# Chapter 13 Baccharis Terpenoid Compounds



Sérgio Ricardo Ambrósio, Mário Ferreira Conceição Santos, Larissa Costa Oliveira, Ana Lúcia Bassi, Jairo Kenupp Bastos, and Rodrigo Cassio Sola Veneziani

Abstract Baccharis is an important genus of the Asteraceae family comprising more than 440 species, which are used in folk medicine for displaying important biological activities, such as analgesic, anti-inflammatory, antimicrobial, insect antifeedant, and antiparasitic, among others. There are several classes of metabolites produced by *Baccharis*, from which terpenoid stands out. The main volatile terpenes found in forty *Baccharis* species are reported in this chapter, pointing out B. dracunculifolia, the botanical source of green propolis, that contains (E)-nerolidol and spathulenol as major compounds, among others, giving the characteristic smell of green propolis. The combination of gas chromatography coupled with mass spectrometry is a powerful tool for the analyses of essential oils combined with the use of the Kovats index to determine the retention indexes using a homologous series of aliphatic hydrocarbons. Regarding diterpenes in *Baccharis* species, three main carbon skeleton types, kaurane, labdane, and neo-clerodane, have been reported. Many of these diterpenes display antimicrobial, antiparasitic, anti-inflammatory, analgesic, and cytotoxic activities, but the feeding-deterrent potential against insects displayed by neo-clerodane type-diterpenes stands out. In the final part, it is mentioned the triterpene and steroids, which are also found in this genus, and play important role in the reported biological activities of Baccharis species, as well as the occurrence of baccharinoids, a particular type of macrocyclic trichothecenes, which are associated with cattle poisoning in South America fed with B. megapotamica, but also display antiviral, anticancer, antimalarial, and antifungal activities.

**Keywords** Chemical structure · Nerolidol · Plant chemistry · Terpenes · Spathulenol

S. R. Ambrósio ( $\boxtimes$ ) · M. F. C. Santos · L. C. Oliveira · A. L. Bassi · R. C. S. Veneziani Programa de Pós-graduação em Ciências, Universidade de Franca, Franca, São Paulo, Brazil e-mail: sergio.ambrosio@unifran.edu.br

J. K. Bastos

Departamento de Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil e-mail: jkbastos@fcfrp.usp.br

<sup>©</sup> Springer Nature Switzerland AG 2021

G. W. Fernandes et al. (eds.), *Baccharis*, https://doi.org/10.1007/978-3-030-83511-8\_13



Fig. 13.1 Precursor units of different terpenoids, formed according to the number of isoprene units

# 1 General Aspects of Terpenes

Terpenoids are a large class of metabolites that can be subdivided according to the number of connected isoprenes (5C) units. Biosynthetically, such units are mostly bonded in a "head-to-tail" sequence in order to furnish the different types of terpenes. The dimethylallyl diphosphate (DMAPP) binds with an isopentenyl diphosphate (IPP) unit to form the 10C unit precursor of monoterpenes (GPP; geranyl diphosphate) [1] (Fig. 13.1). A GPP unit can be subsequently condensed with another IPP group to give farnesyl diphosphate (FPP), the precursor of sesquiterpenes. The addition of another IPP to FPP can furnish the 20C precursor of diterpenes – a geranylgeranyl diphosphate (GGPP) molecule. All these reactions are catalyzed by their respective *trans*-prenyl transferases. Alternatively, the junction of two FPP and two GGPP groups in a "head-to-head" binding can furnish a 30C squalene unit, and a 40C tetraterpene unit, which are the precursors of steroids/triterpenes and carotenoids, respectively (Veneziani et al. 2017; Furtado et al. 2017).

In this chapter, the main types of terpenoids found in *Baccharis* species are reported. Additionally, these compounds are discussed regarding their biological perspectives, focusing on their ecological, pharmacological, and toxicological reported data. Details on the chemical structures of some terpenes and their features are presented, as well.

# 2 Baccharis Essential Oils

Essential oils (EOs; or volatile oils) can be defined as mixtures of volatile and lipophilic, often odoriferous, substances produced by aromatic plants (Furtado et al. 2017). They are associated with a series of important ecological purposes, like molecular signaling among plants and pollinizers, as chemical defensives against predators (insects and other animals), as growth inhibitors of plants, and also as an antimicrobial against fungi or bacteria (Campos et al. 2016; Furtado et al. 2017). Also, these oils are obtained through steam distillation and are utilized in the manufacture of various products such as cosmetics, household cleaning products, air fresheners, and hygiene products, as well as in aromatherapy and in some paramedicinal practices due to their characteristic odor and flavor (Xavier et al. 2013; Campos et al. 2016).

Chemically, EOs are characterized by the presence of phenylpropanoids and relatively low molecular weight terpenoids like monoterpenes and sesquiterpenes. Monoterpenes (10C) present a great variety of structures, such as acyclic chains, monocyclic or aromatic derivatives, and even rigid bicyclic rings (Sarah et al. 2014; Furtado et al. 2017). Sesquiterpenes (15C) are less volatile than monoterpenes, and they can be found in the composition of many essential oils, including commercial ones (Campos et al. 2016; Veneziani et al. 2017) (Fig. 13.2).

The combination of gas chromatography coupled with mass spectrometry (GC-MS) is a powerful tool to analyze EOs in a fast, reliable, and simple way. The use of long capillary columns (up to 60 m) allows the separation of very complex mixtures of volatile compounds (Furtado et al. 2017). Also, this technique presents another important advantage when compared with other methods like thin layer and liquid chromatography, since the use of MS detection allows the identification of the components without the need of analytical standards. This is possible due to (Veneziani et al. 2017) the use of Kovats index as a more accurate form to determine the retention indexes using a homologous series of aliphatic hydrocarbons and (Furtado et al. 2017) the comparison between the mass spectra obtained for each compound and with those present in computational spectral databases (Shibamoto 1987; Furtado et al. 2017; Adams 2017).



