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Chapter 6
Endophytic Fungi of Baccharis

Yumi Oki, Lucas Arantes-Garcia, Renata Maia, Michel Stórquio Belmiro, 
Isabela Maria Nascimento, Ary Correa Junior, and G. Wilson Fernandes

Abstract  Endophytic fungi are important mediators in the structure and dynamics 
of terrestrial plant communities and their relationships with associated fauna. 
Although endophytic fungi are found in all living plants, only 1% of all Baccharis 
species (Baccharis artemisioides, B. coridifolia, B. dracunculifolia, B. megapota-
mica, and B. trimera) have had their endophytic mycota studied. To date, 28 genera 
of endophytic fungi have been identified in association with species of Baccharis. 
Analysis of the enzymes and metabolites produced by this mycota indicates that 
these endophytes have numerous properties that may be related to better perfor-
mance and resistance of their Baccharis host to several stressors and natural ene-
mies. Many of these endophytes have properties that can be exploited for the 
development of beneficial applications in the fields of agronomy, pharmacology, 
and conservation, making them a particularly important group for the development 
of biotechnological products.

Keywords  Antimicrobial activity · Bioprospecting · Fungal endophyte diversity · 
Plant performance · Secondary metabolites

1  �Introduction

Endophytic fungi are a group of fungi that live inside plant tissues without causing 
harm to the host (Faeth and Fagan 2002; Hyde and Soytong 2008). They produce a 
variety of enzymes and secondary compounds, which favor nutrient cycling (Sun 
et al. 2011; Behie and Bidochka 2014), improve plant performance and resistance 
to adverse conditions such as droughts and high temperatures (Rodriguez et  al. 
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2004; Hubbard et al. 2014; Bilal et al. 2020), and minimize damage caused by her-
bivores and pathogenic microorganisms (Breen 1992, 1993, 1994; Fernandes and 
Price 1992; Hammon and Faeth 1992; Faeth and Hammon 1997; Raps and Vidal 
1998; Faeth 2002; Meister et al. 2006; Oki et al. 2008, 2021; Grunseich et al. 2020). 
These cryptic organisms have been ignored for a long time, and their importance in 
species interactions and to biodiversity has been rarely studied until recently (Oki 
et al. 2016). According to a survey of the Web of Science database, it wasn’t until 
the 1990s that scientific articles started to regularly use the term “endophytic fungi” 
(Fig. 6.1). Although the number of studies on endophytic fungal communities has 
progressively increased since then, there were still only 557 publications in the first 
decade of the twenty-first century. Approximately 75% of all the articles about 
endophytes retrieved by the survey (3043 articles published from 1945 to 2019) 
were published in the last 10 years (2279 articles between 2010 and 2019). The 
discovery of the importance of endophytes in nature has captured the attention of 
researchers and brought a wide prospective for research and applied perspectives.

Although scientific knowledge about these microorganisms is relatively recent, 
investigations have highlighted their remarkable diversity and wide distribution. 
Hundreds of species of endophytic fungi may inhabit a given host plant, with their 
richness being influenced by the phylogeny, ontogeny, and organs, among other fac-
tors, of the host species (Arnold et al. 2000; Cannon and Simmons 2002; Arnold and 
Herre 2003; Arnold and Lutzoni 2007; Banerjee 2011; Oki et al. 2016; Griffin and 
Carson 2018). The high diversity of endophytes indicates a wide variety of 

Fig. 6.1  Number of articles found in the Web of Science database (1945 to 2020) published with 
the term “endophytic fungi” per year and cumulatively
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relationships with host plants and possibly a large number of ecological functions as 
well (Caruso et al. 2020). In this chapter we focus on the diversity and distribution 
of endophytic fungi found in association with species of Baccharis, a genus of 
shrubs and herbs that occupy many different habitats and ecosystems in their native 
range in the Americas, and highlight their ecological and economic potential.

