
On Minimum Generalized Manhattan
Connections

Antonios Antoniadis1, Margarita Capretto2, Parinya Chalermsook3,
Christoph Damerius4(B), Peter Kling4, Lukas Nölke5, Nidia Obscura Acosta3,

and Joachim Spoerhase3

1 University of Twente, Enschede, The Netherlands
a.antoniadis@utwente.nl

2 Universidad Nacional de Rosario, Rosario, Argentina
3 Aalto University, Espoo, Finland

{parinya.chalermsook,nidia.obscuraacosta,joachim.spoerhase}@aalto.fi
4 University of Hamburg, Hamburg, Germany

{christoph.damerius,peter.kling}@uni-hamburg.de
5 University of Bremen, Bremen, Germany

noelke@uni-bremen.de

Abstract. We consider minimum-cardinality Manhattan connected sets
with arbitrary demands: Given a collection of points P in the plane,
together with a subset of pairs of points in P (which we call demands), find
a minimum-cardinality superset of P such that every demand pair is con-
nected by a path whose length is the �1-distance of the pair. This problem
is a variant of three well-studied problems that have arisen in computa-
tional geometry, data structures, and network design: (i) It is a node-cost
variant of the classical Manhattan network problem, (ii) it is an exten-
sion of the binary search tree problem to arbitrary demands, and (iii) it
is a special case of the directed Steiner forest problem. Since the problem
inherits basic structural properties from the context of binary search trees,
an O(log n)-approximation is trivial. We show that the problem is NP-
hard and present an O(

√
log n)-approximation algorithm. Moreover, we

provide an O(log log n)-approximation algorithm for complete k-partite
demands as well as improved results for unit-disk demands and several
generalizations. Our results crucially rely on a new lower bound on the
optimal cost that could potentially be useful in the context of BSTs.

Keywords: Manhattan networks · Binary search tree · NP-hardness

1 Introduction

Given a collection of points P ⊂ R
2 on the plane, the Manhattan Graph GP of P

is an undirected graph with vertex set V (GP) = P and arcs E(GP) that connect
any vertically- or horizontally-aligned points. Point p is said to be Manhattan-
connected (M-connected) to point q if GP contains a shortest rectilinear path

The full version of this paper [1] can be found at https://arxiv.org/abs/2010.14338.
c© Springer Nature Switzerland AG 2021
A. Lubiw et al. (Eds.): WADS 2021, LNCS 12808, pp. 85–100, 2021.
https://doi.org/10.1007/978-3-030-83508-8_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-83508-8_7&domain=pdf
https://arxiv.org/abs/2010.14338
https://doi.org/10.1007/978-3-030-83508-8_7

86 A. Antoniadis et al.

Fig. 1. Left: A Manhattan instance with input points in P drawn as black disks and
demands in D drawn as orange rectangles. Right: The Manhattan Graph GP∪Q of a
feasible solution Q, with points in Q drawn as crosses. Points p2 and p4 are Manhattan-
connected via the red path p2 - q1 - p3 - q2 - p4. Points p1 and p3 are not Manhattan-
connected but also not a demand pair in D. (Color figure online)

from p to q (i.e. a path of length ||p − q||1). In this paper, we initiate the study
of the following problem: Given points P ⊂ R

2 and demands D ⊆ P × P , we
want to find a smallest set Q ⊂ R

2 such that every pair of vertices in D is
M -connected in GP ∪ Q. We call this problem Minimum Generalized Man-
hattan Connections (MinGMConn), see Fig. 1 for an illustration. Variants
of this problem have appeared and received a lot of attention in many areas
of theoretical computer science, including data structures, approximation algo-
rithms, and computational geometry. Below, we briefly discuss them, as well as
the implications of our results in those contexts.

Binary Search Trees (BSTs). The Dynamic Optimality Conjecture [19] is one
of the most fundamental open problems in dynamic data structures, postulat-
ing the existence of an O(1)-competitive binary search tree. Despite continuing
efforts and important progress for several decades (see, e.g., [3,7,10,11,18] and
references therein), the conjecture has so far remained elusive, with the best
known competitive ratio of O(log log n) obtained by Tango trees [11]. Even in the
offline setting, the best known algorithm is also a O(log log n)-approximation;
the problem is not even known to be NP-hard. Demaine, Harmon, Iacono, Kane,
and Pătraşcu [10] showed that approximating BST is equivalent (up to a con-
stant in the approximation factor) to approximating the node-cost Manhattan
problem with “evolving demand” (that is, points added to the solution create
demands to all existing points).1

The long-standing nature of the O(log log n) upper bound could suggest the
lower bound answer. However, the understanding of lower bound techniques for
BSTs has been completely lacking: It is not even known whether the problem
is NP-hard! Our work is inspired by the following question. Is it NP-hard to
(exactly) compute a minimum-cost binary search tree? We are, unfortunately,
unable to answer this question. In this paper, we instead present a proof that a
natural generalization of the problem from the geometric point of view (which

1 In fact, the problem stated in [10] is called MinASS which appears different from
Manhattan problem, but they can be shown to be equivalent, see the Appendix of
the full version [1].

On Minimum Generalized Manhattan Connections 87

is exactly our MinGMConn) is NP-hard2. We believe that our construction
and its analysis could be useful in further study of the BST problem from the
perspective of lower bounds.

