acceptable gam-
bles to the more familiar language of expectation—or, synonymously, prevision—
and probability [17]. We first transition from acceptable gambles to previsions in
Sect. 3.3.1 [18, §1.6.3] [17, §2.2] and in a second step, in Sect. 3.3.2, give the con-
nection to probabilities [20, §2.6]. Next, in Sect. 3.3.3, we consider assessments in
terms of previsions and what the other fundamental concepts of Sect. 3.2 then look
like [17, §2.2.1, §2.2.4] [20, §2.4–5, §3.1]. Finally, in Sect. 3.3.4, we consider the
important special case of assessments in terms of previsions defined on a linear space
of gambles [17, §2.2.1] [20, §2.3.2–6].

3.3.1 Previsions as Prices for Gambles

Before we start: ‘prevision’ is in much of the imprecise probability literature used
as a synonym for ‘expectation’; we here follow that tradition.

Now, how do we get an agent’s previsions for a gamble—equivalently: expecta-
tion of a random variable—given that we know the agent’s assessment as a set of
acceptable gambles A? We first define a price to be a constant gamble and iden-
tify this constant gamble with its constant payoff value. Then we define the agent’s
previsions as specific types of acceptable prices:

• The lower prevision P( f ) is the supremum acceptable buying price of f :

P( f ) = sup {ν ∈ R : f − ν ∈ E} .

• The upper prevision P( f ) is the infimum acceptable selling price of f :

P( f ) = inf {κ ∈ R : κ − f ∈ E} .

If E is coherent, then P and P are also called coherent. There is a conjugacy relation
between coherent lower and upper previsions: P( f ) = −P(− f ). It allows us to
work in terms of either type of prevision; we will mainly use the lower one.

In case P( f ) = P( f ), then P( f ) = P( f ) is the called the (precise) prevision of
the gamble f .

3.3.2 Probabilities as Previsions of Indicator Gambles

Now that we have definitions for lower and upper previsions, we can derive probabil-
ities from those. For classical probability, we have that the probability of an event—a
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subset B of the possibility space X—is the prevision of the indicator for that event.
For lower and upper previsions, we get:

• The lower probability: P(B) = P(1B).
• The upper probability: P(B) = P(1B).

Notice that we reuse the same symbol for the prevision and probability functions,
as is common in the literature. As long as the nature of the argument—gamble or
event—is clear, this does not cause ambiguity. If P and P are coherent as previsions,
then so are they as probabilities. Also the conjugacy relationship can be translated
to coherent lower and upper probabilities; let Bc = X \ B, then

P(B) = P(1B) = P(1 − 1Bc ) = −P(−1 + 1Bc ) = 1 − P(1Bc ) = 1 − P(Bc).

In case P(B) = P(B), then P(B) = P(B) is called the (precise) probability of
B.

To make the definitions for lower and upper previsions and probabilities concrete,
let us apply them to our running example:

Lower and upper probabilities for all events and agents

We work out the calculation of Wiske’s lower probability that Belgium will win.

PW(be) =PW(1be) (def. lower probability)

= sup
{
ν ∈ R : 1be − ν ∈ EW

}
(def. lower prevision)

= sup

{
ν ∈ R :

[
1 − ν

0 − ν

]
=

[
λW + μbe

−5 · λW + μjp

]
, λW ≥ 0, μbe ≥ 0, μjp ≥ 0

}

(write out natural extension EW of AW)

= sup
{
5 · λW − μjp : 1 − 5 · λW + μjp = λW + μbe, λW ≥ 0, μbe ≥ 0, μjp ≥ 0

}

(eliminate ν)

= sup
{
5 · λW − μjp : λW = 1

6 (1 + μjp − μbe), λW ≥ 0, μbe ≥ 0, μjp ≥ 0
}

(solve constraint for λW)

= sup
{
5
6 − 1

6μjp − 5
6μbe : 1 + μjp ≥ μbe, μbe ≥ 0, μjp ≥ 0

}
(eliminate λW)

= 5

6
(feasible solution μbe = 0, μjp = 0 maximizes expression)

Do the calculations also for the other agents and Japan. Then apply conjugacy to find
the following table of lower and upper probabilities:

Agents P(be) , P(be) P(jp) , P(jp) Note

Wiske 5/6 , 1 0 , 1/6 Will not bet against Belgium
Yoko Tsuno 0 , 1/5 4/5 , 1 Will not bet against Japan
Simple pool +∞ , −∞ +∞ , −∞ Sure loss, so absurd bounds
Empty pool 0 , 1 0 , 1 So-called vacuous model



3 Introduction to the Theory of Imprecise Probability 43

While in the above example the calculation of the lower prevision can be done by
hand, in general it realistically requires a linear program solver.