Fig. 13.2 Examples of monoterpenes (1-citronellal from *Cymbopogon citratus* "lemongrass", 2menthol from *Mentha piperita* "peppermint," **3**- thymol from *Thymus vulgaris* "Thyme," and 4camphor from *Rosmarinus officinalis* "Rosemary") and sesquiterpenes from *Copaifera sp.* "Copaíba" oilresins (**5**-  $\beta$ -bisabolene, **6**- *trans*- $\beta$ -caryophyllene, **7**-  $\alpha$ -humulene, and **8**-  $\alpha$ -copaene)

Due to the above-mentioned features, GC-MS is broadly used to determine the qualitative and quantitative composition of essential oils of many species of aromatic plants, including the *Bachharis* genus. In this sense, it is possible to find in the literature a great number of studies that present the composition of many EOs of *Baccharis* species. However, for the purposes of this chapter, the focus will be kept on the terpenoids content of such products (Zunino et al. 1998; Albuquerque et al. 2004; Xavier et al. 2013). *Baccharis* species that had their EOs main monoterpenes and sesquiterpenes analyzed using GC-MS and their respective references are displayed in Table 13.1, as well as their chemical structures in Figs. 13.3a and 13.3b.

| Specie                | Compounds                                                                                                                                                                                                                   | References                                                                                                                                                                     |
|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| B. anomala            | Alpha-acorenol, spathulenol, caryophyllene oxide,<br>limonene, alpha-thujene, alpha-pinene, sabinene,<br>beta-pinene, myrcene, <i>p</i> -cymene, (E)-beta-<br>ocimene, gamma-terpinene, alpha-cadinol, and<br>beta-selinene | Budel et al. (2012),<br>Xavier et al. (2013), and<br>Trombin-Souza et al.<br>(2017)                                                                                            |
| B. articulata         | Spathulenol, palustrol, beta-pinene, beta-<br>caryophyllene, caryophyllene oxide, (E)-nerolidol,<br>and bicyclogermacrene                                                                                                   | Zunino et al. (1998),<br>Zunino et al. (2004),<br>Florao et al. (2012), and<br>Tischer et al. (2017)                                                                           |
| B. axillaris          | Limonene, alpha-thujene, alpha-pinene, sabinene,<br>beta-pinene, myrcene, <i>p</i> -cymene, (E)-beta-<br>ocimene, gamma-terpinene, spathulenol, and<br>alpha-cadinol                                                        | Trombin-Souza et al. (2017)                                                                                                                                                    |
| B. calvescens         | Alpha-thujene, alpha-pinene, sabinene, beta-<br>pinene, myrcene, <i>p</i> -cymene, limonene, (E)-beta-<br>ocimene, gamma-terpinene, spathulenol, and<br>alpha-cadinol                                                       | Trombin-Souza et al. (2017)                                                                                                                                                    |
| B. caprariaefolia     | Beta-caryophyllene, germacrene D, alpha-selinene, and spathulenol                                                                                                                                                           | Besten et al. (2012)                                                                                                                                                           |
| B. cordobensis        | Trans-nerolidol, tau-cadinol, and cubenol                                                                                                                                                                                   | Zunino et al. (2000)                                                                                                                                                           |
| B. coridifolia        | Isocaryophyllene, beta-caryophyllene,<br>caryophyllene oxide, beta-selinene, spathulenol,<br>viridiflorol, carotol, and alpha-bisabolol                                                                                     | Bailac et al. (2001), and<br>Besten et al. (2012)                                                                                                                              |
| B. darwinii           | Limonene, thymol, and 4-terpineol                                                                                                                                                                                           | Kurdelas et al. (2012)                                                                                                                                                         |
| B.<br>dracunculifolia | Beta-caryophyllene, beta-humulene, germacrene<br>D, beta-guaiene, delta-cadinene, (E)-nerolidol,<br>spathulenol, limonene, bicyclogermacrene,<br>beta-elemene, and mustakone                                                | Fabiane et al. (2008),<br>Lago et al. (2008),<br>Parreira et al. (2010),<br>Besten et al. (2012),<br>Florao et al. (2012),<br>Lage et al. (2015), and<br>Salazar et al. (2018) |
| B. elaeagnoides       | Viridiflorol, spathulenol, beta-caryophyllene, and germacrene D                                                                                                                                                             | Sayuri et al. (2010)                                                                                                                                                           |

 Table 13.1
 Baccharis essential oils and their main terpenoids (mono and sesquiterpenes)

| Specie               | Compounds                                                                                                                                                                                                            | References                                                                                                      |
|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| B. elaeoides         | Gamma-cadinene, limonene, tau-cadinol,<br>alpha-cadinol, beta-pinene, beta-patchoulene,<br>alpha-muurolene, alpha-pinene, alpha-calacorene,<br>gamma-muurolene, alpha-thujene, alpha-<br>cubebene, and terpinen-4-ol | Simonsen et al. (2009)                                                                                          |
| B.<br>gaudichaudiana | Spathulenol                                                                                                                                                                                                          | Florao et al. (2012)                                                                                            |
| B. Genistelloides    | Palustrol and spathulenol                                                                                                                                                                                            | Florao et al. (2012)                                                                                            |
| B. grisebachii       | Thymol, thymol methyl ether, thymyl acetate, alpha-pinene, alpha-humulene, and globulol                                                                                                                              | Hadad et al. (2007)                                                                                             |
| B. latifolia         | Limonene, beta-phellandrene, sabinene, beta-<br>pinene, and alpha-pinene Valarezo et al. (2013                                                                                                                       |                                                                                                                 |
| B. magellanica       | 4-hydroxyacetophenone, massoia lactone,<br>alpha-cadinol, gamma-eudesmol, elemol,<br>beta-eudesmol, and caryophyllene oxide                                                                                          | Simonsen et al. (2009)                                                                                          |
| B. megapotamica      | Spathulenol, and caryophyllene oxide                                                                                                                                                                                 | Budel et al. (2012)                                                                                             |
| B. Mesoneura         | Limonene, alpha-thujene, alpha-pinene, sabinene,<br>beta-pinene, myrcene, <i>p</i> -cymene, (E)-beta-<br>ocimene, gamma-terpinene, spathulenol, and<br>alpha-cadinol                                                 | Trombin-Souza et al. (2017)                                                                                     |
| B. microdonta        | Caryophyllene oxide, elemol, spathulenol, beta-caryophyllene, and germacrene D                                                                                                                                       | Lago et al. (2008) and<br>Sayuri et al. (2010)                                                                  |
| B. Milleflora        | Viridiflorol, beta-caryophyllene, germacrene-D,<br>Bicyclogermacrene, alpha-humulene, limonene,<br>(E)-beta-ocimene, gamma-terpinene, spathulenol,<br>and alpha-cadinol                                              | Besten et al. (2014),<br>Pereira et al. (2016),<br>Pereira et al. (2017), and<br>Trombin-Souza et al.<br>(2017) |
| B. Myriocephala      | Alpha-thujene, alpha-pinene, sabinene, beta-<br>pinene, myrcene, <i>p</i> -cymene, limonene, (E)-beta-<br>ocimene, gamma-terpinene, spathulenol, and<br>alpha-cadinol                                                | Trombin-Souza et al. (2017)                                                                                     |
| B. myrtilloides      | Germacrene D                                                                                                                                                                                                         | Zunino et al. (1998)                                                                                            |
| B. Notosergila       | Alpha-pinene, limonene, beta -caryophyllene, and spathulenol                                                                                                                                                         | Cobos et al. (2001)                                                                                             |
| B. oblongifolia      | Alpha-thujene, alpha-pinene, sabinene, beta-<br>pinene, myrcene, <i>p</i> -cymene, limonene, (E)-beta-<br>ocimene, gamma-terpinene, spathulenol, and<br>alpha-cadinol                                                | Trombin-Souza et al. (2017)                                                                                     |
| B. obtusifolia       | Limonene, germacrene-D, alpha-pinene, beta-<br>pinene, bicyclogermacrene, and delta-cadinene                                                                                                                         | Valarezo et al. (2015)                                                                                          |
| B. ochracea          | Spathulenol, and caryophyllene oxide                                                                                                                                                                                 | Budel et al. (2012)                                                                                             |
| B. patens            | Beta-caryophyllene, aromadendrene,<br>bicyclogermacrene, spathulenol, caryophyllene<br>oxide, linalool and beta-pinene                                                                                               | da Silva et al. (2018)                                                                                          |