Edge-Cost Manhattan Problem. Closely related to MinGMConn is the
edge-cost variant of Manhattan Network [15]: Given P ⊂ R

2, our goal is to com-
pute Q ⊂ R

2 such that every pair in P is M -connected in GP ∪ Q, while min-
imizing the total lengths of the edges used for the connections. The problem is
motivated by various applications in city planning, network layouts, distributed
algorithms and VLSI circuit design, and has received attention in the computa-
tional geometry community. Since the edge-cost variant is NP-hard [6], the focus
has been on approximation algorithms. Several groups of researchers presented 2-
approximation algorithms [5,16], and this has remained the best known approx-
imation ratio. Generalizations of the edge-cost variant have been proposed and
studied in two directions: In [9], the authors generalize the Manhattan problem to
higher dimension R

d for d � 2. The arbitrary-demand case was suggested in [5].
An O(log n)-approximation algorithm was presented in [8], which remains the
best known ratio. Our MinGMConn problem can be seen as an analogue of [8] in
the node-cost setting. We present an improved approximation ratio of O(

√
log n),

therefore, raising the possibility of similar improvements in the edge-cost variants.

Directed Steiner Forests (DSF). MinGMConn is a special case of node-
cost directed Steiner forest (DSF): Given a directed graph G = (V,E) and pairs
of terminals D ⊆ V × V , find a minimum cardinality subset S ⊆ V such that
G[S] contains a path from s to t for all (s, t) ∈ D. DSF is known to be highly
intractable, with hardness 2log

1−ε|V | unless NP ⊆ DTIME(npolylog n) [12]. The
best known approximation ratios are slightly sub-linear [4,13]. Manhattan prob-
lems can be thought of as natural, tractable special cases of DSF, with approx-
imability between constant and logarithmic regimes. For more details, see [9].

1.1 Our Contributions

In this paper, we present both hardness and algorithmic results for MinGM-
Conn.

Theorem 1. The MinGMConn problem is NP-hard, even if no two points in
the input are horizontally or vertically aligned.

This result can be thought of as a first step towards developing structural
understanding of Manhattan connectivity w.r.t. lower bounds. We believe such
understanding would come in handy in future study of binary search trees in the
geometric view.

Next, we present algorithmic results. Due to the BST structures, an O(log n)-
approximation is trivial. The main ingredient in obtaining a sub-logarithmic

2 Demaine et al. [10] prove NP-hardness for MinGMConn with uniform demands
but allow the input to contain multiple points on the same row. Their result is
incomparable to ours.

88 A. Antoniadis et al.

approximation is an approximation algorithm for the case of “few” x-coordinates.
Formally, we say an input instance is s-thin if points in P lie on at most s different
x-coordinates.

Theorem 2. There exists an efficient O(log s)-approximation algorithm for s-
thin instances of MinGMConn.

In fact, our algorithm produces solutions with O(log s · IS(P,D)) points,
where IS(P,D) � OPT(P,D) is the cardinality of a boundary independent set (a
notion introduced below). This is tight up to a constant factor, as there is an
input (P,D) on s different columns such that OPT(P,D) = Ω(IS(P,D)log s);
see the Appendix of [1].

This theorem, along with the boundary independent set analysis, turns out
to be an important building block for our approximation result, which achieves
an approximation ratio that is sublogarithmic in n.

Theorem 3. There is an O(
√
log n)-approximation algorithm for MinGM-

Conn.

This improves over the trivial O(log n)-approximation and may grant some new
hope with regards to an improvement over this factor for the edge-cost variants.

We provide improved approximation ratios for several settings when the
graph formed by the demands has a special structure. For example, we obtain
an O(log log n)-approximation algorithm for MinGMConn when the demands
form a complete k-partite graph, and an O(1)-approximation for unit-disk
demands; see the Appendix of [1].

1.2 Overview of Techniques

The NP-hardness proof is based on a reduction to 3-SAT. In contrast to the uni-
form case of MinGMConn (where there is a demand for each two input points),
the non-uniform case allows us to encode the structure of a 3-SAT formula in
a geometrical manner: we can use demand rectangles to form certain “paths”
(see Fig. 2). We exploit this observation in the reduction design by translat-
ing clauses and variables into gadgets, rectangular areas with specific placement
of input points and demands (see Fig. 3). Variable gadgets are placed between
clause gadgets and a dedicated starting point. The crux is to design the instance
such that a natural solution to the intra- and inter-gadget demands connects the
starting point to either the positive or the negative part of each variable gadget.
And, the M-paths leaving a variable gadget from that part can all reach only
clauses with a positive appearance or only clauses with a negative appearance of
that variable respectively. We refer to such solutions as boolean solutions, as they
naturally correspond to a variable assignment. Additional demands between the
starting point and the clause gadgets are satisfied by a boolean solution if and
only if it corresponds to a satisfying variable assignment. The main part of the
proof is to show that any small-enough solution is a boolean solution.

