
Chapter 1
Introduction to Bayesian Statistical
Inference

Georgios P. Karagiannis

Abstract We present basic concepts of Bayesian statistical inference. We briefly
introduce the Bayesian paradigm. We present the conjugate priors; a computational
convenient way to quantify prior information for tractable Bayesian statistical anal-
ysis. We present tools for parametric and predictive inference, and particularly the
design of point estimators, credible sets, and hypothesis tests. These concepts are
presented in running examples. Supplementary material is available from GitHub.

1.1 Introduction

Statistics mainly aim at addressing two major things. First, we wish to learn or
draw conclusions about an unknown quantity, θ ∈ � called ‘the parameter’, which
cannot be directly measured or observed, by measuring or observing a sequence of
other quantities called ‘observations (or data, or samples)’ x1:n := (x1, . . . , xn) ∈ Xm

whose generating mechanism is (or can be considered as) stochastically dependent
on the quantity of interest θ though a probabilistic model x1:n ∼ f (·|θ). This is an
inverse problem since wewish to study the cause θ by knowing its effect x1:n .Wewill
refer to this as parametric inference. Second, we wish to learn the possible values of
a future sequence of observations y1:m ∈ Xm given x1:n . This is a forward problem,
and we will call it predictive inference. Here, we present how both inferences can be
addressed in the Bayesian paradigm.1

Consider a sequence of observables x1:n := (x1, . . . , xn) generated from a sam-
pling distribution f (·|θ) labeled by the unknown parameter θ ∈ �. The statistical
model m consists of the observations x1:n , and their sampling distribution f (·|θ) ;
m = ( f (·|θ); θ ∈ �).

1https://github.com/georgios-stats/UTOPIAE-Bayes.
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Unlike in Frequentist statistics, in Bayesian statistics unknown/uncertain parame-
ters are treated as random quantities and hence follow probability distributions. This
is justified by adopting the subjective interpretation of probability [4], as the degree
of the researcher’s believe about the uncertain parameter θ . Central to the Bayesian
paradigm is the specification of the so-called prior distributions dπ(θ) on the uncer-
tain parameters θ representing the degree of believe (or state of uncertainty) of the
researcher about the parameter. Different researchers may specify different prior
probabilities, as this is in accordance to the subjective nature of the probability. The
specification of the prior is discussed in Sect. 1.2.

The Bayesian model consists of the statistical model f (x1:n|θ) containing the
information about θ available from the observed data x1:n , and the prior distribution
π(θ) reflecting the researcher’s believe about θ before the data collection. It is denoted
as

( f (x1:n|θ), π(θ)) or as

{
x1:n|θ ∼ f (·|θ)

θ ∼ π(·) .

Bayesian parametric inference relies on the posterior distribution π(θ |x1:n)whose
density or mass function (PDF or PMF) is calculated by using the Bayes theorem

π(θ |x1:n) = f (x1:n|θ)π(θ)∫
�
f (x1:n|θ)π(dθ)

(1.1)

as a tool to invert the conditioning from x1:n|θ to θ |x1:n . Posterior distribution (1.1)
quantifies the researcher’s degree of believe after taking into account the observations.
By using subjective probability arguments, we can see interpret (1.1) as amechanism
that updates the researcher’s degree of believe from the prior π(θ) to the posterior
π(θ |x1:n) in the light of the observations collected.

Bayesian predictive inference about a future observation y∗ can be addressed
based on the predictive distribution defined as

p(y|x1:n) =
∫

�

f (y|θ)π(dθ |x1:n) = Eπ ( f (y|θ)|x1:n). (1.2)

Essentially, it is the expected value of the sampling distribution averaging out
the uncertain parameter θ with respect to its posterior distribution reflecting the
researcher’s degree of believe.

Although the posterior and predictive distributions quantify the researcher’s
knowledge, they are not enough to give a solid answer about the quantity to be
learned. In what follows we discuss important concepts based on decision theory
which are used for Bayesian inference.
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1.2 Specification of the Prior

Prior distribution π(θ) needs to reflect the researcher’s degree of believe about the
uncertain parameter θ ∈ �. Sophisticated prior distributions often lead to ineluctable
posterior or predictive probabilities, and hence Bayesian analysis. Following, we
present a computationally convenient class of priors applicable to several scenarios.

