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overview of statistical methods. Then attention shifts to reliability theory and simula-
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Chapter 1
Introduction to Bayesian Statistical
Inference

Georgios P. Karagiannis

Abstract We present basic concepts of Bayesian statistical inference. We briefly
introduce the Bayesian paradigm. We present the conjugate priors; a computational
convenient way to quantify prior information for tractable Bayesian statistical anal-
ysis. We present tools for parametric and predictive inference, and particularly the
design of point estimators, credible sets, and hypothesis tests. These concepts are
presented in running examples. Supplementary material is available from GitHub.

1.1 Introduction

Statistics mainly aim at addressing two major things. First, we wish to learn or
draw conclusions about an unknown quantity, θ ∈ � called ‘the parameter’, which
cannot be directly measured or observed, by measuring or observing a sequence of
other quantities called ‘observations (or data, or samples)’ x1:n := (x1, . . . , xn) ∈ Xm

whose generating mechanism is (or can be considered as) stochastically dependent
on the quantity of interest θ though a probabilistic model x1:n ∼ f (·|θ). This is an
inverse problem since wewish to study the cause θ by knowing its effect x1:n .Wewill
refer to this as parametric inference. Second, we wish to learn the possible values of
a future sequence of observations y1:m ∈ Xm given x1:n . This is a forward problem,
and we will call it predictive inference. Here, we present how both inferences can be
addressed in the Bayesian paradigm.1

Consider a sequence of observables x1:n := (x1, . . . , xn) generated from a sam-
pling distribution f (·|θ) labeled by the unknown parameter θ ∈ �. The statistical
model m consists of the observations x1:n , and their sampling distribution f (·|θ) ;
m = ( f (·|θ); θ ∈ �).

1https://github.com/georgios-stats/UTOPIAE-Bayes.
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2 G. P. Karagiannis

Unlike in Frequentist statistics, in Bayesian statistics unknown/uncertain parame-
ters are treated as random quantities and hence follow probability distributions. This
is justified by adopting the subjective interpretation of probability [4], as the degree
of the researcher’s believe about the uncertain parameter θ . Central to the Bayesian
paradigm is the specification of the so-called prior distributions dπ(θ) on the uncer-
tain parameters θ representing the degree of believe (or state of uncertainty) of the
researcher about the parameter. Different researchers may specify different prior
probabilities, as this is in accordance to the subjective nature of the probability. The
specification of the prior is discussed in Sect. 1.2.

The Bayesian model consists of the statistical model f (x1:n|θ) containing the
information about θ available from the observed data x1:n , and the prior distribution
π(θ) reflecting the researcher’s believe about θ before the data collection. It is denoted
as

( f (x1:n|θ), π(θ)) or as

{
x1:n|θ ∼ f (·|θ)

θ ∼ π(·) .

Bayesian parametric inference relies on the posterior distribution π(θ |x1:n)whose
density or mass function (PDF or PMF) is calculated by using the Bayes theorem

π(θ |x1:n) = f (x1:n|θ)π(θ)∫
�
f (x1:n|θ)π(dθ)

(1.1)

as a tool to invert the conditioning from x1:n|θ to θ |x1:n . Posterior distribution (1.1)
quantifies the researcher’s degree of believe after taking into account the observations.
By using subjective probability arguments, we can see interpret (1.1) as amechanism
that updates the researcher’s degree of believe from the prior π(θ) to the posterior
π(θ |x1:n) in the light of the observations collected.

Bayesian predictive inference about a future observation y∗ can be addressed
based on the predictive distribution defined as

p(y|x1:n) =
∫

�

f (y|θ)π(dθ |x1:n) = Eπ ( f (y|θ)|x1:n). (1.2)

Essentially, it is the expected value of the sampling distribution averaging out
the uncertain parameter θ with respect to its posterior distribution reflecting the
researcher’s degree of believe.

Although the posterior and predictive distributions quantify the researcher’s
knowledge, they are not enough to give a solid answer about the quantity to be
learned. In what follows we discuss important concepts based on decision theory
which are used for Bayesian inference.
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1.2 Specification of the Prior

Prior distribution π(θ) needs to reflect the researcher’s degree of believe about the
uncertain parameter θ ∈ �. Sophisticated prior distributions often lead to ineluctable
posterior or predictive probabilities, and hence Bayesian analysis. Following, we
present a computationally convenient class of priors applicable to several scenarios.

1.2.1 Conjugate Priors

Conjugate priors is a mathematically convenient way to specify the prior model in
certain cases. They facilitate the tractable implementation of the Bayesian statistical
analysis, by leading to computationally tractable posterior distributions.

Formally, if F = { f (·|θ); ∀θ ∈ �} is a class of parametric models (sampling
distributions), and P = {π(θ |τ); ∀τ } is a class of prior distributions for θ , then the
class P is conjugate for F if

π(θ |x1:n) ∈ P, ∀ f (·|θ) ∈ F andπ(·) ∈ P.

It is straightforward to specify a conjugate prior when the sampling distribution
is member of the exponential family. Consider observation xi generated from a sam-
pling distribution in the exponential family

xi |θ IID∼ Efk(u, g, h, φ, θ, c); i = 1, . . . , n

with density Efk(x |u, g, h, φ, θ, c) = u(x)g(θ) exp(
∑k

j=1 c jφ j (θ)(
∑n

i=1 h j (x)))

and g(θ) = 1/
∫
u(x) exp(

∑k
j=1 c jφ j (θ)(

∑n
i=1 h j (x)))dx . The likelihood function

is equal to

f (x1:n|θ) =
n∏

i=1

u(xi )g(θ)n exp(
k∑
j=1

c jφ j (θ)(

n∑
i=1

h j (xi ))). (1.3)

The conjugate prior, corresponding to likelihood (1.3), admits density of the form

π(θ |τ) = 1

K (τ )
g(θ)τ0 exp(

k∑
j=1

c jφ j (θ)τ j ) (1.4)

where τ = (τ0, . . . , τk) is such that K (τ ) = ∫
�
g(θ)τ0 exp(

∑k
j=1 c jφ j (θ)τ j )dθ <

∞. The resulting posterior of θ has the form
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π(θ |x1:n, τ ) = 1

K (τ ∗)
g(θ)τ

∗
0 exp(

k∑
j=1

c jφ j (θ)τ ∗
j ))

with τ ∗ = (τ ∗
0 , τ ∗

1 , . . . , τ ∗
k ), τ ∗

0 = τ0 + n, and τ ∗
j = ∑n

i=1 h j (xi ) + τ j for j = 1,
. . . , k.

It is easy to see that (1.4) is conjugate to (1.3) as the posterior can be re-written
as π(θ |x1:n, τ ) = π(θ |τ ∗) where τ ∗ = τ + tn(x1:n), and tn(x1:n) = (n,

∑n
i=1 h1(xi ),

. . . ,
∑n

i=1 hk(xi )). You can check the demo in.2

Example: Bernoulli model (Cont.)

Consider observations x1:n = (x1, . . . , xn) ∈ R
n generated from a Bernoulli distri-

bution with success rate θ ∈ [0, 1]; i.e., xi |θ ∼ Br(θ), i = 1, . . . , n. Interest lies in
specifying a conjugate prior for θ .

The sampling distribution is member of the exponential family, with u(x) = 1,
g(θ) = (1 − θ), c1 = 1, φ1(θ) = log( θ

1−θ
), h1(x) = x , because

f (x |θ) = Br(x |θ) = θ x (1 − θ)1−x = (1 − θ) exp(log(
θ

1 − θ
)x).

The corresponding conjugate prior has PDF such as

π(θ |τ) ∝ (1 − θ)τ0 exp(log(
θ

1 − θ
)τ1) = θ(τ1+1)−1(1 − θ)(τ0−τ1+1)−1,

where we recognize Beta distribution π(θ |τ) = Be(θ |a, b), with a = τ1 + 1, b =
τ0 − τ1 + 1. Therefore, the posterior distribution is

π(θ |x1:n, τ ) = π(θ |τ0 + n, τ +
n∑

i=1

h(xi )) ∝ θ(τ1+nx̄+1)−1(1 − θ)(τ0+n−τ1−nx̄+1)−1

which is Be(θ |a∗, b∗), with a∗ = a + nx̄ , and b∗ = b + n − nx̄ .

1.3 Point Estimation

Often interest lies in learning the ‘true’ value of the unknown parameter θ ∈ �, or the
future values of a future sequence of observations y1:m ∈ Xm ; this is performed via
the Bayesian point estimator. Here, we demonstrate the theory of the Bayesian point
estimator in parametric inference, and leave the extension to the predictive inference
to the reader.

2 Web-applet: https://georgios-stats-1.shinyapps.io/demo_conjugatepriors/.

https://georgios-stats-1.shinyapps.io/demo_conjugatepriors/
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Bayes (parametric) point estimator of θ ∈ � with respect to the loss function
�(θ, δ) and the posterior distribution π(θ |x1:n) is an Bayes rule δπ which minimizes∫
�

�(θ, δ)π(dθ |x1:n); i.e.,

δπ (x1:n) = arg min∀δ∈�
Eπ (�(θ, δ)|x1:n) = arg min∀δ∈�

∫
�

�(θ, δ)π(dθ |x1:n). (1.5)

Often the accuracy of the Bayes point estimator is represented by its standard error.
A commonly accepted metric for the standard error of the j-th dimension of the
estimator δπ is

seπ (δ j |x1:n) = √
MSEπ (δ j |x1:n)

where MSEπ (δ j |x1:n) = [Eπ

(
(θ − δ)(θ − δ)�|x1:n

)] j, j is the mean squared error of
δ j .

A number of standard Bayesian point estimates, under different loss functions,
are location summary statistics of the posterior distribution (mean, median, mode,
quantiles, etc.) You can check the demo in.3

The Bayesian estimate of θ with respect to the linear loss �(θ, δ) = c1(δ −
θ)1θ≤δ(δ) + c2(θ − δ)1{θ≤δ}c(δ) is the c2

c1+c2
-th posterior quantile; i.e., π(θ ∈ (−∞,

δ(x1:n))|x1:n) = c2
c1+c2

. The linear loss function essentially allows the adjustment of
the penalty between over-estimating and under-estimating θ , by adjusting c1and c2.
In particular, for c1 = c2, we get the absolute loss �(θ, δ) = |θ − δ| and the posterior
estimator is the posterior median

δ(x1:n) = medianπ (θ |x1:n). (1.6)

The absolute loss is more appropriate when over-estimation and under-estimation
are of the same concern (as penalized the same).

The Bayes estimate δπ (x1:n) of θ with respect to the quadratic loss function
�(θ, δ) = (θ − δ)2 is

δπ (x1:n) = Eπ (θ |x1:n). (1.7)

The posterior mean of θ as an estimator of θ essentially minimizes the estimator error
seπ (δ|x1:n), which is equal to the posterior standard error. Obviously, the standard
error of the estimator (1.7) is equal to the posterior standard error. Compared to the
absolute loss, the quadratic loss aims at over-penalizing large but unlikely errors. In
fact, quadratic loss aims at minimizing the standard error seπ (δ|x1:n).

Finally, the Bayesian estimate of θ with respect to the zero-one loss �(θ, δ) =
1 − 1Bε (δ)(θ) is the posterior mode

δ(x1:n) = modeπ (θ |x1:n) (1.8)

as ε → 0.

3 Web-applet: https://georgios-stats-1.shinyapps.io/demo_PointEstimation/.

https://georgios-stats-1.shinyapps.io/demo_PointEstimation/
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Example: Bernoulli model (Cont.)

Interest lies in calculating the Bayesian point estimator under the absolute loss
function. This is the Maximum A posteriori Estimator (the posterior mode). It is

log(π(θ |x1:n)) ∝ (nx̄ + a − 1) log(θ) + (n − nx̄ + b − 1) log(1 − θ).

For a > 0, b > 0, d
dθ log(π(θ |x1:n))|p=δ(x) = 0 implies δ(x) = nx̄+a−1

n+a+b−2 . Note that
(a.) if a → 1, b → 1 (aka π(θ |a, b) ∝ 1), then δπ (x) = x̄ similar to frequentists
stats; (b.) if a → 0, b → 0 (aka π(θ |a, b) ∝ θ−1(1 − θ)−1), then δ(x) = nx̄−1

n−2 ; if

a → 1/2, b → 1/2 (akaπ(θ |a, b) ∝ θ−1/2(1 − θ)−1/2), then δ(x) = nx̄−1/2
n−1 ; if n →

∞, a > 0, b > 0, then δ(x) = x̄ .

1.4 Credible Sets

Instead of just reporting parametric (or predictive) point estimates for θ (or y1:m), it
is often desirable and more useful to report a subset of values Ca ⊆ � (or Ca ⊆ Xm)
where the posterior (or predictive) probability that θ ∈ Ca (or y1:m ∈ Ca) is equal to
a certain value a reflecting one’s degree of believe.

The definition below describes the credible set [1, 5].

Definition 1.1 (Posterior Credible Set) A set Ca ⊆ � such that

π(θ ∈ Ca|x1:n) =
∫
Ca

π(dθ |x1:n) ≥ 1 − a

is called ‘100(1 − a)%’ posterior credible set for θ , with respect to the posterior
distribution π(dθ |x1:n).
In contrast to the frequentist stats, in Bayesian stats we can speak meaningfully of
the probability that θ is in Ca , because probability 1 − a reflects one’s degree of
believe that θ ∈ Ca .

Among all the credible sets Ca in Definition 1.1, we are often interested in those
that have the minimum volume. It can be proved [2] that the highest probability
density (HPD) sets have this property. HPD consider those values of θ corresponding
to the highest posterior pdf/pmf (aka the most likely values of θ ).

Definition 1.2 (Posterior highest probability density (HPD) set) The 100(1 − a)%
highest probability density set for θ ∈ � with respect to the posterior distribution
π(θ |x1:n) is the subset Ca of � of the form

Ca = {θ ∈ � : π(θ |x1:n) ≥ ka} (1.9)

where ka is the largest constant such that
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π(θ ∈ Ca|x1:n) ≥ 1 − a. (1.10)

From the decision theory perspective, HPD set Ca is the Bayes estimate of Ca the
credible interval under the loss function �(Ca, θ) = k|Ca| − 1Ca (θ), for k > 0 which
penalizes sets with larger volumes. The proof is available in [2].

Example: Multivariate Normal model

Consider observations x1, . . . , xn independently drawn fromaq-dimensional normal
Nq(μ,
) with unknown μ ∈ R

q , q ≥ 1, and known 
, μ0, 
0. Assume prior μ ∼
Nq(μ0, 
0). Interest lies in calculating the Ca parametric HPD credible interval for
μ.

The posterior PDF of μ is

π(μ|x1:n) ∝ f (x1:n|μ)π(μ) =
n∏

i=1

Nq(xi |μ,
)Nq(μ|μ0, 
0)

∝ exp(−1

2
(μ − μ̂n)

T 
̂−1
n (μ − μ̂n)) ∝ Nq(μ|μ̂n, 
̂n)

where 
n = (n
−1 + 
−1
0 )−1, and μ̂n = 
̂n(n
−1 x̄ + 
−1

0 μ0). So μ|x1:n ∼ Nq

(μ̂n, 
̂n).
From Definition 1.2, the credible set has the form

Ca = {μ ∈ R
q : π(μ|x1:n) ≥ ka}

= {μ ∈ R
q : (μ − μ̂n)

T 
̂−1
n (μ − μ̂n) ≤ − log(2π det(
̂n)))ka = k̃a}

where ka is the greatest value satisfying

πNq (μ̂n ,
̂n)
(μ ∈ Ca|x1:n) ≥ 1 − a ⇐⇒

πχ2
q
((μ − μ̂n)

T 
̂−1
n (μ − μ̂n) ≤ k̃a) ≥ 1 − a. (1.11)

Here, (μ − μ̂n)
T 
̂−1

n (μ − μ̂n) ∼ χ2
q as a sum of squares of independent standard

normal random variables, and hence k̃a is the 1 − a-th quantile of the χ2
q distribution;

i.e., k̃a = χ2
q,1−a . Therefore, Ca parametric HPD credible set for μ is

Ca = {μ ∈ R
q : (μ − μ̂n)

T 
̂−1
n (μ − μ̂n) ≤ χ2

q,1−a}
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Fig. 1.1 Schematic of 1D HPD set

In real applications, the calculation of the credible interval might be intractable,
due to the inversion in (1.9) or integration in (1.10). Below, we present a Naive
algorithm [1] that can be implemented in a computer.4

• Create a routine which computes all solutions θ∗ to the equation π(θ |x1:n) = ka ,
for a given ka . Typically, Ca = {θ ∈ � : π(θ |x1:n) ≥ ka} can be constructed from
those solutions.

• Create a routine which computes π(θ ∈ Ca|x1:n) = ∫
θ∈Ca

π(θ |x1:n)dθ
• Numerically solve the equation π(θ ∈ Ca|x1:n) = 1 − a as ka varies.

Figure 1.1 demonstrates the above procedure in 1D unimodal and tri-modal cases.
Specifically, the red horizontal bar denotes ka moves upwards, and intersects the
density at locations which are the potential boundaries of Ca . The bar stops to move
when the total density above regions of the parametric space is equal to 1 − α. The
HPD credible set results as the union of these sub-regions. You can check the demo
in.5

Theorem 1.1 suggests a computationally convenient way to calculate HPD cred-
ible intervals in 1D, and unimodal cases. The proof is available in [3].

Theorem 1.1 Let θ follows a distribution with unimodal density π(θ |x1:n). If the
interval Ca = [L ,U ] satisfies
1.

∫ U
L π(θ |x1:n)dθ = 1 − a,

2. π(U ) = π(L) > 0, and
3. θmode ∈ (L ,U ), where θmode is the mode of π(θ |x1:n),
then interval Ca = [L ,U ] is the HPD interval of θ with respect to π(θ |x1:n).

4 Web-applet: https://georgios-stats-1.shinyapps.io/demo_crediblesets/.
5 Web-applet: https://georgios-stats-1.shinyapps.io/demo_crediblesets/.

https://georgios-stats-1.shinyapps.io/demo_crediblesets/
https://georgios-stats-1.shinyapps.io/demo_crediblesets/
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Example: Bernoulli model (Cont.)

Interest lies in calculating the 2-sides 95% HPD interval for θ , given a sample with
n = 30, and

∑30
i=1 xi = 15, and prior hyper-parameters a = b = 2.

The posterior distribution of θ is Be(a + nx̄ = 17, b + n − nx̄ = 17), which is
1D and unimodal; hence we use Theorem 1.1. It is

1 − a =
∫ U

L
Be(θ |17, 17)dθ = Be(θ < U |17, 17) − Be(p < L|17, 17).

Note that Beta PDF is symmetric around 0.5 when a∗ = b∗, and so is here where
Be(17, 17). Then,

1 − a = Be(θ < U |17, 17) − (1 − Be(θ < U |17, 17)) = 2Be(θ < U |17, 17) − 1

so Be(θ < U |17, 17) = 1 − a/2 and L = 1 −U . For a = 0.95, the 95% posterior
credible interval for θ is [L ,U ] = [0.36, 0.64].

Remark 1.1 Predictive credible sets for a future sequence of observations y1:m , are
defined and constructed as parametric ones by replacing θ with y1:m and π(x1:n|θ)

with p(y1:m |x1:n) in Definitions 1.1 and 1.2, and their consequences in this section.
It is left as an Exercise.

1.5 Hypothesis Test

Often there is interest in reducing the overall parametric space � (aka the set of
possible values of that the uncertain parameter θ can take) to a smaller subset. For
instance; whether the proportion of Brexiters is larger than 0.5 (p > 0.5) or not
(p ≤ 0.5).

Such a decision can be formulated as a hypothesis test [1], namely the decision
procedure of choosing between two non-overlapping hypotheses

H0 : θ ∈ �0 vs H1 : θ ∈ �1 (1.12)

where {�0,�1} partitions the space �. Typically, hypotheses, {Hk}, are categorized
in three categories. Single hypothesis for θ is called the hypothesis where � j = {θ j }
contains a single element. Composite hypothesis for θ is called the hypothesis where
� j ⊆ � contains many elements. General alternative hypothesis for θ is called the
composite hypothesis where �1 = � − {θ0} when it is compared against a single
hypothesis H0 : θ = θ0. It is denoted as H1 : θ �= θ0.

Based on the partitioning implied by (1.12), the overall prior π can be expressed
as π(θ) = π0 × π0(θ) + π1 × π1(θ)where πk = ∫

�k
π(dθ), and πk(θ) = π(θ)1�k (θ)∫

�k
π(dθ)

.
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Here, π0, and π1 describe the prior probabilities on H0 and H1, respectively, while
π0(θ) and π1(θ) describe how the prior mass is spread out over the hypotheses H0

and H1, respectively.
We could see the hypothesis testing (1.12) as parametric point inference about the

indicator function

1�1(θ) =
{
0 , θ ∈ �0

1 , θ ∈ �1
. (1.13)

To estimate (1.13), a reasonable loss function �(θ, δ) would be the cI − cII loss
function

�(θ, δ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
0 , if θ ∈ �0, δ = 0

0 , if θ /∈ �0, δ = 1

cII , if θ /∈ �0, δ = 0

cI , if θ ∈ �0, δ = 1

(1.14)

where cI > 0 and cII > 0 are specified by the researcher. Here, cI > 0 (and cII > 0)
denote the loss if we decide to accept H0 (and H1) while the correct answer would be
to choose H1 (H0). According to (1.5), under (1.14), the Bayes estimator of (1.13) is

δ(x1:n) =
{
0 , if π(θ ∈ �0|x1:n) > cII

cII+cI

1 , otherwise
(1.15)

where π(θ ∈ �0|x1:n) = ∫
�0

π(dθ |x1:n). In other words, hypothesis H1 is accepted

if π(θ∈�0|x1:n)
π(θ∈�1|x1:n) < cII

cI
.

Hypothesis tests in Bayesian statistics can also be addressed with the aid of Bayes
factors. Bayes factor B01(x1:n) is the ratio of the posterior probabilities of H0 and H1

over the ratio of the prior probabilities of H0 and H1

B01(x1:n) = π(θ ∈ �0|x1:n)/π(θ ∈ �0)

π(θ ∈ �1|x1:n)/π(θ ∈ �1)
(1.16)

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

f (x1:n |θ0)
f (x1:n |θ1) ;H0 : single vsH1 : single∫
�0

f (x1:n |θ)π0(dθ)∫
�1

f (x1:n |θ)π1(dθ)
;H0 : composite vsH1 : composite

f (x1:n |θ0)∫
�1

f (x1:n |θ)π1(dθ)
;H0 : single vsH1 : composite

. (1.17)

Under the cI − cII loss function, (1.15) implies that onewould acceptH0 if B01(x1:n) >
cII
cI

π1
π0
, and accept H1 if otherwise. Alternatively, Jeffreys [6] developed a scale rule

(Table 1.1) to judge the strength of evidence in favor of H0 or against H0 brought by
the data. Although Jeffreys’ rule avoids the need to specify cI and cI I , it is a heuris-
tic rule-of-thumb guide, not based on decision theory concepts, and hence many
researchers argue against its use.
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Table 1.1 Jeffreys’ scale rule [6]

B01 log10(B01) Strength of evidence

(1,+∞) (0,+∞) H0 is supported

(10−1/2, 1) (−1/2, 0) Evidence against H0: not
worth more than a bare

(10−1, 10−1/2) (−1,−1/2) Evidence against H0:
substantial

(10−3/2, 10−1) (−3/2,−1) Evidence against H0: strong

(10−2, 10−3/2) (−2,−3/2) Evidence against H0: very
strong

(0, 10−2) (−∞,−2) Evidence against H0: decisive

Example: Bernoulli model (Cont.)

We are interested in testing the hypotheses H0 : θ = 0.5 and H1 : θ �= 0.5, given
that π0 = 1/2, and using the cI − cII loss function with cI = cII. Here, �0 =
{0.5} and �1 = [0, 0.5) ∪ (0.5, 1]. The overall prior is π(θ) = π01θ0(θ) + (1 −
π0)Be(θ |a, b). The Bayes factor is

B01(x1:n) =
∏n

i=1 Br(xi |θ0)∫
(0,1)

∏n
i=1 Br(xi |θ)Be(θ |a, b)dθ

= θ
x∗
0 (1 − θ0)

n−x∗

B(nx̄ + a, n − nx̄ + b)/B(a, b)
.

Given a = b = 2, n = 30, and
∑30

i=1 xi = 15, it is B01(x1:n) = 18.47 > cII/cI = 1.
Hence, we accept H1.

1.5.1 Model Selection

Often the researcher is uncertain which statistical model (sampling distribution) can
better represent the real data generating process. There is a setM = {m1,m2, . . .} of
candidate statistical models mk = { fk(·|ϕk); ϕk ∈ Φk}, where fk(·|ϕk) denotes the
sampling distribution, and ϕk denotes the unknown parameters for k = 1, 2, . . . Let
πk = π(mk) denote the marginal model prior and πk(ϕk) = π(ϕk |mk) denote the
prior of the unknown parameters ϕk of given model mk .

Selection of the ‘best’ model from a set of available candidate models can be
addressed via hypothesis testing. For simplicity, we consider there are only two
models m0 and m1 with unknown parameters ϑ0 ∈ Φ0 and ϑ1 ∈ Φ1. Then, model
selection is performed as a hypothesis test

H0 : (m, ϕ) ∈ �0 vs H1 : (m, ϕ) ∈ �1 (1.18)
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where�k = {mk} × Φk ,� = ∪k�k . The overall joint prior is specified asπ(m, ϕ) =
π0 × π0(ϕ0) + π1 × π1(ϕ1) on (m, ϕ) ∈ � where � = ∪k�k , where πk(ϕk) =
π(m,ϕ)1mk (m)∫

Φk
π(m,dϕ)

on ϕk ∈ Φk , and πk = ∫
�k

π(mk, dϕk). Now the model selection prob-

lem has been translated into a hypothesis test.

Example: Negative binomial vs. Poisson model [2]

We are interested in testing the hypotheses

H0 : xi |φ ∼ Nb(φ, 1), φ > 0, vs. H1 : xi |λ ∼ Pn(λ), λ > 0

by using the cI − cII loss functionwith cI = cII. Consider two observations x1 = x2 =
2 are available. Consider overall prior π(θ) with density π(θ) = π0Be(φ|a0, b0) +
π1Ga(λ|a1, b1) with π0 = π1 = 0.5.

This is a composite vs. composite hypothesis test. It is

∫
�0

f (x1:n|ϕ0)π0(dϕ0) = �(a0 + b0)

�(a0)�(b0)

∫ 1

0
φn+a0−1(1 − φ)nx̄+b0−1dφ

= �(a0 + b0)

�(a0)�(b0)

�(n + a0)�(nx̄ + b0)

�(n + nx̄ + a0 + b0)

∫
�1

f (x1:n|ϕ1)π1(dϕ1) = ba11
�(a1)(n + b1)nx̄+a1

∫ ∞

0
λnx̄+a1−1 exp(−(n + b1)λ)dλ

= �(nx̄ + a1)

�(a1)(n + b1)nx̄+a1

1∏n
i=1 xi !

and hence B01(x1:n) = �(a0+b0)
�(a0)�(b0)

�(n+a0)�(nx̄+b0)
�(n+nx̄+a0+b0)

�(a1)(n+b1)nx̄+a1

�(nx̄+a1)

∏n
i=1 xi ! . It is B01(x1:n)

= 0.29 > 1, and hence I accept H1 and the Poisson model.
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Chapter 2
Sampling from Complex Probability
Distributions: A Monte Carlo Primer for
Engineers

Louis J. M. Aslett

Abstract Models which are constructed to represent the uncertainty arising in engi-
neered systems can often be quite complex to ensure they provide a reasonably
faithful reflection of the real-world system. As a result, even computation of simple
expectations, event probabilities, variances, or integration over utilities for a decision
problem can be analytically intractable. Indeed, such models are often sufficiently
high dimensional that even traditional numerical methods perform poorly. However,
access to random samples drawn from the probability model under study typically
simplifies such problems substantially. The methodologies to generate and use such
samples fall under the stable of techniques usually referred to as ‘Monte Carlo meth-
ods’. This chapter provides amotivation, simple primer introduction to the basics, and
sign-posts to further reading and literature onMonte Carlo methods, in a manner that
should be accessible to those with an engineering mathematics background. There
is deliberately informal mathematical presentation which avoids measure-theoretic
formalism. The accompanying lecture can be viewed at https://www.louisaslett.com/
Courses/UTOPIAE/.

2.1 Motivation

There is a natural tension when constructing a probabilistic model with the aim of
encapsulating the uncertainty in an engineered system: on the one hand, there is a
desire to capture every nuance of the system to fully reflect all knowledge about
its behaviour; on the other, there is a drive towards parsimony for reasons of inter-
pretability, robustness, and computability. Interpretability and robustness are impor-
tant goals and should indeed guide a reduction in model complexity, but reducing
model complexity purely to enable computability would seem a hinderance, espe-
cially if that parsimony impedes answering the research questions at hand since, put
simply, ‘reality can be complicated’ [7]. As such, the methodology of this chapter
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should not be employed simply to enable an inappropriately complex model, but
rather serves to facilitate the use of models which are complex enough when judged
by purely subject matter and statistical concerns.

Monte Carlo methods have played a crucial role in a vast array of applications
of statistical methodology, from the prediction of future marine species discoveries
[29] through to reconstruction of the ancient climate on Earth [16]; from criminal
justice offending risk [17] to inferring networks of corporate governance through
the financial crash [12]; and from estimating bounds on engineering system survival
functions [11] to the assessment of offshore oil production availability [30]. The
utility of Monte Carlo in these applications varies substantially, from estimation of
confidence intervals and event probabilities, through optimisation methods to full
evaluation of Bayesian posterior distributions for parameter inference.

