
Chapter 2
Sampling from Complex Probability
Distributions: A Monte Carlo Primer for
Engineers

Louis J. M. Aslett

Abstract Models which are constructed to represent the uncertainty arising in engi-
neered systems can often be quite complex to ensure they provide a reasonably
faithful reflection of the real-world system. As a result, even computation of simple
expectations, event probabilities, variances, or integration over utilities for a decision
problem can be analytically intractable. Indeed, such models are often sufficiently
high dimensional that even traditional numerical methods perform poorly. However,
access to random samples drawn from the probability model under study typically
simplifies such problems substantially. The methodologies to generate and use such
samples fall under the stable of techniques usually referred to as ‘Monte Carlo meth-
ods’. This chapter provides amotivation, simple primer introduction to the basics, and
sign-posts to further reading and literature onMonte Carlo methods, in a manner that
should be accessible to those with an engineering mathematics background. There
is deliberately informal mathematical presentation which avoids measure-theoretic
formalism. The accompanying lecture can be viewed at https://www.louisaslett.com/
Courses/UTOPIAE/.

2.1 Motivation

There is a natural tension when constructing a probabilistic model with the aim of
encapsulating the uncertainty in an engineered system: on the one hand, there is a
desire to capture every nuance of the system to fully reflect all knowledge about
its behaviour; on the other, there is a drive towards parsimony for reasons of inter-
pretability, robustness, and computability. Interpretability and robustness are impor-
tant goals and should indeed guide a reduction in model complexity, but reducing
model complexity purely to enable computability would seem a hinderance, espe-
cially if that parsimony impedes answering the research questions at hand since, put
simply, ‘reality can be complicated’ [7]. As such, the methodology of this chapter

L. J. M. Aslett (B)
Department of Mathematical Sciences, Durham University, Durham, United Kingdom
e-mail: louis.aslett@durham.ac.uk

© The Author(s) 2022
L. Aslett et al. (eds.), Uncertainty in Engineering,
SpringerBriefs in Statistics,
https://doi.org/10.1007/978-3-030-83640-5_2

15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-83640-5_2&domain=pdf
https://www.louisaslett.com/Courses/UTOPIAE/
https://www.louisaslett.com/Courses/UTOPIAE/
mailto:louis.aslett@durham.ac.uk
https://doi.org/10.1007/978-3-030-83640-5_2

16 L. J. M. Aslett

should not be employed simply to enable an inappropriately complex model, but
rather serves to facilitate the use of models which are complex enough when judged
by purely subject matter and statistical concerns.

Monte Carlo methods have played a crucial role in a vast array of applications
of statistical methodology, from the prediction of future marine species discoveries
[29] through to reconstruction of the ancient climate on Earth [16]; from criminal
justice offending risk [17] to inferring networks of corporate governance through
the financial crash [12]; and from estimating bounds on engineering system survival
functions [11] to the assessment of offshore oil production availability [30]. The
utility of Monte Carlo in these applications varies substantially, from estimation of
confidence intervals and event probabilities, through optimisation methods to full
evaluation of Bayesian posterior distributions for parameter inference.

With this breadth of application in mind, we may assume hereinafter that we
have a probabilistic model for some engineered system of interest which—after
considering all subject matter and statistical concerns—is too complex to be able
to compute relevant quantities of interest (be they event probabilities, confidence
intervals, posterior distributions, etc.). As a concrete example, if onewere to construct
a Bayesian model of reliability using ideas introduced in Chap. 1, then our model
would comprise some prior distribution over the vector of model parameters, π(θ),
together with a generative model for the failure time depending on those parameters,
π(t | θ). After collecting some lifetime data t = {t1, . . . , tn}, themost simple research
question of interest may be the posterior expected value of the parameters:

Eπ [θ] =
∫

�

θ π(θ | t) dθ = 1

c

∫
�

θ π(θ)

n∏
i=1

π(ti | θ) dθ (2.1)

where� is the space of all possible parameter values and c is a normalising constant.
Indeed, it is traditional in Monte Carlo literature to focus attention on the compu-

tation of expectations with respect to some probability density under consideration,
which need not necessarily be a Bayesian posterior. That is, given a general proba-
bility model π(x), x ∈ �, and a functional f : � → R, interest is typically in:

Eπ [f (X)] :=
∫

�

f (x)π(x) dx (2.2)

and this is the perspective that will be adopted in this chapter.
We complete our motivation of Monte Carlo in this Section by highlighting the

generality of expectations of the form (2.2), followedby a short discussion of standard
numerical integration techniques. In Sect. 2.2, theMonte Carlo estimator and its error
analysis are recapped and contrastedwith numerical integration. The coremethods of
Monte Carlo simulation are introduced in Sect. 2.3, with pointers to more advanced
material in Sect. 2.4. Note that we will in places abuse formal notation where we
believe it aids intuitive understanding since the goal of this chapter is to be a basic

http://dx.doi.org/10.1007/978-3-030-83640-5_1

2 Sampling from Complex Probability Distributions: A Monte … 17

primer, not a rigorous treatment.1 A first course in probability and statistics are
assumed background.

The accompanying lecture from the UTOPIAE training school can be viewed at
https://www.louisaslett.com/Courses/UTOPIAE/.

