
An APTAS for Bin Packing
with Clique-Graph Conflicts

Ilan Doron-Arad, Ariel Kulik, and Hadas Shachnai(B)

Computer Science Department, Technion, 3200003 Haifa, Israel
{idoron-arad,kulik,hadas}@cs.technion.ac.il

Abstract. We study the following variant of the classic bin packing
problem. Given a set of items of various sizes, partitioned into groups,
find a packing of the items in a minimum number of identical (unit-size)
bins, such that no two items of the same group are assigned to the same
bin. This problem, known as bin packing with clique-graph conflicts, has
natural applications in storing file replicas, security in cloud computing
and signal distribution.

Our main result is an asymptotic polynomial time approximation
scheme (APTAS) for the problem, improving upon the best known ratio
of 2. As a key tool, we apply a novel Shift & Swap technique which gener-
alizes the classic linear shifting technique to scenarios allowing conflicts
between items. The major challenge of packing small items using only a
small number of extra bins is tackled through an intricate combination
of enumeration and a greedy-based approach that utilizes the rounded
solution of a linear program.

1 Introduction

In the classic bin packing (BP) problem, we seek a packing of items of vari-
ous sizes into a minimum number of unit-size bins. This fundamental problem
arises in a wide variety of contexts and has been studied extensively since the
early 1970’s. In some common scenarios, the input is partitioned into disjoint
groups, such that items in the same group are conflicting and therefore cannot
be packed together. For example, television and radio stations often assign a set
of programs to their channels. Each program falls into a genre such as comedy,
documentary or sports on TV, or various musical genres on radio. To maintain a
diverse daily schedule of programs, the station would like to avoid broadcasting
two programs of the same genre in one channel. Thus, we have a set of items
(programs) partitioned into groups (genres) that need to be packed into a set of
bins (channels), such that items belonging to the same group cannot be packed
together.

We consider this natural variant of the classic bin packing problem that
we call group bin packing (GBP). Formally, the input is a set of N items I =
{1, . . . , N} with corresponding sizes s1, ..., sN ∈ (0, 1], partitioned into n disjoint
groups G1, ..., Gn, i.e., I = G1 ∪ G2 ∪ . . . ∪ Gn. The items need to be packed in

c© Springer Nature Switzerland AG 2021
A. Lubiw et al. (Eds.): WADS 2021, LNCS 12808, pp. 286–299, 2021.
https://doi.org/10.1007/978-3-030-83508-8_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-83508-8_21&domain=pdf
https://doi.org/10.1007/978-3-030-83508-8_21


An APTAS for Bin Packing with Clique-Graph Conflicts 287

unit-size bins. A packing is feasible if the total size of items in each bin does not
exceed the bin capacity, and no two items from the same group are packed in
the same bin. We seek a feasible packing of all items in a minimum number of
unit-size bins. We give in [6] some natural applications of GBP.

Group bin packing can be viewed as a special case of bin packing with conflicts
(BPC), in which the input is a set of items I, each having size in (0, 1], along
with a conflict graph G = (V,E). An item i ∈ I is represented by a vertex i ∈ V ,
and there is an edge (i, j) ∈ E if items i and j cannot be packed in the same
bin. The goal is to pack the items in a minimum number of unit-size bins such
that items assigned to each bin form an independent set in G.

Indeed, GBP is the special case where the conflict graph is a union of cliques.
Thus, GBP is also known as bin packing with clique-graph conflicts (see Sect. 1.2).

1.1 Contribution and Techniques

Our main result (in Sect. 3) is an APTAS for the group bin packing problem,
improving upon the best known ratio of 2 [1].1

Existing algorithms for BPC often rely on initial coloring of the instance. This
enables to apply in later steps known techniques for bin packing, considering
each color class (i.e., a subset of non-conflicting items) separately. In contrast,
our approach uses a refined packing of the original instance while eliminating
conflicts, thus generalizing techniques for classic BP.

Our first technical contribution is an enhancement of the linear shifting tech-
nique of [8]. This enables our scheme to enumerate in polynomial time over pack-
ings of relatively large items, while guaranteeing that these packings respect the
group constraints. Our Shift & Swap technique considers the set of large items
that are associated with different groups (satisfying certain properties) as a clas-
sic BP instance, i.e., the group constraints are initially relaxed. Then the scheme
applies to these items the linear shifting technique of [8]. In the process, items
of the same group may be packed in the same bin. Our Swapping algorithm
resolves all conflicts, with no increase in the total number of bins used (see
Sects. 3.1 and 3.2).

A common approach used for deriving APTASs for BP is to pack in a bounded
number of extra bins a set of discarded small items of total size O(ε)OPT , where
OPT = OPT (I) is the minimum number of bins required for packing the given
instance I, and ε ∈ (0, 1) is the accuracy parameter of the scheme. As shown
in [6], this approach may fail for GBP, e.g., when the discarded items belong to
the same group. Our second contribution is an algorithm that overcomes this
hurdle. The crux is to find a set of small items of total size O(ε)OPT containing
O(ε)OPT items from each group. This would enable to pack these items in a
small number of extra bins. Furthermore, the remaining small items should be

1 We note that 2 is the best known absolute as well as asymptotic approximation ratio
for the problem (see Sect. 1.2). We give formal definitions of absolute/asymptotic
ratios in Sect. 2.