1.2.1 Conjugate Priors

Conjugate priors is a mathematically convenient way to specify the prior model in
certain cases. They facilitate the tractable implementation of the Bayesian statistical
analysis, by leading to computationally tractable posterior distributions.

Formally, if F = { f (·|θ); ∀θ ∈ �} is a class of parametric models (sampling
distributions), and P = {π(θ |τ); ∀τ } is a class of prior distributions for θ , then the
class P is conjugate for F if

π(θ |x1:n) ∈ P, ∀ f (·|θ) ∈ F andπ(·) ∈ P.

It is straightforward to specify a conjugate prior when the sampling distribution
is member of the exponential family. Consider observation xi generated from a sam-
pling distribution in the exponential family

xi |θ IID∼ Efk(u, g, h, φ, θ, c); i = 1, . . . , n

with density Efk(x |u, g, h, φ, θ, c) = u(x)g(θ) exp(
∑k

j=1 c jφ j (θ)(
∑n

i=1 h j (x)))

and g(θ) = 1/
∫
u(x) exp(

∑k
j=1 c jφ j (θ)(

∑n
i=1 h j (x)))dx . The likelihood function

is equal to

f (x1:n|θ) =
n∏

i=1

u(xi )g(θ)n exp(
k∑
j=1

c jφ j (θ)(

n∑
i=1

h j (xi ))). (1.3)

The conjugate prior, corresponding to likelihood (1.3), admits density of the form

π(θ |τ) = 1

K (τ )
g(θ)τ0 exp(

k∑
j=1

c jφ j (θ)τ j ) (1.4)

where τ = (τ0, . . . , τk) is such that K (τ ) = ∫
�
g(θ)τ0 exp(

∑k
j=1 c jφ j (θ)τ j )dθ <

∞. The resulting posterior of θ has the form
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π(θ |x1:n, τ ) = 1

K (τ ∗)
g(θ)τ

∗
0 exp(

k∑
j=1

c jφ j (θ)τ ∗
j ))

with τ ∗ = (τ ∗
0 , τ ∗

1 , . . . , τ ∗
k ), τ ∗

0 = τ0 + n, and τ ∗
j = ∑n

i=1 h j (xi ) + τ j for j = 1,
. . . , k.

It is easy to see that (1.4) is conjugate to (1.3) as the posterior can be re-written
as π(θ |x1:n, τ ) = π(θ |τ ∗) where τ ∗ = τ + tn(x1:n), and tn(x1:n) = (n,

∑n
i=1 h1(xi ),

. . . ,
∑n

i=1 hk(xi )). You can check the demo in.2

Example: Bernoulli model (Cont.)

Consider observations x1:n = (x1, . . . , xn) ∈ R
n generated from a Bernoulli distri-

bution with success rate θ ∈ [0, 1]; i.e., xi |θ ∼ Br(θ), i = 1, . . . , n. Interest lies in
specifying a conjugate prior for θ .

The sampling distribution is member of the exponential family, with u(x) = 1,
g(θ) = (1 − θ), c1 = 1, φ1(θ) = log( θ

1−θ
), h1(x) = x , because

f (x |θ) = Br(x |θ) = θ x (1 − θ)1−x = (1 − θ) exp(log(
θ

1 − θ
)x).

The corresponding conjugate prior has PDF such as

π(θ |τ) ∝ (1 − θ)τ0 exp(log(
θ

1 − θ
)τ1) = θ(τ1+1)−1(1 − θ)(τ0−τ1+1)−1,

where we recognize Beta distribution π(θ |τ) = Be(θ |a, b), with a = τ1 + 1, b =
τ0 − τ1 + 1. Therefore, the posterior distribution is

π(θ |x1:n, τ ) = π(θ |τ0 + n, τ +
n∑

i=1

h(xi )) ∝ θ(τ1+nx̄+1)−1(1 − θ)(τ0+n−τ1−nx̄+1)−1

which is Be(θ |a∗, b∗), with a∗ = a + nx̄ , and b∗ = b + n − nx̄ .