In the study of any optimization (in particular, minimization) problem, one
of the main difficulties is to come up with a strong lower bound on the cost of an

On Minimum Generalized Manhattan Connections 89

optimal solution that can be leveraged by algorithms. For binary search trees,
many such bounds were known, and the strongest known lower bound is called
an independent rectangle bound (IR). However, IR is provably too weak for the
purpose of MinGMConn, that is, the gap between the optimum and IR can
be as large as Ω(n). We propose to use a new bound, which we call vertically
separable demands (VS). This bound turns out to be relatively tight and plays
an important role in both our hardness and algorithmic results. In the hardness
result, we use our VS bound to argue about the cost of the optimum in the
soundness case.

Our O(
√
log n)-approximation follows the high-level idea of [2], which

presents a geometric O(log log n)-approximation for BST. Roughly speaking,
it argues (implicitly) that two combinatorial properties, which we refer to as (A)
and (B), are sufficient for the existence of an O(log log n)-approximation: (A)
the lower bound function is “subadditive” with respect to a certain instance par-
titioning, and (B) the instance is “sparse” in the sense that for any input (P,D),
there exists an equivalent input (P ′,D′) such that |P ′| = O(OPT(P,D)). In the
context of BST, (A) holds for the Wilber bound and (B) is almost trivial to
show.

In the MinGMConn problem, we prove that Property (A) holds for the new
VS bound. However, proving Property (B) seems to be very challenging. We
instead show a corollary of Property (B): There is an O(log s)-approximation
algorithm for MinGMConn, where s is the number of columns containing at
least one input point. The proof of this relaxed property is the main new ingre-
dient of our algorithmic result and is stated in Theorem 2. Finally, we argue that
this weaker property still suffices for an O(

√
log n)-approximation algorithm. For

completeness, we discuss special cases where we prove that Property (B) holds
and thus an O(log log n)-approximation exists. See the full version [1].

1.3 Outlook and Open Problems

Inspired by the study of structural properties of Manhattan connected sets and
potential applications in BSTs, we initiate the study of MinGMConn by proving
NP-hardness and giving several algorithmic results.

There are multiple interesting open problems. First, can we show that the
BST problem is NP-hard? We hope that our construction and analysis using
the new VS bound would be useful for this purpose. Another interesting open
problem is to obtain a o(log n)-approximation for the edge-cost variant of the
generalized Manhattan network problem.

Finally, it can be shown that our VS bound is sandwiched between OPT and
IR. It is an interesting question to study the tightness of the VS bound when
estimating the value of an optimal solution. Is VS within a constant factor from
the optimal cost of BST? Can we approximate the value of VS efficiently within
a constant factor?

90 A. Antoniadis et al.

2 Model and Preliminaries

Let P ⊂ R
2 be a set of points on the plane. We say that points p, q ∈ P

are Manhattan-connected (M-connected) in P if there is a sequence of points
p = x0, x1, . . . , xk = q such that (i) the points xi and xi+1 are horizontally or
vertically aligned for i = 0, . . . , k−1, and (ii) the total length satisfies

∑k−1
i=0 ||xi−

xi+1||1 = ||p − q||1.
In the minimum generalized Manhattan connections (MinGMConn) prob-

lem, we are given a set of input points P and their placement in a rectangular
grid with integer coordinates such that there are no two points in the same row
or in the same column. Additionally, we are given a set D ⊆ {(p, q)|p, q ∈ P} of
demands. The goal is to find a set of points Q of minimum cardinality such that
p and q are M-connected with respect to P ∪ Q for all (p, q) ∈ D. Denote by
OPT(P,D) the size of such a point set. We differentiate between the points of
P and Q by calling them input points and auxiliary points, respectively. Since
being M-connected is a symmetrical relation, we typically assume x(p) < x(q)
for all (p, q) ∈ D. Here, x(p) and y(p) denote the x- and y-coordinate of a point p,
respectively. In our analysis, we sometimes use the notations [n] := {1, 2, . . . , n}
and [n]0 := [n] ∪ {0}, where n ∈ N.

Connection to Binary Search Trees. In the uniform case, i.e. D =
{(p, q)|p, q ∈ P}, this problem is intimately connected to the Binary Search
Tree (BST) problem in the geometric model [10]. Here, we are given a point set
P and the goal is to compute a minimum set Q such that every pair in P ∪ Q
is M-connected in P ∪ Q. Denote by BST(P) the optimal value of the BST
problem.

Independent Rectangles and Vertically Separable Demands. Following
Demaine et al. [10], we define the independent rectangle number which is a lower
bound on OPT(P,D). For a demand (p, q) ∈ D, denote by R(p, q) the (unique)
axis-aligned closed rectangle that has p and q as two of its corners. We call it the
demand rectangle corresponding to (p, q). Two rectangles R(p, q), R(p′, q′) are
called non-conflicting if none contains a corner of the other in its interior. We
say a subset of demands D′ ⊆ D is independent, if all pairs of rectangles in D′

are non-conflicting. Denote by IR(P,D) the maximum integer k such that there
is an independent subset D′ of size k. We refer to k as the independent rectangle
number.

For uniform demands, the problem admits a 2-approximation. Here, the inde-
pendent rectangle number plays a crucial role. Specifically, it was argued in
Harmon’s PhD thesis [17] that a natural greedy algorithm costs at most the
independent rectangle number and thus yields a 2-approximation. In our gen-
eralized demand case, however, the independent rectangle number turns out to
be a bad estimate on the value of an optimal solution. Instead, we consider the
notion of vertically separable demands, used implicitly in [10].