2.1.1 Generality of Expectations

The formulation in (2.2) may appear rather restrictive to the uninitiated reader. How-
ever, considering only expectations of this form does not result in any loss of gener-
ality. For example, (re-)defining:

π(x) := 1

c
π(x)

n∏
i=1

π(ti | x)

f (x) := x

means that (2.2) simply becomes the posterior expectation in (2.1). However, one
should note that arbitrary statements of probability are also computable as expecta-
tions. That is,

P(X < a) =
∫ a

−∞
π(x) dx =

∫
�

I(−∞,a](x)π(x) dx = Eπ [I(−∞,a](X)]

where for a general set E ⊆ �,

IE (x) :=
{
1 if x ∈ E

0 if x /∈ E

That is, to evaluate the probability of an arbitrary event, P(X ∈ E), simply set
f (X) := IE (X) when evaluating (2.2).

2.1.2 Why Consider Monte Carlo?

In some special cases, the integral (2.2) may have an analytical solution and in such
situations one should not resort to Monte Carlo or other methods. When there is
no known analytical form for the integral, a reader with a general mathematical

1 For example, we will write ‘P(X = x)’ even where X is continuous to emphasise the link to the
density function and will use π(x) to reference both a target distribution or prior where the meaning
is clear from context. For the more advanced reader there are already many excellent more rigorous
treatments in the literature, some of which we reference towards the end.

https://www.louisaslett.com/Courses/UTOPIAE/

18 L. J. M. Aslett

background may be tempted to reach for a numerical integration method, such as a
simple mid-point Riemann integral or a more sophisticated quadrature approach.

Consider the mid-point Riemann integral in the simple 1-dimensional setting.
Letting g(x) := f (x)π(x), then the expectation would be approximated using n
evaluations by: ∫ b

a
g(x) dx ≈ b − a

n

n∑
j=1

g(x j), (2.3)

where

x j := a + b − a

n

(
j − 1

2

)
.

The absolute error in using (2.3) is bounded [24, Theorem 7.1]:

∣∣∣∣∣∣
∫ b

a
g(x) dx − b − a

n

n∑
j=1

g(x j)

∣∣∣∣∣∣ ≤ (b − a)3

24n2
max
a≤z≤b

|g′′(z)|.

Clearly, (b−a)3

24 maxa≤z≤b |g′′(z)| is fixed by the problem at hand and cannot be altered
by the engineer, sowe achieve the accuracywe require by controlling n−2—that is, by
using a finer grid to compute the integral. As such, we say the error in the mid-point
Riemann integral in 1 dimension is O (

n−2
)
—that is, if double the computational

effort is expended by computing on a grid of twice as many points (2n), then the
worst case error is reduced by a factor of 4. This fast reduction in error and an explicit
bound on it are very attractive properties.

However, as the dimension of x increases, the Riemann integral’s effectiveness
diminishes substantially. In general, the error of mid-point Riemann integration in
d-dimensions is O (

n−2/d
)
. For example, even in a modest 10-dimensional problem,

when the computational effort is doubled the worst case error is only reduced by a
factor of ≈ 1.15. Put another way, to halve the worst case error in a 10-dimensional
problem requires exp

(
10
2 log 2

) = 32 times the computational effort. This problem
has been coined the ‘curse of dimensionality’.

Of course, the Riemann integral is not the best numerical integration method,
but even Simpson’s rule only improves this to O (

n−4/d
)
. In general Bakhvalov’s

Theorem bounds all possible quadraturemethods byO(n−r/d), where r is the number
of continuous derivatives of g(·)which exist and are exploited by the quadrature rule
[24].

The striking result which motivates the study of Monte Carlo methods is that for a
d-dimensional problem, the (mean-square)2 error is O (

n−1/2
)
. The most important

point to note is the absence of d in the order of the error: increasing the computa-
tional effort by some fixed amount has the same relative effect on the worst case
error regardless of dimension. Of course, the devil in the detail is that the constant

2 Note that randomised simulation methods such as Monte Carlo typically report mean-square error
rather than absolute error bounds.

2 Sampling from Complex Probability Distributions: A Monte … 19

Fig. 2.1 The order of error reduction—that is, only the leading O (
n f (d)

)
term—is plotted against

different computational effort n. Note that all these curves would be multiplied by a different (fixed)
problem dependent constant

factor which we are ignoring in that statement almost certainly has some dimension
dependence, but this is true for quadrature methods too. Figure2.1 illustrates the
differences.

Consequently, Monte Carlo methods are well suited to address the problem of
analysing complex probabilistic models of engineered systems, since this is precisely
a setting where the parameter dimension is likely to be large.

2.2 Monte Carlo Estimators

The standard Monte Carlo estimator of the integral (2.2) is

μ �
∫

�

f (x)π(x) dx ≈ 1

n

n∑
j=1

f (x j) � μ̂, (2.4)

where x j ∼ π(·). In other words, the problem of integration is transformed instead
into the problem of drawing random samples x j distributed according to the proba-
bility density π(·). Importantly, this estimator is unbiased, that is, E[μ̂] = μ.

If the samples x j are independently and identically distributed (iid) according to
π(·), then the root mean-square error of the estimator μ̂ is

RMSE :=

√√√√√Eπ

⎡
⎣
⎛
⎝
∫

f (x)π(x) dx − 1

n

n∑
j=1

f (x j)

⎞
⎠

2⎤
⎦ = σ√

n
,

20 L. J. M. Aslett

where σ 2 = Varπ (f (X)). Again, part of this error is (mostly) inherent to the prob-
lem3—σ in this case—so that we achieve desired accuracy by controlling n−1/2.
There are at least three very attractive conclusions we can draw from this form:

1. as mentioned already, the relative error reduction achieved by additional com-
putational effort is independent of dimension;

2. there is no explicit dependence on how smooth the functional, f (·), or probability
density, π(·), are (though these may influence σ);

3. in contrast to quadrature methods, an estimate of the error can be computed
from the work already done to compute the integral, by computing the empirical
standard deviation of the functional of the samples drawn from π(·).