288 I. Doron-Arad et al.

feasibly assigned to partially packed OPT bins. Our algorithm identifies such sets
of small items through an intricate combination of enumeration and a greedy-
based approach that utilizes the rounded solution of a linear program.

1.2 Related Work

The classic bin packing problem is known to be NP-hard. Furthermore, it can-
not be approximated within a ratio better than 3

2 , unless P = NP. This ratio
is achieved by the simple First-Fit Decreasing algorithm [21]. The paper [8]
presents an APTAS for bin packing, which uses at most (1+ε)OPT +1 bins, for
any fixed ε ∈ (0, 1/2). The paper [16] gives an approximation algorithm that uses
at most OPT +O(log2(OPT )) bins. The additive factor was improved in [20] to
O(log OPT · log log OPT ). For comprehensive surveys of known results for BP
see, e.g., [3,4].

The problem of bin packing with conflicts (BPC) was introduced in [15]. As
BPC includes as a special case the classic graph coloring problem, it cannot be
approximated within factor N1−ε for an input of N items, for all ε > 0, unless
P = NP [22]. Thus, most of the research work focused on obtaining approxi-
mation algorithms for BPC on classes of conflict graphs that can be optimally
colored in polynomial time. Epstein and Levin [7] presented sophisticated algo-
rithms for two such classes, namely, a 5

2 -approximation for BPC with a perfect
conflict graph,2 and 7

4 -approximation for a bipartite conflict graph.
The hardness of approximation of GBP (with respect to absolute approxi-

mation ratio) follows from the hardness of BP, which is the special case of GBP
where the conflict graph is an independent set. A 2.7-approximation algorithm
for general instances follows from a result of [15]. Oh and Son [19] showed that
a simple algorithm based on First-Fit outputs a packing of any GBP instance I
in 1.7OPT +2.19vmax bins, where vmax = max1≤j≤n |Gj |. The paper [18] shows
that some special cases of the problem are solvable in polynomial time. The best
known ratio for GBP is 2 due to [1].

Jansen [12] presented an asymptotic fully polynomial time approximation
scheme (AFPTAS) for BPC on d-inductive conflict graphs,3 where d ≥ 1 is
some constant. The scheme of [12] uses for packing a given instance I at most
(1 + ε)OPT + O(d/ε2) bins. This implies that GBP admits an AFPTAS on
instances where the maximum clique size is some constant d. Thus, the exis-
tence of an asymptotic approximation scheme for general instances remained
open.

Das and Wiese [5] introduced the problem of makespan minimization with
bag constraints. In this generalization of the classic makespan minimization prob-
lem, each job belongs to a bag. The goal is to schedule the jobs on a set of m
identical machines, for some m ≥ 1, such that no two jobs in the same bag are
assigned to the same machine, and the makespan is minimized. For the classic

2 For the subclass of interval graphs the paper [7] gives a 7
3
-approximation algorithm.

3 A graph G is d-inductive if the vertices of G can be numbered such that each vertex
is connected by an edge to at most d lower numbered vertices.



An APTAS for Bin Packing with Clique-Graph Conflicts 289

problem of makespan minimization with no bag constraints, there are known
PTAS [11,17] as well as EPTAS [2,10,13,14]. Das and Wiese [5] developed a
PTAS for the problem with bag constraints. Later, Grage et al. [9] obtained an
EPTAS.

Due to space constraints, some of our results and formal proofs are given in
the full version of the paper [6].

2 Preliminaries: Scheduling with Bag Constraints

Our scheme is inspired by the elaborate framework of Das and Wiese [5] for
makespan minimization with bag constraints. For completeness, we give below
an overview of the scheme of [5]. Given a set of jobs I partitioned into bags
and m identical machines, let p� > 0 be the processing time of job � ∈ I. The
instance is scaled such that the optimal makespan is 1. The jobs and bags are
then classified using the next lemma.

Lemma 2.1. For any instance I and ε ∈ (0, 1), there is an integer k ∈
{1, ..., � 1

ε2 �} such that
∑

�∈I: p�∈[εk+1,εk) p� ≤ ε2m.

A job � is small if p� < εk+1, medium if p� ∈ [εk+1, εk) and large if p� ≥ εk,
where k is the value found in Lemma 2.1. A bag is large if the number of large
and medium jobs it contains is at least εm, and small otherwise.

The scheme of [5] initially enumerates over slot patterns for packing large and
medium jobs from large bags optimally in polynomial time. The enumeration
is enhanced by using dynamic programming and a flow network to schedule
also the large jobs from small bags. The medium jobs in each small bag are
scheduled across the m machines almost evenly, causing only small increase to
the makespan. The small jobs are partitioned among machine groups with the
same processing time and containing jobs from the same subset of large bags.
Then, a greedy approach is used with respect to the bags to schedule the jobs
within each machine group, such that the overall makespan is at most 1 + O(ε).