We say that a subset of demands D′ ⊆ D is vertically separable if there exists
an ordering R1, R2, . . . , Rk of its demand rectangles and vertical line segments
�1, �2 . . . , �k such that �i connects the respective interiors of top and bottom

On Minimum Generalized Manhattan Connections 91

boundaries of Ri and does not intersect any Rj , for j > i. For an input (P,D),
denote by VS(P,D) the maximum cardinality of such a subset. We call a set of
demands D monotone, if either y(p) < y(q) for all (p, q) ∈ D or y(p) > y(q) for
all (p, q) ∈ D. We assume the former case holds as both are symmetrical. In the
following, we argue that VS is indeed a lower bound on OPT (the proof can be
found in the full version [1]).

Lemma 4 [10]. Let (P,D) be an input for MinGMConn. If D is monotone,
then IR(P,D) � VS(P,D) � OPT(P,D). In general 1

2 IR(P,D) � VS(P,D) �
2 · OPT(P,D).

The charging scheme described Lemma 4’s proof injectively maps a demand rect-
angle R to a point of the optimal solution in R. This implies the following corol-
lary.

Corollary 5. Let D be a vertically separable, monotone set of demands and
Q a feasible solution. If |Q| = |D|, there is a bijection c : Q → D such that
q ∈ R(c(q)) for all q ∈ Q. In particular, for Q′ ⊆ Q there are at least |Q′|
demands from D that each covers some q ∈ Q′.

In general, the independent rectangle number and the maximum size of a ver-
tically separable set are incomparable. By Lemma4, IR(P,D) � 2 · VS(P,D).
However, IR(P,D) may be smaller than VS(P,D) up to a factor of n. To see this,
consider n diagonally shifted copies of a demand, e.g. Ri = R

(
(i, i), (i+n, i+n)

)
,

for i = 1, . . . , n. Here, IR(P,D) = 1 and VS(P,D) = n. Thus, the concept of ver-
tical separability is more useful as a lower bound.

3 NP-Hardness

In this section, we show Theorem 1 by reducing the 3-SAT problem to MinGM-
Conn. In 3-SAT, we are given a formula φ consisting of m clauses C1, C2, . . . , Cm

over n variables X1,X2, . . . , Xn, each clause consisting of three literals. The goal
is to decide whether φ is satisfiable. For our reduction, we construct a MinGM-
Conn instance (Pφ,Dφ) and a positive integer α = α(φ) such that (Pφ,Dφ) has
an optimal solution of size α if and only if φ is satisfiable (see the full version
[1]). This immediately implies Theorem 1. In the following, we identify a demand
d ∈ Dφ with its demand rectangle R(d). This allows us to speak, for example,
of intersections of demands, corners of demands, or points covered by demands.

Our construction of the MinGMConn instance (Pφ,Dφ) is based on different
gadgets and their connections among each other. A gadget can be thought of as
a rectangle in the Euclidean plane that contains a specific set of input points
and demands between these. In the following, we give a coarse overview of our
construction, describing how gadgets are placed and how they interact (Fig. 2).
Moreover, we try to convey the majority of the intuition behind our reduction.
Because of space constraints the actual proof of the NP-hardness is given in the
full version [1].

92 A. Antoniadis et al.

Overview of the Construction. For each clause Cj , we create a clause gad-
get GCj and for each variable Xi, a variable gadget GXi. Clause gadgets are
arranged along a descending diagonal line, so all of GCj is to the bottom-right of
GCj−1. Variable gadgets are arranged in the same manner. This avoids unwanted
interference among different clause and variable gadgets, respectively. The vari-
able gadgets are placed to the bottom-left of all clause gadgets.

For each positive occurrence of a variable Xi in a clause Cj , we place a
dedicated connection point p+ij ∈ Pφ as well as suitable connection demands
from p+ij to a dedicated inner point of GXi and to a dedicated inner point of
GCj . Their purpose is to force optimal MinGMConn solutions to create specific
M-paths (going first up and then right in a narrow corridor) connecting a variable
to the clauses in which it appears positively. We call the area covered by these
two demands a (positive) variable-clause path. Similarly, there are connection
points p−

ij ∈ Pφ with suitable demands for negative appearances of Xi in Cj ,
creating a (negative) variable-clause path (going first right and then up in a
narrow corridor).

Finally, there is a starting point S ∈ Pφ to the bottom-left of all other points.
It has a demand to a clause point cj in the top-right of each clause gadget GCj

(an SC demand) and to a variable point xi in the bottom-left of each variable
gadget GXi (an SX demand). The inside of clause gadgets simply provides
different entrance points for the variable-clause paths, while the inside of variable
gadgets forces an optimal solution to choose between using either only positive
or only negative variable-clause paths. We will use these choices inside variable
gadgets to identify an optimal solution for (Pφ,Dφ) with a variable assignment
for φ.

The clause gadget GCj for clause Cj contains the clause point cj and three
(clause) literal points �j1, �j2, �j3. The clause point is in the top-right. The literal
points represent the literals of Cj and form a descending diagonal within the
gadget such that positive are above negative literals. For each literal point �jk,
there is a demand (�jk, cj). Moreover, if �jk is positive and corresponds to the
variable Xi, then there is a (positive) connection demand (p+ij , �jk). Similarly, if
�jk is negative, there is a (negative) connection demand (p−

ij , �jk). Finally, there
is the SC demand (S, cj).