Although an absolute error is not available for a randomised method like this, a
simple application of Chebyshev’s inequality does provide a probabilistic bound on
the absolute error exceeding a desired tolerance:

P(|μ̂ − μ| ≥ ε) ≤ Eπ [(μ̂ − μ)2]
ε2

= σ 2

nε2
.

Indeed, it is also possible to invoke the iid Central Limit Theorem so that asymp-
totically,

P

(
μ̂ − μ

σn−1/2
≤ z

)
n→∞−−−→ �(z),

where �(z) denotes the standard Normal cumulative distribution function (CDF).
This enables the formation of confidence intervals for μ based on large n samples.

The discussion to date has tacitly assumed that simulating from arbitrary proba-
bility distributions π(·) is possible and relatively efficient. In fact, most Monte Carlo
research is devoted to this effort since, as touched on above, there is rich and well-
established theory when such samples are available. Therefore, for the remainder of
this chapter, our attention turns away from discussion of the integrals which are of
primary interest and focuses on the problem of simulating from arbitrary probability
distributions π(·). Once these samples are available, the results above can be used to
analyse the resulting estimators.

2.3 Simple Monte Carlo Sampling Methods

In this section we introduce some simple Monte Carlo methods which enable sam-
pling from a wide array of probability distributions. Note that understanding these
simple methods is crucial as they are extensively used as building blocks of more
sophisticated sampling methodology.

3 There are advanced Monte Carlo methods which can reduce this variance, but this is beyond the
scope of this chapter. See for example [24, Chap. 8].

2 Sampling from Complex Probability Distributions: A Monte … 21

Almost all Monte Carlo procedures start from the assumption that we have avail-
able an unlimited stream of iid uniformly distributed values, typically on the interval
[0, 1] ⊂ R. How to generate such an iid stream is beyond the scope of this intro-
ductory chapter, but the interested reader may consult [13, Chaps. 1–3] and [21].
Arguably the current gold standard algorithm remains that in [22]. Typically, the
average user of Monte Carlo need not worry about such issues and may rely on the
high quality generators built into software such as R [26].

Thus the objective hereinafter is to study how to convert a stream ui ∼ Unif(0, 1)
into a stream x j ∼ π(·), where x j is generated by some algorithm depending on the
stream of ui . In more advanced methods (see MCMC), x j may also depend on x j−1

or even x1, . . . , x j−1.

2.3.1 Inverse Sampling

Arguably the simplest example of generating non-uniform random variates is inverse
sampling, which typically applies only to 1-dimensional probability distributions
(thoughhigher dimensional extensions have been studied). Let F(x) := P(X ≤ x)be
the cumulative distribution function (CDF) for the target probability density function
π(·). Then, inverse sampling requires the inverse of the cdf, F−1(·), which is then
applied to a uniform random draw. Precisely, see Algorithm2.1.

Algorithm 2.1 Inverse sampling algorithm
1: procedure Inverse sampling(F−1(·)) Generate random sample from distribution with

inverse CDF F−1(·)
2: u ∼ Unif(0, 1)
3: x ← F−1(u)

4: return x
5: end procedure

To prove that the sample returned byAlgorithm2.1 is distributed according toπ(·)
is straight-forward. We do so by computing the CDF, P(X ≤ x), of the X generated
by this algorithm and show that this agrees with the CDF of π(·). The first step
substitutes X = F−1(U), where U ∼ Unif(0, 1), as per the algorithm:

P(X ≤ x) = P(F−1(U) ≤ x)

= P(F(F−1(U)) ≤ F(x)) applying F(·) to both sides

= P(U ≤ F(x)) Uniform CDF P(U ≤ u) = u

= F(x).

Note that applying F(·) to both sides in the second line is valid, since the cumulative
distribution function is a non-decreasing function by definition.

22 L. J. M. Aslett

Fig. 2.2 Inverse sampling for both a continuous distribution function (left) and one containing
jump discontinuities and regions of zero probability (right). Uniform random draws u are sampled
and inverted through the distribution function in the obvious way (left), or by taking the infimum
over values of x such that F(x) ≥ u (right). In the right illustration, the hypothetical (‘Hypothetical’
since strictly speaking this is an event of probability zero) u1 coincides with the value at which
F(x) is constant and u2 lies within the jump discontinuity

One subtlety to be aware of is that for discrete distributions or continuous distri-
butions with jump discontinuities or areas of no support, we must define:

F−1(u) = inf{x : F(x) ≥ u}, ∀ u ∈ [0, 1].

It may be tempting when F−1(·) is not available to use a numerical solver to solve
F(x) = u in place of line 3 in Algorithm2.1. However, caution is required since
this can result in bias [10, p. 31]. The procedure of inverse sampling is illustrated in
Fig. 2.2.

Notice that this is univariate, yet earlierwe saw that numerical integrationwill give
better error bounds than Monte Carlo for low dimensional problems—as such one
may choose not to use inverse sampling to actually evaluate univariate expectations.
However, we often need a set of random draws from non-uniform univariate distri-
butions which feed into a broader Monte Carlo algorithm, which is itself sampling in
higher dimensions: in such situations inverse sampling is very useful. Indeed, if you
use the rnorm function in R [26], it has used inverse sampling to generate random
draws from the Normal distribution since 2003 (see /src/nmath/snorm.c lines
265–270), prior to that using [18] since at least v0.62 in 1998.

