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Chapter 1
The Ecological and Applied Potential 
of Baccharis

G. Wilson Fernandes, Yumi Oki, and Milton Barbosa

Abstract  The genus Baccharis is composed of ca. 440 species, distributed primar-
ily in South and Central America, many of which are of great ecological, economic, 
and cultural importance. Baccharis species are mostly dioecious and highly diverse 
in chemistry, ecology, architecture, and phenology, occupying many different niches 
and habitats across several gradients of light, temperature, humidity, altitude, and 
succession. Its species are found in natural, urban, and highly polluted environ-
ments. Many species host a large number of associated organisms, including the 
largest fauna of gall-inducing insects in the Neotropics, and play crucial roles in 
biodiversity maintenance as foundation species or ecosystem engineers, while oth-
ers are invasive species with economic implications around the world. Many species 
are geographically restricted or endemic. Baccharis is also well known for being the 
source of innumerable chemical compounds widely used in folk medicine and in the 
cosmetics and pharmaceutical industries. It is one of the most studied genera in the 
world, owing to these multiple factors that have captured the attention of the scien-
tific community.

Keywords  Asteraceae · Bioeconomy · Ecosystem engineer · Foundation species · 
Nurse species · Plant-animal interactions

1  �The Universe of Baccharis

The genus Baccharis is relatively large with ca. of 440 species so far described in 
the New World. Its distribution is broad, ranging from 55 degrees South (Baccharis 
magellanica: Isla Hornos, Chile: Lat −55.9416629, Lon −67.26916559) to 43 
degrees North (Baccharis halimifolia: Nova Scotia, Canada: Lat 43.99676, Lon 
−65.869709); therefore, with an estimated 11,187 km distance between the most 
extreme species populations. Baccharis pilularis has the northwestern-most 
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distribution (Seattle, EUA: Lat 47.660917, Lon −122.42093). The species of 
Baccharis are found from sea level at both the Pacific and Atlantic oceans up to 
5050 meters above sea level in the Andes. They inhabit forests, savanna, grassland, 
peat bogs, rocky outcrops, and desert ecosystems. They survive in mesic and xeric 
habitats, under saline conditions, in the shade and the sun, in extremely nutrient-
impoverished environments, and even in polluted or contaminated areas. Many are 
early succession species (Westman et al. 1975), thriving in habitat conditions where 
nutrients and light are abundant. Some are rare and endemic to very specific habi-
tats. Baccharis range from small herbaceous to treelet species and lianas, while 
some species are aphyllous. They are mostly dioecious and evergreen and provide 
the basis for the assembly of many animal communities and, in some cases, function 
as nurse species. The genus likely underwent true adaptive radiation in the New 
World, an aspect yet to be explored.

Several species of Baccharis are important whether for their beneficial or harm-
ful effects (Palmer 1986; Boldt and Robbins 1987, 1990; Boldt 1989; Palmer and 
Haseler 1992a, b; Palmer and Tomley 1993; Palmer et al. 1993; Torres et al. 2000; 
Park et al. 2004; Oliveira et al. 2005; Abad and Bermejo 2007; Morales et al. 2008; 
Resende et al. 2012; Rabelo and Costa 2018; Cock and Hierro 2020; Schild et al. 
2020). Beneficial effects include their use in controlling erosion, as ornamental 
plants or as a hedge (Thompson et al. 1995), and their medicinal properties (e.g., 
Budel et al. 2005; Verdi et al. 2005; Rabelo and Costa 2018). Baccharis species are 
important producers of hundreds of bioactive compounds used in several industries 
(e.g., fiber sensors coupled with an anti-theft alarm, food, chemical, cosmetics) or 
popularly used to treat many and different illnesses. The diversity of compounds 
produced by the species is probably a result of their wide range distribution in the 
most stressful conditions of the globe, which demands biochemical and physiologi-
cal adaptations to survive. Furthermore, many species of this genus show a high 
cultural relevance. On the other hand, several species of Baccharis are considered 
invasive species of difficult management that occupy ruderal areas, pasturelands, 
and crops in Australia, the United States, and Europe (Sims-Chilton et  al. 2010; 
Caño et al. 2016; Calleja et al. 2019). Other Baccharis species (e.g., B. megapota-
mica and B. coridifolia) produce toxic compounds that can kill livestock (Habermehl 
et al. 1985; Jarvis et al. 1987, 1988, 1996; Rizzo et al. 1997; Rissi et al. 2005).

