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Abstract. The article is concerned with the effect of linear and cubic non-linear
damping of an elastic bearing on forced resonant vibrations of a gyroscopic ver-
tical rigid rotor taking into account non-linear stiffness of the cubic nature of the
bearing material. It is confirmed that non-linear cubic damping of the support
can suppress not only the maximum amplitude, but also the amplitudes of forced
unsteady oscillations behind the rotation speed corresponding to the maximum
amplitude and the variation of its values in time along the main curve, around its
mean values. It shifts the speed of rotation of the amplitude maximum, with rigid
and soft non-linear elastic characteristics of the support material downwards and
upwards, respectively. It is shown that with a “slow” increase in the shaft rotation
speed, an increase in the absolute value of the angular acceleration is accompanied
by a shift of the amplitude peak towards high speeds, with a “slow” decrease in
the shaft rotation speed – towards low speeds with a decrease in the amplitude of
oscillations. It is shown that during the rotor takeoff run, the maximum amplitude
for the case with a rigid non-linear elasticity characteristic of the support material
is greater than the same value for the case with a soft non-linear elasticity char-
acteristic of the support material, and conversely, during the rotor run-down for
similar cases.

Keywords: Gyroscopic rotor · Non-linear rigidity · Non-linear damping ·
Unsteady oscillation

1 Introduction

The operating speeds of rotary machines can be above or between critical speeds. In
the practice of rotary machines operation there were cases when the machines had
unacceptably high vibrations during the transition through the critical speed(s). It is
known that one of the main causes of shaft vibration is the inertial forces of unbalanced
masses.
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A simplified model with lumped parameters of the rotor system, as a rule, is used to
study the dynamics of the shaft of one rotor on the bearing supports. It is very important
to use properties and characteristics of the material of the supports for attenuation and
damping of vibration in order to stabilizemovement of an unbalanced rotor and vibration
systems. Supports are the means of connecting the device between the rotor and the
supporting structure, which have various shapes and designs, depending on specific
assumptions.

A convenient way to introduce attenuation to support bearings in a rotor system on
viscoelastic flexible rubber supports [1]. In parallel with the development of viscoelastic
material modeling, which helps to describe the complexity of material properties, the
use of viscoelastic components in the dynamics of the rotor and vibration systems also,
increased as a whole, in particular with non-linear elastic characteristics and damping.
So, for example, inworks [2, 3] the influence of quadratic non-linear dampingon resonant
oscillations and stability of a gyroscopic rotor with quadratic or cubic non-linear stiff-
ness of an elastic support was considered. Studies [4–8] show that linear and non-linear
cubic damping can significantly suppress the resonant peak of the fundamental harmonic,
eliminate the jump-like phenomena of the non-linear system. In non-resonance regions,
where the vibration frequency is higher than its resonance value, non-linear cubic damp-
ing, unlike linear damping, can reduce the amplitude of the rotor vibration. Therefore, in
all regions of oscillation frequency (rotation speed), only non-linear cubic damping can
support the performance characteristics of the vibration isolator. The work [4] provides
an excellent overview of research on linear and non-linear vibration-isolating systems.

Non-linear damping suspension can affect the stability of the flexible rotor in short
journal bearings. In the work [9] a numerical method is used to solve the equations of
motion, and bifurcation diagrams, orbits, Poincaré maps, maps and amplitude spectra
are used to display motions. The results of works [2–8] are confirmed.

Under unsteady oscillations, the amplitude and frequency of disturbances change,
they differ significantly from the oscillations observed under constant frequency and
amplitude of disturbances.

Recently, unsteady oscillations have begun to be studied as transient processes in sys-
tems in connection with the spread of methods of direct and analytical-numerical model-
ing of the equations of the oscillatory process. Therefore, there are ample opportunities
for new research in this direction.