The variable gadget GXi for variable Xi contains the variable point xi, two
(variable) literal points x+

i , x−
i , one demand point di, as well as n+

i positive and
n−

i negative literal connectors x+
ik and x−

ik, respectively. Here, n+
i and n−

i are
from [m]0 and denote the number of positive and negative occurrences of Xi in φ,
respectively. The variable point is in the bottom-left. The literal connectors and
the demand point form a descending diagonal in the top-right, with the positive
literal connectors above and the negative literal connectors below the demand
point. The literal points x+

i , x−
i lie in the interior of the rectangle spanned by

xi and di, close to the top-left and bottom-right corner respectively. They are
moved slightly inward to avoid identical x- or y-coordinates. Inside the gadgets,
we have demands of the form (x+

i , x+
ik) and (x−

i , x−
ik) between literal points and

literal connectors, (x+
i , di) and (x−

i , di) between literal points and the demand

On Minimum Generalized Manhattan Connections 93

point, as well as (xi, di) between the variable point and the demand point (an
XD demand). Towards the outside, we have the positive/negative connection
demandsbetween literal points and literal connectors (x+

ik, p+ij) if the k-th positive
literal of Xi occurs in Cj and (x−

ik, p−
ij) if the k-th negative literal of Xi occurs

in Cj as well as the SX demand (S, xi).

Fig. 2. MinGMConn instance (Pφ, Dφ) for φ = (X1 ∨¬X2 ∨X3)∧ (X1 ∨X2 ∨¬X4)∧
(¬X1 ∨ ¬X2 ∨ X4). Input points are shown as (red, yellow, or black) disks. For clause
and variable gadgets, we show only the clause points cj and the variable points xi;
their remaining inner points and demands are illustrated in Fig. 3. The small black
disks represent the connection points p+

ij , p
−
ij . Non-SC demands are shown as shaded,

orange rectangles, while SC demands are shown as dashed, red rectangles. (Color figure
online)

Intuition of the Reduction. Our construction is such that non-SC demands
(including those within gadgets) form a monotone, vertically separable demand
set. Thus, for

DSC := {d ∈ Dφ|d is not an SC demand} and α = α(φ) := |DSC |, (1)

Lemma 4 implies that any solution Qφ for (Pφ,Dφ) has size at least α.
The first part of the reduction shows that if φ is satisfiable, then there is

an (optimal) solution Qφ of size α. This is proven by constructing a family of
boolean solutions. These are (partial) solutions Qφ that can be identified with
a variable assignment for φ and that have the following properties: Qφ has size
α and satisfies all non-SC demands. Additionally, it can satisfy an SC demand
(S, cj) only by going through some variable xi, where such a path exists if and
only if Cj is satisfied by the value assigned to Xi by (the variable assignment)
Qφ. In particular, if φ is satisfiable, there is a boolean solution Qφ satisfying all
SC demands. This implies that Qφ is a solution to (Pφ,Dφ) of (optimal) size α.

We then provide the other direction of the reduction, stating that if there
is a solution Qφ for (Pφ,Dφ) of size α, then φ is satisfiable. Its proof is more

94 A. Antoniadis et al.

Fig. 3. Examples for a clause and a variable gadgets. As in Fig. 2, input points are
shown as circles and SC demands are shown as dashed, red rectangles. The XD demand
(xi, di) is shown as a shaded, yellow rectangle. All remaining (non-SC and non-XD)
demands are again shown as shaded, orange rectangles. (Color figure online)

involved and is made possible by careful placement of gadgets, connection points,
and demands. (See the full version [1] for the complete proof.) In a first step, we
show that the small size of Qφ implies that different parts of our construction
each must be satisfied by only a few, dedicated points from Qφ. For example,
Qφ has to use exactly n points to satisfy the n SX demands (S, xi). Another
result about “triangular” instances (e.g., the triangular grid formed by the n SX
demands, see Fig. 2) states that, here, optimal solutions must lie on grid lines
inside the “triangle”. See the full version [1]. We conclude that any M-path from
S to a clause point cj must go through exactly one variable point xi. Similarly, we
show that the 6m connection demands (forming the 3m variable-clause paths)
are satisfied by 6m points from Qφ and, since they are so few, each of these
points lies in the corner of a connection demand. This ensures that M-paths
cannot cheat by, e.g., “jumping” between different variable-clause paths. More
precisely, such a path can be entered only at the variable gadget where it starts
and be left only at the clause gadget where it ends.

All that remains to show is that there cannot be two M-paths entering a
variable gadget GXi (which they must do via xi) such that one leaves through a
positive and the other through a negative variable-clause path. We can then inter-
pret Qφ as a boolean solution (the variable assignment for Xi being determined
by whether M-paths leave GXi through positive or through negative variable-
clause paths). Since Qφ satisfies all demands, in particular all SC demands, the
corresponding variable assignment satisfies all clauses.

4 An Approximation Algorithm for s-Thin Instances

In this section, we present an approximation algorithm for s-thin instances
(points in P lie on at most s distinct x-coordinates). In particular, we allow

On Minimum Generalized Manhattan Connections 95

more than one point to share the same x-coordinate. However, we still require
any two points to have distinct y-coordinates. We show an approximation ratio
of O(log s), proving Theorem2.

