
81© Springer Nature Switzerland AG 2021
G. W. Fernandes et al. (eds.), Baccharis, 
https://doi.org/10.1007/978-3-030-83511-8_3

Chapter 3
The Evolution of Genetic Studies on 
Baccharis

Patrícia de Abreu Moreira, Heloiza Navarro de Novaes, 
and G. Wilson Fernandes

Abstract  The genetic studies on the genus Baccharis started in 1945 and 
accompanied the development of tools for genetics investigation. First of all, the 
karyotype of some Baccharis species was determined, followed by reports on the 
chromosome number for some species. The majority of the information on the 
molecular biology of the Baccharis genus was generated to clarify the taxonomic 
identity of the taxon. In the 2000s, an intraspecific genetic study with the rare and 
endemic Baccharis concinna using randomly amplified polymorphic DNA markers 
was performed in an altitudinal gradient in Southeastern Brazil. Despite the high 
genetic variability within populations of B. concinna, the populations studied were 
very similar, and genetic variability was not related to variation in altitude. It was an 
important study that marked the population genetic investigation on the genus 
Baccharis. Then, next-generation sequencing technology was used to develop 
microsatellite markers for B. dracunculifolia. This set of microsatellite markers was 
efficient in kinship and gene flow analyses, and a low combined probability of 
genetic identity was attained when the six loci were included in the analysis. Two 
other species, B. concinna and B. aphylla, were evaluated for the transferability of 
microsatellite markers developed for B. dracunculifolia. Five microsatellite markers 
that successfully amplified fragments were obtained both in B. concinna and 
B. aphylla. Otherwise, more genetic studies on Baccharis genus are called for as the 
importance of its species in community assembly and ecosystem services is 
increasing.
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Until the mid-1960s, the genetic diversity of populations was accessed by 
morphological traits as sizes, shapes, or color patterns. These kinds of markers 
contributed to broaden our knowledge about population genetics. However, there 
are innumerous limitations to morphological traits; for instance, genetic variation 
could be overestimated because of phenotypic plasticity (Freeland 2005). Later, the 
genetic diversity was accessed by the sizes, shapes, and numbers of chromosomes, 
which was used to reconstruct the evolutionary history of Drosophila pseudoobscura 
by Sturtevant and Dobzhansky (1936). Chromosomal variation was studied between 
species and populations, but there was no consistent relationship between morpho-
logical and chromosomal variation (Rowe et al 2004). Hence, the development of 
molecular markers revolutionized this scenario, and genetic variation could be 
accessed from polymorphic proteins or DNA sequences.

A very large amount of information about different species could be performed, 
which allowed quantifying genetic diversity, population subdivision, gene flow, 
effective population size, breeding structure, inbreeding depression, natural selec-
tion, and genetic drift. All these studies are predominantly intraspecific (within a 
particular species). Nevertheless, molecular markers as DNA sequences are used in 
both systematics and phylogenetic studies which focus on the species level of clas-
sification (Rowe et  al  2004). All this genetic knowledge has become extremely 
important for the effective conservation of many species.

The studies on the genus Baccharis accompanied the development of tools for 
genetics investigation. Genetic studies of Baccharis started in 1945 when chromo-
some numbers of 28 families of angiosperms were described by Bowden (1945) and 
included Baccharis pingraea, B. genistelloides, B. genistifolia, B. halimifolia, and 
B. phyteumoides. This report contained polar views of meiotic stages and mitotic 
metaphases of different species. The same number of chromosomes was registered 
for all these species (n = 9 or 2n = 18). On the other hand, reports on the chromo-
some number for species in the genus have increased dramatically (see Table 3.1), 
mainly to better understand the systematics and phylogeny of the group. The chro-
mosome number of B. dracunculifolia (n = 9) was first described in 1970 using 
botanical materials collected in the state of Minas Gerais, Brazil (Coleman 1970). It 
was suggested that the ancestral chromosome number of the family Asteraceae is 
n = 9 (Solbrig et al. 1969; Solbrig 1977; Nesom 2000; Mota et al. 2016). While the 
majority of Baccharis species has a basic chromosome number of x  =  9, some 
exceptions were detected as in B. latifolia (Turner et  al. 1967; Powell and King 
1969; Spooner et al. 1995), B. glutinosa (Ariza-Espinar 1974), and B. salicifolia 
(Solbrig et al. 1969), all of them with n = 18 or in B. nitida where n = 25 (Powell 
and King 1969). There is a description of n = 10 for B. tricuneata (Turner et al. 
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Table 3.1  Gametic (n) and somatic (2n) chromosome numbers in Baccharis

Species n 2n References

B. acaulis (Wedd. ex R.E.Fr.) Cabrera – 18 + 1B Hellwig (1990)
B. aliena (Spreng.) Joch.Müll. (as 
Heterothalamus alienus (Spreng.) O. Kuntze)

9 – Bernardello (1986)

B. anomala DC. – 18 Ruas et al. (1989)
B. articulata (Lam.) Pers. 9 – Rozenblum et al. 

(1985)
B. boliviensis (Wedd.) Cabrera (as 
Heterothalamus boliviensis Wedd.)

