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Abstract. We investigate the problem of finding a spanning tree of a set
of moving points in the plane that minimizes the maximum total weight
(sum of Euclidean distances between edge endpoints) or the maximum
bottleneck throughout the motion. The output is a single tree, i.e., it
does not change combinatorially during the movement of the points. We
call these trees the minimum moving spanning tree, and the minimum
bottleneck moving spanning tree, respectively. We show that, although
finding the minimum bottleneck moving spanning tree can be done in
O(n2) time, it is NP-hard to compute the minimum moving spanning
tree. We provide a simple O(n2)-time 2-approximation and a O(n log n)-
time (2 + ε)-approximation for the latter problem.

Keywords: Minimum spanning tree · Moving points · NP-hardness ·
Convex distance function · Approximation algorithms

1 Introduction

The Euclidean minimum spanning tree (EMST) of a point set is the minimum
weight graph that connects the given point set, where the weight of the graph
is given by the sum of Euclidean distances between endpoints of edges. EMST
is a classic data structure in computational geometry and it has found many
uses in network design and in approximating NP-hard problems. In the visual-
ization community, a series of methods generalize Euler diagrams to represent
spatial data [2,8,9,16]. These approaches represent a set by a connected colored
shape containing the points in the plane that are in the given set. In order to
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reduce visual clutter, approaches such as Kelp Diagrams [9] and colored span-
ning graphs [13] try to minimize the area (or “ink”) of such colored shapes. Each
shape can be considered as a generalization of the EMST of points in the set.

Motivated by visualizations of time-varying spatial data, we investigate a
natural generalization of the minimum spanning tree (MST) and the minimum
bottleneck spanning tree (MBST) for a set of moving points. In general it is
desirable that visualizations are stable, i.e., small changes in the input should
produce small changes in the output [17]. In this paper, we want to maintain
all points connected throughout the motion by the same tree (the tree does
not change topologically during the time frame) . Consider points in the plane
moving on a straight line with constant speed over a time interval [0, 1]. The
weight of an edge pq between points p and q is defined to be the Euclidean
distance ‖pq‖. Note that the weight of an edge changes over time. We define
the Minimum Moving Spanning Tree (MMST) of a set of moving points to be a
spanning tree that minimizes the maximum sum of weights of its edges during
the time interval. Analogously, we define Minimum Bottleneck Moving Spanning
Tree (MBMST) of a set of moving points to be a spanning tree that minimizes
the maximum individual weight of edges in the tree during the time interval.

Apart from this motivation, the concepts of MMST and MBMST are rele-
vant in the context of moving networks. Motivated by the increase in mobile
data consumption, network architecture containing mobile nodes have been con-
sidered [14]. In this setting, the design of the topology of the networks is a chal-
lenge. Due to the mobility of the vertices, existing methods update the topology
dynamically and the stability becomes important since there are costs associ-
ated with establishing new connections and handing over ongoing sessions. The
MMST and MBMST offer stability in mobile networks.
Results and Organization. We study the problems of finding an MMST and
an MBMST of a set of points moving linearly, each at constant speed. Section 2
provides formal definitions and proves that the distance function between points
is convex in this setting. We use this property in an exact O(n2)-time algorithm
for the MBMST as shown in Sect. 3. Our algorithm computes the minimum
bottleneck tree in a complete graph G on the moving points in which the weight
of each edge is the maximum distance between the pairs of points during the
time frame. In Sect. 4.1 we present an O(n2)-time 2-approximation for MMST by
computing the MST of G. In the full version of the paper we provide an example
that shows our analysis for the approximation ratio is tight. In Sect. 4.2, we show
that the MMST is equal to the minimum spanning tree of a point set in R

4 with
a non-Euclidean metric. Since this metric space has doubling dimension O(1),
we obtain an O(n log n)-time (2 + ε)-approximation algorithm. Finally, we show
that the problem of finding the MMST is NP-hard in Sect. 4.3 by reducing from
the Partition problem.
Related work. Examples of other visualizations of time-varying spatial data
are space-time cubes [15], that represent varying 2D data points with a third
dimension, and motion rugs [6,21], that reduces the dimentionality of the move-
ment of data points to 1D, presenting a 2D static overview visualizations. The
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representation of time-varying geometric sets were also the theme of a recent
Dagstuhl Seminar 19192 “Visual Analytics for Sets over Time and Space” [10]. In
the context of algorithms dealing with time-varying data Meulemans et al. [17]
introduces a metric for stability, analysing the trade-off between quality and
stability of results, and applying it to the EMST of moving points. Monma and
Suri [18] study the number of topological changes that occur in the EMST when
one point is allowed to move.