Table 13.1 (continued)

| Specie         | Compounds                                                                                                                                                                                                                                                                                                                                              | References                                                                                 |  |
|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|--|
| B. pentaptera  | Sabinene, himachalol, beta-pinene, and delta-3-carene                                                                                                                                                                                                                                                                                                  | Perera et al. (2017)                                                                       |  |
| B. Psiadioides | Beta-pinene, delta-3-carene, limonene, and ocimene                                                                                                                                                                                                                                                                                                     | Negreiros et al. (2016)                                                                    |  |
| B. Regnelli    | Bicyclogermacrene, delta-cadinene, and delta-car-3-ene                                                                                                                                                                                                                                                                                                 | Lago et al. (2008)                                                                         |  |
| B. rufescens   | Limonene, and trans-nerolidol                                                                                                                                                                                                                                                                                                                          | Zunino et al. (1998)                                                                       |  |
| B. salicifolia | Alpha-pinene, camphene, beta-pinene, alpha-<br>phellandrene, alpha-cubebene, beta-Cariophyllene,<br>6,9-guaiadiene, germacrone, (Z)-beta-ocimene,<br>germacrene D, beta-cubebene, alpha-thujene                                                                                                                                                        | Flores et al. (2009), and<br>Sosa et al. (2012)                                            |  |
| B. schultzii   | Spathulenol, and limonene                                                                                                                                                                                                                                                                                                                              | Lago et al. (2008)                                                                         |  |
| B. semiserrata | Spathulenol, caryophyllene oxide, viridiflorol,<br>carotol, alpha-cadinol, alpha-pinene, beta-pinene,<br>limonene, beta-caryophyllene, gamma-<br>muurolene), bicyclogermacrene, and (E)-nerolidol                                                                                                                                                      | Besten et al. (2012) and<br>Vannini et al. (2012)                                          |  |
| B. spartioides | Alpha-phellandrene, sabinene, alpha-pinene,<br>camphor, limonene, citronellal, carvone,<br>spathulenol, and 6R-7R-bisabolone                                                                                                                                                                                                                           | van Baren et al. (2002),<br>Oliva et al. (2007), and<br>Barud et al. (2014)                |  |
| B. tenella     | Spathulenol                                                                                                                                                                                                                                                                                                                                            | Biurrun et al. (2005)                                                                      |  |
| B. tricuneata  | (E)-nerolidol                                                                                                                                                                                                                                                                                                                                          | Arze et al. (2004)                                                                         |  |
| B. trimera     | Alpha-humulene, limonene, alpha-thujene,<br>alpha-pinene, sabinene, beta-pinene, myrcene,<br><i>p</i> -cymene, (E)-beta-ocimene, gamma-terpinene,<br>spathulenol, and alpha-cadinol                                                                                                                                                                    | Lago et al. (2008)                                                                         |  |
| B. trinervis   | Alpha-thujene, alpha-pinene, sabinene, beta-<br>pinene, beta-phellandrene, (E)-Lachnophyllum<br>acid methylester, (Z)-lachnophyllum acid methyl<br>ester, caryophyllene oxide, viridiflorol, germacrene<br>D, germacrene B, spathulenol, delta-3-carene,<br>globulol, <i>cis</i> -muurola-4(14), 5-diene,<br>bicyclogermacrene, ar-curcumene, sabinene | Albuquerque et al.<br>(2004), Sobrinho et al.<br>(2016), and Chaverri<br>and Ciccio (2017) |  |
| B. uncinella   | Alpha-pinene, limonene, beta-caryophyllene,<br>spathulenol, caryophyllene oxide, viridiflorol,<br>alpha-cadinol, (E)-nerolidol, globulol,<br>(E)-nerolidol, bicyclogermacrene, and<br>terpinen-4-ol                                                                                                                                                    | Frizzo et al. (2001),<br>Fabiane et al. (2008),<br>and Ascari et al. (2012)                |  |

Table 13.1 (continued)

The essential oil of *B. dracunculifolia* is the most studied among all others EOs obtained from this genus (Lage et al. 2015; Lago et al. 2008; Fabiane et al. 2008; Parreira et al. 2010; Florao et al. 2012; Besten et al. 2014; Salazar et al. 2018). This fact must be due to the close relationship between this species and propolis, a resinous material produced by bees (*Apis mellifera*) that is used as a sanitizer and hive-repairing component (Parreira et al. 2010; Lage et al. 2015; Campos et al. 2016). To produce propolis, bees collect plant buds and mix them with wax: *B.* 