9 – Rozenblum et al. 
(1985)

B. brachyphylla A.Gray 9 – Keil and Pinkava 
(1976)

9 – Spellenberg and 
Ward (1988)

B. braunii (Polak.) Standl. 9 – Anderson et al. 
(1974)

B. brevifolia DC. 9 – Coleman (1970)
9 – Solbrig et al. 

(1969)
B. breviseta DC. (as Baccharidastrum argutum 
(Less.) Cabrera

9 – Coleman (1968)

B. burchellii Baker 9 – Coleman (1970)
B. buxifolia (Lam.) Pers. (as B. revoluta Kunth) 9 – Hunziker et al. 

(1989)
B. chachapoyasensis Cuatrec. ca. 9 – Turner et al. (1967)
B. chilco Kunth 9 – Turner et al. (1967)
B. coridifolia DC. 9 – Ariza-Espinar 

(1974)
9 18 Hunziker et al. 

(1990)
B. cutervensis Hieron. (as B. spathulata Klatt) 9 – Turner et al. (1967)
B. darwinii Hook. & Arn. (as B. 
heterothalamoides Britton)

9 – Turner et al. (1979)

B. decussata (Klatt) Hieron. 9 + 3–5 
fragments

– Powell and King 
(1969)

9 + 1B – Turner et al. (1967)
B. dracunculifolia DC. 9 – Casas (1981)

9 – Coleman (1970)
B. effusa Griseb. 9 II – Wulff et al. (1996)
B. elaeoides Remy – 18 Hellwig (1990)
B. flabellata Hook. & Arn. 9II – Wulff et al. (1996)
B. flabellata Hook. & Arn. var. argentina 
(Heering) Ariza

9II – Wulff et al. (1996)

B. genistelloides (Lam.) Pers. 9 – Coleman (1968)
9 – Bowden (1945)

B. genistifolia DC. 9 – Bowden (1945)

(continued)
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Table 3.1  (continued)

Species n 2n References

B. glutinosa Pers. ca. 9 – Anderson et al. 
(1974)

B. glutinosa Pers. (as B. douglasii DC.) 9 – Keil and Pinkava 
(1976)

9 – Solbrig et al. 
(1964)

B. glutinosa Pers. (as B. pingraea DC.) 9 – Bowden (1945)
9 – Covas and Schnack 

(1946)
18 – Ariza-Espinar 

(1974)
9 – Hunziker et al. 

(1989)
9 – Turner et al. (1979)

B. gnidiifolia Kunth (as B. sternbergiana 
Steud.)

9 II – Sundberg et al. 
(1986)

B. grandicapitulata Hieron. 9 – Turner et al. (1967)
9II – Sundberg et al. 

(1986)
B. halimifolia L. 9 – Bowden (1945)

9 – Westman et al. 
(1975)

B. helichrysoides DC. 9 – Coleman (1968)
B. heterophylla Kunth 9 – Keil and Stuessy 

(1977)
B. latifolia (Ruiz & Pav.) Pers. ca. 18 – Powell and King 

(1969)
18 – Spooner et al. 

(1995)
ca. 18 – Turner et al. (1967)
– 18 Müller (2006)

B. linearifolia (Lam.) Pers. (as B. leptophylla 
DC.)

9 – Hunziker et al. 
(1989)

B. linearifolia (Lam.) Pers. (as B. rufescens 
Spreng.)

9 – Ariza-Espinar 
(1974)

B. linearifolia (Lam.) Pers. (as B. subcapitata 
Gardner)

ca. 9 Turner et al. (1967)

B. ligustrina DC. 9 – Coleman (1970)
B. linearis (Ruiz & Pav.) Pers. 9 – Jansen and Stuessy 

(1980)
9 – Hunziker et al. 

(1990)
– 18 Hellwig (1990)

B. mexicana Cuatrec. 9 – Jackson (1970)

(continued)
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Table 3.1  (continued)

Species n 2n References

B. mesoneura DC. 9 – Coleman (1970)
B. microdonta DC. – 18 Müller (2006)
B. montana DC. (as B. elaegnoides Steud. ex 
Baker)

9 – Coleman (1970)

B. multiflora Kunth 9 – Jackson (1970)
B. nitida (Ruiz & Pav.) Pers. 25 – Powell and King 

(1969)
B. nivalis (Wedd.) Sch. Bip. ex Phil. 9 – Solbrig et al. 