The problem of finding the MMST and MBMST of moving points can be
seen as a bicriteria optimization problem if the points move linearly (as shown
in Sect. 2.2). In this context, the addition of a new criterion could lead to an NP-
hard problem, such as the bi-criteria shortest path problem in weighted graphs.
Garey and Johnson show that given a source and target vertices, minimizing
both length and weight of a path from source to target is NP-hard [11, p. 214].
Arkin et al. analyse other criteria combined with the shortest path problem [4],
such as the total turn length and different norms for path length.

Maintaining the EMST and other geometric structures of a set of moving
points have been investigated by several papers since 1985 [5]. Kinetic data
structures have been proposed to maintain the EMST [1,20]. Research in this
area have focused on bounds on the number of combinatorial changes in the
EMST and efficient algorithms. To the best of our knowledge, the problem of
finding the MMST and MBMST (a single tree that does not change during the
movement of points) has not been investigated.

2 Preliminaries

In this section we formally define the minimum moving spanning tree and the
minimum bottleneck moving spanning tree of a set of moving points. We then
prove that, for points moving linearly, the distance function between a pair of
points is convex.

2.1 Definitions

A moving point p in the plane is a continuous function p : [0, 1] → R
2. We

assume that p moves on a straight line segment in R
2. We say that p is at p(t)

at time t. We are given a set S = {p1, ..., pn} of moving points in the plane.
A moving spanning tree T of S has S as its vertex set and weight function
wT : [0, 1] → R defined as wT (t) =

∑
pq∈T ‖p(t)q(t)‖. Let T (S) denote the set

of all moving spanning trees of S. Let w(T ) = supt wT (t) be the weight of the
moving spanning tree T . A minimum moving spanning tree (MMST) of S is a
moving spanning tree of S with minimum weight. In other words an MMST is
in

arg min
T∈T (S)

(w(T )) .
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Let bT (t) = suppq∈T ‖p(t)q(t)‖ denote the bottleneck of a tree T at time
t. A minimum bottleneck moving spanning tree (MBMST) of S is a moving
spanning tree of S that minimizes the bottleneck over all t ∈ [0, 1]. In other
words an MBMST is in

arg min
T∈T (S)

(
max

t
bT (t)

)
.

2.2 Convexity

Let p and q be two moving points in the plane. We assume that these points
move along (possibly different) lines at (possibly different) constant velocities.
Thus, for any real number t, we can write the positions of p and q at time t as

p(t) = (ap + upt, bp + vpt)

and

q(t) = (aq + uqt, bq + vqt),

where ap, up, bp, vp are constants associated with the point p. At time t = 0, p is
at (ap, bp), and the velocity vector of p is (up, vp). Let d(t) = ‖p(t)q(t)‖ denote
the Euclidean distance between p and q at time t. In the next lemma we prove
that d is a convex function. The convexity of d is also implied by a result of Alt
and Godau [3] that the free space diagram of any two line segments is convex.

Lemma 1. The function d is convex.

Proof. It suffices to prove that the second derivative of d is non-negative for all
real numbers t. We can write

d(t) =
√

At2 + Bt + C,

where A, B, and C depend only on ap, up, bp, vp, aq, uq, bq, and vq. Observe that
A ≥ 0. Since d(t) represents a distance, At2+Bt+C ≥ 0 for all t in R. It follows
that the discriminant of this quadratic function is non-positive, i.e.,

B2 − 4AC ≤ 0. (1)

Let α = −B/2A and β = C/A − B2/(4A2). Then

d(t) =
√

A ·
√

(t − α)2 + β.

The second derivative of the function f(t) =
√

t2 + β is given by

f ′′(t) =
β

(t2 + β)3/2
.

It follows from (1) that β ≥ 0. Thus, f ′′(t) ≥ 0 for all t in R. Since d(t) =√
A · f(t − α), we have d′′(t) ≥ 0 for all t in R, and in particular, for t ∈ [0, 1]. �	
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The convexity of the distance function between two moving points (Lemma 1)
implies the following corollary.