Although this book brings to light the most recent update on the scientific studies 
on the use and relevance of Baccharis in the wild, as sources of compounds with 
potential industrial or commercial application, or as a model system in science, the 
gaps in the knowledge of the genus are still enormous. For most species, basic 
knowledge is still lacking, such as information on life span, interactions with other 
organisms including pollinators and herbivores, population genetics, and propaga-
tion, among others. Only a few species (e.g., B. halimifolia, B. trimera, and B. dra-
cunculifolia) have been studied in more detail (Gene et al. 1996; Caño et al. 2016; 
Fernandes et al. 2018; Rabelo and Costa 2018; Barbosa et al. 2017, 2019; Calleja 
et al. 2019; Monteiro et al. 2020; Rodrigues et al. 2020). There are few works on 
niche modeling developed for Baccharis (Gonzáles et al. 2019).
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While we have often argued that Baccharis is highly successful in habitat colo-
nization due to its large seed production and long-distance dispersion, this has only 
been studied for very few species (e.g., B. pilularis, B. halimifolia, B. dracunculifo-
lia). Most species are not that abundant in nature and inhabit harsh habitats in des-
erts and mountaintops. The ability to germinate under dark conditions, seed 
tolerance to shade, wide adaptability to soil nutrient conditions and salinity, survival 
under high soil humidity, and resprouting capabilities after fire (Westman et  al. 
1975; Gomes and Fernandes 2002) have also been listed as important causes of 
Baccharis success and widespread distribution. Boldt (1989) argue that these char-
acteristics associated with high root growth capacity, intense sprouting after dam-
age, high carbohydrate storage in the root system, and efficient water uptake and 
water use suggest several mechanisms responsible for the widespread occurrence 
and diversity of the genus. But these studies were mostly done for common species 
in North America, while most species are unknown beyond their taxonomy (e.g., 
Fernandes et al. 2007).

Baccharis represents a relatively large genus with wide distribution in the New 
World and presents high scientific and cultural relevance and huge economic poten-
tial, such as in producing important goods and services for human well-being. 
Among the countries that have published scientific literature about Baccharis spe-
cies in the last 40 years are Brazil, United States, Argentina, Chile, Canada, and 
Mexico. More recently, even countries where the genus does not naturally occur, 
such as Spain, Japan, Lithuania, Denmark, and France, have produced articles on 
Baccharis.

2  �The Ecological Path of Baccharis

Baccharis species are widely distributed from their origin, likely the mountaintop 
areas in eastern Brazil (Barroso 1976; Heiden et al. 2019). In the process of expan-
sion and adaptation of Baccharis species, colonization by many species of insects 
and pathogens occurred, originating several types of associations. Some Baccharis 
species offer excellent resources for herbivorous and pollinating insects since they 
remain green and in bloom throughout the year (Boldt 1989; Espírito-Santo and 
Fernandes 1998; Espírito-Santo et al. 2004, 2007, 2012; Marques and Fernandes 
2016; Watts et al. 2016; Fernandes et al. 2018; Moreira et al. 2018; Matilde-Silva 
et al. 2019; Monteiro et al. 2020). Some species bloom in autumn, which makes 
them very attractive to honey bees in a period when other flowers are absent. For 
example, B. salicifolia, B. pilularis and B. sarothroides are late summer and autumn 
honey plants (Boldt 1989). Baccharis dracunculifolia is a very important honey 
plant in Brazil and the main source of substances for the production of green propo-
lis (Bastos and Oliveira 1999; Santos et  al. 2011; Fernandes et  al. 2018), while 
B. concinna produces flowers throughout the year (Madeira and Fernandes 1999; 
Espírito Santo and Fernandes 1998; Espírito Santo et al. 2012; Marques et al. 2002). 
These characteristics provide a unique scenario where problems of central relevance 
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in ecology and biodiversity can be studied in detail (see Fagundes et al. 2005; Silva 
et al. 2007) and across large biogeographical regions.