2  �Distribution and Diversity of Endophytic Fungi of Species 
of Baccharis

Despite there being 422 described species in the genus Baccharis, the associated 
endophytic fungal community is known for only 5: Baccharis artemisioides, 
B. coridifolia, B. dracunculifolia, B. megapotamica, and B. trimera (Table  6.1) 
(Heiden and Pirani 2016, see also Chap. 2 in this book). Nevertheless, 31 genera of 
endophytic fungi have already been reported from these 5 species: Alternaria, 
Aureobasidium, Acremonium, Aspergillus, Biscogniauxia, Ceratopicnidium, 
Cercospora, Chaetomium, Cladosporium, Cochliobolus, Colletotrichum, 
Coriolopsis, Cylindrocladium, Diaporthe, Epicoccum, Eutypella, Fusarium, 
Glomerella, Myrothecium, Nigrospora, Penicillium, Phoma, Phomopsis, Podospora, 
Preussia, Rhizoctonia, Talaromyces, Trichoderma, Scopulariopsis, Sporormiella, 
and Xylaria (Table 6.1). Even though none of these fungus genera were reported in 
all five Baccharis species, there are similarities among these plant species. Baccharis 
dracunculifolia and B. trimera were found to have the most similar endophytic 
fungi communities, sharing the following seven genera (Jaccard Index = 33%): 
Chaetomium, Diaporthe, Nigrospora, Phoma, Phomopsis, Preussia, and Xylaria 
(Fig. 6.2). Of the genera of endophytic fungi known for species of Baccharis, only 
24 taxa have been identified to the species level: Aureobasidium pullulans, 
Aureobasidium melanogenum, Aspergillus versicolor, Aspergillus spinulosporus, 
Ceratopicnidium baccharidicola, Cladosporium cladosporioides, Cladosporium 
halotolerans, Cladosporium endophytica, Cochliobolus lunatus, Coriolopsis rigida, 
Diaporthe phaseolorum, Epicoccum nigrum, Eutypella scoparia, Myrothecium ver-
rucaria, Myrothecium roridum, Penicillium citrinum, Preussia africana, Preussia 
pseudominima, Talaromyces muroii, Trichoderma reesei, Xylaria adscendens, 
Xylaria apiculata, and Xylaria venosula. Thus, the possibility exists for the descrip-
tion of unknown fungal species associated with Baccharis spp. and evidence of 
coevolution events.

Currently, the most studied species of Baccharis is B. dracunculifolia, with 24 
endophytic fungus genera reported in 5 published studies: Aureobasidium, 
Acremonium, Aspergillus, Biscogniauxia, Cercospora, Chaetomium, Cladosporium, 
Colletotrichum, Coriolopsis, Cylindrocladium, Diaporthe, Eutypella, Fusarium, 
Glomerella, Nigrospora, Penicillium, Phoma, Phomopsis, Preussia, Rhizoctonia, 

6  Endophytic Fungi of Baccharis

https://doi.org/10.1007/978-3-030-83511-8_2


154

Table 6.1  Taxa of endophytic fungi found among species of Baccharis.

Endophytic 
genera Endophytic taxa Host plants References

Alternaria Alternaria sp. Baccharis trimera Vieira et al. (2014)
Aureobasidium Aureobasidium 

pullulans
Baccharis 
dracunculifolia

Oki et al. (2009, 2020)

Acremonium Acremonium sp. Baccharis 
dracunculifolia

Cuzzi et al. (2012)

Acremonium sp. strain 
D5-FB

Baccharis 
dracunculifolia

Onofre and Steilmann (2012)

Aspergillus Aspergillus sp. Baccharis 
dracunculifolia

Cuzzi et al. (2012)

Aspergillus sp. strain 
D2-NC

Baccharis 
dracunculifolia

Onofre and Steilmann (2012)

Biscogniauxia Biscogniauxia sp. Baccharis 
dracunculifolia

Fernandes et al. (2018)

Ceratopicnidium Ceratopicnidium 
baccharidicola

Baccharis 
coridifolia

Rizzo et al. (1997)

Ceratopicnidium 
baccharidicola

Baccharis 
artemisioides

Rizzo et al. (1997)