Corollary 1. The largest distance between two moving points is attained either
at the start time or at the finish time.

Let S be a set of n moving points in the plane. For two points p and q in
S, we denote by ‖p(0)q(0)‖ and ‖p(1)q(1)‖ the distances between p and q at
times t = 0 and t = 1, respectively. Moreover, we denote by |pq|max the largest
distance between p and q during time interval [0, 1]. By Corollary 1 we have

|pq|max = max{‖p(0)q(0)‖, ‖p(1)q(1)‖}. (2)

3 Minimum Bottleneck Moving Spanning Tree

Since by Corollary 1 the largest length of an edge is attained either at time 0 or
at time 1, it might be tempting to think that the MBMST of S is also attained
at times 0 or 1. However the example in Fig. 1(a) shows that this may not be
true. In this example we have four points a, b, c, and d that move from time 0
to time 1 as depicted in the figure. The MBST of these points at time 0 is the
red tree R, and their MBST at time 1 is the blue tree B. Recall that bT (t) is the
bottleneck of tree T at time t. Let b(T ) = maxt bT (t) be the bottleneck of T . In R
the weight of ab at time 0 is 1 while its weight at time 1 is 3, and thus b(R) = 3.
In B the weight of ad at time 1 is 1 while its weigh at time 0 is 3, and thus
b(B) = 3. However, for this point set the tree T = {ac, cb, cd} has bottleneck 2.

a0 b0 c0 d0

a1 d1 c1 b1

1 1 1R

B

a b c d3 1 1
2

2

3

(a) (b)

Fig. 1. Four points that move from time 0 to time 1. (a) R is the MBST at time 0,
and B is the MBST at time 1. (b) The graph G; green edges form an MBST of this
graph. (Color figure online)

Although the above example shows that the computation of the MBMST is
not straightforward, we present a simple algorithm for finding the MBMST. Let
G be the complete graph on points of S where the weight w(pq) of every edge
pq is the largest distance between p and q during time interval [0, 1], that is,
w(pq) = |pq|max; see Fig. 1(b).

Lemma 2. The bottleneck of an MBMST of S is not smaller than the bottleneck
of an MBST of G.
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Proof. Our proof is by contradiction. Let T ∗ be an MBMST of S and let T be an
MBST of G. For the sake of contradiction assume that b(T ∗) < b(T ), where we
abuse the notation for simplicity making b(T ) = maxpq∈T w(pq) the bottleneck
of T . Let pq be a bottleneck edge of T , that is b(T ) = w(pq). Denote by Tp and Tq

the two subtrees obtained by removing pq from T , and denote by Vp and Vq the
vertex sets of these subtrees. Since the vertex set of T is the same as that of T ∗,
there is an edge, say rs, in T ∗ that connects a vertex of Vp to a vertex of Vq. Since
the bottleneck of T ∗ is its largest edge-length in time interval [0, 1], we have that
|rs|max � b(T ∗). Since in G we have w(rs) = |rs|max, the following inequality is
valid: w(rs) = |rs|max � b(T ∗) < b(T ) = w(pq). Let T ′ be the spanning tree of
G that is obtained by connecting Tp and Tq by rs. Then b(T ′) � b(T ∗). If we
repeat this process for all bottleneck edges of T , then we obtain a tree T ′ whose
bottleneck is strictly smaller than that of T . This contradicts the fact that T is
an MBST of G. �	

It is implied from Lemma 2 that any MBST of G is an MBMST of S. Since an
MBST of a graph can be computed in time linear in the size of the graph [7], an
MBST of G can be computed in O(n2) time. The following theorem summarizes
our result in this section.

Theorem 1. A minimum bottleneck moving spanning tree of n moving points
in the plane can be computed in O(n2) time.

4 Minimum Moving Spanning Tree

In this section we study the problem of computing an MMST of moving points.
At the end of this section we prove that this problem is NP-hard. We start by
proposing a 2-approximation algorithm for the MST problem. In the full version
of the paper we show that our analysis of the approximation ratio is tight.

4.1 A 2-approximation Algorithm

Our algorithm is very simple and just computes a MST of the graph G that is
constructed in Sect. 3.

Lemma 3. The weight of any MST of G is at most two times the weight of any
MMST of S.

