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Abstract. The paper is devoted to simulation analysis of three different types of
motorcycle suspension systems - passive, idealized semi-active and active sus-
pensions. The equivalent motorcycle mathematical model is derived, in which the
leaning front and rare spring-damper units are replaced by the equivalent vertical
spring-damper units. The road roughness excitation is considered in the form of
a deterministic bump and also stochastic excitation modelled by the Shinozuka
method with a given power spectral density. The effective acceleration of the
motorcycle body centre of mass, which significantly determines the rider comfort
level, is used to compare the three different types of suspension systems. The sim-
ulation results for the stochastically uneven road show 25.4% improvement for
the semi-active suspension and 31.2% improvement for the active suspension. For
the deterministic “hat” bump the improvements are 33.2% for the semi-active sus-
pension and 61.5% for the active suspension - compared to the passive motorcycle
suspension system.
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1 Introduction

A motorcycle dynamics model consists of a rigid body which is connected to the front
and rear wheels with the front and rare suspension systems [1, 2]. The motorcycle body
consists of the chassis, rider, steering head and engine. It represents the motorcycle
sprung mass. The front and rare unsprung masses are represented by wheels and all
other masses attached to them. The suspension system of a motorcycle is designed to
meet the following two conflicting demands:

— a good level of the rider comfort as he drives along an uneven road,
— a good wheel grip on the road to maintain good tyre to road contact.

The conventional non-adjustable passive suspension systems involve passive springs
and dampers with non-variable rates. The stiffness and damping parameters are chosen
based on a compromise between the ride comfort and good tyre to road contact over a
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wide range of road and speed conditions. Their characteristics of vibration isolation are
rather limited. Low damping leads to good vibration isolation at high frequencies but
poor resonance characteristics. Higher damping leads to good resonance characteristics
but the performance at higher frequencies is poor.

The necessity of improving vibration isolation of passive suspension systems moti-
vated investigation of controlled suspension systems [3, 4], where e.g., damping char-
acteristics are controlled in closed loops. The control strategies can be divided into two
categories: active and semi-active. In the fully active suspension system, the conventional
suspension elements are replaced with electric or hydraulic actuators. The force demand
signal is typically generated in a microprocessor governed by a control law (e.g., sky-
hook or balance control). The optimum transmissibility has no resonance amplification.
Their performance is superior to any conventional passive suspension system. But they
are still costly, less reliable, having high energy consumption and possible instability.

A compromise between active and passive suspension systems are semi-active sus-
pension systems. In automotive engineering, especially magnetorheological dam-pers
attracted a lot of interest over the past decades for their quick time response and low
energy needs.

2 Modelling of a Motorcycle

The motorcycle dynamics model, Fig. 1, is composed of the the sprung mass 1 (consisting
of the motorcycle rigid body and the driver), the unsprung front mass 2 (the front wheel),
the unsprung rare mass 3 (the rare wheel), the front spring-damper modul 4 and the rare
spring-damper modul 5. Both the leaning spring-damper modu-les are placed between
the sprung and unsprung masses [1, 2].

a

Fig. 1. Motorcycle parts.

Motion of motorcycle parts is described by four coordinates z1,z2, z3,¢3, Fig. 2,
which are independent. The coordinate z; describes the vertical displacement of the
front unsprung mass and the coordinate z; describes the vertical displacement of the
rare unsprung mass. The coordinate z3 describes the vertical motion of the sprung mass
centre T3 and finally the angular coordinate ¢3 describes the pitching angular motion of
the sprung mass m3 about the sprung mass centre T3. All coordinates are measured from



146 S. Segla and S. Roy

their equilibrium positions. The coordinates u 1 and u» describe the uneven road surface.
The tyre stiffness coefficients are k3 and k4 and the equivalent coefficients of stiffness
and damping ki eq, k2,eq, D 1,eq and b 2 ¢4(corresponding to the leaning spring-damper
modules, Fig. 1) in the main suspension are given below, Egs. [1] to [4]. The motion
equations of a motorcycle with the leaning passive suspension systems are derived in the
form of sa set of the second order ordinary differential equations, which were derived
in [5].
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Fig. 2. Equivalent motorcycle model with vertical passive suspension systems.