Cercospora Cercospora sp. strain 
D7-FB

Baccharis 
dracunculifolia

Onofre and Steilmann (2012)

Chaetomium Chaetomium sp. Baccharis trimera Vieira et al. (2014)
Chaetomium sp. Baccharis 

dracunculifolia
Cuzzi et al. (2012)

Cladosporium Cladosporium 
cladosporioides

Baccharis 
dracunculifolia

Oki et al. (2009)

Cladosporium 
halotolerans

Baccharis 
dracunculifolia

Fernandes et al. (2018)

Cochliobolus Cochliobolus lunatus Baccharis trimera Vieira et al. (2014)
Colletotrichum Colletotrichum sp. Baccharis 

dracunculifolia
Cuzzi et al. (2012)

Colletotrichum sp. 
strain D4-FB

Baccharis 
dracunculifolia

Onofre and Steilmann (2012)

Coriolopsis Coriolopsis rigida Baccharis 
dracunculifolia

Fernandes et al. (2018)

Cylindrocladium Cylindrocladium sp. Baccharis 
dracunculifolia

Cuzzi et al. (2012)

Cylindrocladium sp. 
strain D8-FB

Baccharis 
dracunculifolia

Onofre and Steilmann (2012)

(continued)
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Table 6.1  (continued)

Endophytic 
genera Endophytic taxa Host plants References

Diaporthe Diaporthe 
phaseolorum

Baccharis trimera Vieira et al. (2014)

Diaporthe sp. Baccharis trimera Vieira et al. (2014)
Epicoccum Epicoccum nigrum Baccharis trimera Vieira et al. (2014)

Epicoccum sp. Baccharis trimera Vieira et al. (2014)
Fusarium Fusarium sp. Baccharis 

dracunculifolia
Cuzzi et al. (2012)

Fusarium sp. strain 
D3-FB

Baccharis 
dracunculifolia

Onofre and Steilmann (2012)

Glomerella Glomerella sp. Baccharis 
dracunculifolia

Cuzzi et al. (2012)

Myrothecium Myrothecium 
verrucaria

Baccharis 
coridifolia

Jarvis et al. (1987)

Myrothecium roridum Baccharis 
coridifolia

Jarvis et al. (1987)

Myrothecium roridum Baccharis 
megapotamica

Jarvis et al. (1987)

Nigrospora Nigrospora sp. Baccharis trimera Vieira et al. (2014)
Nigrospora sp. Baccharis 

dracunculifolia
Oki et al. (2009)

Nigrospora sp. Baccharis 
dracunculifolia

Cuzzi et al. (2012)

Penicillium Penicillium sp. Baccharis 
dracunculifolia

Cuzzi et al. (2012)

Penicillium sp. Baccharis 
dracunculifolia

Oki et al. (2009)

Pestalotiopsis Pestalotiopsis sp. Baccharis trimera Vieira et al. (2014)
Phoma Phoma sp. Baccharis trimera Vieira et al. (2014)
Phomopsis Phomopsis sp. Baccharis 

dracunculifolia
Oki et al. (2009)

Phomopsis sp. Baccharis trimera Vieira et al. (2014)
Phomopsis sp. Baccharis 

dracunculifolia
Cuzzi et al. (2012)

Phomopsis sp. strain 
D10-NC

Baccharis 
dracunculifolia

Onofre and Steilmann (2012)

Podospora Podospora sp. Baccharis trimera Vieira et al. (2014)

(continued)
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Talaromyces, Trichoderma, Scopulariopsis, and Xylaria. The species of endophytic 
fungi known for B. dracunculifolia are Aureobasidium pullulans, Aureobasidium 
melanogenum, Aspergillus versicolor, Aspergillus spinulosporus, Cladosporium 
cladosporioides, Cladosporium halotolerans, Cladosporium endophytica, 
Coriolopsis rigida, Diaporthe phaseolorum, Eutypella scoparia, Penicillium citri-
num, Preussia africana, Talaromyces muroii, Trichoderma reesei, Xylaria adscen-
dens, Xylaria apiculata, and Xylaria venosula (Figs. 6.3 and 6.4). Many of these 
species (e.g., A. pullulans, P. africana, and X. venosula) play important ecological 
roles such as improving their hosts’ defenses against herbivores and 
phytopathogens.