A final comment: inverse sampling is a special case of general transformation
sampling. If one can generate samples from one distribution, there may be an appro-
priate transformation to turn these into samples from another distribution that may
be more tractable or faster than inverse sampling. For further details, see for example
[24, Chap. 4.6].

2 Sampling from Complex Probability Distributions: A Monte … 23

2.3.1.1 Example

In order to use inversion sampling for a Weibull distribution with shape k and scale
σ , X ∼ Weibull(k, σ), we note that

π(x) = k

σ

(x

σ

)k−1
e−(x

σ)
k

, x ∈ [0,∞), σ > 0, k > 0

F(x) = 1 − exp

{
−

(x

σ

)k}
.

To find F−1(u), set 1 − exp
{
− (

x
σ

)k} = u and solve for x :

=⇒ x = F−1(u) = σ (− log(1 − u))1/k ∼ π(·). (2.5)

In order to generate samples from the Weibull we, therefore, take values, u, from a
Uniform random number stream and transform them using (2.5).

2.3.2 Rejection Sampling

Our first higher dimensional method is an elegant algorithm, which actually crops up
in more advanced guises at the cutting edge of modern Monte Carlo methods (e.g.
[9, 25]). Here, the goal is to find another distribution, say π̃(·), which is easier to
sample from (perhaps even using inverse sampling) and where we can construct a
bound on the density function:

π(x) ≤ cπ̃(x) ∀ x ∈ �, (2.6)

where c < ∞ and where π and π̃ need not be normalised probability densities. We
call π̃(·) the ‘proposal’ density, since samples will be drawn from this and then
exactly the correct proportion of them retained in order to end up with a stream of
samples from π(·). The full procedure is detailed in Algorithm2.2.

We will proceed based on the assumption that π(·) and π̃(·) are normalised den-
sities. However, note that the algorithm is also valid for un-normalised densities, so
long as there still exists a c satisfying (2.6) for the un-normalised densities.

The efficiency of the algorithm hinges entirely on the value of c, so that it should
be chosen as small as possible. This is because, letting A be the random variable for
acceptance of a proposed sample X , the acceptance probability is (abusing notation
to aid intuition):

24 L. J. M. Aslett

Algorithm 2.2 Rejection sampling algorithm
1: procedure Rejection sampling(π(·), π̃(·), c) Generate random sample from distri-

bution with unnormalised density π(·)
2: a ← FALSE
3: while a = FALSE do Repeat until acceptance
4: u ∼ Unif(0, 1)
5: x ∼ π̃(·) Propose a possible sample
6: if u ≤ π(x)

cπ̃(x) then Accept or reject proposal?
7: a ← TRUE
8: end if
9: end while
10: return x
11: end procedure

P(A = 1) =
∫

�

P(A = 1 | X = x)︸ ︷︷ ︸
Prob line 6 of Alg 2 gives TRUE.

P(X = x)︸ ︷︷ ︸
Proposal density π̃ .

dx

=
∫

�

P

(
U ≤ π(x)

cπ̃ (x)

)
︸ ︷︷ ︸

Uniform CDF, P(U≤u)=F(u)=u.

π̃ (x) dx

=
∫

�

π(x)

cπ̃(x)
π̃(x) dx

= 1

c

∫
�

π(x) dx

= 1

c
, (2.7)

where � is the support of π̃(·), π̃(x) > 0, ∀ x ∈ �. The final line follows because
the integral of a density over the whole space is 1.

Hence, the number of iterations of the loop on lines 3–9 in Algorithm2.2 which
must be performed to return a single sample from π(·) is Geometrically distributed
with parameter 1

c . Therefore, the expected number of random number generations
and function evaluations which must be performed is 2c per sample from π(·).

To see that Algorithm2.2 does indeed give a sample from π(·), we note that the
samples returned are only those which are accepted, so we condition on this event:

P(X ∈ E | A = 1) = P(A = 1 | X ∈ E) P(X ∈ E)

P(A = 1)
∀ E ∈ B

=
∫
E

π(x)
cπ̃(x) π̃ (x) dx

1
c

=
∫
E

π(x) dx .

2 Sampling from Complex Probability Distributions: A Monte … 25

Fig. 2.3 Geometric interpretation of rejection sampling. First y is sampled from π̃ and then a
uniform is sampled along the vertical dashed line at that location (i.e. between 0 and cπ̃(y)). If the
uniform sample falls below π then we accept and otherwise we reject. It is therefore clear that the
closer cπ̃ ‘hugs’ π the more efficient the rejection sampler

The last line is the probability of event E under the distribution with density π(·), as
required.

There is a nice geometric interpretation of the rejection sampling algorithmwhich
aids greatly with intuition. Notice that the condition in line 6 can be rewritten
ucπ̃(x) ≤ π(x). This means ucπ̃ (x) is a uniform random number in the interval
[0, cπ̃ (x)], so that we can view rejection sampling as first drawing a value from
π̃(x), then moving it up to a uniformly distributed height under the curve cπ̃ (x).
The consequence of this is that we are effectively sampling uniformly points under
the curve cπ̃ (x) and accepting those that fall under the curve π(x), as depicted in
Fig. 2.3.