Baccharis species are, to a large extent, primary colonizers of disturbed habitats 
(eg, B. dracunculifolia, B. concinna, B. pseudomyriocephala, B. halimifolia, B. pil-
ularis) and, thus, are very important for the recovery, functioning and maintenance 
of biodiversity in various ecosystems, including those under natural succession 
(Boldt 1989; Araújo et al. 2003). Due to their biological features, diverse associated 
fauna, and wide distribution – usually in high frequency and across gradients (alti-
tudinal, hygrothermal, and of habitat disturbance) – the species of Baccharis have 
been extensively used as study models in ecological research; such as in monitoring 
the impacts of climate change. Baccharis pilularis, for instance, a major facilitating 
species in the chaparral of California (Pelaez et al. 2019), has been used as a model 
for studies of climate change due to its biological characteristics and ease of experi-
mental manipulation (see Zavaleta 2006; Zavaleta and Kettley 2006). In Brazil, sev-
eral aspects of the species B. dracunculifolia have also been studied, including its 
invasiveness, environmental recovery capacity (see Julião et  al. 2005; Fernandes 
et al. 2016; Adenesky-Filho et al. 2017), function as a nurse species (Perea et al. 
2019) and experimental species for testing the effects of climate change (e.g., Sá 
et al. 2014; Oki et al. 2020).

Several species of Baccharis are, on the other hand, considered pests that are 
difficult to manage in pastures, growing in recreational areas. These invasions usu-
ally occur after changes in the environment and, due to their rapid growth, dense 
stands are formed (Boldt 1989). In central Chile, the formation of degraded vegeta-
tion resulted in optimal conditions for the establishment of hybrids and backcross 
progenies for some species of Baccharis (Faini et al. 1991). Some species interfere 
with the use of soil water and the maintenance of irrigation and drainage channels 
(Timmons 1959; Parker 1972; Ellis 2001; Caño et al. 2016; Fried et al. 2016). At 
least one species is invasive, Baccharis halimifolia, which was introduced in 
Australia (Bailey 1900), France, Spain (Dupont 1966) and Italy (Boldt 1989), being 
the only species occurring outside the Americas. On the other hand, recent studies 
point to other Baccharis invasions in Europe, such as that of B. spicata, and may 
represent a worrying threat (Verloove et al. 2018). In Brazil, pastures are completely 
unviable when the invasion by B. dracunculifolia is intense (Lorenzi 1992; Kissmann 
and Groth 1992; Altesor et al. 2005). However, it is a plant that colonizes degraded 
or abandoned areas and an abandoned pasture can be considered a degraded area 
compared to the natural environment.

Many studies have been carried out in the United States, Mexico, Brazil, and 
Australia to verify the richness and importance of insects on some native and intro-
duced Baccharis species. In Australia, these studies focus on potential agents for the 
biological control of B. halimifolia, which has reached high population densities, 
replacing native vegetation (Palmer 1986; Boldt and Robbins 1987, 1990; Boldt 
1989; Palmer and Haseler 1992a, b; Palmer et al. 1993; Palmer and Tomley 1993; 
Donders et al. 2005, Sims-Chilton et al. 2010; Green et al. 2012). This same species 
is becoming one of the most troublesome invaders in the European continent (Caño 
et al. 2013; Calleja et al. 2019). Among the organisms that cause damage to the host 
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plant, the most significant are Chrysomelidae, Curculionidae, Tephritidae, and 
Cecidomyiidae (Tilden 1953; Palmer 1986; Boldt 1989; Cordo et al. 1999; Oki et al. 
2009; Fagundes and Fernandes 2011; Espirito-Santo et al. 2012; Fernandes et al. 
2014; Monteiro et  al. 2020). Chrysomelidae species consume large amounts of 
Baccharis spp. in South America (Blackwelder 1946), and the Brazilian species 
Lioplacis elliptica was introduced into Australia for biological control of B. halimi-
folia (Buzzi 1977; McFadyen 1978). Although only distributed in the North 
American Southwest, B. pilularis is another species that has been widely studied 
due to its importance as an invader of urban areas and water sources in the United 
States (Ellis 2001; Laris et al. 2017).