All together, these results indicate that the taxonomic diversity of endophytic 
fungi associated with species of Baccharis is enormous and likely underestimated. 
The array of functions associated with interactions between endophytic fungi and 

Table 6.1  (continued)

Endophytic 
genera Endophytic taxa Host plants References

Preussia Preussia africana Baccharis 
dracunculifolia

Oki et al. (2009); Fernandes 
et al. (2018), Oki et al. (2021)

Preussia africana Baccharis trimera Vieira et al. (2014)
Preussia 
pseudominima

Baccharis trimera Vieira et al. (2014)

Preussia sp. Baccharis trimera Vieira et al. (2014)
Preussia sp. Baccharis 

dracunculifolia
Fernandes et al. (2018)

Rhizoctonia Rhizoctonia sp. Baccharis 
dracunculifolia

Oki et al. (2009)

Trichoderma Trichoderma sp. Baccharis 
dracunculifolia

Cuzzi et al. (2012)

Trichoderma reesei Baccharis 
dracunculifolia

Onofre et al. (2014)

Scopulariopsis Scopulariopsis sp. Baccharis 
dracunculifolia

Cuzzi et al. (2012)

Sporormiella Sporormiella sp. Baccharis trimera Vieira et al. (2014)
Xylaria Xylaria sp. Baccharis 

dracunculifolia
Oki et al. (2009)

Xylaria sp. Baccharis 
dracunculifolia

Fernandes et al. (2018)

Xylaria sp. Baccharis trimera Vieira et al. (2014)
Xylaria apiculate Baccharis 

dracunculifolia
Fernandes et al. (2018)

Xylaria venosula Baccharis 
dracunculifolia

Oki et al. (2009), Fernandes 
et al. (2018), Oki et al. (2021)
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Baccharis hosts is also expected to be very large. Thus, there is a broad perspective 
for future studies to address, besides their biotechnological importance, the phylo-
genetic relationships of endophytes and hosts and the evolution and stability of 
associations across species and habitats.

3  �Leaf Age, Plant Sex, and the Endophytic 
Fungus Community

The richness of endophytic fungi found among Baccharis spp. varies according to 
plant organ (Oki et al. 2009; Jia et al. 2016) and organ age (Arnold and Herre 2003; 
Fernandes et  al. 2011; Sanchez-Azofeifa et  al. 2012; Nascimento et  al. 2015; 
Christian et al. 2019). For instance, endophytic fungus richness in mature leaves of 
B. dracunculifolia was seven times higher than that of leaves of intermediate age 
growing at high altitudes of Serra do Cipó, Brazil. No endophytic fungi were found 
in young leaves (Oki et al. 2008).

Another relevant factor that can affect the composition of endophytic mycota, 
particularly in the genus Baccharis, is host plant gender. The endophytic fungi 
found exclusively in female plants of B. dracunculifolia did not develop from 

Fig. 6.2  Diagram showing fungal genera associated and shared among Baccharis dracunculifolia, 
Baccharis trimera, Baccharis artemisioides, Baccharis coridifolia, and Baccharis megapotamica
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Fig. 6.3  Endophytic fungus genera found for Baccharis dracunculifolia (Asteraceae): (a) Xylaria 
adscendens (Xylariaceae); (b) Biscogniauxia sp. (Xylariaceae); (c) Preussia africana 
(Sporormiaceae); (d) Aureobasidium pullulans (Dothioraceae); (e) Cladosporium endophytica 
(Cladosporiaceae); (f) Phomopsis sp. (Diaporthaceae); (g) Penicillium citrinum (Trichocomaceae); 
(h) Xylaria venosula (Xylariaceae); (i) Diaporthe phaseolorum (Diaporthaceae); (j) Nigrospora 
sp. (Trichosphaeriaceae); (k) Phoma sp. (Didymellaceae); (l) Fusarium sp. (Nectriaceae); (m) 
Aureobasidium melanogenum (Dothioraceae); (n) Aspergillus versicolor (Trichocomaceae); (o) 
Acremonium sp. (Hypocreaceae)