With this breadth of application in mind, we may assume hereinafter that we
have a probabilistic model for some engineered system of interest which—after
considering all subject matter and statistical concerns—is too complex to be able
to compute relevant quantities of interest (be they event probabilities, confidence
intervals, posterior distributions, etc.). As a concrete example, if onewere to construct
a Bayesian model of reliability using ideas introduced in Chap. 1, then our model
would comprise some prior distribution over the vector of model parameters, π(θ),
together with a generative model for the failure time depending on those parameters,
π(t | θ). After collecting some lifetime data t = {t1, . . . , tn}, themost simple research
question of interest may be the posterior expected value of the parameters:

Eπ [θ ] =
∫

�

θ π(θ | t) dθ = 1

c

∫
�

θ π(θ)

n∏
i=1

π(ti | θ) dθ (2.1)

where� is the space of all possible parameter values and c is a normalising constant.
Indeed, it is traditional in Monte Carlo literature to focus attention on the compu-

tation of expectations with respect to some probability density under consideration,
which need not necessarily be a Bayesian posterior. That is, given a general proba-
bility model π(x), x ∈ �, and a functional f : � → R, interest is typically in:

Eπ [ f (X)] :=
∫

�

f (x)π(x) dx (2.2)

and this is the perspective that will be adopted in this chapter.
We complete our motivation of Monte Carlo in this Section by highlighting the

generality of expectations of the form (2.2), followedby a short discussion of standard
numerical integration techniques. In Sect. 2.2, theMonte Carlo estimator and its error
analysis are recapped and contrastedwith numerical integration. The coremethods of
Monte Carlo simulation are introduced in Sect. 2.3, with pointers to more advanced
material in Sect. 2.4. Note that we will in places abuse formal notation where we
believe it aids intuitive understanding since the goal of this chapter is to be a basic

http://dx.doi.org/10.1007/978-3-030-83640-5_1
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primer, not a rigorous treatment.1 A first course in probability and statistics are
assumed background.

The accompanying lecture from the UTOPIAE training school can be viewed at
https://www.louisaslett.com/Courses/UTOPIAE/.

2.1.1 Generality of Expectations

The formulation in (2.2) may appear rather restrictive to the uninitiated reader. How-
ever, considering only expectations of this form does not result in any loss of gener-
ality. For example, (re-)defining:

π(x) := 1

c
π(x)

n∏
i=1

π(ti | x)

f (x) := x

means that (2.2) simply becomes the posterior expectation in (2.1). However, one
should note that arbitrary statements of probability are also computable as expecta-
tions. That is,

P(X < a) =
∫ a

−∞
π(x) dx =

∫
�

I(−∞,a](x)π(x) dx = Eπ [I(−∞,a](X)]

where for a general set E ⊆ �,

IE (x) :=
{
1 if x ∈ E

0 if x /∈ E

That is, to evaluate the probability of an arbitrary event, P(X ∈ E), simply set
f (X) := IE (X) when evaluating (2.2).

2.1.2 Why Consider Monte Carlo?

In some special cases, the integral (2.2) may have an analytical solution and in such
situations one should not resort to Monte Carlo or other methods. When there is
no known analytical form for the integral, a reader with a general mathematical

1 For example, we will write ‘P(X = x)’ even where X is continuous to emphasise the link to the
density function and will use π(x) to reference both a target distribution or prior where the meaning
is clear from context. For the more advanced reader there are already many excellent more rigorous
treatments in the literature, some of which we reference towards the end.

https://www.louisaslett.com/Courses/UTOPIAE/
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background may be tempted to reach for a numerical integration method, such as a
simple mid-point Riemann integral or a more sophisticated quadrature approach.

Consider the mid-point Riemann integral in the simple 1-dimensional setting.
Letting g(x) := f (x)π(x), then the expectation would be approximated using n
evaluations by: ∫ b

a
g(x) dx ≈ b − a

n

n∑
j=1

g(x j ), (2.3)

where

x j := a + b − a

n

(
j − 1

2

)
.

The absolute error in using (2.3) is bounded [24, Theorem 7.1]:

∣∣∣∣∣∣
∫ b

a
g(x) dx − b − a

n

n∑
j=1

g(x j )

∣∣∣∣∣∣ ≤ (b − a)3

24n2
max
a≤z≤b

|g′′(z)|.

Clearly, (b−a)3

24 maxa≤z≤b |g′′(z)| is fixed by the problem at hand and cannot be altered
by the engineer, sowe achieve the accuracywe require by controlling n−2—that is, by
using a finer grid to compute the integral. As such, we say the error in the mid-point
Riemann integral in 1 dimension is O (

n−2
)
—that is, if double the computational

effort is expended by computing on a grid of twice as many points (2n), then the
worst case error is reduced by a factor of 4. This fast reduction in error and an explicit
bound on it are very attractive properties.

However, as the dimension of x increases, the Riemann integral’s effectiveness
diminishes substantially. In general, the error of mid-point Riemann integration in
d-dimensions is O (

n−2/d
)
. For example, even in a modest 10-dimensional problem,

when the computational effort is doubled the worst case error is only reduced by a
factor of ≈ 1.15. Put another way, to halve the worst case error in a 10-dimensional
problem requires exp

(
10
2 log 2

) = 32 times the computational effort. This problem
has been coined the ‘curse of dimensionality’.

Of course, the Riemann integral is not the best numerical integration method,
but even Simpson’s rule only improves this to O (

n−4/d
)
. In general Bakhvalov’s

Theorem bounds all possible quadraturemethods byO(n−r/d), where r is the number
of continuous derivatives of g(·)which exist and are exploited by the quadrature rule
[24].

The striking result which motivates the study of Monte Carlo methods is that for a
d-dimensional problem, the (mean-square)2 error is O (

n−1/2
)
. The most important

point to note is the absence of d in the order of the error: increasing the computa-
tional effort by some fixed amount has the same relative effect on the worst case
error regardless of dimension. Of course, the devil in the detail is that the constant

2 Note that randomised simulation methods such as Monte Carlo typically report mean-square error
rather than absolute error bounds.
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Fig. 2.1 The order of error reduction—that is, only the leading O (
n f (d)

)
term—is plotted against

different computational effort n. Note that all these curves would be multiplied by a different (fixed)
problem dependent constant

factor which we are ignoring in that statement almost certainly has some dimension
dependence, but this is true for quadrature methods too. Figure2.1 illustrates the
differences.

Consequently, Monte Carlo methods are well suited to address the problem of
analysing complex probabilistic models of engineered systems, since this is precisely
a setting where the parameter dimension is likely to be large.

2.2 Monte Carlo Estimators

The standard Monte Carlo estimator of the integral (2.2) is

μ �
∫

�

f (x)π(x) dx ≈ 1

n

n∑
j=1

f (x j ) � μ̂, (2.4)

where x j ∼ π(·). In other words, the problem of integration is transformed instead
into the problem of drawing random samples x j distributed according to the proba-
bility density π(·). Importantly, this estimator is unbiased, that is, E[μ̂] = μ.

If the samples x j are independently and identically distributed (iid) according to
π(·), then the root mean-square error of the estimator μ̂ is

RMSE :=

√√√√√Eπ

⎡
⎣
⎛
⎝
∫

f (x)π(x) dx − 1

n

n∑
j=1

f (x j )

⎞
⎠

2⎤
⎦ = σ√

n
,
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where σ 2 = Varπ ( f (X)). Again, part of this error is (mostly) inherent to the prob-
lem3—σ in this case—so that we achieve desired accuracy by controlling n−1/2.
There are at least three very attractive conclusions we can draw from this form:

1. as mentioned already, the relative error reduction achieved by additional com-
putational effort is independent of dimension;

2. there is no explicit dependence on how smooth the functional, f (·), or probability
density, π(·), are (though these may influence σ );

3. in contrast to quadrature methods, an estimate of the error can be computed
from the work already done to compute the integral, by computing the empirical
standard deviation of the functional of the samples drawn from π(·).

Although an absolute error is not available for a randomised method like this, a
simple application of Chebyshev’s inequality does provide a probabilistic bound on
the absolute error exceeding a desired tolerance:

P(|μ̂ − μ| ≥ ε) ≤ Eπ [(μ̂ − μ)2]
ε2

= σ 2

nε2
.

Indeed, it is also possible to invoke the iid Central Limit Theorem so that asymp-
totically,

P

(
μ̂ − μ

σn−1/2
≤ z

)
n→∞−−−→ �(z),

where �(z) denotes the standard Normal cumulative distribution function (CDF).
This enables the formation of confidence intervals for μ based on large n samples.

The discussion to date has tacitly assumed that simulating from arbitrary proba-
bility distributions π(·) is possible and relatively efficient. In fact, most Monte Carlo
research is devoted to this effort since, as touched on above, there is rich and well-
established theory when such samples are available. Therefore, for the remainder of
this chapter, our attention turns away from discussion of the integrals which are of
primary interest and focuses on the problem of simulating from arbitrary probability
distributions π(·). Once these samples are available, the results above can be used to
analyse the resulting estimators.

2.3 Simple Monte Carlo Sampling Methods

In this section we introduce some simple Monte Carlo methods which enable sam-
pling from a wide array of probability distributions. Note that understanding these
simple methods is crucial as they are extensively used as building blocks of more
sophisticated sampling methodology.

3 There are advanced Monte Carlo methods which can reduce this variance, but this is beyond the
scope of this chapter. See for example [24, Chap. 8].
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Almost all Monte Carlo procedures start from the assumption that we have avail-
able an unlimited stream of iid uniformly distributed values, typically on the interval
[0, 1] ⊂ R. How to generate such an iid stream is beyond the scope of this intro-
ductory chapter, but the interested reader may consult [13, Chaps. 1–3] and [21].
Arguably the current gold standard algorithm remains that in [22]. Typically, the
average user of Monte Carlo need not worry about such issues and may rely on the
high quality generators built into software such as R [26].

Thus the objective hereinafter is to study how to convert a stream ui ∼ Unif(0, 1)
into a stream x j ∼ π(·), where x j is generated by some algorithm depending on the
stream of ui . In more advanced methods (see MCMC), x j may also depend on x j−1

or even x1, . . . , x j−1.

2.3.1 Inverse Sampling

Arguably the simplest example of generating non-uniform random variates is inverse
sampling, which typically applies only to 1-dimensional probability distributions
(thoughhigher dimensional extensions have been studied). Let F(x) := P(X ≤ x)be
the cumulative distribution function (CDF) for the target probability density function
π(·). Then, inverse sampling requires the inverse of the cdf, F−1(·), which is then
applied to a uniform random draw. Precisely, see Algorithm2.1.

Algorithm 2.1 Inverse sampling algorithm
1: procedure Inverse sampling(F−1(·))  Generate random sample from distribution with

inverse CDF F−1(·)
2: u ∼ Unif(0, 1)
3: x ← F−1(u)

4: return x
5: end procedure

To prove that the sample returned byAlgorithm2.1 is distributed according toπ(·)
is straight-forward. We do so by computing the CDF, P(X ≤ x), of the X generated
by this algorithm and show that this agrees with the CDF of π(·). The first step
substitutes X = F−1(U ), where U ∼ Unif(0, 1), as per the algorithm:

P( X ≤ x ) = P( F−1(U ) ≤ x )

= P( F(F−1(U )) ≤ F(x) ) applying F(·) to both sides

= P(U ≤ F(x) ) Uniform CDF P(U ≤ u) = u

= F(x).

Note that applying F(·) to both sides in the second line is valid, since the cumulative
distribution function is a non-decreasing function by definition.
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Fig. 2.2 Inverse sampling for both a continuous distribution function (left) and one containing
jump discontinuities and regions of zero probability (right). Uniform random draws u are sampled
and inverted through the distribution function in the obvious way (left), or by taking the infimum
over values of x such that F(x) ≥ u (right). In the right illustration, the hypothetical (‘Hypothetical’
since strictly speaking this is an event of probability zero) u1 coincides with the value at which
F(x) is constant and u2 lies within the jump discontinuity

One subtlety to be aware of is that for discrete distributions or continuous distri-
butions with jump discontinuities or areas of no support, we must define:

F−1(u) = inf{x : F(x) ≥ u}, ∀ u ∈ [0, 1].

It may be tempting when F−1(·) is not available to use a numerical solver to solve
F(x) = u in place of line 3 in Algorithm2.1. However, caution is required since
this can result in bias [10, p. 31]. The procedure of inverse sampling is illustrated in
Fig. 2.2.

Notice that this is univariate, yet earlierwe saw that numerical integrationwill give
better error bounds than Monte Carlo for low dimensional problems—as such one
may choose not to use inverse sampling to actually evaluate univariate expectations.
However, we often need a set of random draws from non-uniform univariate distri-
butions which feed into a broader Monte Carlo algorithm, which is itself sampling in
higher dimensions: in such situations inverse sampling is very useful. Indeed, if you
use the rnorm function in R [26], it has used inverse sampling to generate random
draws from the Normal distribution since 2003 (see /src/nmath/snorm.c lines
265–270), prior to that using [18] since at least v0.62 in 1998.

A final comment: inverse sampling is a special case of general transformation
sampling. If one can generate samples from one distribution, there may be an appro-
priate transformation to turn these into samples from another distribution that may
be more tractable or faster than inverse sampling. For further details, see for example
[24, Chap. 4.6].
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2.3.1.1 Example

In order to use inversion sampling for a Weibull distribution with shape k and scale
σ , X ∼ Weibull(k, σ ), we note that

π(x) = k

σ

( x

σ

)k−1
e−( x

σ )
k

, x ∈ [0,∞), σ > 0, k > 0

F(x) = 1 − exp

{
−

( x

σ

)k}
.

To find F−1(u), set 1 − exp
{
− (

x
σ

)k} = u and solve for x :

=⇒ x = F−1(u) = σ (− log(1 − u))1/k ∼ π(·). (2.5)

In order to generate samples from the Weibull we, therefore, take values, u, from a
Uniform random number stream and transform them using (2.5).

2.3.2 Rejection Sampling

Our first higher dimensional method is an elegant algorithm, which actually crops up
in more advanced guises at the cutting edge of modern Monte Carlo methods (e.g.
[9, 25]). Here, the goal is to find another distribution, say π̃(·), which is easier to
sample from (perhaps even using inverse sampling) and where we can construct a
bound on the density function:

π(x) ≤ cπ̃(x) ∀ x ∈ �, (2.6)

where c < ∞ and where π and π̃ need not be normalised probability densities. We
call π̃(·) the ‘proposal’ density, since samples will be drawn from this and then
exactly the correct proportion of them retained in order to end up with a stream of
samples from π(·). The full procedure is detailed in Algorithm2.2.

We will proceed based on the assumption that π(·) and π̃(·) are normalised den-
sities. However, note that the algorithm is also valid for un-normalised densities, so
long as there still exists a c satisfying (2.6) for the un-normalised densities.

The efficiency of the algorithm hinges entirely on the value of c, so that it should
be chosen as small as possible. This is because, letting A be the random variable for
acceptance of a proposed sample X , the acceptance probability is (abusing notation
to aid intuition):
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Algorithm 2.2 Rejection sampling algorithm
1: procedure Rejection sampling(π(·), π̃(·), c)  Generate random sample from distri-

bution with unnormalised density π(·)
2: a ← FALSE
3: while a = FALSE do  Repeat until acceptance
4: u ∼ Unif(0, 1)
5: x ∼ π̃(·)  Propose a possible sample
6: if u ≤ π(x)

cπ̃(x) then  Accept or reject proposal?
7: a ← TRUE
8: end if
9: end while
10: return x
11: end procedure

P(A = 1) =
∫

�

P(A = 1 | X = x)︸ ︷︷ ︸
Prob line 6 of Alg 2 gives TRUE.

P(X = x)︸ ︷︷ ︸
Proposal density π̃ .

dx

=
∫

�

P

(
U ≤ π(x)

cπ̃ (x)

)
︸ ︷︷ ︸

Uniform CDF, P(U≤u)=F(u)=u.

π̃ (x) dx

=
∫

�

π(x)

cπ̃(x)
π̃(x) dx

= 1

c

∫
�

π(x) dx

= 1

c
, (2.7)

where � is the support of π̃(·), π̃(x) > 0, ∀ x ∈ �. The final line follows because
the integral of a density over the whole space is 1.

Hence, the number of iterations of the loop on lines 3–9 in Algorithm2.2 which
must be performed to return a single sample from π(·) is Geometrically distributed
with parameter 1

c . Therefore, the expected number of random number generations
and function evaluations which must be performed is 2c per sample from π(·).

To see that Algorithm2.2 does indeed give a sample from π(·), we note that the
samples returned are only those which are accepted, so we condition on this event:

P(X ∈ E | A = 1) = P(A = 1 | X ∈ E) P(X ∈ E)

P(A = 1)
∀ E ∈ B

=
∫
E

π(x)
cπ̃(x) π̃ (x) dx

1
c

=
∫
E

π(x) dx .
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Fig. 2.3 Geometric interpretation of rejection sampling. First y is sampled from π̃ and then a
uniform is sampled along the vertical dashed line at that location (i.e. between 0 and cπ̃(y)). If the
uniform sample falls below π then we accept and otherwise we reject. It is therefore clear that the
closer cπ̃ ‘hugs’ π the more efficient the rejection sampler

The last line is the probability of event E under the distribution with density π(·), as
required.

There is a nice geometric interpretation of the rejection sampling algorithmwhich
aids greatly with intuition. Notice that the condition in line 6 can be rewritten
ucπ̃(x) ≤ π(x). This means ucπ̃ (x) is a uniform random number in the interval
[0, cπ̃ (x)], so that we can view rejection sampling as first drawing a value from
π̃(x), then moving it up to a uniformly distributed height under the curve cπ̃ (x).
The consequence of this is that we are effectively sampling uniformly points under
the curve cπ̃ (x) and accepting those that fall under the curve π(x), as depicted in
Fig. 2.3.

Care is required with rejection sampling in high dimensions because it is quite
easy for the acceptance probability to become so small as to make the technique
impractical. We will see that, as well as how to implement rejection sampling, in the
following example.

2.3.2.1 Example

Consider the problem of sampling from a zero mean d-dimensional multivariate
Normal distribution, having density:

π(x) = (2π)−d/2 det(�)−1/2 exp

(
−1

2
xT�−1x

)
, x ∈ R

d ,

where � is a d × d symmetric positive semi-definite covariance matrix. It is com-
paratively easy to sample univariate Normal random variables (e.g. using inverse
sampling in R [26] as mentioned earlier, or via a transformation type approach like
[3]). Thus we could consider using a multivariate Normal with diagonal covariance,
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σ 2 I , as a proposal, because this simply requires sampling d univariate Normal ran-
dom variables.

This would mean we need to determine c < ∞ such that

c det(σ 2 I )−1/2 exp

(
−1

2
xTσ−2 Ix

)
≥ det(�)−1/2 exp

(
−1

2
xT�−1x

)
∀ x ∈ R

d

(2.8)

� is symmetric, so it has eigendecomposition� = Q	QT =⇒ �−1 = Q	−1QT,
where Q is an orthogonal matrix and 	 is a diagonal matrix with entries consisting
of the eigenvalues λ1, . . . , λd . The orthogonal transformation y = QTx also spans
R

d , so that (2.8) ⇐⇒

cσ−d exp

(
−1

2
yTσ−2 Iy

)
≥

(
d∏

i=1

λi

)−1/2

exp

(
−1

2
yT	−1y

)
, ∀ y ∈ R

d

⇐⇒ 2 log c ≥
d∑

i=1

(σ−2 − λ−1
i )y2i + 2d log σ −

d∑
i=1

log λi .

If σ−2 < λ−1
i for any i , then the right-hand side cannot be bounded above (since the

inequality must hold ∀ yi ∈ R), so we must have maxi λi < σ 2 and then clearly c
is minimised for σ 2 = maxi λi . Since every term in the first sum of the right-hand
side is necessarily negative, the right-hand side is maximal for yi = 0 ∀ i , so that the
optimal c is

c =
(
max

i
λi

)d/2
(

d∏
i=1

λi

)−1/2

,

when σ 2 = maxi λi .
In summary, there is a constraint on our proposal π̃(·) when it is an uncorrelated

multivariateNormal density, or else it cannot boundπ(·).Moreover, we can explicitly
compute the optimal proposal variance, σ 2, to give us the highest possible acceptance
rate.

To make this example concrete, consider rejection sampling in this setting where

� =

⎛
⎜⎜⎜⎝

1 0.9 · · · 0.9
0.9 1 · · · 0.9
...

...
. . .

...

0.9 0.9 · · · 1.

⎞
⎟⎟⎟⎠

Note that � can be written as 0.1I + B, where B is a matrix with 0.9 in every
element. The rank of B is 1, so it has a single non-zero eigenvalue which must
therefore equal tr(B) = 0.9d, and the eigenvalues of 0.1I are all 0.1. Further-
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Table 2.1 Optimal proposal variance and acceptance probability for rejection sampling a correlated
multivariate Normal distribution using an uncorrelated multivariate Normal proposal

d σ 2 = maxi λi Acceptance probability 1
c

1 1 1

2 1.9 0.229

3 2.8 0.036

4 3.7 0.004

5 4.6 4.45 × 10−5

.

.

.
.
.
.

.

.

.

10 9.1 1.53 × 10−9

more, 0.1I and B commute, therefore the eigenvalues of � are the sum of these
eigenvalues: that is, λ1 = 0.9d + 0.1 and λi = 0.1 ∀ i �= 1. As the dimension of
π(·) increases, the spectral gap increases linearly and thus c grows very fast:
c = (10λ1)

(d−1)/2 = (9d + 1)(d−1)/2. Indeed, this is faster than exponential and faster
than factorial growth! Consequently, for growing dimension, the acceptance proba-
bility falls super-exponentially fast—not a desirable property. See Table2.1 for some
example values.

A whimsical observation to emphasise the problem: a modern laptop can pro-
duce roughly 15 million univariate Normal samples per second and the universe
is estimated to be 4.32 × 1017 seconds old. Ignoring the time to evaluate the uni-
form draw u or acceptance/rejection, this means the expected number of samples
that would be generated by Algorithm2.2 for this multivariate Normal problem in
d-dimensions—if run for as long as the universe has existed—would be

1.5 × 107 × 4.32 × 1017

d(9d + 1)(d−1)/2
.

Consequently, even knowing the exactly optimal choice for σ 2 in our proposal, this
would only be expected to render 5 samples for a 21-dimensionalmultivariateNormal
with the innocuous looking � given above—rejection sampling in high dimensions
can be problematic!

2.3.3 Importance Sampling

The final core standard Monte Carlo method we cover in this primer also starts from
the perspective of having a proposal density π̃(·), thoughwe no longer require it to be
able to bound π(·). Importance sampling then dispenses with the notion of directly
generating iid samples from π(·) and focuses on their use: in computing expectations
using those samples in (2.4).Consequently, importance samplingweights the samples
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from π̃(·) in precisely the proportion that ensures these weighted samples produce
expectations which are concordant with expectations under π(·) when used in (2.4).
This is laid out precisely in Algorithm2.3.

Algorithm 2.3 Importance sampling algorithm
1: procedure Importance sampling(π(·), π̃(·), c)  Generate random sample from dis-

tribution with un-normalised density
π(·)

2: x ∼ π̃(·)  Propose sample
3: w ← π(x)

π̃(x)
4: return (x,w).

5: end procedure

To see that this weighting has the desired effect, consider the expectation which
is our objective. We first consider the situation where both π and π̃ are normalised:

Eπ [ f (X)] =
∫

�

f (x)π(x) dx

=
∫

�

f (x)
π̃(x)

π̃(x)
π(x) dx multiply and divide by π̃(x)

=
∫

�

(
f (x)

π(x)

π̃(x)

)
π̃(x) dx

= Eπ̃

[
f (X)π(X)

π̃(X)

]
.

That is, we use samples directly from π̃(·), and instead adjust (2.4) to target the
expectation of the same functional under π(·).

μ �
∫

�

f (x)π(x) dx ≈ 1

n

n∑
j=1

f (x j )
π(x j )

π̃(x j )︸ ︷︷ ︸
=wj

= 1

n

n∑
j=1

f (x j )wj � μ̂, (2.9)

where now x j ∼ π̃(·).
Some care is required, because although this estimator remains unbiased, the

variance is no longer going to be the same as the usual Monte Carlo variance where
x j ∼ π(·). Indeed, now

Var(μ̂) = σ 2
π̃

n
where σ 2

π̃ =
∫

�

( f (x)π(x) − μπ̃(x))2

π̃(x)
dx,

which can be empirically estimated from the importance samples using,
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σ̂ 2
π̃ = 1

n

n∑
j=1

(
f (x j )wj − μ̂

)2
. (2.10)

As such,σ 2
π̃
(or its empirical estimate σ̂ 2

π̃
) provide a guide towhenwehave a ‘good’

importance sampling algorithm, since with π̃(·) fixed the only option to improve the
estimate is to increase the sample size n.

Indeed, it can be shown [15] that the theoretically optimal proposal distribution
which minimises the estimator variance is

π̃(x)opt = | f (x)|π(x)∫
�

| f (x)|π(x) dx
.

In particular, note that this implies that importance sampling can achieve super-
efficiency whereby it results in lower variance even than sampling directly from
π(·) when f (x) �= x . Specifically, if f (x) ≥ 0 ∀x then this proposal results in a
zero-variance estimator! Of course, in practice we cannot usually sample from and
evaluate this optimal proposal, since it is at least as difficult as the original problem
wewere attempting to solve. However, even though these optimal proposals are often
unusable, they provide guidance towards the form of a good proposal for any given
importance sampling problem.

2.3.3.1 Self-normalising Weights

The option to use rejection samplingwith un-normalised densities is very helpful (e.g.
in Bayesian settingswhere the normalising constant is often unknown).We can retain
this advantage with importance sampling by using self-normalising weights. The
algorithm to generate the weights remains as in Algorithm2.3, but the computation
of the estimator in (2.9) changes. The self-normalised version, rather than dividing
by n, uses the sum of the weights,

μ̂� �
∑n

j=1 f (x j )wj∑n
j=1 wj

,

thereby ensuring cancellation of the unknown normalising constant from the target
and/or proposal distributions in the weights.

However, it is important to note that this estimator is no longer unbiased, though
asymptotically it is. Additionally, the variance of this estimator is more complicated
having only approximate form. An approximate estimate can be computed using,
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Var(μ̂�) ≈ σ̂ �2
π̃

n
where σ̂ �2

π̃ =
n∑
j=1

w�2
j

(
f (x j ) − μ̂�

)2

and w�
j = wj∑n

i=1 wi
.

Finally, the theoretically optimal (but usually unusable) proposal in the self-
normalised weight case is

π̃(x)opt ∝ | f (x) − μ|π(x).

In both regular and self-normalised weight settings, one can then compute appro-
priate confidence intervals in the usual manner.

2.3.3.2 Diagnostics

Additional care is required in the application of importance samplingwhen compared
to using iid samples from the distribution of interest. In particular, because importance
samplinguses aweighted collection of samples, it is not uncommon tobe in a situation
where a small number of samples with large weight dominate the estimate, so that
simply having many importance samples does not equate to good estimation overall.

A common diagnostic for potential weight imbalance is derived by equating the
variance of aweighted importance sampling approach to the standard iidMonteCarlo
variance for an average computed using a fixed but unknown sample size ne. Upon
simple algebraic rearrangement one may then solve for ne, the so-called effective
sample size. This informally corresponds to the size of iid Monte Carlo sample one
would expect to need to attain the same variance achieved via this importance sample,
so that a low value indicates poor weight behaviour (since that corresponds to few
iid samples).

Var

(∑n
i=1 f (xi )wi∑n

i=1 wi

)
= σ 2

ne
=⇒ ne = nw̄2

w2
,

where

w̄2 =
⎛
⎝1

n

n∑
j=1

wj

⎞
⎠

2

and w2 = 1

n

n∑
j=1

w2
j .

The reason to use such a diagnostic and not simply rely on the empirical variance
estimates above is that they are themselves based on the sampling procedure and
therefore may be poor estimates too.

Finally, it is critical to note that although small ne does diagnose a problem with
importance sampling, it is not necessarily true that large ne means everything is ok:
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it is, for example, entirely possible that the sampler has missed whole regions of high
probability.

2.3.3.3 Example

Consider the toy problem of computingP(X > 3.09)when X is a univariate standard
Normal random variable. The R-language [26] computes the distribution function
of the standard Normal to at least 18 significant digits using a rational Chebyshev
approximation [6] (see /src/nmath/pnorm.c) and we know the true answer
to be 0.001001 (4 sf). However, if the reader suspends disbelief and imagines that
we cannot accurately compute the distribution function, but can only compute the
Normal density and draw random realisations from it, then evaluation of the above
probability might be approximated using Monte Carlo methods instead (given the
unbounded support and extreme tail location this may be preferred to numerical
integration).

Since we are assuming the ability to generate random realisations from the
Normal distribution, a standard Monte Carlo approach would draw many samples
xi ∼ N(0, 1) and compute

P(X > 3.09) = E
[
I[3.09,∞)(X)

] = 1

n

n∑
j=1

I[3.09,∞)(x j )

However, this will require many samples to achieve an accurate estimate of this tail
probability.

In contrast, still only using simulations from a Normal distribution, we may elect
to use importance sampling with a proposal N(m, 1) for some choice m. We know
the fully normalised density of a Normal distribution and therefore will be using the
estimator (2.9) with associated single sample variance which can be approximated
using (2.10). Therefore, to select m, we perform a small grid search over possible
proposals, computing σ̂ 2

π̃
each time, to find a good choice. This results in Fig. 2.4,

showing that a proposal N(3.25, 1) is a good choice.
A further final run of n = 100,000 samples renders an estimate μ̂ = 0.001002 (4

sf). The same pseudo-random number stream using standardMonte Carlo renders an
estimate 0.001140 (4 sf), which is a relative error 163× larger than the importance
sampling estimate. To demonstrate this is not a ‘fluke’ result, we continue to repeat
both importance sampling and standard Monte Carlo estimation with runs of size
n = 100,000 and plot the density of estimates of P(X > 3.09) in Fig. 2.5.

Note that Fig. 2.5 demonstrates how much more accurate importance sampling
is for the same sample size n = 100,000 when computing this event probability
compared to standardMonte Carlo. One may reasonably object that we have ignored
the 25 pilot runs of n =100,000 importance samples used to select m = 3.25, so
that the total computational effort expended on importance sampling was at least
26× that of standard Monte Carlo. However, it is a simple calculation to determine
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Fig. 2.4 The estimate of σ̂ 2
π̃
using (2.10) for 25 different values ofm in theNormal proposalN(m, 1)

used in an importance sampling estimator of P(X > 3.09), where X ∼ N(0, 1). Each estimate of
σ̂ 2

π̃
is based on n = 100, 000 samples. m varies on an equally spaced grid from 1.5 to 4.5. The

minimum is at m = 3.25

Fig. 2.5 A total of 10, 000 runs of both importance sampling and standardMonteCarlo, each of size
n = 100,000. Each run was used to compute the estimate of P(X > 3.09) where X ∼ N(0, 1) and
a kernel density plot of these estimates produced (importance sampling = dashed, standard Monte
Carlo = solid). The vertical line is the ground truth computed usingpnorm(3.09, lower.tail
= FALSE). The same pseudo-random number stream was used for each method to ensure a fair
comparison

that based on the standard deviation of the samples used to generate Fig. 2.5 and
the

√
n convergence of Monte Carlo, that it would require a standard Monte Carlo

sample of size n = 295×100,000 to achieve the same accuracy profile as importance
sampling. Therefore, even accounting for the pilot computational effort to select a
proposal distribution, there is a substantial benefit to using importance sampling.