An x-group is a maximal subset of P having the same x-coordinate. Note
that an O(log s)-approximation for s-thin instances can be obtained via a natural
“vertical” divide-and-conquer algorithm that recursively divides the s many x-
groups in two subinstances with roughly s/2 many x-groups each. (Section 5
considered a more general version of this, subdividing into an arbitrary number
of subinstances.) The analysis of this algorithm uses the number of input points
as a lower bound on OPT. However, such a bound is not sufficient for our purpose
of deriving an O(

√
log n)-approximation.

In this section, we present a different algorithm, based on “horizontal” divide-
and-conquer (after a pre-processing step to sparsify the set of y-coordinates
in the input via minimum hitting sets). Using horizontal rather than vertical
divide-and-conquer may seem counter-intuitive at first glance as the number of
y-coordinates in the input is generally unbounded in s. Interestingly enough, we
can give a stronger guarantee for this algorithm by bounding the cost of the
approximate solution against what we call a boundary independent set. Addi-
tionally, we show that the size of a such set is always upper bounded by the
maximum number of vertically separable demands. This directly implies The-
orem2, since 2OPT is an upper bound on the number of vertically separable
demands (c.f. Lemma 4). Even more importantly, our stronger bound allows us
to prove Theorem 3 in the next section since vertically separable demands ful-
fill the subadditivity property mentioned in the introduction. In the proof of
Theorem 3, an arbitrary O(log s)-approximation algorithm would not suffice.

By losing a factor 2 in the approximation ratio, we may assume that the
demands are monotone (we can handle pairs with x(p) < x(q) and y(p) > y(q)
symmetrically).

Definition 6 (Left & right demand segments). Let (P,D) be an input
instance. For each R(p, q) ∈ Q, denote by λ(p, q) the vertical segment that con-
nects (x(p), y(p)) and (x(p), y(q)). Similarly, denote by ρ(p, q) the vertical seg-
ment that connects (x(q), y(p)) and (x(q), y(q)). That is, λ(p, q) and ρ(p, q) are
simply the left and right boundaries of rectangle R(p, q).

Boundary Independent Sets. A left boundary independent set consists of
pairwise non-overlapping segments λ(p, q), a right boundary independent set of
pairwise non-overlapping segments ρ(p, q). A boundary independent set refers to
either a left or a right boundary independent set. Denote by IS(P,D) the size of
a maximum boundary independent set.

The following lemma implies that it suffices to work with boundary indepen-
dent sets instead of vertical separability. The main advantage of doing so, is that
(i) for IS, we do not have to identify any ordering of the demand subset, (ii) one
can compute IS(P,D) efficiently, and (iii) we can exploit geometric properties of
interval graphs, as we will do below.

96 A. Antoniadis et al.

Algorithm 1: HorizontalDC(P,D,R)
input : Instance (P, D) with rows R
output : Feasible solution to (P, D) computed via horizontal

divide-and-conquer
1 Q ← ∅; m ← median of R;
2 Dm ← { (p, q) ∈ D | y(p) � m � y(q) };
3 foreach (p, q) ∈ Dm do
4 Q ← Q ∪ {(x(p), m), (x(q), m)};

5 Dt ← { (p, q) ∈ D | y(p) > m }; Db ← { (p, q) ∈ D | y(q) < m };
6 Pt ← { p, q | (p, q) ∈ Dt }; Pb ← { p, q | (p, q) ∈ Db };
7 Rt ← { r ∈ R | r > m }; Rb ← { r ∈ R | r < m };
8 Q ← Q ∪ HorizontalDC(Pt, Dt, Rt) ∪ HorizontalDC(Pb, Db, Rb);
9 return Q;

Lemma 7. For any instance (P,D) we have that IS(P,D) � VS(P,D). More-
over, one can compute a maximum boundary independent set in polynomial time.

Algorithm Description. Our algorithm, which we call HorizontalMan-
hattan, produces a Manhattan solution of cost O(log s) · IS(P,D), where s
is the number of x-groups in P . The algorithm initially computes a set of
“crucial rows” R ⊆ R by computing a minimum hitting set in the interval
set I = {[y(p), y(q)] | (p, q) ∈ D}. In particular, the set R has the following
property. For each j ∈ R, let �j be a horizontal line drawn at y-coordinate j.
Then the lines {�j}j∈R stab every rectangle in {R(p, q)}(p,q)∈D. The following
observation follows from the fact that the interval hitting set is equal to the
maximum interval independent set.

Observation. |R| � IS(P,D).
After computing R, the algorithm calls a subroutine HorizontalDC (see

Algorithm1), which recursively adds points to each such row in a way that
guarantees a feasible solution. We now proceed to the analysis of the algorithm.

Lemma 8 (Feasibility). The algorithm HorizontalManhattan produces a
feasible solution in polynomial time.

Lemma 9 (Cost). For any s-thin instance (P,D), algorithm Horizontal-
Manhattan outputs a solution of cost O(log s) · IS(P,D).