Our scheme classifies the items and groups similar to the classification of jobs
and bags in [5]. We then apply enumeration over patterns to pack the large and
medium items. Thus, Lemmas 3.2, 3.6 and 3.8 in this paper are adaptations of
results obtained in [5]. However, the remaining components of our scheme are
different. One crucial difference is our use of a Shift & Swap technique to round
the sizes of large and medium items. Indeed, rounding the item sizes using the
approach of [5] may cause overflow in the bins, requiring a large number of extra
bins to accommodate the excess items. Furthermore, packing the small items
using O(ε)OPT extra bins requires new ideas (see Sect. 3).

We use standard definitions of approximation ratio and asymptotic approx-
imation ratio. Given a minimization problem Π, let A be a polynomial-time
algorithm for Π. For an instance I of Π, denote by OPT (I) and A(I) the values
of an optimal solution and the solution returned by A for I, respectively. We say
that A is a ρ-approximation algorithm for Π, for some ρ ≥ 1, if A(I) ≤ ρ·OPT (I)
for any instance I of Π. A is an asymptotic ρ-approximation for Π if there is a



290 I. Doron-Arad et al.

constant c ∈ R such that A(I) ≤ ρ · OPT (I) + c for any instance I of Π. An
APTAS for Π is a family of algorithms (Aε)ε>0 such that Aε is a polynomial-
time asymptotic (1 + ε)-approximation for each ε > 0. When clear from the
context, we use OPT = OPT (I).

3 An APTAS for GBP

In this section we present an APTAS for GBP. Let OPT be the optimal number
of bins for an instance I. Our scheme uses as a subroutine a BalancedColoring
algorithm proposed in [1] for the group packing problem (see the details in [6]).
Let S(I) be the total size of items in I, i.e., S(I) =

∑
�∈[N ] s�. Recall that vmax

is the maximum cardinality of any group. The next lemma follows from a result
of [1].

Lemma 3.1. Let I be an instance of GBP. Then BalancedColoring packs I in
at most max{2S(I), S(I) + vmax} bins.

By the above, given an instance I of GBP, we can guess OPT in polynomial
time, by iterating over all integer values in [1,max{2S(I), S(I)+vmax] and taking
the minimal number of bins for which a feasible solution exists.

Similar to Lemma 2.1, we can find a value of k, 1 ≤ k ≤ � 1
ε2 �, satisfying∑

�∈I: s�∈[εk+1,εk) s� ≤ ε2 · OPT . Now, we classify item � as small if s� < εk+1,
medium if s� ∈ [εk+1, εk) and large otherwise. A group is large if the number
of large and medium items of that group is at least εk+2 · OPT , and small
otherwise. Given an instance I of GBP and a constant ε ∈ (0, 1), we also assume
that OPT > 3

εk+2 (otherwise, the conflict graph is d-inductive, where d is a
constant, and the problem admits an AFPTAS [12]).

Lemma 3.2. There are at most 1
ε2k+3 large groups.

3.1 Rounding of Large and Medium Items

We start by reducing the number of distinct sizes for the large and medium
items. Recall that in the linear shifting technique we are given a BP instance
of N items and a parameter Q ∈ (0, N ]. The items are sorted in non-increasing
order by sizes and then partitioned into classes. Each class (except maybe the
last one) contains max{Q, 1} items. The items in class 1 (i.e., largest items) are
discarded (the discarded items are handled in a later stage of the algorithm).
The sizes of items in each class are then rounded up to the maximum size of an
item in this class. For more details see, e.g., [8].

We apply linear shifting to the large and medium items in each large group
with parameter Q = �ε2k+4 · OPT 	. Let I, I ′ be the instance before and after
the shifting over large groups, respectively.

Lemma 3.3. OPT (I ′) ≤ OPT (I).



An APTAS for Bin Packing with Clique-Graph Conflicts 291

Lemma 3.4. Given a feasible packing of I ′ in OPT bins, we can find a feasible
packing of I in (1 + O(ε))OPT bins.

Next, we round the sizes of large items in small groups. As the number of
these groups may be large, we use the following Shift & Swap technique. We
merge all of the large items in small groups into a single group, to which we
apply linear shifting with parameter Q = �2ε · OPT 	. In addition to items in
class 1, which are discarded due to linear shifting, we also discard the items in
the last size class; these items are packed in a new set of bins (see the proof of
Lemma 3.15 in [6]).

Lemma 3.5. After rounding, there are at most O(1) distinct sizes of large and
medium items from large groups, and large items from small groups.

Relaxing the feasibility requirement for the packing of rounded large items
from small groups, the statements of Lemma 3.3 and Lemma 3.4 hold for these
items as well. To obtain a feasible packing of these items, we apply a Swapping
subroutine which resolves the possible conflicts caused while packing the items.

