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Abstract. Experimental study and numerical investigation of stress relaxation
behavior of isotropic magnetorheological elastomeric composite (MEC) were car-
ried out in this article. The isotropic MEC was produced from silicone rubber rein-
forced with micro-sized carbonyl iron particles. The stress relaxation response of
the isotropic MEC was investigated at different loading rates, constant strain lev-
els, and under various electromagnetic fields through the single relaxation test with
double-lap shear specimens. Research results indicated that the stress relaxation
of the isotropic MEC depended slightly on the loading rate, but it was considerably
dependent on the constant strain and the electromagnetic field. The shear stress
and modulus of the MEC in the relaxation period enhanced with increasing the
constant strain and electromagnetic field intensity as well. The stress relaxation of
the isotropic MEC was examined numerically using the four-parameter fractional
derivative viscoelastic Zener model. The studied fractional derivative viscoelas-
tic model was fitted well to the measured relaxation modulus of the isotropic
MEC. The calculated shear stresses of the isotropic MEC with long-term predic-
tions agreed well with the measured ones. Therefore, the investigated fractional
derivative viscoelastic model can apply to predict the long-term stress relaxation
behavior of the isotropic MEC.
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1 Introduction

Magnetorheological elastomeric composites (MECs) have been prepared by dispersing
ferromagnetic powder into a non-magnetic elastomeric matrix. MECs are considered
to be intelligent materials due to controllable rheological and mechanical properties
under an external magnetic field [1]. The typical behavior of MECs is changing their
stiffness and damping properties under the magnetic field. With controllable stiffness and
damping properties, MECs have been used in a variety of engineering applications [2].
In addition, MECs are regarded to be viscoelastic composite materials. The mechanical
behavior of viscoelastic materials is time-dependent. The time-dependent response of
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MECs makes them prone to creep and stress relaxation. Therefore, studies of the stress
relaxation behavior of MECs are necessary to investigate their viscoelastic properties
for long-term applications.

The viscoelastic properties of MECs have been studied numerically using fractional
derivative models [3-5]. Fractional derivative models based on classical viscoelastic
models (Kelvin—Voigt, Maxwell, Zener, etc.) had been built by different combinations
of elastic spring and fractional-order dashpot. The fractional derivative models were
effective in describing the stress relaxation behavior of polymeric materials [6]. For
this paper, the isotropic MEC was developed from silicone rubber and carbonyl iron
powders (CIPs). The stress relaxation response of the isotropic MEC was investigated
using the single relaxation test with double-lap shear samples. Influences of the loading
rate, constant strain, and magnetic flux density (MFD) on the stress relaxation of the
MEC were examined. The stress relaxation of the MEC was calculated numerically using
a four-parameter fractional derivative viscoelastic Zener model. The model parameters
fitting to measured data of the single relaxation test were used to predict the long-term
stress relaxation behavior of the isotropic MEC.

2 Experimental Investigation

2.1 Materials

The isotropic MEC was developed using micro-sized CIPs, RTV silicone rubber ZA13,
and its catalyst. The micro-sized CIPs (type: 44890), which were provided by Sigma-
Aldrich (USA), had overall spherical shapes with 2—-5 pm (>99.5%) in diameter. The
RTV silicone rubber ZA 13 and its catalyst were developed by Zhermack S.P.A (Italy)
and were supplied by Havel Composites Ltd. (Czech Republic).

2.2 Fabrication of Isotropic MEC

The isotropic MEC samples were fabricated by mixing the silicone rubber ZA13, its
catalyst, and 27 vol.% CIPs. The processing of the isotropic MEC specimens and their
microstructural morphology can be found in detail in our earlier reports [3-5].

2.3 Single Relaxation Test

The stress relaxation behavior of the isotropic MEC was investigated via the single
relaxation test with double-lap shear specimens. The double-lap shear samples were
fabricated by sandwiching two isotropic MEC square blocks between the aluminum
slabs. The single relaxation test for the isotropic MEC was performed in the Instron
Electropuls testing system at different loading rates (0.01, 0.1, and 1.0/s) and various
constant strains (5, 10, 15, and 20%). Besides, the single relaxation test for the MEC
samples was conducted with the rise of the MFD up to 0.58 T using an electromag-
net. The electromagnet was used to generate magnetic fields with the applied direction
perpendicular to the sample shear force. Before each relaxation test, the MEC speci-
men was loaded cyclically to maximum strain amplitude to eliminate the Mullins effect.
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The shear force and displacement were recorded for 1000 s in each single relaxation
test. The double-lap shear test, the MEC specimen, and the electromagnet system were
described in our previous articles [3-5].

2.4 Experimental Results

The single shear stress relaxation behavior of the isotropic MEC under a 20% constant
strain at different loading rates is described in Fig. 1. The influences of applied constant
strains on the shear stress relaxation response of the isotropic MEC are presented in
Fig. 2. Shear stresses of the isotropic MEC in the relaxation period as functions of time
and the MFD at various constant strain levels are depicted in Fig. 3. The influences
of different MFDs on the relaxation modulus of the isotropic MEC at various constant
strains are shown in Fig. 4.