2.4 Further Reading

A textbook length introduction with a solid emphasis on implementation details in
R can be found in [28]. The same authors have a more advanced textbook going into
the theoretical aspects more deeply [27]. Both these books also introduce Markov
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Chain Monte Carlo methods, which are often used in practice in high dimensional
problems. A nice tutorial paper introduction to MCMC is [1] and [4] is an excellent
collection of chapters on the topic.

A classic Monte Carlo text is [10], which is now freely (and legally) available
online and contains many results not easily found elsewhere.

Although standard Monte Carlo and Markov Chain Monte Carlo arguably rep-
resent the mainstay of most practical uses of Monte Carlo, there are an array of
advancedmethodswhich are particularlywell suited to different settings. Someexcel-
lent review texts as jumping off points to explore some of these include [8] (Sequen-
tial Monte Carlo), [19, 20] (Approximate Bayesian Computation), [14] (Multi-Level
Monte Carlo), and [2] (MLMC in engineering reliability).

Excellent software choices for practically performing inference in complex mod-
els via sampling methods includes Stan [5] and Birch [23].

Dedication

This chapter is dedicated to the memory of Brett Houlding (1982–2019). The tragic
news of Brett’s passing was received while I was in the act of writing this chapter.
He will be sorely missed.
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Chapter 3
Introduction to the Theory
of Imprecise Probability

Erik Quaeghebeur

Abstract The theory of imprecise probability is a generalization of classical ‘pre-
cise’ probability theory that allows modeling imprecision and indecision. This is a
practical advantage in situations where a unique precise uncertainty model cannot
be justified. This arises, for example, when there is a relatively small amount of
data available to learn the uncertainty model or when the model’s structure cannot
be defined uniquely. The tools the theory provides make it possible to draw conclu-
sions and make decisions that correctly reflect the limited information or knowledge
available for the uncertainty modeling task. This extra expressivity however often
implies a higher computational burden. The goal of this chapter is to primarily give
you the necessary knowledge to be able to read literature that makes use of the theory
of imprecise probability. A secondary goal is to provide the insight needed to use
imprecise probabilities in your own research. To achieve the goals, we present the
essential concepts and techniques from the theory, as well as give a less in-depth
overview of the various specific uncertainty models used. Throughout, examples are
used to make things concrete. We build on the assumed basic knowledge of classical
probability theory.

3.1 Introduction

The theory of imprecise probability is a generalization of classical ‘precise’ proba-
bility theory that allows modeling imprecision and indecision. Why is such a theory
necessary? Because inmany practical applications a lack of information—e.g., about
model parameters—and paucity of data—especially if we also consider conditional
models—make it impossible to create a reliable model.

For example, consider a Bayesian context where a so-called prior probability
distribution must be chosen as part of the modeling effort. The lack of information
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may make it difficult to determine the type of the prior distribution, let alone its
parameters. Then, even if we assume some prior has been chosen—e.g., a normal
one—in a somewhat arbitrary way, a paucity of data will make the parameters of the
posterior—updated—distribution depend to a large degree on the prior’s somewhat
arbitrary parameters. The consequence is that conclusions drawn from the posterior
are unreliable and decisions based on it somewhat arbitrary.

The theory of imprecise probability provides us with a set of tools for dealing with
the problem described above. For the example above, instead of choosing a single
prior distribution, a whole set of priors is used, one that is large enough to sufficiently
reduce or even eliminate the arbitrariness of this modeling step. The consequence is
that conclusions drawn from an imprecise probabilistic model are more reliable by
being less committal—more vague, if youwish; somewould say ‘more honest’—and
that decisions based on it allow for indecision.

In this chapter, we will go over the basic concepts of the theory of imprecise prob-
ability theory. Therefore, we will consider ‘small’ problems, with finite possibility
spaces. However, the theory can be applied to infinite—countable and uncountable—
possibility spaces as well. Also, only the basics of more advanced topics such as
conditioning will be touched upon. But, and this is the chapter’s goal, after having
understood the material we do treat, the imprecise probability literature should have
become substantially more accessible. Good extensive general treatments are avail-
able [2, 16, 20] and the proceedings of the ISIPTA conferences provide an extensive
selection of papers developing imprecise probability theory or applying it [1, 3, 4,
6–12].

Concretely, we start with a discussion of the fundamental concepts in Sect. 3.2.
This is done in terms of themore basic notion of sets of acceptable gambles. Probabil-
ities only appear thereafter, in Sect. 3.3, together with the related notion of prevision
(expectation). The connection with sets of probabilities is made next, in Sect. 3.4.
Then we touch upon conditioning, in Sect. 3.5, and before closing add some remarks
about continuous possibility spaces, in Sect. 3.6. Throughout we will spend ample
time on a running example to illustrate the theory that is introduced.

3.2 Fundamental Concepts

In this section, we introduce the fundamental concepts of the theory of imprecise
probability [18] [20, §3.7]. First, in Sect. 3.2.1, we get started with some basic
concepts. Then, in Sect. 3.2.2, we list and discuss the coherence criteria on which
the whole theory is built.
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3.2.1 Basic Concepts

Consider an agent reasoning about an experiment with an uncertain outcome. This
experiment is modeled using a possibility space—a set—X of outcomes x . Now
consider the linear space L = X → R of real-valued functions over the outcomes.
We view these functions as gambles because they give a value, seen as a payoff, for
each outcome and because the outcome is uncertain and therefore the payoff is as
well.A special class of gambles are the outcome indicators 1x or subset indicators 1B ,
which take the value one on that outcome or subset and zero elsewhere.

The agent can then express her uncertainty by specifying a set of gambles, called
an assessment A, that she considers acceptable. Starting from such an assessment,
she can reason about other gambles and decide whether she should also accept them
or not. If she were to do this for all gambles, then the natural extension E of her
assessment would be the set of all acceptable gambles. To reason in a principled way,
she needs some guiding criteria; these are the next section’s topic.

Let us now introduce our running example:

Wiske and Yoko Tsuno want to bet on Belgium vs. Japan

Given a sports match between Belgium and Japan, there is uncertainty about which
country’s team will win. So we consider the possibility space

{
be, jp

}
. There are to

agents—gamblers—:Wiske and Yoko Tsuno, two comic book heroines. Each has an
assessment consisting of a single gamble that they find acceptable:

• Wiske accepts losing 5 coins if Japan wins for the opportunity to win 1 coin if
Belgium wins; soAW = {1be − 5 · 1jp}.

• Yoko Tsuno accepts losing 4 coins if belgium wins for the opportunity to win
1 coin if Japan wins; soAY = {−4 · 1be + 1jp}.
The heroines are also discussing joining forces and forming a betting pool. The

pools they consider are

• ‘Simple’, formed by combining their assessments; so

ASP = {1be − 5 · 1jp,−4 · 1be + 1jp} .

• ‘Empty’ in case of disagreement, without any acceptable gambles; so AEP = ∅.

3.2.2 Coherence

In the theory of imprecise probabilities, the classical rationality criteria used for
reasoning about assessments are called coherence criteria. These are typically for-
mulated as four rules that should apply to any gambles f and g. (There are different
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variants in the literature, but the differences are not relevant in this introductory text.)
We divide the criteria into two classes.

Constructive State how to generate acceptable gambles from the assessment:
Positive scaling If f is acceptable and λ > 0, then λ · f is acceptable.

Addition If f and g are acceptable, then f + g is acceptable.

Background State which gambles are always or never acceptable:
Accepting gain If f is nonnegative for all outcomes, then f is acceptable.

Avoiding sure loss If g is negative for all outcomes, then g is not acceptable.

These criteria are quite broadly seen as reasonable, under the assumption that the
payoffs are ‘not too large’.

The last criterion, ‘Avoiding sure loss’, puts a constraint on what is considered
coherent; if it is violated, we say that an assessment incurs sure loss. The first three
rules can be used to create an explicit expression for the natural extension:

E =
{∑

f ∈K λ f · f : K � A ∪ { f ∈ L : f ≥ 0} and (∀ f ∈ K : λ f ≥ 0)
}

,

where � denotes the finite subset relation. Then E is the smallest convex cone of
gambles encompassing the assessment A and the nonnegative gambles—including
the zero gamble.

Let us apply the natural extension to our running example:

The natural extensions of Wiske, Yoko Tsuno, and the betting pools

For our finite possibility space,

{ f ∈ L : f ≥ 0} = {∑
x∈X μx · 1x : (∀x ∈ X : μx ≥ 0)

}

So, with λA, μx ≥ 0 for all outcomes x and agent identifiers A, we get the following
expressions that characterize the natural extensions:

Wiske
λW · (1be − 5 · 1jp) + μbe · 1be + μjp · 1jp

= (λW + μbe) · 1be + (−5 · λW + μjp) · 1jp,

Yoko Tsuno
λY · (−4 · 1be + 1jp) + μbe · 1be + μjp · 1jp

= (−4 · λY + μbe) · 1be + (λY + μjp) · 1jp,
Simple pool (λW − 4 · λY + μbe) · 1be + (−5 · λW + λY + μjp) · 1jp,
Empty pool μbe · 1be + μjp · 1jp.

To check whether the natural extension incurs sure loss, we must check whether the
coefficients of 1be and 1jp can become negative at the same time. Only the simple pool
incurs sure loss; e.g., fill in λW = λY = 1 and μbe = μjp = 0 to convince yourself.
(Convince yourself as well that the others avoid sure loss indeed.)
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3.3 Previsions and Probabilities

In this section, we move from modeling uncertainty using sets of acceptable gam-
bles to the more familiar language of expectation—or, synonymously, prevision—
and probability [17]. We first transition from acceptable gambles to previsions in
Sect. 3.3.1 [18, §1.6.3] [17, §2.2] and in a second step, in Sect. 3.3.2, give the con-
nection to probabilities [20, §2.6]. Next, in Sect. 3.3.3, we consider assessments in
terms of previsions and what the other fundamental concepts of Sect. 3.2 then look
like [17, §2.2.1, §2.2.4] [20, §2.4–5, §3.1]. Finally, in Sect. 3.3.4, we consider the
important special case of assessments in terms of previsions defined on a linear space
of gambles [17, §2.2.1] [20, §2.3.2–6].

3.3.1 Previsions as Prices for Gambles

Before we start: ‘prevision’ is in much of the imprecise probability literature used
as a synonym for ‘expectation’; we here follow that tradition.

Now, how do we get an agent’s previsions for a gamble—equivalently: expecta-
tion of a random variable—given that we know the agent’s assessment as a set of
acceptable gambles A? We first define a price to be a constant gamble and iden-
tify this constant gamble with its constant payoff value. Then we define the agent’s
previsions as specific types of acceptable prices:

• The lower prevision P( f ) is the supremum acceptable buying price of f :

P( f ) = sup {ν ∈ R : f − ν ∈ E} .

• The upper prevision P( f ) is the infimum acceptable selling price of f :

P( f ) = inf {κ ∈ R : κ − f ∈ E} .

If E is coherent, then P and P are also called coherent. There is a conjugacy relation
between coherent lower and upper previsions: P( f ) = −P(− f ). It allows us to
work in terms of either type of prevision; we will mainly use the lower one.

In case P( f ) = P( f ), then P( f ) = P( f ) is the called the (precise) prevision of
the gamble f .

3.3.2 Probabilities as Previsions of Indicator Gambles

Now that we have definitions for lower and upper previsions, we can derive probabil-
ities from those. For classical probability, we have that the probability of an event—a
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subset B of the possibility space X—is the prevision of the indicator for that event.
For lower and upper previsions, we get:

• The lower probability: P(B) = P(1B).
• The upper probability: P(B) = P(1B).

Notice that we reuse the same symbol for the prevision and probability functions,
as is common in the literature. As long as the nature of the argument—gamble or
event—is clear, this does not cause ambiguity. If P and P are coherent as previsions,
then so are they as probabilities. Also the conjugacy relationship can be translated
to coherent lower and upper probabilities; let Bc = X \ B, then

P(B) = P(1B) = P(1 − 1Bc ) = −P(−1 + 1Bc ) = 1 − P(1Bc ) = 1 − P(Bc).

In case P(B) = P(B), then P(B) = P(B) is called the (precise) probability of
B.

To make the definitions for lower and upper previsions and probabilities concrete,
let us apply them to our running example:

Lower and upper probabilities for all events and agents

We work out the calculation of Wiske’s lower probability that Belgium will win.

PW(be) =PW(1be) (def. lower probability)

= sup
{
ν ∈ R : 1be − ν ∈ EW

}
(def. lower prevision)

= sup

{
ν ∈ R :

[
1 − ν

0 − ν

]
=

[
λW + μbe

−5 · λW + μjp

]
, λW ≥ 0, μbe ≥ 0, μjp ≥ 0

}

(write out natural extension EW of AW)

= sup
{
5 · λW − μjp : 1 − 5 · λW + μjp = λW + μbe, λW ≥ 0, μbe ≥ 0, μjp ≥ 0

}

(eliminate ν)

= sup
{
5 · λW − μjp : λW = 1

6 (1 + μjp − μbe), λW ≥ 0, μbe ≥ 0, μjp ≥ 0
}

(solve constraint for λW)

= sup
{
5
6 − 1

6μjp − 5
6μbe : 1 + μjp ≥ μbe, μbe ≥ 0, μjp ≥ 0

}
(eliminate λW)

= 5

6
(feasible solution μbe = 0, μjp = 0 maximizes expression)

Do the calculations also for the other agents and Japan. Then apply conjugacy to find
the following table of lower and upper probabilities:

Agents P(be) , P(be) P(jp) , P(jp) Note

Wiske 5/6 , 1 0 , 1/6 Will not bet against Belgium
Yoko Tsuno 0 , 1/5 4/5 , 1 Will not bet against Japan
Simple pool +∞ , −∞ +∞ , −∞ Sure loss, so absurd bounds
Empty pool 0 , 1 0 , 1 So-called vacuous model
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While in the above example the calculation of the lower prevision can be done by
hand, in general it realistically requires a linear program solver.

3.3.3 Assessments of Lower Previsions

Up until now, we assumed a set of acceptable gamblesA—an agent’s assessment—
to be given. But often the agent will directly specify lower and upper probabilities
or previsions, e.g., as bounds on precise probabilities and previsions. However, the
coherence criteria and expression for the natural extension are based on having a
set of acceptable gambles. In this section we will provide expressions based on an
assessment specified as lower prevision values for gambles in a given set K .

The approach is to derive an assessment as a set of acceptable gambles A from
these lower prevision. Irrespective of what its natural extension E actually looks like,
it follows from the definition of the lower prevision as a supremum acceptable buying
price that

0 ≤ sup
{
ν − P( f ) : ν ∈ R ∧ f − ν ∈ E ⊇ A}

= sup
{
κ ∈ R : f − (κ + P( f )) ∈ E} = sup

{
κ ∈ R : ( f − P( f )) − κ ∈ E}

.

This implies that f − P( f ) + ε ∈ E for any ε > 0, because of coherence.We cannot
take ε = 0, because the corresponding so-called marginal gamble f − P( f ) is not
included in E in general, as the supremum value κ = 0 is not necessarily attained
inside the set. We therefore take A = ⋃

f ∈K
{
f − P( f ) + ε : ε > 0

}
.

We can then apply the theory described above to this assessmentA. This leads to
the following nontrivial results for a lower prevision P defined on a set of gamblesK :

• It avoids sure loss if and only if for all n ≥ 0 and fk ∈ K it holds that

sup
x∈X

n∑

k=1

(
fk(x) − P( fk)

) ≥ 0.

• It is coherent if and only if for all n,m ≥ 0 and fk ∈ K it holds that

sup
x∈X

(
n∑

k=1

(
fk(x) − P( fk)

) − m · ( f0 − P( f0))

)

≥ 0.

• Its natural extension to any gamble f in L is

E( f ) = sup

⎧
⎨

⎩
inf
x∈X

⎧
⎨

⎩
f (x) −

n∑

k=1

λk · (
fk(x) − P( fk)

)
⎫
⎬

⎭
: n ≥ 0, fk ∈ K, λk ≥ 0

⎫
⎬

⎭
.
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3.3.4 Working on Linear Spaces of Gambles

The coherence criterion for lower previsions on an arbitrary spaceK of gambles we
gave in the preceding section is quite involved.However, in caseK is a linear space of
gambles, this criterion becomes considerably simpler. Namely, a lower prevision P
must then satisfy the following criteria for all gambles f and g in K and λ > 0:

Accepting sure gains P( f ) ≥ inf f ,
Super-linearity P( f + g) ≥ P( f ) + P(g),

Positive homogeneity P(λ f ) = λ · P( f ).

Expressed for upper previsions P , these coherence criteria are very similar:

Accepting sure gains P( f ) ≤ sup f ,
Sub-linearity P( f + g) ≤ P( f ) + P(g),

Positive homogeneity P(λ f ) = λ · P( f ).

From the coherence criteria, many useful properties can be derived for a coherent
lower prevision P and its conjugate upper prevision P . We provide a number of key
ones, which hold for all gambles f and g inK and μ ∈ R; P denotes either P or P:

Upper dominates lower P( f ) ≥ P( f ),
Constants P(μ) = μ,

Constant additivity P( f + μ) = P( f ) + μ,
Gamble dominance if f ≥ g + μ then P( f ) ≥ P(g) + μ,

Mixed sub/super-additivity P( f + g) ≤ P( f ) + P(g) ≤ P( f + g).

3.4 Sets of Probabilities

In Sect. 3.2 we modeled uncertainty using a set of acceptable gambles. In Sect. 3.3
we showed how this can also be done in terms of lower or upper previsions (or
probabilities). In this section, we add a third representation, one using credal sets—
sets of precise previsions [17, §2.2.2], [18, §1.6.2]. In Sect. 3.4.1 we show how to
derive the credal set corresponding to a given lower prevision. In Sect. 3.4.2 we go
the other direction and show how to go from a credal set to lower prevision values
[20, §3.3].

3.4.1 From Lower Previsions to Credal Sets

A credal set is a subset of the set of all precise previsionsP. (For possibility spaces B
different fromX, we writePB .) This set is convex, meaning that any convex mixture
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of precise previsions is again a precise prevision.Because of this, a gamble’s prevision
is a linear function over this space. A lower—and upper—prevision can be seen
as providing a bound on the value of the precise prevision for that gamble and
thereby represent a linear constraint on the precise previsions. So the credal set M
corresponding to a lower prevision P defined on a set of gambles K is the subset
of P satisfying this constraint for all gambles in K :

M =
⋂

f ∈K

{
P ∈ P : P( f ) ≥ P( f )

}
.

Being defined as such an intersection, such credal sets are closed and convex.
The rationality criteria for a lower prevision P we encountered before can also

be expressed using its corresponding credal setM:

• P incurs sure loss if and only if M is equal to the empty set.
• P is coherent if and only if all constraints are ‘tight’, i.e., if there exists a P inM
such that P( f ) = P( f ) for all f in K .

Let us make the concept of a credal set concrete using our running example:

Yoko Tsuno’s credal set

For a finite possibility space such as the one of our running example, a precise previ-
sion P can be defined completely by the corresponding probability mass function p
defined by px = P({x}) for x in X = {

be, jp
}
. The set of all precise previsions

can therefore be represented by the probability simplex—the set of all probability
mass functions—on X. This set and the example probability mass function ( 12 ,

1
2 )

is shown below left. Below right, we illustrate how Yoko Tsuno’s lower previ-
sion PY(jp) = 4

5 generates the credal set MY: The gamble 1jp as a linear function
over the simplex is shown as an inclined line. This linear relationship between p—
equivalently, the corresponding prevision Pp—and Pp(1jp) = Pp(jp) transforms the
bounds 4

5 ≤ Pp(jp) ≤ 1 intoMY.

jpbe
p = (pbe, pjp)

( 12 ,
1
2 )(1, 0) (0, 1)

jpbe

0

1

Pp(jp) = 0 · pbe + 1 · pjp

PY(jp) = 4
5

( 15 ,
4
5 )

MY

The set of extreme pointsM∗
Y ofMY as probability mass functions is

{
( 15 , 4

5 ), (0, 1)
}
.
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3.4.2 From Credal Sets to Lower Previsions

Nowwe assume that the agent’s credal setM is given. Most generally this can be any
set of precise previsions, i.e., any subset of P. Often, to ensure equivalence between
coherent lower previsions and non-empty credal sets, they are required to be closed
and convex. In that case, a credal set is determined completely by its set of extreme
points M∗ in the sense that all other elements are convex mixtures of these.

To determine the lower prevision corresponding to any credal set, we determine
its value for each gamble f of interest using the lower envelope theorem:

P( f ) = min
{
Pp( f ) : p ∈ M} = min

{
Pp( f ) : p ∈ M∗}

.

Let us again use the running example to provide a feeling for what this all means:

A credal set for the empty pool facing penalties

Consider the empty pool. Because its assessment is empty, its credal setMEP is the
trivial one corresponding to all probability mass functions onX = {

be, jp
}
. Now we

add an extra element to the possibility space, ‘Penalties’. Below left we show MEP

embedded in the corresponding larger probability simplex. Wiske and Yoko Tsuno
decide to add the uniform probability mass function to it. Below right, you see the
convex hullMEUP of this extra probability mass function and the original credal set.

P(enalties)

jpbe
(1, 0, 0) (0, 1, 0)

( 13 ,
1
3 ,

1
3 )

MEP

P(enalties)

jpbe

MEUP

Pp(p) = 1
3

If wewant to calculate lower and upper prevision values, we can here use the extreme
point version of the lower and—similar—upper envelope theorem. For example, for
the pool’s upper probability for Penalties:

PEP(p) = PEP(1p) = max
{
p(0, 0, 1) : p ∈

{
(1, 0, 0), (0, 1, 0), ( 13 , 1

3 , 1
3 )

}}
= 1

3
.

To make it explicit where this maximum is achieved, we above right show the line
of probability mass functions p such that Pp(p) = 1

3 .
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3.5 Basics of Conditioning

Conditioning an uncertainty model is the act of restricting attention to a subset B
of the possibility space. It is often used to update an uncertainty model after having
observed the event B [20, §6.1].

In the theory of imprecise probability, conditioning is a specific case of natural
extension [17, §2.3.3], [20, §6.4.1]. In terms of acceptable gambles, conditioning
on B corresponds to restricting the space of gambles to those that are zero outside B
[18, §1.3.3]. For lower previsions, this translates to the following conditioning rule
for all gambles f in L:

E( f | B) =
{
inf x∈B f (x) if P(B) = 0,

max
{
μ ∈ R : P(1B( f − μ) = 0)

}
if P(B) > 0.

Conditioning a credal set M corresponds to taking the credal set M|B formed by
conditioning each of the precise previsions inM:

M|B =
{
PB if ∃P ∈ M : P(B) = 0,

{P(· | B) : P ∈ M} if ∀P ∈ M : P(B) > 0.

These rules based on natural extension give vacuous conditionals whenever the
lower probability of the conditioning event is zero. Regular extension is a less impre-
cise updating rule [17, §2.3.4], [18, §1.6.6], [20, App. J]: In credal set terms, it
removes those precise previsions P such that P(B) = 0 fromM.

Let us apply the conditioning rules discussed here to our running example:

Conditioning the empty-uniform pool’s credal set

We condition the empty-uniform pool’s credal set on {jp, p}, i.e., Belgium not
winning in regular time. Further down on the left, we show what happens if we
apply natural extension: the conditional model is vacuous because P(1,0,0)({jp, p}) =
P(1,0,0)(1{jp,p}) = (1, 0, 0)(0, 1, 1) = 0. Further down on the right, we apply natu-
ral extension and therefore remove P(1,0,0) fromMEUP; this results in a non-vacuous
conditional credal set.
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P(enalties)

jpbe
(1, 0, 0) (0, 1, 0)

( 13 ,
1
3 ,

1
3 )

MEUP

MEUP| {jp, p}

P(enalties)

jpbe
(0, 1, 0)

( 13 ,
1
3 ,

1
3 )

M′
EUP

M′
EUP| {jp, p}

3.6 Remarks About Infinite Possibility Spaces

The theory we presented is also applicable to denumerable and continuous pos-
sibility spaces with some technical amendments to the coherence criteria and by
considering only bounded gambles. However, the running example was based on
finite possibility spaces, so no feeling was created for applications with infinite pos-
sibility spaces. Therefore we here give some remarks about imprecise probabilistic
uncertainty models on continuous possibility spaces:

• They are mostly defined using credal sets whose extreme points are parametric
distributionswhere the parameters vary in a set. A prime example are the imprecise
Dirichlet model [21] and its generalizations [19].

• They are also commonly defined using probability mass assignments to subsets of
the possibility space. This is in some way a reduction to the finite case. Examples
are belief functions [13, §5.2.1.1], some P-boxes [14, §4.6.4], and NPI models [5,
§7.6].

• Furthermore,modelswhich bound some specific description of a precise prevision,
such as cumulative distribution functions andprobability density functions, are also
popular in some domains. The extreme points of their credal set are, however, not
known. General P-boxes [15] and lower and upper density functions [20, §4.6.3]
are examples of this class.

• Calculating lower and upper previsions—i.e., performing natural extension—can
easily become difficult optimization problems, so this should be a key considera-
tion when choosing a specific type of model.
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3.7 Conclusion

This introduction to the theory of imprecise probability has prepared you for access-
ing the broader literature on this topic and its applications. For those that wish to
apply imprecise probabilistic techniques, this text only provides the first step: You
should dive into the literature and contact experts to obtain the necessary knowledge
and feedback. The references of this chapter and their authors or editors provide a
starting point for that.
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Chapter 4
Imprecise Discrete-Time Markov Chains

Gert de Cooman

Abstract I present a short and easy introduction to a number of basic definitions
and important results from the theory of imprecise Markov chains in discrete time,
with a finite state space. The approach is intuitive and graphical.

4.1 Introduction

Although imprecision and robustness in discrete-time Markov chains were already
studied in the 1990s [6–8], more significant progress [2, 3, 5, 11] could bemade after
the graphical structure of imprecise probability trees underlying themwas uncovered
in 2008 [4]. Research has now moved firmly into the continuous-time domain, for
which [1, 9] are good starting points.

In this paper, I give a concise and elementary overview of a number of basic
ideas and results in discrete-time imprecise Markov chains, with an emphasis on
their graphical representation. We begin with the basics of precise and imprecise
probability models in Sects. 4.2 and 4.3. When such models are used in a dynami-
cal context, precise and imprecise probability trees arise naturally; they and the use
of the fundamental Law of Iterated Expectations for making inferences about them
constitute the subjects of Sects. 4.4 and 4.5. Imprecise Markov chains correspond
to special imprecise probability trees, and they and their basic inferences are dis-
cussed in Sect. 4.6, followed by a number of examples in Sect. 4.7. These examples
hint at stationary distributions and ergodicity. These notions are briefly discussed
in Sect. 4.8, which concludes the paper. Throughout, I have included a number of
simple exercises to illustrate the arguments in the main text.
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4.2 Precise Probability Models

Assume we are uncertain about the value that a variable X assumes in some finite
set of possible values X . This is usually modelled by a probability mass function m
on X , satisfying (∀x ∈ X )m(x) ≥ 0 and

∑
x∈X m(x) = 1.

With m we can associate an expectation operator Em as follows

Em( f ) :=
∑

x∈X
m(x) f (x) where f : X → R.

If A ⊆ X is an event, then its probability is given by Pm(A) = ∑
x∈A m(x) =

Em(IA), where IA : X → R is the indicator of A and assumes the value 1 on A
and 0 elsewhere. This tells us that there are two equivalent mathematical languages
for dealing with uncertainty: the language of probabilities and the language of expec-
tations, and that we can go freely from one to the other.

All possible (precise) probability models are gathered in the simplex �X of all
mass functions onX :�X := {

m ∈ R
X : (∀x ∈ X )m(x) ≥ 0 and

∑
x∈X m(x) = 1

}
.

Any probability model for uncertainty about X is a point in that simplex, which indi-
cated that mass functions have a geometrical interpretation. This is illustrated below
for the case X = {a, b, c} and the uniform mass function mu.

Expectation also has a geometrical interpretation: specifying a value E( f ) for the
expectation of a map f : X → R, namely,

∑
x∈X m(x) f (x) = E( f ), imposes a

linear constraint on the possible values for m in �X . It corresponds to intersecting
the simplex �X with a hyperplane, whose direction depends on f . This is also
illustrated in the picture above; in this particular case two assessments turn out to
completely determine a unique mass function.

4.3 Imprecise Probability Models

We now turn to a generalisation of precise probability models, which we will call
imprecise. To allow for more realistic and flexible assessments, we can envisage
imposing linear inequality—rather than equality—constraints on the m in �X :

E( f ) ≤
∑

x∈X
m(x) f (x) or

∑

x∈X
m(x) f (x) ≤ E( f ).
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This corresponds to intersecting �X with affine semi-spaces:

Any such number of assessments leads to a credal set M, which is our first type of
imprecise probability model.

Definition 4.1 A credal set M is a convex closed subset of �X .

Below, we show some more examples of such credal sets in the special case X =
{a, b, c}. The credal set on the left corresponds to the assessment: ‘b is at least as
likely as c’; the one in the middle is a convex mixture of the uniform mass function
with the entire simplex; and the one on the right represents a statement in classical
propositional logic: ‘X = a or X = c’. This illustrates that the language of credal
sets encompasses both precise probabilities and classical propositional logic.

Lower and upper expectations are our second type of imprecise probabilitymodel.
To see how they come about, consider the credal set in the figure below on the right.

We can ask what we know about the probability of c, or the expectation of I{c},
given this credal set: it is only known to belong to the closed interval [1/4, 4/7]. This
can be generalised from events to arbitrary elements of the set L(X ) = R

X of all
real-valued maps f on X : As m ranges over the credal setM, Em( f ) will similarly
range over a closed interval that is completely determined by its lower and upper
bounds.

This leads to the definition of the following two real functionals on L(X ):

EM( f ) = min {Em( f ) : m ∈ M} lower expectation
EM( f ) = max {Em( f ) : m ∈ M} upper expectation for all f : X → R.

Observe that these lower and upper expectations are mathematically equivalent mod-
els, because
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EM( f ) = −EM(− f ) for all f ∈ L(X ).

We will in what follows focus on upper expectations.

Exercise 4.1 What is the upper expectation EM when M = �X ?

This shows thatwe can go from the language of probabilities—and the use ofM—
to the language of expectations—and the use of EM. To see that we can also go the
other way, we need the following definition:

Definition 4.2 Wecall a real functional E onL(X ) anupper expectation if it satisfies
the following properties: for all f and g in L(X ) and all real λ ≥ 0:

1. E( f ) ≤ max f [boundedness];
2. E( f + g) ≤ E( f ) + E(g) [sub-additivity];
3. E(λ f ) = λE( f ) [non-negative homogeneity].