This article examines the unsteady vibrations of a gyroscopic rotor with a vertical
rigid shaft mounted on the lower hinge and upper elastic bearings. An ideal system is
modeled, non-linear differential equations of the rotor motion are solved analytically
by the method of varying amplitude, which allows obtaining a system of shortened
equations and equations of unsteady oscillations of the rotor. Assuming that the speed
of rotation of the shaft is a function of “slow” time, these equations are solved and
their results are compared. The influence of non-linear cubic damping of elastic support,
non-linear characteristics of support elasticity, rate of “slow” change in shaft rotation
speed on the amplitude-frequency dependence of rotor oscillations is investigated. The
numerical results of solving the rotor motion equations are compared with the analytical
results.
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2 Equations of Motion

The rotor is considered, the structural diagram of which is shown in Fig. 1. Rotor consists
of a shaft with a length L, mounted vertically by means of a lower hinge and an upper
elastic support spaced from it at a distance l0 and a disk fixed at the free end of the shaft,
having a mass m, a polar moment of inertia IP and a transverse moment of inertia IT the
same for any direction. The elastic support has linear stiffness k1, non-linear stiffness
k3, linear damping μd1, non-linear cubic damping μd3. The speed of the shaft rotation
ϕ̇ = ω is such that the rotor can be viewed as a gyroscope, the fixed point of which is
the lower shaft support. The position of the geometric center of the disk S is determined
by coordinates x, y in a fixed coordinate system Oxyz, and the position of the shaft and
the rotor as a whole in space by the Euler angles α, β and the angle of rotation ϕ. The
angles α, β are small, the movement of the rotor in the direction of the coordinate axis
z is neglected. Next, denote the coordinates of the center of mass m of the disk through
xm and ym. Assume also that the linear eccentricity e lies in the direction of the N axis
of the ONKZ coordinate system rotating with the rotor. Restrict to small deviations of
the rotor axis.

Fig. 1. Rotor geometry

Expressing the projections of the angular velocity of the rotor in the coordinate
axes of the ONKZ system, the coordinates of the center of mass of the disk and the
coordinates of the upper support through the angular coordinates α, β and ϕ, finding
expressions for the kinetic energy, potential energy of the rotor, the Rayleigh function
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and the projections of the moments of forces acting on the system, substituting them into
the Lagrange equations of the second kind using the following dimensionless parameters

l = l0/L; t = tω0; τ = τω0;�(τ) = ω(τ)/ω0; IT = IT /(mL2);
IP = IP/(mL2);K1 = k1/

(
mω2

0

); er = e/
[
L
(
1 + IT

)];
IP1 = IP/

(
1 + IT

);G = g/
(
Lω2

0

);K3 = k3l40/
[
mL2ω2

0

(
1 + IT

)];
μ1 = μd1/

[
mL2ω0

(
1 + IT

)];μ3 = μd3ω0/
[
mL2

(
1 + IT

)]
,

(1)

where is ω0 =
√(

k1l20 − mgL
)
/
[
mL2 − (

Ip − IT
)]

the natural frequency of the damped
rotor system, obtain the equations of motion of the rotor in the form

α′′ + IP1�(τ̄ )β ′ + μ1α
′ + μ3α

′3 + ω2
nα + K3α

3 = er
(
�2(τ̄ ) + Ḡ

)
cosϕ,

β ′′ − IP1�(τ̄ )α′ + μ1β
′ + μ3β

′3 + ω2
nβ + K3β

3 = er
(
�2(τ̄ ) + Ḡ

)
sin ϕ,

(2)

where �(τ) is the dimensionless rate of the shaft rotation, depending on the “slow”

dimensionless time τ = ε
−
t, ε � 1, is a small parameter [10].

On the right-hand part of the system of Eqs. (8) perturbations containing ϕ
′′
, were

discarded, since in the region close to the resonance velocity ϕ
′′ � �2, and perturbations

having a parameter IP (in what follows, assuming that IP � IT ) and values of the
second and higher orders of smallness with respect to α, β, their derivatives, and their
combinations. The indicated disturbances are small in comparison with disturbances,
the amplitudes of which are proportional to the angular velocity squared.

Consider a rotor system close to a linear system. Therefore, choose one of the
asymptotic methods, for example, the method of slowly varying amplitudes [11].
For the direct use of this method, the following restrictions are taken to solve
Eqs. (2). The projections of the moments of the damping forces μ1α

′
, μ1β

′
and

μ3α
′3

, μ3β
′3
, as well as the moment of the cubic component of the restoring force

K3α
3,K3β

3, the moments of the centrifugal force of the imbalance of mass and gravity
er

(
�2(τ ) + G

)
cosϕ, er

(
�2(τ ) + G

)
sinϕ are considered small in comparison with the

projections of the moments of the vibration inertia force and the linear restoring force
acting in the system. Assuming that IP � IT the projections of the moment of the pas-
sive gyroscopic force can also be considered small, IP1�(τ)α