Y. Oki et al.
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extracts from male individuals of the same species (Fernandes et  al. 2018). It is 
likely that chemical differences between female and male plants (Darwin 1877; 
Wallace and Rundel 1979; Van Etten et al. 2008) determine the endophytic species 
that are capable of co-inhabiting these plants. Generally, female plants invest less in 
growth and more in resistance against herbivory than male plants (Wallace and 

Fig. 6.4  Endophytic fungi of the family Xylariaceae found in leaves of Baccharis dracunculifolia 
(Asteraceae)

6  Endophytic Fungi of Baccharis
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Rundel 1979; Herms and Mattson 1992; Van Etten et al. 2008) (but see Chap. 4). 
Nonetheless, these questions remain to be fully addressed in this system.

4  �Untapped Potential of Endophytic Fungi: Enzymes 
and Bioactive Compounds

�Enzymes

Despite the high diversity of endophytic fungi found among species of Baccharis, 
knowledge regarding their enzymatic makeup is scarce. This knowledge gap under-
mines a better understating of the physiological relationships between endophytes 
and their hosts (Sun et al. 2011) and their potential for industrial application (Côrrea 
et al. 2014). Endophytic fungi, such as species of the genus Xylaria, have a high 
production of enzymes such as cellulases and ligninases, which can degrade impor-
tant components of plant cell walls (e.g., cellulose and lignin) (Carroll and Carroll 
1978). These enzymes could assist in the decomposition of fallen leaves and pro-
mote nutrient cycling in nature. The accumulation of endophytic fungi themselves 
in leaves as age progresses (e.g., Fernandes et  al. 2011; Sanchez-Azofeifa et  al. 
2012; Nascimento et al. 2015; Christian et al. 2019) seems to be important and in 
need of further evaluation, as well as the relevance of these fungi to key ecosystem 
functions such as decomposition.

The endophyte Aureobasidium pullulans found in B. dracunculifolia can pro-
duce lipases that belong to the class of serine hydrolases and do not need the pres-
ence of cofactors in order to act, unlike most extracellular enzymes of microbial 
origin (Nascimento 2010). The biological function of lipases is to hydrolyze triglyc-
erides to form free fatty acids, mono- and diacylglycerols and glycerol (Kwon and 
Rhee 1986; Berger and Schnelder 1992; Bornscheuer 1995; Carvalho et al. 2003). 
Currently, lipases are of great interest to food (e.g., aroma improvement, food con-
servation, reduction of saturated fat), agricultural (e.g., herbicide synthesis), energy 
(e.g., biodiesel and hydrocarbon production), pharmaceutical (e.g., digestive aid), 
and cosmetics (e.g., active ingredient in the formulation and synthesis of specific 
cosmetics) industries, among others (Höfelmann et al. 1985; Cortez et al. 2017). 
Lipases can also play an important role in plant defense since lipids and lipid metab-
olites released in plant membranes function as signal molecules in the activation of 
plant defense responses (Shah 2005).

Recent studies have also indicated that some strains of endophytic fungi, such as 
Fusarium sp. and Cercospora sp. in B. dracunculifolia, can produce phenoloxidases 
that are capable of degrading phenolic compounds such as petroleum hydrocarbons 
and industrial effluents (Onofre and Steilmann 2012). These are important findings 
for bioremediation initiatives since these contaminants can be found at ca. 35 mil-
lion metric tons per year in the oceans (Rosenberg and Ron 1996). These contami-
nants severely impact marine biodiversity over a time span of decades and even 
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centuries (Goldberg and Bertine 2000; Pinheiro et al. 2019; Magris and Giarizzo 
2020). Much of this contamination comes from oil in municipal and industrial waste 
and runoff, leaks in pipelines and storage tanks, and sewage and ballast water dis-
charge (Telli Karakoç and Ediger 2020; Pokazeev et al. 2021).

