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Abstract. In this work, we address the problem of improving an auto-
matic speech recognition (ASR) system. We want to efficiently model
long-term semantic relations between words and introduce this infor-
mation through a semantic model. We propose neural network (NN)
semantic models for rescoring the N-best hypothesis list. These models
use two types of representations as part of DNN input features: static
word embeddings (from word2vec) and dynamic contextual embeddings
(from BERT). Semantic information is computed thanks to these rep-
resentations and used in the hypothesis pair comparison mode. We per-
form experiments on the publicly available dataset TED-LIUM. Clean
speech and speech mixed with real noise are experimented, according
to our industrial project context. The proposed BERT-based rescoring
approach gives a significant improvement of the word error rate (WER)
over the ASR system without rescoring semantic models under all exper-
imented conditions and with n-gram and recurrent NN language model
(Long Short-Term model, LSTM).

Keywords: Automatic speech recognition - Semantics + Embeddings -
BERT

1 Introduction

The performance of ASR is determined by the precision with which spoken
words are modeled. Using acoustic and linguistic knowledge, an ASR system
generates the best hypothesis corresponding to the recognized sentence. Our
work is performed in the context of an industrial project. Due to the constraints
of this project, we chose to study only the N-best list rescoring approaches to
improve recognition accuracy.

State of the art ASR systems only take into account acoustic (acoustic
model), lexical, and syntactic information (local n-gram language models (LM)).
It may be of interest to incorporate additional knowledge into the decoding pro-
cess to help ASR tackle not only clean conditions but also mismatched condi-
tions, noisy environments, conditions specific to a particular application, etc.
Some studies have attempted to include such information in an ASR. In [5],
recognizer score, linguistic analysis, grammar construction, semantic discrimi-
nation score are used to rescore the N-best list. [9] indicate that articulation
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can provide additional information in rescoring. The use of external knowledge
sources such as knowledge graph is proposed in [10]. The authors proposed to
utilize the DBpedia knowledge graph in form of a connected graph. An N-best
rescoring based on a Statistical Language Model or Dynamic Semantic Model is
designed in [21].

In this article, we want to introduce semantic information in the ASR sys-
tem via the N-best rescoring. Previous studies have shown that this information
can be useful for ASR rescoring. The integration of semantic frames and target
words in the recurrent neural network LM [1], the use of an in-domain LM and
a semantic parser [2], the introduction of the semantic grammars with ambigu-
ous context information [6] improve the accuracy of the transcriptions. Several
techniques including subword units, adaptive softmax, and knowledge distilla-
tion with a large-scale model to train Transformer LMs are proposed in [§].
The authors have shown that the combination of all these techniques can sig-
nificantly reduce the size of the model and improve the ASR accuracy with
N-best rescoring. [14] introduce a deep duel model composed of an LSTM-based
encoder followed by fully-connected linear layer and binary classifier. In [15],
this approach is improved by employing ensemble encoders, which have power-
ful encoding capability. [18] adapt BERT [3,23] to sentence scoring, and the left
and right representations are mixed with a bidirectional language model.

In our work, we aim to add long-range semantic information to ASR by
reevaluating the list of ASR N-best hypotheses. This research work has been
carried out in the framework of an industrial project that aimed to perform the
ASR in noisy conditions (fighter aircrafts). We are interested in two types of
experimental conditions: clean conditions, and the context of noisy test data.
These conditions are very common in real applications. We believe that some
ASR errors can be corrected by taking into account distant contextual dependen-
cies. In noisy conditions, the acoustic information is less reliable. We hope that in
noisy parts of speech, the semantic model might help to remove acoustic ambigu-
ities. The main points of the proposed rescoring approaches are: (a) rescoring the
ASR N-best list using two types of continuous semantic models applied to each
hypothesis: static word-based word2vec [12] and dynamic sentence-based BERT;
(b) using a deep NN (DNN) framework on these semantic representations; (c)
comparing hypotheses two per two; (d) combining semantic information with
the ASR scores of each hypothesis (acoustic and linguistic).