′
IP1�(τ)β

′
. we will also

limit ourselves to considering a spinning rotor:�2(τ ) � G and motion in the resonance
range, where the frequency of free oscillations ωn is close to the frequency of forced
oscillations �, i.e.ξ = εξ1 = �(τ)−ωn � ωn.
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Equations (2), at small values of the quantity ξ and restrictions accepted above will
take the following form:

α
′′ + �2(τ )α =

er�2(τ ) cosϕ − IP1�(τ)β
′ − μ1α

′ − μ3α
′3 − ω2

nα − K3α
3 + 2ξα,

β
′′ + �2(τ )β =

er�2(τ ) sin ϕ + IP1�(τ)α
′ − μ1β

′ − μ3β
′3 − ω2

nβ − K3β
3 + 2ξβ,

(3)

where is ωn =
√(

K1l2 − G
)
/
(
1 + IT

)
the dimensionless natural frequency of the

linear rotor system (3) at IT � IP .
Equations (3) are a system of second order nonlinear ordinary differential equations

with respect to α, β.

3 Solutions of Motion Equations

In an oscillatory system, under the influence of damping forces, which cause attenu-
ation of higher harmonics, single-frequency oscillations of the fundamental tone are
established with a frequency close to the frequency of the disturbing force. The single-
frequencymethod allows us to consider both stationary oscillations and the process of the
rotor transition through critical speeds under very general conditions - causing the vari-
ability of the coefficients of the differential equations, in the presence of elastic supports
with a non-linear characteristic of elasticity and non-linear damping. Although the law
of variation of angular speed of the rotor can be obtained only on the basis of processing
the results of experimental studies of acceleration and running down of the machine, but
to determine the general nature of the transient process, the single-frequency method
allows solving the problem with the arbitrary law of variation of angular speed of the
rotor. The only limitation that determines the applicability of this method is the require-
ment for a slow change in the angular velocity with respect to the value of the natural
frequency of the system under study.

Therefore, search for solutions (3) in the form:

α = A
(
t
)
cos

[
ϕ + θ

(
t
)]

, β = A
(
t
)
sin

[
ϕ + θ

(
t
)]

. (4)

Here is A
(
t
)
the slowly varying amplitude, θ

(
t
)
is the phase shift of the oscillations

relative to the forced harmonic moment.
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Further, using the method of varying amplitudes [11], obtain the equations of the
transient process in the form

A
′ = [er�2(τ )cosϕ +

(
2ξ�(τ) − IP1�

2(τ )
)
Acos(ϕ + θ) + μ1�(τ)Asin(ϕ + θ)+

μ3�
3(τ )A3sin3μ3�

3(τ )A3sin3(ϕ + θ) − K3A
3cos3(ϕ + θ)]sin(ϕ + θ), (5)

Aθ
′ = −[er�2(τ )cosϕ +

(
2ξ�(τ) − IP1�

2(τ )
)
Acos(ϕ + θ) + μ1�(τ)Asin(ϕ + θ)

+ μ3�
3(τ )A3sin3(ϕ + θ) − K3A

3cos3(ϕ + θ)]cos(ϕ + θ). (6)

After performing averaging of Eqs. (5) and (6), the system of equations for the
transient process of the rotor is obtained in the following form

A
′ = −er�

2(τ )sinθ/2 − μ1�(τ)A/2 − 3μ3�
3(τ )A3/8 (7)

θ
′ = −er�

2(τ )cosθ/(2A) −
[
�(τ)−ωn − 1

2
IP1�(τ)

]
�(τ) + 3K3A

2/8 (8)

4 Unsteady Oscillations

To illustrate the influence of the value of non-linear cubic damping of the support on
the development of the oscillatory process when passing through the resonant region,
consider calculation of the unsteady mode of motion of the rotor system under the
assumption that the speed of the shaft rotation � is also a “slowly” changing parameter
according to the law� = �0+νt. The equations of the unsteady process (7) and (8), (5)
and (6) were modeled in the Mathlab-Simulink package. The angular speed of the shaft
rotation � increased “slowly” uniformly (ν > 0) or decreased uniformly over (ν < 0)
time.

The system parameters have the following values: er = 0.0346, ωn≈1, IP1 = 0.021,
μ1 = 0.01.

