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Chapter 13
Baccharis Terpenoid Compounds

Sérgio Ricardo Ambrósio, Mário Ferreira Conceição Santos, 
Larissa Costa Oliveira, Ana Lúcia Bassi, Jairo Kenupp Bastos, 
and Rodrigo Cassio Sola Veneziani

Abstract Baccharis is an important genus of the Asteraceae family comprising 
more than 440 species, which are used in folk medicine for displaying important 
biological activities, such as analgesic, anti-inflammatory, antimicrobial, insect 
antifeedant, and antiparasitic, among others. There are several classes of metabo-
lites produced by Baccharis, from which terpenoid stands out. The main volatile 
terpenes found in forty Baccharis species are reported in this chapter, pointing out 
B. dracunculifolia, the botanical source of green propolis, that contains (E)-nerolidol 
and spathulenol as major compounds, among others, giving the characteristic smell 
of green propolis. The combination of gas chromatography coupled with mass spec-
trometry is a powerful tool for the analyses of essential oils combined with the use 
of the Kovats index to determine the retention indexes using a homologous series of 
aliphatic hydrocarbons. Regarding diterpenes in Baccharis species, three main car-
bon skeleton types, kaurane, labdane, and neo-clerodane, have been reported. Many 
of these diterpenes display antimicrobial, antiparasitic, anti-inflammatory, analge-
sic, and cytotoxic activities, but the feeding-deterrent potential against insects dis-
played by neo-clerodane type-diterpenes stands out. In the final part, it is mentioned 
the triterpene and steroids, which are also found in this genus, and play important 
role in the reported biological activities of Baccharis species, as well as the occur-
rence of baccharinoids, a particular type of macrocyclic trichothecenes, which are 
associated with cattle poisoning in South America fed with B. megapotamica, but 
also display antiviral, anticancer, antimalarial, and antifungal activities.
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1  General Aspects of Terpenes

Terpenoids are a large class of metabolites that can be subdivided according to the 
number of connected isoprenes (5C) units. Biosynthetically, such units are mostly 
bonded in a “head-to-tail” sequence in order to furnish the different types of ter-
penes. The dimethylallyl diphosphate (DMAPP) binds with an isopentenyl diphos-
phate (IPP) unit to form the 10C unit precursor of monoterpenes (GPP; geranyl 
diphosphate) [1] (Fig.  13.1). A GPP unit can be subsequently condensed with 
another IPP group to give farnesyl diphosphate (FPP), the precursor of sesquiter-
penes. The addition of another IPP to FPP can furnish the 20C precursor of diter-
penes  – a geranylgeranyl diphosphate (GGPP) molecule. All these reactions are 
catalyzed by their respective trans-prenyl transferases. Alternatively, the junction of 
two FPP and two GGPP groups in a “head-to-head” binding can furnish a 30C squa-
lene unit, and a 40C tetraterpene unit, which are the precursors of steroids/triter-
penes and carotenoids, respectively (Veneziani et al. 2017; Furtado et al. 2017).

In this chapter, the main types of terpenoids found in Baccharis species are 
reported. Additionally, these compounds are discussed regarding their biological 
perspectives, focusing on their ecological, pharmacological, and toxicological 
reported data. Details on the chemical structures of some terpenes and their features 
are presented, as well.

2  Baccharis Essential Oils

Essential oils (EOs; or volatile oils) can be defined as mixtures of volatile and lipo-
philic, often odoriferous, substances produced by aromatic plants (Furtado et  al. 
2017). They are associated with a series of important ecological purposes, like 
molecular signaling among plants and pollinizers, as chemical defensives against 

Fig. 13.1 Precursor units of different terpenoids, formed according to the number of isoprene units
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predators (insects and other animals), as growth inhibitors of plants, and also as an 
antimicrobial against fungi or bacteria (Campos et al. 2016; Furtado et al. 2017). 
Also, these oils are obtained through steam distillation and are utilized in the manu-
facture of various products such as cosmetics, household cleaning products, air 
fresheners, and hygiene products, as well as in aromatherapy and in some parame-
dicinal practices due to their characteristic odor and flavor (Xavier et  al. 2013; 
Campos et al. 2016).