Our scheme packs in each step a subset of items, using OPT bins, while dis-
carding some items. The discarded items are packed later in a set of O(ε)·OPT+1
extra bins. In Sect. 3.2 we pack the large and medium items using enumeration
over patterns followed by our Swapping algorithm to resolve conflicts. Section 3.3
presents an algorithm for packing the small items by combining recursive enu-
meration (for relatively “large” items) with a greedy-based algorithm that uti-
lizes the rounded solution of a linear program (for relatively “small” items). In
Sect. 3.4 we show that the components of our scheme combine together to an
APTAS for GBP.

3.2 Large and Medium Items

The large items and medium items from large groups are packed in the bins
using slot patterns. Let Gi1 , . . . , GiL

be the large groups, and let ‘u’ be a label
representing all the small groups. Given the modified instance I ′, a slot is a pair
(s�, j), where s� is the rounded size of a large or medium item � ∈ I ′ and j ∈
{i1, . . . , iL} ∪ {u}. A pattern is a multiset {t1, . . . , tβ} for some 1 ≤ β ≤ � 1

εk+1 	,
where ti is a slot for each i ∈ [β].4

Lemma 3.6. By using enumeration over patterns, we find a pattern for each
bin for the large and medium items, such that these patterns correspond to an
optimal solution. The running time is O(NO(1)).

Given slot patterns corresponding to an optimal solution, large and medium
items from large groups can be packed optimally, since they are identified both
by a label and a size. On the other hand, large items from small groups are

4 Recall that the number of medium/large items that fit in a single bin is at most
� 1

εk+1 �.



292 I. Doron-Arad et al.

identified solely by their sizes. A greedy packing of these items, relating only
to their corresponding patterns, may result in conflicts (i.e., two large items of
the same small group are packed in the same bin). Therefore, we incorporate a
process of swapping items of the same (rounded) size between their hosting bins,
until there are no conflicts.

Given an item � that conflicts with another item in bin b, for an item y in
bin c such that s� = sy, swap(�, y) is bad if it causes a conflict (either because
y conflicts with an item in bin b, � conflicts with an item in bin c, or c = b);
otherwise, swap(�, y) is good. We now describe our algorithm for packing the
large items from small groups.

Let ζ be the given slot patterns for OPT bins. Initially, the items are packed
by these patterns, where items from small groups are packed ignoring the group
constraints. This can be done simply by placing an arbitrary item of size s from
some small group in each slot (s, u). If ζ corresponds to an optimal solution,
we meet the capacity constraint of each bin. However, this may result with
conflicting items in some bins. Suppose there is a conflict in bin b. Then for one
of the conflicting items, �, we find a good swap(�, y) with item y in a different
bin, such that sy = s�. We repeat this process until there are no conflicts. We
give the pseudocode of Swapping in Algorithm 1.

Algorithm 1. Swapping(ζ,G1, . . . , Gn)
1: Pack the large and medium items from large groups in slots corresponding to their

sizes and by labels.
2: Pack large items from small groups in slots corresponding to their sizes.
3: while there is an item � involved in a conflict do
4: Find a good swap(�, y) and resolve the conflict.

Theorem 3.7. Given a packing of large and medium items by slot patterns cor-
responding to an optimal solution, Algorithm 1 resolves all conflicts in polynomial
time.

We use the Swapping algorithm for each possible guess of patterns to obtain
a feasible packing of the large items and medium items from large groups in
OPT bins.

Now, we discard the medium items from small groups and pack them later in
a new set of bins with other discarded items. This requires only a small number
of extra bins (see the proof of Lemma 3.15 in [6]).

3.3 Small Items

Up to this point, all large items and the medium items from large groups are
feasibly packed in OPT bins. We proceed to pack the small items. Let I0, B be
the set of unpacked items and the set of OPT partially packed bins, respectively.



An APTAS for Bin Packing with Clique-Graph Conflicts 293

The packing of the small items is done in four phases: an optimal phase, an
eviction phase, a partition phase and a greedy phase.

The optimal phase is an iterative process consisting of a constant number of
iterations. In each iteration, a subset of bins is packed with a subset of items
whose (rounded) sizes are large relative to the free space in each of these bins. As
these items belong to a small collection of groups among G1, . . . , Gn, they can
be selected using enumeration. Thus, we obtain a packing of these items which
corresponds to an optimal solution. For packing the remaining items, we want
each item to be small relative to the free space in its assigned bin. To this end,
in the eviction phase we discard from some bins items of non-negligible size (a
single item from each bin). Then, in the partition phase, the unpacked items are
partitioned into a constant number of sets satisfying certain properties, which
guarantee that these items can be feasibly packed in the available free space in
the bins. Finally, in the greedy phase, the items in each set are packed in their
allotted subset of bins greedily, achieving a feasible packing of all items, except
for a small number of items from each group, of small total size. The pseudocode
of our algorithm for packing the small items is given in Algorithm 4.