Care is required with rejection sampling in high dimensions because it is quite
easy for the acceptance probability to become so small as to make the technique
impractical. We will see that, as well as how to implement rejection sampling, in the
following example.

2.3.2.1 Example

Consider the problem of sampling from a zero mean d-dimensional multivariate
Normal distribution, having density:

π(x) = (2π)−d/2 det(�)−1/2 exp

(
−1

2
xT�−1x

)
, x ∈ R

d ,

where � is a d × d symmetric positive semi-definite covariance matrix. It is com-
paratively easy to sample univariate Normal random variables (e.g. using inverse
sampling in R [26] as mentioned earlier, or via a transformation type approach like
[3]). Thus we could consider using a multivariate Normal with diagonal covariance,

26 L. J. M. Aslett

σ 2 I , as a proposal, because this simply requires sampling d univariate Normal ran-
dom variables.

This would mean we need to determine c < ∞ such that

c det(σ 2 I)−1/2 exp

(
−1

2
xTσ−2 Ix

)
≥ det(�)−1/2 exp

(
−1

2
xT�−1x

)
∀ x ∈ R

d

(2.8)

� is symmetric, so it has eigendecomposition� = Q	QT =⇒ �−1 = Q	−1QT,
where Q is an orthogonal matrix and 	 is a diagonal matrix with entries consisting
of the eigenvalues λ1, . . . , λd . The orthogonal transformation y = QTx also spans
R

d , so that (2.8) ⇐⇒

cσ−d exp

(
−1

2
yTσ−2 Iy

)
≥

(
d∏

i=1

λi

)−1/2

exp

(
−1

2
yT	−1y

)
, ∀ y ∈ R

d

⇐⇒ 2 log c ≥
d∑

i=1

(σ−2 − λ−1
i)y2i + 2d log σ −

d∑
i=1

log λi .

If σ−2 < λ−1
i for any i , then the right-hand side cannot be bounded above (since the

inequality must hold ∀ yi ∈ R), so we must have maxi λi < σ 2 and then clearly c
is minimised for σ 2 = maxi λi . Since every term in the first sum of the right-hand
side is necessarily negative, the right-hand side is maximal for yi = 0 ∀ i , so that the
optimal c is

c =
(
max

i
λi

)d/2
(

d∏
i=1

λi

)−1/2

,

when σ 2 = maxi λi .
In summary, there is a constraint on our proposal π̃(·) when it is an uncorrelated

multivariateNormal density, or else it cannot boundπ(·).Moreover, we can explicitly
compute the optimal proposal variance, σ 2, to give us the highest possible acceptance
rate.

To make this example concrete, consider rejection sampling in this setting where

� =

⎛
⎜⎜⎜⎝

1 0.9 · · · 0.9
0.9 1 · · · 0.9
...

...
. . .

...

0.9 0.9 · · · 1.

⎞
⎟⎟⎟⎠

Note that � can be written as 0.1I + B, where B is a matrix with 0.9 in every
element. The rank of B is 1, so it has a single non-zero eigenvalue which must
therefore equal tr(B) = 0.9d, and the eigenvalues of 0.1I are all 0.1. Further-

2 Sampling from Complex Probability Distributions: A Monte … 27

Table 2.1 Optimal proposal variance and acceptance probability for rejection sampling a correlated
multivariate Normal distribution using an uncorrelated multivariate Normal proposal

d σ 2 = maxi λi Acceptance probability 1
c

1 1 1

2 1.9 0.229

3 2.8 0.036

4 3.7 0.004

5 4.6 4.45 × 10−5

.

.

.
.
.
.

.

.

.

10 9.1 1.53 × 10−9

more, 0.1I and B commute, therefore the eigenvalues of � are the sum of these
eigenvalues: that is, λ1 = 0.9d + 0.1 and λi = 0.1 ∀ i �= 1. As the dimension of
π(·) increases, the spectral gap increases linearly and thus c grows very fast:
c = (10λ1)

(d−1)/2 = (9d + 1)(d−1)/2. Indeed, this is faster than exponential and faster
than factorial growth! Consequently, for growing dimension, the acceptance proba-
bility falls super-exponentially fast—not a desirable property. See Table2.1 for some
example values.

A whimsical observation to emphasise the problem: a modern laptop can pro-
duce roughly 15 million univariate Normal samples per second and the universe
is estimated to be 4.32 × 1017 seconds old. Ignoring the time to evaluate the uni-
form draw u or acceptance/rejection, this means the expected number of samples
that would be generated by Algorithm2.2 for this multivariate Normal problem in
d-dimensions—if run for as long as the universe has existed—would be

1.5 × 107 × 4.32 × 1017

d(9d + 1)(d−1)/2
.

Consequently, even knowing the exactly optimal choice for σ 2 in our proposal, this
would only be expected to render 5 samples for a 21-dimensionalmultivariateNormal
with the innocuous looking � given above—rejection sampling in high dimensions
can be problematic!

2.3.3 Importance Sampling

The final core standard Monte Carlo method we cover in this primer also starts from
the perspective of having a proposal density π̃(·), thoughwe no longer require it to be
able to bound π(·). Importance sampling then dispenses with the notion of directly
generating iid samples from π(·) and focuses on their use: in computing expectations
using those samples in (2.4).Consequently, importance samplingweights the samples

28 L. J. M. Aslett

from π̃(·) in precisely the proportion that ensures these weighted samples produce
expectations which are concordant with expectations under π(·) when used in (2.4).
This is laid out precisely in Algorithm2.3.