Upper expectations are also called coherent upper previsions [10, 12]. They constitute
a model that is mathematically equivalent to credal sets, in very much the same way
as expectations are mathematically equivalent to probability mass functions:

Theorem 4.1 A real functional E is an upper expectation if and only if it is the
upper envelope of some credal set M.

Proof UseM = {
m ∈ �X : (∀ f ∈ L(X ))(Em( f ) ≤ E( f ))

}
. �

Exercise 4.2 Consider any linear prevision Em and any ε ∈ [0, 1]. Verify that the
so-called linear-vacuous mixture:

is an upper expectation.
Solution: Em andmax are upper expectations by Theorem 4.1, because they are upper
envelopes of the respective credal sets {m} and �X—see Exercise 4.1. Now verify
that being an upper expectation is preserved by taking convex mixtures. The corre-
sponding credal set (1 − ε){m} + ε�X := {(1 − ε)m + εq : q ∈ �X } is indicated
in blue in the figure above. ♦
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Exercise 4.3 All upper expectations on a binary space X = {0, 1} are such linear-
vacuous mixtures, and the corresponding credal set can be depicted as

0 1

p p

Let p := m(1) and q := 1 − p = m(0). What is the relation between [p, p] and
p, ε?
Solution: p = E(I{1}) = (1 − ε)p = p − εp and p = E(I{1}) = (1 − ε)p + ε =
p + εq. Hence, p − p = ε. ♦

4.4 Discrete-Time Uncertain Processes

We now apply these ideas in a more dynamic context: the study of processes. We
consider an uncertain process, which is a collection of uncertain variables X1, X2,…,
Xn ,… assuming values in some finite set of statesX . This can be represented graphi-
cally by a standard event treewith nodes (also called situations) s = (x1, x2, . . . , xn)
for xk ∈ X and n ≥ 0. This is depicted below on the left for the special case that
X = {0, 1}, where we have limited ourselves to three variables X1, X2, and X3; but
the idea should be clear. Observe that we use the symbol � for the initial situation,
or root node, of the event tree.

1

(1, 1)
(1, 1, 1)

(1, 1, 0)

(1, 0)
(1, 0, 1)

(1, 0, 0)

0

(0, 1)
(0, 1, 1)

(0, 1, 0)

(0, 0)
(0, 0, 1)

(0, 0, 0)

X 1

X 2

X 3

1

(1, 1)
(1, 1, 1)

(1, 1, 0)

(1, 0)
(1, 0, 1)

(1, 0, 0)

0

(0, 1)
(0, 1, 1)

(0, 1, 0)

(0, 0)
(0, 0, 1)

(0, 0, 0)

m�

m1

m0

m(1,1)

m(0,0)

m(0,1)

m(1,0)

The event tree becomes a probability tree as soon as we attach to each node
s = (x1, x2, . . . , xn) a local probability mass function ms on X with associated
expectation operator Ems , expressing the uncertainty about the next variable Xn+1

after observing the earlier variables X1 = x1, …, Xn = xn . This is depicted above
on the right for the special case that X = {0, 1}.

We now consider a very general inference problem in such a probability tree.
Consider any function g : X n → R of the first n variables: g = g(X1, X2, . . . , Xn).
We want to calculate its expectation E(g|s) in the situation s = (x1, . . . , xk), that is,
after having observed the first k variables. Interestingly, this can be done efficiently
using the following theorem,which is a reformulation of the Lawof Total Probability:
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Theorem 4.2 (Law of Iterated Expectations) If we know E(g|s, x) for all x ∈ X ,
then we can calculate E(g|s) by backwards recursion using the local model ms:

E(g|s) = Ems︸︷︷︸
local

(E(g|s, ·)) =
∑

x∈X
ms(x)E(g|s, x).

This shows that expectations can be calculated recursively using a very basic step,
illustrated below for the case X = {0, 1}:

s
(s, 0)

(s, 1)
msE(g|s) = ms(1)E(g|s, 1) + ms(0)E(g|s, 0)

E(g|s, 1)

E(g|s, 0)

Hence, all expectations E(g|x1, . . . , xk) in the tree can be calculated from the local
models ms as follows:

1. start in the final cut X n and let E(g|x1, x2, . . . , xn) = g(x1, x2, . . . , xn);
2. do backwards recursion using the Law of Iterated Expectations:

E(g|x1, . . . , xk) = Em(x1 ,...,xk )

︸ ︷︷ ︸
local

(E(g|x1, . . . , xk, ·))

3. go on until you get to the root node �, where we can identify E(g|�) = E(g).

Exercise 4.4 Consider flipping a coin twice independently, with probability p for
heads—outcome 1—and q = 1 − p for tails—outcome 0. The corresponding prob-
ability tree for this experiment is given below on the left, with, in red, in the nodes,
the corresponding number of heads. What is the expected number of heads?

1

2p

1qp

0

1p

0q

q

1

2p

1qp

0

1p

0q

q
p = p · 1 + q · 0

1 + p = 2p + q = p · 2 + q · 1

2p = p + (
p · 1 + q · 0)

Solution: Above on the right, we apply the Law of Iterated Expectations recursively,
from leaves to root; the solution is the expectation 2p attached to the root. ♦
Exercise 4.5 Extend the ideas in the solution toExercise 4.4 to calculate the expected
number of heads when the coin is flipped n times independently.
Solution:We apply the Law of Iterated Expectations recursively, from leaves to root.
Below on the left, we consider starting from the leaves of the tree at depth n; applying
the Law reduces to adding p to the number of heads in each of their parent nodes at
depth n − 1. On the right, we apply the Law to these nodes at depth n − 1, which
reduces to adding 2p to the number of heads in each of their parent nodes at depth
n − 2.
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k

k + 1p

kq

n − 1 n

k + p = k + (
p · 1 + q · 0)

at time n − 1 in a situation with k heads

k

k + p + 1
p

k + pq

n − 2 n − 1

k + 2p = k + p + (
p · 1 + q · 0)

at time n − 2 in a situation with k heads

Going on in this way, we see that the solution is the expectation np attached to the
root at depth 0. ♦
Exercise 4.6 We now flip the same coin time and time again, independently, until
we reach heads for the first time. Calculate the expected number of coin flips.
Solution: Below is the (unbounded) probability tree associated with this experiment.

0
(0, 0)

· · ·q

(0, 0, 1)p
q

(0, 1)p
q

1p

depth 1

α

α + 1

Call the unknown expectation α. We apply the Law of Iterated Expectations to
the situations at depth 1. In the situation 1, the expected number of heads is 1, the
actual number of heads there. In the situation 0, we see a copy of the original tree
extending to the right, but since we have already flipped the coin once here, the
expected number of heads in this situation is α + 1. In the parent node, the expected
number of heads α is therefore also given by p · 1 + q · (α + 1) = 1 + qα, whence
α = 1/p. ♦

4.5 Imprecise Probability Trees

Until now, we have assumed that we have sufficient information in order to specify,
in each node s, a local probability mass function ms on the set X of possible values
for the next state.

s
(s, 0)

(s, 1)
ms −→ s

(s, 0)

(s, 1)
Ms

We now let go of this major restrictive assumption by allowing for more general
uncertaintymodels.Wewill consider credal sets as ourmore general local uncertainty
models: closed convex subsets Ms of �X . See the figure below for a special case
when X = {0, 1}.
Definition 4.3 An imprecise probability tree is an event tree where in each node s
the local uncertainty model is a credal set Ms , or equivalently, its associated upper
expectation Es , with Es( f ) := max {Em( f ) : m ∈ Ms} for all f ∈ L(X ).
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An imprecise probability tree can be interpreted as an infinity of compatible precise
probability trees: choose in each node s a probability mass function ms from the
setMs .

1

(1, 1)
(1, 1, 1)

(1, 1, 0)

(1, 0)
(1, 0, 1)

(1, 0, 0)

0

(0, 1)
(0, 1, 1)

(0, 1, 0)

(0, 0)
(0, 0, 1)

(0, 0, 0)

M�

M1

M0

M(1,1)

M(0,0)

M(0,1)

M(1,0)

For each real map g = g(X1, . . . , Xn), each node s = (x1, . . . , xk), and each such
compatible precise probability tree, we can calculate the expectation E(g|x1, . . . , xk)
using the backwards recursion method described before. By varying over each com-
patible probability tree, we get a closed real interval, completely characterised by
lower andupper expectations E(g|x1, . . . xk) and E(g|x1, . . . , xk): [E(g|x1, . . . , xk),
E(g|x1, . . . , xk)]. The complexity of calculating these bounds in this way is clearly
exponential in the number of time steps n. But, there is a more efficient method to
calculate them:

Theorem 4.3 (Law of Iterated Upper Expectations [4, 5]) If we know E(g|s, x) for
all x ∈ X , then we can calculate E(g|s) by backwards recursion using the local
model Es:

E(g|s) = Es︸︷︷︸
local

(E(g|s, ·)) = max
ms∈Ms

∑

x∈X
ms(x) E(g|s, x).

This shows that expectations can be calculated recursively using a very basic step,
illustrated below for the case X = {0, 1}:

s
(s, 0)

(s, 1)
MsE(g|s) = Es(E(g|s, ·))

E(g|s, 1)

E(g|s, 0)

The method for, and the complexity of, calculating the E(g|s), as a function of n, is
therefore essentially the same as in the precise case!

Exercise 4.7 Extend the ideas in the solution to Exercise 4.5 to calculate the upper
expected number of heads when the coin is flipped n times independently, but where
nowwe have an imprecise probabilitymodel for a coin flip, with a probability interval
[p, p] for heads, and a corresponding interval [q, q] = [1 − p, 1 − p] for tails.
Solution:We apply the Law of Iterated Upper Expectations recursively, from leaves
to root. Below on the left, we consider starting from the leaves of the tree at depth n;
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applying the Law reduces to adding p to the number of heads in each of their parent
nodes at depth n − 1.

k

k + 1
[p, p]

k[q, q]

n − 1 n

k + p = k + E(I{1})

at time n − 1 in a situation with k heads

k

k + p + 1
[p, p]

k + p[q, q]

n − 2 n − 1

k + 2p = k + p + E(I{1})

at time n − 2 in a situation with k heads

On the right, we apply the Law to these nodes at depth n − 1, which reduces to
adding 2p to the number of heads in each of their parent nodes at depth n − 2. Going
on in this way, we see that the solution is the expectation n p attached to the root at
depth 0. A similar result holds for the lower expectation. ♦
Exercise 4.8 We now flip the same coin with the imprecise probability model time
and time again, independently, until we reach heads for the first time. Calculate the
upper expected number of coin flips.
Solution: Below is the (unbounded) probability tree associated with this experiment.

Call the unknown upper expectation α. We apply the Law of Iterated Upper Expecta-
tions to the situations at depth 1. In the situation 1, the upper expected number of heads
is 1, the actual number of heads there. In the situation 0, we see a copy of the original
tree extending to the right, but since we have already flipped the coin once here, the
upper expected number of heads in this situation is α + 1. In the parent node, the
upper expected number of heads α is therefore also given by 1 + E(α I{0}) = 1 + αq ,
whence α = 1/p. A similar result holds for the lower expectation. ♦
The attentive reader will have observed that in all these simple exercises, we can
also obtain the ‘imprecise’ result from the ’precise’ one by optimising over the
single parameter p. We have to warn against too much optimism: in more involved
examples, this will no longer be the case.

4.6 Imprecise Markov Chains

We now look at a special instance of a probability tree, corresponding to a stationary
(precise) Markov chain. This happens when the precise local models m(x1,...,xn) only
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depend on the last observed state xn—this is theMarkov Condition—and also do not
depend explicitly on the time step n:

m(x1,...,xn) = q(·|xn)

for some family of transition mass functions q(·|x), x ∈ X .

Definition 4.4 The uncertain process is a stationary precise Markov chain when all
Ms are singletons {ms} and M(x1,...,xn) = {q(·|xn)}, for some family of transition
mass functions q(·|x), x ∈ X .

For each x ∈ X , the transition mass function q(·|x) corresponds to an expectation
operator, given by E( f |x) = ∑

z∈X q(z|x) f (z) for all f ∈ L(X ).

Definition 4.5 Consider the linear transformation T ofL(X ), called transition oper-
ator: T : L(X ) → L(X ) : f �→ T f , where T f is the real map defined by:

T f (x) := E( f |x) =
∑

z∈X
q(z|x) f (z) for all x ∈ X .

In the parlance of linear algebra, or functional analysis, T is the dual of the linear
transformation with Markov matrix M with elements Mxy := q(y|x).

Up to now, we have mainly been concerned with conditional expectations of the
type E(·|s).Wewill now look at particular unconditional expectations, where s = �.
For any n ≥ 0, we define the expectation for the (single) state Xn at time n by

En( f ) = E( f (Xn)) = E( f (Xn)|�) for all f : X → R

and we denote the corresponding mass function bymn . Applying the Law of Iterated
Expectations in Theorem 4.2 now yields, with also E1 = Em� and m1 = m�:

En( f ) = E1(T
n−1 f ), and dually, mn = Mn−1m1,

so the complexity of calculating En( f ) is linear in the number of time steps n.

Exercise 4.9 Consider the stochastic process where we first flip a fair coin. From
then on, on heads, we select a biased coin with probability p for heads for the next
coin flip, and on tails, a biased coin with probability q = 1 − p for heads, and keep
on flipping one of the two biased coins, selected on the basis of the outcome of the
previous coin flip. This produces a Markov chain. Find T f , T2 f , and E1( f ), E2( f )
and E3( f ) for f ∈ L({0, 1}).
Solution: Clearly, E1( f ) = 1/2 f (1) + 1/2 f (0), T f (0) = E( f |0) = q f (1) + p f (0)
and T f (1) = E( f |0) = p f (1) + q f (0), whence

E2( f ) = E1(T f ) = p + q

2
f (1) + p + q

2
f (0) = 1

2
f (1) + 1

2
f (0).
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Similarly,

T2 f (0) = qT f (1) + pT f (0) = q[p f (1) + q f (0)] + p[q f (1) + p f (0)]
= (p2 + q2) f (0) + 2pq f (1)

T2 f (1) = (p2 + q2) f (1) + 2pq f (0),

whence

E3( f ) = E1(T
2 f ) = p2 + q2 + 2pq

2
f (1) + 2pq + p2 + q2

2
f (0) = 1

2
f (1) + 1

2
f (0),

and so on.We see that at the level of expectations of single state variables, the process
cannot be distinguished from flipping a fair coin. ♦

The generalisation from precise to imprecise Markov chains goes as follows:

Definition 4.6 The uncertain process is a stationary imprecise Markov chain when
the Markov Condition is satisfied with stationarity: M(x1,...,xn) = Q(·|xn) for some
family of transition credal sets Q(·|x), x ∈ X .

1

(1, 1)
(1, 1, 1)

(1, 1, 0)

(1, 0)
(1, 0, 1)

(1, 0, 0)

0

(0, 1)
(0, 1, 1)

(0, 1, 0)

(0, 0)
(0, 0, 1)

(0, 0, 0)

m�

q(·|1)

q(·|0)

q(·|1)

q(·|0)

q(·|1)

q(·|0)

−→

1

(1, 1)
(1, 1, 1)

(1, 1, 0)

(1, 0)
(1, 0, 1)

(1, 0, 0)

0

(0, 1)
(0, 1, 1)

(0, 1, 0)

(0, 0)
(0, 0, 1)

(0, 0, 0)

M�

Q(·|1)

Q(·|0)

Q(·|1)

Q(·|0)

Q(·|1)

Q(·|0)

An imprecise Markov chain can be seen as an infinity of (precise) probability trees:
choose a precise mass function from Ms in each situation s. It should be clear that
not all of these satisfy the Markov property or stationarity. This implies that solving
the optimisation problem in order to find the tight upper bounds E(g|s), as discussed
in Sect. 4.5, is not (necessary always) simply an optimisation over a parametrised
collection of stationary (or even non-stationary) Markov chains, although it can turn
out be so simple in a number of special cases.

For each x ∈ X , the local transition modelQ(·|x) corresponds to an upper expec-
tation operator E(·|x), with E( f |x) = max

{
Ep( f ) : p ∈ Q(·|x)} for all f ∈ L(X ).

This leads to the following definition, which generalises the definition of transition
operators for precise Markov chains:

Definition 4.7 Consider the non-linear transformation T of L(X ), called the upper
transition operator: T : L(X ) → L(X ) : f �→ T f where the real map T f is defined
by T f (x) := E( f |x) = max

{
Ep( f ) : p ∈ Q(·|x)} for all x ∈ X .
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For any n ≥ 0, we define the upper expectation for the (single) state Xn at time n by

En( f ) = E( f (Xn)) = E( f (Xn)|�) for all f : X → R.

Then the Law of Iterated Upper Expectations of Theorem 4.3 yields, with also E1 =
EM� :

En( f ) = E1(T
n−1 f ) for all n ≥ 1 and all f ∈ L(X ),

so the complexity of calculating En( f ) is still linear in the number of time steps n.

4.7 Examples

Consider a two-element state space X = {1, 0}, with upper expectation E1 =
EM� for the first variable, and for each (x1, . . . , xn) ∈ {1, 0}n , with 0 < ε ≤
1, M(x1,...,xn) = Mxn = (1 − ε){q(·|xn)} + ε�{1,0}, or equivalently, for the upper
transition operator T = (1 − ε)T + ε max. In other words, each transition credal
setQ(·|x) is a linear-vacuous mixture (see Exercise 4.2, also for the notations used)
centred on the transition mass function q(·|x), where the mixture coefficient ε is the
same in each state x .

It is amatter of simple and direct verification that for n ≥ 1 and f ∈ L(X ): Tn f =
(1 − ε)nTn f + ε

∑n−1
k=0(1 − ε)k max Tk f , and therefore, using the Law of Iterated

Expectations, En+1( f )=E1(Tn f ) = (1 − ε)n E1(Tn f ) + ε
∑n−1

k=0(1 − ε)k max Tk f .
If we now let n → ∞, it is not too hard to see that the limit exists and is independent
of the initial upper expectation E1:

lim
n→∞ En( f ) = ε

∞∑

k=0

(1 − ε)k max Tk f for all f ∈ L(X ).

We consider two special cases:

1. Contaminated randomwalk:whenT f (1)=T f (0) = 1/2[ f (1) + f (0)], the under-
lying precise Markov chain is actually like flipping a fair coin. We then find that
E∞( f ) = (1 − ε)1/2[ f (1) + f (0)] + ε max f for all f ∈ L(X ).

2. Contaminated cycle: when T f (1) = f (0) and T f (0) = f (1), the underlying
precise Markov chain is actually like deterministic cycle between the states 0
and 1. We then find that E∞( f ) = max f for all f ∈ L(X ).

The probability intervals for 1 corresponding to these two limit models are given by

0 11/2

ε

and
0 1

ε = 1
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As another example, we considerX = {a, b, c} and the transitionmodels depicted
below, which are imprecise models not very far from a simple cycle:

Below, we depict the time evolution of the En (as credal sets) for three cases (red,
yellow and blue). We see that, here too, regardless of the initial distribution E1, the
distribution En seems to converge to the same distribution.

4.8 A Non-linear Perron–Frobenius Theorem,
and Ergodicity

The convergence behaviour in the previous examples can also be observed in general
imprecise Markov chains under fairly weak conditions. The following theorems can
be derived from the more general discussions and results in [3, 5].

Theorem 4.4 Consider a stationary imprecise Markov chain with finite state set X
and upper transition operator T. Suppose that T is regular, meaning that there is
some n > 0 such that min Tn I{x} > 0 for all x ∈ X . Then for every initial upper
expectation E1, the upper expectation En = E1 ◦ Tn−1 for the state at time n con-
verges point-wise to the same stationary upper expectation E∞: limn→∞ En(h) =
limn→∞ E1(Tn−1h) := E∞(h) for all h in L(X ). The limit upper expectation E∞ is
the only T-invariant upper expectation on L(X ), meaning that E∞ = E∞ ◦ T.

In that case we also have an interesting ergodicity result. For a detailed description
of the notion of ‘almost surely’, we refer to [3], but it roughly means ‘with upper
probability one’.
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Theorem 4.5 Consider a stationary imprecise Markov chain with finite state set X
and upper transition operator T. Suppose that T is regular with stationary upper
expectation E∞. Then, almost surely, for all h in L(X ):

E∞(h) ≤ lim inf
n→∞

1

n

n∑

k=1

h(Xk) ≤ lim sup
n→∞

1

n

n∑

k=1

h(Xk) ≤ E∞(h).

4.9 Conclusion

The discussion in this paper lays bare a few interesting but quite basic aspects of
inference in imprecise probability trees and Markov chains in discrete time. A more
general and deeper treatment of these matters can be found in [3–5]. For recent work
on impreciseMarkov chains in continuous time, I refer the interested reader to [1, 9].

References

1. Jasper De Bock. The Limit Behaviour of Imprecise Continuous-Time Markov Chains. Journal
of Nonlinear Science, 27(1):159–196, 2017.

2. Jasper De Bock and Gert de Cooman. An efficient algorithm for estimating state sequences
in imprecise hidden Markov models. Journal of Artificial Intelligence Research, 50:189–233,
2014.

3. Gert de Cooman, Jasper De Bock, and Stavros Lopatatzidis. Imprecise stochastic processes in
discrete time: global models, imprecise markov chains, and ergodic theorems. International
Journal Of Approximate Reasoning, 76(C):18–46, 2016.

4. Gert de Cooman and Filip Hermans. Imprecise probability trees: Bridging two theories of
imprecise probability. Artificial Intelligence, 172(11):1400–1427, 2008.

5. Gert de Cooman, Filip Hermans, and Erik Quaeghebeur. Imprecise Markov chains and their
limit behaviour. Probability in the Engineering and Informational Sciences, 23(4):597–635,
2009. arXiv:0801.0980.

6. D. J. Hartfiel and E. Seneta. On the theory of Markov set-chains. Advances in Applied Proba-
bility, 26:947–964, 1994.

7. Darald J. Hartfiel. Sequential limits in Markov set-chains. Journal of Applied Probability,
28(4):910–913, 1991.

8. Darald J. Hartfiel. Markov Set-Chains. Number 1695 in Lecture Notes in Mathematics.
Springer, Berlin, 1998.

9. Thomas Krak, Jasper De Bock, and Arno Siebes. Imprecise continuous-time Markov chains.
International Journal of Approximate Reasoning. 88:452–528, 2017.

10. Matthias C. M. Troffaes and Gert de Cooman. Lower Previsions. Wiley, 2014.
11. Damjan Škulj and Robert Hable. Coefficients of ergodicity for Markov chains with uncertain

parameters. Metrika, 76(1):107–133, 2013.
12. Peter Walley. Statistical Reasoning with Imprecise Probabilities. Chapman and Hall, London,

1991.

http://arxiv.org/abs/0801.0980


4 Imprecise Discrete-Time Markov Chains 65

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/


Chapter 5
Statistics with Imprecise
Probabilities—A Short Survey

Thomas Augustin

Abstract This chapter aims at surveying and highlighting in an introductory way
some challenges and big opportunities a paradigmatic shift to imprecise probabili-
ties could induce in statistical modelling. Working with an informal understanding
of imprecise probabilities, we discuss the concepts of model imprecision and data
imprecision as the two main types of imprecision in statistical modelling. Then we
provide a short survey of some major developments, methodological questions and
applications of imprecise probabilistic models under model imprecision in the con-
text of different inference schools and summarize some recent developments in the
area of data imprecision.

5.1 Introduction

By promising powerful solutions to some of the deepest foundational problems of
probability and statistics, imprecise probabilities offer great opportunities also for
the area of statistical modelling. Still, in statistics, theories of imprecise probabili-
ties live in the shadows, and admittedly the development of many of the imprecise
probability-based methods is often in a comparatively early stage. Nevertheless, in
all areas of statistics, the desire for a more comprehensive modelling of complex
uncertainty had popped up again and again. The rather scattered work covers a huge
variety of methods and topics, ranging from contributions to the methodological and
philosophical foundations of inference to very concrete questions of applications.
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The present chapter aims at providing a rough and informal survey of some of the
major questions and developments.1 It is structured as follows. Section5.2 collects
the basic concepts that are needed later on. Then, Sect. 5.3 looks at the major sources
of imprecision in statistical modelling. We distinguish there between several types
of data imprecision and of model imprecision. Section5.4 focuses on the issue of
model imprecision and discusses it from the angle of different inference schools. We
put some emphasis on the (generalized) frequentist and Bayesian setting, but also
briefly adopt other perspectives. In Sect. 5.5, approaches to handle so-called ontic
and epistemic data imprecision, respectively, are surveyed. Section5.6 is reserved
for some concluding remarks.

5.2 Some Elementary Background on Imprecise
Probabilities

In this section, we briefly summarize the concepts in the background. With respect
to the basic notions and the technical framework for statistical inference, we refer to
the first chapter of this book [41]. We rely on the same basic setting, where we use
observations (data) on some underlying stochastic phenomenon2 to learn character-
istics of that mechanism, mathematically described by an unknown parameter of the
underlaid probability model.

With respect to imprecise probabilities, a very rough and eclectic understanding
shall be sufficient to read this chapter.3 It is not necessary, for our aims here, to dis-
tinguish different approaches with respect to many technical details. Thus, in a rather
inclusive manner, we subsume here under imprecise probabilities any approach that
replaces in its modelling precise, traditional probabilities p(·) by non-empty sets P
of precise probabilities as the basic modelling entity, including also all approaches
that can be equivalently transferred into a set of precise probability. This comprises
approaches directlyworkingwith sets of probabilities, like robust Bayes analysis (see
Sect. 5.4.2), Kofler &Menges’ linear partial information (e.g. [42]), Levi’s approach
to epistemology (e.g. [45]), as well as the whole bunch of corresponding approaches
based on non-linear functionals and non-additive set-functions, covering lower and
upper previsions in tradition ofWalley’s book [66], interval probabilities building on

1A longer survey discussing the state of the art of statistical inference with imprecise probabilities
at that time is aimed at by [8].
2 To avoid any commitment to a certain interpretation of probability, we use the term “stochastic
phenomenon” as a kind of neutral, superordinate concept, in particular including approaches refer-
ring to random phenomena only as well as approaches addressing generally situations of epistemic
uncertainty.
3An introduction into imprecise probabilities on an intermediate level is aimed at by [4]; see also
[57] (in this volume) for an introduction, [15] for a survey by a philosopher and [9] for a reviewwith
an engineering background. Current developments in research on imprecise probabilities are mostly
discussed at the biannual ISIPTA (International Symposium on Imprecise Probabilities: Theories
and Applications) meetings; see [1, 5, 27] for the most recent ones.
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Weichselberger ([72]4), probabilistically interpretable approaches based on capaci-
ties including the suitable branch of Dempster-Shafer theory (e.g. [29]), random sets
(e.g. [12, Chap. 3]) and p-boxes following [32].Moreover, there is a smooth transition
to several approaches propagating systematic sensitivity analysis (e.g. [52]).

It is important that our basic entity, the set P, has to be understood and treated as
an entity of its own. It is by no means possible to distinguish certain of its elements
as more likely than others or to mix its elements, eventually leading to a precise
traditional probability distribution. P may be assessed directly by collecting several
precisemodels, so-to-say as possibleworlds / expert opinions, to be considered.More
often P is constructed, typically as the set of all probability distributions

• that respect bounds on the probabilities of certain classes of events or, more gen-
erally, the expectations of certain random variables,5, 6

• or that are (in a topologically well-defined sense) close to a certain precise prob-
ability distribution p0(·) (neighbourhood models), providing a formal framework
for expressing statements like “p0(·) is approximately true”,7

• or that are described by a parameterϑ varying in an interval/cuboid (parametrically
constructed models), like “imprecise versions” of a normal distribution.8

5.3 Types of Imprecision in Statistical Modelling

There are many situations in statistics where imprecision occurs, i.e. where a careful
modelling should go beyond the idealized situation of perfect stochasticity and data
observedwithout any error and in an ideal precision. To study these situations further,
an ideal-typical distinction between model and data precision is helpful.

Model Imprecision has to be taken into account whenever there is doubt in a con-
crete application that the strong requirements (perfect precision and, by the additivity
axiom, absolute internal consistency) the traditional concept of probability calls for
can be realistically satisfied. This includes all situations of incomplete or conflicting
information, robustness concerns, and repeated sampling from a population where
the common assumption of i.i.d. repetitions is violated by some unobserved hetero-
geneity or hidden dependence. In a Bayesian setting, in addition, quite often, if at
all, a precise prior distribution is not honestly deducible from the knowledge actually
available. Ellsberg’s [31] seminal thought experiments on urns with only partially
known compositions have made it crystal clear that the amount of ambiguity, i.e. the

4 See also [73] for a summary in English language.
5 For instance, in the approaches founded by [66, 72], respectively.
6 It may be explicitly noted that the latter also includes comparative/ordinal probabilities (e.g. [49]),
only ordering the probability of certain events like “A is more likely to occur than B, and B more
likely than C’.
7 See Sect. 5.4.1.
8 See, for instance, the sets of conjugated distributions in Sect. 5.4.2 for an example.
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uncertainty about the underlying stochastic mechanism, plays a constitutive role in
decision making and thus has to modelled carefully.

Data Imprecision comprises all situations where the observations are not avail-
able in the granularity that is originally intended in the corresponding application.
Following [26], for the modelling of data imprecision, it is crucial to distinguish
two situations, the precise observation of something inherently imprecise (ontic data
imprecision) and the imprecise observation of something precise (epistemic data
imprecision).9 The difference between these two may be explained by a pre-election
study where some voters are still undecided which single party they will vote for.
(Compare [55], and for more details [44, 53]). If we understand a voting preference
like “I am still undecided between parties A and B” as a political position of its own,
then we interpret the information as an instance of ontic imprecision. If we focus
on the forthcoming election and take this information as an imprecise observation
allowing us to predict that the voting decision on the election day will either be
A or B, then we are coping with epistemic imprecision. In particular in engineer-
ing, another frequent example of epistemic data imprecision occurs from insufficient
measurement precision, where intervals instead of precise values are observed. A
contrasting example where (unions of) intervals are to be understood as an entity of
their own arises when the time span of certain spells is characterized: “This machine
was under full load from November 10th to December 23rd.”

Epistemic imprecision very naturally occurs in many studies on dynamic pro-
cesses, from socio-economic over medical to technical studies. There, censoring is
always a big issue: the spells of some units are still unfinished when the study ends,
providing only lower bounds on the spell duration. Typical examples include the
duration of unemployment, the time to recurrence of a tumour or the lifetime of an
electronic component. In addition, also interval censoring is quite common, where
one only learns that the event of interest occurred within a certain time span. It should
be noted explicitly that missing data, a frequent problem for instance in almost every
social survey, may be comprised under this setting, taking the whole sample space
as the observation for those units missing.