Fig. 13.3a Chemical structures of mono- and sesquiterpenes found in *Baccharis* essential oils. Source: NIST (National Institute of Standards and Technology) databank (Linstrom and Mallard 2018)



Fig. 13.3b Chemical structures of mono- and sesquiterpenes found in *Baccharis* essential oils. Source: NIST (National Institute of Standards and Technology) databank (Linstrom and Mallard 2018)

*dracunculifolia* is the main botanical source of Brazilian green propolis (BGP). In Brazil, BGP is the most studied and economically relevant tropical propolis, which is typically found in the South Eastern Region, where *B. dracunculifolia* popularly called "alecrim do campo" occurs (Parreira et al. 2010; Figueiredo-Rinhel et al. 2013; Lage et al. 2015; Campos et al. 2016). In fact, sesquiterpenes that are found in *B. dracunculifolia* like (E)-nerolidol, beta-caryophyllene, spathulenol, and  $\gamma$ -cadinene are also present in BGP and are responsible for the similar and peculiar aroma of both "alecrim do campo" EO and BGP. Moreover, such compounds are associated with several biological effects, including antimicrobial activity, among others. Especially in Asian markets, BGP prices can reach more than U\$ 100 per kg and BGP extracts are incorporated in several "natural medicines," cosmetics, toiletries, food, and beverages, as well as in food supplements (Marostica et al. 2008; Figueiredo-Rinhel et al. 2013).

Although other *Baccharis* EOs are not associated with economically relevant products like propolis, studies of these EOs are significant from the ecological and academic points of view, since they possess a different biological potential and present geographical and seasonal variations (see references in Table 13.1). Spathulenol, limonene, beta-pinene, alpha-pinene, sabinene, beta-caryophyllene, alpha-cadinol, caryophyllene oxide, germacrene D, bicyclogermacrene, and alpha-thujene are, among others, the most frequently found terpenoids in these others *Baccharis* Eos (Table 13.1).

## **3** Baccharis Diterpenes

Diterpenes are a broad and diversified class of secondary metabolites, widely distributed among different organisms, mainly in plants and fungi, originated from the head-tail coupling of four C5 isoprene units (Figueiredo-Rinhel et al. 2013). This class of natural products presents a great structural variety, since the GGPP units (Fig. 13.1) can rearrange in many different manners. Several skeleton types and distinct chemical functionalization have been reported for diterpenoids, which are classified according to the number and cyclization patterns of their chemical skeletons (Garcia et al. 2007; de Sousa et al. 2018). Acyclic-, bicyclic-, tricyclic-, tetracyclic-, and macrocyclic-type diterpenes (Fig. 13.4) have been isolated and identified from a diverse number of natural sources (De Sousa et al. 2018).

Phytochemical studies have been performed with aerial parts, leaves, stems, flowers, and exudates from *Baccharis* species during the two last decades. Phenolic and terpenoid compounds are described as the main metabolites found in these



Fig. 13.4 Some examples of skeleton types of diterpenes related to their number of rings

botanical sources, in which the presence of flavonoids and diterpenes is noteworthy (Campos et al. 2016). Regarding diterpenes, the scientific literature pointed out the biosynthesis of three main carbon skeletons in *Baccharis* species – kaurane, labdane, and neo-clerodane type-diterpenes. Many diterpenes were isolated or identified from *Baccharis* species until 2018 (Table 13.2).

 Table 13.2 Examples of diterpenes obtained through chemical studies from Baccharis species



Species, references, and structures







B. pingraea (Wachter et al. 1999)





(continued)

ó

ó



Several diterpenes have been considered as the active compounds of various medicinal plants, due to their wide spectrum of pharmacological effects (de Sousa et al. 2018; Liu et al. 2018). In fact, scientific reports point out that this class of natural products possesses remarkable biological properties such as antiparasitic (Ambrosio et al. 2008), antihypertensive (Ambrosio et al. 2004; Tirapelli et al. 2010), anti-inflammatory and analgesic (Mizokami et al. 2012; Possebon et al. 2014), cytotoxicity against tumor cell lines (Batista et al. 2013; da Costa et al. 2018), and antimicrobial (Leandro et al. 2014; Severiano et al. 2010), among others (Kato et al. 2012; Xu et al. 2018; Liu et al. 2018).

Regarding the *Baccharis* diterpenes, several authors have investigated and reported their biological activities (Table 13.3).

From all biological properties that have been reported, the feeding-deterrent potential against insects displayed by neo-clerodane type-diterpenes from *Baccharis* species is highlighted in the literature (Hikawczuk et al. 2006; Cifuente et al. 2002; Hikawczuk et al. 2008; Sosa et al. 1994), and some efforts to understand the structure–activity relationships related with this class of compounds have been carried out (Hikawczuk et al. 2006; Cifuente et al. 2002).

Cifuente et al. (2002) evaluated the insect antifeedant activity of several clerodane-type diterpenes isolated from three *Baccharis* species (*B. sagittalis*, *B. crispa*, and *B. spicata*) against *Tenebrio molitor* larvae (Coleoptera: Tenebrionidae). The results obtained from this study allowed the authors to suggest that the presence of a  $\beta$ -substituted furan ring (A; Fig. 13.6) or a  $\beta$ -substituted butenolide group (B; Fig. 13.6) on the C-9 side chain plays an important role in the

| Biological activity                              | Active diterpenes                    | References                                            |
|--------------------------------------------------|--------------------------------------|-------------------------------------------------------|
| Insect antifeedant                               | Bsag3; Bsag5; Bsag8;<br>Bthy1; Bthy3 | Cifuente et al. (2002) and<br>Hikawczuk et al. (2008) |
| Antimicrobial                                    | Bgri2                                | Feresin et al. (2003)                                 |
| Cytotoxicity against cancer cell lines           | Bgau10                               | (Fullas et al. 1994)                                  |
| ROS and RNS scavenging abilities                 | Bfla5; Bfla8                         | Funes et al. (2018a, b                                |
| Antinociceptive                                  | Bfla5; Bfla8                         | Funes et al. (2018a, b)                               |
| Influx and mobilization of intracellular calcium | Btri1; Btri2                         | Garcia et al. (2014)                                  |
| NGF (Nerve Growth Factor)<br>potentiation        | Bgau6; Bgau11;<br>Bgau12; Bgau14     | Guo et al. (2006) and Guo et al. (2007)               |
| Antiproteolytic and antihemorrhagic              | Btri3                                | Januario et al. (2004)                                |
| Relaxant effect on rat vascular smooth muscle    | Btri3                                | Torres et al. (2000)                                  |
| Antitrypanosomal                                 | Bret1; Bret3                         | Ueno et al. (2018a, b)                                |