Based on potential energy considerations (equality of potential energy of the orig-
inal leaning spring-damper module and the substitute vertical spring-damper module),
the equivalent stiffness coefficient kj ¢, in the front suspension is determined by the
following equation derived in [5]

Ki.eq = ki cos® e, (1)

where k1 is the spring stiffness coefficient of the original leaning spring-damper mod-
ule and &7 is the lean angle. Similarly based on the Rayleigh dissipative function the
equivalent damping coefficient can be derived

b1eg=bicos’e;. @)

Similarly for the rare suspension the equivalent spring and damping coefficients of
the substitute vertical spring-damper module above the rare wheel are as follows [5]

2
k2eq = ko <T> cos” &, 3)

Li\?
by =by 2L 2 4
2,eq 2 I CoS™ &2, ( )

where ¢; is the lean angle of the rare spring-damper module, L is the length of the
swinging arm and L is the distance between the point at which the swinging arm is
joined to the motorcycle body and the point at which the substitute vertical spring-damper
module is joined to the swinging arm, Fig. 3.



Simulation Analysis of a Motorcycle 147

o 1 l 1293 o3
S .
] o

/1G T3 /J
4 v s
/ /> S

/

k> seq bz’“l 4
: E {%’I kl /
| /5%,

2 /

ki » 7?7\ swinging arm

=D} — C
V22 L\ F L

< L
b 2 J
A

.

Fig. 3. Equivalent stiffness and damping coefficients of the rare suspension.

3 Semi-active Suspension System

The equations of motion of the ideal semi-active suspension, Fig. 4, have the same form
as the equations of the passive system [5], but instead of the damping coefficients of the
hydraulic dampers bj ¢q and b3 ¢q, the variable coefficients of the semi-active dampers
bsa,1,eq and bsy 2 ¢q are used

m1Z1 — bsa1,eq(23 + 1193 —21) —k1,eg(z3 + 113 —21) + k3(z1 —u1)) =0,  (5)

M7y — bsa2,eq(23 — @3 — 22) — k2,eq(z3 — bz — 22) + ka(zo —u2) =0,  (6)

m3Z3 + by 1,69(23 + 1193 — 21) + bsa2,e(23 — b3 — 22)

(7
thi,eq(z3 + l193 — 21) + k2 eq(z3 — b3 — 22) =0,

Bgs + by 1,eql1 (23 + 1193 — 21) — bsa2,eql2(23 — 93 — 22)

®)
+h1,eql1(z3 + lip3 — 21) — k2,eqla(z3 — bz —22) =0,

3.1 Sky-Hook Control of Semi-active Dampers

The idealized semi-active suspension systems allow us to determine the force intervals of
real magnetorheological dampers and their efficiency in comparison with the idealized
semi-active dampers. A conventional sky-hook control [4] is used.

The forces exerted by fictitious sky-hook dampers (imagined to be hooked in the
sky) acting at points A and B, Fig. 4, are as follows

Fay1 = bsiy,1(23 +1193) , )

Foyo = by 2(23 — b)) . (10)
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The damping forces exerted by the front and rare semi-active dampers bgy 1 eq> bsa,2,eq
are

Fsa,l,eq = bsa,l,eq(23 + ll§b3 - Zl) s (11)

Fsa,2,eq = bsa,Z,eq(Z3 - l2¢’3 - 22) . (12)

Equalities of these forces

Fsa,l,eq = Fsky,ls (13)

Fsa,2,eq = FS](}/,Q.! (14)

lead to equations determining the equivalent damping coefficients of the semi-active
dampers

bsky,1(Z3 + 11¢3)

- - — (15)
@B+ hes+z21)

bsa,l,eq =

bsky,2 (23 — 17
(3 —h¢s — )

bsa,Z,eq = (16)

Fig. 4. Equivalent motorcycle model with semi-active suspension systems.