Chemically, EOs are characterized by the presence of phenylpropanoids and 
relatively low molecular weight terpenoids like monoterpenes and sesquiterpenes. 
Monoterpenes (10C) present a great variety of structures, such as acyclic chains, 
monocyclic or aromatic derivatives, and even rigid bicyclic rings (Sarah et al. 2014; 
Furtado et al. 2017). Sesquiterpenes (15C) are less volatile than monoterpenes, and 
they can be found in the composition of many essential oils, including commercial 
ones (Campos et al. 2016; Veneziani et al. 2017) (Fig. 13.2).

The combination of gas chromatography coupled with mass spectrometry (GC- 
MS) is a powerful tool to analyze EOs in a fast, reliable, and simple way. The use of 
long capillary columns (up to 60 m) allows the separation of very complex mixtures 
of volatile compounds (Furtado et al. 2017). Also, this technique presents another 
important advantage when compared with other methods like thin layer and liquid 
chromatography, since the use of MS detection allows the identification of the com-
ponents without the need of analytical standards. This is possible due to (Veneziani 
et al. 2017) the use of Kovats index as a more accurate form to determine the reten-
tion indexes using a homologous series of aliphatic hydrocarbons and (Furtado et al. 
2017) the comparison between the mass spectra obtained for each compound and 
with those present in computational spectral databases (Shibamoto 1987; Furtado 
et al. 2017; Adams 2017).
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Fig. 13.2 Examples of monoterpenes (1-citronellal from Cymbopogon citratus “lemongrass”, 2- 
menthol from Mentha piperita “peppermint,” 3- thymol from Thymus vulgaris “Thyme,” and 4- 
camphor from Rosmarinus officinalis “Rosemary”) and sesquiterpenes from Copaifera sp. 
“Copaíba” oilresins (5- β-bisabolene, 6- trans-β-caryophyllene, 7- α-humulene, and 
8- α-copaene)
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Due to the above-mentioned features, GC-MS is broadly used to determine the 
qualitative and quantitative composition of essential oils of many species of aro-
matic plants, including the Bachharis genus. In this sense, it is possible to find in the 
literature a great number of studies that present the composition of many EOs of 
Baccharis species. However, for the purposes of this chapter, the focus will be kept 
on the terpenoids content of such products (Zunino et al. 1998; Albuquerque et al. 
2004; Xavier et al. 2013). Baccharis species that had their EOs main monoterpenes 
and sesquiterpenes analyzed using GC-MS and their respective references are dis-
played in Table 13.1, as well as their chemical structures in Figs. 13.3a and 13.3b.

Table 13.1 Baccharis essential oils and their main terpenoids (mono and sesquiterpenes)

Specie Compounds References

B. anomala Alpha-acorenol, spathulenol, caryophyllene oxide, 
limonene, alpha-thujene, alpha-pinene, sabinene, 
beta-pinene, myrcene, p-cymene, (E)-beta- 
ocimene, gamma-terpinene, alpha-cadinol, and 
beta-selinene

Budel et al. (2012), 
Xavier et al. (2013), and 
Trombin-Souza et al. 
(2017)

B. articulata Spathulenol, palustrol, beta-pinene, beta- 
caryophyllene, caryophyllene oxide, (E)-nerolidol, 
and bicyclogermacrene

Zunino et al. (1998), 
Zunino et al. (2004), 
Florao et al. (2012), and 
Tischer et al. (2017)

B. axillaris Limonene, alpha-thujene, alpha-pinene, sabinene, 
beta-pinene, myrcene, p-cymene, (E)-beta- 
ocimene, gamma-terpinene, spathulenol, and 
alpha-cadinol

Trombin-Souza et al. 
(2017)

B. calvescens Alpha-thujene, alpha-pinene, sabinene, beta- 
pinene, myrcene, p-cymene, limonene, (E)-beta- 
ocimene, gamma-terpinene, spathulenol, and 
alpha-cadinol

Trombin-Souza et al. 
(2017)