Compared to [18], where only one sentence is taken at inference and masked
word prediction is performed with BERT, we use hypothesis pairs and the sen-
tence prediction capability of BERT. Compared to our previous work [11], we
employ a more powerful model (BERT) and train a DNN network. Compared
to [14], we use an efficient transformer model (BERT) to compare hypotheses.
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2 Proposed Methodology

2.1 Introduction

For each of the hypothesized word w of the sentence to recognize, an ASR

system provides an acoustic score P,.(w) and a linguistic score P, (w). The

best sentence hypothesis is the one that maximizes the likelihood of the word
sequence:

W= Poc(w)® - P (w)? 1

argi??ﬁ H ac(W) im (W) (1)

weEh;

W is the recognized sentence (the end result); w is a hypothesized word; H is the
set of N-best hypotheses; h; is the i-th sentence hypothesis; a and (§ represent
the weights of the acoustic and the language models.

To take into account the semantic information, one powerful solution can be
to re-evaluate (rescore) the best hypotheses of the ASR system. In [11] we pro-
posed to introduce the semantic probability for each hypothesis P, (h) to take
into account the semantic context of the sentence. This was performed through
a definition of context part and possibility zones. In this rescoring approach,
P,.(h), Pyn(h), and the semantic score Psen,(h) are computed separately and
combined using specific weights «, 8 and v (for Py, (h)) for each hypothesis:

W = axg max Pac(h)® - Pon(h)” - Prem(hi)” 2)

In the current work, we propose a DNN-based rescoring models that rescore a pair
of ASR hypotheses, one at a time. We use hypothesis pairs to get a tractable size
of the DNN input vectors. Each of these pairs is represented by acoustic, linguis-
tic, and semantic information. In our current approach, semantic information is
introduced using two types of semantic representations: word2vec or BERT.

2.2 DNN-Based Rescoring Models

The main idea behind our rescoring approach is: (a) to train DNN-based rescor-
ing models with input features extracted from the ASR N-best list of training
data; (b) to apply these models to each hypothesis pair of N-best list of a sen-
tence to be recognized and recompute the hypothesis scores; (c) to select as the
recognized sentence the hypothesis with the best recomputed score.

As mentioned before, our DNN-based rescoring models rescore pairs of ASR
hypotheses. For each pair of hypotheses (h;, h;), the expected DNN output is: 1,
if WER of h; is lower than WER of h;; otherwise, 0.

The global algorithm of the N-best list rescoring is as follows. From the V-
best list of a sentence to recognize, for each hypothesis hi we want to compute
the cumulated score scoregsem (h;). To perform this, for each hypothesis pair (h;,
h;) in the N-best list of this sentence:

— We apply the DNN rescoring model and obtain the output value v; ; (between
0 and 1). A value v; ; greather than 0.5 means h; is better than h,.
— We update the scores of both hypotheses as:
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scoresem(hi) += vij;  scoresem(h;) += 1—v; (3)

After dealing with all the hypothesis pairs, for each hypothesis h;, we obtain the
cumulated score scoresem(h;) and employ it as a pseudo probability Psen, (h;),
combined with the acoustic and linguistic likelihoods according to the Eq. (2).

word2vec-Based Rescoring Approach. For this method, we define the con-
textual part and the possibility zones of the N-best list [11]. A context part
consists of the words common to all the N-best hypotheses generated by the
ASR for one sentence. We assume that this part captures the semantic informa-
tion of the topic context of the sentence. We represent the contextual part with
the average of the word2vec embedding vectors of the words of the contextual
part:

Vrcontewt = Z VwordQ'uec (w)/nbrwcontext (4)

weEcontext

where nbrweontest is the number of words in the context part, and Viordzvec(w)
corresponds to a word2vec embedding vector w of the contextual part.

The possibility zones of a hypothesis are the set of words that do not belong
to the contextual part. Possibility zones correspond to the area where we want
to find the words to be corrected. We represent the possibility zones of each
hypothesis by the average of the word2vec embedding vectors of the words of
the possibility zones:

Vhi = Z VwordQvec(w)/nbrwposs (5)

wEh;,w&context

where nbrwposs is the number of words in the possibility zones.
For a pair of hypotheses (h;, h;), the input vector for DNN network of the
proposed word2vec-based rescoring model could contain the following features:

— context part vector Viontewt;

— possibility part vector V},; for hypothesis h;;

— possibility part vector Vj,; for hypothesis h;;

— cosine distance between V.optert and Vi,

— cosine distance between Viontert and Viy;

— acoustic score of h;: P,.(h;) = Hwehi Pc(w);

— acoustic score of h;: Pye(h;) = Hwehj P,(w);
— linguistic score of h;: Py, (h;) = Hwehj P (w);
— linguistic score of h;: Py, (hj) = Hwehj Py (w).