5.4 Statistical Modelling Under Model Imprecision

Of course, there are also strong reservations against imprecise probabilities in tra-
ditional statistics. For a traditional statistician, imprecise probabilities are just a
superfluous complication, misunderstanding either the generality of the concept of
uncertainty or the reductionist essence of the modelling/abstraction process. Indeed,
for an orthodoxBayesian, all kinds of not-knowing are simply situations under uncer-
tainty, and any kind of uncertainty is eo ipso expressible by traditional probabilities.
From the modelling perspective, imprecision is taken as part of the residual category

9 See also the distinction between the disjunctive and conjunctive interpretation of random sets, as
discussed, e.g. in [30, Sect. 1.4].
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that is naturally lost when abstracting and building models.10 Box (and Draper)’s
often cited dictum “Essentially, all models are wrong, but some of them are useful”
[14, p. 424] has generally been (mis)understood as a justification to base details of
the model choice on mathematical convenience and as an irrevocable argument to
take model imprecision as negligible.

5.4.1 Probabilistic Assumptions on the Sampling Model
Matter: Frequentist Statistics and Imprecise
Probabilities

Indeed, however, Box’s quotation could be continued by “…and some models are
dangerous”, since the general neglecting of model imprecision implicitly presup-
poses a continuity (in an informal sense) of the conclusions in the models that by
no means can be taken as granted. A well-known example from robust statistics11

is statistical inference from a “regular bell-shaped distribution”. The standard pro-
ceeding would be to assume a normal distribution. But, for instance, the density of
a Cauchy distribution is phenomenologically de facto almost indistinguishable from
the density function of a normal distribution, suggesting bothmodels to be equivalent
from a practical point of view. However, statistical inference based on the sample
mean shows fundamentally different behaviours.12 Under normality, the distribution
of the sample mean behaves nicely, contracting itself around the correct value if the
sample size n increases. In the case of the Cauchy distribution, however, the distri-
bution of the sample mean stays the same irrespective of the sample size,13 making
any learning by the sample mean impossible.

This shocking insight—optimal statistical procedures may behave disastrously
even under “tiny deviations” from the ideal model—demonstrates that imprecision
in the underlying model may matter substantially. In this context, the theory of (fre-
quentist) robust statistics as the theory of approximately true models emerged, and
imprecise probabilities provide a natural superstructure upon it (see, e.g. [38] for
historical connections). In particular, neighbourhood models, also briefly mentioned
above, have become attractive.14 Building on an influential result by Huber and
Strassen [39], a comprehensive theory of testing in situations where the hypotheses

10 This is particular the case when the prescriptive character of models is emphasized over its
descriptive role (cf., e.g. [13, p. 99]).
11 See also [8, Sect. 7.5.1, in particular, Fig. 7.3] to illustrate this.
12 Generally, if one looks at an i.i.d. sample X1, . . . , Xn from a normal distribution with parameters
μ and σ 2, denoted by N(μ, σ 2), and an i.i.d. sample Z1, . . . , Zn from a Cauchy distribution with
parameter α and β, denoted by C(α, β), respectively, one obtains for the sample means X̄ :=
1
n

∑n
i=1 Xi ∼ N(μ, σ 2

n ) and Z̄ := 1
n

∑n
i=1 Zi ∼ C(α, β).

13 The Law of Large Numbers is not applicable to the Cauchy distribution because it does not have
moments.
14 See, e.g. [6] for a survey.
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are described by imprecise probabilities emerged (see [2], [8, Sect. 7.5.2] and the
references in the corresponding review sections therein.) Further insights are pro-
vided from interpreting frequentist statistics as a decision problemunder an imprecise
sampling distribution, leading to the framework investigated in [34].

Other frequentist approaches, starting from different angles, include Hampel’s
frequentist betting approach (e.g. [36]) and some work on minimum distance esti-
mation under imprecise sampling models (e.g. [35]). The statistical consequences of
the chaotic models in the genuine frequentist framework to imprecise probabilities,
developed by Fine and followers (e.g. [33]), might be quite intriguing, but are still
almost entirely unexplored.

5.4.2 Model Imprecision and Generalized Bayesian Inference

Priors and Sets of Priors, Generalized Bayes Rule. The centrepiece of Bayesian
inference is the prior distribution. Apart from very large sample sizes, where the
posterior is de facto determined by the sample, the prior naturally has a strong
influence on the posterior and on all conclusions drawn from it. In the rare situations
where very strong prior knowledge is available, it can be used actively, but most
often the strong dependence on the prior has been intensively debated and criticized.

Working with sets � of prior probabilities (or interval-valued priors) opens new
avenues here. This set can naturally be chosen to reflect the quality/determinacy of
prior knowledge: strong prior knowledge leads to “small” sets; weak prior knowl-
edge to “large” sets. Typical model classes include neighbourhood models or sets of
parametric distributions which often are conjugate 15 to the sampling distribution,
which typically still is assumed to be precise.16 In imprecise probability, � is under-
stood as naturally inducing the set �x of all posteriors arising from a prior in �.17

Interpretations of� and�x vary to the extent they are understood as principled enti-
ties. A pragmatic point of view sees an investigation of �x just as a self-evident way
to perform a sensitivity analysis. On the other extreme, Walley’s [66] generalized
theory of coherence, having initiated the most vivid branch of research on imprecise
probabilities, provides a rigorous justification of exactly this way to proceed as the
“Generalized Bayes Rule (GBR)”. Important developments have also been achieved
for a variety of different model classes under the term “Robust Bayesian Analysis”;
see, e.g. [58] for a review on this topic.

Near Ignorance Models. One importantway to use sets of priors is that they allow
for quite a natural formulation of (rather) complete ignorance. A traditional Bayesian

15 See, e.g. [41, Chap. 1.2] (in this volume).
16 Imprecise sampling models are quite rarely studied, see, however, [66, Sect. 8.5] and [61].
17 There are some approaches in the traditional Bayesian context that work with sets of priors, too,
but merely understanding such a set as an interim step, based on which an ultimate precise prior is
selected. This can be done in a data-driven way, as in empirical Bayes approaches, including the
ML-II approach (e.g. [11, Sect. 3.5.4]), or generally, as in maximum entropy approaches (e.g. [11,
Sect. 3.4]).
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model eo ipso fails in expressing ignorance/non-informativeness. Assigning a pre-
cise probability is never non-committal; every precise prior delivers probabilistic
information about the parameter. The genuinely non-informative model is the set
of all probability distributions. While this model would yield vacuous inferences,
it motivates so-called near-ignorance models, where, informally spoken, the inner
core of this set is used, excluding extreme probabilities that are immune to learning.
Near-ignorance models still assign non-committal probabilities to standard events
in the parameter space, but allow for learning. By far the most popular model is the
Imprecise Dirichlet Model (IDM) [67] for categorical data. Different extensions fol-
lowed, including general near-ignorance models for exponential families (e.g. [10]).
Another direction of enabling the formulation of near-ignorance uses all priors with
bounded derivatives ([68]; for a general exposition of the concept of bounded influ-
ence, see the book [69]).

Prior-Data Conflict. In some sense, a complementary application of generalized
Bayesian inference is the active modelling of prior-data conflict. In practice, general-
ized Bayesian models are quite powerful in expressing substantial prior knowledge.
In particular, in areas where data are scarce, it is important to use explicitly all prior
knowledge available, for instance by borrowing strength from similar experiments.
Then, however, it is crucial to have some kind of alert system warning the analyst
when the prior knowledge appears doubtful in the light of data. Indeed, sets of pri-
ors can be designed to react naturally to potential prior-data conflict: If data and
prior assumptions are in agreement, the set of posterior distributions contracts more
and more with increasing sample size. In contrast, in the case of prior-data conflict
and intermediate sample size, the set of posterior distributions is inflated substan-
tially, perfectly indicating that one should refrain from most decisions before having
gathered further information.18

5.4.3 Some Other Approaches

With generalized Bayesian approaches, and less pronounced with generalized fre-
quentist statistics, the major statistical inference school are also predominant in the
area of imprecise probabilities. Nevertheless, there has also been considerable suc-
cess in other inference frameworks. Again and again, the desire to save Fisher’s
fiducial argument, aiming at providing probability statements on parameters without
having to rely on a prior distribution, has been a driving force for developments
in imprecise probabilities. Dempster’s concept of multivalued mappings (e.g. [28]),
which become evenmore famous in artificial intelligence by Shafer’s reinterpretation
founding Dempster-Shafer Theory (see, for instance, again the survey by [29]), is to
be mentioned here, but also work by Hampel (e.g. [36]) and by Weichselberger (e.g.

18 See [71] for a general treatment in one-parameter exponential families, also providing some
illustrating plots, and, for instance, [70] for an application in the context of system reliability.
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[74]), see also [7] tracing back its roots.19 A generalized likelihood-based framework
has been introduced by Cattaneo (e.g. [16, 17]).

Another direct inference approach is Nonparametric Predictive Inference (NPI),
as introduced by Coolen originally for Bernoulli data [18]. Based on exchangeability
arguments, NPI yields direct conditional probabilities of further real-valued random
quantities, relying on the low structure assumption that all elements of the natural
partition produced by the already observed data are equally likely; see, for instance,
[19] for a detailed discussion, [3] for a clear embedding into imprecise probabilities
and [21] for a web-page documenting research within this framework. The basic
approach can be naturally extended to censored data / competing risks (e.g. [22]),
and to categorical data [20]. NPI has been developed further in a huge variety of
fields; see, for instance, [23, 24] for recent applications in biometrics and finance,
respectively.

5.5 Statistical Modelling Under Data Imprecision

In this section, we turn to statistical modelling under data imprecision. Keeping the
distinction from Sect. 5.3, we briefly discuss ontic data imprecision and then turn to
epistemic data imprecision.

Ontic data imprecision, where we understand the imprecise observation as an
entity of its own, may be argued to be a border case between classical statistics
and its extensions. Technically, we change the sample space of each observation to
(an appropriate subset of) the power set. For instance, recalling the election example
fromSect. 5.3, thismean that instead of {a, b, c, . . .} representing the vote for a single
party, we now also allow for combinations {a, b}, {b, c}, . . ., {a, b, c}, . . ., represent-
ing the indecision between several parties. As long as we are in amultinomial setting,
nothing has changed from an abstract point of view, providing powerful opportunities
for complex statistical modelling. In the spirit of this idea, [44, 55] applymultinomial
regression models, classification trees, regularized discrete choice models from elec-
tion research, and spectral clustering methods to German pre-election survey data.
The situation changes substantially when ordinal or continuous data are considered,
because, after changing to the power set, the underlying ordering structure is only
partially preserved.

Epistemic data imprecision is, as the examples at the end of Sect. 5.3 show, of
great importance in many applications and is quite vividly addressed in classical
statistics. Even here, traditional statistics keeps its focus on full identification, i.e.
the selection of one single probability model fitting the observed data optimally. One
searches for, and then implicitly relies on, conditions under which one gets hands
on the so-to-say deficiency process as a thought pattern, making ideal precise obser-
vations imprecise. For that purpose, most classical approaches assume either some

19It may also be argued that, although less explicitly aiming at fiducial reasoning, the work on
near-ignorance models discussed above fits well into this category.
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kind of uninformativeness of the deficiency process (independent censorship, coars-
ening at random (CAR) or missingness (completely) at random (MCAR, MAR)) or
an explicit modelling of the deficiency process; see the classical work by [37, 46].
Both the uninformativeness as well as the existence of a precisely specifiable defi-
ciency process are very strong assumptions. They are—eo ipso by making explicit
statements about unobservable processes—typically not empirically testable. When-
ever these assumptions are just made for purely formal reasons, the price to pay for
the seemingly precise result of the estimation process is high. In terms of Manski’s
Law of Decreasing Credibility,20 results may suffer severely from a loss of their
credibility, and thus of their practical relevance.

Against this background, in almost any area of application, the desire for less
committal, cautious handling of epistemic data imprecision arose. Mostly isolated
approacheswere proposed that explicitly try to take all possibleworlds into account in
a reliable way, aiming at the set of all models optimally compatible with potentially
true data. These approaches include, for instance, work from reliable computing
and interval analysis in engineering, like [51], extensions of generalized Bayesian
inference (e.g. [75]) to reliable statistics in social sciences (e.g. [56]); see also [8,
Sect. 7.8.2], who try to characterize and unify these approaches by the concept of
cautious data completion, and the concept of collection regions in [60].

There is a smooth transition to approaches that explicitly introduce cautious mod-
elling into the construction of estimation procedures; see, for instance, for recent
different likelihood- and loss minimization-based approaches addressing epistemic
data imprecision, [25, 40, 43, 54]. Such approaches have the important advantage that
their construction often also allows the incorporation of additional well-supported
subject matter knowledge, too imprecise to be useful for the precision focused meth-
ods from traditional statistics, but very valuable to reduce the set of compatible
models by a considerable extent.

Congenial is work in the field of partial identification and systematic sensitivity
analysis, providing methodology for handling observationally equivalent models;
see [48, 65], respectively, for classical work and [47, 62] for introductory surveys.
The framework of partial identification is currently receiving considerable attention
in econometrics, where in particular the embedding of fundamental questions into
the framework of random sets is of particular importance [50].

5.6 Concluding Remarks

The contribution provided a—necessarily painfully selective—survey of some devel-
opments of statistical modelling with imprecise probabilities (in a wider sense, also
including closely related concepts). Both in the area of model imprecision as well as
under data imprecision, imprecise probabilities prove to be powerful and particularly

20 “The credibility of inferences decreases with the strength of the assumptions maintained.” [48,
p. 1].
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promising. Further developments urgently needed include a proper methodology for
simulations with imprecise probabilities (see [64] for recent results), a careful study
of the statistical consequences of the rather far developed probabilistic side of the
theory of stochastic processes with imprecise probabilities (e.g. [63]), a more fruit-
ful exchange with recent research on uncertainty quantification in engineering (see,
e.g. [59] (in this volume)), an open mind towards recent developments in machine
learning and more large scale applications. Not only for these topics it is important to
complement the still recognizable focus on so-to-say defensive modelling by a more
active modelling. Far beyond sensitivity and robustness aspects, imprecision can
actively be used as a strong modelling tool. The proper handling of prior-data con-
flict and the successful incorporation of substantive matter knowledge in statistical
analysis under data imprecision are powerful examples of going in this direction.
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Chapter 6
Reliability

Lisa Jackson and Frank P. A. Coolen

Abstract This chapter introduces key concepts for quantification of system relia-
bility. In addition, basics of statistical inference for reliability data are explained, in
particular, the derivation of the likelihood function.

6.1 Introduction

Reliability of systems is of crucial importance in all aspects of human life. Systems
are understood to be groupings of components in specific structure, with the system
functioning depending on the functioning of the components and the system struc-
ture. Uncertainty about the functioning of components leads to uncertainty about
the system reliability. To study how system reliability depends on the reliability
of components, several leading methods from the engineering literature are briefly
introduced in Sect. 6.2. In situations of uncertainty about reliability in engineering,
appropriate statistical methods are required to deal with the specific nature of data.
This chapter provides an overview of such basic methods. Section6.3 introduces the
key statistical concepts, basic statistical models are presented in Sect. 6.4. Through-
out the emphasis is on explanation of the likelihood function, which is at the heart
of most statistical inference approaches as commonly used in reliability applica-
tions. Unknown model parameters can conveniently be estimated by maximisation
of the likelihood function, with corresponding theory to assess the uncertainty of
the estimates. Bayesian methods for statistical inference are based on the likelihood
function as well, hence understanding of the likelihood function is crucial for study
of system reliability under uncertainty. Stochastic process models are also crucial to
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describe variable reliability over time, for example, to reflect the effects of mainte-
nance on a system’s reliability. A short introduction to such models is presented in
Sect. 6.5, again with an emphasis on deriving the likelihood function to enable sta-
tistical inference. As this chapter brings together generic introductory material, no
specific references are included throughout the text. Instead, the chapter is endedwith
a brief list of useful resources, pointing to a number of important books which are
highly recommended for further reading, and some brief comments about journals
in the field.

6.2 System Reliability Methods

When modelling systems there are a number of tools, ranging from combinatorial
methods including reliability block diagrams, fault tree analysis and event tree anal-
ysis, to more complex methods that cater for a greater range of system characteristics
including dependencies, e.g.Markov orMonte Carlo simulationmethods. Notewhen
modelling systems where repair times are involved, these typically do not follow the
Exponential distribution, e.g. the Lognormal or Weibull distributions may be more
suitable. Also including maintenance teams can mean dependencies are introduced
via prioritising strategies. In such instances, more complex methods are required. A
brief introduction to some of these modelling methods is provided in this section.

6.2.1 Fault Tree Analysis

One of themost common quantification techniques is fault tree analysis. This method
provides a diagrammatic description of the various causes of a specified system
failure in terms of the failures of its components. The choice of the system failure
mode often follows from a failure mode and effects analysis (FMEA). There is
the assumption of independence of failures of the components. Logical gates are
used to link together events (intermediate events shown as rectangles and basic
events representing failure events as circles), where the more common gates include
AND or OR, shown in Fig. 6.1, with an example tree shown in Fig. 6.2. Evaluation
of the tree using Boolean algebra yields minimal cut sets, denoted as Ci , which
are failure combinations of components that are necessary and sufficient to cause
failure of the system. Application of kinetic tree theory and the inclusion-exclusion
principle (Eq.6.1) enables the system unavailability (Qsys) performance measure to
be calculated, where P(Ci ) is the probability of failure of minimal cut set Ci .
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Fig. 6.1 Common fault tree gate types

Fig. 6.2 Example fault tree structure
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Qsys =
Nc∑

i=1

P(Ci ) −
Nc∑

i=2

i−1∑

j=1

P(Ci ∩ C j ) +
Nc∑

i=3

i−1∑

j=2

j−1∑

k=1

P(Ci ∩ C j ∩ Ck) − . . .

+(−1)Nc+1P(C1 ∩ C2 ∩ . . . ∩ CNc). (6.1)

If the unavailability of the systemdoes notmeet performance acceptability criteria,
then the system must be redesigned. An indication of where to make changes in the
system can be achieved by generating component importance measures. This is a
measure of the contribution that each component makes to the system failure. One
such measure is the Fussel–Vesely measure of importance (IFVi ), defined as the
probability of the union of the min cut sets containing each component given that
the system has failed, as shown in Eq.6.2.

IFVi = P
(⋃{C j |i ∈ C j }

)

Qsys
(6.2)

6.2.2 Fault Tree Extensions: Common Cause Failures

Typically, fault trees have only a limited capability to cater for dependencies within
systems. One example is that of common cause failures. Safety systems, for example,
often feature redundancy, incorporated such that they provide a high likelihood of
protection. However, redundant sub-systems or components may not always fail
independently. A single common cause can affect all redundant channels at the same
time, examples include ageing (all made at the same time from the same materials),
system environment (e.g. pressure or stress related) and personnel (e.g. maintenance
incorrectly carried out by the same person). There are several methods to analyse
such occurrences, including beta factor, limiting factor, boundary method and alpha
method. The beta factor method assumes that the common cause effects can be
represented as a proportion of the failure probability of a single channel of the
multi-redundant channel. Hence, it assumes that the total failure probability (QT ) of
each component is divided into two contributions: (i) the probability of independent
failure, QI , and, (ii) the probability of common cause failures, QCCF . The parameter
β is defined as the ratio of the common cause failure probability to the total failure
probability, as shown in Eq.6.3.

β = QCCF

QCCF + QI
= QCCF

QT
. (6.3)

There are further extensions to traditional fault tree analysis to cater for a greater
range of dependencies, e.g. dynamic fault trees. As the nature of the dependency
becomes more complex, other modelling methods will be more suitable. Other types
of dependency include standby redundancy, where the probability of failure of the
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redundant component may change when it starts to function and experience load,
hence it is dependent on the operating component and hence failure of both is not
statistically independent. Another form is multiple state component failure modes,
where a component can exist in more than one state, hence being mutually exclu-
sive cannot be considered in the fault tree (not failing in the open mode does not
mean that it works successfully). In such instances, using Markov modelling meth-
ods may be desirable. Given the state-space explosion that can exist when using
Markov approaches, if there are just small subsections of the system exhibiting the
dependency it may be possible to analyse these subsections with Markov methods
and use the result embedded in the fault tree approach.

6.2.3 Phased Mission Analysis

As systems become more complex, they can be required to undertake a number
of tasks, typically in sequence. An example might include an aircraft flight, where
it is required to taxi from the stand, take off, climb to the required altitude, cruise,
descend, land and taxi to newdestination stand. The collection of tasks can be referred
to as a mission, where each task is denoted by a phase which has an associated time
period. Mission success requires successful completion of all phases and in addition
theremay be different consequences resulting from the failure in each phase. For each
phase, an appropriate modelling technique can be employed to assess its reliability or
availability. When the systems phases are non-repairable then fault tree analysis can
be used to assess mission and phase success. For non-repairable scenarios, Markov
or Petri nets can be used. The parameter of interest is the mission reliability. It is not
appropriate to analyse the reliability of each phase and multiply these together to get
the mission reliability because (i) the phases are not independent (i.e. failure in one
phasemay influence failure in another phase); (ii) the assumption that all components
are working at the start of the phase is not correct and (iii) the system can fail on a
phase change. For the non-repairable case, the initial step is to construct a mission
fault tree. The general form is as shown in Fig. 6.3. The top event is a mutually
exclusive OR gate, indicating that only one of the input events must happen to cause
the output event (mission failure). When considering failures in phase 2 onwards,
you need to include in the fault tree that the mission has been successful up to this
point, namely, that it has functioned in the preceding phases. For this reason, you can
see the introduction of the NOT gate, i.e. under the intermediate event ‘Functions in
Phase 1’. Alongside this the failure of the component in earlier phases also needs to be
taken into account, hence the component failure is represented as shown inFig. 6.4. To
perform the analysis, both qualitatively and quantitatively, new algebra is required as
shown in Fig. 6.5.C j corresponds to the failure of componentC in phase j , where the
bar above C j corresponds to the working state. Considering the success of previous
phases i = 1, . . . , j − 1, for failure in phase j , makes the analysis non-coherent,
yielding prime implicant sets from a qualitative analysis (necessary and sufficient
combinations of events (success and failure)). The size of the problem to be solved can
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Fig. 6.3 Mission failure fault tree

Fig. 6.4 Revised component
representation

(and usually does) become prohibitively expensive, so approximations are required;
these are usually based on coherent approximations of the non-coherent phases (i.e.
conversion of prime implicants to minimal cut sets). Approximate quantification
formulae (e.g. Rare Event, Minimal Cut Set Upper Bound) can then be used.

When analysing repairable systems, there are two requirements for mission suc-
cess: (1) the system must satisfy the success requirements throughout each phase
period and (2) at the phase change times the system must occupy a state which is
successful for both phases involved. The second point implies that we will con-
sider failures on phase transition when calculating mission reliability. Analysis with
repairable systems is very similar in terms of generating themissionmodel and phase
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Fig. 6.5 Additional algebra

Fig. 6.6 Petri Net representation of a phased mission with three phases

models. This can be achieved using Markov or Petri Net methods. An illustration
of a Petri Net example is shown in Fig. 6.6, where the circles represent places and
the rectangular boxes represent transitions. Mission and phase reliabilities can be
obtained from analysis of the model.

6.3 Basic Statistical Concepts and Methods for Reliability
Data

Consider a random quantity T > 0, often referred to as a ‘failure time’ in relia-
bility theory, but it can denote any ‘time to event’. Relevant notation for charac-
teristics of its probability distribution includes the cumulative distribution function
(CDF) F(t) = P(T ≤ t), the survival function S(t) = P(T > t) = 1 − F(t) (also
called the reliability function and denoted by R(t)), the probability density function
(PDF) f (t) = F ′(t) = −S′(t) and the hazard rate h(t) = f (t)/S(t). The hazard
rate has a possible interpretation with conditioning on surviving time t , for small
δt > 0, h(t)δt ∼ P(T ≤ t + δt | T > t). Harder to interpret, but also of use, is the
cumulative hazard function (CHF) H(t) = ∫ t

0 h(x)dx . Assuming R(0) = 1, we get
H(t) = ∫ t

0
f (x)
S(x) dx = − ln S(t), so S(t) = exp{−H(t)} = exp{− ∫ t

0 h(x)dx}.
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A constant hazard rate, h(t) = λ > 0 for all t > 0, gives S(t) = e−λt , the Expo-
nential distribution. This can be interpreted as modelling ‘no ageing’, that is, if an
item functions, then its remaining time until failure is independent of its age. This
property is unique to the Exponential distribution. An increasing hazard rate mod-
els ‘wear-out’, roughly speaking this implies that an older unit has shorter expected
residual life, and decreasing hazard rate models ‘wear-in’, implying that an older
unit has greater expected residual life. It is often suggested that ‘wear-out’ is appro-
priate to model time to failure of many mechanical units, whereas electronic units’
times to failures may be modelled by ‘wear-in’. In a human-life analogy, we can
perhaps think about ‘wear-in’ as modelling time to death at very young age (‘infant
mortality’) and ‘wear-out’ as modelling time to death at older age, with a period
in between where death is mostly ‘really random’, e.g. caused by accidents. This
‘human-life analogy’ should only be used for general insight, and is included here
as engineers often claim that ‘typical hazard rates’ for components over their entire
possible lifetime are decreasing early on, then remain about constant for a reasonable
period, and then become increasing (‘bath-tub shaped’).

A popular parametric probability distribution for T is defined by the hazard rate
h(t) = αβ(αt)β−1, for α, β > 0. This leads to S(t) = exp

{−(αt)β
}
, and is called a

Weibull distribution with scale parameter α and shape parameter β. This distribution
is often used in reliability, due to the simple form for the hazard rate. For example,
with β = 2 it models ‘linear wear-out’ (‘twice as old, twice as bad’).

An interesting aspect of reliability data is that these are often affected by censoring,
in particular, so-called right-censoring. Thismeans that, instead of actually observing
a time at which a failure occurs, the information in the data is a survival of a certain
period of time without failing. Clearly, such information must be taken into account,
as neglecting it would lead to underestimation of expected failure times.

Two main statistical methodologies use the likelihood function, namely, Bayesian
methods and maximum likelihood estimation. Hence, derivation of the likelihood
function is an important topic in reliability inference. Let t1, . . . , tn be observed fail-
ure times, and c1, . . . , cm right-censored observations. For inference on a parameter
θ of an assumed parametric model, the likelihood function based on these data is
L(θ |t1, . . . , tn; c1, . . . , cm) = ∏n

j=1 f (t j |θ)
∏m

i=1 S(ci |θ). This actually requires the
assumption that the censoring mechanism is independent of the data distribution, if
that is not the case the dependence would need to be modelled. It is also possible to
consider the likelihood over all possible probability distributions, so not restricting
to a chosen parametric model. In this case, the maximum likelihood estimator is the
so-called Product-Limit (PL) estimator, presented by Kaplan andMeier in 1958. The
theory of counting processes also provides a powerful framework for nonparametric
analysis of failure time data, based on stochastic processes and martingale theory.
A well-known result within this theory is the Nelson–Aalen estimator for the CHF,
which can be regarded as an alternative to the PL estimator.
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6.4 Statistical Models for Reliability Data

This is a very wide topic, we can only mention a few important models. We first con-
sider regression models for reliability data. Regression models are generally popular
in statistics, and also very useful in reliability applications, where often Weibull
models are used, with the survival function depending on a vector of covariates x ,

and given by S(t; x) = exp
{
−

(
t

αx

)ηx
}
. Some simple forms are often used for the

shape and scale parameters as functions of x , e.g. the loglinear model for αx , spec-
ified via ln αx = xTβ, with β a vector of parameters, and similar models for ηx .
The statistical methodology is then pretty similar to general regression methods, and
implemented in statistical software packages. Suchmodels need to be fully specified,
so are less flexible than nonparametric methods, but they allow information in the
form of covariates to be taken into account.

Semi-parametric models enable covariates to be taken into account, but do so
without fully specifying a parametric model, keeping some more flexibility. Usually,
a parametric form for the effect of the covariates on a nonparametric ‘baselinemodel’
is assumed. Most famous are the Proportional Hazards (PH) models, presented by
Cox in 1972. Here, the hazard rate for covariates x is defined by h(t; x) = h0(t)ψx ,
with h0(t) the baseline hazard rate (normally left unspecified, so nonparametric),
and ψx some positive function of x , independent of time t (normally a fully para-
metric form is assumed for ψx ). The name of such models results from the fact that
h(t;x1)
h(t;x2) = ψx1

ψx2
, independent of t , so the hazard rates corresponding to different covari-

ates are in constant proportion. For these models, ln S(t; x) = − ∫ t
0 h(u; x)du =

−ψx
∫ t
0 h0(u)du = ψx ln S0(t), so S(t; x) = [S0(t)]

ψx . These models are used most
for survival data in medical applications, but are also common and useful in reli-
ability. As there are no assumptions on the form of the baseline hazard rate, they
provide a valuable method to compare the effect of the covariates. An often used PH
model is the linear PH model, with ψx = exp{xTβ}, with β a vector of parameters.
We now describe the analysis of this particular model, with no further assumptions
on h0(t). The goal is to estimate β and R0(t), the baseline survival function related
to h0(t). This is far from trivial, as it is not clear how the likelihood function can be
derived, since this is neither uniquely defined by a fully specified parametric model,
nor completely free as was the case for fully nonparametric models (leading to the
PL estimate). Hence, we need to use a different concept.

Suppose we have data on n items, consisting of r distinct event times, t(1) <

t(2) < . . . < t(r) (the case of ties among the event times is a bit more complicated),
and n − r censoring times. Let Ri be the risk set at t(i), so all items known to be
still functioning just prior to t(i). We can now estimate β via maximisation of the
‘likelihood function’:

L(β) =
r∏

i=1

exp
{
xT(i)β

}

∑
l∈Ri

exp
{
xTl β

} (6.4)
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with x(i) the vector of covariates associated to the item observed to fail at t(i), etc.
There have been many justifications for L(β), the nicest is the original one by Cox,
which is as follows. Let us consider Ri at t(i). The conditional probability that the
item corresponding to x(i) is the one to fail at the time t(i), given that there is a failure
at t(i), is equal to

h(t(i); x(i))∑
l∈Ri

h(t(i); xl) =
exp

{
xT(i)β

}

∑
l∈Ri

exp
{
xTl β

} .

Now L(β) is formed by taking the product of all these terms over all failure times,
giving a ‘likelihood’ which is conditional on the event times, sometimes called the
‘conditional likelihood’ (aka ‘partial likelihood’ or ‘marginal likelihood’). Note that
the actual event times t(i) are not used in Eq.6.4, just the ordering related to the
values of the covariates. This relates to the fact that we do not have any knowledge
or assumptions about h0(t). Large sample theory is available for L(β), allowing
estimation and hypothesis testing similarly as for standard maximum likelihood
methods.