B. caprariaefolia Beta-caryophyllene, germacrene D, alpha-selinene, 
and spathulenol

Besten et al. (2012)

B. cordobensis Trans-nerolidol, tau-cadinol, and cubenol Zunino et al. (2000)
B. coridifolia Isocaryophyllene, beta-caryophyllene, 

caryophyllene oxide, beta-selinene, spathulenol, 
viridiflorol, carotol, and alpha-bisabolol

Bailac et al. (2001), and 
Besten et al. (2012)

B. darwinii Limonene, thymol, and 4-terpineol Kurdelas et al. (2012)
B. 
dracunculifolia

Beta-caryophyllene, beta-humulene, germacrene 
D, beta-guaiene, delta-cadinene, (E)-nerolidol, 
spathulenol, limonene, bicyclogermacrene, 
beta-elemene, and mustakone

Fabiane et al. (2008), 
Lago et al. (2008), 
Parreira et al. (2010), 
Besten et al. (2012), 
Florao et al. (2012), 
Lage et al. (2015), and 
Salazar et al. (2018)

B. elaeagnoides Viridiflorol, spathulenol, beta-caryophyllene, and 
germacrene D

Sayuri et al. (2010)

(continued)
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Table 13.1 (continued)

Specie Compounds References

B. elaeoides Gamma-cadinene, limonene, tau-cadinol, 
alpha-cadinol, beta-pinene, beta-patchoulene, 
alpha-muurolene, alpha-pinene, alpha-calacorene, 
gamma-muurolene, alpha-thujene, alpha- 
cubebene, and terpinen-4-ol

Simonsen et al. (2009)

B. 
gaudichaudiana

Spathulenol Florao et al. (2012)

B. Genistelloides Palustrol and spathulenol Florao et al. (2012)
B. grisebachii Thymol, thymol methyl ether, thymyl acetate, 

alpha-pinene, alpha-humulene, and globulol
Hadad et al. (2007)

B. latifolia Limonene, beta-phellandrene, sabinene, beta- 
pinene, and alpha-pinene

Valarezo et al. (2013)

B. magellanica 4-hydroxyacetophenone, massoia lactone, 
alpha-cadinol, gamma-eudesmol, elemol, 
beta-eudesmol, and caryophyllene oxide

Simonsen et al. (2009)

B. megapotamica Spathulenol, and caryophyllene oxide Budel et al. (2012)
B. Mesoneura Limonene, alpha-thujene, alpha-pinene, sabinene, 

beta-pinene, myrcene, p-cymene, (E)-beta- 
ocimene, gamma-terpinene, spathulenol, and 
alpha-cadinol

Trombin-Souza et al. 
(2017)

B. microdonta Caryophyllene oxide, elemol, spathulenol, 
beta-caryophyllene, and germacrene D

Lago et al. (2008) and 
Sayuri et al. (2010)

B. Milleflora Viridiflorol, beta-caryophyllene, germacrene-D, 
Bicyclogermacrene, alpha-humulene, limonene, 
(E)-beta-ocimene, gamma-terpinene, spathulenol, 
and alpha-cadinol

Besten et al. (2014), 
Pereira et al. (2016), 
Pereira et al. (2017), and 
Trombin-Souza et al. 
(2017)

B. Myriocephala Alpha-thujene, alpha-pinene, sabinene, beta- 
pinene, myrcene, p-cymene, limonene, (E)-beta- 
ocimene, gamma-terpinene, spathulenol, and 
alpha-cadinol

Trombin-Souza et al. 
(2017)

B. myrtilloides Germacrene D Zunino et al. (1998)
B. Notosergila Alpha-pinene, limonene, beta -caryophyllene, and 

spathulenol
Cobos et al. (2001)

B. oblongifolia Alpha-thujene, alpha-pinene, sabinene, beta- 
pinene, myrcene, p-cymene, limonene, (E)-beta- 
ocimene, gamma-terpinene, spathulenol, and 
alpha-cadinol

Trombin-Souza et al. 
(2017)