(1964)
B. notosergila Griseb. 9 – Hunziker et al. 

(1989)
B. oblongifolia (Ruiz & Pav.) Pers. 9 – Turner et al. (1967)
B. obovata (Ruiz & Pav.) DC. – 18 Hellwig (1990)
B. oxyodonta DC. (as B. melastomifolia Hook. 
& Arn.)

9 – Turner and Irwin 
(1960)

B. oxyodonta DC. 9 – Coleman (1968)
B. patagonica Hook. & Arn. – 18 Dollenz (1976)
B. petiolata DC. 9 – Hunziker et al. 

(1989)
B. phylicoides Kunth 9 II – Sundberg et al. 

(1986)
ca. 9 – Turner et al. (1967)

B. phyteumoides (Less.) DC. 9 – Bowden (1945)
B. pilularis DC. subsp. consanguinea (DC.) 
C.B.Wolf

9 – Raven et al. (1960)

B. pilularis DC. subsp. pilularis 9 – DeJong and 
Montgomery 
(1963)

B. plummerae A.Gray 9 – Raven et al. (1960)
B. poeppigiana DC. subsp. ocellata 
F.H. Hellwig

– 18 + 1B Hellwig (1990)

B. polifolia Griseb. 9 – Turner et al. (1979)
B. prunifolia Kunth 9 + 2B – Powell and 

Cuatrecasas (1970)
B. punctulata DC. 9 – Carr et al. (1999)

9 – Rozenblum et al. 
(1985)

9 + 4B – Rozenblum et al. 
(1985)

9 – Turner et al. (1979)
B. racemosa (Ruiz & Pav.) DC. 9 – Jansen and Stuessy 

(1980)
B. rhomboidalis Remy var. rhomboidalis – 18 Hellwig (1990)
B. rhomboidalis Remy subsp. truncata (Phil.) 
F.H. Hellwig

– 18 Hellwig (1990)

(continued)
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Species n 2n References

B. riograndensis Teodoro & J.E.Vidal 18 Heiden et al. (2006)
B. rupicola Kunth 9 – Jansen et al. (1984)
B. salicifolia (Rui & Pav.) Pers. 9 – DeJong and 

Montgomery 
(1963)

9 – Jackson (1970)
9 – Keil and Stuessy 

(1975)
9 – Keil and Stuessy 

(1977)
9 – Pinkava and Keil 

(1977)
9 – Rozenblum et al. 

(1985)
9 – Solbrig et al. 

(1964)
18 – Solbrig et al. 

(1969)
9 –  Turner and Irwin 

(1960
ca. 9 – Turner et al. (1979)
– 18 Müller (2006)

B. salicifolia Pers. (as B. lanceolata Kunth) 9 – Covas and Schnak 
(1946)

B. sarothroides A.Gray 9 – DeJong and 
Montgomery 
(1963)

9 – Keil and Pinkava 
(1976)

B. scandens (Ruiz & Pav.) Pers. (as B. alnifolia 
Meyen & Walp.)

– 18 Dillon and Turner 
(1982)

B. sergiloides A.Gray 9 – DeJong and 
Montgomery 
(1963)

B. serranoi H.Rob. – 18 H. Rob.
B. serrifolia DC. 9 + 1 fragment 

+ 2B
– Anderson et al. 

(1974)
– 18 Sundberg et al. 

(1986)
B. sordescens DC. 9 + 1B – Keil and Stuessy 

(1977)
9 – Powell and Turner 

(1963)
B. tarchonanthoides Baker 9 – Coleman (1970)

Table 3.1  (continued)

(continued)
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1967), but it is a questionable count since authors pointed that it is possible that a 
supernumerary or “B” chromosome was mistaken as a bivalent. In fact, B chromo-
some and some fragments were described in species of the genus as in B. decussata 
(Turner et  al. 1967; Powell and King 1969), B. flabellata (Wulff et  al. 1996), 
B. prunifolia (Powell and Cuatrecasas 1970, 1975), B. punctulata (Rozenblum et al. 
1985), B. serrifolia (Anderson et al. 1974), and B. thesioides (Spellenberg and Ward 
1988). However, as the genus Baccharis appears to exhibit chromosomal stability 

Species n 2n References

B. thesioides Kunth 9 + 3–4 s – Spellenberg and 
Ward (1988)

Baccharis tola Phil. subsp. sanctelicis (Phil.) 
Joch.Müll. (published as B. santelicis Phil.)