1.3 Point Estimation

Often interest lies in learning the ‘true’ value of the unknown parameter θ ∈ �, or the
future values of a future sequence of observations y1:m ∈ Xm ; this is performed via
the Bayesian point estimator. Here, we demonstrate the theory of the Bayesian point
estimator in parametric inference, and leave the extension to the predictive inference
to the reader.

2 Web-applet: https://georgios-stats-1.shinyapps.io/demo_conjugatepriors/.

https://georgios-stats-1.shinyapps.io/demo_conjugatepriors/
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Bayes (parametric) point estimator of θ ∈ � with respect to the loss function
�(θ, δ) and the posterior distribution π(θ |x1:n) is an Bayes rule δπ which minimizes∫
�

�(θ, δ)π(dθ |x1:n); i.e.,

δπ (x1:n) = arg min∀δ∈�
Eπ (�(θ, δ)|x1:n) = arg min∀δ∈�

∫
�

�(θ, δ)π(dθ |x1:n). (1.5)

Often the accuracy of the Bayes point estimator is represented by its standard error.
A commonly accepted metric for the standard error of the j-th dimension of the
estimator δπ is

seπ (δ j |x1:n) = √
MSEπ (δ j |x1:n)

where MSEπ (δ j |x1:n) = [Eπ

(
(θ − δ)(θ − δ)�|x1:n

)] j, j is the mean squared error of
δ j .

A number of standard Bayesian point estimates, under different loss functions,
are location summary statistics of the posterior distribution (mean, median, mode,
quantiles, etc.) You can check the demo in.3

The Bayesian estimate of θ with respect to the linear loss �(θ, δ) = c1(δ −
θ)1θ≤δ(δ) + c2(θ − δ)1{θ≤δ}c(δ) is the c2

c1+c2
-th posterior quantile; i.e., π(θ ∈ (−∞,

δ(x1:n))|x1:n) = c2
c1+c2

. The linear loss function essentially allows the adjustment of
the penalty between over-estimating and under-estimating θ , by adjusting c1and c2.
In particular, for c1 = c2, we get the absolute loss �(θ, δ) = |θ − δ| and the posterior
estimator is the posterior median

δ(x1:n) = medianπ (θ |x1:n). (1.6)

The absolute loss is more appropriate when over-estimation and under-estimation
are of the same concern (as penalized the same).

The Bayes estimate δπ (x1:n) of θ with respect to the quadratic loss function
�(θ, δ) = (θ − δ)2 is

δπ (x1:n) = Eπ (θ |x1:n). (1.7)

The posterior mean of θ as an estimator of θ essentially minimizes the estimator error
seπ (δ|x1:n), which is equal to the posterior standard error. Obviously, the standard
error of the estimator (1.7) is equal to the posterior standard error. Compared to the
absolute loss, the quadratic loss aims at over-penalizing large but unlikely errors. In
fact, quadratic loss aims at minimizing the standard error seπ (δ|x1:n).

Finally, the Bayesian estimate of θ with respect to the zero-one loss �(θ, δ) =
1 − 1Bε (δ)(θ) is the posterior mode

δ(x1:n) = modeπ (θ |x1:n) (1.8)

as ε → 0.

3 Web-applet: https://georgios-stats-1.shinyapps.io/demo_PointEstimation/.

https://georgios-stats-1.shinyapps.io/demo_PointEstimation/
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Example: Bernoulli model (Cont.)

Interest lies in calculating the Bayesian point estimator under the absolute loss
function. This is the Maximum A posteriori Estimator (the posterior mode). It is

log(π(θ |x1:n)) ∝ (nx̄ + a − 1) log(θ) + (n − nx̄ + b − 1) log(1 − θ).