B. obtusifolia Limonene, germacrene-D, alpha-pinene, beta- 
pinene, bicyclogermacrene, and delta-cadinene

Valarezo et al. (2015)

B. ochracea Spathulenol, and caryophyllene oxide Budel et al. (2012)
B. patens Beta-caryophyllene, aromadendrene, 

bicyclogermacrene, spathulenol, caryophyllene 
oxide, linalool and beta-pinene

da Silva et al. (2018)

(continued)
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Table 13.1 (continued)

Specie Compounds References

B. pentaptera Sabinene, himachalol, beta-pinene, and 
delta-3-carene

Perera et al. (2017)

B. Psiadioides Beta-pinene, delta-3-carene, limonene, and 
ocimene

Negreiros et al. (2016)

B. Regnelli Bicyclogermacrene, delta-cadinene, and 
delta-car-3-ene

Lago et al. (2008)

B. rufescens Limonene, and trans-nerolidol Zunino et al. (1998)
B. salicifolia Alpha-pinene, camphene, beta-pinene, alpha- 

phellandrene, alpha-cubebene, beta-Cariophyllene, 
6,9-guaiadiene, germacrone, (Z)-beta-ocimene, 
germacrene D, beta-cubebene, alpha-thujene

Flores et al. (2009), and 
Sosa et al. (2012)

B. schultzii Spathulenol, and limonene Lago et al. (2008)
B. semiserrata Spathulenol, caryophyllene oxide, viridiflorol, 

carotol, alpha-cadinol, alpha-pinene, beta-pinene, 
limonene, beta-caryophyllene, gamma- 
muurolene), bicyclogermacrene, and (E)-nerolidol

Besten et al. (2012) and 
Vannini et al. (2012)

B. spartioides Alpha-phellandrene, sabinene, alpha-pinene, 
camphor, limonene, citronellal, carvone, 
spathulenol, and 6R-7R-bisabolone

van Baren et al. (2002), 
Oliva et al. (2007), and 
Barud et al. (2014)

B. tenella Spathulenol Biurrun et al. (2005)
B. tricuneata (E)-nerolidol Arze et al. (2004)
B. trimera Alpha-humulene, limonene, alpha-thujene, 

alpha-pinene, sabinene, beta-pinene, myrcene, 
p-cymene, (E)-beta-ocimene, gamma-terpinene, 
spathulenol, and alpha-cadinol

Lago et al. (2008)

B. trinervis Alpha-thujene, alpha-pinene, sabinene, beta- 
pinene, beta-phellandrene, (E)-Lachnophyllum 
acid methylester, (Z)-lachnophyllum acid methyl 
ester, caryophyllene oxide, viridiflorol, germacrene 
D, germacrene B, spathulenol, delta-3-carene, 
globulol, cis-muurola-4(14), 5-diene, 
bicyclogermacrene, ar-curcumene, sabinene

Albuquerque et al. 
(2004), Sobrinho et al. 
(2016), and Chaverri 
and Ciccio (2017)

B. uncinella Alpha-pinene, limonene, beta-caryophyllene, 
spathulenol, caryophyllene oxide, viridiflorol, 
alpha-cadinol, (E)-nerolidol, globulol, 
(E)-nerolidol, bicyclogermacrene, and 
terpinen-4-ol

Frizzo et al. (2001), 
Fabiane et al. (2008), 
and Ascari et al. (2012)

The essential oil of B. dracunculifolia is the most studied among all others EOs 
obtained from this genus (Lage et al. 2015; Lago et al. 2008; Fabiane et al. 2008; 
Parreira et al. 2010; Florao et al. 2012; Besten et al. 2014; Salazar et al. 2018). This 
fact must be due to the close relationship between this species and propolis, a resin-
ous material produced by bees (Apis mellifera) that is used as a sanitizer and hive- 
repairing component (Parreira et al. 2010; Lage et al. 2015; Campos et al. 2016). To 
produce propolis, bees collect plant buds and mix them with wax: B. 