– 18 Hellwig (1990)

B. tricuneata (L. f.) Pers. (as B. magellanica 
(Lam.) Pers.)

9 – Wulff (1984)
– 18 + 1B Hellwig (1990)

B. tricuneata Pers. (as B. tricuneata (L. f.) 
Pers. var. callaenis Cuatrec.

10 – Turner et al. (1967)

B. tricuneata Pers. (as B. tricuneata (L. f.) 
Pers. var. paramorum Cuatrec.)

9 – Powell and King 
(1969)

B. trinervis (lam.) Pers. Ca. 
9 + fragments

– Anderson et al. 
(1974)

9 – Jackson (1970)
9 – Solbrig et al. 

(1969)
9 – Turner and Irwin 

(1960)
B. trinervis (Lam.) Pers. (as B. trinervis 
(Lam.) Pers. var. rhexioides (Kunth) Baker)

9 – Powell and 
Cuatrecasas (1970)

9 II – Wulff et al. (1996)
B. vulneraria Baker (as Baccharidastrum 
triplinervium (Less.) Cabrera))

9 – Coleman (1970)

B. tucumanensis Hook. & Arn. 9 II – Wulff et al. (1996)
B. ulicina Hook. & Arn. 9 – Ariza-Espinar 

(1974)
9 – Turner et al. (1979)

B. vanessae R.M.Beauch. 9 – Beauchamp (1980)
Baccharis ventanicola (Cabrera) Soria & 
Zardini (published as B. rufescens var. 
ventanicola Cabrera)

9 – Hunziker et al. 
(1989)

B. vernalis F.H.Hellw. – 18 Hellwig (1990)
B. wrightii A.Gray 9 II + 1I Powell and Powell 

(1977)
9 II + 2B Weedin and Powell 

(1978)

Adapted from Heiden et al. (2006)

Table 3.1  (continued)
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(Solbrig et  al. 1969; Solbrig 1977), molecular markers are needed to provide 
information about genetic diversity within and between populations.

The majority of the information on the molecular biology of the Baccharis genus 
was generated to clarify the taxonomic identity of this taxon. Despite being the 
fourth largest genus of the family Asteraceae and the most specious within the tribe 
Astereae (Heiden 2014), the evolutionary relationship of the genus is still in discus-
sion. Zanowiak (1991) studied the systematic and phyletic relationships within the 
subtribe Baccharidinae. This chloroplast DNA study suggests that South American 
Conyza spp. should be included in the subtribe Baccharidinae, that the Baccharidinae 
consists of some species of Baccharis (published as Heterothalamus) and 
Archibaccharis clades, while another clade includes South American Exostigma 
notebellidiastrum (published as Conyza notebellidiastrum), Baccharis, and 
Baccharidastrum. In this same study, Zanowiak (1991) verified that B. neglecta and 
B. halimifolia hybridize, with B. neglecta being the maternal parent. Some novelties 
towards a phylogenetic infrageneric classification of Baccharis were published by 
Heiden and Pirani (2016) which includes names of new taxa, new combinations, 
and names at new rank for subgenera and sections of the genus. Later, Heiden et al. 
(2019), based mostly on phylogenetic grounds, proposed that Baccharis should 
comprise 440 species classified into 7 subgenera and 47 sections.

In the 2000s, Gomes et al. (2004), for the first time, conducted an intraspecific 
genetic study in this genus. These authors investigated the genetic variability in 
Baccharis concinna using randomly amplified polymorphic DNA (RAPD) markers. 
This species is a rare, dioecious, and threatened shrub, endemic to Serra 
do Espinhaço, Southeastern Brazil. The authors studied 335 individuals belonging 
to 6 populations along an altitudinal gradient. Despite the high genetic variability 
within populations of B. concinna, the populations studied were very similar, and 
genetic variability was not related to the altitudinal gradient. The authors argued 
that their findings could be explained by the B. concinna mating system. This shrub 
is pollinated and dispersed by wind, which may promote an intense gene flow 
among the studied species patches, independent of elevation. The authors also 
emphasized the absence of a physical barrier to gene flow by pollen and seed disper-
sal among the studied patches of individuals in the landscape.