Proof. Let T be any MST of G and let T ∗ be any MMST of S. Let w(T ∗) =
supt wT (t) be the weight of the moving spanning tree T ∗. We abuse the notation
for simplicity making w(T ) =

∑
pq∈T w(pq) the weight of the spanning tree T .

We are going to show that w(T ) � 2 ·w(T ∗). Let T ′ be a tree that is combinato-
rially equivalent to T ∗, i.e., has the same topology as T ∗. Assign to each edge pq
of T ′ the weight w(pq) = |pq|max. After this weight assignment, T ′ is a spanning
tree of G. Since T is a MST of G, we have w(T ) � w(T ′).

By Corollary 1 the largest distance between two points is achieved either at
time 0 or at time 1. Let E∗

0 be the set of edges of T ∗ whose endpoints largest
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distance is achieved at time 0. Define E∗
1 analogously. Then w(E∗

0 ) � w(T ∗)
and w(E∗

1 ) � w(T ∗). Moreover, w(T ′) = w(E∗
0 ) + w(E∗

1 ). By combining these
inequalities we get

w(T ) � w(T ′) = w(E∗
0 ) + w(E∗

1 ) � w(T ∗) + w(T ∗) = 2 · w(T ∗).

�	

A minimum spanning tree of G can be computed in O(n2) time using Prim’s
MST algorithm. The following theorem summarizes our result in this section.

Theorem 2. There is an O(n2)-time 2-approximation algorithm for computing
the minimum moving spanning tree of n moving points in the plane.

4.2 An O(n log n)-time (2 + ε)-approximation Algorithm

Section 4.1 showed that the weight of the minimum spanning tree of the graph
G, defined in Sect. 3, gives a 2-approximation to the MMST. Since G has Θ(n2)
edges, it takes Θ(n2) time to compute its MST. In this section, we prove that
a (1 + ε)-approximation to the minimum spanning tree of G can be computed
in O(n log n) expected time. Thus, if we replace ε by ε/2, we obtain a (2 + ε)-
approximation to computing the MMST of a set of linearly moving points S.

For any point p in S, define the point

P = (p(0), p(1))

in R
4. Doing this for all points in S, we obtain a set S′ of n points in R

4. For
any two points P and Q in S′, define their distance to be

dist(P,Q) = max(‖p(0)q(0)‖, ‖p(1)q(1)‖).

Since dist(P,Q) = w(pq), the minimum spanning tree of our graph G has
the same weight as the minimum spanning tree (under dist) of the point set S′.

Lemma 5 below states that dist satisfies the properties of a metric. Its proof
uses the following lemma, which is probably well known.

Lemma 4. Let V be an arbitrary set and let d1 : V ×V → R and d2 : V ×V → R

be two functions, such that both (V, d1) and (V, d2) are metric spaces. Define the
function d : V × V → R by

d(a, b) = max(d1(a, b), d2(a, b))

for all a and b in V . Then (V, d) is a metric space.

Proof. It is clear that, for all a and b in V , d(a, a) = 0, d(a, b) > 0 if a 
= b, and
d(a, b) = d(b, a). It remains to prove that the triangle inequality holds.

Let a, b, and c be elements of V . Then

d(a, b) = max(d1(a, b), d2(a, b))
≤ max(d1(a, c) + d1(c, b), d2(a, c) + d2(c, b)).
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Using the inequality

max(α + β, γ + δ) ≤ max(α, γ) + max(β, δ),

it follows that

d(a, b) ≤ max(d1(a, c), d2(a, c)) + max(d1(c, b), d2(c, b))
= d(a, c) + d(c, b).

�	

Lemma 5. The pair (S′,dist) is a metric space.

Proof. The proof follows from Lemma 4 and the definition of dist. �	

The next lemma states that the metric space (S′,dist) has bounded doubling
dimension. We recall the definition. For any point P in S′ and any real number
ρ > 0, the ball with center P and radius ρ is the set

balldist(P, ρ) = {Q ∈ S′ : dist(P,Q) ≤ ρ}.

Let λ be the smallest integer such that for every real number ρ > 0, every
ball of radius ρ can be covered by at most λ balls of radius ρ/2. The doubling
dimension of (S′,dist) is defined to be log λ.

Lemma 6. The doubling dimension of the metric space (S′,dist) is O(1).

Proof. Recall that S′ is a set of points in R
4. We denote the Euclidean distance

between two points P and Q of S′ by ‖PQ‖. The Euclidean ball with center P
and radius ρ is denoted by balle(P, ρ). Thus,

balle(P, ρ) = {Q ∈ S′ : |PQ| ≤ ρ}.