During training, the DNN output is set to 1 (or 0) if the first (or the second)
hypothesis of the hypothesis pair achieved the lowest WER. The main advantage
of the proposed approach is that acoustic, linguistic, and semantic information
are trained together thanks to NN-based framework. Then, according to equation
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(3), we obtain the cumulated score scoregem (h;). This cumulated score is used
as Psem(h;) with an appropriate weighting factor v for combination according
to Eq. (2). The hypothesis which obtains the greatest combined score is chosen
as the recognized sentence. The proposed DNN configuration for the word2vec-
based rescoring model is presented in the left side of Fig. 1, and corresponds to
a neural network with 3 fully connected layers. Fully-connected layers are used
to process the hypothesis pair-level representations, presented previously, and a
sigmoid activation is used at the last layer to give v; ; in output. We call this
rescoring model word2vecse, .

BERT-Based Rescoring Approach. BERT is a multi-layer bidirectional
transformer encoder that achieves state-of-the-art performance for multiples nat-
ural language tasks. The pre-trained BERT model can be fine-tuned using task-
specific data [19].

vy vy
1

BERT

e ] Tt f f fTf f 1

Vhi Pac(hi) Pim(hi) [CLS] a fast car [SEP] a fist car, [SEP]
Vb Pac(hj) Pim(h;)

cosdist(Vcontext, Vi)

h; hj

cosdist(Veontext, Vhj)

Vicontex

Fig. 1. Architecture of the proposed DNN networks (inference stage): (left) word2vec-
based rescoring DNN network; (right) BERT-based rescoring DNN network.

As the cosine distance is not meaningful for BERT semantic model [24,25],
we cannot use it to compare the hypotheses, as we did with the word2vec model.
So, we only compute the semantic information at the sentence level, as described
below.

In our approach, we propose to take a pre-trained BERT model and fine-
tune it using application-specific data. Two methods can be used to fine-tune
the BERT: masked LM and next sentence prediction. We are basing our BERT
fine-tuning on a task similar to the last one. We fine-tune BERT using only
embeddings of CLS tokens (see Fig.1, right side). We enter a hypothesis pair
(hi, hj), that we want to compare, to a BERT model. The output is set to 1
(or 0) if the first (or the second) hypothesis achieved the lowest WER. For each
hypothesis h;, we obtain the cumulated score scoregsen, (h;) (see Eq. (3)) and use
it as a pseudo probability Psep,(h;). As for the word2vec-based rescoring model,
this semantic probability is combined with the acoustic and linguistic likelihoods
according to Eq. (2) with an appropriate weighting factor v (to be optimized).
In the end, the hypothesis that obtains the highest combined score is chosen as
the recognized sentence. We call this rescoring model BE RT e, -
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3 Experimental Conditions

3.1 Corpus Description

TED-LIUM corpus [4], containing recordings from TED conferences, is used.
This corpus is publicly available. Each conference is focused on a particular
subject, so the corpus is well suited to our study of exploring the semantic
information. The train, development and test partitions provided within the
corpus, are employed: 452 hours for training, 8 conferences for development, and
11 conferences for test (see Table1).

This research work was carried out as part of an industrial project. The
project concerns the recognition of speech in noisy conditions, more precisely in
a fighter aircraft. To get closer to real aircraft conditions, we add noise to the
development and test sets: noise added at 5 dB and 10 dB Signal-to-Noise Ratio
(SNR) of an F-16 from the NOISEX-92 corpus [20]. F-16 Fighting Falcon is a
single-engine multirole fighter aircraft. The noise is not added to the training part.
In addition to that, the proposed approaches are evaluated in clean conditions
(development and testing).

Table 1. The statistics of the TED-LIUM dataset.

Data Nbr. of talks | Nbr. of words | Duration | Nbr. of segments
Train 2,351 4,778,000 452h 268,000
Development 8 17,783 1h 36 507
Test 11 27,500 2h 37 1,155

3.2 Recognition System

The recognition system based on the Kaldi voice recognition toolbox [17] is
employed. TDNN (Time Delay Neural Network) [16,22] triphone acoustic mod-
els are trained on the training part (without added noise) of TED-LIUM. We
perform State-level Minimum Bayes Risk training. The lexicon and LM were
provided in the TED-LIUM distribution. The lexicon contains 150k words. We
perform recognition using the 4-grams and RNNLM (LSTM) models [11]. We
want to explore if using more powerful LM, the proposed rescoring models can
improve the ASR. In all experiments, during rescoring, the LM (4-grams or
RNNLM) is not modified. The 4-grams LM has 2 million grams. 4-grams and
RNNLM were estimated from a textual corpus of 250 million words.