Algorithm 2.3 Importance sampling algorithm
1: procedure Importance sampling(π(·), π̃(·), c) Generate random sample from dis-

tribution with un-normalised density
π(·)

2: x ∼ π̃(·) Propose sample
3: w ← π(x)

π̃(x)
4: return (x,w).

5: end procedure

To see that this weighting has the desired effect, consider the expectation which
is our objective. We first consider the situation where both π and π̃ are normalised:

Eπ [f (X)] =
∫

�

f (x)π(x) dx

=
∫

�

f (x)
π̃(x)

π̃(x)
π(x) dx multiply and divide by π̃(x)

=
∫

�

(
f (x)

π(x)

π̃(x)

)
π̃(x) dx

= Eπ̃

[
f (X)π(X)

π̃(X)

]
.

That is, we use samples directly from π̃(·), and instead adjust (2.4) to target the
expectation of the same functional under π(·).

μ �
∫

�

f (x)π(x) dx ≈ 1

n

n∑
j=1

f (x j)
π(x j)

π̃(x j)︸ ︷︷ ︸
=wj

= 1

n

n∑
j=1

f (x j)wj � μ̂, (2.9)

where now x j ∼ π̃(·).
Some care is required, because although this estimator remains unbiased, the

variance is no longer going to be the same as the usual Monte Carlo variance where
x j ∼ π(·). Indeed, now

Var(μ̂) = σ 2
π̃

n
where σ 2

π̃ =
∫

�

(f (x)π(x) − μπ̃(x))2

π̃(x)
dx,

which can be empirically estimated from the importance samples using,

2 Sampling from Complex Probability Distributions: A Monte … 29

σ̂ 2
π̃ = 1

n

n∑
j=1

(
f (x j)wj − μ̂

)2
. (2.10)

As such,σ 2
π̃
(or its empirical estimate σ̂ 2

π̃
) provide a guide towhenwehave a ‘good’

importance sampling algorithm, since with π̃(·) fixed the only option to improve the
estimate is to increase the sample size n.

Indeed, it can be shown [15] that the theoretically optimal proposal distribution
which minimises the estimator variance is

π̃(x)opt = | f (x)|π(x)∫
�

| f (x)|π(x) dx
.

In particular, note that this implies that importance sampling can achieve super-
efficiency whereby it results in lower variance even than sampling directly from
π(·) when f (x) �= x . Specifically, if f (x) ≥ 0 ∀x then this proposal results in a
zero-variance estimator! Of course, in practice we cannot usually sample from and
evaluate this optimal proposal, since it is at least as difficult as the original problem
wewere attempting to solve. However, even though these optimal proposals are often
unusable, they provide guidance towards the form of a good proposal for any given
importance sampling problem.

2.3.3.1 Self-normalising Weights

The option to use rejection samplingwith un-normalised densities is very helpful (e.g.
in Bayesian settingswhere the normalising constant is often unknown).We can retain
this advantage with importance sampling by using self-normalising weights. The
algorithm to generate the weights remains as in Algorithm2.3, but the computation
of the estimator in (2.9) changes. The self-normalised version, rather than dividing
by n, uses the sum of the weights,

μ̂� �
∑n

j=1 f (x j)wj∑n
j=1 wj

,

thereby ensuring cancellation of the unknown normalising constant from the target
and/or proposal distributions in the weights.

However, it is important to note that this estimator is no longer unbiased, though
asymptotically it is. Additionally, the variance of this estimator is more complicated
having only approximate form. An approximate estimate can be computed using,

30 L. J. M. Aslett

Var(μ̂�) ≈ σ̂ �2
π̃

n
where σ̂ �2

π̃ =
n∑
j=1

w�2
j

(
f (x j) − μ̂�

)2

and w�
j = wj∑n

i=1 wi
.

Finally, the theoretically optimal (but usually unusable) proposal in the self-
normalised weight case is

π̃(x)opt ∝ | f (x) − μ|π(x).

In both regular and self-normalised weight settings, one can then compute appro-
priate confidence intervals in the usual manner.

2.3.3.2 Diagnostics

Additional care is required in the application of importance samplingwhen compared
to using iid samples from the distribution of interest. In particular, because importance
samplinguses aweighted collection of samples, it is not uncommon tobe in a situation
where a small number of samples with large weight dominate the estimate, so that
simply having many importance samples does not equate to good estimation overall.

A common diagnostic for potential weight imbalance is derived by equating the
variance of aweighted importance sampling approach to the standard iidMonteCarlo
variance for an average computed using a fixed but unknown sample size ne. Upon
simple algebraic rearrangement one may then solve for ne, the so-called effective
sample size. This informally corresponds to the size of iid Monte Carlo sample one
would expect to need to attain the same variance achieved via this importance sample,
so that a low value indicates poor weight behaviour (since that corresponds to few
iid samples).

Var

(∑n
i=1 f (xi)wi∑n

i=1 wi

)
= σ 2

ne
=⇒ ne = nw̄2

w2
,

where

w̄2 =
⎛
⎝1

n

n∑
j=1

wj

⎞
⎠

2

and w2 = 1

n

n∑
j=1

w2
j .

The reason to use such a diagnostic and not simply rely on the empirical variance
estimates above is that they are themselves based on the sampling procedure and
therefore may be poor estimates too.

Finally, it is critical to note that although small ne does diagnose a problem with
importance sampling, it is not necessarily true that large ne means everything is ok:

2 Sampling from Complex Probability Distributions: A Monte … 31

it is, for example, entirely possible that the sampler has missed whole regions of high
probability.