 Table 13.3
 Relevant biological activities displayed by *Baccharis* diterpenes, reported in the last two decades



Fig. 13.5 Chemical groups presented in clerodane-type diterpenes related to their antifeedant activity (Cifuente et al. 2002; Enriz et al. 1994)

antifeedant bioactivity displayed by these diterpenes. Moreover, the literature also pointed out the presence of an  $\alpha$ , $\beta$ -unsaturated carbonyl system insert in the *trans*-decaline system at C-4 (C; Fig. 13.5) of clerodane diterpenes as a prerequisite to the antifeedant bioactivity (Enriz et al. 1994).

More recently, Hikawczuk et al. (2006) investigated the antifeedant activity of *neo*-clerodanes diterpenes from *Baccharis flabellata* against the grain stored insect *Tribolium castaneum*, and some considerations on the structure–activity relationship were also established by the authors. Among the nine diterpenes investigated in this study, compounds **6 and 8** (Fig. 13.6) were shown to be more effective against *T. castaneum*.

As previously described in the literature, the presence of a furan or a butenolide group at C-9 side chain and an  $\alpha$ , $\beta$ -unsaturated carbonyl system inserted in the *trans*-decaline at C-4 (or a C-4 *spiro*-epoxide) are basic structural requirements related to the antifeedant activity of the clerodane-type diterpenes (Cifuente et al. 2002; Enriz et al. 1994). However, conformational and electronic factors were also revealed to be important in the antifeedant activity displayed by this class of diterpenes (Hikawczuk et al. 2006).

From a molecular model investigation performed by Hikawczuk et al. (2006), it was possible to establish a correlation of the antifeedant activity and the distance between the heteroatom located at the C-9 side chain and the olefinic carbon at C-3. According to the authors, the optimum interatomic distance between these two moieties ranged from 8.117 to 9.694 Å (Hikawczuk et al. 2006; Li et al. 2016). This study was carried out taking into account the potential of the double bond at C-3 to act as a nucleophilic acceptor of proteins in a Michael-type addition reaction, which can be related to the ability of diterpenes to inhibit the feeding of *T. castaneum* (Hikawczuk et al. 2006). Finally, the authors observed positive values of the electrostatic charge in the olefinic carbons at C-3 for the active diterpenes (Fig. 13.6, compounds **6** and **8**), whereas negative values were observed for all inactive compounds (Hikawczuk et al. 2006).



Fig. 13.6 Chemical structures of clerodane-type diterpenes from *B. flabellata* investigated as antifeedant against *T. castaneum* (Hikawczuk et al. 2006)

## 4 Final Considerations

This chapter discussed in detail some chemical features and biological activities of the most representative terpenes found in *Baccharis* species (volatile terpenes and diterpenes). However, squalene-derived compounds, like steroids and triterpenes, are also found in this genus and can be associated with some biological activities, mainly antiparasitic (da Silva et al. 2009a, b; Passero et al. 2011), antinociceptive (Freitas et al. 2009), and anti-inflammatory (Boller et al. 2010).

Finally, it is important to mention the occurrence of a particular type of *Baccharis* trichothecenes, named baccharinoids. These compounds are associated with cattle poisoning in South America fed with *B. megapotamica* and also with several biological activities such as antiviral, anticancer, antimalarial, and antifungal (de Carvalho et al. 2016).

Acknowledgments Authors are thankful to São Paulo Research Foundation – FAPESP (process number 2017/04138-8), CNPq (processes numbers 306441/2017-9 and 306432/2017-0), and CAPES for funds and grants.

# References

Adams RP (2017) Identification of essential oil components by gas chromatography / mass spectrometry. Texensis Publishing, Gruver

Albuquerque M, Souza EB, Lins M et al (2004) Composition and antimicrobial activity of the essential oil from aerial parts of *Baccharis trinervis* (Lam.) Pers. ARKIVOC 6:59–65