The desired damping forces Fi,,1 eq and F, 2 eq can be exerted only if the the relative
velocities between the sprung and unsprung masses and the absolute velocities of points
A and B are of the same sign. The on-off conditions of the front semi-active damper are
as follows: if

(z3 + hig3) (z3 + higz — 21) >0, (17)
then the damper is on, otherwise is off. If
(23 — h3) (23 — bz — 22) >0, (18)

then the rare damper is on, otherwise is off.
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3.2 Active Suspension System

The equations of motion of the motorcycle with the active suspension system differ from
the equations of motion of the motorcycle with the semi-active suspension system in the
fact that instead of the semi-active dampers by 1,eq and bsa 2 eq the actuators are used.
The actuators have to exert the forces Fg,, 1 and Fy, >. However, in this case the on-off
conditions are not applied, because the actuators are able to exert the required forces in
required directions at any time, unlike the semi-active dampers.

4 Simulations with Matlab and Results

The deterministic non-normalized bump of “hat” shape is shown in Fig. 5. It takes into
account to some extent the actual tyre shape, because the road-tyre contact is in Matlab
simulation considered as point contact.

Fig. 5. Road bump of “hat” shape.

In Fig. 5 is: the circumscribed circle radius R, the bump length d, the bump height
hm. The stochastic road is represented by the sum of sine functions using the Shinozuka
method [6].

Values of parameters of the motorcycle simulation model are: m; = 15 kg, mp =
18 kg, m3 = 194 kg, Iy = 38 kg - m?, k; = 15000 N/m, ky = 24000 N/m, k3 =
180000 N/m, k4 = 180000 N/m, b1 = 710 N - s/m, b = 1171 Ns/m, /1 = 0.64 m,
bLh =07m e =27° 6 =20°, L =06m,L; =06 mv =11 m/s, R =
468 m, d = 2.68 m, h, = 0.06 m. Parameters of the stochastic road: S,(2¢9) =
22.10~% m? (asphalt-concrete road of average quality), v = 20 m/s. The sky-hook
damping coefficients are: gy, | = bgy,2 = 2200kg/s.

In Table 1 values of the motorcycle body centre of mass effective acceleration and
displacement for the ride over the deterministic ,,hat* bump and along the stochastic
road are shown.

Dependence of the centre of mass T3 vertical displacement z3 and acceleration 73 on
time for the ride over the deterministic bump and along the stochastic road for the three
different suspension systems is shown in Figs. 6 and 7.
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Table 1. The motorcycle body centre of mass T3 effective acceleration and displacement.

Suspension system Deterministic bump Stochastic road

23,0 [m/s?] Bef [m] | 23,0 [m/s?] 23,6 [m]
Passive 0.0498 0.00038 0.0725 0.0035
Semi-active 0.0332 0.00031 0.0541 0.0034
Active 0.0191 0.00023 0.0499 0.0034
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Fig. 6. The centre of mass T3 displacement z3- ,,hat* shaped bump.
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Fig. 7. The centre of mass T3 acceleration z3- stochastic road.

5 Conclusions

The simulation results presented in Abstract show substantial reduction of the value
of the motorcycle body centre of mass effective acceleration for both active and semi-
active motorcycle suspension systems and both deterministic bump and stochastic road
in comparison with the passive motorcycle suspension system. This fact is important for
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improving comfort of the motorcycle rider because the motorcycle body centre of mass
effective acceleration is a decisive factor determining his comfort level.

Based on experience with other vehicle and seat suspension systems it is possible
to expect significant improvements also in the case of using real magnetorheological
dampers in the motorcycle suspension systems. Their use will be investigated in further
research.
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