As usual, we employ the development set to choose the best parameter con-
figuration and the test set to evaluate the proposed methods with this best
configuration. We compute the WER to measure the performance. It is not pos-
sible to calculate the perplexity of our models, because the proposed models only
compare two hypotheses. Therefore, in this article, we will not be providing any
results related to perplexity. According to our previous work on the semantic
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model [11], we chose to employ an N-best list of 20 hypotheses. This size of
the N-best list is reasonable to generate the pairs of hypotheses and to have a
tractable computational load during the training of rescoring models.

3.3 Rescoring Models

During DNN rescoring model training, the hypothesis pairs that get the same
WER are not used. During evaluation (with development and test sets), all
hypothesis pairs are considered. For all experiments, combination weights are:
a =1, is between 8 and 10. ~ is between 80 and 100.

word2vec-Based Rescoring Model. We train the word2vec model on a text
corpus of one billion words extracted from the OpenWebText corpus. The size of
the generated embedding vector is 300 and the embedding models 700k words.
DNN configuration for word2vec-based rescoring model is a neural network with
3 fully connected layers (see Fig. 1, left part). The dropout is 30%.

BERT-Based Rescoring Model. We download the pre-trained BERT models
provided by Google [19]. We perform the experiments using models with 4,8,
or 12 transformer layers and the size of the hidden layers is 128, 256, or 512
neurons. In the figures, we note these models as LzxHyyy. For instance, LSH256
means the BERT model with 8 transformer layers and 256 as the size of each
hidden layer. Three epochs of fine-tuning are performed with mini-batch size of
32 samples.

4 Experimental Results

4.1 Impact of Hyperparameters

In this section, we investigate the different hyperparameters of the proposed
models. As our task concerns noisy conditions, we decided to perform this study
on speech in noisy conditions. The hyperparameters are studied on the develop-
ment set of TED-LIUM and the best values were applied for the final evaluation
on the test set. We use 4-grams LM for recognition. During rescoring the LM is
not modified.

4.1.1 word2vec-Based Rescoring Model

Impact of Training Corpus Size. We utilize three different sizes of the train-
ing data: 1 million pairs of hypotheses (corresponding to 100 TED-LIUM talks
of the training set), 6.6 million pairs of hypotheses (500 TED-LIUM talks of the
training set), and 13.2 million pairs of hypotheses (1000 TED-LIUM talks of the
training set). We observe the similar performance of the word2vec-based model
for all data sizes. For lack of space, we do not give these results in the article
and will use 500 training talks.
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Impact of Different DNN Input Features. We evaluate three configura-
tions (configl, config2, config3 in Fig. 2): in configl, the DNN input contains only
acoustic scores differences, linguistic scores differences and cosine differences for
each hypothesis pair (3 features); in config2, we utilize the acoustic, linguistic
scores, and cosine distances (6 features); configd implements all input features,
presented in Sect.2.2 (906 features). Figure2 shows that config! achieves the
best performance and config3 is less efficient than configl. Then, embedding
features provide no benefit. It is possible, that the relevant acoustic and lin-
guistic data are diluted because the size of the embedding features (900) tends
to dominate the size of the acoustic and linguistic features (4). In the following
experiments, a wordZ2vec rescoring model based on 500 training talks and config!
will be used.

4.1.2 BERT-Based Rescoring Model
Acoustic and LM probabilities combination (see Eq. (2)) is not used in these
experiments. They will be used in the overall evaluation.

SNR 5 dB SNR 10 dB
33
32,5
® .
=
s 32 \\
= \
315 \
configl config2 config3 configl config2 config3

Fig. 2. ASR WER (%) on the TED-LIUM development set for different word2vec
model configurations (different DNN input features). SNR of 5 and 10 dB. 4-grams
LM, training using 100 talks.
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Fig.3. ASR WER (%) on the TED-LIUM development corpus as function of the
amount of BERT fine-tuning data. SNR of 5 dB and 10 dB, 4-grams LM, L8H128
BERT;em model.
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Fig. 4. ASR WER (%) on the TED-LIUM development corpus according to the number
of layers for the BERT model. SNR of 5 dB and 10 dB, 4-grams LM, Lx H128 BERTsem
model fine-tuned using 1000 training talks.
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Fig.5. ASR WER (%) on the TED-LIUM development corpus as function of the size
of hidden layer of BERT. SNR of 5 and 10 dB, 4-grams LM, L12Hyyy BERTsem
fine-tuned on 1000 talks.