The RAPD technique was developed in the 1990s (Welsh and Mcclelland 1990; 
Williams et al. 1990); it is quick and easily generated by PCR and requires no prior 
DNA sequence information. Although RAPD markers were commonly used for 
genetic diversity in plants (e.g., Wachira et al. 1995; Iqbal et al. 1997; Ram et al. 
2008), they are subject to some limitations. Due to the dominance of the RAPD 
markers, it is not possible to distinguish between homozygotes (one copy of allele) 
and heterozygotes (two copies of allele) individuals. Furthermore, the RAPD mark-
ers do not allow the investigation of direct gene flow using paternity analysis. In 
addition, RAPD markers are of limited reproducibility because the segments of 
DNA are amplified by PCR using arbitrary primers that copy genome regions 
according to the annealing temperature of user selection. Nowadays, the use of 
other molecular markers is needed to investigate the genetic diversity of plant spe-
cies with confidence.
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Alternatively, the microsatellite markers, also known as simple sequence repeats 
(SSRs) and short tandem repeats (STR) (Jacob et al. 1991; Edwards et al. 1991), 
have been used in population and conservation genetics studies (Guichoux et  al. 
2011). The microsatellite markers are repeating motifs in tandem that are found at 
high frequency in most taxa genomes and exhibit high levels of polymorphism due 
to the high mutation rate that make them more informative than other molecular 
markers (i.e., single nucleotide polymorphism  – SNP) (Bhargava and Fuentes 
2010). The microsatellite markers are relatively uniformly distributed in the 
genomes of species, and due to their co-dominance, the distinction between homo-
zygote and heterozygote individuals is possible. Traditionally, microsatellite devel-
opment was slow, costly, and labor-intensive and required the construction of 
genomic libraries using recombinant DNA enriched for a few targeted SSR motifs. 
The repeating motifs can be mono-, di-, tri-, tetra-, penta-, and hexanucleotide 
repeats (Litt and Luty 1989; Zane et al. 2002).

Dinucleotide microsatellite repeats are commonly produced by the genomic 
library technique. However, dinucleotide repeats are prone to polymerase slippage 
during the PCR amplification (slipped-strand mispairing) and suffer from stutter 
bands (PCR products from the same fragment that are shorter by one or a few 
repeats) (Chambers and MacAvoy 2000). Unfortunately, this feature of dinucleotide 
repeats may lead to genotype scoring errors (Clarke et al. 2001; McDowell et al. 
2002) making allele definition difficult (Levinson and Gutman 1987; Meldgaard 
and Morling 1997), especially for heterozygotes with adjacent alleles (Guichoux 
et al. 2011). Besides that, tri-, tetra-, and pentanucleotide loci perform better than 
dinucleotides because they are less prone to enzyme slippage (Edwards et al. 1991; 
Acharige et al. 2012).

The conservation of the sequence in the primer sites flanking the microsatellite 
loci and the stability of those sequences during evolution (Dayanandan et al. 1997; 
Ciampi et al. 2008; Feres et al. 2009) allows the use of SSR markers developed from 
one species to another. The transfer of polymorphic markers in plants is mainly suc-
cessful within genera, and it has been successfully applied to the genetic analysis of 
tropical species (Zucchi et al. 2002; Cota et al. 2012; Moreira et al. 2012). Thus, in 
the last two decades, microsatellite markers have been used to assess gene flow at 
the population level and recent demographic events and aided in phylogenetic infer-
ences (Braga et al. 2007; Ciampi et al. 2008; Moreira et al. 2008; Cruz et al. 2012; 
Muñoz-Pajares et al. 2017; Larranaga et al. 2017; Morris and Shaw 2018).

Despite the great number of species in the genus Baccharis, there are microsatellite 
markers developed for B. dracunculifolia only (Belini et  al. 2016). A set of 17 
markers was developed for B. dracunculifolia using a genomic microsatellite library 
(Belini et al. 2016), but out of 17, 12 are dinucleotide microsatellite that implies 
genotype scoring errors detailed above. Besides, six of them were monomorphic for 
three B. dracunculifolia populations (N = 315 individuals), which reinforced the 
need to advance in the development of new microsatellite markers for this species.

3  The Evolution of Genetic Studies on Baccharis
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1  �Development of Microsatellite Markers for Baccharis 
dracunculifolia Using NGS Technology

A good strategy to develop microsatellite markers with better performance is using 
next-generation sequencing (NGS) technology (Zalapa et al. 2012; Ambreen et al. 
2015; Bonatelli et  al. 2015; Hodel et  al. 2016). The NGS allows the rapid and 
efficient development of microsatellite markers for non-model organisms for 
ecological and evolutionary studies. Moreover, the advent of NGS provided a 
cheaper and faster microsatellite development (Guichoux et al. 2011). We followed 
this approach to develop microsatellite markers for B. dracunculifolia, as 
described next.

A genomic library was built from 100 μg of one individual of B. dracunculifolia, 
in which DNA was extracted from leaves, through paired-end strategy that was 
sequenced using MiSeq® platform (Illumina©, San Diego, CA) to produce paired-
end 250 base reads. A total of 21.4 million reads were obtained, and we used the 
Perl script PAL_FINDER_v0.02.04 (see Castoe et  al. 2012) to identify 11,296 
potentially amplifiable locus (PAL) (Table 3.2). We extracted reads that contained 
perfect dinucleotide, trinucleotide, tetranucleotide, pentanucleotide, and hexanucle-
otide tandem SSRs, totaling 7,277 PALs.