S. R. Ambrósio et al.
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Fig. 13.3a Chemical structures of mono- and sesquiterpenes found in Baccharis essential oils. 
Source: NIST (National Institute of Standards and Technology) databank (Linstrom and 
Mallard 2018) 
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dracunculifolia is the main botanical source of Brazilian green propolis (BGP). In 
Brazil, BGP is the most studied and economically relevant tropical propolis, which 
is typically found in the South Eastern Region, where B. dracunculifolia popularly 
called “alecrim do campo” occurs (Parreira et  al. 2010; Figueiredo-Rinhel et  al. 
2013; Lage et al. 2015; Campos et al. 2016). In fact, sesquiterpenes that are found 
in B. dracunculifolia like (E)-nerolidol, beta-caryophyllene, spathulenol, and 
γ-cadinene are also present in BGP and are responsible for the similar and peculiar 
aroma of both “alecrim do campo” EO and BGP. Moreover, such compounds are 
associated with several biological effects, including antimicrobial activity, among 
others. Especially in Asian markets, BGP prices can reach more than U$ 100 per kg 
and BGP extracts are incorporated in several “natural medicines,” cosmetics, toilet-
ries, food, and beverages, as well as in food supplements (Marostica et al. 2008; 
Figueiredo-Rinhel et al. 2013).

Although other Baccharis EOs are not associated with economically relevant 
products like propolis, studies of these EOs are significant from the ecological and 
academic points of view, since they possess a different biological potential and pres-
ent geographical and seasonal variations (see references in Table 13.1). Spathulenol, 
limonene, beta-pinene, alpha-pinene, sabinene, beta-caryophyllene, alpha-cadinol, 
caryophyllene oxide, germacrene D, bicyclogermacrene, and alpha-thujene are, 
among others, the most frequently found terpenoids in these others Baccharis Eos 
(Table 13.1).

3  Baccharis Diterpenes

Diterpenes are a broad and diversified class of secondary metabolites, widely dis-
tributed among different organisms, mainly in plants and fungi, originated from the 
head-tail coupling of four C5 isoprene units (Figueiredo-Rinhel et al. 2013). This 

Fig. 13.3b Chemical structures of mono- and sesquiterpenes found in Baccharis essential oils. 
Source: NIST (National Institute of Standards and Technology) databank (Linstrom  and 
Mallard 2018)

S. R. Ambrósio et al.
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class of natural products presents a great structural variety, since the GGPP units 
(Fig.  13.1) can rearrange in many different manners. Several skeleton types and 
distinct chemical functionalization have been reported for diterpenoids, which are 
classified according to the number and cyclization patterns of their chemical skele-
tons (Garcia et al. 2007; de Sousa et al. 2018). Acyclic-, bicyclic-, tricyclic-, tetra-
cyclic-, and macrocyclic-type diterpenes (Fig. 13.4) have been isolated and identified 
from a diverse number of natural sources (De Sousa et al. 2018).

Phytochemical studies have been performed with aerial parts, leaves, stems, 
flowers, and exudates from Baccharis species during the two last decades. Phenolic 
and terpenoid compounds are described as the main metabolites found in these 

Phytane Retinane Cembrane

Labdane Clerodane Chettaphanane

Acyclic, Monocyclic and Bicyclic diterpenes

Tricyclic diterpenes

Pimarane Abietane Totarane Cassane

Tetracyclic and Pentacyclic diterpenes

Kaurane Beyerane TrachylobaneTigliane

Fig. 13.4 Some examples of skeleton types of diterpenes related to their number of rings
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botanical sources, in which the presence of flavonoids and diterpenes is noteworthy 
(Campos et al. 2016). Regarding diterpenes, the scientific literature pointed out the 
biosynthesis of three main carbon skeletons in Baccharis species – kaurane, lab-
dane, and neo-clerodane type-diterpenes. Many diterpenes were isolated or identi-
fied from Baccharis species until 2018 (Table 13.2).