For a > 0, b > 0, d
dθ log(π(θ |x1:n))|p=δ(x) = 0 implies δ(x) = nx̄+a−1

n+a+b−2 . Note that
(a.) if a → 1, b → 1 (aka π(θ |a, b) ∝ 1), then δπ (x) = x̄ similar to frequentists
stats; (b.) if a → 0, b → 0 (aka π(θ |a, b) ∝ θ−1(1 − θ)−1), then δ(x) = nx̄−1

n−2 ; if

a → 1/2, b → 1/2 (akaπ(θ |a, b) ∝ θ−1/2(1 − θ)−1/2), then δ(x) = nx̄−1/2
n−1 ; if n →

∞, a > 0, b > 0, then δ(x) = x̄ .

1.4 Credible Sets

Instead of just reporting parametric (or predictive) point estimates for θ (or y1:m), it
is often desirable and more useful to report a subset of values Ca ⊆ � (or Ca ⊆ Xm)
where the posterior (or predictive) probability that θ ∈ Ca (or y1:m ∈ Ca) is equal to
a certain value a reflecting one’s degree of believe.

The definition below describes the credible set [1, 5].

Definition 1.1 (Posterior Credible Set) A set Ca ⊆ � such that

π(θ ∈ Ca|x1:n) =
∫
Ca

π(dθ |x1:n) ≥ 1 − a

is called ‘100(1 − a)%’ posterior credible set for θ , with respect to the posterior
distribution π(dθ |x1:n).
In contrast to the frequentist stats, in Bayesian stats we can speak meaningfully of
the probability that θ is in Ca , because probability 1 − a reflects one’s degree of
believe that θ ∈ Ca .

Among all the credible sets Ca in Definition 1.1, we are often interested in those
that have the minimum volume. It can be proved [2] that the highest probability
density (HPD) sets have this property. HPD consider those values of θ corresponding
to the highest posterior pdf/pmf (aka the most likely values of θ ).

Definition 1.2 (Posterior highest probability density (HPD) set) The 100(1 − a)%
highest probability density set for θ ∈ � with respect to the posterior distribution
π(θ |x1:n) is the subset Ca of � of the form

Ca = {θ ∈ � : π(θ |x1:n) ≥ ka} (1.9)

where ka is the largest constant such that
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π(θ ∈ Ca|x1:n) ≥ 1 − a. (1.10)

From the decision theory perspective, HPD set Ca is the Bayes estimate of Ca the
credible interval under the loss function �(Ca, θ) = k|Ca| − 1Ca (θ), for k > 0 which
penalizes sets with larger volumes. The proof is available in [2].

Example: Multivariate Normal model

Consider observations x1, . . . , xn independently drawn fromaq-dimensional normal
Nq(μ,
) with unknown μ ∈ R

q , q ≥ 1, and known 
, μ0, 
0. Assume prior μ ∼
Nq(μ0, 
0). Interest lies in calculating the Ca parametric HPD credible interval for
μ.

The posterior PDF of μ is

π(μ|x1:n) ∝ f (x1:n|μ)π(μ) =
n∏

i=1

Nq(xi |μ,
)Nq(μ|μ0, 
0)

∝ exp(−1

2
(μ − μ̂n)

T 
̂−1
n (μ − μ̂n)) ∝ Nq(μ|μ̂n, 
̂n)

where 
n = (n
−1 + 
−1
0 )−1, and μ̂n = 
̂n(n
−1 x̄ + 
−1

0 μ0). So μ|x1:n ∼ Nq

(μ̂n, 
̂n).
From Definition 1.2, the credible set has the form

Ca = {μ ∈ R
q : π(μ|x1:n) ≥ ka}

= {μ ∈ R
q : (μ − μ̂n)

T 
̂−1
n (μ − μ̂n) ≤ − log(2π det(
̂n)))ka = k̃a}

where ka is the greatest value satisfying

πNq (μ̂n ,
̂n)
(μ ∈ Ca|x1:n) ≥ 1 − a ⇐⇒

πχ2
q
((μ − μ̂n)

T 
̂−1
n (μ − μ̂n) ≤ k̃a) ≥ 1 − a. (1.11)