Impact of the Training Corpus Size. Figure 3 presents the results on the
development corpus using L8H128 BERT,.,, rescoring model with different
amounts of data, i.e. pairs of N-best hypotheses, for fine-tuning. These results
show that increasing the size of the fine-tuning data has a significant effect on
the WER: more fine-tuning data is profitable to obtain an efficient BERT-based
semantic model up to 1000 talks, beyond a degradation is observed.

Impact of the Number of Hidden Layers. Figure4 shows the recognition
performances as a function of the number of layers of the BE RT.,, model. The
size of the hidden layers is 128 and the size of the fine-tuning data is 1000 talks.
Using 12 layers gives the best performance for the two SNR levels. We observe
that this parameter plays an important role.

Impact of the Hidden Layers Size. Figureb reports the importance of the
hidden layers size. We use the L12Hyyy BERT model fine-tuned on 1000 training
talks. We may observe a variation according to the size of the hidden layers. The
best performance is obtained for a size of 256.

In conclusion, we can say that for the BERT-based rescoring model, it is
important to utilize a large enough corpus for fine-tuning the model and to
choose a model with many transformer layers. The size of 256 for hidden layers,
12 layers and 1000 talks for fine-tuning seems to be a good compromise. These
values will be used in the following.
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4.2 Global Results

To further analyze the impact of proposed rescoring models, Table 2 and 3 report
the WER for the development and the test sets of TED-LIUM with noise con-
ditions of 10 and 5 dB and with clean speech. In the tables, method Random
corresponds to the random selection of the recognition result from the N-best
list, without the proposed rescoring models. Method Baseline corresponds to not
using the rescoring models (standard ASR). Method Oracle represents the max-
imum performance that can be obtained by searching in the N-best hypotheses:
we select the hypothesis which minimizes the WER for each sentence. The other
lines of the table display the performance of the proposed approaches. For all
experiments, the N-best list of 20 is used.
For the proposed rescoring models, we study 3 configurations:

— Rescoring using only the scores scoregen, (h) computed with rescoring models
as presented in Sect.2.2 (denoted Xgep, in Tables). In this case, in equation
(2)a=0,8=0,and v=1.

— Rescoring using a combination of the score scoregem,(h), and the acoustic
score P,.(h) (denoted Xgemm comb. with ac. scores in Tables). In this case,
scoresem(h) is used as a pseudo probability and multiplied to the acoustic
likelihood with a proper weighting factor « (to optimize). In this case, Py, (h)
is not used, namely, in Eq. (2) = 0.

— Rescoring using a combination of the score scoresem (h), the acoustic Py.(h),
and the linguistic score Py, (h) (Xsem comb. with ac. /ling. scores in Tables).

We present the results only for the best BERT-based rescoring model
L12H256 fine-tuned using 1000 training talks.

From Table 2, we can observe that word2vecge,, rescoring model gives a small
but significant improvement compared to the baseline system (confidence inter-
val is computed according to the matched-pairs test [7], used for deciding whether
the difference in error-rates between two algorithms tested on the same data set
is statistically significant). Unsurprisingly, the proposed BERT-based rescoring
model outperforms the word2vec-based model. It is important to note that in the
word2vec, the word embeddings are static and a word with multiple meanings is
conflated into a single representation. In the BERT model, the word embeddings
are dynamic and more powerful, because one word can have several embeddings
in the function of the context words.

Adding the acoustic score to the rescoring models (Xgenm comb. with ac.
scores in Tables) improves the performance. Indeed, the acoustic score is an
important feature and should be taken into account. On the other hand, adding
the linguistic score during rescoring gives no improvement compared to the Xgep,
model. We do not present this result in the tables. Using the linguistic and
acoustic scores in the BERT rescoring model (BERT.,, comb. with ac./4-grams
scores) brings only small improvement compared to BERTg.,, comb. with ac.
score: Google’s BERT model, trained on billions of sentences, probably captures
the linguistic structure of the language better than an n-gram LM trained on a
much smaller corpus.
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Table 2. ASR WER (%) on the TED-LIUM development and test sets, SNR of 10
and 5 dB, and no added noise. N-best hypotheses list of 20 hypotheses, 4-grams LM.
L12H256 BE RTsem model fine-tuned on 1000 training talks.