Proof. Let r = |R| be the number of rows computed in HorizontalManhat-
tan. Define L = {λ(p, q) | [y(p), y(q)] ∈ I} to be the set of corresponding left
sides of the demands in I. In particular, the segments in L are disjoint and
|L| = r. We upper bound the cost of our solution as follows. For each added
point, define a witness interval, witnessing its cost. The total number of points
is then roughly bounded by the number of witness intervals, which we show to
be O(log s)IS(P,D).

On Minimum Generalized Manhattan Connections 97

We enumerate the recursion levels of Algorithm 1 from 1 to �log r	 in a top-
down fashion in the recursion tree. In each recursive call, at most s many points
are added to Q in line 4—one for each distinct x-coordinate. Hence, during the
first �log r	−�log s	 recursion levels at most s · 2�log r�−�log s� = O(s · r

s) = O(r)
many points are added to Q in total. We associate each of these points with one
unique left side in L in an arbitrary manner. For each of these points, we call its
associated left side the witness of this point.

For any point added to Q in line 4 in one of the last �log s	 recursion levels,
pick the first (left or right) side of a demand rectangle that led to including
this point. More precisely, if, in line 4, we add point (x(p),m) to Q for the first
time (which means that this point has not yet been added to Q via a different
demand) then associate λ(p, q) as a witness. Analogously, if we add (x(q),m) for
the first time then associate ρ(p, q) as a witness.

Overall, we have associated to each point in the final solution a uniquely
determined witness, which is a left or a right side of some demand rectangle.
Note that any (left or right) side of a rectangle may be assigned as a witness
to two solution points (once in the top recursion levels and once in the bottom
levels). In such a case we create a duplicate of the respective side and consider
them to be distinct witnesses.

Two witnesses added in the last �log s	 recursion levels can intersect only
if the recursive calls lie on the same root-to-leaf path in the recursion tree.
Otherwise, they are separated by the median row of the lowest common ancestor
in the recursion tree and cannot intersect. With this observation and the fact
that the witnesses in L form an independent set, we can bound the maximum
clique size in the intersection graph of all witnesses by 1 + �log s	.

This graph is an interval graph. Since interval graphs are perfect [14], there
exists a (1 + �log s)-coloring in this graph. Hence, there exists an independent
set of witnesses of size 1/(�log s	+ 1) times the size of the Manhattan solution.
Taking all left or all right sides of demands in this independent set (whichever is
larger) gives a boundary independent set of size at least 1/(2(1+ �log s)) times
the cost of the Manhattan solution.
�

We conclude the section by noting that the proof of Theorem 2 directly
follows by combining Lemmata 4, 7 and 9. As mentioned in the introduc-
tion, the factor O(log s) in Lemma 9 is tight in the strong sense that there
is a MinGMConn instance (P,D) with s distinct x-coordinates such that
OPT(P,D) = Ω(IS(P,D)log s). See the appendix of the full version [1].

5 A Sublogarithmic Approximation Algorithm

In this section, we give an overview of how to leverage the O(log s)-approximation
for s-thin instances to design an O(

√
log n)-approximation algorithm for general

instances.

Sub-instances. Let (P,D) be an instance of MinGMConn and let B be a
bounding box for P , that is, P ⊆ B. Let S = {S1, . . . , Ss} be a collection of

98 A. Antoniadis et al.

Fig. 4. An illustration of the inter-strip instance. Each strip Si is collapsed into one
column. The red demands are demands between pairs of points lying inside different
strips. The black demands are demands that are handled by intra-strip instances. (Color
figure online)

s vertical strips, ordered from left to right, that are obtained by drawing s − 1
vertical lines that partition B. We naturally create s+1 sub-instances as follows.
(See also Fig. 4.) First, we have s intra-strip instances {(Pi,Di)}i∈[s] such that
Pi = P ∩ Si and Di = D ∩ (Si × Si). Next, we have the inter-strip instance
πS(D) = (P ′,D′) where P ′ is obtained by collapsing each strip in S into a single
column and D′ is obtained from collapsing demands accordingly. For each point
p ∈ P , denote by πS(p) a copy of p in P ′ after collapsing. Note that this is
a simplified description of the instances that avoids some technicalities. For a
precise definition, see the appendix in the full version [1].

Sub-additivity of VS. The following is our sub-additivity property that we
use crucially in our divide-and-conquer algorithm.

Lemma 10. If (P,D) is an instance of MinGMConn with strip subdivision S,
then

VS(P,D) � VS(πS(P,D)) +
∑

S∈S
VS(P ∩ S,D ∩ (S × S)).

Divide-and-Conquer. Choose the strips S so that s = |S| = 2
√
log n. Thus the

inter-strip instance admits an approximation of ratio O(log s) = O(
√
log n); in

fact, we obtain a solution of cost O(
√
log n)VS(πS(P,D)). We recursively solve

each intra-strip instance (Pi,Di), and combine the solutions from these s + 1
sub-instances. (Details on how the solution can be combined are deferred to [1].)

We show by induction on the number of points that for any instance (P,D)
the cost of the computed solution is O(

√
log n)VS(P,D). (Here, we do not

take into account the cost incurred by combining the solutions to the sub-
instances.) By induction hypothesis, we have for each (Pi,Di) a solution of cost
O(

√
log n)VS(Pi,Di) since |Pi| < |P |. Note that we cannot use the induction

hypothesis for the inter-strip instance since |P ′| = |P |, which is why we need the
O(log s)-approximation algorithm. Using sub-additivity we obtain:

O(
√

log n)
(
VS(πS(P,D))+

∑

S∈S
VS(P ∩S,D∩ (S ×S))

)
= O(

√
log n)VS(P,D).