It is easy to verify that

dist(P,Q) ≤ ‖PQ‖ ≤
√

2 · dist(P,Q). (3)

Let P be a point in S′, let ρ > 0 be a real number, and let Bdist =
balldist(P, ρ). We will prove that Bdist can be covered by O(1) balls of radius
ρ/2.

Let Be be the Euclidean ball with center P and radius ρ ·
√

2. It follows from
(3) that

Bdist ⊆ Be.

It is well known that the doubling dimension of the Euclidean space R
4 is

bounded by a constant. Thus, by applying the definition of doubling dimension
twice, we can cover Be by k = O(1) Euclidean balls Be

1, . . . , B
e
k balls, each
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of radius ρ ·
√

2/4 ≤ ρ/2. Let these balls have centers C1, . . . , Ck. For each
i = 1, . . . , k, define Bdist

i = balldist(Ci, ρ/2). It follows from (3) that

Be
i ⊆ Bdist

i .

Thus,

Bdist ⊆ Be ⊆
k⋃

i=1

Be
i ⊆

k⋃

i=1

Bdist
i ,

i.e., we have covered the ball Bdist by k = O(1) balls of radius ρ/2. �	

Lemma 7. Let ε > 0 be a constant. In O(n log n) expected time, we can com-
pute a (1 + ε)-approximation to the minimum spanning tree of the metric space
(S′,dist).

Proof. As (S′,dist) has a constant doubling dimension (by Lemma 6), a result of
Har-Peled and Mendel [12] implies that a (1+ ε)-spanner of (S′,dist) with O(n)
edges can be computed in O(n log n) expected time. Their algorithm assumes
that any distance in the metric space can be computed in O(1) time; this is the
case for our distance function dist.

It is known that a minimum spanning tree of a (1 + ε)-spanner is a (1 + ε)-
approximation to the minimum spanning tree. (See, e.g., [19, Theorem 1.3.1]).

Since the spanner has O(n) edges, its minimum spanning tree can be com-
puted in O(n log n) time using Prim’s MST algorithm combined with a binary
min-heap. �	

As a consequence of Lemma 7 and the fact that dist(P,Q) = w(pq), we have
the following theorem.

Theorem 3. In O(n log n) expected time, we can compute a (2 + ε)-
approximation for the minimum moving spanning tree of a set of linearly moving
points in the plane.

4.3 NP-hardness of MMST

Inspired by Arkin et al. [4], we reduce the Partition problem, which is known
to be NP-hard [11], to the MMST problem. In one formulation of the Partition
problem, we are given n > 0 positive integers a0, . . . , an−1 and must decide
whether there is a subset S ⊆ {0, . . . , n − 1} such that

∑

i∈S

ai =
1
2

n−1∑

i=0

ai.
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A0

B0
C0

D0
E0

A1

B1

C1

D1

E1

A2

B2

C2

E2

D2

A3

B3

C3

E3

D3

Fig. 2. The positions of the points in P at time t = 1/4 when n = 4 and
(a0, a1, a2, a3) = (1, 2, 4, 3). The velocities of C2, E2, C3 and E3 are depicted.

Construction. We construct an instance of a decision version of the MMST
problem defined as follows. First we let 
 = max{a0, . . . , an−1} and then, for
each i ∈ {0, . . . , n − 1}, we put the following points into our set P of moving
points (Fig. 2):

– Ai, stationary at (i
, 0);
– Bi, stationary at (i
, 
);
– Ci, moving from (i
, 
) to (i
, 
 + ai);
– Di, stationary at (i
, 
 + ai); and
– Ei, moving from (i
, 
 + ai) to (i
, 
).

We then ask whether there is a moving spanning tree T with

w(T ) ≤ (2n − 1)
 +
3
2

n−1∑

i=0

ai.

Theorem 4. The decision version of the MMST problem is weakly NP-hard.

Proof. Let T be a moving spanning tree on vertex set P . Recall that wT (t)
denotes the weight of T at time t. By Lemma 1, wT is a convex function and
the weight of T is indeed w(T ) = max

{
wT (0), wT (1)

}
.