- Ambrosio SR, Tirapelli CR, Coutinho ST et al (2004) Role of the carboxylic group in the antispasmodic and vasorelaxant action displayed by kaurenoic acid. J Pharm Pharmacol 56:1407–1413
- Ambrosio SR, Arakawa NS, Esperandim VR et al (2008) Trypanocidal activity of pimarane diterpenes from *Viguiera arenaria* (Asteraceae). Phytother Res 22:1413–1415
- Arze JBL, Garneau FX, Collin G et al (2004) Essential oils from Bolivia. I. Asteraceae: Baccharis tricuneata (L.f.) pers. var. ruiziana Cuatrecassas. J Essent Oil Res 16:429–431
- Ascari J, Sens SL, Nunes DS et al (2012) Sedative effects of essential oils obtained from *Baccharis uncinella*. Pharm Biol 50:113–119
- Bailac PN, Dellacasa AD, Bernasconi HO et al (2001) Essential oil of female plants of *Baccharis coridifolia* De Candole. J Essent Oil Res 13:23–24
- Barud FJ, Lopez S, Tapia A et al (2014) Attractant, sexual competitiveness enhancing and toxic activities of the essential oils from *Baccharis spartioides* and *Schinus polygama* on *Ceratitis capitata* Wiedemann. Ind Crop Prod 62:299–304
- Batista R, Garcia PA, Castro MA et al (2013) Synthesis, cytotoxicity and antiplasmodial activity of novel ent-kaurane derivatives. Eur J Med Chem 62:168–176
- Besten MA, Jasinski VCG, Costa A et al (2012) Chemical composition similarity between the essential oils isolated from male and female specimens of each five *Baccharis* species. J Braz Chem Soc 23:1041–1047
- Besten, Aparecida M, Nunes DS et al (2014) Chemical composition of essential oils from cladodes and inflorescences from male and female specimens of *Baccharis milleflora*. J Essent Oil-Bear Plants 17:899–905
- Biurrun F, Juliani RH, Lopez ML et al (2005) Essential oil composition of *Baccharis tenelia* Hook. et Arn. J Essent Oil Res 17:122–123
- Bohlmann F, Kramp W, Jakupovic J et al (1982) Naturally-occurring terpene derivatives. Diterpenes from *Baccharis* Species. Phytochemistry 21:399–403
- Boller S, Soldi C, Marques MCA et al (2010) Anti-inflammatory effect of crude extract and isolated compounds from *Baccharis illinita* DC in acute skin inflammation. J Ethnopharmacol 130:262–266
- Budel JM, Duarte MR, Doll-Boscardin PM et al (2012) Composition of essential oils and secretory structures of *Baccharis anomala*, *B. megapotamica* and *B. ochracea*. J Essent Oil Res 24:19–24
- Campos FR, Bressan J, Jasinski VCG, Zuccolotto T, da Silva LE, Cerqueira LB (2016) *Baccharis* (Asteraceae): chemical constituents and biological activities. Chem Biodivers 13:1–17
- Cenal JP, Giordano OS, Rossomando PC et al (1997) Neoclerodane diterpenes from *Baccharis* crispa. J Nat Prod 60:490–492
- Chaverri C, Ciccio JF (2017) Essential oils of *Baccharis trinervis* (Asteraceae) from Costa Rica. Rev Biol Trop 65:1307–1321
- Cifuente DA, Borkowski EJ, Sosa ME et al (2002) Clerodane diterpenes from *Baccharis sagittalis*: insect antifeedant activity. Phytochemistry 61:899–905
- Cobos MI, Rodriguez JL, Oliva MD et al (2001) Composition and antimicrobial activity of the essential oil of *Baccharis notosergila*. Planta Med 67:84–86
- da Costa RM, Bastos JK, Costa MCA et al (2018) In vitro cytotoxicity and structure-activity relationship approaches of ent-kaurenoic acid derivatives against human breast carcinoma cell line. Phytochemistry 156:214–223
- da Silva AA, Resende DO, Fukui MJ et al (2009a) Constituents of *Baccharis dracunculifolia* DC (Asteraceae) with in vitro antileishmanial, antiplasmodial and cytotoxic activities. Planta Med 75:949–949
- da Silva AA, Resende DO, Fukui MJ et al (2009b) In vitro antileishmanial, antiplasmodial and cytotoxic activities of phenolics and triterpenoids from *Baccharis dracunculifolia* D. C. (Asteraceae). Fitoterapia 80:478–482
- da Silva ER, Lazarotto DC, Pawlowski A et al (2018) Antioxidant evaluation of *Baccharis* patens and *Baccharis psiadioides* essential oils. J Essent Oil-Bear Plants 21:485–492
- de Carvalho MP, Weich H, Abraham WR (2016) Macrocyclic Trichothecenes as antifungal and anticancer compounds. Curr Med Chem 23:23–35

- de Sousa IP, Teixeira MVS, Furtado NAJC (2018) An overview of biotransformation and toxicity of diterpenes. Molecules 23:1–32. https://doi.org/10.3390/molecules23061387
- Enriz RD, Baldoni HA, Jauregui EA et al (1994) Structure-activity relationship of clerodane diterpenoids acting as antifeedant agents. J Agric Food Chem 42:2958–2963
- Fabiane KC, Ferronatto R, dos Santos AC et al (2008) Physicochemical characteristics of the essential oils of *Baccharis dracunculifolia* and *Baccharis uncinella* DC (Asteraceae). Rev Bras Farmacogn 18:197–203
- Feresin GE, Tapia A, Gimenez A et al (2003) Constituents of the Argentinian medicinal plant *Baccharis grisebachii* and their antimicrobial activity. J Ethnopharmacol 89:73–80
- Figueiredo-Rinhel AS, Kabeya LM, Bueno PC et al (2013) Inhibition of the human neutrophil oxidative metabolism by *Baccharis dracunculifolia* DC (Asteraceae) is influenced by seasonality and the ratio of caffeic acid to other phenolic compounds. J Ethnopharmacol 150:655–664
- Florao A, Budel JM, Duarte MD et al (2012) Essential oils from *Baccharis* species (Asteraceae) have anti-inflammatory effects for human cells. J Essent Oil Res 24:561–570
- Flores RC, Ponzi M, Ardanaz C et al (2009) Chemical composition of essential oil of *Baccharis* salicifolia (Ruiz & Pavon) pers. and antibacterial activity. J Chil Chem Soc 54:475–476
- Freitas CS, Baggio CH, dos Santos AC et al (2009) Antinociceptive properties of the hydroalcoholic extract, fractions and compounds obtained from the aerial parts of *Baccharis illinita* DC in mice. Basic Clin Pharmacol 104:285–292
- Frizzo CD, Serafini LA, Dellacassa E et al (2001) Essential oil of *Baccharis uncinella* DC. from Southern Brazil. Flavour Fragr J 16:286–288
- Fullas F, Hussain RA, Chai HB et al (1994) Cytotoxic constituents of *Baccharis gaudichaudiana*. J Nat Prod 57:801–807
- Funes M, Garro MF, Tosso RD et al (2018a) Antinociceptive effect of neo-clerodane diterpenes obtained from *Baccharis flabellata*. Fitoterapia 130:94–99
- Funes M, Tonn CE, Kurina-Sanz M (2018b) In vivo photoinduced [4+2] dimerization of a neoclerodane diterpene in *Baccharis flabellata*. ROS and RNS scavenging abilities. J Photoch Photobio B 186:137–143
- Furtado NAJC, Veneziani RCS, Ambrósio SR (2017) Farmacognosia. Atheneu, São Paulo
- Garcia PA, de Oliveira AB, Batista R (2007) Occurrence, biological activities and synthesis of kaurane diterpenes and their glycosides. Molecules 12:455–483
- Garcia FAD, Tanae MM, Torres LMB et al (2014) A comparative study of two clerodane diterpenes from *Baccharis trimera* (Less.) DC. on the influx and mobilization of intracellular calcium in rat cardiomyocytes. Phytomedicine 21:1021–1025
- Guo YQ, Li YS, Xu J et al (2006) Bioactive ent-clerodane diterpenoids from the aerial parts of Baccharis gaudichaudiana. J Nat Prod 69:274–276
- Guo Y, Li Y, Xu J et al (2007) Clerodane diterpenoids and flavonoids with NGF-potentiating activity from the aerial parts of *Baccharis gaudichaudiana*. Chem Pharm Bull 55:1532–1534
- Hadad M, Zygadlo JA, Lima B et al (2007) Chemical composition and antimicrobial activity of essential oil from *Baccharis grisebachii* Hieron (Asteraceae). J Chil Chem Soc 52:1186–1189
- Hikawczuk VEJ, Verrilli MAL, Borkowski EJ et al (2006) Antifeedant activity of neo-clerodane diterpenes from *Baccharis flabellata* Hook & Arn var. *flabellata* toward *Tribolium castaneum* Herbst: structure-activity relationships. Nat Prod Res 20:813–819
- Hikawczuk VEJ, Saad JR, Giordano OS et al (2008) Insect growth regulatory effects of linear diterpenoids and derivatives from *Bacchatis thymifolia*. J Nat Prod 71:190–194
- Jakupovic J, Schuster A, Ganzer U et al (1990) Sesquiterpenes and diterpenes from *Baccharis* species. Phytochemistry 29:2217–2222
- Januario AH, Santos SL, Marcussi S et al (2004) Neo-clerodane diterpenoid, a new metalloprotease snake venom inhibitor from *Baccharis trimera* (Asteraceae): anti-proteolytic and antihemorrhagic properties. Chem Biol Interact 150:243–251
- Kato FH, Viana NI, Santini CB et al (2012) Assessment of the in vitro and in vivo genotoxic and antigenotoxic effects of pimaradienoic acid in mammalian cells. Mutat Res Genet Toxicol Environ Mutagen 749:87–92