Many endophytic fungi have proven to be excellent bioremediators of heavy 
metals that can harm human health, such as arsenic. Some of these endophytes are 
resistant to arsenic and arsenate and possess the ability to transform them into vola-
tile arsenic gases (Páez-Espino et al. 2009). Aspergillus, Cladosporium, Fusarium, 
Penicillium, and Trichoderma are some of the endophytic fungus genera known for 
their bioremediation potential. They are frequently found in plants that have toler-
ance to, or the ability to bioaccumulate, heavy metals (Deng et  al. 2014). 
Coincidentally, these fungus genera are also found among species of Baccharis, 
mainly B. dracunculifolia. Baccharis dracunculifolia has been shown to have great 
phytostabilization potential for areas contaminated with arsenic (Gilberti et  al. 
2014). This phytostabilization potential is likely associated with the endophytic 
fungi in this species; however, no studies have evaluated this relationship.

�Endophytic Fungi as a Source of Bioactive Compounds

Endophytic fungi represent a promising source of natural bioactive products. 
Researchers around the world have been intrigued by the diversity of secondary 
compounds produced by endophytic fungi and by the similarity between the metab-
olites produced by endophytic fungi and their host plants (Kusari et al. 2013). This 
similarity in the production of secondary compounds may be due to several factors, 
including (1) host plant metabolism being induced by the fungus; (2) fungus metab-
olism being induced by the host plant; (3) fungus sharing specific biosynthesis path-
ways with the host plant; and (4) host plant being able to metabolize substances of 
fungal origin or vice versa (e.g., Ludwig-Müller 2015).

Among the best-known examples of bioactive compounds produced by endo-
phytic fungi is palictaxel (commercialized as Taxol) produced by Taxomyces andre-
anae from the medicinal tree Taxus brevifolia (Stierle et al. 1993). Palictaxel is one 
of the most effective chemotherapeutic compounds used in the treatment of various 
types of cancer (i.e., ovary, breast, and lung) (Stierle et  al. 1993, see Chap. 18). 
Before this discovery, the supply of this diterpenic substance was limited to the 
slow-growing barks of T. brevifolia that grow in moist soils close to lakes and rivers 
in some regions of the Pacific Northwest (Guchelaar et al. 1994). Thus, the possibil-
ity of extracting palictaxel from T. andreanae significantly reduced the production 
costs of this compound and increased its supply and availability. In addition, other 
species of endophytic fungi have also been reported to produce palictaxel in plant 
species of the genera Taxus and Podocarpus and even in Ginkgo biloba (Zhao et al. 
2010; Naik 2019). One of these endophytic fungi is Cladosporium cladosporioides 
isolated from Taxus media (Zhang et al. 2009), which, coincidentally, is also found 
in B. dracunculifolia, although there is no information on whether it produces 
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palictaxel. Future studies could attempt to propagate this fungus species from 
B. dracunculifolia and isolate its products to evaluate if the chemotherapeutic palic-
taxel is also produced by C. cladosporioides when it occurs in different host plant 
species. Such studies would generate a cascade of interesting and innovative inves-
tigations of major economic and medical relevance.

Among the endophytic fungi most frequently found among species of Baccharis, 
the genera Xylaria and Preussia deserve to be highlighted with regard to their 
metabolism. Species of Xylaria are known to produce several chemical constituents 
of the terpene class (Smith et al. 2002), xanthones (Healy et al. 2004), cyclopeptides 
(Huang et al. 2007), and xyloketals (Lin et al. 2001), among others. Species of this 
genus are found in other plant species of the family Asteraceae and are known for 
their inhibitory activity against phytopathogens such as Penicillium expansum 
(Bleicher and Bernardi 1985; Costa and Veiga 1996) and Aspergillus niger (Lock 
1962; Santos et al. 2010). Furthermore, species of the genus Preussia are known to 
produce the metabolite preussomerin A, which is active against pathogens (Chen 
et al. 2009). A variety of substances produced by Preussia spp. have been identified 
in the last 10 years, including coumarins (Gonzalez-Menendez et al. 2017), anthra-
quinones (Gonzalez-Menendez et  al. 2017), chronomes (Zhang et  al. 2012; 
Gonzalez-Menendez et al. 2017), and preussochromones (Zhang et al. 2012). Some 
preussochromones have shown activity against lung cancer cell lines (Zhang 
et al. 2012).