Gall-inducing insects can reach large population densities on some hosts and 
hence could be of importance in the biological control of Baccharis species (see 
reviews in Fernandes and Santos 2014). The potential for using the gall inducer 
Baccharopelma dracunculifoliae (Homoptera: Psyllidae) to control B. dracunculi-
folia where it represents potential problems due to its invasibility (e.g., Cochabamba, 
Bolivia) can be high due to its high frequency, impact, and wide distribution (Lara 
and Fernandes 1996; Espírito Santo and Fernandes 1998; Burkhadt et  al. 2004; 
Araujo et al. 2006). Seed predator and borer insects are also of great relevance in 
studies of Baccharis biological control (Brailovsky 1982; Palmer 1986; McFadyen 
1978) but have not been studied with the detail it deserves in recent years.

Thirty-three species of insects cause parasitic diseases on Baccharis in the 
United States (Cummings 1978). However, very little is known about the herbivo-
rous insect fauna that attacks the hundreds of other native Baccharis species in the 
Americas, despite some timid advances made in recent years (e.g., Collevatti and 
Sperber 1997; Hudson and Stiling 1997; Espírito Santo and Fernandes 1998; 
Burkhardt et al. 2004; Carneiro et al. 2005, 2006, 2009a, b; Fagundes et al. 2005; 
Fagundes and Fernandes 2011; Neves et al. 2011; Oki et al. 2009; Espirito-Santo 
et al. 2012; Monteiro et al. 2020). Less well known are the most attacked species 
and circumstances or factors that influence the resistance and/or susceptibility to 
attack by natural enemies, although some initial progress has also been made (e.g., 
Espírito Santo et al. 2007, 2012).

3  �Baccharis Interactions and Community Structuring

In the wilderness, Baccharis plays a key role in creating opportunities for commu-
nity assembly and maintenance. A few other genera or species have been reported 
to be superhosts of gall-inducing insects in the Nearctic and Palearctic regions: 
Quercus (Felt 1940; Abrahamson et al. 1998; Manos et al. 1999; Maldonado-Lopez 
et al. 2016; Pérez-Lopez et al. 2016), Larrea tridentata (Waring and Price 1990), 
Salix (Price et al. 1995), Populus (Floate and Whitham 1995), Rosa (Shorthouse and 
Rohfritsch 1992; Stone et al. 2002), Chrysothamnus in southwestern North America 
(Fernandes et al. 2000), and Solidago (Abrahamson and Weis 1997). These widely 
colonized host species have served as laboratories to test for generalities of 
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ecological interactions (see Fernandes and Barbosa 2014). In the Neotropics and 
southern temperate region, some host plant genera have the same role, such as 
Copaifera (Leguminosae) (Costa et  al. 2010, 2011), Nothofagus (Quintero et  al. 
2014), Protium (Maia 2011; Julião et  al. 2014), and Baccharis (Fernandes et  al. 
1996; Fernandes and Barbosa 2014; Formiga et al. 2015; Barbosa et al. 2017, 2019). 
In the reviews by Fernandes et al. (1996) and Fernandes and Barbosa (2014), the 
Baccharis hosts that supported the highest numbers of galling insects were B. dra-
cunculifolia (17 spp.), B. concinna (15 spp.), B. salicifolia (13 spp.), and Baccharis 
sp. 1 (11 spp.). In the southeastern mountains of Brazil, the Mantiqueira and 
Espinhaço Mountains, Coelho et  al. (2018) reported 106 galling species on 17 
Baccharis species. The highest richness of galling insects (13 galling species) was 
recorded on B. dracunculifolia, confirming the previous literature surveys for the 
species. The study also recorded a high richness of galling insects on B. minutiflora 
(12 spp.), B. cognata (10 spp.), B. reticularia (9 spp.), B. intermixta (8 spp.), and 
B. concinna (7 spp.). The hosts B. ramosissima, B. helychrysoides, and B. truncata 
supported six galling species each, while B. serrulata, B. ligustrina, and B. glutin-
osa each had three galling species recorded. A remarkable feature of Baccharis is 
that its galling organisms are from many different orders; e.g., Diptera, Lepidoptera, 
and Hemiptera. Based on a Web of Science search with the words “insect galls, 
galls, cecidia, galling insects, galhas, gallmucken, and agallas,” we were able to 
record at least 47 studies on galling insects on 8 species of Baccharis in the last 
75 years (1945–2020).