3.3.3 Assessments of Lower Previsions

Up until now, we assumed a set of acceptable gamblesA—an agent’s assessment—
to be given. But often the agent will directly specify lower and upper probabilities
or previsions, e.g., as bounds on precise probabilities and previsions. However, the
coherence criteria and expression for the natural extension are based on having a
set of acceptable gambles. In this section we will provide expressions based on an
assessment specified as lower prevision values for gambles in a given set K .

The approach is to derive an assessment as a set of acceptable gambles A from
these lower prevision. Irrespective of what its natural extension E actually looks like,
it follows from the definition of the lower prevision as a supremum acceptable buying
price that

0 ≤ sup
{
ν − P( f ) : ν ∈ R ∧ f − ν ∈ E ⊇ A}

= sup
{
κ ∈ R : f − (κ + P( f )) ∈ E} = sup

{
κ ∈ R : ( f − P( f )) − κ ∈ E}

.

This implies that f − P( f ) + ε ∈ E for any ε > 0, because of coherence.We cannot
take ε = 0, because the corresponding so-called marginal gamble f − P( f ) is not
included in E in general, as the supremum value κ = 0 is not necessarily attained
inside the set. We therefore take A = ⋃

f ∈K
{
f − P( f ) + ε : ε > 0

}
.

We can then apply the theory described above to this assessmentA. This leads to
the following nontrivial results for a lower prevision P defined on a set of gamblesK :

• It avoids sure loss if and only if for all n ≥ 0 and fk ∈ K it holds that

sup
x∈X

n∑

k=1

(
fk(x) − P( fk)

) ≥ 0.

• It is coherent if and only if for all n,m ≥ 0 and fk ∈ K it holds that

sup
x∈X

(
n∑

k=1

(
fk(x) − P( fk)

) − m · ( f0 − P( f0))

)

≥ 0.

• Its natural extension to any gamble f in L is

E( f ) = sup

⎧
⎨

⎩
inf
x∈X

⎧
⎨

⎩
f (x) −

n∑

k=1

λk · (
fk(x) − P( fk)

)
⎫
⎬

⎭
: n ≥ 0, fk ∈ K, λk ≥ 0

⎫
⎬

⎭
.
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3.3.4 Working on Linear Spaces of Gambles

The coherence criterion for lower previsions on an arbitrary spaceK of gambles we
gave in the preceding section is quite involved.However, in caseK is a linear space of
gambles, this criterion becomes considerably simpler. Namely, a lower prevision P
must then satisfy the following criteria for all gambles f and g in K and λ > 0:

Accepting sure gains P( f ) ≥ inf f ,
Super-linearity P( f + g) ≥ P( f ) + P(g),

Positive homogeneity P(λ f ) = λ · P( f ).

Expressed for upper previsions P , these coherence criteria are very similar:

Accepting sure gains P( f ) ≤ sup f ,
Sub-linearity P( f + g) ≤ P( f ) + P(g),

Positive homogeneity P(λ f ) = λ · P( f ).

From the coherence criteria, many useful properties can be derived for a coherent
lower prevision P and its conjugate upper prevision P . We provide a number of key
ones, which hold for all gambles f and g inK and μ ∈ R; P denotes either P or P:

Upper dominates lower P( f ) ≥ P( f ),
Constants P(μ) = μ,

Constant additivity P( f + μ) = P( f ) + μ,
Gamble dominance if f ≥ g + μ then P( f ) ≥ P(g) + μ,

Mixed sub/super-additivity P( f + g) ≤ P( f ) + P(g) ≤ P( f + g).