- Kurdelas RR, Lopez S, Lima B et al (2012) Chemical composition, anti-insect and antimicrobial activity of *Baccharis darwinii* essential oil from Argentina, Patagonia. Ind Crop Prod 40:261–267
- Lage TC, Montanari RM, Fernandes SA et al (2015) Chemical composition and acaricidal activity of the essential oil of *Baccharis dracunculifolia* De Candole (1836) and its constituents nerolidol and limonene on larvae and engorged females of *Rhipicephalus microplus* (Acari: Ixodidae). Exp Parasitol 148:24–29
- Lago JHG, Romoff P, Favero OA et al (2008) Composition of essential oils from the leaves of six species of the Baccharis genus from "Campos de altitude" of the Atlantic Forest of Sao Paulo. Quim Nova 31:727–730
- Leandro LF, Oliveira Cardoso MJ, Caetano Silva SD et al (2014) Antibacterial activity of *Pinus elliottii* and its major compound, dehydroabietic acid, against multidrug-resistant strains. J Med Microbiol 63:1649–1653
- Li RT, Morris-Natschke SL, Lee KH (2016) Clerodane diterpenes: sources, structures, and biological activities. Nat Prod Rep 33:1166–1226
- Linstrom PJ, Mallard WG (eds) (2018) NIST Chemistry WebBook, NIST Standard Reference Database Number 69. National Institute of Standards and Technology, National Institute of Standards and Technology. https://doi.org/10.18434/T4D303. Accessed 11 Jun 2018.
- Liu N, Wu C, Wang P et al (2018) Diterpenoids from liverworts and their biological activities. Curr Org Chem 22:1847–1860
- Marostica MR, Daugsch A, Moraes CS et al (2008) Comparison of volatile and polyphenolic compounds in Brazilian green propolis and its botanical origin *Baccharis dracunculifolia*. Cienc Tecnol Aliment 28:178–181
- Mizokami SS, Arakawa NS, Ambrosio SR et al (2012) Kaurenoic acid from *Sphagneticola trilo-bata* inhibits inflammatory pain: effect on cytokine production and activation of the NO-cyclic GMP-protein kinase G-ATP-sensitive potassium channel signaling pathway. J Nat Prod 75:896–904
- Negreiros MD, Pawlowski A, Zini CA et al (2016) Antimicrobial and antibiofilm activity of Baccharis psiadioides essential oil against antibiotic-resistant Enterococcus faecalis strains. Pharm Biol 54:3272–3279
- Oliva MM, Zunino MP, Lopez ML et al (2007) Variation in the essential oil composition and antimicrobial activity of *Baccharis spartioides* (H. et A.) J. Rimy from three regions of Argentina. J Essent Oil Res 19:509–513
- Parreira NA, Magalhaes LC, Morais DR et al (2010) Antiprotozoal, schistosomicidal, and antimicrobial activities of the essential oil from the leaves of *Baccharis dracunculifolia*. Chem Biodivers 7:993–1001
- Passero LFD, Bonfim-Melo A, Corbett CEP et al (2011) Anti-leishmanial effects of purified compounds from aerial parts of *Baccharis uncinella* C. DC. (Asteraceae). Parasitol Res 108:529–536
- Pereira CB, Farago PV, Borsato DM et al (2016) Chemical composition and biological activities of *Baccharis milleflora* essential oil. Lat Am J Pharm 35:2225–2233
- Pereira CB, Kanunfre CC, Farago PV et al (2017) Cytotoxic mechanism of *Baccharis milleflora* (less.) DC. Essential oil. Toxicol In Vitro 42:214–221
- Perera WH, Bizzo HR, Gama PE et al (2017) Essential oil constituents from high altitude Brazilian species with antimicrobial activity: *Baccharis parvidentata* Malag., *Hyptis monticola* Mart. ex Benth. and *Lippia origanoides* Kunth. J Essent Oil Res 29:109–116
- Possebon MI, Mizokami SS, Carvalho TT et al (2014) Pimaradienoic acid inhibits inflammatory pain: inhibition of NF-kappa B activation and cytokine production and activation of the NO-cyclic GMP-protein kinase G-ATP-sensitive potassium channel signaling pathway. J Nat Prod 77:2488–2496
- Salazar GJT, de Sousa JP, Lima CNF et al (2018) Phytochemical characterization of the *Baccharis dracunculifolia* DC (Asteraceae) essential oil and antibacterial activity evaluation. Ind Crop Prod 122:591–595