For K3=0.1, choose the initial conditions for the case with ν > 0 : t = 0 : 1) �0 =
0.81, A0 = 0.067, θ0 = -0.02521 with μ3 = 0.01; 2) �0 = 0.79, A0 = 0.06254, θ0 =
-0.02297 with μ3 = 0.02; 3) �0 = 0.79, A0 = 0.0625381, θ0 = -0.0230614 with μ3 =
0.043, for the case with ν < 0 : t = 0 : 1) �0 = 1.39, A0 = 0.0640693, θ0 = 0.0134013
with μ3 = 0.01; 2) �0 = 1.39, A0 = 0.0640692, θ0 = 0.0134806 with μ3 = 0.02; 3)
�0 = 1.39, A0 = 0.0640691, θ0 = 0.0136628 with μ3 = 0.043.

For K3 = -0.1, accept the initial conditions for the case with ν > 0 : t = 0 : 1) �0 =
0.80, A0 = 0.0664575, θ0 = -0.0240624 withμ3 = 0.01; 2)�0 = 0.79, A0 = 0.0626448,
θ0 = -0.0230045 with μ3 = 0.02; 3) �0 = 0.79, A0 = 0.0626447, θ0 = -0.0231013
with μ3 = 0.043, for the case with ν < 0 : t = 0 : 1) �0 = 1.39, A0 = 0.0640315, θ0
= 0.0133933 with μ3 = 0.01; 2) �0 = 1.39, A0 = 0.0640315, θ0 = 0.0134724 with μ3
= 0.02; 3) �0 = 1.39, A0 = 0.0640313, θ0 = 0.0136543 with μ3 = 0.043.
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The abscissa axis has two scales: the scale � and the corresponding time scale t
Resonance curves of non-stationary oscillations of the rotor, constructed on the results
of modeling Eqs. (7) and (8), (5) and (6), are shown in Figs. 2 - 6. All the plots clearly
show that increase in the value of the non-linear cubic damping of the elastic support μ3
from 0.01 to 0.043 suppresses not only the maximum amplitude and its variation around
the mean value, but also the oscillation amplitude and its variation below the resonance
and over the resonance rotation speed. It shifts the shaft rotation speed corresponding
to the maximum amplitude with a rigid non-linear elastic characteristic (K3 > 0) of the
support material downward, and with a soft non-linear elastic characteristic (K3 < 0)
of the support material toward an increase. Comparison of the plots in Fig. 2a and
Fig. 2b shows that with an increase in the value of ν from 0.00025 to 0.0005 with a rigid
non-linear characteristic (K3 > 0) of the support elasticity, the resonance peak of the
amplitude shifts towards high speeds of rotation and its value decreases [10].

Comparison of Fig. 3 and Fig. 2, shows the identity of the results of solving the
equations of the non-stationary process before averaging (5) and (6) with the results of
solving the equations of the non-stationary process after averaging (7) and (8) over time,
although in Fig. 3, there is a variation in the values of the amplitude of oscillations in
time along the main curve, around its mean values.

From Figs. 2 and 4, it is clearly seen that atK3 > 0 and ν > 0 (run-up) the resonance
amplitude is greater than at ν < 0 (run-down).

Changes in the nonlinear stiffness characteristics of an elastic support significantly
affect the description of the resonance curves. The amplitude-frequency characteristics
of the rotor during the transient process and the soft characteristic of the non-linear
elasticity of the support (K3 < 0) are shown for the take-off run (ν > 0) of the machine
in Fig. 5, for run-down (ν < 0) of the machine – in Fig. 6. From these graphs, it is
noticed that (ν > 0) the resonance peak of the amplitude is less during the run-up than
during the run-down (ν < 0), i.e. on the contrary, than in the case with a rigid non-linear
characteristic of the support elasticity (K3 > 0) [12]. When the absolute value of the
angular acceleration ν changes from 0.00025 to 0.0005 in the case of starting (ν > 0) the
machine, the resonance peak of the amplitude shifts towards an increase in the rotation
speed [10], then in the case of braking (ν < 0) towards a decrease in the shaft rotation
speed.

Comparison of the amplitude-frequency characteristics of the rotor for the case with
a rigid non-linear elastic characteristic (Fig. 2, 3, 4) and for the casewith a soft non-linear
elastic characteristic (Fig. 5, 6) of the support material shows that during the run-up,
(ν > 0) the maximum amplitude of the resonance curves for K3 > 0 is greater than
the analogous value for K3 < 0; at the run-down (ν < 0), the maximum amplitude for
K3 > 0 is less than the similar parameter for K3 < 0.