Methods/Systems SNR 5dB | SNR 10dB | No added noise
Dev | Test | Dev | Test | Dev | Test
Random system 33.5 [41.3 |16.9 1229 10.6|12.1
Baseline system 32.7 140.3 1 15.7 | 21.1 |8.7 |8.9
word2vecsem 32.1 {39.2 | 15.3 |20.6 | 8.5 |8.8
word2vecse,m comb with ac. scores 31.8 139.2 | 15.2 |20.5 | 8.5 | 8.8
word2vecsem comb.with.ac./4 grams.sc |31.5 |38.8 |15.2 |20.4 |8.5 |8.8
BERTsem 31.1 |38.7 |14.4 1 19.8 |80 8.7
BERTsen comb with ac. scores 30.6 37.9(14.2 119.4|79 |86
BERTsem comb with ac./4grams sc | 30.6 | 37.9/14.1/19.4 7.8 |8.5
Oracle 27.5 133.2 |11.2 |15.0 |5.2 |4.7

Table 3. ASR WER (%). N-best hypotheses list of 20 hypotheses. TED-LIUM devel-
opment and test sets, SNR of 10 and 5 dB, and no added noise. RNNLM (LSTM).
L12H256 BE RTsem model fine-tuned on 1000 talks.

Methods/Systems SNR 5dB |SNR 10dB | No added noise
Dev | Test | Dev | Test | Dev | Test
Random system 29.2 1384 139 20.2 |89 |10.8
Baseline system 28.2 |37.1 |12.3 |17.7 |6.6 |7.2
word2vecsem 274 36.3 112.0 (175 |6.6 |7.2
word2vecsen,m comb with ac. scores 27.3 |35.6 |12.1 175 |6.8 | 7.2
word2vecsem comb.with.ac./RNNLM sc|27.3 [35.5 /12.0 |174 |6.6 | 7.2
BERTsem 27.0 1359 |12.0 174 |71 8.1
BERTsem comb with ac. scores 26.6 [35.3|11.6 17.1 69 7.1
BERTem comb with ac./RNNLM sc 26.5|354 11.5/16.9/6.0 6.6
Oracle 23.1 |30.2 |83 121 |3.8 |3.5

For BERT-based rescoring results, all improvements are significant compared
to the baseline system. On the test set, BERT ., comb. with ac./4-grams scores
obtains an absolute improvement of 2.4% for 5 dB (37.9% versus 40.3%), 1.7%
for 10 dB (19.4% WER versus 21.1% WER), and 0.4% for clean speech (8.5%
versus 8.9%) compared to the baseline system. This corresponds to about of
6% (for 5 dB), 8% (for 10 dB), and 4% (for clean speech) of relative WER

improvement.

To better model long-range dependencies of LM, we perform the ASR exper-
iments using a more powerful RNNLM (LSTM). In this case, the RNNLM is
used. RNNLM is applied on the ASR word lattices and employed to generate the
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N-best list. Table 3 reports the results for the same set of experiments but using
RNNLM. We can observe that the proposed rescoring methods give consistent
and significant improvements, except for clean speech. In clean conditions, only
BERT e, comb. with ac./RNNLM scores give an improvement compared to the
baseline system. Finally, the best system (BERTsem comb. with ac./RNNLM
scores) on the test set gives relative improvement of about 4.6% for 5 dB (35.4%
versus 37.1%), 4.5% for 10 dB (16.9% versus 17.7%), and 8.3% for clean condi-
tions (6.6% versus 7.2%) compared to the baseline system. These improvements
are significant. We observe also, that in the case of RNNLM, for some cases,
the improvements are smaller compared to the 4-grams case. It is possible that
RNNLM may reduce the effect of semantic rescoring because RNNLM takes
better into account the long-range context dependences.

5 Conclusion

The goal of this article is to improve the ASR using a rescoring of ASR N-best
hypotheses. The main idea of the proposed approaches is to model the seman-
tic characteristics of words and their contexts. Two approaches are proposed:
word2vec-based and BERT-based rescoring models. The information, extracted
thanks to these representations, is learned using DNN-based training. Acoustic
and linguistic information is integrated too. To evaluate our methodology, the
corpus of TED-LIUM conferences is used. The best rescoring system based on
BERT, combined with acoustic and linguistic scores, brings between 4% and 8%
of relative WER, improvement compared to the baseline system. This is true
for 4-grams or RNNLMs, and evaluated in clean and noisy conditions. These
improvements are statistically significant.
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