While no one has yet listed the number of insects attracted to the flowers of 
Baccharis (but see Ferracini et al. 1995), our own experience indicates it is large. In 
a short observation on the number of insects attracted to the flowers of Baccharis 
dracunculifolia during a very limited number of days (2–3 days), we have been able 
to list more than 30 different species (in review). These data confirm that some 
Baccharis species are extremely important in providing resources to pollinators. 
They also confirm that this species’ effects on ecosystem functioning must be even 
higher where these plants are abundant or are key strategic resources for the com-
munity, such in mountaintop regions and deserts (e.g., Boldt 1989; Griffin 1997). 
Hence, Baccharis species could be used in programs to attract pollinators.

On the other hand, the understanding of some ecological and evolutionary paths 
in Baccharis is incipient. For instance, genetic studies are in their infancy, and more 
applied aspects such as propagation for several uses are not well developed. Genetic 
studies could be of great relevance in promoting other sorts of ecological and evo-
lutionary studies in the future.

4  �The Chemistry of Baccharis

Baccharis species are known in traditional culture for the treatment of diseases such 
as gastrointestinal and liver disorders, anemia, diabetes, diarrhea, infections, cancer, 
gout, rheumatism, ulcers, and skin problems, among others (Vidari et  al. 2003; 
Abad and Bermejo 2007; Hocayen et  al. 2016; Rabelo and Costa 2018; 
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Romero-Benavides et al. 2018; Ascari et al. 2019; Basso et al. 2019; Costa et al. 
2019; Bonin et al. 2020; Paniagua-Zambrana et al. 2020; Souza et al. 2020). Several 
studies present the most updated information on the production of phytochemicals 
for pharmaceutical, cosmetic, and other applications, and therefore we will not 
review these here (Verdi et al. 2005; Grecco et al. 2010; Galvão et al. 2012; Vannini 
et al. 2012; González et al. 2018; Jaramillo-García et al. 2018; Ueno et al. 2018).

This high usage in folk medicine and interest by the pharmaceutical industry has 
its origin in the rich chemical properties of the genus. Several species of Baccharis 
produce chemical compounds that are under investigation by many institutes and 
laboratories around the world (e.g., Jarvis et al. 1988; Brown 1994; Fournet et al. 
1994; Verdi et al. 2005; Pereira et al. 2017; Romero-Benavides et al. 2018; Bonin 
et al. 2020). In folk medicine, tea made from B. douglasii is used to treat ulcerations 
and wounds. Other teas are used to treat headaches and as emetics (Boldt 1989). 
B. trimera ethyl acetate extracts have been used against Schistosoma infections in 
Brazil (Herz et al. 1977). In Argentina, about 50 species of Baccharis are used in 
folk medicine (Boldt 1989). Bandoni et  al. (1978) found that two flavonoids 
extracted from B. crispa and B. notosergila have antimicrobial activity, but since 
then this number of studies has continued to grow, showing the relevance of 
this genus.

Various chemical compounds in Baccharis are potentially effective in fighting 
cancer. Baccharin trichothecene extracted from the leaves, buds, and dried flowers 
of B. megapotamica acts against leukemia and tumors of the colon of mice (Kupchan 
et  al. 1976, 1977; Arcamone et  al. 1980; Carvalho et  al. 2016; Rodrigues et  al. 
2020). Two additional groups of trichothecenes, roridins, and verrucarins, found in 
B. coridifolia, are active against nasopharyngeal tumor cells (Jarvis et al. 1988, see 
also Budel et al. 2005; Verdi et al. 2005). About 180 species have already been ana-
lyzed chemically, leaving about 260 species to be prospected for their chemical 
constituents and efficacy. On the other hand, the potential for discovering new 
chemicals is greatly expanded when long-term studies are carried out. Collections 
of botanical material for phytochemical studies are generally gathered in a single 
opportunity, thus losing the enormous variability and seasonality of the production 
of compounds (Gershenzon 1984). Hence, the genus has an enormous potential to 
contribute a large number of chemical substances, some of which might be new to 
science.