The Optimal Phase: For any b ∈ B, denote by f0
b the free capacity in bin b,

i.e., f0
b = 1 − ∑

�∈b s�. We say that item � is b-negligible if s� ≤ ε2f0
b , and � is

b-non-negligible otherwise. We start by classifying the bins into two disjoint sets.
Let E0 = {b ∈ B| 0 < f0

b < ε} and D0 = B \ E0.
We now partition B into types. Each type contains bins having the same

total size of packed large/medium items; also, the items packed in each bin
type belong to the same set of large groups, and the same number of slots is
allocated in these bins to items from small groups. Formally, for each pattern p
we denote by tp the subset of bins packed with p.5 Let T denote the set of bin
types. Then |T | = |P |, where P is the set of all patterns. The cardinality of type
t ∈ T is the number of bins of this type. We use for the optimal phase algorithm
RecursiveEnum (see the pseudocode in Algorithm 2).

Lemma 3.8. There are O(1) types before Step 1 of Algorithm 2.

Once we have the classification of bins, each type t of cardinality smaller than
1/ε4 is padded with empty bins so that |t| ≥ 1/ε4. An item � is t-negligible if � is
b-negligible for all bins b of type t (all bins in the same type have the same free
capacity), and t-non-negligible otherwise. Denote by I ′

t the large/medium items
that are packed in the bins of type t, and let It(g) be the set of small items that
are packed in t in some solution g (in addition to I ′

t). For any 1 ≤ i ≤ n, a group
Gi is t(g)-significant if It(g) contains at least ε4|t| t-non-negligible items from
Gi, and Gi is t(g)-insignificant otherwise.

RecursiveEnum proceeds in iterations. In the first iteration, it guesses for each
type t ⊆ E0 a subset of the items It(gopt) ⊆ I0, where gopt corresponds to an
optimal solution for completing the packing of t. Specifically, RecursiveEnum
initially guesses L(t, gopt) groups that are t(gopt)-significant: Gi1 , . . . , GiL(t,gopt)

.

5 For the definition of patterns see Sect. 3.2.



294 I. Doron-Arad et al.

For each Gij
, j ∈ {1, . . . , L(t, gopt)}, the algorithm guesses which items of Gij

are added to It(gopt). Since the number of guesses might be exponential, we
apply to Gij

linear shifting as follows. Guess � 1
ε3 � representatives in Gij

, of sizes
s�1 ≤ s�2 ≤ . . . s��1/ε3� . The kth representative is the largest item in size class
k, 1 ≤ k ≤ � 1

ε3 � for the linear shifting of Gij
in type t. Using the parameter

Qt
ij

= ε3|t|, the item sizes in class k are rounded up to s�k
, for 1 ≤ k ≤ � 1

ε3 �.
Given a correct guess of the representatives, the actual items in size class k
are selected at the end of algorithm RecursiveEnum (in Step 16). Denote the
chosen items from Gij

to bins of type t by Gt
ij

.
We now extend the definition of patterns for each type t. A slot is a pair

(s�, j), where s� is the (rounded) size of a t-non-negligible item � ∈ It(gopt), and
there is a label for each t(gopt)-significant group Gij

, j ∈ {1, . . . , L(t, gopt)}.6 A
t-pattern is a multiset {q1, . . . , qβt

} containing at most � 1
ε2 	 elements, where qi

is a slot for each i ∈ {1, . . . , βt}. Now, for each type t ∈ T we use enumeration
over patterns for assigning Gt

i1
, . . . , Gt

iL(t,gopt)
to bins in t. This completes the

first iteration, and the algorithm proceeds recursively.
We now update D0, E0 for the next iteration by removing from E0 bins b that

have a considerably large free capacity with respect to f0
b . For each b ∈ B, let f1

b

be the capacity available in b after iteration 1. Then E1 = {b ∈ E0| 0 < f1
b < εf0

b }
and D1 = B \ E1.

Now, each type t ∈ T is partitioned into sub-types that differ by the packing
of It(gopt) in the first iteration. The set of types T is updated to contain these
sub-types. At this point, a recursive call to RecursiveEnum computes for each
bin type t ⊆ E1 a guessing and a packing of its t-non-negligible items.7 We
repeat this recursive process α = 1

ε + 5 = O(1) times.
Let Gt

i be the subset of items (of rounded sizes) assigned from Gi to bins of
type t at the end of RecursiveEnum, for 1 ≤ i ≤ n and t ∈ T . Recall that the
algorithm did not select specific items in Gt

i; that is, we only have their rounded
sizes and the number of items in each size class. The algorithm proceeds to pack
items from Gi in all types t for which Gi was t(gopt)-significant in some iteration.
Let TGi

be the set of these types. The algorithm considers first the type t ∈ TGi

for which the class C of largest size items contains the item of maximal size,
where the maximum is taken over all types t ∈ TGi

. The algorithm packs in bins
of type t the Qt

i largest remaining items in Gi in the slots allocated to items in
C; it then proceeds similarly to the remaining size classes in types t ∈ TGi

and
the remaining items in Gt

i.