The SSR repeat motifs consisted of 24.08% dinucleotide, 58.55% trinucleotide, 
6.95% tetranucleotide, 5.35% pentanucleotide, and 5.04% hexanucleotide repeat 
units (Fig.  3.1a). The AT/TA motif repeats were the most abundant dinucleotide 
SSR, accounting for 76.32% of all dinucleotide repeats (Fig. 3.1b). The trinucleo-
tide AAT/TAA motif repeats were the most abundant type, accounting for 27.20% 
of all trinucleotide repeat motifs, while ATA/TAT and ATT/TAA repeats accounted 
for 17.10% and 14.90%, respectively (Fig. 3.1c).

Then, a manual filtering step was performed to select exclusively SSR loci with 
long and perfect repeats motifs since they tended to be more polymorphic (Zalapa 
et al. 2012). Thus, we chose tri-, tetra-, penta-, or hexanucleotide repeats present in 
long reads, larger than 274 bp, and obtained 1356 microsatellite loci candidates for 
microsatellite markers. To ensure that SSR loci chosen for B. dracunculifolia could 

Table 3.2  Simple sequence repeat types in Baccharis dracunculifolia contigs sequences

Motif length Number of SSR Frequency (%)

Mononucleotide 523 4.6
Dinucleotide 1753 15.5
Trinucleotide 4261 37.7
Tetranucleotide 506 4.5
Pentanucleotide 390 3.5
Hexanucleotide 367 3.2
Compound 3240 28.7
Broken 256 2.3
Total 11,296

P. de Abreu Moreira et al.
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follow as much as possible the stepwise mutation model used in coalescent-based 
methods to infer demographic events as proposed by Estoup et  al. (2001), we 
selected just perfect motifs. Thus, 36 primer pairs flanking the SSR loci were 
designed using Primer3 software (Untergasser et al. 2012). Following, a set of 17 
perfect microsatellite markers were chosen for amplification screening using 15 
B. dracunculifolia individuals from the rupestrian grassland vegetation in Serra do 
Cipó, Brazil (Fig. 3.2). The PCR products were viewed on a polyacrylamide gel 
electrophoresis (PAGE) 6% and stained with silver nitrate (Sanguinetti et al. 1994).

A total of 12 microsatellite loci (Bdr6, Bdr7, Bdr9, Bdr11, Bdr13, Bdr20, Bdr21, 
Bdr22, Bdr25, Bdr26, Bdr31, Bdr34) produced clear amplicons with expected size 
in the acrylamide gel (Fig. 3.3). Then, we designed all these 12 primer pairs, and the 
forward primers were marked with 4 dyes: VIC®, 6-FAM™, PET®, and NED™.

To assess the polymorphism and population genetic parameters with these 
microsatellite markers, we genotyped 60 individuals of Baccharis dracunculifolia 
from the Serra do Cipó region: 20 individuals between 760 and 839 m, 20 between 

Fig. 3.1  Characteristics of SSR motifs identified in Baccharis dracunculifolia using NGS 
sequencing. (a) Frequency of di-, tri-, penta-, tetra-, and hexanucleotide SSR motif repeats. (b) 
Frequency of different dinucleotide SSR motifs. (c) Frequency of different trinucleotide SSR motifs
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Fig. 3.2  Sites where individuals of Baccharis dracunculifolia were sampled in the rupestrian 
grassland vegetation in Serra do Cipó, Brazil

Fig. 3.3  An acrylamide gel stained with silver nitrate to verify polymorphism in Bdr6 microsatellite 
marker developed for Baccharis dracunculifolia before labeling them with fluorophores. The 
numbers above correspond to B. dracunculifolia individuals

P. de Abreu Moreira et al.
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1026 and 1040 m, and 20 from 1348 to 1356 m altitudes (Fig. 3.2). The DNA was 
extracted from leaves using CTAB 2% protocol (Doyle and Doyle 1990). DNA 
purity and concentration were checked using NanoDrop 2000 Spectrophotometer 
(Thermo Fisher Scientific, Waltham, Massachusetts, USA).