3.4 Sets of Probabilities

In Sect. 3.2 we modeled uncertainty using a set of acceptable gambles. In Sect. 3.3
we showed how this can also be done in terms of lower or upper previsions (or
probabilities). In this section, we add a third representation, one using credal sets—
sets of precise previsions [17, §2.2.2], [18, §1.6.2]. In Sect. 3.4.1 we show how to
derive the credal set corresponding to a given lower prevision. In Sect. 3.4.2 we go
the other direction and show how to go from a credal set to lower prevision values
[20, §3.3].

3.4.1 From Lower Previsions to Credal Sets

A credal set is a subset of the set of all precise previsionsP. (For possibility spaces B
different fromX, we writePB .) This set is convex, meaning that any convex mixture
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of precise previsions is again a precise prevision.Because of this, a gamble’s prevision
is a linear function over this space. A lower—and upper—prevision can be seen
as providing a bound on the value of the precise prevision for that gamble and
thereby represent a linear constraint on the precise previsions. So the credal set M
corresponding to a lower prevision P defined on a set of gambles K is the subset
of P satisfying this constraint for all gambles in K :

M =
⋂

f ∈K

{
P ∈ P : P( f ) ≥ P( f )

}
.

Being defined as such an intersection, such credal sets are closed and convex.
The rationality criteria for a lower prevision P we encountered before can also

be expressed using its corresponding credal setM:

• P incurs sure loss if and only if M is equal to the empty set.
• P is coherent if and only if all constraints are ‘tight’, i.e., if there exists a P inM
such that P( f ) = P( f ) for all f in K .

Let us make the concept of a credal set concrete using our running example:

Yoko Tsuno’s credal set

For a finite possibility space such as the one of our running example, a precise previ-
sion P can be defined completely by the corresponding probability mass function p
defined by px = P({x}) for x in X = {

be, jp
}
. The set of all precise previsions

can therefore be represented by the probability simplex—the set of all probability
mass functions—on X. This set and the example probability mass function ( 12 ,

1
2 )

is shown below left. Below right, we illustrate how Yoko Tsuno’s lower previ-
sion PY(jp) = 4

5 generates the credal set MY: The gamble 1jp as a linear function
over the simplex is shown as an inclined line. This linear relationship between p—
equivalently, the corresponding prevision Pp—and Pp(1jp) = Pp(jp) transforms the
bounds 4

5 ≤ Pp(jp) ≤ 1 intoMY.

jpbe
p = (pbe, pjp)

( 12 ,
1
2 )(1, 0) (0, 1)

jpbe

0

1

Pp(jp) = 0 · pbe + 1 · pjp

PY(jp) = 4
5

( 15 ,
4
5 )

MY

The set of extreme pointsM∗
Y ofMY as probability mass functions is

{
( 15 , 4

5 ), (0, 1)
}
.
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3.4.2 From Credal Sets to Lower Previsions

Nowwe assume that the agent’s credal setM is given. Most generally this can be any
set of precise previsions, i.e., any subset of P. Often, to ensure equivalence between
coherent lower previsions and non-empty credal sets, they are required to be closed
and convex. In that case, a credal set is determined completely by its set of extreme
points M∗ in the sense that all other elements are convex mixtures of these.

To determine the lower prevision corresponding to any credal set, we determine
its value for each gamble f of interest using the lower envelope theorem:

P( f ) = min
{
Pp( f ) : p ∈ M} = min

{
Pp( f ) : p ∈ M∗}

.

Let us again use the running example to provide a feeling for what this all means:

A credal set for the empty pool facing penalties

Consider the empty pool. Because its assessment is empty, its credal setMEP is the
trivial one corresponding to all probability mass functions onX = {

be, jp
}
. Now we

add an extra element to the possibility space, ‘Penalties’. Below left we show MEP

embedded in the corresponding larger probability simplex. Wiske and Yoko Tsuno
decide to add the uniform probability mass function to it. Below right, you see the
convex hullMEUP of this extra probability mass function and the original credal set.

P(enalties)

jpbe
(1, 0, 0) (0, 1, 0)

( 13 ,
1
3 ,

1
3 )

MEP

P(enalties)

jpbe

MEUP

Pp(p) = 1
3

If wewant to calculate lower and upper prevision values, we can here use the extreme
point version of the lower and—similar—upper envelope theorem. For example, for
the pool’s upper probability for Penalties:

PEP(p) = PEP(1p) = max
{
p
(0, 0, 1) : p ∈

{
(1, 0, 0), (0, 1, 0), ( 13 , 1

3 , 1
3 )

}}
= 1

3
.