Next, one must consider estimation of the survival function. Once the estimate for
β has been derived, let us denote this by β̂, it is possible to obtain a nonparametric
estimate of the baseline survival function. Let

Ŝ0(t) =
∏

j :t( j)≤t

α̂ j ,

where the α̂ j ’s are derived via

α
λ j

j = 1 − λ j∑
l∈R j

λl
,

and
λ j = exp

{
xTj β

}
,

and taking β = β̂. This actually gives the maximum likelihood estimate for the
survival function, under the assumption that β is indeed the given estimate β̂.

6.5 Stochastic Processes in Reliability—Models
and Inference

Suppose we have a system which fails at certain times, where there may be some
actions during this period which affect failure behaviour, e.g. minimal repairs to
allow the system to continue its function, or replacement of some components, or
other improvements of the system. Let the random quantities T1 < T2 < T3 < . . .
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be the times of failure of the system, and let Xi = Ti − Ti−1 (with T0 = 0) be the
time between failures i − 1 and i . These Xi , or in particular trends in these, are
often of main interest in analysis of system failure, e.g. to discover whether or not a
system is getting more or less prone to fail over time. Hence, the major concern is
often detection and estimation of trends in the Xi . Therefore, we cannot just assume
these Xi ’s to be (conditionally) independent and identically distributed (iid), as is
often assumed for standard statistical inference on such random quantities. Instead,
we need to consider the process in more detail. A suitable characteristic for such a
process is the so-called ‘rate of occurrence of failure’ (ROCOF). Let N (t) be the
number of failures in the period (0, t], then the ROCOF is

v(t) = d

dt
EN (t).

An increasing (decreasing) ROCOF models a system that gets worse (better) over
time. Of course, all sorts of combinations can also be modelled, e.g. first a period
of decreasing ROCOF, followed by increasing ROCOF, to model early failures after
which a system improves, followed by a period in which the system wears out.
Note that the ROCOF is not the same as the hazard rate (the definitions are clearly
different!), although intuitively they might be similar. If we consider a standard
Poisson process, with iid times between failures being Exponentially distributed,
then the ROCOF and hazard rate happen to be identical.

An estimator for v(t) is derived by defining a partition of the time period of inter-
est, counting the number of failures in each of the intervals of this partition, and
dividing this number by the length of the corresponding interval if necessary (i.e. if
not all intervals are of equal length). However, it is more appealing to use likelihood
theory for statistical inference, which we explain next for nonhomogeneous Pois-
son processes (NHPP), for which the ROCOF is a central characteristic often used
explicitly to define such processes.

NHPP are relatively simple models that can be used to model many reliability
scenarios, and for which likelihood-based statistical methodology is well developed
and easy to apply. The crucial assumption in these models is that the numbers of
failures in distinct time intervals are independent if the process characteristics are
known. A NHPP with ROCOF v(t) is easiest defined by the property that the number
of failures in interval (t1, t2] is a Poisson distributed random quantity, with mean

m(t1, t2) =
∫ t2

t1

v(t)dt.

This implies that the probability of 0 failures in interval (t1, t2] equals exp{−m(t1, t2)},
and the probability of 1 failure in this interval equals m(t1, t2) exp{−m(t1, t2)}. Of
course, if v(t) is constant we have the standard Poisson process. For statistical infer-
ence, we wish to find the likelihood function corresponding to a NHPP model, given
failure data of a system. Suppose we have observed the system over time period
[0, r ], and have observed failures at times t1 < t2 < . . . < tn ≤ r , assuming there
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were no tied observations (so only a single failure at each failure time; else things
get slightly more complicated). The likelihood function is derived in a similar way
as for iid data, that is, the reasoning of using PDFs at failure times in the likelihood
for such data. Let δti > 0, for i = 1, . . . , n, be very small. The process observed can
then be described as consisting of: 0 failures in (0, t1), and 1 failure in [t1, t1 + δt1),
and 0 failures in [t1 + δt1, t2), etc., until no failures in [tn + δtn, r ] (this last bit is just
deleted if r = tn , so when observation of the process is ended at the moment of the
n-th failure). To derive the corresponding likelihood function, we take the product
of the probabilities for these individual events, so

exp{−m(0, t1)} × m(t1, t1 + δt1) exp{−m(t1, t1 + δt1)} × exp{−m(t1 + δt1, t2)} × . . .

. . . × exp{−m(tn + δtn, r)}

=
{

n∏

i=1

[∫ ti+δti

ti
v(t)dt

]}
× exp

[
−

∫ r

0
v(t)dt

]
.

Now, use that for very small δti , we have that

∫ ti+δti

ti

v(t)dt ≈ v(ti )δti .

Now we divide through by
∏n

i=1 δti , and let all δti ↓ 0 (this is, exactly the same that
leads to the PDFs appearing in the likelihood function for iid data). This gives the
likelihood function, for this model and based on these n failure data and observation
over the period [0, r ]:

L =
{

n∏

i=1

v(ti )

}
exp

[
−

∫ r

0
v(t)dt

]
.

For optimisation, it is easier to use the log-likelihood function, which is also needed
for related statistical inference, and which is equal to:

l =
n∑

i=1

ln v(ti ) −
∫ r

0
v(t)dt.

It is possible to work with this likelihood non-parametrically, but often one assumes
a parametric form for the ROCOF, making maximum likelihood estimation again
conceptually straightforward (although it normally requires numerical optimisation).
Two simple, often used parametric ROCOFs are

v1(t) = exp(β0 + β1t)
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and
v2(t) = γ ηtη−1,

with γ, η > 0.
Many models that have been suggested, during about the last three decades, for

software reliability, are NHPPs which model the software testing process as a fault
counting process. A famous model was proposed by Jelinski and Moranda in 1972,
which is based on the following assumptions: (1) software contains an unknown
number of bugs, N ; (2) at each failure, one bug is detected and corrected; (3) the
ROCOF is proportional to the number of bugs present. So, they use a NHPP with
failure times Ti , i = 1, . . . , N and T0 = 0, defined by

v(t) = (N − i + 1)λ, for t ∈ [Ti−1, Ti ),

for some constant λ. Then N and λ are both considered unknown, and estimated from
data, where, of course, inference for N tends to be of most interest, or, in particular,
the number of remaining bugs. Many authors have contributed to such theory by
changing somemodel assumptions. For example, non-perfect repair of bugs has been
considered, and even the possibility of such repair introducing new bugs (possibly a
random number), for this last situation so-called ‘birth-death processes’ can be used.
Also non-constant λ has been considered, e.g. with the idea that some bugs may
tend to show earlier than others. Also Bayesian methods for such models, and even
software reliability models more naturally embedded in Bayesian theory, have been
suggested and studied. However, although there is an enormous amount of literature
in this area, as indeed mathematical opportunities appear to have no limit here, the
practical relevance of such models seems to be rather limited and few interesting
applications of such models have been reported in software reliability. Recently, the
important topic of testing of reliability of systems including software has received
increasing attention, which is much needed to ensure reliable systems.
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Chapter 7
Simulation Methods for the Analysis
of Complex Systems

Hindolo George-Williams, T. V. Santhosh, and Edoardo Patelli

Abstract Everyday systems like communication, transportation, energy and indus-
trial systems are an indispensable part of our daily lives. Several methods have been
developed for their reliability assessment—while analytical methods are computa-
tionally more efficient and often yield exact solutions, they are unable to account for
the structural and functional complexities of these systems. These complexities often
require the analyst tomakeunrealistic assumptions, sometimes at the expenseof accu-
racy. Simulation-based methods, on the other hand, can account for these realistic
operational attributes but are computationally intensive and usually system-specific.
This chapter introduces two novel simulation methods: load flow simulation and
survival signature simulationwhich together address the limitations of the existing
analytical and simulation methods for the reliability analysis of large systems.

7.1 Introduction

A system is classed as complex from one of two fronts—in terms of the functional
relationships between its components and in terms of its structure. A structurally
complex systemdoes not conform to a series, parallel, or series-parallel configuration.
Most real-world systems are composed of components that can operate at multiple
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performance levels or states and components with a functional coupling with other
components. Such systems are deemed functionally complex, since their states cannot
be directly deduced from their traditional two-state structure functions. They are
characterised bymultiple states, with the number of states determined by the diversity
in the states of their components, structure and the functional relationships between
their components [21]. In these systems, the number of performance levels may
or may not be finite, depending on the performance measure under consideration
and the type of system [21]. For instance, the power generated by a power plant
may take any value between zero and its maximum achievable value, depending
on the performance levels of its component and the demand on the grid. Complex
systems may be standalone or form an indispensable part of some critical system like
healthcare, safety-critical and industrial control systems. It is, therefore, important
to be able to assess their susceptibility to failures, as well as quantify and predict the
ensuing consequences, for effective planning of restoration andmitigation measures.

7.2 Reliability Modelling of Systems and Networks

In system reliability evaluation, the analyst has numerous techniques at their disposal,
which can be classified as heuristic-, analytical- or simulation-based [1] and further
as static or dynamic. In particular, dynamic techniques not only model the system
based on the functional and structural relationships between its components, but also
support dynamic relationships like inter-component and inter-system dependencies.

7.2.1 Traditional Approaches

Reliability Block Diagrams and Fault Trees have been extensively used in the reli-
ability evaluation of binary-state systems. Both techniques have proven particularly
useful for moderately sized systems with series-parallel configurations. However,
they become difficult to apply with large or complex systems and often require
additional techniques to decompose the system. The Reliability Graph [40] was,
therefore, developed to overcome this difficulty and proved very efficient in mod-
elling structural complexities. Reliability block diagrams, fault trees and reliability
graphs, however, assume components to be statistically independent, which renders
them inadequate for systems susceptible to restrictivemaintenance policies and inter-
component dependencies. However, techniques including but not limited to dynamic
reliability block diagrams [10], dynamic fault trees [6], condition-based fault trees
[35], dynamic flow graphs [2], Petri Nets [26] and other combinatorial techniques
[38] have been developed to model these dynamic relationships. They have found
application in a wide range of reliability engineering problems, including repairable
systems with restrictive maintenance policies.
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Though the earliest forms of these techniques including binary decision diagrams
were applicable only to binary-state systems, numerous instances of their recent
extension tomulti-state systems exist, see, e.g. [39]. However, these extensions either
require state enumeration or the derivation of the minimal path or cut sets of the
system, which is an NP-hard problem [41].

The extended block diagram technique and graph-based algorithms share
two common limitations. First, they define reliability with respect to the maximum
flow through the system. Therefore, they are limited to systems with single output
nodes and those with multiple output nodes where only the presence of flow at these
nodes is relevant and not the relative magnitude of the flow. The second limitation
arises from the assumption that there are no flow losses in the system, making them
inapplicable to certain practical systems like energy systems and pipe networks,
susceptible to losses in some failure modes. More recently, various researchers have
made invaluable contributions to multi-state system reliability analysis, developing
techniques applicable to a wide range of systems [22]. These techniques have mainly
been based on either the structure function approach, stochastic process, simulation
or the Universal Generating Function approach [21, 25].

The most popular stochastic process employed in system reliability analysis is
the Markov Chain (MC), which involves enumerating all the possible states of the
system and evaluating the associated state probabilities [25]. This technique is only
easily applicable to exponential transitions or distributions with simple cumulative
distribution functions, requires complicated mathematics and becomes complex for
large systems. For an M component binary-state system, the number of states in
the model ranges from M + 1 for series systems, to 2M for parallel systems. For
large multi-state systems, the number of states increases exponentially, rendering the
model difficult to construct and expensive to compute.

The Universal Generating Function was introduced to address the state explo-
sion problem of the MC. It allows the algebraic derivation of a system’s perfor-
mance from the performance distribution of its components [21, 24]. However, both
the Universal Generating Function and Markov Chain are limited in the number
of reliability indices they can quantify. Also, like all multi-state system reliability
evaluation techniques, they are maximum-flow-based and assume flow conservation
across components. The Universal Generating Function, though straightforward for
series/parallel systems, it requires a substantial effort for complex topologies.

Simulation methods are the most suitable for multi-state system reliability and
performance evaluation, since they mimic the actual operation of systems. Their
advantage over their analytical counterpart is due to the fact that they support any
transition distribution, allow the effects of external factors on system performance to
be investigated [43] and are easily integrated with other methods [36]. In particular,
they allow the explicit consideration of the effects of uncertainty and imprecision
on the system, providing a powerful tool for risk analysis and by extension, ratio-
nal decision-making under uncertainty. They are, therefore, mostly used to analyse
systems for which analytical approaches are inadequate. However, even some of the
existing simulation methods [23, 43] require prior knowledge of the system’s path
set, cut set or structure function and are mostly limited to binary-state systems [42].
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7.2.2 Interdependencies in Complex Systems

Engineers and system designers are under immense pressure to build systems robust
and adequate enough to meet the ever-increasing human demand and expectation.
Unavoidably, the resulting systems are complex and highly interconnected, which
ironically constitute a threat to their resilience and sustainability [18]. Two systems
are interdependent if at least a pair of components (one from each system) are cou-
pled by some phenomena, such that a malfunction of one affects the other. In such
systems, an undesirable glitch in one system could cascade and cause disruptions
in the coupled system. The cascade could be fed back into the initiating system
and the overall consequences may be catastrophic [5]. To minimise the effects of
failures, some interdependent systems are equipped with reconfiguration provisions.
This normally entails transferring operation to another component, rerouting flow
through alternative paths, or shutting down parts of the system.

The achievement of maximum overall system performance is, in general, desir-
able. However, in many applications (nuclear power plants, for instance), it is more
important to guarantee system availability and recovery in the shortest possible time,
following component failure [16]. Interdependencies are manifested in engineering
systems at two levels: between components (inter-component), which can be func-
tional or induced and between systems/subsystems (inter-system) [15].

Functional dependencies are due to the topological and/or functional relationships
between components. Induced dependencies, on the other hand, are due to a state
change in one component (the initiator) triggering a corresponding state change in
another (the induced), such that evenwhen the initiator is reinstated, the induced does
not reinstate, unless manually made to do so. Functional dependencies in standalone
systems are intrinsically accounted for by the innate attributes of the system reliability
modelling and evaluation technique while induced dependencies require explicit
modelling. Inter-system dependencies, on the other hand, are due to functional or
induced couplings between multiple systems. The functional dependencies in these
systems, however, may require explicit modelling. This is the case for components
relying on material generated by another system. For instance, an electric pump in a
water distribution system relies on the availability of the electricity network.

Induced dependencies are further divided into Common-Cause Failures (CCF)
[27] and cascading events, as summarised in Fig. 7.1. Common-cause failures are
the simultaneous failure of multiple similar components due to the same root cause.
Their origin is traceable to a coupling that normally is external to the system. Notable
instances are shared manufacturing lines, shared maintenance teams, shared envi-
ronments and human error. A group of components susceptible to the same CCF
event is called a Common-Cause Group (CCG). An important point to note about
common-cause failures is that, on occurrence of the failure event, there is a probabil-
ity associated with multiple component failure and that the affected components fail
in the same mode. Consequently, the number of components involved in the event
ranges from 1 to the total number of components in the CCG. CCF events may affect
an entire system or only a few of its components and, therefore, pose a consider-
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Interdependencies

Inter-component Inter-system

Functional Induced

Cascading FailuresCommon-Cause Failures

Fig. 7.1 Types of interdependencies in complex systems. Functional dependencies—such as when
the failure of power supply forces the unavailability of connected components. Common-Cause
Failures—due to earthquake excitation, vibration, environmental conditions (temperature, humidity,
contaminants), shared maintenance. Cascading events such as the failure of one component might
overload other components

able threat to the reliability of systems. CCF modelling and quantification attracts
keen interest from system reliability and safety researchers, as well as practitioners.
Examples of the work that has been done in this field can be found in [28, 33, 37].
Most of the methods presented in these publications, however, are built on reliability
evaluation techniques that do not segregate the topological from the probabilistic
attributes of the system. As such, they are computationally expensive for problems
involving multiple reliability analysis of the same system. They also have yet to be
applied to multi-state systems, as well as systems susceptible to both cascading and
common-cause failures.

Cascading failures are those with the capacity to trigger the instantaneous failure
of one ormore components of a system. They can originate from a component or from
a phenomenon outside the system boundary. The likelihood of the initiating event
originating from within the system distinguishes them from CCF. Another point of
dichotomy is that the affected components do not necessarily have to be similar or
fail in the same mode. In addition, at the occurrence of the initiating event, the prob-
ability of all the coupled components failing is unity, same for the case when they are
in a state rendering them immune [15, 18]. A few prominent examples of initiating
events external to the system are extreme environmental events, natural disasters,
external shocks, erroneous human-system interactions and terrorist acts. Various
models have been developed to study the effects of cascading failures on complex
systems [29]. However, a good number of these models only assess their response
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to targeted attacks, variation in some coupling factor or the relative importance of
system components. When faced with the additional situation of random component
failures, a complete reliability and availability analysis should be performed [18].
Even methods that fulfill this requirement have their applicability hampered by com-
ponents that undergo non-Markovian transitions, components susceptible to delayed
transitions, and reconfigurable systems.

7.3 Load Flow Simulation

The load flow simulation is a recently proposed technique for the reliability and
performance analysis of multi-state systems [17]. It is based on the fact that if the
performance levels of a system’s components are known, the performance levels
of the system can be directly derived from its network model. In this formalism,
each component is modelled as a semi-Markov stochastic process and the system
as a directed graph whose nodes are the components of the system. The approach
is intuitive and applicable to any system architecture and easily programmable on
a computer. It outperforms other multi-state system reliability analysis approaches,
since it does not require state enumeration or cut set definition. Efficient algorithms
for manipulating the adjacency matrix of this directed graph to obtain the flow equa-
tions of the system are available in OpenCossan [31].

The operation of the system is simulated using Kinetic Monte Carlo method by
initially sampling the state and time to the next transition (hereafter referred to as
transition parameters) of each component. The simulation jumps to the smallest sam-
pled transition time tmin , at which time the states of the components undergoing the
transition are updated. Using the updated performance levels of the components of
the system, the virtual flow across the system is computed via a linear programming
procedure that employs the interior-point algorithm. The new transition parameters
of the components undergoing a transition are then sampled and the simulation jumps
to the next smallest transition time. This cycle of component transition parameter
sampling, transition forcing and system performance computing continues until the
mission time T is reached. The system performance computed at every component
transition is captured and saved in counters, from which the performance indices of
the system can be deduced. A component shutdown and restart procedure is incor-
porated to replicate the actual operating principles of most practical systems. In this
procedure, the availability of each system component is tested against its predefined
reference minimum input load level at every transition and the effects of functional
interdependence on the failure probability of the components are accounted for.
Figure7.2 provides a high-level illustration of the load flow simulation procedure.

Ageing and component performance degradation is common in most systems.
For such systems, techniques built around the flow conservation principle become
obsolete, as the flow generated by sources can be dissipated in intermediate com-
ponents in certain failure modes. For instance, consider a 100MW power generator
supplying a 95MW load through a 125MW transformer. If there are no power losses
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Fig. 7.2 Flowchart of the load flow simulation

in the transformer, 95MWwill be drawn from the generator and delivered to the load.
However, if the efficiency of the transformer deteriorates to say 75%, it now takes
all 100MW from the generator but delivers only 75MW to the load. In both cases,
the apparent difference between the generation capacity and demand is the same but
the power drawn from the generator increases while the effective power supplied
to the load deteriorates. For this example, the demand would have to be slashed to
75MW or less, to preserve the operational integrity of the generator. Other scenarios
where component inefficiency affects system reliability are: a power transmission
line prone to losses and an oil pipeline where a failure mode is a hole in a pipe or
gasket failure at some flange [17].

The load flow simulation approach has been successfully applied to the availabil-
ity assessment of a reconfigurable offshore installation [18], dynamic maintenance
strategy optimization of power systems [19] and the probabilistic risk assessment of
station blackout accidents in nuclear power plants [16].

Advantages Over Existing Techniques:

1. Inherits all the advantages of simulation approaches used for system reli-
ability and performance evaluation.

2. Implements any system structurewith relative ease, since it doesn’t require
knowledge of the minimal path or cut sets prior to system analysis.

3. Calculates the actual flow across every node of the system.
4. Models systemsmadeupofmultiple source and sinknodeswith competing

static or dynamic demand.
5. Models losses in components and across links.
6. Models component restart and shutdown.
7. Not limited to integer-valued node capacities and system demand, as

required by other graph-based algorithms.

7.3.1 Simulation of Interdependent and Reconfigurable
Systems

Load flow simulation allows the modelling of inter-component and inter-system
dependencies, thereby supporting the reliability assessment of realistic engineering
systems [18]. Components and external events that influence the operation of the
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Fig. 7.3 Illustration of decoupling procedure for interdependent systems

system are identified and numbered, followed by the identification and modelling of
all the inter-component dependencies in the system. The strategy is to decouple the
interdependent system into its constituent systems (subsystems) as shown in [18].
The nodes associated with each subsystem are then identified and its directed graph
obtained (i.e. only nodes with actual commodity flow are considered). The states of
each node are then identified and modelled as described in [17].

For illustrative purposes, consider the original system in Fig. 7.3 (left panel). It is
an interdependent four commodity system—each solid line transports a commodity
and the broken line depicts an induced dependency in the direction of the arrow.
Node 2 is part of subsystem S2 and relies the commodity from subsystem S3 to
drive its operation. One would say it is functionally dependent on subsystem S3 and
exhibits a dual operation mode, operating both as a sink and an intermediate node.
Its sink mode directly influences flow in S3, while its transmission mode directly
influences flow in S2. It is, therefore, logical to separate node 2 into its constituent
nodes, each representing a mode of operation. Virtual nodes representing the sink
modes of dual nodes are created and assigned new IDs, creating a decoupled system
(see Fig. 7.3 (right panel)). A load-source functional dependency exists between the
decoupled nodes, since the transmission node is incapacitated if flow into the sink
node is inadequate. Therefore, they make a load-source pair, with the transmission
node being the load and the sink node, the local source node.

Local sources, otherwise known as support nodes in load-source pairs, are mod-
elled as binary-state objects: state 1 (active) has capacity l, depicting the availability
of the dependent node; State 2 (inactive) has capacity 0 and depicts its unavailabil-
ity. l is the minimum level of support required to operate the dependent/sink node
and in practical cases represents the load rating of that component. By applying the
decoupling procedure described to all load dependency relationships in the system,
the following load-source pairs; {2, 14}, {3, 16}, {1, 18}, {13, 15} and {9, 17} are
obtained. Li = { j, l} signifies that node i requires a minimum of l units of a certain
commodity from node j to operate. If i has a load dependency relationship with
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multiple nodes, Li takes the form of a two-column matrix, with each row defining
the node’s relationship with another node.

Induceddependencies are definedby theparameter Di = {d j1, d j2, d j3, d j4}u×4 |
j = 1, 2, ..., u − 1, u, which defines the state change induced in other nodes as a
result of a state change in node i . d j1 is the state of i triggering the cascading event,
d j2; the affected node, d j3; the state the node has to be in to be affected, and d j4; its
target state on occurrence of the event. Each row of Di defines the behaviour of an
affected node, and u, the number of relationships. If node i and the affected node
d j2 belong to different subsystems, the subsystem the latter belongs to is dependent
on the subsystem of the former. For example, suppose state 2 of node 5 in Fig. 7.3
forces node 7 into state 3 if it is in state 1 at the time node 5 makes the transition to
state 2. The induced dependency of node 7 on node 5 is defined by D5 as

D5 = (
2 7 1 3

)
(7.1)

Once the system has been decoupled, the dependency tree depicting the relation-
ships between its subsystems and their ranking is derived. The rank of a subsystem
depends on its position on the tree relative to the reference subsystem. The indepen-
dent subsystem, which is also the reference subsystem, is assigned rank 1 and the
remainder ranked in ascending order of their longest distance from this reference.
See [18] for the details of the ranking, reconfiguration and simulation procedures.

7.3.2 Maintenance Strategy Optimization

The load flow simulation approach can be exploited to optimise the maintenance
strategies of complex systems. The multi-state semi-Markov models of components
are extended to represent their behaviour under various maintenance strategies. The
operation of the system is then simulated using a slightly modified version of the
simulation procedure depicted in Fig. 7.2 and detailed in [19]. Non-Markovian com-
ponent transitions associatedwith the operational dynamics imposed bymaintenance
strategies are implemented. For example, the maintenance of a failed component can
only be initiated if there is an idle maintenance team, making the transition of the
component from its failed to working state non-Markovian, since it is conditional on
the availability of a maintenance team. Additional component states such as preven-
tive maintenance, corrective maintenance, shutdown, diagnostics, idle and awaiting
maintenance are included to model different maintenance activities.

To illustrate the derivation of the multi-state model of a component under various
maintenance strategies, consider a binary-state component. The component is subject
to both preventive and corrective maintenance and maintained by a limited number
of maintenance teams. In addition, its corrective maintenance consists of two stages:
a diagnosis stage and a restoration stage. Following diagnosis, the maintenance team
could proceed with the actual repairs if spares are not required or make a spares
request. There is a known probability associatedwith spares being needed for a repair
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Fig. 7.4 Multi-state models of binary-state component under maintenance delays

and while the maintenance team awaits the spares, it could be assigned to another
component. Similarly, there is a probability associated with spares being needed to
complete the preventive maintenance of the component, which could be interrupted
if these spares are not immediately available. The resulting multi-state models of
the component under two contrasting maintenance strategies are shown in Fig. 7.4,
with the component’s state assignments and possible transitions. Transitions are
either normal, forced or conditional. Normal transitions occur randomly and depend
only on their associated time-to-occurrence distributions. Forced transitions occur
purely as a consequence of events outside the component boundary, and their time-
to-occurrence distributions are unknown. Conditional transitions, on the other hand,
have a known time-to-occurrence distribution but are assigned a lower priority and
only occur on fulfilment of a predefined probabilistic condition or set of conditions
[19]. Unlike normal transitions in which the next state of the component depends
only on its current state, the next state of the component under forced transitions
may also depend on its previous state. As such, the multi-state component transition
parameter sampling procedure presented in [17] cannot be used to determine the
transition parameters of the component. For this, the set of procedures presented in
[19] are required. The binary-state component models in Fig. 7.4 can be generalised
for multi-state components by defining one ‘Idle’ state (if components are kept out
of operation during spares delay), a ‘Diagnosis’ state (where necessary) and one
‘Corrective Maintenance’ state for each repairable failure mode.

With this approach, multiple contrasting complex maintenance strategies can be
simulated without the need to modify the simulation algorithm, as the maintenance
strategy is implemented at the component level. See, for instance, the optimal main-
tenance strategies for a hydroelectric power plant derived in [19].
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7.3.3 Case Study: Station Blackout Risk Assessment

The complete lack of AC power at a nuclear power plant is critical to its safety, since
AC power is required for its decay heat removal. Though designed to cope with
these incidents, nuclear power plants can only do so for a limited time. The impact of
station blackouts on a nuclear power plant’s safety is determined by their frequency
and duration. These quantities, however, are traditionally computed via a static fault
tree analysis that deteriorates in applicability with increasing system complexity.
The load flow simulation approach was used to quantify the probability and dura-
tion of possible station blackouts at the Maanshan Nuclear Power Plant in Taiwan,
accounting for interdependencies between system components, maintenance, system
reconfiguration, operator response strategies and human errors [16].

TheMaanshan Plant is powered through two physically independent safety buses,
which themselves are powered by six offsite power sources through two independent
switchyards. Each safety bus has a dedicated backup diesel generator and both buses
share a third diesel generator. Two gas turbine generators connected through the
second switchyard power the plant’s safety systems if all three diesel generators are
unavailable. The gas turbine generators, however, take about 30 min to become fully
operational, when powered on. The goal in this case study was to quantify the risk
to the plant, of station blackouts initiated by the failure of the grid sources, as well
as the switchyards and identify the best recovery strategy, to minimise this risk.

The load flow simulation approach was used to model the structural/functional
relationships between the components of the system as described in Sect. 7.3 and
the formalism described in Sect. 7.3.1 to model both the interdependencies between
components and their dynamic behaviour under various recovery strategies. The full
details of the solution approach and results are available in [16].

7.4 Survival Signature Simulation

For very large-scale systems and networks, the full system structure information (or
structure function, minimal paths sets, etc.) might not be available or may be difficult
to obtain. Having a compact representation of the system, therefore, is advantageous.

Survival signature [7] has been proposed as a generalisation of system signature
[11, 12] to quantify the reliability of complex systems consisting of independent
and identically distributed (i id) or exchangeable components, with respect to their
random failure time. It has been shown in [8] how the survival signature can be
derived from the signatures of two subsystems in both series and parallel config-
uration. The authors developed a non-parametric-predictive inference for system
reliability using the survival signature. Aslett et al. [3] demonstrated the applicabil-
ity of the survival signature to system reliability quantification via a parametric, as
well as non-parametric approach.An efficient computational approach for computing
approximate and exact system and survival signatures has been recently presented
in [20, 34]. Feng et al. [13] developed an analytical method to calculate the sur-



106 H. George-Williams et al.

Fig. 7.5 Example of a bridge network composed of six-component of two types

Table 7.1 Survival signature for the system shown in Fig. 7.5

l1 l2 �(l1, l2) l1 l2 �(l1, l2)

0 [0, 1, 2, 3] 0 2 [0, 1] 0

1 [0, 1] 0 2 2 1/3

1 2 1/9 2 3 2/3

1 3 1/3 3 [0, 1, 2, 3] 1

vival function of systems with uncertainty in the parameters of component failure
time distributions. These methods are all useful but less practical for larger complex
systems and not applicable to non-exponential transitions.

As an illustration, consider a six-component bridge network with two component
types (Fig. 7.5), the survival function is given by Table7.1.

Considering 2 working components of type 1; l1 = 2 and 3 of type 2; l2 = 3,
there are three possible combinations in total but only two combinations lead to
success (the survival of the system) of the system. Hence, the survival signature of
the system is 2

3 , as shown in Table7.1. Similarly, for l1 = 3 and l2 = [0, 1, 2, 3],
there are eight possible combinations in total, all of which result in success. Hence,
the survival signature of the system in this case is equal to 1.0. Thus, knowing the
success paths from the combinations of multiple types of active components, it is
possible to compute the survival function of a complex system.