All B. dracunculifolia individuals were genotyped with six microsatellite loci 
(Bdr6, Bdr7, Bdr22, Bdr25, Bdr26, Bdr31). PCR amplifications were performed in 
a 13 μL volume containing 10.0 μM of each primer, 1.5 μL of 5X special IVB PCR 
buffer, 1 unit of Taq DNA polymerase (Phoneutria, BR), 0.25 mM of each dNTP, 
0.215–2.15 mM of MgCl2 (according to each primer – Table 3.3), and 10.0 ng of 
template DNA.  DNA amplification was accomplished in a PCR system (Veriti™ 
96-Well Thermal Cycler; Applied Biosystems, California, USA) under the follow-
ing conditions: 94 °C for 5 min (one cycle); 94 °C for 1 min, 52–62 °C for 1 min 
(according to each primer – Table 3.3); 72 °C for 1 min (35 cycles); and 72 °C for 
50 min. The PCR products were electrophoresed on an ABI Prism 3730 automated 
DNA sequencer (Fig. 3.4) (Applied Biosystems, California, USA) and were sized 
by comparison to a GeneScan 500 LIZ dye Size Standard (Applied Biosystems, 

Table 3.3  Characterization of 12 polymorphic microsatellite markers developed in Baccharis 
dracunculifolia

Locus Primer sequence (5′–3′)
Repeat 
motif

Expected allele 
size (bp)

Ta 
(°C) [MgCl2]

Bdr6a F: ACAGGCGGGAATACTTACCA
R: CCCTAATGAAACCAGGACCA

(AATT)6 231 60 2.15 mM

Bdr7a F: GAGAAGGGGGAGAGGCTTTA
R: CCCATTTTAAGGCTGTTTGA

(AGAA)6 245 52 2.15 mM

Bdr9 F:GGAGCCGAAAGTGAAAAACA
R: TGTTCAGCGGGTGTTGTAAA

(TGA)7 272 52 2.15 mM

Bdr11 F: TCCTTCATCTTGTTGCTCCA
R: TGTCCGCCATTTTCTTCTCT

(GGAT)6 213 60 2.15 mM

Bdr13 F: GATGGTGGTTCGGGTAAGAA
R: CGCCATTGAAATTGTTGTTG

(TATC)6 200 62 0.43 mM

Bdr20 F: CCCAAAGAAATGGATGAAGC
R: TGGAATGGAGTTGTGTGTTGA

(TCTT)6 195 60 2.15 mM

Bdr21 F: TGCCACCATCTCTCTCTCTCT
R: AATTAGCACCCACGCCATT

(TTTA)6 197 56 0.86 mM

Bdr22a F: 
CCAATTTGAAACGACATGACTC
R: CGGCTACGTCAACGACTATG

(ATTT)6 157 58 0.43 mM

Bdr25a F: GGAGCCGAAAGTGAAAAACA
R: TGTTCAGCGGGTGTTGTAAA

(TGA)7 272 52 2.15 mM

Bdr26a F: AGCTGTTGTTGTGCCTGAGA
R: GGATCGTCATCTCGTGTCCT

(ATG)8 171 60 0.215 mM

Bdr31a F: CCTGCATATTGAAAGCTCGTC
R: GCTTGAATGACCCACGAAC

(GCTCG)5 246 60 2.15 mM

Bdr34 F: CCGAGGCCAAATGAAATCT
R: CTTGTCGAATGCCGAAAAAT

(TATTT)7 221 52 2.15 mM

aMicrosatellite markers used to genotype a Baccharis dracunculifolia population
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California, USA). Fluorescent PCR products were automatically sized using 
Geneious 10.2.3 (Kearse et al. 2012).

The number of alleles (A) ranged from 2 to 8 per locus, and the average number 
of alleles in this population was 5.33 (Table 3.4). Despite the use of just 6 microsat-
ellite markers, we found higher allelic richness than Belini et al. (2016) using 11 
microsatellite markers based on 315 samples from 3 populations. Besides, Belini 
et al. (2016) developed six other microsatellite markers which were monomorphic 
in all these individuals. All these monomorphic markers were dinucleotide repeats, 
and the polymorphic markers were composed of six dinucleotide and five com-
pound markers. Also, these authors used the traditional genomic microsatellite 

Fig. 3.4  Microsatellite profile of Bdr31 marker developed for Baccharis dracunculifolia detecting 
different heterozygote peaks
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library to develop microsatellite markers. This result reinforces the better outcomes 
when using NGS to identify microsatellites that could enable the selection of tri-, 
tetra-, or pentanucleotide motif repeats to avoid “stutter” bands and genotype scor-
ing errors because of dinucleotide repeat. All microsatellite markers developed by 
us have tri- or more motif repeats, and all of them are perfect microsatellite markers, 
which are considered more polymorphic. These characteristics highlight the poten-
tial of our markers.

The observed heterozygosity (Ho) ranged from 0.231 to 0.789 per locus, and the 
average was 0.461. The expected heterozygosity (He) ranged from 0.408 to 0.807 
per locus, and the average was 0.603. For most loci (except Bdr25), the observed 
heterozygosity was lower than expected under the Hardy-Weinberg equilibrium 
(HWE), with fixation indexes (Fis) significantly different from zero (Table  3.4). 
These HWE deviations may be the presence of null alleles or due to the low number 
of analyzed individuals, which must be insufficient to reveal all possible genotypic 
combinations (López-Márquez et al. 2016), hence leading to a possible underesti-
mation of allele frequencies and heterozygosity (McInerney et al. 2011). In addi-
tion, the observed heterozygosity was lower than expected under HWE which may 
be due to excess homozygotes since all evaluated individuals belong to only one 
population and inbreeding can occur in this population.