2.3.3.3 Example

Consider the toy problem of computingP(X > 3.09)when X is a univariate standard
Normal random variable. The R-language [26] computes the distribution function
of the standard Normal to at least 18 significant digits using a rational Chebyshev
approximation [6] (see /src/nmath/pnorm.c) and we know the true answer
to be 0.001001 (4 sf). However, if the reader suspends disbelief and imagines that
we cannot accurately compute the distribution function, but can only compute the
Normal density and draw random realisations from it, then evaluation of the above
probability might be approximated using Monte Carlo methods instead (given the
unbounded support and extreme tail location this may be preferred to numerical
integration).

Since we are assuming the ability to generate random realisations from the
Normal distribution, a standard Monte Carlo approach would draw many samples
xi ∼ N(0, 1) and compute

P(X > 3.09) = E
[
I[3.09,∞)(X)

] = 1

n

n∑
j=1

I[3.09,∞)(x j)

However, this will require many samples to achieve an accurate estimate of this tail
probability.

In contrast, still only using simulations from a Normal distribution, we may elect
to use importance sampling with a proposal N(m, 1) for some choice m. We know
the fully normalised density of a Normal distribution and therefore will be using the
estimator (2.9) with associated single sample variance which can be approximated
using (2.10). Therefore, to select m, we perform a small grid search over possible
proposals, computing σ̂ 2

π̃
each time, to find a good choice. This results in Fig. 2.4,

showing that a proposal N(3.25, 1) is a good choice.
A further final run of n = 100,000 samples renders an estimate μ̂ = 0.001002 (4

sf). The same pseudo-random number stream using standardMonte Carlo renders an
estimate 0.001140 (4 sf), which is a relative error 163× larger than the importance
sampling estimate. To demonstrate this is not a ‘fluke’ result, we continue to repeat
both importance sampling and standard Monte Carlo estimation with runs of size
n = 100,000 and plot the density of estimates of P(X > 3.09) in Fig. 2.5.

Note that Fig. 2.5 demonstrates how much more accurate importance sampling
is for the same sample size n = 100,000 when computing this event probability
compared to standardMonte Carlo. One may reasonably object that we have ignored
the 25 pilot runs of n =100,000 importance samples used to select m = 3.25, so
that the total computational effort expended on importance sampling was at least
26× that of standard Monte Carlo. However, it is a simple calculation to determine

32 L. J. M. Aslett

Fig. 2.4 The estimate of σ̂ 2
π̃
using (2.10) for 25 different values ofm in theNormal proposalN(m, 1)

used in an importance sampling estimator of P(X > 3.09), where X ∼ N(0, 1). Each estimate of
σ̂ 2

π̃
is based on n = 100, 000 samples. m varies on an equally spaced grid from 1.5 to 4.5. The

minimum is at m = 3.25

Fig. 2.5 A total of 10, 000 runs of both importance sampling and standardMonteCarlo, each of size
n = 100,000. Each run was used to compute the estimate of P(X > 3.09) where X ∼ N(0, 1) and
a kernel density plot of these estimates produced (importance sampling = dashed, standard Monte
Carlo = solid). The vertical line is the ground truth computed usingpnorm(3.09, lower.tail
= FALSE). The same pseudo-random number stream was used for each method to ensure a fair
comparison

that based on the standard deviation of the samples used to generate Fig. 2.5 and
the

√
n convergence of Monte Carlo, that it would require a standard Monte Carlo

sample of size n = 295×100,000 to achieve the same accuracy profile as importance
sampling. Therefore, even accounting for the pilot computational effort to select a
proposal distribution, there is a substantial benefit to using importance sampling.

2.4 Further Reading

A textbook length introduction with a solid emphasis on implementation details in
R can be found in [28]. The same authors have a more advanced textbook going into
the theoretical aspects more deeply [27]. Both these books also introduce Markov

2 Sampling from Complex Probability Distributions: A Monte … 33

Chain Monte Carlo methods, which are often used in practice in high dimensional
problems. A nice tutorial paper introduction to MCMC is [1] and [4] is an excellent
collection of chapters on the topic.

A classic Monte Carlo text is [10], which is now freely (and legally) available
online and contains many results not easily found elsewhere.

Although standard Monte Carlo and Markov Chain Monte Carlo arguably rep-
resent the mainstay of most practical uses of Monte Carlo, there are an array of
advancedmethodswhich are particularlywell suited to different settings. Someexcel-
lent review texts as jumping off points to explore some of these include [8] (Sequen-
tial Monte Carlo), [19, 20] (Approximate Bayesian Computation), [14] (Multi-Level
Monte Carlo), and [2] (MLMC in engineering reliability).

Excellent software choices for practically performing inference in complex mod-
els via sampling methods includes Stan [5] and Birch [23].

Dedication

This chapter is dedicated to the memory of Brett Houlding (1982–2019). The tragic
news of Brett’s passing was received while I was in the act of writing this chapter.
He will be sorely missed.

References

1. C. Andrieu, N. de Freitas, A. Doucet, andM. I. Jordan. An introduction toMCMC for Machine
Learning. Machine Learning, 50:5–43, 2003.

2. L. J.M.Aslett, T. Nagapetyan, and S. J. Vollmer.MultilevelMonte Carlo for Reliability Theory.
Reliability Engineering & System Safety, 165:188–196, 2017.

3. G. E. P. Box and M. E. Muller. A note on the generation of Normal deviates. Annals of
Mathematical Statistics, 29(2):610–611, 1958.