In order to check whether the considered transient process is really “resonant”, the
equation of the reference line of the resonance curve is derived from the equations of
motion (3)

� = ωn/(2 − IP1) +
√
[ωn/(2 − IP1)]2 + 3K3A2/[4(2 − IP1)]. (9)
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Fig. 2. Transition through resonance at K3 > 0, according to the results of modeling Eqs. (7) and
(8) with a - ν = 0.00025, b - ν = 0.0005

Fig. 3. Transition through resonance at K3 > 0, according to the results of modeling Eqs. (5) and
(6) with a - ν = 0.00025, b - ν = 0.0005.

Fig. 4. Transition through resonance at K3 > 0, according to the results of modeling Eqs. (7) and
(8) with a - ν = -0.00025, b - ν = -0.0005

Assuming that, ν � �2 the peak amplitudes and the corresponding rotational speeds
of the resonance curves approximately satisfy Eq. (9). So, for example, for K3 = 0.1,
μ1 = 0.01, μ3 = 0.01, ν = 0.00025 the maximum amplitude A = 1.360 corresponds to
the rotation speed � = 1.075 (1 resonance curve in Fig. 2), for K3 = -0.1, μ1 = 0.01,
μ3 = 0.01, ν = 0.00025 the maximum amplitude A = 1.163 – the rotation speed � =
0.9570 (1 resonance curve in Fig. 5).
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Fig. 5. Transition through resonance at K3 < 0, according to the results of modeling Eqs. (7) and
(8) with a - ν = 0.00025, b - ν = 0.0005

Fig. 6. Transition through resonance at K3 < 0, according to the results of modeling Eqs. (7) and
(8) with a - ν = -0.00025, b - ν = -0.0005

To confirm the analytical study, Eqs. (3) were solved directly numerically. Figure 7
shows the numerical results for passing through the resonance with a rigid non-linear
elastic characteristic of the support of the supportmaterial and a “slowly” varyingvalue of
the angular velocity of rotation�. In this figure, the effects of damping of the oscillations
amplitude having the value of μ3 and beating of similar oscillations are observed. These
results are consistent with previous analytical results shown in Fig. 2 and Fig. 4. The
differences lie in the width of the region of clearly visible vibrations, the magnitude

Fig. 7. Transition via resonance with ν = 0.00025 according to the results of the numerical
solution of Eqs. (3) for a - K3 > 0, b - K3 < 0
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of the maximum vibration amplitude and the displacement of the corresponding shaft
rotation speed. Despite this, the basic behavior of the transient process persists. Jumping
effects are not detected.

5 Conclusions

Differential equations of motion of a gyroscopic rigid unbalanced rotor with non-linear
cubic stiffness and non-linear cubic damping are constructed and solved by the method
of varying amplitude. Differential equations of unsteady oscillations of the rotor are
obtained, which were solved numerically for the transient process through the resonance
region.

It is shown that non-linear cubic damping significantly suppresses not only the maxi-
mumamplitude and its variation, but also the oscillation amplitude and its variation below
the resonance and over the resonance rotation speed. It shifts the resonant rotation speed
of the shaft downwards with the rigid non-linear elastic characteristic (K3 > 0) of the
support material and upwards with the soft non-linear elastic characteristic (K3 < 0) of
the support material.

It was confirmed that with a “slow” increase in the shaft rotation speed (ν > 0), an
increase in the absolute value of the angular acceleration is accompanied by a shift of the
amplitude maximum towards high rotation speeds, with a “slow” decrease in the shaft
rotation speed (ν < 0) - towards low rotation speeds with a decrease in the amplitude
of oscillations.

The results from the analysis of studies of influence of non-linear characteristics of
elasticity (K3 > 0 andK3 < 0) of the support material during the run-up (ν > 0) and
run-down (ν < 0) of the rotor on the peak amplitude of oscillations are presented.

There is an agreement between the results of analytical solutions and numerical
solutions of the equations of rotor motion.

The research results can be used in the manufacture of a vibration isolator, which
significantly suppresses the peak amplitude, and the amplitude of oscillations below the
resonance and over the resonance rotation speed, for a vibrating system, incl. rotary one.
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