Exact analytical solutions are restricted to particular cases (e.g. systems with
component failure times following the exponential distribution and non-repairable
components). The survival function of a system with K component types is given by

P(Ts > t) =
m1∑

l1=0

...

mK∑

lK =0

φ(l1, . . . , lK )P(

K⋂

k=1

{Ck(t) = lk}) (7.2)

where

P(

K⋂

k=1

{Ck(t) = lk}) =
K∏

k=1

(
mk

lk

)
[Fk(t)]mk−lk [1 − Fk(t)]lk (7.3)

Here, Ck(t) ∈ {0, 1, . . . ,mk} denotes the number of components of type k in the
systemwhich function at time t , and Fk(t) represents theCDF of the random failure
times of components of the different types. In this approach, we have a strong i id
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Fig. 7.6 Flow chart of the Monte Carlo simulation algorithm for complex systems with repairable
components based on survival signature. Details of the simulation method are available in [30]

assumption of failure times within same components types. With this assumption,
all state vectors [7] are equally likely to occur.

However, simulation methods can be applied to study and analyse any system,
without introducing simplifications or unjustified assumptions. AMonteCarlo-based
approach can be combined with survival signature, to estimate the reliability of
a system in a simple and efficient way. A possible system evolution is simulated
by generating random events (i.e. the random transition such as failure times of
the system components) and then estimating the status of the system based on the
survival signature (Eq. (7.2)). By counting the number of occurrences of a specific
condition (e.g. the number of times the system is in working status), it is possible to
estimate the survival function and reliability of the system.

The most generally applicable Monte Carlo simulation methods adopting the sur-
vival signature for multi-state component and repairable systems have been proposed
in [30]. Its procedural steps are presented in Fig. 7.6.

7.4.1 Systems with Imprecision

The reliability analysis of complex systems requires the probabilistic characterisation
of all the possible component transitions. This usually requires a large dataset that is
not always available. To avoid the inclusion of subjective assumptions, imprecision
and vagueness of the data can be treated by using imprecise probabilities that combine
probabilistic and set theoretical components in a unified construct (see, e.g. [4, 9]).
Randomness and imprecision are considered simultaneously but viewed separately
at any time during the analysis and in the results [32].
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Imprecision can occur at component level, where the exact failure distribution is
not known or at system level, in the form of an imprecise survival signature. The latter
occurs when part of the system can be unknown or not disclosed. Such imprecision
leads to bounds on the survival function of the system, providing confidence in the
analysis, in the sense that it does not make any additional hypothesis regarding to
the available information. When the imprecision is at the component level, a naïve
approach, employing a double loop sampling approach where the outer loop is used
to sample realisations of component parameters, can be used. In other words, each
realisation defines a new probabilistic model that needs to be solved adopting the
simulationmethods proposed above, fromwhich the envelop of the system reliability
is identified. However, since almost all systems are coherent (a system is coherent if
each component is relevant, and the structure function is nondecreasing), it is only
necessary to compute the system reliability twice, using the lower and upper bounds
for all the parameters, respectively. If the imprecision is at the system level (i.e. in
the survival signature), the simulation strategy proposed in Fig. 7.6 can be adopted
without additional computational cost by collecting, in two separate counters, the
upper and lower bounds of the survival signature at each component transition, as
illustrated in [30]. Hence, imprecision at the component and system levels can be
considered concurrently, without additional computational costs.

7.4.2 Case Study: Industrial Water Supply System

An industrial water supply system consisting of 13 components, as shown in Fig. 7.7,
is chosen as a case study, to demonstrate the capability of the survival signature
method. The system is expected to deliver water to at least one of the two tanks
T 2 or T 3 from tank T 1, through a set of motor-operated pumps and valves. The
component failure datawith the corresponding distributions are provided inTable7.2.
The survival signature method is employed to compute the reliability of the system.

Fig. 7.7 Industrial water supply system



7 Simulation Methods for the Analysis of Complex Systems 109

Table 7.2 Reliability parameters of the components of the water supply system

Component Failure rate
(h−1)

MTTR (h) Repair rate
(h−1)

Distribution
type

T1, T2, T3 λ1 = 5 · 10−5 24 μ1 = 0.0417 Exponential

P1, P2, P3 λ2 = 3 · 10−3 17.4 μ2 = 0.0575 Exponential

V1, V2, V3, V4, V5, V6, V7 λ3 = 2 · 10−4 9 μ3 = 0.111 Exponential

Table 7.3 Survival signature (selected parts only) for the system shown in Fig. 7.7 computed with
approach proposed in [20]

l1 l2 l3 � l1 l2 l3 �

[0, 1] ∀ ∀ 0

2 1 2 1/63 3 1 2 1/21

2 1 5 8/63 3 1 5 8/21

2 1 7 2/9 3 1 7 2/3

2 2 6 22/63 3 2 6 6/7

2 3 5 8/21 3 3 5 6/7

2 3 7 2/3 3 3 7 1

The components of the system are categorised into three types, namely, pumps,
tanks and valves. The survival signature is given in Table7.3. The survival function
of the water system is then calculated analytically as shown below:

P(TS > t) =
3∑

l1=0

3∑

l2=0

7∑

l1=0

�(l1, l2, l3)

(
3

l1

)
[1 − e−λ1t ]3−l1

[
e−λ1t

]l1 ×
(
3

l2

) [
1 − e−λ2t

]3−l2 [
e−λ2t

]l2 ×
(
7

l3

) [
1 − e−λ3t

]7−l3 [
e−λ3t

]l3 (7.4)

The resulting survival functions without repair and with repairable components are
shown in Fig. 7.8.

As shown in Fig. 7.8, the results of the simulation method are in agreement with
the analytical solution for both repairable and non-repairable components. The pro-
posed simulation method is applicable to any distribution type, intervals or even
probability boxes. It not only separates the system structure from its component fail-
ure time distributions, but also doesn’t require the i id assumption between different
component types, as illustrated in [14].
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Fig. 7.8 Survival function without repairable (left panel) and with repairable components (right
panel) computed using 10000 samples and verified by the analytical solutions

7.5 Final Remarks

System topological complexity, component interdependencies, multi-state compo-
nent attributes and complex maintenance strategies inhibit the application of sim-
ple reliability engineering reasoning to systems. For systems characterised by these
attributes, simulation-based approaches allow the realistic analysis of their reliability,
despite the relatively higher computational costs of these approaches. This, however,
is not a problem, with recent advancement in computing.

The load flow simulation approach is an intuitive simulation framework that is
applicable to binary and multi-state systems of any topology. It does not require the
prior definition of the structure function, minimal cut sets or the minimal path sets of
the system. Instead, it employs a linear programming algorithm and the principles of
flow conservation to compute the flow through the system. Thus, it can model flow
losses and implement reconfiguration requirements relatively easily. It can model
all forms of interdependencies in realistic systems, using intuitive representations.
These attributes render the framework intuitive and generally applicable.

While the load flow simulation approach is optimised for multi-state systems, it
may not be the best for binary-state systems with identical components. Since the
survival signature is a function of the system topology only, it can be calculated only
once and reused in multiple reliability analyses. This feature reduces the reliability
evaluation of the system to the analysis of the failure probabilities of its components,
which is computationally cheap. Efficient simulation methods based on system sur-
vival signature allow the reliability analysis of complex systems without resorting to
simplifications or approximations.

The load flow and survival signature simulation approaches are not alternative to
each other; instead, they can be coupled to take advantage of their unique features,
especially for systems with multiple outputs and potentially, multi-state systems.



7 Simulation Methods for the Analysis of Complex Systems 111

The algorithms and examples presented are available at: https://github.com/
cossan-working-group/SystemReliabilityBookChapter.
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Chapter 8
Overview of Stochastic Model Updating
in Aerospace Application Under
Uncertainty Treatment

Sifeng Bi and Michael Beer

Abstract This chapter presents the technique route of model updating in the pres-
ence of imprecise probabilities. The emphasis is put on the inevitable uncertainties,
in both numerical simulations and experimental measurements, leading the updat-
ing methodology to be significantly extended from deterministic sense to stochas-
tic sense. This extension requires that the model parameters are not regarded as
unknown-but-fixed values, but random variables with uncertain distributions, i.e. the
imprecise probabilities. The final objective of stochastic model updating is no longer
a single model prediction with maximal fidelity to a single experiment, but rather
the calibrated distribution coefficients allowing the model predictions to fit with
the experimental measurements in a probabilistic point of view. The involvement
of uncertainty within a Bayesian updating framework is achieved by developing a
novel uncertainty quantification metric, i.e. the Bhattacharyya distance, instead of
the typical Euclidian distance. The overall approach is demonstrated by solving the
model updating sub-problem of the NASA uncertainty quantification challenge. The
demonstration provides a clear comparison between performances of the Euclidian
distance and the Bhattacharyya distance, and thus promotes a better understand-
ing of the principle of stochastic model updating, as no longer to determine the
unknown-but-fixed parameters, but rather to reduce the uncertainty bounds of the
model prediction and meanwhile to guarantee the existing experimental data to be
still enveloped within the updated uncertainty space.
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8.1 Introduction

Computational models of large-scale structural systems with acceptable precision,
robustness and efficiency are critical, especially for applicationswhere a large amount
of experimental data is hard to be obtained such as the aerospace engineering. Model
updating has been developed as a typical technique to reduce the discrepancy between
the numerical simulations and the experimental measurements. Recently, it is a ten-
dency to consider the inevitable uncertainties involved in both simulations and exper-
iments. A better understanding of the discrepancy between them, in the background
of uncertainty, would achieve a better outcome of model updating.

In structural analysis, the source of uncertainties, i.e. the reason of the discrep-
ancy between simulations and measurements, can be classified into the following
categories:

• Parameter uncertainty: Imprecisely known input parameters of the numerical
model, such asmaterial properties of novel composites, geometry sizes of complex
components and random boundary conditions;

• Modelling uncertainty: Unavoidable simplifications and idealisations, such as lin-
earised representations of nonlinear behaviours and frictionless joint approxima-
tions;

• Experimental uncertainty: Hard-to-control random effects, such as environment
noise, measurement system errors and human subjective judgments.

The above uncertainties motivate the trend to extend model updating from the
deterministic sense to the stochastic sense. The stochastic updating techniques draw
massive attention in the literature, in which the majority is based on the framework of
imprecise probability [4]. Considering the very typical categorisation of uncertain-
ties, the term “imprecise probability” can be understood separately as “probability”
corresponding to the aleatory uncertainty, and “imprecise” corresponding to the epis-
temic uncertainty. The epistemic uncertainty is caused by the lack of knowledge. As
a better understanding of the problem is achieved, this part of uncertainty can be
reduced by model updating. The aleatory uncertainty represents the natural random-
ness of the system, such as the random wind load on launch vehicles, manufacture
and measurement system errors. This part of uncertainty is irreducible, however, an
appropriate quantification of the aleatory uncertainty is still required in stochastic
model updating.

The involvement of aleatory and/or epistemic uncertainties provides a clear logic
for the categorisation of model input parameters:

I Parameters without any aleatory or epistemic uncertainty, appearing as explicitly
determined constants;

II Parameters with only epistemic uncertainty, which are still constants, however,
with an undetermined position in an interval;

III Parameters with only aleatory uncertainty, which are no longer constants, but
presented as random variables with exactly known distribution characteristics;
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IV Parameters with both aleatory and epistemic uncertainties, which are random
variables with undetermined distribution characteristics.

The above parameters with various uncertainty characteristics lead the model
predictions into the fourth category, i.e. the outputs with imprecise probabilities.
Consequently, the objective of stochastic model updating is no longer a single model
predictionwithmaximal fidelity to a single experiment, but rather aminimised uncer-
tainty space of the outputs, whose bounds should still encompass the existing exper-
imental data. In order to achieve this objective, a novel Uncertainty Quantification
(UQ) metric based on the Bhattacharyya distance is introduced in this chapter. The
UQmetric refers to an explicit value quantifying the discrepancy between simulations
and measurements. Clearly, this metric is expected to be as comprehensive as pos-
sible to capture all sources of uncertainty information simultaneously. Furthermore,
the overall updating procedure is committed to being simple enough, by employing
a uniform framework applicable to both of the classical Euclidian distance and the
novel Bhattacharyya distance. Within this uniform framework, comparison between
these two distance-based metrics can be performed conveniently, and therefore a bet-
ter understanding of the difference between the deterministic and stochastic updating
is achieved with significantly reduced calculation cost.

The following parts of this chapter are organised as follows. Section 8.2 gives
an overview of the state of the art of deterministic and stochastic model updating
where key literature is provided. Section 8.3 presents the overall technique route with
description of the key aspects, which can be helpful to generate a preliminary figure
of the overall model updating campaign. As the emphasis, the parameter calibra-
tion procedure with uncertainty treatment is explained in Sect. 8.4, where the Bhat-
tacharyya distance-based UQ metric is presented along with the Bayesian updating
framework. The NASA UQ challenge problem is solved by the proposed approach
and some interesting results are compared and analysed in Sect. 8.5. Section 8.6
presents the conclusions and prospects.

8.2 Overview of the State of the Art: Deterministic
or Stochastic?

Although this chapter focuses on the stochastic model updating, the deterministic
updating is still the footstone of its stochastic extension. A comprehensive review of
the deterministicmodel updating techniques can be found fromRef. [14]. The readers
are also suggested to refer to the fundamental book by Friswell and Mottershead
[15] on this subject covering key aspects including model preparation, vibration data
acquisition, sensitivity analysis, error localisation, parameter calibration, etc.

Among the plentiful techniques for deterministic parameter calibration, the
sensitivity-based method is one of the most popular approaches based on the lin-
earisation of the generally nonlinear relation between the model inputs and outputs.
Mottershead et al. [20] provide tutorial literature for the sensitivity-based updat-
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ing procedure of finite element models with both demonstrative and industry-scale
examples. However, the sensitivity-based method is only valid for typical outputs,
e.g. natural frequencies, modal shapes and displacement, of modal analysis or static
analysis. Other more complex applications such as strong nonlinear dynamics or
transient analysis lead the analytically solved sensitivity to be unpractical. Conse-
quently, the random sampling method, more specifically the Monte Carlo method,
attracts more and more interest by providing a direct connection between the model
parameters and any output features via multiple deterministic model evaluations.
The rapid development of computational hardware makes it possible for large-size
samples, fromwhich the statistical information of the inputs/outputs can be precisely
estimated [17, 18]. SuchMonte Carlo-basedmethods have been successfully applied
in large-scale structures, see e.g. Refs. [10, 16].

The widely used Monte Carlo methods obviously benefit to the research of
stochastic model updating, meanwhile, its conjunction with the Bayesian theory
further promotes this topic. Beck and Katafygiotis [3] proposed the fundamental
framework of Bayesian updating, whichwas further developed via theMarkov Chain
Monte Carlo (MCMC) algorithm by Beck and Au [2]. The Bayesian updating frame-
work in conjunction with the MCMC algorithm possesses the advantage to capture
the uncertainty information presented by rare experimental data. This approach has
been developed as a standard solution of stochastic model updating for different
applications such as uncertainty characterisation [22].

Besides the Bayesian interface, other imprecise probability techniques also have
considerable potential to be applied in stochastic model updating, such as interval
probabilities [13], evidence theory [21], info-gap theory [5] and fuzzy probabilities
[19]. For the background of imprecise probability, the comprehensive review by Beer
et al. [4] is suggested for an overall understanding of this topic.

8.3 Overall Technique Route of Stochastic Model Updating

The implement of stochastic model updating requires a complete theoretic system
including various key steps from the originally developed model, with a series of
techniques to define the features, to select and calibrate the parameters, to locate
and reduce the modelling errors, and finally to validate the model with indepen-
dent measurements. Special treatment of uncertainty propagation and quantification
promotes the extension of model updating from deterministic domain to stochastic
domain. This extension is specifically implemented to key steps such as parameter
calibration, model adjustment and validation. Overview of all related steps in model
updating is provided in the following subsections.
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8.3.1 Feature Extraction

A numerical model cannot be universally feasible for all scenarios with different
output features. Here, the feature is defined as the quantity that the engineer wants to
predict with the model and it is also dependent on the capacity of the practical exper-
imental set-up. Clearly, different features lead to different sensitivities of parameters,
and require different strategies for uncertainty quantification. And therefore the first
step of model updating is to define a suitable feature according to the existing exper-
imental setup and the practical application. The most typical features in structural
updating are themodal quantities, e.g. the natural frequencies andmodal shapes.Mul-
tiple orders of frequencies constitute a vector and the absolute mean error between
two vectors can be easily utilised to quantify the discrepancy between the simulated
and measured data. For modal shapes, the Modal Assurance Criterion (MAC) [1]
is the most popular tool to quantify the correlation between two sets of eigenvec-
tors. The continuous quantities are also commonly utilised as features, such as the
displacement response in time domain and Frequency Response Functions (FRFs)
in frequency domain. Classical techniques to evaluate the difference between two
complex and continuous quantities are the Signature Assurance Criterion (SAC) and
Cross Signature scale Factor (CSF). Reference [8] provides an integrated application
of SAC and CSF for a comprehensive comparison between two FRFs.

8.3.2 Parameter Selection

A sophisticated model of a large structure system always contains a massive number
of parameters, which lead to a huge calculation burden and even failure of the updat-
ing procedure. Parameter selection is therefore a key step to select or filter parameters
according to their significances to the features defined in the first step. The core tech-
nique for parameter selection is the sensitivity analysis focusing on a quantitative
measurement of the parameter significance. The classical sensitivity analysis tech-
nique is the Sobol variance-based method [25]. For a comprehensive knowledge of
the global sensitivity analysis inspired by Sobol’s method, the well-written book by
Saltelli et al. [24] is suggested to the readers. Another extension of Sobol method
includes, e.g. the Analysis of Variance (ANOVA) based on the hypothesis testing in
probabilistic theory. Reference [7] proposes an integrated application of ANOVAand
Design of Experiment (DoE), which provides a significant coefficient matrix con-
taining the complete sensitivity information of amultiple parameter–multiple feature
system. When uncertainties are involved, the sensitivity analysis requires extension
from the deterministic procedure to the stochastic procedure. The sensitivity of a
certain parameter, in the background of uncertainty treatment, can be represented as
the degree of how much the uncertainty space of the features is reduced, when the
epistemic uncertainty space of the parameter is completely reduced. This requires
additional techniques for uncertainty propagation and quantification, which will be
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addressed in the following parameter calibration step. A comprehensive literature
review on the subject of sensitivity analysis can be found in Ref. [26].

8.3.3 Surrogate Modelling

The employment of surrogate models, known as mate-models in some literature,
becomes increasingly important along with the sampling-based updating method-
ologies where a large number of model evaluations are generally required. A surro-
gate model is a fast-running script between inputs and outputs, which can replace
the time-consuming model, e.g. the large finite element model, in the updating pro-
cedure. An original input/output sample, i.e. a training sample, generated from the
complex model is required to train the surrogate model. Since the surrogate model is
proposed to handle the conflict between efficiency and precision, the training sample
is expected to be as small as possible, while the precision of the surrogate model
according to the original model should be high enough. The typical types of surro-
gate models include the polynomial function, radial basis function, support vector
machine, Kriging function neural network, etc. The selection of a suitable surrogate
model type is determined by various aspects such as its efficiency, generality, and
nonlinearity. Another technique, in conjunction with the surrogate modelling, is the
DoE with the purpose to efficiently and uniformly configure a spatial distribution of
the training sample within the whole parameter space. A comprehensive review of
the existing techniques of surrogate modelling and DoE can be found in Ref. [27].

8.3.4 Test Analysis Correlation: Uncertainty Quantification
Metrics

Test Analysis Correlation (TAC) is the core step of the overall updating procedure,
not only because it significantly influences the updating outcome but also because
it is the part mostly extended by the uncertainty treatment. TAC refers to the pro-
cess to quantitatively measure the agreement (or lack thereof) between test mea-
surements and analytical simulations, taking uncertainties into account. It therefore
requires a comprehensive metric which is capable of capturing multiple uncertainty
sources simultaneously. This chapter proposes UQ metrics under various distance
concepts. The Euclidian distance, i.e. the absolute geometry distance between two
single points, is probably the most common metric used in deterministic updating
approaches. However, it becomes insufficient for stochastic updating where mul-
tiple simulations and multiple tests are presented. The Mahalanobis distance is a
weighted distance considering the covariance between two datasets. And the alter-
native Bhattacharyya distance is a statistical distance measuring the overlap between
two random distributions. A comprehensive comparison among the three distances
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in model updating and validation can be found in Ref. [9], where the Bhattacharyya
distance is found to be more comprehensive to capture more sources of uncertainty
information. In the example section, the Bhattacharyya distance-based UQ metric
is applied within a Bayesian updating framework, and the result is compared with
the one using the typical Euclidian distance. This work does not address the Maha-
lanobis distance, since it has been found to be infeasible for parameter calibration,
although it contains the covariance information among multiple outputs. Neverthe-
less, the Mahalanobis distance has the potential to be utilised in model validation as
demonstrated in Ref. [9].

8.3.5 Model Adjustment and Validation

After the model parameters are calibrated, the model still needs to pass the validation
procedure before it can be utilised in a practical application. The validation procedure
contains a series of criteria with increasing requirements: (1) The updated model
should predict the existing measurements; (2) The updated model should predict
another set of measurement data which is different from the ones used for updating;
(3) The updated model should predict any modification of the physical system by
making the samemodification on themodel; (4) The updatedmodel, when utilised as
a component of a whole system, should improve the prediction of the whole system
model. In the background of uncertainty treatment, the fit between the prediction
and the measurement should be assessed by not only the precision but also the
stochastic characteristics, e.g. probabilities, intervals and probability boxes. Model
adjustment is a procedure to deal with the modelling uncertainty. When the updated
model fails to fulfil the validation criteria, or some updated parameters are found to
be unphysical, e.g. a minus density value, the modelling uncertainty is too severe
to be compensated by calibrating the parameters. The model can be adjusted by
increasing the resolution, changing the element type and adding a more detailed
geometry description, etc. Another round of parameter calibration is performed for
the adjusted model until the validation criterion is found to be fulfilled.

8.4 Uncertainty Treatment in Parameter Calibration

8.4.1 The Bayesian Updating Framework

The typical Bayesian model updating methodology is based on the following Bayes’
equation:

P(θ |Xexp) = PL(Xexp|θ)P(θ)

P(Xexp)
(8.1)
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with the key elements described as follows:

• P(θ) is the prior distribution of the parameters, representing the prior knowledge
before model updating;

• P(θ |Xexp) is the posterior distribution of the parameters conditional to the existing
measurement, i.e. P(θ |Xexp) is the outcome of Bayesian updating;

• P(Xexp) is the so-called “normalisation factor” guaranteeing the integration of the
posterior distribution P(θ |Xexp) equal to one;

• PL(Xexp|θ) is the likelihood function defined as the probability of the existing
measurements conditional to an instance of the parameters.

The likelihood represents the probability of the measurement data under each
instance of the updating parameters θ . And thus the objective ofmodel updating in the
Bayesian background is expressed as: to find the specific instance of the parameters
allowing the experimental measurement to possess the largest probability, in other
words, allowing the likelihood PL(Xexp|θ) reach the maximum. See Chap. 1 for
additional background on Bayesian inference.

However, one of the difficulties in Bayesian updating is relative to the normal-
isation fact P(Xexp). The direct integration of the posterior distribution over the
whole parameter space is quite difficult in practical application, especially when the
number of parameters is large and the distribution format is complex, leading the
direct evaluation of the normalisation factor impractical. The well-known MCMC
algorithm is popular to solve this difficulty by replacing Eq. (8.1) with

P(θ |Xexp) ≈ PL(Xexp|θ)β P(θ) (8.2)

where β is the weighting coefficient fallen within the interval [0, 1]. When β equals
to zero, the right part of Eq. (8.2) is the prior distribution; when β equals to one, the
right part of Eq. (8.2) converges to the posterior distribution. In the j-th iteration of the
MCMCalgorithm, random samples are generated from the intermediate distributions
with weighting coefficient β j ∈ [1, 0]. In the (j + 1)-th iteration, parameter points
which lead to higher likelihood are selected from the random samples in the j-th
iteration. New Markov chains are generated using the selected parameter points,
and thus β j+1 is updated. The intermediate distribution converges to the posterior
distribution when β j = 1. The MCMC algorithm has been developed as a standard
tool to stepwise generate samples from very complex target distributions. For the
detailed description of the MCMC algorithm, Refs. [2, 11] are suggested to the
readers.More applications of this algorithm can be found in the fields from stochastic
model updating [6, 22] to structural healthmonitoring [23]. SeeChap. 2 for additional
background on Monte Carlo methods.

http://dx.doi.org/10.1007/978-3-030-83640-5_1
http://dx.doi.org/10.1007/978-3-030-83640-5_2
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8.4.2 A Novel Uncertainty Quantification Metric

The MCMC algorithm makes it possible to avoid the evaluation of the normalisation
fact in Bayes’ equation. However, the evaluation of the likelihood is inevitable and
it becomes even more critical along with the uncertainty treatment. In the presence
of multiple sets of measurement data, the theoretical definition of the likelihood is

PL(Xexp|θ) =
Nexp∏

k=1

P(xk |θ) (8.3)

where Nexp is the number of existing experiments. This equation requires accurate
knowledge of the distribution of each measurement data point P(xk |θ). An accurate
estimation of the distribution requires a large number of samples, which means a
large number of model evaluations.

Clearly, a direct evaluation of Eq. (8.3) leads to a huge calculation cost. This is
why the Approximate Bayesian Computation (ABC) becomes increasingly popular
in Bayesian applications. Considering the principle of the likelihood function, it
is natural to propose an approximate function to replace Eq. (8.3), as long as this
approximate function still contains the information of the existing measurement data
and an instance of updating parameters. In this work, an approximate likelihood
based on the Gaussian function is proposed as

PL(Xexp|θ) ≈ 1

σ
√
2π

exp

{
−d(Xexp,Xsim)2

2σ 2

}
(8.4)

where d(Xexp,Xsim) is the distance between the experimental and simulated feature
data. Equation (8.4) serves as an elegant connection between the Bayesian updating
framework and the distance concepts. It provides a uniform framework for various
distance concepts. The approximate likelihood is applicable for not only theEuclidian
distance but also for the Mahalanobis and Bhattacharyya distances, in a uniform
updating framework. As explained in Sect. 8.3.4, the Mahalanobis distance is not
utilised in this work. The Euclidian distance is evaluated as

dE (Xexp,Xsim) = [
(Xexp − Xsim)(Xexp − Xsim)T

]1/2
(8.5)

whereXexp andXsim are the experimental and simulated feature datamatrices, respec-
tively; X denotes the mean vector of the matrix. Clearly, the Euclidian distance only
handles the mean of the data. The Bhattacharyya distance has the definition as

dB
(
Xexp, Xsim

) = − log

[
∫
Y

√
Pexp (x) Psim (x)dx

]
(8.6)
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where P(x) is the PDF of the feature; X is the feature space, implying
∫
X
is the inte-

gration performed over the whole feature variable space. More detailed information
about the evaluation method of the Bhattacharyya distance can be found in Ref. [6].

8.5 Example: The NASA UQ Challenge

The NASA UQ challenge [12] has been developed as a benchmark problem for
uncertainty treatment techniques in multidisciplinary engineering. This challenge
problem contains a series of subproblems such as uncertainty characterisation, sen-
sitivity analysis, uncertainty propagation, etc. In this work, only the Subproblem
A (Uncertainty Characterisation) is investigated since it is equivalent to the task of
model updating herein. Figure 8.1 illustrates the key components of this problem,
which contains one output evaluated via a black-box model using five input param-
eters. According to the categorisation strategy in Sect. 8.1, the five parameters are
classified into three categories, as shown in Table 8.1.

Only the parameters involving epistemic uncertainties, i.e. Categories II and IV
parameters, require to be updated in this context. The uncertainty characteristics,
including distribution types and distribution coefficients, are predefined as listed
in Table 8.1. The predefined intervals of the distribution coefficients represent the
epistemic uncertainty of the parameters. An output sample with 50 data points is
available in the problem, which is generated by assigning a set of “true” values of the
distribution coefficients from the predefined intervals. The objective of this problem
is, based on the existing 50 output points, to reduce the epistemic uncertainty space of
the parameters, i.e. to reduce the predefined intervals of the distribution coefficients.
Although the number of the model parameter is five, there are totally eight updating
coefficients controlling the epistemic uncertainty space of the parameters, as shown
in the last a column of Table 8.1.

To solve the problem, the Euclidian and Bhattacharyya distances are utilised to
construct the approximate likelihood functions, respectively. The Bayesian updating

Fig. 8.1 Key components of the Subproblem A in the NASA UQ challenge
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Table 8.1 The uncertainty characteristics of the parameters

Parameters Categories Uncertainty
characteristics

Updating coefficients

p1 IV Unimodal Beta,
μ1 ∈[0.6, 0.8],
σ 2
1 ∈[0.02, 0.04]

θ1 = μ1, θ2 = σ 2
1

p2 II Constant, p2 ∈ [0.0,
1.0]

θ3 = p2

p3 III Uniform, μ3 = 0.5,
σ 2
3 = 1/12

No updating required

p4, p5 IV Joint Gaussian,
μi ∈[−5.0, 5.0],
σ 2
i ∈[0.0025, 4.0],

ρ∈[-1.0, 1.0], i = 4, 5

θ4 = μ4, θ5 = σ 2
4

θ6 = μ5, θ7 = σ 2
5 ,

θ8 = ρ

framework employs these two distances as UQ metrics and generates two indepen-
dent sets of results. This treatment is intended to make a clear distinction between
the deterministic updating and the stochastic updating, and furthermore to reveal
the merits and demerits of these two distances. In practical applications, however, a
combined application of these two distances is suggested by first using the Euclidian
distance for the mean updating, and second using the Bhattacharyya distance for
the variance updating. This two-step strategy has been demonstrated as a success in
solving this problem in Ref. [6].

The posterior distributions of the eight updating coefficients using respectively the
Euclidian and Bhattacharyya distances as the UQ metrics are illustrated in Fig. 8.2.
In the figure, the objects (“Samples” or “PDFs”) with the suffix “_ED” denote the

Fig. 8.2 Posterior distributions updated using the Euclidian and Bhattacharyya distances
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results updated using the Euclidian distance metric; and the ones with the suffix
“_BD” denote the results using the Bhattacharyya distance metric. Except the distri-
bution of θ1, most of the posterior distributions with the Euclidian distance metric are
still close to uniform, implying the deterministic updating procedure employing the
Euclidian distance is incapable of solving this problem. As an obvious comparison,
the updating procedure employing theBhattacharyya distance performswell formost
of the updating coefficients by providing very peaked posterior distributions, such as
θ2, θ3, θ6, and θ7. The vertical line in each subfigure represents the true value of the
updating coefficient, which were used to generate the existing 50 output samples.
By comparing the position of the vertical line with the peak of the posterior distribu-
tion, the updating precision is assessed. For θ1, the peak of the distribution with the
Euclidian distance is apart from the vertical line, while the peak of the distribution
with the Bhattacharyya distance is quite close to the vertical line. This means the
Bhattacharyya distance performs better than the Euclidian distance when updating
θ1. The same conclusion is also achieved for θ3, θ4, and θ7. However, for θ2, and θ5,
although the distributions with the Bhattacharyya distance have clear poles, they do
not converge to the vertical lines. The updating precision of these two coefficients is
possible to be further improved by the two-step strategy as described in Ref. [6]. Note
that, there are still two coefficients (θ5 and θ8), which cannot be calibrated by neither
the Euclidian distance nor the Bhattacharyya distance. A potential explanation is that
the sensitivity of these two coefficients to the output is extremely low, leading the
inverse procedure impossible to locate the “true” value.