Lemma 3.9. The following hold for RecursiveEnum: (i) the running time is
polynomial; (ii) the increase in the number of bins in Step 7 is at most εOPT ;
(iii) In Step 11 we discard at most εOPT items from each group of total size at
most εOPT . (iv) One of the guesses in Steps 8, 11 corresponds to an optimal
solution.

6 Note that we do not need a label for the t(gopt)-insignificant groups, because their
items are packed separately.

7 An item is b-non-negligible w.r.t f1
b in this iteration, or w.r.t fh

b in iteration h+1, h ∈
{0, . . . , α − 1}.



An APTAS for Bin Packing with Clique-Graph Conflicts 295

Algorithm 2. RecursiveEnum(I0, B)
1: Let f0

b be the remaining free capacity in bin b ∈ B.
2: Let E0 = {b ∈ B|0 < f0

b < ε} and D0 = B \ E0.
3: Denote by T the collection of bin types.
4: for h = 0, . . . , α do
5: for all types t ⊆ Eh do
6: if |t| < 1

ε4
then

7: increase the cardinality of t to 1
ε4

.

8: Guess t(gopt)-significant groups: Gi1 , . . . , GiL(t,gopt)

9: for j = 1, . . . , L(t, gopt) do
10: Guess the number of items from Gij to be added to bins of type t.
11: Guess a representative for each size class of t-non-negligible items of Gij

for linear shifting.

12: Guess |t| t-patterns for bins in t using the sizes after linear shifting of
Gi1 , . . . , GiL(t,gopt)

.

13: Replace type t in T by all of the sub-types of t.

14: Let fh+1
b be the remaining free capacity in bin b ∈ B.

15: Let Eh+1 = {b ∈ Eh|0 < fh+1
b < εfh

b } and Dh+1 = B \ Eh+1.

16: Complete the packing of all size classes by assigning items greedily.

The Eviction Phase: One of the guesses in the optimal phase corresponds to
an optimal solution. For simplicity, henceforth assume that we have this guess.
Recall that Eα is the set of all bins b for which 0 < fα

b < εfα−1
b . In Step 3 of

PackSmallItems (Algorithm 4) we evict an item from each b ∈ Eα such that the
available capacity of b increases to at least fα

b

ε . This is done greedily: consider
the bins in Eα one by one in arbitrary order. From each bin discard a small
item � ∈ Gi, for some Gi, 1 ≤ i ≤ n, such that the following hold: (i) s� ≥ fα

b

ε ,
and (ii) less than εOPT items were discarded from Gi in this phase. Since α
is large enough, this phase can be completed successfully, as shown below. Let
T = {t1, . . . , tμ, t′} be the types after the optimal phase, where t′ is a new type
such that |t′| = εOPT . Bins of type t′ are empty, i.e., each bin b of type t′

has free space 1. Denote by f(t) the free space in each bin b of type t after the
eviction phase, and let IL be the large items from small groups (already packed
in the bins).

Lemma 3.10. After Step 4 of PackSmallItems there exists a partition of Iα

into types It1 , . . . , Itμ
, It′ , for which the following hold. For each t ∈ T , (i) |Gt

j | =
|Gj ∩ It| ≤ |t|− |(I ′

t \ IL)∩Gj |, for all 1 ≤ j ≤ n. (ii) for any � ∈ It : s� ≤ εf(t),
and (iii) S(It) ≤ f(t)|t|.

We explain the conditions of the lemma below.

The Partition Phase: Let T be the set of types after Step 4 of Algorithm 4,
and Iα the remaining unpacked items.8 We seek a partition of Iα into subsets

8 Recall that we consider only items that were not discarded in previous steps, as
discarded items are packed in a separate set of bins.



296 I. Doron-Arad et al.

associated with bin types such that the items assigned to each type t are rela-
tively tiny; also, the total size and the cardinality of the set of items assigned to
t allow to feasibly pack these items in bins of this type. This is done by proving
that a polytope representing the conditions in Lemma 3.10 has vertices at points
which are integral up to a constant number of coordinates. Each such coordinate,
x�,t, corresponds to a fractional selection of some item � ∈ Iα to type t ∈ T . We
use Gj to denote the subset of remaining items in Gj , 1 ≤ j ≤ n.

Formally, we define a polytope P as the set of all points x ∈ [0, 1]Iα×T which
satisfy the following constraints.

∀� ∈ Iα, t ∈ T s.t. s� > εf(t) : x�,t = 0

∀t ∈ T :
∑

�∈Iα

x�,ts� ≤ f(t)|t|

∀� ∈ Iα :
∑

t∈T

x�,t = 1

∀1 ≤ j ≤ n, t ∈ T :
∑

�∈Gj

x�,t ≤ |t| − |(I ′
t \ IL) ∩ Gj |

The first constraint refers to condition (ii) in Lemma 3.10, which implies
that items assigned to type t need to be tiny w.r.t the free space in the bins
of this type. The second constraint reflects condition (iii) in the lemma, which
guarantees that the items in It can be feasibly packed in the bins of type t. The
third constraint ensures that overall each item � ∈ Iα is (fractionally) assigned
exactly once.