Here, (μ − μ̂n)
T 
̂−1

n (μ − μ̂n) ∼ χ2
q as a sum of squares of independent standard

normal random variables, and hence k̃a is the 1 − a-th quantile of the χ2
q distribution;

i.e., k̃a = χ2
q,1−a . Therefore, Ca parametric HPD credible set for μ is

Ca = {μ ∈ R
q : (μ − μ̂n)

T 
̂−1
n (μ − μ̂n) ≤ χ2

q,1−a}
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Fig. 1.1 Schematic of 1D HPD set

In real applications, the calculation of the credible interval might be intractable,
due to the inversion in (1.9) or integration in (1.10). Below, we present a Naive
algorithm [1] that can be implemented in a computer.4

• Create a routine which computes all solutions θ∗ to the equation π(θ |x1:n) = ka ,
for a given ka . Typically, Ca = {θ ∈ � : π(θ |x1:n) ≥ ka} can be constructed from
those solutions.

• Create a routine which computes π(θ ∈ Ca|x1:n) = ∫
θ∈Ca

π(θ |x1:n)dθ
• Numerically solve the equation π(θ ∈ Ca|x1:n) = 1 − a as ka varies.

Figure 1.1 demonstrates the above procedure in 1D unimodal and tri-modal cases.
Specifically, the red horizontal bar denotes ka moves upwards, and intersects the
density at locations which are the potential boundaries of Ca . The bar stops to move
when the total density above regions of the parametric space is equal to 1 − α. The
HPD credible set results as the union of these sub-regions. You can check the demo
in.5

Theorem 1.1 suggests a computationally convenient way to calculate HPD cred-
ible intervals in 1D, and unimodal cases. The proof is available in [3].

Theorem 1.1 Let θ follows a distribution with unimodal density π(θ |x1:n). If the
interval Ca = [L ,U ] satisfies
1.

∫ U
L π(θ |x1:n)dθ = 1 − a,

2. π(U ) = π(L) > 0, and
3. θmode ∈ (L ,U ), where θmode is the mode of π(θ |x1:n),
then interval Ca = [L ,U ] is the HPD interval of θ with respect to π(θ |x1:n).

4 Web-applet: https://georgios-stats-1.shinyapps.io/demo_crediblesets/.
5 Web-applet: https://georgios-stats-1.shinyapps.io/demo_crediblesets/.

https://georgios-stats-1.shinyapps.io/demo_crediblesets/
https://georgios-stats-1.shinyapps.io/demo_crediblesets/
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Example: Bernoulli model (Cont.)

Interest lies in calculating the 2-sides 95% HPD interval for θ , given a sample with
n = 30, and

∑30
i=1 xi = 15, and prior hyper-parameters a = b = 2.

The posterior distribution of θ is Be(a + nx̄ = 17, b + n − nx̄ = 17), which is
1D and unimodal; hence we use Theorem 1.1. It is

1 − a =
∫ U

L
Be(θ |17, 17)dθ = Be(θ < U |17, 17) − Be(p < L|17, 17).

Note that Beta PDF is symmetric around 0.5 when a∗ = b∗, and so is here where
Be(17, 17). Then,

1 − a = Be(θ < U |17, 17) − (1 − Be(θ < U |17, 17)) = 2Be(θ < U |17, 17) − 1

so Be(θ < U |17, 17) = 1 − a/2 and L = 1 −U . For a = 0.95, the 95% posterior
credible interval for θ is [L ,U ] = [0.36, 0.64].

Remark 1.1 Predictive credible sets for a future sequence of observations y1:m , are
defined and constructed as parametric ones by replacing θ with y1:m and π(x1:n|θ)

with p(y1:m |x1:n) in Definitions 1.1 and 1.2, and their consequences in this section.
It is left as an Exercise.

1.5 Hypothesis Test

Often there is interest in reducing the overall parametric space � (aka the set of
possible values of that the uncertain parameter θ can take) to a smaller subset. For
instance; whether the proportion of Brexiters is larger than 0.5 (p > 0.5) or not
(p ≤ 0.5).