Unfortunately, knowledge about the metabolites produced by endophytic fungi 
of species of Baccharis is still incipient and restricted to the endophytes found in 
B. megapotamica, B. coridifolia, and B. dracunculifolia. For instance, B. megapota-
mica and B. coridifolia produce certain macrocyclic trichothecenes, which are also 
produced by their endophytic fungi Myrothecium verrucaria and Myrothecium rori-
dum (Jarvis et al. 1987, see Chaps. 14 and 15). These substances have been respon-
sible for causing the death of cattle through necrosis of their ruminal epithelium and 
some lymphoid tissues (Varaschin et al. 1998, see also Chap. 15). On the other hand, 
some of these trichothecenes have been reported as effective in the treatment of 
lymphocytic leukemia (Kupchan et al. 1976; Jarvis et al. 1987, Carvalho et al. 2016, 
see also Chap. 14).

Among the endophytic fungi found in B. dracunculifolia, A. pullulans and 
Xylaria venosula stand out for the production of phenols and triterpenes, while 
Preussia africana for fatty acids (Oki et al. 2016, 2021). Chromatographic analysis 
showed that a group of triterpenes found in extracts from A. pullulans was similar 
to those found in B. dracunculifolia.

In addition, host plant metabolism can induce endophytic fungi of different gen-
era and classes to produce similar secondary compounds (Ludwig-Müller 2015). A 
study with endophytic fungi of species of Baccharis revealed that a group of triter-
penes present in extracts of A. pullulans was similar to those found in extracts of 
X. venosula (Oki et al. 2021). This similarity in the production of secondary com-
pounds between different genera of endophytic fungi from the same plant species 
indicates a synergistic biochemical relationship between fungus species. 
Explanations for these findings include (1) endophytes sharing specific biosynthesis 
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pathways with the host plant, and (2) endophytes producing the same secondary 
compounds as the host plant (see Ludwig-Müller 2015; Stierle and Stierle 2015). 
Aureobasidium pullulans is also used in the production of aureobasidin A, a cyclic 
peptide substance that has antifungal properties (Takesako et al. 1993). This fungus 
also releases volatile organic compounds that are capable of suppressing the growth 
of phytopathogens (Don et al. 2020).

Due to its arsenal of secondary metabolites, A. pullulans has been considered an 
effective biological control agent against several phytopathogenic fungi that affect 
numerous agricultural crops, including Alternaria alternata (Don et  al. 2020), 
Botrytis cinerea (Di Francesco et  al. 2015; Don et  al. 2020; Oki et  al. 2021), 
Colletotrichum acutatum (Di Francesco et al. 2015; Oki et al. 2021), Neofusicoccum 
parvum (Rusin et al. 2019), Penicillium digitatum (Di Francesco et al. 2015; Oki 
et al. 2021), Penicillium expansum (Di Francesco et al. 2015), Penicillium italicum 
(Di Francesco et  al. 2015), and Rhizoctonia solani (Di Francesco et  al. 2020). 
Aureobasidium pullulans is also highlighted for stimulating the growth of beans and 
soybean (Di Francesco et al. 2020), which may be attributed to improving host plant 
nitrogen fixation or a greater release of hormones such as auxins, gibberellins, and 
cytokinins by A. pullulans (Ali et al. 2019). Furthermore, this fungus can improve 
plant resistance in soil with heavy metals through the release of enzymes that assist 
in reducing metal absorption and enhance the plant’s antioxidant system (Ali 
et al. 2019).