The last constraint reflects condition (i) in Lemma 3.10. Overall, we want to
have at most |t| items of Gj assigned to bins of type t. Recall that these bins may
already contain large/medium items from Gj packed in previous steps. While
large/medium items from large groups are packed optimally, the packing of large
items from small groups, i.e., IL, is not necessarily optimal. In particular, the
items in IL packed by our scheme in bins of type t may not appear in these bins
in the optimal solution gopt to which our packing corresponds. Thus, we exclude
these items and only require that the number of items assigned from Gj to bins
of type t is bounded by |t| − |(I ′

t \ IL) ∩ Gj |.
Theorem 3.11. Let x ∈ P be a vertex of P . Then,

|{� ∈ Iα | ∃t ∈ T : x�,t ∈ (0, 1)}| = O(1).

By Theorem 3.11, we can find a feasible partition (with respect to the con-
straints of the polytope) by finding a vertex of the polytope, and then discarding
the O(1) fractional items. These items can be packed in O(1) extra bins. By
Lemma 3.10 we have that P �= ∅; thus, a vertex of P exists and the partition
can be found in polynomial time.



An APTAS for Bin Packing with Clique-Graph Conflicts 297

The Greedy Phase: In this phase we pack the remaining items using algorithm
GreedyPack (see the pseudocode in Algorithm 3). Let Gt

1, . . . , G
t
n be the items

in It from each group, and let S(It) be the total size of these items, i.e., S(It) =∑n
j=1

∑
�∈Gt

j
s�.

Algorithm 3. GreedyPack(It = {Gt
i1

, . . . , Gt
iH

}, t = {b1, . . . , b|t|}
1: for j = 1, . . . , H do
2: Sort Gt

ij
in a non-increasing order by sizes.

3: Let yij be the largest remaining item in Gt
ij

, j = 1, . . . , H.
4: for each bin b ∈ t do
5: Add to bin b the items yi1 , . . . , yiH .
6: while total size of items packed in bin b > 1 do
7: Select a group Gt

ij
∈ {Gt

i1 , . . . , Gt
iH

} such that yij is not last in Gt
ij

.
8: if cannot complete last step then
9: return failure

10: Return yij to Gt
ij

.

11: Let y′
ij

be the next largest item in Gt
ij

.

12: Add y′
ij

to bin b.

13: for j = 1, . . . , H do
14: if Gt

ij
has a large item in bin b then

15: discard the small item.

We now describe the packing of the remaining items in It in bins of type
t. First, we add 2ε|t| extra bins to t. The extra bins are empty and thus have
capacity 1; however, we assume that they have capacity f(t) ≤ 1. This increases
the overall number of bins in the solution by 2εOPT . Consider the items in each
group in non-increasing order by sizes. For each bin b ∈ t in an arbitrary order,
GreedyPack assigns to b the largest remaining item in each group Gt

1, . . . , G
t
n.

If an overflow occurs, replace an item from some group Gt
j by the next item in

Gt
j . This is repeated until there is no overflow in b. W.l.o.g., we may assume

that |Gj | = OPT for all 1 ≤ j ≤ n; thus, b contains one item from each group
(otherwise, we can add to Gj dummy items of size 0, with no increase to the
number of bins in an optimal solution).

Recall that the large items from small groups are packed using the Swapping
algorithm, that yields a feasible packing. Yet, it does not guarantee that the
small items can be added without causing conflicts. Hence, GreedyPack may
output a packing in which a small and large item from the same small group are
packed in the same bin. Such conflicts are resolved by discarding the small item
in each.

Lemma 3.12. The total size of items discarded in GreedyPack in Step 15 due
to conflicts is at most εOPT , and at most εk+2 · OPT items are discarded from
each group.



298 I. Doron-Arad et al.

Proof. The number of items discarded from each group is at most εk+2 · OPT ,
since all groups are small. Assume that the total size of these items is strictly
larger than εOPT . Since each discarded item is coupled with a large conflicting
item from the same group, whose size is at least 1/ε times larger (recall that the
medium items are discarded), this implies that the total size of large conflicting
items is greater than OPT . Contradiction. ��

Algorithm 4. PackSmallItems(I0, B)
1: for each guess of RecursiveEnum(I0, B) do
2: for b ∈ Eα do
3: evict from b the largest item � satisfying: � is small, and less than εOPT

items where evicted from Gi, where � ∈ Gi.

4: Add to T a new type t′ consisting of εOPT empty bins.
5: Compute a feasible partition of Iα into the types in T .
6: for t ∈ T do
7: Add 2ε|t| extra bins to t.
8: Assign It to bins of type t using GreedyPack(It, t).

Lemma 3.13. For any t ∈ T , given a parameter 0 < δ < 1
2 and a set of items

It such that (i) |Gt
j | ≤ |t| − |(I ′

t \ IL) ∩ Gj |; (ii) for all � ∈ It : s� ≤ δf(t), and
(iii) S(It) ≤ (1 − δ)f(t)|t|, GreedyPack finds a feasible packing of It in bins of
type t.