- San-Martin A, Astudillo L, Gutierrez M et al (2010) 13-epi-neoclerodanes from Baccharis marginalis. J Chil Chem Soc 55:118–120
- Sarah KJ-C, Andrew TK, David TF (2014) Synthetic routes to methylerythritol phosphate pathway intermediates and downstream isoprenoids. Curr Org Chem 18:1050–1072
- Sayuri VA, Romoff P, Favero OA et al (2010) Chemical composition, seasonal variation, and biosynthetic considerations of essential oils from *Baccharis microdonta* and *B. elaeagnoides* (Asteraceae). Chem Biodivers 7:2771–2782
- Severiano ME, Simão MR, Porto TS et al (2010) Anticariogenic properties of ent-pimarane diterpenes obtained by microbial transformation. Molecules 15:8553–8566
- Shibamoto T (1987) Retention indices in essential oil analysis, capillary gas chromatography in essential oil analysis. Huethig Verlag, New York, pp 259–274
- Simirgiotis MJ, Quispe C, Borquez J et al (2016) High resolution metabolite fingerprinting of the resin of *Baccharis tola* Phil. from the Atacama Desert and its antioxidant capacities. Ind Crop Prod 94:368–375
- Simonsen HT, Riedel C, Gade LB et al (2009) Chemical composition and antibacterial activity of the leaf essential oil of *Baccharis magellanica* (Lam.) Pers. and *Baccharis elaeoides* Remy from Chile. J Essent Oil Res 21:377–380
- Sobrinho ACN, de Souza EB, Rocha MFG et al (2016) Chemical composition, antioxidant, antifungal and hemolytic activities of essential oil from *Baccharis trinervis* (Lam.) Pers. (Asteraceae). Ind Crop Prod 84:108–115
- Sosa ME, Tonn CE, Giordano OS (1994) Insect antifeedant activity of clerodane diterpenoids. J Nat Prod 57:1262–1265
- Sosa ME, Lancelle HG, Tonn CE et al (2012) Insecticidal and nematicidal essential oils from Argentinean *Eupatorium* and *Baccharis* spp. Biochem Syst Ecol 43:132–138
- Tirapelli CR, Ambrosio SR, de Oliveira AM et al (2010) Hypotensive action of naturally occurring diterpenes: a therapeutic promise for the treatment of hypertension. Fitoterapia 81:690–702
- Tischer B, Vendruscolo RG, Wagner R et al (2017) Effect of grinding method on the analysis of essential oil from *Baccharis articulata* (Lam.) Pers. Chem Pap 71:753–761
- Torres LMB, Gamberini MT, Roque NF et al (2000) Diterpene from *Baccharis trimera* with a relaxant effect on rat vascular smooth muscle. Phytochemistry 55:617–619
- Trombin-Souza M, Trombin-Souza M, Amaral W et al (2017) Chemical composition of the essential oils of *Baccharis* species from southern Brazil: a comparative study using multivariate statistical analysis. J Essent Oil Res 29:400–406
- Ueno AK, Barcellos AF, Costa-Silva TA et al (2018a) Antitrypanosomal activity and evaluation of the mechanism of action of diterpenes from aerial parts of *Baccharis retusa* (Asteraceae). Fitoterapia 125:55–58
- Ueno AK, Barcellos AF, Grecco SD et al (2018b) Sesquiterpenes, diterpenes, alkenyl p-coumarates, and flavonoid from the aerial parts of *Baccharis retusa* (Asteraceae). Biochem Syst Ecol 78:39–42
- Valarezo E, Rosillo M, Cartuche L et al (2013) Chemical composition, antifungal and antibacterial activity of the essential oil from *Baccharis latifolia* (Ruiz & Pav.) Pers. (Asteraceae) from Loja, Ecuador. J Essent Oil Res 25:233–238
- Valarezo E, Rosales J, Morocho V et al (2015) Chemical composition and biological activity of the essential oil of *Baccharis obtusifolia* Kunth from Loja, Ecuador. J Essent Oil Res 27:212–216
- van Baren CM, Lira PD, Bandoni AL et al (2002) Composition of the essential oil of pichana *Baccharis spartioides* (Hook. et Arn.) Remy (Compositae) from different populations of the Patagonia, Argentina. J Essent Oil Res 14:183–186
- Vannini AB, Santos TG, Fleming AC et al (2012) Chemical characterization and antimicrobial evaluation of the essential oils from *Baccharis uncinella* DC and *Baccharis semiserrata* DC (Asteraceae). J Essent Oil Res 24:547–554
- Veneziani RCS, Ambrósio SR, Martins CHG, Lemes DC, Oliveira LC (2017) Antibacterial potential of diterpenoids. In: Atta-ur-Rahman BT-S (ed) Studies in natural products chemistry. Elsevier, Dordrecht, pp 109–139. https://doi.org/10.1016/B978-0-444-63929-5.00004-8

- Verdi LG, Brighente IMC, Schripsema J et al (2004) Kaurene diterpenes and flavonoids from *Baccharis illinita* flowers. Biochem Syst Ecol 32:837–840
- Wachter GA, Montenegro G, Timmermann BN (1999) Diterpenoids from *Baccharis pingraea*. J Nat Prod 62:307–308
- Xavier VB, Vargas RMF, Minteguiaga M, Umpiérrez N, Dellacassa E, Cassel E (2013) Evaluation of the key odorants of *Baccharis anomala* DC essential oil: new applications for known products. Ind Crop Prod 49:492–496
- Xu WH, Liu WY, Liang Q (2018) Chemical constituents from *Croton* species and their biological activities. Molecules 23:1–38. https://doi.org/10.3390/molecules23092333
- Yamamoto ES, Campos BLS, Laurenti MD et al (2014) Treatment with triterpenic fraction purified from *Baccharis uncinella* leaves inhibits *Leishmania (Leishmania) amazonensis* mazonensis spreading and improves Th1 immune response in infected mice. Parasitol Res 113:333–339
- Zunino MP, Newton MN, Maestri DM et al (1998) Essential oils of three *Baccharis* species. Planta Med 64:86–87
- Zunino MP, Lopez ML, Faillaci SM et al (2000) Essential oil of *Baccharis cordobensis* Heering. Flavour Fragr J 15:151–152
- Zunino MP, Lopez ML, Zygadlo JA et al (2004) Essential oil composition of *Baccharis articulata* (Lam.) Pers. J Essent Oil Res 16:29–30