The increase in the loading rate resulted in the rise of the shear stress at the same
strain (Fig. 1a). Besides, the stress relaxation rate of the isotropic MEC enhances with
increasing the loading rate. At the beginning of relaxation, the peak stress at the loading
rate of 1.0/s is highest and higher than that at the lower loading rates. The isotropic
MEC loaded at a faster rate has greater peak stress than that loaded at a lower rate,
because a low rate affords a longer time for the isotropic MEC to relax during loading.
Moreover, the modulus relaxation rate increases with the rise of the loading rate (Fig. 1b).
However, the shear stress and modulus of the isotropic MEC in the relaxation period
after the loading ramp at a lower rate are slightly greater than those at a higher rate. In
general, the isotropic MEC exhibits that the higher the loading rate, the greater the stress
relaxation rate, but its relaxation modulus does not depend much on the loading rate.
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Fig. 1. Shear stress-time curves and relaxation modulus curves of the isotropic MEC under a 20%

constant strain at different loading rates. The inset figures are the zooms of the first 50 s.

The rise of applied constant strains leads to a significant increase in the shear stress
and a slight reduction of the modulus in the relaxation period (Fig. 2). In addition,
the shear stress and modulus versus time curves show strongly stress relaxation during
the initial 200 s and then indicate an extremely slow rate of relaxation that continues
in an asymptotic sense, as reported in [9]. The stress relaxation rate is dependent on
the overstress, which is defined as the difference between the current stress and the
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equilibrium stress. As Fig. 2a shows, the stress relaxation rate increases with raising the
strain level. Therefore, the high strain level shows a larger overstress than the low strain
level. Generally, the single relaxation test carried out at higher strain levels possessed
greater overstresses and showed faster stress relaxation than those at lower strain levels

with smaller overstresses, as presented by Amin et al. [10].
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Fig. 2. Shear stress-time curves and relaxation modulus curves of the isotropic MEC under

different constant strain levels.
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Fig. 4. Relaxation modulus of the isotropic MEC over time under various MFDs at different
constant strain levels.

As observed in Figs. 3, 4, the shear stress and modulus increase with increasing
the MFD. They boost significantly with raising the MFD to about 0.5 T, then enhance
somewhat above 0.5 T. The stress relaxation of the MEC is more largely as the MFD
rises, so it will take more time to reach the equilibrium state. The enhancement in the
relaxation modulus with increasing the MFD is attributable to raising the MR effect of
the MEC [4, 5]. The increase in the shear modulus with enhancing the MFD is ascribable
to the rise in the magnetic attraction force between CIPs in the MEC. The augmentation
of the magnetic force makes CIPs closer, resulting in an increase in the MEC stiffness.
The variation in the shear stress and modulus of the MEC is related to the position
alternation tendency of CIPs under an electromagnetic field. Once an electromagnetic
field is applied to the MEC, the CIPs tend to reach the positions of minimum energy
state [4]. The movement of CIPs introduces deformations in the rubber matrix, leading
to the rise in the modulus of the MEC [5].

3 Numerical Modeling

3.1 A Fractional Derivative Viscoelastic Model for the MEC

The stress relaxation of the MEC was investigated using the four-parameter fractional
derivative Zener model with a Mittag-Leffler function kernel. The model was composed
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of an elastic spring and a fractional Maxwell element in parallel [6]. The fractional
derivative with the Mittag—Leffler function kernel is defined as [7]:

e L[ T =] |
f(ﬂ—m&/of(x) u|:_ 1_()(] )

where « is the fractional parameter with value changing between 0 and 1 [7].
The definition of one-parameter Mittag—Leffler function M, (x) is given as [8]:
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where I'(1 + an) is the gamma function with the argument (1 + an).
The constitutive equation for the four-parameter fractional derivative Zener model
in the time domain is expressed as follows:
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where Eg and E are the elastic moduli of the two springs of the model, and 7 is the
relaxation time of the fractional dashpot.

The relaxation modulus of the investigated model obtained by the application of the
Laplace transform to Eq. (3) is expressed as follows:

G(t) = Eo + ElMu[—G) ] @)

3.2 Numerical Simulation Results and Comparison to Experimental Data

The stress relaxation of the isotropic MEC was simulated numerically using the presented
model. Equation (4) was used to fit the measured relaxation modulus from the single
relaxation test. Four parameters in the vector x = (Eo, E, «, ‘L')T of the investigated
model were obtained by fitting Eq. (4) to the measured data. The least-squares fit of
the relaxation modulus to the measured one was conducted by minimizing an objective
function with the optimization parameters using the derivative-free method in Matlab.