On Minimum Generalized Manhattan Connections 99

There is an additional cost incurred by combining the solutions of the sub-
instances to a feasible solution of the current instance. In the full version [1], we
argue that this can be done at a cost of O(OPT) for each of the log n/log s =√
log n many levels of the recursion. (This prevents us from further improving

the approximation factor by picking s = 2o(
√
log n).)

References

1. Antoniadis, A., et al.: On minimum generalized Manhattan connections. CoRR
abs/2010.14338 (2020). https://arxiv.org/abs/2010.14338

2. Chalermsook, P., Chuzhoy, J., Saranurak, T.: Pinning down the strong Wilber 1
bound for binary search trees. arXiv preprint arXiv:1912.02900 (2019)

3. Chalermsook, P., Goswami, M., Kozma, L., Mehlhorn, K., Saranurak, T.: Pattern-
avoiding access in binary search trees. In: 2015 IEEE 56th Annual Symposium on
Foundations of Computer Science, pp. 410–423. IEEE (2015)

4. Chekuri, C., Even, G., Gupta, A., Segev, D.: Set connectivity problems in undi-
rected graphs and the directed Steiner network problem. ACM Trans. Algorithms
(TALG) 7(2), 1–17 (2011)

5. Chepoi, V., Nouioua, K., Vaxes, Y.: A rounding algorithm for approximating min-
imum Manhattan networks. Theoret. Comput. Sci. 390(1), 56–69 (2008)

6. Chin, F.Y., Guo, Z., Sun, H.: Minimum Manhattan network is NP-complete. Dis-
crete Comput. Geom. 45(4), 701–722 (2011)

7. Cole, R.: On the dynamic finger conjecture for splay trees. part II: the proof. SIAM
J. Comput. 30(1), 44–85 (2000)

8. Das, A., Fleszar, K., Kobourov, S., Spoerhase, J., Veeramoni, S., Wolff, A.:
Approximating the generalized minimum Manhattan network problem. Algorith-
mica 80(4), 1170–1190 (2018)

9. Das, A., Gansner, E.R., Kaufmann, M., Kobourov, S., Spoerhase, J., Wolff, A.:
Approximating minimum Manhattan networks in higher dimensions. Algorithmica
71(1), 36–52 (2015)

10. Demaine, E.D., Harmon, D., Iacono, J., Kane, D., Pătraşcu, M.: The geometry of
binary search trees. In: Proceedings of the Twentieth Annual ACM-SIAM Sympo-
sium on Discrete Algorithms, pp. 496–505. SIAM (2009)

11. Demaine, E.D., Harmon, D., Iacono, J., Pătraşcu, M.: Dynamic optimality-almost.
SIAM J. Comput. 37(1), 240–251 (2007)

12. Dodis, Y., Khanna, S.: Design networks with bounded pairwise distance. In: Pro-
ceedings of the Thirty-first Annual ACM Symposium on Theory of Computing,
pp. 750–759 (1999)

13. Feldman, M., Kortsarz, G., Nutov, Z.: Improved approximation algorithms for
directed Steiner forest. J. Comput. Syst. Sci. 78(1), 279–292 (2012)

14. Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. Annals of Dis-
crete Mathematics, vol. 57. North-Holland Publishing Co., NLD (2004)

15. Gudmundsson, J., Levcopoulos, C., Narasimhan, G.: Approximating a minimum
Manhattan network. Nordic J. Comput. 8(2), 219–232 (2001). http://dl.acm.org/
citation.cfm?id=766533.766536

16. Guo, Z., Sun, H., Zhu, H.: A fast 2-approximation algorithm for the minimum
Manhattan network problem. In: Fleischer, R., Xu, J. (eds.) AAIM 2008. LNCS,
vol. 5034, pp. 212–223. Springer, Heidelberg (2008). https://doi.org/10.1007/978-
3-540-68880-8_21

https://arxiv.org/abs/2010.14338
http://arxiv.org/abs/1912.02900
http://dl.acm.org/citation.cfm?id=766533.766536
http://dl.acm.org/citation.cfm?id=766533.766536
https://doi.org/10.1007/978-3-540-68880-8_21
https://doi.org/10.1007/978-3-540-68880-8_21

100 A. Antoniadis et al.

17. Harmon, D.D.K.: New bounds on optimal binary search trees. Ph.D. thesis, Mas-
sachusetts Institute of Technology (2006)

18. Iacono, J., Langerman, S.: Weighted dynamic finger in binary search trees. In:
Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete
Algorithms, pp. 672–691. SIAM (2016)

19. Sleator, D.D., Tarjan, R.E.: Self-adjusting binary search trees. J. ACM (JACM)
32(3), 652–686 (1985)

	On Minimum Generalized Manhattan Connections
	1 Introduction
	1.1 Our Contributions
	1.2 Overview of Techniques
	1.3 Outlook and Open Problems

	2 Model and Preliminaries
	3 NP-Hardness
	4 An Approximation Algorithm for s-Thin Instances
	5 A Sublogarithmic Approximation Algorithm
	References