Table 13.2 Examples of diterpenes obtained through chemical studies from Baccharis species

Species, references, and structures

B. boliviensis (Campos et al. 2016)

B. crispa (Cenal et al. 1997)

B. flabellata (Hikawczuk et al. 2006; Funes et al. (2018a, b)

B. gaudichaudiana [3, 60–63]

(continued)

S. R. Ambrósio et al.
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Table 13.2 (continued)

Species, references, and structures

B. grisebachii (Feresin et al. 2003)

B. halimifolia (Jakupovic et al. 1990)

B. illinita (Campos et al. 2016; Verdi et al. 2004)

(continued)
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Table 13.2 (continued)

Species, references, and structures

B. marginalis (Campos et al. 2016; San-Martin et al. 2010)

B. minutiflora (Bohlmann et al. 1982)

(continued)

S. R. Ambrósio et al.
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Table 13.2 (continued)

Species, references, and structures

B. neglecta (Jakupovic et al. 1990)

B. patens (Campos et al. 2016)

B. pingraea (Wachter et al. 1999)

(continued)
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Table 13.2 (continued)

Species, references, and structures

B. platypoda (Campos et al. 2016)

B. potosina (Jakupovic et al. 1990)

B. retusa (Ueno et al. 2018a, b)

B. rufescens (Campos et al. 2016)

(continued)

S. R. Ambrósio et al.
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Table 13.2 (continued)

Species, references, and structures

B. sagittalis (Campos et al. 2016)

B. salicifolia (Campos et al. 2016; Jakupovic et al. 1990)

B. salicina (Jakupovic et al. 1990)

(continued)
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Table 13.2 (continued)

Species, references, and structures

B. salzmannii (Campos et al. 2016)

B. sarathroides (Jakupovic et al. 1990)

B. thymifolia (Hikawczuk et al. 2008)

B. tola (Simirgiotis et al. 2016)

B. trimera (Januario et al. 2004; Garcia et al. 2014; Campos et al. 2016)

S. R. Ambrósio et al.
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Several diterpenes have been considered as the active compounds of various 
medicinal plants, due to their wide spectrum of pharmacological effects (de Sousa 
et al. 2018; Liu et al. 2018). In fact, scientific reports point out that this class of natu-
ral products possesses remarkable biological properties such as antiparasitic 
(Ambrosio et  al. 2008), antihypertensive (Ambrosio et  al. 2004; Tirapelli et  al. 
2010), anti-inflammatory and analgesic (Mizokami et  al. 2012; Possebon et  al. 
2014), cytotoxicity against tumor cell lines (Batista et  al. 2013; da Costa et  al. 
2018), and antimicrobial (Leandro et al. 2014; Severiano et al. 2010), among others 
(Kato et al. 2012; Xu et al. 2018; Liu et al. 2018).

Regarding the Baccharis diterpenes, several authors have investigated and 
reported their biological activities (Table 13.3).

From all biological properties that have been reported, the feeding-deterrent 
potential against insects displayed by neo-clerodane type-diterpenes from Baccharis 
species is highlighted in the literature (Hikawczuk et al. 2006; Cifuente et al. 2002; 
Hikawczuk et al. 2008; Sosa et al. 1994), and some efforts to understand the struc-
ture–activity relationships related with this class of compounds have been carried 
out (Hikawczuk et al. 2006; Cifuente et al. 2002).

Cifuente et  al. (2002) evaluated the insect antifeedant activity of several 
clerodane- type diterpenes isolated from three Baccharis species (B. sagittalis, 
B. crispa, and B. spicata) against Tenebrio molitor larvae (Coleoptera: 
Tenebrionidae). The results obtained from this study allowed the authors to suggest 
that the presence of a β-substituted furan ring (A; Fig.  13.6) or a β-substituted 
butenolide group (B; Fig. 13.6) on the C-9 side chain plays an important role in the 

Table 13.3 Relevant biological activities displayed by Baccharis diterpenes, reported in the last 
two decades

Biological activity Active diterpenes References

Insect antifeedant Bsag3; Bsag5; Bsag8; 
Bthy1; Bthy3

Cifuente et al. (2002) and 
Hikawczuk et al. (2008)

Antimicrobial Bgri2 Feresin et al. (2003)
Cytotoxicity against cancer cell 
lines

Bgau10 (Fullas et al. 1994)