According to Abad and Bermejo (2007), over 150 compounds have been isolated 
and identified from the Baccharis genus. Many substances isolated from this genus 
have been used as medicine (e.g., B. trinervis, used as anti-HIV), perfumes (essen-
tial oils of B. dracunculifolia, B. uncinella, B. genistelloides, B. trimera), and repel-
lents (terpenoids and flavonoids found in many species), among other products 
(Jarvis et al. 1988; Argandoña and Faini 1993; Ferracini et al. 1995; Palomino et al. 
2002; Agostini et  al. 2005; Verdi et  al. 2005; Wollenweber et  al. 2006). The 
Baccharis species more deeply studied chemically are B. megapotamica, B. incarum, 
B. trimera, B. trinervis, B. salicifolia, B. crispa, B. coridifolia, B. dracunculifolia, 
B. uncinella, B. retusa, B. linearis, B. grisebachii, B. obtusifolia, and B. tricuneata 
(Bohlmann et  al. 1982; Verdi et  al. 2005; Budel et  al. 2005; Besten et  al. 2012; 
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Campos et al. 2016; Moraes Neto et al. 2019). This arsenal of applicability has led 
to the filing of 226 Baccharis patents. Half of these patents are aimed at the pharma-
cological area (53.5% of patents), mainly in the treatment of cancer (40 patents). 
Among the patents, another highlight is the application of B. gaudichaudiana in the 
treatment of coronavirus (Junxing et  al. 2003). This information emphasizes the 
pharmacological potentialities around this genus. In southeastern Brazil, oils 
extracted from leaves and stems of B. dracunculifolia and B. genistelloides are used 
as fragrances (Chialva and Doglia 1990; Suttisri et al. 1994; Fabiane et al. 2008; 
Frizzo et al. 2001, 2008; Queiroga et al. 1990, 2014), but the potential for new find-
ings is enormous as most of the species were not yet screened for the production 
of them.

5  �Other Applications

Despite their low nutritional content and known unpalatability (Pelaez et  al. 
2019; Cock and Hierro 2020), some species of Baccharis, considered to be non-
toxic, have been used as fodder for cattle (Benson and Darrow 1981). B. sarothroi-
des has been used as vegetation cover and to correct soils degraded by copper 
mining in Arizona, USA (Day and Ludeke 1980; Norem et al. 1982; Haque et al. 
2008; Haque et al. 2009). In Brazil, mainly in Minas Gerais, where mineral explora-
tion is carried out in the open, studies on the use of plants of this genus for the 
recovery of degraded areas were initiated, and the species B. dracunculifolia and 
B. concinna are suggested as viable alternatives to the introduction of exotic species 
to habitat and region (e.g., Fernandes et al. 2007; Negreiros et al. 2014; Gomes et al. 
2015; Fernandes et al. 2016).

A serious problem is cattle poisoning by Baccharis. Animal death cases have 
been recorded in Brazil (Occhioni 1944; Tokarnia and Dobereiner 1976), Uruguay, 
and Argentina (Schang 1929). The vegetative parts are toxic throughout the year, 
while the flowers are 4–8 times more toxic (Tokarnia and Dobereiner 1976). The 
most common toxic compounds found in some Baccharis species studied were 
macrocyclic trichothecenes (Kupchan et  al. 1976, 1977; Habermehl et  al. 1985; 
Jarvis et al. 1988, 1996; Rizzo et al. 1997; Driemeier et al. 2000; Varaschin and 
Alessi 2003). The symptoms exhibited by the poisoned cattle are anorexia, lack of 
coordination and direction in walking, tremors, and convulsions. Postmortem analy-
ses reveal lesions in the rumen, necrosis, and detachment of the intestinal mucosa 
(Tokarnia and Dobereiner 1976; see also Jarvis et al. 1996; Driemeier et al. 2000; 
Budel et al. 2005; Verdi et al. 2005; Oliveira-Filho et al. 2011; Panziera et al. 2015).