Let K0 be the set of edges AiBi for i ∈ {0, . . . , n − 1} and AiAi+1 for
i ∈ {0, . . . , n − 2} and let K1 be the set of edges among Bi, Ci, Di and Ei
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A0

B0

C0

D0

E0

A1 A2 A3

B1

C1

D1

E1

B2

C2

D2

E2

B3

C3

D3

E3

Fig. 3. The (topological) edges in K0 (dashed) and in K1 \ K0 (solid).

for each i ∈ {0, . . . , n − 1} together with K0 (Fig. 3). We claim that there is a
moving spanning tree T ∗ of minimum cost, i.e., an optimal solution to the MMST
problem, whose edges are all in K1. Assume the contrary for contradiction. Let
T be an MMST whose intersection with K1 is maximum. By assumption, T has
at least an edge e 
∈ K1. We now consider the two components obtained from
deleting e from T . There must be at least one edge e′ ∈ K1 between the two
components, since K1 spans P . However, at any point in time, every edge in
K1 weights at most 
 while every edge outside of K1 weights at least 
, so if
we bridge the two components with e′, we will be left with a spanning tree T ′

with w(T ′) ≤ w(T ) and with a larger intersection with K1, contradicting the
definition of T .

As every edge in K0 is a bridge in the graph (P,K1), the spanning tree T ∗

must contain K0, so T ∗ consists of K0 and, for each i ∈ {0, . . . , n − 1}, of a
subtree Ti spanning {Bi, Ci,Di, Ei}. The weights wTi

(0) and wTi
(1) must both

be a multiple of ai since so are the Euclidean distances between the vertices
of Ti at these two times. There are two notable ways to build Ti: one is Ti =
{BiCi, CiDi,DiEi}, which satisfies wTi

(0) = ai and wTi
(1) = 2ai and is thus

called the (1, 2)-tree; and the other is Ti = {BiEi, EiDi,DiCi}, which satisfies
wTi

(0) = 2ai and wTi
(1) = ai and is thus called the (2, 1)-tree.

We shall show that the (1, 2)-tree or the (2, 1)-tree have minimum weight
among all moving spanning trees of {Bi, Ci,Di, Ei}. Indeed, Ti is made of three
edges and, since there are no three edges with weight zero at time 0, as can be
seen in Fig. 4, we must have wTi

(0) ≥ ai and, similarly, wTi
(1) ≥ ai. Further-

more, each edge between Bi, Ci, Di and Ei adds up to at least ai in terms of
their weight at time 0 and at time 1. Therefore, wTi

(0)+wTi
(1) ≥ 3ai, so either

wTi
(0) ≥ 2ai, , or wTi

(1) ≥ 2ai . As a result, we may assume, without loss of
generality, that Ti is either the (1, 2)-tree or the (2, 1)-tree.
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Bi

Ci Ei

Di

0, ai ai, 0

ai, ai

ai, 0 0, ai

ai, ai

Fig. 4. Edges between Bi, Ci, Di and Ei labeled with their weights at times 0 and 1.

Let now S∗ ⊆ {0, . . . , n − 1} be the set of indices i such that Ti is the
corresponding (2, 1)-tree. As |K0| = 2n − 1, we have

wT∗(0) = (2n − 1)
 +
n−1∑

i=0

ai +
∑

i∈S∗
ai,

while

wT∗(1) = (2n − 1)
 +
n−1∑

i=0

ai +
∑

i∈{0,...,n−1}\S∗
ai.

Therefore, the cost of T ∗ is

(2n − 1)
 +
n−1∑

i=0

ai + max

⎧
⎨

⎩

∑

i∈S∗
ai,

∑

i∈{0,...,n−1}\S∗
ai

⎫
⎬

⎭
.

Because

∑

i∈S∗
ai ≥ 1

2

n−1∑

i=0

ai or
∑

i∈{0,...,n−1}\S∗
ai ≥ 1

2

n−1∑

i=0

ai,

then the following holds

w(T ∗) ≥ (2n − 1)
 +
3
2

n−1∑

i=0

ai. (4)

We claim that (4) holds with equality if and only if our instance of the
Partition problem has a solution, i.e., there is a set S ⊆ {0, . . . , n − 1} such that
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the sum of ai for i ∈ S is half of a0 + · · · + an−1. Indeed, if the equality holds,
we can simply let S = S∗. To show the converse, we build a tree T from the
solution S of the Partition problem. This tree contains K0, the corresponding
(2, 1)-trees for i in S and the corresponding (1, 2)-trees for i ∈ {0, . . . , n−1}\S,
resulting in a weight of

w(T ) = (2n − 1)
 +
3
2

n−1∑

i=0

ai.