Lemma 3.14. Algorithm 4 assigns in Step 8 to OPT bins all items except for
O(ε)OPT items from each group, of total size O(ε)OPT .

3.4 Putting It All Together

It remains to show that the items discarded throughout the execution of the
scheme can be packed in a small number of extra bins.

Lemma 3.15. The medium items from small groups and all discarded items can
be packed in O(ε) · OPT extra bins.

We summarize in the next result.

Theorem 3.16. There is an APTAS for the group bin packing problem.

References

1. Adany, R., et al.: All-or-nothing generalized assignment with application to
scheduling advertising campaigns. ACM Trans. Algorithms (TALG) 12(3), 1–25
(2016)



An APTAS for Bin Packing with Clique-Graph Conflicts 299

2. Alon, N., Azar, Y., Woeginger, G.J., Yadid, T.: Approximation schemes for schedul-
ing on parallel machines. J. Sched. 1(1), 55–66 (1998)

3. Christensen, H.I., Khan, A., Pokutta, S., Tetali, P.: Approximation and online
algorithms for multidimensional bin packing: a survey. Comput. Sci. Rev. 24, 63–
79 (2017)

4. Coffman, E.G., Csirik, J., Galambos, G., Martello, S., Vigo, D.: Bin packing
approximation algorithms: survey and classification. In: Handbook of Combina-
torial Optimization, pp. 455–531 (2013)

5. Das, S., Wiese, A.: On minimizing the makespan when some jobs cannot be
assigned on the same machine. In: 25th Annual European Symposium on Algo-
rithms, ESA, pp. 31:1–31:14 (2017)

6. Doron-Arad, I., Kulik, A., Shachnai, H.: An APTAS for bin packing with clique-
graph conflicts. arXiv preprint arXiv:2011.04273 (2020)

7. Epstein, L., Levin, A.: On bin packing with conflicts. SIAM J. Optim. 19(3), 1270–
1298 (2008)

8. Fernandez de la Vega, W., Lueker, G.S.: Bin packing can be solved within 1 + ε
in linear time. Combinatorica 1, 349–355 (1981)

9. Grage, K., Jansen, K., Klein, K.M.: An EPTAS for machine scheduling with bag-
constraints. In: The 31st ACM Symposium on Parallelism in Algorithms and Archi-
tectures, pp. 135–144 (2019)

10. Hochbaum, D.S. (ed.): Approximation Algorithms for NP-Hard Problems. PWS
Publishing Co., USA (1996)

11. Hochbaum, D.S., Shmoys, D.B.: Using dual approximation algorithms for schedul-
ing problems theoretical and practical results. J. ACM 34(1), 144–162 (1987)

12. Jansen, K.: An approximation scheme for bin packing with conflicts. J. Comb.
Optim. 3(4), 363–377 (1999)

13. Jansen, K.: An EPTAS for scheduling jobs on uniform processors: using an MILP
relaxation with a constant number of integral variables. SIAM J. Discret. Math.
24(2), 457–485 (2010)

14. Jansen, K., Klein, K., Verschae, J.: Closing the gap for makespan scheduling via
sparsification techniques. In: 43rd International Colloquium on Automata, Lan-
guages, and Programming (ICALP), pp. 72:1–72:13 (2016)

15. Jansen, K., Öhring, S.R.: Approximation algorithms for time constrained schedul-
ing. Inf. Comput. 132(2), 85–108 (1997)

16. Karmarkar, N., Karp, R.M.: An efficient approximation scheme for the one-
dimensional bin-packing problem. In: 23rd Annual Symposium on Foundations
of Computer Science, pp. 312–320. IEEE (1982)

17. Leung, J.Y.: Bin packing with restricted piece sizes. Inf. Process. Lett. 31(3), 145–
149 (1989)

18. McCloskey, B., Shankar, A.: Approaches to bin packing with clique-graph conflicts.
Computer Science Division, University of California (2005)

19. Oh, Y., Son, S.: On a constrained bin-packing problem. Technical report CS-95-14
(1995)

20. Rothvoß, T.: Approximating bin packing within O(log OPT * log log OPT) bins.
In: 54th Annual IEEE Symposium on Foundations of Computer Science, pp. 20–29.
IEEE Computer Society (2013)

21. Simchi-Levi, D.: New worst-case results for the bin-packing problem. Naval Res.
Logist. (NRL) 41(4), 579–585 (1994)

22. Zuckerman, D.: Linear degree extractors and the inapproximability of max clique
and chromatic number. Theory Comput. 3(1), 103–128 (2007)

http://arxiv.org/abs/2011.04273

	An APTAS for Bin Packing with Clique-Graph Conflicts
	1 Introduction
	1.1 Contribution and Techniques
	1.2 Related Work

	2 Preliminaries: Scheduling with Bag Constraints
	3 An APTAS for GBP
	3.1 Rounding of Large and Medium Items
	3.2 Large and Medium Items
	3.3 Small Items
	3.4 Putting It All Together

	References