The probability of excluding two individuals as related when they are not was 
74.3% with the Bdr6 locus. However, the combined probability of paternity exclu-
sion increased to 99.5% when the six loci were included in the analysis (QC = 0.995 – 
Table 3.4), indicating that this set of microsatellite markers is efficient in kinship 
and gene flow analyses. The probability of genetic identity (I) ranged from 0.187 to 
0.934 per locus (Table 3.3), and a low combined probability of genetic identity (IC) 
was attained when the six loci were included in the analysis (IC = 5.1 × 10−05 – 
Table 3.3). Although some loci presented a significant excess of homozygotes, the 
higher combined probability of paternity exclusion and lower combined probability 
of genetic identity show that this battery of microsatellite markers is suitable for 
population genetic analyses.

Table 3.4  Characterization of 6 microsatellite loci based on a sample of 60 adult individuals of 
Baccharis dracunculifolia from Serra do Cipó, Brazil

Locus Alleles range (bp) A Ho He Fis Q I

Bdr6 131–234 8 0.231 0.808 0.714*** 0.743 0.061
Bdr7 225–253 8 0.545 0.594 0.082*** 0.743 0.187
Bdr22 152–168 5 0.333 0.605 0.449*** 0.595 0.210
Bdr25 270–273 2 0.286 0.408 0.300ns 0.187 0.433
Bdr26 164–170 3 0.789 0.547 −0.443* 0.370 0.270
Bdr31 225–249 6 0.583 0.659 0.115** 0.659 0.178
Over all loci 194–224 5.33 0.461 0.603 0.202 QC = 0.995 IC = 5.1 × 10−05

A number of alleles, He expected heterozygosity, Ho observed heterozygosity, Fis fixation index, 
Q probability of paternity exclusion, QC combined probability of paternity exclusion, I probability 
of genetic identity, IC combined probability of genetic identity
*Loci deviating from HWE equilibrium after Bonferroni corrections (values followed by ns did 
not statistically differ from zero, *p < 0.05, **p < 0.01, ***p < 0.001)
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2  �Cross-Amplification in Baccharis

We sampled other two species, B. concinna and B. aphylla, to evaluate the 
transferability of microsatellite markers developed for B. dracunculifolia. All of 
these three species occur in sympatry in the rupestrian grasslands of Serra do Cipó. 
We collected leaves from eight individuals of B. concinna and nine individuals of 
B. aphylla and extracted their DNA using the CTAB 2% protocol (Doyle and Doyle 
1990). DNA purity and concentration were checked using NanoDrop 2000 
Spectrophotometer (Thermo Fisher Scientific, Waltham, Massachusetts, USA).

The cross-amplification analysis was realized with the six microsatellite markers 
characterized in B. dracunculifolia (see Table 3.3) under the same PCR conditions 
used to amplify B. dracunculifolia. The PCR fragments were viewed on a 6% poly-
acrylamide gel electrophoresis (PAGE) stained with silver nitrate (Sanguinetti et al. 
1994). Five microsatellite markers that successfully amplified fragments were 
obtained both in B. concinna (Bdr6, Bdr7, Bdr25, Bdr26, Bdr31) (Fig. 3.5a) and in 
B. aphylla (Bdr6, Bdr7, Bdr22, Bdr25, Bdr31) (Fig. 3.5b).

Modifications of the tested PCR conditions (mainly annealing temperature, DNA 
and MgCl2 concentration) may have increased this preliminary success of cross-
species amplification in Baccharis. In addition, other microsatellites developed for 
B. dracunculifolia, but not yet characterized for this species, can be used in future 
cross-amplification in this genus. These microsatellite markers must provide new 
information about the population genetic structure of B. dracunculifolia and related 
species and may help elucidate more details on the evolutionary relationships in this 
genus. Besides, this new molecular tool may help in the management and conserva-
tion of B. dracunculifolia as well as other species in the genus. We argue that urgent 
genetic studies on the genus Baccharis are called for as the importance of its species 
in community assembly, ecosystem services, and potential invisibility of disturbed 
communities is increasing in the recent decade.

Fig. 3.5  Microsatellite profile of microsatellite markers developed for Baccharis dracunculifolia 
amplified in congeneric species, (a) Bdr6 profile in Baccharis concinna, PCR fragments were 
detected in individuals 1–5, (b) Bdr31 profile in Baccharis aphylla, PCR fragments were detected 
in individuals 3, 6, 7, and 9
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