ROS and RNS scavenging abilities Bfla5; Bfla8 Funes et al. (2018a, b
Antinociceptive Bfla5; Bfla8 Funes et al. (2018a, b)
Influx and mobilization of 
intracellular calcium

Btri1; Btri2 Garcia et al. (2014)

NGF (Nerve Growth Factor) 
potentiation

Bgau6; Bgau11; 
Bgau12; Bgau14

Guo et al. (2006) and Guo et al. 
(2007)

Antiproteolytic and 
antihemorrhagic

Btri3 Januario et al. (2004)

Relaxant effect on rat vascular 
smooth muscle

Btri3 Torres et al. (2000)

Antitrypanosomal Bret1; Bret3 Ueno et al. (2018a, b)
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antifeedant bioactivity displayed by these diterpenes. Moreover, the literature also 
pointed out the presence of an α,β-unsaturated carbonyl system insert in the trans- 
decaline system at C-4 (C; Fig. 13.5) of clerodane diterpenes as a prerequisite to the 
antifeedant bioactivity (Enriz et al. 1994).

More recently, Hikawczuk et al. (2006) investigated the antifeedant activity of 
neo-clerodanes diterpenes from Baccharis flabellata against the grain stored insect 
Tribolium castaneum, and some considerations on the structure–activity relation-
ship were also established by the authors. Among the nine diterpenes investigated in 
this study, compounds 6 and 8 (Fig. 13.6) were shown to be more effective against 
T. castaneum.

As previously described in the literature, the presence of a furan or a butenolide 
group at C-9 side chain and an α,β-unsaturated carbonyl system inserted in the 
trans-decaline at C-4 (or a C-4 spiro-epoxide) are basic structural requirements 
related to the antifeedant activity of the clerodane-type diterpenes (Cifuente et al. 
2002; Enriz et al. 1994). However, conformational and electronic factors were also 
revealed to be important in the antifeedant activity displayed by this class of diter-
penes (Hikawczuk et al. 2006).

From a molecular model investigation performed by Hikawczuk et al. (2006), it 
was possible to establish a correlation of the antifeedant activity and the distance 
between the heteroatom located at the C-9 side chain and the olefinic carbon at C-3. 
According to the authors, the optimum interatomic distance between these two moi-
eties ranged from 8.117 to 9.694 Å (Hikawczuk et al. 2006; Li et al. 2016). This 
study was carried out taking into account the potential of the double bond at C-3 to 
act as a nucleophilic acceptor of proteins in a Michael-type addition reaction, which 
can be related to the ability of diterpenes to inhibit the feeding of T. castaneum 
(Hikawczuk et al. 2006). Finally, the authors observed positive values of the electro-
static charge in the olefinic carbons at C-3 for the active diterpenes (Fig. 13.6, com-
pounds 6 and 8), whereas negative values were observed for all inactive compounds 
(Hikawczuk et al. 2006).

O
O

O(A) (B)R2

H
R1

R1 = R1 = R2 =

(C) O O

9

4

Fig. 13.5 Chemical groups presented in clerodane-type diterpenes related to their antifeedant 
activity (Cifuente et al. 2002; Enriz et al. 1994)
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Fig. 13.6 Chemical structures of clerodane-type diterpenes from B. flabellata investigated as anti-
feedant against T. castaneum (Hikawczuk et al. 2006)

4  Final Considerations

This chapter discussed in detail some chemical features and biological activities of 
the most representative terpenes found in Baccharis species (volatile terpenes and 
diterpenes). However, squalene-derived compounds, like steroids and triterpenes, 
are also found in this genus and can be associated with some biological activities, 
mainly antiparasitic (da Silva et al. 2009a, b; Passero et al. 2011), antinociceptive 
(Freitas et al. 2009), and anti-inflammatory (Boller et al. 2010).

Finally, it is important to mention the occurrence of a particular type of Baccharis 
trichothecenes, named baccharinoids. These compounds are associated with cattle 
poisoning in South America fed with B. megapotamica and also with several bio-
logical activities such as antiviral, anticancer, antimalarial, and antifungal (de 
Carvalho et al. 2016).
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