4. S. Brooks, A. Gelman, G. Jones, and X.-L. Meng, editors. Handbook of Markov Chain Monte
Carlo. Chapman and Hall/CRC, 2011.

5. B. Carpenter, A. Gelman, M. D. Hoffman, D. Lee, B. Goodrich, M. Betancourt, M. Brubaker,
J. Guo, P. Li, andA. Riddell. Stan: A probabilistic programming language. Journal of Statistical
Software, 76(1):1–32, 2017. https://mc-stan.org/.

6. W. J. Cody. Rational Chebyshev approximations for the error function. Mathematics of Com-
putation, 23(107):631–637, 1969.

7. D. R. Cox. Applied statistics: a review. The Annals of Applied Statistics, 1(1):1–16, 2007.
8. C. Dai, J. Heng, P. E. Jacob, andN.Whiteley. An invitation to sequentialMonte Carlo samplers,

2020. arXiv:2007.11936 [stat.CO].
9. H. Dai, M. Pollock, and G. O. Roberts. Monte Carlo Fusion. arXiv preprint arXiv:1901.00139,

2019.
10. L. Devroye. Non-Uniform Random Variate Generation. Springer-Verlag, New York, 1986.

Available at http://luc.devroye.org/rnbookindex.html.
11. G. Feng, E. Patelli, M. Beer, and F. P. A. Coolen. Imprecise system reliability and component

importance based on survival signature.Reliability Engineering&SystemSafety, 150:116–125,
2016.

https://mc-stan.org/
http://arxiv.org/abs/2007.11936
http://arxiv.org/abs/1901.00139
http://luc.devroye.org/rnbookindex.html

34 L. J. M. Aslett

12. N. Friel, R. Rastelli, J. Wyse, and A. E. Raftery. Interlocking directorates in Irish companies
using a latent space model for bipartite networks. Proceedings of the National Academy of
Sciences, 113(24):6629–6634, 2016.

13. J. E. Gentle. Random number generation and Monte Carlo methods. Springer Science &
Business Media, 2006.

14. M. B. Giles. Multilevel Monte Carlo methods. Acta Numerica, 24:259–328, 2015.
15. G. Goertzel. Quota sampling and importance functions in stochastic solution of particle prob-

lems, volume 2793. US Atomic Energy Commission, Technical Information Division, 1950.
16. J. Haslett, M. Whiley, S. Bhattacharya, M. Salter-Townshend, S. P. Wilson, J. R. M. Allen,

B. Huntley, and F. J. G. Mitchell. Bayesian palaeoclimate reconstruction. Journal of the Royal
Statistical Society: Series A (Statistics in Society), 169(3):395–438, 2006.

17. B. Houlding and S. P. Wilson. Considerations on the UK re-arrest hazard data analysis. Law,
Probability & Risk, 10(4):303–327, 2011.

18. A. J. Kinderman and J. G. Ramage. Computer generation of Normal random variables. Journal
of the American Statistical Association, 71(356):893–896, 1976.

19. J. M. Marin, P. Pudlo, C. P. Robert, and R. J. Ryder. Approximate Bayesian computational
methods. Statistics and Computing, 22(6):1167–1180, 2012.

20. P. Marjoram, J. Molitor, V. Plagnol, and S. Tavaré. Markov chain Monte Carlo without likeli-
hoods. PNAS, 100(26):15324–15328, 2003.

21. G. Marsaglia. Random number generators. Journal of Modern Applied Statistical Methods,
2(1):2, 2003.

22. M. Matsumoto and T. Nishimura. Mersenne twister: a 623-dimensionally equidistributed uni-
form pseudo-random number generator. ACM Transactions on Modeling and Computer Sim-
ulation (TOMACS), 8(1):3–30, 1998.

23. L.M.Murray and T. B. Schön. Automated learningwith a probabilistic programming language:
Birch. Annual Reviews in Control, 46:29–43, 2018. https://www.birch.sh/.

24. A. B. Owen. Monte Carlo theory, methods and examples. 2013.
25. M. Pollock, A.M. Johansen, and G. O. Roberts. On the exact and ε-strong simulation of (jump)

diffusions. Bernoulli, 22(2):794–856, 2016.
26. R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for

Statistical Computing, Vienna, Austria, 2019.
27. C. P. Robert and G. Casella. Monte Carlo Statistical Methods. Springer-Verlag New York,

2004.
28. C. P. Robert and G. Casella. Introducing Monte Carlo Methods with R. Springer, New York,

NY, 2010.
29. S. P. Wilson and M. J. Costello. Predicting future discoveries of European marine species by

using a non-homogeneous renewal process. Journal of the Royal Statistical Society: Series C,
54(5):897–918, 2005.

30. E. Zio, P. Baraldi, and E. Patelli. Assessment of the availability of an offshore installation by
Monte Carlo simulation. International Journal of Pressure Vessels and Piping, 83(4):312–320,
2006.

https://www.birch.sh/

2 Sampling from Complex Probability Distributions: A Monte … 35

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	2 Sampling from Complex Probability Distributions: A Monte Carlo Primer for Engineers
	2.1 Motivation
	2.1.1 Generality of Expectations
	2.1.2 Why Consider Monte Carlo?

	2.2 Monte Carlo Estimators
	2.3 Simple Monte Carlo Sampling Methods
	2.3.1 Inverse Sampling
	2.3.2 Rejection Sampling
	2.3.3 Importance Sampling

	2.4 Further Reading
	References