Such a decision can be formulated as a hypothesis test [1], namely the decision
procedure of choosing between two non-overlapping hypotheses

H0 : θ ∈ �0 vs H1 : θ ∈ �1 (1.12)

where {�0,�1} partitions the space �. Typically, hypotheses, {Hk}, are categorized
in three categories. Single hypothesis for θ is called the hypothesis where � j = {θ j }
contains a single element. Composite hypothesis for θ is called the hypothesis where
� j ⊆ � contains many elements. General alternative hypothesis for θ is called the
composite hypothesis where �1 = � − {θ0} when it is compared against a single
hypothesis H0 : θ = θ0. It is denoted as H1 : θ �= θ0.

Based on the partitioning implied by (1.12), the overall prior π can be expressed
as π(θ) = π0 × π0(θ) + π1 × π1(θ)where πk = ∫

�k
π(dθ), and πk(θ) = π(θ)1�k (θ)∫

�k
π(dθ)

.
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Here, π0, and π1 describe the prior probabilities on H0 and H1, respectively, while
π0(θ) and π1(θ) describe how the prior mass is spread out over the hypotheses H0

and H1, respectively.
We could see the hypothesis testing (1.12) as parametric point inference about the

indicator function

1�1(θ) =
{
0 , θ ∈ �0

1 , θ ∈ �1
. (1.13)

To estimate (1.13), a reasonable loss function �(θ, δ) would be the cI − cII loss
function

�(θ, δ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
0 , if θ ∈ �0, δ = 0

0 , if θ /∈ �0, δ = 1

cII , if θ /∈ �0, δ = 0

cI , if θ ∈ �0, δ = 1

(1.14)

where cI > 0 and cII > 0 are specified by the researcher. Here, cI > 0 (and cII > 0)
denote the loss if we decide to accept H0 (and H1) while the correct answer would be
to choose H1 (H0). According to (1.5), under (1.14), the Bayes estimator of (1.13) is

δ(x1:n) =
{
0 , if π(θ ∈ �0|x1:n) > cII

cII+cI

1 , otherwise
(1.15)

where π(θ ∈ �0|x1:n) = ∫
�0

π(dθ |x1:n). In other words, hypothesis H1 is accepted

if π(θ∈�0|x1:n)
π(θ∈�1|x1:n) < cII

cI
.

Hypothesis tests in Bayesian statistics can also be addressed with the aid of Bayes
factors. Bayes factor B01(x1:n) is the ratio of the posterior probabilities of H0 and H1

over the ratio of the prior probabilities of H0 and H1

B01(x1:n) = π(θ ∈ �0|x1:n)/π(θ ∈ �0)

π(θ ∈ �1|x1:n)/π(θ ∈ �1)
(1.16)

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

f (x1:n |θ0)
f (x1:n |θ1) ;H0 : single vsH1 : single∫
�0

f (x1:n |θ)π0(dθ)∫
�1

f (x1:n |θ)π1(dθ)
;H0 : composite vsH1 : composite

f (x1:n |θ0)∫
�1

f (x1:n |θ)π1(dθ)
;H0 : single vsH1 : composite

. (1.17)

Under the cI − cII loss function, (1.15) implies that onewould acceptH0 if B01(x1:n) >
cII
cI

π1
π0
, and accept H1 if otherwise. Alternatively, Jeffreys [6] developed a scale rule

(Table 1.1) to judge the strength of evidence in favor of H0 or against H0 brought by
the data. Although Jeffreys’ rule avoids the need to specify cI and cI I , it is a heuris-
tic rule-of-thumb guide, not based on decision theory concepts, and hence many
researchers argue against its use.
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Table 1.1 Jeffreys’ scale rule [6]

B01 log10(B01) Strength of evidence

(1,+∞) (0,+∞) H0 is supported

(10−1/2, 1) (−1/2, 0) Evidence against H0: not
worth more than a bare

(10−1, 10−1/2) (−1,−1/2) Evidence against H0:
substantial

(10−3/2, 10−1) (−3/2,−1) Evidence against H0: strong

(10−2, 10−3/2) (−2,−3/2) Evidence against H0: very
strong

(0, 10−2) (−∞,−2) Evidence against H0: decisive

Example: Bernoulli model (Cont.)