The model parameters fitting to measured data by minimizing the objective function
were given in Tables 1, 2. It is clear from Table 1 that the elastic modulus Eg and the
fractional parameter « decreased slightly with increasing the loading rate. As Table 2
shows, the parameter Eo changed slightly with the rise of the applied constant strain.
However, the parameter E¢ boosted rapidly with raising the MFD to approximately 0.5 T
and grew slightly above 0.5 T. The enhancement in the shear modulus of the isotropic
MEC with increasing the MFD is corresponding to the magnetic-controllable stiffness
of the isotropic MEC. Besides, the fractional parameter « varied irregularly with the rise
of the MFD and the constant strain as well (Table 2).
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Table 1. The model parameters fitting to measured data at loading rates for the MEC.

Loading rate [/s] | Parameter

Eg [MPa] | E| [MPa] | « 7 [s]
0.01 0.395 9.23 0.690 | 5.67E-02
0.10 0.385 31.9 0.376 | 1.60E-06
1.00 0.381 0.34 0.366 | 2.94E-01

Table 2. The model parameters fitting to measured data for the MEC under different constant
strains and MFDs.

Strain | Parameter | MFD [T]

0 0.201 0.373 0.478 0.538 0.580
0.05 Ep [MPa] | 0.370 0.389 0.422 0.438 0.436 0.427
Ey [MPa] |0.520 0.449 0.381 0.545 1.162 4.082
o 0.306 0.341 0.384 0.346 0.284 0.239

T [s] 7.1E-02 1.9E-01 |5.6E-01 |1.3E-01 |3.6E-03 |5.0E-06
0.10 Eg [MPa] |0.355 0.380 0.408 0.415 0.420 0.419
E| [MPa] 1.378 0.430 0.447 0.513 0.544 1.852
o 0.262 0.352 0.363 0.338 0.325 0.268

T [s] 4.1E-04 1.6E-01 |1.6E-01 |1.1E-01 |9.8E-02 |2.4E-04
0.15 Ep [MPa] | 0.356 0.366 0.383 0.397 0.403 0.404
E1 [MPa] 1.264 3.628 3.783 1.156 0.888 1.229
o 0.267 0.251 0.252 0.281 0.293 0.274

T [s] 6.8E-04 5.5E-06 |4.7E-06 |2.1E-03 |7.7E-03 |1.5E-03
0.20 Ep [MPa] | 0.355 0.374 0.401 0.406 0.408 0.409
E1 [MPa] | 2.637 1.358 0.420 0.554 0.606 0.871
o 0.270 0.281 0.386 0.353 0.344 0.323

T [s] 3.9E-05 73E-04 |19E-01 |6.7E-02 |4.5E-02 |9.5E-03

The model fittings of the relaxation modulus to measured data of the isotropic MEC
in the single relaxation test at different loading rates, applied constant strains, and under
various MFDs were shown in Fig. 5. Results showed the excellent fittings of relaxation
modulus to the measured one of the isotropic MEC. In addition, the stress relaxation
stress of the isotropic MEC as a function of the time at various loading rates, constant
strains, and under different MFDs was calculated using the studied model with estimated
parameters, with results described in Fig. 6. The long-term predictions of the shear stress
of the isotropic MEC over a wide range of time using the presented model were shown
in Fig. 6. Although the stress relaxation was measured in only 1000 s, the studied model
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can calculate the stress relaxation of the isotropic MEC for a longer time (Fig. 6). The
maximal relative error between estimated and measured values within 1000 s for both
the relaxation modulus and shear stress is less than 2%. Generally, the four-parameter
fractional derivative Zener model was fitted well to experimental data for the isotropic
MEC in the single relaxation test. The investigated fractional derivative viscoelastic
model can be used for predicting the long-term stress relaxation of the isotropic MEC.
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Fig. 5. Experimental and model fitted curves of the relaxation modulus of the isotropic MEC at
various loading rates, applied constant strains, and under different MFDs.
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Fig. 6. Experimental and model fitted curves of the shear stress of the isotropic MEC at different

loading rates, applied constant strains, and under various MFDs. The inset figures are the zooms
of the first 1000 s.

4 Conclusions

Stress relaxation behavior of the isotropic MEC produced from silicone rubber and
micro-sized CIPs was investigated experimentally and numerically in this study. Effects
of loading rates, applied constant strains, and electromagnetic fields on the stress relax-
ation of the isotropic MEC were examined. Measured results indicated that the stress
relaxation of the isotropic MEC depended slightly on the loading rate, but it was strongly
dependent on the applied constant strain and the electromagnetic field. Although the
shear stress of the isotropic MEC in the relaxation period enhanced with increasing the
constant strain, the relaxation modulus reduced moderately. The shear stress and mod-
ulus of the isotropic MEC boosted rapidly with raising the MFD to 0.5 T and increased
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slightly over 0.5 T. The four-parameter fractional derivative viscoelastic Zener model
was fitted well to measured data of the isotropic MEC. The estimated shear stresses of
the isotropic MEC with long-term predictions agreed well with the measured ones. The
maximal relative error between experimental and calculated values of both shear stress
and relaxation modulus is less than 2.0%. In short, the investigated fractional derivative
viscoelastic model can apply to predict the long-term stress relaxation behavior of the
isotropic MEC.
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