To make it explicit where this maximum is achieved, we above right show the line
of probability mass functions p such that Pp(p) = 1

3 .
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3.5 Basics of Conditioning

Conditioning an uncertainty model is the act of restricting attention to a subset B
of the possibility space. It is often used to update an uncertainty model after having
observed the event B [20, §6.1].

In the theory of imprecise probability, conditioning is a specific case of natural
extension [17, §2.3.3], [20, §6.4.1]. In terms of acceptable gambles, conditioning
on B corresponds to restricting the space of gambles to those that are zero outside B
[18, §1.3.3]. For lower previsions, this translates to the following conditioning rule
for all gambles f in L:

E( f | B) =
{
inf x∈B f (x) if P(B) = 0,

max
{
μ ∈ R : P(1B( f − μ) = 0)

}
if P(B) > 0.

Conditioning a credal set M corresponds to taking the credal set M|B formed by
conditioning each of the precise previsions inM:

M|B =
{
PB if ∃P ∈ M : P(B) = 0,

{P(· | B) : P ∈ M} if ∀P ∈ M : P(B) > 0.

These rules based on natural extension give vacuous conditionals whenever the
lower probability of the conditioning event is zero. Regular extension is a less impre-
cise updating rule [17, §2.3.4], [18, §1.6.6], [20, App. J]: In credal set terms, it
removes those precise previsions P such that P(B) = 0 fromM.

Let us apply the conditioning rules discussed here to our running example:

Conditioning the empty-uniform pool’s credal set

We condition the empty-uniform pool’s credal set on {jp, p}, i.e., Belgium not
winning in regular time. Further down on the left, we show what happens if we
apply natural extension: the conditional model is vacuous because P(1,0,0)({jp, p}) =
P(1,0,0)(1{jp,p}) = (1, 0, 0)
(0, 1, 1) = 0. Further down on the right, we apply natu-
ral extension and therefore remove P(1,0,0) fromMEUP; this results in a non-vacuous
conditional credal set.
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P(enalties)

jpbe
(1, 0, 0) (0, 1, 0)

( 13 ,
1
3 ,

1
3 )

MEUP

MEUP| {jp, p}

P(enalties)

jpbe
(0, 1, 0)

( 13 ,
1
3 ,

1
3 )

M′
EUP

M′
EUP| {jp, p}

3.6 Remarks About Infinite Possibility Spaces

The theory we presented is also applicable to denumerable and continuous pos-
sibility spaces with some technical amendments to the coherence criteria and by
considering only bounded gambles. However, the running example was based on
finite possibility spaces, so no feeling was created for applications with infinite pos-
sibility spaces. Therefore we here give some remarks about imprecise probabilistic
uncertainty models on continuous possibility spaces:

• They are mostly defined using credal sets whose extreme points are parametric
distributionswhere the parameters vary in a set. A prime example are the imprecise
Dirichlet model [21] and its generalizations [19].

• They are also commonly defined using probability mass assignments to subsets of
the possibility space. This is in some way a reduction to the finite case. Examples
are belief functions [13, §5.2.1.1], some P-boxes [14, §4.6.4], and NPI models [5,
§7.6].

• Furthermore,modelswhich bound some specific description of a precise prevision,
such as cumulative distribution functions andprobability density functions, are also
popular in some domains. The extreme points of their credal set are, however, not
known. General P-boxes [15] and lower and upper density functions [20, §4.6.3]
are examples of this class.

• Calculating lower and upper previsions—i.e., performing natural extension—can
easily become difficult optimization problems, so this should be a key considera-
tion when choosing a specific type of model.
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3.7 Conclusion

This introduction to the theory of imprecise probability has prepared you for access-
ing the broader literature on this topic and its applications. For those that wish to
apply imprecise probabilistic techniques, this text only provides the first step: You
should dive into the literature and contact experts to obtain the necessary knowledge
and feedback. The references of this chapter and their authors or editors provide a
starting point for that.
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