An important applied aspect is that of B. dracunculifolia and Africanized honey 
bee Apis mellifera (Kumazawa et  al. 2003). This bee collects resins from apical 
buds of B. dracunculifolia and uses it to produce a resinous layer inside the hive, 
known as green propolis (Teixeira et al. 2005; Fernandes et al. 2018). This resinous 
mass has antiseptic, anti-inflammatory, anticancer, and healing properties and thus 
has been widely studied, commercialized, and used, primarily by the 
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pharmaceutical and cosmetics industry (Banskota et  al. 2001; Chan et  al. 2012; 
Veiga et al. 2017; Endo et al. 2018). Among the chemicals isolated from propolis, it 
is worth mentioning the presence of flavonoids, phenylpropanoids, phenolic acids, 
and essential oils (Kumazawa et al. 2003; Teixeira et al. 2005; Takashima et al. 2019).

Another application of Baccharis is associated with its high diversity of symbi-
otic organisms (bacteria, endophytic fungi, and mycorrhizae), which not only helps 
in plant survival and development but generates a potential for use in the field of 
bioprospecting (Oki et al. 2009, 2016; Cuzzi et al. 2012; Vieira et al. 2014; Coutinho 
et al. 2019). Baccharis endophytic fungi have been shown to be effective in antimi-
crobial and antifungal (Oki et al. 2016; Vieira et al. 2014), as well as anti-herbivory, 
activities (Oki et al. 2016, 2021).

6  �The Content of the Book

This book is arranged into four main parts. Chapter 1 focuses on the main ecological 
and evolutionary aspects of the genus. Chapter 2 presents the most current under-
standing of the taxonomy and distribution of the 442 species of Baccharis, discuss-
ing the genus origins and diversification. Chapter 3 offers a historical overview of 
genetic studies on Baccharis species, including recent method developments. 
Chapter 4 addresses the relationship between intersexual differences in resource 
allocation and herbivory in dioecious Baccharis species. Chapter 5 provides a 
detailed description of the network of direct and indirect interactions among arthro-
pods in the well-studied B. dracunculifolia system. Chapter 6 brings to light the 
world of endophytic fungi associated with Baccharis and their importance in help-
ing plants cope with environmental stresses and natural enemies and as a source of 
bioactive compounds. Chapter 7 reveals the crucial role of Baccharis species as 
nurse plants and in community assembly, particularly in stressful and herbivore-
dominated environments in the Americas. Then, Chap. 8 closes the section discuss-
ing the causes and consequences of biological invasion by Baccharis in the world.

The second part concentrates on the structural and chemical particularities of the 
Baccharis species. Chapter 9 provides a comprehensive review of the morphology 
and anatomy of Baccharis, including morphological and anatomical features of par-
ticular taxonomic relevance. Chapter 10 reviews the chemical composition of essen-
tial oils of Baccharis species and their wide range of biological activities. Chapter 
11 shows a comprehensive overview of the wide variety of flavonoids present in 
Baccharis species. Chapter 12 presents ethnopharmacological uses of phenolic 
compounds, focusing on folk medicine, and it also discusses the toxicity of some 
Baccharis species. The main volatile terpenes, which play key roles in the biologi-
cal activities of Baccharis species, are presented in Chap. 13. Trichothecenes are 
covered in detail in Chap. 14, while in Chap. 15 livestock poisoning by some spe-
cies of Baccharis is reviewed.

Part three explores the social and economic importance of Baccharis. Chapter 16 
reviews the wide variety of popular uses of several species of Baccharis in South 
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America. Chapter 17 describes the development of the cultivar of B. trimera, the 
first Brazilian medicinal plant to be registered and patent-protected. Chapter 18 
exposes the potential of Baccharis secondary metabolites in the development of 
new drugs to fight cancer. The last chapter in this part, Chap. 19, portrays the current 
status of scientific and technological innovations involving species of Baccharis.

This book’s final part is devoted to green propolis, whose chief plant source is 
B. dracunculifolia. Chapter 20 reviews the chemical constituents and antioxidant 
properties of Brazilian green propolis. Chapter 21 examines the potential of green 
propolis components in the prevention and treatment of obesity and diabetes. 
Chapter 22 discusses the effects of the green propolis on the immune response. 
Finally, Chap. 23 presents the current status of innovation and markets of propolis, 
emphasizing green propolis.
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