5  �Endophytic Fungi-Baccharis-Herbivore Interaction

Some endophytic mycota (i.e., A. pullulans, P. africana, and X. venosula) from 
B. dracunculifolia can produce secondary compounds that reduce the survival of 
herbivores such as the aphid Uroleucon erigeronensis (Oki et al. 2021). On the other 
hand, a study with B. dracunculifolia leaf buds indicated that herbivory can be a 
gateway for endophytic fungi through horizontal transmission (Fernandes 
et al. 2018).

Although herbivores often favor the infection of the host plant with endophytic 
fungi, this was not found to be the case for galling insects on Baccharis reticularia. 
Individuals of B. reticularia with and without galls showed no difference in endo-
phytic fungus richness (Formiga 2013). However, a higher richness of endophytic 
fungi was found in gall samples that had a higher content of nitrogen and potassium 
(Formiga 2013). Nevertheless, a relationship between endophytic fungus richness 
and nitrogen and phosphorus content was not observed. These results suggest that 
endophytes can increase the nutritional status of galled plants by improving plant 
vigor and reducing the effects of gall infestation (Formiga 2013). This mutualistic 
relationship has not been reported so far in the literature and certainly needs further 
studies.

All together, these findings suggest that although endophytic fungi are often 
imperceptible inside plants, they are important mediators in the relationships 
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between herbivores and their host plants and apparently very important among spe-
cies of the genus Baccharis.

6  �Climate Change and Endophytic Fungus Diversity

Growing concerns about the impacts that climate change will have on endophytes 
have increased research interest in this group with searches for strategies that could 
mitigate these effects. Recent studies on the endophytes of B. dracunculifolia and 
Baccharis platypoda grown under increased CO2 concentration did not find differ-
ences in mycota richness (Oki et al. 2020). On the other hand, endophytic commu-
nity composition changed by 50% when compared to individual plants developed 
under conditions of ambient CO2 (Oki et al. 2016). Thus, several species of endo-
phytic fungi that play fundamental roles in plant performance and resistance may 
disappear or be replaced by other species of unknown functional roles. These 
changes in species composition are associated with structural and chemical changes 
(Sanchez-Azofeifa et al. 2012) that may occur in plants under increased CO2 con-
centration, such as increased biomass, greater leaf thickness, and higher phenolic 
content, among other aspects (Oki et al. 2020). Despite these recent studies of endo-
phytic fungi under conditions of predicted climate change, there is still no clear 
long-term notion of the impacts that increased atmospheric CO2 concentration 
might exert on the symbiosis between endophytic fungi and their host plants.

7  �Final Considerations and Ways Forward

Despite the limited number of studies on endophytic fungus communities of species 
of Baccharis, this chapter has shown how relevant these microorganisms are to 
ecological relationships, as well as their great potential in industrial research and 
developments involving their bioactive compounds. Further investigations into the 
diversity of endophytic fungi among species of Baccharis are needed to better 
understand the phylogenetic, ecological, and metabolic relationships among them, 
as well as their prevalence under certain environmental conditions. The relationship 
between endophyte and host attributes is also of major relevance, and the Baccharis 
system represents an interesting system to be evaluated in this regard. Some of these 
aspects could be intrinsic to the host plant (e.g., genetics, sex, age, resistant/suscep-
tibility) or of the environment (e.g., seasonality, microhabitat conditions, climate 
change influence). The association between a host plant and its endophytes may be 
subject to certain genetic expressions that can vary seasonally and/or spatially 
(Faeth 2002, Mejía et al. 2014). Another relevant aspect yet to be studied in detail is 
the ability of endophytic fungi to signal one another triggering silent biosynthetic 
pathways (Scherlach and Hertweck 2009). Understanding these very interesting 
relationships and their intrinsic and extrinsic factors would certainly contribute to 
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solidifying knowledge of endophytic fungi and contribute to better exploration of 
their potential uses for industrial/pharmaceutical purposes.
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