We are interested in testing the hypotheses H0 : θ = 0.5 and H1 : θ �= 0.5, given
that π0 = 1/2, and using the cI − cII loss function with cI = cII. Here, �0 =
{0.5} and �1 = [0, 0.5) ∪ (0.5, 1]. The overall prior is π(θ) = π01θ0(θ) + (1 −
π0)Be(θ |a, b). The Bayes factor is

B01(x1:n) =
∏n

i=1 Br(xi |θ0)∫
(0,1)

∏n
i=1 Br(xi |θ)Be(θ |a, b)dθ

= θ
x∗
0 (1 − θ0)

n−x∗

B(nx̄ + a, n − nx̄ + b)/B(a, b)
.

Given a = b = 2, n = 30, and
∑30

i=1 xi = 15, it is B01(x1:n) = 18.47 > cII/cI = 1.
Hence, we accept H1.

1.5.1 Model Selection

Often the researcher is uncertain which statistical model (sampling distribution) can
better represent the real data generating process. There is a setM = {m1,m2, . . .} of
candidate statistical models mk = { fk(·|ϕk); ϕk ∈ Φk}, where fk(·|ϕk) denotes the
sampling distribution, and ϕk denotes the unknown parameters for k = 1, 2, . . . Let
πk = π(mk) denote the marginal model prior and πk(ϕk) = π(ϕk |mk) denote the
prior of the unknown parameters ϕk of given model mk .

Selection of the ‘best’ model from a set of available candidate models can be
addressed via hypothesis testing. For simplicity, we consider there are only two
models m0 and m1 with unknown parameters ϑ0 ∈ Φ0 and ϑ1 ∈ Φ1. Then, model
selection is performed as a hypothesis test

H0 : (m, ϕ) ∈ �0 vs H1 : (m, ϕ) ∈ �1 (1.18)
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where�k = {mk} × Φk ,� = ∪k�k . The overall joint prior is specified asπ(m, ϕ) =
π0 × π0(ϕ0) + π1 × π1(ϕ1) on (m, ϕ) ∈ � where � = ∪k�k , where πk(ϕk) =
π(m,ϕ)1mk (m)∫

Φk
π(m,dϕ)

on ϕk ∈ Φk , and πk = ∫
�k

π(mk, dϕk). Now the model selection prob-

lem has been translated into a hypothesis test.

Example: Negative binomial vs. Poisson model [2]

We are interested in testing the hypotheses

H0 : xi |φ ∼ Nb(φ, 1), φ > 0, vs. H1 : xi |λ ∼ Pn(λ), λ > 0

by using the cI − cII loss functionwith cI = cII. Consider two observations x1 = x2 =
2 are available. Consider overall prior π(θ) with density π(θ) = π0Be(φ|a0, b0) +
π1Ga(λ|a1, b1) with π0 = π1 = 0.5.

This is a composite vs. composite hypothesis test. It is

∫
�0

f (x1:n|ϕ0)π0(dϕ0) = �(a0 + b0)

�(a0)�(b0)

∫ 1

0
φn+a0−1(1 − φ)nx̄+b0−1dφ

= �(a0 + b0)

�(a0)�(b0)

�(n + a0)�(nx̄ + b0)

�(n + nx̄ + a0 + b0)

∫
�1

f (x1:n|ϕ1)π1(dϕ1) = ba11
�(a1)(n + b1)nx̄+a1

∫ ∞

0
λnx̄+a1−1 exp(−(n + b1)λ)dλ

= �(nx̄ + a1)

�(a1)(n + b1)nx̄+a1

1∏n
i=1 xi !

and hence B01(x1:n) = �(a0+b0)
�(a0)�(b0)

�(n+a0)�(nx̄+b0)
�(n+nx̄+a0+b0)

�(a1)(n+b1)nx̄+a1

�(nx̄+a1)

∏n
i=1 xi ! . It is B01(x1:n)

= 0.29 > 1, and hence I accept H1 and the Poisson model.
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