The quantitative updating results are detailed in Table 8.2, where the true values
of the updating coefficients and the updated ones are provided. The updated values
in the last two columns of Table 8.2 are obtained by determining the exact posi-
tion of the distribution peaks in Fig. 8.2. For the posterior distributions which are
still close to uniform distribution, the determining process is meaningless and thus
omitted. This is why only two updated coefficients are provided in the column with
the Euclidian distance. Note that, although the true values of the coefficients are
released in Table 8.2, they are not necessarily to be treated as the final target of this
updating problem. In the background of uncertainty treatment, the objective of this
problem, stipulated by the problem designer [12], is to reduce the epistemic uncer-
tainty space of the parameters, while making sure that the existing output sample can
still be included in the output uncertainty space. Hence, it makes more sense to assess
how much the output uncertainty space has been reduced after the intervals of the
coefficients are reduced in the updating procedure. This is relative to the tasks uncer-
tainty propagation and model validation, which are out of the scope of this example
for parameter calibration. A complete validation procedure considering the uncer-
tainty space of the output for this problem can be found in Ref. [6]. Nevertheless,
the stochastic Bayesian updating framework employing the Bhattacharyya distance
has been demonstrated to be more comprehensive and feasible than the Euclidian
distance in solving this NASA UQ challenge problem.
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Table 8.2 The updated results using the Euclidian and Bhattacharyya distances

Updating coefficients Predefined intervals True valuesa Updated results

Euclidian Bhattacharyya

θ1: μ1 [0.6, 0.8] 0.6364 0.6990 0.6194

θ2: σ 2
1 [0.02, 0.04] 0.0356 – 0.0397

θ3: p2 [0, 1] 1.0 – 0.9855

θ4: μ4 [−5, 5] 4.0 – 3.9770

θ5: σ 2
4 [0.0025, 4] 0.04 – –

θ6: μ5 [−5 , 5] −1.5 – −4.4732

θ7: σ 2
5 [0.0025, 4] 0.36 – 0.2818

θ8: ρ [−1, 1] 0.5 −0.3471 0.1804
aData available online at https://uqtools.larc.nasa.gov/nda-uq-challenge-problem-2014 [retrieved
in 2017]

8.6 Conclusions and Prospects

The tendency of uncertainty analysis has been rendering the typical model updat-
ing full of vitalities but also challenges. This chapter reviews the key techniques
and components of the overall model updating campaign. Main emphasis is put on
the involvement of uncertainty, which leads the transformation from the determinis-
tic approach to the stochastic approach. The stochastic model updating is executed
within the Bayesian model updating framework, where the Bhattacharyya distance is
proposed as a novel UQmetric. The approximate likelihood is critical by providing a
uniform connection between the Bayesian framework and various types of distance
metrics. The example demonstrates that the Bhattacharyya distance is more compre-
hensive and feasible than the Euclidian distance to calibrate distribution coefficients
of parameters with imprecise probabilities.

The Bhattacharyya distance is designed as a universal tool of UQ, which can be
conveniently embedded into a technique route similar as the deterministic approach,
but provides stochastic outcomes by capturing more uncertainty information. The
tendency of uncertainty analysis will be further promoted by the novel UQ metric
in not only the stochastic parameter calibration but also other procedures, e.g. the
stochastic sensitivity analysis andmodel validation,whichwill establish the complete
scenario of the stochastic model updating.
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Chapter 9
Aerospace Flight Modeling
and Experimental Testing

Olivier Chazot

Abstract Validation processes for aerospace flight modeling require to articulate
uncertainty quantification methods with the experimental approach. On this note,
the specific strategies for the reproduction of re-entry flow conditions in ground-
based facilities are reviewed. It shows how it combines high-speed flow physics with
the hypersonic wind tunnel capabilities.

9.1 Introduction

Space missions are built upon massive technology knowledge and on the latest
progress in engineering. They fascinate as they represent for the public the most
advanced knowledge as well as a typical dive into the unknown. For scientists and
engineers, such missions are an occasion to push the scientific knowledge and to
establish better what we know to offer solid basis for further discoveries.

In practice, space exploration leads to extreme challenges as it aims to investigate
planets, or asteroids, in the solar system and return samples for analysis across very
severe flight conditions. Such missions need to be designed using physical models
and robust numerical methods. However, those tools used by aerospace engineers
remain, for most of them, on the need for more research development for their
validation and consolidation to be able to plan successful and fruitful missions.

Aerothermodynamic testing is one of the crucial points for the design of aerospace
vehicles. At first place, it aims at establishing as much as knowledge possible on
critical flight phenomena. Ground-based facilities are operated to reproduce flight-
relevant environment for the testing of the vehicle configuration and its Thermal
Protection System (TPS) to allow for an accurate evaluation of their performances.
Two types of facilities are classically used for the ground testing to support the
pre-flight analysis. First, the required flow-field is reproduced for its analysis in
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high-enthalpy facilities such as shock tunnels or expansion tubes. Then in a second
step, the interaction between the dissociated gas and the vehicle’ surface is studied
to determine the thickness of Thermal Protection Material (TPM) from databases
built in plasma wind tunnels. Accurate flight duplication is thus necessary in order
to properly address those stringent requirements without over-sizing the TPS.

All the data produced are processed to define at best the modeling for all the
required physical phenomena. Very performant frameworks for such processing are
the Uncertainty Quantification (UQ) methods. Bayesian approach, in particular, are
extremely powerful as they allow todetermine the required information froma limited
experimental knowledge with a probabilistic treatment. However, such key results,
for hypersonic flight, are not only due to powerful mathematical treatment but also
thanks to consistent experimental methodologies. This combination between mathe-
matical and experimental approach is essential to generate useful knowledge on the
physical modeling to be determined. Then it is primordial to have a good understand-
ing on how the ground testing are linked to the fundamental mathematical models
used for simulating the high-speed flow physics. It serves to setup the best experi-
mental environment to allow a fruitful processing of the acquired data.

Therefore, this note intends to review the rationale of the ground testing method-
ology for aerospace vehicle. It offers a synthesis on the high-speed ground testing
underlying the links to their scientific basis. It presents how similitude laws could
be applied or need to be adapted as more and more physical phenomena have to
be considered for aerospace flights. It would help engineers and applied mathemati-
cians for working together facing the challenges of high-speed flight investigations
for aerospace development.

9.2 Aerospace Flights and Planetary Re-entry

Aerospace flight can be considered for very different trajectories. It could follow a
planet orbit up to the limit of its escape velocity, but it could also correspond to an
interplanetary transfer with super-orbital velocities. Those situations involve a large
variety of kinetic energy and trajectories. Figure 9.1 illustrates those typical orbit
trajectories, around Earth, with their corresponding velocities.

Super-orbital atmospheric re-entry, also known as hyperbolic re-entry, is charac-
terized by high velocities and is encountered when a probe is entering an atmosphere
from a hyperbolic orbit rather than from an elliptical orbit. It is the case for some
interplanetary probes or sample return missions. Typical velocities for probes enter-
ing the Earth’s atmosphere from hyperbolic orbits scale from 11 to 14 km/s, which
correspond to specific enthalpies between 60 and 100 MJ/kg. This is considerably
higher than the usual re-entry velocities from circular or elliptic orbits, e.g., 8.2 km/s
for the Space Shuttle. Up to now, the Stardust probe was the fastest artificial object
to perform a controlled re-entry in the Earth’s atmosphere, at 12.8 km/s.

The environment of a high-speed re-entry flight is muchmore severe compare to a
LowEarthOrbit (LEO) entrywith particularly highheat flux and important stagnation
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Fig. 9.1 Orbit trajectories
and velocities. μ is the Earth
gravitational parameter and r
is the radius of the orbit

pressure. In addition to the classical features of re-entry flows like non-equilibrium
thermo-chemistry and complex gas–surface interactions some specific phenomena
become important as shock layer radiative heating and ablation phenomena. Those
physical process were not considered much at smaller velocity but they cannot be
anymore neglected for super-orbital re-entry. In top of this, more complex physical
reality coupling phenomena appear in the flow between radiation and ablation that
lead to a very intricate situation. It is therefore not possible to extrapolate what has
been studied and learned for orbital re-entry to super-orbital conditions and specific
ground testing strategies are required.

9.3 Similitude Approach for Hypersonic Flows

Similitude in classical fluid dynamics establishes a correspondence between different
flows, based on the mathematical model representing these flows, without having to
solve the set of equations. This correspondence then can be used to relate two real
physical flow situations or to relate a family of solutions for the model.

With two correlated applications:

• The flow fields are similar (i.e., solution of the same set of equations) even if the
dimensions and the temporal evolution of the phenomena are on different scales.

• When applicable, the use of the similarity laws allows to replicate in wind tunnels
the flow field occurring in flight around a re-entry vehicle.

This second aspect of the similitude approach is mostly useful since it allows to study
on ground typical re-entry situations. Hypersonic flows are particularly interesting
for the application of similitude approach because it exists many different situa-
tions in hypersonic regime which can be describes with a variety of models leading
to different similitude laws. On one hand, it gives opportunities to develop sim-
plify solutions, but on the other hand, the physical nature of the high-speed flows,
mostly due to the high-temperature effects, severely restrict exact similitude and
impose to study approximate similitude. This family of flows is essentially deter-
mined by the mathematical model chosen to describe the flows and of which the
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flows are themselves solutions. It appears that the similitude strategy evolves as the
model integrates more and more physical aspects for the description of the flow. In
hypersonics going from inviscid regime to high-temperature effects, the similitude
approach will be adapted to retain the most relevant flow parameters corresponding
to each case. Similitude in hypersonic has been studied and discussed by different
authors: in earlier time, by Hayes and Probstein for inviscid and viscous hypersonics
[11, 12], by Freeman for dissociated gases [9] and in a more general form by Viviand
for CFD development [6], but it provides also very useful material for experimental
studies. The most common approaches are briefly presented below, as well as their
limitations.

9.3.1 Inviscid Hypersonics

At high Mach number when considering a slender body (small thickness ratio
τ << 1) at small angle of attack ( α << 1) in a perfect gas, the governing Euler
equations can be further simplified using the small disturbances theory. The similar-
ity parameters are thenMτ, ατ , and γ . The slenderness ratio τ is defined as τ = d/ l,
where d is the body’s radius and l its length. The parameter K = Mτ is called the
hypersonic similarity parameter [11]. On these conditions, with a constant isentropic
exponent γ , the results of the similitude may be expressed in dimensionless form.
For family of affinely related bodies of thickness ratio, τ in two-dimensional flows
the pressure coefficient Cp could be written:

Cp

τ 2
= 2

⎡
⎣γ + 1

4
+

√(
γ + 1

4

)2

+ 1

K 2

⎤
⎦ = f (K , γ ) (9.1)

The typical testing strategy in this inviscid framework could be represented as in
the figure (Fig. 9.2).

That approach holds for inviscid hypersonic, over a wide range of K for slender
bodies as long as the Mach number in the flow is large enough and τ small. Never-
theless, it does not correlate well as the body thickness is increased, curved shock
and boundary layers start to be predominant in the flow. As most hypersonic vehicles
are blunt rather than slender for thermal considerations this hypersonic similarity has
limited applications.

9.3.2 Viscous Hypersonics

Hypersonic flows present thick boundary layers that are also growing fast as Mach
number is increased. These boundary layers cannot be ignored generally in hyper-
sonic problems as they determine the major feature of the flow physics. They also
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Fig. 9.2 Inviscid hypersonic similitude

need to be taking into account for their interaction with the inviscid flow; ground-
based facilities need to be designed toward those considerations to provide a way for
studying these effects in relevant hypersonic flight conditions. To this end, similitude
approach is a precious guide to identify which combination of flow parameters need
to be taken into account in experimental simulation. Viscous hypersonic similitude
has been presented first by Hayes and Probstein in a paper [12] where they review
the general features of viscous similitude at high speed. The inviscid flow need to
be represented, then the hypersonic similarity parameter K = Mτ and γ need to be
invariant. The interaction of the viscous part of the flow with the inviscid field will
be determined by the viscous-inviscid interaction parameter χ expressed as

χ = M3∞
√
C∞√

Rex ,∞ (9.2)

with C∞ = μr T∞
μ∞Tr

and Rex,∞ = ρ∞Ux
μ∞ .

With these conditions the perfect gas model has to be assumed and the continuum
hypothesis valid, i.e., the mean free path is at least one order of magnitude smaller
than the characteristic length of the flow. The viscous hypersonic similarity requires
reproducing the free-stream Reynolds (Re) and Mach number (M) and the tempera-
ture ratio Tw

T∞ , where the subscriptw indicates the wall temperature and the∞ symbol
in the subscript refers to the free-stream. If the gas mixture is not the same, the heat
capacity ratio γ also needs to be reproduced [13]. This eases facility development,
as lowering the gas temperature lowers the speed of sound, and thereby increases
the achievable free-stream Mach number. The condensation temperature of the test
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Fig. 9.3 Schematic representation of cold hypersonic testing in ground facility

gas imposes the upper limit of what is achievable in a given facility. In a general
view it resorts a Mach–Reynold simulation. Most of the ground testing capabilities
are designed following this principle working with scaled models (Fig. 9.3). Their
operation envelope are commonly presented in a Ma–Re graph that indicates which
flight domain can be simulated (Fig. 9.4).1 One has to remark that the temperature
ratio parameter Tw

T∞ is not often taking into account but it could be an important aspect
to consider in ground testing as it could appear as a limitation in the study.

9.3.3 High-Temperature Hypersonics

When a real gas, as air, experiences a strong shock at high speed, it will increase
tremendously its thermal energy. In such conditions, the molecular collisions are
energetic enough to cause dissociation and ionization and the gas to depart from
the perfect gas model. For a blunt body at a velocity of 7 km/s, the temperature
immediately after the shock is around 14,000 K, and around 8,000 K downstream
the shock, where the flow may return to equilibrium. At such high temperatures,
chemical effects have to be taken into account. For air at a pressure of 1 atm, vibra-
tional excitation begins at 800 K, O2 begins to dissociate at 2,500 K and is fully
dissociated for 4,000 K, point for which N2 begins to dissociate. At 9,000 K, N2

is fully dissociated and ionization begins. One can easily understand that the flow
downstream the shock becomes a plasma: molecules are dissociated and atoms are
partially ionized. The parameters to be respected for a flow involving chemistry are
V 2/2D, where V is the free-stream velocity and D the typical dissociation energy
of the gas molecule considered, the Damköhler number Da, defined as Da = L/ lD ,

1 Graphic extracted from AGARD AR 319.
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Fig. 9.4 Mach–Reynolds
map for hypersonic facilities
[20]

where L is the characteristic length of the flow and lD the characteristic length asso-
ciated to the dissociation reaction, and the temperature ratio Tw/T [13]. It should
be brought to the reader’s attention that the gas behind the shock is a chemically
reacting mixture of perfect gases, and not a real gas as it is sometime incorrectly
referred to in literature.

The Damköhler number for the gas appears considering the mass conservation
equation in a non-dimensional form as it is expressed in the equation below:

∂ρi
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+ �.(ρi V + Ji ) =

Nr∑
r=1

(ν
′′
ir − ν

′
ir )

{
Da f r

Ns∏
j=1

ρ
ν

′
ir
j − Dabw

Ns∏
j=1

ρ
ν

′′
ir
j

}
(9.3)

Da f r = k f rρ∞L

U∞
Dabw = kbwρ2∞L

U∞
(9.4)

Chemical reactions take a very short but finite time to happen. Assuming that
the flow is composed of a single species, the dissociation rate is proportional to
the density, while the recombination rate is proportional to the square of density.
Hence, the characteristic lengths associated to the dissociation and recombination
reactions, respectively, scale as lD ∝ 1/ρ and lR ∝ 1/ρ2, where ρ is the flow den-
sity [13]. The recombination length is usually larger than the dissociation length.
Under certain conditions, at very high altitude, one can assume that lD ∼ L , and
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Fig. 9.5 High-enthalpy
facility map [15]

therefore Da = o(1), while lR is much larger. The flow is frozen; it is too fast for
recombination reactions to take place. In that case, the binary scaling parameter ρL
must be reproduced in order to obtain the correct Da [16]. One could note that
the diffusion phenomena is also considered in this analysis, as the diffusion term
in the equation scale with ρL [5]. With this approach, the high-enthalpy facilities
are designed to reproduce the real flight velocities (V∞) and to allow for an opera-
tion considering the ρL parameter as they can be represented in the graph of Fig. 9.5.

This leads to some complications. Firstly, the same air mixture as in real flight is
commonly used, as the chemistry processes are too complicated to reproduce to use
another one. The typical dissociation energy D is therefore conserved, and the actual
free-streamvelocitymust be reproduced to duplicate the group V 2/2D. Secondly, the
required density to achieve in the wind tunnel becomes large in order to maintain the
proper value of the binary scaling parameter for duplication of flight at lower altitude.
Thirdly, the binary scaling approach, strictly speaking, is built upon the hypothesis
of a single species mixture. That approach has therefore limited application for more
complex mixtures such as air [7]. Finally, as altitude decreases, density increases and
both lD and lR become smaller. The binary scaling parameter does not hold anymore,
as both ρL and ρ2L should be reproduced at the same time. The same holds when
flow velocity increases, and therefore also temperature. This prevents from using
the similarity laws, and flow duplication can thus only be performed on a full-scale
model, with the actual flow velocity.
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9.4 Duplication of Dissociated Boundary Layer
with Surface Reaction

Following the development presented in the previous paragraph, it is observed that
in spite of all the possibilities offer by the ground testing, considering the high-
temperatures effects in hypersonic, only the dissociation in the shock layer could
be simulated to some extend on scaled models. If one wanted to further take into
account, the recombination in the gas he would have to consider full-scale models.
Looking into more details, one could underline that all the important phenomena,
concerning the heat transfer typically, are laying in the boundary layer. Figure 9.6
gives an illustration of real flight situation in front of an Aerospace vehicle.

The study could then be reduced to this confined layer in particular for the heat-
transfer problems in hypersonic. In this situation, the full-scale environment will
be reproduced by duplicating all the characteristics of the boundary layer in the
ground testing facilities. This statement was already made in earlier publications
from researchers working on dissociated boundary layers using shock tube facilities
[19].

The stagnation point is of particular interest for this duplication because the flow
conditions, returning to zero velocity, are more easily reproduced in a laboratory.
Before identifying the parameters that need to be retained for the testing conditions
it will be useful to give a physical description of reacting boundary layers, as they
manifest themselves along surfaces in hypersonic flows.Dissociated non-equilibrium
boundary layers with surface reaction have already been presented extensively by
major authors [2, 19] and the reader is encouraged to consult these references. The

Fig. 9.6 Re-entry environment along stagnation line
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purpose of this section is not to expose in details the theory specific to such boundary
layers but to recall their main characteristics and better understand how they could be
simulated in ground-based facilities.Boundary layers are the locationwhere the diffu-
sion phenomena are dominant, their relative importance are characterized by typical
non-dimensional numbers: Prandtl (Pr), Lewis (Le), and Schmidt (Sc). Those will
not be commented here to rather focus on the chemical non-equilibrium feature of the
flow. The chemical reactions taking place in the gas phase are called homogeneous
reactions while those happening between the gas and the solid surface are called
heterogeneous reactions. The chemical non-equilibrium in the gas phase is charac-
terized by the gas Damköhler number (Dag). It corresponds to the ratio between
the typical time of the flow, to cross the boundary layer, to a typical reaction time
for the gas chemistry: Dag = τ f /τc. When Dag → ∞ the boundary layer reaches
a local thermodynamic equilibrium (LTE). On the contrary when Dag → 0 it leads
to a frozen boundary layer, where no chemistry happen. These different conditions
have significant consequences on the wall heat flux as it has been shown in reference
[8]. The reactions at the wall are usually considered as first-order reactions, they are
represented by a reaction rate (kw) for each dissociated specie. kw could be related to
a recombination coefficient γi (or catalycity parameter), interpreted as a probability
of recombination at the wall, by the Hertz–Knudsen formula:

kwi = γi

√
k · Tw
2π · Mi

(9.5)

The wall reaction rates are also characterized by a surface Damkohler number
(Daw). It compares the time of diffusion for the species across the boundary layer to
the time of reaction at the wall: Daw = τDi f f /τReact . When Daw → ∞, it does not
necessarily imply that the reaction rate at the wall tend to infinity (kw → ∞), but
simply that the surface reaction are much more faster than the diffusion process. It
is said that the GSI phenomena are “limited by diffusion”. In the other extreme case,
when Daw → 0 the diffusion ismuch faster than the reaction and theGSI phenomena
are “limited by reaction” or “reaction controlled”. From this description, it appears
that the diffusion and reaction processes should be accurately reproduced. To this
extend, it could be understood that the dimension and the environment of the reaction
boundary layer must be duplicated (Fig. 9.7). Two situations could be distinguished
for the boundary layer to be duplicated in the laboratory: stagnation point region and
off-stagnation point when the boundary is developing along the surface.

If one considers only the stagnation point region, it has been shown that a complete
duplication of real flight condition is possible in ground facility, if the total enthalpy
(He), the total pressure (Pe), and the velocity gradient (β = du/dx), of the flight
conditions, can be matched locally on the test sample [4, 14]. In this case, the testing
is realized in plasma wind tunnels (Arcjet or Plasmatron facilities) that are able to
produce dissociated flows for a long time base which is suitable for tests involving
aerothermochemistry. The theoretical frame for the testing with ICP wind tunnels
has been adapted by Russian scientists, in a methodology called Local Heat Transfer
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Fig. 9.7 Typical features of the dissociated stagnation point boundary layer

Simulation (LHTS) [14] and an assessment of this methodology has been conducted
at the VKI Plasmatron facility [1, 4]. The duplication of the flight condition at
stagnationpoint is strictly reduced to theboundary layerwith its appropriate treatment
[1]. In the case of a subsonic plasma facility, like the VKI Plasmatron, the testing
configuration could be presented as in Fig. 9.8.

The experimental assessment of the LHTS methodology has been conducted at
VKI by Chazot et al. [4] and Barbante and Chazot [1]. The results are presented
on the Figs. 9.9 and 9.10. It could be seen that the boundary layers profiles from
the hypersonic flow is very well duplicated with the subsonic plasma flow, when
matching the characteristics parameters at the edge of the boundary layer.

Fig. 9.8 TPS testing in plasma wind tunnel in LHTS conditions
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Fig. 9.9 Temperature
profiles comparison between
flight and ground testing
conditions [1]

Fig. 9.10 Mass fraction
profiles comparison between
flight and ground testing
conditions [1]

9.5 Considering Flow Radiation

Shock layer radiative heating appears around 9 km/s in Earth’s atmosphere and 7
km/s inMars’ atmosphere [17]. It reaches 10%of the total heat flux for probes having
a diameter smaller than 1 m and entry velocities approaching 13 km/s in the Earth’s
atmosphere [21]. It is then a physical phenomena to be considered for super-orbital
re-entry.
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However on ground testing for scaledmodels flow radiation is not often addressed
in the literature. It is usually mentioned to explain that this feature of the flow cannot
be properly reproduced considering similarity rules for amodel of reduced dimension
[18]. But even if this conclusion is fully valid some more details could be added to
better understand the issues with radiative heat-transfer in hypersonic facilities.

The radiative flux at a certain point P is the integral of the radiative intensity
in all directions and over the entire frequency spectrum. Considering a point S on
a surface, the radiative flux reaching S from a point P of the surrounding is the
difference between the energy emitted and that absorbed integrated along the optical
path from P to S. In the case of a scaled model in a high-enthalpy facility, respecting
the same condition for the gas and the flow velocity, it could be shown that the optical
thickness in the radiating shock layer scales with the product ρL , considering the
absorption coefficient remaining the same on the two situations.

One is then brought back to the same approach as the binary scaling exposed
before. In these conditions, the radiative heat-flux on the surface of a scaled model
could be reproduced in a ground-based facility.

However, if one considers the flow passing through the radiating environment
around the model, it appears that the scaling does not hold any longer. The amount
of energy E radiated by a control volume is proportional to the mass contained in that
volume: E ∝ m = ρ.L3. The amount of flow ṁ ingested in the shock layer could be
expressed as ṁ ∝ ρ.U∞.L2. Therefore, when the flow-radiation coupling need to be
taken into account the heat radiated per unit mass passing in a control volume scales
as: E/ṁ ∝ L . In conclusion, even if the radiative flux on the surface of a scaled
model could be reproduced, the radiative heating of the flow around the same model
is not respected.

This problem arises if the radiative heating is important enough to have an influ-
ence on the rest of the flowfield. This coupling is quantified by the radiative cooling
parameter �, also referred to as Goulard number, defined as

� = 2 · Qr
ad

1/2 · ρ∞ ·U 3∞
(9.6)

where Qr
ad is the radiative heating for an adiabatic flow, that is without radiative

cooling, ρ∞ the free-stream density, and v the shock velocity. This parameter serves
as an approximate measure of the coupling between radiation and the flow [10]. It is
the ratio of the amount of radiation generated by the shock, assumed to be twice the
radiative heating of the surface, by the kinetic energy heat flux entering the shock
layer. If � > 0.01, radiation is coupled to the rest of the flowfields and the effect of
improper radiation scaling extends to the rest of the flowfield.

Furthermore, there is a coupling between radiation and gas–surface interaction
processes. Indeed, the use of ablative material is compulsory for high-speed re-
entry. The ablation processes are very efficient to prevent the hot shock layer gas
from reaching the wall and absorb part of the shock layer radiative heat flux. An
accurate estimation of the absorbed radiation is complex since the thickness and
thermochemical state of the ablation gas layer are difficult to predict up to now [17].
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Other surface phenomena such as catalycity and oxidation should be also taken into
account, it makes the problem even more intricate when one is aware that such a
models are not yet fully established, especially in high-enthalpy flows [3].

9.6 Ground Testing Strategy for High-Speed Re-entry

Ground testing facilities commonly used to study re-entry flows and that are mainly
concerned with high-enthalpy flows can be divided in two categories:

• Impulse facilities, such as shock tubes and ballistic ranges, are only able to produce
flows that last typically a fraction of a second. It is usually assumed long enough
to let the steady flow establish itself, but too short compared to the thermal inertia
of the material surface. They are thus mainly used to investigate the aerothermo-
dynamic effects, gas kinetic, and radiation processes. In this category, expansion
tubes are able to reach free-stream enthalpies characteristic of high-speed re-entry.

• Plasma wind tunnels, such as inductively coupled plasma facilities or arc-jets, are
able to operate for long test durations, in the order of minutes. However, they have
not been designed to reproduce the flow radiation.

Similar flights conditions or direct flight duplication are possible to reproduce for
sub-orbital re-entry velocity in those facilities for a limited time (impulse facilities)
or in a limited region (stagnation point in plasma wind tunnels). Each category of
facility is addressing a specific aspect of the flowfield as it is sketched in Fig. 9.11.

The velocity of the flow is much higher in the case of high-speed re-entry which
concern super-orbital conditions. This results in considerably higher free-stream

Fig. 9.11 Different types of facilities for flow radiation or gas–surface interaction studies
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Fig. 9.12 Testing methodology for high-speed re-entry TPS sizing

enthalpy and pressure in the flow, and leads to coupling phenomena that cannot be
reproduced on scaled down models.

High-speed re-entry requires therefore a new approach of ground testing. Ground
testing facilities should be used to investigate separately different phenomenon play-
ing a role in the aerothermodynamic of the flow, rather than to duplicate flight, as it
is the case for lower velocity re-entry.

Those investigations should be performed on a panel of different facilities in order
to develop models and databases. Models of shock layer radiation can be developed
based on measurements performed in impulse facilities, under conditions similar
to those encountered in high-speed re-entry. However, material processes such as
ablation and radiative heating cannot be performed in the same facility due to the
short test duration involved. In particular, gas–surface interaction have to be studied
in plasma wind tunnels. As it is known, those facilities could produce the required
heat flux level, but have not been designed to take into account the correct coupling
phenomena including the radiation processes present below a shock layer. Models
of gas–surface interaction have therefore to be developed under different conditions
than that of high-speed re-entry.

Those models, developed separately, should then be implemented in Computa-
tional FluidDynamics (CFD) codes and allow extrapolatation to the actual flight con-
ditions. Since they cannot be validated within the flight conditions envelope unless
flight-testing is performed, they need to capture the main physical phenomena and
their accuracy is of prime importance. This, in turn, allows sizing and designing
re-entry probes as well as assessing their performance in flight, with computational
methods rather than direct ground testing facilities. The general framework of the
testing methodology for high-speed re-entry is summarized in Fig. 9.12.
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9.7 Conclusion

The reproduction of high-speed re-entry conditions in ground-based facilities is a
real challenge. Because of the coupling phenomena that characterized this type of
flows their accurate experimental simulation on scaled-downmodels is impossible in
ground-based facilities. It appears as well that only little research has been conducted
on dedicated strategies for ground testing of high-speed re-entry flows. Most of the
time, testing is limited to qualification tests that reproduce the heat flux level without
taking into account all the physical phenomena involved.

The two main limitations concern radiation and gas–surface interactions: both
cannot be correctly reproduced at the same time in a single facility. Indeed, the time-
scale achieved in impulse facilities is shorter than those relevant for gas–surface
interactions, while the correct radiation phenomena are difficult to reproduce in
plasma wind tunnels.

A solution is to develop models for radiation and gas–surface interaction in the
relevant facilities, under controlled environments. Since the conditions in which
those models can be validated in ground facilities are different from the one encoun-
tered in high-speed flows, they specifically require to be physic based in view of their
extrapolation to flight conditions. In such a context, model validation and their incor-
poration in CFD codes are crucial for the development of aerospace applications. UQ
methodologies are expected to play a major role for this approach as they represent
the unique way to give solid basis to the validation process. In order to manifest all
their benefit and correctly address the problem, UQmethods imperatively need to be
articulated with the experimental procedure. To this end, this brief review exposes
the rationale of experimental testing and how it is linked to the physics of aerospace
flights. It would serve as a basis for the development of Uncertainty Quantification
apply to the validation of high-speed flow modeling.
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