Because T ∗ is an MMST, w(T ∗) ≤ w(T ), so the equality holds. �	
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6. Buchmüller, J., Jäckle, D., Cakmak, E., Brandes, U., Keim, D.A.: Motionrugs:
visualizing collective trends in space and time. IEEE Trans. Vis. Comput. Graph.
25(1), 76–86 (2018)

7. Camerini, P.M.: The min-max spanning tree problem and some extensions. Inf.
Process. Lett. 7(1), 10–14 (1978)

8. Collins, C., Penn, G., Carpendale, S.: Bubble sets: revealing set relations with
isocontours over existing visualizations. IEEE Trans. Vis. Comput. Graph. 15(6),
1009–1016 (2009). Proceedings of the IEEE Conference on Information Visualiza-
tion

9. Dinkla, K., van Kreveld, M.J., Speckmann, B., Westenberg, M.A.: Kelp diagrams:
point set membership visualization. Comput. Graph. Forum 31(3pt1), 875–884
(2012)

10. Fabrikant, S.I., Miksch, S., Wolff, A.: Visual analytics for sets over time and space
(Dagstuhl Seminar 19192). Dagstuhl Rep. 9(5), 31–57 (2019)

11. Garey, M.R., Johnson, D.S.: Computers and Intractability, vol. 174. Freeman, San
Francisco (1979)

https://doi.org/10.1007/978-3-642-31155-0_5


28 H. A. Akitaya et al.

12. Har-Peled, S., Mendel, M.: Fast construction of nets in low-dimensional metrics
and their applications. SIAM J. Comput. 35(5), 1148–1184 (2006)

13. Hurtado, F., et al.: Colored spanning graphs for set visualization. Comput. Geom.
68, 262–276 (2018). Special Issue in Memory of Ferran Hurtado

14. Jaffry, S., Hussain, R., Gui, X., Hasan, S.F.: A comprehensive survey on moving
networks. arXiv preprint arXiv:2003.09979 (2020)

15. Kraak, M.-J.: The space-time cube revisited from a geovisualization perspective. In:
Proceedings of 21st International Cartographic Conference, pp. 1988–1996 (2003)

16. Meulemans, W., Riche, N.H., Speckmann, B., Alper, B., Dwyer, T.: KelpFusion:
a hybrid set visualization technique. IEEE Trans. Vis. Comput. Graph. 19(11),
1846–1858 (2013)

17. Meulemans, W., Speckmann, B., Verbeek, K., Wulms, J.: A framework for algo-
rithm stability and its application to kinetic Euclidean MSTs. In: Bender, M.,
Farach-Colton, M., Mosteiro, M. (eds.) Theoretical Informatics. LNCS, vol. 10807,
pp. 805–819. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-77404-
6 58

18. Monma, C.L., Suri, S.: Transitions in geometric minimum spanning trees. Discret.
Comput. Geom. 8, 265–293 (1992)

19. Narasimhan, G., Smid, M.: Geometric Spanner Networks. Cambridge University
Press, Cambridge (2007)

20. Rahmati, Z., Zarei, A.: Kinetic Euclidean minimum spanning tree in the plane. J.
Discret. Algorithms 16, 2–11 (2012). Selected papers from the 22nd International
Workshop on Combinatorial Algorithms (IWOCA 2011)

21. Wulms, J., Buchmüller, J., Meulemans, W., Verbeek, K., Speckmann, B.: Spatially
and temporally coherent visual summaries. arXiv preprint arXiv:1912.00719 (2019)

http://arxiv.org/abs/2003.09979
https://doi.org/10.1007/978-3-319-77404-6_58
https://doi.org/10.1007/978-3-319-77404-6_58
http://arxiv.org/abs/1912.00719

	The Minimum Moving Spanning Tree Problem
	1 Introduction
	2 Preliminaries
	2.1 Definitions
	2.2 Convexity

	3 Minimum Bottleneck Moving Spanning Tree
	4 Minimum Moving Spanning Tree
	4.1 A 2-approximation Algorithm
	4.2 An O(n logn)-time (2+)-approximation Algorithm
	4.3 NP-hardness of MMST

	References




